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ABSTRACT

The identification of scientifically-driven dependence structures is of interest across

many biomedical domains. Examples include tree- and graph-based structures that

manifest themselves in precision medicine and genomic contexts. Such dependence

structures can be compactly represented as covariance or precision matrices, which

are useful for both characterizing and interpreting complex relationships. This disser-

tation develops a family of Bayesian models for structured covariances to investigate

the biological dependencies, motivated by two applications in cancer research. These

models are derived to adapt to different aspects of biological dependencies, such as

the tree structure for assessing treatment similarity in pre-clinical cancer models and

robust network structures for proteogenomics data incorporating tumor heterogeneity

In Chapter II, a novel Bayesian probabilistic tree-based framework is proposed for

patient-derived xenografts data to investigate the hierarchical relationships between

treatments by inferring treatment cluster trees, referred to as treatment trees (Rx-

tree). This framework motivates a new measure of mechanistic similarity between two

or more treatments accounting for inherent uncertainty in tree estimation; treatments

with a high estimated similarity have potentially high mechanistic synergy. Building

upon Dirichlet Diffusion Trees, I derive a closed-form marginal likelihood encoding

the tree structure, which facilitates computationally efficient posterior inference via

a new two-stage algorithm. Simulation studies demonstrate superior performance of

the proposed method in recovering the tree structure and treatment similarities. My

analyses of a recently collated PDX dataset produce treatment similarity estimates
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that show a high degree of concordance with known biological mechanisms across

treatments in five different cancers. More importantly, I uncover new and poten-

tially effective combination therapies that uncover synergistic regulation of specific

downstream biological pathways for future clinical investigations.

In Chapter III, I extend the work of the tree structure and the corresponding ul-

trametric matrices in Chapter II. Tree-structured covariances, or the equivalent ultra-

metric matrices, are an important class of matrices in statistics and machine learning

with numerous applications. Ultrametric matrices are positive definite matrices that

satisfy further ultrametric inequalities. Although projection- and relaxation-based

estimation methods exist, there is a dearth of inferential techniques that provide ap-

propriate uncertainty quantifications. The primary challenges lie in its non-trivial

geometry. In this chapter, I first propose a novel consistent Markovian fragmentation

prior over ultrametric matrices, building on Nabben-Varga decomposition in the ma-

trix algebra literature. Importantly, the decomposition admits one-to-one mapping

of ultrametric matrices to rooted trees, which I exploit to conduct inference in the

surrogate Billera-Holmes-Vogtmann (BHV) space of rooted trees. My approach is

novel because the metricized BHV space naturally motivates quick local moves along

geodesics between neighboring tree topologies. In addition, because these moves do

not rely on projection or relaxation during posterior computation, posterior sum-

maries of central tendency and dispersion are readily available via Fréchet mean and

geodesic distance in the BHV space. Simulation studies show that the proposed

algorithm accurately recovers the matrix and the tree along with uncertainty quan-

tification. I demonstrate the utility of the proposed method on the pre-clinical dataset

by constructing the treatment tree and the mechanism similarity for multiple cancer

treatments.

In Chapter IV, I shift the focus to Graphical models and investigate complex de-

pendency structures in high-throughput datasets. Currently, most existing graphical
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models make one of two canonical assumptions: (i) a homogeneous graph with a

common network for all subjects; or (ii) rely on the normality assumption, especially

in the context of Gaussian graphical models. Both assumptions are restrictive and

can fail in certain applications, such as the proteomic networks in cancer. I propose

robust Bayesian graphical regression (rBGR) to estimate heterogeneous graphs for

non-normally distributed data. rBGR allows a flexible framework to estimate graphs

by accommodating the non-normality through the random marginal transformations

and constructs covariate-dependent graphs through graphical regression techniques.

I also formulate a new characterization of edge dependencies in such models called

conditional sign independence with covariates. In simulation studies, I demonstrate

that rBGR outperforms existing Gaussian graphical regression for data generated un-

der various levels of non-normality in both edge and covariate selection. I use rBGR

to assess proteomic networks across two cancers: lung and ovarian, to systematically

investigate the effects of immunogenic heterogeneity within tumors. My analyses re-

veal several important protein-protein interactions that are differentially impacted by

the immune cell abundance; some corroborate existing biological knowledge but also

discover several novel associations for future investigations.
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CHAPTER I

Introduction

As the high-throughput screening techniques advance, modern data collection

methods have allowed systematic assessment of multiple high-dimensional biomedical

datasets simultaneously on the same or different tumor samples (Akbani et al., 2014;

Baladandayuthapani et al., 2014). Subsequently, these high-dimensional datasets

have enabled biologists to build scientific hypotheses on the relationships among dif-

ferent datasets and to recognize the importance of dependency in many fundamental

biological processes (Airoldi, 2007; Sonawane et al., 2019). One famous example is the

complex interactions among proteins that play a pivotal role in different molecular

processes (Cheng et al., 2020). Statistically, these dependencies and interactions can

be formulated using covariance matrices, to describe and conduct inference on the

dependencies among different data. However, due to scientific hypotheses assumed

about the different dependencies on the biomedical data, various conditions are im-

posed on the structure of the covariance matrix for different data and domains (e.g.

McCullagh, 2006; Zorzi and Ferrante, 2012; Mieldzioc et al., 2021; hrer et al., 2023).

In this dissertation, I develop a family of Bayesian models for structured covariances

to investigate different biological dependencies that encode the underlying scientific

hypotheses in cancer research.

Structured covariance matrices are widely used in statistics (and other fields)
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and provide a flexible framework to characterize different aspects of dependencies

in biomedical data. Consider a p-dimensional random vector X = (X1, . . . , Xp)
T

representing observed data. In this dissertation, I model the dependency using a

normal distribution as

X ∼ Np(0,Σ), (1.1)

where Σ is the covariance matrix describing the dependencies between components

of X. The models in this dissertation either implicitly or explicitly use the normal

distribution for different scenarios. I choose the normal distribution for two reasons:

(i) the covariance matrix in the normal distribution is a parameter that captures the

second and higher orders of dependency (Casella and Berger, 2001); (ii) the ubiqui-

tous use of the normal distribution in biomedical data. However, the unconstrained

covariance does not satisfy the assumptions stemming from scientific hypotheses. I

address two different constraints based on hypotheses for two different datasets in

cancer research, resulting in tree- and graph-based covariances in this dissertation.

I investigate two types of dependencies that demonstrate different aspects of sci-

entific hypotheses in cancer research. First, I focus on tree-based covariances from a

dataset that investigates the treatment effectiveness for different cancer treatments.

Specifically, I build a treatment tree that encodes the underlying mechanism simi-

larity among different treatments and infer the treatment effectiveness based on this

mechanism similarity. To model the tree structure as a matrix, I impose the ultramet-

ric inequality (Lapointe and Legendre, 1991; Nabben and Varga, 1994; Bravo et al.,

2009) on elements of the matrix, which regulates the values of off-diagonal elements.

However, modeling the matrix with ultrametric inequality is a non-trivial problem, as

the set of these matrices is neither a manifold (McCullagh, 2006) nor convex (Chier-

chia and Perret, 2020). Second, I shift the focus to graph-based covariance and aim
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to construct dependencies that vary on covariate. Specifically, the structure of the

covariance depends on the covariate-specific information, resulting in the network re-

quires us to model a covariance that varies based on covariates from different subjects.

Currently, existing approaches require at least one of the canonical assumptions of

(i) a common network for all subjects or (ii) the normality assumption. However,

both assumptions fail to hold in the motivating data. These challenges motivate this

dissertation, and I address them in detail in the following chapters. For each chap-

ter, I further elaborate on the key scientific and statistical themes and outline the

progression of the dissertation.

1.1 Probabilistic Learning of Treatment Trees in Cancer

Key scientific questions. Accurate identification of synergistic treatment com-

binations and their underlying biological mechanisms is critical across many disease

domains, especially cancer. Due to the impracticality of administering different treat-

ment combinations on the same patient, preclinical systems such as patient-derived

xenografts (PDX) have emerged to assess promising treatments and compounds be-

fore they are phased into human clinical trials. In translational oncology, PDX is

a preclinical system with an experimental design that evaluates multiple treatments

administered to samples from the same human tumor implanted into genetically iden-

tical mice (Hidalgo et al., 2014; Lai et al., 2017).

In Chapter II, I consider an experimental design of the PDX clinical trial that

includes a large number of patients (Abdolahi et al., 2022) and tests a set of common

treatments. This experimental design results in a data matrix such that each row

in the matrix represents responses for a treatment from different patients, and each

column presents responses from multiple mice with tumors implanted from the same

patient. Due to this experimental design and the high clinical relevance (Oh and Bang,

2020; Abdolahi et al., 2022), a PDX clinical trial mimics a real human clinical trial
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(Clohessy and Pandolfi, 2015), which allows me to answer the key scientific questions

of: (a) identification of underlying plausible biological mechanisms, and (b) evaluation

of the effectiveness of drug combinations based on mechanistic understanding.

Statistical themes. Ideally, treatments with the same target/mechanism should

induce similar responses and engender mechanism-related clustering among treat-

ments. Based on this idea, I use a tree structure to not only recuresively partition

treatments into clusters but also quantify the similarity among clusters. In Chapter

II, I propose a probabilistic tree-based framework for PDX data to investigate the

mechanistic dependencies among treatments by inferring treatment trees. Specifically,

I adapt a generative approach of Dirichlet diffusion trees that allows us to model the

inherent uncertainty in the tree structure and, therefore, the underlying mechanism

similarity. Building upon Dirichlet diffusion trees, I derive a closed-form marginal

likelihood with covariance that encodes the tree structure. The likelihood further

inspires a parameter decoupling strategy that facilitates an efficient new two-stage

algorithm. I also develop posterior summaries that measure mechanistic similarity

between two or more treatments, accounting for inherent uncertainty in tree esti-

mation. I demonstrate the superior performance of my method in recovering the

tree structure and the treatment similarities through a series of simulation studies

under different data generating mechanisms. My analyses corroborate existing syn-

ergistic combination therapies while uncovering new ones. Additionally, I discover

potentially effective combination therapies that confer synergistic regulation of spe-

cific downstream biological pathways for future clinical investigations. This Chapter

is based on Yao et al. (2023).
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1.2 Bayesian Inference for Ultrametric Covariances

Key scientific questions. In this Chapter, I continue and generalize the work

of the tree-structured covariance in Chapter II. Tree-structured covariances, or ul-

trametric matrices, play an important role in statistics and machine learning with

various scientific applications. For instance, in a multivariate Gaussian distribution,

the covariance matrix is an ultrametric matrix if and only if the Gaussian density is

multivariate totally positive of order two (Karlin and Rinott, 1983; Lauritzen et al.,

2019), which implies a conditional positive dependency between two random variables

(Fallat et al., 2017). Recently, ultrametric matrices have been applied in various sce-

narios as covariance matrices in Gaussian distributions, such as graphical models (Fal-

lat et al., 2017) and Brownian motion tree models (e.g. Neal, 2003; Sturmfels et al.,

2021), with applications in cancer biology (Yao et al., 2023) and finance (Agrawal

et al., 2020). However, the inequalities required on ultrametric matrices also impose

difficult constraints, as the constraints are highly non-convex (Chierchia and Perret,

2020), resulting in both computation and inference challenges. Although, many ap-

proaches have been proposed, to the best of my knowledge, no existing methods can

quantify the uncertainty in ultrametric matrices.

Statistical themes. To address the problem of uncertainty quantification in ul-

trametric matrices, I propose a consistent Markovian prior for ultrametric matrices

and develop a flexible Bayesian framework to obtain posterior samples of ultrametric

matrices efficiently, thereby providing uncertainty quantification alongside point esti-

mates. Specifically, I characterize the geometry of the space of ultrametric matrices

through its bijection with the well-known BHV phylogenetic tree space, which allows

us to conduct inference in the surrogate space of rooted trees. I leverage this charac-

terization to develop an efficient posterior inference of Metropolis-Hastings algorithm.

The algorithm makes local moves along geodesics without projection or relaxation.
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Since the algorithm moves geodesically without leaving the space, posterior sum-

maries of central tendency and dispersion are readily available via Fréchet mean and

geodesic distance in the BHV space. Simulation studies show that the proposed al-

gorithm recovers the matrix and the tree along with uncertainty quantification. I

demonstrate utility of the proposed method on a pre-clinical dataset by constructing

the treatment tree and the mechanism similarity for multiple cancer treatments.

1.3 Robust Bayesian Graphical Regression Models for As-

sessing Tumor Heterogeneity in Proteomic Networks

Key scientific questions. In Chapter IV, I shift focus to the dependencies that

incorporate covariate-specific information and let the dependency structure (i.e. co-

variances) vary based on different covariates. Proteins control many fundamental

cellular processes through a complex but organized system of interactions, termed

protein-protein interactions (PPIs) (Cheng et al., 2020). Moreover, aberrant PPIs

are associated with cancer, and investigating PPIs can lead to effective strategies

and treatments (Lu et al., 2020). Recently, accumulating evidence suggests that

considering tumor heterogeneity at the level of PPIs can enhance our understand-

ing of tumorigenesis and the development of anti-cancer treatments (Cheng et al.,

2020). Specifically, tumor heterogeneity differentially impacts the PPIs across differ-

ent patients and results in varied treatment responses (Cheng et al., 2020). Hence,

incorporating covariate-specific information, i.e., accounting for tumor heterogeneity,

could provide valuable clues to identify PPIs disrupted during carcinogenesis. Con-

sequently, it is highly desirable to elucidate PPIs in cancer and construct flexible

graphical models that can identify multiple types and ranges of dependencies that

vary based on different subjects. The key scientific questions I conclude are: (i) iden-

tify important PPIs across different cancer types and (ii) discover the effect of tumor
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heterogeneity on aberrant PPIs as potential targets for future investigation.

Statistical themes. To construct the PPI network that includes covariate-specific

information, I adapt graphical models to investigate complex dependency structures

in proteomics (Airoldi, 2007). However, most existing graphical models make one of

two canonical assumptions: (i) a homogeneous graph with a common network for all

subjects; or (ii) rely on the normality assumption especially in the context of Gaus-

sian graphical models (Ni et al., 2022a). As the tumor heterogeneity described above,

presuming a common graph for all subjects is not appropriate. More importantly,

the normality assumption does not always hold either for certain biomedical data

such as the proteomic networks in cancer. In Chapter IV, I propose robust Bayesian

graphical regression (rBGR) to estimate heterogeneous graphs for non-normally dis-

tributed data. Specifically, rBGR accommodates non-normality through a random

transformation and constructs covariate-dependent graphs using graphical regression

techniques. I also formulate a new characterization of edge dependencies in such

models called conditional sign independence with covariates. In simulation studies, I

demonstrate that rBGR outperforms existing Gaussian graphical regression for data

generated under various levels of non-normality in both edge and covariate selection.

I use rBGR to assess proteomic networks across two cancers: lung and ovarian, to

systematically investigate the effects of immunogenic heterogeneity within tumors.

My analyses reveal several important protein-protein interactions that are deferen-

tially impacted by the immune cell abundance; some corroborate existing biological

knowledge but also discover several novel associations for future investigations.

1.4 Scientific End-user Resources

I provide multiple general purpose R packages to estimate these structured co-

variances which are available at https://github.com/bayesrx. Specifically, for the
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tree-structured covariances, the package RxTree and UltrametricMat can be used to

fit the models described from Chapter II and III, respectively. The package RxTree

models the trees with all leaves in the tree are equidistant to the root based on the

Dirichlet diffusion tree model. On the other hand, UltrametricMat does not require

the equidistant constraints on all leaves. Moreover, UltrametricMat defines a gen-

eral prior for the tree structure and enables user-defined priors for tree structure.

For graph-based method in Chapter IV, I provide the package of rBGR to construct

covariate-specific graph under non-normal data.
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CHAPTER II

Probabilistic Learning of Treatment Trees in

Cancer

2.1 Introduction

According to the World Health Organization, cancer is one of the leading causes

of death globally, with ∼10 million deaths in 2020 (Ferlay et al., 2020). Despite multi-

ple advances over the years, systematic efforts to predict efficacy of cancer treatments

have been stymied due to multiple factors, including patient-specific heterogeneity and

treatment resistance (Dagogo-Jack and Shaw, 2018; Groisberg and Subbiah, 2021).

Given that the evolution of tumors relies on a limited number of biological mecha-

nisms, there has been a recent push towards combining multiple therapeutic agents,

referred to as “combination therapy” (Sawyers, 2013; Groisberg and Subbiah, 2021).

This is driven by the core hypothesis that combinations of drugs act in synergistic

manner, with each drug compensating for the drawbacks of other drugs. However,

despite higher response rates and efficacy in certain instances (Bayat Mokhtari et al.,

2017), combination therapy can lead to undesired drug-drug interactions, lower ef-

ficacy, or severe side effects (Sun et al., 2016). Consequently, it is highly desirable

to advance the understanding of underlying mechanisms that confer synergistic drug

effects and identify potential favorable drug-drug interaction mechanisms for further
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investigations.

Given that not all possible drug combinations can be tested on patients in actual

clinical trials, cancer researchers rely on preclinical “model” systems to guide the

discovery of the most effective combination therapies (note, models have a different

contextual meaning here). In translational oncology, preclinical models assess promis-

ing treatments and compounds, before they are phased into human clinical trials. The

traditional mainstay of such preclinical models has been cell-lines, wherein cell cul-

tures derived from human tumors are grown in an in vitro controlled environment.

However, it has been argued that they do not accurately reflect the true behavior of

the host tumor and, in the process of adapting to in vitro growth, lose the original

properties of the host tumor, thus leading to limited clinical relevance and successes

(Tentler et al., 2012; Bhimani et al., 2020). To overcome these challenges, there has

been a push towards more clinically relevant model systems that maintain a high

degree of fidelity to human tumors. One such preclinical model system is Patient-

Derived Xenograft (PDX) wherein tumor fragments obtained from cancer patients are

directly transplanted into genetically identical mice (Hidalgo et al., 2014; Lai et al.,

2017). Compared to traditional oncology models such as cell-lines (Yoshida, 2020),

PDX models maintain key cellular and molecular characteristics, and are thus more

likely to mimic human tumors and facilitate precision medicine. More importantly,

accumulating evidence suggests responses (e.g. drug sensitivity) to standard thera-

peutic regimens in PDXs closely correlate with patient clinical data, making PDX

an effective and predictive experimental model across multiple cancers (Topp et al.,

2014; Nunes et al., 2015).

PDX experimental design and key scientific questions. Overall, the PDX

experimental design depends on the purpose of the study and we consider a PDX

study of the PDX clinical trial that includes a large number of patients (Abdolahi

et al., 2022) and tests a set of common treatments. The PDX experiment then
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Figure II.1: PDX experimental design and tree-based representation. Panel A: an illus-
trative PDX dataset with five treatments (row) and eight patients (column). Mice in a given
column are implanted with tumors from the same patient and receive different treatments
(across rows). The level of tumor responses are shown along a color gradient. Panel B: a
tree structure that clusters the treatments and quantifies the similarity among mechanisms.
Two treatments (1 and 4) are assumed to have different but known biological mechanisms
(in different colors); the rest three treatments (2,3, and 5) have unknown mechanisms (in
gray). The tree suggests two treatment groups are present ({1, 2} and {3, 4, 5}) that may
correspond to two different known mechanisms. The horizontal position of “△” represents
the divergence time (defined in Section 2.2.1) and the mechanism similarity for treatments
{3, 4, 5}. In a real data analysis, the tree (topology and divergence times) is unknown and
is to be inferred from PDX data.

implants the tumor cell to multiple mice and each treatment is given to multiple mice

with tumors implanted from the same (matched) patient (see conceptual schema in

Figure II.1(A)). Treatment responses (e.g. tumor size) are then evaluated, resulting in

a data matrix (treatments × patients) as depicted in the heatmap in Figure II.1(A).

The PDX-based clinical trial is a powerful tool for detecting the drug efficacy and

drug sensitivity (Abdolahi et al., 2022) and has been adapted in several studies for

different cancers (e.g. Zhang et al., 2013 for the breast cancer and Bertotti et al., 2011

for the colorectal cancer). Due to the relatively high fidelity between PDX models and

the human tumors (Oh and Bang, 2020; Abdolahi et al., 2022), a PDX-based clinical

trial mirrors a real human clinical trial using mouse “avatars” (Clohessy and Pandolfi,

2015). Thus this protocol serves as a scalable platform to: (a) identify underlying

plausible biological mechanisms responsible for tumor growth and resistance, and (b)
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evaluate the effectiveness of drug combinations based on mechanistic understanding.

In this context, the (biological) mechanism refers to the specific mechanism of action

of a treatment, which usually represents a specific target, such as an enzyme or

a receptor (Grant et al., 2010). From the perspective of treatment responses as

data, responses are the consequences of the downstream biological pathways from the

corresponding interaction between a treatment and the target/mechanism.

Ideally, treatments with the same target/mechanism should induce similar re-

sponses and engender mechanism-related clustering among treatments. Evidently

then, a sensible clustering of treatments would not only partition treatments into

clusters but also explicate how the clusters relate to one another; in other words, a

hierarchy among treatment clusters is more likely to uncover plausible mechanisms

for combinations of treatments with “similar” responses when compared to “flat”

clusters (e.g., k-means clustering). Such response-based identification of potential

synergistic effects from combinations of treatments will augment understanding from

known mechanistic synergy. In our application, using tree-based clustering, we as-

sume known entities at the leaves, i.e., the different treatments. The treatments are

assumed to act upon potentially distinct biological pathways, resulting in different

levels of responses across the treated mice. In this Chapter, we use PDX response

data on the leaves to infer a hierarchy over treatments that may empirically character-

ize the similarity in the targeted mechanistic pathways. The primary statistical goals

are to (i) define and estimate a general metric measuring the similarity within any

subset comprising two or more treatments, and (ii) facilitate (i) by conceptualizing

and inferring an unknown hierarchy among treatments.

Tree-based representations for PDX data. To this end, we consider a tree-based

construct to explore the hierarchical relationships between treatments, referred to as

treatment tree (Rx-tree, in short). We view such a tree structure as a representation of

clustering of treatments based on mechanisms that confer synergistic effects, wherein
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similarities between mechanisms are captured through branch lengths. Hierarchy

among treatments can be interpreted through branch lengths (from the root) that

are potentially reflective of different cancer processes; this would then help identify

common mechanisms and point towards treatment combinations disrupting oncolog-

ical processes if administered simultaneously.

We will focus on rooted trees. The principal ingredients of a rooted tree comprise

a root node, terminal nodes (or, leaves), internal nodes and branch lengths. In the

context of the Rx-tree for PDX data, the leaves are observed treatment responses,

whereas internal nodes and branch lengths are unobserved. Internal nodes are clusters

of treatments, and lengths of branches between nodes are indicative of strengths of

mechanism similarities. The root is a single cluster consisting of all treatments. This

leads to the following interpretation: at the root all treatments share a common target

or mechanism; length of path from the root to the internal node (sum of branch

lengths) at which two treatments split into different clusters measures mechanism

similarity between the two treatments. Thus treatments that stay clustered “longer”

have higher mechanism similarities.

Throughout, we will use ‘tree’ when describing methodology for an abstract tree

(acyclic graphs with distinguished root node) and ‘treatment tree’ or ‘Rx-tree’ when

referring to the latent tree within the application context.

An illustrative example. A conceptual Rx-tree and its interpretation is illustrated

in Figure II.1 where five treatments (1 to 5) are applied on eight patients’ PDXs (Fig-

ure II.1(A)) with the corresponding (unknown true) Rx-tree (Figure II.1(B)) based

on the PDX data. Assume two treatment groups based on different mechanisms –

treatments {1, 2} and treatments {3, 4, 5}; further, suppose treatment 4 is approved

by the Food and Drug Administration (FDA). The heatmap in Panel (A) visualizes

the distinct levels of response profiles to the five treatments so that treatments closer

in the tree are more likely to have similar levels of responses. The Rx-tree captures
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the mechanism similarity by arranging treatments {1, 2} and {3, 4, 5} to stay in their

respective subtrees longer and to separate the two sets of treatment early in the tree.

Based on the Rx-tree, treatments {3, 5} share high mechanism similarity values with

treatment 4; treatment 5 is the closest to the treatment 4, suggesting the most similar

synergistic mechanism among all the evaluated treatments 1 to 5.

Existing methods and modeling background. The Pearson correlation is a

popular choice to assess mechanism similarity between treatments (Krumbach et al.,

2011), but is inappropriate to examine multi-way similarity. A tree-structured ap-

proach based on a (binary) dendrogram obtained from hierarchical clustering of

cell-line data using the cophenetic distance (Sokal and Rohlf, 1962) was adopted

in Narayan et al. (2020); their approach, however, failed to account for uncertainty in

the dendrogram, which is highly sensitive to measurement error in the response vari-

ables as well distance metrics (we show this via simulations and in real data analyses).

Another example with a binary dendrogram of hierarchical clustering was proposed

by Rashid et al. (2020), which also utilizes the same PDX dataset as this Chapter.

However, their model uses the tree structure to model the individualized treatment

rule for different patients, while our method focuses on the tree structure itself and the

corresponding mechanism similarity. In this Chapter, we consider a model for PDX

data parameterized by a tree-structured object representing the Rx-tree. The model

is derived from the Dirichlet diffusion tree (DDT) (Neal, 2003) generative model for

(hierarchically) clustered data. The DDT engenders a data likelihood and a prior

distribution on the tree parameter with support in the space of rooted binary trees.

We can then use the posterior distribution to quantify uncertainty about the latent

Rx-tree.

Summary of novel contributions and organization of the article. Our ap-

proach based on the DDT model for PDX data results in three main novel contribu-

tions:
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(a) Derivation of a closed-form likelihood that encodes the tree structure. The DDT

specification results in a joint distribution on PDX data, treatment tree param-

eters and other model parameters. By marginalizing over unobserved data that

correspond to internal nodes of the tree, we obtain a new multivariate Gaussian

likelihood with a special tree-structured covariance matrix, which completely

characterizes the treatment tree (Proposition 1 and Lemma 2.3.1).

(b) Efficient two-stage algorithm for posterior sampling. Motivated by the form of

marginal data likelihood in (a), we decouple the Euclidean and tree parame-

ters and propose a two-stage algorithm that combines an approximate Bayesian

computation (ABC) procedure (for Euclidean parameters) with a Metropolis-

Hasting (MH) step (for tree parameters). We demonstrate via multiple simu-

lation studies the superiority of our hybrid approach over approaches based on

classical single-stage MH algorithms (Sections 2.4.2 and 2.4.1).

(c) Corroborating existing, and uncovering new, synergistic combination therapies.

We define and infer a new similarity measure that accounts for inherent un-

certainty in estimating a latent hierarchy among treatments. As a result, the

maximum a posteriori Rx-tree and the related mechanism similarity show high

concordance with known existing biological mechanisms for monotherapies and

uncover new and potentially useful combination therapies (Sections 2.5.3 and

2.5.4).

Of particular note is contribution (c), where we leverage a recently collated PDX

dataset from the Novartis Institutes for BioMedical Research - PDX Encyclopedia

[NIBR-PDXE, (Gao et al., 2015)] that interrogated multiple targeted therapies across

five different cancers. Our pan-cancer analyses of the NIBR-PDXE dataset show a

high degree of concordance with known existing biological mechanisms across different

cancers; for example, a high mechanistic similarity is suggested between two agents

currently in clinical trials: CGM097 and HDM201 in breast cancer and colorectal
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cancer, known to target the same gene MDM2 (Konopleva et al., 2020). In addition,

our model uncovers new and potentially effective combination therapies. For exam-

ple, exploiting knowledge of the combination therapy of a class of agents targeting

the PI3K-MAPK-CDK pathway axes – PI3K-CDK for breast cancer, PI3K-ERBB3

for colorectal cancer and BRAF-PI3K for melanoma – confers possible synergistic

regulation for prioritization in future clinical studies.

The rest of the Chapter is organized as follows: we first review our probabilistic

formulation for PDX data based on the DDT model and present the marginal data

likelihood and computational implications in Section 2.2. In Section 2.3, we derive

the posterior inference algorithm based on a two-stage algorithm. In Section 2.4, we

conduct two sets of simulations to evaluate the operating characteristics of the model

and algorithm. A detailed analysis of the NIBR-PDXE dataset, results, biological in-

terpretations and implications are summarized in Section 2.5. This Chapter concludes

by discussing implications of the findings, limitations, and future directions.

2.2 Modeling Rx-tree via Dirichlet Diffusion Trees

Given a PDX experiment with I correlated treatments and J independent patients,

we focus on the setting with 1× 1× 1 design (one animal per PDX model per treat-

ment) with no replicate response for each treatment and patient. A PDX experiment

produces an observed data matrix XI×J = [X1, . . . ,XI ]
T where Xi = [Xi1, . . . , XiJ ]

T

is data under treatment i across J patients; let the observed response column for each

patient be X·,j = [x1j, . . . , xIj]
T ∈ RI , j = 1, . . . , J .

In this Chapter, the observed treatment responses are continuous and we model

the responses through a generative model that results in a Gaussian likelihood with

a structured covariance:

X·,j|ΣT , σ2 iid∼ NI(0,Σ
T ), j = 1, . . . , J, (2.1)
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where the ΣT is a tree-structured covariance matrix that encodes the tree T . In

particular, ΣT =
{
ΣT

i,i′ , i, i
′ = 1, . . . , I

}
encodes the tree T through two constraints

(Lapointe and Legendre, 1991; McCullagh, 2006):

ΣT
i′,i = ΣT

i,i′ ≥ 0; ΣT
i,i ≥ ΣT

i,i′ , (2.2)

ΣT
i,i′ ≥ min{ΣT

i,i′′ , ΣT
i′,i′′} for all i ̸= i′ ̸= i′′. (2.3)

Each element ΣT
i,i is the covariance between treatments i and i′ and measures their

similarity. The inequality (2.2) imposes the symmetry of covariance matrix and en-

sures the divergence of all leaves. The tree structure is characterized by the ultramet-

ric inequality (2.3) that ensures ΣT bijectively maps to a tree T ; for more details on

the relationship between the covariance ΣT and the tree T see McCullagh (2006) and

Bravo et al. (2009). Of note, mean parameterized models (e.g. mixed effects models)

are inappropriate for uncovering the tree parameter under the given data structure

since the latent tree is completely encoded in covariance matrix ΣT .

A Bayesian formulation requires an explicit prior distribution onΣT which satisfies

constrains (2.2) and (2.3); this requirement is far from straightforward since the set

of tree-structured matrices is complicated (e.g., it is not a manifold (McCullagh,

2006)). We instead consider the Dirichlet Diffusion tree (DDT) model (Neal, 2003)

for hierarchically clustered data which provides two useful ingredients:

1. a prior is implicitly specified on the latent treatment tree, comprising the root,

internal nodes, leaves, and branch lengths;

2. upon integrating out the internal nodes, a tractable Gaussian likelihood on PDX

data with tree-structured covariance is specified.

We first provide a brief description of the DDT model proposed by Neal (2003)

and its joint density on data and tree (Section 2.2.1). Subsequently, we derive an

expression for the likelihood and demonstrate how it can be profitably employed to
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develop a generative model for PDX data and carry out Rx-tree estimation (Section

2.2.2 and 2.2.3).

2.2.1 The Generative Process of DDT

The DDT prescribes a fragmentary, top-down mechanism to generate a binary

tree (acyclic graph with a preferred node or vertex referred to as the root), starting

from a root, containing J-dimensional observed responses Xi at I leaves/terminal

nodes; each node in the tree has either 0 or 2 children excepting the root which has a

solitary child. This prescription manipulates dynamics of a system of I independent

Brownian motions B1, . . . , BI on RJ in a common time interval t ∈ [0, 1]. As shown

in Figure II.2(A), all Brownian motions Bi(t) start at the same point at time t = 0,

location of which is the root 0 ∈ RJ , and diverge at time points in [0, 1] and locations

in RJ before stopping at the time t = 1 at locations Xi. The Brownian trajectories

and their divergences engender the tree structure as shown in Figure II.2(A).

Specifics on when and how the Brownian motions diverge are as follows: the

first Brownian motion B1(t) starts at t = 0 and generates X1 at t = 1; a second

independent Brownian motion B2(t) starts at the same point at t = 0, branches out

from the first Brownian motion at some time t, after which it generates X2 at time

1. The probability of divergence in a small interval [t, t+ dt] is given by a divergence

function t 7→ a(t), assumed as in Neal (2003) to be of the form a(t) = c(1− t)−1 for

some divergence parameter c > 0. Inductively then, the vector of observed responses

to treatment i, Xi, is generated by Bi(t), which follows the path of previous ones.

If at time t, Bi(t) has not diverged and meets the previous divergent point, it will

follow one of the existing path with the probability proportional to the number of

data points that have previously traversed along each path. Eventually, given Bi(t)

has not diverged at time t, it will do so in [t, t+ dt] with probability a(t)dt/m, where

m is the number of data points that have previously traversed the current path.

18



From the illustration in panel (A) of Figure II.2, we note that B3 diverges from

the B1 and B2 at time t1 at location X ′
1 and at t = 1 is at location X3, which is

the J-dimensional response vector for treatment 3; this creates a solitary branch of

length t1 from the root and an unobserved internal node at location X ′
1. Continuing,

given three Brownian motions B1, B2 and B3, B4 does not diverge before t1 and meet

the previous divergent point t1. B4 chooses to follow the path of B3 with probability

1/3 at t1 and finally diverges from B3 at time t2 > t1 at location X ′
2; this results in

observation X4 for treatment 4 and an unobserved internal node at X ′
2, and so on.

As a consequence, the binary tree that arises from the DDT comprises of:

(i) an unobserved root at the origin in RJ at time t = 0;

(ii) observed data X = [X1, . . . ,XI ]
T ∈ RI×J situated at the leaves of the tree;

(iii) unobserved internal nodes XI = [X ′
1, . . . ,X

′
I−1]

T ∈ R(I−1)×J ;

(iv) unobserved times t = (t1, . . . , tI−1)
T ∈ [0, 1]I−1 that characterize lengths of

branches;

(v) unobserved topology T that links (i)-(iv) into a tree structure, determined by

the number of data points Xi that have traversed through each segment or

branch.

Conceptually, observed data at the leaves X1, . . . ,XI collectively form the observed

PDX responses generated through a process involving a few parameters: tree-related

parameters (T , t) and the locations of internal nodes X ′
i. The tree T clusters I

treatments as a hierarchy of (I− 1) levels (excluding the last level containing leaves).

At level 0 < d ≤ I − 1 of the hierarchy, characterized by the pair (X ′
d, td), the I

treatments are clustered into d + 1 groups; a measure of similarity (or dissimilarity)

between treatment clusters at levels d and d+1 is given by the branch length td+1−td.

We now give a brief description of how the joint density of (X,XI , t, T ) can

be derived; for more details we direct the reader to Neal (2003) and Knowles and
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Figure II.2: (A) A binary tree with I = 5 leaves underlying the diffusion dynamics. The
observed response vector Xi, i = 1, . . . , I is generated by the Brownian motion up to t = 1.
The unobserved response vector X ′

d, d = 1, . . . , (I−1) at the divergence is generated by the
Brownian motion at time td. (B) A tree-structured matrix ΣT that encapsulates the tree
T . See the Proposition 1 for the definition of ΣT .

Ghahramani (2015). For a fixed c > 0 that governs the divergence function a(t) =

c(1−t)−1, probabilities associated with the independent Brownian motions B1, . . . , BI

induce a joint (Lebesgue) density on the generated tree. Note that the binary tree

arising from the DDT is encoded by the triples {(td,X ′
d,Xi), d = 1, . . . , I − 1; i =

1, . . . , I}. An internal node at X ′
d contains ld and rd leaves below to its left and right

with md = ld + rd. If each of the Brownian motions is scaled by σ2 > 0, then given

T and a branch with endpoints (tu,X
′
u) and (tv,X

′
v) with 0 < tu < tv < 1, from

properties of a Brownian motion we see that X ′
v ∼ NJ(X

′
u, σ

2(tv − tu)IJ), and the

(Lebesgue) density of T can be expressed as the product of contributions from its

branches. Then the joint density of all nodes, times and the tree topology is given by

P (X,XI , t, T |c, σ2) =
∏

[u,v]∈S(T )

(lv − 1)!(rv − 1)!

(lv + rv − 1)!
c(1− tv)

cJv−1N(X ′
u, σ

2(tv − tu)IJ)

(2.4)

where S(T ) is the collection of branches and XI
(I−1)×J = [X ′

1, . . . ,X
′
(I−1)]

T are unob-

served locations of the internal nodes. On each branch [u, v], the first term (lv−1)!(rv−1)!
(lv+rv−1)!

represents the chance the branch containing lv and rv leaves to its left and right re-
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spectively; c(1 − tv)
cJv−1 represents the probability of diverging at tv with lv and rv

leaves, where Jv = Hlv+rv−1−Hlv−1−Hrv−1 with Hn =
∑n

i=1 1/i is the nth harmonic

number.

The joint density is hence parameterized by (c, σ2), where c plays a crucial role in

determining the topology T : through the divergence function a(t), it determines the

propensity of the Brownian motion to diverge from its predecessors; consequently, a

small c engenders later divergence and a higher degree of similarity among treatments

in PDX. The latent tree has two components: (i) topology T and (ii) vector of

divergence times t determining branch lengths. We refer to (c, σ2) as the Euclidean

parameters and (T , t) as tree parameters.

2.2.2 Prior on Tree and Closed-form Likelihood

The joint density in (2.4) factors into a prior P (t, T |c, σ2) on the tree parameter

through (T , t) and a density P (X,XI |t, T , c, σ2) that is a product of J-dimensional

Gaussians on the internal nodes and leaves. The prior distribution on the latent

tree is thus implicitly defined through the Brownian dynamics and is parameter-

ized by (T , t) with hyperparameters (c, σ2). In (2.4) the product is over the set of

branches S(T ), and the contribution to the prior P (T , t|c, σ2) from each branch [u, v]

is (lv−1)!(rv−1)!
(lv+rv−1)!

c(1− tv)
cJlv,rv−1, which is free of σ2; on the other hand, the contribution

to P (X,XI |t, T , c, σ2) from [u, v] is the J-dimensional NJ(X
′
u, σ

2(tv − tu)IJ), which

is independent of c. The likelihood function based on the observed X is thus obtained

by integrating out the unobserved internal nodes XI from P (X,XI |t, T , σ2). Accord-

ingly, our first contribution is to derive a closed-form likelihood function for efficient

posterior computations; to our knowledge, this task is currently achieved only through

sampling-based or variational methods (Neal, 2003; Knowles and Ghahramani, 2015).

Denote as MNI×J(M,U, V ) the matrix normal distribution of an I × J ran-

dom matrix with mean matrix M , row covariance U , and column covariance V ,

21



and let Ik denote the k × k identity matrix. Evidently, X follows a matrix nor-

mal distribution since Gaussian laws of the Brownian motions imply that [X,XI ] =

[X1, . . . ,XI ,X
′
1, . . . ,X

′
(I−1)]

T follow a matrix normal distribution.

Proposition 1. Under the assumption that the root is located at the origin in RJ , the

data likelihoodX|σ2, T , t ∼ MNI×J(0, σ
2ΣT , IJ), where Σ

T =
(
ΣT

i,i′

)
is an I×I tree-

structured covariance matrix satisfying (2.2) and (2.3) with ΣT
i,i = 1 and ΣT

i,i′ = td,

for i ̸= i′ where i, i′ = 1, . . . , I and d = 1, . . . , I − 1.

Proposition 1 asserts that use of the DDT model leads to a centered Gaussian

likelihood on PDX data X with a tree-structured covariance matrix. Proposition 1

also implies that each patient independently follows the normal distribution of (2.1)

with an additional scale parameter (σ2) from the Brownian motion:

X·,j|ΣT , σ2 iid∼ NI(0, σ
2ΣT ), j = 1, . . . , J. (2.5)

By settingΣT
i,i′ = ti,i′ as the divergence time of i and i′, ΣT satisfies (2.2) and (2.3) and

encodes the tree T . For example, consider a three-leaf tree with ΣT
i,i′ = ti,i′ , inequality

(2.3) implies that for the three leaves, say, i, i′ and i′′, one of the following conditions

must hold: (i) ti′,i′′ ≥ ti,i′ = ti,i′′ ; (ii) ti,i′′ ≥ ti,i′ = ti′,i′′ ; (iii) ti,i′ ≥ ti,i′′ = ti′,i′′ . We

then obtain a tree containing 1) a subtree of two leaves with a higher similarity and

2) a singleton clade with a lower similarity between the singleton leaf and the two

leaves in the first subtree. In particular, if ti′,i′′ ≥ ti,i′ = ti,i′′ holds, the three-leaf tree

has leaf i diverging earlier before the subtree of (i′, i′′).

2.2.3 Decoupling Tree and Euclidean Parameters for Efficient Sampling.

In the full joint density in (2.4) the Euclidean and tree parameters are confounded

across row and column dimensions of X, and this may result in slow mixing of chains

using traditional MCMC algorithms (Turner et al., 2013). State-of-the-art posterior
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inference on (c, σ2, T , t) can be broadly classified into sampling-based approaches

(e.g., Knowles and Ghahramani, 2015) and deterministic approaches based on varia-

tional message passing (e.g., Knowles et al., 2011, VMP). Variational algorithms can

introduce approximation errors to the joint posterior via factorization assumptions

(e.g.,mean-field) and choice of algorithm is typically determined by the speed-accuracy

trade-off tailored for particular applications. On the other hand, in classical MCMC-

based algorithms for DDT we observed slow convergence in the sampling chains for c

and σ2 with high autocorrelations for the corresponding chains, owing to possibly the

high mutual dependence between c in the divergence function and the tree topology

T , resulting in slow local movements in the joint parameter space of model and tree

parameters (Simulation II in Section 2.4.2).

Notwithstanding absence of the parameter c in the Gaussian likelihood, the depen-

dence, and information about, c is implicit: the distribution of divergence times t that

populate ΣT are completely determined by the divergence function t 7→ c(1 − t)−1.

In other words, c can indeed be estimated from treatment responses {X·,j} using the

likelihood. From a sampling perspective, however, form of the likelihood obtained by

integrating out the internal nodes XI , suggests an efficient two-stage sampling strat-

egy that resembles the classical collapsed sampling (Liu, 1994) strategy in MCMC

literature: first draw posterior samples of (c, σ2) and then proceed to draw posterior

samples of (T , t) conditioned on each sample of (c, σ2).

2.3 Rx-tree Estimation and Posterior Inference

In line with the preceding discussion, we consider a two-stage sampler for Eu-

clidean and tree parameters. While in principle MCMC techniques could be used in

both stages, we propose to use a hybrid ABC-MH algorithm. Specifically, we use

an approximate Bayesian computation (ABC) scheme to draw weighted samples of

(c, σ2) in the first stage followed by a Metropolis-Hastings (MH) step that samples
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(T , t) given ABC samples of (c, σ2) in the second stage. Motivation for using ABC in

the first stage stems from: (i) availability of informative statistics; (ii) generation of

better quality samples of the tree (compared to a single-stage MH); and (iii) better

computational efficiency. We refer to Section 2.4.2 for more details.

2.3.1 Hybrid ABC-MH Algorithm

ABC is a family of inference techniques that are designed to estimate the poste-

rior density pr(θ|D) of parameters θ given data D when the corresponding likelihood

pr(D|θ) is intractable but fairly simple to sample from. Summarily, ABC approx-

imates pr(θ|D) by pr(θ|Sobs) where Sobs is a d-dimensional summary statistic that

ideally captures most information about θ. In the special case where Sobs is a vector

of sufficient statistics, it is well known that pr(θ | D) = pr(θ | Sobs). To generate

a sample from the partial posterior distribution pr(θ | Sobs), ABC with rejection

sampling proceeds by: (i) simulating N syn values θl, l = 1, . . . , N syn from the prior

distribution pr(θ); (ii) simulating datasets Dl from pr(D|θl); (iii) computing summary

statistics Sl, l = 1, . . . , N syn from Dl; (iv) retaining a subset of {θls , s = 1 . . . , k} of

size k < N syn that corresponds to ‘small’ ∥Sls − Sobs∥ values based on some thresh-

old. Given pairs {(θls ,Sls)}, the task of estimating the partial posterior translates

to a problem of conditional density estimation, e.g., based on Nadaraya-Waston type

estimators and local regression adjustment variants to correct for the fact that Sls

may not be exactly Sobs; see Sisson et al. (2019) for a comprehensive review. To

implement ABC, the choice of summary statistics is central.

We detail the specialization of ABC to the marginal posterior distributions of c

and σ2 in Section 2.3.1.1. Given any pair of (c, σ2), we can sample trees from a density

function up to an unknown normalizing constant based on an existing MH algorithm

(Knowles and Ghahramani, 2015). Our proposal is to condition on the posterior

median of (c, σ2) of ABC-weighted samples from the first stage, when sampling the
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trees in the second stage; clearly, other choices are also available. This strategy

produced comparable MAP trees and inference of other tree-derived results relative

to tree samples based on full ABC samples of c and σ2.

Pseudo code for the two-stage algorithm is presented in the Supplementary Ma-

terial Algorithm 2. We briefly describe below its key components.

2.3.1.1 Stage 1: Sampling Euclidean Parameters (c, σ2) using ABC

Accuracy and efficiency of the ABC procedure is linked to two competing desider-

ata on the summary statistics: (i) informative, or ideally sufficient, and (ii) low-

dimensional.

Summary statistic for σ2. From the closed-form likelihood in Equation (2.5),

a sufficient statistic of σ2ΣT is easily available, using which we construct a summary

statistics for σ2.

Lemma 2.3.1. With X as the observed data, the statistic T :=
∑

j X·,jX
T
·,j is

sufficient for σ2ΣT and follows a Wishart distribution WI(J, σ
2ΣT ), where X·,j =

[x1j, . . . , xIj] ∈ RI . Then with S(σ2) := tr(T )
IJ

we have E[S(σ2)] = σ2 and V ar[S(σ2)] =

2σ4tr((ΣT )2)
I2J

.

Due to the normality of X in (2.5), and the Factorization theorem (Casella

and Berger, 2001), we see that T is complete and sufficient for σ2ΣT and T ∼

WI(J, σ
2ΣT ). Well-known results about the trace and determinant of X (see for e.g.

Mathai (1980)) provide the stated results on the mean and variance of tr(T ). Owing

to its unbiasedness, we choose S(σ2) = tr(T )/IJ as the summary statistic for σ2 and

examine its performance through simulations in Section 2.4; other choices are assessed

in the Supplementary Material Section A.4.1.

Summary statistic for c. Based on the matrix normal distribution of Proposi-

tion 1, the divergence parameter c does not appear in the observed data likelihood.

Any statistic based on the entire observed data set X is sufficient, but not necessarily
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informative about c. In DDT, the prior distribution of the vector of branching times

t is governed by divergence parameter c via the divergence function a(t; c). Thus an

informative summary statistic for c can be chosen by assessing its information about

t. For example, tighter observed clusters indicate small c (e.g., c < 1), where the

level of tightness is indicated by the branch lengths from leaves to their respective

parents. We construct summary statistics for c based on a dendrogram estimated via

hierarchical clustering of X based on pairwise distances δi,i′ := ∥Xi − Xi′∥, i ̸= i′.

The summary statistics S(c) we choose is a ten-dimensional concatenated vector com-

prising the 10th, 25th, 50th, 75th and 90th percentiles of empirical distribution of: (i)

δi,i′ ; (ii) branch lengths associated with leaves of the dendrogram. Other candidate

summary statistics for c are examined in Supplementary Material Section A.4.1.

2.3.1.2 Stage 2: Sampling Tree Parameters using Metropolis-Hastings

For the second stage, we proceed by choosing a representative value (c0, σ
2
0) chosen

from the posterior sample of (c, σ2), which in our case is the posterior median. Then

a Metropolis-Hastings (MH) algorithm to sample from pr((T , t)|c0, σ2
0,X); recall that

the Rxtree is characterized by both the topology T and divergence times t. In partic-

ular, after initialization (e.g., the dendrogram obtained from hierarchical clustering),

we first generate a candidate tree (T ′, t′) from the current tree (T , t) in two steps:

(i) detaching a subtree from the original tree; (ii) reattaching the subtree back to

the remaining tree. Acceptance probabilities for a candidate tree can be computed

exactly and directly using the explicit likelihood in (2.5), without which they would

have to be calculated iteratively (Neal, 2003; Knowles and Ghahramani, 2015). See

Supplementary Material Section A.2.2 for details of the proposal function and the

acceptance probabilities.

Remark 1. In order to use the explicit likelihood in (2.5) from Proposition 1 to

generate observed data X, a tree-structured covariance ΣT needs to be specified,
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whose entries in-turn depend on the parameter c through the divergence function.

It is not straightforward to fix or sample a ΣT since its entries need to satisfy the

inequalities (2.3). It is easier to generate data X directly using the DDT generative

mechanism in the ABC stage, and this is the approach we follow and is described in

Supplementary Section A.2.

Summarily, there are three main advantages to using the explicit likelihood from

Proposition 1: (i) decoupling of Euclidean and tree parameters to enable an efficient

two-stage sampling algorithm; (ii) direct and exact computation of tree acceptance

probabilities in MH stage; (iii) determination of informative sufficient statistic for σ2

(Lemma 2.3.1).

Remark 2. From the computational aspect, the calculation of the explicit Gaussian

likelihood of (2.5) in Proposition 1 through the matrix decomposition is slower (e.g.

Cholesky decomposition with O(I3)) than the message passing (e.g. the belief prop-

agation with O(I) (Mezard and Montanari, 2009)) in terms of the big O notation

(Knuth, 1976). However, the computation speed also depends on the implementa-

tion. For this Chapter, we implemented our algorithm in R and found that the matrix

decomposition is faster than the message passing on R. We offer more details with a

simulation study in Supplementary Material Section A.5.3.

2.3.2 Posterior Summary of Rx-Tree, (T , t)

While quantifying uncertainty concerning the tree parameters (T , t) is of main

interest, we note that, from definition of the DDT, this is influenced by uncertainty

in the model parameters. In particular, the first stage of ABC-MH produces weighted

samples and we calculate the posterior median by fitting an intercept-only quantile

regression with weights (see details in the Supplementary Material Section A.2.1).

For the Rx-tree, we consider global and local tree posterior summaries that capture

uncertainty in the latent hierarchy among all and subsets of treatments.
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Flexible posterior inference is readily available based on L posterior samples of

(T , t) from the MH step. It is possible to construct correspond tree-structured co-

variance matrices ΣT from sample (T , t). Instead, we compute:

(a) a global maximum a posteriori (MAP) estimate of the Rx-tree that represents the

overall hierarchy underlying the treatment responses;

(b) local uncertainty estimates of co-clustering probabilities among a subset A ⊂

{1, . . . , I} of treatments based on posterior samples of the corresponding subset of

divergence times.

Posterior co-clustering probability functions. We elaborate on the local sum-

mary (b). Suppose A = {i, i′, i′′} consists of three treatments. Given a tree topology

T , note that at every t ∈ [0, 1] a clustering of all I treatments is available and the

clustering changes only at times 0 < t1 < · · · < tI−1. Consequently, for a given

tree topology T drawn from its posterior, we can compute for every level t ∈ [0, 1]

a posterior probability that i, i′ and i′′ belong to the same cluster. Such a posterior

probability can be approximated using Monte Carlo on the L posterior samples. Ac-

cordingly, we define the estimated posterior co-clustering probability (PCP) function

associated with A as,

PCPA(t) =

∑L
l=1 I[0,t(l)

i,i′,i′′ )
(t)

L
, (2.6)

where IB is the indicator function on the set B and t
(l)
i,i′,i′′ is the divergence time of

A = {i, i′, i′′} in the l-th tree sample. Essentially, the PCPA(t) can be viewed as the

proportion of tree samples with {i, i′, i′′} having the most recent common ancestor

later than t.

For every subset A, the function [0, 1] ∋ t 7→ PCPA(t) ∈ [0, 1] is non-increasing

starting at 1 and ending at 0, and reveals propensity among treatments in A to

cluster as one traverses down an (estimate of) Rx-tree starting at the root: a curve
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that remains flat and drops quickly near 1 indicates higher relative similarity among

the treatments in A relative to the rest of the treatments. A scalar summary of

PCPA(t) is the area under its curve known as integrated PCP iPCPA, which owing

to the definition of PCPA(t), can be interpreted as the expected (or average) chance

of co-clustering for treatments in A.

Figure II.3 illustrates an example of a three-way iPCPA with A = {i, i′, i′′} for a

PDX data with I treatments and J patients (Figure II.3(A)). Given L = 3 posterior

trees samples (Figure II.3(B)) drawn from the PDX data, we first calculate the whole

PCPA(t) function by moving the time t from 0 to 1. Starting from time t = 0, no

treatment diverges at time t = 0 and the PCPA(t) is 1. At time t′, treatments diverge

in one out of the three posterior trees and PCPA(t) therefore drops from 1 to 2/3.

Moving the time toward t = 1, treatments diverge in all trees and the PCPA(t) drops

to 0. The iPCPA then can be obtained by the area under the PCPA(t).

Figure II.3: Posterior tree summaries. (A) The input PDX data with I treatments
and J patients, and treatments A = {i, i′, i′′} are of interest. (B) PCPA(t) and iPCPA for
treatments A based on L = 3 posterior trees. The relevant divergence times are represented
by a “△” in each posterior tree sample. For example, at time t′, the treatments in A diverge
in one out of the three trees. Because PCPA(t

′) is defined by the proportion of posterior
tree samples in which A has not diverged up to and including t′, it drops from 1 to 2/3.
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Remark 3. In the special case of A = {i, i′} for two treatments, the definition of

iPCPA can be related to the cophenetic distance (Sokal and Rohlf, 1962; Cardona

et al., 2013) and, moreover, extends definition of the cophenetic distance to multiple

trees. Given two treatments i and i′ in a single tree, let td be the time at which

their corresponding Brownian paths diverge. Then PCPA(t) = I[0,td)(t) and iPCPA =

td; this implies that the cophenetic distance is 2(1 − td) and thus iPCPA and the

cophenetic distances uniquely determines the same tree structure. For L > 1 trees, a

Carlo average of divergence times of L trees leads to the corresponding iPCPA.

Remark 4. Given I treatments, since pairwise cophenetic distances from one tree de-

termines a tree (Lapointe and Legendre, 1991; McCullagh, 2006), one might consider

summarizing and represent posterior trees in terms of an I × I matrix Σ consisting

of entries iPCP{i,i′} for every pair of treatments of (i, i′), estimated from the posterior

sample of trees. However, Σ need not to be a tree-structured matrix that uniquely

encodes a tree. It is possible to project Σ on to the space of tree-structured matrices

(see for e.g., Bravo et al. (2009)) but the projection might result in a non-binary tree

structure. We discuss this issue and its resolution in Supplementary Material Section

A.3.

2.4 Simulations

Accurate characterization of similarities among any subset of treatments is central

to our scientific interest in identifying the promising treatment subsets for further

investigation. In addition, we have introduced a two-stage algorithm to improve

our ability to efficiently draw tree samples from the posterior distribution (similarly

for the Euclidean parameters). To demonstrate the modeling and computational

advantages, we conduct two sets of simulations. The first simulation shows that

the proposed model estimates the similarity (via iPCP) better than alternatives,
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even when the true data generating mechanisms deviate from DDT assumptions in

terms of the form of divergence function, prior distribution for the unknown tree,

and normality of the responses. The second simulation illustrates the computational

efficiency of the proposed two-stage algorithm in producing higher quality posterior

samples of Euclidean parameters, resulting in more accurate subsequent estimation

of an unknown tree and iPCPs, two key quantities to our interpretation of real data

results.

2.4.1 Simulation I: Estimating Treatment Similarities

We first show that iPCPs estimated by DDT are closer to the true similarities

(operationalized by functions of elements in the true divergence times in ΣT ) under

different true data generating mechanisms that may follow or deviate from the DDT

model assumptions in three distinct aspects (the form of divergence function, the

prior distribution over the unknown tree, and normality).

Simulation setup. We simulate data by mimicking the PDX breast cancer data

(see Section 2.5) with I = 20 treatments and J = 38 patients. We set the true scale

parameter as the posterior median σ2
0 and the true tree T0 as the MAP tree that

are estimated from the breast cancer data; We consider four scenarios to represent

different levels of deviation from the DDT model assumptions:

(i) No deviation of the true data generating mechanism from the fitted DDT mod-

els: given σ2
0 and T0, simulate data based on the DDT marginal data distribution

(Equation (2.5));

The true data generating mechanism deviates from the fitted DDT in terms of:

(ii) divergence function: same as in (i), but the true tree is a random tree from

DDT with misspecified divergence function, a(t; r) = r
(1−t)2

, r = 0.5;

(iii) prior for tree topology: same as in (i), but the true tree is a random tree from
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the coalescence model (generated by function rcoal in R package ape), and,

(iv) marginal data distribution: same as in (i), but the marginal likelihood is a

centered multivariate t distribution with degree-of-freedom four and scaled by

σ2
0Σ

T0 .

For each of four true data generating mechanisms above, we simulate B = 50 replicate

data sets. In the following, we use the DDT model and the two-stage algorithm for all

estimation regardless of the true data generating mechanisms. For DDT, we ran the

two-stage algorithm where the second stage is implemented with five parallel chains.

For each chain, we ran 10, 000 iterations, discarded first 9, 000 trees and combined

five chains with a total of 5, 000 posterior tree samples.

First, we compute the iPCPs for all pairs of treatment combinations following the

definition of iPCPA where A = {i, i′}, 1 ≤ i < i′ ≤ I. Two alternative approaches to

defining and estimating similarities between treatments are considered: (i) similarity

derived from agglomerative hierarchical clustering, and (ii) empirical Pearson corre-

lation of the two vectors of responses Xi and Xi′ , for i ̸= i′. In particular, for (i),

we considered five different linkage methods (Ward, Ward’s D2, single, complete and

Mcquitty) with Euclidean distances. Given an estimated dendrogram from hierarchi-

cal clustering, the similarity for a pair of treatments is defined by first normalizing

the sum of branch lengths from the root to leaf as 1, and then calculating the area

under of the co-clustering curve (AUC) obtained by cutting the dendrogram at vari-

ous levels from 0 to 1. For three- or higher-way comparisons, (i) can still produce an

AUC based on a dendrogram obtained from hierarchical clustering, while the empir-

ical Pearson correlation in (ii) is undefined hence not viable as a comparator beyond

assessing pairwise treatment similarities.

Performance metrics. For treatment pairs A = {i, i′}, to assess the quality of esti-

mated treatment similarities for each of the methods above (DDT-based, hierarchical-

32



clustering-based, and empirical Pearson correlation), we compare the estimated values

against the true branching time ΣT0
i,i′ ; similarly when assessing recovery of three-way

treatment similarities, e.g., A = {i, i′, i′′}, ΣT0
i,i′,i′′ is defined as the time when {i, i′, i′′}

first branches in the true tree T0. In particular, for replication data set b = 1, . . . , B,

let Σ̂
(b)
i,i′ generically represent the pairwise similarities for treatment subsets (i, i′) that

can be based on DDT, hierarchical clustering or empirical pairwise Pearson corre-

lation. For three-way comparisons, let Σ̂
(b)
i,i′,i′′ generically represent the three-way

similarities for treatment subset (i, i′, i′′) that can be based on DDT, or hierarchical

clustering.

We assess the goodness of recovery by computing
√∑

i,i′(Σ̂
(b)
i,i′ − ΣT0

i,i′)
2, the Frobe-

nious norm of the matrix in recovering the entire ΣT0 . We compute maxi,i′,i′′ |Σ̂(b)
i,i′,i′′ −

ΣT0
i,i′,i′′ |, the max-norm of the matrix in recovering the true three-way similarities. For

a given method and treatment subset A, the above procedure results in B values, the

distribution of which can be compared across methods; smaller values indicate better

recovery of the true similarities.

Alternatively, for each method and each treatment subset, we also compute the

Pearson correlation between the estimated similarities and the true branching times

across replicates for pairwise or three-way treatment subsets:

Ĉor
(
(Σ̂

(b)
i,i′ ,Σ

T0
i,i′), b = 1, . . . , B

)
; Ĉor

(
(Σ̂

(b)
i,i′,i′′ ,Σ

T0
i,i′,i′′), b = 1, . . . , B

)
,

for B = 50 and treatments i < i′ < i′′. We refer to this metric as “Correlation of cor-

relations” (the latter uses the fact that the entries in the true ΣT0 being correlations;

see Equation (2.5)); higher values indicate better recovery of the true similarities.

Simulation results. We observe that DDT better estimates the treatment similar-

ities even under misspecified models. In particular, under scenarios where the true

data generating mechanisms deviate from the fitted DDT model assumptions (ii-iv),
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the DDT captures the true pairwise and three-way treatment similarities the best by

higher values in correlation of correlations (left panels, Figure II.4) and lower ma-

trix/array distances (right panels, Figure II.4). In particular, the fitted DDT with

divergence function a(t) = c/(1 − t) under Scenario i, ii and iii performed similarly

well indicating the relative insensitivity to the DDT modeling assumptions with re-

spect to divergence function and the tree generative model. Under Scenario iv where

the marginal likelihood assumption deviates from Gaussian with heavier tails, the

similarity estimates from all methods deteriorate relative to Scenarios i-iii. Compar-

ing between methods, the similarities derived from hierarchical clustering with single

linkage is comparable to DDT model when evaluated by correlation of correlation,

but worse than DDT when evaluated by the matrix norm.

Figure II.4: Simulation studies for comparing the quality of estimated treatment sim-
ilarities based on DDT, hierarchical clustering, and empirical Pearson correlation. Two
performance metrics are used: (Left) Correlation of correlation (higher values are better);
(Right) Matrix distances with Frobenius norm for pairwise similarity and max norm for
three-way similarity (lower values are better). DDT captures both true pairwise (upper
panels) and three-way (lower panels) similarity best under four levels of misspecification
scenarios.
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Additional simulations. Another alternative to bring the information of the pos-

terior samples of c and σ2 is to use the whole posterior samples instead of the fixed

representative statistics only. Following the same set-up, we offer another simula-

tion result to empirically compare the inference performance from the algorithm with

the posterior median only and the the whole posterior samples. See more details in

Supplementary Material Section A.5.4.

2.4.2 Simulation II: Comparison with Single-Stage MCMC Algorithms

We have also conducted extensive simulation studies that focus on the compu-

tational aspect of the proposed algorithms and demonstrate the advantage of the

proposed two-stage algorithm in producing higher quality posterior samples of the

unknown tree than classical single-stage MCMC algorithms. In particular, we demon-

strate that the proposed algorithm produces (i) MAP trees that are closer to the true

tree than alternatives (hierarchical clustering, single-stage MH with default hierar-

chical clustering or the true tree at initialization) and (ii) more accurate estimation

of pairwise treatment similarities compared to single-stage MCMC algorithms. See

Supplementary Material Section A.5 for further details.

Additional simulations and sensitivity analyses. Aside from the simulations

above focusing on the tree structure and the divergence time, Supplementary Material

A.4 offers additional details for Euclidean parameters including the parameter infer-

ence, algorithm diagnostics, and sensitivity analysis for the number of the synthetic

data. In particular, we empirically show that current S(c) and S(σ2) outperform other

candidate summary statistics in terms of bias in Section A.4.1. In Section A.4.2, we

present additional simulation results that demonstrate that the two-stage algorithm

(i) enjoys stable effective sample size (ESS) for (c, σ2); (ii) leads to similar or better

inference on (c, σ2), as ascertained using credible intervals. In Section A.4.3, we check

the convergence of MH and the goodness of fit for ABC. A sensitivity analysis for the
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number of the synthetic data providing the possible acceleration for ABC is shown in

Section A.4.3.3.

2.5 Treatment Trees in Cancer using PDX Data

2.5.1 Dataset Overview and Key Scientific Questions

We leverage a recently collated PDX dataset from the Novartis Institutes for

BioMedical Research - PDX Encyclopedia [NIBR-PDXE, (Gao et al., 2015)] that in-

terrogated multiple targeted therapies across different cancers and established that

PDX systems provide a more accurate measure of the response of a population of

patients than traditional preclinical models. Briefly, the NIBR-PDXE consists of

> 1, 000 PDX lines across a range of human cancers and uses a 1 × 1 × 1 design

(one animal per PDX model per treatment); i.e., each PDX line from a given patient

was treated simultaneously with multiple treatments allowing for direct assessments

of treatment hierarchies and responses. In this Chapter, we focus on our analyses

on a subset of PDX lines with complete responses across five common human can-

cers: Breast cancer (BRCA), Cutaneous Melanoma (CM, skin cancer), Colorectal

cancer (CRC), Non-small Cell Lung Carcinoma (NSCLC), and Pancreatic Ductal

Adenocarcinoma (PDAC). After re-scaling data and missing data imputation, differ-

ent numbers of treatments, I, and PDX models, J , presented in the five cancers were,

(I, J): BRCA, (20, 38); CRC, (20, 40); CM, (14, 32); NSCLC, (21, 25); and PDAC,

(20, 36). (See Supplementary Material Table A.9 for treatment names and Section

A.6.1 for details of pre-processing procedures.)

In our analysis, we used the best average response (BAR) as the main response,

by taking the untreated group as the reference group and using the tumor size dif-

ference before and after administration of the treatment(s) following Rashid et al.

(2020). Positive values of BAR indicate the treatment(s) shrunk the tumor more
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than the untreated group with higher values indicative of (higher) treatment effi-

cacy. To apply the Proposition 1, we also checked the distributional assumption for

each cancer (see Supplementary Material Section A.6.2). The treatments included

both drugs administered individually with established mechanisms (referred to as

“monotherapy”) and multiple drugs combined with potentially unknown synergistic

effects (referred to as “combination therapy”). Our key scientific questions were as

follows: (a) identify plausible biological mechanisms that characterize treatment re-

sponses for monotherapies within and between cancers; (b) evaluate the effectiveness

of combination therapies based on biological mechanisms. Due to a potentially bet-

ter outcome and lower resistance, combination therapy with synergistic mechanism

is highly desirable (Bayat Mokhtari et al., 2017).

DDT model setup. For all analyses we followed the setup in the Section 2.4.1 and

obtained N syn = 600, 000 synthetic datasets from the ABC algorithm (Section 2.3.1.1)

with prior c ∼ Gamma(2, 2) and 1/σ2 ∼ Gamma(1, 1) and took the first 0.5% (d =

0.5%) closest data in terms of S(c) and S(σ2). We calculated the posterior median of

(c, σ2) as described in Section 2.3.2. For the second-stage MH, we ran five chains of

the two-stage algorithm with (c, σ2) fixed at the posterior median by 10,000 iterations

and discarded the first 9,000 trees, which resulted in 5,000 posterior trees in total.

Finally, we calculated the Rx-tree (MAP) and iPCP based on 5,000 posterior trees

for all subsequent analyses and interpretations. All computations were divided on

multiple different CPUs (see the Supplementary Table A.7 for the full list of CPUs).

For the BRCA data with I = 20 and J = 38, we divided the ABC stage into 34

compute cores with a total of 141 CPU hours and maximum 4.7 hours in real time.

For the MH stage and the single-stage MCMC, we split the computation on 5 compute

cores with a total of 8.6 and 12 CPU hours, and a maximum 1.7 and 2.5 hours in real

time, respectively.

Our results are organized as follows: we provide a summary of the Rx-tree es-
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timation and treatment clusters in Section 2.5.2 followed by specific biological and

translational interpretations in Sections 2.5.3 and 2.5.4 for monotherapy and combi-

nation therapy, respectively. Additional results can be accessed and visualized using

our companion R-shiny application (see Supplementary Material Section A.6.6 for

details).

2.5.2 Rx-Tree Estimation and Treatment Clusters

We focus our discussion on three cancers: BRCA, CRC and CM here – see Sup-

plementary Materials Section A.6.5 for NSCLC and PDAC. In Figure II.5, Rx-tree,

pairwise iPCP and (scaled) Pearson correlation are shown in the left, middle and right

panels, respectively. Focusing on the left two panels, we observe that the Rx-tree and

the pairwise iPCP matrix show the similar clustering patterns. For example, three

combination therapies in CM form a tight subtree and are labeled by a box in the Rx-

tree of Figure II.5 and a block with higher values of iPCP among three combination

therapies also shows up in the corresponding iPCP matrix with a box labeled. In our

analysis, the treatments predominantly target six oncogenic pathways that are closely

related to the cell proliferation and cell cycle: (i) phosphoinositide 3-kinases, PI3K;

(ii) mitogen-activated protein kinases, MAPK; (iii) cyclin-dependent kinases, CDK;

(iv) murine double minute 2, MDM2; (v) janus kinase, JAK; (vi) serine/threonine-

protein kinase B-Raf, BRAF. We label targeting pathways above for monotherapies

with solid dots and further group PI3K, MAPK and CDK due to the common down-

stream mechanisms (e.g., Repetto et al., 2018; Kurtzeborn et al., 2019). Roughly, the

Rx-tree from our model clusters monotherapies targeting oncogenic processes above

and largely agrees with common and established biology mechanisms. For example,

all PI3K-MAPK-CDK inhibitors (solid square) belong to a tighter subtree in three

cancers; two MDM2 monotherapies (solid triangle) are closest in both BRCA and

CRC. While visual inspection of the MAP Rx-tree agrees with known biology, iPCP
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further quantifies the similarity by assimilating the information across multiple trees

from our MCMC samples. For the ensuing interpretations in Sections 2.5.3 and 2.5.4,

we focus on iPCP and verify our model through monotherapies with known biology,

since our a priori hypothesis is that monotherapies that share the same downstream

pathways should exhibit higher iPCP values. Furthermore, we extend our work to

identify combination therapies with synergy and discover several combination thera-

pies for each cancer.

2.5.3 Biological Mechanisms in Monotherapy

Our estimation procedure exhibits a high level of concordance between known bi-

ological mechanisms and established monotherapies for multiple key signalling path-

ways. From the Rx-tree in Figure II.5, aside from the oncogenic process (solid dots)

introduced above, monotherapies also target receptors (hollow circles) or other non-

kinase targets (e.g. tubulin; crosses). We summarize our key findings and inter-

pretations along with their implications in monotherapy across different cancers for

PI3K-MAPK-CDK in this section and list the rest signaling pathways and their reg-

ulatory axes, namely, MDM2 from cell cycle regulatory pathways, human epidermal

growth factor receptor 3 (ERBB3) from receptor pathways, and tubulin from non-

kinase pathways in Supplementary Material Section A.6.4. For the following sections,

because we wish to conduct fully-exploratory analyses where we do not assume prior

knowledge about treatment mechanism, we set the threshold of the co-clustering at

the 75-th percentile of all pairwise iPCPs. Specifically, we set the cut-off at 0.753,

0.687 and 0.801 for BRCA, CRC and CM, respectively. See Supplementary Ma-

terial Section A.6.3 for more details about cut-off choices under full and partially

exploratory settings related to prior knowledge about monotherapies.

PI3K-MAPK-CDK inhibitors. For treatments targeting PI3K, MAPK and CDK,

treatments have the same target share high iPCP. In the NIBR-PDXE dataset, three
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Figure II.5: The Rx-tree and iPCP for breast cancer (BRCA, top row), colorectal cancer
(CRC, middle row) and melanoma (CM, lower row). Three panels in each row represent:
(left) estimated Rx-tree (MAP); distinct external target pathway information is shown in
distinct shapes for groups of treatments on the leaves; (middle) estimated pairwise iPCP,
i.e., the posterior mean divergence time for pairs of entities on the leaves (see the result
paragraph for definition for any subset of entities); (right) scaled Pearson correlation for
each pair of treatments. Note that the MAP visualizes the hierarchy among treatments;
the iPCP is not calculated based on the MAP, but based on posterior tree samples (see
definition in Section 2.3.2)

PI3K inhibitors (BKM120, BYL719 and CLR457), two MAPK inhibitors (binimetinib

and CKX620) and one CDK inhibitor (LEE011) were tested, but different cancers

contain different numbers of treatments. Specifically, all three PI3K inhibitors present
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in BRCA and CRC, but only BKM120 is tested in CM; CRC contains two MAPK

inhibitors while BRCA and CM only have binimetinib; LEE011 is tested in all three

cancers. In Figure II.6, BKM120, BYL719 and CLR457 share high pairwise iPCPs

(box (1)) and all target PI3K for BRCA and CRC (BRCA, (BKM120, CLR457):

0.8986, (BKM120, BYL719): 0.8002, (BYL719, CLR457): 0.8002; CRC, (BKM120,

CLR457): 0.7555, (BKM120, BYL719): 0.8041, (BYL719, CLR457): 0.7597); MAPK

(box (2)) inhibitors, binimetinib and CKX620, show a high pairwise iPCP in CRC

(0.7792). Asides from the pairwise iPCPs, our model also suggests high multi-way

iPCPs among PI3K inhibitors in BRCA (0.8002) and CRC (0.7513). Among these

inhibitors, PI3K inhibitor of BYL719 was approved by FDA for breast cancer; MAPK

inhibitor of binimetinib was approved by FDA for BRAF mutant melanoma in com-

bination with encorafenib; and CDK inhibitor of LEE011 was approved for breast

cancer.

Our model suggests treatments targeting different pathways also share high iPCP

values across different cancers. Monotherapies targeting different cell cycle regu-

latory pathways (PI3K, MAPK and CDK) exhibit high iPCPs. CDK inhibitor,

LEE011, and MAPK inhibitors share high pairwise iPCP values in BRCA ((LEE011,

binimetinib): 0.7709), CRC ((LEE011, binimetinib): 0.8617, (LEE011, CKX620):

0.7820) and CM ((LEE011, binimetinib): 0.8210) in the Figure II.6 with box (3).

High iPCP among MAPK and CDK inhibitors agree with biology, since it is known

that CDK and MAPK collaboratively regulate downstream pathways such as Ste5

(Repetto et al., 2018). High pairwise iPCP values between PI3K and MAPK in-

hibitors were observed in box (3) in the Figure II.6. Specifically, our model suggests

high pairwise iPCPs as follows: (i) BRCA, (binimetinib, BKM120): 0.7427, (binime-

tinib, BYL719): 0.7441, (binimetinib, CLR457): 0.7427)); (ii) CRC, (binimetinib,

BKM120): 0.7374, (binimetinib, BYL719): 0.7388, (binimetinib, CLR457): 0.7541,

(CKX620, BKM120): 0.7366, (CKX620, BYL719): 0.7357, (CKX620, CLR457):
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0.7676)); (iii) CM, (binimetinib, BKM120): 0.8882. Aside from the pairwise iPCPs

above, high multi-way iPCPs in BRCA (0.7422), CRC (0.7300) and CM (0.8882) also

show the similar information. From the existing literature, both PI3K and MAPK

can be induced by ERBB3 phosphorylation (Balko et al., 2012) and it is not surprising

to see high iPCPs between PI3K and MAPK inhibitors.

Figure II.6: Bar plot of iPCPs for pairs of combination therapies (red bars) and pairs of
monotherapies (green bars): (A) breast cancer, (B) colorectal cancer and (C) melanoma.
The bar plots are sorted by the iPCP values (high to low); pairs of treatments are shown
only if the estimated iPCP is greater than 0.7. Monotherapies have different known targets
which are listed in the bottom-right table (see Section 2.5.3 for more details and discussion
on monotherapies).
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2.5.4 Implications in Combination Therapy

Based on the concordance between the monotherapy and biology mechanism, we

further investigate combination therapies to identify mechanisms with synergistic

effect. In NIBR-PDXE, 21 combination therapies were tested and only one of them

includes three monotherapies (BYL719 + cetuximab + encorafenib in CRC) and the

rest contain two monotherapies. Out of 21 combination therapies, only three do

not target any cell cycle (PI3K, MAPK, CDK, MDM2, JAK and BRAF) pathways

(see Supplementary Material Table A.10 for the full list of combination therapies).

From the Rx-tree in Figure II.5, combination therapies tend to form a tighter subtree

and are closer to monotherapies targeting PI3K-MAPK-CDK, which implies that the

mechanisms under combination therapies are similar to each other and are closer to

the PI3K-MAPK-CDK pathways. We identified several combination therapies with

known synergistic effects and provide a brief description for each of the cancers in the

following paragraphs.

Breast cancer. Four combination therapies were tested in BRCA and three therapies

targeting PI3K-MAPK-CDK (BYL719 + LJM716, BYL719 + LEE011 and LEE011 +

everolimus) form a subtree in Rx-tree with a high three-way iPCP (0.8719). Among

these combination therapies, PI3K-CDK inhibitor, BYL719 + LEE011, suggests a

possible synergistic regulation (Vora et al., 2014; Bonelli et al., 2017; Yuan et al.,

2019). Based on the high iPCP between BYL719 + LEE011 and the rest two thera-

pies, we suggest synergistic effect for combination therapies targeting PI3K-ERBB3

(BYL719 + LJM716), and CDK-MTOR (LEE011 + everolimus) for future investiga-

tion.

Colorectal cancer. Our model suggests a high three-way iPCP (0.7437) among PI3K-

EGFR (BYL719 + cetuximab), PI3K-EGFR-BRAF (BYL719 + cetuximab + enco-

rafenib) and PI3K-ERBB3 (BYL719 + LJM716) inhibitors. Since the triple therapy

(BYL719 + cetuximab + encorafenib) enters the phase I clinical trial with synergy
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(Geel et al., 2014), our model proposes the potential synergistic effect for PI3K-

ERBB3 based on iPCP for future investigation. Of note, we found a modest iPCP

(0.6280) between the FDA-approved combination therapy EGFR-BRAF (cetuximab

+ encorafenib) and PI3K-EGFR-BRAF (BYL719 + cetuximab + encorafenib) and

the modest iPCP can be explained by an additional drug-drug interaction between

BYL719 and encorafenib in triple-combined therapy (van Geel et al., 2017).

Melanoma. In NIBR-PDXE, three combination therapies were tested in CM, and all

of them consist one monotherapy targeting PI3K-MAPK-CDK and the other one tar-

geting BRAF. A tight subtree is observed in the Rx-tree and our model also suggests

a high iPCP (0.9222) among three combination therapies. Since PI3K, MAPK and

CDK work closely and share a high iPCP (0.8204) among monotherapies in CM, a

high iPCP (0.9222) among three combination therapies is not surprising. Since two

combination therapies of BRAF-MAPK (dabrafenib + trametinib and encorafenib +

binimetinib) are approved by FDA for BRAF-mutant metastatic melanoma (Dum-

mer et al., 2018a,b; Robert et al., 2019), we recommend the synergy for BRAF-PI3K

(encorafenib + BKM120) and BRAF-CDK (encorafenib + LEE011) inhibitors.

Comparison to alternative approaches. Unlike the probabilistic generative mod-

eling approach proposed in this Chapter, standard distance-based agglomerative hi-

erarchical clustering and Pearson correlation can also be applied to the PDX data to

estimate the similarity. However, simple pairwise similarities can be potentially noisy

and the uncertainty in the estimation is not fully incorporated due to the absence of

a generative model. As we showed in the Section 2.4.1 (Simulation I) that agglomer-

ative hierarchical clustering and the Pearson correlation leads to inferior recovery of

the true branching times and the true tree structure under different data generating

mechanisms mimicking the real data. As further evidence, we compute pairwise simi-

larities based on Pearson correlation (other distance metrics show similar patterns) in

the right panel of Figure II.5. By mapping the original Pearson correlation ρ ∈ [−1, 1]
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through a linear function ρ+1
2
, we make the range of iPCP and Pearson correlation

comparable. We observe that pairwise iPCP estimated through the DDT model is

less noisy than Pearson correlation. For example, both iPCP and Pearson correlation

in CM show higher similarities among combination therapy framed by a box, but

iPCP exhibits a clearer pattern than Pearson correlation.

2.6 Summary and Discussion

In translational oncology research, PDX studies have emerged as a unique study

design that evaluates multiple treatments when applied to samples from the same

human tumor implanted into genetically identical mice. PDX systems are promising

tools for large-scale screening to evaluate a large number of FDA-approved and novel

cancer therapies. However, there remain scientific questions concerning how distinct

treatments may be synergistic in inducing similar efficacious responses, and how to

identify promising subsets of treatments for further clinical evaluation. To this end, in

this Chapter, we propose a probabilistic framework to learn treatment trees (Rx-trees)

from PDX data to identify promising treatment combinations and plausible biological

mechanisms that confer synergistic effect(s). In particular, in a Bayesian framework

based on the Dirichlet Diffusion Tree, we estimate a maximum a posteriori rooted

binary tree with the treatments on the leaves and propose a posterior uncertainty-

aware similarity measure (iPCP) for any subset of treatments. The divergence times

of the DDT encode the tree topology and are profitably interpreted within the context

of an underlying plausible biological mechanism of treatment actions.

From the class of probabilistic models with an unknown tree structure component,

we have chosen the DDT mainly owing to the availability of a closed-form marginal

likelihood that directly links the tree topological structure to the covariance struc-

ture of the observed PDX data, which additionally decouples the Euclidean and tree

parameters; to the best of our knowledge this method has not been proposed or ex-
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plored hitherto for the DDT. The decoupling leads to efficient posterior inference via

a two-stage algorithm that confers several advantages. The algorithm generates pos-

terior samples of Euclidean parameters through approximate Bayesian computation

and passes the posterior medians to a second stage classical Metropolis-Hastings al-

gorithm for sampling from the conditional posterior distribution of the tree given all

other quantities. Through simulation studies, we show that the proposed two-stage

algorithm generates better posterior tree samples and captures the true similarity

among treatments better than alternatives such as single-stage MCMC and naive

Pearson correlations. The posterior samples of trees are summarized by iPCP, which

we propose to measure the empirical mechanistic similarity for multiple treatments

incorporating uncertainty.

Using the proposed methodology on NIBR-PDXE data, we estimate Rx-trees and

iPCPs for five cancers. Among the monotherapies, iPCP is highly concordant with

known biology across different cancers. For example, BKM120 and BYL719 show a

high iPCP value among treatments in breast and colorectal cancer, which corroborates

known mechanisms, since both monotherapies target the same biological pathway,

PI3K, and BYL719 was approved by FDA for breast cancer. The proposed iPCP can

also suggest improvements upon an existing combination therapy. We first identify

a combination therapy with known synergy (not based on the our data) and then

determine which additional therapies (monotherapies or combination therapies) have

high iPCPs when considered together with the existing combination therapy. Based

on the NIBR-PDXE data, for each cancer, we suggest potential synergies between

PI3K-ERBB3 and CDK-MTOR for breast cancer, PI3K-ERBB3 for colorectal cancer,

and BRAF-PI3K and BRAF-CDK for melanoma that could be potentially explored

in future translational studies.

Our current analysis infers treatment trees based on the drug responses from the

NIBR-PDXE dataset which provides treatment similarity information that may be
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used to guide potential treatment strategies. However, there are a few limitations.

First, the PDX experiments may fail to capture the difference in the microenviron-

ment between the human and the immunodeficient mouse (Dobrolecki et al., 2016),

which must be considered in disease contexts when findings are generalized to human.

As PDX technology matures, this can be compensated by better PDX experiments

that capture the tumor microenvironment more precisely. For example, one can use

the genetically engineered mice to reconstruct the human immune system (Abdolahi

et al., 2022), and some studies have started to adapt this method in the context of im-

munotherapies (Zhao et al., 2018). Second, on experimental design, current literature

points to the potential advantage of designs with multiple animals per treatment and

patient (Abdolahi et al., 2022). We can incorporate the random effects in the current

model of (2.4) for the multiple-animal-per-patient design and we refer the reader to

the Supplementary Material Section A.7 for more details. Also, to evaluate PDX

designs with fewer treatments and patients that is common in co-clinical trials (e.g.,

Koga and Ochiai, 2019), we conducted a simulation for two datasets with a smaller di-

mension ((I, J) = (5, 5) and (10, 15)) which confirmed the advantage of the proposed

method in terms of recovering treatment similarities (see Supplementary Material

Section A.5.5). Finally, from a statistical perspective, we have assumed independent

patients without using the underlying patient-specific genomic information that is

also available in the NIBR-PDXE. By including patient-specific genomic information,

we may further improve our ability to identify synergistic treatments that may be spe-

cific to a subset of patients. One approach to utilizing genomic information could be

to extend the DDT model to incorporate patient-specific genomic information in the

mean structure or the column covariance of the marginal likelihood of Equation (2.4).

In addition, models with non-Gaussian marginal likelihood and non-binary treatment

tree in principle can be defined by considering generative tree models based on gen-

eral diffusion processes (Heaukulani et al., 2014; Knowles and Ghahramani, 2015).
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Both extensions raise significant, non-trivial methodological and computation issues

(e.g., deriving tractable likelihoods; finding low-dimensional summary statistics for

new parameters) and constitute the foundation for future work.

Code and data availability We also provide a general purpose code in R that ac-

companies this manuscript along with all the necessary documentation and datasets

required to replicate our results (see https://github.com/bayesrx/RxTree). Fur-

thermore, to aid access and visualization of the results, we have also developed an

R-shiny application (see Supplementary Material Section A.6.6).
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CHAPTER III

Geometry-driven Bayesian Inference for

Ultrametric Covariances

3.1 Introduction

Ultrametric matrices are central to a multitude of machine learning and scientific

applications. For instance, in a multivariate Gaussian distribution, the covariance

matrix is an ultrametric matrix if and only if the Gaussian density is multivariate

totally positive of order two (Karlin and Rinott, 1983; Lauritzen et al., 2019), which

implies a conditional positive dependency between two random variables (Fallat et al.,

2017). Recently, ultrametric matrices have been applied in various scenarios as co-

variance matrices in Gaussian distributions, such as graphical models (Fallat et al.,

2017) and Brownian motion tree models (e.g. Neal, 2003; Sturmfels et al., 2021), with

applications in cancer biology (Yao et al., 2023) and finance (Agrawal et al., 2020).

However, due to the inequalities required on ultrametric matrices, the geometry of

the space of ultrametric matrices is non-trivial, as it is neither a manifold (McCul-

lagh, 2006) nor a convex set (Chierchia and Perret, 2020). As a result, challenges lie

in both inference and computation, leading existing methods to primarily focus on

point estimation without uncertainty quantification. In this paper, we characterize

the geometry of the set of ultrametric matrices and develop a flexible Bayesian frame-
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work to obtain posterior samples of ultrametric matrices efficiently, thereby providing

uncertainty quantification alongside point estimates.

An ultrametric matrix is a square matrix with non-negative elements that satisfies

the ultrametric inequality (Dellacherie et al., 2014). When the diagonal elements

are all positive, the matrix is called a strictly ultrametric matrix and guarantees

positive definiteness (Nabben and Varga, 1994). In the context of covariance, strictly

ultrametric matrices are of interest as they ensure positive definiteness. However,

the ultrametric inequality imposes a special structure on the matrix elements and

entails challenging constraints on the space of positive definite matrices. Specifically,

consider off-diagonal elements in a covariance matrix of dimension three by three.

The ultrametric inequality requires that at least two elements be the same with the

third element being equal or bigger. Consequently, the space of ultrametric matrices

is embedded in a higher-dimensional space of positive definite matrices, represented as

a simplicial cone contained in the spectrahedron (Sturmfels et al., 2021). Moreover, to

address the inequality and the resulting geometry, only projection- (e.g. Bravo et al.,

2009) and relaxation-based (e.g. Lauritzen et al., 2019) estimation methods exist.

While directly tackling the inequality and the geometry of the space of ultramet-

ric matrices is difficult, the same set of inequalities determines a bijection between

a (strictly) ultrametric matrix and a rooted tree structure and (Dellacherie et al.,

2014; Steel, 2016). This bijection allows us to characterize the structure of the space

by leveraging the geometry and the coordinate system of tree space introduced by

Billera-Holmes-Vogtmann (BHV) (Billera et al., 2001). Specifically, our proposed

algorithm makes efficient local moves on the BHV space along geodesics between

neighboring tree topologies, resulting in efficient sampling and posterior matrices

that automatically satisfy the ultrametric inequalities. These moves do not rely on

projection or relaxation during posterior computation. Therefore, our algorithm al-

lows for straightforward posterior summaries of both central tendency and dispersion
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using the Fréchet mean (Miller et al., 2015) and geodesic distance (Owen and Provan,

2011) in the BHV space.

Most existing approaches for ultrametric matrix estimation treat the problem

as an optimization task constrained by a set of ultrametric inequalities. However,

the constrained objective function is highly non-convex (Chierchia and Perret, 2020)

for standard optimization algorithms. To satisfy the ultrametric inequality, various

optimization techniques are employed. For example, Bravo et al. (2009) uses a mixed-

integer programming formulation and projects the sample covariance onto the space

of ultrametric matrices. Similarly, Lauritzen et al. (2019) and Agrawal et al. (2020)

relax the constraints and address the optimization problem through a dual prob-

lem. Additionally, Chierchia and Perret (2020) circumvent the constraint by using

subdominant ultrametricity and the min-max operator. However, without additional

projection or relaxation, all these methods can not satisfy the ultrametric inequali-

ties. Moreover, they fail to estimate the matrices geodesically, which is essential for

uncertainty quantification.

By leveraging a bijection between the labelled, rooted tree structure and ultra-

metric matrices, our proposed makes main three contributions. First, we define a

geometry for the space of ultrametric matrices by relating an existing decomposition

on an ultrametric matrix to coordinate of a point in the BHV tree space. Second, we

define a general consistent Markovian prior on the set of ultrametric matrices, which

includes several existing priors on the tree structure as special cases. Third, we devise

an efficient algorithm to draw posterior samples that makes local moves geodesically

on the BHV tree space.

The rest of the Chapter is organized as follows: we introduce the characterization

of the ultrametric matrix space and decomposition of the ultrametric matrix in the

tree space in Section 3.2. Section 3.3 and Section 3.4 delineates a general prior on

the ultrametric matrix and the posterior inference via Metropolis-Hasting algorithm,
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respectively. In Section 3.5, we conduct a series of simulations to evaluate our algo-

rithm in terms of the matrix recovery with the uncertainty quantification. Section

3.6 demonstrate the utility of the proposed method with an pre-clinical data anal-

ysis for potential cancer treatment. The paper concludes by discussing implications

of the findings, limitations, and future directions in Section 3.7. A general purpose

code in R with packages and datasets for the proposed method is also provided on

https://github.com/bayesrx/ultrametricMat.

3.2 Ultrametric Matrices and their Geometry

3.2.1 Bijection of the Ultrametric Matrix and the Tree Structures

Consider p-dimensional continuous random vectors Xi = (Xi1, . . . , Xip)
T with the

covariance matrix ΣT = {σj,k} , j, k = 1, . . . , p for all i = 1, . . . , n. We call ΣT a

strictly ultrametric matrix if ΣT has positive diagonal elements σj,j > 0 and satisfies

the following conditions:

σj,j ≥ σj,k ≥ 0, and σj,k ≥ min{σj,h, σk,h}, for all j ̸= k ̸= h. (3.1)

We consider only strictly ultrametric matrices and simply refer to such matrices as

ultrametric. The first condition ensures that the variable j is more similar to itself

than any other variables. The second condition is referred to as the ultrametric

inequality, which guarantees the bijection between the ultrametric matrix and the

underlying rooted tree structure if all diagonal elements are positive (McCullagh,

2006; Bravo et al., 2009). Specifically, ΣT uniquely identifies a weighted tree T with

p leaves if the element of σj,k measures the sum of branch lengths from the root to

the most recent common ancestor of leaves j and k (Bravo et al., 2009; Dellacherie

et al., 2014). Conversely, a tree T also uniquely determines an ultrametric matrix ΣT

by the same construction above. Equation (3.1) also ensures the positive definiteness
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of the ultrametric matrix if the matrix has positive diagonal elements (Dellacherie

et al., 2014).

To this point, though the bijection of the ultrametric matrices and the tree struc-

ture is established, the information from the geometry of the BHV space is still not

fully utilized to characterized the space of ultrametric matrices, resulting in ineffi-

cient inference. For example, existing methods decompose (Nabben and Varga, 1994;

Bravo et al., 2009) the ultrametric matrix as follows:

ΣT =

2p−1∑
j=1

djvjv
T
j , (3.2)

where {vj} are p-dimensional binary vectors with values in {0, 1} and at least one

non-zero element, and dj is a positive branch length on each branch. The vector

set V = {v1, . . . , v2p−1} collectively represents a nested partition corresponding to

the binary tree topology. Specifically, for every vector vj ∈ V with more than one

non-zero elements, we can find the other two vectors that partition the vector vj such

that vk + vh = vj and vk, vh ∈ V , referred to as the partition property of V (Bravo

et al., 2009). However, this partition property also imposes a difficult condition when

updating a certain vector element in the set V . If one aims to replace a vector in

the set, the new vector must satisfy two conditions simultaneously: (i) it should

be decomposed as the sum of two existing vector elements in the original set, and

(ii) it must identify another vector such that the sum of these two vectors forms

another vector already present in the set. These two conditions pose challenges for

the inference algorithm to move locally in an efficient manner.

3.2.2 Geometry of the Set of Ultrametric Matrices

Denote by Up the set of p × p ultrametric matrices. Bayesian inference on Up

requires a geometry that enables local moves for any sampling algorithm that seeks
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to explore the parameter space efficiently. McCullagh (2006) notes that the set Up is

neither convex nor a manifold, but does not prescribe a geometry and proposes an

algorithm that approximately projects an arbitrary covariance onto Up. One of our

main contributions is to equip Up with a CAT(0) geometry through its links with the

BHV space (Billera et al., 2001).

Consider the set of acyclic graphs T known as trees with a unique vertex known

as the root. Nodes with degree one are referred to as leaves, including the root, and

all other nodes have degree greater than two and are known as internal nodes. We

consider trees T on p leaves labelled L = {0, 1, . . . , p} with the root labelled as leaf

0. Vertices are connected by edges from the set ET , which is the union of the set

EI
T of edges connecting internal vertices with the set EL

T of edges connecting internal

vertices to the p leaves and the root. Resolved trees T are those with internal vertices

of degree three and p − 2 internal edges in EI
T , while unresolved trees are trees T

with fewer than p − 2 internal edges and containing internal vertices of degree four

or higher.

The topology of a tree T is characterized in the connectivity between its internal

edges in EI
T , encoded in the set of partitions into two of L = {0, 1, . . . , p} called splits

pertaining to each edge in EI
T . Precisely, each edge e ∈ EI

T uniquely determines a split

L = A∪Ac upon its removal from a tree T , where A contains leaves on the descendant

subtree of e and its complement Ac = L− A contains the rest of the leaves. Denote

by eA the corresponding edge. The set A ⊂ L identifies a split L = A ∪ Ac, and we

use split to refer to A or the edge eA interchangeably; context will disambiguate the

two.

Arbitrary collections of splits do not characterize a valid tree topology, but only a

collection of compatible ones do: two edges eA1 and eA2 are compatible if one of A1 ∩

A2, A1∩Ac
2 and Ac

1∩A2 from the associated splits is empty. Again, we interchangeably

refer to compatibility of splits A1 and A2 to sometimes mean compatibility of the edges
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eA1 and eA2 , and this extends to a collection {A1, . . . , Ak} of subsets of L.

Leaf edges eA ∈ EL
T associated with singleton splits A ⊂ L are compatible with all

internal edges in EI
T , and thus do not contribute to the topology of T . A compatible

edge set ET thus fully characterizes the topology of a tree T . There are (2p − 3)!!

distinct topologies on fully resolved trees on p leaves.

The BHV space T I
p parameterizes the space of labelled, resolved and unresolved

trees T on p leaves and prescribes a continuous geometry based on the lengths |eA|

of internal edges eA ∈ EI
T , where A is associated with a split of L. A fully resolved

topology is parameterized by Rp−2
>0 , where each axis corresponds to one of the p − 2

internal splits that characterize the topology and the coordinates encode the corre-

sponding lengths of the internal edges. The boundary of Rp−2
>0 consists of unresolved

trees with internal nodes of degree greater than 3, obtained by shrinking the inter-

nal edges to zero. Each of the (2p− 3)!! topologies is identified with a copy of Rp−2
≥0 ,

known as an orthant, and the BHV space T I
p is defined by the (2p−3)!! orthants glued

isometrically along their common boundaries comprising unresolved trees. Panel (A)

of Figure III.1 illustrates that two neighbouring orthants share a common edge in

T I
4 . By accounting for lengths of p leaf edges and the root edge, space Tp of rooted,

labelled trees on p leave then becomes

Tp = T I
p × Rp+1

>0 ,

where we do not allow for zero-length leaf edges nor zero-length root edge. The

distance dBHV(T1, T2) between two trees T1 and T2 on p leaves is defined to be the

infimum of lengths of paths between T1 and T2 in T I
p , which are straight lines within

each orthant. A natural distance on Tp then is

dtree(T1, T2) := dBHV(T1, T2) + ∥x− y∥2,
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where ∥x− y∥2 is the L2 norm, and x, y ∈ Rp+1
>0 are the vectors of leaf edge lengths,

including the root edge, in T1 and T2, respectively,

Theorem 3.2.1. The map Φ : Up → Tp is a bijection. Equipped with the distance

d(ΣT
1 ,Σ

T
2 ) := dtree(Φ(Σ

T
1 ),Φ(Σ

T
2 ))

the space Up is CAT(0).

Proof. The BHV space T I
p with distance dBHV is known to be CAT(0) (Billera et al.,

2001, Lemma 4.1). The space (Rp+1
>0 , ∥ · ∥2) is Euclidean and hence CAT(0), and

(Tp, dtree) as a product of two CAT(0) spaces is thus CAT(0) (Bridson and Haefilger,

1999). The distance d on Up is the pullback of dtree from Tp, and the proof follows if it

is established that the map Φ is injective. We prove this for the case of fully resolved

trees in the interior of each orthant; an identical argument holds for unresolved ones

on the boundaries.

Recall the decomposition of an ultrametric matrix ΣT = V DV ⊤ in (3.2) with

a binary matrix V ∈ {0, 1}p×(2p−1) and a diagonal matrix D ∈ R(2p−1)×(2p−1)
>0 with

positive entries corresponding to edge lengths of (p− 2) internal edges, p leaf edges,

and one root edge. Every column vector v of V maps uniquely to an edge of a tree

T the matrix ΣT uniquely determines (Dellacherie et al., 2014), and thus to an edge

eA associated with a split L = A ∩ Ac on the leaves indexed by L = {0, 1 . . . , p} of

T . It suffices to establish a bijective relationship between the matrix V that encodes

topology of a tree T with the edge set ET of compatible splits that identify an orthant

in Tp, since the edge lengths in D evidently map to the coordinates of a point within

that orthant. From the partition property of V the proof is complete if it is established

that any triplet (vi, vj, vk) of columns vectors in V satisfy vi = vj + vk if and only

if there exists a triplet (eAi
, eAj

, eAk
) of edges/splits in T that are mutually pairwise

compatible.
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For each edge eA associated with a split A define the unique p-dimensional binary

vector bA with ones at indices that are in A and zero for indices in Ac. Arrange the

vectors into a p× (2p− 1) binary matrix B = (bA1 , . . . , bA2p−1)
⊤ corresponding to the

(2p− 1) edges in a fully resolved T .

In order to relate the columns of B to those of V possessing the partition property,

we use the logical and operator ∧ on columns of B. In other words, the compatibility

criterion that one of A1 ∩A2, A1 ∩Ac
2 and Ac

1 ∩A2 associated with two splits eA1 and

eA2 be empty translates to one of bA1 ∧ bA2 , b̄A1 ∧ bA2 and bA1 ∧ b̄A2 equalling the zero

vector 0, where b̄ denotes the negation of b. Accordingly, suppose first that vi = vj+vk

for a triplet (vi, vj, vk) of columns in V with a corresponding triplet (bAi
, bAj

, bAk
) of

columns in B satisfying bAi
= bAj

∨ bAk
, where ∨ is the logical or operator. It is then

easily verified that bAj
∧ bAk

= 0 while b̄Aj
∧ bAk

̸= 0 and bAj
∧ b̄Ak

̸= 0, rendering the

splits corresponding to the pair (bAj
, bAk

) compatible. Similarly, bAi
∧ bAj

̸= 0, and

either b̄Ai
∧ bAj

= 0 or bAi
∧ b̄Aj

= 0 but not both, since otherwise bAi
̸= bAj

∨ bAk
.

The splits corresponding to pair (bAi
, bAj

) are hence compatible; a similar argument

applies to the pair (bAi
, bAk

) rendering them compatible. In fact, we observe that the

preceding arguments are biconditional, and proof of the reverse assertion follows.

The bijection Φ engenders a new decomposition of ΣT that decouples the geometric

and topological content of a tree T , and is equivalent to that in (3.2), proof of which

follows from that of Theorem 3.2.1.

Corollary 3.2.2. Each edge eA, for A ⊂ L , in a collection ET of compatible

edges/splits is associated with a binary matrix EA, with EA(j, k) = 1 if j, k ∈ A

and 0 otherwise, such that the ultrametric matrix can be decomposed as

ΣT =
∑

eA∈ET

|eA|EA . (3.3)

Every collection ET of (2p− 1) compatible splits determines a unique set of {EA}
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of binary matrices that completely characterizes topology of the tree T ; there are

(2p− 3)!! such compatible splits. More precisely, the subset of (p− 2) internal splits

within each ET that determine (p − 2) binary matrices within {EA}, corresponding

to the internal edges, identifies the orthant in the BHV space T I
p pertaining to the

topology of T . The remaining p binary matrices within {EA} contain a single non-

zero entry on the diagonal and represent the (p+ 1)-axes in Rp+1
>0 that identify splits

associated with the leaf edges and the root edge in Tp. The coefficients |eA| as eA

varies in ET represents the edge lengths of T and ascribe coordinates to the (2p −

1)−dimensional point within Tp. Figure III.1 illustrates the decomposition of an

ultrametric matrix ΣT in U4 with corresponding tree T ∈ T4 and a compatible edge

set ET = {e1234, e123, e23, e1, e2, e3, e4}.

Figure III.1: The decomposition of ΣT and the corresponding tree T in the tree space.
Panel (A) shows the tree space for tree wit 4 leaves. Panel (B) demonstrate the decompo-
sition of the ΣT by the edge set shown in the tree space.

From the bijection in Theorem 3.2.1, upon discounting the leaf edges, the decom-

position in Corollary 3.2.2 thus provides a novel representation of a tree in the BHV

tree space.

3.3 General Priors for Ultrametric Matrix Parameters

The bijection of the ultrametric matrix and the tree with Theorem 3.2.1 and

Corollary 3.2.2 guides prior specification for ultrametric-matrix-valued parameters.

Let p(ΣT ) be the prior on the ultrametric matrix ΣT . Corollary 3.2.2 enables the
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factorization of the matrix into the topology ET and the branch lengths LT , given by:

p(ΣT ) = p(ET ,LT ) = πE(ET )πL(LT | ET ),LT = {|eA| : eA ∈ ET} , (3.4)

where πE(ET ) is the prior on the topology and πL(LT | ET ) is the prior on the branch

lengths conditioning on the topology. Here p(ΣT ) is the density function over R(p+1)p/2

with respect to Lebesgue measure; p(ET ,LT ) is the density function over the product

space of rooted trees and R2p−1 with respect to the product measure of counting and

Lebesgue measures on respective spaces for ET and LT .

For the tree topology, we focus on resolved trees with a smaller number of possible

tree topologies. Specifically, we consider the binary fragmentation, which describes

the topology as a recursive splitting rule of dividing a block into two sub-blocks. The

splitting rule is formulated as a distribution:

πE(ET ) =
∏

eA,eB∈ET

π(eA, eB | eA∪B), (3.5)

where πE(eA, eB | eA∪B) is the probability of a block A∪B splitting into two sub-blocks

of A and B.

Currently, multiple models describe different splitting rules with various distribu-

tions of (3.5) and properties on the topology. For example, Berestycki et al. (2007)

introduces a time-irreversible Markovian fragmentation process that forbids the re-

versed process as a coagulation process. One popular choice for the splitting rule is

of Gibbs type, which assigns the probability of (3.5) as a product of weights depend-

ing only on the size of sub-blocks (Pitman, 2006). In this Chapter, we focus on the

Gibbs-types splitting rule that results in a consistent Markovian binary fragmentation

process. Specifically, the resulting consistent fragmentation engenders a Kolmogorov

consist distribution on the tree topology and guarantees the infinite exchangeability

with the existence of the fragmentation process. It is well-known that beta-splitting
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from Aldous (1996) is the only consistent Markovian binary fragmentation (McCul-

lagh et al., 2008) and assigns the probability as follows:

πE(eA, eB | eA∪B) ∝
Γ(nA + β + 1)Γ(nB + β + 1)

Γ(nA + nB + 2β + 2)
, (3.6)

where nA is the cardinality of the set A and β ∈ (−2,∞] is the hyper-parameter that

controls the distribution. For example, β = −1.5 corresponds to a uniform prior on

topology, while β = 0 corresponds to the Yule model. Further details can be found

in McCullagh et al. (2008).

Regarding the prior on the branch lengths πL(LT | ET ), we adopt a flexible ap-

proach by assign different dependencies between the branch lengths and the topology.

For example, diffusion models (e.g. Neal, 2003; Knowles and Ghahramani, 2015) as-

sign a prior through a pre-specified hazard function with the number of leaves on the

current branch as a parameter for the hazard function, resulting in branch lengths

that always sum to 1 from the root to the leaf nodes. Alternatively, we can assume

the independence between the branch lengths and topology and let the branch length

follows a distribution with positive support, in which case the lengths of the paths

from the root to the leaves may differ and not equal to one.

3.4 Posterior Inference

3.4.1 Metropolis-Hastings Algorithm

The decomposition of the ultrametric matrix in the tree space allows us to lever-

age the geometry with the coordinate system in the space of rooted trees with p

leaves, motivating our proposal of an efficient Metropolis-Hastings algorithm (MH)

that moves geodesically on the BHV space. For ease of presentation, we focus on

the multivariate normal distribution with the ultrametric matrix as the covariance
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matrix and formulate the model as:

Xi
i.i.d.∼ Np(0,Σ

T ), i = 1, . . . , n. (3.7)

Extensions to other models, e.g., elliptical distributions including the multivariate

t-distribution, can be done by changing the likelihood. In addition, in the presence

of other parameters, sampling steps in addition to our proposed MH algorithm are

needed.

We detail the rationale of an MH iteration in the space of four-leaf rooted trees by

proposing a geodesic move to propose a candidate, as highlighted by a green arrow

path in Panel (F) of Figure III.2. Specifically, given a tree T (m) with four leaves at

l-th iteration, we propose a candidate via a geodesic move from T (m) to T
cand,(m+1)
1

with all matrices on the path being ultrametric matrices. For example, five matrices

on the geodesic path from T (m) to T
cand,(m+1)
1 are shown in Panel (A) to (E) and the

ultrametric inequalities hold for all matrices on the paths. One possible algorithm to

achieve this is from Nye (2020) that gives a random walk on the BHV space. How-

ever, we observe that Nye’s algorithm results in a slower mixing (see Supplementary

Material Section 1.2). We make a more efficient move geodesically on the space be-

cause our algorithm always proposes a new topology while Nye’s algorithm updates

the edge set more conservatively with a higher probability of staying in the same

orthant.

Based on by Nye’s algorithm, we improve the algorithm by decoupling the updates

for the edge set and the branch lengths. We force the algorithm to always propose a

new topology (though may be rejected). At each iteration, our algorithm updates the

edge set by proposing a new edge set that lands on the nearby orthant and adjusts

the branch lengths by moving the tree locally within the same orthant. An important

result from the CAT(0) geometry of the BHV space is to allow us to find compatible
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Figure III.2: An illustration of proposing a new edge set for a tree with 4 leaves. Given
a tree T (m), the proposal function randomly shrinks a edge and moves to a intermediate

tree (T̃ (m)) on the boundary. Two candidate trees (T
(m+1)
1 and T

(m+1)
2 ) that locate in the

nearby orthant of tree T (m) can be proposed by our algorithm. The root edge is ignored in
matrices in Panel (A) to (E).

splits easily (see Supplementary Material Section B.1). Specifically, if we focus on the

resolved trees with p− 2 internal edges, the BHV space permits only three candidate

splits (Nye, 2020) that are compatible with the edge set EI
T \ {eA}, which includes

the original split eA. We ensure that the algorithm proposes a new tree topology

by excluding the original split eA and randomly pick a new split from the remaining

two candidates with equal probability. The original length is assigned to the newly

proposed split, resulting in a new edge set ET ′ . We then calculate the acceptance

probability with the normal likelihood and the prior πE described in Section 3.3 as

follows:

α = max

{
1,

πE(ET ′)Np(0,Σ
T ′
)q(ET | ET ′)

πE(ET )Np(0,ΣT )q(ET ′ | ET )

}
, (3.8)

where Np(0,Σ
T ) is the normal likelihood with mean zero and the ultrametric matrix

ΣT as the covariance, and q(ET ′ | ET ) is the jumping probability from the edge set

ET to the new edge set ET ′ . Assuming that we delete the split uniformly and select

the new candidate split with equal probability, we obtain two equivalent jumping
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probabilities with q(ET | ET ′) = q(ET ′ | ET ). We then update the edge set based on

the acceptance rate. After updating the topology, we adjust all branch lengths by a

regular MH update with the edge set fixed, representing our algorithm locally moves

within the same orthant. Consequently, the characterization with the coordinate

system allows us to discover nearby orthants of different topology and locally move

our algorithm along geodesics between nearby orthants on the BHV space. Our

rationale is to make many computationally cheap local moves over long iterations

rather than a few computationally expensive moves, resulting in better exploration

of the space of rooted trees. Our MH algorithm is summarized in Algorithm 1.

Returning to the example for a tree of 4 leaves in Figure III.2. Given a tree T (m)

at l-th iteration with split set {e234, e34}, the proposal function randomly shrinks an

internal split of |e234| = 0 and results in a intermediate multifurcating tree T̃
(m)
2 with

the split set containing only one element of {e34} on the boundary of three nearby

orthants. For the intermediate tree, three splits that correspond to nearby orthants

are compatible (e234, e12 and e134). After excluding the original split of e234, we choose

a new split randomly from the remaining candidates representing the underlying trees

of T
(cand,m+1)
1 and T

(cand,m+1)
2 . If our algorithm choose a new split of e12, we assign the

same branch length to the new split as |e12| = |e234|. Once a new edge set is proposed,

we then calculate the acceptance rate of (3.8) and update the topology based on the

acceptance rate. Last, we update the branch lengths given the current edge set.

3.4.2 Posterior Summaries

Once we obtain the posterior samples of edge sets and the branch lengths, we

map each edge set with branch lengths onto corresponding ultrametric matrix and

tree structure. We then summarize posterior trees and matrices in two ways: (i)

point estimation with the representative trees, specifically, the maximum a posterior

(MAP) tree and the Fréchet mean tree (Miller et al., 2015); and (ii) uncertainty
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Algorithm 1 MH algorithm using the BHV space characterization
Input:

(a) The edge set ET = EI
T ∪EL

T , where EI
T is the internal edge set with each internal

split representing a axis in BHV space and EL
T is the leaf edge set;

(b) The branch lengths of LT = {|e| : e ∈ ET};
(c) Priors on edge set πE and branch lengths πL;

(d) Number of iterations M and a standard deviation σL for updating the branch
lengths.

Output:

• Posterior samples of edge sets ET and branch lengths LT of size M .

1: for m = 1, . . . ,M do
2: procedure Update the edge set(ET )
3: Randomly remove a split from the internal edge set eA ∈ EI

T (m) ;
4: Three candidate splits (eA, eA′ and eA′′) are compatible with the remainging

edge set EI
T (m) \ {eA};

5: Exclude the original split eA and propose the new split eB from the rest
two candidates (eB ∈ {eA′ , eA′′});

6: Assign branch lengths |eB| = |eA|;
7: Calculate the acceptance rate α from (3.8) and generate u ∼ Unif(0, 1);
8: if u ≤ α then
9: Return the edge set ET (m+1) = {eB} ∪ ET (m) \ {eA};
10: else
11: Return the edge set ET (m+1) = ET (m) ;

12: procedure Update the branch lengths(LT )
13: for e ∈ ET (m+1) do
14: Generate the new branch length with truncated normal distribution

TruncN(0,∞)(eA, σL);
15: Calculate the acceptance rate.

quantification via the frequency of true subtrees visited by the posterior samples and

the 95% credible intervals for each element in the ultrametric matrix.

3.5 Simulation Studies

We empirically demonstrate the utility of the proposed method through a series

of simulation studies and show that the proposed method can restore the underlying

ultrametric matrix under different true data generating mechanisms. Without loss
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of generality, we present bijection and simulation results without root edge. Given

the true ultrametric matrix ΣT 0
with p = 10 leaves, we consider three data gen-

erating mechanisms of (i) correct specified normal distribution Xi
i.i.d.∼ N(0,ΣT 0

)

and (ii) mis-specified t distribution Xi
i.i.d.∼ tν(0,Σ

T 0
) with degrees of freedom four

and three (ν = 3 and 4). We generate the data with five different sample sizes of

n ∈ {3p, 5p, 10p, 25p, 50p} and 50 independent independent replicates.

We summarize the posterior samples by using the statistics in Section 3.4.2. We

calculate the MAP tree and the mean tree (Miller et al., 2015) as representative

trees and measure the matrix norm and the BHV distance (Owen and Provan, 2011)

between the true underlying tree and the representative tree. For each split in the true

tree, we measure the split-wise recovery by computing the frequency of the posterior

samples that contains the true splits. Lastly, we also investigate the coverage for each

element in the matrix for the element-wise 95% credible interval. For point estimation,

we compare the representative tree from our method to Bravo et al. (2009), which

formulates the matrix estimation as a mixed-integer programming (MIP) problem.

Under the matrix norm, we also consider the sample covariance. For the uncertainty

quantification, no existing method can directly quantify the uncertainty to our best

knowledge. We assign priors of β = −1.5 as the uniform prior on all topology and

exp(1) on the branch lengths. We run the MCMC for 5, 000 iterations and discard

the first 4, 000 iterations.

We show the distance from the representative tree to the true tree in Figure

III.3. Obviously, the mean and MAP trees from our method are comparable to the

estimated matrix from Bravo et al. (2009) and sample covariance in terms of BHV

distance and matrix norm across different data generating mechanisms and sample

sizes. When the model is correctly specified, all methods benefit from the increase

of the sample size with a smaller distance to the true tree. For the mis-specified

scenario, the advantage from the larger sample size is moderate.
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Figure III.3: Distances between the estimated matrix and the true matrix under different
data generating mechanism and sample sizes. The mean (red) and MAP tree (green) from
our method is comparable to competing methods (blue for MIP and purple for sample
covariance) in terms of the BHV distance (top row) and matrix norm (bottom row).

We quantify the uncertainty for ultrametric matrices through the split-wise recov-

ery in Table 3.1 and element-wise coverage in Figure III.4. In Table 3.1, we calculate

the proportion of the posterior splits that contain each split in the true tree. The split-

wise recovery performs better when the sample size increases for all data generating

mechanisms. For different data generating mechanisms, the correct specified model

performs the best with sample size of n = 50 to ensure around 90% of the posterior

samples having correct splits, while for the similar level of recovery, the mis-specified

t-distribution requires sample size over 100 and 250 for t4 and t3, respectively. Among

all splits, we also observe that the split with a smaller length (|e5,6| = 0.231) has the

worst recovery. We present the results of element-wise coverage of the 95% credible

interval for the normal distribution in Figure III.4. The results for t-distribution are

available in Supplementary Material Section B.2. Elements in the last row and col-
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umn correspond to zero elements in the true covariance and result in an estimated

coverage of one. For non-zero elements in true covariance, the estimated coverage

are high but slightly lower than the nominal coverage (around 0.75 to 0.94). The

estimated coverage is higher when the sample size increase.

Figure III.4: Element-wise coverage from the 95% credit interval for the correct specified
normal distribution with fiver different sample sizes with the true underlying covariance in
the lower right panel.

We also provide additional results for simulation including (i) convergence di-

agnostics, (ii) element-wise coverage for mis-specified t-distribution, (iii) sensitivity

analysis for the hyper-parameter of the prior on the branch lengths, (iv) the topol-

ogy trajectory for the proposed method, and (v) the simulation results for the data

generated from a underlying tree with unit-lengths.

3.6 Analysis of Treatment Tree in Cancer

We exemplar the proposed method on a pre-clinical dataset, such as patient-

derived xenograft (PDX) data, to discover potential cancer treatments. Due to the

impracticality of testing multiple treatments on the same patient, PDX is a exper-

iment design that evaluates multiple treatments administered to samples from the
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same human tumor implanted into genetically identical mice. The mice are treated as

the “avatars” to mimic responses to different treatments. In this analysis, we leverage

a PDX dataset of Novartis Institutes for BioMedical Research - PDX Encyclopedia

[NIBR-PDXE, (Gao et al., 2015)] that collects over 1, 000 PDX lines across multiple

cancers with a 1× 1× 1 design (one animal per PDX model per treatment).

For our analysis, we focus on cutaneous melanoma, which consists of 14 treatments

and 32 PDX lines. The main response is the tumor size difference before and after

treatment administration, following the approach by Rashid et al. (2020), with the

untreated group as the reference group. Positive responses indicate that the treatment

shrunk the tumor more than the untreated group with a higher value representing

a better efficacy. We assume that treatments with similar mechanism should induce

similar levels of responses, and we aim to construct a tree structure to reveal the

mechanism similarity based on the main responses. We ran our method with 10, 000

iterations and discard the first 9, 000 iterations. We summarize the results with the

MAP and mean trees and highlight subtrees with the frequency over 90%.

Figure III.5 shows the MAP (Panel (A)) and mean trees (Panel (B)) with subtrees

that consistently appear in the posterior samples. Three subtrees with frequencies

higher than 90% are emphasized by boxes: blue (91%), and yellow (98%). We ob-

serve that the MAP and mean trees share many subtrees with the same topology. For

example, the subtrees in the boxes are identical in both the mean and MAP trees.

Additionally, two combination treatments highlighted by blue box form a tight sub-

tree that appears over 90% of posterior samples, indicating a high level of mechanism

similarity of two combination therapies. Two combination therapies consist of two

agents, with one agent being encorafenib and the other targeting one of the follow-

ing pathways: phosphoinositide 3-kinases (BKM120), and cyclin-dependent kinases

(LEE011). As these pathways are closely related and share common downstream

mechanisms (e.g., Repetto et al., 2018; Kurtzeborn et al., 2019), it is not surprising
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Figure III.5: The MAP (Panel (A)) and mean trees (Panel (B)) for the melanoma. Two
boxes emphasize the subtrees with high frequencies (> 90%) in the posterior samples: blue:
91%, and yellow: 98%.

to see that all combination therapies form a tight subtree in the tree structure.

3.7 Discussion

In this Chapter, we develop a novel Bayesian framework that conducts the infer-

ence on ultrametric matrices by leveraging the bijection of the ultrametric matrix and

the tree structure. Based on the decomposition of (3.3), we characterize the space of

the ultrametric matrices via the geometry and the coordinate system in BHV space.

The same decomposition also enables a general prior for ultrametric matrices that

include many existing priors on the tree structure as special cases. By utilizing the

geometry of the BHV, we propose an efficient algorithm that moves locally on BHV

space along geodesics between nearby orthants. Moreover, the ultrametric inequal-

ities still hold for all matrices on the geodesic path, and allows us to summarize

the posterior samples through existing tree modeling tools. Specifically, we use the

MAP and Fréchet mean trees as point estimator and measure the performance of

point estimator by BHV geodesic distances and matrix norm. We further quantify

the uncertainty via the split-wise recovery and element-wise 95% credible interval. In

simulation studies, our proposed method generates point estimators that are compa-

rable with existing projection-based method in terms of the BHV distance and matrix

norm. Our proposed algorithm also draws posterior samples that result in high split
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recovery and element-wise nominal coverage. We exemplify our method in a preclin-

ical dataset and discover that treatments sharing high mechanism similarities align

with existing literature.

Currently, priors of ultrametric matrices are built on the decomposition of Corol-

lary 3.2.2 via the bijection Φ of the Theorem 3.2.1. One may consider to describe the

prior directly on the set of ultrametric matrices without the decomposition and bijec-

tion. However, the direct construction of the prior on ultrametric matrices is difficult

due to the non-trivial geometry for the set of ultrametric matrices. Aside from the

characterization in Theorem 3.2.1, Brandts and Cihangir (2016) recently showed that

the set of ultrametric matrices is a simplex with only nonobtuse triangular facets.

Another two extensions may further improve the utility of the proposed prior and

sampling algorithm. In the current implementation, we focus on the binary fragmen-

tation due to the prevalence of the binary trees. It is possible to relax the constraints

of only allowing for two sub-blocks in the fragmentation process by considering the

multifurcating fragmentation process and assigning a consistent Markovian prior on

it such as the two-parameter Poisson-Dirichlet model (McCullagh et al., 2008). How-

ever, considering the multifurcating fragmentation will increase the computational

burden due to the additional hyper-parameters and a larger number of possible tree

topologies. Another possible extension is to include the covariates in the prior, result-

ing in subject-specific matrices. Specifically, we can model the hyper-parameter β as

a linear function of covariates and assign priors on the coefficients. By doing so, we

allow the prior to assign weights on different topologies based on the covariates and

enables different subjects to borrow information from the prior on the fragmentation

process. However, modeling the β as a linear function of covariates requires more

details in both theoretical foundation and computation techniques. We leave these

topics for future work.
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CHAPTER IV

Robust Bayesian Graphical Regression Models for

Assessing Tumor Heterogeneity in Proteomic

Networks

4.1 Introduction

Graphical models are ubiquitous and powerful tools to investigate complex de-

pendency structures in high-throughput biomedical datasets such as genomics and

proteomics (Airoldi, 2007). They allow for holistic exploration of biologically-relevant

patterns that can be used for deciphering cellular processes and formulate new testable

hypotheses. However, most existing graphical models make one of two canonical as-

sumptions: (i) a homogeneous graph with a common network for all subjects; or (ii)

rely on the normality assumption especially in the context of Gaussian graphical mod-

els (Ni et al., 2022a). However, in some biomedical applications both assumptions

are violated such as proteomic networks in cancer, as we illustrate next.

Proteomic networks and tumor heterogeneity. Proteins control many fundamental

cellular processes through a complex but organized system of interactions, termed

protein-protein interactions (PPIs) (Cheng et al., 2020). Moreover, aberrant PPIs

are associated with various diseases including cancer and investigating PPI can lead

to effective strategies and treatments, including immunotherapies, tailored to different
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individuals (Cheng et al., 2020; Lu et al., 2020). Consequently, it is highly desirable to

elucidate PPIs in cancer and construct flexible graphical models that can identify mul-

tiple types and ranges of dependencies. Modern data collection methods have allowed

systematic assessment of multiple proteins simultaneously on the same tumor samples,

often referred to as high-throughput proteomics (Baladandayuthapani et al., 2014).

However, the resulting data are typically not normally distributed even after extensive

preprocessing and data transformations (e.g. logarithmic). As an illustration, Figure

IV.1 shows the level of non-normality in protein expression data for two cancers: lung

adenocarcinoma (LUAD) and ovarian cancer (OV) samples from The Cancer Genome

Atlas (TCGA) (Weinstein et al., 2013) that are used case-studies in this Chapter.

Panels (A) and (B) display the empirical density and the quantile-quantile (q-q) plots

of four exemplar proteins: Akt and PTEN for LUAD, and E-Cadherin and Rb for OV.

Both the empirical distributions and q-q plots demonstrate deviations from normal

distribution with heavier tails as shown in Panels (A) and (B). The level of non-

normality is quantified using the H-score, defined as H(Y ) = 2Φ(log(1− pval(Y ))),

where Φ is the cumulative distribution function of the standard normal distribution,

and pval(Y ) is the p-value of the Kolmogorov-Smirnov test for the normality of Y

(Chakraborty et al., 2021). The H-score is bounded between zero and one, and a

higher H-score implies increased departure from normality. The H-scores for all four

proteins are > 0.999, consistent with the conclusions from the empirical and q-q plots.

Panel (C) shows the H-score across all the proteins in our datasets, indicating a high

degree of non-normality across both cancers.

Another axes of complexity that arises in cancer research is tumor heterogene-

ity. It is now well-established that tumors are heterogeneous with distinct proteomic

aberrations even for the same type of cancer across different patients (Janku, 2014).

Accumulating evidence suggests that considering tumor heterogeneity, in general, and

specifically at the level of PPI can enhance our understanding of tumorigenesis and
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Figure IV.1: Non-normality levels of protein expression in lung adenocarcinoma (LUAD)
and ovarian cancer (OV) from TCGA. The empirical density plots from real data (black)
and the normal distribution (blue) for the expression of four proteins with the H-score are
shown in Panel (A). Panel (B) illustrates the expression of four proteins in LUAD (Akt
and PTEN) and OV (E-Cadherin and Rb) with the qq-plots. Panel (C) demonstrates the
H-score of LUAD and OV. The H-score is bounded between zero and one, and a higher
H-score implies a higher level of non-normality.

the development of anti-cancer treatments (Cheng et al., 2020). Specifically, tumor

heterogeneity differentially impacts the PPIs across different patients and results in

varied treatment responses (Cheng et al., 2020). Hence, incorporating patient-specific

information i.e. accounting for tumor heterogeneity could provide valuable clues to

identify PPIs disrupted during carcinogenesis.

In summary, constructing PPI networks poses two main statistical challenges si-

multaneously: (i) coherently accounting for non-normality in proteomic networks, and

(ii) incorporating heterogeneous patient-specific information in graphical modeling.

Existing methods and modeling background. Most existing methods address the

aforementioned challenges separately; i.e. either accommodating non-normality with-

out accounting for the sample-specific information (e.g. Pitt et al., 2006; Dobra and

Lenkoski, 2011) or requiring normality when incorporating patient-specific informa-
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tion (Ni et al., 2022a). To accommodate the non-normality, existing approaches

transform the original variables into normal variables either via deterministic func-

tions (e.g. Dobra and Lenkoski, 2011; Liu et al., 2012; Chung et al., 2022) or via

random transformations (e.g. Finegold and Drton, 2011, 2014). For instance, Bhadra

et al. (2018) generalized the t-distribution to Gaussian scale mixtures and introduced

a new graph characterization for undirected graphs. Chakraborty et al. (2021) fur-

ther generalize concept to characterize chain graphs with both directed and undirected

edges. However, all existing models mentioned above assume a common graph across

all patients and fail to incorporate the subject-specific information.

More recently, several studies incorporate the subject-specific information under

explicit Gaussian assumptions. Multiple Gaussian graphical models were first pro-

posed to estimate graphs that vary across heterogeneous sub-populations (e.g. Peng

et al., 2009; Danaher et al., 2014; Peterson et al., 2015). Ni et al. (2019) introduced

a more general framework called “Graphical Regression” that construct covariate-

dependent graphs through regression model and incorporates both continuous and

discrete covariates, in directed as well as undirected settings (Ni et al., 2022b). Sim-

ilarly, Zhang and Li (2022) provided a penalized procedure to estimate undirected

graph by Gaussian graphical regression and introduced continuous covariates in both

the mean and the covariance structure. However, all these models are developed un-

der the normality assumption for inferential and computational reasons. To our best

knowledge, no existing method incorporates subject-specific information under non-

Gaussian settings and motivates development of new methodology. We summarize

six important and relevant models mentioned above in Table 4.1 and compare these

models in four different aspects.

To address these challenges simultaneously, we develop a unified and flexible modeling

strategy called robust Bayesian graphical regression (rBGR), which allows construc-

tion of subject-specific graphical models for non-normally distributed continuous data.
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Table 4.1: Comparison of existing and proposed methods for different properties.

Method
Uncertainty

Undirected
Sample-

Non-NormalityQuantification Specific

GGMx (Ni et al., 2022b) ✓ ✓ ✓ ✗
RegGMM (Zhang and Li, 2022) ✗ ✓ ✓ ✗
GSM (Bhadra et al., 2018) ✓ ✓ ✗ ✓
BGR (Ni et al., 2019) ✓ ✗ ✓ ✗
RCGM (Chakraborty et al., 2021) ✓ ✓ ✗ ✓
rBGR (the proposed) ✓ ✓ ✓ ✓

rBGR makes three main contributions:

(a) Robust framework to build subject-specific graphs for non-normal data. rBGR

robustifies the normal assumption via random transformation and incorporates

covariates employing graphical regression strategies. By accommodating the

non-normality via random transformation, we obtain a Gaussian scale mixture,

which presumes an underlying latent Gaussian variable and allows explicit in-

corporation of covariates in the precision matrix (Section 4.2.2) and admits

efficient posterior sampling procedures (Section 3).

(b) New characterization of dependency structures for non-normal graphical mod-

els. The introduction of the random marginal transformations engenders a

new type of edge characterization of the conditional dependence for non-normal

data, called conditional sign independence with covariates (CSIx, Section 4.2.3

Proposition 4.3.1). CSIx is a generalization of the conditional sign independence

(CSI) introduced by Bhadra et al. (2018) which explicitly characterizes the sign

dependence between two nodes/variables. We demonstrate via multiple simula-

tions that rBGR can accurately recover dependency structures under different

levels of non-normality and against competing graphical regression approaches

that assume normality (Section 4.5).

(c) Deciphering impact of immunogenic heterogeneity in proteomic networks. We

use rBGR to assess proteomic networks across two cancers, lung and ovarian, to

systematically investigate the effects of the inherent immunogenic heterogeneity
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within tumors. Specifically, we quantify immune cell abundance across tumors

and build PPI networks that varies across different immune cell abundance. Our

analyses reveal several important hub proteins and PPIs that are deferentially

impacted by the immune cell abundance; some corroborate existing biological

knowledge but also discover novel associations for future investigations (Section

4.6).

The rest of the Chapter is organized as follows: we introduce rBGR models and

characterization in Section 4.2. Section 4.3 focuses on priors and estimation and

Section 4.4 delineates the posterior inference via Gibbs sampling. In Section 4.5, we

conduct a series of simulations to evaluate the operating characteristics of rBGR and

against competing approaches. Section 4.6 provides a detailed analysis of the TCGA

dataset, results, biological interpretations and implications. The Chapter concludes

by discussing implications of the findings, limitations, and future directions in Section

4.7. A general purpose R package and datasets used for constructing PPI networks is

also provided on https://github.com/bayesrx/rBGR.

4.2 Robust Bayesian Graphical Regression (rBGR)

We start with the Gaussian graphical regression (Section 4.2.1) as a special case

of rBGR under the normality assumption and generalize it to the robust case through

random transformations (Section 4.2.2). Subsequently, the introduction of the ran-

dom transformation changes the interpretation of the graph and motivates a new edge

characterization (Section 4.2.3).

4.2.1 Gaussian Graphical Regression

Consider p-dimensional random vectors Yi = (Yi1, . . . , Yip)
T ∈ Rp as (continuous)

responses with q-dimensional random vectors of Xi = (Xi1, . . . , Xiq)
T ∈ Rq as covari-

ates for subject i = 1, . . . , n. A subject-specific PPI network from proteomics data
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Yi is constructed to vary based on the immune cell abundance Xi (Section 4.6).

Let Gi = (V,Ei) be an undirected graph over p nodes, where V = {1, . . . , p}

is the set of nodes representing Yi and Ei ⊂ V × V is the set of undirected edges

in the network for subject i. An undirected edge exists between nodes j and k if

{j, k} ∈ Ei. Under Gaussian assumption, given the covariates Xi, suppose Yi follows

a multivariate normal distribution,

Yi | Xi ∼ Np(0, Ω̃
−1(Xi)), for i = 1, . . . , n, (4.1)

where Ω̃(Xi) = {ω̃j,k(Xi)}p×p, j, k ∈ V is a functional precision matrix (of covariates)

with each element ω̃j,k(Xi) as a function that depends onXi. The functional precision

matrix characterizes the graph Gi through zero precision elements. Specifically, zero

precision represents a missing edge in the graph e.g. for the case of scalar precision,

ω̃j,k(Xi) = ω̃j,k, zero precision implies conditional independence (CI) and an missing

edge in the graph of CI under Gaussianity (Lauritzen, 1996). For the functional

precision matrix, Ni et al. (2022b) introduced covariate-dependent graphs in G and

generalized the concept of CI to CI with covariates (CIx, henceforth). In essence,

given a covariate Xi, the zero precision of ω̃j,k(Xi) = 0 implies an missing edge of

CIx between nodes j and k. Contrarily, when the functional precision is non-zero

ω̃j,k(Xi) ̸= 0, Yj and Yk are conditional dependent with covariates (CDx, henceforth)

and an edge exists between nodes j and k given the covariate Xi. By modeling the

functional precision matrix, CIx defines covariate-specific graphs that vary based on

different covariates.

4.2.2 Robust Graphical Regression via Random Transformation

In practice, normal assumption does not always hold (as shown in Figure IV.1).

Violation of the normal assumption results in the failure of modeling graphs through
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normal precision matrices and motivates new modeling strategies (Finegold and Dr-

ton, 2011; Bhadra et al., 2018). In this Chapter, we adapt the random transformation

approach (Bhadra et al., 2018) that allows for various non-normal distributions with

different tail behaviors. We focus on continuous distributions with heavy tails as ob-

served in our motivating data. To this end, let 0 < dj < ∞ for j = 1, . . . , p be inde-

pendent positive random scales and have distribution as dj ∼ pj with
∫
dp(dj) < ∞

almost surely. Let Di = diag(1/di1, . . . , 1/dip) be a diagonal matrix for subject i.

Given random scales dij, j = 1, . . . , p and the covariates Xi, we assume the distribu-

tion of DiYi conditional on Di and Xi follows a multivariate distribution,

DiYi =

[
Yi1

di1
, . . . ,

Yip

dip

]T
∼ Np(0,Ω

−1(Xi)), for i = 1, . . . , n, (4.2)

where Ω(Xi) = {ωj,k(Xi)}p×p, j, k ∈ V is the functional precision matrix that char-

acterizes the graph with the covariates Xi.

The model in (4.2) generalizes several existing approaches: (i) Equation (4.1) is

a special case of Equation (4.2) with dij as a degenerated distribution of a point

mass at one; (ii) when d1 = . . . = dp = τ with τ 2 following an inverse gamma

distribution, Equation (4.2) reduced to a multivariate t-distribution on Y as used by

Finegold and Drton (2014), and (iii) for general dij, (4.2) establishes a rich family of

Gaussian scale mixtures for the marginal distribution of Yj with the density p(Yj) =∫
(2πdj)

−1/2 exp{−y2j/(2dj)}dp(dj).

The introduction of random scales in Equation (4.2) allows us to construct various

marginal distribution of Yj with different tail behaviors. Specifically, by matching

tail behaviors of random scales and the target distribution, random scales allow us to

construct different marginal distributions. For example, letting Yj decay polynomially,

the Yj/dj follows a normal distribution if the random scale dj also has a polynomial

tail (Bhadra et al., 2018). Similar idea can be used for target distribution with
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Figure IV.2: The robustification of non-normal distribution with random scales and the
visualization of CSIx and CSDx. Panel (A) is the qq-plot to illustrate that random scale d
accommodates the non-normal distribution Y with Y/d following the normal distribution.
Panel (B) demonstrates CSIx (Case (i) and (ii)) and CSDx (Case (iii) and (iv)) of Y1 and Y2
with the partial correlation ω1,2(Xi) = Xi conditioning on Y3. Cases (i) and (ii) represent
two examples of CSIx with zero precision of Xi = 0 given Y3 = 1 and 0. Cases (iii) and
(iv) demonstrate the cases of CSDx with non-zero precision of Xi = 0.7 given Y3 = 1 and
0. Panel (B) is centered on the values between [−10, 10]. Panel (C) shows the nested
relationship between CSIx and CIx (top) and CSDx and CDx (bottom). See more details
in Section 4.2.3.

exponential tail. In Figure IV.2, Panel (A) shows that the target distribution Y with

a polynomial tail deviates from the normal distribution and with the introduction

of random scales the distribution of Y/d is normally distributed. While the random

scales robustify the model to accommodate non-normality, the resulting functional

precision matrix Ω(Xi) requires careful characterization and interpretation.

4.2.3 Characterization of Functional Precision Matrix

The functional precision matrix in (4.2) determines the graphical dependence as a

function of covariates, but the random (marginal) scales changes the standard condi-

tional independence interpretations in the resulting precision matrix which requires a

80



new characterization. Bhadra et al. (2018) introduced the concept of conditional sign

independence (CSI) in non-normal graphs that is defined as follows. Consider random

variables Y1, Y2, and Y3. Given Y3, Y1 and Y2 are conditional sign independence (CSI)

if P(Y2 > 0 | Y1,Y3) = P(Y2 > 0 | Y3) and P(Y1 > 0 | Y2,Y3) = P(Y1 > 0 | Y3).

Otherwise, Y1 and Y2 are conditional sign dependent (CSD) given Y3. The CSI of

Y1 and Y2 implies that the information of Y1 does not affect the sign of Y2 given Y3.

That is, conditioning on Y3, the distribution of the sign of Y2 is independent of the

value of Y1. Under the multivariate distribution of (4.2) with a constant precision

matrix Ω(Xi) = Ω, zero precision of ωj,k = 0 and the CSI of Yj and Yk given the rest

are equivalent, which can be represented by a missing edge between nodes j and k in

an undirected graph (Bhadra et al., 2018; Chakraborty et al., 2021).

In this Chapter, we generalize the concept of CSI to incorporate covariates and

consider subject-specific CSI of two random variables given the rest random variables

and a realization of covariates Xi; as formalized in the following proposition:

Proposition 4.2.1 (Conditional Sign Independence with Covariate (CSIx)). Given

random scales Di = diag(1/di1, . . . , 1/dip) and the covariates Xi, consider the condi-

tional distribution of DiYi as Equation (4.2) with functional precision matrix Ω(Xi).

If ωj,k(Xi) = 0, then Yj and Yk are CSI. Otherwise, when ωj,k(Xi) ̸= 0, then Yj and

Yk are CSD.

The proof of Proposition 4.2.1 follows the fact that ωj,k(Xi) = 0 implies the CSI

of Yj and Yk given Xi, and we call Yj and Yk are conditional sign independence with

covariates Xi to highlight the role of the covariates in the graph. Otherwise, Yj and

Yk are called CSDx.

Illustrative example. We use a simple low-dimensional example to visually demon-

strate and interpret CSIx and CSDx. Following Proposition 4.2.1, we show two

examples with a general functional precision matrix Ω(Xi). Consider a trivariate

distribution of (4.2) with unit diagonal elements and ω1,2(Xi) = Xi. We illustrate
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two scenarios shown in Panel (B) of Figure IV.2:

• When Xi = 0, we obtain the CSIx of Y1 and Y2 given two different values of

Y3 = 0 (Case (i)) and 1 (Case (ii)).

• When Xi = 0.7, Y1 and Y2 are CSDx and we observe that the distribution of the

sign of Y2 varies based on the value of Y1 (see Case (iii) and (iv)). Specifically,

as Y1 increases, Y2 tends to be negative.

By modeling the functional precision matrix, we can build covariate-specific precision

matrix that depends on the different realization of the covariates Xi. Consequently,

we can construct a graph of CSI corresponding to the precision matrix and the co-

variates.

We can now conceptually compare models (4.1) and (4.2). Both models incor-

porate the covariates in the functional precision matrix, which characterizes the

covariate-specific graph. However, the interpretation of the graph differs.

The graph from model (4.2) encodes CSIx whereas the graph from model (4.1)

encodes CIx. We further visualize the relationship between CSIx and CIx in Panel

(C) of Figure IV.2 and summarize as follows:

• For ω = 0, CSIx is a weaker condition than CIx since CSIx only considers the

sign while CIx depends on both the sign and the magnitude.

• When ω ̸= 0, CSDx is more stringent than CDx for CDx allows either magnitude

or the sign to be dependent while CSDx only focuses on the sign.

In summary, the random scales robustify the normality assumption that is violated in

our motivation data (Figure IV.1). The introduction of the random scales also causes

the loss of CIx in graphical regression with the replacement of a weaker independence

condition of the CSIx. Specifically, the CSIx manifests the independence on the sign

in the probabilistic manner.
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4.3 Priors and Estimation

The functional precision matrix Ω(Xi) lives in a high-dimensional space. For

example, the PPI network for ovarian cancer from our application considers n× p×

(p−1)/2 = 197, 620 possible edges. Hence, we use a neighborhood selection procedure

(Meinshausen and Bühlmann, 2006) to estimate the functional precision matrix that

has been used in several graphical modeling approaches (e.g. Ni et al., 2019; Zhang

and Li, 2022). This procedure offers three main benefits: (i) tractable estimation,

(ii) reduced computation burden, and (iii) flexible prior elicitation. Specifically, we

regresses one node Yj on the rest nodes Yk, k ̸= j and build the graph based on zero

coefficients (Section 4.3.1 and 4.3.2). By employing neighborhood selection, we reduce

the number of edges to q× p× (p− 1)/2 = 3, 280. Additionally, the number of edges

can be further reduced by different model specification like thresholding mechanism

(Section 4.3.3) and different priors such as spike-and-slab (Section 4.3.4).

4.3.1 Regression-based Approach for Functional Precision Matrix Esti-

mation

The rBGR model leverages a regression-based framework on model (4.2) to re-

late the regression coefficients and precision matrix. Given random scales Di, we

regress one variable on all other variables and relates the partial correlation with

regression coefficients. Zero coefficients is then equivalent to zero partial correlations

(Meinshausen and Bühlmann, 2006). Specifically, we define the rBGR as:

Yij

dij
=

p∑
k ̸=j

βj,k(Xi)
Yik

dik
+ ϵij, (4.3)

where ϵij ∼ N(0, 1/ωj,j(Xi)) and the functional coefficient βj,k(Xi) = −ωj,k(Xi)
ωj,j(Xi)

.

Under this specification, βj,k(Xi) = 0 if and only if ωj,k(Xi) = 0, which enables
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the functional coefficients to characterizes the covariate-specific graphs. However,

the interpretation of the coefficients changed from the standard Gaussian graphical

models (Meinshausen and Bühlmann, 2006) due to the introduction of the random

scales, which will be detailed in the next subsection.

4.3.2 Graph Construction through Regression Coefficients

We build graphs with a missing edge between node j and k when Yj and Yk are

CSIx given the remaining variables and the covariates Xi. Consider Yi and Xi with

the regression (4.3). We call βj,k(Xi) the conditional sign independence function

(CSIF) because zero CSIF βj,k(Xi) = 0 implies that Yj and Yk are CSIx given all

the other nodes Y−{j,k} and covariates Xi, as formally characterized in the following

proposition.

Proposition 4.3.1. Consider the data Y and X with model (4.3). If βj,k(Xi) =

0, then P(Yj > 0 | Yk,Y−{j,k},Xi) = P(Yj > 0 | Y−{j,k},Xi) and P(Yk > 0 |

Yj,Y−{j,k},Xi) = P(Yk > 0 | Y−{j,k},Xi).

We sketch the proof and leave the details in Supplementary Section C.1. The

proof follows from the fact that the CSIF βj,k(Xi) = −ωj,k(Xi)
ωj,j(Xi)

is related to the

partial correlation, and a zero partial correlation is equivalent to a zero precision

of ωj,k(X) = 0, which ensures the CSIx between Yj and Yk (see the example in

Section 4.2.3). Therefore, zero CSIF indicates the CSIx between Yj and Yk given the

remaining response variables Y−{j,k} and covariates Xi. In this Chapter, we further

assume the scalar diagonal precision of ωj,j in CSIF as βj,k(Xi) = −ωj,k(Xi)
ωj,j to improve

the computation. The CSIF is zero if and only ωj,k(Xi) = 0, which is unrelated to

the diagonal elements and our main interest of edge selection.
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4.3.3 Modeling the Conditional Sign Independence Function

Proposition 4.3.1 transforms the problem of robust graph construction to a more

tractable regression coefficient selection (i.e., selecting which part of CSIF is exactly

zero). Therefore, modeling the CSIF is crucial to the graph estimation. To this end,

we parameterize the CSIF as a product of two components:

βj,k(Xi) = θj,k(Xi)︸ ︷︷ ︸
Covariate function

I(| θj,k(Xi) |> tj)︸ ︷︷ ︸
Thresholding function

. (4.4)

We elaborate the role and justification of each component below.

Covariate functions [θ•(•)]. For exposition, we consider only the linear effects of

covariates Xi, θj,k(Xi) =
∑q

h=1 αj,k,hXih, where αj,k,h represents the coefficients for

the h-th covariate. The covariate function allows similar edge sets for individuals

with a similar level of Xi and varies the graph thus borrowing strength. If desired,

it is relatively straightforward to extend it to nonlinear effects with e.g., using basis

expansion techniques such as splines.

Thresholding functions [I(| θ•(X) |> t•)]. The edge thresholding mechanism is

desired to achieve sparse graph in rBGR due to the large number of parameters.

For example, the ovarian PPI network in our application requires qp(p − 1)/2 =

3, 280 parameters and results in a dense graph with inefficient inference. To solve

the problem, we truncate edges with small magnitudes with an indicator function

I(| θj,k(X) |> tj), where tj is the threshold parameter specific to the node j. An edge

is shrunk to zero and removed when the magnitude is smaller than the threshold

parameter, resulting in a sparse graph. One might consider threshold parameter as

tj,k. However, tj,k is not fully identifiable when αj,k,h = 0 for all h = 1, . . . , q since

when θj,k(Xi) = 0, the value of tj,k can be arbitrary. To alleviate the problem, we

assume tj,k = tj to improve the identifiability as long as one of of θj,k ̸= 0.
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4.3.4 Prior Specification

To complete the model specification, rBGR contains three parameters: (a) random

scales dj, (b) covariate coefficients αj,k,h, and (c) threshold parameter tj. Specifically,

we assign priors as follows:

dj ∼ (1− πj)δ1(dj) + πjpj(dj); αj,k,h ∼ Spike-and-slab; tj ∼ Unif(0, tmax), (4.5)

where tmax is a pre-specified hyper-parameter, πj models the degree of non-normality

with beta prior as πj ∼ Beta(aπ, bπ), and pj is a function to accommodate the non-

normality. Specifically, when dj = 1, Yj is normally distributed. When dj ∼ pj, Yj

follows a non-normal distribution. We match tail behavior of pj and the marginal

distribution of Yj and allow each marginal distribution Yj to have different level

of non-normality by specific πj. For the current model, we focus on the Yj with

polynomial decay as illustrated by the motivating data in Figure IV.1 and assign

a inverse gamma distribution on pj(d
2
j) ∼ InvGa(ad, bd). For covariate coefficients

αj,k,h, we assign a spike-and-slab prior to achieve the covariate sparsity because not all

covariates necessarily contribute to the varying structure of our graph. For threshold

parameter tj, we assign a uniform prior on tj to model the thresholding mechanism

and control the graph sparsity. Intuitively, when tj → 0, no edge is truncated and

results in a fully connected graph. When tj → ∞, all edges are shrunk to zero with

all nodes disconnected.

4.4 Posterior Inference

Gibbs sampler. In this Section, we introduce an efficient Gibbs sampler for the

proposed rBGR model. Instead of the Metropolis-Hastings algorithm, we implement a

Gibbs sampler except for the random scales and largely improve the computation and
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convergence compared to Ni et al. (2019). Recently, Li et al. (2023+) derived a closed-

form of the conditional distributions for Gibbs sampler by formulating the thresholded

coefficients as mixture distributions. Specifically, if we view the distribution with one

component as a special case of mixture distribution, the mixture distribution from

the thresholded coefficient then can achieve conjugacy. We derive the full condition

distribution for parameters for covariate coefficients αj,k,h and the threshold parameter

tj, and the full conditions of covariate coefficients and threshold parameter belong to

the mixture of truncated normal and the mixture of uniform distribution, respectively.

By assigning normal priors on covariate coefficients and a uniform prior on threshold

parameter, we obtain conjugacy on all thresholded parameters. We further use the

parameter expansion technique (Geyer, 2011) on covariate coefficients to improve the

mixing of MCMC. We implement the Metropolis-Hasting algorithm for the random

scales.

Covariate and edge selection. The estimated coefficients from rBGR of (4.3) do not

guarantee the symmetry required in the undirected graph. Also, due to the intro-

duction of random scales with the CSIx characterization, we focus on the sign of the

edge. In this Section, we describe algorithms to symmetrize the estimated covariate

coefficients α̂j,k,h and the sign of graph edges of β̂j,k(Xi). For covariate coefficients,

we compare the posterior inclusion probability (PIP) of directed coefficients from two

directions (α̂j,k,h and α̂k,j,h) and assign the undirected coefficients as the directed co-

efficient with a smaller PIP. Given a cutoff c0, the rule above requires both directions

of coefficients to have PIPs bigger than c0 implying a network with less edges. For the

edge, we symmetrize the edge based on the edge posterior probability (ePP). Specifi-

cally, we symmetrize the undirected ePP by taking the maximum of the two directed

ePP. Given a cutoff c1, we call an undirected edge if at least one of the directed ePPs

is bigger than c1. We then decide the sign of the edge by comparing the posterior

probability of positive and negative for the chosen direction.
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We offer more details of the posterior inference in Supplementary Material Section

C.2 including (i) Gibbs sampler derivation with the Algorithm (Section C.2.2) and

(ii) symmetrization rule for both covariate coefficients and edges (Section C.2.3).

4.5 Simulation Studies

We empirically demonstrate the performance of rBGR under a variety of non-

normal settings and against other competing models in terms of edge and covariate

selection. To the best of our knowledge, no other existing method estimates covariate-

specific graphs for non-normal data. Therefore, we compare rBGR to two models that

estimate the covariate-specific graph without addressing the violation of normality

assumption. Specifically, we consider Bayesian graphical regression (BGR) (Ni et al.,

2019) and the Gaussian graphical model regression (RegGMM) (Zhang and Li, 2022)

representative of a fully Bayesian and a frequentist penalization-based models for the

covariate-specific graph under normal assumption, respectively. For RegGMM, we

run the algorithm with various tuning parameters to obtain the probability of the

signs of edges and covariate coefficients and select the optimal tuning parameter by

cross validation using their default algorithm. For rBGR and BGR, we symmetrize

the graph mentioned in Section 4.4 and set c0 = c1 = 0.5. We run 10, 000 and 30, 000

iterations and discard the first 90% iterations for rBGR and BGR, respectively.

Data generating mechanism. We generate the observed non-normal data by mul-

tiplying the random scale to the latent normal data Y ∗
i =

[
Y ∗
i1, . . . , Y

∗
ip

]T
that follows

an multivariate normal distribution with a functional precision matrix that represents

the undirected graph. Specifically, we generate the covariates Xi
iid∼ U(−1, 1) and la-

tent data Y ∗
i

iid∼ Np(0,Ω
−1(Xi)) with the true precision matrix Ω(Xi). For Ω(Xi),

we assign unit diagonal elements and randomly pick 2% of the off-diagonal to be non-

zero. We let the non-zero precision depend on the covariates linearly and truncate

the precision with a magnitude smaller than 0.15. We obtain the random scales from
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a mixture distribution of the point mass at one and a inverse gamma distribution and

assign three different levels non-normal contamination: π ∈ {0, 0.5, 0.8}. We multiply

the random scales to generate the observed data of [Yi1, . . . , Yip] = [Y ∗
i1di1, . . . , Y

∗
ipdip].

For all simulations, we set the sample size and the dimensions of Yi and Xi as

(n, p, q) = (250, 50, 3). We show the results for 50 independent replicates.

Performance metrics. We evaluate the graph recovery through the edge and co-

variate selection. For covariate selection, we report the true positive rate (TPR), true

false rate (TFR), and Matthew’s correlation coefficient (MCC) with the cut-off for

PIP at c0 = 0.5. We also report the area under the ROC curve (AUC) and partial

area under ROC curve (pAUC) between specificity ranging from 0.8 to 1. For edge

selection, we show AUC and three metrics of TPR, TNR and MCC with the cut-off for

ePP at c1 = 0.5. We further show the sign consistency by examining the agreement

between the posterior probability for the signs of CSIF sgn(β̂j,k(Xi)) and the true

signs of sgn(βj,k(Xi)). Specifically, we exclude the zero CISF and focus on the subset

of the data with both true and estimated non-zero CSIF to restrict the problem as

two-class classification (positive versus negative). We assess the sign consistency by

MCC (referred to as sign-MCC).

Simulation results. Panel (A) of Figure IV.3 shows the simulation results for covariate

selection. We observe that rBGR outperforms BGR and RegGMM across all non-

normality levels, as indicated by higher MCC and AUC. The difference of MCC

and AUC between rBGR and the rest competing methods increases when the non-

normality level increase. For TNR, rBGR performs slightly worse than BGR but

better than RegGMM across all non-normality levels. However, all three methods

select correct covariates (> 93%) with small difference (< 5%) in terms of TNR. For

TPR, rBGR outperforms BGR under all levels of non-normality and the advantage

of rBGR becomes more prominent as the non-normality increases. Compared to

RegGMM, rBGR’s performance is comparable under normal distribution in TPR,
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but rBGR is preferred when the level of non-normality increases. Overall, modeling

the non-normality from random scales in rBGR is favored compared to models without

random scales in terms of covariate selection.

We show the graph recovery for the edge selection in Panel (B) of Figure IV.3. For

edge selection, rBGR outperforms BGR and RegGMM in AUC, and the advantage of

rBGR increases with a larger discrepancy between rBGR and the competing methods

when the non-normality level increases. For MCC, rBGR outperforms RegGMM

under all levels of non-normality, but is slightly inferior than BGR under the normal

distribution. However, rBGR is favored when the non-normality level increases. For

TPR, rBGR is better than BGR under all levels of non-normality, and slightly worse

than RegGMM under normal assumption. However, when non-normality increases,

rBGR starts to surpass the RegGMM. Both TNR and sign-MCC show excellent

selection performance (> 95%) for all three methods, with minimal differences (<

5%) across the three non-normality levels. In summary, modeling the non-normality

through random scales in rBGR result in equivalent (under normal distribution) or

better performances in all metric for edge selection compared to the other methods.

Additional simulations and model evaluations. We provide additional simulation of

data generating mechanism and model evaluation results for (i) convergence of the

algorithm, and (ii) different cut-off of c0 and c1 controlling for false discovery rates –

which are summarized in Supplementary Material Section C.3.

4.6 Analyses of Proteomic Networks under Immunogenic Het-

erogeneity

Key scientific questions and dataset overview. Aberrant protein-protein interac-

tions (PPIs) are associated with various diseases including cancer (Lu et al., 2020),

and immune cells around the tumor can modulate malfunctioning PPIs to influence
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Figure IV.3: Graph recovery for BGR (red), rBGR (green) and RegGMM (blue) under
different levels of non-normality in terms of (A) covariates selection (top row) and (B)
edge selection (bottom two rows). Panel (A) measures the covariate selection through four
metrics (from left to right: TPR, TNR, MCC and AUC) are measured under three different
levels of non-normality. Panel (B) demonstrates the edge selection by four criteria (from
upper left to lower right: TPR, TNR, MCC, AUC) and the sign consistency by sign-MCC
(lower left) for non-zero edges. All values for TPR, TNR and MCC are measured at a
cut-off at c0 = c1 = 0.5.
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tumor growth and progression (Joyce and Fearon, 2015). In cancer, cells around the

tumor form the tumor microenvironment (TME) that closely interacts with the tumor

(Whiteside, 2008). For example, the dysregulated PPIs in tumor suppress multiple

immune cells in TME to escape the detection from immune system (Whiteside, 2008)

while immune cells in TME can alter the aberrant PPIs to eliminate cancerous cells

(Joyce and Fearon, 2015).

This demonstrates the connection between the dysregulated PPIs and the TME

and shows the importance of immunogenic heterogeneity in tumor behavior. A better

understanding of the impact of the immune cells on aberrant PPIs offers a founda-

tional paradigm for potential targeted therapies in cancer (Cheng et al., 2020). To

this end, our key scientific questions were as follows: (i) identify important PPIs

across different cancer types and (ii) discover the effect of immunogenic heterogeneity

on aberrant PPIs as potential targets for future investigation.

We exemplify the utility of rBGR, using data from The Cancer Genome Atlas

(TCGA) to build patient-specific PPI networks and investigate the impact of immuno-

genic heterogeneity across two different cancers. Specifically, we used reverse-phase

protein array for proteomic data (Y ) to build the PPI network of CSIx graph and

incorporated the immune cell transcriptome signatures as covariates (X) as marker

of immunogenic heterogeneity. Our analysis focuses on ovarian cancer (OV) and lung

adenocarcinoma (LUAD) as representative examples of two different types of cancers

that elicit distinct immune responses. OV represents a immunologically “cold” tumor

with a weaker immune response, while LUAD is considered a immunologically “hot”

tumor with a stronger immune response (Galon and Bruni, 2019).

We focus on proteins in 12 important cancer-related pathways (Ha et al., 2018)

and obtained p = 41 proteins with n = 241 and n = 360 patients for OV and LUAD,

respectively. For covariates, we included mRNA-derived immune cell gene signatures

and quantified the immune cell abundance corresponding to T cells and two crucial
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members of myeloid-derived suppressor cells, monocytes and neutrophils, for both OV

and LUAD. Both T cells and myeloid-derived suppressor cells are essential in both OV

and LUAD since T cells is the main immune component that kills cancer cells while

myeloid-derived suppressor cells regulates T cells (Whiteside, 2008). We ran rBGR on

OV and LUAD with 20, 000 iterations and discarded the first 19, 000 iterations. The

convergence diagnostics and the details of data preprocessing procedures are provided

in Supplementary Material Section C.4.1.

4.6.1 Population-Level Proteomic Networks

We first focus on the covariate dependent population-level networks for OV and

LUAD that are estimated by α̂j,k,h. The corresponding networks are shown in in

Figure IV.4 (Panels (A) for LUAD and (B) for OV). We observed that the number

of edges is much less in OV compared to LUAD for all immune components (T

cells: (7, 15), monocytes: (5, 82) and neutrophils: (7, 260) for (OV, LUAD)). This is

further evidenced in Panel (C) that shows the distribution of PIPs for OV and LUAD.

Interestingly, we observe that the PIPs for LUAD are higher than those for OV for all

immune components (median of (OV, LUAD) for T cells: (0.123, 0.271), monocytes:

(0.131, 0.307), and neutrophils: (0.127, 0.380)). The higher PIPs in LUAD imply that

immune components have a greater impact on PPIs in LUAD compared to OV. This

finding is consistent with the existing biology, as LUAD belongs to the immune hot

tumors with a stronger immune response (Galon and Bruni, 2019). Furthermore, we

identify HER2, Rb and Bax as the top three hub proteins with the highest degree in

LUAD. In LUAD, HER2 mutation is associated inferior survival (Pillai et al., 2017),

Bcl-2 family protein including Bax is a prognostic biomarker (Sun et al., 2017), and

Rb mutation predicts poor clinical outcomes (Bhateja et al., 2019). For OV, AR

is identified as a hub protein with the highest degree (AR: 13 with the rest protein

≤ 10). Recent evidence supports the critical role of AR for the progression of OV
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(Zhu et al., 2017).

Population graphs also confer specific information about the interaction between

proteins. For example, we observe an edge between Akt and PTEN with the highest

PIP regulated by T cell for LUAD (Panel (A)) suggesting the impact from T cell on

the PPI between Akt and PTEN. It is well-known that PTEN down-regulates Akt

and the loss of tumor suppressor PTEN often leads to dysregulated PI3K pathway

including Akt and the following tumor growth for LUAD (Conciatori et al., 2020).

For OV, despite the smaller number of PPIs, we still identify PPIs that are consistent

with existing literature. For example, rBGR suggests a PPI regulated by T cells

between Caveolin-1 and PR. In OV, Caveolin-1 is regulated by progesterone, which

is mediated by PR, and suggests a consitent result with the estimated PPI between

Caveolin-1 and PR (Syed et al., 2005). Overall, our analyses capture important hub

proteins and characterize the cancer PPIs, and the results are highly concordant with

the existing cancerliterature.

4.6.2 Patient-Specific Networks

We next focus on patient-specific PPI networks to examine the effect of immune

component abundance (Xi) on PPIs. Specifically, we vary one immune component

with the rest components fixed at their mean and generate networks of CSIx for

different individuals at five percentiles (5th, 25th, 50th, 75th and 95th percentiles) of

the varying immune component. We set the cut-off for the ePP at c1 = 0.5 and show

the networks for LUAD in Figure IV.5 with the networks for OV in Supplementary

Material C.4.

For specific immune components, we focus on PPIs of CSDx showing that the PPIs

are dependent on the abundance of specific immune component. We present PPIs

that change the signs in the 5th and 95th percentiles indicating specific PPIs that are

impacted by the immune components, such as Akt-PTEN for T cells, Bid-PCNA for
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monocytes, and Bax-GATA3 for neutrophils. Interestingly, we discovered that the

sign of Akt-PTEN is positively correlated to the T cell abundance. Specifically, when

T-cell abundance is higher, Akt-PTEN is positive; vice-versa, Akt-PTEN is negative

when T cell is scarce. It is well-established that PTEN suppresses Akt signaling and

the loss of PTEN results in the hyper-activation of Akt in cancer cells and the low

T cell abundance in lung cancer (Conciatori et al., 2020). In addition, we find Bid-

PCNA edge is positively correlated with monocytes abundance. It has been shown

that PCNA promotes Bid through caspase proteins and is crucial to immune evasion

in cancers (Wang et al., 2021). Finally, we discover that Bax-GATA3 edge is positively

correlated with neutrophil abundance. Recently, GATA3 has been found to down-

regulate BCL-2 (Cohen et al., 2014), which inhibits the Bax protein (Antonsson et al.,

1997), and neutrophils promotes the Bax to induce the apoptosis (Li et al., 2020).

These findings highlight specific PPIs that are influenced by the abundance of immune

components and suggest potential targets for further investigation of immunotherapy

for lung cancer.

4.7 Discussion

In this Chapter, we develop a flexible Bayesian framework called robust Bayesian

graphical regression (rBGR) to construct heterogeneous networks that accounts for

covariate-specific information for non-normally distributed data. By accommodat-

ing the non-normal marginal tail behaviours through random scales, we construct

covariate-specific graph through graphical regression-based approaches and charac-

terize the edge dependencies through conditional sign independence (CSIx). For a

specific covariate, the CSIx of two variables ensures the distribution of the sign of

one variable is not affected by the information from the other variable given the

remaining variables. Specifically, given random scales and covariates, we build a un-

derlying multivariate Gaussian distribution and model the covariate-specific graph via
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Figure IV.5: Networks of LUAD under five different percentiles immune component of
(A) T cells, (B) monocytes and (C) neutrophils with the rest two components fixed at mean
zero. The estimated network for varying immune components are shown from the left to
right for 5, 25, 50 ,75, and 95-th percentiles. Edges are identified with signs (green: positive
and red: negative) when the ePPs are bigger than c1 = 0.5.
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a functional precision matrix in (4.2). We estimate the functional precision matrix

through regressions and relate the CSIx with the functional coefficients (CSIF) that

vary with covariates. From Proposition 4.3.1, zero CSIF implies missing edges and

we build covariate-specific graphs based on zero CSIF. We also propose an efficient

Gibbs sampler for posterior inference. Empirically, rBRG outperforms other exist-

ing methods that construct the covariate-specific graphs under varying non-normality

levels.

We employ rBGR on proteogenomic datasets in two cancers to build patient-

specific PPI network and identify PPIs that are impacted by tumor heterogeneity.

Specifically, we quantify the immune cell abundance to discover immunogeneic het-

erogeneity on aberrant PPI for lung and ovarian cancers that are triggered by different

levels of immune responses. Our analyses align with existing biology along three ma-

jor axes: (i) immune responses, (ii) hub proteins, and (iii) PPIs. For example, higher

connections in LUAD are consistent with existing biology since LUAD belongs to the

class of the immunlogically “hot” tumors. We identify a hub protein of HER2, which

is associated with a poor survival in LUAD. Another example is a PPI of Akt-PTEN

and PTEN down-regulates Akt. Our study further suggests PPIs that vary with spe-

cific immune component. For example, we discover PPIs of Akt-PTEN, Bid-PCNA,

and Bax-GATA3 that varies positively on T cells, monocytes and neutrophils, re-

spectively. These findings suggest potential future targets for immunotherapy in lung

cancer.

In the current implementation of rBGR, we construct the random scales with two

main underlying assumptions: (i) the independence among different random scales,

and (ii) a mixture of parametric distributions that matches the tail behavior for each

marginal distribution. Both assumptions can be generalized to include a broader class

of non-normal distributions. For example, we can jointly consider a multivariate

random scales without assuming independence. For the parametric assumption of
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matching tail behavior, one can consider a nonparametric transformation such as the

nonparanormal transformation with basis expansion (e.g. Mulgrave and Ghosal, 2022)

or the copula model with the empirical cumulative density function (e.g. Dobra and

Lenkoski, 2011). However, all these generalizations above impose difficulties in both

interpretations and computations, especially when incorporating the subject-specific

covariates. For the model aspect, we currently consider only linear effect of covariates

to reduce the inferential and computation burden. It is possible to include the non-

linear functionals through basis expansion techniques such as splines (Ni et al., 2019) –

however this will increase the computational burden of fitting rBGR. Another possible

extension is other types of graphs. For example, chain graph considers ordered multi-

level structure via directed and undirected edges(e.g. Chakraborty et al., 2021). By

introducing the random scales and generalizing the regression coefficients as functional

coefficients, the model can include the covariates in the precision matrix to build the

subject-specific chain graphs. Another direction could be include discrete nodes and

the concept of CSIx can be extended for discrete data (Bhadra et al., 2018). All these

directions are left for future investigations.

Code and Data Availability. We also provide a general purpose code in R that

accompanies this Chapter along with all the necessary documentation and datasets

required to replicate our results (see https://github.com/bayesrx/rBGR).
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CHAPTER V

Summary and Future Directions

In this dissertation, I construct a family of Bayesian models tailored for structured

covariances. More precisely, these models and the associated structured covariances

are mainly devised to address two different biological dependencies (tree- and graph-

based dependencies) that originated from the underlying scientific contexts in cancer

research. In Chapter II, I formulate the dependency among different treatment mech-

anisms as a tree-structure covariance and measure the mechanism similarities based

on the tree structure to infer the treatment effectiveness. Chapter III extends the

exploration of ultrametric matrices and proposes a consistent Markovian prior for

ultrametric matrices along with an efficient algorithm, providing uncertainty quan-

tification alongside point estimates. In Chapter IV, I focus on graph-based depen-

dency structures and construct the covariate-specific proteomic networks to address

the immunogeneic heterogeneity using the non-normally distributed protein expres-

sion data. In summary, this dissertation spans two distinct biological dependencies

and encompasses various covariance structures that capture the underlying scientific

hypotheses to provide coherent estimation, inference and interpretations.

Several assumptions used in this dissertation can be generalized for both struc-

tured covariances in this dissertation, including the underlying theoretical considera-

tions and computations. We describe the potential future directions for each of the
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structured-covariances.

Tree-based covariance. One evident assumption is the normality assumption used

in the tree structures of Chapter II and III. Since the ultrametric inequality remains

valid under monotone transformations (McCullagh, 2006), utilizing random scale be-

comes a potential strategy to accommodate non-normality and explore larger classes

of resulting distributions. Furthermore, these assume a common tree structure covari-

ance is assigned to all subjects. This assumption can also be further generalized to

allow the tree structures to vary based on different subject-specific information (e.g.

covariates). Following the development of this dissertation, it is plausible to repre-

sent a covariate-specific tree structure as a functional ultrametric matrix with each

element as a function that varies on different covariates. However, ensuring that the

ultrametric inequalities are satisfied for every potential covariate realization presents

challenges both for computation and interpretation.

Graph-based covariance. Regarding the graph-based covariances of Chapter IV,

we estimate the graphs through the graphical regression model with the linear ef-

fect of the covariates. One potential generalization is to incorporate the non-linear

functional of the covariates by the basis expansion techniques such as splines (e.g.

Ni et al., 2019) or the kernel-based techniques (e.g. Liu et al., 2010). However, both

methods increase the computation burden due to a larger number of possible pa-

rameters (depending on the parameterization). In the current implementation, we

accommodate the non-normality by random scales with two main assumptions: (i)

the independence among different random scales, and (ii) a mixture of parametric dis-

tributions that matches the tail behavior for each marginal distribution. It is possible

to include a broader class of non-normal distributions by generalizing two assump-

tions above. For example, one can consider a joint random scale without assuming

the independence among different random scales. For the parametric assumption of
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matching tail behavior, we can construct a nonparametric transformation such as

the nonparanormal transformation with basis expansion (e.g. Mulgrave and Ghosal,

2022) or the copula model with the empirical cumulative density function (e.g. Dobra

and Lenkoski, 2011). However, all these generalizations would require non-trivial gen-

eralizations of our existing methodology and additional care needs to be taking with

respect to the model interpretations and computations, especially when incorporating

the subject-specific covariates.

All these directions generalize the current models used in this dissertation and

remain open for future investigations.
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APPENDIX A

Appendix of Chapter II

A.1 Proof of Proposition 1

We provide a proof for a tree with four leaves (see Figure A.1) and extension

to trees with a larger number of leaves follows by induction. The main idea is to

merge subtrees backward and integrate out responses of internal nodes when merging

subtrees.

Proof. Consider a subtree T ′ rooted at (t1,X
′
1) with two leaves (1,X1) and (1,X2),

and one internal node (t2,X
′
2) (see Panel (A) of Figure A.1). Assume that the root

(t1,X
′
1) of the subtree is fixed, and responses Xi,X

′
i ∈ RJ , J ≥ 1, i = 1, 2. With

t = (t1, t2, t3)
T, the conditional distribution for leaf responses would be Xi|X ′

2, T , t ∼

NJ(X
′
2, (1 − t2)σ

2I), i = 1, 2. Since X ′
2|X ′

1, T , t ∼ NJ(X
′
1, (t2 − t1)σ

2I), based on

the conjugacy of the normal distribution, the marginal distribution is also normal.

Conditional on t and T , mean and covariance of Xi, i = 1, 2 can be derived by the

law of iterated expectations and results in the distribution of the subtree T ′ with two

leaves:
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E[Xi] = E[E[Xi|X ′
2]] = E[X ′

2] = X ′
1, i = 1, 2;

V ar[Xi] = V ar[E[Xi|X ′
2]] + E[V ar[Xi|X ′

2]]

= V ar[X ′
2] + E[(1− t2)σ

2I] = (1− t1)σ
2IJ ;

Cov[X1,X2] = Cov[E[X1|X ′
2], E[X2|X ′

2]] + E[Cov[X1,X2|X ′
2]]

= V ar[X ′
2] + E[0] = (t2 − t1)σ

2IJ ;

The marginal distribution for the subtree T ′ with two leaves is

[
X1 X2

]
∼ MNJ×2

([
X ′

1 X ′
1

]
, IJ , σ

2ΣT ′
)
, ΣT ′

=

1− t1 t2 − t1

t2 − t1 1− t1

 .

Therefore, we can merge two leaves responses X1 and X2. Similarly, we can also

merge the other subtree T ′′ to obtain.

[
X3 X4

]
∼ MNJ×2

([
X ′

1 X ′
1

]
, IJ , σ

2ΣT ′′
)
, ΣT ′′

=

1− t1 t3 − t1

t3 − t1 1− t1

 .

Eventually, we can merge two subtrees (see Panel (B) of Figure A.1), T ′ and T ′′.

From conjugacy of the normal distribution, the resulting joint marginal distribution of

Xi, i = 1, 2, 3, 4 is normal. The mean and the variance can be derived along identical

lines as above. The only term left is the covariance, and we need to (re-)compute
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them for locations within and between the combined subtrees. Explicitly,

Cov[X1,X2] = Cov[E[X1|X ′
1], E[X2|X ′

1]] + E[Cov[X1,X2|X ′
1]]

= V ar[X ′
1] + E[(t2 − t1)σ

2IJ ] = t2σ
2IJ

Cov[X1,X3] = Cov[E[X1|X ′
1], E[X3|X ′

1]] + E[Cov[X1,X3|X ′
1]]

= V ar[X ′
1] + E[0] = t1σ

2IJ .

This ensures that

XT =

[
X1 X2 X3 X4

]
∼ MNJ×4

([
0 0 0 0

]
, IJ , σ

2ΣT
)

ΣT =



1 t2 t1 t1

t2 1 t1 t1

t1 t1 1 t3

t1 t1 t3 1


,

as required. Moreover, denote ti,i′ as the most recent divergence time of leaves i and

i′. We observe that t1 = t1,3 = t1,4 = t2,3 = t2,4, t2 = t1,2, and t3 = t3,4 and complete

the Proposition 1.

Figure A.1: Merging subtrees for the integration process. (A) First step of merging upper
subtree, and (B) Final step of merging all subtrees.
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A.2 Efficient Two-Stage Hybrid ABC-MH Algorithm

Here we offer details of two-stage algorithm with pseudo code. In the Section A.2.1,

we describe the full algorithm of the ABC with the following posterior summary of

Euclidean parameters (c, σ2). The Section A.2.2 includes the implementation of the

proposal function and the acceptance probability of MH stage. Pseudo code for the

full two-stage algorithm is presented below in Algorithm 2

A.2.1 ABC Stage and the Posterior Summary of c and σ2

The Section 3 of the Main Paper states the main idea of ABC and we offer

the full algorithm of ABC including (i) the synthetic data generation process, (ii)

the regression adjustment (Blum, 2010) of ABC, and (iii) posterior summary of the

Euclidean parameters.

Data generation in ABC. Following Section 2 in the Main Paper, a synthetic

data is generated from DDT as follows: (i) given cl ∼ Gamma(ac, bc), generate a

tree Tl through the divergence function a(t) = cl(1 − t)−1, and (ii) given Tl and

1/σ2
l ∼ Gamma(aσ2 , bσ2), generate triples (tj,X

′
i,Xi), i

′ = 1 . . . I − 1, i = 1 . . . I by a

scaled Brownian motion upon Tl. After discarding (Tl, ti,X
′
i), the leaf locations Xi

form an I by J observed data matrix Xl. In Algorithm 2, ABC repeats the procedure

above to generate N syn synthetic data (see Figure A.2).

Regression adjustment in ABC. Originally proposed in Beaumont et al. (2002)

and later generalized by Blum (2010), regression adjustment for ABC is performed

in Step 8 of Algorithm 2. The motivation is to use smoothing technique to weaken

the effect of the discrepancy between the summary statistic calculated from synthetic

data and that from the observed data. We briefly describe the the procedure of

c. Additional details can be found in Beaumont et al. (2002) and Blum (2010).

Suppose we are given the observed summary statistics S
(c)
obs and unadjusted samples
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Figure A.2: Schematic diagram of synthetic data generation and the calculation of sum-
mary statistics (first stage of Algorithm 2). Sobs is calculated based on the actual observed
data.

(cunadjl ,S
(c)
l ), l = 1, . . . , k, we can calculate the weight for each sample by

w
(c)
l = Kh(∥S(c)

l − S
(c)
obs∥) (A.1)

, where the bandwidth h is set at the largest value, such that Kh(maxl=1...k ∥S(c)
l −

S
(c)
obs∥) = 0 to ensure non-zero importance weight for k samples (Sisson et al., 2019)

and mean integrated square error consistency (Biau et al., 2015). Regression adjust-

ment seeks to produce adjusted samples cl but maintain the sample weights and thus

assumes the following model for the unadjusted samples cunadj with mean-zero i.i.d

errors ϵl where E(ϵ2l ) < ∞ for l = 1 . . . , k:

cunadjl = m(S
(c)
l ) + ϵl . (A.2)

The estimated regression function m̂ is then a kernel-based local-linear polynomial

obtained as a solution of argminα,β

∑k
l=1[c

unadj
l − (α + β(S

(c)
l − S

(c)
obs))]

2w
(c)
l . Using

the empirical residuals ϵ̂l = cunadjl − m̂(S
(c)
l ), we then construct the adjusted values

cl = m̂(S
(c)
obs) + ϵ̂l.

Posterior summary of Euclidean parameters (c, σ2). The first stage of our

ABC-MH algorithm produces weighted samples {cℓ, w(c)
l }, {σ2

ℓ , w
(σ2)
l }, l = 1, . . . , k,
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and we summarize the weighted samples as follows. We illustrate the calculations with

c, and the calculations for σ2 follow similarly. We calculate the posterior median and

95% credible interval by finding the 50, 2.5 and 97.5% quantiles, and use the posterior

median for the second stage of the proposed ABC-MH algorithm when sampling the

tree. In general, for calculating the q×100% quantile, we fit an intercept-only quantile

regression of cℓ with weights w
(c)
l ; this is implemented by rq wrapped in the summary

function summary.abc in the R package abc.

A.2.2 MH Algorithm for Updating the Tree in the DDT Model.

In the second stage of Algorithm 2, we have used existing MH tree updates

(Knowles and Ghahramani, 2015). We briefly describe the proposal for generating

a candidate tree T ′ from the current tree T and the acceptance probability. Given

the current tree, a candidate tree is proposed in two steps: (i) detaching a subtree

from the original tree, and (ii) reattaching the subtree back to the remaining tree

(see Figure A.3). In Step i, let (S,R) be the output of the random detach function

that divides the original tree T into two parts at the detaching point u, where S is

the detached subtree and R is the remaining tree. In this paper, we generate the

detaching point u by uniformly selecting a node and taking the parent of the node as

the detaching point. In Step ii, for the re-attaching point v, we follow the divergence

and branching behaviors of the generative DDT model by treating subtree S as a

single datum and adding a new datum S to R. Given the point v, a candidate tree

T ′ results by re-attaching S back to R at point v. The time of re-attaching point tv

is then earlier than the time of the root of S to avoid distortion of S: tv < t(root(S)).

By choosing u and v as above, we have described the proposal distribution from T

to T ′, q(v,R), which is essentially the probability of diverging at v on the subtree R.
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The acceptance probability is then

min

{
1,

f(T ′,X)q(u,R)

f(T ,X)q(v,R)

}
(A.3)

, where f(T ,X) = f(T ,X|c0, σ2
0) = P (X|T , σ2

0)P (T |c0), P (X|T , σ2
0) is the likeli-

hood of the tree structure (Proposition 1), P (T |c0) is the prior for the tree (the first

two terms in Equation (4)), and c0 and σ2
0 are representative value chosen from the

posterior sample of c and σ2, respectively.

Figure A.3: Schematic diagram of proposing a candidate tree in MH. (Left) Current tree
T with detach point u (yellow); (Middle) Intermediate subtrees with remaining tree R and
the detached subtree S; (Right) The proposed tree T ′ with reattached point v (green).

A.3 Tree Projection of Pairwise iPCP Matrix

In the Main Paper Section 3.2, we mentioned that a pairwise iPCP matrix Σ

with entries iPCPi,i′ , i, i
′ = 1, . . . , I need not to be a tree-structured matrix and we

address the projection of Σ on to the space of tree-structured matrices here. Given

L > 1 posterior trees with I leaves and the corresponding pairwise iPCP matrix

Σ =
(
iPCPi,i′

)
, each entry of iPCP matrix can be express as iPCPi,i′ =

∑L
l=1 t

(l)

i,i′

L
,

where t
(l)
i,i′ is the divergence time of leaves i and i′ in the l-th posterior tree. Obviously,

every entry of the iPCP matrix takes the element-wise Monte Carlo average over L

tree-structured matrix and breaks the inequalities (2) and (3) in the Main Paper.

Following the work of Bravo et al. (2009), by representing a tree as a tree-structured

matrix, we can project Σ on to the closest tree-structured matrix in terms of Frobenius
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Algorithm 2 Two-stage hybrid ABC-MH algorithm
Input:

(a) Observed data: X = [X1, . . . ,XI ]
T consisting of I points in RJ ;

(b) Summary statistics S(c), S(σ2) defined in the Main Paper Section 3.1.1;

(c) Synthetic data of size N syn and threshold d ∈ (0, 1) with k = ⌈N synd⌉, the
number of nearest synthetic data sets to retain;

(d) Prior for model parameters: c ∼ Gamma(ac, bc),
1
σ2 ∼ Gamma(aσ2 , bσ2);

(e) Univariate Kernel Kh(·) with bandwidth h > 0 and compact support.

Output:

(a) Posterior samples of c and σ2 of size k = N synd;

(b) posterior samples of (T , t).

1: procedure Euclidean parameters(c, σ2)
2: for l = 1...N syn do
3: Sample Euclidean parameters from prior cl ∼ Gamma(ac, bc), σ

2
l ∼

Gamma(aσ2 , bσ2);
4: Simulate data Xl from DDT using (cl, σ

2
l );

5: Compute: S
(c)
l and S

(σ2)
l along with ∥S(c)

l − S
(c)
obs∥ and ∥S(σ2)

l − S
(σ2)
obs ∥.

6: Choose {(cls , σ2
ls
), s = 1, . . . , k} corresponding to k smallest ∥S(c)

l −S
(c)
obs∥ and

∥S(σ2)
l − S

(σ2)
obs ∥

7: Calculate the sample weights w
(c)
ls

= Kh(∥S(c)
ls

− S
(c)
obs∥) and w

(σ2)
ls

=

Kh′(∥S(σ2)
ls

− S
(σ2)
obs ∥) based on Equation (A.1);

8: Compute regression adjusted samples cls and σ2
ls
with weights w

(c)
ls

and w
(σ2)
ls

with the model (A.2) and calculate posterior summary c0 and σ2
0 plugging the

adjusted cls and σ2
ls
.

9: procedure Tree parameters((T , t))
10: Follow the MH algorithm in Section A.2.2 with fixed c0 and σ2

0 at the posterior
median values and compute acceptance probabilities with Equation A.3.

norm. The projection can be formulated as a constrained mixed-integer programming

(MIP) problem:

argmin
ΣT

||Σ−ΣT ||F

s.t. ΣT
i,i′ ≥ 0; ΣT

i,i ≥ ΣT
i,i′ ; Σ

T
i,i′ ≥ min(ΣT

i,i′′ ,Σ
T
i′,i′′), for all i ̸= i′ ̸= i′′.
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We applied the projection on the pairwise iPCP matrix from the breast cancer (panel

(A)), colorectal cancer (panel (B)) and melanoma (panel (C)) data of NIBR-PDXE

and show the result in the Figure A.4. In Figure A.4, the MAP tree, the tree rep-

resentation of projected iPCP matrix (MIP tree), the original iPCP matrix and the

projected iPCP matrix are shown in from the left to the right columns, respectively.

From the left two columns of the tree structures, we found that trees from the MAP

and MIP show similar pattern and the MIP tree allows a non-binary tree structure.

For example, three combination therapies and two PI3K inhibitors (CLR457 and

BKM120) framed by a box form a tight subtree in both MAP and MIP tree, but the

subtree in the MIP is non-binary. For the iPCP matrix, high element-wise correlation

Cor(ΣT
i,i′ ,Σi,i′) between the original iPCP Σ and the projected iPCP ΣT are presented

(BRCA: 0.9987; CRC: 0.9962; CM: 0.9918).

A.4 Simulation Studies of Euclidean Parameters

In this section, we empirically compare the Euclidean parameters of c and σ2 from

ABC of the proposed two-stage algorithm and single-stage MCMC. We organize this

section as follows. We first compare other candidate summary statistics of c and

σ2 for ABC in Section A.4.1. In Section A.4.2, we illustrate the superior inference

performance of Euclidean parameters from ABC than single-stage MCMC through

a series of simulations. Section A.4.3 offers the diagnostic statistics and the sensi-

tivity analysis for ABC stage of the proposed two-stage algorithm and checks the

convergence of c and σ2 for the single-stage MCMC.

Simulation setup. For illustrative purposes, we fixed the observed PDX data matrix

with 50 treatments (I = 50) and 10 PDX mice (J = 10) in all simulation scenarios. In

addition, we let c and σ2 take values from {0.3, 0.5, 0.7, 1} and {0.5, 1} respectively to

mimic the PDX data with tight and well-separated clusters. For each pair of (c, σ2),
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Figure A.4: Comparison between (Left two columns) the tree structure from the MAP
and the projected iPCP matrix (MIP tree) and (Right two columns) the matrix from the
original iPCP matrix and the projected iPCP matrix for (A) breast cancer, (B) colorectal
cancer and (C) melanoma. The matrix from the original iPCP and the MIP projected iPCP
matrix are aligned by the MIP tree.

200 replicated experiments with different tree and observed PDX data matrices were

independently drawn according to the DDT generating model. We specify a prior

distribution for c ∼ Gamma(2, 2) with shape and rate parameterization. For diffusion

variance σ2, let 1/σ2 ∼ Gamma(1, 1). We compare ABC-MH of the proposed two-

stage algorithm against two alternatives based on single-stage MH algorithms (Neal,

2003) (see details in Section A.2.2). The first one initializes at the true parameter

values and the true tree, referred to as MHtrue. The idealistic initialization at the truth

is a best case scenario in applying existing MH algorithm to inferring DDT models.

The second alternative, referred to as MHdefault, initializes (c, σ
2) by a random draw

from the prior; the unknown tree is initialized by agglomerative hierarchical clustering

113



with Euclidean distance and squared Ward’s linkage (Murtagh and Legendre, 2014) –

thus providing a fair apples-to-apples comparison. For the ABC, we generated N syn

synthetic data of c and σ2 and kept k = ⌈N synd⌉ nearest samples in terms of the

∥S(c)
l − S

(c)
obs∥ and ∥S(σ2)

l − S
(σ2)
obs ∥. We varied the number of synthetic data N syn and

the threshold parameter d ∈ (0, 1) under different settings and we specified N syn and

d in each of the following sections. We ran two MH algorithms with 10,000 iterations

and discarded the first 7,000 iterations.

Performance metrics for Euclidean parameters. We used two algorithm per-

formance metrics to compare our algorithm to the classical single-stage MCMC algo-

rithms. First we computed the effective sample sizes for each Euclidean parameter c

and σ2 (ESSc and ESSσ2) given a nominal sample size (NSS) kept for posterior infer-

ence. ESS for each parameter represents the number of independent draws equivalent

to NSS posterior draws of correlated (MHtrue and MHdefault) or independent and un-

equally weighted samples (ABC stage of the proposed algorithm). We let NSS for

MH algorithms be the number of consecutive posterior samples in a single chain after

a burn-in period; let NSS for ABC be k as in Step 6, Algorithm 2. For c and σ2, the

ESS of MH (Gelman et al., 2013) is estimated by NSS/(1+
∑∞

t=1 ρ̂t) where ρ̂t is the es-

timated autocorrelation function with lag t (Geyer, 2011). The ESS for ABC (Sisson

et al., 2019) is the reciprocal of the sum of squared normalized weights, 1/
∑k

l=1 W̃
2
l ,

where W̃l = wl/
∑k

l′=1wl′ (see weights, wl, in Equation (A.1)). Second, we evaluated

how well did the posterior distributions recover the true (c, σ2). We computed the

mean absolute percent bias for c and σ2: |E{c | X} − c|/c and |E{σ2 | X} − σ2|/σ2,

respectively. We also computed the empirical coverage rates of the nominal 95%

credible intervals (CrI) for c and σ2.
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A.4.1 Other Choices of Summary Statistics

Proposition 1 points towards other potential summary statistics for the first stage

of Algorithm 2 that uses ABC to produce weighted samples to approximate the pos-

terior distributions for c and σ2. Here we consider a few such alternatives with

N syn = 600, 000 and d = 0.5% and empirically compare their performances to the

summary statistics used in the Main Paper (S(c) and S(σ2)) in terms of the mean

absolute percent bias in recovering the true parameter values of c and σ2.

Summary statistic for c. Unlike building S(c) based on the inter-point distance,

the off-diagonal terms of T =
∑

j X·,jX
T
·,j (see the definition of T in Lemma 1 in Main

Paper) is another potential summary statistic for c. Since the divergence parameter c

affects the marginal likelihood implicitly through the divergence time t, the summary

statistics for t is informative for c. From Proposition 1, T is sufficient for σ2ΣT , where

the off-diagonal terms of σ2ΣT taking the form σ2td, d = 1 . . . n − 1 and containing

unrelated information from σ2. Let QT be a vector of the 10th, 25th, 50th, 75th

and 90th percentiles of the off-diagonal terms of T . Because T is sufficient for σ2ΣT

and involves extra Gaussian diffusion variance parameter, we can design alternative

summary statistics based on QT through (i) augmentation, (QT , S
(σ2)) or (ii) scaling,

QT /S
(σ2). From Figure A.5, S(c) proposed in the Main Paper outperformed the

summary statistics from QT by producing less biased posterior mean estimates.

Summary statistic for σ2. Following Proposition 1, several matrix functionals

on the data X or statistics T can be considered as alternatives to S(σ2). We com-

pare performance of three candidates: (i) average L1 norm (AvgL1) of columns:

1
J

∑J
j=1 |X·,j|1; (ii) Frobenius norm of X; and, (iii) vector containing 10th, 25th, 50th,

75th and 90th percentiles of first principal component (PC1) of X. From Figure A.6,

the first three methods are comparable while ABC based on principal components

shows larger bias due to the information loss.
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Figure A.5: Comparison among different summary statistics for c (red: (QT , S
(σ2)); green:

S(c); blue: QT /S
(σ2)) under different values of σ2 in terms of the mean absolute percent

bias. (Left) σ2 = 0.5; (Right) σ2 = 1.

Figure A.6: Comparison among different summary statistics for σ2 under different values
of c in terms of the mean absolute percent bias. (Upper Left) c = 0.3; (Upper Right)
c = 0.5; (Lower Left) c = 0.7; (Upper Right) c = 1.0.

A.4.2 Posterior Inference of Euclidean Parameters

In this section, we show that two-stage algorithm (ABC-MH) outperforms the

single-stage MCMC (MH) for real parameters in terms of (i) stable effective sample

size (ESS) for (c, σ2); (ii) similar or better inference on (c, σ2), as ascertained using

mean absolute percent bias and nominal 95% credible intervals.
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A.4.2.1 Stable Effective Sample Sizes of ABC-MH

We calculated ESS-to-NSS ratios at varying truths of c and σ2. To illustrate,

we matched the NSS budget of ABC with that of MH (NSS = 3, 000) by keeping

d = 0.5% of N syn = 600, 000 synthetic data sets that are closest to the observed data

in terms of the summary statistic for each parameter (Step 6 of Algorithm 2). Table

A.1 shows that the ESSc/NSS and ESSσ2/NSS ratio from ABC is stable between 0.64

to 0.68 and around 0.83 across different c and σ2 values, respectively. In contrast,

the ESSc/NSS ratio for MH quickly deteriorates (MHtrue: 0.97 to 0.41; MHdefault: 0.73

to 0.35) as c increases from 0.3 to 1 and ESSσ2/NSS for MH are extremely poor

(< 0.06) across different values of c and σ2. MH produced very good ESSc under

small value c = 0.3 but poor ESSc under c = 1. As a result, under larger values of

c, MH algorithms must run longer to reach a target ESSc. Although ESSc for ABC

is not as high as MHtrue or MHdefault at c = 0.3, the stability of ESSc of ABC means

that a predictably constant NSS is needed for conducting posterior inference across

different values of c. Finally, the ESSσ2 for the diffusion variance parameter from MH

algorithms are strikingly smaller than ABC, indicating ABC should be preferred.

A.4.2.2 Superior Quality Posterior Inference of ABC-MH

Does ABC give better posterior inference with a fixed computational budget? To

make fair comparisons, we fixed a total CPU time and used the same computing

processor to run the ABC (1st stage of Algorithm 1) and MH algorithms. Let tMH

and tABC be the estimated CPU time for generating one iteration in MH and one

synthetic data in ABC on the same processor. Note, tMH includes the additional time

for proposing a valid tree. By varying the number of synthetic samples, we can match

the total CPU time used by ABC with that of MH algorithms which were run for

10, 000 iterations. We generated 10, 000tMH/tABC = 17, 345 synthetic data sets and

took d = 5% with summary statistics S(c) and S(σ2) (see different values of d in Section
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Table A.1: ESS-to-NSS ratios between ABC-MH (d = 0.5%), MHtrue, and MHdefault. All
values here are obtained from 200 independent replications. For each random replication
at (c, σ2). All methods were controlled to produce identical NSS with size 3, 000.

ESS/NSS(sd) for c ESS/NSS(sd) for σ2

c method σ2 = 0.5 σ2 = 1 σ2 = 0.5 σ2 = 1

0.3
ABC-MH 0.68(0.032) 0.67(0.027) 0.83(0.0048) 0.83(0.0042)
MHtrue 0.97(0.11) 0.96(0.13) 0.051(0.061) 0.056(0.072)
MHdefault 0.73(0.33) 0.67(0.34) 0.028(0.043) 0.038(0.08)

0.5
ABC-MH 0.66(0.02) 0.65(0.018) 0.83(0.0047) 0.83(0.0044)
MHtrue 0.85(0.23) 0.83(0.24) 0.034(0.042) 0.045(0.067)
MHdefault 0.66(0.35) 0.62(0.34) 0.033(0.051) 0.041(0.067)

0.7
ABC-MH 0.65(0.017) 0.64(0.017) 0.83(0.0047) 0.83(0.004)
MHtrue 0.63(0.31) 0.67(0.32) 0.024(0.027) 0.029(0.038)
MHdefault 0.53(0.33) 0.51(0.35) 0.028(0.039) 0.038(0.072)

1.0
ABC-MH 0.65(0.017) 0.64(0.017) 0.83(0.0044) 0.83(0.0041)
MHtrue 0.41(0.3) 0.44(0.32) 0.019(0.026) 0.019(0.023)
MHdefault 0.35(0.29) 0.35(0.29) 0.022(0.026) 0.022(0.027)

A.4.3.3) for ABC. Table A.2 shows that ABC produced posterior samples that confer

comparable inferences about c in terms of the bias and coverage of nominal 95% CrIs.

The posterior mean of c from ABC is comparable to that from MHtrue and less biased

than MHdefault for all settings. The coverage rates of the nominal 95% CrIs from ABC

are comparable to MHtrue but higher than MHdefault. MHtrue, however, is initialized

at true values and is unrealistic in practice. We observed MHtrue sometimes failed to

converge (Table A.3), stuck around the initial true values and resulted in deceptively

low biases and good coverage rates. Turning to the inference of σ2, ABC offers a

much better alternative to MH algorithms in terms of smaller bias in the posterior

mean and better coverage of the 95% credible intervals (Table A.2). This is primarily

caused by the difficulty of MH in exploring the posterior distribution of σ2 resulting

in chains with high auto-correlations. The squeezed boxplots in Figure A.7 indicate

that the chains for σ2 in MHtrue and MHdefault were almost always slowly mixing and

stuck around the initial values. In addition, unlike the serial nature of MH, ABC can
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be further parallelized to reduce the wall clock time to a fraction of what is required

by MH using multicore processors. Although parallelizing MH with techniques such

as consensus MCMC (e.g., Scott et al., 2016) is possible, the parallelized ABC does

not require data splitting and will not trade the quality of posterior inference for

computational speed.

Figure A.7: (Upper left) c = 0.3; (Upper right) c = 0.5; (Lower left) c = 0.7; (Lower right)
c = 1.0. The posterior standard deviation of σ2 from MH (green and blue) are close to zero
across different true c showing MH is stuck. Results are based on 200 replications.

A.4.3 Algorithm Diagnostics

Here we examine the convergence of MH through the Geweke statistics (Geweke,

1992) and the goodness of fit for ABC. Specifically, two important hyper-parameters

are involved in ABC: (i) the kernel bandwidth h for samples weights in Equation A.1

and (ii) the threshold d for k = ⌈N synd⌉ nearest samples in the Step 6 of Algorithm

2. We follow the test from Prangle et al. (2014) to justify the kernel bandwidth h

and conduct the sensitivity analysis for threshold d to understand how threshold d
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affects the result in terms of the inferential performance.

A.4.3.1 Convergence of MH Chains in Simulations

In all of our simulations, we ran MH for 10, 000 iterations. Table A.3 shows that

the percentages of the converged MH chains for 200 replications are between 12.5

and 68.5% within a total 10, 000 iterations (based on Geweke statistic). Running the

chains longer will increase these percentages. In contrast, with appropriate choice

of bandwidth and the fraction of synthetic samples to keep, ABC does not involve

convergence issues and according to Section A.4.2 achieves better ESS for a fixed NSS

and similar or better quality posterior inference for fixed CPU time.

Table A.3: Percentage of converged chains for (i) MH initialized at true (c, σ2) (MHtrue),
and (ii) MH initialized randomly from prior (MHdefault). All values here are obtained from
200 independent replications.

Convergence % for c Convergence % for σ2

c method σ2 = 0.5 σ2 = 1 σ2 = 0.5 σ2 = 1

0.3
MHtrue 68.0 68.5 16.5 22.5
MHdefault 36.5 28.5 12.5 16.0

0.5
MHtrue 50.0 52.0 23.0 29.5
MHdefault 40.5 37.5 18.5 23.5

0.7
MHtrue 38.0 46.0 26.5 27.0
MHdefault 33.5 31.0 14.5 25.0

1.0
MHtrue 35.0 30.5 20.5 30.5
MHdefault 27.5 33.0 14.0 25.0

A.4.3.2 Diagnostics for ABC

We empirically justify the choice of the kernel bandwidth h and the goodness

of approximation in ABC algorithm by the calibration method from Prangle et al.

(2014) based on the coverage property of the credible interval. Suppose we generated

pseudo-observed data Xe in the eth replication from the DDT model with parameter

121



(ce, σ
2
e), where ce and σ2

e are random draws from the prior (ce ∼ Gamma(ac, bc), 1/σ
2
e ∼

Gamma(aσ2 , bσ2)) and e = 1 . . . E. Once the tuning parameters (N syn, d, h) are de-

cided, Algorithm 2 will output regression adjusted sample (cℓ, σ
2
ℓ ) with size ℓ =

1, . . . , k; k = ⌈N synd⌉ based on the input data D. We describe diagnostics for c,

and note that an identical description applies to σ2 as well. According to Cook

et al. (2006), the ABC procedure produces reliable approximations of the poste-

rior if the random variables q
(c)
e := 1

k

∑k
l=1 I{cℓ>ce} follow a uniform distribution over

the interval (0, 1). Accordingly, Prangle et al. (2014) suggest a goodness-of-fit test

H0 : q
(c)
e ∼ Unif(0, 1) as a diagnostic in order to calibrate ABC. If the test fails to

reject the null hypothesis, the empirical quantiles can be viewed as being indistin-

guishable from the uniform distribution, and the credible interval from the posterior

samples would show the asserted coverage. We use the Kolmogorov–Smirnov statis-

tic to carry out the test, follow the simulation setting with I = 50 and J = 10,

and reuse 600, 000 synthetic data sets. The synthetic data is randomly split into two

non-overlapping subsets: training data with size 597, 000 and pseudo-observed data

with size E = 3, 000. Again, we run the ABC part of Algorithm 2 by treating each

of the pseudo-observed data sets as the actually observed data with N syn = 597, 000

and d = 0.5%. We obtained statistically non-significant KS statistics for c and σ2

(p-values: 0.61 for c, 0.71 for σ2). The 95% credible intervals from ABC showed

94.9% and 95.93% empirical coverage rates which are close to the nominal level.

A.4.3.3 Sensitivity Analysis of k Nearest Samples

In the previous section, we have used a simple diagnostic procedure to show the

choice of bandwidth parameter h is reasonable. Here we focus on conducting ad-

ditional simulations to investigate how does varying values of d in the Step 6 of

Algorithm 2 impact the inferential performance of ABC. We focus on c to illustrate

the main points. Similar to Table A.2 in the Section A.4.2 where d = 5%, in the
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(a) Empirical quantiles at true c (b) Empirical quantiles at true σ2

Figure A.8: The empirical quantiles at the true value follow the standard uniform distri-
bution indicating calibrated ABC. Results are based on 3, 000 independent draws from the
prior.

following we show the results for d = 0.5% and d = 1% in Table A.4. First, for ABC

itself, the bias in the posterior mean is similar, e.g. the mean bias is 14% for all

three different d when c = 1.0 and σ2 = 0.5. For each pair of (c, σ2), the empirical

coverage rate of the 95% credible interval decreases when d increases from 0.5% to

5%. Specifically, the empirical coverage range from 92% to 99% for d = 5%, 88% to

97% for d = 1% and 84% to 94% for d = 0.5%. This is likely caused by a smaller

sample size k = ⌈N synd⌉ and a higher posterior variance under a similar level of bias.

A.4.4 Sensitivity Analysis of the Number of Synthetic Data in ABC

To our knowledge, only two packages available from: (i) Neal (2003) on the web-

site https://www.cs.toronto.edu/~radford/dft.software.html and (ii) Knowles

and Ghahramani (2015) on the Github https://github.com/davidaknowles/pydt.

Neal’s code is implemented on R, and does not implement the inference algorithm,

while Knowles programmed the C++ code from scratch including the library for the

tree structure. However, the C++ libraries from Knowles and Ghahramani (2015)

are deprecated and require additional updates for the version updates of the C++

compiler. Without additional documentation, the C++ code is hard to adapt in our

context. Thus, we implemented our algorithm in R based on the existing libraries for
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Table A.4: Sensitivity analysis of d for ABC-MH. We compare the inferential performance
for c among ABC-MH with d = 5%, ABC-MH with d = 1%, ABC-MH with d = 0.5%,
MHtrue, and MHdefault. All values here are obtained from 200 independent replications. For
each random replication at (c, σ2), all methods were run for identical total CPU time and
only converged chains from MH algorithms were included.

Percent Bias(sd) Coverage(sd)

c method σ2 = 0.5 σ2 = 1 σ2 = 0.5 σ2 = 1

0.3

ABC-MH with d = 5% 12(9.4) 13(9.9) 98(0.99) 99(0.71)
ABC-MH with d = 1% 13(9.8) 14(10) 97(1.2) 96(1.5)
ABC-MH with d = 0.5% 14(10) 15(11) 94(1.6) 92(1.9)
MHtrue 13(9.8) 12(9.5) 94(2) 95(1.9)
MHdefault 45(20) 46(20) 33(5.5) 30(6.1)

0.5

ABC-MH with d = 5% 15(11) 15(11) 92(1.9) 93(1.8)
ABC-MH with d = 1% 15(12) 16(12) 88(2.3) 90(2.1)
ABC-MH with d = 0.5% 16(12) 16(12) 84(2.6) 86(2.4)
MHtrue 11(9) 11(8.6) 97(1.7) 97(1.6)
MHdefault 33(18) 31(19) 60(5.5) 57(5.7)

0.7

ABC-MH with d = 5% 13(10) 14(11) 96(1.5) 93(1.8)
ABC-MH with d = 1% 13(10) 13(11) 94(1.7) 90(2.1)
ABC-MH with d = 0.5% 13(11) 14(11) 90(2.1) 89(2.2)
MHtrue 12(9.1) 12(9.1) 95(2.6) 96(2.1)
MHdefault 25(15) 27(16) 73(5.5) 69(5.9)

1.0

ABC-MH with d = 5% 14(11) 14(13) 95(1.5) 94(1.6)
ABC-MH with d = 1% 14(10) 14(13) 88(2.3) 92(1.9)
ABC-MH with d = 0.5% 14(11) 15(13) 86(2.4) 86(2.4)
MHtrue 11(7.6) 13(11) 97(2) 92(3.5)
MHdefault 14(11) 16(14) 93(3.5) 89(3.8)

tree structure (e.g. ape and phylobase) and the ABC algorithm (e.g. ABC).

The main computation bottleneck for our algorithm on R is the ABC stage (141

hours for 600,000 synthetic data), which is much slower than the MH stage (1.7 hours

for 10,000 iterations) and the single stage MCMC (2.5 hours for 10,000 iterations).

However, the ABC can be easily parallelized to reduce the wall-clock time given a

sufficient number of CPU cores. In addition, we may reduce the number of synthetic

data (NSyn) in ABC to further improve speed. We have now conducted a simulation

study to empirically demonstrate the acceleration of the ABC through the reduction
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of NSyn. Specifically, we ran the ABC and measured the posterior median under a

lower NSyn.

We show the simulation results in Table A.5. From Table A.5, the σ̂2 are relatively

stable in terms of the mean and standard deviation under a lower NSyn. On the other

hand, the standard deviation of ĉ grows rapidly (sd : 0.0280 for NSyn = 600, 000 and

sd : 0.260 for NSyn = 5, 000) when the NSyn decreases. For our main analyses, we

went with the conservative choice of NSyn = 600, 000 for the confirmatory results.

NSyn Total CPU Hour ĉ (sd) σ̂2 (sd)

600,000 141 1.18 (0.0280) 1.87 (0.245)

300,000 70.5 1.18 (0.0278) 1.87 (0.246)

100,000 23.5 1.16 (0.0429) 1.87 (0.246)

50,000 11.8 1.18 (0.0707) 1.86 (0.235)

10,000 2.35 1.17 (0.159) 1.88 (0.240)

5,000 1.18 1.25 (0.260) 1.84 (0.249)

Table A.5: The total CPU time and the median of the real parameters (mean and the
standard deviation in the bracket) under different numbers of synthetic data (NSyn) for
the ABC stage. All values are obtained from 30 independent replicates from the correct
specified data generating mechanism. The underlying true c = 1.220 and σ2 = 1.755.

A.5 Additional Simulation Results of Rx-Trees

In this Section, we provide more simulation results for the Section 4.2 in the Main

Paper. We empirically compare the the proposed two-stage ABC-MH with the single-

stage MCMC in terms of the MAP tree estimation (Section A.5.1) and recovery of

pairwise treatment similarities (Section A.5.2).

Simulation setup. For the following simulations, we followed the same setup

as in Section A.4 with I = 50 and J = 10, and let c and σ2 take values from

{0.3, 0.5, 0.7, 1.0} and {0.5, 1.0}, respectively. For each pair of (c, σ2), 50 pairs of tree

and data on the leaves were independently drawn based on the DDT model. For ABC,

we generated N syn = 600, 000 synthetic data sets from the DDT model with threshold

125



parameter d = 0.5%. We assigned priors on c ∼ Gamma(2, 2) and 1/σ2 ∼ Gamma(1, 1)

with shape and rate parameterization. We compare the proposed algorithm against

two alternatives based on MH algorithms (MHtrue and MHdefault. We ran MH algo-

rithms (the 2nd stage of the proposed algorithm, MHtrue and MHdefault) with 10,000

iterations and discarded the first 7,000 iterations.

Performance metrics. We assess the accuracy of tree estimation using Billera –

Holmes– Vogtmann (BHV) distance (Billera et al., 2001) between the true tree and

the maximum a posteriori (MAP) tree obtained from ABC-MH, MHtrue and MHdefault,

or between the true tree and the dendrogram obtained from hierarchical clustering,

respectively. For the pairwise similarities, we follow the Section 4.1 and calculate

iPCPs for all pairs of treatments and evaluate the iPCPs by correlation of correlation

for estimated similarities and true branching time and the Frobenius norm for the

overall matrix.

A.5.1 Recovery of the True Tree

The proposed two-stage algorithm decoupled the real and tree parameters, pro-

duced better inference for Euclidean parameters (See Section A.4.2), resulting in

better inference for the unknown treatment tree. In particular, Figure A.9 shows

that, in terms of the BHV distance, the MAP tree estimates from ABC-MH better

recovers the trees than MHdefault and hierarchical clustering with Euclidean distance

and squared Ward linkage (Hclust). On average, MAP from MHtrue is the closest to

the true underlying tree. However, MHtrue requires knowledge about the truth and is

unrealistic in practice. In addition, we observed that the chains from MHtrue in fact

did not mix well and were stuck at the initial values hence falsely appearing accu-

rate. The second stage MH for sampling the tree built on the high-quality posterior

samples of c and σ2 obtained from the 1st stage ABC and produced better MAP

tree estimates that are on average closer to the simulation truths than MHdefault and
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Hclust.

Figure A.9: (Left) σ2 = 0.5; (Right) σ2 = 1. The BHV distance between the MAP
estimate and the underlying tree for each algorithm. Results are based on 50 replications.

A.5.2 Estimation of Treatment Similarities

The two-stage algorithm also produces better iPCPs due to decoupling strategy

and superior inference for Euclidean parameters in the first stage. Similar to the re-

sults for MAP, pairwise iPCPs from ABC-MH better recover the true branching time

than MHdefault, Hclust and Pearson correlation and reach similar quality to the iPCPs

from MHtrue (See Figure A.10). Since MHtrue requires unrealistic true parameters,

MHtrue is not attainable. From the simulations above, MAP and iPCPs from ABC-

MH outperform MHdefault and take care of overall and local tree details, respectively.

We apply the ABC-MH to obtain posterior DDT samples for the real data analysis

section.

A.5.3 Computation Time of the Gaussian Likelihood Evaluation

Computationally, the complexity for the belief propagation is faster in theory, but

the computation time also replies on the implementation. We empirically compare

the running time of the evaluation of Gaussian likelihood on R for (i) the naive method

of the Cholesky decomposition and (ii) the belief propagation algorithm. Specifically,

we ran the dmvnorm function for naive method from the package mvtnotm and the
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Figure A.10: Under different c and σ2, two-stage algorithm better estimates the pairwise
similarities than classical single-stage MCMC in terms of correlation of correlation (upper
panels) and Frobenius norm (lower panels). (Left) σ2 = 0.5; (Right) σ2 = 1. Results are
based on 50 replications.

Marginals function for belief propagation from the package BayesNetBP (Yu et al.,

2020). To our knowledge, the package BayesNetBP is the only R package implements

exact belief propagation for the Gaussian data without commercial dependencies (Yu

et al., 2020). We ran each function 500 times on the Breast cancer data with the

dimension of 20 × 38 given the same tree structure. All computation are executed

on the same local computer of the Mac mini with M1 CPU and 8Gb memory. On R,

the belief propagation (0.0566 second) is slower than the naive likelihood calculation

(0.000148 second). The hindered belief propagation might be the result of the for-

loop, which is slow in R (Burns, 2011).

A.5.4 Inference using the Whole Posterior Samples of c and σ2

Our algorithm runs the approximate Bayesian computation (ABC) rejection al-

gorithm (Sisson et al., 2019) to obtain the posterior samples of c and σ2 and uses
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the posterior median of c and σ2 as the common and fixed input for different chains

of the MH algorithm. The ABC merges all synthetic data into a larger dataset and

re-use the same synthetic data for different chains of the MH, which is advocated by

Bertorelle et al. (2010) and Blum et al. (2013). Under the ABC framework, the same

synthetic data results in the identical posterior samples of c and σ2 as the common

input for different chains of the MH.

Once MH algorithm receives the posterior samples, another viable option is to use

the whole posterior sample instead of using the fixed representative statistics only.

We provide a set of simulations to empirically compare two algorithms using: (i)

fixed posterior median only and (ii) the whole posterior samples. The algorithm (i)

plugins the fixed posterior medians of c and σ2, while the algorithm (ii) randomly

picks one posterior sample at each iteration in MH. Specifically, given L weighted

posterior samples of cl and σ2
l , with the weights wc

l and wσ
l , l = 1 . . . , L, algorithm (ii)

draws a posterior sample of cl and σ2
l with corresponding weights at each iteration.

Eventually, we measure the results through the pairwise similarity with the correlation

of correlation and the Frobenius norm.

We show our simulation results in Figure A.11 using pairwise similarity. In Figure

A.11, the algorithm (i) (DDT) and (ii) (DDT.all) perform similarly in terms of the

correlation of correlation (mean for DDT: (0.944, 0.971, 0.981, 0.882) and DDT.all:

(0.945, 0.966, 0.979, 0.877)) and the matrix norm (mean for DDT: (1.154, 1.415, 1.558,

1.811) and DDT.all: (1.156, 1.503, 1.516, 1.814)) under four different data generating

scenarios.
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Figure A.11: Simulation studies for comparing the quality of estimated treatment sim-
ilarities based on DDT (DDT: median of (c, σ2) and DDT.all: re-sample from the whole
posterior samples of (c, σ2)), hierarchical clustering, and empirical Pearson correlation. Two
performance metrics are used: (Left) Correlation of correlation (higher values are better);
(Right) Matrix distances with Frobenius norm for pairwise similarity and max norm for
three-way similarity (lower values are better). DDT captures true similarity best under
four levels of misspecification scenarios.

A.5.5 PDX Experiment with a Smaller Dimension

We investigated the performance of proposed method on smaller scale simulated

datasets. Specifically, we applied our algorithm to two datasets with smaller dimen-

sions (treatments, patients): 5 × 5 and 10 × 15. We show the simulation results in

Figure A.12 through the pairwise similarity (the correlation of correlation and the

Frobenius norm). Overall, our algorithm outperforms the distance based hierarchi-

cal clustering (hclust) and the pairwise Pearson correlation in terms of the pairwise

similarity except for two cases. Specifically, our algorithm is the best or the second

best except for two cases: (i) the correlation of correlation under the scenario of the

misspecified t-distribution with the dimension of 5 × 5 and (ii) the Frobenius norm

under the scenario of the misspecified DDT with the dimension of 10× 15. However,

even under these two cases, our algorithm still have a highest lower bound in case

(i) and a lowest upper bound of the Frobenius norm in case (ii), which indicates

the advantage of avoiding the worst case for our algorithm. In summary, under the

1× 1× 1 experimental design, we recommend our algorithm even under an extremely

small dataset such as the dimension of 5 by 5, given enough computation resources.
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Figure A.12: The pairwise similarity for the PDX experiment with a small number of
dimensions. (top): 5 treatments and 5 patients; (bottom): 10 treatments and 15 patients.
The results are obtained through 30 replicates.

A.6 Additional Results for PDX Analysis

In this section, we provide the pre-processing procedures of NIBR-PDXE and

present the results for non-small lung cancer (NSCLC) and pancreatic ductal adeno-

carcinoma (PDAC) with tables including treatment and pathway information.

A.6.1 PDX Data Pre-Processing

We followed pre-processing procedure in Rashid et al. (2020) and imputed the

missing data by k-nearest neighbor method. We take the best average response

(BAR) as the response and scale the BAR by the standard deviation over all patients,

treatments and across five cancers. Since the scaled BAR contains missing values,

we impute the missing data by the k-nearest neighbor with k = 10 and compare all

treatments to the untreated group. Specifically, we take xij = BARij − BAR0j, i =
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1 . . . I, j = 1 . . . J as the observed data, where BAR0,j is the untreated BAR for

patient j.

A.6.2 Test for Distributional Assumption

Our main interest of the paper is the tree-structured covariance that models the

treatment similarity. The relevant class of distributions for modeling thus consists

of those whose properties are fully described through a tree-structured covariance

matrix (with mean equal to zero). A natural candidate is the parameterized family

of mean-zero symmetric elliptical distributions indexed by tree-structured covariance

matrices, which includes the Gaussian as a special case.

From a methodological perspective, restriction in the paper to the Gaussian set-

ting is to be viewed as a first step towards modelling using the more general elliptical

family, mainly driven by computational considerations and interpretability within the

context of the scientific application. Notwithstanding this, the Gaussian setup, which

facilitates scalable and explicit computations, does not appear unreasonable: multi-

variate normality tests with the multivariate qq-plot (Figure A.13) demonstrate that

BRCA (panel (A)) and CM (panel (B)) roughly fall on the 45-degree line, but CRC

(panel (C)) slightly deviates from the the 45-degree lines indicating some departure

from normality; this is further corroborated with the Doornik-Hansen (Doornik and

Hansen, 2008) multivariate normal test, which resulted in p-values 0.0969 (BRCA),

0.0833 (CM) and <0.001 (CRC) for testing the null hypothesis that the responses

were Gaussian.

With an eye towards future extensions to the elliptical family, we carried out

hypothesis tests to assess the multivariate elliptical symmetry assumption; using the

test proposed by Babic et al. (2021a) available in the R package ellipticalsymmetry

(Babic et al., 2021b), we fail to reject the null hypothesis of elliptical symmetry with

the p-values of 0.6805 for BRCA, 0.8679 for CRC, and 0.4385 for CM.
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Figure A.13: The multivariate normality QQ-plot for (A) breast cancer, (B) melanoma,
and (C) colorectal cancer

A.6.3 Threshold of the Co-Clustering

Generally, it is hard to recommend a universal threshold for co-clustering without

considering unique patterns in each dataset. For example, different cancers may

respond differently to treatments, resulting in varying degrees of tumor size shrinkage.

This is reflected by the varying distributions for all the pairwise iPCPs obtained from

datasets for three cancers (BRCA, CRC and CM); See the three sets of different

empirical quantiles in Table A.6. Recognizing the practical utility of iPCP cutoffs, in

the following, we use pairwise iPCPs to illustrate a practical strategy for determining

such cut-offs; similarly for multi-way iPCPs.

First, for a “fully-exploratory” analysis, where one does not assume any prior

knowledge about multiple monotherapies that share the same mechanism, we recom-

mend ranking all the pairwise iPCPs as in Table A.6 and setting the cut-off at the

75-th percentile.

Second, for a “partially-exploratory” analysis, where one incorporates prior knowl-

edge by assuming the PDX dataset contains two or more specific monotherapies with

known and the same mechanism, we recommend using a cut-off determined by their

corresponding iPCP. For example, two treatments (BKM120 and BYL719) are both

PI3K inhibitors and were tested in the BRCA data with a pairwise iPCP of 0.8002,
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which we recommend as a practical cut-off. If multiple such iPCPs are available

for other pairs of treatments with a common mechanism, we recommend the lowest

iPCP as the cut-off. In this scenario, a question may be raised regarding whether

the biologically-motivated cut-off is similar to the cut-off determined by the empiri-

cal 75 percentile and which one to use. In fact, we observed that two cut-offs were

practically similar. For example, the 75-th percentile of all pairwise iPCPs for BRCA

is 0.753 and two treatments (binimetinib and BKM120) targeting the same path-

way PI3K-MAPK-CDK have a pairwise iPCP of 0.7427. As another example, in the

CM data set, the 75-th percentile of pairwise iPCPs is 0.801; the two treatments

(LEE011, binimetinib) targeting the same pathway PI3K-MAPK-CDK have a iPCP

of 0.8210. In practice, when both are available, we recommend using the 75 percentile

cut-off for fully-exploratory analyses and using the biologically-motivated cut-off for

partially-exploratory analyses.

Cancer Min 25-th Median 75-th Max

BRCA 0.357 0.664 0.680 0.753 0.899

CRC 0.420 0.441 0.515 0.687 0.862

CM 0.610 0.723 0.742 0.801 0.939

Table A.6: The descriptive statistics for all possible pairs of pairwise iPCP for the breast
cancer (top), colorectal cancer (middle) and the melanoma (bottom).

A.6.4 Additional Results for Monotherapy

In Main Paper, we listed the results for monotherapies targeting the cell regulated

pathways. We offer more monotherapies targeting the rest two categories of the

pathways.

ERBB3 and tubulin inhibitors. Our model also found high iPCP values among tubu-

lin, ERBB3, and PI3K-MAPK-CDK inhibitors in BRCA. ERRB3 inhibitor, LJM716,

exhibits high pairwise iPCP values with PI3K (BKM120: 0.7501, BYL719: 0.7513,

CLR457: 0.7500), MAPK (binimetinib: 0.7811), CDK (LEE011: 0.7847) and tubulin
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(paclitaxel: 0.7505) inhibitors. Since PI3K and MAPK are downstream pathways of

ERBB3 (Balko et al., 2012) and CDK works closely with PI3K and MAPK (Kurtze-

born et al., 2019; Repetto et al., 2018), high iPCPs between ERBB3 inhibitor and

PI3K-MAPK-CDK inhibitors are not surprising. For ERBB3 and tubulin, ERBB3

is a critical regulator of microtubule assembly (Wu et al., 2021) and tubulin plays

an important role in building microtubules. Since microtubules form the skeletons

of cells and are essential for cell division (Gunning et al., 2015; Haider et al., 2019),

tubulin inhibitor, paclitaxel, kills cancer cell by interfering cell division and is an

FDA-approved treatment. In congruence with the above results, tubulin inhibitor

paclitaxel also shares high iPCPs with PI3K (BKM120: 0.8076, BYL719: 0.8063,

CLR457: 0.8076), MAPK (binimetinib: 0.7433), CDK (LEE011: 0.7587) and ERBB3

(LJM716: 0.7505). In addition, another CDK4 inhibitor BPT also inhibits tubulin

(Mahale et al., 2015) and PI3K inhibitor BKM120 inhibits the formation of micro-

tubule (Bohnacker et al., 2017). Both offer additional reasons for high iPCP between

tubulin and PI3K-MAPK-CDK inhibitors.

MDM2 inhibitors. We found two drugs: CGM097 and HDM201 share high iPCP

values in BRCA (0.8365) and CRC (0.7860). Since CGM097 and HDM201 target the

same pathway, MDM2, high iPCPs suggest a high similarity between CGM097 and

HDM201 and show consistent results between our model and underlying biological

mechanism. MDM2 negatively regulates the tumor suppressor, p53 (Zhao et al., 2014)

and if MDM2 is suppressed by inhibitors, p53 is able to prevent tumor formation.

Both CGM097 and HDM201 entered phase I clinical trial (Konopleva et al., 2020)

for wild-type p53 solid tumors and leukemia, respectively.
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A.6.5 Rx-Tree for Non-Small Lung Cancer (NSCLC) and Pancreatic Duc-

tal Adenocarcinoma (PDAC)

We applied the Rx-tree on the rest two cancers in the data: non-small lung cancer

(NSCLC) and pancreatic ductal adenocarcinoma (PDAC). Similar to the Figure 5 in

the Main Paper, Rx-tree, pairwise iPCP and (scaled) Pearson correlation are shown in

the left, middle and right panels in Figure A.14, respectively. Again, we observe that

the Rx-tree and the pairwise iPCP matrix show the similar clustering patterns. For

example, three PI3K inhibitors (BKM120, BYL719 and CLR457) and a combination

therapy (BKM120 + binimetibin) in NSCLC form a tight subtree and are labeled by

a box in the Rx-tree of Figure A.14 and a block with higher values of iPCP among

therapies above also shows up in the corresponding iPCP matrix. The Rx-tree roughly

clusters monotherapies targeting oncogenic process (PI3K-MAPK-CDK, MDM2 and

JAK) and agrees with the biology mechanism. For example, three PI3K inhibitors

(BKM120, BYL719 and CLR457) belong to a tighter subtree in both cancers. Fol-

lowing the same idea as the Main Paper, we further quantify the treatment similarity

through iPCP. However, compared to three cancers (BRCA, CRC and CM) in the

Main Paper, different problems of model fitting or interpretation lie in NSCLC and

PDAC: NSCLC deviates from the normal assumption of Equation (4) (Figure A.13)

and PDAC shows lower iPCP (average iPCP of PDAC: 0.4119 < BRCA: 0.6734, CRC:

0.5653, CM: 0.7535, NSCLC: 0.5817). For concerns raised above, we only verify the

model through the monotherapies with known biology for each cancer.

Non-small cell lung cancer. Our model suggests high iPCP values for treatments share

the same target. For example, our model shows a high iPCP among three PI3K

(BKM120, BYL719 and CLR457) inhibitors: (BKM120, BYL719): 0.8402, (BKM120,

CLR457): 0.8321, (BYL719, CLR457): 0.8710. For treatments with different tar-

gets, our model also exhibits a high iPCP values. For example, the monother-

apy HSP990 that inhibits the heat shock protein 90 (HSP90) shows a high iPCP
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Figure A.14: The Rx-tree and iPCP for non-small cell lung cancer (NSCLC, top row) and
pancreatic ductal adenocarcinoma (PDAC, lower row). Three panels in each row represent:
(left) estimated Rx-tree (MAP); distinct external target pathway information is shown in
distinct shapes for groups of treatments on the leaves; (middle) Estimated pairwise iPCP,
i.e., the posterior mean divergence time for pairs of entities on the leaves (see the result
paragraph for definition for any subset of entities); (right) Scaled Pearson correlation for
each pair of treatments. The Pearson correlation ρ ∈ [−1, 1] was scaled by ρ+1

2 to fall into
[0, 1]. Note that the MAP visualizes the hierarchy amongst treatments; the iPCP is not
calculated based on the MAP, but based on posterior tree samples (see definition in Main
Paper Section 3.2)

with PI3K inhibitors ((BKM120, HSP990): 0.7108, (BYL719, HSP990): 0.7114,

(CLR457,HSP990): 0.7109). Since the inhibiting of HSP90 also suppresses PI3K

(Giulino-Roth et al., 2017), it is not surprising to ses a high iPCP between PI3K and

HSP90 inhibitors.

Pancreatic ductal adenocarcinoma. For PDAC, our model overall suggests a lower

iPCP (average iPCP of PDAC: 0.4119). Out of 91 pairs of monotherapies, only

BYL719 and CLR457 share a higher iPCP (0.8415). The higher iPCP can be ex-

plained by the common target PI3K of BYL719 and CLR457.
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A.6.6 R Shiny Application

We illustrate the input and outputs of the proposed method via a R Shiny appli-

cation hosted on the web (Figure A.15). The visualizations are based on completed

posterior computations for illustrative purposes. A user needs to specify the following

inputs:

(A) Cancer type to choose the subset of data for analysis

(B) Number of treatments of interest in the subset A to evaluate synergy via iPCP

(C) Names of the treatments in the subset A

Given the inputs above, the Shiny app visualizes the outputs:

(D) maximum a posteriori treatment tree for all the available treatments

(E) PCPA(t) curve for the subset of treatments, A

(F) iPCPA value calculated from the corresponding PCPA(t)

Figure A.15: R Shiny app screenshot for illustrating model inputs and outputs for an-
alyzing PDX data (20 treatments for breast cancer); the PCP curve and iPCP value are
computed for a subset of three selected treatments.
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A.7 Random Effects Model for Multiple Animals Design

The current work is built upon the 1×1×1 design, but multi-replicate experiment

set-up is extremely relevant in practice, and is an interesting direction for future work.

Several possible modeling options can extend our work to adapt to the multi-replicate

experimental design. Following the comment, we consider two different scenarios

for the response: (i) homogeneous and (ii) heterogeneous responses. First, recent

literature (Evrard et al., 2020) suggests robustness for PDX studies (including BAR

and other tumor volume measurements) under different protocol and mice replicates

and implies the homogeneous responses. When the responses are homogeneous, we

can simply average the outcomes over the replicates, which makes out method directly

applicable. Alternatively, when the responses are heterogeneous, we can use random

effects for multiple replicates nested within each patient. We can incorporate the

random effects either in the mean structure or in the variance structure. Specifically,

given a PDX experiment with I treatments and J patients, for each treatment, we

consider Kj independent mice replicates for the j-th patient, j = 1, . . . , J . Let

X.jk = [X1jk, . . . , XIjk] ∈ RI be a vector of BAR response across I treatments from

the k-th replicate of patient j. Following Proposition 1, we may consider adding

random effects in the mean structure:

X.jk
iid∼ NI(µjk, σ

2ΣT ); µjk ∼ NI(0,Ω), j = 1, . . . , J ; k = 1, . . . , Kj,

where the µjk = [µ1jk, . . . , µIjk] is the normal random effect with mean zero and a

variance Ω. We assume Ω to be diagonal to maintain the ultrametric property for

the marginal variance of Var(X.jk) = σ2ΣT +Ω.

One may instead include random effects in the variance and the corresponding

tree-structured matrix. Following the same notation, we can formulate the distribu-
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tion as

X.jk
iid∼ NI(0, σ

2ΣT
k ), k = 1, . . . , Kj,

where ΣT
k is the tree-structured matrix for each replicate. We can further consider

two cases with (i) pooling all tree-structured matrix of ΣT
k = ΣT for all k = 1, . . . , Kj

and (ii) assigning different ΣT
k for each k. The case (i) of pooling all tree-structured

matrix is the same as the original Proposition 1 and ignores the heterogeneity of the

responses. For the case (ii), we can further assign a prior distribution on each tree-

structured matrix and include the external covariate information (e.g. heterogeneity

of the response) in the prior distribution.
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Table A.7: Full CPUs series used for computations.

Intel Xeon X series
X5660@2.80GHz
X5680@3.33GHz

Intel Xeon E series

E5-24400@2.40GHz
E5-24700@2.30GHz
E5-24500@2.10GHz
E5-2650v3@2.30GHz
E5-2650v4@2.20GHz
E5-2690v4@2.60GHz
E5-2690v4@2.60GHz

Table A.8: Pathways full names and the corresponding abbreviations.

Abbreviation Target Name

PI3K Phosphoinositide 3-kinases

CDK Cyclin-dependent kinases

MAPK Mitogen-activated protein kinases

JAK Janus kinase

MDM2 Murine double minute 2

BRAF Serine/threonine-protein kinase B-Raf

MTOR Mechanistic target of rapamycin

EGFR/ERBB Epidermal growth factor receptor

SMO Smoothened

TNKS Tankyrase

PIM Proto-oncogene serine/threonine-protein kinase Pim-1

BIRC2 Baculoviral IAP repeat-containing protein 2

IGF1R Insulin-like growth factor 1 receptor
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Table A.9: Monotherapy names with targets. Different target groups are labeled differently
in the Figure 5 and Figure A.14.

Treatment name Other names Trade name Target Target Group

5FU Fluorouracil Adrucil chemotherapy Other

abraxane nab-paclitaxel abraxane Tubulin Other

BGJ398 Infigratinib FGFR Receptor

binimetinib MEK162 Mektovi MAPK PI3K-MAPK-CDK

BKM120 Buparlisib PI3K PI3K-MAPK-CDK

BYL719 Alpelisib Piqray PI3K PI3K-MAPK-CDK

cetuximab Erbitux EGFR Receptor

CGM097 MDM2 MDM2

CKX620 MAPK PI3K-MAPK-CDK

CLR457 PI3K PI3K-MAPK-CDK

dacarbazine DTIC-Dome chemotherapy Other

encorafenib LGX818 Braftovi BRAF BRAF

erlotinib Erlotinib hydrochloride Tarceva EGFR Receptor

figitumumab CP-751871 IGF1R Receptor

gemcitabine Gemzar chemotherapy Other

HDM201 Siremadlin MDM2 MDM2

HSP990 HSP90 Other

INC280 Capmatinib Tabrecta MET Receptor

INC424 Ruxolitinib Jakafi and Jakavi JAK JAK

LDE225 Sonidegib Odomzo SMO Receptor

LDK378 Ceritinib Zykadia ALK Receptor

LEE011 Ribociclib Kisqal CDK PI3K-MAPK-CDK

LFA102 PRLR Receptor

LGH447 PIM Other

LGW813 IAP Other

LJC049 TNKS Other

LJM716 Elgemtumab ERBB3 Receptor

LKA136 NTRK Receptor

LLM871 FGFR2/4 Receptor

paclitaxel Taxol Tubulin Other

tamoxifen Nolvadex ESR1 Receptor

TAS266 DR5 Receptor

trametinib GSK1120212 Mekinist MAPK PI3K-MAPK-CDK

trastuzumab Herceptin ERBB2 Receptor

WNT974 PORCN Receptor
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Table A.10: Combination therapy full names with known targets.

Combination Therapies Known Target Pathways Cancer

abraxane+gemcitabine Tubulin+chemotherapy PDAC

BKM120+binimetinib PI3K+MAPK NSCLC,PDAC

BKM120+encorafenib PI3K+BRAF CM

BKM120+LDE225 PI3K+SMO PDAC

BKM120+LJC049 PI3K+TNKS CRC

BYL719+binimetinib PI3K+MAPK CRC

BYL719+cetuximab PI3K+EGFR CRC

BYL719+cetuximab+encorafenib PI3K+EGFR+BRAF CRC

BYL719+encorafenib PI3K+BRAF CRC

BYL719+LEE011 PI3K+CDK BRCA

BYL719+LGH447 PI3K+PIM NSCLC

BYL719+LJM716 PI3K+ERBB3 BRCA,CRC,NSCLC,PDAC

cetuximab+encorafenib EGFR+BRAF CRC

encorafenib+binimetinib BRAF+MAPK CM

figitumumab+binimetinib IGF1R+MAPK PDAC

INC424+binimetinib JAK+MAPK PDAC

LCL161+paclitaxel BIRC2+Tubulin NSCLC

LEE011+encorafenib CDK+BRAF CM

LEE011+everolimus CDK+MTOR BRCA

LFW527+binimetinib IGF1R+MAPK NSCLC

LJM716+trastuzumab ERBB3+ERBB2 BRCA
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APPENDIX B

Appendix of Chapter III

B.1 Details of BHV Space as a CAT(0) Space

A CAT(0) space entails the nonpositive curvature space for Up. Curvature in

this context is determined by comparing the triangles within the space to those in

Euclidean space (Bridson and Haefilger, 1999). Specifically, a triangle in a CAT(0)

space is not “thicker” than the corresponding Euclidean triangle with the same side

lengths. Visually speaking, the flat edges of Euclidean triangles represent zero cur-

vature for Euclidean space, while edges in the CAT(0) triangle are curved and drawn

inside the triangle, resulting in the CAT(0) triangle being “thinner” than the Eu-

clidean triangle. For the BHV space, the common boundary of different orthants

are glued isometrically by considering an equivalent relation that locates trees on the

boundary of different orthants at the same point in the BHV space. By doing so,

the manifestation of nonpositive curvature is observed in the boundary of different

orthants. Consider three vertices lying in three nearby orthants that share a common

boundary (Panel (F) in Figure III.2). These three vertices form a triangle with all

edges contained within the space, resulting in a triangle thinner than the Euclidean
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Figure B.1: Convergence diagnostics for the algorithm using the likelihood trace plot.
Two chains of the same algorithm are initiated by different trees, shown by two colors,
across five different sample sizes of n ∈ {30, 50, 100, 250, 500}.

triangle with the nonpositive curvature of the BHV space and allowing the algorithm

to find the compatible splits easily.

B.2 Additional Simulation Results of Ultrametric Matrices

B.2.1 Convergence Diagnostics

We examine the convergence of our algorithm through the likelihood trace plot

and ensure convergence likelihood from different initializations. Specifically, given the

same dataset, we run the same algorithm with two chains initiated by two different

trees and plot the likelihood over iterations. We randomly chose five likelihood trace

plots, each from different sample sizes of n ∈ {30, 50, 100, 250, 500}, as shown in

Figure B.1. Obviously, the likelihood increases rapidly and remains at a relatively

high plateau. More importantly, both chains converge to a similar level of likelihood,

indicating the convergence of the algorithm.
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B.2.2 Comparing Different Algorithms

We compare our algorithm to the algorithm from Nye (2020) and empirically

investigate the rate of convergence through the likelihood trace plot shown in Figure

B.2. The algorithm from Nye (2020) enables the algorithm to propose a candidate

edge set that is the same as the edge set from the previous iteration, resulting in

slower convergence. We briefly describe Nye’s algorithm and refer the reader to the

original paper for more details. Essentially, Nye’s algorithm is still an MH update

and changes the proposal function illustrated in Step 3 to 6 in Algorithm 1. Instead

of directly removing the internal split in Step 3, Nye’s algorithm generates a branch

length difference from a normal distribution of δ ∼ N(0, σE) and lets c = |eA| + δ.

When c > 0, the algorithm will stay in the same edge set with eB = eA and |eB| = c.

Otherwise, when c ≤ 0, the algorithm will propose a candidate split eB from nearby

orthants and assign the branch length of |eB| = −c. However, Nye’s algorithm does

not exclude the original split from the candidates, resulting in a positive probability of

staying in the same edge set and, therefore, slower convergence. We implement Nye’s

algorithm and compare it to our algorithm. Figure B.2 empirically compares the rate

of convergence. Obviously, our algorithm converges faster than Nye’s algorithm under

five different sample sizes.

B.2.3 Element-wise Coverage for t-dsitribution

We show the nominal coverage for element-wise 95% credible intervals under the

mis-specified t-distribution. Specifically, the results of nominal coverage for t4 and t3

for five different sizes are shown in Figure B.3 and B.4, respectively. We observe a

similar pattern for the nominal coverages from t4 and t3 distributions. Elements in the

last row and column correspond to zero elements in the true covariance and result in

an estimated coverage close to one. For non-zero elements in the true covariance, we

observe that the nominal coverages for t-distribution are moderate when the sample
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Figure B.2: Empirical comparison of our proposed algorithm (blue) and the algorithm
from Nye (2020) (red) in terms of the rate of convergence under five different sample sizes
of n ∈ {30, 50, 100, 250, 500}.

size is small (n = 30). However, when the sample size increases, the nominal coverage

corresponds to non-zero elements in the true covariance worsens. Unfortunately, when

our algorithm is mis-specified, it does not generate posterior matrices that converge

to the true matrix. We conjecture that our algorithm converges to incorrect branch

lengths when the model is mis-specified. This conjecture is supported by Table 3.1,

which indicates that our algorithm still generates posterior samples with the correct

topology for t-distribution.

B.2.4 Topology Trajectory for the Proposed Method

In this section, we examine the trajectory of our proposed algorithm in BHV space.

Specifically, we initiate our algorithm with trees that are far away (in terms of BHV

distance) from the true tree and track the topologies generated by our algorithm.

Figure B.5 presents the trajectory of our algorithm with 15 different initial trees in

terms of the BHV distance between the estimated tree and the true tree. For each

posterior tree, we color the tree based on the corresponding topology. Obviously,
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Figure B.3: Element-wise coverage from the 95% credit interval for the mis-specified t-
distribution of degree of freedom four under five different sample sizes. The true underlying
covariance is shown in the lower right panel.

Figure B.4: Element-wise coverage from the 95% credit interval for the mis-specified t-
distribution of degree of freedom three under five different sample sizes. The true underlying
covariance is shown in the lower right panel.

all initial trees are distant from the true tree, with higher BHV distances. Over

iterations, our algorithm traverses different nearby orthants and quickly moves to the

correct topology (topology 1) with a smaller BHV distance to the true tree.
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Figure B.5: Trajectory of our algorithm in terms of BHV distances. Over iterations, BHV
distances between each posterior tree and the true tree are measured. Each posterior sample
is colored according to the corresponding topology. The same algorithm is initiated by 15
different trees that are far away (in terms of the BHV distance) from the true tree. Our
algorithm traverses different orthants and arrives at the true topology (topology 1) quickly
after a few iterations.

B.2.5 Simulation Results for Underlying Trees from the Ultrametric Tree

In this Section, we demonstrate additional simulation results when all leaves in the

true underlying tree are equidistant to the root. Specifically, we obtain a tree from

the coalescence model implemented by the function rcoal in the R package ape and

generate the data from the normal and t-distribution described in Main Paper Section

3.5. We run Algorithm 1 without restricting the prior on the branch lengths for 5, 000

iterations and discard the first 4, 000 iterations. We summarize the posterior samples

by the point estimation and the quantify the uncertainty through the element-wise

95% credible interval. The performance of the point estimator is compared to the

projection-based method of Bravo et al. (2009) and the sample covariance under the

measurement of the BHV distance (Owen and Provan, 2011) and the matrix norm.

For the uncertainty quantification, we calculate the nominal coverage of the 95%

credible interval. All results were obtained from 50 independent replicates.

The results of the point estimators are shown in Figure B.6. For the point esti-
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mator, the mean and MAP trees from our method are comparable to the estimated

matrix from Bravo et al. (2009) and sample covariance in terms of BHV distance and

matrix norm across different data generating mechanisms and sample sizes. When

the model is correctly specified, all methods benefit from the increase in the sample

size, resulting in a smaller distance to the true tree. For the mis-specified scenario,

the advantage from the larger sample size is moderate. Essentially, when all leaves

in the true underlying tree are equidistant to the root, our algorithm still generates

posterior samples that are comparable to existing methods with a similar level of

performance in terms of the BHV distance and matrix norm.

Figure B.6: Distances between the estimated matrix and the true matrix under different
data generating mechanism and sample sizes. The mean (red) and MAP tree (green) from
our method is comparable to competing methods (blue for MIP and purple for sample
covariance) in terms of the BHV distance (top row) and matrix norm (bottom row).

Figure B.7 demonstrates the nominal coverage of the element-wise 95% credible

interval with the true generating covariance in the lower right panel. As we expected,

the diagonal elements in the true underlying covariance are equivalent, implying that

150



all leaves in the true underlying tree are equidistant to the root. Similar to the results

shown in Main Paper Section 3.5, the 95% credible interval gives a high nominal

coverage (around 0.73 to 1), and the estimated coverage is higher when the sample

size increases. In summary, our algorithm can efficiently draw posterior samples

of matrices under different conditions imposed on the branch lengths of the true

underlying tree.

Figure B.7: Element-wise coverage from the 95% credit interval for the correct specified
normal distribution with five different sample sizes with the true underlying covariance in
the lower right panel. Equal diagonal elements in the true underlying covariance indicate
that all leaves in the true underlying tree are equidistant to the root.
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APPENDIX C

Appendix of Chapter IV

C.1 Proof for Proposition 4.3.1

We provide a detailed proof for Proposition 4.3.1 in the Main Paper. We proceed

this proof through two steps. First, we show the conditional sign independence for the

undirected graph and the equivalent graphical regression model without covariates.

We then can extend to result to the regression model with the covariates.

Proof. We first show the undirected case with scalar coefficients β. Denote the D =

diag( 1
d1
, . . . , 1

dp
) a diagonal matrix of dimension p by p. Following the assumption of

normal conditional distribution of (4.3), the joint distribution of Y D = [Y1

d1
, . . . , Yp

dp
] is

a multivariate normal distributionNp(µ,Σ). From the Proposition (C.5) of Lauritzen

(1996), we can first partition the joint distribution with

Y D | D =


Yj/dj

Yj′/dj′

YV \{j,j′}DV \{j,j′}

 ∼ N




µj

µj′

µV \{j,j′}

 ,


κjj κjj′ κT

j.

κjj′ κjj κT
j′.

κj. κj′. KV \{j′,j}


−1
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where Σ = K−1, κj. = [κjv] and κj′. = [κj′v], v ∈ V \ {j, j′}. Thus, the conditional

distribution of
Yj

dj
and

Yj′

dj′
is a bivariate normal distribution:

 Yj/dj

Yj′/dj′


∣∣∣∣∣∣∣YV \{j,j′},D ∼ N2


µjD

µj′D

 ,K−1
jj′

 , (C.1)

where Kjj′ =

κjj κjj′

κjj′ κj′j′

 and

µjD

µj′D

 =

µj

µj′

 − K−1
jj′

κT
j.

κT
j′.

 (YV \{j,j′}DV \{j,j′} −

µV \{j,j′}) =

µj

µj′

−K−1
jj′

∑v∈V \{j,j′} κjv(Yv/dv − µv)∑
v∈V \{j,j′} κj′v(Yv/dv − µv)

.
Now, we can show the univariate distribution of

Yj

dj
:

Yj

dj

∣∣∣∣YV \{j},D ∼ N
(
µ̃jD, κ

−1
jj

)
,

where µ̃jD = µj − 1
κjj

∑
v∈V \{j} κjv(Yv/dv −µv). When Yj/dj and Yj′/dj′ are indepen-

dent, µjD = µj − κ−1
jj

∑
v∈V \{j,j′} κjv(Yv/dv − µv) = µ̃jD and κjj′ = 0. Thus,

p(Yj/dj|YV \{j,j′},D) = p(Yj/dj|YV \{j},D). (C.2)

However, the conditional independence does not hold after integrating out the random

scaling D. Specifically, the integration of D conditioning on YV \{j,j′} and YV \{j} are

different. We can see that from the following expectation values.

E[Yj|YV \{j,j′}] = ED|YV \{j,j′}
[E[Yj|YV \{j,j′},D]] = ED|YV \{j,j′}

[djµjD]

E[Yj|YV \{j}] = ED|YV \{j}E[[Yj|YV \{j},D]] = ED|YV \{j} [djµjD]

Since the conditional distributions of D|YV \{j} and D|YV \{j,j′} are not equal, the

expectation values are different. Of note, the conditional sign independence still hold
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due to following equations:

P(Yj < 0|YV \{j,j′}) = ED|YV \{j,j′}

[
P(Yj < 0|YV \{j,j′},D)

]
= ED|YV \{j,j′}

[
P(Yj/dj < 0|YV \{j,j′},D)

]
= ED|YV \{j,j′}

[
P(κ1/2

jj (Yj/dj − µjD) < −κ
1/2
jj µjD|YV \{j,j′},D)

]
= EDV \{j,j′}|YV \{j,j′}

[
Φ(−κ

1/2
jj µj′D)

]
= EDV \{j}|YV \{h}

[
Φ(−κ

1/2
jj µjD)

]
= P(Yj < 0|YV \{j}),

where Φ(.) is the cdf of standard univariate normal distribution. The fourth and

the fifth equivalence hold since µjD = µj − κ−1
jj

∑
v∈V \{j,j′} κjv(Yv/dv − µv) does not

depend on (dj, dj′ , Yj, Yj′).

By comparing the conditional distribution of (C.2) with the Equation (4.3), we can

view the conditional distribution of (C.2) as a regression model with dependent vari-

able Yj/dj, the independent variable Yv/dv and βjv = −κjv/κjj for every v ∈ V \ {j}.

Obviously, βjv = 0 when κjv = 0 implying the following conditional independence:

p(Yj/dj|YV \{j}, Yj′ ,D) = p(Yj/dj|YV \{j},D).

and the conditional sign independence:

P(Yj < 0|YV \{j}, Yj′) = ED|YV \{j},Yj′
[P(Yj < 0|YV \{j}, Yj′ ,D)]

= ED|YV \{j},Yj′
[Φ(−κ

1/2
jj µjD)]

= ED|YV \{j} [Φ(−κ
1/2
jj µjD)]

= P(Yj < 0|YV \{j})

Last, we include covariates in the model with functional coefficients β(X). Assume
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the joint distribution of Y D follows a multivariate normal distribution with a mean

zero and a functional precision depending on the covariates X = [X1, . . . , Xq]
T.

Specifically, the joint distribution can be written as

Y D | D,X =


Yj/dj

Yj′/dj′

YV \{j,j′}DV \{j,j′}

 ∼ N
(
0,Ω(X)−1

)
,

where Ω(X) is the functional precision matrix of

Ω(X) =


κjj(X) κjj′(X) κj.(X)T

κjj′(X) κj′j′(X) κj′.(X)T

κj.(X) κj′.(X) KV \{j,j′}(X)

 .

We can therefore have conditional distribution of
Yj

dj
as:

Yj

dj

∣∣∣∣YV \{j},D,X ∼ N
(
µ̃jD(X), κ−1

jj (X)
)
, (C.3)

where µ̃jD(X) = − 1
κjj(X)

∑
v∈V \{j}∪{j′} κjv(X)(Yv/dv). By comparing the conditional

distribution of (C.3) and (4.3), we can define the functional coefficients βjv(X) =

−κjv(X)/κjj(X). Therefore, the covariance of the joint distribution becomes

Σ(X) =



κ11(X) κ12(X) . . . κ1p(X)

κ12(X) κ22(X) . . . κ2p(X)

κ13(X) κ32(X) . . . κ3p(X)

...
...

. . .
...

κ1p(X) κ2p(X) . . . κpp(X)


.

Following the derivation above, we replace the scalar β by the functional coefficients
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β(X) and have the bivariate normal as (C.1) with functional mean:

µjD(X)

µj′D(X)

 = −

κjj(X) κjj′(X)

κjj′(X) κj′j′(X)


−1 ∑v∈V \{j,j′} κjv(X)Yv/dv∑

v∈V \{j,j′} κj′v(X)Yv/dv

 .

When κjj′(X) = 0, βjv(X) = −κjv(X)/κjj(X) = 0 implying the conditional inde-

pendence with

p(Yj/dj|Ypa(j|X), Yj′ ,D,X) = p(Yj/dj|YV \{j},D,X).

and the corresponding conditional sign independence

P(Yj < 0|YV \{j}, Yj′ ,X) = ED|YV \{j},Yj′ ,X
[P(Yj < 0|YV \{j}, Yj′ ,D,X)]

= ED|YV \{j},Yj′ ,X
[Φ(−κ

1/2
jj µjD(X))]

= ED|YV \{j},X [Φ(−κ
1/2
jj µjD(X))]

= P(Yj < 0|YV \{j},X)

C.2 Posterior Inference

In this Section, we present the posterior inference procedure for rBGR including

the MCMC algorithm and the symmetrization. We first provide details of the pa-

rameter expansion for the covariate coefficients αj,k,h in Section C.2.1. Section C.2.2

describes the MCMC algorithm including the derivation of Gibbs sampler for the

thresholded parameters. In Section C.2.3, we offer the rules used for symmetrizing

both the covariate coefficients and the edges.
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C.2.1 Parameter Expansion

In rBGR, we assign a spike-and-slab for covariate coefficients αj,k,h with the pa-

rameter expansion technique (Geyer, 2011) to improve the mixing of MCMC. Let

αj,k,h = ηj,k,hξj,k,h. We impose a spike-and-slab prior on ηj,k,h ∼ N(0, sj,k,h) with

sj,k,h = γj,k,hνj,k,h, νj,k,h ∼ InvGa(aν , bν), and γj,k,h ∼ ρjδ1(γj,k,h) + (1− ρj)δv0(γj,k,h),

where v0 is a small pre-specified hyperparameter. Obviously, the prior results in a

binary scenario in terms of γj,k,h. When γj,k,h = v0 (spike), sj,k,h is close to zero and

results in negligible ηj,k,h and αj,k,h implying no effect from covariate Xh on the edge

between nodes j and k. When γj,k,h = 1 (slab), αj,k,h is non-zero with a linear effect

from Xh on the edge between nodes j and k. We then assign a beta distribution

on ρj ∼ Beta(aρ, bρ). For ξj,k,h, we assign a mixture of two normal distribution,

ξj,k,h ∼ N(mj,k,h, 1) with mj,k,h ∼ 0.5δ1(mj,k,h)+0.5δ−1(mj,k,h). The bimodal mixture

distribution encourage αj,k,h to be away from zero, which has been shown to improve

selection (Scheipl et al., 2012).

C.2.2 MCMC Algorithm

At each iteration, the MCMC algorithm for rBGR updates parameters that con-

sists of three parts: (i) thresholded parameters of αj,k,h and tj, (ii) random scales of

dij, and (iii) hyperparameters. The closed-form of the full conditional distribution

for thresholded parameters and hyper-parameters are available and enables the Gibbs

sampler. On the other hand, we implement the Metropolis–Hastings algorithm for

random scales. However, the derivation of the closed-form of the full conditional dis-

tribution for thresholded parameters is not straightforward. We briefly describe the

general form of the thresholded parameters with Algorithm 3 and refer to Li et al.

(2023+) for more details. We then apply Algorithm 3 to the thresholded parameters

in rBGR. We summarize the whole MCMC algorithm in Algorithm 4.
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General algorithm for the thresholded parameter Consider a random variable

θ. Let fj(θ) = a1jθ
2 + a2jθ+ a3j and gk(θ) = b1kθ

2 + b2kθ+ b3k. Consider the density

of θ to be proportional to

exp

{
J∑

j=1

fj(θ)I(θ > Lj) +
K∑
k=1

gk(θ)I(θ < Uk)

}
,

where Lj, j = 1, . . . , J are lower bounds for fj and Uk, k = 1, . . . , K are upper bounds

for gk. We can classified θ into three different mixture distributions based on the

values of coefficients in fj and gk:

1. If at least one of {a1j, . . . , a1J , b1k, . . . , b1K} is non-zero, then θ follows a mixture

of truncated normal distributions.

2. If a1j = b1k = 0,∀j, k and at least one of {a2j, . . . , a2J , b2k, . . . , b2K} is non-zero,

then θ follows a mixture of exponential distributions.

3. If a1j = b1k = a2j = b2k = 0,∀j, k and at least one of {a3j, . . . , a3J , b3k, . . . , b3K}

is non-zero, then θ follows a mixture of uniform distributions.

The key idea is to exhaust the real line into mutually exclusive intervals and update

the random variable θ within each interval. We start by dissecting the real line into

J +K + 1 intervals using the lower or upper bounds as endpoints. For each interval,

the truncation mechanism for all functions of fj and gk is determined, and we only

need to consider the coefficients from non-zero functions of fj and gk. With the given

coefficients, we can easily derive the distribution within each interval. Finally, we

collect distributions from all intervals and normalize the distribution. We implement

this idea in Algorithm 3.

From Algorithm 3, it is obvious that the conjugacy of θ can be achieved by assign-

ing priors for different values for fj(θ) and gk(θ). Specifically, when a1j = a2j = b1k =

b2k = 0 for all j = 1, . . . , J and k = 1, . . . , K, we can assign a uniform prior with

c1 = c2 = 0 and c3 ̸= 0 resulting in a mixture of uniform distribution. Since the prior
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Algorithm 3 Full Condition for θ
Input:

(a) {Lj}Jj=1, {Uk}Kk=1, {fj(θ) = a1jθ
2 + a2jθ + a3j}Jj=1 and {gk(θ) = gk(θ) = b1kθ

2 +
b2kθ + b3k}Kk=1.

(b) The prior on θ with the kernel exp (c1θ
2 + c2θ + c3).

Output: The full condition distribution of θ.

1: Sort the bounds of {L1, . . . , LJ , U1, . . . , UK} in ascending order with J + K + 1
intervals dissected from the real line R = ∪J+K+1

i=1 Ii.
2: for Each interval Ii, i = 1...J +K + 1 do
3: Initialize Di = c1, Ei = c2 and Fi = c3.
4: for j = 1...J, k = 1, . . . , K do
5: if I ⊂ [Lj,∞) then
6: Update Di = Di + a1j, Ei = Ei + a2j and Fi = Fi + a3j.

7: if I ⊂ (−∞, Uk] then
8: Update Di = Di + b1j, Ei = Ei + b2j and Fi = Fi + b3j.

9: if Di ̸= 0 then
10: θ ∼ NIi(− Ei

2Di
,− 1

Di
) for θ ∈ Ii.

11: if Di = 0 and Ei ̸= 0 then
12: θ ∼ ExpIi(Ei) for θ ∈ Ii.

13: if Di = Ei = 0 and Fi ̸= 0 then
14: θ follows a uniform distribution on Ii.

15: Normalize the whole distribution θ, which is proportional to
∑J+K+1

i=1 Mihi(θ)
and Mi is the normalizing constant independent of θ for the distribution hi(θ) on
interval Ii.

is a special case of the mixture of uniform distribution with only one component, the

conjugacy is attainable. Meanwhile, if we assign a normal prior with c1 ̸= 0, we obtain

a mixture of truncated normal, which grants the conjugacy for θ with normal prior.

Given the Algorithm, we then derive the full condition distribution for thresholded

parameters from rBGR with the Gibbs sampler.

Covariate coefficients. We first derive the full condition for ηj,k,h and ξj,k,h. We

only show the full condition for ηj,k,h since both are normally distributed, and the

distribution of ξj,k,h can be analogously derived.
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p(ηj,k,h | Y ,X,Θ−ηj,k,h) ∝ exp

[ ∑
i:Xih≥0

gi(ηj,k,h) {I(ηj,k,h ≥ Ti1) + I(ηj,k,h < Ti2)}

+
∑

i:Xih<0

gi(ηj,k,h) {I(ηj,k,h ≥ Ti2) + I(ηj,k,h < Ti1)}

]
gi(ηj,k,h)

= a1iη
2
j,k,h + a2iηj,k,h (C.4)

a1i = −
X2

ihY
2
ikξ

2
j,k,h

2σ2
jd

2
ik

− 1

2sj,k,h

a2i = −Xihξj,k,h
σ2
j

[
Y 2
ik

d2ik

q∑
l ̸=h

αj,k,lXil +
Yik

dik

(
−Xij

dij
+

p∑
m̸=k

βm(Xi)Yim

)]

Ti1 =
tj −

∑q
l ̸=h αj,k,lXil

ξj,k,hXih

; Ti2 =
−tj −

∑q
l ̸=h αjlXil

ξj,k,hXih

where gi(ηj,k,h) = a1iη
2
j,k,h + a2iηj,k,h is a quadratic function of ηj,k,h and Ti1 and Ti2

are independent of ηj,k,h. Therefore, the full condition distribution of ηj,k,h belongs to

the first category with a mixture of normal distribution. When we assign a normal

prior on ηj,k,h and ξj,k,h, we obtain the conjugacy with the Gibbs sampler shown in

Algorithm 3.

Threshold parameter. The same idea can be used on the threshold parameter tj.

Specifically, the full condition of the threshold parameter is

p(tj | Y ,X,Θ−tj) ∝ exp

{
−

n∑
i=1

p∑
k ̸=j

I (tj < |θj,k(Xi)|)
Pik +Qik

2σ2
j

}
I(0 ≤ tj ≤ tmax)

tmax

(C.5)

Qik = 2θj,k(Xi)
Yik

dik

∑
k′ ̸=k

θj,k′(Xi)
Yik′

dik′
I (tj < |θj,k′(Xi)|) (C.6)

Pik = θ2j,k(Xi)
Y 2
ik

d2ik
− 2θj,k(Xi)

Yik

dik

Yij

dij
. (C.7)
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Given all θj,k(Xi), we claim that both Pik and Qik are constant with respect to tj.

Obviously, Pik does not depend on tj. For any given interval, we also find that Qik is

independent of tj. Therefore, Qik is also independent of tj, and the full condition for

tj falls into the third category with the mixture of the uniform distribution.

Now, we can present the whole MCMC algorithm as follows:

Algorithm 4 MCMC algorithm for rBGR

(a) Update ηj,k,h and ξj,k,h by Algorithm 3 with (C.4);

– Rescale ηj,k,h and ξj,k,h with ηj,k,h → ηj,k,h|ξj,k,h| and ξj,k,h → ηj,k,h/|ξj,k,h|.

(b) Update tj by Algorithm 3 with (C.5);

(c) Update mj,k,h by Gibbs: p(mj,k,h = 1 | ξj,k,h) = 1
1+exp(−2ξj,k,h)

;

(d) Update γj,k,h by Gibbs:
p(γj,k,h=1|ηj,k,h,νj,k,h,ρj,k,h)
p(γj,k,h=v0|ηj,k,h,νj,k,h,ρj)

=
√
v0ρj

1−ρj
exp(

−v0η2j,k,h
2v0νj,k,h

);

(e) Update νj,k,h by Gibbs: p(νj,k,h | ηj,k,h, γj,k,h)InvGa(aν + 1/2, bν +
η2j,k,h
2γj,k,h

);

(f) Update ρj by Gibbs: p(ρj | γj,k,h) = Beta(aρ +
∑

k,h I(γj,k,h = 1), bρ +∑
k,h I(γj,k,h = v0));

(g) Update dij by MH algorithm with a proposal as prior.

(h) Update πj by Gibbs: p(πj | Dij) = Beta(aπ +
∑

i I(Dij=1), bπ +
∑

i I(Dij ̸=1));

C.2.3 Details of Covariate and Edge Selection

The estimated coefficients from rBGR of (4.3) do not guarantee the symmetry

required in undirected graph. Moreover, due to the introduction of random factors

with the CSI characterization, we only focus on the sign of the edge. In this section, we

describe algorithms to symmetrize the estimated covariate coefficients α̂j,k,h and the

sign of graph edges of β̂j,k(Xi). Denote Pα
j,k,h = P(α̂j,k,h ̸= 0) as the posterior inclusion

probability (PIP) of α̂j,k,h and let α̃j,k,h be the covariate coefficients for the undirected

graph between node j and k for covariate h. We formulate the symmetrization rules

via choosing the direction with a lower PIP:

α̃j,k,h = α̂j,k,hI(Pα
k,j,h > Pα

j,k,h) + α̂k,j,hI(Pα
j,k,h ≥ Pα

k,j,h). (C.8)

161



Given a cutoff c0, Equation C.8 requires both directions to have PIPs bigger than c0

implying a network with less edges. Another possible symmetrization is

α̃j,k,h = α̂j,k,hI(Pα
j,k,h > Pα

k,j,h) + α̂k,j,hI(Pα
k,j,h ≥ Pα

j,k,h). (C.9)

Obviously, Equation (C.9) is less conservative and requires at least one PIP bigger

than c0. Similar symmetrization rules can be seen in Zhang and Li (2022) if we

replace the PIP with the absolute value of coefficients. For rules with absolute value

of coefficients, both rules are asymptotically equivalent (Meinshausen and Bühlmann,

2006; Zhang and Li, 2022), but the rule of (C.8) performs better given finite samples

(Meinshausen and Bühlmann, 2006). We use the rule (C.8) for the rest paper.

For the edge β̂j,k(Xi), we first calculate the estimated linear function of θ̃j,k(Xi)

and symmetrize the edge posterior probability (ePP) of the sign of β̂j,k(Xi). Specif-

ically, θ̃j,k(Xi) =
∑q

h=1 α̃j,k,hXih and θ̃j,k(Xi) is symmetric since α̃j,k,h from (C.8) is

symmetric. Denote Pβ
j,k(Xi) = P(β̂j,k(Xi) ̸= 0) as the ePP of a directed edge from

node k to j. In this paper, we symmetrize the sign of the edge by taking the maximum

of the ePP from two directions through

P̃β
j,k(Xi) = max(Pβ

j,k(Xi),Pβ
k,j(Xi)), (C.10)

where P̃β
j,k(Xi) is ePP of an undirected edge between node j and k. Given a threshold

c1, we then call an undirected edge if P̃β
j,k(Xi) > c1. Alternatively, we can take the

minimum as

P̃β
j,k(Xi) = min(Pβ

j,k(Xi),Pβ
k,j(Xi)). (C.11)

Clearly, (C.11) is more conservative and needs both Pβ
j,k(Xi) and Pβ

j,k(Xi) bigger than

c1 to call an edge, while (C.10) requires only one of the posterior probability bigger
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than c1.

Once we symmetrize the ePP, we can decide the sign for edges given that the ePP

is bigger than the cutoff P̃β
j,k(Xi) > c1. Without loss of generality, assume that we

chose a specific direction as undirected edge with P̃β
j,k(Xi) = Pβ

j,k(Xi). We estimate

the sign of the edge by comparing the posterior probability of positive and negative

for the chosen direction. Specifically, given the direction of P̃β
j,k(Xi) = Pβ

j,k(Xi), we

estimate the sign of the edge by the following rule:

sign(βj,k(Xi)) =


1 if P(β̂j,k(Xi) > 0) > P(β̂j,k(Xi) < 0)

−1 if P(β̂j,k(Xi) > 0) ≤ P(β̂j,k(Xi) < 0)

(C.12)

Remark 5. Both rules of (C.10) and (C.11) leave the value of β̂j,k(Xi) to be asym-

metric. One might symmetrize edges through symmetrizing both linear function and

the threshold parameter. However, matching the threshold parameter results in a

common t̂j = t̂ for all j = 1, . . . , p, which imposes strict constraints. For this paper,

we do not require the value of β̂j,k(Xi) from two directions equal and only need to

ensure that the sign of edges from two directions agrees.

C.3 Additional Simulation Results of rBGR

C.3.1 Details of Data Generating Mechanism

We generate the data from an underlying multivariate normal distribution with

precision matrix representing the undirected graph and transform the latent normal

data with random scale to obtain the observed non-normal data. Specifically, we first

generate the covariates Xi
iid∼ U(−1, 1) and obtain the latent data from a multivariate

normal distribution. By multiplying the latent data by random scales, we acquire the

observed non-normal data. We set the sample size and the dimension of Yi and Xi
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as (n, p, q) = (250, 50, 3), and generate the latent data from the following procedures:

Y ∗
i =

[
Y ∗
i1, . . . , Y

∗
ip

]T iid∼ Np(0,Ω
−1(Xi)), i = 1, . . . , n

where Ω−1(Xi) is the true precision matrix. For true precision matrix, we assign unit

diagonal elements and randomly pick 2% of the off-diagonal to be non-zero. Given

a threshold parameter t0, each non-zero precision depends linearly on the covariates

and is truncated to zero if the absolute value is smaller than the threshold parameter

t0. Specifically, we set the non-zero precision as ωj,k(Xi) = rj,k(Xi)I(|rj,k(Xi)| > t0)

and rj,k(Xi) =
∑q

h=1Xihνj,k,h, where νj,k,h ∼ U(−0.5,−0.35) ∪ U(0.35, 0.5). We set

t0 = 0.15 to filter around half of the non-zero off-diagonal elements. The final precision

matrix might not be positive semi-definite, and we repeat the whole process till the

precision matrix is positive semi-definite. We obtain the random scales from a mixture

distribution of the point mass at one and a inverse gamma distribution with shape and

scale parameters d2ij
iid∼ (1−π)δ1+πInvGa(adj , bdj). We assign three different levels of

π representing three different levels of non-normal contamination: π ∈ {0, 0.5, 0.8}.

Given the latent data from the multivariate normal distribution, we multiply the

random scales, dij, to generate the observed data of [Yi1, . . . , Yip] = [Y ∗
i1di1, . . . , Y

∗
ipdip].

C.3.2 Convergence Diagnostics of MCMC

One important issue for the Bayesian method is to ensure that the MCMC con-

verged to draw the samples from the target posterior distribution. We investigate

the convergence of the MCMC through the Geweke statistics (Geweke, 1992). Specif-

ically, we check the Geweke statistics of the covariate coefficients αj,k,h. After the

burn-in period, we take the first and the last 20% of the posterior samples and cal-

culate the Geweke statistics. We require p-values for all αj,k,h to be insignificant

after the Bonferroni correction (Armstrong, 2014) to ensure the convergence of the
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algorithm.

C.3.3 Simulation Results of Different cut-off of c0 and c1 Controlling for

False Discovery Rates

Another possible way to decide the cut-off of c0 and c1 is by controlling the false

discovery rate (FDR) (Storey and Tibshirani, 2003) α. Consider a sorted vector Q of

dimension N in decreasing order with each element as a probability. Denote Q(k) as

the k-th largest element in Q. We first calculate ξ = max{K : K−1
∑K

k=1(1−Q(k)) <

α} and set the cut-off as cα = Q(ξ). In this Section, we fixed the FDR at α = 0.1 and

obtain the cut-off for the PIP from αj,k,h and the ePP from βjk(Xi).

Panel (A) of Figure C.1 show the results for covariate selection when we use the

cut-off controlling for the false discovery rate. Comparing to the cut-off at c0 = 0.5

used in Main Paper of Chapter IV, we observe that rBRG and BGR generate a

higher TPR and TNR but a lower MCC for covariate selection. Specifically, rBGR

outperforms both BGR and RegGMM in TPR across different non-normality levels.

For TNR, rBGR performs slightly worse than BGR and RegGMM for across all non-

normality levels, but the disadvantage of rBGR decreases when the non-normality

level increases. Moreover, all three methods select correct covariates and edges (>

90%) with small difference (< 10%) in terms of TNR. We observe that rBGR achieves

a lower MCC comparing to BGR and RegGMMwhen the data is normally distributed.

However, rBGR surpasses BGR and RegGMM in terms of MCC when the level of

non-normality increases. Similar to Main Paper of Chapter IV, modeling the non-

normality from random scales in rBGR is favored compared to models without random

scales in terms of covariate selection.

We show the graph recovery for the edge selection using the cut-off controlling

for the false discovery rate in Panel (B) of Figure C.1. We observe that using the

cut-off controlling for the false discovery rate results in a higher TPR, but lower
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Figure C.1: Graph recovery for BGR (red), rBGR (green) and RegGMM (blue) under
different levels of non-normality in terms of (A) covariates selection (top row) and (B)
edge selection (bottom two rows). Panel (A) measures the covariate selection through four
metrics (from left to right: TPR, TNR, MCC and AUC) are measured under three different
levels of non-normality. Panel (B) demonstrates the edge selection by four criteria (from
upper left to lower right: TPR, TNR, MCC, AUC) and the sign consistency by sign-MCC
(lower left) for non-zero edges. All values for TPR, TNR and MCC are measured at a
cut-off controlling for false discovery rate.

TNR and MCC for rBGR. Specifically, rBGR has the best performance in terms

of TPR comparing to other benchmarks of BGR and RegGMM under all levels of

non-normality, and the advantage of rBGR becomes more prominent as the non-

normality increases. For MCC, rBGR is slightly inferior than BGR and RegGMM

under the normal distribution. However, rBGR is favored when the non-normality

level increases. Both TNR and sign-MCC show excellent edge selection performance

(> 90%) for all three methods, with minimal differences (< 10%) across the three

non-normality levels. In summary, modeling the non-normality through random scales

in rBGR result in equivalent (under normal distribution) or better performances in

all metric for edge selection compared to the other methods without accounting for

non-normality.
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C.4 Additional Results for Proteomic Networks under Im-

munogenic Heterogeneity

C.4.1 Pre-processing Procedures and Convergence Diagnostics

For proteomics data, we first removed phosphorylation proteins and focus on pro-

teins in 12 important cancer-related pathways (apoptosis, breast hormone signaling,

breast reactive, cell cycle, core reactive, DNA damage response, EMT, PI3K/AKT,

RAS/MAPK, RTK, TSC/mTOR and hormone receptor) (Ha et al., 2018). After

centering proteomic data, we obtain 41 proteins from both OV and LUAD with 241

patients and 360 patients for OV and LUAD, respectively. For covariates, we ob-

tained expression data from immune cells and treated the mRNA expression as the

immune cell abundance. We averaged mRNA expression for the genes listed for seven

immune cells (B cell, T cell, macrophages, monocytes, neutrophils, natural killer cells

and plasma cell) and three pathways (proliferation, interferon and translation) (Nir-

mal et al., 2018). We further took the log transformation and standardized on the

averaged expression data. For this analysis, we chose T cells and two important com-

ponents of myeloid-derived suppressor cells (MDSC), monocytes and neutrophils, for

both OV and LUAD for two reasons. First, both T cells and MDSC are essential

in both OV (Luo et al., 2021; Yang et al., 2020) and LUAD (Spella and Stathopou-

los, 2021; Wang et al., 2022). The existing biology also suggests the importance of

macrophage and natural killer cells (NK cells), but since we observed a high correla-

tion among T cells, macrophages (OV: 0.71 and LUAD: 0.80) and NK cells (OV: 0.77

and LUAD: 0.49) we did not include the marcophages and NK cells in this analysis.

We ran rBGR on OV and LUAD with 20, 000 iterations and discarded first 19, 000

iterations. We adapted the symmetrization of (C.8) for covariate coefficients and

(C.10) for edges. We examine the convergence of the algorithm through both the

Geweke statistics and the likelihood trace plot shown in Figure C.2. Specifically, we
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Figure C.2: Convergence diagnostics for using rBGR algorithm on lung cancer. Three
randomly chosen nodes are initiated with two different chains. Both chains converge to a
similar level of log-likelihood after the burn-in period of the first 19, 000 iterations.

ensure the convergence of the algorithm by requiring the p-values of αj,k,h from the

Geweke statistics are all insignificant after Bonferroni correction (Armstrong, 2014).

In Figure C.2, we randomly pick three proteins and run the algorithm with two chains

of different initialization. Both chains converge to a similar level of log-likelihood af-

ter the burn-in period of the first 19, 000 iterations, indicating the convergence of the

algorithm.

C.4.2 Patient-Specific Networks for Ovarian Cancer

In this Section, we present the patient-specific network for ovarian cancer (see

Figure C.3). Similar to the Main Paper of Chapter IV, we vary the abundance of one

immune component with the rest two components fixed and focus on the edges that

change the sign when the immune component abundance increase. In OV, we ob-

serve that only the edge of E-Cadherin-Fibronectin changes the sign the neutrophils

abundance increases. Specifically, the this edge is positively correlated to the neu-

trophil abundance. When neutrophil abundance is higher, E-Cadherin-Fibronectin

is positive; vice-versa, E-Cadherin-Fibronectin is negative when neutrophil is scarce.

Recently, neutrophils have been shown to induce the expression of fibronectin through

the epithelial–mesenchymal transition pathway, and the same pathway also represses
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Figure C.3: Networks of OV under five different percentiles immune component of (A) T
cells, (B) monocytes and (C) neutrophils with the rest two components fixed at mean zero.
The estimated network for varying immune components are shown from the left to right
for 5, 25, 50 ,75, and 95-th percentiles. Edges are identified with signs (green: positive and
red: negative) when the ePPs are bigger than c1 = 0.5.

the expression of E-Cadherin, resulting in the tumor growth (Martins-Cardoso et al.,

2020).

169



BIBLIOGRAPHY

Abdolahi, S., Z. Ghazvinian, S. Muhammadnejad, M. Saleh, H. Asadzadeh Aghdaei,
and K. Baghaei (2022), Patient-derived xenograft (PDX) models, applications and
challenges in cancer research, J Transl Med, 20 (1), 206.

Agrawal, R., U. Roy, and C. Uhler (2020), Covariance Matrix Estimation under Total
Positivity for Portfolio Selection*, Journal of Financial Econometrics, 20 (2), 367–
389, doi:10.1093/jjfinec/nbaa018.

Airoldi, E. M. (2007), Getting started in probabilistic graphical models, PLoS Comput
Biol, 3 (12), e252.

Akbani, R., et al. (2014), A pan-cancer proteomic perspective on The Cancer Genome
Atlas, Nat Commun, 5, 3887.

Aldous, D. (1996), Probability distributions on cladograms, in Random Discrete
Structures, edited by D. Aldous and R. Pemantle, pp. 1–18, Springer New York,
New York, NY.

Antonsson, B., F. Conti, A. Ciavatta, S. Montessuit, S. Lewis, I. Martinou, et al.
(1997), Inhibition of Bax channel-forming activity by Bcl-2, Science, 277 (5324),
370–372.

Armstrong, R. A. (2014), When to use the Bonferroni correction, Ophthalmic Physiol
Opt, 34 (5), 502–508.

Babic, S., L. Gelbgras, M. Hallin, and C. Ley (2021a), Optimal tests for elliptical
symmetry: Specified and unspecified location, Bernoulli, 27 (4), 2189 – 2216, doi:
10.3150/20-BEJ1305.

Babic, S., C. Ley, and M. Palangetic (2021b), The r journal: Elliptical sym-
metry tests in r, The R Journal, 13, 661–672, doi:10.32614/RJ-2021-078,
https://doi.org/10.32614/RJ-2021-078.

Baladandayuthapani, V., R. Talluri, Y. Ji, K. R. Coombes, Y. Lu, B. T. Hennessy,
M. A. Davies, and B. K. Mallick (2014), Bayesian Sparse Graphical Models for
Classification with Application to Protein Expression Data, Ann Appl Stat, 8 (3),
1443–1468.

170



Balko, J. M., et al. (2012), The receptor tyrosine kinase ErbB3 maintains the balance
between luminal and basal breast epithelium, Proc Natl Acad Sci U S A, 109 (1),
221–226.

Bayat Mokhtari, R., T. S. Homayouni, N. Baluch, E. Morgatskaya, S. Kumar, B. Das,
and H. Yeger (2017), Combination therapy in combating cancer, Oncotarget, 8 (23),
38,022–38,043.

Beaumont, M. A., W. Zhang, and D. J. Balding (2002), Approximate Bayesian com-
putation in population genetics, Genetics, 162 (4), 2025–2035.

Berestycki, J., N. Berestycki, and J. Schweinsberg (2007), Beta-coalescents and
continuous stable random trees, Ann. Probab., 35 (5), 1835–1887, doi:10.1214/
009117906000001114.

Bertorelle, G., A. Benazzo, and S. Mona (2010), ABC as a flexible framework to
estimate demography over space and time: some cons, many pros,Mol Ecol, 19 (13),
2609–2625.

Bertotti, A., et al. (2011), A molecularly annotated platform of patient-derived
xenografts (”xenopatients”) identifies HER2 as an effective therapeutic target in
cetuximab-resistant colorectal cancer, Cancer Discov, 1 (6), 508–523.

Bhadra, A., A. Rao, and V. Baladandayuthapani (2018), Inferring network structure
in non-normal and mixed discrete-continuous genomic data, Biometrics, 74 (1),
185–195.

Bhateja, P., M. Chiu, G. Wildey, M. B. Lipka, P. Fu, M. C. L. Yang, et al. (2019),
Retinoblastoma mutation predicts poor outcomes in advanced non small cell lung
cancer, Cancer Med, 8 (4), 1459–1466.

Bhimani, J., K. Ball, and J. Stebbing (2020), Patient-derived xenograft models-the
future of personalised cancer treatment, Br J Cancer, 122 (5), 601–602.

Biau, G., F. Cérou, and A. Guyader (2015), New insights into approximate Bayesian
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