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ABSTRACT

The identification of scientifically-driven dependence structures is of interest across
many biomedical domains. Examples include tree- and graph-based structures that
manifest themselves in precision medicine and genomic contexts. Such dependence
structures can be compactly represented as covariance or precision matrices, which
are useful for both characterizing and interpreting complex relationships. This disser-
tation develops a family of Bayesian models for structured covariances to investigate
the biological dependencies, motivated by two applications in cancer research. These
models are derived to adapt to different aspects of biological dependencies, such as
the tree structure for assessing treatment similarity in pre-clinical cancer models and
robust network structures for proteogenomics data incorporating tumor heterogeneity

In Chapter II, a novel Bayesian probabilistic tree-based framework is proposed for
patient-derived xenografts data to investigate the hierarchical relationships between
treatments by inferring treatment cluster trees, referred to as treatment trees (Ry-
tree). This framework motivates a new measure of mechanistic similarity between two
or more treatments accounting for inherent uncertainty in tree estimation; treatments
with a high estimated similarity have potentially high mechanistic synergy. Building
upon Dirichlet Diffusion Trees, I derive a closed-form marginal likelihood encoding
the tree structure, which facilitates computationally efficient posterior inference via
a new two-stage algorithm. Simulation studies demonstrate superior performance of
the proposed method in recovering the tree structure and treatment similarities. My

analyses of a recently collated PDX dataset produce treatment similarity estimates

Xvi



that show a high degree of concordance with known biological mechanisms across
treatments in five different cancers. More importantly, I uncover new and poten-
tially effective combination therapies that uncover synergistic regulation of specific
downstream biological pathways for future clinical investigations.

In Chapter III, T extend the work of the tree structure and the corresponding ul-
trametric matrices in Chapter II. Tree-structured covariances, or the equivalent ultra-
metric matrices, are an important class of matrices in statistics and machine learning
with numerous applications. Ultrametric matrices are positive definite matrices that
satisfy further ultrametric inequalities. Although projection- and relaxation-based
estimation methods exist, there is a dearth of inferential techniques that provide ap-
propriate uncertainty quantifications. The primary challenges lie in its non-trivial
geometry. In this chapter, I first propose a novel consistent Markovian fragmentation
prior over ultrametric matrices, building on Nabben-Varga decomposition in the ma-
trix algebra literature. Importantly, the decomposition admits one-to-one mapping
of ultrametric matrices to rooted trees, which I exploit to conduct inference in the
surrogate Billera-Holmes-Vogtmann (BHV) space of rooted trees. My approach is
novel because the metricized BHV space naturally motivates quick local moves along
geodesics between neighboring tree topologies. In addition, because these moves do
not rely on projection or relaxation during posterior computation, posterior sum-
maries of central tendency and dispersion are readily available via Fréchet mean and
geodesic distance in the BHV space. Simulation studies show that the proposed
algorithm accurately recovers the matrix and the tree along with uncertainty quan-
tification. I demonstrate the utility of the proposed method on the pre-clinical dataset
by constructing the treatment tree and the mechanism similarity for multiple cancer
treatments.

In Chapter IV, I shift the focus to Graphical models and investigate complex de-

pendency structures in high-throughput datasets. Currently, most existing graphical
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models make one of two canonical assumptions: (i) a homogeneous graph with a
common network for all subjects; or (ii) rely on the normality assumption, especially
in the context of Gaussian graphical models. Both assumptions are restrictive and
can fail in certain applications, such as the proteomic networks in cancer. 1 propose
robust Bayesian graphical regression (rBGR) to estimate heterogeneous graphs for
non-normally distributed data. rBGR allows a flexible framework to estimate graphs
by accommodating the non-normality through the random marginal transformations
and constructs covariate-dependent graphs through graphical regression techniques.
I also formulate a new characterization of edge dependencies in such models called
conditional sign independence with covariates. In simulation studies, I demonstrate
that rtBGR outperforms existing Gaussian graphical regression for data generated un-
der various levels of non-normality in both edge and covariate selection. I use rBGR
to assess proteomic networks across two cancers: lung and ovarian, to systematically
investigate the effects of immunogenic heterogeneity within tumors. My analyses re-
veal several important protein-protein interactions that are differentially impacted by
the immune cell abundance; some corroborate existing biological knowledge but also

discover several novel associations for future investigations.
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CHAPTER I

Introduction

As the high-throughput screening techniques advance, modern data collection
methods have allowed systematic assessment of multiple high-dimensional biomedical
datasets simultaneously on the same or different tumor samples (Akbani et al., 2014;
Baladandayuthapani et al., 2014). Subsequently, these high-dimensional datasets
have enabled biologists to build scientific hypotheses on the relationships among dif-
ferent datasets and to recognize the importance of dependency in many fundamental
biological processes (Airoldi, 2007; Sonawane et al., 2019). One famous example is the
complex interactions among proteins that play a pivotal role in different molecular
processes (Cheng et al., 2020). Statistically, these dependencies and interactions can
be formulated using covariance matrices, to describe and conduct inference on the
dependencies among different data. However, due to scientific hypotheses assumed
about the different dependencies on the biomedical data, various conditions are im-
posed on the structure of the covariance matrix for different data and domains (e.g.
McCullagh, 2006; Zorzi and Ferrante, 2012; Mieldzioc et al., 2021; hrer et al., 2023).
In this dissertation, I develop a family of Bayesian models for structured covariances
to investigate different biological dependencies that encode the underlying scientific
hypotheses in cancer research.

Structured covariance matrices are widely used in statistics (and other fields)



and provide a flexible framework to characterize different aspects of dependencies
in biomedical data. Consider a p-dimensional random vector X = (Xi,...,X,)"
representing observed data. In this dissertation, I model the dependency using a

normal distribution as

X ~ N,(0,%), (1.1)

where X is the covariance matrix describing the dependencies between components
of X. The models in this dissertation either implicitly or explicitly use the normal
distribution for different scenarios. I choose the normal distribution for two reasons:
(i) the covariance matrix in the normal distribution is a parameter that captures the
second and higher orders of dependency (Casella and Berger, 2001); (ii) the ubiqui-
tous use of the normal distribution in biomedical data. However, the unconstrained
covariance does not satisfy the assumptions stemming from scientific hypotheses. I
address two different constraints based on hypotheses for two different datasets in
cancer research, resulting in tree- and graph-based covariances in this dissertation.

I investigate two types of dependencies that demonstrate different aspects of sci-
entific hypotheses in cancer research. First, I focus on tree-based covariances from a
dataset that investigates the treatment effectiveness for different cancer treatments.
Specifically, T build a treatment tree that encodes the underlying mechanism simi-
larity among different treatments and infer the treatment effectiveness based on this
mechanism similarity. To model the tree structure as a matrix, I impose the ultramet-
ric inequality (Lapointe and Legendre, 1991; Nabben and Varga, 1994; Bravo et al.,
2009) on elements of the matrix, which regulates the values of off-diagonal elements.
However, modeling the matrix with ultrametric inequality is a non-trivial problem, as
the set of these matrices is neither a manifold (McCullagh, 2006) nor convex (Chier-

chia and Perret, 2020). Second, I shift the focus to graph-based covariance and aim



to construct dependencies that vary on covariate. Specifically, the structure of the
covariance depends on the covariate-specific information, resulting in the network re-
quires us to model a covariance that varies based on covariates from different subjects.
Currently, existing approaches require at least one of the canonical assumptions of
(i) a common network for all subjects or (ii) the normality assumption. However,
both assumptions fail to hold in the motivating data. These challenges motivate this
dissertation, and I address them in detail in the following chapters. For each chap-
ter, I further elaborate on the key scientific and statistical themes and outline the

progression of the dissertation.

1.1 Probabilistic Learning of Treatment Trees in Cancer

Key scientific questions. Accurate identification of synergistic treatment com-
binations and their underlying biological mechanisms is critical across many disease
domains, especially cancer. Due to the impracticality of administering different treat-
ment combinations on the same patient, preclinical systems such as patient-derived
xenografts (PDX) have emerged to assess promising treatments and compounds be-
fore they are phased into human clinical trials. In translational oncology, PDX is
a preclinical system with an experimental design that evaluates multiple treatments
administered to samples from the same human tumor implanted into genetically iden-
tical mice (Hidalgo et al., 2014; Lai et al., 2017).

In Chapter II, T consider an experimental design of the PDX clinical trial that
includes a large number of patients (Abdolahi et al., 2022) and tests a set of common
treatments. This experimental design results in a data matrix such that each row
in the matrix represents responses for a treatment from different patients, and each
column presents responses from multiple mice with tumors implanted from the same
patient. Due to this experimental design and the high clinical relevance (Oh and Bang,

2020; Abdolahi et al., 2022), a PDX clinical trial mimics a real human clinical trial



(Clohessy and Pandolfi, 2015), which allows me to answer the key scientific questions
of: (a) identification of underlying plausible biological mechanisms, and (b) evaluation

of the effectiveness of drug combinations based on mechanistic understanding.

Statistical themes. Ideally, treatments with the same target/mechanism should
induce similar responses and engender mechanism-related clustering among treat-
ments. Based on this idea, I use a tree structure to not only recuresively partition
treatments into clusters but also quantify the similarity among clusters. In Chapter
IT, T propose a probabilistic tree-based framework for PDX data to investigate the
mechanistic dependencies among treatments by inferring treatment trees. Specifically,
I adapt a generative approach of Dirichlet diffusion trees that allows us to model the
inherent uncertainty in the tree structure and, therefore, the underlying mechanism
similarity. Building upon Dirichlet diffusion trees, I derive a closed-form marginal
likelihood with covariance that encodes the tree structure. The likelihood further
inspires a parameter decoupling strategy that facilitates an efficient new two-stage
algorithm. I also develop posterior summaries that measure mechanistic similarity
between two or more treatments, accounting for inherent uncertainty in tree esti-
mation. I demonstrate the superior performance of my method in recovering the
tree structure and the treatment similarities through a series of simulation studies
under different data generating mechanisms. My analyses corroborate existing syn-
ergistic combination therapies while uncovering new ones. Additionally, I discover
potentially effective combination therapies that confer synergistic regulation of spe-
cific downstream biological pathways for future clinical investigations. This Chapter

is based on Yao et al. (2023).



1.2 Bayesian Inference for Ultrametric Covariances

Key scientific questions. In this Chapter, I continue and generalize the work
of the tree-structured covariance in Chapter II. Tree-structured covariances, or ul-
trametric matrices, play an important role in statistics and machine learning with
various scientific applications. For instance, in a multivariate Gaussian distribution,
the covariance matrix is an ultrametric matrix if and only if the Gaussian density is
multivariate totally positive of order two (Karlin and Rinott, 1983; Lauritzen et al.,
2019), which implies a conditional positive dependency between two random variables
(Fallat et al., 2017). Recently, ultrametric matrices have been applied in various sce-
narios as covariance matrices in Gaussian distributions, such as graphical models (Fal-
lat et al., 2017) and Brownian motion tree models (e.g. Neal, 2003; Sturmfels et al.,
2021), with applications in cancer biology (Yao et al., 2023) and finance (Agrawal
et al., 2020). However, the inequalities required on ultrametric matrices also impose
difficult constraints, as the constraints are highly non-convex (Chierchia and Perret,
2020), resulting in both computation and inference challenges. Although, many ap-
proaches have been proposed, to the best of my knowledge, no existing methods can

quantify the uncertainty in ultrametric matrices.

Statistical themes. To address the problem of uncertainty quantification in ul-
trametric matrices, I propose a consistent Markovian prior for ultrametric matrices
and develop a flexible Bayesian framework to obtain posterior samples of ultrametric
matrices efficiently, thereby providing uncertainty quantification alongside point esti-
mates. Specifically, I characterize the geometry of the space of ultrametric matrices
through its bijection with the well-known BHV phylogenetic tree space, which allows
us to conduct inference in the surrogate space of rooted trees. I leverage this charac-
terization to develop an efficient posterior inference of Metropolis-Hastings algorithm.

The algorithm makes local moves along geodesics without projection or relaxation.



Since the algorithm moves geodesically without leaving the space, posterior sum-
maries of central tendency and dispersion are readily available via Fréchet mean and
geodesic distance in the BHV space. Simulation studies show that the proposed al-
gorithm recovers the matrix and the tree along with uncertainty quantification. I
demonstrate utility of the proposed method on a pre-clinical dataset by constructing

the treatment tree and the mechanism similarity for multiple cancer treatments.

1.3 Robust Bayesian Graphical Regression Models for As-

sessing Tumor Heterogeneity in Proteomic Networks

Key scientific questions. In Chapter IV, I shift focus to the dependencies that
incorporate covariate-specific information and let the dependency structure (i.e. co-
variances) vary based on different covariates. Proteins control many fundamental
cellular processes through a complex but organized system of interactions, termed
protein-protein interactions (PPIs) (Cheng et al., 2020). Moreover, aberrant PPIs
are associated with cancer, and investigating PPIs can lead to effective strategies
and treatments (Lu et al., 2020). Recently, accumulating evidence suggests that
considering tumor heterogeneity at the level of PPIs can enhance our understand-
ing of tumorigenesis and the development of anti-cancer treatments (Cheng et al.,
2020). Specifically, tumor heterogeneity differentially impacts the PPIs across differ-
ent patients and results in varied treatment responses (Cheng et al., 2020). Hence,
incorporating covariate-specific information, i.e., accounting for tumor heterogeneity,
could provide valuable clues to identify PPIs disrupted during carcinogenesis. Con-
sequently, it is highly desirable to elucidate PPIs in cancer and construct flexible
graphical models that can identify multiple types and ranges of dependencies that
vary based on different subjects. The key scientific questions I conclude are: (i) iden-

tify important PPIs across different cancer types and (ii) discover the effect of tumor



heterogeneity on aberrant PPIs as potential targets for future investigation.

Statistical themes. To construct the PPI network that includes covariate-specific
information, I adapt graphical models to investigate complex dependency structures
in proteomics (Airoldi, 2007). However, most existing graphical models make one of
two canonical assumptions: (i) a homogeneous graph with a common network for all
subjects; or (ii) rely on the normality assumption especially in the context of Gaus-
sian graphical models (Ni et al., 2022a). As the tumor heterogeneity described above,
presuming a common graph for all subjects is not appropriate. More importantly,
the normality assumption does not always hold either for certain biomedical data
such as the proteomic networks in cancer. In Chapter IV, I propose robust Bayesian
graphical regression (rBGR) to estimate heterogeneous graphs for non-normally dis-
tributed data. Specifically, r BGR accommodates non-normality through a random
transformation and constructs covariate-dependent graphs using graphical regression
techniques. I also formulate a new characterization of edge dependencies in such
models called conditional sign independence with covariates. In simulation studies, I
demonstrate that rBGR outperforms existing Gaussian graphical regression for data
generated under various levels of non-normality in both edge and covariate selection.
I use rBGR to assess proteomic networks across two cancers: lung and ovarian, to
systematically investigate the effects of immunogenic heterogeneity within tumors.
My analyses reveal several important protein-protein interactions that are deferen-
tially impacted by the immune cell abundance; some corroborate existing biological

knowledge but also discover several novel associations for future investigations.

1.4 Scientific End-user Resources

I provide multiple general purpose R packages to estimate these structured co-

variances which are available at https://github.com/bayesrx. Specifically, for the


https://github.com/bayesrx

tree-structured covariances, the package RxTree and UltrametricMat can be used to
fit the models described from Chapter II and III, respectively. The package RxTree
models the trees with all leaves in the tree are equidistant to the root based on the
Dirichlet diffusion tree model. On the other hand, UltrametricMat does not require
the equidistant constraints on all leaves. Moreover, UltrametricMat defines a gen-
eral prior for the tree structure and enables user-defined priors for tree structure.
For graph-based method in Chapter IV, I provide the package of rBGR to construct

covariate-specific graph under non-normal data.



CHAPTER II

Probabilistic Learning of Treatment Trees in

Cancer

2.1 Introduction

According to the World Health Organization, cancer is one of the leading causes
of death globally, with ~10 million deaths in 2020 (Ferlay et al., 2020). Despite multi-
ple advances over the years, systematic efforts to predict efficacy of cancer treatments
have been stymied due to multiple factors, including patient-specific heterogeneity and
treatment resistance (Dagogo-Jack and Shaw, 2018; Groisberg and Subbiah, 2021).
Given that the evolution of tumors relies on a limited number of biological mecha-
nisms, there has been a recent push towards combining multiple therapeutic agents,
referred to as “combination therapy” (Sawyers, 2013; Groisberg and Subbiah, 2021).
This is driven by the core hypothesis that combinations of drugs act in synergistic
manner, with each drug compensating for the drawbacks of other drugs. However,
despite higher response rates and efficacy in certain instances (Bayat Mokhtari et al.,
2017), combination therapy can lead to undesired drug-drug interactions, lower ef-
ficacy, or severe side effects (Sun et al., 2016). Consequently, it is highly desirable
to advance the understanding of underlying mechanisms that confer synergistic drug

effects and identify potential favorable drug-drug interaction mechanisms for further



investigations.

Given that not all possible drug combinations can be tested on patients in actual
clinical trials, cancer researchers rely on preclinical “model” systems to guide the
discovery of the most effective combination therapies (note, models have a different
contextual meaning here). In translational oncology, preclinical models assess promis-
ing treatments and compounds, before they are phased into human clinical trials. The
traditional mainstay of such preclinical models has been cell-lines, wherein cell cul-
tures derived from human tumors are grown in an in vitro controlled environment.
However, it has been argued that they do not accurately reflect the true behavior of
the host tumor and, in the process of adapting to in wvitro growth, lose the original
properties of the host tumor, thus leading to limited clinical relevance and successes
(Tentler et al., 2012; Bhimani et al., 2020). To overcome these challenges, there has
been a push towards more clinically relevant model systems that maintain a high
degree of fidelity to human tumors. One such preclinical model system is Patient-
Derived Xenograft (PDX) wherein tumor fragments obtained from cancer patients are
directly transplanted into genetically identical mice (Hidalgo et al., 2014; Lai et al.,
2017). Compared to traditional oncology models such as cell-lines (Yoshida, 2020),
PDX models maintain key cellular and molecular characteristics, and are thus more
likely to mimic human tumors and facilitate precision medicine. More importantly,
accumulating evidence suggests responses (e.g. drug sensitivity) to standard thera-
peutic regimens in PDXs closely correlate with patient clinical data, making PDX
an effective and predictive experimental model across multiple cancers (Topp et al.,

2014; Nunes et al., 2015).

PDX experimental design and key scientific questions. Overall, the PDX
experimental design depends on the purpose of the study and we consider a PDX
study of the PDX clinical trial that includes a large number of patients (Abdolahi

et al., 2022) and tests a set of common treatments. The PDX experiment then
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Figure I1.1: PDX experimental design and tree-based representation. Panel A: an illus-
trative PDX dataset with five treatments (row) and eight patients (column). Mice in a given
column are implanted with tumors from the same patient and receive different treatments
(across rows). The level of tumor responses are shown along a color gradient. Panel B: a
tree structure that clusters the treatments and quantifies the similarity among mechanisms.
Two treatments (1 and 4) are assumed to have different but known biological mechanisms
(in different colors); the rest three treatments (2,3, and 5) have unknown mechanisms (in
gray). The tree suggests two treatment groups are present ({1,2} and {3,4,5}) that may
correspond to two different known mechanisms. The horizontal position of “A” represents
the divergence time (defined in Section 2.2.1) and the mechanism similarity for treatments
{3,4,5}. In a real data analysis, the tree (topology and divergence times) is unknown and
is to be inferred from PDX data.

implants the tumor cell to multiple mice and each treatment is given to multiple mice
with tumors implanted from the same (matched) patient (see conceptual schema in
Figure IT.1(A)). Treatment responses (e.g. tumor size) are then evaluated, resulting in
a data matrix (treatments x patients) as depicted in the heatmap in Figure II.1(A).
The PDX-based clinical trial is a powerful tool for detecting the drug efficacy and
drug sensitivity (Abdolahi et al., 2022) and has been adapted in several studies for
different cancers (e.g. Zhang et al., 2013 for the breast cancer and Bertotti et al., 2011
for the colorectal cancer). Due to the relatively high fidelity between PDX models and
the human tumors (Oh and Bang, 2020; Abdolahi et al., 2022), a PDX-based clinical
trial mirrors a real human clinical trial using mouse “avatars” (Clohessy and Pandolfi,
2015). Thus this protocol serves as a scalable platform to: (a) identify underlying

plausible biological mechanisms responsible for tumor growth and resistance, and (b)
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evaluate the effectiveness of drug combinations based on mechanistic understanding.
In this context, the (biological) mechanism refers to the specific mechanism of action
of a treatment, which usually represents a specific target, such as an enzyme or
a receptor (Grant et al., 2010). From the perspective of treatment responses as
data, responses are the consequences of the downstream biological pathways from the
corresponding interaction between a treatment and the target/mechanism.

Ideally, treatments with the same target/mechanism should induce similar re-
sponses and engender mechanism-related clustering among treatments. Evidently
then, a sensible clustering of treatments would not only partition treatments into
clusters but also explicate how the clusters relate to one another; in other words, a
hierarchy among treatment clusters is more likely to uncover plausible mechanisms
for combinations of treatments with “similar” responses when compared to “flat”
clusters (e.g., k-means clustering). Such response-based identification of potential
synergistic effects from combinations of treatments will augment understanding from
known mechanistic synergy. In our application, using tree-based clustering, we as-
sume known entities at the leaves, i.e., the different treatments. The treatments are
assumed to act upon potentially distinct biological pathways, resulting in different
levels of responses across the treated mice. In this Chapter, we use PDX response
data on the leaves to infer a hierarchy over treatments that may empirically character-
ize the similarity in the targeted mechanistic pathways. The primary statistical goals
are to (i) define and estimate a general metric measuring the similarity within any
subset comprising two or more treatments, and (ii) facilitate (i) by conceptualizing

and inferring an unknown hierarchy among treatments.

Tree-based representations for PDX data. To this end, we consider a tree-based
construct to explore the hierarchical relationships between treatments, referred to as
treatment tree (R,-tree, in short). We view such a tree structure as a representation of

clustering of treatments based on mechanisms that confer synergistic effects, wherein
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similarities between mechanisms are captured through branch lengths. Hierarchy
among treatments can be interpreted through branch lengths (from the root) that
are potentially reflective of different cancer processes; this would then help identify
common mechanisms and point towards treatment combinations disrupting oncolog-
ical processes if administered simultaneously.

We will focus on rooted trees. The principal ingredients of a rooted tree comprise
a root node, terminal nodes (or, leaves), internal nodes and branch lengths. In the
context of the Ry-tree for PDX data, the leaves are observed treatment responses,
whereas internal nodes and branch lengths are unobserved. Internal nodes are clusters
of treatments, and lengths of branches between nodes are indicative of strengths of
mechanism similarities. The root is a single cluster consisting of all treatments. This
leads to the following interpretation: at the root all treatments share a common target
or mechanism; length of path from the root to the internal node (sum of branch
lengths) at which two treatments split into different clusters measures mechanism
similarity between the two treatments. Thus treatments that stay clustered “longer”
have higher mechanism similarities.

Throughout, we will use ‘tree’ when describing methodology for an abstract tree
(acyclic graphs with distinguished root node) and ‘treatment tree’ or ‘Ry-tree’ when

referring to the latent tree within the application context.

An illustrative example. A conceptual Ry-tree and its interpretation is illustrated
in Figure II.1 where five treatments (1 to 5) are applied on eight patients’ PDXs (Fig-
ure II.1(A)) with the corresponding (unknown true) Ry-tree (Figure I1.1(B)) based
on the PDX data. Assume two treatment groups based on different mechanisms —
treatments {1,2} and treatments {3,4,5}; further, suppose treatment 4 is approved
by the Food and Drug Administration (FDA). The heatmap in Panel (A) visualizes
the distinct levels of response profiles to the five treatments so that treatments closer

in the tree are more likely to have similar levels of responses. The Ry-tree captures
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the mechanism similarity by arranging treatments {1, 2} and {3,4,5} to stay in their
respective subtrees longer and to separate the two sets of treatment early in the tree.
Based on the Ry-tree, treatments {3,5} share high mechanism similarity values with
treatment 4; treatment 5 is the closest to the treatment 4, suggesting the most similar

synergistic mechanism among all the evaluated treatments 1 to 5.

Existing methods and modeling background. The Pearson correlation is a
popular choice to assess mechanism similarity between treatments (Krumbach et al.,
2011), but is inappropriate to examine multi-way similarity. A tree-structured ap-
proach based on a (binary) dendrogram obtained from hierarchical clustering of
cell-line data using the cophenetic distance (Sokal and Rohlf, 1962) was adopted
in Narayan et al. (2020); their approach, however, failed to account for uncertainty in
the dendrogram, which is highly sensitive to measurement error in the response vari-
ables as well distance metrics (we show this via simulations and in real data analyses).
Another example with a binary dendrogram of hierarchical clustering was proposed
by Rashid et al. (2020), which also utilizes the same PDX dataset as this Chapter.
However, their model uses the tree structure to model the individualized treatment
rule for different patients, while our method focuses on the tree structure itself and the
corresponding mechanism similarity. In this Chapter, we consider a model for PDX
data parameterized by a tree-structured object representing the Ry-tree. The model
is derived from the Dirichlet diffusion tree (DDT) (Neal, 2003) generative model for
(hierarchically) clustered data. The DDT engenders a data likelihood and a prior
distribution on the tree parameter with support in the space of rooted binary trees.
We can then use the posterior distribution to quantify uncertainty about the latent

R, -tree.

Summary of novel contributions and organization of the article. Our ap-
proach based on the DDT model for PDX data results in three main novel contribu-

tions:
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(a)

Derivation of a closed-form likelihood that encodes the tree structure. The DDT
specification results in a joint distribution on PDX data, treatment tree param-
eters and other model parameters. By marginalizing over unobserved data that
correspond to internal nodes of the tree, we obtain a new multivariate Gaussian
likelihood with a special tree-structured covariance matrix, which completely

characterizes the treatment tree (Proposition 1 and Lemma 2.3.1).

Efficient two-stage algorithm for posterior sampling. Motivated by the form of
marginal data likelihood in (a), we decouple the Euclidean and tree parame-
ters and propose a two-stage algorithm that combines an approximate Bayesian
computation (ABC) procedure (for Euclidean parameters) with a Metropolis-
Hasting (MH) step (for tree parameters). We demonstrate via multiple simu-
lation studies the superiority of our hybrid approach over approaches based on

classical single-stage MH algorithms (Sections 2.4.2 and 2.4.1).

Corroborating existing, and uncovering new, synergistic combination therapies.
We define and infer a new similarity measure that accounts for inherent un-
certainty in estimating a latent hierarchy among treatments. As a result, the
mazimum a posteriori Ry-tree and the related mechanism similarity show high
concordance with known existing biological mechanisms for monotherapies and
uncover new and potentially useful combination therapies (Sections 2.5.3 and

2.5.4).

Of particular note is contribution (c), where we leverage a recently collated PDX

dataset from the Novartis Institutes for BioMedical Research - PDX Encyclopedia

INIBR-PDXE, (Gao et al., 2015)] that interrogated multiple targeted therapies across

five different cancers. Our pan-cancer analyses of the NIBR-PDXE dataset show a

high degree of concordance with known existing biological mechanisms across different

cancers; for example, a high mechanistic similarity is suggested between two agents

currently in clinical trials: CGMO097 and HDM201 in breast cancer and colorectal
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cancer, known to target the same gene MDM2 (Konopleva et al., 2020). In addition,
our model uncovers new and potentially effective combination therapies. For exam-
ple, exploiting knowledge of the combination therapy of a class of agents targeting
the PISBK-MAPK-CDK pathway axes — PI3K-CDK for breast cancer, PI3K-ERBB3
for colorectal cancer and BRAF-PI3K for melanoma — confers possible synergistic
regulation for prioritization in future clinical studies.

The rest of the Chapter is organized as follows: we first review our probabilistic
formulation for PDX data based on the DDT model and present the marginal data
likelihood and computational implications in Section 2.2. In Section 2.3, we derive
the posterior inference algorithm based on a two-stage algorithm. In Section 2.4, we
conduct two sets of simulations to evaluate the operating characteristics of the model
and algorithm. A detailed analysis of the NIBR-PDXE dataset, results, biological in-
terpretations and implications are summarized in Section 2.5. This Chapter concludes

by discussing implications of the findings, limitations, and future directions.

2.2 Modeling Ry-tree via Dirichlet Diffusion Trees

Given a PDX experiment with I correlated treatments and J independent patients,
we focus on the setting with 1 x 1 x 1 design (one animal per PDX model per treat-
ment) with no replicate response for each treatment and patient. A PDX experiment
produces an observed data matrix X;.; = [X1,..., X]T where X; = [X;1,..., X;/]"
is data under treatment ¢ across .J patients; let the observed response column for each
patient be X ; = [z1;,...,25]" €eRLj=1,...,J.

In this Chapter, the observed treatment responses are continuous and we model
the responses through a generative model that results in a Gaussian likelihood with

a structured covariance:
X, 57,02 N 0,27, j=1,....J (2.1)
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where the X7 is a tree-structured covariance matrix that encodes the tree 7. In
particular, X7 = {ZT i,i'=1,...,1 } encodes the tree 7 through two constraints

1,47

(Lapointe and Legendre, 1991; McCullagh, 2006):

>, =%l >0, >37, (2.2)

7, > min{%7, , 27} for all i # i’ #4". (2.3)

Each element EZ—Z is the covariance between treatments ¢ and ¢’ and measures their
similarity. The inequality (2.2) imposes the symmetry of covariance matrix and en-
sures the divergence of all leaves. The tree structure is characterized by the ultramet-
ric inequality (2.3) that ensures X7 bijectively maps to a tree T; for more details on
the relationship between the covariance X7 and the tree 7 see McCullagh (2006) and
Bravo et al. (2009). Of note, mean parameterized models (e.g. mixed effects models)
are inappropriate for uncovering the tree parameter under the given data structure
since the latent tree is completely encoded in covariance matrix 7.

A Bayesian formulation requires an explicit prior distribution on X7 which satisfies
constrains (2.2) and (2.3); this requirement is far from straightforward since the set
of tree-structured matrices is complicated (e.g., it is not a manifold (McCullagh,
2006)). We instead consider the Dirichlet Diffusion tree (DDT) model (Neal, 2003)

for hierarchically clustered data which provides two useful ingredients:
1. a prior is implicitly specified on the latent treatment tree, comprising the root,
internal nodes, leaves, and branch lengths;
2. upon integrating out the internal nodes, a tractable Gaussian likelihood on PDX

data with tree-structured covariance is specified.

We first provide a brief description of the DDT model proposed by Neal (2003)
and its joint density on data and tree (Section 2.2.1). Subsequently, we derive an

expression for the likelihood and demonstrate how it can be profitably employed to
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develop a generative model for PDX data and carry out Ri-tree estimation (Section

2.2.2 and 2.2.3).

2.2.1 The Generative Process of DDT

The DDT prescribes a fragmentary, top-down mechanism to generate a binary
tree (acyclic graph with a preferred node or vertex referred to as the root), starting
from a root, containing .J-dimensional observed responses X; at I leaves/terminal
nodes; each node in the tree has either 0 or 2 children excepting the root which has a
solitary child. This prescription manipulates dynamics of a system of I independent
Brownian motions By, ..., By on R’ in a common time interval ¢ € [0,1]. As shown
in Figure I1.2(A), all Brownian motions B;(t) start at the same point at time ¢ = 0,
location of which is the root 0 € R”, and diverge at time points in [0, 1] and locations
in R’ before stopping at the time ¢t = 1 at locations X;. The Brownian trajectories
and their divergences engender the tree structure as shown in Figure I1.2(A).

Specifics on when and how the Brownian motions diverge are as follows: the
first Brownian motion Bj(t) starts at ¢t = 0 and generates X; at t = 1; a second
independent Brownian motion Bs(t) starts at the same point at ¢t = 0, branches out
from the first Brownian motion at some time ¢, after which it generates Xy at time
1. The probability of divergence in a small interval [t, ¢ + dt] is given by a divergence
function t — a(t), assumed as in Neal (2003) to be of the form a(t) = ¢(1 —t)~! for
some divergence parameter ¢ > 0. Inductively then, the vector of observed responses
to treatment i, X, is generated by B;(t), which follows the path of previous ones.
If at time ¢, B;(t) has not diverged and meets the previous divergent point, it will
follow one of the existing path with the probability proportional to the number of
data points that have previously traversed along each path. Eventually, given B;(t)
has not diverged at time ¢, it will do so in [t, t + dt| with probability a(t)dt/m, where

m is the number of data points that have previously traversed the current path.
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From the illustration in panel (A) of Figure I1.2, we note that Bj diverges from
the By and By at time ¢; at location X and at ¢ = 1 is at location X3, which is
the J-dimensional response vector for treatment 3; this creates a solitary branch of
length ¢, from the root and an unobserved internal node at location X|. Continuing,
given three Brownian motions By, By and Bs, B, does not diverge before t; and meet
the previous divergent point t;. By chooses to follow the path of B3 with probability
1/3 at t; and finally diverges from Bj at time ty > t; at location XJ; this results in
observation X, for treatment 4 and an unobserved internal node at X/, and so on.

As a consequence, the binary tree that arises from the DDT comprises of:

(i) an unobserved root at the origin in R” at time ¢ = 0;

(ii) observed data X = [X1,..., X/|T € R™*/ situated at the leaves of the tree;

(iii) unobserved internal nodes X! = [X],..., X} _|]T € RU=DxJ,
(iv) unobserved times ¢t = (ty,...,t;1)" € [0,1]77! that characterize lengths of
branches;

(v) unobserved topology 7T that links (i)-(iv) into a tree structure, determined by
the number of data points X; that have traversed through each segment or

branch.

Conceptually, observed data at the leaves X7, ..., X collectively form the observed
PDX responses generated through a process involving a few parameters: tree-related
parameters (7,t) and the locations of internal nodes X!. The tree T clusters [
treatments as a hierarchy of (I — 1) levels (excluding the last level containing leaves).
At level 0 < d < I — 1 of the hierarchy, characterized by the pair (X}, ts), the I
treatments are clustered into d + 1 groups; a measure of similarity (or dissimilarity)
between treatment clusters at levels d and d+1 is given by the branch length ¢, —1,.

We now give a brief description of how the joint density of (X, X', ¢,7) can

be derived; for more details we direct the reader to Neal (2003) and Knowles and
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Figure I1.2: (A) A binary tree with I = 5 leaves underlying the diffusion dynamics. The
observed response vector X;,¢ =1,...,1 is generated by the Brownian motion up to t = 1.
The unobserved response vector X/, d =1,...,(I —1) at the divergence is generated by the
Brownian motion at time t4. (B) A tree-structured matrix 37 that encapsulates the tree
T. See the Proposition 1 for the definition of 37 .

Ghahramani (2015). For a fixed ¢ > 0 that governs the divergence function a(t) =
c(1—t)~1, probabilities associated with the independent Brownian motions By, ..., By
induce a joint (Lebesgue) density on the generated tree. Note that the binary tree
arising from the DDT is encoded by the triples {(tq4, X}, X;),d = 1,...,1 — 1;i =
1,...,I}. An internal node at X, contains [, and 7,4 leaves below to its left and right
with mg = lg + r4. If each of the Brownian motions is scaled by 2 > 0, then given
T and a branch with endpoints (¢,, X|) and (t,, X!) with 0 < ¢, < t, < 1, from
properties of a Brownian motion we see that X! ~ N;(X/,0?(t, — t,)I;), and the

(Lebesgue) density of T can be expressed as the product of contributions from its

branches. Then the joint density of all nodes, times and the tree topology is given by

I, — D)(r, — 1)! B
P(X, X"t Tle,o”) = ] ( Jry = 1) c(1 —t,) " IN(X! o2 (t, — t,)I))
e (I, + 7, — 1)!

(2.4)

where S(7) is the collection of branches and X{ Iyxs = X1 X 1_1)]T are unob-

(ly—1)!(ry—1)!

served locations of the internal nodes. On each branch [u, v], the first term Totro

represents the chance the branch containing [, and 7, leaves to its left and right re-

20



spectively; c(1 — t,)¢/*~1 represents the probability of diverging at ¢, with [, and r,
leaves, where J, = Hy, 4,,—1 — H;,—1 — H,,_1 with H,, = " | 1/i is the nth harmonic
number.

The joint density is hence parameterized by (c,0?), where ¢ plays a crucial role in
determining the topology 7 through the divergence function a(t), it determines the
propensity of the Brownian motion to diverge from its predecessors; consequently, a
small ¢ engenders later divergence and a higher degree of similarity among treatments
in PDX. The latent tree has two components: (i) topology T and (ii) vector of
divergence times ¢ determining branch lengths. We refer to (c,0?) as the Fuclidean

parameters and (T,t) as tree parameters.

2.2.2 Prior on Tree and Closed-form Likelihood

The joint density in (2.4) factors into a prior P(t, T|c,0?) on the tree parameter
through (7,t) and a density P(X,XI|t, T, c,0?) that is a product of .J-dimensional
Gaussians on the internal nodes and leaves. The prior distribution on the latent
tree is thus implicitly defined through the Brownian dynamics and is parameter-
ized by (T,t) with hyperparameters (c,0?). In (2.4) the product is over the set of
branches S(7), and the contribution to the prior P(T, t|c, 0?) from each branch [u, v]

%c(l —t,)%wre =L which is free of o2; on the other hand, the contribution

is
to P(X,XI!|t, T, ¢, 0?) from [u,v] is the J-dimensional N;(X/, o*(t, — t,)I;), which
is independent of ¢. The likelihood function based on the observed X is thus obtained
by integrating out the unobserved internal nodes X! from P(X, X!|t, T, 0?). Accord-
ingly, our first contribution is to derive a closed-form likelihood function for efficient
posterior computations; to our knowledge, this task is currently achieved only through
sampling-based or variational methods (Neal, 2003; Knowles and Ghahramani, 2015).

Denote as MNyy;(M,U, V) the matrix normal distribution of an I x J ran-

dom matrix with mean matrix M, row covariance U, and column covariance V',
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and let I, denote the k£ x k identity matrix. Evidently, X follows a matrix nor-
mal distribution since Gaussian laws of the Brownian motions imply that [X, X!] =

(Xy,..., X, X1, ... ,X&fl)]T follow a matrix normal distribution.

Proposition 1. Under the assumption that the root is located at the origin in R”, the
data likelihood X|o?, T, t ~ MNy, ;(0,02%7 1), where X7 = (Eﬁ,) is an I x I tree-
structured covariance matrix satisfying (2.2) and (2.3) with X7, = 1 and X7, = t,

for i #4 wherei,i’ =1,..., T andd=1,...,1 —1.

Proposition 1 asserts that use of the DDT model leads to a centered Gaussian
likelihood on PDX data X with a tree-structured covariance matrix. Proposition 1
also implies that each patient independently follows the normal distribution of (2.1)

with an additional scale parameter (%) from the Brownian motion:
X 37,0 EN(0,0°8T), j=1,...,) (2.5)

By setting EZ;, = t;+ as the divergence time of 4 and 7', X7 satisfies (2.2) and (2.3) and
encodes the tree 7. For example, consider a three-leaf tree with EL, = t;+, inequality
(2.3) implies that for the three leaves, say, 7,4 and i”, one of the following conditions
must hold: (i) ty ;v >ty =t (i) tiiw > tiy =ty (1) ti0 > iy =ty . We
then obtain a tree containing 1) a subtree of two leaves with a higher similarity and
2) a singleton clade with a lower similarity between the singleton leaf and the two
leaves in the first subtree. In particular, if ¢ ;» > t; » = t; ;» holds, the three-leaf tree

has leaf i diverging earlier before the subtree of (¢',4").

2.2.3 Decoupling Tree and Euclidean Parameters for Efficient Sampling.

In the full joint density in (2.4) the Euclidean and tree parameters are confounded
across row and column dimensions of X, and this may result in slow mixing of chains

using traditional MCMC algorithms (Turner et al., 2013). State-of-the-art posterior
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inference on (c,0?,7T,t) can be broadly classified into sampling-based approaches
(e.g., Knowles and Ghahramani, 2015) and deterministic approaches based on varia-
tional message passing (e.g., Knowles et al., 2011, VMP). Variational algorithms can
introduce approximation errors to the joint posterior via factorization assumptions
(e.g.,mean-field) and choice of algorithm is typically determined by the speed-accuracy
trade-off tailored for particular applications. On the other hand, in classical MCMC-
based algorithms for DDT we observed slow convergence in the sampling chains for ¢
and o2 with high autocorrelations for the corresponding chains, owing to possibly the
high mutual dependence between ¢ in the divergence function and the tree topology
T, resulting in slow local movements in the joint parameter space of model and tree
parameters (Simulation II in Section 2.4.2).

Notwithstanding absence of the parameter ¢ in the Gaussian likelihood, the depen-
dence, and information about, ¢ is implicit: the distribution of divergence times ¢ that
populate X7 are completely determined by the divergence function ¢ + ¢(1 —¢)~%
In other words, ¢ can indeed be estimated from treatment responses {X. ;} using the
likelihood. From a sampling perspective, however, form of the likelihood obtained by
integrating out the internal nodes X!, suggests an efficient two-stage sampling strat-
egy that resembles the classical collapsed sampling (Liu, 1994) strategy in MCMC
literature: first draw posterior samples of (¢, 0?) and then proceed to draw posterior

samples of (7,t) conditioned on each sample of (c,o?).

2.3 R,-tree Estimation and Posterior Inference

In line with the preceding discussion, we consider a two-stage sampler for Eu-
clidean and tree parameters. While in principle MCMC techniques could be used in
both stages, we propose to use a hybrid ABC-MH algorithm. Specifically, we use
an approximate Bayesian computation (ABC) scheme to draw weighted samples of

(c,0?) in the first stage followed by a Metropolis-Hastings (MH) step that samples
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(T,t) given ABC samples of (c,0?) in the second stage. Motivation for using ABC in
the first stage stems from: (i) availability of informative statistics; (ii) generation of
better quality samples of the tree (compared to a single-stage MH); and (iii) better

computational efficiency. We refer to Section 2.4.2 for more details.

2.3.1 Hybrid ABC-MH Algorithm

ABC is a family of inference techniques that are designed to estimate the poste-
rior density pr(0|D) of parameters 6 given data D when the corresponding likelihood
pr(D|0) is intractable but fairly simple to sample from. Summarily, ABC approx-
imates pr(0|D) by pr(0|Ses) where Syps is a d-dimensional summary statistic that
ideally captures most information about 6. In the special case where S, is a vector
of sufficient statistics, it is well known that pr(6 | D) = pr(f | Sss). To generate
a sample from the partial posterior distribution pr(6 | Sus), ABC with rejection
sampling proceeds by: (i) simulating N values 6;,1 = 1,..., N from the prior
distribution pr(#); (ii) simulating datasets D; from pr(D|6,); (iii) computing summary
statistics S;,l = 1,..., N from D;; (iv) retaining a subset of {0, ,,s = 1...,k} of
size k < N that corresponds to ‘small’ ||.S}, — S| values based on some thresh-
old. Given pairs {(6,,,S),)}, the task of estimating the partial posterior translates
to a problem of conditional density estimation, e.g., based on Nadaraya-Waston type
estimators and local regression adjustment variants to correct for the fact that S,
may not be exactly Sys; see Sisson et al. (2019) for a comprehensive review. To
implement ABC, the choice of summary statistics is central.

We detail the specialization of ABC to the marginal posterior distributions of ¢
and 02 in Section 2.3.1.1. Given any pair of (¢, 0?), we can sample trees from a density
function up to an unknown normalizing constant based on an existing MH algorithm
(Knowles and Ghahramani, 2015). Our proposal is to condition on the posterior

median of (c,0?) of ABC-weighted samples from the first stage, when sampling the
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trees in the second stage; clearly, other choices are also available. This strategy
produced comparable MAP trees and inference of other tree-derived results relative
to tree samples based on full ABC samples of ¢ and o2

Pseudo code for the two-stage algorithm is presented in the Supplementary Ma-

terial Algorithm 2. We briefly describe below its key components.

2.3.1.1 Stage 1: Sampling Euclidean Parameters (c,o?) using ABC

Accuracy and efficiency of the ABC procedure is linked to two competing desider-
ata on the summary statistics: (i) informative, or ideally sufficient, and (ii) low-
dimensional.

Summary statistic for ¢%. From the closed-form likelihood in Equation (2.5),

T

a sufficient statistic of 02X7 is easily available, using which we construct a summary

statistics for o2.

Lemma 2.3.1. With X as the observed data, the statistic T = }_, X ;X7 is
sufficient for o®X7 and follows a Wishart distribution Wi(J, 0?7, where X.; =

(21, ., € RL. Then with S©°) .= trg) we have E[S)] = 62 and Var[S©")] =

204 tr((27)2)
127

Due to the normality of X in (2.5), and the Factorization theorem (Casella
and Berger, 2001), we see that T is complete and sufficient for 0?37 and T ~
Wi(J,02%7). Well-known results about the trace and determinant of X (see for e.g.
Mathai (1980)) provide the stated results on the mean and variance of ¢tr(T"). Owing
to its unbiasedness, we choose S*) = tr(T')/I.J as the summary statistic for o2 and
examine its performance through simulations in Section 2.4; other choices are assessed
in the Supplementary Material Section A.4.1.

Summary statistic for ¢. Based on the matrix normal distribution of Proposi-
tion 1, the divergence parameter ¢ does not appear in the observed data likelihood.

Any statistic based on the entire observed data set X is sufficient, but not necessarily
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informative about ¢. In DDT, the prior distribution of the vector of branching times
t is governed by divergence parameter ¢ via the divergence function a(¢; ¢). Thus an
informative summary statistic for ¢ can be chosen by assessing its information about
t. For example, tighter observed clusters indicate small ¢ (e.g., ¢ < 1), where the
level of tightness is indicated by the branch lengths from leaves to their respective
parents. We construct summary statistics for ¢ based on a dendrogram estimated via
hierarchical clustering of X based on pairwise distances ;s = || X; — Xy||,7 # 7.
The summary statistics S we choose is a ten-dimensional concatenated vector com-
prising the 10th, 25th, 50th, 75th and 90th percentiles of empirical distribution of: (i)
d;7; (ii) branch lengths associated with leaves of the dendrogram. Other candidate

summary statistics for ¢ are examined in Supplementary Material Section A.4.1.

2.3.1.2 Stage 2: Sampling Tree Parameters using Metropolis-Hastings

For the second stage, we proceed by choosing a representative value (cg, o2) chosen
from the posterior sample of (¢, 0?), which in our case is the posterior median. Then
a Metropolis-Hastings (MH) algorithm to sample from pr((7,t)|co, 02, X); recall that
the Rytree is characterized by both the topology 7 and divergence times t. In partic-
ular, after initialization (e.g., the dendrogram obtained from hierarchical clustering),
we first generate a candidate tree (77,t') from the current tree (7,t) in two steps:
(i) detaching a subtree from the original tree; (ii) reattaching the subtree back to
the remaining tree. Acceptance probabilities for a candidate tree can be computed
exactly and directly using the explicit likelihood in (2.5), without which they would
have to be calculated iteratively (Neal, 2003; Knowles and Ghahramani, 2015). See
Supplementary Material Section A.2.2 for details of the proposal function and the

acceptance probabilities.

Remark 1. In order to use the explicit likelihood in (2.5) from Proposition 1 to

generate observed data X, a tree-structured covariance X7 needs to be specified,
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whose entries in-turn depend on the parameter ¢ through the divergence function.
It is not straightforward to fix or sample a X7 since its entries need to satisfy the
inequalities (2.3). It is easier to generate data X directly using the DDT generative
mechanism in the ABC stage, and this is the approach we follow and is described in
Supplementary Section A.2.

Summarily, there are three main advantages to using the explicit likelihood from
Proposition 1: (i) decoupling of Euclidean and tree parameters to enable an efficient
two-stage sampling algorithm; (ii) direct and exact computation of tree acceptance
probabilities in MH stage; (iii) determination of informative sufficient statistic for o

(Lemma 2.3.1).

Remark 2. From the computational aspect, the calculation of the explicit Gaussian
likelihood of (2.5) in Proposition 1 through the matrix decomposition is slower (e.g.
Cholesky decomposition with O(7?)) than the message passing (e.g. the belief prop-
agation with O(I) (Mezard and Montanari, 2009)) in terms of the big O notation
(Knuth, 1976). However, the computation speed also depends on the implementa-
tion. For this Chapter, we implemented our algorithm in R and found that the matrix
decomposition is faster than the message passing on R. We offer more details with a

simulation study in Supplementary Material Section A.5.3.

2.3.2 Posterior Summary of R,-Tree, (7,1)

While quantifying uncertainty concerning the tree parameters (7,¢) is of main
interest, we note that, from definition of the DDT, this is influenced by uncertainty
in the model parameters. In particular, the first stage of ABC-MH produces weighted
samples and we calculate the posterior median by fitting an intercept-only quantile
regression with weights (see details in the Supplementary Material Section A.2.1).
For the Ry-tree, we consider global and local tree posterior summaries that capture

uncertainty in the latent hierarchy among all and subsets of treatments.

27



Flexible posterior inference is readily available based on L posterior samples of
(T,t) from the MH step. It is possible to construct correspond tree-structured co-

variance matrices 37 from sample (7, ¢). Instead, we compute:

(a) a global mazimum a posteriori (MAP) estimate of the Ry-tree that represents the

overall hierarchy underlying the treatment responses;

(b) local uncertainty estimates of co-clustering probabilities among a subset A C
{1,..., I} of treatments based on posterior samples of the corresponding subset of

divergence times.

Posterior co-clustering probability functions. We elaborate on the local sum-
mary (b). Suppose A = {i,4,1"} consists of three treatments. Given a tree topology
T, note that at every t € [0, 1] a clustering of all I treatments is available and the
clustering changes only at times 0 < t; < --- < t;_;. Consequently, for a given
tree topology 7 drawn from its posterior, we can compute for every level ¢ € [0, 1]
a posterior probability that 4,7 and i” belong to the same cluster. Such a posterior
probability can be approximated using Monte Carlo on the L posterior samples. Ac-
cordingly, we define the estimated posterior co-clustering probability (PCP) function

associated with A as,

L
Zl:l H[o,til) )(t)

72‘/71‘//

L Y

PCP 4(t) = (2.6)

where Ig is the indicator function on the set B and tg?, ,» 1s the divergence time of

A = {i,i,7"} in the [-th tree sample. Essentially, the PCP 4(¢) can be viewed as the
proportion of tree samples with {i,4,7"} having the most recent common ancestor
later than ¢.

For every subset A, the function [0,1] 3 t — PCP4(t) € [0, 1] is non-increasing
starting at 1 and ending at 0, and reveals propensity among treatments in A to

cluster as one traverses down an (estimate of) Ry-tree starting at the root: a curve
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that remains flat and drops quickly near 1 indicates higher relative similarity among
the treatments in A relative to the rest of the treatments. A scalar summary of
PCP4(t) is the area under its curve known as integrated PCP iPCP 4, which owing
to the definition of PCP 4(¢), can be interpreted as the expected (or average) chance
of co-clustering for treatments in A.

Figure IL.3 illustrates an example of a three-way iPCP 4 with A = {i,7',7"} for a
PDX data with I treatments and J patients (Figure I1.3(A)). Given L = 3 posterior
trees samples (Figure I1.3(B)) drawn from the PDX data, we first calculate the whole
PCP4(t) function by moving the time ¢ from 0 to 1. Starting from time ¢ = 0, no
treatment diverges at time t = 0 and the PCP 4(¢) is 1. At time ¢/, treatments diverge
in one out of the three posterior trees and PCP 4(¢) therefore drops from 1 to 2/3.
Moving the time toward ¢t = 1, treatments diverge in all trees and the PCP 4(t) drops

to 0. The iPCP 4 then can be obtained by the area under the PCP 4(?).
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Figure I1.3: Posterior tree summaries. (A) The input PDX data with I treatments
and J patients, and treatments A = {i,i,:”} are of interest. (B) PCP 4(¢) and iPCP 4 for
treatments A based on L = 3 posterior trees. The relevant divergence times are represented
by a “A” in each posterior tree sample. For example, at time ¢/, the treatments in A diverge
in one out of the three trees. Because PCP_4(t’) is defined by the proportion of posterior
tree samples in which A has not diverged up to and including #', it drops from 1 to 2/3.
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Remark 3. In the special case of A = {i,7'} for two treatments, the definition of
iPCP 4 can be related to the cophenetic distance (Sokal and Rohlf, 1962; Cardona
et al., 2013) and, moreover, extends definition of the cophenetic distance to multiple
trees. Given two treatments ¢ and ¢ in a single tree, let t; be the time at which
their corresponding Brownian paths diverge. Then PCP 4(t) = Ijo,)(t) and iPCP 4 =
tq; this implies that the cophenetic distance is 2(1 — t4) and thus iPCP 4 and the
cophenetic distances uniquely determines the same tree structure. For L > 1 trees, a

Carlo average of divergence times of L trees leads to the corresponding iPCP 4.

Remark 4. Given [ treatments, since pairwise cophenetic distances from one tree de-
termines a tree (Lapointe and Legendre, 1991; McCullagh, 2006), one might consider
summarizing and represent posterior trees in terms of an I X [ matrix ¥ consisting
of entries iPCPy; sy for every pair of treatments of (¢,4’), estimated from the posterior
sample of trees. However, 3 need not to be a tree-structured matrix that uniquely
encodes a tree. It is possible to project 3 on to the space of tree-structured matrices
(see for e.g., Bravo et al. (2009)) but the projection might result in a non-binary tree

structure. We discuss this issue and its resolution in Supplementary Material Section

A3,

2.4 Simulations

Accurate characterization of similarities among any subset of treatments is central
to our scientific interest in identifying the promising treatment subsets for further
investigation. In addition, we have introduced a two-stage algorithm to improve
our ability to efficiently draw tree samples from the posterior distribution (similarly
for the Euclidean parameters). To demonstrate the modeling and computational
advantages, we conduct two sets of simulations. The first simulation shows that

the proposed model estimates the similarity (via iPCP) better than alternatives,
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even when the true data generating mechanisms deviate from DDT assumptions in
terms of the form of divergence function, prior distribution for the unknown tree,
and normality of the responses. The second simulation illustrates the computational
efficiency of the proposed two-stage algorithm in producing higher quality posterior
samples of Euclidean parameters, resulting in more accurate subsequent estimation
of an unknown tree and iPCPs, two key quantities to our interpretation of real data

results.

2.4.1 Simulation I: Estimating Treatment Similarities

We first show that iPCPs estimated by DDT are closer to the true similarities
(operationalized by functions of elements in the true divergence times in 7)) under
different true data generating mechanisms that may follow or deviate from the DDT
model assumptions in three distinct aspects (the form of divergence function, the

prior distribution over the unknown tree, and normality).

Simulation setup. We simulate data by mimicking the PDX breast cancer data
(see Section 2.5) with [ = 20 treatments and J = 38 patients. We set the true scale
parameter as the posterior median of and the true tree 7y as the MAP tree that
are estimated from the breast cancer data; We consider four scenarios to represent

different levels of deviation from the DDT model assumptions:

(i) No deviation of the true data generating mechanism from the fitted DDT mod-
els: given o and 7y, simulate data based on the DDT marginal data distribution

(Equation (2.5));

The true data generating mechanism deviates from the fitted DDT in terms of:

(ii) divergence function: same as in (i), but the true tree is a random tree from

DDT with misspecified divergence function, a(t;r) = ﬁ, r =0.5;

(iii) prior for tree topology: same as in (i), but the true tree is a random tree from
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the coalescence model (generated by function rcoal in R package ape), and,

(iv) marginal data distribution: same as in (i), but the marginal likelihood is a
centered multivariate ¢ distribution with degree-of-freedom four and scaled by

o2xTo,

For each of four true data generating mechanisms above, we simulate B = 50 replicate
data sets. In the following, we use the DDT model and the two-stage algorithm for all
estimation regardless of the true data generating mechanisms. For DDT, we ran the
two-stage algorithm where the second stage is implemented with five parallel chains.
For each chain, we ran 10,000 iterations, discarded first 9,000 trees and combined
five chains with a total of 5,000 posterior tree samples.

First, we compute the iPCPs for all pairs of treatment combinations following the
definition of iPCP 4 where A = {i,i'},1 <i <4’ < I. Two alternative approaches to
defining and estimating similarities between treatments are considered: (i) similarity
derived from agglomerative hierarchical clustering, and (ii) empirical Pearson corre-
lation of the two vectors of responses X; and X/, for i # ¢’. In particular, for (i),
we considered five different linkage methods (Ward, Ward’s D2, single, complete and
Mcquitty) with Euclidean distances. Given an estimated dendrogram from hierarchi-
cal clustering, the similarity for a pair of treatments is defined by first normalizing
the sum of branch lengths from the root to leaf as 1, and then calculating the area
under of the co-clustering curve (AUC) obtained by cutting the dendrogram at vari-
ous levels from 0 to 1. For three- or higher-way comparisons, (i) can still produce an
AUC based on a dendrogram obtained from hierarchical clustering, while the empir-
ical Pearson correlation in (ii) is undefined hence not viable as a comparator beyond

assessing pairwise treatment similarities.

Performance metrics. For treatment pairs A = {i,4'}, to assess the quality of esti-

mated treatment similarities for each of the methods above (DDT-based, hierarchical-
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clustering-based, and empirical Pearson correlation), we compare the estimated values
against the true branching time %79 similarly when assessing recovery of three-way

1,47

treatment similarities, e.g., A = {i,4’,i"}, £7% ., is defined as the time when {i, 7"}

il i
first branches in the true tree 7,. In particular, for replication data set b=1,..., B,
let E( ) generically represent the pairwise similarities for treatment subsets (i,4") that
can be based on DDT, hierarchical clustering or empirical pairwise Pearson corre-
lation. For three-way comparisons, let ifbl),l,, generically represent the three-way

similarities for treatment subset (i,4’,7”) that can be based on DDT, or hierarchical

clustering.

We assess the goodness of recovery by computing \/ Z ZTO )2, the Frobe-
nious norm of the matrix in recovering the entire 7. We compute max; ; i |E

i —
213 Z//\ the max-norm of the matrix in recovering the true three-way similarities. For
a given method and treatment subset A, the above procedure results in B values, the
distribution of which can be compared across methods; smaller values indicate better
recovery of the true similarities.

Alternatively, for each method and each treatment subset, we also compute the

Pearson correlation between the estimated similarities and the true branching times

across replicates for pairwise or three-way treatment subsets:

4,47 3" il

Cor (S0, 50,6 =1,....B); Cor (S, 50,0 =1,....B),

for B = 50 and treatments ¢ < i’ < ¢”. We refer to this metric as “Correlation of cor-
relations” (the latter uses the fact that the entries in the true X0 being correlations;

see Equation (2.5)); higher values indicate better recovery of the true similarities.

Simulation results. We observe that DDT better estimates the treatment similar-
ities even under misspecified models. In particular, under scenarios where the true

data generating mechanisms deviate from the fitted DDT model assumptions (ii-iv),
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the DDT captures the true pairwise and three-way treatment similarities the best by
higher values in correlation of correlations (left panels, Figure 11.4) and lower ma-
trix/array distances (right panels, Figure I1.4). In particular, the fitted DDT with
divergence function a(t) = ¢/(1 — t) under Scenario i, ii and iii performed similarly
well indicating the relative insensitivity to the DDT modeling assumptions with re-
spect to divergence function and the tree generative model. Under Scenario iv where
the marginal likelihood assumption deviates from Gaussian with heavier tails, the
similarity estimates from all methods deteriorate relative to Scenarios i-iii. Compar-
ing between methods, the similarities derived from hierarchical clustering with single
linkage is comparable to DDT model when evaluated by correlation of correlation,
but worse than DDT when evaluated by the matrix norm.
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Figure I1.4: Simulation studies for comparing the quality of estimated treatment sim-
ilarities based on DDT, hierarchical clustering, and empirical Pearson correlation. Two
performance metrics are used: (Left) Correlation of correlation (higher values are better);
(Right) Matrix distances with Frobenius norm for pairwise similarity and max norm for
three-way similarity (lower values are better). DDT captures both true pairwise (upper
panels) and three-way (lower panels) similarity best under four levels of misspecification
scenarios.
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Additional simulations. Another alternative to bring the information of the pos-
terior samples of ¢ and o? is to use the whole posterior samples instead of the fixed
representative statistics only. Following the same set-up, we offer another simula-
tion result to empirically compare the inference performance from the algorithm with
the posterior median only and the the whole posterior samples. See more details in

Supplementary Material Section A.5.4.

2.4.2 Simulation II: Comparison with Single-Stage MCMC Algorithms

We have also conducted extensive simulation studies that focus on the compu-
tational aspect of the proposed algorithms and demonstrate the advantage of the
proposed two-stage algorithm in producing higher quality posterior samples of the
unknown tree than classical single-stage MCMC algorithms. In particular, we demon-
strate that the proposed algorithm produces (i) MAP trees that are closer to the true
tree than alternatives (hierarchical clustering, single-stage MH with default hierar-
chical clustering or the true tree at initialization) and (ii) more accurate estimation
of pairwise treatment similarities compared to single-stage MCMC algorithms. See

Supplementary Material Section A.5 for further details.

Additional simulations and sensitivity analyses. Aside from the simulations
above focusing on the tree structure and the divergence time, Supplementary Material
A .4 offers additional details for Euclidean parameters including the parameter infer-
ence, algorithm diagnostics, and sensitivity analysis for the number of the synthetic
data. In particular, we empirically show that current §© and S () outperform other
candidate summary statistics in terms of bias in Section A.4.1. In Section A.4.2, we
present additional simulation results that demonstrate that the two-stage algorithm
(i) enjoys stable effective sample size (ESS) for (c,0?); (ii) leads to similar or better
inference on (c, 0?), as ascertained using credible intervals. In Section A.4.3, we check

the convergence of MH and the goodness of fit for ABC. A sensitivity analysis for the
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number of the synthetic data providing the possible acceleration for ABC is shown in

Section A.4.3.3.

2.5 Treatment Trees in Cancer using PDX Data

2.5.1 Dataset Overview and Key Scientific Questions

We leverage a recently collated PDX dataset from the Novartis Institutes for
BioMedical Research - PDX Encyclopedia [NIBR-PDXE, (Gao et al., 2015)] that in-
terrogated multiple targeted therapies across different cancers and established that
PDX systems provide a more accurate measure of the response of a population of
patients than traditional preclinical models. Briefly, the NIBR-PDXE consists of
> 1,000 PDX lines across a range of human cancers and uses a 1 x 1 x 1 design
(one animal per PDX model per treatment); i.e., each PDX line from a given patient
was treated simultaneously with multiple treatments allowing for direct assessments
of treatment hierarchies and responses. In this Chapter, we focus on our analyses
on a subset of PDX lines with complete responses across five common human can-
cers: Breast cancer (BRCA), Cutaneous Melanoma (CM, skin cancer), Colorectal
cancer (CRC), Non-small Cell Lung Carcinoma (NSCLC), and Pancreatic Ductal
Adenocarcinoma (PDAC). After re-scaling data and missing data imputation, differ-
ent numbers of treatments, I, and PDX models, J, presented in the five cancers were,
(I,J): BRCA, (20,38); CRC, (20,40); CM, (14, 32); NSCLC, (21,25); and PDAC,
(20,36). (See Supplementary Material Table A.9 for treatment names and Section
A.6.1 for details of pre-processing procedures.)

In our analysis, we used the best average response (BAR) as the main response,
by taking the untreated group as the reference group and using the tumor size dif-
ference before and after administration of the treatment(s) following Rashid et al.

(2020). Positive values of BAR indicate the treatment(s) shrunk the tumor more
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than the untreated group with higher values indicative of (higher) treatment effi-
cacy. To apply the Proposition 1, we also checked the distributional assumption for
each cancer (see Supplementary Material Section A.6.2). The treatments included
both drugs administered individually with established mechanisms (referred to as
“monotherapy”) and multiple drugs combined with potentially unknown synergistic
effects (referred to as “combination therapy”). Our key scientific questions were as
follows: (a) identify plausible biological mechanisms that characterize treatment re-
sponses for monotherapies within and between cancers; (b) evaluate the effectiveness
of combination therapies based on biological mechanisms. Due to a potentially bet-
ter outcome and lower resistance, combination therapy with synergistic mechanism
is highly desirable (Bayat Mokhtari et al., 2017).

DDT model setup. For all analyses we followed the setup in the Section 2.4.1 and

obtained N*¥* = 600, 000 synthetic datasets from the ABC algorithm (Section 2.3.1.1)
with prior ¢ ~ Gamma(2,2) and 1/0% ~ Gamma(1,1) and took the first 0.5% (d =
0.5%) closest data in terms of S and S©*). We calculated the posterior median of
(¢,0?) as described in Section 2.3.2. For the second-stage MH, we ran five chains of
the two-stage algorithm with (¢, 02) fixed at the posterior median by 10,000 iterations
and discarded the first 9,000 trees, which resulted in 5,000 posterior trees in total.
Finally, we calculated the Ry-tree (MAP) and iPCP based on 5,000 posterior trees
for all subsequent analyses and interpretations. All computations were divided on
multiple different CPUs (see the Supplementary Table A.7 for the full list of CPUs).
For the BRCA data with I = 20 and J = 38, we divided the ABC stage into 34
compute cores with a total of 141 CPU hours and maximum 4.7 hours in real time.
For the MH stage and the single-stage MCMC, we split the computation on 5 compute
cores with a total of 8.6 and 12 CPU hours, and a maximum 1.7 and 2.5 hours in real
time, respectively.

Our results are organized as follows: we provide a summary of the Ry-tree es-
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timation and treatment clusters in Section 2.5.2 followed by specific biological and
translational interpretations in Sections 2.5.3 and 2.5.4 for monotherapy and combi-
nation therapy, respectively. Additional results can be accessed and visualized using
our companion R-shiny application (see Supplementary Material Section A.6.6 for

details).

2.5.2 Ry -Tree Estimation and Treatment Clusters

We focus our discussion on three cancers: BRCA, CRC and CM here — see Sup-
plementary Materials Section A.6.5 for NSCLC and PDAC. In Figure 1.5, Ry-tree,
pairwise iPCP and (scaled) Pearson correlation are shown in the left, middle and right
panels, respectively. Focusing on the left two panels, we observe that the Ry-tree and
the pairwise iPCP matrix show the similar clustering patterns. For example, three
combination therapies in CM form a tight subtree and are labeled by a box in the R,-
tree of Figure I1.5 and a block with higher values of iPCP among three combination
therapies also shows up in the corresponding iPCP matrix with a box labeled. In our
analysis, the treatments predominantly target six oncogenic pathways that are closely
related to the cell proliferation and cell cycle: (i) phosphoinositide 3-kinases, PI3K;
(ii) mitogen-activated protein kinases, MAPK; (iii) cyclin-dependent kinases, CDK;
(iv) murine double minute 2, MDM2; (v) janus kinase, JAK; (vi) serine/threonine-
protein kinase B-Raf, BRAF. We label targeting pathways above for monotherapies
with solid dots and further group PISK, MAPK and CDK due to the common down-
stream mechanisms (e.g., Repetto et al., 2018; Kurtzeborn et al., 2019). Roughly, the
Rx-tree from our model clusters monotherapies targeting oncogenic processes above
and largely agrees with common and established biology mechanisms. For example,
all PI3K-MAPK-CDK inhibitors (solid square) belong to a tighter subtree in three
cancers; two MDM2 monotherapies (solid triangle) are closest in both BRCA and

CRC. While visual inspection of the MAP Ry-tree agrees with known biology, iPCP
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further quantifies the similarity by assimilating the information across multiple trees
from our MCMC samples. For the ensuing interpretations in Sections 2.5.3 and 2.5.4,
we focus on iPCP and verify our model through monotherapies with known biology,
since our a priori hypothesis is that monotherapies that share the same downstream
pathways should exhibit higher iPCP values. Furthermore, we extend our work to
identify combination therapies with synergy and discover several combination thera-

pies for each cancer.

2.5.3 Biological Mechanisms in Monotherapy

Our estimation procedure exhibits a high level of concordance between known bi-
ological mechanisms and established monotherapies for multiple key signalling path-
ways. From the Ry-tree in Figure IL.5, aside from the oncogenic process (solid dots)
introduced above, monotherapies also target receptors (hollow circles) or other non-
kinase targets (e.g. tubulin; crosses). We summarize our key findings and inter-
pretations along with their implications in monotherapy across different cancers for
PISBK-MAPK-CDK in this section and list the rest signaling pathways and their reg-
ulatory axes, namely, MDM2 from cell cycle regulatory pathways, human epidermal
growth factor receptor 3 (ERBB3) from receptor pathways, and tubulin from non-
kinase pathways in Supplementary Material Section A.6.4. For the following sections,
because we wish to conduct fully-exploratory analyses where we do not assume prior
knowledge about treatment mechanism, we set the threshold of the co-clustering at
the 75-th percentile of all pairwise iPCPs. Specifically, we set the cut-off at 0.753,
0.687 and 0.801 for BRCA, CRC and CM, respectively. See Supplementary Ma-
terial Section A.6.3 for more details about cut-off choices under full and partially

exploratory settings related to prior knowledge about monotherapies.

PISK-MAPK-CDK inhibitors. For treatments targeting PI3SK, MAPK and CDK,

treatments have the same target share high iPCP. In the NIBR-PDXE dataset, three
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Figure I1.5: The Ry-tree and iPCP for breast cancer (BRCA, top row), colorectal cancer
(CRC, middle row) and melanoma (CM, lower row). Three panels in each row represent:
(left) estimated Ry-tree (MAP); distinct external target pathway information is shown in
distinct shapes for groups of treatments on the leaves; (middle) estimated pairwise iPCP,
i.e., the posterior mean divergence time for pairs of entities on the leaves (see the result
paragraph for definition for any subset of entities); (right) scaled Pearson correlation for
each pair of treatments. Note that the MAP visualizes the hierarchy among treatments;
the iPCP is not calculated based on the MAP, but based on posterior tree samples (see
definition in Section 2.3.2)

PI3K inhibitors (BKM120, BYL719 and CLR457), two MAPK inhibitors (binimetinib
and CKX620) and one CDK inhibitor (LEE011) were tested, but different cancers

contain different numbers of treatments. Specifically, all three PI3K inhibitors present
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in BRCA and CRC, but only BKM120 is tested in CM; CRC contains two MAPK
inhibitors while BRCA and CM only have binimetinib; LEE011 is tested in all three
cancers. In Figure I1.6, BKM120, BYL719 and CLR457 share high pairwise iPCPs
(box (1)) and all target PI3K for BRCA and CRC (BRCA, (BKM120, CLR457):
0.8986, (BKM120, BYL719): 0.8002, (BYL719, CLR457): 0.8002; CRC, (BKM120,
CLR457): 0.7555, (BKM120, BYL719): 0.8041, (BYL719, CLR457): 0.7597); MAPK
(box (2)) inhibitors, binimetinib and CKX620, show a high pairwise iPCP in CRC
(0.7792). Asides from the pairwise iPCPs, our model also suggests high multi-way
iPCPs among PI3K inhibitors in BRCA (0.8002) and CRC (0.7513). Among these
inhibitors, PISK inhibitor of BYL719 was approved by FDA for breast cancer; MAPK
inhibitor of binimetinib was approved by FDA for BRAF mutant melanoma in com-
bination with encorafenib; and CDK inhibitor of LEEO11 was approved for breast
cancer.

Our model suggests treatments targeting different pathways also share high iPCP
values across different cancers. Monotherapies targeting different cell cycle regu-
latory pathways (PI3K, MAPK and CDK) exhibit high iPCPs. CDK inhibitor,
LEEO11, and MAPK inhibitors share high pairwise iPCP values in BRCA ((LEEO11,
binimetinib): 0.7709), CRC ((LEE011, binimetinib): 0.8617, (LEE011, CKX620):
0.7820) and CM ((LEEO11, binimetinib): 0.8210) in the Figure I1.6 with box (3).
High iPCP among MAPK and CDK inhibitors agree with biology, since it is known
that CDK and MAPK collaboratively regulate downstream pathways such as Steb
(Repetto et al., 2018). High pairwise iPCP values between PI3K and MAPK in-
hibitors were observed in box (3) in the Figure I1.6. Specifically, our model suggests
high pairwise iPCPs as follows: (i) BRCA, (binimetinib, BKM120): 0.7427, (binime-
tinib, BYL719): 0.7441, (binimetinib, CLR457): 0.7427)); (ii) CRC, (binimetinib,
BKM120): 0.7374, (binimetinib, BYL719): 0.7388, (binimetinib, CLR457): 0.7541,
(CKX620, BKM120): 0.7366, (CKX620, BYL719): 0.7357, (CKX620, CLR457):
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0.7676)); (iii) CM, (binimetinib, BKM120): 0.8882. Aside from the pairwise iPCPs
above, high multi-way iPCPs in BRCA (0.7422), CRC (0.7300) and CM (0.8882) also
show the similar information. From the existing literature, both PI3K and MAPK
can be induced by ERBB3 phosphorylation (Balko et al., 2012) and it is not surprising

to see high iPCPs between PI3K and MAPK inhibitors.
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Figure I1.6: Bar plot of iPCPs for pairs of combination therapies (red bars) and pairs of
monotherapies (green bars): (A) breast cancer, (B) colorectal cancer and (C) melanoma.
The bar plots are sorted by the iPCP values (high to low); pairs of treatments are shown
only if the estimated iPCP is greater than 0.7. Monotherapies have different known targets
which are listed in the bottom-right table (see Section 2.5.3 for more details and discussion

on monotherapies).
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2.5.4 Implications in Combination Therapy

Based on the concordance between the monotherapy and biology mechanism, we
further investigate combination therapies to identify mechanisms with synergistic
effect. In NIBR-PDXE, 21 combination therapies were tested and only one of them
includes three monotherapies (BYL719 + cetuximab + encorafenib in CRC) and the
rest contain two monotherapies. Out of 21 combination therapies, only three do
not target any cell cycle (PI3K, MAPK, CDK, MDM2, JAK and BRAF) pathways
(see Supplementary Material Table A.10 for the full list of combination therapies).
From the Ry-tree in Figure I1.5, combination therapies tend to form a tighter subtree
and are closer to monotherapies targeting PISK-MAPK-CDK, which implies that the
mechanisms under combination therapies are similar to each other and are closer to
the PIBK-MAPK-CDK pathways. We identified several combination therapies with
known synergistic effects and provide a brief description for each of the cancers in the
following paragraphs.

Breast cancer. Four combination therapies were tested in BRCA and three therapies

targeting PI3BK-MAPK-CDK (BYL719 + LJM716, BYL719 + LEEO11 and LEEO11 +
everolimus) form a subtree in Ry-tree with a high three-way iPCP (0.8719). Among
these combination therapies, PI3K-CDK inhibitor, BYL719 + LEEO11, suggests a
possible synergistic regulation (Vora et al., 2014; Bonelli et al., 2017; Yuan et al.,
2019). Based on the high iPCP between BYL719 + LEE(O11 and the rest two thera-
pies, we suggest synergistic effect for combination therapies targeting PISK-ERBB3
(BYL719 4+ LIM716), and CDK-MTOR (LEEO11 + everolimus) for future investiga-
tion.

Colorectal cancer. Our model suggests a high three-way iPCP (0.7437) among PI3K-

EGFR (BYLT719 + cetuximab), PI3K-EGFR-BRAF (BYL719 + cetuximab + enco-
rafenib) and PI3K-ERBB3 (BYL719 + LJMT716) inhibitors. Since the triple therapy

(BYL719 + cetuximab + encorafenib) enters the phase I clinical trial with synergy
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(Geel et al., 2014), our model proposes the potential synergistic effect for PI3K-
ERBB3 based on iPCP for future investigation. Of note, we found a modest iPCP
(0.6280) between the FDA-approved combination therapy EGFR-BRAF (cetuximab
+ encorafenib) and PI3BK-EGFR-BRAF (BYL719 + cetuximab + encorafenib) and
the modest iPCP can be explained by an additional drug-drug interaction between
BYL719 and encorafenib in triple-combined therapy (van Geel et al., 2017).
Melanoma. In NIBR-PDXE, three combination therapies were tested in CM, and all
of them consist one monotherapy targeting PIBK-MAPK-CDK and the other one tar-
geting BRAF. A tight subtree is observed in the Ry-tree and our model also suggests
a high iPCP (0.9222) among three combination therapies. Since PI3K, MAPK and
CDK work closely and share a high iPCP (0.8204) among monotherapies in CM, a
high iPCP (0.9222) among three combination therapies is not surprising. Since two
combination therapies of BRAF-MAPK (dabrafenib + trametinib and encorafenib +
binimetinib) are approved by FDA for BRAF-mutant metastatic melanoma (Dum-
mer et al., 2018a,b; Robert et al., 2019), we recommend the synergy for BRAF-PI3K
(encorafenib + BKM120) and BRAF-CDK (encorafenib + LEE011) inhibitors.

Comparison to alternative approaches. Unlike the probabilistic generative mod-
eling approach proposed in this Chapter, standard distance-based agglomerative hi-
erarchical clustering and Pearson correlation can also be applied to the PDX data to
estimate the similarity. However, simple pairwise similarities can be potentially noisy
and the uncertainty in the estimation is not fully incorporated due to the absence of
a generative model. As we showed in the Section 2.4.1 (Simulation I) that agglomer-
ative hierarchical clustering and the Pearson correlation leads to inferior recovery of
the true branching times and the true tree structure under different data generating
mechanisms mimicking the real data. As further evidence, we compute pairwise simi-
larities based on Pearson correlation (other distance metrics show similar patterns) in

the right panel of Figure I1.5. By mapping the original Pearson correlation p € [—1, 1]
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through a linear function %1, we make the range of iPCP and Pearson correlation
comparable. We observe that pairwise iPCP estimated through the DDT model is
less noisy than Pearson correlation. For example, both iPCP and Pearson correlation
in CM show higher similarities among combination therapy framed by a box, but

iPCP exhibits a clearer pattern than Pearson correlation.

2.6 Summary and Discussion

In translational oncology research, PDX studies have emerged as a unique study
design that evaluates multiple treatments when applied to samples from the same
human tumor implanted into genetically identical mice. PDX systems are promising
tools for large-scale screening to evaluate a large number of FDA-approved and novel
cancer therapies. However, there remain scientific questions concerning how distinct
treatments may be synergistic in inducing similar efficacious responses, and how to
identify promising subsets of treatments for further clinical evaluation. To this end, in
this Chapter, we propose a probabilistic framework to learn treatment trees (Ry-trees)
from PDX data to identify promising treatment combinations and plausible biological
mechanisms that confer synergistic effect(s). In particular, in a Bayesian framework
based on the Dirichlet Diffusion Tree, we estimate a maximum a posteriori rooted
binary tree with the treatments on the leaves and propose a posterior uncertainty-
aware similarity measure (iPCP) for any subset of treatments. The divergence times
of the DDT encode the tree topology and are profitably interpreted within the context
of an underlying plausible biological mechanism of treatment actions.

From the class of probabilistic models with an unknown tree structure component,
we have chosen the DDT mainly owing to the availability of a closed-form marginal
likelihood that directly links the tree topological structure to the covariance struc-
ture of the observed PDX data, which additionally decouples the Euclidean and tree

parameters; to the best of our knowledge this method has not been proposed or ex-
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plored hitherto for the DDT. The decoupling leads to efficient posterior inference via
a two-stage algorithm that confers several advantages. The algorithm generates pos-
terior samples of Euclidean parameters through approximate Bayesian computation
and passes the posterior medians to a second stage classical Metropolis-Hastings al-
gorithm for sampling from the conditional posterior distribution of the tree given all
other quantities. Through simulation studies, we show that the proposed two-stage
algorithm generates better posterior tree samples and captures the true similarity
among treatments better than alternatives such as single-stage MCMC and naive
Pearson correlations. The posterior samples of trees are summarized by iPCP, which
we propose to measure the empirical mechanistic similarity for multiple treatments
incorporating uncertainty.

Using the proposed methodology on NIBR-PDXE data, we estimate Ry-trees and
iPCPs for five cancers. Among the monotherapies, iPCP is highly concordant with
known biology across different cancers. For example, BKM120 and BYL719 show a
high iPCP value among treatments in breast and colorectal cancer, which corroborates
known mechanisms, since both monotherapies target the same biological pathway,
PI3K, and BYL719 was approved by FDA for breast cancer. The proposed iPCP can
also suggest improvements upon an existing combination therapy. We first identify
a combination therapy with known synergy (not based on the our data) and then
determine which additional therapies (monotherapies or combination therapies) have
high iPCPs when considered together with the existing combination therapy. Based
on the NIBR-PDXE data, for each cancer, we suggest potential synergies between
PISK-ERBB3 and CDK-MTOR for breast cancer, PI3K-ERBB3 for colorectal cancer,
and BRAF-PI3K and BRAF-CDK for melanoma that could be potentially explored
in future translational studies.

Our current analysis infers treatment trees based on the drug responses from the

NIBR-PDXE dataset which provides treatment similarity information that may be
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used to guide potential treatment strategies. However, there are a few limitations.
First, the PDX experiments may fail to capture the difference in the microenviron-
ment between the human and the immunodeficient mouse (Dobrolecki et al., 2016),
which must be considered in disease contexts when findings are generalized to human.
As PDX technology matures, this can be compensated by better PDX experiments
that capture the tumor microenvironment more precisely. For example, one can use
the genetically engineered mice to reconstruct the human immune system (Abdolahi
et al., 2022), and some studies have started to adapt this method in the context of im-
munotherapies (Zhao et al., 2018). Second, on experimental design, current literature
points to the potential advantage of designs with multiple animals per treatment and
patient (Abdolahi et al., 2022). We can incorporate the random effects in the current
model of (2.4) for the multiple-animal-per-patient design and we refer the reader to
the Supplementary Material Section A.7 for more details. Also, to evaluate PDX
designs with fewer treatments and patients that is common in co-clinical trials (e.g.,
Koga and Ochiai, 2019), we conducted a simulation for two datasets with a smaller di-
mension ((/,J) = (5,5) and (10, 15)) which confirmed the advantage of the proposed
method in terms of recovering treatment similarities (see Supplementary Material
Section A.5.5). Finally, from a statistical perspective, we have assumed independent
patients without using the underlying patient-specific genomic information that is
also available in the NIBR-PDXE. By including patient-specific genomic information,
we may further improve our ability to identify synergistic treatments that may be spe-
cific to a subset of patients. One approach to utilizing genomic information could be
to extend the DDT model to incorporate patient-specific genomic information in the
mean structure or the column covariance of the marginal likelihood of Equation (2.4).
In addition, models with non-Gaussian marginal likelihood and non-binary treatment
tree in principle can be defined by considering generative tree models based on gen-

eral diffusion processes (Heaukulani et al., 2014; Knowles and Ghahramani, 2015).
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Both extensions raise significant, non-trivial methodological and computation issues
(e.g., deriving tractable likelihoods; finding low-dimensional summary statistics for

new parameters) and constitute the foundation for future work.

Code and data availability We also provide a general purpose code in R that ac-
companies this manuscript along with all the necessary documentation and datasets
required to replicate our results (see https://github.com/bayesrx/RxTree). Fur-
thermore, to aid access and visualization of the results, we have also developed an

R-shiny application (see Supplementary Material Section A.6.6).

48


https://github.com/bayesrx/RxTree

CHAPTER III

Geometry-driven Bayesian Inference for

Ultrametric Covariances

3.1 Introduction

Ultrametric matrices are central to a multitude of machine learning and scientific
applications. For instance, in a multivariate Gaussian distribution, the covariance
matrix is an ultrametric matrix if and only if the Gaussian density is multivariate
totally positive of order two (Karlin and Rinott, 1983; Lauritzen et al., 2019), which
implies a conditional positive dependency between two random variables (Fallat et al.,
2017). Recently, ultrametric matrices have been applied in various scenarios as co-
variance matrices in Gaussian distributions, such as graphical models (Fallat et al.,
2017) and Brownian motion tree models (e.g. Neal, 2003; Sturmfels et al., 2021), with
applications in cancer biology (Yao et al., 2023) and finance (Agrawal et al., 2020).
However, due to the inequalities required on ultrametric matrices, the geometry of
the space of ultrametric matrices is non-trivial, as it is neither a manifold (McCul-
lagh, 2006) nor a convex set (Chierchia and Perret, 2020). As a result, challenges lie
in both inference and computation, leading existing methods to primarily focus on
point estimation without uncertainty quantification. In this paper, we characterize

the geometry of the set of ultrametric matrices and develop a flexible Bayesian frame-
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work to obtain posterior samples of ultrametric matrices efficiently, thereby providing
uncertainty quantification alongside point estimates.

An ultrametric matrix is a square matrix with non-negative elements that satisfies
the ultrametric inequality (Dellacherie et al., 2014). When the diagonal elements
are all positive, the matrix is called a strictly ultrametric matrix and guarantees
positive definiteness (Nabben and Varga, 1994). In the context of covariance, strictly
ultrametric matrices are of interest as they ensure positive definiteness. However,
the ultrametric inequality imposes a special structure on the matrix elements and
entails challenging constraints on the space of positive definite matrices. Specifically,
consider off-diagonal elements in a covariance matrix of dimension three by three.
The ultrametric inequality requires that at least two elements be the same with the
third element being equal or bigger. Consequently, the space of ultrametric matrices
is embedded in a higher-dimensional space of positive definite matrices, represented as
a simplicial cone contained in the spectrahedron (Sturmfels et al., 2021). Moreover, to
address the inequality and the resulting geometry, only projection- (e.g. Bravo et al.,
2009) and relaxation-based (e.g. Lauritzen et al., 2019) estimation methods exist.

While directly tackling the inequality and the geometry of the space of ultramet-
ric matrices is difficult, the same set of inequalities determines a bijection between
a (strictly) ultrametric matrix and a rooted tree structure and (Dellacherie et al.,
2014; Steel, 2016). This bijection allows us to characterize the structure of the space
by leveraging the geometry and the coordinate system of tree space introduced by
Billera-Holmes-Vogtmann (BHV) (Billera et al., 2001). Specifically, our proposed
algorithm makes efficient local moves on the BHV space along geodesics between
neighboring tree topologies, resulting in efficient sampling and posterior matrices
that automatically satisfy the ultrametric inequalities. These moves do not rely on
projection or relaxation during posterior computation. Therefore, our algorithm al-

lows for straightforward posterior summaries of both central tendency and dispersion
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using the Fréchet mean (Miller et al., 2015) and geodesic distance (Owen and Provan,
2011) in the BHV space.

Most existing approaches for ultrametric matrix estimation treat the problem
as an optimization task constrained by a set of ultrametric inequalities. However,
the constrained objective function is highly non-convex (Chierchia and Perret, 2020)
for standard optimization algorithms. To satisfy the ultrametric inequality, various
optimization techniques are employed. For example, Bravo et al. (2009) uses a mixed-
integer programming formulation and projects the sample covariance onto the space
of ultrametric matrices. Similarly, Lauritzen et al. (2019) and Agrawal et al. (2020)
relax the constraints and address the optimization problem through a dual prob-
lem. Additionally, Chierchia and Perret (2020) circumvent the constraint by using
subdominant ultrametricity and the min-max operator. However, without additional
projection or relaxation, all these methods can not satisfy the ultrametric inequali-
ties. Moreover, they fail to estimate the matrices geodesically, which is essential for
uncertainty quantification.

By leveraging a bijection between the labelled, rooted tree structure and ultra-
metric matrices, our proposed makes main three contributions. First, we define a
geometry for the space of ultrametric matrices by relating an existing decomposition
on an ultrametric matrix to coordinate of a point in the BHV tree space. Second, we
define a general consistent Markovian prior on the set of ultrametric matrices, which
includes several existing priors on the tree structure as special cases. Third, we devise
an efficient algorithm to draw posterior samples that makes local moves geodesically
on the BHV tree space.

The rest of the Chapter is organized as follows: we introduce the characterization
of the ultrametric matrix space and decomposition of the ultrametric matrix in the
tree space in Section 3.2. Section 3.3 and Section 3.4 delineates a general prior on

the ultrametric matrix and the posterior inference via Metropolis-Hasting algorithm,
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respectively. In Section 3.5, we conduct a series of simulations to evaluate our algo-
rithm in terms of the matrix recovery with the uncertainty quantification. Section
3.6 demonstrate the utility of the proposed method with an pre-clinical data anal-
ysis for potential cancer treatment. The paper concludes by discussing implications
of the findings, limitations, and future directions in Section 3.7. A general purpose
code in R with packages and datasets for the proposed method is also provided on

https://github.com/bayesrx/ultrametricMat.

3.2 Ultrametric Matrices and their Geometry

3.2.1 Bijection of the Ultrametric Matrix and the Tree Structures

Consider p-dimensional continuous random vectors X; = (X1, ... ,Xl-p)T with the
covariance matrix X7 = {o;;},5,k = 1,...,pforall i = 1,...,n. We call X7 a
strictly ultrametric matrix if 7 has positive diagonal elements o;; > 0 and satisfies

the following conditions:

0;; > 0k >0, and 0, > min{o;,, 0}, for all j # k # h. (3.1)

We consider only strictly ultrametric matrices and simply refer to such matrices as
ultrametric. The first condition ensures that the variable j is more similar to itself
than any other variables. The second condition is referred to as the ultrametric
inequality, which guarantees the bijection between the ultrametric matrix and the
underlying rooted tree structure if all diagonal elements are positive (McCullagh,
2006; Bravo et al., 2009). Specifically, 37 uniquely identifies a weighted tree T with
p leaves if the element of 0;; measures the sum of branch lengths from the root to
the most recent common ancestor of leaves j and k (Bravo et al., 2009; Dellacherie
et al., 2014). Conversely, a tree T also uniquely determines an ultrametric matrix %7

by the same construction above. Equation (3.1) also ensures the positive definiteness
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of the ultrametric matrix if the matrix has positive diagonal elements (Dellacherie
et al., 2014).

To this point, though the bijection of the ultrametric matrices and the tree struc-
ture is established, the information from the geometry of the BHV space is still not
fully utilized to characterized the space of ultrametric matrices, resulting in ineffi-
cient inference. For example, existing methods decompose (Nabben and Varga, 1994;

Bravo et al., 2009) the ultrametric matrix as follows:

2p—1

ET = Z dj?]j?);-r, (32)
j=1

where {v;} are p-dimensional binary vectors with values in {0,1} and at least one
non-zero element, and d; is a positive branch length on each branch. The vector
set V' = {v1,...,v9,_1} collectively represents a nested partition corresponding to
the binary tree topology. Specifically, for every vector v; € V with more than one
non-zero elements, we can find the other two vectors that partition the vector v; such
that vy, + vy, = v; and vy, v, € V, referred to as the partition property of V' (Bravo
et al., 2009). However, this partition property also imposes a difficult condition when
updating a certain vector element in the set V. If one aims to replace a vector in
the set, the new vector must satisfy two conditions simultaneously: (i) it should
be decomposed as the sum of two existing vector elements in the original set, and
(ii) it must identify another vector such that the sum of these two vectors forms
another vector already present in the set. These two conditions pose challenges for

the inference algorithm to move locally in an efficient manner.

3.2.2 Geometry of the Set of Ultrametric Matrices

Denote by U, the set of p x p ultrametric matrices. Bayesian inference on U,

requires a geometry that enables local moves for any sampling algorithm that seeks
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to explore the parameter space efficiently. McCullagh (2006) notes that the set U, is
neither convex nor a manifold, but does not prescribe a geometry and proposes an
algorithm that approximately projects an arbitrary covariance onto U,. One of our
main contributions is to equip U, with a CAT(0) geometry through its links with the
BHYV space (Billera et al., 2001).

Consider the set of acyclic graphs T known as trees with a unique vertex known
as the root. Nodes with degree one are referred to as leaves, including the root, and
all other nodes have degree greater than two and are known as internal nodes. We
consider trees T on p leaves labelled L = {0, 1,...,p} with the root labelled as leaf
0. Vertices are connected by edges from the set &, which is the union of the set
EX of edges connecting internal vertices with the set £ of edges connecting internal
vertices to the p leaves and the root. Resolved trees T are those with internal vertices
of degree three and p — 2 internal edges in &L, while unresolved trees are trees T
with fewer than p — 2 internal edges and containing internal vertices of degree four
or higher.

The topology of a tree T is characterized in the connectivity between its internal
edges in &L, encoded in the set of partitions into two of L = {0,1,...,p} called splits
pertaining to each edge in £L. Precisely, each edge e € £L uniquely determines a split
L = AUA® upon its removal from a tree T, where A contains leaves on the descendant
subtree of e and its complement A° = L — A contains the rest of the leaves. Denote
by e4 the corresponding edge. The set A C L identifies a split L = AU A°, and we
use split to refer to A or the edge e, interchangeably; context will disambiguate the
two.

Arbitrary collections of splits do not characterize a valid tree topology, but only a
collection of compatible ones do: two edges e4, and ey, are compatible if one of A1 N
Aq, AiNAS and ATN A, from the associated splits is empty. Again, we interchangeably

refer to compatibility of splits A; and As to sometimes mean compatibility of the edges
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e, and en,, and this extends to a collection {Ay, ..., Ay} of subsets of L.

Leaf edges e4 € £ associated with singleton splits A C L are compatible with all
internal edges in &%, and thus do not contribute to the topology of T. A compatible
edge set &p thus fully characterizes the topology of a tree T. There are (2p — 3)!!
distinct topologies on fully resolved trees on p leaves.

The BHV space 7;1 parameterizes the space of labelled, resolved and unresolved
trees T on p leaves and prescribes a continuous geometry based on the lengths |e 4]
of internal edges e4 € EL, where A is associated with a split of L. A fully resolved
topology is parameterized by ]R’;BQ, where each axis corresponds to one of the p — 2
internal splits that characterize the topology and the coordinates encode the corre-
sponding lengths of the internal edges. The boundary of ]R’;f consists of unresolved
trees with internal nodes of degree greater than 3, obtained by shrinking the inter-
nal edges to zero. Each of the (2p — 3)!! topologies is identified with a copy of ]R%Q,
known as an orthant, and the BHV space 7;1 is defined by the (2p—3)!! orthants glued
isometrically along their common boundaries comprising unresolved trees. Panel (A)
of Figure III.1 illustrates that two neighbouring orthants share a common edge in
T,[. By accounting for lengths of p leaf edges and the root edge, space 7, of rooted,

labelled trees on p leave then becomes

where we do not allow for zero-length leaf edges nor zero-length root edge. The
distance dppv(711,7s) between two trees 77 and T on p leaves is defined to be the
infimum of lengths of paths between 77 and T, in 7;1 , which are straight lines within

each orthant. A natural distance on 7, then is

diree(T1, T2) == dpuv (T, To) + ||z — |2,

95



where || — yl|y is the Ly norm, and z,y € RZE" are the vectors of leaf edge lengths,

including the root edge, in T} and T5, respectively,

Theorem 3.2.1. The map ® : U, — T, is a bijection. Equipped with the distance
d(E{, Zg) = dtree(q)(le)a (I)(EzT))

the space U, is CAT(0).

Proof. The BHV space 7,/ with distance dggy is known to be CAT(0) (Billera et al.,
2001, Lemma 4.1). The space (RZ5'| - |l2) is Euclidean and hence CAT(0), and
(7, diree) as a product of two CAT(0) spaces is thus CAT(0) (Bridson and Haefilger,
1999). The distance d on U, is the pullback of diee from 7, and the proof follows if it
is established that the map @ is injective. We prove this for the case of fully resolved
trees in the interior of each orthant; an identical argument holds for unresolved ones
on the boundaries.

Recall the decomposition of an ultrametric matrix X7 = VDV in (3.2) with
a binary matrix V € {0,1}?*~1 and a diagonal matrix D € RGP iy
positive entries corresponding to edge lengths of (p — 2) internal edges, p leaf edges,
and one root edge. Every column vector v of V' maps uniquely to an edge of a tree
T the matrix X7 uniquely determines (Dellacherie et al., 2014), and thus to an edge
e associated with a split L = AN A€ on the leaves indexed by L = {0,1...,p} of
T'. Tt suffices to establish a bijective relationship between the matrix V' that encodes
topology of a tree T with the edge set £ of compatible splits that identify an orthant
in 7,, since the edge lengths in D evidently map to the coordinates of a point within
that orthant. From the partition property of V' the proof is complete if it is established
that any triplet (v;,vj,v;) of columns vectors in V' satisfy v; = v; + v, if and only
if there exists a triplet (e4,,ea;,ea,) of edges/splits in T' that are mutually pairwise

compatible.
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For each edge e, associated with a split A define the unique p-dimensional binary
vector by with ones at indices that are in A and zero for indices in A°. Arrange the
vectors into a p X (2p — 1) binary matrix B = (ba,,...,ba,, ,)" corresponding to the
(2p — 1) edges in a fully resolved T.

In order to relate the columns of B to those of V' possessing the partition property,
we use the logical and operator A on columns of B. In other words, the compatibility
criterion that one of A1 N Ay, A; N A5 and A N A, associated with two splits e4, and
e4, be empty translates to one of by, Aba,,ba, Aba, and ba, A by, equalling the zero
vector 0, where b denotes the negation of b. Accordingly, suppose first that v; = v+
for a triplet (v;,v;, vx) of columns in V' with a corresponding triplet (ba,,ba;,ba,) of
columns in B satisfying b, = ba, V ba,, where V is the logical or operator. It is then
easily verified that by, Abs, = 0 while Z_)Aj Aba, # 0 and ba; A Z_)Ak # 0, rendering the
splits corresponding to the pair (ba,,ba,) compatible. Similarly, ba, A ba, # 0, and
either 5,41. ANba; = 0or by, A [_)A]. = 0 but not both, since otherwise ba, # ba; V ba,.
The splits corresponding to pair (ba,,ba;) are hence compatible; a similar argument
applies to the pair (ba,, b, ) rendering them compatible. In fact, we observe that the

preceding arguments are biconditional, and proof of the reverse assertion follows. [

The bijection ® engenders a new decomposition of X7 that decouples the geometric
and topological content of a tree T, and is equivalent to that in (3.2), proof of which

follows from that of Theorem 3.2.1.

Corollary 3.2.2. Each edge ey, for A C L , in a collection & of compatible
edges/splits is associated with a binary matrix F4, with Ex(j,k) = 1if jk € A

and 0 otherwise, such that the ultrametric matrix can be decomposed as

ST =) JealEa. (3.3)

€A€8T

Every collection & of (2p — 1) compatible splits determines a unique set of {E4}
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of binary matrices that completely characterizes topology of the tree T'; there are
(2p — 3)!! such compatible splits. More precisely, the subset of (p — 2) internal splits
within each & that determine (p — 2) binary matrices within {F4}, corresponding
to the internal edges, identifies the orthant in the BHV space 7;1 pertaining to the
topology of T'. The remaining p binary matrices within {E£4} contain a single non-
zero entry on the diagonal and represent the (p + 1)-axes in RI:{)I that identify splits
associated with the leaf edges and the root edge in 7,. The coefficients |es| as ey
varies in Er represents the edge lengths of 7" and ascribe coordinates to the (2p —
1)—dimensional point within 7,. Figure III.1 illustrates the decomposition of an
ultrametric matrix X7 in U, with corresponding tree 7' € 7, and a compatible edge

set & = {e1234, €123, €23, €1, €2, €3, €4 }.

5'}‘ = {eq23, €23}
(B) I . )

2e23 1, T 1 1110 000 0 111 1
3 T —|e 1110 0110 1111
0%3 0I_—[a 2 I8 =lewaslll 11 0| +lezalo 1 1 of+lerzaallt 1 1 1
000 0 0000 1111
T e--lnl T 0 3 @
: ! 4 1000 0000 000 0 0000
1 ' I L 0000 0100 0000 0000
' Er=ErVE&F +lewllg o o oftlezlly o o of*leslly o 1 ofFlesllo o 0 o
i ' I _ 0000 0000 000 0 0001
€14 H i €123 ST_{e123le23}
:
g,}: = {e1, €2, €3, €4, €1234}

|e14| |e123|

Figure II1.1: The decomposition of £ and the corresponding tree T in the tree space.
Panel (A) shows the tree space for tree wit 4 leaves. Panel (B) demonstrate the decompo-
sition of the X7 by the edge set shown in the tree space.

From the bijection in Theorem 3.2.1, upon discounting the leaf edges, the decom-
position in Corollary 3.2.2 thus provides a novel representation of a tree in the BHV

tree space.

3.3 General Priors for Ultrametric Matrix Parameters

The bijection of the ultrametric matrix and the tree with Theorem 3.2.1 and
Corollary 3.2.2 guides prior specification for ultrametric-matrix-valued parameters.

Let p(XT) be the prior on the ultrametric matrix 37. Corollary 3.2.2 enables the
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factorization of the matrix into the topology £r and the branch lengths L, given by:
p(E") = p(Er, Lr) = me(Er)me(Lr | Er), Lr = {leal : ea € Er}, (3.4)

where 7g(&r) is the prior on the topology and 7z (Lr | £r) is the prior on the branch
lengths conditioning on the topology. Here p(X7) is the density function over R®+1)r/2
with respect to Lebesgue measure; p(Ep, L) is the density function over the product
space of rooted trees and R?P~1 with respect to the product measure of counting and
Lebesgue measures on respective spaces for £ and L.

For the tree topology, we focus on resolved trees with a smaller number of possible
tree topologies. Specifically, we consider the binary fragmentation, which describes
the topology as a recursive splitting rule of dividing a block into two sub-blocks. The

splitting rule is formulated as a distribution:

me(Er) = H m(ea, ep | eaun), (3.5)

eA,eBEST

where mg(ea, ep | eaup) is the probability of a block AUB splitting into two sub-blocks
of A and B.

Currently, multiple models describe different splitting rules with various distribu-
tions of (3.5) and properties on the topology. For example, Berestycki et al. (2007)
introduces a time-irreversible Markovian fragmentation process that forbids the re-
versed process as a coagulation process. One popular choice for the splitting rule is
of Gibbs type, which assigns the probability of (3.5) as a product of weights depend-
ing only on the size of sub-blocks (Pitman, 2006). In this Chapter, we focus on the
Gibbs-types splitting rule that results in a consistent Markovian binary fragmentation
process. Specifically, the resulting consistent fragmentation engenders a Kolmogorov
consist distribution on the tree topology and guarantees the infinite exchangeability

with the existence of the fragmentation process. It is well-known that beta-splitting
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from Aldous (1996) is the only consistent Markovian binary fragmentation (McCul-

lagh et al., 2008) and assigns the probability as follows:

D(na+ B+ D0(ng + B +1)
T(na+ng+ 26 +2)

7T£(€A,€B \ €AUB) X ) (3-6)

where n 4 is the cardinality of the set A and 5 € (—2, 00| is the hyper-parameter that
controls the distribution. For example, f = —1.5 corresponds to a uniform prior on
topology, while 5 = 0 corresponds to the Yule model. Further details can be found
in McCullagh et al. (2008).

Regarding the prior on the branch lengths 7.(Lr | £r), we adopt a flexible ap-
proach by assign different dependencies between the branch lengths and the topology.
For example, diffusion models (e.g. Neal, 2003; Knowles and Ghahramani, 2015) as-
sign a prior through a pre-specified hazard function with the number of leaves on the
current branch as a parameter for the hazard function, resulting in branch lengths
that always sum to 1 from the root to the leaf nodes. Alternatively, we can assume
the independence between the branch lengths and topology and let the branch length
follows a distribution with positive support, in which case the lengths of the paths

from the root to the leaves may differ and not equal to one.

3.4 Posterior Inference

3.4.1 Metropolis-Hastings Algorithm

The decomposition of the ultrametric matrix in the tree space allows us to lever-
age the geometry with the coordinate system in the space of rooted trees with p
leaves, motivating our proposal of an efficient Metropolis-Hastings algorithm (MH)
that moves geodesically on the BHV space. For ease of presentation, we focus on

the multivariate normal distribution with the ultrametric matrix as the covariance
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matrix and formulate the model as:
X, "% NJ0,57)i=1,...,n. (3.7)

Extensions to other models, e.g., elliptical distributions including the multivariate
t-distribution, can be done by changing the likelihood. In addition, in the presence
of other parameters, sampling steps in addition to our proposed MH algorithm are
needed.

We detail the rationale of an MH iteration in the space of four-leaf rooted trees by
proposing a geodesic move to propose a candidate, as highlighted by a green arrow
path in Panel (F) of Figure II1.2. Specifically, given a tree 7™ with four leaves at
I-th iteration, we propose a candidate via a geodesic move from T to T} and,(m+1)
with all matrices on the path being ultrametric matrices. For example, five matrices
on the geodesic path from 7 to 7" ™ ™ are shown in Panel (A) to (E) and the
ultrametric inequalities hold for all matrices on the paths. One possible algorithm to
achieve this is from Nye (2020) that gives a random walk on the BHV space. How-
ever, we observe that Nye’s algorithm results in a slower mixing (see Supplementary
Material Section 1.2). We make a more efficient move geodesically on the space be-
cause our algorithm always proposes a new topology while Nye’s algorithm updates
the edge set more conservatively with a higher probability of staying in the same
orthant.

Based on by Nye’s algorithm, we improve the algorithm by decoupling the updates
for the edge set and the branch lengths. We force the algorithm to always propose a
new topology (though may be rejected). At each iteration, our algorithm updates the
edge set by proposing a new edge set that lands on the nearby orthant and adjusts
the branch lengths by moving the tree locally within the same orthant. An important

result from the CAT(0) geometry of the BHV space is to allow us to find compatible
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Figure I11.2: An illustration of proposing a new edge set for a tree with 4 leaves. Given
a tree T(™ | the proposal function randomly shrinks a edge and moves to a intermediate

tree (T(™)) on the boundary. Two candidate trees (T 1(m+1) and T2(m+1)) that locate in the
nearby orthant of tree 7™ can be proposed by our algorithm. The root edge is ignored in
matrices in Panel (A) to (E).

splits easily (see Supplementary Material Section B.1). Specifically, if we focus on the
resolved trees with p — 2 internal edges, the BHV space permits only three candidate
splits (Nye, 2020) that are compatible with the edge set &L\ {ea}, which includes
the original split e4. We ensure that the algorithm proposes a new tree topology
by excluding the original split e4 and randomly pick a new split from the remaining
two candidates with equal probability. The original length is assigned to the newly
proposed split, resulting in a new edge set £r. We then calculate the acceptance

probability with the normal likelihood and the prior m¢ described in Section 3.3 as

follows:

(3.8)

« = Imax {]_, WS(ST/)NP(()? ET’)q(gT ’ ST/) } ’

Wg(gT)Np(Oa XT)q(Er | Er)

where N,(0,X7) is the normal likelihood with mean zero and the ultrametric matrix
YT as the covariance, and q(E7 | £7) is the jumping probability from the edge set
Er to the new edge set &r. Assuming that we delete the split uniformly and select

the new candidate split with equal probability, we obtain two equivalent jumping
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probabilities with ¢(Er | Er) = q(Ep | Er). We then update the edge set based on
the acceptance rate. After updating the topology, we adjust all branch lengths by a
regular MH update with the edge set fixed, representing our algorithm locally moves
within the same orthant. Consequently, the characterization with the coordinate
system allows us to discover nearby orthants of different topology and locally move
our algorithm along geodesics between nearby orthants on the BHV space. Our
rationale is to make many computationally cheap local moves over long iterations
rather than a few computationally expensive moves, resulting in better exploration
of the space of rooted trees. Our MH algorithm is summarized in Algorithm 1.
Returning to the example for a tree of 4 leaves in Figure II1.2. Given a tree 70"
at [-th iteration with split set {es34, €34}, the proposal function randomly shrinks an
internal split of |egss| = 0 and results in a intermediate multifurcating tree Tg(m) with
the split set containing only one element of {ezs} on the boundary of three nearby
orthants. For the intermediate tree, three splits that correspond to nearby orthants
are compatible (eg34, €12 and e134). After excluding the original split of ea34, we choose
a new split randomly from the remaining candidates representing the underlying trees
of T ™) and T ™V If our algorithm choose a new split of eyo, We assign the
same branch length to the new split as |eja| = |ea34|. Once a new edge set is proposed,
we then calculate the acceptance rate of (3.8) and update the topology based on the

acceptance rate. Last, we update the branch lengths given the current edge set.

3.4.2 Posterior Summaries

Once we obtain the posterior samples of edge sets and the branch lengths, we
map each edge set with branch lengths onto corresponding ultrametric matrix and
tree structure. We then summarize posterior trees and matrices in two ways: (i)
point estimation with the representative trees, specifically, the mazimum a posterior

(MAP) tree and the Fréchet mean tree (Miller et al., 2015); and (ii) uncertainty
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Algorithm 1 MH algorithm using the BHV space characterization
Input:
(a) The edge set Er = ELUEE, where EL is the internal edge set with each internal
split representing a axis in BHV space and £ is the leaf edge set;
(b) The branch lengths of L7 = {le| : e € Er};

(c) Priors on edge set mg and branch lengths 7;

(d) Number of iterations M and a standard deviation o, for updating the branch
lengths.

Output:
e Posterior samples of edge sets &y and branch lengths L of size M.

1: form=1,...,M do

2: procedure UPDATE THE EDGE SET(Er)

3: Randomly remove a split from the internal edge set es € 5§(m);

4: Three candidate splits (e4, €4 and e 4~ ) are compatible with the remainging
edge set EL,., \ {eal};

5: Exclude the original split e, and propose the new split ez from the rest
two candidates (ep € {eas, ear});

6: Assign branch lengths |eg| = |eal;

7 Calculate the acceptance rate o from (3.8) and generate u ~ Unif(0, 1);

8: if ©u < o then

9: Return the edge set Epmi1y = {ep} UEpm \ {€a};

10: else

11: Return the edge set Epminy = Epmy;

12: procedure UPDATE THE BRANCH LENGTHS(Lr)

13: for e € 8T(m+1) do

14: Generate the new branch length with truncated normal distribution
TruncN (g 0y (€a, 02);

15: Calculate the acceptance rate.

quantification via the frequency of true subtrees visited by the posterior samples and

the 95% credible intervals for each element in the ultrametric matrix.

3.5 Simulation Studies

We empirically demonstrate the utility of the proposed method through a series
of simulation studies and show that the proposed method can restore the underlying

ultrametric matrix under different true data generating mechanisms. Without loss
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of generality, we present bijection and simulation results without root edge. Given
the true ultrametric matrix 27" with p = 10 leaves, we consider three data gen-
erating mechanisms of (i) correct specified normal distribution X; &N (0,%7°)
and (ii) mis-specified t distribution X; i t,(0,%7°) with degrees of freedom four
and three (v = 3 and 4). We generate the data with five different sample sizes of
n € {3p, 5p, 10p, 25p, 50p} and 50 independent independent replicates.

We summarize the posterior samples by using the statistics in Section 3.4.2. We
calculate the MAP tree and the mean tree (Miller et al., 2015) as representative
trees and measure the matrix norm and the BHV distance (Owen and Provan, 2011)
between the true underlying tree and the representative tree. For each split in the true
tree, we measure the split-wise recovery by computing the frequency of the posterior
samples that contains the true splits. Lastly, we also investigate the coverage for each
element in the matrix for the element-wise 95% credible interval. For point estimation,
we compare the representative tree from our method to Bravo et al. (2009), which
formulates the matrix estimation as a mixed-integer programming (MIP) problem.
Under the matrix norm, we<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>