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ABSTRACT

In this dissertation, we study the problem of designing an optimal incompressible fluid flow
to achieve the most efficient heat transfer between a pair of balanced heat source and sink. We
obtain a priori bounds on the heat transfer in terms of various measures of bulk flow intensity,
such as the mean kinetic energy. A key question in our analysis is how the choice of source–sink
function should enter into the optimization. We begin in Chapter III by presenting our results on the
two-dimensional version of this problem from [SFT23], where we obtained a general bound on heat
transfer in terms of a Hardy norm of the source–sink function, and introduced a ‘pinching’ flow
design to saturate the scaling law of this bound for a pair of point-like sources and sinks. We discuss
the implications of our bounds for physical, buoyancy-driven internally heated convection, which is
a cousin of the more famous Rayleigh–Bénard problem. Chapter IV extends our bounds on heat
transfer in various directions, to higher dimensions as well as to a dumbbell-shaped domain with a
pair of point source and sink separated by a thin neck. Chapter V improves our analysis of the point
source–sink problem by finding the optimal prefactor in our bound on heat transfer, for a subclass of
radially symmetric heat profiles. Interestingly, we find that the bulk properties of the fluid flow do
not enter into the leading order optimization of heat transfer in this setup. Instead, the heat transfer
is set first and foremost by the particular choice of pinching flow profile nearby the sources and
sinks. We end with a short conclusion section that provides some suggestions for future work.
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CHAPTER I

Introduction

1.1 Overview

Waking up in a cold winter morning, there is nothing better than a hot cup of coffee. However,

a lot of times, the scorching temperature stops you from taking even a sip of it. How to cool a

cup of coffee effectively is a simple enough question but the mechanism and theories behind this

problem actually capture the nature of so many aspects of our lives. From liquid metal batteries

[SZ16], to mantle convections underneath the ground [MB20, STO01], heat transfer has been a

topic discussed in math, physics, geography and many other areas. Determining the upper limits

of heat transfer efficiency and designing mechanical structures to approach that limit have been

important topics for decades.

These heat transfer problems can be characterized by the heat source types. The well-known

Rayleigh–Bénard convection(RBC) considers heating from the top or bottom boundaries of a

fluid layer. With the first systematic experiments conducted by French experimentalist Henri

Bénard dating back to 1900 [Bé00] and Lord Rayleigh’s analytical explanations in 1916 [Ray16],

researchers had been focusing on RBC and produced various results regarding heat transfer efficiency

both numerically and analytically. Heat transfer for RBC is traditionally measured using the

dimensionless Nusselt number (Nu) which is the ratio of total heat flux to conductive heat flux.

Of broad and current interest is quantifying Nu in terms of the Rayleigh number (R) and Prandtl

number (Pr) where R is related to the temperature difference across the fluid layer and Pr is related

to ratio of heat transfer between convection and conduction. We’ll take a deeper look at these
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parameters later in Section 2.1 when introducing our governing equations. One main open question

in this area is the asymptotic scaling of Nu with respect to R as R → ∞. The two contending

theories are the ‘classical’ regime (Nu ∼ R1/3) proposed by Malkus and Priestley in 1954 at the

same time [Mal54, Pri54] and the ‘ultimate’ regime (Nu ∼ R1/2) proposed by Spiegel in 1963

[Spi63]. Various experiments have been carried out with most data pointing towards the Nu ∼ R1/3

regime [CCC+01, NSD00, UMS11]. Numerical simulations also exhibit the ‘classical’ regime

results for R ∈ [1010, 1015] [HFN+12, IKJK20]. However, as R gets larger, the computational cost

gets increasingly more expensive. So it becomes really difficult to do numerical simulations for R

going beyond the 1015 scale especially in higher dimensions. As the time of writing this dissertation,

we have no numerical evidence showing ‘ultimate’ regime.

The type of heat driven flow we consider in this dissertation is a variant of RBC: we study

internally heated convection(IHC) where the flow is driven by heating inside the bulk instead of on

the boundary. This type of heating arises in many areas. The liquid batteries and mantle convection in

the earth mentioned above all involve internal heating. Contrary to the RBC case, recent experiments

and numerical simulations show that the ‘ultimate’ regime is obtainable [LAG18, BLAG19]. In

fact, there are simulations showing heat transfer beyond the ‘ultimate’ regime [MLBG19]. As a

result, the topic of IHC has attracted recent theoretical interests. In this dissertation, we study the

heat transfer of IHC analytically and derive a priori bounds for the heat transfer efficiency with

examples demonstrating the flow designs that help us achieve these bounds.

To measure the heat transfer in IHC, a wide variety of quantities like the Nussult number

[KGOM22] and mean temperature [GS12, Gol15] have been used. Here, we choose to measure

the efficiency of heat transfer via the mean-squared temperature gradient. This makes sense as

a diagnostic tool since by Fourier’s law, the diffusive heat flux is proportional to the negative

gradient of the temperature. Therefore, a highly efficient heat transfer will tend to minimize (a

norm of) the temperature gradient. Many studies have been carried out assuming an unbalanced

heat profile which means the net heat added to the system is non-zero. Some examples are uniform

heat source [LDB04, GS12, Gol15, WD11, WD12, Gol16], arbitrary heat profiles with positive
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spatial-temporal average [Tob22] and heat releasing particles [DY22]. In this dissertation, we

will focus on IHC with balanced heat profiles (net heat added to the system is zero) and insulating

boundary conditions. Our goal will be to deduce a priori bounds for heat transfer that work for a

large set of heat profiles.

To construct a priori bounds, a widely used method is the ’background method’ introduced by

Doering and Constantin in 1990s [DC94, CD95, DC96]. Later, the method was applied to mixing

efficiency problems [TDG04, DT06, TP08, Thi12] where, like in this dissertation, the goal was to

understand how quickly a temperature-like quantity could be stirred up to a nearly constant state.

Adapting the optimal control approach introduced in [DT19, Tob22], which integrates the idea of

‘background method’ and ‘optimal designs’, will lead us to identify the scaling law of the optimal

heat transfer depending on the strength of the advection. For the main part of our analysis, we

drop the momentum equation and replace it with a kinetic energy constraint since this allows us to

construct nearly optimal flows. We’ll exhibit examples, prove that the bounds are sharp and finally

study a particular case, namely the point source–sink profile to identify the optimal prefactor in

the scaling law. Altogether, our result will shed light on what it takes to design fluid flows that

optimally transfers heat between source and sink.

1.2 Layout of the dissertation

We start with background material in Chapter II including the governing equations in Section

2.1, Poincaré type and div-curl lemmas we’ll use throughout our analysis in Section 2.3. Then in

Section 2.4 we address the well-posedness of our governing equation and establish L∞ estimates on

our temperature field given some reasonable restrictions on our heat profile functions.

Chapter III starts our analysis of IHC which contains our results from the published paper

[SFT23] where we established our a priori bounds for the advection–diffusion equation and

Boussinesq equations and found these bounds to be sharp in two-dimensional examples. In Chapter

IV we construct more examples extending these results to higher dimensions and a thin neck domain.

A main theme is a ‘pinching’ flow design which we show is optimal for point source–sink heat

3



functions in 2-d.

Comparing these flows in different domains and dimensions, we notice that the dominant heat

transfer is determined by the portion of the flow where pinching happens rather than the bulk flow

between the source and sink of the heat profile thus, we have some freedom in choosing how and

where the pinching happens to achieve the same scaling. Chapter V turns to analyze the best possible

prefactor in pinching-based heat transfer. We transform our problem to a prescribed Jacobian type

problem which has been studied in the literature in various settings [Mos65, DM90, CDK12, CD12,

GKL21b, GKL21a, GKL23]. Adapting the proof from [GKL21a], we update our a priori bound

from [SFT23] by obtaining its optimal prefactor for radially symmetric source–sink functions.

We close the dissertation with a short conclusion section describing the dominant heat transfer

scaling and prefactor results. Furthermore, we propose some related open questions regarding

internally heated flow and some scenarios where the ‘pinching’ flow designed could be useful.
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CHAPTER II

Governing Equations, Poincaré Type Lemmas and Well-Posedness

In the following sections, we start by introducing the main equations governing our studies. Then

in Section 2.2 we introduce some common notations used throughout the dissertation. In Section

2.3, we prove a Poincaré type lemma and a div-curl lemma which we will use in later chapters.

Finally, in Section 2.4 we show the governing advection-diffusion equation for our optimization

is well-posed even if the velocity field is only assumed to have bounded kinetic energy and to be

divergence-free. This requires some delicate but more or less standard Nash-type estimates on the

L∞ norm of the temperature.

2.1 Advection–Diffusion Equations

Heat in a moving fluid can be transported in two main ways: advection and diffusion where

advection is the transport of heat by the bulk motion of fluid and diffusion (or more precise,

molecular diffusion) is the thermal motion of fluid particles in the microscopic scale. In other words,

advection denotes the bulk transfer of heat by a fluid flow and diffusion denotes the microscopically

random flux of heat from high temperature to low temperature regions. Mathematically, the heat

change comes in three forms: advection driven by fluid flow (u · ∇T ), diffusion in the fluid

(∆T ), and bulk heat sources and sinks (f ). Combining these three factors, we have the following

dimensional advection-diffusion equation which governs most of the analysis in this dissertation:

∂t∗T
∗ + u∗ · ∇∗T ∗ = κ∆∗T ∗ +Hf
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where stars (*) denote dimensional quantities and operators. Here, f sets the already non-

dimensional heat source–sink function with heating rate H . The coefficient of thermal diffusivity

is given as κ. Throughout the dissertation, we work on bounded Lipschitz domains Ω ⊂ Rd with

d ≥ 2 satisfying insulating boundary conditions:

n̂ · ∇T ∗ = 0 at ∂Ω.

Another common assumption we have is the divergence-free condition and no-penetration

boundary condition on the velocity field u:

∇∗ · u∗ = 0 in Ω,

u∗ · n̂ = 0 at ∂Ω.

Sometimes, we also require u to obey the momentum equation specified by the dimensional

Boussinesq equations:

∂t∗u
∗ + u∗ · ∇∗u∗ + ρ−1∇∗p∗ = ν∆∗u∗ + αgT ∗g

Here, g = ∇∗φ∗ gives the non-dimensional acceleration of buoyancy with the gravitational coef-

ficient as g and the coefficient of thermal expansion as α. ρ denotes the density and ν gives the

kinematic viscosity. We use a conservative acceleration field, and note the consistent lack of a minus

sign in the potential.

The above system involves a lot of parameters and units. For such systems, nondimensionaliza-

tion is a common technique used to simplify and re-parametrize the problem. Here, we first fix a

representative lengthscale L; for example, we may take L = |Ω| 1d where |Ω| is the volume of the

domain Ω. We then introduce the nondimensional variables

x = L−1x∗, t = τ−1t∗, u =
τ

L
u∗, p = P−1p∗, T = θ−1T ∗, (II.1)
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where τ , P and θ are time, pressure and temperature scales to be determined (fixing τ and L as time

and length scales immediately sets L/τ as the velocity scale). Substituting these choices into the

above equations gives, after some manipulations,

∂tu+ u · ∇u+
Pτ 2

ρL2
∇p = ντ

L2
∆u+

αgθτ 2

L
Tg, (II.2a)

∇ · u = 0, (II.2b)

∂tT + u · ∇T =
τκ

L2
∆T +

τH

θ
f. (II.2c)

Now choose τ = L2/κ to be the diffusive timescale, P = ρL2/τ 2 as the pressure scale, and

θ = τH as the temperature scale. Consequently, the equations become

∂tu+ u · ∇u+∇p = ν

κ
∆u+

(
αgHL5

κ2ν

)(ν
κ

)
Tg, (II.3a)

∇ · u = 0, (II.3b)

∂tT + u · ∇T = ∆T + f. (II.3c)

Upon defining

Pr :=
ν

κ
, R :=

αgHL5

κ2ν
, (II.4)

we arrive at the standard nondimensional Boussinesq equations which we’ll use throughout the

dissertation:

∂tu+ u · ∇u+∇p = Pr∆u+ PrRTg, (II.5a)

∇ · u = 0, (II.5b)

∂tT + u · ∇T = ∆T + f (II.5c)
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in Ω with boundary conditions:

u · n̂ = 0, (II.6a)

n̂ · ∇T = 0 (II.6b)

at ∂Ω.

2.2 Useful Notation

Here we summarize some common notational conventions that we’ll use throughout the dissertation.

We use X ∨ Y and X ∧ Y for the maximum and minimum of two quantities. We write X ≲ Y if

there is a constant C with X ≤ CY , and X ∼ Y if X ≲ Y ≲ X . If the constant C depends on a

parameter a, we indicate this by writing X ≲a Y . The notation X ≪ Y means that X/Y → 0 in a

limit. Likewise, o(X) is a quantity tending to zero upon division by X .

The d-dimensional volume of a set A is |A|. The average of φ over A is then

 
A

φdx =
1

|A|

ˆ
A

φdx.

The notations ⟨φ⟩τ and ⟨φ⟩ give spatial-temporal averages over Ω and up to time τ , or across infinite

time, respectively:

⟨φ⟩τ =

 τ

0

 
Ω

φ(x, t)dxdt and ⟨φ⟩ = lim sup
τ→∞

⟨φ⟩τ .

We only use the limit superior long-time average.

As usual, Lp(Ω) is the space of functions whose p-th power is integrable on Ω. We write H1(Ω)

for the Sobolev space of functions in L2(Ω) whose weak derivatives are in L2(Ω). We use H−1(Ω)

for the space of continuous linear functionals on H1(Ω) that are mean-free, meaning that they take
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constant functions to zero, and define the dual norm

∥g∥H−1(Ω) := max
φ(x)

´
Ω
gφdx(´

Ω
|∇φ|2dx

) 1
2

=

(ˆ
Ω

∣∣∇∆−1g
∣∣2 dx) 1

2

. (II.7)

This and other such maximizations are performed over non-constant φ ∈ H1(Ω). Not every

g ∈ H−1(Ω) is a function, in which case the ‘integral’
´
Ω
g · dx stands for the action of g as a

functional. Hardy and BMO spaces will be used; see Section 3.3.1 for definitions and a brief review.

Finally, since this dissertation deals only with insulating temperature boundary conditions, we

write ∆−1 for the inverse Laplacian operator with Neumann boundary conditions. In formulas,

h = ∆−1g if
ffl
Ω
hdx = 0 and 

∆h = g in Ω

n̂ · ∇h = 0 at ∂Ω
.

2.3 Some Useful Lemmas

In this section, we present some useful inequalities we will use in the following sections.

Lemma 2.3.1. Let Ω ⊂ Rd be a bounded, Lipschitz domain. We have the following Poincaré-type

inequality:

∥u∥L2(Ω) ≤ C(Ω, d)∥∇u∥L2(Ω)

for all u satisfying the no-penetration boundary conditions u · n̂ = 0 at ∂Ω.

Proof. We prove this lemma by contradiction. Suppose there exists a sequence {un}∞n=1 such that

∥un∥L2(Ω) = 1 and ∥∇un∥L2(Ω) → 0

where the first statement holds for all n, and the second limiting statement holds as n → ∞.
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Applying the usual Poincaré inequality involving subtracting the mean, we get that

∥un −
 
Ω

un∥L2(Ω) ≲Ω,d ∥∇un∥L2(Ω) → 0.

Recall the normal trace map u 7→ u · n̂ maps L2(Ω) ∩ {u|∇ · u = 0} → H−1/2(∂Ω) continuously

[GR86]. Therefore,

∥
 
Ω

un · n̂∥H−1/2(∂Ω) → 0

by the no-penetration boundary conditions on un.

We claim this last line implies that

 
Ω

un → 0.

Since we are discussing the convergence of vectors in Rd to zero, and since all norms on finite

dimensional space are equivalent, we must simply show that

c 7→ ∥c · n̂∥H−1/2(∂Ω)

defines a norm on Rd. The only non-obvious point to check is that if c · n̂ = 0 as an element of

H−1/2(∂Ω), then c = 0. The former statement means that

ˆ
∂Ω

c · n̂(x)φ(x) dHd−1(x) = 0

whenever φ ∈ H1(Ω), since the dual H1/2(∂Ω) of H−1/2(∂Ω) is nothing other than the trace of

H1(Ω). In particular, we can work with φ ∈ C∞(Ω) in which case it becomes clear that all we are

saying is that

c · n̂ = 0 Hd−1-a.e. on ∂Ω.

To conclude, we note that the outwards pointing unit normal n̂ to any bounded Lipschitz domain

cannot be a.e. constant. Hence, c is perpendicular to a basis and it follows that c = 0.
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At this point, we have shown that

un → 0 in L2(Ω).

This is a contradiction, since we started by taking {un} to have L2-norm equal to one for all n. This

completes the proof of the desired Poincaré-type inequality.

Another inequality we use repeatedly is the div-curl inequality of Coifman, Lions, Meyers and

Semmes [CLMS90] adapted to our no-penetration boundary conditions.

Lemma 2.3.2. If u(x) and v(x) belong to L2(Ω) with u being divergence-free, u · n̂ = 0 at ∂Ω,

and v being curl-free, we have the following inequality:

∥u · v∥H1(Ω) ≲Ω,d ∥u∥L2(Ω)∥v∥L2(Ω) (II.8)

Proof. The original div-curl lemma of Coifman, Lions, Meyers and Semmes gives us

∥u · v∥H1(Rd) ≲d ∥u∥L2(Rd)∥v∥L2(Rd). (II.9)

for u(x) and v(x) belonging to L2(Rd;Rd) satisfying divergence-free and curl-free conditions

respectively. Note that as u satisfies no-penetration boundary conditions, we can extend u with 0 to

Rd preserving divergence free condition. And for v, note that as v = ∇φ for some potential φ on

Ω, we can apply Sobolev extension theorem to φ which gives us an extension φ̃ on Rd such that

∥∇φ̃∥L2(Rd) ≤ C(Ω)∥∇φ∥L2(Ω).

Combining the above arguments, we have the inequality in the lemma.

11



2.4 Well-Posedness of the Problem

Looking back at the governing equations II.5 introduced in Section 2.1, before analyzing the

relationship between u and T , one must first ask whether solutions are well-defined. To be more

precise, we need to address the following three questions:

(i) How are the solutions defined (in the sense of weak solutions) ?

(ii) Does the weak solution exist?

(iii) Is the weak solution unique?

We study these questions for the advection-diffusion equation

∂tT + u · ∇T = ∆T + f (II.10)

which is the core equation in our analysis. Other than the insulating and no-penetration boundary

conditions II.6 introduced in Section 2.1, we will further assume the following mean-free conditions

throughout the dissertation:

 
Ω

T (x, t)dx =

 
Ω

f(x, t)dx = 0

for all time t > 0.

Remark 2.4.1. If the velocity field u(·, t) ∈ L∞(Ω) for a.e. t > 0 with uniformly bounded spatial

norm, the standard arguments for hyperbolic equations would ensure the existence and uniqueness

of weak solutions [Eva10]. Our technical challenge is to adapt to the case where
〈
|u|2

〉
< ∞

and divergence-free. We’ll be able to show weak solutions exist and are unique once we demand

T ∈ L∞(Ω) for a.e. t > 0 so u · ∇T = ∇ · (uT ) can be defined in the sense of distributions. The

crucial steps in these arguments follow the “Neumann boundaries” analog of what is presented in

the notes [KRR12].

Remark 2.4.2. As the problem we are dealing with is balanced heat transport with insulating

boundary conditions, it may seem too much to assume T is mean-free. Actually, if we assume the
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solutions exists and take the time derivative of spatial integral of T , plugging in equation II.10, we

have

∂t

(ˆ
Ω

Tdx

)
=

ˆ
Ω

∂tTdx =

ˆ
Ω

∆Tdx+

ˆ
Ω

fdx−
ˆ
∂Ω

u · ∇Tdx

=

ˆ
∂Ω

n̂ · ∇Tds+
ˆ
Ω

fdx−
ˆ
∂Ω

Tu · n̂ds = 0

using divergence theorem. The last step follows from the insulation, no-penetration boundary

conditions and f being mean-free. It follows that the spatial mean of T is constant for all time t > 0.

So we may just assume T to be mean-free.

Remark 2.4.3. In the later chapters, we may add extra requirements on f or u when necessary,

especially in Chapter V when doing prefactor analysis. However, the divergence-free conditions

and boundary conditions in II.5 and II.6 will always remain active.

In the following subsections, we will define weak solutions in the usual ways and prove that

under prescribed constraints on the heat profile f , we are able to ensure L2 and L∞ bounds of our

temperature field T which guarantees the well-posedness of our problem via a common Galerkin

approximation approach as used in [Eva10].

2.4.1 Weak Solutions and L2 Estimates

In this subsection, we will start by introducing weak solutions and prove an L2 estimate on T

which is crucial in our variational principle analysis later in Chaper III.

As our velocity field is divergence free and we work under the assumption that
〈
|u|2

〉
<∞, we

try to start with minimal regularity requirements on u and add necessary assumptions on the source

function f to make sure we get wanted estimates.

Let (·, ·) denote the duality pairing between H−1 and H1 that are mean-free introduced in

Section 2.2. Adapting the definition from [Eva10], we say that

T ∈ L2
loc([0,∞);H1(Ω)) with ∂tT ∈ L2

loc([0,∞);H−1(Ω)) (II.11)

13



is a weak solution of the above PDE II.10 if

(∂tT, φ) +

ˆ
Ω

(∇T − uT ) · ∇φ = (f, φ) (II.12)

a.e. in time, for all φ ∈ H1(Ω). The space L2
loc([0,∞);H1(Ω)) is defined to be the space of all

strongly measurable functions g : [0, T ) → H1(Ω) satisfying

ˆ
K

∥g∥2H1(Ω)dt <∞

for any compact K ⊂ [0,∞). The definition of L2
loc([0,∞);H−1(Ω)) is similar with the H1 norm

inside the integrand replaced by the H−1 norm. When we encounter such spaces later on, we may

use short hands L2
t,locXx to denote functions that lies in spatial Banach space X for each time

t ∈ [0, T ) satisfying the above integrable condition with the X norm in the integrand.

Note that the defining equation of weak solution in II.12 comes from multiplying II.10 by φ and

integration by parts formally using divergence free and no-penetration boundary conditions. This

technique is used commonly to define weak solutions which allows us to have weaker regularity

restriction on the solution sets. It follows from usual arguments such as Section 5.9.2, Theorem 3 in

[Eva10] that II.11 implies T : [0,∞) → L2(Ω) is continuous, and hence we can impose initial data

simply by requiring

lim
t→0

T (·, t) = T0 ∈ L2(Ω).

In the usual arguments from [Eva10], the coefficients u is assumed to be L∞ bounded so that

the integrations make sense. Since we wish to take u ∈ L2
t,locL

2
x, to make sure

´
Ω
uT · ∇T makes

sense and ˆ
Ω

uT · ∇T = 0

we need

T (·, t) ∈ L∞(Ω) a.e. t > 0.
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This L∞ bound would ensure the product uT ∈ L2 for t > 0 and thus the above integral makes

sense. Eventually the L∞-boundedness of solutions at positive times will be justified with an a

priori estimate in the next Section 2.4.2. But first, we establish some standard estimates involving

the L2-norm of T .

Proposition 2.4.4. Let T be the weak solution defined above satisfying II.11. Let f ∈ L2
loc([0,∞);

H−1(Ω)) be such that

1

t

ˆ t

0

e−2λ1(1− ϵ
2
)(t−s)||f(·, s)||2H−1(Ω) ds→ 0 as t→ ∞ (II.13)

for some ϵ > 0 with λ1 being the first non-trivial Neumann eigenvalue of the (negative) Laplacian on

Ω (i.e., it is the largest constant such that λ1∥θ∥2L2(Ω) ≤ ∥∇θ∥2L2(Ω) for all mean-zero θ ∈ H1(Ω)).

Then we have the following estimates on T :

d

dt
||T ||2L2(Ω) + 2(1− ϵ

2
)||∇T ||2L2(Ω) ≤

1

ϵ
||f ||2H−1(Ω) (II.14)

||T (·, t)||2L2(Ω) ≪ t as t→ ∞. (II.15)

Remark 2.4.5. Note that the condition II.13 holds for steady f = f(x).

Proof. Using the H−1-norm II.7, testing the equation II.12 by T at a.e. time shows that

d

dt

1

2
||T ||2L2(Ω) + ||∇T ||2L2(Ω) = (f, T )

≤ ||f ||H−1(Ω)||∇T ||L2(Ω)

≤ 1

2ϵ
||f ||2H−1(Ω) +

ϵ

2
||∇T ||2L2(Ω)

for any ϵ > 0 and, upon rearrangement, we get the first bound on T :

d

dt
||T ||2L2(Ω) + 2(1− ϵ

2
)||∇T ||2L2(Ω) ≤

1

ϵ
||f ||2H−1(Ω)

15



For the next bound, Poincaré’s inequality states for our mean-zero temperature fields,

λ1||T ||2L2(Ω) ≤ ||∇T ||2L2(Ω).

then we get
d

dt
||T ||2L2(Ω) + 2λ1(1−

ϵ

2
)||T ||2L2(Ω) ≤

1

ϵ
||f ||2H−1(Ω).

and integrating in the time domain from 0 to t gives

||T (·, t)||2L2(Ω) ≤ ||T (·, 0)||2L2(Ω)e
−2λ1(1− ϵ

2
)t +

1

ϵ

ˆ t

0

e−2λ1(1− ϵ
2
)(t−s)||f(·, s)||2H−1(Ω) ds. (II.16)

Then it follows from our assumption on f that

||T (·, t)||2L2(Ω) ≪ t as t→ ∞.

Remark 2.4.6. Note that from the bound II.14, we see that

f ∈ L2
t,locH

−1
x =⇒ T ∈ L2

t,locH
1
x

and we will therefore assume that

f ∈ L2
loc([0,∞);H−1(Ω))

as this is consistent with the desired estimates on T .

Remark 2.4.7. The second bound II.15, though not an Lp bound, is a crucial bound we need in the

later sections to make sure ⟨|∇T |2⟩ = ⟨fT ⟩ using integration by parts.
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2.4.2 L∞ Estimates

We now adapt Nash’s argument as presented in Kiselev, Roquejoffre and Ryzhik’s notes

[KRR12] to produce a sufficient condition on f for controlling the L∞-norm of a weak solution T .

Proposition 2.4.8. Suppose the initial temperature T0 = T (·, 0) ∈ L2(Ω) as we assumed in the

previous sections, and the sink-source function f satisfies

ˆ t

0

1

(t− s)
d
2p

||f(·, s)||Lp(Ω) ds <∞ ∀ t > 0.

for some p ∈ [d/2,∞], then we have T ∈ L∞(Ω) for a.e. t > 0 and

||T (·, t)||L∞(Ω) ≲Ω,d
1

t
d
2p

||T0||Lp(Ω) +

ˆ t

0

1

(t− s)
d
2p

||f(·, s)||Lp(Ω) ds. (II.17)

Proof. Recall by Duhamel’s principle,

T (·, t) = S0,tT0 +

ˆ t

0

Ss,tf(·, t) ds

where Ss,t denotes the forward-time solution operator from time s to time t, and Ss,tg(x, τ) is

defined by solving 
∂τw + u · ∇w = ∆w in Ω× (s, t]

n̂ · ∇w = 0 at ∂Ω
(II.18)

with w(·, s) = g(·, s). Note that as our initial data are mean-free, we have the solution w is also

mean-free. Therefore, taking spatial L∞ norm on both sides,

||T (·, t)||L∞(Ω) ≤ ||S0,tT0||L∞(Ω) +

ˆ t

0

||Ss,tf(·, t)||L∞(Ω) ds. (II.19)

So if we can find an estimate of the forward time operator Ss,t using initial data, we could get an

L∞ bound in terms of T0 and f . Under our insulation boundary condition, using the parabolic

17



maximum principle result from [PW84], we have the following bound:

||S0,tw||L∞(Ω) ≤ ||w||L∞(Ω).

If we can further show an L1 → L∞ bound of the operator Ss,t, we can use interpolation theorem to

show Ss,t being bounded from Lp to L∞ for any p ∈ (1,∞).

Observe that

∥S0,t∥L1→L∞ = ∥S0, t
2
S0, t

2
∥L1→L∞ ≤ ∥S0, t

2
∥L1→L2∥S0, t

2
∥L2→L∞ . (II.20)

Here, to simplify the proof, we use properties of adjoint operators.

Let A : X1 → X2 be a linear map between Banach spaces X1, X2, and let

⟨φ, f⟩Xi

denote the action of functional φ ∈ X∗
i on f ∈ Xi for i = 1, 2 where X∗

i is the dual of Xi. We call

A∗ : X∗
2 → X∗

1 the adjoint of A induced by A in the sense that for any φ ∈ X∗
2 and f ∈ X1, we

have

⟨A∗φ, f⟩X1
= ⟨φ,Af⟩X2

.

In our case, as the Banach spaces are Lp spaces, the action of functional on vectors can be identified

with the spatial integral of their product. Note that from the definition of adjoint operators, it’s

follows that (A∗)∗|Xi
= A and ∥(A∗)∗∥Xi

= ∥A∥Xi
.

Here we claim that the adjoint operator S∗
0, t

2

will have the same bound from L1 to L2 as S0, t
2
(to

be proved later in Lemma 2.4.10), which implies

||S0, t
2
||L2→L∞ = ||(S∗

0, t
2
)∗||L2→L∞ = ||S∗

0, t
2
||L1→L2 = ||S0, t

2
||L1→L2 . (II.21)

The above result will reduce our problem to focus on the bound from L1 to L2. Now similar to the
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L2 estimate case, let’s start with the defining equation for Ss,t II.18. Multiplying both sides by w

and integration by parts as usual, we get

d

dt

1

2
||w||2L2(Ω) ≤ −||∇w||2L2(Ω).

To introduce the L1 norm into the inequality, we can use the Gagliardo–Nirenberg inequality which

shows for all mean zero w that

||w||L2(Ω) ≲Ω ||w||θL1(Ω)||∇w||1−θ
L2(Ω) with θ =

2

2 + d
.

Upon rearrangement,

||∇w||L2(Ω) ≳Ω

||w||1+2/d

L2(Ω)

||w||2/dL1(Ω)

and combining this with the differential inequality we conclude that

d

dt
||w||2L2(Ω) ≤ −C(Ω)

||w||2+4/d

L2(Ω)

||w||4/dL1(Ω)

.

Now let w+, w− be the positive and negative parts of w respectively which solves II.18 with their

corresponding initial data. We would have

d

dt

ˆ
Ω

w± = 0

using divergence-free and Neumann boundary conditions. So we have the L1 norm of w itself is

conserved, i.e.,

||w(·, t)||L1(Ω) = ||w(·, 0)||L1(Ω) a.e. t > 0.

Hence,
d

dt
||w||2L2(Ω) ≤ −C(Ω)

||w||2+4/d

L2(Ω)

||w(·, 0)||4/dL1(Ω)

.
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Now if we call

X(t) = ||w(·, t)||2L2(Ω)

we have shown the differential inequality

X ′ ≤ −cX1+2/d with c =
C(Ω)

||T (·, 0)||4/dL1(Ω)

.

Integrating this up from 0 to t yields that

1

X2/d(t)
≥ 2

d
ct+

1

X2/d(0)
.

Note that
1

X2/d(0)
=

1

||w(·, 0)||4/dL2(Ω)

≲Ω,d
1

||w(·, 0)||4/dL1(Ω)

=
c

C(Ω)
.

Hence,

X(t) ≲d
1

cd/2td/2
.

Unpacking the definitions shows that

||w(·, t)||2L2(Ω) ≲Ω,d
1

td/2
||w(·, 0)||2L1(Ω)

which says

||S0,tw||L2(Ω) ≲Ω,d
1

t
d
4

||w(·, 0)||L1(Ω).

Plugging into II.20 and using II.21, we get

||S0,tw||L∞(Ω) ≲Ω,d
1

t
d
2

||w(·, 0)||L1(Ω).

20



Then interpolation (Riesz-Thorin) theorem tells us that

||S0,tw||L∞(Ω) ≲Ω,d
1

t
d
2p

||w||Lp(Ω)

for all p ∈ (1,∞).

Using the above estimate in II.19, we have

||T (·, t)||L∞(Ω) ≲Ω,d
1

t
d
2p

||T0||Lp(Ω) +

ˆ t

0

1

(t− s)
d
2p

||f(·, s)||Lp(Ω) ds.

Of course, the first term remains bounded since we will anyways take T0 ∈ L2(Ω) ⊂ L1(Ω). The

second term remains bounded by our our assumption on f .

Looking at the integrand in the above inequality, it seems that the assumption rests crucially

on what happens for s ≈ t. So we may improve our L∞ estimate to emphasize the significance of

taking s ≈ t.

Corollary 2.4.9. Instead of the assumption on f in the above result, we may impose the following

weaker assumption on f :

ˆ t

0

e−(1−ϵ)λ1(t−s)

(t− s)
d
2p

||f(·, s)||Lp(Ω) ds <∞ ∀ t > 0

for some ϵ ∈ (0, 1) and p ∈ [d/2,∞) which again gives us an L∞ estimate:

||T (·, t)||L∞(Ω) ≲Ω,d
e−(1−ϵ)λ1t

ϵ
d
2p t

d
2p

||T0||Lp(Ω) +

ˆ t

0

e−(1−ϵ)λ1(t−s)

ϵ
d
2p (t− s)

d
2p

||f(·, s)||Lp(Ω) ds.

Proof. Using the exponential decay in L2 of solutions established in the previous subsection II.16

on the homogeneous system II.18, taking ϵ→ 0, we get

||S0,tw||L2(Ω) = ||w(·, t)||L2(Ω) ≤ ||w(·, 0)||L2(Ω)e
−λ1t.
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Here, we use this by writing, for any ϵ ∈ (0, 1)

S0,t = St−tϵ/2,tStϵ/2,t−tϵ/2S0,tϵ/2

and applying the bounds

||St−tϵ/2,t||L2→L∞ ∨ ||S0,tϵ/2||L1→L2 ≲Ω,d
1

t
d
4 ϵ

d
4

and ||S t
3
, 2t
3
||L2→L2 ≤ e−(1−ϵ)λ1t

the third of which is our exponential decay estimate in L2. Thus,

||S0,t||L1→L∞ ≲Ω,d
e−(1−ϵ)λ1t

ϵ
d
2 t

d
2

emphasizing the importance of t ≈ 0. Now the conclusion is that

||T (·, t)||L∞(Ω) ≲Ω,d
e−(1−ϵ)λ1t

ϵ
d
2p t

d
2p

||T0||Lp(Ω) +

ˆ t

0

e−(1−ϵ)λ1(t−s)

ϵ
d
2p (t− s)

d
2p

||f(·, s)||Lp(Ω) ds.

This allows us to assume the existence of some a ∈ (0, 1) and p ∈ [d/2,∞] such that

ˆ t

0

e−aλ1(t−s)

(t− s)
d
2p

||f(·, s)||Lp(Ω) ds <∞ ∀ t > 0

in order to guarantee the desired L∞ bound.

Finally, we discuss the adjoint operator S∗
0,t and prove the bound we claimed in II.21.

Lemma 2.4.10. Let S0,t be the operator defined in II.18, we have the adjoint operator S∗
0,t satisfies

the same bound as S0,t from L1(Ω) to L2(Ω).

Proof. Let φ be solutions of II.18 with initial conditions φ(·, 0) = f(·). And let ψ be the solution
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to the following equation:


∂τψ(·, τ)− u(·, t− τ) · ∇w(·, τ) = ∆w(·, τ) in Ω× (0, t]

n̂ · ∇w = 0 at ∂Ω
(II.22)

with initial condition ψ(·, 0) = g(·, 0). Note that as u is divergence-free, we have −u(·, t− τ) is

still divergence-free. Treating −u(·, t− τ) as another divergence-free velocity field, all the results

we have proved for II.18 still applies to the above equation. So as long as we can show that the

above equation defines adjoint operator S∗(0, t), our claim is proved. To show II.22 gives us the

adjoint operator S∗(0, t), it suffices to show that

ˆ
Ω

g(x)φ(x, t)dx =

ˆ
Ω

f(x)ψ(x, t)dx.

Let

B(s) =

ˆ
Ω

ψ(x, t− s)φ(x, s)dx

then taking time derivative and plugging in II.18 and II.22, we get

dB

ds
=

ˆ
Ω

ψ(x, t− s) (∆φ(x, s)− u(x, s) · ∇φ(x, s)) dx

−
ˆ
Ω

(∆ψ(x, t− s) + u(x, s) · ∇ψ(x, t− s))φ(x, s)dx

=

ˆ
Ω

−∇ψ(x, t− s) · (∇φ(x, s)− u(x, s)φ(x, s)) dx

+

ˆ
Ω

(∇ψ(x, t− s) + u(x, s)ψ(x, t− s)) · ∇φ(x, s)dx

=

ˆ
Ω

∇ · (uφψ) dx = 0

where the last step follows from divergence theorem and u being divergence-free with no-penetration
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conditions. So we have

ˆ
Ω

g(x)φ(x, t)dx = B(t) = B(0) =

ˆ
Ω

f(x)ψ(x, t)dx

as wanted and the result follows.

2.4.3 Existence and Uniqueness of Weak Solutions

Recall

(∂tT, φ) +

ˆ
Ω

(∇T − uT ) · ∇φ = (f, φ). (II.23)

To show existence of weak solutions, we first show a sequence of approximation of solutions exists

and then show the sequence has converging subsequence with limit satisfying II.23. This is the

classical Galerkin approximation method. Throughout this subsection, we assume the velocity field

u ∈ L2
t,locL

2
x and heat profile satisfies

lim
τ→∞

1

τ

ˆ τ

0

e−2a0λ1(τ−t)∥f(·, t)∥2H−1(Ω) dt = 0

and
ˆ τ

0

e−a1λ1(τ−t)

(τ − t)
d
2p

∥f(·, t)∥Lp(Ω) dt <∞ ∀ τ > 0

for a0, a1 ∈ (0, 1) and p ∈ [d/2,∞] so that the L2 and L∞ estimates 2.4.4, 2.4.9 can be taken for

granted.

Let {ϕn}∞n=1 be an orthogonal basis of H1(Ω) and an orthonormal basis of L2(Ω). Fixing an

initial temperature T0 ∈ H1(Ω) ∩ L∞(Ω), we have a result regarding approximation of solutions:

Lemma 2.4.11. For each integer n ≥ 1, we can find functions Tn : [0, T ] → H1(Ω) of form:

Tn(t) =
n∑

k=1

ckn(t)ϕk (II.24)
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satisfying

(∂tTn, ϕk) +

ˆ
Ω

(∇Tn − uTn) · ∇ϕk = (f, ϕk), (II.25)

ckn(0) = (T0, ϕk) (II.26)

for k = 1, · · · , n.

Proof. Plugging II.24 into II.25, we get a linear system of initial value ODEs which has unique

absolutely continuous solutions for a.e. 0 < t < T according to standard existence theory for ODEs.

So we have the approximate solutions exist.

With the above sequence of approximate solutions, we can show existence and uniqueness:

Theorem 2.4.12. The sequence of solutions constructed in Lemma 2.4.11 has a convergent subse-

quence whose limit gives us a weak solution of II.23.

Proof. As the heat profile f satisfies the assumptions of Propositions 2.4.4, 2.4.8, the proof in the

propositions can be easily modified to show the sequence of solutions {Tn}∞n=1 are bounded uni-

formly inL2
loc([0,∞);H1(Ω)∩L∞(Ω)). To see {∂tTn}∞n=1 are also bounded inL2

loc([0,∞);H−1(Ω)),

consider any fixed integer n and ϕ ∈ H1(Ω). Suppose ∥∇ϕ∥L2(Ω) = 1. Let ϕ1 be the projection of

ϕ onto the linear subspace spanned by {ϕk}nk=1. Then we have

(∂tTn, ϕ) = (∂tTn, ϕ
1) = (f, ϕ1)−

ˆ
Ω

(∇Tn − uTn) · ∇ϕ1.

Taking absolute value on both sides gives

|(∂tTn, ϕ)| ≤ C(∥f∥H−1(Ω) + ∥Tn∥H1(Ω) + ∥Tn∥L∞(Ω))

which implies

∥∂tTn∥H−1(Ω) ≤ C(∥f∥H−1(Ω) + ∥Tn∥H1(Ω) + ∥Tn∥L∞(Ω)).
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As Tn ∈ L2
loc([0,∞);H1(Ω) ∩ L∞(Ω)), taking time integral on any compact time set on both sides

shows {∂Tn}∞n=1 ∈ L2
loc([0,∞);H−1(Ω)). Thus we can find subsequence converging weakly to

some T ∈ L2
loc([0,∞);H1(Ω) ∩ L∞(Ω)) with the time derivative of the subsequence converging

weakly to ∂T ∈ L2
loc([0,∞);H−1(Ω)). For simplicity, let’s still denote the subsequence by {Tn}∞n=1.

Now for any fixed integer N > 0, find φ ∈ C1([0,∞);H1(Ω)), such that φ =
∑N

k=1 dk(t)ϕk.

Then we would have

(∂tTm, φ) +

ˆ
Ω

(∇Tm − uTm) · ∇φ = (f, φ)

for all m ≥ N . Passing to the limit gives us

(∂tT, φ) +

ˆ
Ω

(∇T − uT ) · ∇φ = (f, φ).

As suchφ is dense inL2
loc([0,∞);H1(Ω)), the above equality holds for anyφ ∈ L2

loc([0,∞);H1(Ω)).

Now, let φ0 := φ(x, 0), where φ ∈ C1([0,∞);H1(Ω)) and φ(·, T ) = 0, we have

−(Tm, ∂φ) +

ˆ
Ω

(∇Tm − uT ) · ∇φ = (f, φ) + (Tm(·, 0), φ0)

−(T, ∂φ) +

ˆ
Ω

(∇T − uT ) · ∇φ = (f, φ) + (T (·, 0), φ0)

Passing to the limit in the first equation shows T (·, 0) = T0 as such φ0 are dense in H1(Ω). And a

weak solution has been found.

The uniqueness follows easily from our L∞ estimates as T0 = f = 0 would imply T = 0. So

now we’ve shown the problem we study is well-posed.
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CHAPTER III

Balanced Heat Transfer

Having setup the base for our study, we describe our results for balanced heat transfer on

internally heated domains from [SFT23]. We’ll show a variational principle for a rather general set

of heat profiles and demonstrate the sharpness of the dominant heat transfer up to a prefactor using

a periodic heat profile and a concentrated profile. In the later example, we introduce the idea of the

‘pinching’ flow design which also plays an important role when optimizing the prefactors in later

chapters.

The present chapter is joint work with G. Fantuzzi and I. Tobasco. [SFT23]

3.1 Introduction

Determining absolute limits on heat transport by a moving fluid is a fundamental scientific

challenge. It is motivated not only by questions of planetary physics, e.g., where convection driven by

radioactive decay influences plate tectonics and the generation of magnetic fields [MB20, STO01],

but also by the search for optimal heat exchangers [Alb17, FADJ21]. Internally heated flows have

recently attracted renewed interest after experiments and numerical simulations [LAG18, BLAG19,

KGOM22] revealed that their heat transport can significantly exceed the known limits on ‘ordinary’

boundary-driven (Rayleigh–Bénard) convection. For certain well-balanced source–sink profiles

of internal heating and cooling, the flows that set up in response to gravity appear to transport

heat at a rate independent of the molecular diffusivity, achieving the ‘mixing-length’ or ‘ultimate’

transport scaling. However, it remains a challenge to determine theoretically which properties of the

internal heating are crucial to achieving highly efficient transport. Indeed, for an arbitrary balanced
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source–sink profile in an arbitrary fluid domain, it is not at all clear from the outset what transport

will result.

Thinking of the general question of assessing heat transport across a fluid domain, the first

challenge is to select a globally-defined yet meaningful diagnostic measure of transport efficiency.

Many known quantities that give equivalent measures for boundary-driven convection are no longer

comparable for internally heated flows, and can end up following different scaling laws. We

choose to measure heat transport using the mean-squared temperature gradient averaged over

space and time. Since by Fourier’s law the diffusive heat flux is controlled by the temperature

gradient, it is reasonable to expect that a highly efficient transfer protocol finds a way to minimize

temperature gradients overall. Other authors have studied the mean temperature [LDB04, GS12,

Gol15, WD11, WD12], root-mean-squared temperature [LAG18, BLAG19, MLBG19] or vertical

heat flux [AFCW21, AFCW22, KAF+22]. For particular choices of source–sink distributions and

boundary conditions such quantities are equivalent to our measure [Gol16], but this is not generally

true.

Having selected a measure of transport, one can seek flows optimizing its value, subject to

various constraints. A tractable goal for analysis, that we pursue in this paper, is to produce a

priori bounds on transport holding for general classes of admissible flows. In particular, we shall

derive a lower bound on the mean thermal dissipation of an internally heated flow, which takes into

account its mean kinetic energy as well as the shape of the imposed source–sink distribution and

the flow domain. We also derive a similar bound holding for buoyancy-driven internally heated

convection. We work with balanced source–sink distributions that add and subtract the same amount

of heat overall. The case of imbalanced heating has been studied extensively in the literature:

bounds on measures of heat transport are known for uniform internal heating under a variety of

boundary conditions [LDB04, GS12, Gol15, WD11, WD12, Gol16], as well as for essentially

arbitrary source–sink distributions in a disc with a constant temperature boundary [Tob22]. Bounds

on balanced heat transfer have also been obtained, for periodic flows under an assumption of

statistical homogeneity and isotropy [STD07, TDG04, DT06, TP08], and for smooth source–sink
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distributions that vary only in the gravity direction across a fluid layer [MLBG19]. Here, we treat a

much broader class of velocities, source–sink functions and flow domains. We also give examples

illustrating the sharpness of our bounds.

There are various approaches to a priori bounds in fluid mechanics, but for buoyancy-driven

convection the relevant results can be traced back at least to the work of Malkus, Howard and

Busse [Mal54, How63, Bus69, How72, Bus79] as well as to the ‘background method’ of Doering

and Constantin [DC94, CD95, DC96]. We follow a two-step approach that is similar to the ‘optimal

wall-to-wall’ approach of [HCD14, TD, DT19], and also to an approach that has been used with

horizontal convection [SKB04, WY09, RBLY19]. First, we drop the momentum equation and

optimize heat transfer subject to the advection-diffusion equation alone. The resulting optimal

transfer rate depends on the advective intensity, measured in a chosen norm. Then, we restore the

momentum equation via a balance law relating the velocity norm to an appropriate Rayleigh number.

Algebraic manipulation leads to an a priori bound on the heat transport of momentum-conserving

flows.

Using our setups in Section 2.1, let Ω ⊂ Rd be a bounded Lipschitz domain in dimension

d ≥ 2, and introduce a temperature field T (x, t) solving the inhomogeneous and non-dimensional

advection-diffusion equation with insulating boundary conditions


∂tT + u · ∇T = ∆T + f in Ω,

n̂ · ∇T = 0 at ∂Ω.
(III.1)

To ensure the source–sink function f(x, t) is balanced, we set

 
Ω

f(x, t)dx = 0

where
ffl
Ω
·dx denotes averaging over the flow domain (per the notation in Section 2.2). The

advecting velocity u(x, t) obeys the divergence-free condition ∇ · u = 0 in Ω, along with the

no-penetration boundary conditions u · n̂ = 0 at ∂Ω. Note n̂ is the outwards-pointing unit normal
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to the domain boundary. These conditions on f and u imply that the mean temperature
ffl
Ω
Tdx is

constant in time, and we take it to be zero without loss of generality.

Given this setup, we seek bounds on the mean-squared temperature gradient

⟨|∇T |2⟩ := lim sup
τ→∞

 τ

0

 
Ω

|∇T (x, t)|2 dxdt

where for definiteness we use the limit superior. In Section 3.2, we derive a pair of ‘variational’

upper and lower bounds:

〈
2fξ − |∇ξ|2 − |∇∆−1(∂tξ + u · ∇ξ)|2

〉
≤
〈
|∇T |2

〉
≤
〈
|∇η|2 + |∇∆−1(∂tη + u · ∇η − f)|2

〉
(III.2)

where ξ(x, t) and η(x, t) are test functions whose choice can be optimized (see 3.2.1). The operator

∆−1 is the Neumann inverse Laplacian, defined in Section 2.2. A version of our lower bound on

⟨|∇T |2⟩ with a steady test function ξ(x) appeared in a previous paper on mixing in periodic domains

[STD07], along with similar bounds on ⟨T 2⟩ and ⟨|∇∆−1T |2⟩ (see also [TDG04, DT06, TP08]

and [Thi12] for a review). To complete the picture, we allow for time-dependent test functions

defined on general domains, and also provide the complementary upper bound in III.2. Moreover,

we prove in 3.2.4 that these bounds are sharp in the steady case f = f(x) and u = u(x), meaning

that an optimal choice of test function evaluates ⟨|∇T |2⟩. This is the analog of results obtained

in [TD, DT19, STD20] for boundary-driven flows and in [Tob22] for internally-heated flows with

cooled boundaries. Rather than repeat the ‘symmetrization argument’ from these papers, we present

a different and likely more flexible proof in which the test functions are introduced as Lagrange

multipliers for enforcing the advection-diffusion equation (much like the argument in [STD07]).

Section 3.3, 3.4 go on to ask what the variational bounds III.2 imply for optimal flows. By

optimal, we mean flows that minimize ⟨|∇T |2⟩ subject to a constraint on the flow intensity, such as

might be given by fixing the value of the mean kinetic energy ⟨|u|2⟩. To ease the presentation, we

treat steady source–sink functions f(x) that are not identically zero from here on; we expect our

results can be extended to unsteady sources/sinks, and we remark on this below. Sec 3.3 starts by
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(a) (b)

Figure III.1: Examples of nearly optimal flows. Heat sources (red) and sinks (blue) oscillate
sinusoidally on a scale ∼ ℓ in (a) and are concentrated in regions of size ∼ ϵ in (b). Black lines with
arrows show streamlines of the cellular flow achieving ⟨|∇T |2⟩ ∼ Pe−2 in (a) and of the ‘pinching’
flow achieving ⟨|∇T |2⟩ ∼ log2(ϵ−1)Pe−2 in (b). The squared Péclet number Pe2 sets the kinetic
energy of the flows.

bounding ⟨|∇T |2⟩ in terms of the mean kinetic energy: we show that there are positive constants

C1, C2 and C3 depending on the domain Ω, the dimension d and the source–sink distribution f such

that

⟨|∇T |2⟩ ≥ C1

C2 + C3⟨|u|2⟩
. (III.3)

This follows from 3.3.1 and the subsequent discussion on how to select ξ. A similar bound was

proved in [STD07, DT06, Thi12] for periodic and statistically homogeneous, isotropic flows.

We too think of the ratios C1/C2 and C1/C3 as (squared) norms that detect the structure of the

sources and sinks. In the conductive limit ⟨|u|2⟩ → 0, the first ratio dominates the bound and can be

chosen, as usual, to involve a negative Sobolev norm (see III.24). In the advective limit ⟨|u|2⟩ → ∞

the second ratio is more important; we explain how to choose it based on a Hardy space norm (see

III.25). While this norm is not completely unlike the L1-norm, it produces a strictly better bound for

problems with point-like sources and sinks. See Section 3.3.1 for its definition, and Section 3.3.2

for the proof of III.3.

To help clarify our lower bound, and to explain what it takes to find optimal (or at least nearly
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optimal) flows, we study a pair of examples in Section 3.3.3 involving sinusoidal heating and

cooling or approximate point sources and sinks. Figure III.1 illustrates the setups we have in mind:

the heating/cooling in panel (a) varies sinusoidally on a scale ∼ l; the point-like sources and sinks in

panel (b) are concentrated in regions of size ∼ ϵ (the figure shows discs for simplicity). Given these

setups, we prove upper and lower bounds on the minimum mean-square temperature gradient that

match in terms of their scalings with respect to each example’s parameters. Precisely, we show that

min
u(x,t)

⟨|u|2⟩≤Pe2
∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ ∼


min

{
ℓ2, 1

Pe2
}

for sinusoidal heating (3.3.3)

min
{
log 1

ϵ
,
(
log 1

ϵ

)2 1
Pe2

}
for concentrated heating (3.3.4)

(III.4)

with prefactors that are independent of all parameters. (The notation X ∼ Y means that there are

numerical constants C,C ′ > 0 such that CY ≤ X ≤ C ′Y ). Parsing III.3 in each example produces

the lower bound half of III.4. For the matching upper bounds, we construct the flows illustrated in

Figure III.1 and select test functions η to estimate their transport via III.2. We use a cellular flow

structure for sinusoidal heating and a pinching effect for approximate point sources and sinks. It

was the analysis of pinching flows that led us to the Hardy space norm; other, more familiar norms

gave strictly sub-optimal bounds.

The search for flows optimizing heat transfer is an active area of research; see [Tob22, MDTY17,

IV22] for flows enhancing heat transport with imbalanced heating, and [INRZ10] for flows inhibiting

heat transport in non-disc domains. In this section, we base our constructions on an ability to solve

the pure and steady advection system


u0 · ∇T0 = f in Ω

∇ · u0 = 0 in Ω

u0 · n̂ = 0 at ∂Ω

. (III.5)

Though understanding precisely when this system has a solution is a difficult and open problem (see
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[Lin17] for a recent account), it is not so difficult to show its relevance for optimizing heat transfer

in the advective limit. Section 3.4 studies this limit in detail, and achieves the following conditional

result: if III.5 admits a (regular-enough) solution, then

lim
Pe→∞

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
 
Ω

|∇T |2dx = min
u0(x),T0(x)
∥u0∥X≤1
u0·∇T0=f

 
Ω

|∇T0|2dx.

In the right-hand problem, the minimization is over all solutions of III.5. After a rescaling, its

optimizers give the limit points of almost-minimizing sequences on the left; see 3.4.2 for the precise

statement. Here, we allow for general families of steady velocities belonging to a Banach space

X that is continuously embedded into Ld(Ω), amongst other requirements. The dimensionless

parameter Pe = U2L/κ is the Péclet number, where U is a characteristic velocity scale, L is a

characteristic lengthscale and κ is the thermal diffusivity. The result captures the intuition that

optimal velocities find a way to minimize thermal dissipation while achieving (essentially) perfect

advection, and shows how to compute the optimal prefactor in the scaling law min ⟨|∇T |2⟩ ∼

C(Ω, d, f)Pe−2.

Finally, in Section 3.5 we bound the heat transfer of momentum-constrained flows driven by

a steady balanced source–sink function f(x) and a steady conservative gravitational acceleration

g(x). In addition to the advection-diffusion equation III.1 for the temperature T , we let the velocity

u solve the non-dimensional Boussinesq equation

Pr−1 (∂tu+ u · ∇u) = ∆u+ RTg −∇p

with g = ∇φ. The choice φ = z yields the usual Boussinesq equations with gravity in the negative

z-direction, and we allow for other choices as well. The non-dimensional parameters Pr and R

are the usual Prandtl number and a ‘flux-based’ Rayleigh number [Gol16] measuring the strength

of the sources and sinks relative to diffusion: Pr = ν/κ and R = αL5Q/(νκ2). Again, L is a

characteristic lengthscale and κ is the thermal diffusivity; also, ν is the kinematic viscosity, α is the
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thermal expansion coefficient and Q is a characteristic heating and cooling rate per unit volume

(which sets the dimensional amplitude of f ). After deriving a set of basic balance laws, we relate

the mean enstrophy and energy of the flow to the Rayleigh number, and thereby obtain a trio of

Rayleigh-dependent lower bounds (3.5.3). These bounds are in the general form

⟨|∇T |2⟩ ≥ C(Ω, d, f, g)

Rα

with α = 0, 2/3 or 1 depending on the sign of ⟨fφ⟩ and for large enough R; we give intuition for

this below.

Section 3.6 is a conclusion section that includes a discussion of open questions and future

directions of research.

3.2 Variational bounds on heat transfer in an insulated domain

Section 3.2.1 derives upper and lower bounds on the mean square thermal dissipation ⟨|∇T |2⟩

of a general unsteady incompressible flow u(x, t) and a general unsteady and balanced source–sink

distribution f(x, t). These bounds involve a pair of test functions, which can be optimized based

on the details of u and f . In the steady case where u = u(x) and f = f(x), the optimization

evaluates ⟨|∇T |2⟩ so that the bounds are sharp (see Section 3.2.2). One can also choose the test

functions to bound ⟨|∇T |2⟩ in terms of a bulk measure of the flow intensity, such as the mean

kinetic energy ⟨|u|2⟩; we do so starting in Section 3.3.

3.2.1 Variational bounds for unsteady flows and source–sink distributions

Define the admissible set

A =
{
θ ∈ L2

loc

(
0,∞;H1(Ω)

)
:

∂tθ ∈ L2
loc

(
0,∞;H−1(Ω)

)
, θ(·, τ) ∈ L∞(Ω) a.e. τ, lim

τ→∞

1√
τ
∥θ(·, τ)∥L2(Ω) = 0

}
.

(III.6)
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Let λ1 be the first non-trivial Neumann eigenvalue of the (negative) Laplacian on Ω as introduced in

Section 2.4.1.

Theorem 3.2.1. Let u(x, t) be divergence-free with u · n̂ = 0 at ∂Ω and ⟨|u|2⟩ < ∞, and let

f(x, t) satisfy
ffl
Ω
f(x, t)dx = 0 for t > 0. Assume there exists a0, a1 ∈ (0, 1) and p ∈ [d/2,∞]

such that

lim
τ→∞

1

τ

ˆ τ

0

e−2a0λ1(τ−t)∥f(·, t)∥2H−1(Ω) dt = 0

and
ˆ τ

0

e−a1λ1(τ−t)

(τ − t)
d
2p

∥f(·, t)∥Lp(Ω) dt <∞ ∀ τ > 0.
(III.7)

Given any weak solution T (x, t) of


∂tT + u · ∇T = ∆T + f in Ω

n̂ · ∇T = 0 at ∂Ω
(III.8)

with T (·, 0) ∈ L2(Ω), the upper and lower bounds

〈
2fξ − |∇ξ|2 − |∇∆−1(∂tξ + u · ∇ξ)|2

〉
≤
〈
|∇T |2

〉
≤
〈
|∇η|2 + |∇∆−1(∂tη + u · ∇η − f)|2

〉
(III.9)

hold for all η, ξ ∈ A.

Remark 3.2.2. The two assumptions on f in III.7 play different roles. The first one ensures that

∥T (·, τ)∥L2(Ω) ≪
√
τ as τ → ∞, so that the integration-by-parts identity ⟨|∇T |2⟩ = ⟨fT ⟩ holds.

The second one implies that T (·, τ) ∈ L∞(Ω) for a.e. τ > 0. This allows us to define the notion

of weak solutions in the usual way, by testing the given equation against functions in H1(Ω) and

integrating by parts (following, e.g., [Eva10]); it also ensures that
´
Ω
u · ∇TTdx = 0. As these

remarks are more or less standard fare in parabolic regularity theory [Eva10, Lie96], we shall not

present their proofs, but instead point to the notes [KRR12] for an exposition that is readily adapted

to our setting. In brief, the desired L2-bound follows from Gronwall’s inequality by testing the

equation against T ; the L∞-bound follows from known ‘heat kernel’ bounds on the forward-time

solution map of the homogeneous equation (bounding it from Lp(Ω) to L∞(Ω) by a multiple of
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e−aλ1∆t(∆t)−d/2p for any a ∈ (0, 1), across a time increment ∆t).

Remark 3.2.3. One can do away with the second assumption on f in III.7 by imposing enough

integrability on u to the point that u · ∇θ ∈ H−1(Ω) a.e. in time, for any θ ∈ H1(Ω). Since by the

Sobolev embedding theorem [Eva10] L2d/(d+2)(Ω) is included in H−1(Ω) when d > 2, it suffices

to assume that u ∈ Ld(Ω) a.e. in time. The L∞ assumption on the test functions in A can then be

removed. These statements continue to hold in the borderline case d = 2 due to ‘div-curl’ character

of the product u · ∇θ; see Section 3.3.1 or [Tob22] for more details.

Proof of 3.2.1. We apply the method of Lagrange multipliers, with the advection-diffusion equation

III.8 as the constraint and the test functions η and ξ as multipliers. Let ⟨·⟩τ =
ffl τ

0

ffl
Ω
· dxdt be the

average of a quantity over Ω× (0, τ). To prove the lower bound in III.9, start with the weak form of

the advection-diffusion equation, which states that

⟨fξ −∇T · ∇ξ − ∂tTξ − u · ∇Tξ⟩τ = 0 (III.10)

for any ξ ∈ A and τ > 0. Thus,

〈
|∇T |2

〉
τ
=
〈
|∇T |2 + 2 (fξ −∇T · ∇ξ − ∂tTξ − u · ∇Tξ)

〉
τ

=
〈
|∇T |2 + 2fξ − 2∇T · ∇ξ + 2T (∂tξ + u · ∇ξ)

〉
τ
− 2

τ

 
Ω

Tξdx

∣∣∣∣t=τ

t=0

≥ inf
θ

〈
|∇θ|2 + 2fξ − 2∇θ · ∇ξ + 2θ (∂tξ + u · ∇ξ)

〉
τ
− oτ (1) (III.11)

where oτ (1) denotes a term that goes to zero as τ → ∞. To see this last step, note that

∥T (·, τ)∥L2(Ω) ≪
√
τ as explained in remark 3.2.2. Also, ∥ξ(·, τ)∥L2(Ω) ≪

√
τ by the defini-

tion of the admissible set A in III.6. Hence,

∣∣∣∣∣1τ
 
Ω

Tξdx

∣∣∣∣t=τ

t=0

∣∣∣∣∣ ≤ 1

τ |Ω|
∥T (·, τ)∥L2(Ω)∥ξ(·, τ)∥L2(Ω)+

∣∣∣∣1τ
 
Ω

T (x, 0)ξ(x, 0)dx

∣∣∣∣→ 0 as τ → ∞.
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To evaluate the infimum in III.11, we make use of its Euler–Lagrange equation


∆θ = ∆ξ + ∂tξ + u · ∇ξ on Ω

n̂ · ∇θ = 0 at ∂Ω

which gives the optimal θ at each fixed time. Testing against θ and integrating by parts shows that

〈
|∇θ|2

〉
τ
= ⟨∇θ · ∇ξ − θ (∂tξ + u · ∇ξ)⟩τ .

Therefore, by III.11,

〈
|∇T |2

〉
τ
≥
〈
2fξ −

∣∣∇∆−1 (∆ξ + ∂tξ + u · ∇ξ)
∣∣2〉

τ
− oτ (1)

=
〈
2fξ − |∇ξ|2 −

∣∣∇∆−1(∂tξ + u · ∇ξ)
∣∣2〉

τ
− oτ (1). (III.12)

Note the cross term vanishes since

2
〈
∇ξ · ∇∆−1 (∂tξ + u · ∇ξ)

〉
τ
= −2 ⟨ξ (∂tξ + u · ∇ξ)⟩τ = −1

τ

ˆ τ

0

d

dt
∥ξ∥2L2(Ω) dt = oτ (1)

by the growth conditions on ξ and the no-penetration conditions for u. Taking τ → ∞ in III.12

yields the lower bound.

The upper bound in III.9 is proved by a similar argument. The key is to find a version of ⟨|∇T |2⟩

that lends itself to maximization, rather than minimization. Multiplying the advection-diffusion

equation III.8 by T and integrating by parts shows that

⟨|∇T |2⟩τ = ⟨fT ⟩τ + oτ (1),

as in the first part of remark 3.2.2. This allows us to rewrite

⟨|∇T |2⟩τ = ⟨2fT − |∇T |2⟩τ + oτ (1)
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and mimic the previous argument, but with an upper bound. Specifically, using a Lagrange multiplier

η ∈ A in the weak form III.10 of the advection–diffusion equation, we can write that

〈
2fT − |∇T |2

〉
τ
=
〈
2fT − |∇T |2 − 2 (fη −∇T · ∇η − ∂tTη − u · ∇Tη)

〉
τ

≤ sup
θ

〈
2fθ − |∇θ|2 − 2fη + 2∇θ · ∇η − 2θ (∂tη + u · ∇η)

〉
τ
+ oτ (1)

=
〈
−2fη +

∣∣∇∆−1 (∆η + ∂tη + u · ∇η − f)
∣∣2〉

τ
+ oτ (1)

=
〈
|∇η|2 +

∣∣∇∆−1(∂tη + u · ∇η − f)
∣∣2〉

τ
+ oτ (1).

To pass between the first and second lines, integrate by parts to find only oτ (1) contributions. Then,

optimize over θ like before. Taking τ → ∞ gives the upper bound.

3.2.2 Sharpness in the steady case

The variational bounds in 3.2.1 apply to both steady and unsteady u and f . In the steady case,

these bounds cannot be improved. We adapt the argument from [TD, DT19].

Corollary 3.2.4. Let u(x), f(x) and T (x, t) be as in 3.2.1 (in particular let f ∈ Lp(Ω) for some

p > d/2). Then,

max
ξ∈H1(Ω)∩L∞(Ω)

 
Ω

2fξ − |∇ξ|2 − |∇∆−1(u · ∇ξ)|2 dx

=
〈
|∇T |2

〉
= min

η∈H1(Ω)∩L∞(Ω)

 
Ω

|∇η|2 + |∇∆−1(u · ∇η − f)|2 dx.
(III.13)

Remark 3.2.5. The integrability assumption on f derives from the second part of III.7, which

guarantees for steady T (x) that ∥T∥L∞(Ω) ≲Ω,d,p ∥f∥Lp(Ω) <∞ [KRR12]. The first part of III.7 is

redundant by Sobolev embedding [Eva10].

Remark 3.2.6. Following up from remark 3.2.3, if u ∈ Ld(Ω) then the result holds for f ∈ H−1(Ω)

and with test functions ξ, η ∈ H1(Ω).
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Proof. Optimizing the upper and lower bounds in 3.2.1 over all steady fields ξ, η ∈ A gives that

sup
ξ∈H1(Ω)∩L∞(Ω)

 
Ω

2fξ − |∇ξ|2 − |∇∆−1(u · ∇ξ)|2 dx

≤
〈
|∇T |2

〉
≤ inf

η∈H1(Ω)∩L∞(Ω)

 
Ω

|∇η|2 + |∇∆−1(u · ∇η − f)|2 dx.
(III.14)

There is no loss of generality in taking ξ and η to be mean-free. The resulting variational problems

are respectively strictly concave and strictly convex, so that solving them is the same as solving

their Euler–Lagrange equations:

∆ξ = u · ∇∆−1 (u · ∇ξ)− f,

∆η = u · ∇∆−1 (u · ∇η − f)

with n̂ · ∇ξ = n̂ · ∇η = 0 at ∂Ω. Equivalently, we must solve


u · ∇η − f = ∆ξ

u · ∇ξ = ∆η

(III.15)

with the same boundary conditions. The change of variables T = ξ + η and Tadj = ξ − η recovers

the steady heat equation and its adjoint:

u · ∇T = ∆T + f,

−u · ∇Tadj = ∆Tadj + f

with n̂ · ∇T = n̂ · ∇Tadj = 0 at ∂Ω. These last equations define T and Tadj and ensure their

boundedness, due to the second part of our assumption III.7 on f and remark 3.2.2. Hence,

ξ := (T + Tadj)/2 and η := (T − Tadj)/2 are admissible in III.14, and we can proceed to evaluate

their bounds.
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First, note that 〈
|∇T |2

〉
=

 
Ω

|∇ξ|2 + |∇η|2 dx (III.16)

because testing the second equation in III.15 against ξ yields

 
Ω

∇η · ∇ξdx = −
 
Ω

u · ∇ξξdx = 0.

Now, substitute ξ = ∆−1(u · ∇η − f) into the right-hand side of III.16 to obtain

〈
|∇T |2

〉
=

 
Ω

|∇η|2 +
∣∣∇∆−1(u · ∇η − f)

∣∣2 dx.

This verifies the optimality of η and proves the second half of 3.2.4. To prove the first half, note the

identity  
Ω

|∇η|2dx =

 
Ω

fξ − |∇ξ|2dx (III.17)

which derives from testing the first equation in III.15 by ξ and the second by η and combining the

results. Indeed,

 
Ω

fξ − |∇ξ|2 − |∇η|2 dx =

 
Ω

fξ−|∇ξ|2+(u ·∇ξ)η dx =

 
Ω

fξ−|∇ξ|2− (u ·∇η)ξ dx = 0.

Combining III.16 and III.17 and using that η = ∆−1(u · ∇ξ) we conclude that

〈
|∇T |2

〉
=

 
Ω

2 |∇η|2 + |∇ξ|2 − |∇η|2 dx =

 
Ω

2fξ − |∇ξ|2 −
∣∣∇∆−1u · ∇ξ

∣∣2 dx
as required.

3.3 Bounds on energy-constrained flows

The previous section achieved upper and lower bounds on ⟨|∇T |2⟩ in terms of a pair of test

functions, the choice of which was left up to the reader depending on the application. We now
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demonstrate how knowledge of the mean kinetic energy ⟨|u|2⟩ along with the structure of the

source–sink distribution f can be used to achieve the lower bound

⟨|∇T |2⟩ ≥ C1

C2 + C3⟨|u|2⟩
. (III.18)

We base our approach on a well-known inequality of Coifman, Lions, Meyers and Semmes

[CLMS90], which we introduce in Section 3.3.1 along with the requisite functional analysis

involving Hardy and BMO spaces. This inequality explains how the advection term u · ∇T inherits

additional regularity beyond a typical dot product from the fact that it involves divergence- and

curl-free fields. Using it, we achieve III.18 in Section 3.3.2.

Section 3.3.3 goes on to discuss a pair of examples where our methods establish the scaling law

of min ⟨|∇T |2⟩ with respect to ⟨|u|2⟩ and certain features of f . In each example, we apply 3.3.1

with a suitable test function to deduce a lower bound. We then saturate the scaling behaviors of

this bound by constructing nearly optimal velocity fields. Part of the puzzle is to understand when

flowing is significantly better than not, and indeed this is reflected by a cross-over in the optimal

scaling laws achieved in 3.3.3 and 3.3.4.

3.3.1 A brief introduction to H1 and BMO

First, we introduce the functional analytic framework we use to prove our kinetic energy-based

bounds. We leave out most of the proofs, and point to the references [Miy90, Ste93, Cha94, CDS05]

for full details. Given a domain Ω ⊂ Rd, the Hardy space H1(Ω) and space of bounded mean

oscillation functions BMO(Ω) are defined as follows.1 Starting with H1(Ω), we fix a smooth and

compactly supported function ρ(x) ≥ 0 with
´
Rd ρdx = 1, and define the associated maximal

function operator by

Mρf(x) = sup
δ>0

∣∣∣∣ˆ
Ω

1

δd
ρ

(
x− z

δ

)
f(z) dz

∣∣∣∣ , x ∈ Rd. (III.19)

1In the notation of reference [CDS05], we are defining H1
z(Ω) and BMOr(Ω). We omit the subscripts to lighten the

notation.
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This definition records the ‘worst-case averages’ of a given function f(x) against rescaled copies

of the probability density ρ (actually, it is the extension of f by zero from Ω to Rd that is being

averaged). The Hardy space H1(Ω) then consists of all f ∈ L1(Ω) such that Mρf ∈ L1(Rd), a

condition that turns out to be independent of ρ. This is a Banach space under the norm

∥f∥H1(Ω) =

ˆ
Rd

Mρf(x)dx

which embeds continuously into L1(Ω) per the inequality ∥ · ∥L1(Ω) ≤ ∥ · ∥H1(Ω) (a consequence

of Lebesgue differentiation). The reverse inequality fails, however, as an example based on

approximating a Dirac mass shows. Indeed, let x0 ∈ Ω and consider a sequence of functions

{fϵ} that have L1-norm equal to one, and are defined by taking fϵ = ϵ−d on the ball Bϵ(x0) of

radius ϵ > 0 centered at x0 and fϵ = 0 otherwise. Taking δ(x) ∼ |x− x0| ∨ ϵ in III.19 yields the

lower bound Mρfϵ(x) ≳ δ−d(x), the L1-norm of which diverges logarithmically as ϵ → 0. This

calculation is at the heart of our pinching flow example in Section 3.3.3.2.

Being a Banach space, H1(Ω) has a dual. A famous result of Fefferman identifies H1(Ω)∗

with a function space introduced by John and Nirenberg [JN61] in connection with John’s work on

elasticity. The space of bounded mean oscillation functions BMO(Ω) consists of all functions g(x)

for which

∥g∥BMO(Ω) = sup
Q⊂Ω

 
Q

∣∣∣∣g(x)−  
Q

g

∣∣∣∣ dx <∞

where Q is a d-dimensional cube. Modulo constants, this is a norm under which BMO(Ω) is a

Banach space. The duality between H1(Ω) and BMO(Ω) is realized by the inequality

∣∣∣∣ˆ
Ω

fg dx

∣∣∣∣ ≲Ω,d ∥f∥H1(Ω)∥g∥BMO(Ω) (III.20)

which holds at first for f ∈ H1(Ω) and g ∈ BMO(Ω) ∩ L∞(Ω), and then for all g ∈ BMO(Ω) by

continuous extension. It follows directly from the definitions that ∥ · ∥BMO(Ω) ≤ 2∥ · ∥L∞(Ω) so

that L∞(Ω) embeds continuously into BMO(Ω). Again, the reverse direction fails: the function

42



log(|x− x0|) belongs to BMO(Ω) (see [Ste93, Ch. IV]) but is not in L∞(Ω) if x0 ∈ Ω. This too

shows up in our discussion of pinching flows.

Finally, we recall the div-curl inequality of Coifman, Lions, Meyers and Semmes with a bounded

Lipschitz domain Ω proved in 2.3.2,

∥u · v∥H1(Ω) ≲Ω,d ∥u∥L2(Ω)∥v∥L2(Ω) (III.21)

if u is divergence-free with u · n̂ = 0 at ∂Ω, and if v is curl-free. We shall make repeated use of

the above inequality.

3.3.2 Bounding the heat transfer of energy-constrained flows

Combining the main result of Section 3.2.1 with the functional analysis recalled above, we

bound ⟨|∇T |2⟩ from below in terms of the mean kinetic energy ⟨|u|2⟩. With an eye towards the

examples of Section 3.3.3, we state this result for steady f(x) while allowing u(x, t) and T (x, t)

to be unsteady (however, see the remark below).

Corollary 3.3.1. Let u(x, t), f(x) and T (x, t) be as in 3.2.1 (or as in remark 3.2.3). There is a

constant C > 0 depending only on Ω and d such that

〈
|∇T |2

〉
≥

(ffl
Ω
ξfdx

)2
ffl
Ω
|∇ξ|2dx+ C∥ξ∥2BMO(Ω) ⟨|u|2⟩

(III.22)

for every non-constant ξ ∈ H1(Ω) ∩ L∞(Ω) (or H1(Ω), respectively).

Remark 3.3.2. The same bound holds for unsteady f(x, t) with ⟨ξf⟩ in place of
ffl
Ω
ξf , though if

the time-average of f vanishes identically then this is not a useful bound. To improve the result, one

should use unsteady test functions ξ(x, t) following 3.2.1. This leads to a bound with an additional

term C⟨|∇∆−1∂tξ|2⟩ in the denominator, the implications of which we leave to future work.

43



Proof. Applying 3.2.1 with a steady test function ξ(x) gives the lower bound

⟨|∇T |2⟩ ≥ 2

 
Ω

fξ dx−
 
Ω

|∇ξ|2 dx− ⟨|∇∆−1u · ∇ξ|2⟩.

Substituting λξ for ξ and optimizing λ ∈ R, there follows

⟨|∇T |2⟩ ≥
(ffl

Ω
fξ dx

)2
ffl
Ω
|∇ξ|2 dx+ ⟨|∇∆−1u · ∇ξ)|2⟩

. (III.23)

Note the denominator is non-zero by our hypothesis on ξ. We proceed to estimate ⟨|∇∆−1u · ∇ξ)|2⟩.

At almost every time,

ˆ
Ω

|∇∆−1u · ∇ξ|2dx = max
φ(x)

(´
Ω
u · ∇ξ φ dx

∥∇φ∥L2(Ω)

)2

= max
φ(x)

(´
Ω
u · ∇φ ξ dx
∥∇φ∥L2(Ω)

)2

.

By the duality of H1 and BMO in III.20 and the div-curl inequality III.21,

∣∣∣∣ˆ
Ω

u · ∇φ ξ dx
∣∣∣∣ ≲Ω,d ∥u · ∇φ∥H1(Ω)∥ξ∥BMO(Ω) ≲Ω,d ∥u∥L2(Ω)∥∇φ∥L2(Ω)∥ξ∥BMO(Ω).

Combining these statements and averaging in time, there follows

⟨|∇∆−1u · ∇ξ)|2⟩ ≲Ω,d ⟨|u|2⟩ · ∥ξ∥2BMO(Ω).

Substituting into III.23 yields the bound

〈
|∇T |2

〉
≥

(ffl
Ω
ξfdx

)2
ffl
Ω
|∇ξ|2dx+ C(Ω, d)∥ξ∥2BMO(Ω)⟨|u|2⟩

.

How should the test function ξ(x) be chosen in this last result? The answer depends, of course,

on the domain Ω, the dimension d and the structure of the source–sink function f . It also depends

on the magnitude of ⟨|u|2⟩. On the one hand, for sufficiently small kinetic energies one expects

to be able to ‘cross out’ the second term in the denominator of III.22, and select ξ through the
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maximization

max
ξ(x)

(´
Ω
ξfdx

)2
´
Ω
|∇ξ|2dx

= ∥f∥2H−1(Ω). (III.24)

This leads to the choice ξ = ∆−1f . On the other hand, for large ⟨|u|2⟩ one is lead to the maximiza-

tion

max
ξ(x)

(´
Ω
ξfdx

)2
∥ξ∥2BMO(Ω)

∼Ω,d ∥f∥2H1(Ω) (III.25)

by the duality between H1(Ω) and BMO(Ω). Here the best choice of ξ is less apparent, though one

achieving this equivalence is always guaranteed to exist. (We guess that time-dependent f could be

handled similarly by a suitable smoothing in time of the choices in III.24 and III.25, taking into

account the additional term ⟨|∇∆−1∂tξ|2⟩ from remark 3.3.2.) Of course, once one makes a choice

for ξ, it can be plugged back into III.22 to achieve a lower bound with known constants at all values

of ⟨|u|2⟩. We demonstrate this in examples below.

3.3.3 Two examples

We now apply our variational bounds to a pair of examples involving oscillatory or concentrated

heating and cooling. In each example, we deduce the scaling law of min ⟨|∇T |2⟩ with respect

to its parameters, along with velocity fields achieving the optimal scalings. See Section 3.3.3.1

for oscillatory heating and our accompanying cellular flows, and Section 3.3.3.2 for concentrated

heating and our pinching flows.

3.3.3.1 Sinusoidal heating and cellular flows

Our first example optimizes heat transfer between a periodic pattern of sources and sinks. Let

Ω = (0, 2π)2 and take

f(x) =
1

2
cos

(
2y

ℓ

)
− 1

2
cos

(
2x

ℓ

)
. (III.26)

The parameter ℓ−1 ∈ N sets the period of the pattern.
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Proposition 3.3.3. Under the above setup,

min
u(x,t)

⟨|u|2⟩≤Pe2
∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ ∼ min

{
ℓ2,

1

Pe2

}

for all ℓ−1 ∈ N and Pe ≥ 0. The alternatives are achieved by no flow (ℓ2) or by the cellular flow

(Pe−2) depicted in Figure III.1a of the introduction.

Proof of the lower bound. We begin with the general lower bound

〈
|∇T |2

〉
≥

(ffl
Ω
ξfdx

)2
ffl
Ω
|∇ξ|2dx+ C(Ω)∥ξ∥2BMO(Ω) Pe2

(III.27)

from 3.3.1. The present f belongs to L∞(Ω) and is such that all of its Lp-norms are comparable. In

particular, ∥f∥L1(Ω) ∼ ∥f∥L∞(Ω) ∼ 1 for all ℓ. Also, ∥f∥H1(Ω) ∼ ∥f∥BMO(Ω) ∼ 1 and so there exist

many good choices of ξ.

Take, for example, ξ = f . Then

ˆ
Ω

ξfdx =

ˆ
Ω

f 2dx =

ˆ
Ω

∣∣∣∣12 cos

(
2y

ℓ

)
− 1

2
cos

(
2x

ℓ

)∣∣∣∣2 dx ∼ 1

while

∥f∥BMO(Ω) ≤ 2∥f∥L∞(Ω) ≤ 2.

Also, ˆ
Ω

|∇ξ|2 =
ˆ
Ω

|∇f |2 =
ˆ
Ω

∣∣∣∣−1

ℓ
sin

(
2y

ℓ

)
êy −

1

ℓ
sin

(
2x

ℓ

)
êx

∣∣∣∣2 dx ∼ 1

ℓ2
.

Combining these estimates into III.27 yields the lower bound

〈
|∇T |2

〉
≳

1

ℓ−2 + Pe2
≳ min

{
ℓ2,

1

Pe2

}
.
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Proof of the upper bound We seek a steady velocity u(x) whose thermal dissipation is similar

to the lower bound. To guide the search, consider the upper bound

〈
|∇T |2

〉
≤
 
Ω

|∇η|2 dx+

 
Ω

|∇∆−1(u · ∇η − f)|2dx

from 3.2.4, which holds in the present two-dimensional case for all η ∈ H1(Ω). Making the change

of variables

u =
Pe√ffl

Ω
|ũ|2dx

ũ and η =

√ffl
Ω
|ũ|2dx
Pe

η̃

and dropping the tildes yields the estimate

〈
|∇T |2

〉
≤ 1

Pe2

 
Ω

|u|2dx
 
Ω

|∇η|2dx+

 
Ω

∣∣∇∆−1(u · ∇η − f)
∣∣2 dx (III.28)

for all u and η. This reformulation simplifies the algebra, as it allows us to neglect the kinetic

energy constraint. Of course, it is actually the unscaled velocity with kinetic energy equal to Pe

whose thermal dissipation we are estimating.

There are two alternatives to consider, depending on whether we should take u = 0 or not. In

the case with no flow, the choice of η is immaterial and

⟨|∇T |2⟩ ≤
 
Ω

∣∣∇∆−1f
∣∣2 dx =

 
Ω

∣∣∣∣− ℓ4 sin

(
2x

ℓ

)
êx +

ℓ

4
sin

(
2y

ℓ

)
êy

∣∣∣∣2 dx ∼ ℓ2

with êx and êy being the unit vectors along the x- and y-coordinates. On the other hand, for the

particular f in the example we can easily construct an admissible pair (u, η) satisfying the pure

advection equation

u · ∇η = f.
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Simply take u = ∇⊥ψ = (∂yψ,−∂xψ) with the stream function

ψ(x) = l sin
(x
l

)
sin
(y
l

)

and use the test function

η(x) = −l cos
(x
l

)
cos
(y
l

)
.

In fact, the definition of f in III.26 was made precisely with these choices in mind. The second term

in III.28 now vanishes, so that

〈
|∇T |2

〉
≤ 1

Pe2

 
Ω

|u|2dx
 
Ω

|∇η|2dx ≲
1

Pe2
.

Since we are always free to use either velocity field, the minimum thermal dissipation is bounded

according as

min
〈
|∇T |2

〉
≲ min

{
ℓ2,

1

Pe2

}
.

The proof is complete.

3.3.3.2 Concentrated heating and pinching flows

Next we consider source–sink profiles of the general form

f(x) = f+(x)− f−(x)

where f± are non-negative and supported in disjoint balls Bϵ(x±) centered at x± with radii ϵ > 0.

Fixing units, we take ˆ
Bϵ(x±)

f±(x)dx = 1

and x± = (0,±1/2). We also suppose that

∥f±∥L∞(Bϵ(x±)) ≲
1

ϵ2
and ∥∇f±∥L∞(Bϵ(x±)) ≲

1

ϵ3
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and impose the ‘up-down’ symmetric condition

f+(x, y) = f−(x,−y) (III.29)

saying that the heat added by f+ at (x, y) matches the heat taken away by f− at (x,−y). A source–

sink distribution satisfying these conditions can be constructed by smoothing a point source and

point sink across a scale ∼ ϵ; there are of course many other possibilities. Regarding the domain,

we assume for simplicity that it is the square Ω = (−1, 1)2.

Proposition 3.3.4. Under the above setup,

min
u(x,t)

⟨|u|2⟩≤Pe2
∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ ∼ min

{
log

1

ϵ
,

(
log

1

ϵ

)2
1

Pe2

}

for all ϵ ∈ (0, 1/20) and Pe ≥ 0. The alternatives are achieved by no flow (log(ϵ−1)) or by the

pinching flow (log2(ϵ−1)Pe−2) depicted in Figure III.1b of the introduction.

Remark 3.3.5. Our setup is already quite general, but one can relax it further without altering

the scaling of the result. This includes allowing the symmetry condition III.29 to hold only after

integration in x, or considering general domains Ω that include the pinching flows we use to prove

the upper bound.

Proof of the lower bound. Again we begin with the lower bound

〈
|∇T |2

〉
≥

(ffl
Ω
ξfdx

)2
ffl
Ω
|∇ξ|2dx+ C(Ω)∥ξ∥2BMO(Ω) Pe2

(III.30)

from 3.3.1. Recall the example of the smoothed Dirac mass discussed in Section 3.3.1, which had

logarithmically diverging H1-norm as ϵ→ 0. This prompts us to look for a test function ξ(x) with

the properties that ˆ
Ω

ξfdx ≳ log
1

ϵ
and ∥ξ∥BMO(Ω) ≲ 1,
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which would prove in the present setting that ∥f∥H1 ≳ log ϵ−1. A suitable choice is given by

ξ(x) =


ξ0(|x− x+|) if |x− x+| ≤ 1

4

−ξ0(|x− x−|) if |x− x−| ≤ 1
4

0 otherwise

where ξ0(r) =


log( 1

4ϵ
) if r ≤ ϵ

log( 1
4r
) if ϵ < r ≤ 1/4

0 otherwise

.

For one,

ˆ
Ω

ξfdx =

ˆ
Bϵ(x+)

ξ0(|x−x+|)f+(x)dx+
ˆ
Bϵ(x−)

ξ0(|x−x−|)f−(x)dx = 2 log

(
1

4ϵ

)
≳ log

1

ϵ
.

Also, ∥ξ∥BMO(Ω) ≲ 1 as log(|x|) ∈ BMO(Rd), and since the minimum and maximum of two

functions g, h ∈ BMO(Rd) have BMO-norms bounded by a multiple of ∥g∥BMO(Rd) + ∥h∥BMO(Rd)

(see [Ste93, Ch. IV]).

Continuing, we compute the H1-norm in the dominator of III.30. Evidently,

ˆ
Ω

|∇ξ|2dx =

ˆ
Ω\Bϵ(x+)

|∇ξ0(|x−x+|)|2dx+
ˆ
Ω\Bϵ(x−)

|∇ξ0(|x−x−|)|2dx ≲
ˆ r=1/4

r=ϵ

1

r
dr ≲ log

1

ϵ
.

Assembling the estimates shows that

⟨|∇T |2⟩ ≳
(
log 1

ϵ

)2
log 1

ϵ
+ Pe2

∼ min

{
log

1

ϵ
,

(
log

1

ϵ

)2
1

Pe2

}
.

Proof of the upper bound We turn to construct steady velocity fields u(x) saturating the lower

bound. Arguing just as in proof of 3.3.3 (see the derivation leading up to III.28) we apply 3.2.4 to

show that

〈
|∇T |2

〉
≤ 1

Pe2

 
Ω

|u|2dx
 
Ω

|∇η|2dx+

 
Ω

∣∣∇∆−1(u · ∇η − f)
∣∣2 dx (III.31)

where T is the temperature field associated to the scaled version of u with mean kinetic energy

Pe. Again, this upper bound applies for any choice of u and η, regardless of the L2-norm of the
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velocity. We shall consider two different choices for (u, η), the first of which involves no flow, and

the second of which is the anticipated pinching flow.

No flow The first possibility is to take u = 0. Then η drops out in III.31, and we see that

⟨|∇T |2⟩ ≤
 
Ω

∣∣∇∆−1f
∣∣2 dx = max

φ(x)ffl
Ω φdx=0

∣∣´
Ω
(φ+ − φ−)(f+ − f−)

∣∣2ffl
Ω
|∇φ|2

.

To prove that ⟨|∇T |2⟩ ≲ log(ϵ−1), which is the desired upper bound in this case, it suffices to show

that ∣∣∣∣ˆ
Ω

(φ+ − φ−)(f+ − f−)dx

∣∣∣∣2 ≲ log

(
1

ϵ

) ˆ
Ω

|∇φ|2dx. (III.32)

Here, φ± are the positive and negative parts of φ, and we allow for any combination of pluses and

minuses on the left (e.g., φ+f−). Since the argument is the same for all combinations, we use φ+f+.

By our assumptions on f ,

ˆ
Ω

φ+f+dx =

ˆ
Bϵ(x+)

φ+f+dx ≲
 
Qϵ(x+)

φ+dx

where Qϵ(x+) is the open square of side length ϵ centered at x+. The desired bound now follows

from a BMO-type argument, involving controlling consecutive jumps in the average of φ+ along a

sequence of squares starting with Qϵ(x+) and ending at Ω.

Since Ω = (−1, 1)2, there is a sequence of squares Q1, . . . , QN ⊂ Ω of ever increasing

diameters and with the following properties: (i) the first square is Q1 = Qϵ(x+) and the last square

is Ω; (ii) consecutive squares intersect, with an area |Qi ∩ Qi+1| that is within a factor of 5 of

the areas |Qi| and |Qi+1|; (iii) no more than 10 squares include any given x ∈ Ω; (iv) there are

N ∼ log(1/ϵ) squares in total. To use the squares, observe first that

∣∣∣∣ 
Qi

φ+dx−
 
Qi+1

φ+dx

∣∣∣∣2 ≲  
Qi

∣∣∣∣φ+ −
 
Qi

φ+

∣∣∣∣2 dx+

 
Qi+1

∣∣∣∣φ+ −
 
Qi+1

φ+

∣∣∣∣2 dx
≲
ˆ
Qi∪Qi+1

|∇φ+|2dx
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by condition (ii) and Poincaré’s inequality for d = 2. Summing up over consecutive pairs of squares,

∣∣∣∣ 
Qϵ(x+)

φ+dx−
 
Ω

φ+dx

∣∣∣∣2 =
∣∣∣∣∣
N−1∑
i=1

 
Qi

φ+dx−
 
Qi+1

φ+dx

∣∣∣∣∣
2

≲ N
N−1∑
i=1

∣∣∣∣ 
Qi

φ+dx−
 
Qi+1

φ+dx

∣∣∣∣2
≲ N

N−1∑
i=1

ˆ
Qi∪Qi+1

|∇φ+|2 ≲ N

ˆ
Ω

|∇φ+|2

where in the first step we used condition (i), in the second step we applied the Cauchy–Schwarz

inequality and in the last step we used condition (iii). Since

∣∣∣∣ 
Ω

φ+dx

∣∣∣∣2 ≲ ˆ
Ω

|φ|2dx ≲
ˆ
Ω

|∇φ|2dx

we can conclude the result. In particular,

∣∣∣∣ˆ
Ω

φ+f+

∣∣∣∣2 ≲ ∣∣∣∣ 
Qϵ(x+)

φ+

∣∣∣∣2 ≲ ∣∣∣∣ 
Ω

φ+

∣∣∣∣2 + ∣∣∣∣ 
Qϵ(x+)

φ+ −
 
Ω

φ+

∣∣∣∣2
≲ (1 +N)

ˆ
Ω

|∇φ|2 ≲ log

(
1

ϵ

) ˆ
Ω

|∇φ|2

by condition (iv). This shows III.32 and hence

⟨|∇T |2⟩ ≲ log
1

ϵ

for the choice u = 0.

Pinching flows Next we show how to achieve ⟨|∇T |2⟩ ≲ log2(ϵ−1)Pe−2 using a ‘pinching’ flow.

The flow we have in mind squeezes a large portion of the domain Ω into the balls Bϵ(x±) where the

heat is being added and taken away. This requires the velocity to grow as 1/|x− x±|, which results

in a logarithmically diverging kinetic energy. At the same time we will enforce the pure advection

equation u · ∇η = f leading to a similar divergence in the homogeneous H1-norm of η. Using all
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of this in the bound 〈
|∇T |2

〉
≤ 1

Pe2

 
Ω

|u|2dx
 
Ω

|∇η|2dx (III.33)

which follows from III.31 will lead to the desired result.

The key task is to find a way to solve the pure advection equation with the given source–sink

functions f = f+ − f−. Our solution will be symmetric under the reflection (x, y) 7→ (x,−y),

so we define it explicitly on the upper-half plane. Introduce polar coordinates (r, θ) centered at

(0, 1/2 + 2ϵ), and let Rϵ be the rectangle centered at x+ = (0, 1/2) with vertical side length 2ϵ and

horizontal side length 2
√
3ϵ. The rectangle is defined such that it contains the ball Bϵ(x+) where

the source f+ is supported, and is such that its top and bottom sides are tangent to this ball. Outside

of Rϵ and for y > 0, we define u = ∇⊥ψ1 with

ψ1(θ) =



11π
6

− θ θ ∈ (5π
3
, 11π

6
]

π
6

θ ∈ (4π
3
, 5π

3
]

θ − 7π
6

θ ∈ (7π
6
, 4π

3
]

0 otherwise

.

The streamlines are left-right symmetric and are arranged in two trapezoidal channels, and the flow

enters the rectangle Rϵ from the right and exits it on the left. Inside Rϵ, we use a horizontal flow

that matches the inflow and outflow conditions of the prior construction on the vertical sides of Rϵ.

Specifically, we take u = ∇⊥ψ2 with

ψ2(y) = ψ1

(
2π − arctan

(
2y − 1− 4ϵ

2
√
3ϵ

))
= −π

6
− arctan

(
2y − 1− 4ϵ

2
√
3ϵ

)
.

The rest of the flow is defined by odd reflection across the line y = 0.

Having chosen u, we now show how to solve u · ∇η = f to produce the required test function
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η. Inside Rϵ the equation simplifies to ∂yψ2∂xη = f , which we integrate to get η = η2 with

η2(x) =

ˆ x

0

f(s, y)

∂yψ2(y)
ds = −

ˆ x

0

12ϵ2 + (2y − 1− 4ϵ)2

4
√
3ϵ

f(s, y) ds.

Outside of Rϵ and for y > 0, we take η = η1 = 0 in regions of no flow, and choose η1 to be

otherwise constant along the streamlines. Matching conditions are imposed to ensure continuity

across the boundary of Rϵ. In formulas,

η1(θ) =


η2(

√
3ϵ, 1

2
+ 2ϵ+

√
3ϵ tan θ) if θ ∈ (5π

3
, 11π

6
]

η2(−
√
3ϵ, 1

2
+ 2ϵ−

√
3ϵ tan θ) if θ ∈ (7π

6
, 4π

3
]

0 otherwise

.

This gives u · ∇η1 = 0 outside of Rϵ, and then we define η for y < 0 by reflection about y = 0.

Altogether, we have produced a pair (u, η) solving the pure advection equation u · ∇η = f on Ω.

To complete the proof we must estimate the L2-norms of u and ∇η. By the up-down symmetry,

ˆ
Ω

|u|2 dx ≲
ˆ
(Ω\Rϵ)∩{y>0}

|∇ψ1|2 dx+

ˆ
Rϵ

|∇ψ2|2 dx

≲
ˆ 2π

0

ˆ 1
2

2
√
3

|∂rψ1|2 +
∣∣∣∣1r∂θψ1

∣∣∣∣2 rdrdθ + ˆ
Rϵ

∣∣∣∣∣ 4
√
3ϵ

12ϵ2 + (2y − 1− 4ϵ)2

∣∣∣∣∣
2

dx

≲ log

(
1

ϵ

)
+ 1

A similar calculation using the bounds |f | ≲ ϵ−2 and |∇f | ≲ ϵ−3 assumed at the start of the

example give that ˆ
Ω

|∇η|2 dx ≲ log

(
1

ϵ

)
+ 1.

Plugging these estimates into III.33 shows that

〈
|∇T |2

〉
≲

log2(1/ϵ)

Pe2
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for our pinching flow.

Using the better of the two flows — no flow or the pinching flow — bounds the minimum

thermal dissipation by

min ⟨|∇T |2⟩ ≲ min

{
log

1

ϵ
,

(
log

1

ϵ

)2
1

Pe2

}
.

The proof is complete.

3.4 Asymptotic analysis of steady optimal flows

Each of the lower bounds from the previous section rearranges to give an asymptotic result:

given a sequence {(un, Tn)} solving the advection-diffusion equation with source–sink f(x) and

with ⟨|un|2⟩ → ∞,

lim inf
n→∞

⟨|un|2⟩ · ⟨|∇Tn|2⟩ ≳Ω,d ∥f∥2H1(Ω) > 0.

The cellular and pinching flow examples from Section 3.3.3 give scenarios in which this bound

is sharp in its scaling with respect to the mean kinetic energy ⟨|un|2⟩, as well as features of f .

Motivated by this, we now ask what it takes for a sequence of velocity fields to be ‘almost optimal’

in the sense that their thermal dissipation is minimized at leading order. Focusing on the fully

steady case where u = u(x), f = f(x) and T = T (x), we obtain a limiting variational problem

whose minimizers encode key asymptotic properties of almost minimizers (including minimizers as

a special case). The minimum value of this problem gives the sharpest possible asymptotic lower

bound.

A word about setup is required, especially regarding the regularity of our velocity fields.

Depending on the application, one may wish to constrain a different norm of the velocity other than

the kinetic energy-based L2-one we have used so far (e.g., the convection problem treated in Section

3.5 lends itself to the H1-norm). In this section, we consider divergence-free and no-penetration

velocities u belonging to a general Banach space (X, ∥ · ∥X), which for a technical reason we must

assume is continuously embedded into Ld(Ω) via the inequality ∥ · ∥Ld(Ω) ≲ ∥ · ∥X . We further
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assume X is a dual space, so that its unit ball ∥ · ∥X ≤ 1 is weak-∗ compact [Bre11]; this ensures

the existence of optimizers for the problems we consider below. Following remark 3.2.6, we let

f ∈ H−1(Ω) and be mean-free.

Given this setup, we ask to take the parameter Pe → ∞ in the sequence of minimization

problems

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

 
Ω

|∇T |2dx. (III.34)

Applying the sharp variational upper bound from 3.2.4, we learn that

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

 
Ω

|∇T |2dx = min
u(x),η(x)
∥u∥X≤Pe

 
Ω

|∇η|2 + |∇∆−1(u · ∇η − f)|2dx (III.35)

where the admissible η belong toH1(Ω). The differential equation on the left-hand side is embedded

in the optimization on the right. It follows from the right-hand formulation that optimal velocities

achieve ∥u∥X = Pe if f is not identically zero, since otherwise one could decrease the minimum by

replacing (u, η) with (λu, λ−1η) for some λ > 1.

First, we identify a sufficient and necessary condition for the minimum to scale as Pe−2.

Lemma 3.4.1. There holds

lim sup
Pe→∞

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
 
Ω

|∇T |2dx <∞

if and only if there exists (u0, T0) ∈ X ×H1(Ω) satisfying


u0 · ∇T0 = f in Ω

∇ · u0 = 0 in Ω

u0 · n̂ = 0 at ∂Ω

. (III.36)
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Proof. That the existence of (u0, T0) implies the asserted Pe−2 bound follows from the right-hand

formulation of the optimization in III.35. Indeed, we can always assume that ∥u0∥X = 1, and then

setting (u, η) = (Peu0,Pe−1 T0) into III.35 shows that min
ffl
Ω
|∇T |2 ≤ Pe−2

ffl
Ω
|∇T0|2 for all Pe.

For the reverse implication, let {uPe} be an admissible sequence for the finite-Pe problems, with

∥uPe∥X ≤ Pe and whose temperatures {TPe} obey
ffl
Ω
|∇TPe|2 ≲ Pe−2. Rescale to the variables

(ũPe, T̃Pe) := (Pe−1uPe,PeTPe) to find that

∥uPe∥X = 1, ∥∇TPe∥L2(Ω) ≤ 1 and uPe · ∇TPe =
1

Pe
∆TPe + f

after dropping the tildes. Applying the Banach-Alaoglu theorem [Lax02] to the dual Banach space

X and using our assumption that it is continuously embedded into Ld(Ω), hence also in L2(Ω) since

d ≥ 2, we can extract a subsequence {uPe, TPe} (not relabeled) converging weakly-∗ to (u0, T0)

both in X ×H1(Ω) and in L2(Ω)×H1(Ω). Note

∥uPe · ∇TPe − f∥H−1(Ω) =

∥∥∥∥ 1

Pe
∆TPe

∥∥∥∥
H−1(Ω)

=
1

Pe
∥∇TPe∥L2(Ω) ≤

1

Pe
→ 0

by the definition of the H−1-norm in II.7. An application of the div-curl lemma [Eva90, Theorem 4

in §5.B] then verifies that the dot product uPe ·∇TPe converges to u0 ·∇T0, and hence u0 ·∇T0 = f .

The incompressibility and no-penetration conditions for uPe are also preserved in the weak-∗ limit,

so that they hold for u0.

We come now to the main result of this section, in which we rescale the minimization problem

III.34 by Pe−2 and take Pe → ∞. A sequence of admissible velocities {uPe} with ∥uPe∥X ≤ Pe is

said to be almost minimizing if their corresponding (steady) temperature fields {TPe} satisfy

 
Ω

|∇TPe|2dx = min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

 
Ω

|∇T |2dx+ o(Pe−2) as Pe → ∞. (III.37)

Included in this definition are sequences of optimizers.
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Theorem 3.4.2. Assume the pure advection system III.36 has a solution in X ×H1(Ω). Then,

lim
Pe→∞

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
 
Ω

|∇T |2dx = min
u0(x),T0(x)
∥u0∥X≤1
u0·∇T0=f

 
Ω

|∇T0|2dx (III.38)

where the minimization on the right is over all solutions of III.36 in X ×H1(Ω). Also, u0 solves

this limiting problem if and only if it is the weak-∗ limit point in X of a sequence {Pe−1 uPe} where

{uPe} is almost minimizing on the left.

Remark 3.4.3. So long as f is not identically zero, any optimal velocity u0 in the limiting problem

must have unit norm, i.e., ∥u0∥X = 1. Indeed, increasing the norm of u0 decreases the value of
ffl
Ω
|∇T0|2 via the coupling u0 · ∇T0 = f . This is the limiting version of the similar observation

made directly after III.35 regarding finite Pe.

Remark 3.4.4. Both the dependence of T on u in the finite-Pe problems, and of optimal T0 on

u0 at Pe = ∞ are one-to-one. The former is simply the uniqueness-property of steady advection-

diffusion; the latter comes from the fact that the limiting minimization problem is strictly convex,

hence its minimizers are unique. A partial converse holds: if the closed unit ball ∥ · ∥X ≤ 1 of X

is strictly convex, then the correspondence between optimal u0 and optimal T0 is one-to-one. To

see this, note that any two optimizers u0 and u′
0 must lie on the boundary of the closed unit ball

(by the previous remark). But then their average (u0 + u′
0)/2 would also be optimal, which is a

contradiction unless u0 = u′
0.

Remark 3.4.5. It is natural to ask whether the limit points of the rescaled temperatures {PeTPe}

generated by almost minimizers {uPe} are also captured by the limiting problem. In one direction,

it follows from the proof below that the weak-H1 limit points of {PeTPe} are always optimal for the

limiting problem. The converse holds if the space X has an additional ‘Radon–Riesz like’ property,

which requires that every sequence {un} converging weakly-∗ to a vector u with ∥un∥X → ∥u∥X

also converges strongly to u. If X is a Hilbert space then it has this property; uniformly convex

spaces such as Lp(Ω) for p ∈ (1,∞) do as well [Bre11]. Under this additional assumption, one can
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prove that the sequence of almost minimizing rescaled velocities {Pe−1 uPe} recovering u0 as in

the statement actually converge strongly in X to u0 (they consistently lie on the boundary of the

unit ball). This and the first part of the previous remark imply that {PeTPe} converge strongly in

H1, to the unique optimizer T0 corresponding to u0.

Proof. The proof is a tightening of the argument behind 3.4.1. The upper bound

lim sup
Pe→∞

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
 
Ω

|∇T |2dx ≤ min
u0(x),T0(x)
∥u0∥X≤1
u0·∇T0=f

 
Ω

|∇T0|2dx (III.39)

follows just as in the ‘if’ part of the lemma. In particular, any admissible (u0, T0) with ∥u0∥X = 1

on the right satisfies

Pe2
 
Ω

|∇TPe|2 ≤
 
Ω

|∇T0|2 (III.40)

where TPe solves the advection-diffusion equation with uPe = Peu0 (use η = Pe−1 T0 in 3.2.4).

The desired inequality III.39 follows from minimizing over (u0, T0). In particular, when f is not

identically zero we can discard the case ∥u0∥X < 1 as being sub-optimal per remark 3.4.3; if f is

identically zero, there is nothing to show.

Next, we show the lower bound

min
u0(x),T0(x)
∥u0∥X≤1
u0·∇T0=f

 
Ω

|∇T0|2dx ≤ lim inf
Pe→∞

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
 
Ω

|∇T |2dx. (III.41)

Start by considering a general admissible sequence {uPe} on the right, with ∥uPe∥X ≤ Pe and

whose temperatures {TPe} can be taken to obey
ffl
Ω
|∇TPe|2 ≲ Pe−2 as otherwise there is nothing to

show. Again following the proof of 3.4.1, we rescale to {(Pe−1uPe,PeTPe)} and extract a weak-∗
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limit point (u0, T0) ∈ X ×H1(Ω) solving the pure advection system III.36. Moreover,

∥u0∥X ≤ lim inf
Pe→∞

∥Pe−1 uPe∥X ≤ 1, (III.42a) 
Ω

|∇T0|2 dx ≤ lim inf
Pe→∞

Pe2
 
Ω

|∇TPe|2 dx (III.42b)

by the weak-∗ lower semi-continuity of (dual) norms. Minimizing over all sequences {uPe} with

the above properties yields III.41. At this stage, it is clear that both inequalities in III.39 and III.41

are actually equalities, so III.38 is proved.

We end with the claim regarding the pairing between weak-∗ limit points of almost minimizers

{uPe}, which by definition obey III.37, and the solutions (u0, T0) of the limiting problem. On the

one hand, suppose u0 is optimal in the limit. Going back to the proof of the upper bound III.39, we

see that the rescaled velocities {Peu0} must be almost minimizers. In particular, the left-hand sides

of III.39 and the optimized version of III.40 are equal up to o(1) terms. Conversely, if the sequence

{uPe} used in the proof of III.41 is almost minimizing, then the weak-∗ limit points (u0, T0) found

by rescaling must be optimal in the limit. This is because the left-hand sides of III.41 and III.42b

become equal when the latter is applied to an almost minimizing sequence.

3.5 Internally heated buoyancy-driven flows

We finally come to the problem of bounding the heat transport of an internally heated buoyancy-

driven flow. As usual, we assume the source–sink function f(x) is mean-free so that its heating and

cooling is balanced, and suppose it is not identically zero. The velocity u(x, t) and temperature

T (x, t) are required to satisfy the equations

Pr−1 (∂tu+ u · ∇u) = ∆u+ RTg −∇p (III.43a)

∂tT + u · ∇T = ∆T + f (III.43b)

60



in addition to the usual divergence-free and no-penetration boundary conditions. Here, g(x) =

∇φ(x) is a conservative gravitational acceleration field with a non-constant potential φ ∈ H1(Ω).

For example, setting φ = z gives g = k̂ which is a common choice in studies of convection.

Momentum conservation implies balance laws relating the flow’s mean enstrophy ⟨|∇u|2⟩ to the

Rayleigh-like number R measuring the strength of buoyancy relative to viscosity. These balances

laws are insensitive to the Prandtl number Pr, so it drops out of the analysis. (See the introduction

for formulas giving R and Pr in terms of dimensional parameters). Requiring u to satisfy such

balance laws should in principle significantly restrict heat transport. We obtain a trio of lower

bounds confirming this intuition for sources and sinks that are not aligned with gravity.

3.5.1 Bounds on enstrophy-constrained flows

We start by deriving bounds on the heat transport achieved by general incompressible flows in terms

of their mean enstrophy ⟨|∇u|2⟩. These follow from 3.3.1 and the fact that Poincaré’s inequality

allows us to relate the mean enstrophy to the mean energy ⟨|u|2⟩. Namely,

⟨|u|2⟩ ≤ µ2⟨|∇u|2⟩ (III.44)

for all divergence-free u with u · n̂ = 0 at ∂Ω. This can be checked for an arbitrary bounded

Lipschitz domain Ω using an argument-by-contradiction, with the crucial point being that the only

constant flow satisfying no-penetration conditions is no flow (see, e.g., [Bis88]). The optimal

constant is

µ2 = min
u(x)

´
Ω
|∇u|2 dx´
Ω
|u|2 dx

with divergence-free and no-penetration conditions. Applying III.44 to the lower bound from 3.3.1

and eliminating the test function ξ proves the following result:

Corollary 3.5.1. Suppose the hypotheses of 3.3.1 hold and let ⟨|∇u|2⟩ < ∞. There are posi-

tive constants C1, C2 and C3 depending on the domain Ω, the dimension d and the source–sink
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distribution f such that

⟨|∇T |2⟩ ≥ C1

C2 + C3⟨|∇u|2⟩
. (III.45)

Remark 3.5.2. For flows in dimensions d = 2, 3 this result does not require the second assumption

on f in III.7. This follows from remark 3.2.2 because flows with bounded mean enstrophy belong

to Lp(Ω) at a.e. time for p < 2d/(d− 2), by the Sobolev embedding theorem.

3.5.2 Balance laws

The next ingredient for deriving Rayleigh-dependent bounds on ⟨|∇T |2⟩ is a pair of balance laws

relating the mean enstrophy ⟨|∇u|2⟩ to the flux-based Rayleigh number R in the momentum

equation. The first law states that the rate of energy loss to viscous dissipation must balance the

total power supplied to drive the flow:

⟨|∇u|2⟩ = ⟨RTg · u⟩ . (III.46)

To prove it, dot III.43a by u and integrate by parts in space and time, using the no-penetration

conditions to drop the boundary terms.

A second balance law is obtained by testing the advection-diffusion equation III.43b against the

gravitational potential φ. Recalling that g = ∇φ, this yields

−⟨fφ⟩ = ⟨g · (uT −∇T )⟩ . (III.47)

In the Boussinesq approximation, temperature and density variations are negatively proportional to

one another (see, e.g., [SV60]). Thus, we can interpret this balance law as expressing a conservation

of total gravitational potential energy: the change in potential energy due to the heating and cooling

must balance a similar change from the total heat flux.
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Combining III.46 with III.47 and applying the Cauchy–Schwarz inequality, we deduce that

⟨|∇u|2⟩ = R ⟨g · ∇T − fφ⟩

≤ R ⟨|g|2⟩
1
2 ⟨|∇T |2⟩

1
2 − R ⟨fφ⟩ . (III.48)

This sets a Rayleigh-dependent limit on the advective intensity of buoyancy-driven internally heated

flows.

3.5.3 Bounds on buoyancy-driven flows

It is now an algebraic exercise to obtain lower bounds on the heat transport of internally heated

buoyancy-driven flows. Here is the result:

Theorem 3.5.3. Let u(x, t) and T (x, t) solve the Boussinesq equations III.43 with insulating and

no-penetration boundary conditions. Let f(x) be a balanced and steady source–sink distribution

satisfying the assumptions of 3.3.1, and take C1, C2 and C3 to be as in 3.5.1. We have the following

bounds:

1. If ⟨fφ⟩ > 0,

⟨|∇T |2⟩ ≥ ⟨fφ⟩2

⟨|g|2⟩
for all R;

2. If ⟨fφ⟩ = 0, there exists R0 > 0 such that

⟨|∇T |2⟩ ≥
(

C1

2C3⟨|g|2⟩
1
2 R

) 2
3

for all R > R0;

3. If ⟨fφ⟩ < 0, there exists R1 > 0 such that

⟨|∇T |2⟩ ≥ C1

2C2 + 2C3 |⟨fφ⟩|R
for all R > R1 .

Remark 3.5.4. 3.5.3 actually applies to all divergence-free and no-penetration velocities u and

temperatures T that need not solve the Boussinesq equations, but only satisfy the balance laws
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III.47 and the (time-averaged) energy inequality ⟨|∇u|2⟩ ≤ ⟨RTg · u⟩, which is a weakening

of III.46. These conditions, and hence our bounds, hold for Leray–Hopf solutions of III.43 (see

[CNO16, Nob23] for similar comments in the context of Rayleigh–Bénard convection).

Proof. Statement 1 is a direct consequence of estimate III.48, the nonnegativity of ⟨|∇u|2⟩ and the

positivity of ⟨fφ⟩.

For the other two statements, start by combining III.48 with the general lower bound in III.45 to

deduce that

⟨|∇T |2⟩ ≥ C1

C2 + C3 R ⟨|g|2⟩ 1
2 ⟨|∇T |2⟩ 1

2 + C3 R |⟨fφ⟩|
. (III.49)

To prove statement 2, set ⟨fφ⟩ = 0 to obtain

⟨|∇T |2⟩ ≥ C1

C2 + C3 R ⟨|g|2⟩ 1
2 ⟨|∇T |2⟩ 1

2

. (III.50)

This implies that ⟨|∇T |2⟩ ≥ C1/(2C2) if ⟨|∇T |2⟩ ≤ C2
2/(C

2
3 R2 ⟨|g|2⟩), a contradiction if R is

sufficently large. Thus, we can find R0 > 0 so that ⟨|∇T |2⟩ ≥ C2
2/(C

2
3 R2 ⟨|g|2⟩) if R > R0. With

this, III.50 follows from the stronger bound

⟨|∇T |2⟩ ≥
(

C1

2C3⟨|g|2⟩
1
2 R

) 2
3

.

Statement 3 follows analogously. If

C3 R ⟨|g|2⟩
1
2 ⟨|∇T |2⟩

1
2 ≤ C2 + C3 R |⟨fφ⟩| , (III.51)

then III.49 implies

⟨|∇T |2⟩ ≥ C1

2C2 + 2C3 |⟨fφ⟩|R
. (III.52)

This is consistent with the assumed upper bound III.51 only when

C2 + C3|⟨fφ⟩|R ≥ (C1C
2
3/2)

1/3⟨|g|2⟩1/3 R2/3,
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which is true when R is sufficiently small or large, and in particular for R ≥ (C1⟨|g|2⟩)/(2C3 |⟨fφ⟩|3).

For all other values of R we must instead have the opposite of III.51, in which case III.49 gives

⟨|∇T |2⟩ ≥ [C1/(2C3⟨|g|2⟩
1
2 R)]2/3. In this case,

⟨|∇T |2⟩ ≥ max

{
1

⟨|g|2⟩

(
C2

C3 R
+ |⟨fφ⟩|

)2

,

(
C1

2C3⟨|g|2⟩
1
2 R

) 2
3

}
. (III.53)

If R is large enough that both lower bounds III.52,III.53 are possible, we must choose the weakest

of the two. There clearly exists a large enough R1 > 0 so that III.52 is the weakest bound for

R ≥ R1.

We close by discussing the physical meaning of ⟨fφ⟩ and the role it plays in 3.5.3. As was

mentioned briefly after III.47, under the Boussinesq approximation temperature variations δT in the

fluid are negatively proportional to density variations δρ via the coefficient of thermal expansion.

So, f can be thought of not only as a distributed heat source/sink but also as a sink/source of density.

In this light, the three cases in 3.5.3 have to do with whether there is a net negative, zero or positive

supply of gravitational potential energy from f . With a positive supply, a strongly convecting and

perhaps turbulent flow can result, leading to highly efficient heat transport consistent with our third

bound (⟨fφ⟩ < 0). In contrast, a zero or negative potential energy supply inhibits convection and

with it heat transport. This is reflected by the significant barriers to heat transport expressed in the

first and second bounds (⟨fφ⟩ > 0 or = 0). We wonder whether, in these cases, turbulence could in

some sense be ruled out.

3.6 Conclusion

This section discussed heat transport by incompressible flows in an insulated domain with a

balanced distribution of heat sources and sinks. When the temperature T (x, t) is a passive scalar

that diffuses and is advected by a divergence-free and no-penetration velocity field u(x, t), we
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showed in Section 3.3 that

⟨|∇T |2⟩ ≥
(ffl

Ω
ξfdx

)2
ffl
Ω
|∇ξ|2 dx+ C(Ω, d)∥ξ∥2BMO(Ω) ⟨|u|2⟩

. (III.54)

This bound holds for mean-free and steady source–sink functions f(x), with a constant C(Ω, d)

depending on the flow domain Ω and the dimension d ≥ 2. It involves a choice of test function

ξ(x) which can be optimized to obtain a best-case lower bound (see 3.3.1, and also remark 3.3.2

which discusses unsteady f and ξ). Actually, III.54 derives from a more general bound on the heat

transport of unsteady source–sink functions and flows, proved in Section 3.2 with a complementary

upper bound. As shown by 3.2.4, these bounds are sharp if both u(x) and f(x) are steady.

We then applied our bounding framework to construct optimal, or at least highly competitive,

flows. One example in Section 3.3.3 was of a two-dimensional cellular flow adapted to sinusoidal

heating and cooling. A second example involved a pinching flow between concentrated sources

and sinks. The latter highlighted our use of Hardy and BMO norms, which came with the choice

to apply the div-curl inequality of Coifman, Lions, Meyers and Semmes [CLMS90] to control

the non-local term ⟨|∇∆−1u · ∇ξ|2⟩ in an intermediate step. This extended the estimates of

[STD07, DT06, Thi12] from the setting of statistically homogeneous and isotropic flows in periodic

domains to general flows and domains. The Hardy space norm was pivotal for identifying the

optimal scaling of min ⟨|∇T |2⟩ with respect to the size of the sources and sinks, and for showing

the (near) optimality of our pinching flows. The status of pinching flows for other objectives such

as ⟨T 2⟩, or in higher dimensions with d > 2, remains to be seen.

More generally, for a fixed distribution of heating and cooling f(x) such that the pure and

steady advection equation u · ∇T = f is solvable, we showed the convergence

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
 
Ω

|∇T |2dx → min
u0(x),T0(x)
∥u0∥X≤1
u0·∇T0=f

 
Ω

|∇T0|2dx as Pe → ∞ (III.55)

where the Péclet number Pe set the maximum flow intensity measured in a Banach space norm,
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|| · ||X . The argument in Section 3.4 showed that the minimum values converge, and also that

the minimizers (and almost minimizers) of the finite-Pe problems on the left-hand side of III.55

converge to those of the limiting problem on its right. Whether or not the pure advection equation is

actually solvable is a fascinating and generally open question, even in two dimensions (see [Lin17]

and the references therein). Solving it was a key part of the examples in Section 3.3.3.

Finally, we leveraged balance laws implied by momentum conservation to produce lower

bounds on ⟨|∇T |2⟩ for buoyancy-driven internally heated flows. Section 3.5 considered flows

driven by steady heating and cooling f(x) and a steady conservative gravitational acceleration

g(x) = ∇φ(x), with the standard setting being φ = z. For asymptotically large values of the

flux-based Rayleigh number R, we proved that

⟨|∇T |2⟩ ≳Ω,d,f,g


1 if ⟨fφ⟩ > 0

R−2/3 if ⟨fφ⟩ = 0

R−1 if ⟨fφ⟩ < 0

(III.56)

with a prefactor depending on the domain Ω, the dimension d, the source–sink distribution f and

the gravity g. The three scaling regimes distinguish whether the spatial arrangement of the heat

sources and sinks supplies the fluid with a net negative, zero or positive input of gravitational

potential energy. Quite naturally, in the first two cases buoyancy-driven flows have severely limited

heat transfer. This leaves open questions about the actual flow. We wonder if ⟨fφ⟩ > 0 implies

that ‘turbulence’ cannot occur, as one might expect it to produce well-mixed temperatures with

⟨|∇T |2⟩ ≪ 1. It should be especially interesting to investigate the borderline case ⟨fφ⟩ = 0, where

the possibility of turbulence may be sensitive to the details of the setup (e.g., the shape of the flow

domain, or the fine details of the heat sources and sinks versus the gravity).

Contrary to our lower bounds on passive advection-diffusion, we do not know if the estimates in

III.56 are ever sharp, or even if they depend optimally on R. Turbulent flows observed in experiments

and simulations with ⟨fφ⟩ < 0 have ⟨|∇T |2⟩ ∼ R−1/2 [LAG18, BLAG19, KGOM22, MLBG19],
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which is much larger than our lower bound. This gap is in line with the broader literature on

convection. For instance, with uniformly heated convection between cool boundaries, the lower

bound ⟨|∇T |2⟩ ≳ R−1/3 by Lu and Doering [LDB04] is far from the ⟨|∇T |2⟩ ∼ R−1/5 scaling

observed in simulations [GS12]. Similarly, upper-bound theory for boundary-driven Rayleigh–

Bénard convection proves heat transport bounds that grow with a ‘mixing length’ scaling [DC96],

while most turbulent data displays a slower boundary-limited scaling law [Doe19, Doe20]. This does

not mean that the bounds are never sharp — the a priori scaling bounds just mentioned are sharp up

to possible logarithmic corrections [TD] and without log-corrections in three dimensions [Kum22]

for general enstrophy-constrained flows. Likewise, the known bounds on imbalanced internal

heating are sharp up to log-corrections [Tob22], and this section has produced sharp bounds for

balanced heating has well. In any case, power-law improvements of the known a priori bounds

must use information from the momentum equation beyond the usual balance laws.

None of this rules out the possibility that there exist other, non-turbulent solutions of the Boussi-

nesq equations for which ⟨|∇T |2⟩ displays the same scaling as the lower bounds in III.56. In fact, an

asymptotic construction and numerical simulations in [MLBG19] produce steady flows achieving

⟨|∇T |2⟩ ∼ R−1 in a two-dimensional box with insulating vertical boundaries, isothermal bottom

boundaries and a sinusoidal heating and cooling profile. Our bounds extend to this configuration

with the same scaling results, and different prefactors. Perhaps this suggests the bounds are sharp,

or perhaps there are still obstructions to sharpness that have to do with the particular choice of

heating and cooling. Enunciating the conditions under which asymptotically optimal heat transport

is achievable by momentum-conserving flows remains an interesting open problem.
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CHAPTER IV

Oscillatory and Concentrated Heating in General Dimensions and Domains

In Section 3.3.3, our examples are built on 2-d disks and squares. As our result in Section

3.3.2 only requires d ≥ 2, some optimal flow designs should also be possible in higher dimensions

and non-disk type domains. We will adapt the ideas for 2-d heat source–sink functions and

corresponding flows and construct examples in general dimensions. Similar to the 2-d case, we

will discuss optimal bounds for
〈
|∇T |2

〉
. In Section 4.1, we show that the same scaling of the

bounds proved in Section 3.3.3.1 holds for oscillatory heating in general dimensions d > 2. For

concentrated heating though, we will show in Section 4.2 that the log 1
ϵ

terms in our scalings

proved in Section 3.3.3.2 is replaced with ϵd−2 terms in the upper bound resulting in a gap between

lower and upper bounds in the strong flow case. Finally in Section 4.3 we will also discuss 2-d

concentrated heating on thin neck regions instead of disks and show an optimal bound with scaling

max
{
min

{
log 1

ϵ
,
(
log 1

ϵ

)2 1
Pe2

}
, min

{
l
w
,
(

l
w

)2 1
Pe2

}}
wherew stands for neck width and l stands

for neck length. We will discuss the meaning of these terms there.

4.1 Periodic Heating in General Dimensions

In Section 3.3.3.1, we built an example of high frequency rolls using trigonometric functions.

As our result depends on the frequency l and is built upon the periodicity of trigonometric functions,

we may adapt our ideas to a lager class of periodic functions and obtain similar results in general

dimensions d ≥ 2. In this section, we’ll construct flows corresponding to more general periodic

heating f(x) on region Ω = (0, 2π)d for d ≥ 2 achieving optimal scaling.
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Proposition 4.1.1. Suppose over domain Ω = (0, 2π)d, we have spatially periodic functions

u0, f0, η0 satisfying

u0 · ∇η0 = f0,

 
Ω

f0(x, t)dx = 0

with f0, η0,u0 ∈ L∞(Ω) ∩H1(Ω) and u satisfying divergence-free and no-penetration boundary

conditions. Let

fℓ(x) = f0(x/ℓ)

be the periodic extension of f0 with scaling ℓ−1 a positive integer. Then we have

min
u(x,t)

⟨|u|2⟩≤Pe2
∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ ∼ min

{
ℓ2,

1

Pe2

}

for all ℓ−1 ∈ N and Pe ≥ 0. The alternatives are achieved by no flow (ℓ2) or by the periodic flow

(Pe−2).

Proof. The following proof follows a similar procedures as we did in Section 3.3.3.1. As f0, η0,u0 ∈

L∞(Ω)∩H1(Ω), we will just treat ∥f∥H−1(Ω), ∥f∥L∞(Ω), ∥u∥L2(Ω), ∥∇η∥L2(Ω) as bounded constants

independent of ℓ−1 and Pe.

Proof of the lower bound The lower bound is similar to what we had in Proposition 3.3.3. With

the general lower bound,

〈
|∇T |2

〉
≥

(ffl
Ω
ξfdx

)2
ffl
Ω
|∇ξ|2dx+ C(Ω)∥ξ∥2BMO(Ω) Pe2

from Corollary 3.3.1, by taking ξ = fℓ, we get
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Ω

ξfℓdx =

 
Ω

f 2
ℓ dx =

 
Ω

f 2
0dx, 

Ω

|∇ξ|2 dx =
1

ℓ2

 
Ω

|∇f0|2 dx,

∥ξ∥BMO(Rd) ≤ 2∥ξ∥∞ = 2∥f0∥∞.

Combining these estimates yields the following lower bound,

〈
|∇T |2

〉
≥

(ffl
Ω
f 2
0dx

)2
ℓ−2

ffl
Ω
|∇f0|2 dx+ C(Ω)∥f0∥∞Pe2

≳
1

ℓ−2 + Pe2
≳ min

{
ℓ2,

1

Pe2

}
.

Proof of the upper bound Using estimate III.28, we still consider the two cases whether u = 0

or not. In the case with no flow,

⟨|∇T |2⟩ ≤
 
Ω

∣∣∇∆−1fℓ
∣∣2 dx = ℓ2

 
Ω

∣∣∇∆−1f0
∣∣2 dx.

On the other hand, simply take

u(x) = u0(x/ℓ), η(x) = ℓη0(x/ℓ).

We have

u · ∇η = fℓ, 
Ω

|u|2 dx =

 
Ω

|u0|2 dx,
 
Ω

|∇η|2 dx =

 
Ω

|∇η0|2 dx.

so we get 〈
|∇T |2

〉
≤ 1

Pe2

 
Ω

|u0|2dx
 
Ω

|∇η0|2dx ≲
1

Pe2
.
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Combining the two cases, gives us

min
〈
|∇T |2

〉
≲ min

{
ℓ2,

1

Pe2

}
.

The proof is complete.

4.2 Concentrated Heating in General Dimensions

Now let’s consider point source and sink heat profile in general dimensions. Recall in the 2-d

case, the flow is designed to depends on distance from the source-sink only away from the source

sink. In higher dimensions, we may adapt this idea. Suppose the domain Ω = B(0, 1) is the unit ball

in dimension d ≥ 3, and the sink-source f± are located symmetrically across the ’equator’ in the

sense that they center on x± = (±1
2
, 0, . . . , 0). Furthermore, we assume the symmetric condition

on the value of sink and source as in the 2-d case. More specifically, our f satisfies the following

conditions:

f(x) = f+(x)− f−(x),

supp(f±) ⊂ Bϵ(x±),ˆ
Bϵ(x±)

f±(x)dx = 1,

f+(x1, · · · , xd−1, xd) = f−(−x1, · · · , xd−1, xd).

Proposition 4.2.1. Let f(x) be the intensity of the heat source satisfying above conditions. Suppose

|f | ≲ ϵ−d, |∇f | ≲ ϵ−d−1. (IV.1)
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Then under the above assumptions,

min

{
1/ϵd−2, log2(

1

ϵ
)
1

Pe2

}
≲ min

u(x,t)
⟨|u|2⟩≤Pe2

∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ ≲ min

{
1/ϵd−2,

1

ϵd−2

1

Pe2

}

for all ϵ ∈ (0, 1/20) and Pe ≥ 0. The alternatives in the upper bound are achieved by no flow

(1/ϵd−2) or by the pinching flow ( 1
ϵd−2 Pe−2).

Proof. To make the calculation simpler, we make use of the hyperspherical coordinates (r, φ1, . . . , φd−1),

where φ1, . . . , φd−2 ∈ [0, π] and φd−1 ∈ [0, 2π) and

x1 = r cosφ1,

x2 = r sinφ1 cosφ2,

...

xd = r sinφ1 · · · sin(φd−1).

Proof of the lower bound Now we begin with the lower bound, using

〈
|∇T |2

〉
≥

(ffl
Ω
ξfdx

)2
ffl
Ω
|∇ξ|2dx+ C(Ω)∥ξ∥2BMO(Ω) Pe2

from Corollary 3.3.1. As with the 2-d case, we want to try a ξ(x) approaching the Dirac mass, say

ξ =
1

rd−2
∧ 1

ϵd−2

which would give us
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Ω

ξfdx ∼ 1

ϵd−2
,

 
Ω

|∇ξ|2 dx ∼
ˆ 1

ϵ

(d− 2)2

r2d−2
rd−1dr ∼ d− 2

ϵd−2
,

∥ξ∥BMO(Rd) ≤ 2∥ξ∥∞ =
2

ϵd−2
.

Assembling the estimates shows that

⟨|∇T |2⟩ ≳ 1/ϵ2d−4

(d− 2)/ϵd−2 + Pe2 /ϵ2d−4
∼ min

{
1/ϵd−2,

1

Pe2

}
.

Now using the test function log 1
r
∧ log 1

ϵ
as in the 2-d case, we would get lower bound log2(1

ϵ
) 1

Pe2

for large Pe. Combining these two estimates gives us the lower bound:

⟨|∇T |2⟩ ≳ min

{
1/ϵd−2, log2(

1

ϵ
)
1

Pe2

}
.

Proof of the upper bound For the upper bound, as before, we use III.28,

〈
|∇T |2

〉
≤ 1

Pe2

 
Ω

|u|2dx
 
Ω

|∇η|2dx+

 
Ω

∣∣∇∆−1(u · ∇η − f)
∣∣2 dx

and consider two different choices for (u, η), the first of which involves no flow, and the second of

which is the pinching flow.

No flow The first possibility is to take u = 0. Then η drops out and we get

⟨|∇T |2⟩ ≤
 
Ω

∣∣∇∆−1f
∣∣2 dx = max

φ(x)ffl
Ω φdx=0

∣∣´
Ω
φf
∣∣2ffl

Ω
|∇φ|2

and near the sink and source, we have
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|
 
Ω

fφ|2 ≲ |ϵ−d

ˆ
r<ϵ

φ|2 ≲

(
ϵ−d

(ˆ
r<ϵ

1

) d+2
2d

∥φ∥
L

2d
d−2 (Ω)

)2

≲ ϵ2−d∥∇φ∥2L2(Ω)

via Sobolev embedding on Ω. Thus we have for no flow case,

〈
|∇T |2

〉
≲ 1/ϵd−2

as wanted.

Pinching flows By the symmetric nature of the location of sink source, we may construct the flow

around the sink only and the source will simply be the negative symmetry of the sink as in the 2-d

case in Section 3.3.3.2.

First let’s fix O = (1
2
+ 3+

√
3

2
ϵ, 0, . . . , 0) as the center for hyperspherical coordinates. Suppose

the sink lies in a small boxRϵ which is the subset of the ballB(O, 2
√
3) bounded by x1 = 1

2
+ 3−

√
3

2
ϵ

and x1 = 1
2
− 3−

√
3

2
ϵ. As in the 2-d case, we assume near the sink, the flow goes into the box and

flows along the last coordinate xd. To ensure divergence free conditions, away from the box Rϵ, the

velocity should be given by 1
rd−1 and in the box, the velocity is determined by the location it enters

the box from the sides and remains constant along xd throughout the box. More precisely, outside

box Rϵ we let

ur(r, φ1, · · · , φd−1) =



− 1
rd−1 φd−1 ∈ (−π

4
, π
4
)

φ1, · · · , φd−2 ∈ (3π
4
, 5π

6
)

1
rd−1 φd−1 ∈ (3π

4
, 5π

4
)

φ1, · · · , φd−2 ∈ (3π
4
, 5π

6
)

0 otherwise

.

The flow defined above enters the box from the right and exits from the left with matching flow

speed determined by the speed of the boundary given above. Note that by the construction of the
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box Rϵ, the speed |u| inside the box stays constant and |u| = 1
(2
√
3ϵ)d−1 as the flow enters the box

from the same radius 2
√
3ϵ. With the above construction, the main contribution of the L2 norm of

the velocity comes from the boundary of the box Rϵ. That is we have the estimate

 
Ω

|u|2dx ∼
ˆ
Ω−Rϵ

|u|2dx+

ˆ
Rϵ

|u|2dx

∼
ˆ 1

ϵ

1

r2d−2
rd−1dr +

1

ϵ2d−2
ϵd

≲
1

ϵd−2
.

Then we need to define η so that u · ∇η = f . So inside the box Rϵ, we want η1 to satisfy

ud∂xd
η1 = f , i.e.,

η1(x) =

ˆ xd

0

f(x1, · · · , xd−1, s)

u1
ds = −(2

√
3ϵ)d−1

ˆ xd

0

f(x1, · · · , xd−1, s)ds (IV.2)

in the box and outside the box, the values are constant along streamlines with matching values on

the boundary of the box. That is we can define η2 as follows:

η2(φ1, · · · , φd−1) =


η1(2

√
3ϵ, φ1, · · · , φd−1) φd−1 ∈ (−π

4
, π
4
) ∪ (3π

4
, 5π

4
)

φ1, · · · , φd−2 ∈ (3π
4
, 5π

6
)

0 otherwise

. (IV.3)

With this construction, we have

u · ∇η = f

and thus

〈
|∇T |2

〉
≤ 1

Pe2

 
Ω

|u|2dx
 
Ω

|∇η|2dx.
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Also, using IV.2 and the bound on f,∇f (IV.1), we have inside the box Rϵ,

ˆ
Rϵ

|∇η1|2dx ∼ |Rϵ| ϵ2d−2

(ˆ ϵ

0

ϵ−d−1

)2

∼ ϵd−2.

Outside the box, as φ1, · · · , φd−2 ∈ (3π
4
, 5π

6
), we have sin(φi) can be treated as constants for

i = 1, · · · , d− 2. So we have

ˆ
Ω−Rϵ

|∇η1|2dx ∼
ˆ 1

ϵ

1

r2
rd−1dr ∼ 1.

Adding the previous two estimations, we have the following estimate on Ω:

 
Ω

|∇η|2dx ∼ 1.

Together with the estimate on velocity u, this gives us

〈
|∇T |2

〉
≲

1

ϵd−2

1

Pe2
.

Using the better of the two flows — no flow or the pinching flow — bounds the minimum thermal

dissipation by

min ⟨|∇T |2⟩ ≲ min

{
1/ϵd−2,

1

ϵd−2

1

Pe2

}
.

The proof is complete.

4.3 Thin Neck Flow

Now that we considered extensions of Section 3.3.3.1 to higher dimensions, another topic

we could look at is how would a different domain in 2-d affect the flows and optimizers. Would

pinching flow still be an optimal choice for concentrated heating and how would the shape of

the domain change the optimization? In this section, we analyze the case where the concentrated

sink and source are connected by a thin neck. Taking into account the thickness and length of the
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neck, we try to find the scaling with respect to all these parameters. More specifically, consider the

following heating and domain: let f± locate symmetrically in the sense that their support center

on x± = (± l+2
2
, 0) with radius ϵ. The domain Ω is given by a dumbbell shaped region: two disks

B(x−, 1) and B(x+, 1) are connected by a thin neck L = [−l/2, l/2] × [−w/2, w/2] along the

x-axis with thickness w and length l.

Figure IV.1: Example of thin neck flow. Heat source (red) and sink (blue) are concentrated in
regions of size ∼ ϵ. Black lines with arrows show streamlines of the ‘pinching’ flow achieving
optimal scaling proved in the following proposition.

Proposition 4.3.1. Let Ω be the domain given by

Ω = B(x−, 1) ∪B(x+, 1) ∪ L

and let f satisfy the usual conditions:

f(x) = f+(x)− f−(x),

supp(f±) ⊂ Bϵ(x±),ˆ
Bϵ(x±)

f±(x)dx = 1,

f+(x, y) = f−(−x, y),

|f | ≲ ϵ−2, |∇f | ≲ ϵ−3.
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We have

min
u(x,t)

⟨|u|2⟩≤Pe2
∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ ∼ max

{
min

{
log

1

ϵ
,

(
log

1

ϵ

)2
1

Pe2

}
, min

{
l

w
,

(
l

w

)2
1

Pe2

}}

(IV.4)

for ϵ ∈ (0, 1/20), l > w > 0 and Pe ≥ 0. The alternatives are achieved by no flow (max{ l
w
, log 1

ϵ
})

or pinching flow(max{log 1
ϵ

1
Pe2 ,

l
w

1
Pe2}) as demonstrated in Figure IV.1 where the maximum in each

case can be determined by width w and sink source size ϵ.

Remark 4.3.2. Even though we are mainly interested in the case when w is small and l is a constant

comparable to the size of the disks, our result also applies to the case when w gets large and

approaches l. Intuitively, when w gets large, our dumbbell is becoming closer and closer to our

original 2-d case as the neck is disappearing and the two disks are merging. In which case, the l
w

term will vanish and our result just turns into the normal 2-d disk result we showed in 3.3.4.

Proof. In the following lower bound proof, we’ll be using two different test functions ξ instead of

one as in the previous cases. And these two different ξ will lead to V.3 in our main result.

Proof of lower bound For the lower bound part, using the general lower bound III.27 as before,

we can choose the following two test functions:

The first one resembles what we had in the 2-d case, i.e. using log(1/ϵ). In this case, ξ = 0

along the neck and not contributing anything to our calculations. We would end up with the same

lower bound:

〈
|∇T |2

〉
≳

log(1/ϵ)2

log(1/ϵ) + Pe2
.

For the second one, we can use the following ξ:

ξ(x) =


−a x ∈ B(−l/2− 1, 1)

a x ∈ B(l/2 + 1, 1)
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where a is any fixed non-zero constant and ξ is linear along the neck. In this case:

 
Ω

ξfdx ∼ a,

 
Ω

|∇ξ|2dx ∼ wa2/l,

∥ξ∥BMO(Ω) ≲
aw

l
.

Plugging into 3.3.1 gives us

〈
|∇T |2

〉
≳

a2

wa2/l + C(Ω) (wa/l)2 Pe2
,

=
l2

lw + C(Ω)w2Pe2
,

=
(l/w)2

l/w + C(Ω)Pe2
.

Combining the two cases, we get

min ⟨|∇T |2⟩ ≳ max

{
min

{
log

1

ϵ
,

(
log

1

ϵ

)2
1

Pe2

}
, min

{
l

w
,

(
l

w

)2
1

Pe2

}}
. (IV.5)

Proof of the upper bound With III.28, the no flow case is similar to what we did in the usual 2-d

disk case. Here to prove V.3 stated in the proposition, it suffices to show that

∣∣∣∣ˆ
Ω

(φ+ − φ−)(f+ − f−)dx

∣∣∣∣2 ≲ ( l

w
+ log

(
1

ϵ

))ˆ
Ω

|∇φ|2dx. (IV.6)

Though this bound seems different from the one we want to prove, we’ll see that when we

combine the no-flow and flow case together, the lower and upper bounds match. Again, as argument

is the same for all combinations, we will start with the combination φ+f+. The proof is adopted
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from the 2-d case. By our assumptions on f ,

ˆ
Ω

φ+f+dx =

ˆ
Bϵ(x+)

φ+f+dx ≲
 
Qϵ(x+)

φ+dx

where Qϵ(x+) is the open square of side length ϵ centered at x+. Now we want to find a sequence

of squares starting from Qϵ(x+), ending at B(x−, 1) with all the squares together covering the

whole neck Ω. Let N be the largest integer such that the cube of side length 2N−1ϵ centered at x+ is

contained in Ω, i.e., the largest square contained in right disk. Then similar to our assumptions in

the 2-d case, there is a sequence of squares Q1, . . . , QN−1 ⊂ Ω of ever increasing diameters and

with the following properties: (i) the first square is Q1 = Qϵ(x+) and the last square is the above

mentioned largest square; (ii) consecutive squares intersect, with an area |Qi ∩Qi+1| that is within

a factor of 5 of the areas |Qi| and |Qi+1|; (iii) no more than 10 squares include any given x ∈ Ω;

(iv) there are N ∼ log(1/ϵ) squares in total.

Then we let QN = B(x+, 1) and with this added region, the above four conditions are not

violated. For convenience, we’ll still call QN a square though technically it’s a disk. Similarly,

we can find another decreasing sequence of squares QN , . . . , QN+M starting at Ω with decreasing

diameters ending at QN+M = [l/2− w/2, l/2 + w/2]× [−w/2, w/2]. This last square is half in

the neck, and half in the disk. We still require the sequence of squares to satisfy conditions (ii) and

(iii) above, and we want M ∼ log(1/w) in this case as the smallest square has side length w.

For the next step, we want another sequence of squares QN+M , . . . , QN+M+O starting at

QN+M = [l/2 − w/2, l/2 + w/2] × [−w/2, w/2], marching through the neck and ending at

QN+M = [−l/2 − w/2,−l/2 + w/2] × [−w/2, w/2]. We still assume condition (ii) and (iii) on

these squares. Though different from the previous cases, these squares are assumed to have the

same side length w which are the largest possible squares that can fit in the neck L. Then as the

squares all have the same size, we would have O ∼ l
w

.

By symmetry, we can find squaresQN+M+O, . . . , QN+M+O+M with increasing diameters ending

at QN+M+O+M = B(x−, 1).
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With the above construction, we have the squares Q0, . . . , QN+M+O+M covers Ω and we still

have

∣∣∣∣ 
Qi

φ+dx−
 
Qi+1

φ+dx

∣∣∣∣2 ≲  
Qi

∣∣∣∣φ+ −
 
Qi

φ+

∣∣∣∣2 dx+

 
Qi+1

∣∣∣∣φ+ −
 
Qi+1

φ+

∣∣∣∣2 dx
≲
ˆ
Qi∪Qi+1

|∇φ+|2dx.

Summing up over consecutive pairs of squares,

∣∣∣∣∣
 
Qϵ(x+)

φ+dx−
 
QN+2M+O

φ+dx

∣∣∣∣∣
2

=

∣∣∣∣∣
N+M+O+M−1∑

i=1

 
Qi

φ+dx−
 
Qi+1

φ+dx

∣∣∣∣∣
2

≲ (N +M +O)
N+2M+O−1∑

i=1

∣∣∣∣ 
Qi

φ+dx−
 
Qi+1

φ+dx

∣∣∣∣2
≲ (N +M +O)

N+2M+O−1∑
i=1

ˆ
Qi∪Qi+1

|∇φ+|2dx

≲ (N +M +O)

ˆ
Ω

|∇φ+|2dx.

Then, as φ has mean zero on Ω, we can apply Poincaré’s inequality to get

∣∣∣∣∣
 
QN+2M+O

φ+dx

∣∣∣∣∣
2

=

∣∣∣∣ 
B(x−,1)

φ+dx

∣∣∣∣2 ≲ ∣∣∣∣ˆ
Ω

φ+dx

∣∣∣∣2
≲
ˆ
Ω

|φ|2dx ≲
ˆ
Ω

|∇φ|2dx

where the third step follows from Cauchy-Schwartz inequality. Together with our assumptions on
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the sizes of N,M,O, we can conclude that

∣∣∣∣ˆ
Ω

φ+f+dx

∣∣∣∣2 ≲
∣∣∣∣∣
 
Qϵ(x+)

φ+dx−
 
QN+2M+O

φ+dx

∣∣∣∣∣
2

+

∣∣∣∣∣
 
QN+2M+O

φ+dx

∣∣∣∣∣
2

≲ (N +M +O)

ˆ
Ω

|∇φ|2

≲

(
log

(
1

ϵ

)
+ log

(
l

w

)
+

l

w

) ˆ
Ω

|∇φ+|2

≲

(
log

(
1

ϵ

)
+

l

w

) ˆ
Ω

|∇φ|2

by condition (iv). This shows IV.6 and hence

⟨|∇T |2⟩ ≲ max

{
log

1

ϵ
,
l

w

}
(IV.7)

for the choice u = 0.

Pinching flow for thin neck For the upper bound, let’s try pinching flow in the following way:

Near the source and sink, the flow unpinches as in the 2-d disk case. Then the flow pinches through

the thin neck with flow of width scale w and length scale l. In this case, the estimates for u, η

remains the same near source and sink. And along the neck, by divergence free condition, the

contribution of velocity along the neck is given by

ˆ
L

|u|2dx ∼ l/w

and near the exit and entrance of the neck, a similar estimate near the sink and source gives estimate

log(1/w). So we have the total velocity contribution given by

 
Ω

|u|2dx ∼ log(
1

ϵ
) + log(

1

w
) +

l

w
.

To satisfy u · ∇η = f , we construct the η in a similar way as in the 2-d case, and η would have the

same disk estimate near the sink and source. Near the entrance and exit, the contribution of ∇η
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scales as log(1/w) and along the neck, we have

ˆ
L

|∇η|2dx ∼ l

w
.

Following are the detailed construction:

Using polar coordinate centered at (−l/2− 1− 2ϵ, 0), and let Rϵ be the rectangle that contains

the support of the sink with vertical side length 2
√
3ϵ and horizontal side length 2ϵ. And we can

define the stream function as follows:

ψ1(θ) =



π
3
− θ (π

6
, π
3
]

π
6

(−π
6
, π
6
]

θ + π
3

(−π
3
,−π

6
]

0 otherwise

.

With this construction, the flow enters from the top and exits from the bottom. Inside Rϵ, the flow

matches the sides and flows vertically. So we can define the flow as follows:

ψ2(x) = ψ1(arctan(
2x+ l + 1 + 4ϵ

2
√
3ϵ

)) =
π

3
− arctan(

2x+ l + 1 + 4ϵ

2
√
3ϵ

)

using −∂xψ2∂yη = f , we can define η inside Rϵ as

η2(x, y) = −
ˆ y

0

f(x, s)

∂xψ2(x, s)
ds =

ˆ y

0

12ϵ2 + (2x+ l + 1 + 4ϵ)2

4
√
3ϵ

f(x, s)ds.

Outside Rϵ, we match the value along boundaries of Rϵ to get

η1(θ) =


η2(−l/2− 1− 2ϵ+

√
3ϵ cot(θ),

√
3ϵ) (π

6
, π
3
]

η2(−l/2− 1− 2ϵ−
√
3ϵ cot(θ),−

√
3ϵ) (−π

3
,−π

6
]

.
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Then near the entrance of thin neck, we can use (−l/2 +
√
3
4
w, 0) as the center in polar coordinates

to define the following stream function

ψ3(θ) =



4
3
π − θ (7π

6
, 4π

3
]

π
6

(5π
6
, 7π

6
]

θ − 2π
3

(2π
3
, 5π

6
]

.

After entering the neck, the stream function matches the entrance by

ψ4(y) = ψ3(π − arctan(
y√
3w/6

)).

Now for the test function η, as we want it to stay constant along streamlines, it can be defined using

η2 at the boundary of Rϵ, i.e.,

η4(y) =


η2(−l/2− 1 + 3ϵ+ 8ϵ

w
y,−

√
3ϵ) y < 0

η2(−l/2− 1 + 3ϵ− 8ϵ
w
y,
√
3ϵ) y > 0

and near the entrance we have

η3(θ) =


η4(−

√
3w tan(θ)/6) (7π

6
, 4π

3
]

η4(−
√
3w tan(θ)/6) (2π

3
, 5π

6
]

0 otherwise

.

With these constructions, we get the following upper bound with pinching flows:

〈
|∇T |2

〉
≲

1

Pe2

(
log(

1

ϵ
) + log(

1

w
) +

l

w

)2

≲ max

{
1

Pe2
log2(

1

ϵ
),

1

Pe2

(
l

w

)2
}
.
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Matching Bounds Combining the above upper bound and no-flow upper bound IV.7, we have

⟨|∇T |2⟩ ≲ min

{
max

{
log

1

ϵ
,
l

w

}
, max

{
1

Pe2
log2(

1

ϵ
),

1

Pe2

(
l

w

)2
}}

. (IV.8)

Comparing with the lower bound IV.5,

⟨|∇T |2⟩ ≳ max

{
min

{
log

1

ϵ
,

(
log

1

ϵ

)2
1

Pe2

}
, min

{
l

w
,

(
l

w

)2
1

Pe2

}}

at first glance, they might seem to be different. However, we can show that these two bounds match

by a simple case analysis. Note that there is a symmetry between l
w

and log 1
ϵ
, we’ll focus the cases

when l
w
> log 1

ϵ
and demonstrate how l

w
> log 1

ϵ
works only for the first case.

Case I: Pe2 > l
w
> log 1

ϵ
. In this case, we have

l

w
>

1

Pe2

(
l

w

)2

, log
1

ϵ
>

(
log

1

ϵ

)2
1

Pe2
.

So we have upper bound 1
Pe2

(
l
w

)2 and lower bound 1
Pe2

(
l
w

)2, they match as we wanted.

Case I’: Pe2 > log 1
ϵ
> l

w
. In this case, we have

l

w
>

1

Pe2

(
l

w

)2

, log
1

ϵ
>

(
log

1

ϵ

)2
1

Pe2
.

So we have upper bound 1
Pe2

(
log 1

ϵ

)2 and lower bound 1
Pe2

(
log 1

ϵ

)2, they match as we wanted.

Comparing the above two cases, it’s easy to see the symmetric relationship between l
w

and log 1
ϵ

as

we mentioned earlier. So we’ll only work on the cases when l
w
> log 1

ϵ
.

Case II: l
w
> Pe2 > log 1

ϵ
. In this case, we have

1

Pe2

(
l

w

)2

>
l

w
> log

1

ϵ
>

(
log

1

ϵ

)2
1

Pe2
.

So we have upper bound l
w

and lower bound l
w

, they match as well.
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Case III: l
w
> log 1

ϵ
> Pe2. In this case, we have

1

Pe2

(
l

w

)2

>
l

w
,

(
log

1

ϵ

)2
1

Pe2
> log

1

ϵ
.

So we have upper bound l
w

and lower bound l
w

, they still match.

Combining the above three cases, we see that the upper and lower bounds match in all possible

cases. Thus the result is proved.

Note that when constructing the pinching flows in Section 4.2 and Section 4.3, we do have some

freedom in designing the flows and some numbers are just chosen for convenience. For example,

in the thin neck case, on the left side of the neck, we chose to enter the neck with angles (7π
6
, 4π

3
]

and exit with angles (2π
3
, 5π

6
]. These numbers can be changed to any angle as long as the closure

of entering and exiting angle do not intersect. This leads us to thinking that in the 2-d case, the

pinching structure gives us the optimal scaling and the structure’s behaviors near the sink and source

would give us some clues of the prefactor for concentrated heatings. In the next chapter we’ll

discuss what the best prefactor could be along with how the best prefactor would guide us choose

the structure’s behaviors near the sink and source.
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CHAPTER V

Optimal Prefactor Analysis for 2D Concentrated Flows

In the previous sections, we focused on achieving the optimal scaling for various setups of

the optimal heat transfer problem with internal heating and cooling. The 2-d examples in Section

3.3.3 and Chapter IV do give us some candidates for prefactors but none of them closes the gap

between prefactors for upper and lower bounds. Since we have some freedom in designing the flows

as demonstrated at the end of Section 4.3, we’ll try to take advantage of the freedom in the flow

structure to reach an optimal prefactor in 2-d.

Recall for the no-flow or small kinetic energy case, we showed that the best prefactor was

∥f∥2H−1(Ω) in III.24 for a given heat profile f . Thus, in this chapter, we’ll focus on finding the

prefactor for ⟨|∇T |2⟩ assuming large mean kinetic energy Pe2. Also, as our method relies on

manipulating the pinching flow structure designed for concentrated heat profiles, we would assume

all the heat functions f are concentrated in the sense that it’s supported on two relatively small

interior regions in Ω with f being always non-negative in one region and non-positive in the other.

In Section 5.1, we’ll try to analyze what the best prefactor would be. In Section 5.2, we’ll show

the prefactor deduced is obtainable with a specific example. Then in Section 5.3, we prove that the

best possible optimal prefactor is always obtainable for radially symmetric heat functions satisfying

certain constraints. We leave the question of obtaining the optimal prefactor for general heat sources

and sinks open.
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5.1 Bounds on the Optimal Prefactor

Recall in Chapter III where we started with the weak formulation of our advection diffusion

equation and proved the variational bound III.9:

〈
2fξ − |∇ξ|2 − |∇∆−1(∂tξ + u · ∇ξ)|2

〉
≤
〈
|∇T |2

〉
≤
〈
|∇η|2 + |∇∆−1(∂tη + u · ∇η − f)|2

〉
.

Using the lower bound above, we proved in Corollary 3.3.1 that

〈
|∇T |2

〉
≥

(ffl
Ω
ξfdx

)2
ffl
Ω
|∇ξ|2dx+ C∥ξ∥2BMO(Ω) ⟨|u|2⟩

which we used as our main tool to show the lower bound scalings of the examples in Section

3.3.3. So to obtain a possibly best prefactor, we could keep track of all the inequalities we used

from the above lower bound to our final scaling results in Section 3.3.3. Then, combining all the

best prefactors for those known inequalities would give us a guess for the best possible prefactor.

However, some of the constants in the above analysis are hard to determine. For example, the

constant C in the above lower bound comes from the duality between H1 and BMO and the div-curl

inequality III.21 for which we do not have a clear estimate. Instead we shall return to our original

advection-diffusion equation

∂tT + u · ∇T = ∆T + f (V.1)

and try to find an easier method with trackable inequalities to prove the same lower bound.

As we only want to have a best possible prefactor to guide our later analysis, we may assume a

simple disk domain with symmetric heat profile f . And we have the following result:

Proposition 5.1.1. Suppose our domain Ω = B(0, 4) ∈ R2 has concentrated sink-source function

fϵ, centered at x± = (0,±1
2
) and supported in ball of radius ϵ < 1/20 with mass ±1. The best

possible prefactor for the pinching flow is at least 4
|Ω|2 , i.e.,

〈
|∇T |2

〉
≥ 4

|Ω|2
log2(

1

ϵ
)Pe−2
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for ϵ ∈ (0, 1/20) and Pe > 0.

Proof. As f has mass ±1 in the sink and source respectively, if we integrate equation (V.1) on the

ball Bρ of radius ϵ ≤ ρ < |x+ − x−| − ϵ centered around source x+ and take long time average, we

get

1 = lim sup
τ→∞

1

τ

ˆ
Bρ

T (x, τ)− T (x, 0)dx+

ˆ
∂Bρ

(uT −∇T ) · ndS

= lim sup
τ→∞

1

τ

ˆ
Bρ

T (x, τ)− T (x, 0)dx+

ˆ 2π

0

(uT −∇T ) · nρdθ.

As shown in (II.17), the L∞ norm of T is bounded and as τ → ∞, ∥T∥L∞(Ω)

τ
→ 0, we have

1 +

ˆ 2π

0

∇T · nρdθ =
ˆ 2π

0

uT · nρdθ. (V.2)

Let er denote the unit outward radial vector. Now for each time slice t > 0, we have

 
Ω

|u|2 dx
 
Ω

|∇T |2 dx ≥ 1

|Ω|2

ˆ 2π

0

ˆ 1

0

| (u · er) |2rdrdθ
ˆ 1

0

ˆ 2π

0

|∂θT |2dθ
1

r
dr

≥ 1

|Ω|2

ˆ 2π

0

ˆ 1

0

| (u · er) |2rdrdθ
ˆ 1

0

C0

ˆ 2π

0

|T − 1

2π

ˆ 2π

0

T (r, θ′)dθ′|2dθ1
r
dr

≥
(

1

|Ω|
C

ˆ 1

0

ˆ 2π

0

u

(
T − 1

2π

ˆ 2π

0

T (r, θ′)dθ′
)
· ndrdθ

)2

=

(
1

|Ω|
C

ˆ 1

0

ˆ 2π

0

uT · ndrdθ
)2

where we used Poincaré’s inequality on circles in the second step and Cauchy-Schwartz in the

third step. The last equality follows from u being divergence-free. Note that starting from the first

inequality, we’re only integrating on Ω+, the positive half of the domain. By symmetry, the negative

half of the domain will give us a same lower bound. Adding them up, taking time average and then

plugging in V.2, we get, after taking square root,
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√
⟨|u|2⟩ ⟨|∇T |2⟩ ≥ 2

|Ω|
C

ˆ 1

ϵ

1

r

(
1 +

ˆ 2π

0

∇T · nrdθ
)
dr

≥ 2

|Ω|
C

ˆ 1

ϵ

1

r
dr − 2

|Ω|
C

√ˆ 1

0

ˆ 2π

0

|∇T |2rdrdθ
ˆ 1

ϵ

ˆ 2π

0

1

r
drdθ

=
2

|Ω|
C log(

1

ϵ
)− 2

|Ω|
C

√ˆ 1

0

ˆ 2π

0

|∇T |2rdrdθ · 2π log(1
ϵ
)

which implies

1

C

√
⟨|u|2⟩ ⟨|∇T |2⟩+

√
⟨|∇T |2⟩ 2

|Ω|
2π log(

1

ϵ
) ≥ 2

|Ω|
log(

1

ϵ
)(

1

C
Pe+

√
2

|Ω|
2π log(

1

ϵ
)

)√
⟨|∇T |2⟩ ≥ 2

|Ω|
log(

1

ϵ
)

〈
|∇T |2

〉
≥

 2
|Ω| log(

1
ϵ
)

1
C
Pe+

√
2
|Ω|2π log(

1
ϵ
)

2

multiplying both sides by Pe2

log2 1
ϵ

we get

Pe2

log2 1
ϵ

⟨|∇T |2⟩ ≥

 2
|Ω|

1
C
+

√
2π log( 1

ϵ
)

Pe

2

→ 4

|Ω|2
C2

when
√

log( 1
ϵ
)

Pe
→ 0. The C is a prefactor coming from Cauchy-Schwarz inequality and Poincaré’s

inequality on circles, which is 1 in the best case (we’ll show this result in Lemma 5.2.1 below as

the proof would guide us to an example obtaining our wanted prefactor). Thus the best possible

prefactor is 4
|Ω|2 .
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5.2 An Example Obtaining the Prefactor 4
|Ω|2

Following the line of the above proof, we see that to achieve the best possible prefactor, we need

to saturate the Cauchy-Schwartz inequality and Poincaré’s inequality on circles. This observation

gives us some guide on how to construct flows obtaining best prefactor which we’ll work through

now in the following proof:

Lemma 5.2.1. Let φ ∈ H1(T) have mean zero on T where T stands for the circle in 2-d

parametrized by angle θ ∈ [0, 2π]. Then we have

ˆ 2π

0

φdθ ≤
ˆ 2π

0

φ′dθ.

Proof. Let C be a constant such that

C

ˆ 2π

0

φ2dθ ≤
ˆ 2π

0

(φ′)
2
dθ.

Then we have the constant satisfies

C ≤
´ 2π

0
(φ′)2 dθ´ 2π

0
φ2dθ

.

If we write out φ using fourier series, as φ has mean zero, we get

φ =
∞∑
k=1

cke
ikθ,

φ′ =
∞∑
k=1

ikcke
ikθ.

so we get

C ≤
∑∞

k=1 2π|ck|2k2∑∞
k=1 2π|ck|2

which implies C ≤ 1 and equality is obtained when φ only has frequency 1.
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In the above proof, we see that to obtained the best prefactor for Poinceré’s inequality on

circles, we want a heat profile with frequency 1. Together with the saturation of Cauchy-Schwartz

inequality, these calculations gives us a direction to construct a temperature and flow field obtaining

the prefactor 4
|Ω|2 which leads to the following result:

Figure V.1: Example flow obtaining the optimal prefactor 4
|Ω|2 . Black lines with arrows show

streamlines of the ‘pinching’ flow achieving optimal scaling proved in the following proposition.

Proposition 5.2.2. Let Ω = B(0, 4) as before, and consider the heat profile f given by

f(x) =


1

πϵ2
x ∈ Bϵ

0 x ̸∈ Bϵ

near the source x+ = (0, 1
2
) where Bϵ = B(x+, ϵ) for fixed ϵ ∈ (0, 1/20). Near the sink, f is

defined symmetrically with negative strength. For the above f , we can find ‘pinching’ flow obtaining

the optimal scaling and prefactor as Pe→ ∞, i.e.,

min
u(x,t)

⟨|u|2⟩≤Pe2
∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ = 4

|Ω|2
1

Pe2
log2(

1

ϵ
) +

1

Pe2
o(log2(

1

ϵ
)). (V.3)

Proof. As our heat profile f has symmetrical behavior on Ω, we will focus on the stream function
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ψ near the source x+. The structure of ψ near the sink follows symmetrically. Let

ψ(x) =
sin θ√
π

=
y

ϵ
√
π

outside Bϵ and near ∂Bϵ. As we’ve seen in the previous examples in Section 3.3.3.2 and Section 4.2,

the leading term contribution comes from this area, it suffices to do the calculations near Bϵ. Inside

Bϵ, we let the stream lines be horizontal lines and let u remain constant along the stream lines. Let

ex, er be the unit vectors in the cartesian x−direction and polar r-direction. This construction gives

us the following flow structure:

u(x) =


urer = cos θ√

πr
er x ̸∈ Bϵ

uxex = 1√
πϵ
ex x ∈ Bϵ

and as in our previous pinching flow examples, we can define η using u · ∇η = ∇⊥ψ · ∇η = f

inside Bϵ which gives us

η1(x, y) =

ˆ x

0

f(s, y)

ux
ds =

√
πϵ

ˆ x

0

f(s, y)ds =
x√
πϵ
.

Outside the ball Bϵ, we again match η2 with η1 along the boundary and let η2 remain constant along

the streamlines to get

η2(θ) = η1 (ϵ cos(θ), ϵ sin(θ)) =
cos θ√
π
.

With the above constructions, together with the symmetric flow structure, we can easily calculate

the mean kinetic energy and spatial-temporal average of η to get

 
Ω

|u|2dx =
2

|Ω|
log

1

ϵ
+ o(log

1

ϵ
),

 
Ω

|∇η|2dx =
2

|Ω|
log

1

ϵ
+ o(log

1

ϵ
)
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which implies 〈
|∇T |2

〉
≤ 4

|Ω|2
1

Pe2
log2(

1

ϵ
) +

1

Pe2
o(log2(

1

ϵ
))

by III.28.

5.3 Optimal Prefactor for Radial Heating and Cooling

In the previous sections, we’ve seen that the best possible prefactor is at least 4
|Ω|2 and this bound

is sharp when the sink–source function f is constant inside its support. What is the largest possible

set of balanced heat profiles f such that the optimal prefactor for the lower bound in 5.1.1 is 4
|Ω|2 ?

One interesting feature we notice from the previous section is that

Φ(x, y) = (η(x, y), ψ(x, y)) = (
x

ϵ
√
π
,
y

ϵ
√
π
),

on ∂Bϵ the boundary of the ball where the source or sink is supported on. The reason we define Φ

as above is if we calculate the Jacobian determinant of Φ, we get f , i.e.,

detDΦ = u · ∇η = f.

To make the calculation cleaner, we may do a change of coordinate so that Φ becomes the identity

on the boundary of unit ball ∂B1 where the source is now supported on after the transformation.

That is, if we let

g(x) = ϵ2πf(ϵx),

Ψ(x) =
√
πΦ(ϵx)

(V.4)

we would have 
detDΨ(x) = πϵ2 detDΦ(ϵx) = πϵ2f(ϵx) = g(x) in B1,

Ψ(x) = (x, y) on ∂B1

(V.5)
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as wanted. As we’ve seen in all our pinching flow calculations, the main contribution to
〈
|∇T |2

〉
comes from the pinching near ∂Bϵ, so if we can ensure such behavior near ∂B1 in the rescaled case,

we would be able to get our best possible prefactor. So now our goal is to show that for given g,

whether we can find Ψ such that equations (V.5) is satisfied. Note that solving equations (V.5) is

just solving the prescribed Jacobian with identity boundary conditions. As we need u ∈ L2(B1)

and η ∈ H1(B1), we would want Ψ ∈ H1(B1) to satisfy our regularity requirements. However, in

[GKL21a], one result obtained is that we can find

g ∈ L logL(Ω) := {h ∈ L1(Ω)|
ˆ
Ω

|h|max(log |h|, 0)dx <∞},

satisfying

inf
B1

g > 0

such that (V.5) has no solutions in H1(B1). So in the next proposition, we’ll show that with further

assumptions on g, we may find solutions to (V.5).

Proposition 5.3.1. If g ∈ L2(B1) is radially symmetric and for all 0 < r ≤ 1 satisfying

g(r) ≲
 
Br(0)

g(x)dx,

1

π

ˆ
B1

g(x)dx = 1,

g(x) ≥ 0 on B1

(V.6)

then there exists unique Ψ ∈ H1(B1) solving (V.5).

Remark 5.3.2. The following proof uses the construction of ‘radial stretching’ from [GKL21a]

which gives us a candidate for radial symmetric solution. Furthermore, with our given constraint(V.6)

on g, we can show that our Ψ lies in H1(B1) as wanted and uniqueness also follows.
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Proof. Note that if g is radially symmetric, we can define function ρ(r) as follows:

ρ(r) =

√
2

ˆ r

0

g(s)sds (V.7)

where g(s) in the integrand is written in polar coordinates. In this case, it’s easy to see that

ρ(1) =

√
2

ˆ 1

0

g(r)rdr =

√
1

π

ˆ 2π

0

ˆ 1

0

g(r)rdrdθ = 1

So if we let

Ψ(x) = ρ(|x|) x

|x|

we would have

detDΨ(x) =

∣∣∣∣∣∣∣
ρ(r)
r

+ ρ̇(r)x2

r2
− ρ(r)x2

r3
ρ̇(r)xy

r2
− ρ(r)xy

r3

ρ̇(r)xy
r2

− ρ(r)xy
r3

ρ(r)
r

+ ρ̇(r)y2

r2
− ρ(r)y2

r3

∣∣∣∣∣∣∣ =
1

r
ρ(r) ˙ρ(r) =

1

2r
˙(ρ2(r)) = g(r),

Ψ(x) = (x, y) on ∂B1

(V.8)

which solves (V.5) as we wanted.

Then, using Lemma 3.1 from [GKL21a], we have

∥DΨ∥2L2(B1)
≲
ˆ 1

0

(∣∣∣ ˙ρ(r)
∣∣∣2 + ∣∣∣∣ρ(r)r

∣∣∣∣2
)
rdr. (V.9)

For the second term, we can use Jensen’s inequality and get

∣∣∣∣ρ(r)r
∣∣∣∣2 = 1

r2

ˆ r

0

2g(s)sds ≲
1

r

√ˆ r

0

g2(s)sds ≲
1

r
∥g∥L2(B1).

For the first term, using V.8 we have

ρ̇(r) =
rg(r)

ρ(r)
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which implies ˆ 1

0

|ρ̇(r)|2 rdr =
ˆ 1

0

r2g2(r)

ρ2(r)
rdr.

Under our assumption V.6, we have

r2g(r) ≲
ˆ r

0

g(s)sds ≲ ρ2(r)

so we have ˆ 1

0

|ρ̇(r)|2 rdr ≲
ˆ 1

0

grdr ∼ ∥g∥L1(B1).

Combining the two terms gives us the result we want:

∥DΨ∥L2(B1) ≲ ∥g∥1/2L1(B1)
+ ∥g∥1/2L2(B1)

<∞. (V.10)

We have Ψ(x) ∈ H1(B1) as wanted.

As we’ve shown Ψ(x) ∈ H1(B1) exists, it remains to show that the L2 bounds of the original u

and ∇η are of size o(log(1
ϵ
)) so that they will not affect the leading order heat transfer.

Lemma 5.3.3. Under the transformation given in V.4, if our heat profile f satisfies

|f | ≲ 1

ϵ2
(V.11)

we would have ˆ
Bϵ

|u|2 dx+

ˆ
Bϵ

|∇η|2 dx = O(1)
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Proof. Under our change of coordinate (V.4) and assumption (V.11) on f , we have

∥g∥L1(B1) =

ˆ
B1

g(x)dx = π

ˆ
B1

ϵ2f(ϵx)dx = π

ˆ
Bϵ

f(x)dx = π,

∥g∥2L2(B1)
= π2ϵ2

ˆ
B1

ϵ2f 2(ϵx)dx = π2ϵ2
ˆ
Bϵ

f 2(x)dx ∼ 1,

∥DΨ∥2L2(B1)
= π

ˆ
B1

ϵ2|DΦ|2(ϵx)dx = π

ˆ
Bϵ

|DΦ|2(x)dx

= π

ˆ
Bϵ

|u|2 dx+ π

ˆ
Bϵ

|∇η|2 dx.

So (V.10) gives us ˆ
Bϵ

|u|2 dx+

ˆ
Bϵ

|∇η|2 dx = O(1)

as wanted.

Combining our result from Lemma 5.3.3 and Proposition 5.3.1, we have the following result

regarding the set of heat profiles for which we can achieve optimal prefactor 4
|Ω|2 and scaling

log2(1
ϵ
) 1
Pe2

using ‘pinching’ flows.

Theorem 5.3.4. Let f be the heat profile satisfying

f(x) = f+(x)− f−(x),

supp(f±) ⊂ Bϵ(x±),ˆ
Bϵ(x±)

f±(x)dx = 1,

f+(x, y) = f−(−x, y),

|f | ≲ ϵ−2, |∇f | ≲ ϵ−3

for ϵ ∈ (0, 1/20). Suppose after the change of coordinate

g±(x) = ϵ2πf(ϵ(x− x±)),
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g± is radially symmetric and for all 0 < r ≤ 1 satisfying

g±(r) ≲
 
Br(0)

g±(x)dx (V.12)

then there exits ‘pinching’ flow construction such that the optimal heat transfer up to the leading

term is satisfied, i.e.,

min
u(x,t)

⟨|u|2⟩≤Pe2
∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ = 4

|Ω|2
1

Pe2
log2(

1

ϵ
) +

1

Pe2
o(log2(

1

ϵ
)). (V.13)

as Pe→ ∞.

Proof. As g satisfies (V.12), Proposition 5.3.1 implies we can find solution to the system (V.5). That

being said, we can find function Φ ∈ H1(Ω) such that on ∂Bϵ(x±), we have

Φ(x, y) = (
x

ϵ
√
π
,
x

ϵ
√
π
)

if we use the center of Bϵ(x±) as the origin respectively.

Then according to our calculations in Proposition 5.2.2, outside Bϵ(x±), we can find velocity

field u ∈ L2(Ω) and η ∈ H1(Ω) such that

u · ∇η = f,

1

|Ω|

ˆ
Ω−Bϵ(x±)

|u|2dx =
2

|Ω|
log

1

ϵ
+ o(log

1

ϵ
),

1

Ω

ˆ
Ω−Bϵ(x±)

|∇η|2dx =
2

|Ω|
log

1

ϵ
+ o(log

1

ϵ
).
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Inside the balls Bϵ(x±), using Lemma 5.3.3, we get

ˆ
Bϵ

|u|2 dx+

ˆ
Bϵ

|∇η|2 dx = O(1).

So now the upper bound III.28 tells us

⟨|∇T |2⟩ ≤ 4

|Ω|2
1

Pe2
log2(

1

ϵ
) +

1

Pe2
o(log2(

1

ϵ
)).

Together with the lower bound proved in Proposition 5.1.1, we have

min
u(x,t)

⟨|u|2⟩≤Pe2
∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ = 4

|Ω|2
1

Pe2
log2(

1

ϵ
) +

1

Pe2
o(log2(

1

ϵ
)). (V.14)

as Pe→ ∞.

Our result 5.3.1 relies on the assumptions (V.6). These conditions control g to be radially

symmetric and roughly decreasing. These facts seem to hold for some heat sink–sources but

definitely not all the heat functions we discussed in Chapter III. We close this chapter by noting

that in [CDK12], it was shown that for g ∈ Cr, solutions to the system (V.5) exist in Cr. Their idea

shed some light on possible ways to relax our constraints in (V.6). However, in our case, we need

solutions in H1(Ω) while assuming no continuity and differentiability on f . Also, their proof relies

on choosing diffeomorphisms so that the function g satisfies

ˆ r

0

sg(s
x

|x|
)ds > 0

for all x ̸= 0 and 0 < r ≤ 1 after transformation. As we do care about the Lp norm of g after

transformations, we need to be careful about the norm of those chosen diffeomorphisms.
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CHAPTER VI

Conclusion and Further Objectives

In this dissertation, we obtained optimal bounds for heat transfer in internally heated domains

with balanced heat sinks and sources motivated by the problem of understanding turbulent heat

transfer in internally heated convections. After introducing the governing equations and well-

posedness of our problems, we then summarized our results from [SFT23] in Chaper III where we

produced the a priori bound

⟨|∇T |2⟩ ≥
(ffl

Ω
ξfdx

)2
ffl
Ω
|∇ξ|2 dx+ C(Ω, d)∥ξ∥2BMO(Ω) ⟨|u|2⟩

.

By choosing test function ξ and solving a pure advection equation

u · ∇η = f,

we showed the optimal heat transfer scaling

min
u(x,t)

⟨|u|2⟩≤Pe2
∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ ∼ min

{
log

1

ϵ
,

(
log

1

ϵ

)2
1

Pe2

}

using ‘pinching’ flow design for 2-d concentrated heat profiles.

In Chapter IV we extended our results to higher dimensional concentrated heat profiles, giving
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us a heat transfer scaling

min

{
1/ϵd−2,

(
log

1

ϵ

)2
1

Pe2

}
≲ min

u(x,t)
⟨|u|2⟩≤Pe2

∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ ≲ min

{
1/ϵd−2,

1

ϵd−2

1

Pe2

}

for d > 2. Again ‘pinching’ flows achieved the optimal scaling in the upper bound as Pe → ∞.

We also studied a bell-shaped domain with a thin neck of width w and length l and showed

min
u(x,t)

⟨|u|2⟩≤Pe2
∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ ∼ max

{
min

{
log

1

ϵ
,

(
log

1

ϵ

)2
1

Pe2

}
, min

{
l

w
,

(
l

w

)2
1

Pe2

}}
.

This showed how the domain shape could affect the heat transfer significantly.

Note that for the above three scaling laws, there is a competition between ‘pinching’ flow

(terms involving Pe) and no flow (terms without Pe). Depending on relative size of the parameters

(Pe, ϵ, w, l), we can choose whether it’s better to use no flow or ‘pinching’ flow. As the kinetic

energy gets larger (i.e., as Pe get larger), we starts to prefer the ‘pinching’ flow over the no flow.

Another question one may raise is the mismatching of the ϵ in the prefactor of 1
Pe2

for ‘pinching’

flow bound when we go beyond d = 2. A intuitive explanation is to look at the equation

u · ∇η = f.

In dimension d, our concentrated heat profile f have scale 1
ϵd

. As u is divergence-free, when the

‘pinching’ happens near the sink or source, we need

u ∼ 1

rd−1
.

To compensate that factor of ϵ−d, our η should have scale

∇η ∼ 1

r
.
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Now taking product of the L2 norm of these two estimations, we would end up with log2(1
ϵ
) when

d = 2 and 1/ϵd−2 when d > 2.

Finally in Chapter V, we focused on the advection-dominated limit where we proved a best

possible prefactor 4
|Ω|2 and updated our result in Chapter III to get the bound

〈
|∇T |2

〉
≥ 4

|Ω|2
1

Pe2
log2(

1

ϵ
).

We found the bound to be sharp for a class of 2-d radially symmetric heat profiles using pinching

flows and obtain

min
u(x,t)

⟨|u|2⟩≤Pe2
∂tT+u·∇T=∆T+f

⟨|∇T |2⟩ = 4

|Ω|2
1

Pe2
log2(

1

ϵ
) +

1

Pe2
o(log2(

1

ϵ
)).

as Pe→ ∞.

Several questions remain open and interesting:

1. As shown by our examples in Sections 3.3.3.2, 4.2, 4.3, 5.2, the scaling and prefactor of

our bounds is determined by the behavior of the flow locally near the sink and source for the

concentrated heat cases. In the remaining part of the domain, the flow structure does not affect the

leading order result. If we look at the second leading term instead, i.e., if we try to find the scaling

and prefactor of the bounds for 〈
|∇T |2

〉
− 4

|Ω|2
log2(1

ϵ
)

Pe2

the design of flow away from the sink and source may come into the picture.

2. Another part of the story of the concentrated heat functions we did not really step into is the

case when there are more than two sink and source structures. It seems reasonable to say the leading

term in our bound would still come from the flow design near the sinks and sources. However,

as we’ve seen in our thin neck example presented in Section 4.3, the contribution to the leading

term of our bounds may be overtaken by pinching happening away from the sink and source. For

example, if the neck is thin enough such that l
w
> log(1

ϵ
), then the leading term would have l

w
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instead of log(1
ϵ
) as a component. So how the sink and sources should be connected to optimize

the heat transfer also seems important to the bound. A straightforward guess would be that we

connect pairwise sink and sources with flows optimizing the heat transfer between each pair. This

method would require more thoughts in 2-d where intersection of the flows seems inevitable if we

just connect all pairs of sink and sources. And when we have unequal number of sink and sources,

how would the flow structures look seems like a interesting question as branching and merging

events may need to occur in this case.

3. One constraint on the concentrated heat profile we studied in our examples is that the location

and strength of the heat sink and source are not affected by the fluid flow. However, in real world

situations, one is likely to encounter heat transfer problems where we need to consider not only

the effect of heat profile on the flow structure, but also the momentum exerted on the heat sinks

and sources given by the fluid flow. One example of such problem is the heat releasing particles,

[DY22].

4. Other than the ones mentioned above, there are a whole class of new questions we could ask

for the multiple sink–source structure setups. If we drive two sinks (or sources) closer and closer,

how should we design the flows near them? If we drive a sink close to a source, will they annihilate?

If we have a sink or source with strength going to zero or infinity, how would the flow structure

change accordingly? Each of these questions may give us some idea of the relationship between

flows and heat functions behind the scenes.
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[CDK12] G. Csató, B. Dacorogna, and O. Kneuss. The pullback equation for differential forms.,
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