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ABSTRACT

With advances in high throughput assaying technology, environmental health scientists are in-
creasingly interested in characterizing the joint effects of a set of exogenous environmental ex-
posures (A) coupled with endogenous omics data on a health outcome (Y ). The omics data is
often treated as a high-dimensional mediator (M ), representing potential intermediary pathways
through which A yields Y . This allows for a deeper understanding of how exposure mixtures
impact health outcomes and what endogenous biological mechanisms underlie mixture effects. In
this dissertation, we develop association and mediation models that are specifically tailored to the
structure of correlated environmental exposure mixtures and high-dimensional omics data.

In the first project, we focus on the problem of regression coefficient estimation in multi-
pollutant models where areas of high collinearity in the exposure space are contained within known
covariate groupings called exposure classes. To assuage variance inflation induced by correlated
exposures, we propose the group inverse-gamma gamma (GIGG) prior, a heavy-tailed prior that
can trade-off between local and group shrinkage in a data-adaptive fashion. Compared to a bench-
mark shrinkage method like horseshoe regression, GIGG regression reduces mean-squared error
by at least 30% across a range of correlation structures and within-group signal densities. We apply
GIGG regression to data from the National Health and Nutrition Examination Survey, identifying
a toxic effect of metal mixtures on gamma-glutamyl transferase.

For a widely studied environmental exposure, there is likely literature establishing statistical
and biological significance of the total exposure effect (TE), defined as the effect of A on Y given
a set of confounders C. In the second project, we show that leveraging external summary-level in-
formation on the TE can improve estimation efficiency of the mediation effects for linear mediation
models. Moreover, the efficiency gain depends on the partial R2 between the (Y |M ,A,C) and
(Y | A,C) models, with smaller (larger) values benefiting direct (indirect) effect estimation. We
then robustify our base estimation procedure (Mediation with External Summary Statistic informa-
tion or MESSI) to incongenial external information. In the highly congenial simulation scenarios,
we observe relative efficiency gains for mediation effect estimation of up to 40%. We illustrate
our methodology using data from the Puerto Rico Testsite for Exploring Contamination Threats
(PROTECT), where Cytochrome p450 lipid metabolites are hypothesized to mediate the effect of
phthalate exposure on gestational age at delivery. External information on the TE comes from a
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recently published pooled analysis of 16 studies.
The third project considers the problem of estimating mediation effects with respect to expo-

sure mixtures. We develop a method called the mediation mixture map (MedMix), which combines
ideas from mediation analysis and latent factor modeling to simultaneously estimate mediation ef-
fects corresponding to changes in individual exposures and latent sources of exposure variation.
In some simulation settings, MedMix leads to a substantial reduction in root mean-squared error
for estimating the mixture mediation effect (approximately 30%) and better quantifies model un-
certainty compared to a naı̈ve two-step estimator. We apply MedMix to PROTECT and identify a
common source of variation corresponding to mono(carboxynonyl) (MCNP), mono(carboxyoctyl)
(MCOP), and mono(3-carboxypropyl) (MCPP) phthalate exposure that is associated with shorter
gestational age at delivery (1.13 day decrease per interquartile range increase in the latent mixture;
95% Credible Interval (CI): 0.01, 2.23) and smaller head circumference z-score (0.15 standard de-
viations smaller head circumference per interquartile range increase in the latent mixture; 95% CI:
0.03, 0.28).
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CHAPTER 1

Introduction

1.1 Modeling Exposure Mixtures in Environmental Health

As individuals navigate their daily lives, chemical exposures are omnipresent in their lived environ-
ments. Chemical exposure events occur through many different modes, such as breathing polluted
air, ingesting contaminated food and water, and physically contacting the skin with contaminated
items. Given the ubiquity of chemical exposures in both personal and professional settings, individ-
uals experience a litany of exposure events throughout their life, almost all of which are complex
combinations of many individual chemicals. For example, an individual that buys and consumes an
agricultural product from the grocery store is simultaneously exposed to pesticides that are used to
grow the constituent components of the product, phthalates that are used in manufacturing plastic
packaging materials, and polycyclic aromatic hydrocarbons (PAHs) from transporting the agricul-
tural product to the store. This phenomenon is known as exposure to a chemical mixture, where
the mixture is comprised of pesticide, phthalate, and PAH exposures. Since individual chemical
exposures rarely occur in isolation, conceptual models of exposure are viewed through the lens of
exposure mixtures rather than individual chemical exposures (Dominici et al., 2010; Braun et al.,
2016; Weisskopf et al., 2018; Bind, 2019).

A fundamental challenge in the field of environmental health is to understand how and why
exposure mixtures influence human health and well-being (Wild, 2005). Although environmental
health research has traditionally focused on single-exposure models, there has been a substantial
push in the last 20 years to model multiple exposures simultaneously, to more accurately reflect
how chemical exposures occur in humans (Dominici et al., 2010; Braun et al., 2016; Weisskopf
et al., 2018; Bind, 2019). Despite all of the progress that has been made to date, the development
of statistical methods that model exposure mixtures remains an important strategic priority for the
National Institute for Environmental Health Sciences (NIEHS) (Bind, 2019; Joubert et al., 2022).
This dissertation focuses on two broad classes of research questions within the field of multi-
pollutant modeling. The first set of questions is interested in associating exposure mixtures with
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health outcomes, while the second set of questions focuses on the endogenous biological mecha-
nisms underlying mixture effects. The goal of this dissertation is to develop several regression and
mediation models specially designed to support the increasing number of exogenous exposures
and endogenous omics data that are collected in modern environmental health studies.

1.2 Statistical Methods for Analyzing Exposure Mixtures

1.2.1 Existing Literature

When a primary study aim is to identify exposures that are associated with health outcomes of
interest, there are many ways to proceed. One proposed analytical framework with roots in the ap-
plied environmental health literature is the Exposome-Wide Association Study (EWAS). Despite
the substantial structural differences between genetic and chemical exposure data, EWAS applies
the analytical framework of Genome-Wide Association Studies (GWAS) to chemical exposure
data without making any sizable modifications (Patel et al., 2010). In turn, this has led to a slew of
applied analyses that fit outcome-exposure models one-at-a-time, followed by false discovery rate
correction on the resultant p-values (Patel et al., 2010; Lind et al., 2013; Hall et al., 2014; McGinnis
et al., 2016; Zhuang et al., 2018; Chung et al., 2019). The appeal of this framework, when translated
to the field of environmental health, is its simplicity. Many environmental health researchers are
familiar with regression techniques for modeling one exposure and the EWAS framework reduces
the problem of analyzing multi-exposure data to that of fitting many single exposure models. How-
ever, from a statistical perspective, there are several major concerns with GWAS-inspired EWAS
as proposed by Patel et al. (2010). One major concern is confounding due to co-exposure, which
arises when a proper subset of simultaneously occurring co-exposures are truly associated with
the health outcome under study (Braun et al., 2016; Weisskopf et al., 2018). Chemical exposure
data is intrinsically correlated and, consequently, strong marginal associations between chemical
exposures that are not truly associated with the outcome may disappear after conditioning on a
truly associated co-exposure. Therefore, if a truly associated chemical exposure exists, EWAS
will generally identify false positives corresponding to truly unassociated co-exposures. More-
over, given the multivariate nature of exposure to chemical mixtures, there are questions regarding
the interpretability of effect estimates that are unconditional on other co-exposures (Braun et al.,
2016; Weisskopf et al., 2018). Addressing confounding due to co-exposure by jointly modeling
chemical exposures is primarily focused on reducing bias and improving the interpretability of
effect estimates, however jointly modeling chemical exposures has an additional benefit with re-
gard to variance reduction. Namely, analytical frameworks which model exposures separately will
likely experience efficiency losses compared to statistical models which model chemical exposures
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jointly, provided that they appropriately account for the exposure correlation structure. Therefore,
from a statistical and philosophical perspective, our recommendation is to proceed by modeling
chemical exposures jointly, not separately.

When jointly modeling multiple chemical exposures, one of the first considerations is the ex-
posure correlation structure, as there are often collinearity issues present in chemical exposure
data. Therefore, linear regression models associating multiple chemical exposures with a health
outcome often require penalization of the regression coefficients to reduce the impact of variance
inflation. The most common forms of penalization are group lasso, adaptive elastic net, and sparse
group lasso (Yuan and Lin, 2006; Zou and Zhang, 2009; Simon et al., 2013). Group lasso and
sparse group lasso are typically used when the chemical exposures can be naturally grouped based
on chemical structure, toxicological profile, or pharmacokinetics, and adaptive elastic net is used
when there is no easily a priori identifiable exposure groupings. There are also penalized regression
methods for additive and pairwise interaction models to account for potential nonlinearity in the
exposure-response surface (Herring, 2010; Wei et al., 2020; Boss et al., 2021; Bai et al., 2022). An
alternative to penalized regression approaches are exposure index regression models, which param-
eterize the additive contributions of chemical exposures as a weighted sum of discretized chemical
exposures (Carrico et al., 2015; Czarnota et al., 2015; Keil et al., 2020). Re-parameterizing the re-
gression coefficients as weights that sum to one naturally facilitates hypothesis testing with respect
to the entire exposure index. A widely applied exposure index regression model within this family
of methods is weighted quantile sum (WQS) regression, which has a major limitation of enforcing
directional homogeneity of the regression coefficients within the weighted exposure index (Carrico
et al., 2015; Czarnota et al., 2015). There are extensions of the WQS regression framework that do
not make such strong assumptions on the directionality of regression coefficient estimates and al-
low for pairwise interaction terms in the mean structure, such as quantile g-computation (Keil et al.,
2020). However, the lack of a penalty function in existing exposure-index regression model formu-
lations can lead to variance inflation and numerical instability in the presence of highly collinear
exposure data (Boss et al., 2018).

While both penalized regression and exposure index methods have been extended to more flex-
ible mean structures through approaches such as hierarchical integrative group lasso (HiGLASSO)
(Boss et al., 2021) and Bayesian multiple index models (McGee et al., 2023), there are several
other regression approaches that do not fall within these two classes of methods. Bayesian kernel
machine regression (BKMR) is a widely applied semiparametric model which associates a unidi-
mensional nonparametric function of the chemical exposures with a health outcome adjusted for
confounders (Bobb et al., 2015). The nonparametric function of chemical exposures in BKMR
is modeled using a kernel function, however, in practice, the bkmr R package specifically imple-
ments BKMR with a Gaussian kernel function. Wilson et al. (2022) extended BKMR to a setting
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with time-varying exposure to identify windows of susceptibility corresponding to particulate mat-
ter exposure throughout pregnancy in association with gestational age standardized birth weight.
Tree-based machine learning methods such as classification and regression trees (CART) (Sun
et al., 2013) and Bayesian additive regression trees (BART) have been used in the context of risk
score construction (Sun et al., 2013; Park et al., 2017) and identification of windows of suscep-
tibility (Mork and Wilson, 2023). Gaussian process regression (Ferrari and Dunson, 2020) and
ensemble learning techniques such as SuperLearner (Park et al., 2017) have also been applied to
chemical exposure data.

The final category of methods used to analyze chemical mixtures are dimension reduction tech-
niques, which aim to summarize exposure to chemical mixtures using relatively few data adaptively
defined variables. The first subclass of methods within the data reduction techniques are clustering
methods, which aim to group individuals based on their overall exposure profile (Molitor et al.,
2010; Zanobetti et al., 2014; Gibson et al., 2019). The clusters can then be used in place of the
chemical exposure measurements in the outcome model. Clustering methods are particularly use-
ful if there are subpopulations within the study population that have distinct exposure profiles, but
can be challenging to interpret if no such subpopulations exist. A second subclass of methods
are methods based on principal components analysis (PCA), which aims to explain the maximal
amount of variability in the exposure space through a reduced set of uncorrelated variables, called
principal components (Gibson et al., 2019). Traditional PCA is an unsupervised method, in that
it only takes into account the correlation structure of the chemical exposures, however variants of
PCA that incorporate information on the outcome (Sun et al., 2013) and quantify rare, extreme
exposure events (Gibson et al., 2022) have been applied to chemical exposure data. The resulting
principal components can then be used in place of the original chemical exposure data when fitting
the outcome model. The final subclass of methods are latent factor models which represent the
chemical exposure data as a low-dimensional encoding of common sources of variation (Gibson
et al., 2019). The estimated latent factors frequently replace the chemical exposures in the out-
come model, however there are fully Bayesian model specifications which combine the outcome
and latent factor models into one modeling framework (Ferrari and Dunson, 2021). Dimension re-
duction techniques such as PCA and latent factor models tend to coincide with blocks of correlated
chemical exposures, however there is no guarantee that the principal components or latent factors
accurately summarize interpretable exposure events.

If the goal of an analysis is risk prediction and stratification in internal or external study popu-
lations, then the environmental risk score (ERS) is a tool that helps address those aims (Park et al.,
2014). The ERS is a scalar score that quantifies the risk of an individual experiencing a health
outcome given their exposure profile (Park et al., 2014). Provided that predicted outcome values
given a set of chemical exposure concentrations are calculable, the finalized outcome model used
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to calculate ERSs does not need to have a particular structure (Park et al., 2017; Boss et al., 2018).
The workflow for risk stratification via ERS in an internal study population is to split the internal
data into training and testing sets, fit the desired risk prediction model on the training set, and
calculate the predicted outcome values on the test dataset. The ERSs in the test dataset can then be
divided into quantiles and associated with the outcome. An important caveat is that larger values
of the ERS do not necessarily coincide with higher overall exposure; ERSs characterize risk, not
the magnitude of exposure. ERSs that are equitably transportable across study populations, can
subsequently be used by environmental health researchers to assess risk corresponding to exposure
profiles observed in their cohorts. Moreover, ERSs can theoretically be used in a clinical capacity
to inform personalized screening protocols and preventative treatments for health conditions that
an individual is at high risk of developing based on their exposure profile, although this is not
currently standard medical practice.

1.2.2 Our Contributions

In Chapter 2, we focus on the problem of jointly regressing many environmental chemicals against
a continuous health outcome of interest, when the chemical exposures have an a priori known
grouping structure. Moreover, we consider a common setting in chemical mixtures data where
collinearity issues in the exposure space are contained within exposure groups. In this scenario,
unbiased estimators of model parameters suffer from substantial variance inflation and numerical
instability, a problem that is exacerbated as the mean specification becomes more flexible. More-
over, existing penalization techniques such as adaptive elastic net, group lasso, and sparse group
lasso, either do not explicitly incorporate information regarding the known grouping structure, do
not allow for sparse signals within group, or overregularize large signals (Carvalho et al., 2010;
Bhadra et al., 2016). To attain a more optimal bias variance tradeoff for regression coefficient es-
timation in linear multi-pollutant models, we introduce the group inverse-gamma gamma (GIGG)
prior, a heavy-tailed, group shrinkage prior that facilitates data-adaptive multivariate shrinkage
within exposure groups. We show the connections between GIGG shrinkage and popular shrink-
age priors such as the horseshoe prior and the Laplacian prior and prove posterior consistency and
posterior concentration results for regression coefficients in linear models and mean parameters in
sparse normal means models. From a computational perspective, the full conditional distributions
of all model parameters can be derived in closed-form, leading to straightforward posterior com-
putation. When compared with other Bayesian group regularization priors via simulation, GIGG
results in consistently low mean-squared error across a wide range of correlation structures and
within-group signal densities. We apply GIGG regression to data from the 2003-2004 National
Health and Nutrition Examination Survey (NHANES) cycle for jointly associating metals, ph-
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thalates, polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), and
organochlorine pesticides with gamma-glutamyl transferase (GGT), a marker of liver functionality.

1.3 Single Exposure Mediation Analysis

1.3.1 Existing Literature

For the second set of questions, this dissertation concerns itself with mediation hypotheses,
whereby exogenous exposures impact a health outcome, partially through endogenous pathways
that are captured within the omics data. Mediation models in environmental health aim to de-
compose the effect of exogenous exposures or exogenous exposure mixtures on a health outcome,
called the total effect (TE), into two components (Robins and Greenland, 1992; Pearl, 2001; Van-
derWeele and Vansteelandt, 2014; VanderWeele, 2015). The first component is the indirect effect
(IE), which quantifies how much of the TE is exclusively explained through changes in the endoge-
nous biological pathways being studied. The second component is the direct effect (DE), which
quantifies how much of the TE is explained through other unmeasured biological mechanisms.
An indirect effect that explains a large portion of the TE provides evidence that the endogenous
pathways under study partially explain how elevated levels of exposure lead to health outcomes.

Common applied practice for multivariate mediation analyses in environmental health is to first
fit individual mediation models for each exposure-mediator pair and then consider several methods
specifically designed for high-dimensional mediation analysis with a single exposure or summary
measure of exposure (Aung et al., 2020; Blum et al., 2020). Methods that fit individual mediation
models for each exposure-mediator pair have seen success in high-dimensional genomics applica-
tions (Zeng et al., 2021; Liu et al., 2022), however they are less suitable for environmental health
research considering the dimensionality and multivariate flavor of chemical exposure data. For a
comprehensive review and comparison of various statistical tests used to evaluate the significance
of the IE in a single exposure-mediator pair model see Du et al. (2022). Existing methods for high-
dimensional mediation analysis with a single exposure include shrinkage-based methods which
directly penalize regression coefficients in the mediation model (Zhang et al., 2016; Gao et al.,
2019; Wang et al., 2019; Song et al., 2020; Zhang, 2022), methods that orthogonalize the media-
tor space so that separate mediation models can be fit on each transformed mediator (Huang and
Pan, 2016; Chén et al., 2018; Zhao et al., 2020), mediation models with Gaussian mixture model
(GMM) priors (Song et al., 2021a,b), and shrinkage methods for targeted penalization of the IE
(Zhou et al., 2020; Song et al., 2021b; Zhao and Luo, 2022). For a comprehensive comparison of
methods for high-dimensional mediation analysis with a single exposure see Clark-Boucher et al.
(2023).
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1.3.2 Our Contributions

In Chapter 3, we consider the problem of single-exposure mediation analysis when summary-level
information on the TE is available from an external study or meta-analysis. If researchers are in-
terested in mediation hypotheses, then there is likely existing literature establishing the statistical
and biological significance of the TE. Moreover, due to budget and time constraints, studies that
collect measures of exogenous exposure and endogenous omics data frequently have sample sizes
that are notably smaller than external studies of the TE. Considering these two points, it is natural
to leverage externally available information on the TE as a way to improve estimation efficiency
of internal mediation model parameters. We show that leveraging external summary-level infor-
mation on the TE through a constrained optimization improves estimation efficiency of the IE and
DE for mediation models with continuous outcomes and mediators. Moreover, the efficiency gain
depends on the partial R2 between the outcome model conditional on both mediators and exposure
and the outcome model conditional only on exposure, with smaller values benefiting DE estima-
tion and larger values benefiting IE estimation. We provide a modified version of the constrained
estimation procedure that is robust to differences in the TE between external and internal study
populations, which we call Mediation with External Summary Statistic information (MESSI). The
MESSI framework allows data adaptive shrinkage towards the external information if the TEs in
the internal and external populations agree. Our motivating example comes from the Puerto Rico
Testsite for Exploring Contamination Threats (PROTECT), a prospective birth cohort study which
aims to understand how endocrine-disrupting chemicals negatively impact birth and developmental
outcomes. The PROTECT investigators are interested in assessing a mediation hypothesis where
elevated phthalate exposure leads to shorter gestational age at delivery through the Cytochrome
p450 inflammatory pathway. The internal sample size of the study is approximately 450, however
a pooled study of 16 US based cohorts recently published TE estimates corresponding to multiple
phthalate metabolites with an approximate sample size of 5000 after omitting PROTECT (Welch
et al., 2022).

1.4 Mediation of the Effect of Exposure Mixtures

1.4.1 Existing Literature

A handful of penalization-based methods have been generalized to multi-exposure, high-
dimensional mediation problems (Wang et al., 2019; Zhou et al., 2020; Zhang, 2022; Zhao et al.,
2022). All of these methods consider a linear mediation model with some form of penalization
applied to the regression coefficients or a function of the regression coefficients. In particular,
Wang et al. (2019) considered a difference-of-coefficient Laplacian prior, Zhou et al. (2020) pro-
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posed a debiased lasso based estimator to estimate and obtain inference for the global IE, Zhang
(2022) proposed a linear mixed effects outcome model with an adaptive lasso penalty, and Zhao
et al. (2022) considered a multi-exposure extension of the pathway lasso estimator (Zhao and Luo,
2022). If standard unconfoundedness assumptions for causal mediation analysis hold, expressions
for the IE, DE, and TE in the multi-exposure linear mediation setting are a function of counterfac-
tual differences in the exposure vector (Zhang, 2022), meaning that these methods can estimate IE,
DE, and TEs for a priori specified counterfactual exposure levels. However, the exposure sources
underlying chemical exposure data are unknown, making it difficult to ensure that the a priori
specified counterfactual exposure levels coincide with interpretable exposure phenomena. To date,
we are only aware of two approaches that estimate mediation effects corresponding to functions of
chemical exposures (Aung et al., 2020; Devick et al., 2022). Aung et al. (2020) constructed an ERS
and treated the ERS as the exposure in high-dimensional mediation models. Devick et al. (2022)
devloped a semiparametric mediation model where the exposure is a unidimensional, nonparamet-
ric function of individual chemical exposures and effect modifiers. A common theme with Aung
et al. (2020) and Devick et al. (2022) is that an outcome or mediation model is used to estimate the
exposure mixture. However, this dissertation argues that exposure mixtures are inherently defined

by co-exposure and thus should explicitly consider the correlation structure of the exposures.

1.4.2 Our Contributions

In Chapter 4, we consider the problem of characterizing mediation effects corresponding to data
adaptively estimated exposure mixtures. The primary challenge with quantifying mediation due to
exposure mixtures is that information regarding co-exposure is unobserved. We develop a method
called the mediation mixture map (MedMix), which combines ideas from mediation analysis and
latent factor modeling to simultaneously estimate mediation effects corresponding to changes in
individual exposures and latent sources of exposure variation. The primary assumptions under-
lying MedMix is that highly correlated exposures are more likely to be related in some capacity
and that the exposure correlation structure can be appropriately summarized using a latent factor
model. In simulation, MedMix more accurately identifies the true number of latent exposure mix-
tures and better quantifies uncertainty compared to the naive two-step approach of fitting a latent
factor model and then subsequently plugging the estimated latent factors into a mediation model.
We revisit PROTECT and apply MedMix to multi-exposure data from PROTECT, where indi-
vidual chemical data on 40 exposures across four different exposures classes, metals, phthalates,
phenols and parabens, and PAHs, has been collected. Of primary interest is estimating mediation
effects corresponding to the TE of data adaptively estimated exposure mixtures on birth outcomes
such as final gestational age and head circumference z-score through the Cytochrome p450 and
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Lipoxygenase pathways. In order to maximize available sample size corresponding to the implied
TE model from MedMix, we also implement a TE only version of MedMix and show that the TE
only version is able to identify an important subset of phthalate metabolites associated with head
circumference z-score and gestational age at delivery.
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CHAPTER 2

Group Inverse-Gamma Gamma Shrinkage for
Sparse Linear Models with Block-Correlated

Regressors

2.1 Introduction

Regression with grouped regressors is a common problem in many biomedical applications. Some
examples include metabolomics data, where metabolites are grouped by subpathway membership,
neuroimaging data, where adjacent voxels are spatially grouped, and environmental exposure data,
where exposures are grouped by chemical structure, toxicological profile, and pharmacokinetics
(see Figure 2.1). In such cases, leveraging relevant grouping information to construct grouped
multivariate shrinkage profiles may help achieve additional variance reduction beyond comparable
methods that ignore the grouping structure. The methodological focus of this chapter will be on
grouped multivariate regularization in a continuous shrinkage prior framework.

Ever since the publication of the horseshoe prior (Carvalho et al., 2009, 2010), there has been an
explosion of continuous shrinkage priors designed for sparse estimation problems, notably normal-
gamma shrinkage (Brown and Griffin, 2010), generalized double Pareto shrinkage (Armagan et al.,
2013a), Dirichlet–Laplace shrinkage (Bhattacharya et al., 2015), horseshoe+ shrinkage (Bhadra
et al., 2017), and normal beta prime (NBP) shrinkage (Bai and Ghosh, 2019; Cadonna et al.,
2020), among others. These priors have become increasingly popular for sparse regression prob-
lems because of their good theoretical and empirical properties, in addition to their scale mixture
representation, which facilitates straightforward and efficient posterior simulation algorithms. The
general recipe for constructing a continuous shrinkage prior with good estimation and prediction
properties is substantial mass at the origin, to sufficiently shrink null coefficients towards zero, and
regularly-varying tails, to avoid overregularizing non-null coefficients (Bhadra et al., 2016). Sur-
veying the continuous shrinkage prior literature on regression with known grouping structure, there
are many papers which discuss Bayesian group lasso and its applications (Kyung et al., 2010; Li
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Cadmium
Lead

Mercury
Summed di−(2−ethylhexyl) phthalates

Mono−n−butyl phthalate
Mono−ethyl phthalate

Mono−benzyl phthalate
Mono−n−methyl

Mono−(3−carboxypropyl) phthalate
Mono−isobutyl pthalate

Hexachlorobenzene
Beta−hexachlorocyclohexane

p,p'−DDE
p,p'−DDT

Oxychlordane
Trans−nonachlor

Heptachlor Epoxide
Dieldrin
BB−153
BDE−28
BDE−47
BDE−99

BDE−100
BDE−153
BDE−154

1−hydroxynaphthalene
2−hydroxynaphthalene

3−hydroxyfluorene
2−hydroxyfluorene

3−hydroxyphenanthrene
1−hydroxyphenanthrene
2−hydroxyphenanthrene

1−hydroxypyrene
9−hydroxyfluorene

4−phenanthrene

Figure 2.1: Pairwise Spearman correlation plot between metals, phthalates, organochlorine pesti-
cides, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons from the 2003-2004
National Health and Nutrition Examination Survey (n = 990).

et al., 2015; Xu and Ghosh, 2015; Hefley et al., 2017; Kang et al., 2019) and several papers which
propose extensions to Bayesian sparse group lasso (Xu and Ghosh, 2015), Bayesian group bridge
regularization (Mallick and Yi, 2017), and the Normal Exponential Gamma prior with grouping
structure (Rockova and Lesaffre, 2014). Xu et al. (2016) introduced the, so called, group horse-
shoe prior with an emphasis on prediction in Bayesian generalized additive models. However, the
group horseshoe prior does not reduce to the horseshoe prior for a group of size one, meaning
that the group horseshoe prior, as proposed by Xu et al. (2016), is not a direct generalization of
the horseshoe prior. Wei et al. (2020) developed a multivariate Dirichlet-Laplace prior for use
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in Bayesian additive models with first order interactions. Intuitively, the multivariate Dirichlet-
Laplace prior can be thought of as treating the corresponding basis expansion for each regressor as
a group. Lastly, although not specifically framed as a grouped multivariate shrinkage prior, Som
et al. (2015) proposed a block hyper-g shrinkage prior where the blocks are defined by areas of
high collinearity in the regressor space, as in our data example.

Bayesian group lasso-style shrinkage is not generally preferred as a default method for esti-
mation problems, as the Laplacian prior has neither an infinite spike at zero nor regularly-varying
tails (Polson and Scott, 2011; Castillo et al., 2015; Bhadra et al., 2016). The multivariate Dirichlet-
Laplace prior and the block hyper-g prior, are group/block sparse priors and, therefore, are not
designed for problems that require shrinkage at both a group-level and an individual-level. The
group horseshoe prior of Xu et al. (2016) has the desired origin and tail behavior marginally,
however no hyperparameter in the prior controls how dependent the shrinkage is within a group.
Thus, this prior implicitly assumes that the degree of dependence induced by grouped multivariate
shrinkage only depends on group size. This assumption is inadequate when we a priori believe
that, irrespective of group size, some groups have more heterogeneous effect sizes than others.
Moreover, this assumption does not avail the opportunity to learn how dependent the shrinkage
should be in a data adaptive manner, which is an intrinsic feature in some application areas. For
example, in modeling multiple pollutants, this is a relevant consideration as some exposure classes
have more homogeneous toxicological profiles than others (Ferguson et al., 2014).

To address these limitations, we propose the group inverse-gamma gamma (GIGG) prior, which
extends the horseshoe and normal beta prime (NBP) priors to incorporate grouping structures. The
GIGG prior introduces a group level shrinkage parameter, in addition to the usual global and local
shrinkage parameters, such that the induced prior on the product of the group and local shrink-
age parameters yields the desired marginal shrinkage profile. This allows the user to control the
trade-off between group-level and individual-level shrinkage, leading to relatively low estimation
error irrespective of the signal density and the degree of multicollinearity within each group. Ad-
ditionally, the GIGG prior is constructed such that all parameters have closed-form full conditional
distributions, implying that techniques to scale horseshoe regression to large sample sizes and high-
dimensional regressor spaces are also applicable to GIGG regression (Bhattacharya et al., 2016;
Terenin et al., 2019; Johndrow et al., 2020). Theoretically, we establish posterior consistency and
posterior concentration results for regression coefficients with grouping structure in linear regres-
sion models and mean parameters with grouping structure in sparse normal means models with
respect to several GIGG hyperparameters and correlation structures. To our knowledge, we are the
first to apply existing theoretical frameworks for posterior consistency in the sparse linear regres-
sion model (Armagan et al., 2013b) and posterior concentration in the sparse normal means model
(Datta and Ghosh, 2013) to a non-exchangeable prior, which will be useful for future evaluations
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of other non-exchangeable priors.
The structure of the chapter is as follows. We start with an intuitive explanation of the GIGG

prior in Section 2.2, succeeded by some theoretical results in Section 2.3. After the methodological
and theoretical discussion, we outline computational details, including hyperparameter estimation
via marginal maximum likelihood estimation (MMLE) (Section 2.4). In Section 2.5, we con-
duct a simulation study to empirically verify that the intuition and theory developed in Sections
2.2 and 2.3 hold for linear regression models with group-correlated regressors. We then apply
GIGG regression to data from the 2003-2004 National Health and Nutrition Examination Survey
(NHANES) to identify toxicants and metals associated with a biomarker of liver function (Section
2.6) and conclude with a discussion (Section 2.7).

2.2 Methods

Throughout the chapter, N(µ,Σ) denotes a multivariate normal distribution with mean parameter
µ and variance-covariance matrix Σ, G(a, b) denotes a gamma distribution with shape parameter
a and rate parameter b, and IG(a, b) denotes an inverse-gamma distribution with shape parameter
a and scale parameter b. Additionally, we will use π(·) as general notation for a prior probability
measure and π(· | y) as general notation for a posterior probability measure.

2.2.1 Group Inverse-Gamma Gamma (GIGG) Prior

Consider a Bayesian sparse linear regression model

[y|α,β, σ2] ∼ N

(
Cα+

G∑
g=1

Xgβg, σ
2In

)
π(α) ∝ 1, [β | σ2] ∼ π(β | σ2), π(σ2) ∝ σ−2,

(2.2.1)

where g = 1, . . . , G indexes the groups, y is an n× 1 vector of centered continuous responses, C
is a matrix of adjustment covariates, Xg is an n× pg matrix of standardized regressors in the g-th
group, βg = (βg1, . . . , βgpg)

⊤ is a pg×1 vector of regression coefficients corresponding to the g-th
group, β = (β⊤

1 , . . . ,β
⊤
G)

⊤ is a p×1 vector of regression coefficients to employ shrinkage on, and
In is an n×n identity matrix. We assume the model is sparse in the sense that many of the entries
in β are zero. The group inverse-gamma gamma (GIGG) prior is defined as

[βgj|τ 2, γ2g , λ2gj] ∼ N(0, τ 2γ2gλ
2
gj)

[γ2g |ag] ∼ G(ag, 1), [λ2gj|bg] ∼ IG(bg, 1), [τ 2, σ2] ∼ π(τ 2, σ2),
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where j = 1, . . . , pg indexes the regressors within the g-th group. In this chapter, we assign τ |
σ ∼ C+(0, σ) and π(σ2) ∝ σ−2, where C+(0, σ) is a half-Cauchy distribution (Polson and Scott,
2011). Alternatively, we may also express the prior on β as a vector, [β|τ 2,Γ,Λ] ∼ N(0, τ 2ΓΛ),
where Λ = diag(λ211, ..., λ

2
GpG

) and Γ = diag(γ21 , ..., γ
2
1 , γ

2
2 , ..., γ

2
2 , ..., γ

2
G, ..., γ

2
G) such that γ2g is

repeated pg times along the diagonal of Γ. In the GIGG prior specification, the priors on the group
shrinkage parameter, γ2g , and local shrinkage parameter, λ2gj , are selected such that the induced
prior on the product is a beta prime prior, γ2gλ

2
gj ∼ β′(ag, bg) (see Supplementary Material A.1 for

distributional definitions). Since the group shrinkage parameter is shared by all pg observations in
the g-th group, assigning a beta prime prior on the product ensures normal beta prime shrinkage
marginally while the shrinkage is dependent within-group. One point that deserves further clarifi-
cation is the assignment of the gamma and inverse-gamma priors to the group and local shrinkage
parameters, respectively, when either configuration would yield a beta prime prior in the product.
The rationale behind this choice is that the inverse-gamma prior is heavier-tailed than the gamma
prior, thereby preventing overregularization of large, non-null coefficients due to being grouped
with null coefficients.

Setting ag = bg = 1/2 for all g yields a special case of the GIGG prior which we will call the
group horseshoe prior

[βgj|τ 2, γ2g , λ2gj] ∼ N(0, τ 2γ2gλ
2
gj)

γ2g ∼ G(1/2, 1), λ2gj ∼ IG(1/2, 1), [τ 2, σ2] ∼ π(τ 2, σ2)

For a group horseshoe prior with a group of size one, the group shrinkage parameter becomes a
local shrinkage parameter. That is, for a group g′ of size one,

[βg′1|τ 2, γ2g′ , λ2g′1] ∼ N(0, τ 2γ2g′λ
2
g′1)

γ2g′ ∼ G(1/2, 1), λ2g′1 ∼ IG(1/2, 1), [τ 2, σ2] ∼ π(τ 2, σ2)

can be re-indexed as
[βg′1|τ 2, γ2g′1, λ2g′1] ∼ N(0, τ 2γ2g′1λ

2
g′1)

γ2g′1 ∼ G(1/2, 1), λ2g′1 ∼ IG(1/2, 1), [τ 2, σ2] ∼ π(τ 2, σ2)

which is equivalent to the horseshoe prior

[βg′1|τ 2, η2g′1] ∼ N(0, τ 2η2g′1), ηg′1 ∼ C+(0, 1), [τ 2, σ2] ∼ π(τ 2, σ2).

It is important to note that this is different from the group horseshoe prior specification described in
Xu et al. (2016). The prior in Xu et al. (2016) assigns independent β′(1/2, 1/2) priors on both the
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group and local shrinkage parameters, meaning that the implied prior on the product of the group
and local shrinkage parameters is the product of two independent β′(1/2, 1/2) random variables.
In our construction, the product of the group and local shrinkage parameters is itself β′(1/2, 1/2).
Consequently, our group horseshoe prior specification has horseshoe regularization marginally,
while the group horseshoe prior in Xu et al. (2016) does not. To more clearly distinguish between
the two group horseshoe priors, we will refer to the prior in Xu et al. (2016) as the group horseshoe+
prior and the GIGG prior with ag = bg = 1/2 as the group horseshoe prior for the remainder of
the chapter.

2.2.2 Marginal Prior Properties

When discussing a proposed shrinkage prior on β, there are two key features of the marginal
prior that need to be investigated. The first is the behavior in a tight neighborhood around zero
and the second is the rate at which the prior decays in the extremes. For τ 2 = 1 fixed, Bai and
Ghosh (2019) showed that the marginal prior π(βgj | τ 2, ag, bg) has a pole at 0 if and only if
0 < ag ≤ 1/2, with the pole at zero becoming stronger the closer ag is to zero. Therefore, one
should select ag ∈ (0, 1/2] for sparse estimation problems to sufficiently shrink null coefficients
towards zero. To clarify the tail behavior we need to introduce the notion of a regularly varying
function (Bingham et al., 1989): A positive, measurable function f is said to be regularly varying
at∞ with index ω ∈ R if limx→∞ f(tx)/f(x) = tω, for all t > 0.

Theorem 2.2.1. Let B(ag, bg) denote the beta function evaluated at ag and bg and Γ(bg + 1/2)

denote the gamma function evaluated at bg + 1/2. The tails of the marginal prior probability

density function of βgj decay at the following rate,

lim
βgj→∞

π(βgj | τ 2, ag, bg)
r(βgj, τ 2, ag, bg)

= 1

r(βgj, τ
2, ag, bg) =

(2τ 2)bgΓ(bg + 1/2)√
πB(ag, bg)

|βgj|−(1+2bg)

(
β2
gj/τ

2

1 + β2
gj/τ

2

)ag

.

Consequently, the index of regular variation is ω = −1− 2bg.

Proof. See the Supplementary Material A.2.
The concept of regular variation has been extensively discussed in the context of Bayesian

robustness and noninformative inference (Dawid, 1973; O’Hagan, 1979; Andrade and O’Hagan,
2006), with the latter being recently elaborated on in the context of global-local shrinkage priors
(Bhadra et al., 2016). When the index ω < 0, regular variation essentially states that the tail of the
function decays at a polynomial rate and is therefore considered heavy-tailed. Some examples of
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priors with regularly varying tails include the student’s t prior and the horseshoe prior. Conversely,
commonly used priors such as the normal prior and the Laplace prior do not have regularly-varying
tails. As a consequence of having exponentially decaying tails, Bayesian linear regression with in-
dependent normal priors and Bayesian lasso are prone to overregularizing large signals and are not
flexible enough to facilitate conflict resolution between discordant likelihood and prior information
(Andrade and O’Hagan, 2006; Polson and Scott, 2011). Theorem 2.2.1 shows that for any pair of
hyperparameters ag and bg, the marginal GIGG prior has regularly varying tails and, furthermore,
that bg controls the rate at which the tails decay.

2.2.3 Connection to Bayesian LASSO

As pointed out by a reviewer, an interesting connection between the GIGG prior and Bayesian
LASSO-type priors can be seen from integrating out the group shrinkage parameter

π
(
βg | τ 2,λ2

g, ag
)
=

∫ ∞

0

π
(
βg | τ 2, γ2g ,λ2

g

)
π(γ2g | ag)dγ2g

=
2

Γ(ag)(2π)pg/2|τ 2Λg|1/2

(√
1

2τ 2
βgΛ

−1
g βg

)ag−pg/2

Kag−pg/2

(√
2

τ 2
βgΛ

−1
g βg

)
,

where Λg = diag(λ2
g) = diag(λ2g1, . . . , λ

2
gpg) and Kζ(·) denotes the modified Bessel function of

the second kind with parameter ζ . If ag = 1, then we see that [βg | τ 2,λ2
g] ∼ ML(0, τ 2Λg),

has a multivariate-Laplace prior with location parameter 0 and scale parameter τ 2Λg. Recall that
for the multivariate Laplace distribution, a diagonal scale does not correspond to independence.
Therefore, when ag = 1, we can interpret the GIGG prior as a mixture of multivariate-Laplace
priors with the mixing distribution equal to independent inverse-gamma distributions for each λ2gj .
Moreover, mixing over the local shrinkage parameters implies that the GIGG prior with ag = 1

is a heavy-tailed version of the multivariate-Laplace prior. To connect this result with Bayesian
LASSO, we use identity 10.2.17 in Abramowitz and Stegun (1964) and conclude that if ag = 1

and pg = 1, then

π(βg1 | τ 2, λ2g1) =
1√

2τ 2λ2g1

exp

(
−
√

2

τ 2λ2g1
|βg1|

)
, βg1 ∈ (−∞,∞).

That is, for a group of size one with ag = 1, the GIGG prior can be interpreted as a mixture of
Laplace priors, explicitly connecting the GIGG prior with Bayesian LASSO.
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2.2.4 Sparse Normal Means

To further elucidate the shrinkage profile of the GIGG prior, we will focus on a special case of
the sparse linear regression model called the sparse normal means model (X = In and C empty).
In the global-local shrinkage prior literature, it is conventional to work with the sparse normal
means problem for analytical tractability, even when the ultimate goal is regression (Rockova and
Lesaffre, 2014; Bhattacharya et al., 2015), as the posterior mean has a convenient representation,
E[βgj | ygj, τ 2, σ2] = (1 − E[κgj | ygj, τ 2, σ2])ygj . Here, κgj = σ2/(σ2 + τ 2γ2gλ

2
gj) is called

a shrinkage factor, because it quantifies how much the posterior mean is shrunk relative to the
maximum likelihood estimator ygj . Calculating the joint prior distribution for the shrinkage factors
in the g-th group, κg = (κg1, ..., κgpg)

⊤, we have
π
(
κg | τ 2, σ2, ag, bg

)
=

Γ(ag + pgbg)

Γ(ag)
(
Γ(bg)

)pg( τ 2σ2

)pgbg
(
1 +

τ 2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgbg)( pg∏
j=1

κ
bg−1
gj (1− κgj)−(bg+1)

)
,

where 0 < κgj < 1 for all 1 ≤ j ≤ pg. Evaluating the prior distribution of κg, we see that
the joint density multiplicatively factorizes into “dependent” and “independent” parts where the
degree of dependence is governed by the

∑pg
j=1 κgj/(1 − κgj) term. That is, as ag + pgbg goes to

zero, the regularization is highly individualistic, whereas if ag + pgbg moves away from zero, then
the shrinkage becomes more dependent within the g-th group.

Although the dependence between the shrinkage factors in the g-th group is controlled by ag +
pgbg, we can use the marginal prior properties to better understand the primary roles of ag and bg.
From Section 2.2.2, we know that ag ∈ (0, 1/2] should be used for sparse estimation problems,
because the pole at the origin of the marginal prior on βgj only arises if ag ∈ (0, 1/2]. Since
ag is heavily restricted in the range of values it can take for sparse estimation problems, then
ag + pgbg is primarily determined by the choice of bg. Even setting the restriction on ag for sparse
estimation problems aside, if we interpret ag + pgbg as a weighted sum of hyperparameters, bg is
given more weight than ag for groups larger than size one, with the weights becoming increasingly
disproportionate as group size increases. Therefore, upon simultaneous inspection of the joint
prior on the shrinkage factors and the marginal prior properties for the prior on βgj , bg offers more
control over the dependence of the multivariate shrinkage and ag offers more control over the
strength of the approximate thresholding effect near zero, although these roles are not mutually
exclusive. To illustrate this point, Figure 2.2 visualizes the marginal posterior mean of βg1 for a
group of size two as a function of ag, bg, yg1, and yg2. When ag and bg are close to zero then
the thresholding effect on the marginal posterior mean of βg1 hardly depends on the value of yg2,
indicating highly individualistic shrinkage. This corroborates our intuition from looking at the
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joint posterior distribution of the shrinkage weights within the same group. The second major
observation is that as bg moves away from zero, the marginal posterior mean of βg1 becomes
increasingly more dependent on the value of yg2. In particular, if we look at the case when ag =

0.05 and bg = 2, we see that when yg2 = 0 the thresholding effect on βg1 is much stronger
when compared to yg2 = 10. The last major observation is that as ag moves towards zero, the
thresholding effect becomes stronger, which coincides with a stronger pole at zero in the marginal
prior on βg1.
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Figure 2.2: Marginal posterior mean of βg1 for a group with two observations as ag, bg, yg1, and
yg2 vary. Here, τ 2 = 0.2 and σ2 = 1 are fixed.

2.3 Theoretical Properties

In this section, we first prove posterior consistency (Section 2.3.1) and we then consider posterior
concentration properties of GIGG shrinkage across a range of different settings (Section 2.3.2).
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2.3.1 Posterior Consistency

Let Xn = [X1, . . . ,XGn ] and Hn = {a, b} denote the collection of hyperparameters where
a = {a1, ..., aGn} and b = {b1, ..., bGn}. Here, the subscript n in Gn refers to the fact that the
number of groups in the regressor space is growing as a function of the sample size. Furthermore,
let An = {(g, j) : β0

gj ̸= 0} denote the true active set with cardinality |An|. Then, Theorem
2.3.1 states that the posterior distribution of βn under the GIGG prior is consistent a posteriori
for the true β0

n. Similarly, we add a subscript n to β0
n and βn to indicate that the total number of

regressors, pn, is growing as function of sample size. In the theoretical analysis of our method,
letting the number of regressors grow as a function of sample size allows us to consider cases where
the number of variables included in the model grows with increasing sample size, in addition to
cases where the number of variables does not change as a function of sample size (Ghosal, 1999;
Armagan et al., 2013b).

Theorem 2.3.1. Suppose that pn = o(n), Ln = sup(g,j) |β0
gj| < ∞, where β0

gj indicates the

true j-th regression coefficient in the g-th group, 0 < limn→∞ infHn ≤ limn→∞ supHn < ∞,

and |An| = o(n/ log(n)). Further, suppose that the smallest and largest singular values

of Xn, denoted by θn,min(Xn) and θn,max(Xn), satisfy 0 < lim infn→∞ θn,min(Xn)/
√
n ≤

lim supn→∞ θn,max(Xn)/
√
n <∞. Then for any ϵ > 0,

πn(βn : ∥βn − β0
n∥2 < ϵ | yn,Hn, τ

2
n, σ

2)→ 1

almost surely as n→∞ provided that τ 2n = C/(pnn
ρ log(n)) for some ρ, C ∈ (0,∞).

Proof. See the Supplementary Material A.3.
Of note, the only restriction placed on the values of the hyperparameters in Theorem 2.3.1 is

that they do not converge to the boundary of the hyperparameter space as n→∞.

Remark 2.3.1. Theorem 2.3.1 is a generalization of Theorem 5 in Armagan et al. (2013b) which

proved posterior consistency for the NBP prior when bg ∈ (1,∞). Restricting bg ∈ (1,∞) was

done to utilize an argument which required the existence of the second moment of βgj , but does not

cover special cases of particular interest such as the horseshoe prior. Therefore, our result extends

the existing posterior consistency result from Armagan et al. (2013b) to a more general collection

of hyperparameter values with potential grouping structure.

Remark 2.3.2. Although Song and Liang (2017) provide an existing theoretical framework for

posterior consistency in high-dimensional linear regression when log(pn) = o(n), this result can-

not be directly applied because the GIGG prior is non-exchangeable.
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2.3.2 Concentration Properties of Shrinkage Parameters

In this subsection, we consider posterior concentration properties corresponding to GIGG shrink-
age in different settings, which describe the behavior of the posterior distribution for fixed n.
These concentration properties are important to show for new group global-local shrinkage pri-
ors, as Datta and Ghosh (2013) showed that such concentration properties were important for the
horseshoe prior. We will consider results for general low-dimensional linear regression models
when possible, however, for certain componentwise results, we need to focus on the sparse nor-
mal means setting. Separate subsection headers are available to distinguish between the results for
linear regression models and the results that are only applicable to sparse normal means models.

2.3.2.1 Linear Regression

First, we partially extend the posterior concentration theoretical framework for the sparse normal
means model to a low-dimensional linear regression (p < n) model with general correlation struc-
ture. Going forward, we will drop the subscript n from the notation introduced in the statement of
Theorem 2.3.1 to clarify that the subsequent theoretical results hold for fixed p.

Theorem 2.3.2. Fix ϵ ∈ (0, 1), p, and n, such that p < n. Further, suppose that the smallest

and largest singular values of X⊤X , denoted by θmin(X
⊤X) and θmax(X

⊤X), satisfy 0 <

θmin(X
⊤X) ≤ θmax(X

⊤X) < ∞. The full conditional posterior mean corresponding to the

GIGG prior is,

E[β | y, σ2, τ 2,Γ,Λ] =

(
Ip + (X⊤X)−1σ

2

τ 2
(ΓΛ)−1

)−1

β̂
OLS

, β̂
OLS

= (X⊤X)−1X⊤y.

Then the inequality,∥∥∥β̂OLS
− E[β | y, σ2, τ 2,Γ,Λ]

∥∥∥
2
≥
(

1

1 + θmax(X
⊤X)σ−2τ 2max(g,j) γ2gλ

2
gj

)∥∥∥β̂OLS
∥∥∥
2
,

holds and we have the following results:

a)

π

(
1

1 + θmax(X
⊤X)σ−2τ 2max(g,j) γ2gλ

2
gj

≥ ϵ

∣∣∣∣ y,H, τ 2, σ2

)
→ 1 as τ 2 → 0.

b)

π

(∥∥∥β̂OLS
− E[β | y, τ 2,Γ,Λ, σ2]

∥∥∥
2
≥ ϵ
∥∥∥β̂OLS

∥∥∥
2

∣∣∣∣ y,H, τ 2, σ2

)
→ 1 as τ 2 → 0.
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Proof. See the Supplementary Material A.4.
Theorem 2.3.2 states that, irrespective of the correlation structure, τ 2 → 0 sufficiently shrinks the
posterior mean towards zero. The argument used in the proof of Theorem 2.3.2 can be applied
to a litany of other continuous shrinkage priors for which existing posterior concentration results
are limited to the sparse normal means model. To supplement these results, we consider the case
where we have block diagonal correlation structure, with the blocks defined by the groups, as in
Figure 2.1.

Corollary 2.3.1. Suppose that the regressors in X satisfy X⊤
g Xg′ = 0 for all g ̸= g′, where 0

denotes a pg × pg′ matrix of zeros. If τ 2, σ2, and ag ∈ (0, 1) are fixed, then there exists a constant

ϵg(τ
2, σ2) =

σ2

σ2 + θmax(X
⊤
g Xg)τ 2

,

such that for all δ ∈ (0, ϵg(τ
2, σ2))

π

(∥∥∥β̂OLS

g − E[βg | y, τ 2, γ2g , λ2g1, . . . , λ2gpg , σ
2]
∥∥∥
2
≥ δ
∥∥∥β̂OLS

g

∥∥∥
2

∣∣∣∣ y, ag, bg, τ 2, σ2

)
→ 1

as bg →∞.

Proof. See the Supplementary Material A.5.
The conclusion of Corollary 2.3.1 is that if the hyperparameter bg → ∞ then there is at least

some amount of shrinkage relative to the ordinary least squares estimator in the g-th group. If
τ 2/σ2 is close to zero, then ϵ(τ 2, σ2) ≈ 1, implying shrinkage of the posterior mean towards zero.
Therefore, we can interpret the case when bg → ∞ and τ 2/σ2 close to zero as shrinkage of the
entire g-th group towards zero.

2.3.2.2 Sparse Normal Means

Although we would ideally consider additional posterior concentration results within the context of
a linear regression model, there is not an analytically tractable analog of componentwise shrinkage
factors for a general design matrix without any orthogonality. Therefore, we will proceed by
considering posterior concentration results within the sparse normal means framework, to make
precise statements regarding componentwise shrinkage, as opposed to shrinkage of the entire L2-
norm.

One question that arises is whether the dependence induced between the βgj’s by γ2g will overly
dominate the individual-level shrinkage. As an example, one can conceptualize a case where a
group has only one signal, which is overly shrunk by virtue of being grouped with an overwhelming
majority of null means. An alternative situation that could occur is a case where few null means
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are grouped with many non-null means, leading to insufficient shrinkage of the null means toward
zero. These two scenarios are described by Som et al. (2016) as the Conditional Lindley’s Paradox

and Essentially Least Squares Estimation, respectively. Theorem 2.3.3a states that if the gl-th
observation is sufficiently large then there will be minimal shrinkage on ygl. This guarantees
that group shrinkage will not overly dominate individual shrinkage if the observation is large.
Conversely, Theorem 2.3.3b states that if the global shrinkage parameter converges to zero, then
the GIGG prior will sufficiently shrink the ygl’s toward zero. Let yg = (yg1, . . . , ygpg)

⊤.

Theorem 2.3.3. Suppose that pg ∈ {2, 3, 4, . . .}.

a) Fix ψ, δ ∈ (0, 1). Then there exists a function h(pg, τ 2, σ2, ag, bg, ψ, δ) such that

π(κgl > ψ | yg, τ
2, σ2, ag, bg)

≤ exp

(
−ψ(1− δ)

2σ2
y2gl +

ψδ

2σ2

∑
j ̸=l

y2gj

)
h(pg, τ

2, σ2, ag, bg, ψ, δ).

Consequently, if |ygl| → ∞, then π(κgl ≤ ψ | yg, τ
2, σ2, ag, bg)→ 1.

b) Fix ϵ ∈ (0, 1). Then there exists a function h(pg, σ2,yg, ag, bg, ϵ) such that,

π(κgl < ϵ | yg, τ
2, σ2, ag, bg)

≤
(
τ 2

σ2

)pg/2+bg
(
min

(
1,
τ 2

σ2

))−pg/2

h(pg, σ
2,yg, ag, bg, ϵ).

Consequently, π(κgl ≥ ϵ | yg, τ
2, σ2, ag, bg)→ 1 as τ 2 → 0.

Proof. See the Supplementary Material A.6 and A.7.

The theoretical statements outlined in Theorem 2.3.3 were originally discussed for the horse-
shoe prior (Datta and Ghosh, 2013), but have also been used in the context of several other con-
tinuous shrinkage priors (Datta and Dunson, 2016; Bhadra et al., 2017; Bai and Ghosh, 2019),
dynamic trend filtering (Kowal et al., 2019), and small area estimation (Tang et al., 2018). We
also note that Theorem 2.3.3 does not restrict the range of values ag and bg can take, meaning that
Theorem 2.3.3 applies to a more general class of hyperparameter values than those considered in
Bai and Ghosh (2019).
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2.4 Computation

2.4.1 Gibbs Sampler

The full conditional updates corresponding to model (2.2.1), where β is endowed with a GIGG
prior, are enumerated in Supplementary Material A.8. Following Polson and Scott (2011), we
assign a half-Cauchy prior scaled by the residual error standard deviation τ | σ ∼ C+(0, σ) and
use a prevalent data augmentation trick,

[τ 2 | ν] ∼ IG(1/2, 1/ν), [ν | σ2] ∼ IG(1/2, 1/σ2),

to obtain closed form full conditional updates for τ 2 and σ2 (Makalic and Schmidt, 2016). There
are two major computational bottlenecks for the proposed algorithm. The first is the full condi-
tional update of β,

[β | ·] ∼ N

(
Q−1 1

σ2
X⊤

(
y −Cα

)
,Q−1

)
, Q =

1

σ2
X⊤X +

1

τ 2
Γ−1Λ−1.

The second occurs when there are a multitude of group and local parameters that need to be drawn
at each iteration of the Gibbs sampler, which is often the case in “large p” scenarios. Rather than
naı̈vely sampling from the full conditional distributions there are several strategies to achieve faster
posterior computation:

• Draw v ∼ N
(
σ−2X⊤(y −Cα),Q

)
, and then solve Qβ = v, rather than explicitly calcu-

lating Q−1.

• For “small n, large p” problems, the Woodbury identity can be utilized so that the full con-
ditional update of β scales linearly in p (Bhattacharya et al., 2016).

2.4.2 Hyperparameter Selection

If the modeler wants to remain relatively agnostic to the choice of hyperparameters, one can
use Marginal Maximum Likelihood Estimation (MMLE) (Casella, 2001), an empirical-Bayes ap-
proach executed iteratively within the Gibbs sampler. The (l + 1)th update is

a(l+1)
g = ψ−1

0

(
E

a
(l)
g

[
log(γ2g) | y

])
, b(l+1)

g = ψ−1
0

(
− 1

pg

pg∑
j=1

E
b
(l)
g

[
log(λ2gj) | y

])
,
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where ψ0(·) is the digamma function and the expectation terms can be estimated through standard
Monte Carlo methods. The iterative procedure terminates when

G∑
g=1

(
a(l+1)
g − a(l)g

)2
+

G∑
g=1

(
b(l+1)
g − b(l)g

)2
is less than some prespecified error tolerance. However, in our experience it is preferred to fix
ag = 1/n for all g and use MMLE to estimate the bg hyperparameters. The first reason is that
ag controls the strength of the thresholding effect and choosing ag close to zero guarantees strong
shrinkage of null coefficients towards zero. The second reason is that only estimating one hyper-
parameter per group is more feasible than estimating two hyperparameters per group, particularly
when the number of groups is large. Since bg primarily controls how dependent the shrinkage is
within-group, it is more important to focus estimation on the bg hyperparameters. We do recognize
that setting ag = 1/n violates a condition in Theorem 2.3.1 where the infimum of the set of hy-
perparameters cannot converge to zero as n→∞. However, for practical purposes, this approach
provides an automatic way to set ag while also yielding similar results to ag close to zero and fixed
as a function of the sample size, such as ag = 1/100.

Although MMLE is useful for problems where the number of groups, G, is small relative to
the sample size, the estimates for the ag’s and bg’s will become increasingly variable in high-
dimensional settings where the number of groups is large. There may also be low-dimensional
settings where the user wants to incorporate explicit prior knowledge about the nature of the within-
group signal density. In such cases, it may be preferred to fix hyperparameter values in accordance
with subject matter expertise. As with the modified MMLE approach, we recommend setting
ag = 1/n for all g. To fix bg we recommend a useful heuristic whereby local, group, and global
shrinkage parameters are simulated from the GIGG prior. Using the simulated shrinkage parame-
ters, shrinkage factors can be constructed and the correlation between shrinkage factors within the
same group can be empirically calculated. Selecting the hyperparameter bg is then equivalent to
selecting how dependent the shrinkage is within-group, a more easily understandable concept.

Another alternative in high-dimensional cases is to set ag = a and bg = b for all g = 1, . . . , G

and a, b > 0. While this strategy loses the flexibility of customizing shrinkage for each group, it is
at least capable of estimating a global tradeoff between group and local shrinkage in a manner that
is more feasible for a MMLE procedure to reliably estimate. The corresponding MMLE updates
for this procedure are

a(l+1) = ψ−1
0

(
1

G

G∑
g=1

Ea(l)

[
log(γ2g) | y

])
, b(l+1) = ψ−1

0

(
− 1

p

G∑
g=1

pg∑
j=1

Eb(l)

[
log(λ2gj) | y

])
.
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Implementations of GIGG regression with fixed hyperparameters and hyperparameters estimated
via MMLE are available in the gigg R package on the Comprehensive R Archive Network (CRAN).

2.5 Simulations

2.5.1 Generative Model

The data generative mechanism is linear regression model (2.2.1), where C includes the inter-
cept term and five adjustment covariates drawn from independent standard normal distributions,
α = (0, 1, 1, 1, 1, 1)⊤, and X is drawn from a multivariate normal distribution with mean 0 and
covariance matrix ΣX . ΣX is determined such that the regressors have unit variance and block-
diagonal exchangeable correlation structure. Pairwise correlations within each group are ρ = 0.8

for the high correlation simulation settings or ρ = 0.6 for the medium correlation simulation set-
tings. For all simulation settings, the pairwise correlations across groups are 0.2 and the residual
error variance, σ2, is fixed such that β⊤ΣXβ/(β⊤ΣXβ + σ2) = 0.7.

Label Group Sizes Correlation Signal Type Signal Details
C10H 10,10,10,10,10 0.8 Concentrated Signal concentrated in one of the regressors in all five groups
D10H 10,10,10,10,10 0.8 Distributed Signal distributed across all regressors within the first group
C10M 10,10,10,10,10 0.6 Concentrated Signal concentrated in one of the regressors in all five groups
D10M 10,10,10,10,10 0.6 Distributed Signal distributed across all regressors within the first group

C5 5,5,5,5,5,5,5,5,5,5 0.8 Concentrated Signal concentrated in one regressor for five out of ten groups
D5 5,5,5,5,5,5,5,5,5,5 0.8 Distributed Signal distributed across all regressors within the first two groups
C25 25,25 0.8 Concentrated Signal concentrated in three regressors in the first group

and two regressors in the second group
D25 25,25 0.8 Distributed Signal distributed across first ten regressors within the first group
CL 30,10,5,3,2 0.8 Concentrated, Large Groups Signal concentrated in one regressor in the group of size 30

and one regressor in the group of size 10
DL 30,10,5,3,2 0.8 Distributed, Large Groups Signal distributed across all regressors within the group of size 30
CS 30,10,5,3,2 0.8 Concentrated, Small Groups Signal concentrated in one regressor in the group of size 3

and one regressor in the group of size 2
DS 30,10,5,3,2 0.8 Distributed, Small Groups Signal distributed across all regressors within the groups of

size 5, 3, and 2

Table 2.1: Fixed coefficient simulation settings where n = 500 and p = 50. The label column
refers to the name of the simulation setting that will be used throughout the rest of the simulation
section. The group sizes column shows the sizes of all the groups within each simulation setting.
The correlation column lists the pairwise correlations between regressors in the same group. The
signal type and signal details columns explain how the signal is distributed among regressors within
the active groups.

The first set of simulation settings will be called the fixed coefficient simulation settings, where
n = 500 and p = 50 (see Table 2.1 for simulation setting details). In the context of this simulation
study, a concentrated signal qualitatively refers to a simulation setting where the signal is contained
within few regressors in a group and a distributed signal qualitatively refers to a simulation setting
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where the signal is shared across many regressors within the same group. The purpose of the fixed
coefficient simulation settings with equally sized groups is to ascertain which methods perform
well when the within-group signal is sparse or dense, and whether or not the performance depends
on group size or strength of the within-group regressor correlations. The purpose of the fixed
coefficient simulation settings with groups of different sizes is to determine if the performance
depends on whether concentrated or distributed signals are contained within groups of large or
small size. Here, the groups of size 30 and 10 are considered the large groups and the groups of
size 5, 3, and 2 are considered the small groups.

Beyond the fixed regression coefficient simulation settings, we also consider random coefficient

simulations in the high correlation setting, where for each simulation iteration a random regression
coefficient vector is generated. Here, we have a low-dimensional simulation setting with n = 500

and p = 50, as well as a high-dimensional simulation setting with n = 200 and p = 500. All groups
in both random coefficient simulation settings contain 10 regressors. To construct a regression
coefficient vector, we start by randomly selecting either a concentrated or distributed signal for
the first group with even probability to guarantee that each simulation iteration will have at least
one true signal. The concentrated and distributed signal magnitudes are selected such that the
contribution to β⊤ΣXβ is equal, namely the distributed signal is βgj = 0.25 for j = 1, ..., 10 and
the concentrated signal is βg1 = 5.125 and βgj = 0 for j = 2, ..., 10. For the remaining groups,
we randomly select a concentrated signal with probability 0.2, a distributed signal with probability
0.2, and no signal with probability 0.6. The goal of the random coefficient simulation settings
is to show that, averaged across many combinations of regression coefficient vectors comprised
of sparse within-group signals, dense within-group signals, and inactive groups, GIGG regression
results in low mean-squared error.

2.5.2 Competing Methods and Evaluation Metrics

Estimation properties will be evaluated based on empirical mean-squared error (MSE), stratified
by null and non-null coefficients, across 5000 replicates. That is,

M̂SE =
1

5000

5000∑
r=1

(
β̂

r
− β

)⊤(
β̂

r
− β

)
,

where β̂
r

is the estimate of β from simulated dataset r. 5000 was selected so that the MSEs
listed in the simulation results section are relatively precise. In the random coefficient simulations,
calculating the MSE corresponds to an integrated mean-squared error (IMSE) metric averaged
across the generative distribution of the regression coefficient vectors. For the fixed coefficient
simulations we will consider several special cases of the GIGG prior with fixed hyperparameters,
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namely all possible combinations of ag ∈ {1/n, 1/2} and bg ∈ {1/n, 1/2, 1}. That way, we can
check whether the intuition gleaned from Figure 2.2 empirically translates to the regression setting.
We will also consider the GIGG prior when the hyperparameters ag = 1/n are fixed and bg are
estimated via MMLE.

The list of competing methods include Ordinary Least Squares (OLS), Horseshoe regression,
Group Horseshoe+ regression (Xu et al., 2016), Spike-and-Slab Lasso (Rockova and George,
2018), Bayesian Group Lasso with Spike-and-Slab Priors (BGL-SS) (Xu and Ghosh, 2015), and
Bayesian Sparse Group Selection with Spike-and-Slab Priors (BSGS-SS) (Xu and Ghosh, 2015).
As a reminder, to avoid confusion with the group horseshoe prior proposed in this chapter, we will
refer to the group horseshoe prior from Xu et al. (2016) as the group horseshoe+ prior. We will
use the posterior mean estimator for all Bayesian methods, with the exception of Spike-and-Slab
Lasso, BGL-SS, and BSGS-SS. BGL-SS and BSGS-SS will use the posterior median estimator
and Spike-and-Slab Lasso will use the posterior mode estimator. Most methods requiring Markov
chain Monte Carlo (MCMC) sampling have 10000 burn-in draws, followed by 10000 posterior
draws with no thinning. Some exceptions are BGL-SS and BSGS-SS which have 1000 burn-in
draws and 2000 posterior draws with no thinning, due to the relatively slower posterior sampling
algorithms. Another exception is group horseshoe+ regression in the high-dimensional random
coefficient simulation, which required 100000 burn-in draws to consistently converge.

2.5.3 Simulation Results

Table 2.2 presents the MSE for simulation settings C10H and D10H and Supplementary Tables
A.1, A.2, and A.3 list the MSEs for the C10M, D10M, C5, D5, C25, and D25 simulation settings.
Because the results for C10H and D10H are similar to C10M, D10M, C5, D5, C25, and D25, we
will only focus our discussion around the C10H and D10H simulation settings. The first note-
worthy observation is that group horseshoe regression has a uniformly lower MSE than both OLS
and horseshoe regression for both null and non-null estimation, although the discrepancy between
horseshoe and OLS is much larger than the difference between group horseshoe and horseshoe,
particularly for the null coefficients. For GIGG regression with fixed hyperparameters, the top per-
former is GIGG regression with bg = 1/nwhen the signal is concentrated within-group (Null MSE
= 0.11, Non-Null MSE = 0.30) and ag = 1/n, bg = 1 when the signal is distributed within-group
(MSE = 1.46), exactly as Figure 2.2 suggests. However, if the user sets bg = 1 when the signal is
concentrated (Null MSE = 0.53, Non-Null MSE = 0.49) or bg = 1/n when the signal is distributed
(Null MSE = 0.04, Non-Null MSE = 3.60), then the “incorrect” prior information results in notably
worse MSE compared to the “correct” prior information. That being said, bg = 1/2 appears to be
a middle ground where the performance for both concentrated and distributed simulation settings
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ρ = 0.8ρ = 0.8ρ = 0.8 Concentrated Distributed
Method Null Non-Null Overall Null Non-Null Overall
Ordinary Least Squares 3.74 0.41 4.16 8.09 2.03 10.12
Horseshoe 0.51 0.41 0.92 0.85 2.14 2.99
GIGG (ag = 1/n, bg = 1/n) 0.11 0.30 0.40 0.04 3.60 3.63
GIGG (ag = 1/2, bg = 1/n) 0.11 0.30 0.41 0.04 3.56 3.59
GIGG (ag = 1/n, bg = 1/2) 0.29 0.39 0.67 0.03 1.57 1.61
*GIGG (ag = 1/2, bg = 1/2) 0.33 0.40 0.72 0.24 1.70 1.94
GIGG (ag = 1/n, bg = 1) 0.53 0.49 1.03 0.03 1.43 1.46
GIGG (ag = 1/2, bg = 1) 0.58 0.49 1.07 0.26 1.43 1.69
GIGG (MMLE) 0.23 0.36 0.59 0.04 1.36 1.40
Group Horseshoe+ 0.30 0.39 0.70 0.08 1.64 1.73
Spike-and-Slab Lasso 0.15 0.33 0.48 0.21 4.27 4.49
BGL-SS 2.02 0.80 2.82 0.04 1.31 1.34
BSGS-SS 0.23 0.42 0.65 0.04 1.84 1.88

Table 2.2: Mean-squared errors (MSE) for simulation settings C10H and D10H in Table 2.1 (n =
500, p = 50) with high pairwise correlations (ρ = 0.8). Bolded cells indicate the four methods
with the lowest overall MSE. Four methods are highlighted to emphasize that GIGG (MMLE)
is the best method with respect to MSE for both concentrated and distributed signals aside from
methods that only perform well for one of the two settings. *GIGG (ag = 1/2 and bg = 1/2) is
equivalent to group horseshoe regression.

is generally good.
Examining the performance of the competing methods, we note that Spike-and-Slab Lasso does

very well for the concentrated signal setting (MSE = 0.48), but struggles when the signal is dis-
tributed (MSE = 4.49). Conversely, BGL-SS does poorly when the signal is concentrated (MSE =
2.82), but has good performance when the signal is distributed (MSE = 1.34). Group horseshoe+
regression and BSGS-SS have relatively low MSE across the low-dimensional simulation settings,
however, GIGG with MMLE almost always outperforms both methods in the low-dimensional
cases with respect to overall MSE. The improved performance for GIGG regression with MMLE
over a method like group horseshoe+ regression is precisely because GIGG regression with MMLE
is able to data-adaptively control the dependence of the grouped multivariate shrinkage. Group
horseshoe+ regression cannot directly control within-group dependence because there are no hy-
perparameters in the prior specification.

Table 2.3 shows the MSE results for the CL and DL simulation settings and Table 2.4 lists the
MSE results for the CS and DS simulation settings. As with the other fixed coefficient simulation
settings, the same general conclusions hold. Whether or not a concentrated signal is contained in
large or small groups, GIGG with MMLE and GIGG with fixed hyperparameters where bg = 1/n
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ρ = 0.8ρ = 0.8ρ = 0.8 Concentrated Distributed
Method Null Non-Null Overall Null Non-Null Overall
Ordinary Least Squares 2.02 0.08 2.11 1.58 2.85 4.43
Horseshoe 0.19 0.06 0.25 0.16 1.04 1.20
GIGG (ag = 1/n, bg = 1/n) 0.02 0.04 0.07 0.01 1.92 1.93
GIGG (ag = 1/2, bg = 1/n) 0.03 0.07 0.10 0.01 1.88 1.89
GIGG (ag = 1/n, bg = 1/2) 0.06 0.05 0.10 0.01 0.99 1.00
*GIGG (ag = 1/2, bg = 1/2) 0.06 0.05 0.11 0.05 0.99 1.04
GIGG (ag = 1/n, bg = 1) 0.12 0.06 0.19 0.01 0.85 0.86
GIGG (ag = 1/2, bg = 1) 0.13 0.06 0.19 0.05 0.83 0.88
GIGG (MMLE) 0.03 0.04 0.07 0.01 0.80 0.81
Group Horseshoe+ 0.06 0.05 0.11 0.04 1.00 1.03
Spike-and-Slab Lasso 0.04 0.03 0.07 0.08 3.29 3.36
BGL-SS 1.26 0.22 1.48 0.02 1.36 1.38
BSGS-SS 0.06 0.06 0.12 0.01 1.30 1.31

Table 2.3: Mean-squared errors (MSE) for simulation settings CL and DL in Table 2.1 (n =
500, p = 50) with high pairwise correlations (ρ = 0.8). Bolded cells indicate the four methods
with the lowest overall MSE. Four methods are highlighted to emphasize that GIGG (MMLE)
is the best method with respect to MSE for both concentrated and distributed signals aside from
methods that only perform well for one of the two settings. *GIGG (ag = 1/2 and bg = 1/2) is
equivalent to group horseshoe regression.

have some of the lowest overall MSEs across all methods. Whether or not a distributed signal
is contained in large or small groups, GIGG with MMLE and GIGG with fixed hyperparameters
where bg = 1 have some of the lowest overall MSEs. Spike-and-Slab LASSO performed well in
the concentrated simulation settings, but BGL-SS only performed well in the distributed setting
when the groups containing the true signals were small. Overall, it does not appear that group size
and signal distribution within the groups fundamentally change the performance of GIGG with
MMLE or GIGG with fixed hyperparameters, within the scope of the data generative parameters
that we explored.

Next, Table 2.5 summarizes the bg hyperparameter estimates across 5000 simulation iterations
for all high correlation simulation settings with n = 500, p = 50, and G = 5. For simulation set-
ting C10H we see that median bg hyperparameter estimate for groups 1-5 goes from 0.52 in group
1, which contains the smallest signal, to 0.27 and 0.26 for the largest signals. That is, as the con-
centrated signal becomes stronger, the median bg estimate starts moving towards zero. Conversely,
for all simulation settings with distributed signals, we generally observe that groups with either
all signals or all noise regressors tend to result in bg estimates that are greater than one regardless
of how large the groups containing the distributed signals are. For the CL simulation setting, we
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ρ = 0.8ρ = 0.8ρ = 0.8 Concentrated Distributed
Method Null Non-Null Overall Null Non-Null Overall
Ordinary Least Squares 2.05 0.06 2.11 2.07 0.39 2.46
Horseshoe 0.19 0.03 0.22 0.37 0.52 0.89
GIGG (ag = 1/n, bg = 1/n) 0.02 0.03 0.04 0.02 1.06 1.08
GIGG (ag = 1/2, bg = 1/n) 0.02 0.04 0.06 0.02 1.06 1.08
GIGG (ag = 1/n, bg = 1/2) 0.04 0.04 0.08 0.00 0.37 0.37
*GIGG (ag = 1/2, bg = 1/2) 0.05 0.03 0.08 0.04 0.36 0.40
GIGG (ag = 1/n, bg = 1) 0.06 0.05 0.11 0.00 0.32 0.33
GIGG (ag = 1/2, bg = 1) 0.09 0.04 0.13 0.04 0.32 0.36
GIGG (MMLE) 0.02 0.03 0.05 0.00 0.32 0.32
Group Horseshoe+ 0.04 0.03 0.07 0.09 0.43 0.52
Spike-and-Slab Lasso 0.04 0.02 0.06 0.09 1.49 1.58
BGL-SS 0.08 0.06 0.13 0.00 0.28 0.28
BSGS-SS 0.02 0.03 0.06 0.00 0.45 0.45

Table 2.4: Mean-squared errors (MSE) for simulation settings CS and DS in Table 2.1 (n =
500, p = 50) with high pairwise correlations (ρ = 0.8). Bolded cells indicate the four methods
with the lowest overall MSE. Four methods are highlighted to emphasize that GIGG (MMLE)
is the best method with respect to MSE for both concentrated and distributed signals aside from
methods that only perform well for one of the two settings. *GIGG (ag = 1/2 and bg = 1/2) is
equivalent to group horseshoe regression.

observe that the general trends for concentrated and distributed signals hold, namely that group 1
and group 2, which contain the concentrated signals, have median bg estimates between 0.2 and
0.3, and groups 3-5, which are null groups, have median bg estimates greater than one. However,
the CS simulation setting is a little more interesting. Group 4 and group 5 in the CS simulation
setting are the active groups with concentrated signals and we see that the median bg estimates are
0.16 and 0.14, respectively. That is, small groups with concentrated signals seem to result in bg hy-
perparameter estimates that are even closer to zero compared with larger groups with concentrated
signals. Moveover, groups 1-3 in the CS simulation setting are all null groups, and they show a
general trend of the median bg hyperparameter estimates getting smaller, the larger the group is.
Specifically, the group of size 30 in the CS simulation setting has a median bg estimate of 0.66
and the group of size 5 in the CS simulation setting has a median bg estimate of 0.92. Finally,
it is important to mention that bg is capped at four in our implementation to facilitate numerical
stability of the MMLE procedure. For group 5 in the CL simulation setting, bg was set to four in
131 out of 5000 simulation iterations. For group 4 in the DL simulation setting, bg was set to four
in 350 out of 5000 simulation iterations. For group 5 in the DL simulation setting, bg was set to
four 1195 times out of 5000 simulation iterations.
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Label Group Sizes Group 1 Group 2 Group 3 Group 4 Group 5
C10H 10,10,10,10,10 0.52 (0.32-0.84) 0.35 (0.25-0.71) 0.29 (0.23-0.55) 0.27 (0.22-0.43) 0.26 (0.22-0.44)
D10H 10,10,10,10,10 1.84 (1.11-2.59) 1.19 (0.75-1.80) 1.19 (0.74-1.81) 1.19 (0.74-1.81) 1.19 (0.71-1.81)

CL 30,10,5,3,2 0.28 (0.24-0.40) 0.22 (0.19-0.30) 1.30 (0.69-2.69) 1.51 (0.68-3.41) 1.73 (0.72-4.00*)
DL 30,10,5,3,2 1.96 (1.04-2.91) 1.60 (0.83-2.45) 2.09 (0.94-3.51) 2.59 (1.04-4.00*) 3.13 (1.03-4.00*)
CS 30,10,5,3,2 0.66 (0.54-0.88) 0.79 (0.57-1.22) 0.92 (0.60-1.54) 0.16 (0.13-0.23) 0.14 (0.12-0.21)
DS 30,10,5,3,2 0.95 (0.64-1.47) 1.31 (0.75-2.33) 2.07 (1.21-2.97) 1.51 (0.72-2.14) 1.03 (0.25-1.46)

Table 2.5: Median (2.5% Quantile - 97.5% Quantile) bg estimates for GIGG regression with
MMLE in all fixed regression coefficient, high correlation simulations settings with n = 500,
p = 50 and G = 5 with 5000 replicates. See Table 2.1 for the simulation setting details. Here,
large groups correspond to groups of size 30 and 10 and small groups correspond to groups of size
5, 3, and 2. *bg is capped at four to facilitate numerical stability of the MMLE procedure.

Lastly, we consider the IMSE for the random coefficient simulation settings presented in Table
2.6. As with the fixed regression coefficient simulations, group horseshoe (Null IMSE = 0.39)
and group horseshoe+ regression (Null ISME = 0.36) lead to a substantial improvement in IMSE
compared to horseshoe regression in the low-dimensional simulation setting. However, in the
low-dimensional simulation setting, we also observe that the additional flexibility of GIGG re-
gression with MMLE to self-adapt to different types of within-group signal distributions results in
noticeable improvements in IMSE for the null coefficients (Null IMSE = 0.21). Spike-and-Slab
Lasso and BGL-SS struggle in the random coefficient simulation scenario because they tend to
only work well when the signal is concentrated or distributed, respectively, leading to unfavorable
average performance. The high-dimensional simulation setting shows that GIGG regression with
MMLE does not perform as well as group horseshoe regression, group horseshoe+ regression, and
BSGS-SS, likely due to the fact that there is limited sample size to estimate many more group-
specific bg hyperparameters. Note that BSGS-SS has very low Null MSE (Null MSE = 2.22), but
very high Non-Null MSE (Non-Null MSE = 254.02) compared with many of the GIGG regres-
sion methods. Being a spike-and-slab based method, BSGS-SS has an inherent advantage over
continuous shrinkage methods in estimating the null counterpart of sparse parameters because it
shrinks coefficients to exact zero. Moreover, because BSGS-SS is based off of sparse group lasso,
it shrinks all coefficients much more strongly toward zero than GIGG regression methods. GIGG
regression with fixed hyperparameters ag = 1/2 and bg = 1 has the best performance of the
continuous shrinkage prior methods, likely because averaging a signal across highly correlated re-
gressors in a high-dimensional setting is preferable to assigning the entire signal to one regressor,
with respect to a squared error loss function. The high-dimensional simulations indicate that bet-
ter strategies to determine hyperparameter values for high-dimensional regression problems could
result in improved estimation properties.
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Low-Dimensional High-Dimensional
Method Null Non-Null Overall Null Non-Null Overall
Ordinary Least Squares 8.84 3.38 12.21 - - -
Horseshoe 0.70 1.18 1.88 86.04 215.36 301.40
GIGG (ag = 1/n, bg = 1/n) 0.09 1.79 1.88 131.32 252.04 383.36
GIGG (ag = 1/2, bg = 1/n) 0.10 1.83 1.93 128.61 250.49 379.10
GIGG (ag = 1/n, bg = 1/2) 0.33 1.15 1.47 80.61 213.24 293.85
*GIGG (ag = 1/2, bg = 1/2) 0.39 1.13 1.52 60.73 207.55 268.29
GIGG (ag = 1/n, bg = 1) 0.69 1.11 1.79 90.12 210.61 300.74
GIGG (ag = 1/2, bg = 1) 0.75 1.11 1.85 53.66 203.86 257.53
GIGG (MMLE) 0.21 1.06 1.27 93.11 220.90 314.01
Group Horseshoe+ 0.36 1.14 1.49 82.91 213.06 295.97
Spike-and-Slab Lasso 0.16 3.65 3.81 159.02 344.82 503.84
BGL-SS 2.84 2.44 5.28 1918.84 678.36 2597.19
BSGS-SS 0.36 1.45 1.81 2.22 254.02 256.25

Table 2.6: Integrated mean-squared errors (IMSE) for the random regression coefficient simulation
settings with high pairwise correlations (ρ = 0.8). The low-dimensional simulation setting has
n = 500 and p = 50 and the high-dimensional simulation setting has n = 200 and p = 500.
Bolded cells indicate the four methods with the lowest overall IMSE. *GIGG (ag = 1/2 and
bg = 1/2) is equivalent to group horseshoe regression.

2.6 Data Example

The National Health and Nutrition Examination Survey (NHANES) is a collection of studies con-
ducted by the National Center for Health Statistics with the overarching goal of evaluating the
health and nutritional status of the United States’ populace. Data collection consists of a written
survey and physical examination which records demographic, socioeconomic, dietary, and health-
related information, including physiological measurements and laboratory tests. We will specif-
ically apply GIGG regression to a subset of 990 adults from NHANES 2003-2004 with 35 mea-
sured contaminants across five exposure classes: metals (3 exposures), phthalates (7 exposures),
organochlorine pesticides (8 exposures), polybrominated diphenyl ethers (PBDEs) (7 exposures),
and polycyclic aromatic hydrocarbons (PAHs) (10 exposures). Figure 2.1 illustrates the block diag-
onal correlation structure of these exposures, where areas of high correlation are mostly contained
within exposure class. Gamma glutamyl transferase (GGT), an enzymatic marker of liver func-
tionality, is the outcome of interest. GGT and all environmental exposures were log-transformed
to remove right skewness and then subsequently standardized. The final model was adjusted for
age, sex, body mass index, poverty-to-income ratio, ethnicity, and urinary creatinine.

Figure 2.3 presents the estimated percent change in GGT corresponding to a twofold change in
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Figure 2.3: Estimated associations between environmental toxicants (metals, phthalates, pesti-
cides, PBDEs, and PAHs) and gamma glutamyl transferase (GGT) from NHANES 2003-2004
(n = 990).

each environmental exposure and their associated 95% credible intervals for methods commonly
used in multipollutant modeling. Bayesian linear regression with noninformative priors and ridge
regression were implemented in R Stan using four chains with no thinning, each with 1000 burn-in
draws and 1000 posterior draws. Horseshoe regression and GIGG regression with MMLE used
10000 burn-in samples, followed by 10000 posterior draws with a thinning interval of five. As
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with the simulation section, GIGG regression with MMLE refers to an implementation of GIGG
which fixes ag = 1/n for all g and then uses MMLE to estimate the bg hyperparameters. Conver-
gence of the MCMC chains was evaluated using Gelman-Rubin’s potential scale reduction factor
(PSRF) (Gelman and Rubin, 1992). All methods had a PSRF of 1.00 − 1.01 for the regression
coefficients, indicating that all MCMC chains converged. For GIGG regression with MMLE, the
median effective sample size for the βgj’s was 7309 with an interquartile range (IQR) of 3634-9266
and the effective sample size for σ2 was 10000. For the shrinkage parameters, the local shrinkage
parameters had a median effective sample size of 9541 with an IQR of 7819-10000, the group
shrinkage parameters had a median effective sample size of 1790 with an IQR of 1707-2271, and
the global shrinkage parameter had an effective sample size of 983.

Figure 2.3 compares GIGG regression with Bayesian linear regression (non-informative pri-
ors), ridge regression, and horseshoe regression. GIGG is generally more efficient than the other
methods, having narrower credible intervals, because GIGG better deals with multicollinearity and
homogeneous within-group effect sizes. When there is little multicollinearity and heterogeneous
within-group effect sizes, GIGG has similar efficiency to the horseshoe. Further, GIGG allows for
different shrinkage on coefficients, unlike ridge regression which overshrinks large coefficients.
In detail, the median credible interval length for GIGG regression with MMLE is 21.0% shorter
for the PAHs, 63.2% shorter for the PBDEs, and 22.5% shorter for the phthalates compared to
horseshoe regression, which are all exposures classes with high pairwise correlations and common
estimated effect sizes. However, the metals exposure class, which has weak pairwise correlations
and heterogeneous estimated effect sizes, results in a median credible interval length of 0.31 for
GIGG regression with MMLE and 0.28 for horseshoe regression. Ridge regression estimates that
a twofold change in lead exposure is associated with 1.21% higher GGT (95% CI: 0.09, 2.54),
while horseshoe regression estimates 1.76% higher GGT (95% CI: -0.02, 3.68) and GIGG re-
gression with MMLE estimates 2.04% higher GGT (95% CI: 0.01, 3.87). From a computational
perspective, GIGG regression with MMLE generated a median effective sample size of 559.6 per
second for the βgj’s, compared to a median effective sample size of 791.1 per second for horseshoe
regression.

Supplementary Figure A.1 provides a focused comparison of the various group shrinkage meth-
ods from the simulation study. GIGG is generally more efficient than the other continuous shrink-
age prior methods, having narrower credible intervals than group horseshoe and group horseshoe+.
As with the results in Figure 2.3, these efficiency gains are attributable to GIGG with MMLE better
handling multicollinearity and homogeneous within-group effect sizes. In detail, GIGG regression
with MMLE, group horseshoe regression, and group horseshoe+ regression all have very similar
performance in terms of point estimation. The 95% credible interval for lead covers zero for group
horseshoe+ regression (1.82% higher GGT; 95% CI: -0.02, 3.70), while the 95% credible interval
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for lead does not cover zero for group horseshoe regression (1.88% higher; 95% CI: 0.01, 3.72)
and GIGG regression with MMLE (2.04% higher GGT; 95% CI: 0.01, 3.87). For the PAHs, GIGG
regression with MMLE has a 26.1% shorter median credible interval length than group horseshoe
regression and a 25.7% shorter median credible interval length than group horseshoe+ regression.
For the PBDEs, GIGG regression with MMLE has a 57.7% shorter median credible interval length
than group horseshoe regression and a 60.6% shorter median credible interval length than group
horseshoe+ regression. Differences in credible interval interval length for the metals and pesticides
among GIGG regression with MMLE, group horseshoe regression, and group horseshoe+ regres-
sion were much smaller. The posterior median estimator corresponding to BGL-SS selected both
the metals and pesticides groups, despite the fact that no other method identified any pesticides
based on 95% credible intervals covering zero or posterior inclusion probabilities being larger than
0.5. BSGS-SS selected lead and cadmium, while the 95% credible intervals for GIGG regression
with MMLE and group horseshoe regression only identified lead.

2.7 Discussion

The principal methodological contribution of this chapter is to construct a continuous shrinkage
prior that improves regression coefficient estimation in the presence of grouped regressors. GIGG
regression flexibly controls the relative contributions of individual and group shrinkage to improve
regression coefficient estimation, resulting in a relative IMSE reduction of 32.4% compared to
horseshoe regression. One of the main limitations of GIGG regression is that regressor groupings
must be explicitly specified and regressor groupings may not overlap. Additionally, although the
GIGG prior can be imposed on regression coefficients in Bayesian generalized linear models, a
theoretical evaluation of the shrinkage properties for non-normal outcome data would be necessary
to determine if the GIGG prior is appropriate for such models.

There are several considerations for deciding between a spike-and-slab based bi-level selection
method and a grouped multivariate shrinkage prior based method. The first how large the dataset
is. Computationally, it is much slower to sample from the posterior corresponding to BSGS-SS
than it is to sample from the posterior distribution corresponding to GIGG regression. Therefore,
in higher dimensional problems, sampling the posterior corresponding to BSGS-SS may be com-
putationally prohibitive. The second consideration is with regard to the tradeoff between group and
local shrinkage. BSGS-SS only has two hyperparameters, so fixing those hyperparameters defines
a group-local tradeoff for all groups. The GIGG prior is different in that a unique ag and bg for each
group allows group-local tradeoffs for each group. If the expectation is for some groups to have
concentrated signals and for others to have distributed signals, then GIGG regression with MMLE
is better able to tailor the shrinkage corresponding to each group. The third is how important vari-
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able selection is. There are several techniques to define selection for continuous shrinkage priors,
however spike-and-slab based methods define variable selection much more naturally through pos-
terior inclusion probabilities. Therefore, if selection is a primary goal, then a spike-and-slab based
method like BSGS-SS might be preferred.

One limitation of the GIGG prior is that the groups must be specified a priori, leading to po-
tential scenarios where grouping information may be uninformative or misleading. However, the
ability of GIGG shrinkage to adapt to concentrated and distributed signals within the a priori de-
fined groups affords some robustness to misspecification of the grouping structure. Namely, in
cases where the grouping information is uninformative, then GIGG regression with MMLE will
still estimate an appropriate level of dependence within the multivariate shrinkage profile, likely
resulting in less dependent shrinkage within group if the effect sizes are heterogeneous. If the
grouping information is misleading, GIGG regression with MMLE will likely estimate less depen-
dent multivariate shrinkage within group, such that the impact of other regressors in the group is
lessened. That is, the flexibility of the dependence in the multivariate shrinkage profiles provides
some protection against improper grouping information.

The analysis of multiple pollutant data and chemical mixtures is a key thrust of the National
Institute of Environmental Health Sciences, and the GIGG prior provides a useful framework for
achieving variance reduction in the presence of group-correlated exposures, characterizing uncer-
tainties in point estimates, and constructing policy relevant metrics, like summary risk scores, in a
principled way. However, the generality of the GIGG prior coupled with the relative ease of com-
putation means that, despite its motivation coming from environmental epidemiology, the GIGG
prior is applicable to many other areas. For example, in neuroimaging studies, scalar-on-image
regression (Kang et al., 2018) has been widely used to study the association between brain activity
and clinical outcomes of interest. The whole brain can be partitioned into a set of exclusive regions
according to brain functions and anatomical structures. Within the same region, the brain imag-
ing biomarkers tend to be more correlated and have similar effects on the outcome variable. The
GIGG prior can be extended for scalar-on-image regression and it has great potential to improve
estimating the effects of imaging biomarkers by incorporating brain region information.

In this chapter, our focus was sparse estimation, but it is also natural to inquire about uncer-
tainty quantification and variable selection. Based on our simulations, the conclusions of van der
Pas et al. (2017) are relevant for the GIGG prior when 0 < ag ≤ 1/2, but a comprehensive study
needs to be carried out. There is no consensus way of defining variable selection for continuous
shrinkage priors, however there are several approaches to determine a final active set, including
credible intervals covering zero (van der Pas et al., 2017), decoupling shrinkage and selection
(DSS) (Hahn and Carvalho, 2015), and penalized credible regions (Zhang and Bondell, 2018). For
horseshoe-style shrinkage, variable selection defined through credible intervals covering zero is

36



highly conservative, but works well if one wants to limit the number of false discoveries. The pe-
nalized credible region approach searches for the sparsest model that falls within the 100×(1−α)%
joint elliptical credible region, while DSS constructs an adaptive lasso-style objective function with
the goal of sparsifying the posterior mean such that most of the predictive variability is still ex-
plained. Since the DSS construction is framed from a prediction perspective, this approach may
not be ideal for regression coefficient estimation problems in the presence of correlated regressors.
Another crucial point to make is that if one is interested in selection, the posterior mode estimator
for the horseshoe prior will result in exact zero estimates, and an approximate algorithm for cal-
culating the joint posterior mode was developed in Bhadra et al. (2019) using the horseshoe-like
prior. Therefore, one could conceptualize an extension of the expectation-maximization algorithm
developed by Bhadra et al. (2019) using a “GIGG-like” prior. A second option, from a variable
selection perspective rather than a model selection perspective, is to ascertain whether or not the
marginal posterior modes equal zero, based on the posterior draws (Liu and Ghosh, 2020). Here, a
posterior mode equal to zero refers to a regressor that is not selected and a posterior mode not equal
to zero refers to a regressor that is selected. Further work is needed to juxtapose the behavior of all
of these different methods for selection and develop novel algorithms for calculating the marginal
and joint posterior modes.
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CHAPTER 3

Mediation Analysis with External Information on the
Total Effect

3.1 Introduction

Mediation analysis is an important tool in epidemiology to elucidate the intermediary pathways
by which an exposure affects an outcome (Baron and Kenny, 1986; Robins and Greenland, 1992;
Pearl, 2001; VanderWeele, 2015; Song et al., 2020). In mediation analysis, the total effect (TE)
characterizes the effect of the exposure on the outcome and is additively decomposed into the nat-
ural direct effect (NDE) and the natural indirect effect (NIE). The NDE and NIE quantify how
well measures of the intermediary pathways, called mediators, explain the TE. The logical pro-
gression of mediation analysis is generally sequential, where researchers first establish that the
exposure is causally related to the outcome, and then hypothesize mechanisms that may explain
the causal relationship. Consequently, researchers frequently consider mediation hypotheses only
if there is a well-established literature showing statistical and biological significance of the TE.
The objective of this chapter is to integrate available external summary-level information on the
TE into mediation models, thereby improving NDE and NIE estimation for mediation analyses
with individual-level omics data on a limited number of participants.

The motivating example comes from the Puerto Rico Testsite for Exploring Contamination
Threats (PROTECT), a prospective birth cohort study in Puerto Rico. Preterm births, defined as
gestational age at delivery of less than 37 weeks, coupled with their downstream health complica-
tions, are a large concern for the Puerto Rican health care system. One widely studied risk factor
for preterm deliveries is elevated exposure to a class of endocrine disrupting chemicals called
phthalates (Ferguson et al., 2014; Welch et al., 2022). The goal of the present study is to test
whether metabolites corresponding to the inflammatory pathway Cytochrome p450 (M ) mediate
the relationship between phthalate exposure (A) and gestational age at delivery (Y ) adjusted for
confounders (C). The sample size in PROTECT with exposure and mediator data is approximately
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450. However, a study by Welch et al. (2022), which pools data corresponding to the TE of phtha-
lates on birth outcomes across 16 studies, has an approximate sample size of 5000 (after omitting
PROTECT). The goal of this chapter is to utilize the external summary-level information on the
TE from the Welch et al. (2022) pooled study to improve estimation efficiency of the NDE and
NIE in PROTECT.

There is no existing work explicitly incorporating external summary-level information on the
TE into an internal mediation model, however there is related work on nested internal and external
models in the data integration literature (Chatterjee et al., 2016; Cheng et al., 2018; Estes et al.,
2018; Cheng et al., 2019; Gu et al., 2019; Han and Lawless, 2019; Gu et al., 2021; Zhai and Han,
2022). Specifically, these papers consider the situation where an external model or prediction
algorithm is fit on a set of predictors and the resulting summary-level statistics or predictions are
then used to inform an internal model that contains a proper superset of those predictors. External
information on the TE can partially be framed in a similar manner where the external information
comes from the TE model, Y | A,C, and the model of interest is Y | M ,A,C. However, the
key difference for mediation models is that mediation models are specified from M | A,C and
Y | M ,A,C models. Therefore, it is important to understand how information on Y | A,C
informs parameter estimation corresponding to Y |M ,A,C and M | A,C simultaneously.

Our work has several new aspects. First, we develop a method to integrate external summary-
level information on the TE into an internal mediation model through constrained maximum like-
lihood estimation. Second, we show that, for a continuous outcome and continuous candidate
mediators, the constrained estimator is asymptotically more efficient than the unconstrained es-
timator for estimating the NDE and, provided that the outcome-mediator association conditional
on exposure is non-zero, the NIE. More specifically, the magnitude of the asymptotic relative ef-
ficiency gains for estimating the NDE and NIE are both functions of the partial R2 between the
Y | A,C and Y |M ,A,C models. Third, we robustify this mediation framework to violations
of transportability assumptions by introducing a mediation model where the internal TE parameter
is modeled as a random effect to deal with potential incongeniality of the external and internal TE
estimates. The random effect treatment of the internal TE parameter facilitates Empirical-Bayes
style shrinkage which data-adaptively shrinks more strongly towards the external TE estimate if
the internal and external populations appear to have similar TEs (Morris, 1983; Mukherjee and
Chatterjee, 2008). Lastly, we provide corroborative evidence in PROTECT to the conclusions of
Aung et al. (2020), which found a significant indirect effect of phthalate exposure on gestational
age at delivery through the Cytochrome p450 pathway in the LIFECODES prospective birth cohort
with participants from the greater Boston area. The two cohorts are very different in demograph-
ics, socioeconomic profile, behavior and lifestyle factors, thus this replicated finding may offer a
genuine biological insight. To our knowledge, this is the first methodological work that combines
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ideas from data integration and mediation analysis.
The structure of the chapter is as follows. In Section 3.2 we explicitly define the problem,

discuss methods for estimating model parameters in a linear mediation model with and without
external information. We derive estimators of the NDE and NIE corresponding to each method.
In Section 3.3, we compare asymptotic results corresponding to the NDE and NIE estimators
defined in Section 3.2 and discuss robustness to violations of transportability. In Section 3.4 we
empirically substantiate the findings from Section 3.3 with a comprehensive simulation study. In
Section 3.5 we apply this methodology to the PROTECT mediation analysis. Section 3.6 offers a
brief concluding discussion.

3.2 Methods

3.2.1 Notation and Model Specifications

We consider a mediation analysis setting where a collection of continuous candidate mediators is
hypothesized to mediate the association between a single exposure and a continuous health out-
come (see Figure 3.1). For the internal study, we assume that we have individual-level data on n ob-
servations. For observation i (i = 1, . . . , n), let Yi denote the outcome, M⊤

i· = (Mi1, . . . ,Mipm)
⊤

denote a collection of pm candidate mediators, Ai denote the exposure with E[Ai] = 0, and C⊤
i·

denote a collection of pc confounders and adjustment covariates plus the intercept term. To be
clear on the notation, M⊤

i· is a pm × 1 column vector, Mij is the realization of the j-th mediator
for observation i, and C⊤

i· is a pc × 1 column vector. We do not distinguish between confounders
of the outcome-exposure relationship and the outcome-mediator relationship, as in Figure 3.1;
we assume that C⊤

i· contains all confounders for both relationships. In our presentation, we also
use matrix notation, namely Y = (Y1, . . . , Yn)

⊤ is the n × 1 column vector containing the ob-
served outcomes, M = (M⊤

1·, . . . ,M
⊤
n·)

⊤ is the n × pm design matrix of observed mediator
values, A = (A1, . . . , An)

⊤ is the n × 1 column vector containing the observed exposures, and
C = (C⊤

1·, . . . ,C
⊤
n·)

⊤ represents the n×pc matrix of observed confounders, plus an intercept term.
The true generative model for the internal data is

[Yi |M i·, Ai,Ci·] ∼ N
(
M i·βm + Aiβa +Ci·βc, σ

2
e

)
, (3.2.1)

[M⊤
i· | Ai,Ci] ∼ N

(
Aiαa +αcC

⊤
i ,Σm

)
, i = 1, . . . , n. (3.2.2)

We refer to (3.2.1) as the outcome model and (3.2.2) as the mediator model. Note that integrating
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YA

CE

(a) External Total Effect Model

YM = {M 1, . . . ,M pm}AC1

C2

(b) Internal Mediation Model

Figure 3.1: Directed Acyclic Graph (DAG) for internal and external mediation models where
A denotes the exposure, M denotes the collection of pm candidate mediators, Y denotes the
outcome, C1 denotes the outcome-exposure confounders, and C2 denotes the outcome-mediator
confounders conditional on exposure. Throughout the chapter, C ⊇ C1 ∪ C2. Here, CE will
likely have some overlap with C1, but the total effect model adjustment sets for the external and
internal models are not assumed to be the same.

out the mediators in (3.2.1) and (3.2.2) yields:

[Yi | Ai,Ci·] ∼ N
(
Aiθ

I
a +Ci·θc, σ

2
t

)
, i = 1, . . . , n, (3.2.3)

where θIa = βa + α⊤
a βm, θc = βc + α⊤

c βm, and σ2
t = σ2

e + β⊤
mΣmβm. We refer to (3.2.3) as the

internal TE model.
For the external study, we assume that we have summary-level information on the TE, θIa, in the

form of a point estimate θ̂Ea and an associated measure of uncertainty V̂ar(θ̂Ea ) based on a sample
size of nE (n ≪ nE). Furthermore, we assume that we do not have access to the individual-level
data from the external data source. The main objective of this chapter is to leverage the available
external summary-level information, θ̂Ea and V̂ar(θ̂Ea ), to improve estimation of the NDE and the
NIE in the internal study.

3.2.2 Identification of Causal Effects

In the potential outcomes framework, M⊤
i· (a) is the counterfactual value of the mediator vector

had the exposure been equal to a and Yi(a,m) is the counterfactual outcome had the exposure
been equal to a and had the candidate mediator vector been equal to m. Combining these two
counterfactual quantities, Yi(a,M⊤

i· (a)) is the potential outcome for exposure level a and the TE,
which quantifies how the exposure marginally impacts the counterfactual outcome in the internal
population, is defined as Yi(a,M⊤

i· (a)) − Yi(a∗,M⊤
i· (a

∗)), where the exposure changes from the
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reference level a∗ to a. The NDE and NIE are obtained by decomposing the TE as follows:

TEi = Yi(a,M
⊤
i· (a))− Yi(a∗,M⊤

i· (a
∗))

= Yi(a,M
⊤
i· (a))− Yi(a,M⊤

i· (a
∗)) + Yi(a,M

⊤
i· (a

∗))− Yi(a∗,M⊤
i· (a

∗))

= NIEi + NDEi.

The NDE quantifies how the potential outcome changes as a function of the exposure level subject
to identical realizations of the reference level mediator values. Conversely, the NIE quantifies how
the potential outcome changes as a function of the counterfactual mediators subject to identical re-
alizations of the comparison exposure value. The conditional independence assumptions required
for identification of the average NDE and NIE from observed data are: (i) Yi(a,m) ⊥ Ai | Ci, (ii)
Yi(a,m) ⊥ M⊤

i· | {Ai,Ci}, (iii) M⊤
i· (a) ⊥ Ai | Ci, and (iv) Yi(a,m) ⊥ M⊤

i· (a
∗) | Ci (for a

detailed exposition see Song et al. (2020)). We will assume that (i)-(iv) hold for the internal study.
Under these assumptions:

NDE = E[Yi(a,M
⊤
i· (a

∗))− Yi(a∗,M⊤
i· (a

∗)) | Ci] = βa(a− a∗)

NIE = E[Yi(a,M
⊤
i· (a))− Yi(a,M⊤

i· (a
∗)) | Ci] = α⊤

a βm(a− a∗)

TE = E[Yi(a,M
⊤
i· (a))− Yi(a∗,M⊤

i· (a
∗)) | Ci] = (βa +α⊤

a βm)(a− a∗) = θIa(a− a∗)

For observation i′ in the external study (i′ = 1, . . . , nE), we define YE,i′ as the observed out-
come, AE,i′ as the observed exposure, and CE,i′· as the observed confounder vector, which may
or may not be the same as the set of confounders in the internal study. To incorporate external
summary-level information on the TE, certain methods we present in this chapter require the fol-
lowing transportability condition:

E[Yi | Ai = a,Ci· = c]− E[Yi | Ai = a∗,Ci· = c]

= E[YE,i′ | AE,i′ = a,CE,i′· = cE]− E[YE,i′ | AE,i′ = a∗,CE,i′· = cE] (3.2.4)

for all possible realizations of a and a∗. Transportability condition (3.2.4) in our context ensures
that θIa = θEa , where θEa is the true TE in the external population.

3.2.3 Maximum Likelihood Estimation without External Information

To establish an inferential baseline, consider a mediation analysis that ignores available external
summary-level information on the TE. That is, the model specification is (3.2.1) and (3.2.2), which
we call the unconstrained model. The maximum likelihood estimator (MLE) with respect to model
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specification (3.2.1) and (3.2.2) is defined as

argmin
αa,αc,Σm,βa,βm,βc,σ

2
e

{
npm
2

log(|Σm|) +
1

2

n∑
i=1

(
M⊤

i· − Aiαa −αcC
⊤
i·

)⊤
Σ−1

m

(
M⊤

i· − Aiαa −αcC
⊤
i·

)
+
n

2
log(σ2

e) +
1

2σ2
e

(
Y −Aβa −Mβm −Cβc

)⊤(
Y −Aβa −Mβm −Cβc

)}
(3.2.5)

The MLE is denoted as (α̂U
a , α̂

U
c , Σ̂

U

m, β̂
U
a , β̂

U

m, β̂
U

c ,
{
σ̂U
e

}2
), where α̂U

a is the MLE of αa, β̂U
a

is the MLE of βa, and β̂
U

m is the MLE of βm. For the unconstrained model, the MLEs have
closed-form expressions (see Supplementary Material B.1). Going forward, N̂DE

U
= β̂U

a and
N̂IE

U
=
{
α̂U

a

}⊤
β̂

U

m are called the unconstrained estimators of the NDE and NIE, respectively.

3.2.4 Maximum Likelihood Estimation with Congenial External Informa-
tion

Next, assume that there is an external point estimate, θ̂Ea , such that θ̂Ea is a consistent estimate of
θIa. This corresponds to the situation where transportability assumption (3.2.4) holds. When θ̂Ea
is a consistent estimate of θIa, we say that the external information is congenial with the internal
study population. Consider the optimization problem:

argmin
αa,αc,Σm,βm,βcσ

2
e

{
npm
2

log(|Σm|) +
1

2

n∑
i=1

(
M⊤

i· − Aiαa −αcC
⊤
i·

)⊤
Σ−1

m

(
M⊤

i· − Aiαa −αcC
⊤
i·

)
+
n

2
log(σ2

e) +
1

2σ2
e

(
Y −AβE

a −Mβm −Cβc

)⊤(
Y −AβE

a −Mβm −Cβc

)}
(3.2.6)

where βE
a = θ̂Ea − α⊤

a βm. Alternatively, (3.2.6) can be viewed as a minimization over the neg-
ative log-likelihood corresponding to the following model specification, which we call the hard
constraint model:

[
Yi |M i·, Ai,Ci·

]
∼ N

(
M i·βm + Ai{θ̂Ea −α⊤

a βm}+Ci·βc, σ
2
e

)[
M⊤

i· | Ai,Ci·
]
∼ N(Aiαa +αcC

⊤
i· ,Σm), i = 1, . . . , n.

We denote the optimizer of (3.2.6) as (α̂H
a , α̂

H
c , Σ̂

H

m, β̂
H

m, β̂
H

c ,
{
σ̂H
e

}2
), where α̂H

a is the estimator

of αa and β̂
H

m is the estimator of βm. The purpose of (3.2.6) is to impose a hard constraint on
TE estimation so that the estimated TE is always equal to

{
β̂E
a

}H
+
{
α̂H

a

}⊤
β̂

H

m = θ̂Ea . Cyclical
coordinate descent is used to compute the optimizer of (3.2.6) (see Supplementary Material B.1).

The approach described in this section represents the other extreme compared to the uncon-
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strained estimator, where the estimated TE is forced to be equal to θ̂Ea , showing exact and extreme
faith in the external information. Moreover, the hard constraint on the estimated TE induces infor-
mation sharing between the internal mediator and outcome models through the α⊤

a βm term in the
mean function of the outcome model. Going forward, we refer to N̂DE

H
= θ̂Ea −

{
α̂H

a

}⊤
β̂

H

m and

N̂IE
H
=
{
α̂H

a

}⊤
β̂

H

m as the hard constraint estimators of the NDE and NIE, respectively.

3.2.5 Robust Soft Constraint Estimator

The final method considers the case where θ̂Ea may or may not be a consistent estimate of θIa.
That is, the validity of transportability assumption (3.2.4) is unknown. When θ̂Ea is an inconsistent
estimate of θIa, we say that the external information is incongenial with the internal study. Trans-
portability assumption (3.2.4) may be violated for a variety of reasons, including fundamentally
different Y | A,C distributions in the external and internal populations, unmeasured confound-
ing in the external TE model, and differing adjustment sets between the external and internal TE
models. To address potential violations of (3.2.4), we treat the internal TE parameter as a random
effect, θ̃Ia, and define a random effect mediation model, which we call the soft constraint model:

[Yi |M i·, Ai,Ci·, θ̃
I
a] ∼ N

(
M i·βm + Ai{θ̃Ia −α⊤

a βm}+Ci·βc, σ
2
e

)
[M⊤

i· | Ai,Ci] ∼ N
(
Aiαa +αcC

⊤
i ,Σm

)
, i = 1, . . . , n

θ̃Ia ∼ N
(
θ̂Ea , s

2V̂ar(θ̂Ea )
)

It is important to clarify that the soft constraint model is a working model and the true generative
model of the internal data remains (3.2.1) and (3.2.2). The advantage of a random effects formu-
lation is that it allows for shrinkage towards the external information without imposing inflexible
hard constraints on the estimated TE. After integrating out θ̃Ia the soft constraint likelihood function
becomes

L(αa,αc,ΣM ,βm,βc, σ
2
e | Y ,M ,A,C) =

∫ ∞

−∞
π(Y |M ,A,C, θ̃Ia)π(M | A,C)π(θ̃Ia)dθ̃

I
a,

where π is general notation for a probability density function. The maximum likelihood estimators,
defined by

argmax
αa,αc,Σm,βm,βc,σ

2
e

L(αa,αc,ΣM ,βm,βc, σ
2
e | Y ,M ,A,C), (3.2.7)

are denoted as (α̂S
a , α̂

S
c , Σ̂

S

M , β̂
S

m, β̂
S

c ,
{
σ̂S
e

}2
) and the soft constraint estimator of the NIE is

N̂IE
S

= {α̂S
a}⊤β̂

S

m. The soft constraint estimator of the TE is the posterior mean estimator
corresponding to the posterior distribution π(θ̃Ia | Y ,M ,A,C), with the maximum likelihood
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estimators, α̂S
a , α̂S

c , Σ̂
S

M , β̂
S

m, β̂
S

c , and
{
σ̂S
e

}2, substituted in for their corresponding true parame-
ter values (Verbeke and Molenberghs, 2000). The resultant soft constraint estimator for the NDE
is the difference between the soft constraint TE and NIE estimators:

N̂DE
S
=

[
A⊤A{
σ̂S
e

}2 +
1

s2V̂ ar(θ̂Ea )

]−1[
A⊤(Y −Cβ̂

S

c −Mβ̂
S

m){
σ̂S
e

}2 +
(θ̂Ea − {α̂

S
a}⊤β̂

S

m)

s2V̂ ar(θ̂Ea )

]

For the soft constraint model, the Expectation-Maximization (EM) algorithm is used to solve
(3.2.7), where Y , M , A, and C are treated as the observed data and θ̃Ia is treated as the unob-
served latent data (Dempster et al., 1977). See Supplementary Material B.1 for details on the EM
algorithm implementation.

3.3 Asymptotic Efficiency Results

The goals of this section are to understand the efficiency gain attributable to incorporating con-
genial external information on the TE and to provide commentary on dealing with potentially
incongenial external information. Here, σ2

a = Var(Ai | Ci·), which is obtained by regressing out
the confounders from the exposure using a linear regression model.

3.3.1 Asymptotic Distributions of the Unconstrained and Hard Constraint
Estimators

Theorem 3.3.1. The joint asymptotic distribution of α̂U
a , β̂U

a , and β̂
U

m is,

√
n


α̂U

a −αa

β̂U
a − βa

β̂
U

m − βm

→d N

(
0,
{
IU(αa, βa,βm)

}−1
)

{
IU(αa, βa,βm)

}−1

=


1
σ2
a
Σm 0 0

0 σ2
e

σ2
a

(
1 + σ2

aα
⊤
a Σ

−1
m αa

)
−σ2

eα
⊤
a Σ

−1
m

0 −σ2
eΣ

−1
m αa σ2

eΣ
−1
m


Let NDE = βa, NIE = α⊤

a βm, TE = NDE + NIE, and T̂E
U
= N̂DE

U
+ N̂IE

U
. Then,

√
n(N̂DE

U
− NDE)→d N

(
0,
σ2
e

σ2
a

+ σ2
eα

⊤
a Σ

−1
m αa

)
,
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√
n(T̂E

U
− TE)→d N

(
0,

1

σ2
a

{
σ2
e + β⊤

mΣmβm

})
,

and, provided that αa ̸= 0 or βm ̸= 0,

√
n(N̂IE

U
− NIE)→d N

(
0,

1

σ2
a

β⊤
mΣmβm + σ2

eα
⊤
a Σ

−1
m αa

)
.

Proof. See Supplementary Material B.2 for details.

Theorem 3.3.2. Suppose that θ̂Ea →p θ
I
a as nE →∞. Then,

√
n

(
α̂H

a −αa

β̂
H

m − βm

)
→d N

(
0,
{
IH(αa,βm)

}−1
)

{
IH(αa,βm)

}−1

=

 1
σ2
a

(
Σ−1

m + 1
σ2
e
βmβ

⊤
m

)−1

0

0 σ2
eΣ

−1
m


Let NDE = θIa −α⊤

a βm, NIE = α⊤
a βm, TE = θIa, and T̂E

H
= θ̂Ea . Then, provided that αa ̸= 0 or

βm ̸= 0,
√
n(N̂DE

H
− NDE)→d N

(
0,
σ2
e

σ2
a

R2
M |A,C + σ2

eα
⊤
a Σ

−1
m αa

)
√
n(N̂IE

H
− NIE)→d N

(
0,

1

σ2
a

β⊤
mΣmβm

{
1−R2

M |A,C

}
+ σ2

eα
⊤
a Σ

−1
m αa

)
,

where

R2
M |A,C =

β⊤
mΣmβm

σ2
e + β⊤

mΣmβm

Proof. See Supplementary Material B.2 for details.
Theorems 3.3.1 and 3.3.2 show the asymptotic distributions of the unconstrained and hard con-

straint estimators, respectively. The inverted information matrices clarify that efficiency gains for
NIE estimation exclusively come from improved estimation of αa. When the TE and outcome
models are framed as nested regression models, this result is consistent with Gu et al. (2019),
which showed that leveraging external summary-level information from a reduced model only
results in efficiency gains for the regression coefficients corresponding to regressors in common
between the two models. Theorems 3.3.1 and 3.3.2 also show that βm = 0 implies no efficiency
gain for NIE estimation. When βm ̸= 0, the absolute efficiency gain corresponding to the NDE
and NIE is completely dependent on the quantity, R2

M |A,C , the partial R2 between the TE and
outcome models. If R2

M |A,C ≈ 1, then the inclusion of candidate mediators substantially improves
model fit and consequently there are large gains for NIE estimation. Conversely, if R2

M |A,C ≈ 0,
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then inclusion of candidate mediators do not improve model fit compared to the TE model and
consequently there are large gains for NDE estimation. An intuitive understanding of the latter
point comes when R2

M |A,C = 0, which implies that βm = 0 and TE = NDE. That is, the smaller
||βm||2 is, the closer the TE is to the NDE, and the external information on the TE becomes in-
creasingly more relevant for NDE estimation. With respect to NDE and NIE estimation, a small
value of σ2

eα
⊤
a Σ

−1
m αa, a scaling of the signal-to-noise ratio in the mediator model, leads to larger

relative efficiency gains.

3.3.2 Asymptotic Distribution when αa = βm = 0

Theorem 3.3.3 clarifies the asymptotic distribution of the unconstrained and hard constraint es-
timators when αa = βm = 0. There are no efficiency gains for NIE estimation in this setting
because βm = 0.

Theorem 3.3.3. Suppose that αa = βm = 0 and that there are estimators α̂a and β̂m of αa and

βm, respectively, which satisfy:

√
n

(
α̂a −αa

β̂m − βm

)
→d N

((
0

0

)
,

(
σ−2
a Σm 0

0 σ2
eΣ

−1
m

))

Then,

n
(
α̂⊤

a β̂m −α⊤
a βm

)
→d

1

2

√
σ2
e

σ2
a

(
ξ1 − ξ2

)
,

where ξ1 and ξ2 are independent χ2
pm random variables.

Proof. See Supplementary Material B.2 for details.
Theorems 3.3.1, 3.3.2, and 3.3.3 can be used to inform the construction of hypothesis tests and

confidence intervals for the NIE and NDE. However, when determining the reference distribution,
how much to weight the αa = βm = 0 case relative to the αa ̸= 0 or βm ̸= 0 case is unknown.
One straightforward workaround is to check whether or not αa = βm = 0 by using a Wald test
with the reference distribution given by

n
(
α̂⊤

a β̂
⊤
m

)(σ−2
a Σm 0

0 σ2
eΣ

−1
m

)−1(
α̂a

β̂m

)
→d χ

2
2pm

and then use the appropriate asymptotic result to construct confidence intervals.
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3.3.3 Robustness to Incongenial External Information

Theorem 3.3.2 focuses on settings where transportability condition (3.2.4) holds, however there are
likely many instances where fundamental differences across internal and external study populations
lead to violations of (3.2.4). The desire to account for such cases motivates an estimator that
is robust to departures from (3.2.4), but is still more efficient than the unconstrained estimator
when (3.2.4) is satisfied. In this context, robustness refers to the fact that the estimator is as
asymptotically efficient as the unconstrained estimator when (3.2.4) does not hold. Theorem 3.3.4
establishes that the soft constraint estimator is as efficient or more efficient than the unconstrained
estimator with respect to NIE estimation when (3.2.4) does hold.

Theorem 3.3.4. Suppose that ns2V̂ar(θ̂Ea ) →p τ
2
a , where τ 2a ∈ (0,∞), and θ̂Ea →p θ

I
a as n → ∞

and nE →∞. Then,

√
n

(
α̂S

a −αa

β̂
S

m − βm

)
→d N

(
0,
{
IS(αa,βm)

}−1
)

{
IS(αa,βm)

}−1

=

 1
σ2
a

(
Σ−1

m + 1
τ2a

[
σ2
a

σ2
e
+ 1

τ2a

]−1
1
σ2
e
βmβ

⊤
m

)−1

0

0 σ2
eΣ

−1
m


Let NIE = α⊤

a βm. Then, provided that αa ̸= 0 or βm ̸= 0,

√
n(N̂IE

S
−NIE)→d N

(
0,

1

σ2
a

β⊤
mΣmβm

[
1+

1

τ 2a

(
σ2
a

σ2
e

+
1

τ 2a

)−1
1

σ2
e

β⊤
mΣmβm

]−1

+σ2
eα

⊤
a Σ

−1
m αa

)

Proof. See Supplementary Material B.2 for details.
Theorem 3.3.4 provides the asymptotic distribution of the soft constraint estimator of the NIE.

The asymptotic variance-covariance matrix converges to the asymptotic variance-covariance ma-
trix of the unconstrained estimator if s2 →∞ and the asymptotic variance-covariance matrix of the
hard constraint estimator if s2 → 0. Additionally, the conclusions of Theorem 3.3.3 hold for the
soft constraint estimator when αa = βm = 0. Inference corresponding to the soft constraint NDE
estimator is more challenging because there is not an easily derivable asymptotic distribution. In
this chapter, for interval estimation, we use quantile-based confidence intervals via the parametric
bootstrap (Efron, 1982).

Although Theorem 3.3.4 is derived for a fixed value of s2, s2 can be data-adaptively es-
timated to robustify model parameter estimation from incongenial external information. We
obtain a data adaptive estimator for s2 following an empirical-Bayes argument (Morris, 1983;
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Mukherjee and Chatterjee, 2008), where the MLE of the TE, denoted by θ̂Ia, has the condi-
tional distribution [θ̂Ia | θ̃Ia] ∼ N

(
θ̃Ia,Var(θ̂Ia)

)
, coupled with the random effect distribution

θ̃Ia ∼ N
(
θ̂Ea , s

2V̂ar(θ̂Ea )
)

. Maximizing the marginal likelihood after integrating out θ̃Ia yields

ŝ2 =
{

V̂ar(θ̂Ea )
}−1

max{0, (θ̂Ia − θ̂Ea )
2 − V̂ar(θ̂Ia)}. That is, (θ̂Ia − θ̂Ea )

2 ≤ V̂ar(θ̂Ia) corresponds
to the hard constraint model and (θ̂Ia − θ̂Ea )2 > V̂ar(θ̂Ia) corresponds to the soft constraint model.
However, from a practical perspective, we recommend that if ŝ2 = 0, then set ŝ2 equal to a small
value close to zero and use the soft constraint algorithm; this helps to avoid coverage issues for the
parametric bootstrap confidence intervals of the NDE.

3.4 Simulations

3.4.1 Generative Model

The purpose of the simulation section is to empirically show estimation properties of the uncon-
strained, hard constraint, and soft constraint estimators. We consider one set of simulation scenar-
ios where θIa = θEa and two sets of simulation scenarios where θIa ̸= θEa . The generative model for
the internal data in all simulation settings is (3.2.1) and (3.2.2).

For the θIa = θEa simulation scenarios, which we refer to as the congenial simulation scenar-
ios, the parameters are set as follows: pm = 50, pc = 5, and (Ai,C

⊤
i )

⊤ ∼ MVN(0,Ω). Here,
Ω has an exchangeable correlation structure with the correlation parameter ρ = 0.2 and vari-
ance parameters equal to one. We consider two values of the internal sample size, n = 200 and
n = 2000, with external sample sizes 10, 100, and 1000 times greater than the internal sample
sizes. For the regression coefficient parameters in the mediator model, we fix αc so that it is a
matrix of 0.1’s and set αa = (0.6, . . . , 0.6, 0, . . . , 0)⊤ where 0.6 and 0 are repeated 10 and 40

times, respectively. The error variance-covariance matrix in the mediator model, Σm, has a block
exchangeable correlation structure with correlation parameters within blocks set to 0.3 and the
correlation parameters across blocks set to 0.2. The error variance parameters in Σm are deter-
mined by pre-specified values of R2

A|C , where R2
A|C = (αa)

2
1/{Σm,jj + (αa)

2
1} and Σm,jj is the

j-th entry along the diagonal of Σm. We consider two options: R2
A|C = 0.05 and R2

A|C = 0.2.
For the regression coefficient parameters in the outcome model, βc = (0.1, . . . , 0.1)⊤, βm =

(0.1, . . . , 0.1, 0, . . . , 0, 0.1, . . . , 0.1, 0, . . . , 0)⊤, where the 0.1’s are repeated 5 times and the 0’s are
repeated 5 and 35 times, respectively, and βa = θIa − α⊤

a βm. Here, θIa = 1. The error variance in
the outcome model, σ2

e , is determined based on R2
M |A,C . In this case, we consider three options:

R2
M |A,C = 0.2, R2

M |A,C = 0.5, and R2
M |A,C = 0.8. The purpose of varying R2

A|C and R2
M |A,C

is because our asymptotic variance results from Section 3.3 suggest that these quantities govern
the asymptotic relative efficiency gains for NDE and NIE estimation. To generate external datasets
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from the external TE model, we use the same parameter values as the internal TE model but with
different sample sizes of nE = 10n, nE = 100n, and nE = 1000n. The simulated external TE
estimate is then obtained by calculating the MLE on the simulated external data, θ̂Ea and V̂ar(θ̂Ea ).

For the θIa ̸= θEa simulation scenarios, we consider the same simulation parameters as the
congenial external model simulation settings, with one exception; we either set θEa = 2 or randomly
generate an external TE parameter such that θEa ∼ N(1, 0.1). The former scenario considers a
case where the external population is notably different from the internal population, potentially
due to transportability violations. The latter scenario considers the average performance across
a distribution of possible population-level external TE realizations, including both congenial and
incongenial settings with the internal TE. The goal of these simulations is to determine which
methods are robust to discordant external and internal targets for the TE. We refer to the scenarios
with θEa = 2 as incongenial settings and those with θEa ∼ N(1, 0.1) as random settings.

3.4.2 Comparison Methods and Evaluation Metrics

We consider three estimators in all simulation scenarios: the unconstrained estimator, the soft
constraint estimator with ŝ2 =

{
V̂ar(θ̂Ea )

}−1
max{0, (θ̂Ia− θ̂Ea )2−V̂ar(θ̂Ia)}, and the hard constraint

estimator. For brevity, we refer to the soft constraint estimator as the soft constraint empirical-
Bayes (EB) estimator. As a benchmark for the maximal possible efficiency gain attainable from
leveraging external information on the TE, we also consider the hard constraint estimator with the
true θIa enforced as the hard constraint on the TE, although this is not implementable in practice.
We evaluate these estimators based on their relative root mean-squared error (RMSE) for NDE and
NIE estimation compared with their unconstrained equivalents. Note that in the random simulation
settings this is a root integrated mean-squared error (RIMSE) metric, where the mean-squared error
is integrated over the generative distribution of θEa . Moreover, we evaluate the empirical coverage
probabilities corresponding to 95% asymptotic confidence intervals. Since αa ̸= 0 and βm ̸= 0,
we do not use the asymptotic results from Section 3.3.2 to construct confidence intervals. All
RMSE and RIMSE estimates are based on 2000 simulation replicates.

3.4.3 Results

Figures 3.2 and 3.3 show the relative RMSE for NDE and NIE estimation in the congenial sim-
ulation settings where n = 200. In general, the hard and soft constraint estimators demonstrate
smaller RMSE than the unconstrained estimator, with the hard constraint estimator mostly hav-
ing the best performance. More specifically, larger relative efficiency gains for NDE estimation
occur when R2

A|C and R2
M |A,C are small. For example, when nE = 20000, R2

A|C = 0.05, and
R2

M |A,C = 0.2, the RMSE of the unconstrained estimator is 31.4% higher than that of the hard
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constraint estimator and 16.1% higher than that of the soft constraint estimator. However, when
nE = 20000, R2

A|C = 0.2, and R2
M |A,C = 0.8, the RMSE of the unconstrained estimator is

only 3.7% higher than that of the hard constraint estimator and 2.3% higher than that of the soft
constraint estimator. Conversely, larger relative efficiency gains for NIE estimation occur when
R2

A|C is small and R2
M |A,C is large. As an example, when nE = 20000, R2

A|C = 0.05, and
R2

M |A,C = 0.8, the RMSE of the unconstrained estimator is 69.5% higher than that of the hard
constraint estimator and 35.2% higher than that of the soft constraint estimator. However, when
nE = 20000, R2

A|C = 0.2, and R2
M |A,C = 0.2, the RMSE of the unconstrained estimator is only

0.3% lower than that of the hard constraint estimator and 0.4% higher than that of the soft con-
straint estimator. Therefore, these findings empirically corroborate the conclusions of Theorems
3.3.1, 3.3.2, and 3.3.4. Additionally, Figures 3.2 and 3.3 show that as nE increases for a fixed value
of n, the hard constraint estimator approaches the upper bound of the achievable relative RMSE
as measured by the dashed horizontal line at hard constraint (oracle). For the n = 2000 congenial
simulations, trends for the relative RMSE are the same as the trends for the n = 200 congenial
simulation scenarios (see Supplementary Figures B.1 and B.2).
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Average NDE Estimation, Congenial Simulation Settings (n = 200)

Figure 3.2: Relative root mean-squared error (RMSE) corresponding to Natural Direct Effect
(NDE) estimation for the congenial simulation scenarios (n = 200). The red, horizontal dashed
line indicates the upper bound on the possible gain in estimation efficiency, as determined by the
hard constraint estimator with the oracle constraint.
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Average NIE Estimation, Congenial Simulation Settings (n = 200)

Figure 3.3: Relative root mean-squared error (RMSE) corresponding to Natural Indirect Effect
(NIE) estimation for the congenial simulation scenarios (n = 200). The red, horizontal dashed line
indicates the upper bound on the possible gain in estimation efficiency, as determined by the hard
constraint estimator with the oracle constraint.
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Supplementary Figures B.3 and B.4 show the empirical coverage probabilities of the 95%
asymptotic confidence intervals in the n = 2000 congenial simulation settings. For the NDE,
all methods have approximately 95% empirical coverage probabilities across all simulation set-
tings. For the NIE, all methods achieve nominal coverage rates when R2

M |A,C is small, although
the hard and soft constraint methods tend to be slightly anti-conservative when R2

M |A,C is large
and R2

A|C is small. Supplementary Figures B.5 and B.6 show the empirical coverage probabilities
of the 95% asymptotic confidence intervals in the n = 200 congenial simulation settings. For
the NDE, the asymptotic normality based confidence intervals for the unconstrained and hard con-
straint estimators exhibit some degree of undercoverage, suggesting that a larger internal sample
size is needed for the asymptotic confidence intervals derived from Theorems 3.3.1 and 3.3.2 to
achieve nominal coverage rates. Conversely, the parametric bootstrap-based confidence intervals
for NDE inference in the soft constraint method result in nominal coverage rates. For the NIE, all
methods generally exhibit slight undercoverage in all settings, except for the unconstrained method
when R2

A|C = 0.05.
Figures 3.4 and 3.5 show the relative RMSE for NDE and NIE estimation in the n = 200 in-

congenial simulation settings. The unconstrained estimator has a 34.8% - 62.4% lower RMSE for
NDE estimation and a 53.6% - 92.7% lower RMSE for NIE estimation compared to the hard con-
straint estimator. For example, when nE = 20000, R2

A|C = 0.2, and R2
M |A,C = 0.5, the RMSE of

the unconstrained estimator is 60.5% lower and 86.2% lower than that of the hard constraint esti-
mator for NDE and NIE estimation, respectively. However, the soft constraint estimator has nearly
identical RMSE to the unconstrained estimator, indicating no loss in estimation efficiency; when
nE = 20000, R2

A|C = 0.2, and R2
M |A,C = 0.5, the RMSE of the unconstrained estimator is 0.2%

lower and 0.3% lower than that of the soft constraint for NDE and NIE estimation, respectively.
Hence, the soft constraint (EB) estimator recovers the performance of the unconstrained estimator
when the external information is incongenial. Moreover, for the random simulation settings, the
conclusions are similar to the incongenial simulations settings, although the trends are less extreme
because θEa ∼ N(1, 0.1) is almost always closer to θIa = 1 than θEa = 2 (see Supplementary Figures
B.7 and B.8). With respect to coverage, both the soft constraint (EB) and unconstrained methods
achieve the nominal coverage rate when n = 2000 (see Supplementary Figures B.9, B.10, B.11,
and B.12). This suggests that coverage for the soft constraint (EB) confidence intervals is also
robust to incongenial external information.
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Figure 3.4: Relative root mean-squared error (RMSE) corresponding to Natural Direct Effect
(NDE) estimation for the incongenial simulation scenarios (n = 200). The red, horizontal dashed
line indicates the upper bound on the possible gain in estimation efficiency, as determined by the
hard constraint estimator with the oracle constraint.
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Figure 3.5: Relative root mean-squared error (RMSE) corresponding to Natural Indirect Effect
(NIE) estimation for the incongenial simulation scenarios (n = 200). The red, horizontal dashed
line indicates the upper bound on the possible gain in estimation efficiency, as determined by the
hard constraint estimator with the oracle constraint.
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3.5 Data Example

PROTECT is a prospective birth cohort study in Puerto Rico that aims to better understand how
environmental chemical exposures adversely impact birth outcomes. Women are followed-up at
three visits throughout pregnancy, with visit 1 taking place at a median of 18 weeks, visit 2 at a
median of 22 weeks, and visit 3 at a median of 26 weeks. In the proposed analysis, gestational
age at delivery is the outcome of interest and urinary phthalate metabolites at visits 1 and 2 are the
exposure of interest. Phthalates are used to make plastics more durable and flexible and exposure
in humans usually occurs through ingestion of contaminated food and water, the use of personal
care products, and physical contact with household items such as polyvinyl flooring and shower
curtains (Ferguson et al., 2014; Boss et al., 2018). Numerous studies in the United States have
shown that higher exposure to phthalates is significantly associated with shorter gestational age at
delivery (Welch et al., 2022).

Though current research is sparse, there is evidence of altered Cytochrome p450 metabolites
among women that had spontaneous preterm deliveries compared to those who had full-term de-
liveries (Aung et al., 2019; Borkowski et al., 2020). There is also evidence that cytochrome p450
partially mediates the effect of a phthalate risk score on gestational age at delivery (Aung et al.,
2020). In PROTECT, 18 Cytochrome p450 metabolites are measured at the third visit. Therefore,
the proposed analysis investigates a mediation hypothesis, where the effect of log-transformed,
specific-gravity adjusted phthalate metabolites at the first and second visits on gestational age
at delivery is mediated by log-transformed Cytochrome p450 metabolites at the third visit, ad-
justed for maternal age, education, and pre-pregnancy body mass index. The phthalate metabolites
of interest in this analysis are Monobutyl phthalate (MBP), Monobenzyl phthalate (MBzP), and
Monoisobutyl phthalate (MiBP), which are selected based on their significant TEs as reported in
eTable 13 in Welch et al. (2022). The external summary-level information on the TE is obtained
by re-generating the eTable 13 models from Welch et al. (2022) excluding the PROTECT study.
Depending on the visit number and phthalate metabolite, the external sample size ranges between
4890 and 4944 and the internal sample size ranges between 445 and 456 (see Supplementary Table
B.1 for descriptive statistics).

Figure 3.6 presents the results of the mediation analyses using the unconstrained, soft constraint
(EB), and hard constraint methods. MBzP is the only phthalate metabolite for which at least one
method identifies a significant NIE. Interestingly, both the unconstrained and soft constraint meth-
ods decompose the MBzP TE in such a way that the estimated TE, NDE, and NIE are all negative,
implying that Cytochrome p450 metabolites may partially explain the mechanism by which MBzP
exposure shortens gestational age at delivery. For example, according to the unconstrained and soft
constraint (EB) methods, the Cytochrome p450 metabolites are estimated to mediate 48.2% and
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58.8% of the relationship between MBzP and gestational age at delivery at visit 2, respectively.
The hard constraint interval lengths for the TE, NDE, and NIE are uniformly narrower than the
soft constraint (EB) interval lengths, which in turn are uniformly narrower than the unconstrained
interval lengths. For example, the unconstrained method for MiBP at visit 2 has interval lengths
of 0.479 for the TE, 0.465 for the NDE, and 0.166 for the NIE, the soft constraint (EB) method
yields interval lengths of 0.352 for the TE, 0.382 for the NDE, and 0.161 for the NIE, and the hard
constraint method yields interval lengths of 0 for the TE, 0.159 for the NDE, and 0.159 for NIE.
Larger reductions in the interval lengths are observed for the NDE compared to the NIE because
R̂2

M |A,C ranges between 0.08 and 0.10, as estimated by the unconstrained method. Also note that
the hard constraint method has a TE interval length of 0 because the hard constraint model guar-
antees T̂E

H
= θ̂Ea . Our results provide corroborating evidence to the findings of the LIFECODES

study, which also identified a significant NIE associated with Cytochrome p450 metabolites (Aung
et al., 2020).
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Figure 3.6: Results for the PROTECT mediation analysis, with the unconstrained, soft constraint,
and hard constraint methods. Recall that MBP, MBzP, and MiBP are individual phthalate metbo-
lites and V1 and V2 indicate that the results correspond to visit one and visit two, respectively.
External sample size for MBP is 4944 and the external sample sizes for MBzP and MiBP are 4890.
The internal sample sizes slightly differ for each phthalate metabolite and visit pair, however they
all range between 445 and 456. All models are adjusted for maternal age, education, and maternal
pre-pregnancy body mass index.

3.6 Discussion

In this chapter, we show that external summary-level information on the TE can be used to im-
prove NDE and NIE estimation in an internal mediation analysis (see Supplementary Table B.2
for a summary of the different methods presented in this chapter). When the signal-to-noise ratio
in the mediator model is low, large R2

M |A,C results in substantially more efficient NIE estima-
tion and small R2

M |A,C results in substantially more efficient NDE estimation. Smaller values of
R2

M |A,C and the signal-to-noise ratio are more common in practice, so we generally expect see
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large improvements for NDE estimation. Furthermore, when the TEs in the internal and external
populations differ, we can then employ EB estimation strategies to robustify shrinkage towards the
external TE estimate. Implementations of the unconstrained, hard constraint, and soft constraint
versions of MESSI are available in the messi R package on the Comprehensive R Archive Network
(CRAN).

When deciding whether or not to borrow external summary-level information on the TE, there
are several considerations that practitioners must weigh:

• Internal sample size relative to both the number of mediators and the external sample size. If
the internal sample size is small, say n < 200, and the number of mediators is large relative
to the internal sample size, say n/pm < 5, then prioritizing variance reduction is impor-
tant and leveraging external summary-level information on the TE may be highly beneficial.
However, when the internal sample size is large, say n > 1000, and the number of media-
tors is small relative to the internal sample size, say n/pm > 25, then introducing external
information into an internal mediation model at best results in incremental efficiency gains
and at worst introduces substantial bias into the estimation procedure. If n < 1000, then a
general rule of thumb is to consider using external summary-level information if 5n < nE

and n/pm < 50. If n > 1000, then a general rule of thumb is to consider using external
summary-level information if 10n < nE and n/pm < 20.

• The level of congeniality displayed between the internal and external data sources. If (θ̂Ia −
θ̂Ea )

2 ≤ V̂ar(θ̂Ia), then the soft constraint estimator with EB determined s2 corresponds to
the hard constraint estimator, indicating a high level of congeniality. Therefore, when (θ̂Ia −
θ̂Ea )

2 ≤ V̂ar(θ̂Ia) we generally recommend using external summary-level information on the
TE. If θ̂Ia and θ̂Ea appear to be quite different, then a practitioner can test θIa = θEa with a
Wald test, and use the result to guide their decision on whether to proceed with external
summary-level information in the internal mediation model.

• The overall goal of the mediation analysis and how that relates to R2
M |A,C . If the goal

of the analysis is to assess whether or not there is a non-zero NIE, then leveraging external
summary-level information on the TE only improves NIE estimation in the high congeniality
setting when R2

M |A,C is large. Therefore, if improving the estimation efficiency of the NDE
and TE in a high congeniality setting is not an important objective, then a low value of
R2

M |A,C , say R2
M |A,C < 0.4, minimally benefits NIE estimation, defeating the purpose of

leveraging external summary-level information on the total effect. However, if improving
TE and NDE estimation is also an important objective of leveraging external information in
an internal mediation analysis, then it is advantageous to leverage external summary-level
information on the TE in a highly congenial setting, regardless of R2

M |A,C .
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One practical challenge that arises in applied settings is leveraging external summary-level
information on the TE from multiple external cohorts, when the TE estimates have not been
meta-analyzed and perhaps should not be pooled together. One approach to modify the soft con-
straint estimator is to alter the specification of the random effects distribution, using ideas from
Bayesian dynamic borrowing (Viele et al., 2014; Kaplan et al., 2023). Suppose that we have
e external summary-level estimates θ̂E(1)

a , . . . , θ̂
E(e)
a and their corresponding variance estimates

V̂ar
(
θ̂
E(1)
a

)
, . . . , V̂ar

(
θ̂
E(e)
a

)
. Then we can model the external estimates as follows

θ̂E(1)
a ∼ N

(
θE(1)
a , V̂ar

(
θ̂E(1)
a

))
, . . . , θ̂E(e)

a ∼ N
(
θE(e)
a , V̂ar

(
θ̂E(e)
a

))
with a random effects distribution for the internal total effect parameter and external total effect
parameters, θ̃Ia, θ

E(1)
a , . . . , θ

E(e)
a ∼ N(θEa , V

E
a ), where θEa ∈ (−∞,∞) and V E

a > 0. The common
θEa and V E

a allows for information sharing between the internal and external total effect parameters,
while still allowing for heterogeneity in the external total effect parameters.

One major limitation is the generalizability of our results when mediators and outcomes are
non-continuous or when the internal mediation model is misspecified. When the outcome or me-
diators are non-continuous or there is misspecification of the mean structure of the mediator and
outcome models, such as when exposure-mediator interaction is present, then the expression for
the TE becomes a function of the confounders and the exposure level, making leveraging external
estimates less straightforward. More work is needed to build a general framework for incorporating
external information on the TE into a broader class of mediation models.

One additional technical challenge that we did not fully address in this chapter is how to handle
the αa = βm = 0 case when constructing asymptotic confidence intervals for the NDE and NIE.
While we recommended using a Wald test to test whether the null hypothesis αa = βm = 0 holds
as a workaround, there are likely more principled ways to construct the appropriate asymptotic ref-
erence distribution for confidence interval construction based on mixture distributions. The major
challenge is that the relative weight to assign the asymptotic reference distributions from Theorems
3.3.1, 3.3.2, and 3.3.4 compared to the reference distribution from Theorem 3.3.3 is unknown, and
therefore needs to be estimated (Liu et al., 2022). There is existing work in the mediation analysis
literature which discusses this issue in the context of large-scale causal mediation effect identi-
fication, namely through the construction of the Divide-Aggregate Composite-Null (DACT) test,
however this solves the problem by running many single-mediator tests to estimate the probability
of each of the three cases in the composite null rather than trying to estimate the probability that
αa = βm = 0 (Liu et al., 2022). In our simulations we assumed that αa ̸= 0 or βm ̸= 0 and
directly used the asymptotic normality results from Theorems 3.3.1, 3.3.2, and 3.3.4 as a way to
check our theoretical results. In the data example, we used the Wald test to test αa = βm = 0

versus αa ̸= 0 or βm ̸= 0 for all methods, all of which rejected the null hypothesis at the 0.05
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level, and therefore directly used Theorems 3.3.1, 3.3.2, and 3.3.4 to construct confidence inter-
vals. Since the main aim of the chapter is to comment on the relative efficiency gains attributable to
leveraging the external summary-level information on the TE, we leave this topic as future work.
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CHAPTER 4

Mediation Mixture Map

4.1 Introduction

Understanding the mechanisms by which exposure mixtures, defined as simultaneous exposure
to multiple chemicals, impact human health is a priority for the field of environmental health
(Braun et al., 2016; Bind, 2019). Furthermore, due to advances in highthroughput assaying tech-
nologies, environmental health studies are increasingly able to collect high-dimensional exposure
data in conjunction with endogenous biomarker data, greatly facilitating discovery-based, high-
dimensional mediation analyses (Aung et al., 2020). When characterizing mediation effects in
environmental health studies, it is often desirable to estimate mediation effects attributable to both
individual exposures and chemical mixtures, as an amplified total effect (TE) or proportion me-
diated for a chemical mixture relative to its constituent components is relevant for establishing
biological mechanisms. From a regulatory perspective, one can also conceptualize and imple-
ment interventions that are either targeted towards individual exposures or chemical mixtures. For
example, the Environmental Protection Agency provides regulatory standards for acceptable lev-
els of ambient exposure to ground-level ozone, particulate matter, carbon monoxide, lead, sulfur
dioxide, and nitrogen dioxide (https://www.epa.gov/naaqs), and also runs the Superfund
program to remediate contaminated land due to hazardous waste dumps from manufacturing fa-
cilities, processing plants, landfills, and mining sites (https://www.epa.gov/superfund).
The former can be thought of as interventions on individual exposures and the latter can be thought
of as interventions on exposure mixtures through regulating sources of co-emission. Therefore, it is
desirable for a modern environmental health mediation framework to simultaneously discuss medi-
ation effects corresponding to single exposures and mediation effects corresponding to underlying
exposure mixtures.

As with Chapter 3, the motivating example for Chapter 4 comes from PROTECT, where multi-
exposure data on metals, phthalates, phenols, parabens, and polycyclic aromatic hydrocarbons
(PAHs) has been collected on a subset of participants. Examples of exposure sources for phthalates,

63

https://www.epa.gov/naaqs
https://www.epa.gov/superfund


phenols, and parabens include contact with items such as plastic food and drink packaging, vinyl
flooring, and personal care products and examples of exposure sources for PAHs are consumption
of grilled foods, cigarette smoke, and vehicle exhaust. Metals exposures occur from many different
exposure sources, notably through the consumption of contaminated food and drinks and exposure
to industrial manufacturing processes. The PROTECT investigators are interested in understanding
the biological mechanisms that explain how exposure to mixtures of chemicals lead to adverse birth
outcomes, such as preterm deliveries and small head circumference at delivery. The endogenous
pathways under study are the lipoxygenase and cytochrome p450 pathways, both of which have
shown suggestive or significant indirect effects in the LIFECODES prospective birth cohort for the
relationship between a phthalate risk score and final gestational age (Aung et al., 2020).

One major challenge with developing a mediation framework for chemical mixtures is that
information regarding exposure co-occurrence is unobserved. Instead, collecting and assaying
biological samples allows us to observe individual chemical concentrations that may comprise rel-
evant chemical mixtures that are latent. There is an emerging body of literature on causal inference
with latent variables, with much attention paid to topics such as causal effect identification with
unmeasured confounding (Glymour and Spirtes, 1988; Louizos et al., 2017; Wang and Blei, 2019;
Mathur and VanderWeele, 2022), causal representation learning (Silva et al., 2006; Frot et al.,
2019; Schölkopf et al., 2021; Ahuja et al., 2021), and causal effect identification in the presence
of measurement error or causally inert proxy variables (Bollen, 1989; Kuroki and Pearl, 2014;
Louizos et al., 2017; Miao et al., 2018). However, mediation of exposure mixture effects, does not
fall neatly within these frameworks. In our conceptual formulation the chemical exposures that
comprise the chemical mixtures are not considered causally inactive proxies of the latent chemical
mixtures. Rather, the latent chemical mixtures can be interpreted as a low-dimensional encoding of
the individual chemical exposure data. VanderWeele and Vansteelandt (2022) distinguish between
causal models where the byproducts of a latent process are either causally active or inactive, and
develop a statistical test to distinguish between the two cases. That being said, both causal models
discussed in VanderWeele and Vansteelandt (2022) establish temporal ordering from the latent to
the resultant proxies, while, in our case, the observed chemical exposures and the latent chemi-
cal mixtures occur simultaneously. That is, the observed individual chemical data and the latent
chemical mixture data quantify the same exposure phenomenon, and can intuitively be thought of
as different ways of summarizing the same exposure information. In this chapter, we conceptualize
exposure relatedness through the statistical correlation structure of the observed exposure data, in-
tuiting that highly correlated exposures are more likely to be linked in some way than uncorrelated
exposures.

Some popular approaches for discovery-based high-dimensional mediation analyses with mul-
tiple exposures simply reduce the problem to that of a single exposure variable either by fitting
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many mediation models one exposure-mediator pair at a time (Liu et al., 2022; Du et al., 2022), fit-
ting separate high-dimensional mediation models for each exposure (Clark-Boucher et al., 2023),
or fitting a high-dimensional mediation model with a summary measure, such as an environmen-
tal risk score (ERS) (Park et al., 2014) as the exposure variable (Aung et al., 2020). There is
some recent methodological work on jointly modeling multiple exposures within the context of
high-dimensional linear mediation models (Wang et al., 2019; Zhou et al., 2020; Zhao et al., 2022;
Zhang, 2022). Zhou et al. (2020) proposed a debiased LASSO approach called HILMA that specif-
ically focuses on the problem of global indirect effect estimation and inference when the number
of mediators exceeds the sample size. Other work in the high-dimensional mediation analysis
literature focuses on frequentist and Bayesian regularization techniques including a difference-
of-coefficient Laplacian penalty (Wang et al., 2019), scaled adaptive LASSO (Zhang, 2022), and
Pathway LASSO (Zhao et al., 2022). However, all of these methods are not targeted towards
outcome and mediator adaptive learning of exposure mixtures. Devick et al. (2022) proposed
a BKMR-based causal mediation framework for a data adaptively estimated non-parametric func-
tion of exposures and effect modifiers, however this framework estimates the transformed exposure
mixture exclusively through a mediation model, rather than explicitly incorporating information on
co-exposure through the exposure correlation structure.

In this chapter, we propose a new method called the mediation mixture map (MedMix) for
discovery-based high dimensional mediation analyses in environmental health. MedMix works by
combining a linear mediation model with a latent factor model, with the specific goal of estimating
global mediation effects corresponding to data adaptively estimated exposure mixtures. The joint
model derives outcome-guided latent mixtures that depend not just on exposure correlation but on
outcome-exposure relationship. Consequently, the mediation mixture map allows us to estimate
mediation effects with respect to changes in the individual exposures and changes in the latent vari-
ables that summarize common sources of variation in the exposure space. Ideally, the estimated
latent constructs correspond to important exogenous chemical mixtures, however that interpreta-
tion is not guaranteed. We show that MedMix more accurately identifies the correct number of
latent factors and has more appropriate uncertainty quantification for estimating mediation effects
compared with a naive two-step approach that first fits a latent factor model and then plugs the
estimated latent factors into a mediation model. In addition, motivated by the pathway LASSO
estimator, we construct a Bayesian shrinkage framework that can directly assign a global-local
shrinkage prior to the product of regression coefficients. However, similar to Wang et al. (2019),
we conclude that direct shrinkage on the product leads to overly aggressive shrinkage of the in-
direct effect, and therefore recommend independently regularizing regression coefficients in the
outcome and mediator models. For the PROTECT data example, we do not find evidence of a
significant indirect effect corresponding to the cytochrome p450 and lipoxygenase pathways, how-
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ever we do observe larger total effects for mixtures of phthalate metabolites compared to individual
phthalate metabolites.

The structure of the chapter is as follows. In Section 4.2 we discuss the mediation mixture
map model, the product shrinkage prior specification, and computation. In Section 4.3 we eval-
uate the performance of the mediation mixture map estimator compared with the naive two-step
estimator in terms of estimation and inference for mediation model parameters. In Section 4.4 we
discuss the PROTECT multi-exposure mediation analysis and in Section 4.5 we discuss high-level
conclusions, avenues for future work, and limitations of the mediation mixture map.

4.2 Methods

In this chapter, the observed data includes individual chemical exposure concentrations (A),
endogenous biological processes (M ), the health outcome of interest (Y ), confounders of the
outcome-exposure association (C1), and confounders of the outcome-mediator association condi-
tional on exposure (C2). The chemical exposures, characterized by A are assumed to cause the
health outcome of interest (Y ), partially through endogenous biological processes (M ). L rep-
resents exposure to chemical mixtures, and is considered a low-dimensional representation of the
information in A. However, in practice, this interpretation of L may be obscured by other com-
mon sources of variation such as spatiotemporal variation and endogenous biological processes
that breakdown parent compounds. The objective of this chapter is to develop a high-dimensional
mediation analysis framework that characterizes mediation effects attributable to changes with re-
spect to both A and L. The directed acyclic graph (DAG) considered for this chapter is depicted
in Figure 4.1b, where L represents exposure to chemical mixtures and A represents the specific
concentrations of individual chemicals that comprise L. The box around L and A in Figure 4.1 in-
dicates that both A and L quantify the same exposure phenomenon, and can intuitively be thought
of as different ways of summarizing the same exposure information. There is no assumption re-
garding temporal ordering or causality that the latent source leads to the exposure vector.

4.2.1 Notation and Model Specification

For Chapter 4, Yi denotes a continuous health outcome for observation i, M⊤
i· denotes a p × 1

vector of mediators, and C⊤
i· denotes a s × 1 vector of s − 1 confounders, plus a one for the

intercept term (i = 1, . . . , n). Suppose the p mediators can be partitioned into G groups and the
gth group has pg mediators (g = 1, . . . , G) such that

∑G
g=1 pg = p. Let M⊤

i· = (M⊤
i1, . . . ,M

⊤
iG)

⊤,
where M⊤

ig is a pg × 1 vector of mediators in the g-th group (g = 1, . . . , G). For observation i,
the individual chemical exposure data is denoted by A⊤

i· , a q × 1 vector, and the latent exposure
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YM = {M 1, . . . ,M p}AL

C1

C2

(a) Statistical Latent Factor Model

YM = {M 1, . . . ,M p}L = ϕ(A)

C1

C2

(b) Mediation Mixture Map

Figure 4.1: Directed Acyclic Graphs comparing the Statistical Latent Factor Model discussed
in VanderWeele and Vansteelandt (2022) and the Mediation Mixture Map. Here, C1 and C2 are
confounders, L denotes the latent chemical mixtures, A denotes the individual chemical exposures,
M denotes a set of p mediators, and Y denotes the outcome. The function ϕ(·) represents the fact
that L can be represented as stochastic transformation of A.

mixture data is denoted by L⊤
i· , a r× 1 vector such that r ≪ q. That is, the mediation mixture map

assumes that there is a latent, low-dimensional representation of the observed chemical exposures.
The exposures in A⊤

i· are standardized so that they have mean zero and variance one.
In this chapter, we assume that the true data generation model is:

[
Yi |M i·,Li·,Ci·

]
∼ N

(
M i·βm +Li·βa +Ci·βc, σ

2
e

)[
M⊤

i· | L⊤
i· ,C

⊤
i·
]
∼ N

(
αaL

⊤
i· +αcC

⊤
i· ,Σm

)[
A⊤

i· | L⊤
i·
]
∼ N

(
ΨL⊤

i· ,ΣL

)
L⊤

i· ∼ N(0, Ir) (4.2.1)

where αa is a p× r matrix, αc is a p× s matrix, βm is a p× 1 vector, βa is a r× 1 vector, βc is a
s× 1 vector, σ2

e is a scalar, Σm is a p× p symmetric, positive-definite matrix, Ψ is a q× r loadings
matrix, ΣL = diag(σ2

L1, . . . , σ
2
Lq) is a q × q diagonal matrix, and Ir is an r × r identity matrix.

For the purposes of modeling Σm, we assume an unstructured correlation structure between me-
diators that are in the same group and zero correlation between mediators in different groups. The
regression coefficients αa and βa refer to the effect of the latent sources of exposure variation on
the mediators conditional on confounders and the effect of the latent sources of exposure varia-
tion on the outcome conditional on the mediators and confounders, respectively. Additionally, βm

indicates the effect of the mediators on the outcome conditional on latent sources of exposure vari-
ation and confounders. The entries in the loadings matrix Ψ map the common sources of exposure
variation to the observed exposures. For example, large values of Ψk′·Ψ

⊤
k′· relative to σ2

Lk′ , where
Ψk′· is the k′-th row of Ψ, indicate that the r latent sources of exposure variation explain a large
proportion of variation in the k′-th exposure. This fact is seen from the expression for the marginal
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variance of Ai·, Var(Ai·) = ΨΨ⊤ +ΣL.
Model (4.2.1) combines the Baron and Kenny mediation model (Baron and Kenny, 1986)

with respect to latent sources of exposure variation, defined by the conditional distributions
[Yi | M i·,Li·,Ci·

]
and

[
M⊤

i· | L⊤
i· ,C

⊤
i·
]
, and a latent factor model, defined by the joint distri-

bution
[
A⊤

i· ,L
⊤
i·
]
. This is distinctly different than the naive two-step approach which sequentially

fits a latent factor model to the exposure data and then fits a mediation or total effect model with
the estimated latent factors as the exposure (Gibson et al., 2019). Combining the mediation and
latent factor components together allows the mediation model to inform the estimation of pa-
rameters and latent factors in the latent factor model and accounts for uncertainty in estimation
of the latent factors. Model (4.2.1) makes two implicit assumptions about the joint distribution
[Yi,M i·,Ai·,Li· | Ci·], namely that {Yi,M i·} ⊥⊥ Ai· | {Li·,Ci·} and {Ai·,Li·} ⊥⊥ Ci·. The
first assumption essentially states that the latent low-dimensional representation Li· is sufficient
for characterizing the joint conditional distribution [Yi,M i· | Ai·,Ci·] and the second assump-
tions states that confounders in the mediation model do not influence the characterization of the
low-dimensional latent exposure space. We will refer to Model (4.2.1) as the mediation mixture
map. Estimates of mediation effects with respect to changes in the observed exposure from the
mediation mixture map will have a causal interpretation if the four unconfoundness assumptions
listed in (VanderWeele, 2015) or (Song et al., 2020) hold. Estimates of mediation effects with
respect to changes in the latent exposures from the mediation mixture map do not have a causal
interpretation.

The specification of
[
A⊤

i· | L⊤
i·
]

in Model (4.2.1) explains how the latent exposure space is
mapped to the observed exposure space. However, for the purposes of interpreting mediation
effects with respect to latent sources of exposure variation, it is helpful to understand how infor-
mation on the observed exposure space maps back to the latent exposure space. Under model
specification (4.2.1),

[
L⊤

i· | A⊤
i·
]
∼ N

((
Ir +Ψ⊤Σ−1

L Ψ

)−1

Ψ⊤Σ−1
L A⊤

i· ,

(
Ir +Ψ⊤Σ−1

L Ψ

)−1
)
.

Therefore, the stochastic map ϕ(·) which maps between realizations of the observed exposure
values and unobserved realizations in the latent exposure space is

ϕ−1(Li·) = ΨL⊤
i· + ϵL, ϵL ∼ N(0,ΣL)

ϕ(Ai·) = PΨ,ΣL
A⊤

i· + ϵL|A, ϵL|A ∼ N(0,ΣL|A)

where PΨ,ΣL
=
(
Ir +Ψ⊤Σ−1

L Ψ
)−1

Ψ⊤Σ−1
L is a projection matrix and ΣL|A =

(
Ir +
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Ψ⊤Σ−1
L Ψ

)−1

. The mean specification of the implied mediation model with respect to the ob-
served exposures is then

E[Yi |M i·,Ai·,Ci·] = M i·βm +Ai·P
⊤
Ψ,ΣL

βa +Ci·βc

E
[
M⊤

i· | A⊤
i· ,C

⊤
i·
]
= αaPΨ,ΣL

A⊤
i· +αcC

⊤
i·

where P⊤
Ψ,ΣL

βa is the effect of the observed exposures on the outcome given mediators and con-
founders and αaPΨ,ΣL

is the effect of the observed exposures on the mediators given confounders.
Note that the mediation mixture map model specification implies a linear mediation model with
respect to the individual chemical exposures.

The parameters of interest in the mediation mixture map are the indirect effect (IE), the direct
effect (DE), and the total effect (TE) corresponding to changes in the individual exposure levels

DEA(a,a∗) = (a− a∗)⊤P⊤
Ψ,ΣL

βa

IEA(a,a∗) = (a− a∗)⊤P⊤
Ψ,ΣL

α⊤
a βm

TEA(a,a∗) = (a− a∗)⊤P⊤
Ψ,ΣL

(
βa +α⊤

a βm

)
and the mediation effects corresponding to changes in the latent sources of variation in the exposure
space

DEL(l, l∗) = (l− l∗)⊤βa

IEL(l, l∗) = (l− l∗)⊤α⊤
a βm

TEL(l, l∗) = (l− l∗)⊤
(
βa +α⊤

a βm

)
,

In these expressions, a and l represent the comparative exposure levels and a∗ and l∗ represent the
reference exposure levels. Under several no unmeasured confounding assumptions, the stable unit
treatment value assumption, the mediation effects have causal interpretations (VanderWeele, 2015;
Song et al., 2020; Zhang, 2022).

Expressions for the mediation effects clarify several points. The first is that the DE is always
a function of βa regardless of whether the change occurs on the observed exposure scale or the
latent exposure scale. Similarly, the IE is always a function of αa and βm regardless of whether
the change occurs on the observed exposure scale or the latent exposure scale. The primary differ-
ence between expressions on the latent exposure scale versus the observed exposure scale is that
the observed exposure scale applies the projection matrix P⊤

Ψ,ΣL
to a − a∗. From an inferential

perspective, DEA(a,a∗) and DEL(l, l∗), IEA(a,a∗) and IEL(l, l∗), and TEA(a,a∗) and TEL(l, l∗)

are linked together in the sense that, on average, a difference a − a∗ corresponds to a difference
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on the latent scale l − l∗ = PΨ,ΣL
(a − a∗) for any a,a∗ ∈ Rq. Similarly, on average, infer-

ential statements regarding a difference l − l∗ correspond to a difference on the observed scale
a− a∗ = Ψ(l− l∗) for any l, l∗ ∈ Rr. However, when l− l∗ = PΨ,ΣL

(a− a∗), hypothesis tests
that test whether DEL(l, l∗) = 0, IEL(l, l∗) = 0, or TEL(l, l∗) = 0 are not necessarily equivalent
to hypothesis tests that test DEA(a,a∗) = 0, IEA(a,a∗) = 0, or TEA(a,a∗) = 0, respectively.
This is primarily because testing IEA(a,a∗) = 0 involves additional estimation uncertainty with
respect to PΨ,ΣL

. In a fully Bayesian paradigm, inferential conclusions are not necessarily identi-
cal between mediation effects on the observed exposure scale and the latent exposure scale either.
Namely, PΨ,ΣL

is a random quantity within a fully Bayesian modeling framework, and therefore
a − a∗ stochastically corresponds to a range of l − l∗ values rather than one specific value of
l− l∗. Consequently, we recommend using DEA(a,a∗), IEA(a,a∗), and TEA(a,a∗) if inferential
statements with respect to the observed exposure space are of interest and DEL(l, l∗), IEL(l, l∗),
and TEL(l, l∗) if inferential statements with respect to the latent exposure space are of interest.

It important to clarify that, because the mediation model component of the mediation mixture
map can be expressed with respect to L or with respect to A, then is also possible to obtain
estimation and inference with respect to αa, βa, βm, αaPΨ,ΣL

, and P⊤
Ψ,ΣL

βa. Consequently,
associations between exposures on the observed and latent scale, mediators, the outcome, and
functions thereof can all be examined.
Remark. When analyzing the PROTECT data we will also consider a total effect only version of
model (4.2.1)

[
Yi | Li·,Ci·

]
∼ N

(
Li·θa +Ci·θc, σ

2
t

)[
A⊤

i· | L⊤
i·
]
∼ N

(
ΨL⊤

i· ,ΣL

)
L⊤

i· ∼ N(0, Ir) (4.2.2)

where θa is a r × 1 vector and θc is a s × 1 vector. In Model (4.2.2), θa is the effect of the
latent sources of exposure variation on the outcome given confounders. As with Model (4.2.1), the
implied total effect model with respect to observed exposures is E[Yi | Ai·,Ci·] = Ai·P

⊤
Ψ,ΣL

θa+

Ci·θc. Consequently, P⊤
Ψ,ΣL

θa is the effect of the observed exposures on the outcome given
confounders. Model (4.2.2) is called the total effect mixture map. In principle, TEL(l, l∗) and
TEA(a,a∗) are connected to Model (4.2.2) through θa = βa + α⊤

a βm. However, in practice,
the estimated latent factors L̂i· are not necessarily the same for Model (4.2.1) and Model (4.2.2)
because Model (4.2.1) uses information from the mediators to estimate Li·.
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4.2.2 Invariance of Mediation Effects to Rotations

Next, we consider the the issue of identifiabilty of Ψ, which is a known issue in latent factor
modeling (Geweke and Zhou, 1996). More specifically, a latent factor model cannot identify Ψ

up to a rotation because Li· ∼ N(0, Ir) and Li·P ∼ N(0, Ir) for all r × r matricies P that
satisfy PP⊤ = Ir. One popular identifiability condition is to encode structural zeros in the
elements of Ψ, namely Ψk′k = 0 for k′ < k and Ψk′k > 0 for k′ = k where Ψk′k is the entry
of Ψ in the k′-th row and k-th column (Geweke and Zhou, 1996). However, recent applications
of Bayesian latent factor models to environmental exposure data impose identifiability constraints
through algorithmic post-processing of posterior draws rather than a priori specified structural
zeros in Ψ, particularly when parameters of interest are invariant to rotations of Ψ (Ferrari and
Dunson, 2021).

Theorem 4.2.1. Consider a rotational reparameterization of Model (4.2.1)

[
Yi |M i·,L

∗
i·,Ci·

]
∼ N

(
M i·βm +L∗

i·β
∗
a +Ci·βc, σ

2
e

)[
M⊤

i· | L∗⊤
i· ,C

⊤
i·
]
∼ N

(
α∗

aL
∗⊤
i· +αcC

⊤
i· ,Σm

)[
A⊤

i· | L∗⊤
i·
]
∼ N

(
Ψ∗L∗⊤

i· ,ΣL

)
L∗⊤

i· ∼ N(0, Ir),

where Ψ∗ = ΨP , L∗
i· = Li·P , β∗

a = P⊤βa, α∗
a = αaP , and P is an r × r matrix that satisfies

PP⊤ = Ir. Then,

DEA(a,a∗) = (a− a∗)⊤P⊤
Ψ,ΣL

βa

IEA(a,a∗) = (a− a∗)⊤P⊤
Ψ,ΣL

α⊤
a βm

Proof. See Supplementary Material C.1.
Therefore, as with several other Bayesian applications of latent factor models, inference on
DEA(a,a∗), IEA(a,a∗), and TEA(a,a∗) does not require identifiability assumptions on the load-
ings matrix Ψ (Bhattacharya and Dunson, 2011; Ferrari and Dunson, 2021). However, estimation
and inference corresponding to DEL(l, l∗), IEL(l, l∗), TEL(l, l∗), Ψ, and L, necessitates a post-
processing step to resolve rotational ambiguity. By rotational ambiguity, we are referring to the
fact that αa, βa, Ψ, and L are not identified in Model (4.2.1) up to a rotation P . Rather than im-
posing identifiability constraints on Ψ at the modeling stage, we use the two-step post-processing
algorithm proposed in Poworoznek et al. (2021), which obtains the Varimax rotation (Kaiser, 1958)
to maximize the variance of the squared loadings in each factor, applies the Varimax rotation to the
posterior draws of αa, βa, Ψ, and L and then corrects sign and label switching across posterior
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samples by matching the columns and signs of the varimax rotated posterior draws to a reference
varimax rotated posterior draw. The varimax rotation allows for a parsimonious estimate of Ψ,
boosting the interpretability of DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗).

Because DEA(a,a∗), IEA(a,a∗), and TEA(a,a∗) are invariant to rotations of Ψ, then the
causal interpretability of DEA(a,a∗), IEA(a,a∗), and TEA(a,a∗) is guaranteed provided that the
conditions for causal identifiability hold (VanderWeele, 2015; Song et al., 2020; Zhang, 2022) and
model (4.2.1) is correctly specified. However, the causal interpretability of DEL(l, l∗), IEL(l, l∗),
and TEL(l, l∗) is dependent on the implicit identifiability conditions imposed on Ψ through the
Varimax rotation post-processing step (Ahuja et al., 2021). Therefore, one should be cautious
about interpreting DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) causally, even if all conditions for causal
identifiability hold.

4.2.3 Prior Specification

When the endogenous biomechanism under investigation is quantified through a collection of high-
dimensional omics data, regularization is useful strategy to help estimate global mediation effects.
However, when the primary target parameter of interest, namely the IE, involves the product of
regression coefficients from outcome and mediator models, some have argued that directly regu-
larizing the product of regression coefficients is preferred over independent regularization of βm

and αa (Song et al., 2021b; Zhao et al., 2022; Zhao and Luo, 2022). Others have argued that tar-
geted shrinkage of the product is too aggressive and tends to over-regularize the IE (Wang et al.,
2019). To date, methods for targeted shrinkage on the product either involve thresholding the prod-
uct of regression coefficients (Song et al., 2021b) or deploying a lasso-style penalty on the product
of regression coefficients (Zhao et al., 2022; Zhao and Luo, 2022). We propose a new Bayesian
shrinkage prior framework for targeted shrinkage of the product, which allows any shrinkage prior
to be applied to the product of regression coefficients provided that the desired prior can be ex-
pressed as a scale mixture of normals.

Before, discussing the exact prior specification we first introduce some additional notation to
clarify the mediator grouping structure in βm and αa. We use the following notation βm =(
(βm)

⊤
1·, . . . , (βm)

⊤
G·
)⊤ where (βm)g· is a pg × 1 subvector corresponding to the g-th media-

tor group (g = 1, . . . , G). Furthermore, (βm)g· =
(
(βm)g1, . . . , (βm)gpg

)⊤ where (βm)gj is
a scalar corresponding to the j-th mediator in the g-th mediator group (j = 1, . . . , pg). Simi-
larly, for αa, αa = (α1

a, . . . ,α
r
a), where αk

a is a p × 1 vector of associations between the k-
th latent exposure mixture in Li· and p mediators. αk

a can be further broken down such that
αk

a =
(
(αk

a)
⊤
1·, . . . , (α

k
a)

⊤
G·
)⊤, where (αk

a)g· is a pg × 1 subvector associating the k-th latent expo-
sure mixture in Li· with the pg mediators in the g-th group. Here, (αk

a)gj is the scalar association
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between the k-th exposure of L⊤
i· and the j-th mediator in the g-th mediator group.

Consider the following prior specification for βm and αa in model (4.2.1)[
(βm)gj | τ 2β , γ2βg, λ2βgj

]
∼ N

(
0, τ 2βγ

2
βgλ

2
βgj

)
[
(αk

a)gj | (βm)gj, τ
2
αl, γ

2
αg, λ

2
αgj

]
∼ N

(
0, τ 2αkγ

2
αgλ

2
αgj

[
f{(βm)gj}

]2)
In words, this prior specification applies global-local shrinkage on βm and adaptive global-local
shrinkage on αa (Kundu et al., 2021). Under this prior specification, we can show that[

(αk
a)gj

f{(βm)gj}

∣∣∣ τ 2αk, γ2αg, λ2αgj
]
∼ N(0, τ 2αkγ

2
αgλ

2
αgj)

Therefore, if f{(βm)gj} = 1/(βm)gj , then[
(αk

a)gj(βm)gj | τ 2αk, γ2αg, λ2αgj
]
∼ N(0, τ 2αkγ

2
αgλ

2
αgj)

Consequently, we call the following prior the product shrinkage prior[
(βm)gj | τ 2β , γ2βg, λ2βgj

]
∼ N

(
0, τ 2βγ

2
βgλ

2
βgj

)
[
(αk

a)gj | (βm)gj, τ
2
αl, γ

2
αg, λ

2
αgj

]
∼ N

(
0,
τ 2αkγ

2
αgλ

2
αgj

(βm)
2
gj

)
Note that this prior specification also motivates a family of two-step frequentist penalized re-

gression estimators for targeted shrinkage of the product, where one can first fit a penalized regres-
sion model for the outcome and then subsequently fit an adaptively weighted penalized regression
model for the mediators. This two-step frequentist analog has a similar flavor to penalized re-
gression methods such as outcome-adaptive lasso (Shortreed and Ertefaie, 2017), with the key
difference being that the adaptive weights in outcome-adaptive lasso reduce the shrinkage corre-
sponding to large regression coefficients in the outcome model. Conversely, the adaptive weights
in product shrinkage results in stronger shrinkage on (αk

a)gj corresponding to larger |(βm)gj|.
In this chapter, we also consider the independent shrinkage prior which corresponds to

f{(βm)gj} = 1 [
(βm)gj | τ 2β , γ2βg, λ2βgj

]
∼ N

(
0, τ 2βγ

2
βgλ

2
βgj

)
[
(αk

a)gj | τ 2αl, γ2αg, λ2αgj
]
∼ N

(
0, τ 2αkγ

2
αgλ

2
αgj

)
For both the product and independent shrinkage priors we specifically use GIGG shrinkage by

73



specifying the following hyperpriors for the global, group, and local shrinkage parameters

γ2βg ∼ G(aβ, 1), λ
2
βgj ∼ IG(bβ, 1), j = 1, . . . , pg[

τβ | σe
]
∼ C+(0, σe), π(σ

2
e) ∝ σ−2

e

ταk ∼ C+(0, η), η2 ∼ IG(0.001, 0.001), γ2αg ∼ G(aα, 1), λ
2
αgj ∼ IG(bα, 1)

For the remaining model parameters in the mediation model component of model (4.2.1) we
specify noninformative priors for the remaining regression coefficients, π(βa) ∝ 1, π(βc) ∝ 1,
and π(αc) ∝ 1, and a block inverse-Wishart prior for the error variance-covariance matrix in the
mediator model,

Σm =


(Σm)1 0 . . . 0

0
. . . ...

... . . . 0

0 . . . 0 (Σm)G


where (Σm)g ∼ W−1(Ipg , pg). For the latent factor model component of model (4.2.1) we assign
a Jeffery’s prior to the diagonal entries in ΣL and a multiplicative gamma process prior to Ψ

(Bhattacharya and Dunson, 2011):

π(σ2
Lk′) ∝ σ−2

Lk′ , k
′ = 1, . . . , q

Ψk′k | ϕk′k, τk ∼ N
(
0, ϕ−1

k′kτ
−1
k

)
, ϕk′k ∼ G(aϕ/2, aϕ/2), τk =

k∏
m=1

δm

δ1 ∼ G(aδ1 , 1), δm ∼ G(aδm , 1), m ≥ 2

The hyperparameters in the multiplicative gamma process prior are aϕ = 3, aδ1 = 2.1, and
aδm = 3.1, which are the default values for the Bayesian latent factor model in the infinitefac-
tor R package. With these prior specifications, we now have a fully Bayesian specification of the
mediation mixture map.

4.2.4 Computation

In this section, matrix notation is used to derive the posterior sampling algorithm. Y =

(Y1, . . . , Yn)
⊤ is the n × 1 column vector containing the observed outcomes, M ·g =

(M⊤
1g, . . . ,M

⊤
ng)

⊤ is the n × pg matrix of mediators in group g, M = (M ·1, . . . ,M ·G) is the
n × p matrix of continuous mediators, A = (A⊤

1·, . . . ,A
⊤
n·)

⊤ is the n × q matrix of continuous
chemical exposures, L = (L⊤

1·, . . . ,L
⊤
n·)

⊤ is the unobserved n × r matrix of continuous latent
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common sources of exposure variation, and C = (C⊤
1·, . . . ,C

⊤
n·)

⊤ represents the n × s matrix of
confounders and intercept term.

To simulate the posterior distribution for a fixed number of latent factors, we use a Gibbs sam-
pling algorithm. A list of all full conditional distributions not discussed in this section can be found
in Supplementary Material C.2. One subtlety with the Gibbs sampling algorithm for the product
shrinkage prior is that the full conditional update of βm does not have a closed-form and therefore
requires a Metropolis-Hastings step within the Gibbs sampling algorithm. To circumvent adding
a Metropolis-Hastings step we simultaneously sample αa and βm, by drawing from the joint full
conditional distribution π(βm,αa | ·). The joint full conditional can be decomposed such that
π(βm,αa | ·) = π(βm | ·)π(αa | βm, ·), where π(βm | ·) and π(αa | βm, ·) are both normal
distributions. That is, unconditional on αa,

[βm | ·] ∼ N

([
1

σ2
e

M⊤M+
1

τ 2β
Γ−1

β Λ−1
β

]−1
1

σ2
e

M⊤(Y −Lβa−Cβc),

[
1

σ2
e

M⊤M+
1

τ 2β
Γ−1

β Λ−1
β

]−1
)

Γβ = diag(γ2β1, . . . , γ
2
β1, γ

2
β2, . . . , γ

2
β2, . . . , γ

2
βG, . . . , γ

2
βG) is a p × p matrix where γ2βg is repeated

along the diagonal pg times and Λβ = diag(λ2β11, . . . , λ
2
βGpG

) is a p×p matrix. Conditional on βm,

[vec(α⊤
a ) | βm, ·] ∼ N

([(
Σ−1

m ⊗L⊤L
)
+
(
ΓαΛαF β ⊗ T α

)−1
]−1(

Σ−1
m ⊗L⊤

)
vec(M −Cα⊤

c ),[(
Σ−1

m ⊗L⊤L
)
+
(
ΓαΛαF β ⊗ T α

)−1
]−1
)

where T α = diag(τ 2α1, . . . , τ
2
αr) is an r × r matrix, Γα =

diag(γ2α1, . . . , γ
2
α1, γ

2
α2, . . . , γ

2
α2, . . . , γ

2
αG, . . . , γ

2
αG) is a p × p matrix where γ2αg is re-

peated along the diagonal pg times, Λα = diag(λ2α11, . . . , λ
2
αGpG

) is a p × p matrix, and
F β = diag[{f((βm)11)}2, . . . , {f((βm)GpG)}2] is a p × p matrix. The vectorization operation in
this case refers to stacking the columns of a α⊤

a to create a long column vector.
For our mediation mixture map implementation we set aα = aβ = 0.5, and use Marginal

Maximum Likelihood Estimation (MMLE) to estimate bα and bβ (Casella, 2001). The (l + 1)th
MMLE updates are

b(l+1)
α = ψ−1

0

(
− 1

p

G∑
g=1

pg∑
j=1

E
b
(l)
α

[
log(λ2αgj) | Y ,M ,A,L,C

])

b
(l+1)
β = ψ−1

0

(
− 1

p

G∑
g=1

pg∑
j=1

E
b
(l)
β

[
log(λ2βgj) | Y ,M ,A,L,C

])
,
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where ψ0(·) is the digamma function. Once posterior samples are obtained, the Varimax-based
post-processing algorithm described in Poworoznek et al. (2021) is deployed to resolve rotational
ambiguity, sign-switching, and label-switching with respect to model parameters αa, βa, Ψ, and
L. The DEA(a,a∗), IEA(a,a∗), and TEA(a,a∗) estimators are the posterior mean estimators,
denoted by D̂E

A
(a,a∗), ÎE

A
(a,a∗), and T̂E

A
(a,a∗). Similarly, the DEL(l, l∗), IEL(l, l∗), and

TEL(l, l∗) estimators are the posterior mean estimators, denoted by D̂E
L
(l, l∗), ÎE

L
(l, l∗), and

T̂E
L
(l, l∗).

When the number of latent factors requires estimation, we specify a grid of possible values for
the number of exposure mixtures and use the Bayesian Information Criterion (BIC) as a model
selection tool to determine the number of exposure mixtures (Schwarz, 1978). For the purposes
of calculating BIC, we do not count L towards the number of model parameters in (4.2.1). For
mixtures analyses, it is recommended to consider a grid of values that contain some values greater
than or equal to the number of exposure classes represented in the chemical exposure data.

4.3 Simulations

4.3.1 Generative Models and Simulation Design

The primary goals of the simulation study are to empirically show that the mediation mixture map
improves estimation of the true number of latent factors relative to the naive two-step estimator and,
conditional on the true number of latent factors, jointly modeling the mediation and latent factor
models more appropriately quantifies uncertainty corresponding to DE, IE, and TE estimation. We
consider two different sample sizes in the simulation study, n = 400 and n = 2000. A sample
size of n = 400 is generally more realistic in applied practice, however the n = 2000 simulation
settings are useful for evaluating the large sample performance of the mediation mixture map and
naive two-step estimators. For both sample sizes, we consider settings with p = 50 mediators,
q = 40 chemical exposures, s = 5 confounders, and r = 4 true latent chemical mixtures. The
generative model for the simulated data is (4.2.1), where C⊤

i· ∼ N(0s, Is). The loadings matrix in
the latent factor model is set to
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Ψ =



0.1 0 0 0
...

...
...

...
0.1 0 0 0

0 0.1 0 0
...

...
...

...
0 0.1 0 0

0 0 0.1 0
...

...
...

...
0 0 0.1 0

0 0 0 0.1
...

...
...

...
0 0 0 0.1


where the 0.1 loadings are repeated 10 times, and the error variances in the latent factor model are
specified such that the R2s for all chemical exposures in the latent factor model is equal to either
0.5 or 0.1,

ΣL =

(
1−R2

L

)
R2

L

diag
(
Ψ1·Ψ

⊤
1·, . . . ,Ψq·Ψ

⊤
q·
)
, R2

L = 0.5 or R2
L = 0.1.

In practice, 0.5 is a more realistic value for R2
L to take.

For the mediation model, we consider several choices of αa and βm. The first specification of
αa and βm is a setting with a zero IE

αa =



0 0 0 0
...

...
...

...
0 0 0 0

0.1 0.1 0 0
...

...
...

...
0.1 0.1 0 0


, βm =



0.2
...

0.2

0
...
0


where the 0.1, 0.2, and 0 coefficients are repeated 25 times. We refer to this setting as the IE zero
setting. The other specifications of αa and βm are cases where the IE is nonzero, but the signal
density varies. That is, the second specification corresponds to dense contributions to the global IE
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αa =



0.15 0.15 0.15 0.15
...

...
...

...
0.15 0.15 0.15 0.15

0 0 0 0
...

...
...

...
0 0 0 0


, βm =



2
15
...
2
15

0
...
0


where the 0.15 coefficients are repeated 10 times, the 2/15 coefficients are repeated 10 times, and
the 0 coefficients are repeated 30 times. We refer to this setting as the IE dense setting. The third
specification corresponds to sparse contributions to the global IE

αa =



1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

0 0 0 0
...

...
...

...
0 0 0 0


, βm =



0.3

0.3

0
...
0


where the 0 coefficients are repeated 48 times. We call this setting the IE sparse setting. Note
that these choices of αa and βm result in α⊤

a βm = (0.2, 0.2, 0.2, 0.2)⊤ for the IE dense and the IE
sparse settings. The DE is set to βa = (1, 1, 1, 1)⊤−α⊤

a βm so that the TE is equal to βa+α⊤
a βm =

(1, 1, 1, 1)⊤. The regression coefficient parameters corresponding to the confounders are

αc =


0.1 . . . 0.1

...
...

0.1 . . . 0.1

 , βc =


0.1

...
0.1


For Σm, the correlation structure is block diagonal where the blocks are defined by groups of

five mediators. The correlation structure within blocks is exchangable, with correlations equal to
0.3. The variances are determined by setting the R2 squared of the mediator model to 0.1(

1−R2
M

)
R2

M

(
αa αc

)(
αa αc

)⊤
, R2

M = 0.1.

The error variance in the outcome model is determined by setting the adjusted R2 of the outcome
model to 0.3 or 0.6

σ2
e =

(
1−R2

O

)
R2

O

β⊤V β, R2
O = 1− (n− p− r − s)

n− 1
(1− Adjusted R2

O),
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Adjusted R2
O = 0.3 or Adjusted R2

O = 0.6

where β⊤ = (β⊤
m,β

⊤
a ,β

⊤
c )

⊤ and V is the variance-covariance matrix of M , L, and C. Setting
the Adjusted R2

O to 0.3 is more realistic in practice, however R2
O = 0.6 is useful for understanding

the properties of methods when the signal-to-noise-ratio is larger.
For each combination of sample size, n = 400 and n = 2000, and choice of αa and βm,

we consider two different simulation types. The first type assumes that we do not know the true
number of latent factors and the second type assumes that we do know the true number of latent
factors. For the simulations that assume we do not know the true number of latent factors, we will
evaluate the one-step and two-step estimators in terms of their ability to correctly estimate the true
number of latent factors. Given the correct number of latent factors we will evaluate estimation
and inference corresponding to DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) for (l − l∗) = (1, 0, 0, 0)⊤,
(l − l∗) = (0, 1, 0, 0)⊤, (l − l∗) = (0, 0, 1, 0)⊤, and (l − l∗) = (0, 0, 0, 1)⊤ using bias of the
posterior mean estimator, root mean-squared error (RMSE), posterior standard deviation (SD),
and coverage probabilities for 95% credible intervals. All results for each simulation type and
setting corresponds to 1000 simulation replications.

4.3.2 Simulation Results

When the true number of latent factors is known, Table 4.1 shows the simulation results corre-
sponding to the n = 400 IE zero setting where R2

L = 0.5 and Adjusted R2
O = 0.3. In general

we observe that across all combinations of shrinkage priors and mediation parameters the one-step
estimator always has larger posterior SD than the two-step estimator. This is expected because the
one-step estimator accounts for uncertainty in Ψ, L, and ΣL, while the two-step estimator does
not. The empirical bias for the one-step and two-step estimator is comparable, however it is worth
noting that bias is very small for IE estimation regardless of the method used. Small bias for IE
estimation is due to the fact that the independent and product shrinkage priors shrink the product
terms toward zero, which in the IE zero setting happens to be the true value of the IE. Because the
empirical bias is comparable between the one-step and two-step methods and the posterior SD is
slightly larger for the one-step estimator, then the RMSE ends up being larger for the one-step es-
timator. Despite the RMSE being larger for the one-step estimator, we see that empirical coverage
probabilities for the DE and TE for the one-step estimator range between 0.93-0.95, while empiri-
cal coverage probabilities for the DE and TE for the two-step estimator range between 0.92-0.94.
Therefore, the two-step estimator slightly undercovers with respect to the nominal coverage rate.
In contrast, the empirical coverage probabilities for the IE are 1 for both one-step and two-step
estimators. Looking at Supplementary Table C.1, which provides the simulation results for the
n = 2000 IE zero setting where R2

L = 0.5 and Adjusted R2
O = 0.3, we see nearly identical results
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to the n = 400 IE zero setting, but with biases for DE and TE estimation attenuating towards zero.
Tables 4.2 and 4.3 show the simulation results corresponding to the n = 400 IE dense and IE

sparse settings whereR2
L = 0.5 and AdjustedR2

O = 0.3, respectively. For both settings we observe
substantial differences in performance between independent shrinkage and product shrinkage, with
product shrinkage resulting in larger absolute bias than independent shrinkage. For example, in
the IE dense setting, biases for one-step IE estimation tend to be around -0.17 and biases for two-
step IE estimation tend to be around -0.20 for product shrinkage, while biases for one-step IE
estimation tend to be around -0.10 and biases for two-step IE estimation tend to be around -0.16
for independent shrinkage. Recall that the true IE value in this case is 0.20, implying that product
shrinkage is much more aggressively shrinking the IE towards zero than independent shrinkage.
For the one-step and two-step estimators, we see that empirical biases in the IE sparse setting
are comparable, however, in the IE dense setting, the one-step estimator has notably lower bias
than the two-step estimator. Biased estimation as a result of assigning shrinkage priors to βm and
αa leads to lower than nominal coverage for both independent shrinkage and product shrinkage,
with empirical coverage being higher for independent shrinkage. As with the IE zero simulation
settings, we also observe that the one-step estimator has larger posterior SDs across the board,
compared with the two-step estimator. That being said, for independent shrinkage, the RMSE is
lower for the one-step estimator due to the one-step estimator being less biased. This is particularly
pronounced in the IE dense simulation setting with independent shrinkage where the one-step
estimator has an RMSE of 0.11 for each choice of l− l∗ and the two-step estimator has an RMSE
of 0.16 for each choice of l − l∗. Therefore, we conclude that combining the mediation and latent
factor models together particularly benefits the setting where the contributions to the global IE
are dense. Supplementary Tables C.2 and C.3 show the simulation results corresponding to the
n = 2000 IE dense and IE sparse settings when R2

L = 0.5 and Adjusted R2
O = 0.3, respectively.

The primary difference between the n = 400 and n = 2000 settings, is that the bias attenuates
towards zero across the board when the sample size is larger, resulting in higher empirical coverage
probabilities.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.04 0.21 0.20 0.93 0.03 0.20 0.19 0.92
Independent DEL(l, l∗) (0,1,0,0) 0.06 0.20 0.20 0.95 0.05 0.20 0.19 0.94
Independent DEL(l, l∗) (0,0,1,0) 0.07 0.20 0.20 0.94 0.07 0.20 0.18 0.93
Independent DEL(l, l∗) (0,0,0,1) 0.06 0.20 0.20 0.94 0.05 0.19 0.18 0.93
Product DEL(l, l∗) (1,0,0,0) 0.04 0.21 0.20 0.93 0.03 0.20 0.19 0.93
Product DEL(l, l∗) (0,1,0,0) 0.05 0.20 0.20 0.95 0.05 0.20 0.19 0.94
Product DEL(l, l∗) (0,0,1,0) 0.07 0.20 0.20 0.94 0.07 0.20 0.18 0.93
Product DEL(l, l∗) (0,0,0,1) 0.06 0.20 0.19 0.94 0.05 0.19 0.18 0.93

Independent IEL(l, l∗) (1,0,0,0) 0.00 0.02 0.04 1.00 0.00 0.02 0.04 1.00
Independent IEL(l, l∗) (0,1,0,0) 0.00 0.02 0.05 1.00 0.00 0.02 0.04 1.00
Independent IEL(l, l∗) (0,0,1,0) 0.00 0.00 0.02 1.00 0.00 0.00 0.01 1.00
Independent IEL(l, l∗) (0,0,0,1) 0.00 0.00 0.02 1.00 0.00 0.00 0.01 1.00
Product IEL(l, l∗) (1,0,0,0) 0.00 0.01 0.01 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,1,0,0) 0.00 0.01 0.01 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,0,1,0) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,0,0,1) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

Independent TEL(l, l∗) (1,0,0,0) 0.04 0.21 0.20 0.93 0.03 0.20 0.19 0.92
Independent TEL(l, l∗) (0,1,0,0) 0.06 0.20 0.20 0.94 0.05 0.20 0.19 0.94
Independent TEL(l, l∗) (0,0,1,0) 0.07 0.20 0.20 0.94 0.07 0.20 0.18 0.93
Independent TEL(l, l∗) (0,0,0,1) 0.06 0.20 0.20 0.94 0.05 0.19 0.18 0.93
Product TEL(l, l∗) (1,0,0,0) 0.04 0.21 0.20 0.93 0.03 0.20 0.19 0.92
Product TEL(l, l∗) (0,1,0,0) 0.05 0.20 0.20 0.95 0.05 0.20 0.19 0.94
Product TEL(l, l∗) (0,0,1,0) 0.07 0.20 0.20 0.94 0.07 0.20 0.18 0.93
Product TEL(l, l∗) (0,0,0,1) 0.06 0.20 0.19 0.94 0.05 0.19 0.18 0.93

Table 4.1: Simulation results for the n = 400 IE zero simulation setting for the one-step and two-
step estimators of DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.5 and Adjusted R2
O = 0.3.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.11 0.21 0.17 0.88 0.08 0.19 0.16 0.89
Independent DEL(l, l∗) (0,1,0,0) 0.13 0.21 0.17 0.86 0.10 0.19 0.16 0.89
Independent DEL(l, l∗) (0,0,1,0) 0.13 0.21 0.17 0.88 0.10 0.19 0.16 0.90
Independent DEL(l, l∗) (0,0,0,1) 0.12 0.21 0.17 0.88 0.09 0.19 0.16 0.90
Product DEL(l, l∗) (1,0,0,0) 0.10 0.20 0.17 0.89 0.08 0.19 0.16 0.89
Product DEL(l, l∗) (0,1,0,0) 0.11 0.20 0.17 0.89 0.09 0.19 0.16 0.89
Product DEL(l, l∗) (0,0,1,0) 0.12 0.20 0.17 0.90 0.10 0.19 0.16 0.90
Product DEL(l, l∗) (0,0,0,1) 0.10 0.20 0.17 0.90 0.09 0.19 0.16 0.90

Independent IEL(l, l∗) (1,0,0,0) -0.10 0.11 0.05 0.54 -0.16 0.16 0.04 0.17
Independent IEL(l, l∗) (0,1,0,0) -0.10 0.11 0.05 0.54 -0.16 0.16 0.04 0.18
Independent IEL(l, l∗) (0,0,1,0) -0.09 0.11 0.05 0.55 -0.16 0.16 0.04 0.19
Independent IEL(l, l∗) (0,0,0,1) -0.10 0.11 0.05 0.55 -0.16 0.16 0.04 0.19
Product IEL(l, l∗) (1,0,0,0) -0.17 0.17 0.02 0.16 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,1,0,0) -0.17 0.17 0.02 0.16 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,0,1,0) -0.16 0.17 0.02 0.16 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,0,0,1) -0.17 0.17 0.02 0.17 -0.20 0.20 0.00 0.00

Independent TEL(l, l∗) (1,0,0,0) 0.02 0.18 0.17 0.93 -0.08 0.19 0.16 0.90
Independent TEL(l, l∗) (0,1,0,0) 0.03 0.18 0.17 0.94 -0.06 0.18 0.16 0.92
Independent TEL(l, l∗) (0,0,1,0) 0.04 0.17 0.17 0.95 -0.05 0.18 0.16 0.92
Independent TEL(l, l∗) (0,0,0,1) 0.03 0.17 0.17 0.95 -0.07 0.18 0.16 0.91
Product TEL(l, l∗) (1,0,0,0) -0.07 0.20 0.17 0.90 -0.12 0.21 0.16 0.86
Product TEL(l, l∗) (0,1,0,0) -0.06 0.19 0.17 0.92 -0.11 0.20 0.16 0.90
Product TEL(l, l∗) (0,0,1,0) -0.05 0.18 0.17 0.92 -0.10 0.19 0.16 0.90
Product TEL(l, l∗) (0,0,0,1) -0.06 0.19 0.17 0.92 -0.11 0.20 0.16 0.89

Table 4.2: Simulation results for the n = 400 IE dense simulation setting for the one-step and two-
step estimators of DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.5 and Adjusted R2
O = 0.3.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.06 0.19 0.17 0.92 0.04 0.18 0.16 0.91
Independent DEL(l, l∗) (0,1,0,0) 0.07 0.19 0.17 0.92 0.06 0.18 0.16 0.92
Independent DEL(l, l∗) (0,0,1,0) 0.08 0.18 0.17 0.93 0.06 0.18 0.16 0.94
Independent DEL(l, l∗) (0,0,0,1) 0.07 0.18 0.17 0.94 0.05 0.17 0.16 0.94
Product DEL(l, l∗) (1,0,0,0) 0.06 0.19 0.17 0.92 0.04 0.18 0.16 0.91
Product DEL(l, l∗) (0,1,0,0) 0.07 0.18 0.17 0.92 0.06 0.18 0.16 0.92
Product DEL(l, l∗) (0,0,1,0) 0.07 0.18 0.17 0.94 0.06 0.18 0.16 0.94
Product DEL(l, l∗) (0,0,0,1) 0.06 0.18 0.17 0.94 0.05 0.17 0.16 0.93

Independent IEL(l, l∗) (1,0,0,0) -0.04 0.07 0.06 0.88 -0.04 0.08 0.06 0.87
Independent IEL(l, l∗) (0,1,0,0) -0.04 0.07 0.06 0.89 -0.04 0.07 0.06 0.89
Independent IEL(l, l∗) (0,0,1,0) -0.04 0.07 0.06 0.89 -0.04 0.08 0.06 0.88
Independent IEL(l, l∗) (0,0,0,1) -0.04 0.07 0.06 0.87 -0.04 0.08 0.06 0.87
Product IEL(l, l∗) (1,0,0,0) -0.11 0.14 0.04 0.54 -0.13 0.15 0.04 0.43
Product IEL(l, l∗) (0,1,0,0) -0.10 0.14 0.04 0.55 -0.13 0.15 0.04 0.43
Product IEL(l, l∗) (0,0,1,0) -0.10 0.14 0.04 0.56 -0.12 0.15 0.04 0.43
Product IEL(l, l∗) (0,0,0,1) -0.11 0.14 0.04 0.55 -0.13 0.15 0.04 0.42

Independent TEL(l, l∗) (1,0,0,0) 0.02 0.18 0.18 0.94 0.00 0.18 0.17 0.92
Independent TEL(l, l∗) (0,1,0,0) 0.04 0.18 0.18 0.94 0.02 0.18 0.17 0.93
Independent TEL(l, l∗) (0,0,1,0) 0.04 0.18 0.18 0.95 0.02 0.17 0.17 0.94
Independent TEL(l, l∗) (0,0,0,1) 0.03 0.17 0.18 0.95 0.01 0.17 0.17 0.94
Product TEL(l, l∗) (1,0,0,0) -0.05 0.20 0.18 0.92 -0.09 0.21 0.17 0.88
Product TEL(l, l∗) (0,1,0,0) -0.04 0.19 0.18 0.92 -0.07 0.20 0.17 0.90
Product TEL(l, l∗) (0,0,1,0) -0.03 0.18 0.18 0.94 -0.06 0.19 0.17 0.91
Product TEL(l, l∗) (0,0,0,1) -0.04 0.18 0.18 0.94 -0.08 0.19 0.17 0.89

Table 4.3: Simulation results for the n = 400 IE sparse simulation setting for the one-step and two-
step estimators of DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.5 and Adjusted R2
O = 0.3.

Simulation results for the n = 400 settings where R2
L = 0.5 and Adjusted R2

O = 0.6 are listed
in Tables C.4, C.5, and C.6. Simulation results for the n = 400 settings where R2

L = 0.1 and
Adjusted R2

O = 0.6 are listed in Tables C.7, C.8, and C.9. Simulation results for the n = 400

settings where R2
L = 0.1 and Adjusted R2

O = 0.3 are listed in Tables C.10, C.11, and C.12. In
general, conclusions for the simulation settings with R2

L = 0.5 and Adjusted R2
O = 0.6 were

comparable to the conclusions for the simulation settings with R2
L = 0.5 and Adjusted R2

O = 0.3.
However, there are some differences between the R2

L = 0.5 simulation settings and the R2
L = 0.1

simulation settings. The primary difference is that, when R2
L = 0.1, there is more uncertainty in

estimating the latent factors and loadings matrix. Consequently, the RMSEs corresponding to the
one-step estimator with independent shrinkage are generally lower than the RMSEs corresponding
to the two-step estimator with independent shrinkage, despite the fact that the average posterior
standard deviation is generally higher for the one-step estimator. For example, in the n = 400 IE
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sparse setting whereR2
L = 0.1 and Adjusted R2

O = 0.6, the RMSE corresponding to TE estimation
is 0.20 for the one-step estimator and 0.23 for the two-step estimator. This occurs despite the fact
that the average posterior standard deviation for the one-step estimator is 0.19 and the average
posterior standard deviation for the two-step estimator is 0.17. Therefore, outcome and mediator
adaptive estimation of the underlying latent factors is particularly helpful for estimating mediation
parameters when R2

L is small.
Table 4.4 shows the results of estimating the number of latent factors via BIC when R2

L = 0.5

and Adjusted R2
O = 0.3. Note that regardless of the shrinkage prior, the one-step estimator for

n = 400 almost always identifies the correct number of latent factors r = 4. However, the two-
step estimator regardless of sample size tends to overestimate the number of latent factors. Namely,
when n = 400, 22.7% of simulation replications result in the two-step estimator identifying four
latent factors, while 55.0% of simulation replications result in the two-step estimator identifying
five latent factors. When n = 2000, both the one-step estimator correctly estimates the true number
of latent factors approximately 60% of the time, while the two-step estimator correctly estimates
the true number of latent factors 1.7% of the time. These phenomena are observed for all other
simulation settings (see Tables C.13 and C.14). Therefore, imparting information from the me-
diation model into the latent factor model helps stabilize estimation of the true number of latent
factors. It is important to note, that although there is systematic overestimation of the true number
of latent factors for the one-step and two-step estimators in the n = 2000 case, the extraneous
latent factors tend to correspond to columns in the loading matrix close to the zero vector. That is,
the loadings corresponding to the extraneous factors tend to be shrunk to zero by the multiplicative
gamma process shrinkage prior.
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Estimated Number of Latent Factors
Method 4* 5 6 7

n = 400

One-Step Independent 999 (99.9%) 1 (0.1%) 0 (0.0%) 0 (0.0%)
One-Step Product 989 (98.9%) 10 (1.0%) 0 (0.0%) 1 (0.1%)
Two-Step 227 (22.7%) 550 (55.0%) 204 (20.4%) 19 (1.9%)

n = 2000

One-Step Independent 596 (59.6%) 377 (37.7%) 27 (2.7%) 0 (0.0%)
One-Step Product 599 (59.9%) 372 (37.2%) 29 (2.9%) 0 (0.0%)
Two-Step 17 (1.7%) 310 (31.0%) 378 (37.8%) 295 (29.5%)

Table 4.4: Results for estimating of the number of latent factors under the IE dense simulation
settings when R2

L = 0.5 and Adjusted R2
O = 0.3. The numbers in the table indicate the number

of times out of 1000 simulation replications each number of latent factors was selected via BIC.
*The true number of latent factors is r = 4.

4.4 Data Example

4.4.1 Data Processing

The PROTECT multi-exposure analysis in this chapter considers the TE of chemical exposures
across four exposure classes, metals, phthalates, phenols and parabens, and PAHs, on two birth
outcomes, gestational age at delivery and head circumference z-score. Gestational age at delivery
measures the duration of pregnancy, with less than 37 weeks defined as a preterm birth. Head
circumference z-score is a relative measure of fetal growth comparing the measured head circum-
ference at delivery to a reference distribution of head circumference measurements for newborns
with identical gestational age at delivery. The primary goal of the PROTECT multi-exposure anal-
ysis is discovery-based high-dimensional mediation analysis, where the intermediary pathways
of interest are quantified through cytochrome p450 and lipoxygenase metabolites. Therefore, the
workflow of the proposed analysis is first to investigate the total effects corresponding to mix-
tures of exposures and the proceed to mediation analyses corresponding to slightly more targeted
mediation hypotheses.

Before discussing the models, we will first discuss data cleaning and merging steps. For this
analysis we specifically consider chemical exposures measured at visit 1 with less than 50% below
the respective limits of detection (LOD). Values below the LOD are handled through LOD/

√
2
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substitution. After removal of exposures with too many observations below the LOD, we then
remove mono-hydroxyisobutyl phthalate (MHiBP), mono-3-hydroxybutyl phthalate (MHBP), and
Bisphenol S, due to having substantially more missingness than the other phthalate, paraben, and
phenol metabolites. The resulting exposure dataset contains 40 total exposure, of which 11 are
phthalate metabolites, 8 are phenol and paraben metabolites, 7 are PAHs, and 14 are metals. Since
all chemical exposures are measured in urine samples, we next perform specific gravity correction
for all 40 chemical exposures prior to modeling (Kuiper et al., 2021). It is very important to adjust
for specific gravity prior to modeling, rather than including it as an adjustment covariate in the
mediation model, so that the latent factor model does not capture exposure correlation structure
due to differences in urinary dilution across participants. Exposures are then log-transformed
and standardized prior to model fitting. In PROTECT the cytochrome p450 and lipoxygenase
metabolites are measured at visit 3 and we remove lipoxygenase metabolites 5(s),14(r)-Lipoxin B4,
Leukotriene B3, Leukotriene C4 methyl ester, 9(s)-HETE, (±)19-HETE due to having substantially
more missingness than the other cytochrome p450 and lipoxygenase metabolites. This leaves us
with 32 total metabolites, 18 of which correspond to the cytochrome p450 pathway and 14 of which
correspond to the lipoxygenase pathway. All cytochrome p450 and lipoxygenase metabolites are
log-transformed and standardized prior to model fitting.

For the total effect mixture map we consider gestational age at delivery and head circumference
z-score as the two outcomes of interest. All models are adjusted for maternal age and education,
and the head circumference z-score models are additionally adjusted for pre-pregnancy body mass
index. Subjects that had a missing value for any of the q = 40 exposures, p = 32 mediators,
gestational age at delivery, head circumference z-score, and the adjustment covariates were re-
moved from the total effect only analysis. The total sample size for the total effect only models
is n = 478. Coupling the results of the total effect analysis with existing literature establishing
phthalate exposure as a risk factor for preterm birth (Ferguson et al., 2014; Welch et al., 2022),
the mediation mixture map models will be restricted to the phthalate exposure class to maximize
available sample size. We remove subjects that had a missing value for any of the q = 11 phthalate
metabolites and p = 32 mediators, but use the maximal available sample size for gestational age
at delivery and head circumference z-score and their corresponding adjustment sets. Therefore,
the phthalate only gestational age at delivery mediation mixture map models have a sample size of
n = 466 participants and the phthalate only head circumference z-score mediation mixture map
models have a sample size of n = 241 participants. The number of latent factors in the total effect
mixture map and the mediation mixture map are chosen by optimal BIC.

In addition to the mediation mixture map, we also implement several other approaches to high-
dimensional mediation analysis that are frequently used in practice. The first is based on HDMT,
a method that fits individual mediation models, tests for significance of the indirect effect using
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HDMT for each exposure-mediator pair, and applies a Benjamini-Hochberg correction step on the
HDMT p-values to correct for multiple testing (Dai et al., 2022). The second competing method is a
method for single exposure high-dimensional mediation analysis called HDMA (Gao et al., 2019),
which applies sure independence screening (SIS) with respect to the Y |M ,A,C model and then
fits a high-dimensional mediation model with a de-biased lasso penalty restricted to the mediators
that were retained after screening. The third competing method is the naive two-step version of the
mediation mixture map, which fits a linear latent factor model and subsequently plugs the estimated
latent factors into a mediation model. For the naive two-step version of the mediation mixture
model, we will also use optimal BIC to estimate the number of latent factors. It is very important
to note that the point estimates reported from HDMT, HDMA, and the mediation mixture map
are not directly comparable because the mediation mixture map models all cytochrome p450 and
lipoxygenase metabolites simultaneously, HDMA fits the mediation model only on the subset of
cytochrome p450 and lipoxygenase metabolites that pass the sure independence screening step, and
HDMT considers a single mediator at a time. The purpose of including HDMA and HDMT is to
see if established methods in the high-dimensional mediation analysis literature yield comparable
conclusions to the conclusions of the mediation mixture map.

4.4.2 Total Effect Only Results

Figure 4.2 shows the estimated loadings matrices corresponding to the one-step mediation mixture
map with final gestational age as the outcome, the one-step mediation mixture map with head cir-
cumference z-score as the outcome, and the naive two-step version of the mediation mixture map.
The columns in the estimated loadings matrices are ordered based on the proportion of variance
explained from left to right. The naive two-step estimator, identifies r = 6 latent factors, with
13.0% of the variability explained by the first latent factor, 9.7% of the variability explained by
the second latent factor, 7.7% of the variability explained by the third latent factor, 5.6% of the
variability explained by the fourth latent factor, 4.7% of the variability explained by the fifth la-
tent factor, and 4.6% of the variability explained by the sixth latent factor. The first latent factor
corresponds to phthalate exposure, especially monobutyl phthalate (MBP), monobenzyl phtha-
late (MBzP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono(2-ethyl-5-hydroxyhexyl)
phthalate (MEHHP), mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-oxohexyl) phthalate
(MEOHP), and monoisobutyl phthalate (MiBP). The second and third latent factors correspond to
PAH and metals exposure, respectively. The fourth latent factor also corresponds to phthalate ex-
posure, namely mono(carboxynonyl) phthalate (MCNP), mono(carboxyoctyl) phthalate (MCOP),
and mono(3-carboxypropyl) phthalate (MCPP). The fifth and sixth latent factors correspond to
dichlorophenol and paraben exposure, respectively. The estimated loadings matrix for the medi-
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ation mixture map with head circumference as the outcome is very similar to the naive two-step
loadings estimate, with the only difference being that the one-step mediation mixture map esti-
mates one less latent factor, omitting the latent factor corresponding to paraben exposure. For
the one-step mediation mixture map estimator with gestational age at delivery as the outcome,
breaks the phthalates into three latent factors, with one phthalate factor corresponding to MECPP,
MEHHP, MEHP, and MEOHP exposure, the second phthalate latent factor corresponding to MBP,
MBzP, and MiBP exposure, and the third phthalate latent factor corresponding to MCNP, MCOP,
and MCPP exposure. As a result of breaking the phthalates down into three latent factors rather
than two latent factors, the latent factor corresponding to PAH exposure ends up having the highest
proportion of variability explained with 9.3% explained.
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Figure 4.2: Estimated loadings matricies corresponding to the total effect mixture model for final
gestational age (GA) and head circumference z-score (HC) (n = 478). Final gestational age
models are adjusted for maternal age and educational attainment. Head circumference z-score
models are adjusted for maternal age, educational attainment, and pre-pregnancy body mass index.
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Figure 4.3: Estimated total effect corresponding to final gestational age from the total effect me-
diation mixture map corresponding to an interquartile range (IQR) change in exposure (n = 478).
For individual chemical exposures, TE estimates correspond to an IQR change on the log-scale.
For exposure classes, TE estimates correspond to simultaneous IQR changes on the log-scale for
all exposures contained within the exposure class. For the latent factors, TE estimates correspond
to IQR changes in the corresponding latent factor variable. For interpretations of the latent factors
see Figure 4.2. Final gestational age models are adjusted for maternal age and educational attain-
ment. Head circumference z-score models are adjusted for maternal age, educational attainment,
and pre-pregnancy body mass index.

Figure 4.3 shows the TE estimates and corresponding 95% credible intervals for the one-step
and two-step mediation mixture map estimators with gestational age at delivery as the outcome.
Sifting through the latent factors we see that latent factor 5 for the one-step estimator and latent fac-
tor 4 for the two-step estimator, both corresponding to MCNP, MCOP, and MCPP exposure, have
95% credible intervals that do not cover zero. More specifically, an IQR change in the latent fac-
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tors corresponding to MCNP, MCOP, and MCPP exposure is associated with a 1.13 day decrease
in gestational age at delivery (95% CI: 0.01, 2.23) for the one-step estimator and is associated
with a 1.25 day decrease in gestational age at delivery (95% CI: 0.13, 2.37) for the two-step esti-
mator adjusted for maternal age and educational attainment. For the two-step mediation mixture
map, we also observe that an IQR change in the latent factor corresponding to paraben exposure
is associated with a 1.56 day increase in gestational age at delivery (95%: 0.03, 3.05) adjusted for
maternal age and educational attainment. This association is likely only observed for the two-step
estimator, because no latent factor corresponding to the one-step estimator captures exposure to
methylparaben and propylparaben. Of the four exposure classes, the most intriguing is the phtha-
late exposure class, where effects corresponding to IQR changes in MCNP, MCOP, MCPP, and
MECPP appear to cancel out when looking at the TE corresponding to an IQR change in all phtha-
lates. Looking at MCNP, MCOP, and MCPP for the one-step estimator, one IQR increase in MCNP
exposure is associated with 0.22 days shorter gestational age at delivery (95% CI: 0.00, 0.45), one
IQR increase in MCOP exposure is associated with 0.92 days shorter gestational age at delivery
(95% CI: 0.08, 1.82), and one IQR increase in MCPP exposure is associated with 0.56 days shorter
gestational age at delivery (95% CI: 0.09, 1.11). We observe similar associations for the two-step
estimator. Note that the estimated TEs corresponding to MCNP, MCOP, and MCPP exposure are
smaller than the estimated TE corresponding to the latent factor that summarizes MCNP, MCOP,
and MCPP exposure. This is in-line with a common environmental health hypothesis that con-
tributions from several chemicals simultaneously results in a larger effect compared to the effects
corresponding to individual chemicals. There is no evidence of a significant TE that is negatively
associated with gestational age at delivery outside of the phthalate exposure class.

Figure 4.4 shows the TE estimates and corresponding 95% credible intervals for the one-step
and two-step mediation mixture map estimators with head circumference z-score as the outcome.
Both the one-step and two-step estimators identify that an IQR change in the latent factor corre-
sponding to MCNP, MCOP, and MCPP exposure is negatively associated with head circumference
z-score, Namely, one IQR increase in the latent factor corresponding to MCNP, MCOP, and MCPP
is associated with 0.15 standard deviations smaller head circumference (95% CI: 0.03, 0.28) for
the one-step estimator and is associated with 0.15 standard deviations smaller head circumference
(95% CI: 0.02, 0.27) for the two-step estimator. As with the results for gestational age at delivery,
the effect sizes for the TEs corresponding to one IQR change in MCNP, MCOP, and MCPP are
smaller than the effect size corresponding to the latent factor that summarizes exposure to all three
phthalate metabolites. However, one difference between the results for head circumference z-score
and the results for final gestational age is that the phthalates have negative or approximately zero
TEs across the entire exposure class. Consequently, an IQR change in all 11 phthalate metabolites
simultaneously, as estimated by the one-step method, is associated with 0.24 standard deviations
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smaller head circumference (95% CI: 0.05, 0.44). Therefore, the TE corresponding to phthalate
exposure and head circumference adheres to the principle of cumulative burden, where elevated to
exposure to increasingly many phthalate metabolites results in increasingly large effects on head
circumference.
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Figure 4.4: Estimated total effect corresponding to head circumference z-score from the total ef-
fect mediation mixture map corresponding to an interquartile range (IQR) change in exposure
(n = 478). For individual chemical exposures, TE estimates correspond to an IQR change on
the log-scale. For exposure classes, TE estimates correspond to simultaneous IQR changes on the
log-scale for all exposures contained within the exposure class. For the latent factors, TE estimates
correspond to IQR changes in the corresponding latent factor variable. For interpretations of the
latent factors see Figure 4.2. Final gestational age models are adjusted for maternal age and educa-
tional attainment. Head circumference z-score models are adjusted for maternal age, educational
attainment, and pre-pregnancy body mass index.
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4.4.3 Mediation Analysis Results

Given that the TE analysis results pinpoint phthalate exposure as being particularly associated
with gestational age at delivery and head circumference z-score, and given that the literature on
gestational age at delivery has identified phthalate exposure as a risk factor for preterm births
(Ferguson et al., 2014; Welch et al., 2022), we restrict our focus to the phthalate exposure class
with gestational age at delivery as the outcome to maximize the available sample size for the
mediation mixture map. Table 4.5 displays the phthalate-eicosanoid pairs from HDMT-based high-
dimensional mediation analysis, that had negative DEs, IEs, and TEs and a q-value of less than
0.1. The most noteworthy phthtalate metabolites were MCNP and MCPP, which had 12 and 10
eicosanoids, respectively, for which there was a significant indirect effects after multiple testing
correction. For MCNP, half of the eicosanoid metabolites correspond to the cytochrome p450
pathway, with percent mediated ranging between 40%-95% and the other half of the eicosanoid
metabolites correspond to the lipoxygenase pathway, with percent mediated ranging between 25%-
75%. Of the 10 eicosanoid metabolites with significant indirect effects for MCPP, 9 also had a
significant indirect effect for MCNP, but with percent mediated ranging between 30%-70% for the
cytochrome p450 pathway and 35-50% for the lipoxygenase pathway. In addition to MCNP and
MCPP, there were four eicosanoid metabolites with significant indirect effects corresponding to
MECPP and two eicosanoid metabolites with significant indirect effects corresponding to MBzP.

Phthalate Metabolite TE Eicosanoid Pathway Eicosanoid Metabolites % Mediated

MCNP -0.11 Cytochrome p450 18-HETE, 14(15)-EET, 17-HETE 40-95%
5,6-DHET, 16-HETE, 9S-HODE

Lipoxygenase 12-oxoETE, 13-oxoODE, 15-oxoETE 25-75%
5-oxoETE, LTB4, 13S-HODE, LTE4

MCPP -0.15 Cytochrome p450 18-HETE, 14(15)-EET, 17-HETE 30-70%
5,6-DHET, CAA, 16-HETE

Lipoxygenase 12-oxoETE, 13-oxoODE, 15-oxoETE, LTB4 35-50%
MECPP -0.06 Cytochrome p450 14(15)-EET, 17-HETE, 5,6-DHET, 16-HETE 55-95%

Lipoxygenase LTB4 76%
MBzP -0.18 Cytochrome p450 16-HETE 18%

Lipoxygenase 13-oxoODE 23%

Table 4.5: Results for HDMT-based single exposure single mediator analysis with final gestational
age as the outcome (n = 466). Estimated total effects in the table correspond to changes in
gestational age at delivery (weeks) for an IQR increase in exposure. Phthalate metabolite and
eicosanoid metabolite pairs listed in the Table are results where there was significant indirect effect,
ascertained by having a q-value less than 0.1, a negative total effect, and a negative indirect effect.
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Table 4.6 shows the results for HDMA-based high dimensional mediation analysis correspond-
ing to phthalate metabolites that have negative estimated DEs, IEs, and TEs. We observe that
the SIS-step in HDMA screens the number of potential mediators down from q = 32 to three
eicosanoid metabolites. Of the metabolites identified by the HDMA-based high dimensional me-
diation analysis, MCPP and MBzP, were also identified by HDMT-based high dimensional medi-
ation analysis. HDMA estimates that one IQR change in MBzP exposure is associated with 1.26
days shorter gestational age at delivery adjusted for maternal age and education, however none of
the three eicosanoids selected after SIS have significant product terms contributing to the IE. Con-
versely, eicosanoid metabolites retained after SIS corresponding to MCPP, CAA, 9(10)-EpoME,
and 15-oxoETE, have significant product terms contributing to the IE. More specifically, one IQR
change in MCPP exposure is associated with 1.05 days shorter gestational age at delivery adjusted
for maternal age and education, with an estimated 97% of the total effect mediated through CAA,
9(10)-EpoME, and 15-oxoETE.

Exposure # Post-SIS Mediators IE TE % IE Significant Eicosanoids

MBP 3 -0.03 -0.14 21 None
MBzP 3 -0.07 -0.18 38 None
MCPP 3 -0.14 -0.15 97 CAA, 9(10)-EpoME, 15-oxoETE
MiBP 3 -0.06 -0.16 36 None

Table 4.6: Results for the HDMA-based multi-mediator, single exposure analysis with final gesta-
tional age as the outcome (n = 466). Estimated IEs and TEs in the table correspond to changes
in gestational age at delivery (weeks) for an IQR increase in exposure. The results in the table
are restricted to the exposures which result in a negative total effect (TE), a negative direct effect
(DE), and a negative indirect effect (IE) for gestational age at delivery. The significant eicosanoids
column corresponds to metabolites with significant product terms contributing the IE.
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Figure 4.5: Estimated loadings matricies corresponding to the mediation mixture model with in-
dependent shrinkage for gestational age at delivery (n = 466). Gestational age at delivery models
are adjusted for maternal age and educational attainment.

Figure 4.5 shows the estimated loadings matrices corresponding to the one-step and two-step
mediation mixture maps with independent shrinkage and gestational age at delivery as the out-
come. When restricting to phthalate metabolites only, we see that the phthalate metabolites are
divided into three latent factors in a similar manner to the total effect only models. Namely, for the
one-step estimator, the first latent factor corresponding to MECPP, MEHHP, MEHP, and MEOHP
explains 29.7% of the variability, the second latent factor corresponding to MCNP, MCOP, and
MCPP exposure explains 17.3% of the variability, and the third latent factor corresponding to
MBP, MBzP, and MiBP explains 15.3% of the variability. Note that this is much higher than the
cumulative proportion of variability explained, than the total effect analysis that considers all expo-
sure classes. Table 4.7 shows the mediation effects attributable to exposure mixtures as estimated
by the mediation mixture map with independent shrinkage and gestational age at delivery as the
outcome. For the one-step mediation mixture map, we observe that a simultaneous IQR change in
all phthalates corresponds to 1.54 days shorter gestational age at delivery on average (95% CI: -
0.84, 3.92). In contrast, the two-step mediation mixture map estimates 0.42 days shorter gestational
age at delivery on average (95% CI: -1.82, 2.73) for an IQR change in all phthalate metabolites.
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Looking at the IEs, the one-step estimator estimates a percent mediated of 88% corresponding to
the latent factor summarizing exposure to MCNP, MCOP, and MCPP, although an IQR change in
the latent factor summarizing exposure to MCNP, MCOP, and MCPP has a modest TE of 0.14
days. The two-step estimator identifies a significant TE corresponding to an IQR change in the
latent factor summarizing exposure to MBP, MBzP, and MiBP, but the estimated IE in this case is
0. However, the two-step estimator does not estimate a negative TE corresponding to latent factor
summarizing MCNP, MCOP, and MCPP exposure. Given these results, it appears that including
information on the mediation model to inform estimation of latent factors helps estimate the direc-
tionality of the TE estimate and a percent mediated that is more consistent with the HDMT-based
and HDMA-based high-dimensional mediation analyses.

Exposure IE IE 95% CI TE TE 95% CI % Mediated Largest Weights

One-Step
Latent Factor 1 -0.01 (-0.04, 0.03) 0.06 (-0.18, 0.29) - MECPP, MEHHP, MEHP, MEOHP
Latent Factor 2 -0.02 (-0.18, 0.12) -0.02 (-0.24, 0.20) 88% MCNP, MCOP, MCPP
Latent Factor 3 0.01 (-0.04, 0.06) -0.27 (-0.52, 0.00) - MBP, MBzP, MiBP
All Phthalates -0.02 (-0.19, 0.13) -0.22 (-0.56, 0.12) 8%

Two-Step
Latent Factor 1 0.00 (-0.01, 0.01) 0.05 (-0.17, 0.28) - MECPP, MEHHP, MEHP, MEOHP
Latent Factor 2 -0.04 (-0.14, 0.02) 0.11 (-0.13, 0.34) - MCNP, MCOP, MCPP
Latent Factor 3 0.00 (-0.01, 0.02) -0.23 (-0.44, -0.03) 0% MBP, MBzP, MiBP
All Phthalates -0.04 (-0.14, 0.02) -0.06 (-0.39, 0.26) 56%

Table 4.7: One-step and two-step mediation mixture map results with independent shrinkage cor-
responding to gestational age at delivery (n = 466). Estimated IEs and TEs in the table correspond
to changes in gestational age at delivery (weeks) for an IQR increase in exposure.

Given the differing mediation results between HDMT, HDMA, and the mediation mixture map,
we further evaluate the posterior distribution of αa and βm to better understand why the mediation
mixture map does not identify significant indirect effects. Supplementary Table C.15 shows the
posterior mean and 95% credible intervals corresponding to entries in αa and Supplementary Table
C.16 shows the posterior mean and 95% credible intervals corresponding to entries in βm. We
observe that the latent factor summarizing MCNP, MCOPP, and MCPP exposure is significantly
negatively associated with 23 of the 32 eicosanoids and significantly positively associated with 4
of the 32 eicosanoids. However, all entries in βm have 95% posterior credible intervals that cover
zero, indicating that the lack of significance of the indirect effect is specifically due to the lack of
significance corresponding to βm. To directly compare with HDMA, we fit the two-step mediation
mixture map with independent shrinkage priors, restricted to only MCPP and the three eicosanoids
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identified by HDMA. The estimated total effect for this analysis is -0.14 (95% CI: -0.31, 0.05), the
estimated indirect effect is -0.10 (95% CI: -0.16, -0.04), and the estimated percent mediated is 72%.
Therefore, the mediation mixture map restricted to a single exposure coincides with the HDMA
results, indicating that there is a fundamental difference between mediation results from a multi-
exposure mediation analysis and mediation results from a method that screens mediators based on
the Y |M ,L,C model and subsequently models exposures independently of one another.

Supplementary Figure C.2 and Supplementary Table C.17 shows the estimated loadings matri-
ces and mixture mediation results corresponding to product shrinkage with final gestational age as
the outcome. Both the one-step and two-step estimators identify significant TEs corresponding to
a latent factor that summarizes exposure to MBP, MBzP, and MiBP. The one-step estimator also
identifies an estimated 57% mediated corresponding to an IQR change in the latent factor sum-
marizing MCNP, MCOP, and MCPP exposure, with a TE is equal to −0.07 days. As with the
simulations, we generally observe the phenomenon of product shrinkage regularizing parameters
that comprise the IE more aggressively than the independent shrinkage prior.

4.4.4 Conclusions

Across many of the results presented in the PROTECT multi-exposure mediation analysis, higher
exposure to the MCNP, MCOP, and MCPP grouping of phthalate metabolites is consistently and
significantly associated with shorter gestational age at delivery and smaller head circumference
z-score. Moreover, with respect to the TE, we generally observe increasingly adverse TE estimates
as simultaneous exposure to increasingly many phthalates occurs. This provides evidence for
conceptual models of increased cumulative risk as an individual is exposed to increasingly many
phthalate metabolites.

4.5 Discussion

In this chapter, we discussed a framework for mediation analysis with exposure mixtures through
latent factors which summarize the correlation structure of the individual chemical exposures. In
this work we are interpreting the latent factors as common sources of exposure variation, given that
highly correlated exposures are both more likely to co-occur and tend to load onto the same loading
after the varimax rotation is applied to identify the loadings matrix. The principal methodological
innovation is building a mediation framework that can simultaneously estimate mediation effects
corresponding to changes in the individual exposure space and the latent exposure mixtures space.
We showed that modeling the mediation model and latent factor model jointly, as in the one-step
mediation mixture map, leads to larger posterior standard deviations than a naive two-step imple-
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mentation of the mediation mixture map, as a result of accounting for uncertainty in estimating
the latent factors. Moreover, the one-step mediation mixture map is less biased in the dense me-
diation setting, indicating that jointly modeling the mediation model and latent factor model may
be particularly important when the indirect effect is distributed across many intermediaries. In the
PROTECT multi-exposure mediation analysis, we show that the mediation mixture map can esti-
mate a low-dimensional representation of the exposure space and helps identify important mixtures
contributing to adverse birth outcomes, such as gestational age at delivery and head circumference.

The results of the PROTECT data analysis show that conclusions can be quite different be-
tween mediation models that jointly model exposures and mediation models that separately model
exposures. If the total effect with respect to a single exposure is subject to confounding due to
co-exposure then total effect estimation will be biased and, consequently, estimates of the direct
and indirect effects will also be biased. Although we cannot directly assess co-exposure using the
chemical exposure data, we do see that pairwise correlations between the phthalate metabolites
are moderate to high within exposure class (see Supplementary Figure C.1). Therefore, it is likely
that the multi-exposure mediation analysis is more accurately estimating the direct, indirect, and
total effects, and the large percent mediated estimates from the single exposure mediation analyses
should be interpreted with skepticism. In PROTECT, the mediation mixture map does appear to
quantify latent sources of exposure variation that operate on different metabolic pathways. For
instance, when evaluating the the posterior distribution of αa we observe that the latent factor cor-
responding to MCNP, MCOP, and MCPP is strongly associated with eicoanoids in the cytochrome
p450 and lipoxygenase pathways, while the other latent factors are not. This indicates that the
mediation mixture map can detect relationships between specific types of phthalate metabolites
and inflammatory pathways, even if those pathways do not ultimately end up being significantly
associated with the outcome in the Y |M ,L,C model.

In this chapter, we introduced a relatively simple prior specification that elucidates targeted
shrinkage of the product. In both the simulations and the data example, product shrinkage tended
to apply extremely aggressive shrinkage towards zero, making it very difficult to correctly estimate
non-zero indirect effects. This has also been observed in other work on shrinkage priors for high-
dimensional mediation models (Wang et al., 2019). As previously noted, the primary reason for
overregularization is due to the fact that sparsity in the product occurs when one or the other terms
in the product are zero. This is mathematically encoded in the product shrinkage prior by either
shrinking (βm)gj to zero or by shrinking (αk

a)gj to zero when |(βm)gj| is large. This formula-
tion is in direct contrast to regularization techniques discussed in the high-dimensional confounder
adjustment literature, such as the outcome-adaptive lasso (OAL) and Bayesian adjustment for con-
founding (BAC) (Wang et al., 2012; Shortreed and Ertefaie, 2017), which when translated to our
setting advocate for (αk

a)gj to be less aggressively shrunk when |(βm)gj| is large. Therefore, a
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promising future direction for shrinkage in high-dimensional mediation models is to modify our
product shrinkage prior framework by setting f

{
(βm)gj

}
= (βm)gj , which corresponds to tar-

geted shrinkage on the ratio (αk
a)gj/(βm)gj . This prior specification is consistent with ideas from

OAL and BAC in that all three shrink (αk
a)gj less aggressively when |(βm)gj| is large. Therefore,

we recommend against using targeted shrinkage of the product if estimation of a non-zero global
IE is of interest.

Although we handled the dimensionality of the mediator space using shrinkage priors, there are
other approaches for modeling the mediators. One idea is to model the mediators using dimension
reduction techniques (Crainiceanu et al., 2011; Chén et al., 2018). If a low-dimensional represen-
tation of the mediator space summarizes all information contained in M , then the mediation effect
estimates corresponding to a linear mediation model are the same regardless of whether the ob-
served mediators or transformed mediators are used. Moreover, if the information in the observed
mediator space can be well-summarized with a handful of latent factors, then shrinkage priors
are not necessary, allowing us to circumvent issues related to overregularization. One straightfor-
ward modification of the mediation mixture map is to perform dimension reduction with respect
to the mediator space using a latent factor model (Bhattacharya and Dunson, 2011). However, in
practice, the low-dimensional representation of the mediator space characterized by a latent factor
model may not sufficiently summarize the information contained in M and can therefore can be
thought of as an approximation method; the quality of the approximation depends on how much
of the variance in M the latent factors explain. Further work is needed to determine whether or
not dimension reduction is a more effective tool for modeling high-dimensional mediators in the
context of the mediation mixture map.

While this chapter introduces a more model-driven correlative framework for mediation anal-
ysis with exposure mixtures, there are many limitations and challenges with extending the medi-
ation mixture map to a comprehensive causal mediation framework. In this associative work we
estimated exposure mixtures based on the correlation structure of individual chemical exposures,
however measurements of chemical exposures from biological samples do not contain sufficient
information to infer intervenable exogenous exposure sources. There are also conceptual questions
about trying to use outcome and mediator data to infer latent exposure sources, as, in theory, the
latent exogenous exposure sources should not depend on the outcome and mediators. Thus, the
interpretation of the estimated latent factors from MedMix is limited to statements of association
rather than causality. That being said, the idea underlying our associative mediation framework can
in principle be generalizable to more complicated settings. That is, we can consider a generalized
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version of the mediation mixture map

[Yi,M i· | Li·,Ci·] ∼MPM
(y,m | l, c)

[Ai· | Li·] ∼ LPL
(a | l), (4.5.1)

for i = 1, . . . , n where MPM
(y,m | l, c) is a mediation model that depends on Li·, Ci·, and

parameters PM and LPL
(a | l) is a latent factor model that depends on Li· and parameters PL.

While model (4.5.1) is much more flexible it comes with the tradeoff of potentially being more
difficult to define and interpret mediation effects with respect to latent exposure mixtures. We
leave this topic for future work.
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CHAPTER 5

Discussion

5.1 Handling Collinearity Among Chemical Exposures

In Chapter 2, we proposed the GIGG prior, as a tool for addressing variance inflation in linear
regression models. The GIGG prior construction assigns multivariate shrinkage to regression co-
efficients within the same exposure class. The prior correlation structure is responsible for achiev-
ing additional variance reduction beyond what is achievable using independent shrinkage priors.
Moreover, the GIGG prior has two hyperparameters per exposure group, leading to customizable
shrinkage for groups with dense or sparse signals. Consequently, GIGG regression results in a
relative IMSE reduction of 32.4% compared to horseshoe regression, a gold standard independent
shrinkage prior. Moreover, the computational burden of sampling from the posterior distribution
when the regression coefficients are endowed with the GIGG prior is comparable to the compu-
tational burden of sampling from the posterior distribution when the regression coefficients are
endowed with a horseshoe prior.

Extending GIGG regression to a generalized additive modeling framework is relatively straight-
forward, as there are several papers with general strategies for extending the family of global-local
shrinkage priors to additive models (Xu et al., 2016; Wei et al., 2020). Namely, Xu et al. (2016) and
Wei et al. (2020) both use basis expansion approaches to express nonlinear functions of each expo-
sure as linear combinations of basis functions, and then assigns the same local shrinkage parameter
to basis coefficients corresponding to the same chemical exposure. However, extensions of GIGG
regression become less straightforward when considering models with increasingly flexible mean
structures, such as models involving high-order interaction terms. For example, in the context of
pairwise interaction models, strong heredity assumptions are generally imposed on shrinkage es-
timators to ensure that pairwise interactions are only considered if the corresponding main effects
are present in the fitted model (Boss et al., 2021). The purpose of strong heredity assumptions is
to facilitate interpretability of the interaction terms, but they often result in increasingly complex
penalty functions and shrinkage priors. A second, and much larger challenge, is that more flexible
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mean structures are exponentially more difficult to reliably estimate when there is collinearity in
the exposure space. Consider a linear multi-pollutant model with two exposures E1 and E2 such
that the Pearson correlation between E1 and E2 is equal to 0.9. If the true generative model only
involves first-order terms then we only need to distinguish between E1 and E2, but if the true
generative model involves second-order terms then we need to additionally distinguish between
E2

1 , E2
2 , and E1E2. That is, as the true generative model becomes increasingly higher order, the

ability to estimate the mean structure in the presence of correlated chemical exposure becomes
more difficult. While there are methodological developments for modeling exposure mixtures
with increasingly flexible mean structures (Bobb et al., 2015; Ferrari and Dunson, 2020; McGee
et al., 2023), explicit commentary on how to fit models these models to high-dimensional, highly
correlated chemical exposure data remains a seminal methodological challenge.

5.2 Leveraging External Information on the Total Effect

In Chapter 3, we argued that for many mediation analyses in environmental health, external
summary-level information on the total effect is available from prior studies of the total effect.
Moreover, we showed that leveraging external summary-level information on the total effect can
improve estimation efficiency for IE, DE, and TE estimation through a constraint on the param-
eter space, provided that the outcome-mediator association given exposure is non-zero. Given
that environmental health studies with protocols for collecting omics data generally have limited
sample size, it is often useful to leverage externally available information when the true TEs for
the internal and external study populations are the same. We developed the MESSI framework to
protect against biased estimation of mediation effects when the internal and external study popula-
tions have different TEs, while still providing efficiency gains for estimating mediation parameters
when the TEs in the internal and external study populations are the same.

In principle, the logical progression of establishing the biological and statistical significance of
the total effect prior to investigating mediation hypotheses means that a substantially more gen-
eral framework for estimating mediation effects with external summary-level information on the
total effect can, in theory, be developed. However, developing a general framework that consid-
ers a more general class of mediation models, such as mediation models with exposure-mediator
interaction terms or mediation models with non-continuous outcome and mediator data, are more
challenging to work with. The main difficulty is that non-linear mediation models and non-linear
data types coincide with total effect expressions that are functions of confounder and counterfac-
tual exposure levels (VanderWeele, 2015). In practice, marginal effect estimates of exposures on
the outcome are generally not reported as a functions of confounder and counterfactual exposure
levels, and therefore are not necessarily interpretable as external total effect estimates. Moreover,
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marginal effect estimates of the exposure on the outcome may not be logically consistent with the
specification of the internal mediation model. For example, in the case of a mediation model with
a binary outcome, a logistic regression model for [Y | M ,A,C] does not necessarily coincide
with a logistic regression model for [Y | A,C] after integrating out M (Cheng et al., 2019).
Therefore, it is important to first establish how information from a marginal outcome-exposure
association translates to information on the total effect. Another future direction is to generate pre-
dictions from the external marginal model and use those predictions to inform model fitting in an
internal mediation analysis (Gu et al., 2019). This approach may circumvent the need to establish
explicit relationships between the external marginal outcome-exposure association, the external to-
tal effect, and the internal total effect, and consequently may be more straightforward for mediation
analyses with complex data structures and limited information on the external models.

Extending the MESSI framework to multi-exposure mediation models also poses practical lim-
itations on external summary-level information that can be used, even in the case of a linear medi-
ation model, continuous outcome data, and continuous mediator data. One difficulty is that studies
rarely have perfect overlap in the chemical exposures they consider. However, even if multiple
studies consider the same sets of chemical exposures, different laboratory protocols, equipment,
and environments may differentially impact the quality of exposure assessment for the same set
of chemical exposures. Statistically, this manifests as differential measurement error mechanisms,
and greatly impacts the feasibility of modeling chemical exposures with highly variable measure-
ments or low detection frequencies. Therefore, a pragmatic framework for incorporating summary-
level information from an external mixtures analysis must allow the set of chemical exposures to
differ between the internal and external studies. The problem can be formalized as leveraging ex-
ternal summary-level information on the total effect model, [Y | AE,CE], where AE are the set of
chemical exposures in the external model and CE are the set of confounders in the external model,
to improve estimation of mediation parameters in the internal mediation model [Y ,M | AI ,CI ],
where AI are the set of chemical exposures in the internal model and CI are the set of confounders
in the internal model.

5.3 Causal Inference with Chemical Mixtures

In Chapter 4, we developed the mediation mixture map, which combines ideas from latent fac-
tor modeling and mediation analysis. The latent factor model component summarizes common
sources of variation amongst the measured exposures, with the hope that those common sources of
variation comprise relevant exposure mixtures. However, there is no guarantee that the estimated
latent factors correspond to true exposure events, as they could characterize other common sources
of variation such as spatiotemporal variation or pharmacokinetics. Moreover, outcome and media-

102



tor adaptive learning of latent sources of exposure variation does not admit a causal interpretation,
as exposure sources should, in theory, not depend on the health outcome or intermediary pathways
of interest. In the PROTECT example, we saw that the mediation mixture map with a varimax
rotation post-processing step results in estimated latent factors corresponding to blocks of highly
correlated chemical exposures. The total effects corresponding to these data adaptively estimated
latent factors tend to be stronger than the total effects for the individual components that comprise
the latent factors, giving us some assurance that the latent factors are likely summarizing some
notion of cumulative exposure burden across multiple chemicals.

5.3.1 Causal Framework for Estimating the Effect of Exposure Mixtures

Building a causal framework for estimating the effect of exposure mixtures on a health outcome re-
quires a significant amount of attention, given the complexity of the problem. Existing definitions
of exposure mixtures frequently define an exposure mixture as a multivariate vector of individual
chemical exposures (Devick et al., 2022), however it is crucial to distinguish how the individual
chemical exposure concentrations are measured. If the individual chemical exposure concentra-
tions are obtained from biological samples, then the multivariate vector of exposure concentra-
tions corresponds to an endogenous chemical mixture that is circulating within specific biological
systems. From an exposure source perspective, there is also the notion of exogenous chemical
mixtures that circulate in the environment and enter the body through ingestion, respiration, or
physical contact. From a causal intervention perspective, an exogenous chemical mixture is a
quantity that regulatory policies can directly target, either by imposing caps on emissions of par-
ticular chemicals or engaging in remediation activities to clean up contaminated sites. However,
causal interventions with respect to endogenous chemical mixtures occur at the individual level,
generally through treatments for acute exposure events, such as chelation therapy for lead poison-
ing. That is, interventions on exogenous exposure mixtures try to limit chemical exposures before

they enter the body and interventions on endogenous chemical mixtures try to reduce chemical
exposure concentrations after they enter the body.

When designing a causal framework for estimating the effect of exposure mixtures, we need to
be mindful of what the intervention is. If the intervention of interest is regulatory in nature, then
either exogenous exposure data should be directly collected or endogenous exposure data should
be leveraged to infer the exogenous exposure data. The later is itself a very challenging problem,
as endogenous exposure data corresponds to the accumulation of many different exposure events
that happen over time, and therefore may not clearly map to specific exogenous exposure events.
In the development of the mediation mixture map, we used a latent factor model to attempt to
define outcome-adaptive exposure mixtures, but the gold standard for estimating mediation effects
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corresponding to exogenous exposure mixtures will likely need to involve exposure assessment
at the exposure source rather than exposures derived from biological samples. This motivates the
use of study designs which obtain samples of the lived environment, such as drinking and bathing
water, measures of indoor and outdoor air quality, regularly consumed food products, and soil
near the residence, to better understand chemical profiles of common exposure sources. Moreover,
study designs that integrate information on common exposure sources with endogenous exposure
measurements from biological samples may be helpful in understanding how exogenous exposure
mixtures map to endogenous exposure mixtures.

Beyond the need to distinguish between exogenous exposure mixtures and endogenous expo-
sure mixtures, there is also a discussion required regarding causal interventions targeting single
chemical exposures. Regulators can certainly enact policies targeted at curbing exposure to spe-
cific chemicals and it is also biologically plausible that the causal effect of an endogenous exposure
mixture is driven by one particular chemical. Therefore, a causal framework for exposure mixtures
not only needs to distinguish between exogenous and endogenous exposure mixtures, but it also
needs to be able to estimate causal effects corresponding to individual chemicals as well. The
mediation mixture map is an attempt at defining a mediation framework when there is only data
available on the endogenous exposure mixture, however there are concerns regarding the causal
identifiability of the latent factors and loadings matrix. A more detailed investigation and devel-
opment of a general causal inference framework that harmonizes individual chemical exposures
with exogenous and endogenous exposure mixtures is critically important to ensure that there is a
unified causal framework for environmental health research.

5.3.2 Unmeasured Confounding due to Co-Exposures

An additional complication to developing a causal framework for exposure mixtures is that assay-
ing technology is not at the stage where thousands of chemicals across a wide spectrum of exposure
classes can be practically measured. As a result, environmental health studies tend to restrict their
focus to a handful of exposure classes, which may or may not correspond to real-world exposure
events. Section 1 introduced the notion of confounding via co-exposure, as a central motivation for
transitioning to joint models of chemical exposures. However, given the scope restriction due to
technological and financial limitations, there are likely many other unmeasured co-exposures for
each of the measured chemical exposures. Moreover, of the measured chemical exposures, a siz-
able portion often need to be discarded due to measurement error issues, making them functionally
unmeasured for the purposes of statistical modeling. Therefore, a comprehensive causal frame-
work for analyzing exposure mixtures must address unmeasured confounding via co-exposure. A
promising future direction is to consider modifications of approaches like the deconfounder which
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account for unmeasured confounding provided that the unmeasured confounders are the root causes
for multiple exposures (Wang and Blei, 2019). Approaches based on ideas from the deconfounder
may be particularly suitable for environmental health research because of the rich correlation struc-
ture in the exposure space; chemical exposures within the same exposure class tend to co-occur,
meaning that unmeasured co-exposures likely correspond to multiple measured exposures.

5.3.3 Incorporating Measurement Error

This dissertation primarily focuses on statistical methods under the implicit assumption of no ex-
posure measurement error, however it is well known that measurement error in chemical exposure
assessment is a ubiquitous challenge. Measurement error can occur randomly, as there is inherent
variability in exposure ascertainment, or systematically, where there is some underlying mecha-
nism governing how errors are generated. Some examples of systematic exposure measurement
errors include imperfect calibration of measurement instruments, sensitivity of measurement in-
struments to detect the presence of a chemical, and temporal degradation of stored biosamples.
The statistical consequence of ignoring random measurement error is often attenuation of effect
estimates towards the null (Chesher, 1991), but systematic forms of measurement error can also
lead to biases away from the null.

One common form of systemic exposure measurement error in chemical exposure assessment
occurs when the measurement instrument is not sensitive enough to detect chemical concentrations
below a particular threshold, called the limit of detection (LOD) (Boss et al., 2019). Functionally,
the distribution of observed chemical concentrations is left censored, where values below the LOD
range between a concentration of zero and a concentration equal to the LOD. Outcome modeling
when independent variables are subject to detection limits is handled either by specifying a mea-
surement error model that models the left censoring process (Lynn, 2001; Nie et al., 2010; May
et al., 2011; Kong and Nan, 2016; Chen et al., 2022) or multiply imputing concentrations below
the LOD (Lynn, 2001; Lubin et al., 2004; Chen et al., 2011; Arunajadai and Rauh, 2012; Wang
and Feng, 2012; Bernhardt et al., 2015; Atem et al., 2017; Ding et al., 2018; Boss et al., 2019). In
current practice, the gold standard measurement error models combine the desired outcome model
with a semiparametric accelerated failure time model to account the measurement error process
defined by LODs (Kong and Nan, 2016; Chen et al., 2022). Imputation approaches based on accel-
erated failure time models have also been developed to impute values below the LOD (Atem et al.,
2017; Ding et al., 2018). A causal framework for modeling multiple exposures would ideally have
the flexibility to handle observed exposures that are subject to a left censoring process defined by
their respective LODs.
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5.3.4 Final Thoughts

Sections 5.3.1, 5.3.2, and 5.3.3 illustrate the complexity of defining a comprehensive causal frame-
work for mixtures analyses. On one hand we need to distinguish between chemical exposures at
the source and inside the human body. If a study obtains exposure measurements from biological
samples, that leaves three sets of latent variables to infer: the exogenous exposure mixtures that
lead to the observed endogenous chemical exposures in biological samples, the true endogenous
exposure concentrations themselves, and the unmeasured co-exposures that may distort estimated
mixture effects if not accounted for. This is incredibly ambitious, possibly unrealistic, but a sub-
stantial breakthrough on this front would, in our view, be a seminal contribution to the field of
environmental statistics.

5.4 Extensions to Exposomics

This dissertation concerns itself with joint models of chemical exposures and endogenous biomark-
ers, however there is also interest in statistical models associating the exposome, defined as the to-
tality of all exposures that an individual experiences throughout their life, with health outcomes of
interest (Wild, 2005). When discussing the exposome, exogenous exposures are defined broadly,
encompassing chemical exposures, infectious agents, the lived environment, and lifestyle factors,
among others (Sillé et al., 2023). Given a large and varied collection of exposures — or, alterna-
tively, omics structures thought to contain exposure signatures, such as the metabolome — one can
jointly associate the measured exposome with an outcome of interest and evaluate intermediary
pathways by which the measured exposome may lead to an outcome of interest.

GIGG regression is generally adaptable to settings with large collections of exposures, however
there are a few challenges that require further discussion. The first difficulty arises in the context
of untargeted identification of chemical exposures or exposure signatures from biological samples.
GIGG regression requires a priori specification of the exposure groups, which is not easily defined
in the context of untargeted chemical exposure data. In general, our recommendation is to define
groups of size one, corresponding to exposures or exposure signatures that are unknown or have no
a priori known grouping structure. Another path forward is to consider a methodological extension
of GIGG regression that treats the grouping structure as an unknown variable and models the group
assignment of exposures or exposure signatures using a dirichlet process prior (Ferguson, 1973)
or clustering procedure (Witten et al., 2014). The other major challenge is related to computation
and hyperparameter estimation, as exposome-wide analyses are inherently high-dimensional. As
stated in Section 2.4, the primary computational bottleneck for a naive Gibbs sampling algorithm is
obtaining full conditional draws of β. For “small n, large p” problems, the Woodbury identity can
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be utilized so that the full conditional update of β scales linearly in p (Bhattacharya et al., 2016).
If n and p are both large, say an order of magnitude of 10,000 each, there are several recently
developed approximation approaches, the former of which exploits the ability of the horseshoe
prior to shrink τ 2λ2gj close to zero (Johndrow et al., 2020) while the latter uses a conjugate gradient
algorithm to find an approximate solution to Qβ = v (Nishimura and Suchard, 2022). Paralleliza-
tion can also be used within the Gibbs sampler to simultaneously update the shrinkage parameters
corresponding to each group (Terenin et al., 2019). With respect to hyperparameter estimation, it
is also unlikely that MMLE with group-specific hyperparameters will perform as well as it does
for the multi-pollutant models considered in Chapter 2. It is therefore our recommendation to use
MMLE with a common set of GIGG hyperparameters shared across all groups for exposome-wide
analyses.

To utilize MESSI in exposome-wide analyses, there are some requisite methodological ex-
tensions that must be developed. The first methodological generalization is to develop a multi-
exposure version of MESSI, the challenges of which are articulated in Section 5.2. If there is
external summary-level information on the total effect which coincides with the desired internal
mediation analysis, then the next methodological extension is to extend MESSI to handle high-
dimensional mediators. This is particularly important because a common intermediary pathway of
interest in exposome-wide analyses are epigenetic mechanisms such as DNA methylation (Song
et al., 2020; Sillé et al., 2023). Intuitively, one can penalize the regression coefficient vectors αa

and βm, although there is not a consensus in the high-dimensional mediation literature on the spe-
cific penalty functions to assign to αa and βm. Some of our preliminary theoretical results suggest
that, when θ̂Ea →p θ

I
a and the number of mediators are fixed, Theorem 3.3.1 and Theorem 3.3.2

generalize to a version of MESSI with adaptive LASSO penalties on αa and βm. Further work is
required to develop code and evaluate the performance of MESSI with adaptive lasso penalties in
high-dimensional settings.

Conceptually, the Total Effect Mixture Map and the Mediation Mixture Map are well-suited
for exposome-wide analyses, provided that the exposure data can be appropriately modeled with
a latent factor model. Specifically, the dimension reduction attributable to latent factor modeling
helps deal with concerns regarding the high-dimensional nature of the observed exposures. More-
over, the Mediation Mixture Map model specification endows αa and βm with shrinkage priors to
simultaneously handle high-dimensional mediator spaces. Methodological variants of the Media-
tion Mixture Map that use dimension reduction techniques on the mediator space as an alternative
to shrinkage priors, should also be appropriate for mediation analyses with high-dimensional me-
diator spaces. However, one challenge for the Mediation Mixture Map are settings where the
exposures have distributions that are not in accordance with modeling assumptions in the latent
factor model. As a concrete example, Goutman et al. (2023) summarized occupational history
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variables through the number of job-years worked in standardized occupational categories, result-
ing in zero-inflated, right-skewed exposure variables. If one were to perform an exposome-wide
analysis that considers occupational history, the zero-inflated and right-skewed nature of the oc-
cupational exposure variables clearly violates the normality assumption on A | L. In such cases,
the latent factor component in the Mediation Mixture Map needs to be modified to more flexibly
accommodate different types of exposure distributions. Future work is needed to determine which
types of exposure data should be modeled using a latent factor model, and the latent factor model
component of the Mediation Mixture Map needs to be generalized to accommodate exposure data
of different types and structures.
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APPENDIX A

Supplement for Chapter 2

A.1 Distributions used in Chapter 2
Beta Prime Distribution:

X ∼ β′(a, b) =⇒ fX(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1 + x)−a−b, x > 0.

Gamma Distribution:
X ∼ G(a, b) =⇒ fX(x) =

ba

Γ(a)
xa−1 exp(−bx), x > 0.

Generalized Inverse Gaussian Distribution:

X ∼ GIG(λ, ψ, χ) =⇒ fX(x) =
(ψ/χ)λ/2

2Kλ(
√
ψχ)

xλ−1 exp

(
− 1

2

(
χ

x
+ ψx

))
, x > 0,

where Kλ(·) is the modified Bessel function of the third kind with index λ (Hörmann and Leydold, 2014).
Half-Cauchy Distribution:

X ∼ C+(0, σ) =⇒ fX(x) =
2

πσ(1 + x2/σ2)
, x > 0.

Inverse-Gamma Distribution:

X ∼ IG(a, b) =⇒ fX(x) =
ba

Γ(a)
x−a−1 exp

(
− b

x

)
, x > 0.
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A.2 Proof of Theorem 2.2.1
For shorthand, we will use:

r(x) ∼ s(x) := lim
x→∞

r(x)

s(x)
= 1.

Define

L(u) =
1

(τ2)λB(ag, bg)

(
u/τ2

1 + u/τ2

)ag
, B(ag, bg) =

Γ(ag)Γ(bg)

Γ(ag + bg)
,

which is slowly-varying function, i.e.,

lim
u→∞

L(tu)

L(u)
= 1,

for all t > 0. Moreover, let

π(βgj | τ2, ag, bg) =
∫ ∞

0

(2πu)−1/2 exp

(
−
β2
gj

2u

)
f(u | τ2, ag, bg)du

denote the normal variance mixture probability density function and let f(u | τ2, ag, bg) denote the scaled β′(ag, bg)

mixing density function with fixed scale parameter τ2. Then

lim
u→∞

f(u | τ2, ag, bg)
exp(−ψ+u)uλ−1L(u)

= lim
u→∞

(τ2B(ag, bg))−1(u/τ2)ag−1(1 + u/τ2)−(ag+bg)

exp(−ψ+u)uλ−1L(u)
= lim
u→∞

(u/τ2)−1(1 + u/τ2)−bg

exp(−ψ+u)(u/τ2)λ−1

= lim
u→∞

exp(ψ+u)(u/τ
2)−λ(1 + u/τ2)−bg ,

where ψ+ = sup{w ∈ R : ϕ(w) <∞} and

ϕ(w) =
1

B(ag, bg)

∫ ∞

0

exp(wu)
1

τ2

(
u

τ2

)ag−1(
1 +

u

τ2

)−(ag+bg)

du.

Note that ψ+ = 0. Fix λ = −bg . Then,

lim
u→∞

exp(ψ+u)(u/τ
2)−λ(1 + u/τ2)−bg = lim

u→∞

(
u/τ2

1 + u/τ2

)bg
= 1.

By Theorem 6.1 in Barndorff-Nielsen et al. (1982) we conclude that

π(βgj | τ2, ag, bg) ∼ (2π)−1/22bg+1/2Γ(bg + 1/2)|βgj |−(1+2bg)L(β2
gj).

To get the index of regular variation, we note the following straightforward lemma:

Lemma 1. Suppose that r and s are two positive, measurable functions such that r(x) ∼ s(x) and s is regularly
varying with index ω ∈ R. Then r is regularly varying with index ω.

Proof.

lim
x→∞

r(tx)

r(x)
= lim
x→∞

r(tx)

r(x)

s(tx)

s(tx)

s(x)

s(x)
= lim
x→∞

(
r(tx)/s(tx)

r(x)/s(x)

)
s(tx)

s(x)
= lim
x→∞

s(tx)

s(x)
= tω.

Despite its simplicity, Lemma 1 is of great practical use, particularly if the function whose tail behavior we are
interested in does not have a closed form. When working with global-local mixture priors we often do not have closed
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form marginal prior distributions for β and it is usually easier to construct and work with a closed form function that
has asymptotically equivalent tail behavior. Since the index of regular variation of

(2π)−1/22bg+1/2Γ(bg + 1/2)|βgj |−(1+2bg)L(β2
gj)

is ω = −1− 2bg , then by Lemma 1 the index of regular variation of π(βgj | τ2, ag, bg) is also ω = −1− 2bg .
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A.3 Proof of Theorem 2.3.1
Let Gn = {γ21 , ..., γ2Gn

} denote the collection of group shrinkage parameters and let pg indicate the number of regres-
sors in the g-th group. Define the following sets: Ag = {j : β0

gj ̸= 0},Acg = {j : β0
gj = 0},An = {(g, j) : β0

gj ̸= 0},
Acn = {(g, j) : β0

gj = 0}. In words, Ag is the active set for the g-th group, Acg is the non-active set for the g-th group,
An is the active set across all groups, and Acn is the non-active set across all groups.

π
(
βn
∣∣ Gn,Hn, τ2n) = Gn∏

g=1

pg∏
j=1

Γ(bg + 1/2)

Γ(bg)
√
2πτ2nγ

2
g

(
1 +

β2
gj

2τ2nγ
2
g

)−(bg+1/2)

Then, we see that

π

(
βn : ∥βn − β0

n∥2 <
∆

nρ/2

∣∣∣∣ Gn,Hn, τ2n)

≥
Gn∏
g=1

[ ∏
j∈Ag

π

(
|βgj − β0

gj | <
∆

√
pnnρ/2

∣∣∣∣ Gn,Hn, τ2n)× ∏
j∈Ac

g

π

(
|βgj | <

∆
√
pnnρ/2

∣∣∣∣ Gn,Hn, τ2n)
]
.

Continuing

π

(
|βgj − β0

gj | <
∆

√
pnnρ/2

∣∣∣∣ Gn,Hn, τ2n)

=

∫ β0
gj+

∆
√

pnnρ/2

β0
gj−

∆
√

pnnρ/2

Γ(bg + 1/2)

Γ(bg)
√

2πτ2nγ
2
g

(
1 +

β2
gj

2τ2nγ
2
g

)−(bg+1/2)

dβgj

≥ 2∆Γ(bg + 1/2)

Γ(bg)
√

2πτ2nγ
2
g
√
pnnρ/2

(
1 +

(Ln + ∆√
pnnρ/2 )

2

2τ2nγ
2
g

)−(bg+1/2)

and

π

(
|βgj | <

∆
√
pnnρ/2

∣∣∣∣ Gn,Hn, τ2n)

=

∫ ∆
√

pnnρ/2

− ∆
√

pnnρ/2

Γ(bg + 1/2)

Γ(bg)
√
2πτ2nγ

2
g

(
1 +

β2
gj

2τ2nγ
2
g

)−(bg+1/2)

dβgj

= 2

∫ ∆
√

pnnρ/2

0

Γ(bg + 1/2)

Γ(bg)
√
2πτ2nγ

2
g

(
1 +

β2
gj

2τ2nγ
2
g

)−(bg+1/2)

dβgj

≥ 2

∫ ∆
√

pnnρ/2

0

Γ(bg + 1/2)

Γ(bg)
√
2πτ2nγ

2
g

exp

(
− βgj(bg + 1/2)√

2τ2nγ
2
g

)
dβgj

=
2Γ(bg + 1/2)

Γ(bg)
√

2πτ2nγ
2
g

(√
2τ2nγ

2
g

bg + 1/2

)[
1− exp

(
− ∆(bg + 1/2)√

2τ2nγ
2
gpnn

ρ

)]

=
2Γ(bg + 1/2)

Γ(bg)
√
π(bg + 1/2)

[
1− exp

(
− ∆(bg + 1/2)√

2τ2nγ
2
gpnn

ρ

)]
.
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Note that we have the above inequality because (1 + x)−1 ≥ exp(−
√
x) for all x ≥ 0. Therefore,

Gn∏
g=1

[ ∏
j∈Ag

π

(
|βgj − β0

gj | <
∆

√
pnnρ/2

∣∣∣∣ Gn,Hn, τ2n)× ∏
j∈Ac

g

π

(
|βgj | <

∆
√
pnnρ/2

∣∣∣∣ Gn,Hn, τ2n)
]

≥
Gn∏
g=1

(
2∆Γ(bg + 1/2)

Γ(bg)
√

2πτ2nγ
2
g
√
pnnρ/2

)|Ag|(
1 +

(Ln + ∆√
pnnρ/2 )

2

2τ2nγ
2
g

)−|Ag|(bg+1/2)

×

(
2Γ(bg + 1/2)

Γ(bg)
√
π(bg + 1/2)

)|Ac
g|[

1− exp

(
− ∆(bg + 1/2)√

2τ2nγ
2
gpnn

ρ

)]|Ac
g|

.

Substituting in τ2n = C/(pnn
ρ log(n)) and taking the negative logarithm of the final expression yields

−
Gn∑
g=1

[
|Ag| log

(
2∆Γ(bg + 1/2)

√
log(n)

Γ(bg)
√
2Cπγ2g

)

−|Ag|(bg + 1/2) log

(
1 +

pnn
ρ log(n)(Ln + ∆√

pnnρ/2 )
2

2Cγ2g

)

+|Acg| log

(
2Γ(bg + 1/2)

Γ(bg)
√
π(bg + 1/2)

)
+ |Acg| log

(
1− exp

(
−

∆(bg + 1/2)
√
log(n)√

2Cγ2g

))]

=

Gn∑
g=1

[
− |Ag| log

(
2∆Γ(bg + 1/2)

√
log(n)

Γ(bg)
√
2Cπγ2g

)

+|Ag|(bg + 1/2) log

(
1 +

pnn
ρ log(n)(Ln + ∆√

pnnρ/2 )
2

2Cγ2g

)

−|Acg| log

(
2Γ(bg + 1/2)

Γ(bg)
√
π(bg + 1/2)

)
− |Acg| log

(
1− exp

(
−

∆(bg + 1/2)
√
log(n)√

2Cγ2g

))]
.

Let

Tn1 = inf
g∈{1,...,Gn}

log

(
2∆Γ(bg + 1/2)

Γ(bg)
√
2Cπγ2g

)
,

Tn2 = inf
g∈{1,...,Gn}

log

(
2Γ(bg + 1/2)

Γ(bg)
√
π(bg + 1/2)

)
,

Tn3 = inf
g∈{1,...,Gn}

∆(bg + 1/2)√
2Cγ2g

,

γ2n,min = inf
g∈{1,...,Gn}

γ2g , and bn,max = sup
g∈{1,...,Gn}

bg.

Then,
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Gn∑
g=1

[
− |Ag| log

(
2∆Γ(bg + 1/2)

√
log(n)

Γ(bg)
√
2Cπγ2g

)

+|Ag|(bg + 1/2) log

(
1 +

pnn
ρ log(n)(Ln + ∆√

pnnρ/2 )
2

2Cγ2g

)

−|Acg| log

(
2Γ(bg + 1/2)

Γ(bg)
√
π(bg + 1/2)

)
− |Acg| log

(
1− exp

(
−

∆(bg + 1/2)
√
log(n)√

2Cγ2g

))]

≤
Gn∑
g=1

[
− |Ag|

2
log
(
log(n)

)
− |Ag|Tn1 + |Ag|(bn,max + 1/2) log

(
1 +

pnn
ρ log(n)(Ln + ∆√

pnnρ/2 )
2

2Cγ2n,min

)

−|Acg|Tn2 − |Acg| log
(
1− exp

(
Tn3
√
log(n)

))]

= −|An|
2

log
(
log(n)

)
− |An|Tn1 + |An|(bn,max + 1/2) log

(
1 +

pnn
ρ log(n)(Ln + ∆√

pnnρ/2 )
2

2Cγ2n,min

)

−|Acn|Tn2 − |Acn| log
(
1− exp

(
− Tn3

√
log(n)

))
.

Note that the above expression is dominated by the

|An|(bn,max + 1/2) log

(
1 +

pnn
ρ log(n)(Ln + ∆√

pnnρ/2 )
2

2Cγ2n,min

)

term. If |An| = o(n/ log(n)), then by Theorem 1 in Armagan et al. (2013b), we obtain posterior consistency condi-
tional on Gn, i.e., ∀ϵ > 0

π
(
βn : ∥βn − β0

n∥2 < ϵ
∣∣ yn,Gn,Hn, τ2n, σ2

)
→ 1

almost surely. Lastly, by combining the law of iterated expectations with the dominated convergence theorem, we
obtain

π
(
βn : ∥βn − β0

n∥2 < ϵ
∣∣ yn,Hn, τ2n, σ2

)
= EGn|yn,Hn,τ2

n,σ
2

[
π
(
βn : ∥βn − β0

n∥2 < ϵ
∣∣ yn,Gn,Hn, τ2n, σ2

)]
→ EGn|yn,Hn,τ2

n,σ
2 [1] = 1.
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A.4 Proof of Theorem 2.3.2
Let M = Ip − (Ip + (X⊤X)−1D)−1 = (Ip + D−1X⊤X)−1 where D−1 = σ−2τ2ΓΛ. For brevity, we will
denote the full conditional posterior mean as

E[β | ·] = E[β | y, σ2, τ2,Γ,Λ]

The Rayleigh quotient inequality yields,∥∥∥β̂OLS − E[β | ·]
∥∥∥2
2
≥ emin(M⊤M)

∥∥∥β̂OLS∥∥∥2
2
=
(
θmin(M)

)2∥∥∥β̂OLS∥∥∥2
2
,

where emin(M⊤M) denotes the minimum eigenvalue of M⊤M and θmin(M) denotes the minimum singular value
of M . Then, we have

(
θmin(M)

)2∥∥∥β̂OLS∥∥∥2
2
=

1(
θmax(Ip +D−1X⊤X)

)2 ∥∥∥β̂OLS∥∥∥2
2
=

1

∥Ip +D−1X⊤X∥2O

∥∥∥β̂OLS∥∥∥2
2
,

where ∥ · ∥O is the operator 2-norm and ∥ · ∥2 is the usual L2-norm. The operator 2-norm is sub-additive and sub-
multiplicative, implying that

1

∥Ip +D−1X⊤X∥2O

∥∥∥β̂OLS∥∥∥2
2
≥ 1(
∥Ip∥O + ∥D−1∥O∥X⊤X∥O

)2 ∥∥∥β̂OLS∥∥∥2
2

=

(
1

1 + θmax(X
⊤X)σ−2τ2 max(g,j) γ2gλ

2
gj

)2∥∥∥β̂OLS∥∥∥2
2

First, note that

π

(
1

1 + cσ−2τ2 max(g,j) γ2gλ
2
gj

< ϵ

∣∣∣∣ y,H, τ2, σ2

)
≤ π

( G⋃
g=1

pg⋃
j=1

{
1

1 + cσ−2τ2γ2gλ
2
gj

< ϵ

} ∣∣∣∣ y,H, τ2, σ2

)

≤
G∑
g=1

pg∑
j=1

π

(
1

1 + cσ−2τ2γ2gλ
2
gj

< ϵ

∣∣∣∣ y,H, τ2, σ2

)
,

where c = θmax(X
⊤X). Define

Kgj =
1

1 + cσ−2τ2γ2gλ
2
gj

and for notational simplicity let K = K−g ∪ {Kgl} where K−g = {Kg′1 : g′ ̸= g}. Also, let L = ∪Gg=1Lg denote the
collection of all local shrinkage parameters where Lg = {λ2gj : 1 ≤ j ≤ pg}. Then,

π
(
Kgl < ϵ

∣∣ y,H, τ2, σ2
)
=

1

π(y | H, τ2, σ2)

∫ ϵ

0

π(y | Kgl,H, τ2, σ2)π(Kgl | H, τ2, σ2)dKgl

=
1

π(y | H, τ2, σ2)

∫ ϵ

0

∫
(0,1)p−1

∫
(0,∞)p

π(y | K,L,H, τ2, σ2)π(K | L,H, τ2, σ2)π(L | H, τ2, σ2)dLdK−gdKgl,

where (0, 1)p−1 indicates a p − 1 dimensional hypercube on (0, 1) and (0,∞)p = (0,∞) × · · · × (0,∞) p times.
Looking at the individual components we first observe that π(y | K,L,H, τ2, σ2) is just a reparameterized version of
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π(y | Γ,Λ,H, τ2, σ2), where

[y | Γ,Λ,H, τ2, σ2] ∼ N(0, σ2In + τ2XΓΛX⊤).

Note that τ2XΓΛX⊤ is a symmetric, positive definite matrix and therefore has positive, real eigenvalues. Thus the
determinant of σ2In + τ2XΓΛX⊤ satisfies |σ2In + τ2XΓΛX⊤| ≥

(
σ2
)n

and we get that

π(y | Γ,Λ,H, τ2, σ2) ≤ (2πσ2)−n/2.

Therefore, we conclude that,
π(y | K,L,H, τ2, σ2) ≤ (2πσ2)−n/2.

One helpful observation is that

π(K | L,H, τ2, σ2)π(L | H, τ2, σ2)

= π(Kgl | λ2gl,H, τ2, σ2)π(λ2gl | H, τ2, σ2)
∏
g′ ̸=g

π(Kg′1 | Lg′ ,H, τ2, σ2)π(Lg′ | H, τ2, σ2)

Thus, we get a simplified upper bound

π
(
Kgl < ϵ

∣∣ y,H, τ2, σ2
)

≤ 1

π(y | H, τ2, σ2)

∫ ϵ

0

∫ ∞

0

(2πσ2)−n/2π(Kgl | λ2gl,H, τ2, σ2)π(λ2gl | H, τ2, σ2)dλ2gldKgl.

Note that because we are conditioning on the local shrinkage parameter then calculating π(Kgl | λ2gl,H, τ2, σ2) is a
single variable transformation problem, where

π(Kgl | λ2gl,H, τ2, σ2) =
1

Γ(ag)

(
σ2

cτ2λ2gl

)ag
(1−Kgl)

ag−1(Kgl)
−(1+ag) exp

(
− σ2(1−Kgl)

cτ2λ2glKgl

)
.

Moreover,

π(λ2gl | H, τ2, σ2) =
1

Γ(bg)
(λ2gl)

−bg−1 exp

(
− 1

λ2gl

)
,
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is simply the prior on the local shrinkage parameters. Therefore,

π
(
Kgl < ϵ

∣∣ y,H, τ2, σ2
)

≤ 1

(2πσ2)n/2π(y | H, τ2, σ2)

∫ ϵ

0

∫ ∞

0

π(Kgl | λ2gl,H, τ2, σ2)π(λ2gl | H, τ2, σ2)dλ2gldKgl

=
1

(2πσ2)n/2Γ(ag)Γ(bg)π(y | H, τ2, σ2)

(
σ2

cτ2

)ag
×∫ ϵ

0

(1−Kgl)
ag−1(Kgl)

−(1+ag)

∫ ∞

0

(
λ2gl
)−(ag+bg)−1

exp

(
−
(
1 +

σ2(1−Kgl)

cτ2Kgl

)/
λ2gl

)
dλ2gldKgl

=
Γ(ag + bg)

(2πσ2)n/2Γ(ag)Γ(bg)π(y | H, τ2, σ2)

(
σ2

cτ2

)ag
×∫ ϵ

0

(1−Kgl)
ag−1(Kgl)

−(1+ag)

(
1 +

σ2(1−Kgl)

cτ2Kgl

)−(ag+bg)

dKgl

≤ Γ(ag + bg)

(2πσ2)n/2Γ(ag)Γ(bg)π(y | H, τ2, σ2)

(
σ2

cτ2

)ag
∫ ϵ

0

(1−Kgl)
ag−1(Kgl)

−(1+ag)

(
cτ2Kgl

cτ2Kgl + σ2(1− ϵ)

)(ag+bg)

dKgl

≤ Γ(ag + bg)(1− ϵ)−(ag+bg)

(2πσ2)n/2Γ(ag)Γ(bg)π(y | H, τ2, σ2)

(
cτ2

σ2

)bg ∫ ϵ

0

(1−Kgl)
ag−1(Kgl)

bg−1dKgl

≤ Γ(ag + bg)ϵ
bg (1− ϵ)−(ag+bg)

(2πσ2)n/2Γ(ag)bgΓ(bg)π(y | H, τ2, σ2)

(
cτ2

σ2

)bg
max{1, (1− ϵ)ag−1}.

Lastly, we see that

lim
τ2→0

π(y | H, τ2, σ2) = lim
τ2→0

∫
(0,∞)G

∫
(0,∞)p

π(y | G,L,H, τ2, σ2)π(G | H, τ2, σ2)π(L | H, τ2, σ2)dLdG.

Since π(y | G,L,H, τ2, σ2) = π(y | Γ,Λ,H, τ2, σ2) ≤ (2πσ2)−n/2, then∫
(0,∞)G

∫
(0,∞)p

π(y | G,L,H, τ2, σ2)π(G | H, τ2, σ2)π(L | H, τ2, σ2)dLdG ≤ (2πσ2)−n/2,

and by the dominated convergence theorem we have that

lim
τ2→0

π(y | H, τ2, σ2) =
1

(2πσ2)n/2
exp

(
− 1

2σ2
y⊤y

)
.

So, we conclude that

π

(
1

1 + cσ−2τ2 max(g,j) γ2gλ
2
gj

< ϵ

∣∣∣∣ y,H, τ2, σ2

)
≤

G∑
g=1

pg∑
j=1

π
(
Kgj < ϵ

∣∣ y,H, τ2, σ2
)

≤
G∑
g=1

pgΓ(ag + bg)ϵ
bg (1− ϵ)−(ag+bg)

(2πσ2)n/2Γ(ag)bgΓ(bg)π(y | H, τ2, σ2)

(
cτ2

σ2

)bg
max{1, (1− ϵ)ag−1},
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where the upper bound goes to zero as τ2 → 0. Therefore, we have shown that for fixed ϵ ∈ (0, 1), that

π

(
1

1 + θmax(X
⊤X)σ−2τ2 max(g,j) γ2gλ

2
gj

≥ ϵ
∣∣∣∣ y,H, τ2, σ2

)
→ 1

as τ2 → 0. Since,

∥∥∥β̂OLS − E[β | ·]
∥∥∥2
2
≥
(

1

1 + θmax(X
⊤X)σ−2τ2 max(g,j) γ2gλ

2
gj

)2∥∥∥β̂OLS∥∥∥2
2
,

then we must also have that

π

(∥∥∥β̂OLS − E[β | ·]
∥∥∥
2
≥ ϵ
∥∥∥β̂OLS∥∥∥

2

∣∣∣∣ y,H, τ2, σ2

)
→ 1

as τ2 → 0.
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A.5 Proof of Corollary 2.3.1
For brevity, we will use the following notation

E[βg | ·] = E[βg | y, τ2, γ2g , λ2g1, . . . , λ2gpg , σ
2].

If X⊤
g Xg′ = 0 for all g ̸= g′, then we have

E[βg | ·] =
(
Ipg + (X⊤

g Xg)
−1
σ2γ2g
τ2

Λ−1
g

)−1

β̂
OLS

g , β̂
OLS

g = (X⊤
g Xg)

−1X⊤
g y,

where Λg = diag
(
λ2g1, . . . , λ

2
gpg

)
. Following a similar argument to the proof of Theorem 3.3, we arrive at

∥∥∥β̂OLSg − E[βg | ·]
∥∥∥2
2
≥
(

1

1 + θmax(X
⊤
g Xg)σ−2τ2γ2g maxj λ2gj

)2∥∥∥β̂OLSg

∥∥∥2
2
,

Also, from the proof of Theorem 3.3, we have that

π

(
1

1 + cσ−2τ2γ2g maxj λ2gj
< ϵ

∣∣∣∣ y,H, τ2, σ2

)
≤

pg∑
j=1

π
(
Kgj < ϵ

∣∣ y,H, τ2, σ2
)

≤ pgΓ(ag + bg)ϵ
bg (1− ϵ)−(ag+bg)

(2πσ2)n/2Γ(ag)bgΓ(bg)π(y | H, τ2, σ2)

(
cτ2

σ2

)bg
max{1, (1− ϵ)ag−1},

If, ag ∈ (0, 1) and
cϵτ2

σ2(1− ϵ)
< 1

then
pgΓ(ag + bg)ϵ

bg (1− ϵ)−(ag+bg)

(2πσ2)n/2Γ(ag)bgΓ(bg)π(y | H, τ2, σ2)

(
cτ2

σ2

)bg
max{1, (1− ϵ)ag−1} → 0

as bg →∞. Since,

∥∥∥β̂OLSg − E[βg | ·]
∥∥∥2
2
≥
(

1

1 + θmax(X
⊤
g Xg)σ−2τ2γ2g maxj λ2gj

)2∥∥∥β̂OLSg

∥∥∥2
2
,

then we must also have that for all δ ∈ (0, σ2/(σ2 + θmax(X
⊤
g Xg)τ

2))

π

(∥∥∥β̂OLSg − E[βg | ·]
∥∥∥
2
≥ δ
∥∥∥β̂OLSg

∥∥∥
2

∣∣∣∣ y,H, τ2, σ2

)
→ 1

as bg →∞.
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A.6 Proof of Theorem 2.3.3a
The posterior distribution of the shrinkage weights in the g-th group are given by

π
(
κg | yg, τ2, σ2, ag, bg

)
∝

(
1+

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgbg)( pg∏
j=1

κ
bg−1/2
gj (1−κgj)−(bg+1) exp

(
−
y2gj
2σ2

κgj

))
,

where κg = (κg1, ..., κgpg ), 0 < κgj < 1 for all 1 ≤ j ≤ pg , and yg = (yg1, ..., ygpg )
⊤.

π(κgl > ψ | yg, τ2, σ2, ag, bg) =
Agl
Bg

,

where

Agl =

∫ 1

ψ

∫ 1

0

· · ·
∫ 1

0

(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgbg)

×

(
pg∏
j=1

κ
bg−1/2
gj (1− κgj)−(bg+1) exp

(
−
y2gj
2σ2

κgj

))
dκg1· · ·dκg,l−1dκg,l+1· · ·dκgpgdκgl

and

Bg =

∫ 1

0

· · ·
∫ 1

0

(
1+

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgbg)( pg∏
j=1

κ
bg−1/2
gj (1−κgj)−(bg+1) exp

(
−
y2gj
2σ2

κgj

))
dκg1· · ·dκgpg .

Note that (
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgbg)

=

(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag/pg+bg)(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(pg−1)(ag/pg+bg)

≤
(
1 +

τ2

σ2

κgl
1− κgl

)−(ag/pg+bg)(
1 +

τ2

σ2

∑
j ̸=l

κgj
1− κgj

)−(pg−1)(ag/pg+bg)

Then,

Agl ≤

(∫ 1

0

· · ·
∫ 1

0

(
1+

τ2

σ2

∑
j ̸=l

κgj
1− κgj

)−(pg−1)(ag/pg+bg)∏
j ̸=l

κ
bg−1/2
gj (1−κgj)−(bg+1) exp

(
−
y2gj
2σ2

κgj

)
dκgj

)
×

(∫ 1

ψ

(
1 +

τ2

σ2

κgl
1− κgl

)−(ag/pg+bg)

κ
bg−1/2
gl (1− κgl)−(bg+1) exp

(
−
y2gl
2σ2

κgl

)
dκgl

)

≤

(∫ 1

0

· · ·
∫ 1

0

(
1 +

τ2

σ2

∑
j ̸=l

κgj
1− κgj

)−(pg−1)(ag/pg+bg)∏
j ̸=l

κ
bg−1/2
gj (1− κgj)−(bg+1)dκgj

)
×

exp

(
− ψ

2σ2
y2gl

)(∫ 1

ψ

(
1 +

τ2

σ2

κgl
1− κgl

)−(ag/pg+bg)

κ
bg−1/2
gl (1− κgl)−(bg+1)dκgl

)
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≤

(∫ 1

0

· · ·
∫ 1

0

(
1 +

τ2

σ2

∑
j ̸=l

κgj
1− κgj

)−(a∗g+(pg−1)bg)∏
j ̸=l

κ
bg−1
gj (1− κgj)−(bg+1)dκgj

)
×

exp

(
− ψ

2σ2
y2gl

)(∫ 1

ψ

(
1−

(
1− τ2

σ2

)
κgl

)−(ag/pg+bg)

κ
bg−1/2
gl (1− κgl)ag/pg−1dκgl

)

≤

((
τ2

σ2

)−(pg−1)bg Γ(a∗g)(Γ(bg))
pg−1

Γ(a∗g + (pg − 1)bg)

)(
min

(
1,
τ2

σ2

))−(ag/pg+bg)

× exp

(
− ψ

2σ2
y2gl

)∫ 1

ψ

κ
bg−1/2
gl (1− κgl)ag/pg−1dκgl

≤

((
τ2

σ2

)−(pg−1)bg Γ(a∗g)(Γ(bg))
pg−1

Γ(a∗g + (pg − 1)bg)

)(
min

(
1,
τ2

σ2

))−(ag/pg+bg)

max
(
1, ψbg−1/2

)

× exp

(
− ψ

2σ2
y2gl

)∫ 1

ψ

(1− κgl)ag/pg−1dκgl

=

((
τ2

σ2

)−(pg−1)bg Γ(a∗g)(Γ(bg))
pg−1

Γ(a∗g + (pg − 1)bg)

)(
min

(
1,
τ2

σ2

))−(ag/pg+bg)

max
(
1, ψbg−1/2

)
× exp

(
− ψ

2σ2
y2gl

)
pg
ag

(1− ψ)ag/pg ,

where a∗g = (pg − 1)ag/pg . We can simplify the integral four lines above based on the prior distribution of the
shrinkage weights for a group of size pg − 1.

Next, let δ ∈ (0, 1) be fixed constant. Then,

Bg ≥
∫ ψδ

0

· · ·
∫ ψδ

0

(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgbg)( pg∏
j=1

κ
bg−1/2
gj (1− κgj)−(bg+1) exp

(
−
y2gj
2σ2

κgj

)
dκgj

)

≥

(
1 +

pgτ
2

σ2

ψδ

1− ψδ

)−(ag+pgbg) pg∏
j=1

∫ ψδ

0

κ
bg−1/2
gj (1− κgj)−(bg+1) exp

(
−
y2gj
2σ2

κgj

)
dκgj

≥

(
1 +

pgτ
2

σ2

ψδ

1− ψδ

)−(ag+pgbg)

exp

(
− ψδ

2σ2

pg∑
j=1

y2gj

) pg∏
j=1

∫ ψδ

0

κ
bg−1/2
gj (1− κgj)−(bg+1)dκgj

≥

(
1 +

pgτ
2

σ2

ψδ

1− ψδ

)−(ag+pgbg)

exp

(
− ψδ

2σ2

pg∑
j=1

y2gj

) pg∏
j=1

∫ ψδ

0

κ
bg−1/2
gj dκgj

=

(
1 +

pgτ
2

σ2

ψδ

1− ψδ

)−(ag+pgbg)

exp

(
− ψδ

2σ2

pg∑
j=1

y2gj

)
(bg + 1/2)−pg (ψδ)pg(bg+1/2).

Therefore,
Agl
Bg
≤ f(pg, τ

2, σ2, ag, bg, ψ)

g(pg, τ2, σ2, ag, bg, ψ, δ)
exp

(
ψδ

2σ2

∑
j ̸=l

y2gj

)
exp

(
− ψ(1− δ)

2σ2
y2gl

)
,
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where

f(pg, τ
2, σ2, ag, bg, ψ) =

((
τ2

σ2

)−(pg−1)bg Γ(a∗g)(Γ(bg))
pg−1

Γ(a∗g + (pg − 1)bg)

)

×
(
min

(
1,
τ2

σ2

))−(ag/pg+bg)

max
(
1, ψbg−1/2

)pg
ag

(1− ψ)ag/pg

and

g(pg, τ
2, σ2, ag, bg, ψ, δ) =

(
1 +

pgτ
2

σ2

ψδ

1− ψδ

)−(ag+pgbg)

(bg + 1/2)−pg (ψδ)pg(bg+1/2).

If we take the limit of this upper bound as |ygl| → ∞, then we see that π(κgl > ψ | yg, τ2, σ2, ag, bg)→ 0. This
concludes the proof.
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A.7 Proof of Theorem 2.3.3b
The posterior distribution of the shrinkage weights in the g-th group are given by

π
(
κg | yg, τ2, σ2, ag, bg

)
∝

(
1+

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgbg)( pg∏
j=1

κ
bg−1/2
gj (1−κgj)−(bg+1) exp

(
−
y2gj
2σ2

κgj

))
,

where κg = (κg1, ..., κgpg ), 0 < κgj < 1 for all 1 ≤ j ≤ pg , and yg = (yg1, ..., ygpg )
⊤.

π(κgl < ϵ | yg, τ2, σ2, ag, bg) =
Agl
Bg

,

where

Agl =

∫ ϵ

0

∫ 1

0

· · ·
∫ 1

0

(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgbg)

×

(
pg∏
j=1

κ
bg−1/2
gj (1− κgj)−(bg+1) exp

(
−
y2gj
2σ2

κgj

))
dκg1· · ·dκg,l−1dκg,l+1· · ·dκgpgdκgl

and

Bg =

∫ 1

0

· · ·
∫ 1

0

(
1+

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgbg)( pg∏
j=1

κ
bg−1/2
gj (1−κgj)−(bg+1) exp

(
−
y2gj
2σ2

κgj

))
dκg1· · ·dκgpg .

Note that (
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgbg)

=

(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag/pg+bg)(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(pg−1)(ag/pg+bg)

≤
(
1 +

τ2

σ2

κgl
1− κgl

)−(ag/pg+bg)(
1 +

τ2

σ2

∑
j ̸=l

κgj
1− κgj

)−(pg−1)(ag/pg+bg)

Then,

Agl ≤

(∫ 1

0

· · ·
∫ 1

0

(
1+

τ2

σ2

∑
j ̸=l

κgj
1− κgj

)−(pg−1)(ag/pg+bg)∏
j ̸=l

κ
bg−1/2
gj (1−κgj)−(bg+1) exp

(
−
y2gj
2σ2

κgj

)
dκgj

)
×

(∫ ϵ

0

(
1 +

τ2

σ2

κgl
1− κgl

)−(ag/pg+bg)

κ
bg−1/2
gl (1− κgl)−(bg+1) exp

(
−
y2gl
2σ2

κgl

)
dκgl

)

≤

(∫ 1

0

· · ·
∫ 1

0

(
1 +

τ2

σ2

∑
j ̸=l

κgj
1− κgj

)−(pg−1)(ag/pg+bg)∏
j ̸=l

κ
bg−1/2
gj (1− κgj)−(bg+1)dκgj

)
×

(
(1− ϵ)−(bg+1)

∫ ϵ

0

κ
bg−1/2
gl dκgl

)
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≤ ϵbg+1/2

(bg + 1/2)(1− ϵ)bg+1

∫ 1

0

· · ·
∫ 1

0

(
1 +

τ2

σ2

∑
j ̸=l

κgj
1− κgj

)−(a∗g+(pg−1)bg)∏
j ̸=l

κ
bg−1
gj κ

1/2
gj (1− κgj)−(bg+1)dκgj

≤ ϵbg+1/2

(bg + 1/2)(1− ϵ)bg+1

∫ 1

0

· · ·
∫ 1

0

(
1 +

τ2

σ2

∑
j ̸=l

κgj
1− κgj

)−(a∗g+(pg−1)bg)∏
j ̸=l

κ
bg−1
gj (1− κgj)−(bg+1)dκgj

=

(
ϵbg+1/2

(bg + 1/2)(1− ϵ)bg+1

)((
τ2

σ2

)−(pg−1)bg Γ(a∗g)(Γ(bg))
pg−1

Γ(a∗g + (pg − 1)bg)

)
where a∗g = (pg − 1)ag/pg . We have the last equality based on the prior distribution of the shrinkage weights for a
group of size pg − 1. Next,

Bg ≥ exp

(
− 1

2σ2

pg∑
j=1

y2gj

)∫ 1

0

· · ·
∫ 1

0

(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgbg) pg∏
j=1

κ
bg−1/2
gj (1− κgj)−(bg+1)dκgj

= exp

(
− 1

2σ2

pg∑
j=1

y2gj

)∫ 1

0

· · ·
∫ 1

0

(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgb
∗
g)
(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)pg/2

×
pg∏
j=1

κ
b∗g−1

gj (1− κgj)−(b∗g+1)(1− κgj)1/2dκgj

≥ exp

(
− 1

2σ2

pg∑
j=1

y2gj

)∫ 1

0

· · ·
∫ 1

0

(
1+

τ2

σ2

pg∑
j=1

κgj
1− κgj

)pg/2( pg∏
j=1

(1−κgj)1/2
)(

1+
τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgb
∗
g)

×
pg∏
j=1

κ
b∗g−1

gj (1− κgj)−(b∗g+1)dκgj

≥ exp

(
− 1

2σ2

pg∑
j=1

y2gj

)∫ 1

0

· · ·
∫ 1

0

(
pg∏
j=1

(
1− κgj +

τ2

σ2
κgj

))1/2(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgb
∗
g)

×
pg∏
j=1

κ
b∗g−1

gj (1− κgj)−(b∗g+1)dκgj

≥ exp

(
− 1

2σ2

pg∑
j=1

y2gj

)(
min

(
1,
τ2

σ2

))pg/2 ∫ 1

0

· · ·
∫ 1

0

(
1 +

τ2

σ2

pg∑
j=1

κgj
1− κgj

)−(ag+pgb
∗
g)

×
pg∏
j=1

κ
b∗g−1

gj (1− κgj)−(b∗g+1)dκgj
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= exp

(
− 1

2σ2

pg∑
j=1

y2gj

)(
min

(
1,
τ2

σ2

))pg/2((
τ2

σ2

)−pgb∗g Γ(ag)(Γ(b
∗
g))

pg

Γ(ag + pgb∗g)

)
,

where b∗g = bg + 1/2. Similarly, we have the last equality based on the prior distribution of the shrinkage weights for
a group of size pg . Therefore,

Agl
Bg
≤ exp

(
1

2σ2

pg∑
j=1

y2gj

)
ϵbg+1/2

(bg + 1/2)(1− ϵ)bg+1

(
τ2

σ2

)pg/2+bg(
min

(
1,
τ2

σ2

))−pg/2

×

Γ(ag + pgb
∗
g)Γ(a

∗
g)(Γ(bg))

pg−1

Γ(a∗g + (pg − 1)bg)Γ(ag)(Γ(b∗g))
pg
.

If we take the limit of this expression as τ → 0, then we see that π(κgl < ϵ | yg, τ2, σ2, ag, bg) → 0. This
concludes the proof.
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A.8 Full Conditional Distributions for Gibbs Sampler
The full conditional distributions for all model parameters are

[α | ·] ∼ N
((

C⊤C
)−1

C⊤(y −Xβ), σ2
(
C⊤C

)−1
)

[β | ·] ∼ N

(
Q−1 1

σ2
X⊤

(
y −Cα

)
,Q−1

)
, Q =

1

σ2
X⊤X +

1

τ2
Γ−1Λ−1

[τ2 | ·] ∼ IG

(
p+ 1

2
,
1

2
β⊤Γ−1Λ−1β +

1

ν

)
, [ν | ·] ∼ IG

(
1,

1

τ2
+

1

σ2

)

[σ2 | ·] ∼ IG

(
n+ 1

2
,
1

2

(
y −Cα−Xβ

)⊤(
y −Cα−Xβ

)
+

1

ν

)

[λ2gj | ·] ∼ IG

(
bg +

1

2
, 1 +

β2
gj

2τ2γ2g

)
, [γ−2

g | ·] ∼ GIG

(
pg
2
− ag,

1

τ2

pg∑
j=1

β2
gj

λ2gj
, 2

)
,

where GIG refers to the generalized inverse Gaussian distribution (Hörmann and Leydold, 2014). See the Distribu-
tional Definition section on the first page of this supplement for details on the probability density function parameter-
izations.
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Figure A.1: Associations between environmental toxicants (metals, phthalates, pesticides, PBDEs, and PAHs) and
gamma glutamyl transferase (GGT) from NHANES 2003-2004 (n = 990).
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ρ = 0.6ρ = 0.6ρ = 0.6 Concentrated Distributed
Method Null Non-Null Overall Null Non-Null Overall
Ordinary Least Squares 1.88 0.21 2.09 3.20 0.78 3.99
Horseshoe 0.29 0.21 0.50 0.52 0.93 1.45
GIGG (ag = 1/n, bg = 1/n) 0.05 0.19 0.24 0.04 1.52 1.56
GIGG (ag = 1/2, bg = 1/n) 0.05 0.20 0.26 0.04 1.50 1.53
GIGG (ag = 1/n, bg = 1/2) 0.15 0.22 0.37 0.03 0.69 0.71
*GIGG (ag = 1/2, bg = 1/2) 0.18 0.21 0.39 0.16 0.73 0.88
GIGG (ag = 1/n, bg = 1) 0.29 0.26 0.56 0.03 0.65 0.67
GIGG (ag = 1/2, bg = 1) 0.33 0.25 0.57 0.16 0.65 0.82
GIGG (MMLE) 0.11 0.21 0.32 0.03 0.62 0.65
Group Horseshoe+ 0.17 0.21 0.37 0.07 0.71 0.77
Spike-and-Slab Lasso 0.03 0.25 0.28 0.01 2.18 2.19
BGL-SS 1.25 0.42 1.67 0.01 0.61 0.62
BSGS-SS 0.10 0.22 0.32 0.02 0.81 0.82

Table A.1: Mean-squared errors (MSE) for simulation settings C10M and D10M in Table 1 (n = 500, p = 50) with
medium pairwise correlations (ρ = 0.6). Bolded cells indicate the four methods with the lowest overall MSE. *GIGG
regression with ag = 1/2 and bg = 1/2 is equivalent to group horseshoe regression.
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ρ = 0.8ρ = 0.8ρ = 0.8 Concentrated Distributed
Method Null Non-Null Overall Null Non-Null Overall
Ordinary Least Squares 5.68 0.63 6.31 8.62 2.14 10.76
Horseshoe 0.83 0.75 1.58 1.45 2.03 3.48
GIGG (ag = 1/n, bg = 1/n) 0.18 0.77 0.95 0.59 3.42 4.01
GIGG (ag = 1/2, bg = 1/n) 0.19 0.77 0.95 0.59 3.37 3.97
GIGG (ag = 1/n, bg = 1/2) 0.44 0.79 1.23 0.85 1.88 2.73
*GIGG (ag = 1/2, bg = 1/2) 0.53 0.78 1.31 0.93 1.88 2.80
GIGG (ag = 1/n, bg = 1) 0.80 0.86 1.66 1.04 1.58 2.62
GIGG (ag = 1/2, bg = 1) 0.89 0.85 1.74 1.12 1.58 2.70
GIGG (MMLE) 0.42 0.79 1.21 1.05 1.63 2.68
Group Horseshoe+ 0.50 0.78 1.28 0.93 1.97 2.90
Spike-and-Slab Lasso 0.63 0.79 1.42 1.22 4.06 5.28
BGL-SS 3.07 1.00 4.07 1.76 1.28 3.04
BSGS-SS 0.49 0.79 1.27 0.67 2.02 2.70

Table A.2: Mean-squared errors (MSE) for simulation settings C25 and D25 in Table 1 (n = 500, p = 50) with high
pairwise correlations (ρ = 0.8). Bolded cells indicate the four methods with the lowest overall MSE. Four methods
are highlighted to emphasize that GIGG (MMLE) is the best method with respect to MSE for both concentrated and
distributed signals aside from methods that only perform well for one of the two settings. *GIGG regression with
ag = 1/2 and bg = 1/2 is equivalent to group horseshoe regression.
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ρ = 0.8ρ = 0.8ρ = 0.8 Concentrated Distributed
Method Null Non-Null Overall Null Non-Null Overall
Ordinary Least Squares 3.37 0.37 3.73 4.91 1.23 6.14
Horseshoe 0.36 0.29 0.65 0.46 1.50 1.96
GIGG (ag = 1/n, bg = 1/n) 0.08 0.23 0.30 0.03 2.63 2.66
GIGG (ag = 1/2, bg = 1/n) 0.08 0.25 0.33 0.03 2.55 2.58
GIGG (ag = 1/n, bg = 1/2) 0.26 0.30 0.57 0.05 1.04 1.09
*GIGG (ag = 1/2, bg = 1/2) 0.23 0.29 0.52 0.21 1.23 1.44
GIGG (ag = 1/n, bg = 1) 0.45 0.38 0.83 0.05 0.91 0.96
GIGG (ag = 1/2, bg = 1) 0.44 0.36 0.80 0.27 0.96 1.22
GIGG (MMLE) 0.18 0.27 0.44 0.05 0.88 0.93
Group Horseshoe+ 0.22 0.28 0.50 0.08 1.16 1.24
Spike-and-Slab Lasso 0.08 0.28 0.37 0.04 3.40 3.44
BGL-SS 1.01 0.50 1.51 0.05 0.80 0.85
BSGS-SS 0.18 0.32 0.50 0.04 1.23 1.27

Table A.3: Mean-squared errors (MSE) for simulation settings C5 and D5 in Table 1 (n = 500, p = 50) with high
pairwise correlations (ρ = 0.8). Bolded cells indicate the four methods with the lowest overall MSE. Four methods
are highlighted to emphasize that GIGG (MMLE) is the best method with respect to MSE for both concentrated and
distributed signals aside from methods that only perform well for one of the two settings. *GIGG regression with
ag = 1/2 and bg = 1/2 is equivalent to group horseshoe regression.
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APPENDIX B

Supplement for Chapter 3

B.1 Optimization Algorithms

Unconstrained (Closed-Form Optimization)
Suppose that M⊤

i· ∼ N(Aiαa + αcC
⊤
i· ,Σm) and Yi ∼ N(M i·βm + Aiβa + Ci·βc, σ

2
e) for i = 1, . . . , n. Let

Z = (A,C,M). Then,
β̂ =

(
Z⊤Z

)−1
Z⊤Y

σ̂2
e =

1

n
(Y −Zβ̂)⊤(Y −Zβ̂)

Let

X = (A,C), α =

(
α⊤
a

α⊤
c

)
.

Then,
α̂ =

(
X⊤X

)−1
X⊤M

Σ̂m =
1

n

n∑
i=1

(
M⊤

i· − α̂⊤X⊤
i·
)(
M⊤

i· − α̂⊤X⊤
i·
)⊤

Hard Constraint (Cyclical Coordinate Descent)
Suppose that M⊤

i· ∼ N(Aiαa+αcC
⊤
i· ,Σm) and Yi ∼ N(M i·βm+Ai(θ̂

E
a −α⊤

a βm)+Ci·βc, σ
2
e) for i = 1, . . . , n.

Then the cyclical coordinate descent updates are as follows:

α̃c ←
(
C⊤C

)−1
C⊤(M −Aα̃⊤

a

)

α̃a ←
1

A⊤A

(
Σ̃

−1

m +
1

σ̃2
e

β̃mβ̃
⊤
m

)−1 n∑
i=1

[
AiΣ̃

−1

m

(
M⊤

i· − α̃⊤
c C

⊤
i·
)
− 1

σ̃2
e

Ai
(
Yi − θ̂Ea Ai −M i·β̃m −Ci·β̃c

)
β̃m

]

Σ̃m ←
1

n

n∑
i=1

(
M⊤

i· − α̃⊤X⊤
i·
)(
M⊤

i· − α̃⊤X⊤
i·
)⊤
, X = (A,C), α =

(
α⊤
a

α⊤
c

)
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β̃c ←
(
C⊤C

)−1
C⊤(Y − {θ̂Ea − α̃⊤

a β̃m}A−Mβ̃m
)

β̃m ←
( n∑
i=1

(
M⊤

i· −Aiα̃a
)(
M⊤

i· −Aiα̃a
)⊤)−1 n∑

i=1

(
Yi −Aiθ̂Ea −Ci·β̃c

)(
M⊤

i· −Aiα̃a
)

σ̃2
e ←

1

n

n∑
i=1

(
Yi − {θ̂Ea − α̃⊤

a β̃m}Ai −M i·β̃m −Ci·β̃c
)2

Note that the cyclic coordinate descent algorithm is similar to Gibbs sampling, in that you use the always use the
most recently updated values for all as you update each parameter. The initial values for the algorithm come from the
unconstrained optimization algorithm.

Expectation-Maximization (EM) Algorithm (Soft Constraint)
Within the EM algorithm framework we are treating Y , M , A, and C as our observed data and θ̃Ia as the unobserved
latent data. Let P = {αa,αc,ΣM ,βm,βc, σ

2
e}. That is, we wish to maximize the marginal likelihood:

L(P | Y ,M ,A,C) =

∫ ∞

−∞
π(Y |M ,A,C, θ̃Ia)π(M | A,C)π(θ̃Ia)dθ̃

I
a

Moreover, we have that
π(θ̃Ia | Y ,M ,A,C) ∝ π(Y |M ,A,C, θ̃Ia)π(θ̃

I
a)

which implies that

[θ̃Ia | Y ,M ,A,C] ∼ N

([
A⊤A

σ2
e

+
1

s2V̂ar(θ̂Ea )

]−1[
A⊤Y ∗

σ2
e

+
θ̂Ea

s2V̂ar(θ̂Ea )

]
,

[
A⊤A

σ2
e

+
1

s2V̂ar(θ̂Ea )

]−1
)

where Y ∗ = Y −Mβm −Cβc +Aα⊤
a βm. The complete data log-likelihood is:

l(P | Y ,M ,A,C, θ̃Ia) = −
npm
2

log(2π)− n

2
log(|Σm|)

−1

2

n∑
i=1

(M⊤
i· −αcC

⊤
i· −Aiαa)⊤Σ

−1
m (M⊤

i· −αcC
⊤
i· −Aiαa)

−n
2
log(2π)− n

2
log(σ2

e)−
1

2σ2
e

n∑
i=1

(Yi −Ci·βc −M i·βm −Ai{θ̃Ia −α⊤
a βm})2

−1

2
log
(
2πs2V̂ar(θ̂Ea )

)
− 1

2s2V̂ar(θ̂Ea )
(θ̃Ia − θ̂Ea )2

The E-Step is therefore:

Eθ̃Ia|Y ,M ,A,C,P(t)

[
l(P | Y ,M ,A,C, θ̃Ia)

]
= −npm

2
log(2π)− n

2
log(|Σm|)

−1

2

n∑
i=1

(M⊤
i· −αcC

⊤
i· −Aiαa)⊤Σ

−1
m (M⊤

i· −αcC
⊤
i· −Aiαa)
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−n
2
log(2π)− n

2
log(σ2

e)−
1

2σ2
e

n∑
i=1

Eθ̃Ia|Y ,M ,A,C,P(t)

[
(Yi −Ci·βc −M i·βm −Ai{θ̃Ia −α⊤

a βm})2
]

−1

2
log
(
2πs2V̂ar(θ̂Ea )

)
− 1

2s2V̂ar(θ̂Ea )
Eθ̃Ia|Y ,M ,A,C,P(t)

[
(θ̃Ia − θ̂Ea )2

]
Eθ̃Ia|Y ,M ,A,C,P(t)

[
l(P | Y ,M ,A,C, θ̃Ia)

]
= −npm

2
log(2π)− n

2
log(|Σm|)

−1

2

n∑
i=1

(M⊤
i· −αcC

⊤
i· −Aiαa)⊤Σ

−1
m (M⊤

i· −αcC
⊤
i· −Aiαa)

−n
2
log(2πσ2

e)−
1

2
log
(
2πs2V̂ar(θ̂Ea )

)
− 1

2s2V̂ar(θ̂Ea )
Eθ̃Ia|Y ,M ,A,C,P(t)

[
{θ̃Ia}2

]
+

θ̂Ea

s2V̂ar(θ̂Ea )
Eθ̃Ia|Y ,M ,A,C,P(t)

[
θ̃Ia
]
− (θ̂Ea )

2

2s2V̂ar(θ̂Ea )

− 1

2σ2
e

(
Y −Mβm −Cβc +Aα⊤

a βm
)⊤(

Y −Mβm −Cβc +Aα⊤
a βm

)
+

1

σ2
e

Eθ̃Ia|Y ,M ,A,C,P(t)

[
θ̃Ia
]
A⊤(Y −Mβm −Cβc +Aα⊤

a βm
)
− 1

2σ2
e

Eθ̃Ia|Y ,M ,A,C,P(t)

[
{θ̃Ia}2

]
A⊤A

Note that we can calculate
Eθ̃Ia|Y ,M ,A,C,P(t)

[
θ̃Ia
]

and Eθ̃Ia|Y ,M ,A,C,P(t)

[
{θ̃Ia}2

]
from

[θ̃Ia | Y ,M ,A,C] ∼ N

([
A⊤A

σ2
e

+
1

s2V̂ar(θ̂Ea )

]−1[
A⊤Y ∗

σ2
e

+
θ̂Ea

s2V̂ar(θ̂Ea )

]
,

[
A⊤A

σ2
e

+
1

s2V̂ar(θ̂Ea )

]−1
)

For the M-Step we will use a cyclical coordinate descent algorithm with the following updates:

α̃c ←
(
C⊤C

)−1
C⊤(M −Aα̃⊤

a

)

α̃a ←
1

A⊤A

(
Σ̃

−1

m +
1

σ̃2
e

β̃mβ̃
⊤
m

)−1
[
− 1

σ̃2
e

A⊤(Y −Mβ̃m−Cβ̃c−Eθ̃Ia|Y ,M ,A,C,P(t)

[
θ̃Ia
]
A
)
β̃m+

n∑
i=1

AiΣ̃
−1

m

(
M⊤

i·−α̃
⊤
c C

⊤
i·
)]

Σ̃m ←
1

n

n∑
i=1

(
M⊤

i· − α̃⊤X⊤
i·
)(
M⊤

i· − α̃⊤X⊤
i·
)⊤
, X = (A,C), α =

(
α⊤
a

α⊤
c

)

β̃c ←
(
C⊤C

)−1
C⊤(Y − {Eθ̃Ia|Y ,M ,A,C,P(t)

[
θ̃Ia
]
− α̃⊤

a β̃m}A−Mβ̃m
)

β̃m ←
[(

M −Aα̃⊤
a

)⊤(
M −Aα̃⊤

a

)]−1(
M −Aα̃⊤

a

)⊤(
Y −Cβ̃c −AEθ̃Ia|Y ,M ,A,C,P(t)

[
θ̃Ia
])

σ̃2
e ←

1

n

(
Y −Mβ̃m −Cβ̃c +Aα̃⊤

a β̃m
)⊤(

Y −Mβ̃m −Cβ̃c +Aα̃⊤
a β̃m

)
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− 2

n
Eθ̃Ia|Y ,M ,A,C,P(t)

[
θ̃Ia
]
A⊤(Y −Mβ̃m −Cβ̃c +Aα̃⊤

a β̃m
)

+
A⊤A

n
Eθ̃Ia|Y ,M ,A,C,P(t)

[
{θ̃Ia}2

]
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B.2 Project 2 Proofs

Proof of Theorem 1
Suppose that [M⊤

i· | Ai] ∼ N(αc+Aiαa,Σm) and [Yi |M i·, Ai] ∼ N(βc+M i·βm+Aiβa, σ
2
e) is the true gener-

ative model where i = 1, . . . , n. That is, without loss of generality, we are assuming that there are no confounders, but
that there are intercept terms in both the outcome and mediator models. This implies that σ2

a = Var(Ai). Moreover,
assume that E[Ai] = 0. Let D = {Y ,M ,A,C} denote the data. Then the log-likelihood is:

l(αc,αa, βc,βm, βa | D) = −
npm
2

log(2π)− n
2
log(|Σm|)−

1

2

n∑
i=1

(M⊤
i· −αc−Aiαa)⊤Σ−1

m (M⊤
i· −αc−Aiαa)
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2
log(2π)− n

2
log(σ2

e)−
1

2σ2
e

n∑
i=1

(Yi − βc −M i·βm −Aiβa)2

The first order derivatives are:
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∂αa
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AiΣ
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m

[
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]

∂l

∂αc
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Σ−1
m
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∂l
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2
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1

2
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σ2
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Yi − βc −M i·βm −Aiβa
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∂l
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∂σ2
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2σ4
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Yi − βc −M i·βm −Aiβa
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The second order derivatives are:
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n
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E
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∂2l
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Ai =⇒ − 1

n
E

[
∂2l

∂αc∂α⊤
a

]
→ 0

∂2l

∂βm∂β
⊤
m

= − 1

σ2
e

n∑
i=1

M⊤
i·M i· =⇒ − 1

n
E

[
∂2l

∂βm∂β
⊤
m

]
→ 1

σ2
e

(Σm +αcα
⊤
c ) +

σ2
a

σ2
e

αaα
⊤
a

∂2l

∂β2
a

= − 1

σ2
e

n∑
i=1

A2
i =⇒ − 1

n
E

[
∂2l

∂β2
a

]
→ σ2

a

σ2
e

∂2l

∂β2
c

= − n

σ2
e

=⇒ − 1

n
E

[
∂2l

∂β2
c

]
=

1

σ2
e

∂2l

∂βm∂βa
= − 1

σ2
e

n∑
i=1

AiM
⊤
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Note that:

− 1

n
E

[
∂2l

∂αa∂(Σ
−1
m )kl

]
→ 0, 1 ≤ k, l ≤ pm

− 1

n
E

[
∂2l

∂αc∂(Σ
−1
m )kl
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→ 0, 1 ≤ k, l ≤ pm
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E

[
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e
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= 0
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E

[
∂2l
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n
E

[
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∂βm∂σ
2
e

]
= 0

Because the outcome and mediator models are independent of one another, then we can consider the Fisher information
matrix for the outcome model:
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IU (βc, βa,βm) =


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Using the block inversion formula for 2× 2 block matricies, we can see that:
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Again, using the block inversion formula for 2× 2 block matricies, we can see that:

(
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=

(
σ2
e

σ2
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(
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⊤
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Therefore, conclude that:
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
The asymptotic distribution for the unconstrained estimator of the NIE can then be computed using the multivariate
delta method provided that αa ̸= 0 or βm ̸= 0.

To extend this result to the model with confounders

[Y |M ,A,C] ∼ N
(
Mβm +Aβa +Cβc, σ

2
eI
)
,

[M⊤
i· | Ai,Ci] ∼ N

(
Aiαa +αcC

⊤
i ,Σm

)
, i = 1, . . . , n.

we note that the model with confounders is equivalent to a model with no confounders after the confounders are
regressed out from the outcome, mediators, and exposure. That is, we can use the residuals from linear regression
models [Y | C], [M | C], and [A | C] as the new outcome, mediators, and exposure and run the unconstrained
model. Therefore, the only difference in the asymptotic normality expression is that the exposure are now the residuals
from the [A | C] linear regression model, implying that σ2

a = Var(Ai | Ci·).
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Proof of Theorem 2
Suppose that [M⊤

i· | Ai] ∼ N(αc+Aiαa,Σm) and [Yi |M i·, Ai] ∼ N(βc+M i·βm+Aiβa, σ
2
e) is the true gener-

ative model where i = 1, . . . , n. That is, without loss of generality, we are assuming that there are no confounders, but
that there are intercept terms in both the outcome and mediator models. This implies that σ2

a = Var(Ai). Moreover,
assume that E[Ai] = 0. Let D = {Y ,M ,A,C} denote the data. Suppose that we fit the hard constraint model to
our data. Then the log-likelihood is:
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Note that:
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Using the block inversion formula for 2× 2 block matricies, we can see that:

(
IH(αa,βm)

)−1

=
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a

(
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e
βmβ⊤
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)−1
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0 σ2
eΣ
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m


The asymptotic distribution for the hard constraint estimator of the NIE can then be computed using the multivari-

ate delta method provided that αa ̸= 0 or βm ̸= 0. Because the hard constraint estimator of the NDE is just a location
shift of the hard constraint estimator of the NIE, then provided that

√
n(θ̂Ea − θIa) →p 0, Slutsky’s Theorem tells us
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that the asymptotic distribution for the hard constraint estimator of the NDE is the same as the asymptotic distribution
for the hard constraint estimator of the NIE.

To extend this result to the model with confounders we use the same trick that was used in the proof of Theorem
1, namely that the model with confounders is equivalent to a model with no confounders after the confounders are
regressed out from the outcome, mediators, and exposure via linear regression models. Therefore, we again see that
σ2
a = Var(Ai | Ci·), when confounders are present.
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Proof of Theorem 3
We have that

√
n

(
α̂a −αa

β̂m − βm

)
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a Σm 0
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Using the second order Taylor expansion around αa = 0 and βm = 0, we can show that
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)
.

In this expression 0 is a pm × pm matrix of zeros and I is a pm × pm identity matrix. Because this is quadratic form
of an asymptotically normal random vector (where the matrix in the quadratic form is a symmetric matrix), then we
may apply the continuous mapping theorem for convergence in distribution. That is, we just need to work with the
asymptotic distribution when determining the asymptotic distribution of the quadratic form. Define
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)
Note that the matrix square root always exists for symmetric, positive definite matrices. Then we can write
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is a symmetric matrix, then we can obtain an eigendecomposition 0

√
σ2
e√
σ2
a

I
√
σ2
e√
σ2
a

I 0

 = P⊤ΛP ,

where P is an orthogonal matrix and Λ is a diagonal matrix. Then the expression becomes

1

2
(PZ)⊤Λ(PZ)
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Note that here
Z →d N(0, I)

and because P is an orthogonal transformation of Z, then

PZ →d N(0, I)

Therefore, when αa = βm = 0, we conclude that

n
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a β̂m −α⊤

a βm

)
→d

1

2

2pm∑
j=1

λjχ
2
1,

where the λj are the eigenvalues of √
σ2
e

σ2
a
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which has pm eigenvalues equal to
√
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2
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2
a. Therefore,
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e
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a

(
χ2
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2
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)
,

since the χ2
1 random variables are independent.
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Proof of Theorem 4
Suppose that [M⊤

i· | Ai] ∼ N(Aiαa,Σm) and [Yi |M i·, Ai] ∼ N(M i·βm+Aiβa, σ
2
e) is the true generative model

where i = 1, . . . , n. That is, without loss of generality, we are assuming that there are no confounders. This implies
that σ2

a = Var(Ai). Moreover, assume that E[Ai] = 0. Let D = {Y ,M ,A,C} denote the data. Suppose that we fit
the soft constraint model to our data with a fixed value s2. Then the likelihood is:
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2
e | Y ,M ,A) =
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Therefore, the log-likelihood function is:
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The first order derivatives are:
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The asymptotic distribution for the soft constraint estimator of the NIE can then be computed using the multivariate
delta method provided that αa ̸= 0 or βm ̸= 0.

To extend this result to the model with confounders we use the same trick that was used in the proof of Theorem
1, namely that the model with confounders is equivalent to a model with no confounders after the confounders are
regressed out from the outcome, mediators, and exposure via linear regression models. Therefore, we again see that
σ2
a = Var(Ai | Ci·), when confounders are present.

144



B.3 Supporting Figures and Tables

Visit Covariate Total Preterm Full-term P-Value
1 Pre-Pregnancy BMI (kg/m2) 25.9 (5.9) 26.4 (7.3) 25.9 (5.7) 0.607

Maternal Age (years) 26.9 (5.5) 26.4 (6.0) 27.0 (5.4) 0.528
Education 0.225

GED/Equivalent or Less 97 (21.6) 16 (30.2) 81 (20.5)
Some College 154 (34.3) 18 (34.0) 136 (34.3)
Bachelor’s Degree or Higher 198 (44.1) 19 (35.8) 179 (45.2)

2 Pre-Pregnancy BMI (kg/m2) 26.1 (6.0) 26.5 (7.2) 26.0 (5.8) 0.678
Maternal Age (years) 26.8 (5.6) 26.3 (6.1) 26.9 (5.5) 0.525
Education 0.634

GED/Equivalent or Less 97 (21.3) 13 (25.0) 84 (20.8)
Some College 157 (34.4) 19 (36.5) 138 (34.2)
Bachelor’s Degree or Higher 202 (44.3) 20 (38.5) 182 (45.0)

Table B.1: Descriptive Statistics for subset of the PROTECT Cohort with at least one of MBP, MiBP, and MBzP
measured at visit X and eicosanoid measures at visit 3. Sample size at visit 1 is 449 total participants (396 full-term
deliveries and 53 preterm deliveries). Sample size at visit 2 is 456 total participants (404 full-term deliveries and 52
preterm deliveries). P-values corresponding to differences between preterm and full-term deliveries for continuous
and categorical variables come from t-tests and chi-squared tests, respectively.
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Method Internal TE Model External TE Model Notes on Bias and Estimation Efficiency
Unconstrained Correctly Specified None Estimators are unbiased, but they are also

the least efficient when θIa and θEa are close.
Use when θIa and θEa are known to be different.

Hard Constraint Correctly Specified Equation (4) Must Hold Estimators may be asymptotically biased if θIa ̸= θEa .
Most asymptotically efficient method when θIa = θEa .
Only consider using if (θ̂Ea − θ̂Ia)2 ≤ V̂ar(θ̂Ia).

Soft Constraint (EB) Correctly Specified None Estimators are minimally biased regardless of how
close θIa and θEa are. Asymptotically more efficient than
the unconstrained estimators when θIa and θEa are close.
As efficient as the unconstrained estimators when θIa
and θEa are substantially different. Less efficient than
the hard constraint estimators when θEa and θIa are close.
Use this method as the default method.

Table B.2: Summary of the methods presented in the paper and when to use each. TE, total effect.
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Average NDE Estimation, Congenial Simulation Settings (n = 2000)

Figure B.1: Relative root mean-squared error (RMSE) corresponding to Natural Direct Effect (NDE) estimation for
the congenial simulation scenarios (n = 2000). The red, horizontal dashed line indicates the upper bound on the
possible gain in estimation efficiency, as determined by the hard constraint estimator with the oracle constraint.
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Figure B.2: Relative root mean-squared error (RMSE) corresponding to Natural Indirect Effect (NIE) estimation for
the congenial simulation scenarios (n = 2000). The red, horizontal dashed line indicates the upper bound on the
possible gain in estimation efficiency, as determined by the hard constraint estimator with the oracle constraint.
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Figure B.3: Empirical coverage probability corresponding to Natural Direct Effect (NDE) estimation for the congenial
simulation scenarios (n = 2000). The horizontal dashed line indicates the nominal coverage rate of 0.95.
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Figure B.4: Empirical coverage probability corresponding to Natural Indirect Effect (NIE) estimation for the congenial
simulation scenarios (n = 2000). The horizontal dashed line indicates the nominal coverage rate of 0.95.
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Figure B.5: Empirical coverage probability corresponding to Natural Direct Effect (NDE) estimation for the congenial
simulation scenarios (n = 200). The horizontal dashed line indicates the nominal coverage rate of 0.95.
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Figure B.6: Empirical coverage probability corresponding to Natural Indirect Effect (NIE) estimation for the congenial
simulation scenarios (n = 200). The horizontal dashed line indicates the nominal coverage rate of 0.95.

152



nE = 2000, RA|C
2  = 0.05, RM|A,C

2  = 0.2 nE = 20000, RA|C
2  = 0.05, RM|A,C

2  = 0.2 nE = 200000, RA|C
2  = 0.05, RM|A,C

2  = 0.2

nE = 2000, RA|C
2  = 0.05, RM|A,C

2  = 0.5 nE = 20000, RA|C
2  = 0.05, RM|A,C

2  = 0.5 nE = 200000, RA|C
2  = 0.05, RM|A,C

2  = 0.5

nE = 2000, RA|C
2  = 0.05, RM|A,C

2  = 0.8 nE = 20000, RA|C
2  = 0.05, RM|A,C

2  = 0.8 nE = 200000, RA|C
2  = 0.05, RM|A,C

2  = 0.8

nE = 2000, RA|C
2  = 0.2, RM|A,C

2  = 0.2 nE = 20000, RA|C
2  = 0.2, RM|A,C

2  = 0.2 nE = 200000, RA|C
2  = 0.2, RM|A,C

2  = 0.2

nE = 2000, RA|C
2  = 0.2, RM|A,C

2  = 0.5 nE = 20000, RA|C
2  = 0.2, RM|A,C

2  = 0.5 nE = 200000, RA|C
2  = 0.2, RM|A,C

2  = 0.5

nE = 2000, RA|C
2  = 0.2, RM|A,C

2  = 0.8 nE = 20000, RA|C
2  = 0.2, RM|A,C

2  = 0.8 nE = 200000, RA|C
2  = 0.2, RM|A,C

2  = 0.8

Unc
on

str
ain

ed

Har
d 

Con
str

ain
t (

Exte
rn

al)

Sof
t C

on
str

ain
t (

EB)

Har
d 

Con
str

ain
t (

Ora
cle

)

Unc
on

str
ain

ed

Har
d 

Con
str

ain
t (

Exte
rn

al)

Sof
t C

on
str

ain
t (

EB)

Har
d 

Con
str

ain
t (

Ora
cle

)

Unc
on

str
ain

ed

Har
d 

Con
str

ain
t (

Exte
rn

al)

Sof
t C

on
str

ain
t (

EB)

Har
d 

Con
str

ain
t (

Ora
cle

)

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

R
at

io
 o

f R
M

S
E

 o
f U

nc
on

st
ra

in
ed

 E
st

im
at

or
 o

ve
r 

R
M

S
E

Average NDE Estimation, Random Simulation Settings (n = 200)

Figure B.7: Relative root mean-squared error (RMSE) corresponding to Natural Direct Effect (NDE) estimation for
the random simulation scenarios (n = 200). The red, horizontal dashed line indicates the upper bound on the possible
gain in estimation efficiency, as determined by the hard constraint estimator with the oracle constraint.
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Figure B.8: Relative root mean-squared error (RMSE) corresponding to Natural Indirect Effect (NIE) estimation for
the random simulation scenarios (n = 200). The red, horizontal dashed line indicates the upper bound on the possible
gain in estimation efficiency, as determined by the hard constraint estimator with the oracle constraint.
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Figure B.9: Empirical coverage probability corresponding to Natural Direct Effect (NDE) estimation for the inconge-
nial simulation scenarios (n = 2000). The horizontal dashed line indicates the nominal coverage rate of 0.95.
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Figure B.10: Empirical coverage probability corresponding to Natural Indirect Effect (NIE) estimation for the incon-
genial simulation scenarios (n = 2000). The horizontal dashed line indicates the nominal coverage rate of 0.95.
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Figure B.11: Empirical coverage probability corresponding to Natural Direct Effect (NDE) estimation for the random
simulation scenarios (n = 2000). The horizontal dashed line indicates the nominal coverage rate of 0.95.
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Figure B.12: Empirical coverage probability corresponding to Natural Indirect Effect (NIE) estimation for the random
simulation scenarios (n = 2000). The horizontal dashed line indicates the nominal coverage rate of 0.95.
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APPENDIX C

Supplement for Chapter 4

C.1 Proof of Rotational Invariance
Consider a rotational reparameterization of Model

[
Yi |M i·,Li·,Ci·

]
∼ N

(
M i·βm +Li·PP⊤βa +Ci·βc, σ

2
e

)[
M⊤

i· | L
⊤
i· ,C

⊤
i·
]
∼ N

(
αaPP⊤L⊤

i· +αcC
⊤
i· ,Σm

)[
A⊤
i· | L

⊤
i·
]
∼ N

(
ΨPP⊤L⊤

i· ,ΣL

)
L⊤
i· ∼ N(0, I),

where P is an r × r matrix that satisfies PP⊤ = I . Then,

DEA(a,a∗) = (a− a∗)⊤Σ−1
L ΨP

(
I + P⊤Ψ⊤Σ−1

L ΨP
)−1

P⊤βa

= (a− a∗)⊤Σ−1
L ΨP

(
P⊤P + P⊤Ψ⊤Σ−1

L ΨP
)−1

P⊤βa

= (a− a∗)⊤Σ−1
L ΨPP−1

(
I +Ψ⊤Σ−1

L Ψ
)−1

(P⊤)−1P⊤βa

= (a− a∗)⊤Σ−1
L Ψ

(
I +Ψ⊤Σ−1

L Ψ
)−1

βa

IEA(a,a∗) = (a− a∗)⊤Σ−1
L ΨP

(
I + P⊤Ψ⊤Σ−1

L ΨP
)−1

P⊤α⊤
a βm

= (a− a∗)⊤Σ−1
L ΨP

(
P⊤P + P⊤Ψ⊤Σ−1

L ΨP
)−1

P⊤α⊤
a βm

= (a− a∗)⊤Σ−1
L ΨPP−1

(
I +Ψ⊤Σ−1

L Ψ
)−1

(P⊤)−1P⊤α⊤
a βm

= (a− a∗)⊤Σ−1
L Ψ

(
I +Ψ⊤Σ−1

L Ψ
)−1

α⊤
a βm
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C.2 Full Conditional Updates

[σ2
e | ·] ∼ IG

(
n+ 1

2
,
1

2

(
Y −Mβm −Lβa −Cβc

)⊤(
Y −Mβm −Lβa −Cβc

)
+

1

νβ

)

[βc | ·] ∼ N
((

C⊤C
)−1

C⊤(Y −Mβm −Lβa
)
, σ2
e

(
C⊤C

)−1
)

[βa | ·] ∼ N
((

L⊤L
)−1

L⊤(Y −Mβm −Cβc
)
, σ2
e

(
L⊤L

)−1
)

[τ2β | ·] ∼ IG
(
p+ 1

2
,
1

2
β⊤
mΓ−1

β Λ−1
β βm +

1

νβ

)
,

[νβ | ·] ∼ IG
(
1,

1

τ2β
+

1

σ2
e

)

[λ2βgj | ·] ∼ IG
(
bβ +

1

2
, 1 +

(βm)2gj
2τ2βγ

2
βg

)

[γ−2
βg | ·] ∼ GIG

(
pg
2
− aβ ,

1

τ2β

pg∑
j=1

(βm)2gj
λ2βgj

, 2

)
For d = 1, . . . , s,

[αdc | ·] ∼ N

(( n∑
i=1

C2
id

)−1 n∑
i=1

Cid
(
M⊤

i· −αaL
⊤
i· −α−d

c C⊤
i,−d

)
,

( n∑
i=1

C2
id

)−1

Σm

)
,

where αdc is a s × 1 vector referring to the d-th column of αc, α−d
c is αc with the d-th column removed, and Ci,−d

refers to the i-th row of C with the d-th column removed.

[τ2αk | ·] ∼ IG
(
p+ 1

2
,
1

2

G∑
g=1

pg∑
j=1

(αka)
2
gj

γ2αgλ
2
αgj{f((βm)gj)}2

+
1

ναk

)
, k = 1, . . . , r

[ναk | ·] ∼ IG
(
1,

1

η2
+

1

τ2αk

)
, k = 1, . . . , r

[η2 | ·] ∼ IG
(
0.001 +

r

2
, 0.001 +

r∑
k=1

1

ναk

)

[γ−2
αg | ·] ∼ GIG

(
pgr

2
− aα,

r∑
k=1

pg∑
j=1

(αka)
2
gj

τ2αkλ
2
αgj{f((βm)gj)}2

, 2

)

[λ2αgj | ·] ∼ IG
(
bα +

r

2
, 1 +

1

2

r∑
k=1

(αka)
2
gj

τ2αkγ
2
αg{f((βm)gj)}2

)

[(Σm)g | ·] ∼ W−1

(
Ipg×pg +

n∑
i=1

(
M⊤

ig − (αa)g·L
⊤
i· − (αc)g·C

⊤
i·

)(
M⊤

ig − (αa)g·L
⊤
i· − (αc)g·C

⊤
i·

)⊤
, n+ pg

)
,
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where (αa)g· and (αc)g· are the submatricies of αa and αc corresponding to the mediators in the g-th mediator group.

[L⊤
i· | ·] ∼ N

([
1

σ2
e

βaβ
⊤
a +α⊤

aΣ
−1
m αa +Ψ⊤Σ−1

L Ψ+ I

]−1[
βa
σ2
e

(Yi −M i·βm −Ci·βc) +α⊤
aΣ

−1
m (M⊤

i· −αcC
⊤
i· )

+Ψ⊤Σ−1
L A⊤

i·

]
,

[
1

σ2
e

βaβ
⊤
a +α⊤

aΣ
−1
m αa +Ψ⊤Σ−1

L Ψ+ I

]−1
)

[σ2
Lk′ | ·] ∼ IG

(
n

2
,
1

2

n∑
i=1

(
Aik′ −Ψk′·L

⊤
i·
)2)

, k′ = 1, . . . , q,

where Ψk′· is the k′-th row of Ψ.

[Ψ⊤
k′· | ·] ∼ N

({
D−1
k′ + σ−2

Lk′L
⊤L

}−1

L⊤σ−2
Lk′A·k′ ,

{
D−1
k′ + σ−2

Lk′L
⊤L

}−1
)
,

where D−1
k′ = diag(ϕk′1τ1, . . . , ϕk′rτr), k′ = 1, . . . , q, and A·k′ is the k′-th column of A which is an n× 1 vector.

[ϕk′k | ·] ∼ G
(
3

2
,
3 + τkΨ

2
k′k

2

)

[δ1 | ·] ∼ G
(
2.1 +

qr

2
, 1 +

1

2

( q∑
k′=1

r∑
k=2

ϕk′kΨ
2
k′k

( k∏
m=2

δm

)
+

q∑
k′=1

ϕk′1Ψ
2
k′1

))

[δm | ·] ∼ G
(
3.1 +

q

2
(r −m+ 1), 1 +

1

2

q∑
k′=1

r∑
k=m

ϕk′kΨ
2
k′k

( k∏
l=1,l ̸=m

δl

))
,

where m = 2, . . . , r.
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C.3 Supplementary Simulation Results

One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.01 0.10 0.10 0.96 0.00 0.09 0.10 0.96
Independent DEL(l, l∗) (0,1,0,0) 0.00 0.10 0.10 0.95 -0.01 0.10 0.10 0.94
Independent DEL(l, l∗) (0,0,1,0) 0.01 0.09 0.09 0.95 0.00 0.09 0.09 0.94
Independent DEL(l, l∗) (0,0,0,1) 0.02 0.10 0.09 0.95 0.02 0.10 0.09 0.94
Product DEL(l, l∗) (1,0,0,0) 0.01 0.10 0.10 0.96 0.00 0.09 0.10 0.96
Product DEL(l, l∗) (0,1,0,0) 0.00 0.10 0.10 0.95 -0.01 0.10 0.10 0.94
Product DEL(l, l∗) (0,0,1,0) 0.01 0.09 0.09 0.95 0.00 0.09 0.09 0.94
Product DEL(l, l∗) (0,0,0,1) 0.02 0.10 0.09 0.94 0.02 0.10 0.09 0.94

Independent IEL(l, l∗) (1,0,0,0) 0.00 0.02 0.03 0.99 0.02 0.03 0.03 0.98
Independent IEL(l, l∗) (0,1,0,0) 0.00 0.02 0.03 0.99 0.02 0.03 0.03 0.97
Independent IEL(l, l∗) (0,0,1,0) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Independent IEL(l, l∗) (0,0,0,1) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (1,0,0,0) 0.00 0.02 0.03 0.99 0.01 0.02 0.02 0.97
Product IEL(l, l∗) (0,1,0,0) 0.00 0.02 0.03 0.99 0.01 0.02 0.02 0.96
Product IEL(l, l∗) (0,0,1,0) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,0,0,1) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

Independent TEL(l, l∗) (1,0,0,0) 0.01 0.09 0.10 0.96 0.01 0.09 0.09 0.95
Independent TEL(l, l∗) (0,1,0,0) 0.00 0.10 0.10 0.94 0.00 0.10 0.09 0.95
Independent TEL(l, l∗) (0,0,1,0) 0.01 0.09 0.09 0.95 0.00 0.09 0.09 0.94
Independent TEL(l, l∗) (0,0,0,1) 0.02 0.10 0.09 0.95 0.02 0.10 0.09 0.94
Product TEL(l, l∗) (1,0,0,0) 0.01 0.09 0.10 0.96 0.01 0.09 0.09 0.95
Product TEL(l, l∗) (0,1,0,0) 0.00 0.10 0.10 0.94 0.00 0.10 0.09 0.94
Product TEL(l, l∗) (0,0,1,0) 0.01 0.09 0.09 0.95 0.00 0.09 0.09 0.94
Product TEL(l, l∗) (0,0,0,1) 0.02 0.10 0.09 0.94 0.02 0.10 0.09 0.94

Table C.1: Simulation results for the n = 2000 IE zero simulation setting for the one-step and two-step estimators of
DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.5 and Adjusted R2
O = 0.3.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.04 0.09 0.08 0.93 0.01 0.08 0.08 0.95
Independent DEL(l, l∗) (0,1,0,0) 0.03 0.09 0.08 0.93 0.00 0.08 0.08 0.94
Independent DEL(l, l∗) (0,0,1,0) 0.03 0.09 0.08 0.93 0.00 0.08 0.08 0.94
Independent DEL(l, l∗) (0,0,0,1) 0.04 0.09 0.08 0.92 0.01 0.08 0.08 0.93
Product DEL(l, l∗) (1,0,0,0) 0.04 0.09 0.08 0.93 0.01 0.08 0.08 0.95
Product DEL(l, l∗) (0,1,0,0) 0.03 0.09 0.08 0.93 0.00 0.08 0.08 0.93
Product DEL(l, l∗) (0,0,1,0) 0.03 0.09 0.08 0.93 0.00 0.08 0.08 0.94
Product DEL(l, l∗) (0,0,0,1) 0.04 0.09 0.08 0.92 0.01 0.08 0.08 0.93

Independent IEL(l, l∗) (1,0,0,0) -0.03 0.04 0.03 0.76 -0.02 0.03 0.03 0.89
Independent IEL(l, l∗) (0,1,0,0) -0.03 0.04 0.03 0.77 -0.02 0.03 0.03 0.88
Independent IEL(l, l∗) (0,0,1,0) -0.03 0.04 0.03 0.79 -0.01 0.03 0.03 0.91
Independent IEL(l, l∗) (0,0,0,1) -0.03 0.04 0.03 0.78 -0.01 0.03 0.03 0.90
Product IEL(l, l∗) (1,0,0,0) -0.03 0.04 0.03 0.74 -0.02 0.03 0.03 0.85
Product IEL(l, l∗) (0,1,0,0) -0.03 0.04 0.03 0.76 -0.02 0.04 0.03 0.86
Product IEL(l, l∗) (0,0,1,0) -0.03 0.04 0.03 0.78 -0.02 0.03 0.03 0.88
Product IEL(l, l∗) (0,0,0,1) -0.03 0.04 0.03 0.76 -0.02 0.03 0.03 0.87

Independent TEL(l, l∗) (1,0,0,0) 0.01 0.08 0.08 0.95 -0.01 0.08 0.08 0.95
Independent TEL(l, l∗) (0,1,0,0) 0.00 0.08 0.08 0.94 -0.01 0.08 0.08 0.93
Independent TEL(l, l∗) (0,0,1,0) 0.00 0.08 0.08 0.94 -0.01 0.08 0.08 0.93
Independent TEL(l, l∗) (0,0,0,1) 0.01 0.08 0.08 0.94 0.00 0.08 0.08 0.94
Product TEL(l, l∗) (1,0,0,0) 0.01 0.08 0.08 0.96 -0.01 0.08 0.08 0.94
Product TEL(l, l∗) (0,1,0,0) 0.00 0.08 0.08 0.94 -0.02 0.08 0.08 0.93
Product TEL(l, l∗) (0,0,1,0) 0.00 0.08 0.08 0.94 -0.01 0.08 0.08 0.94
Product TEL(l, l∗) (0,0,0,1) 0.01 0.08 0.08 0.94 -0.01 0.08 0.08 0.93

Table C.2: Simulation results for the n = 2000 IE dense simulation setting for the one-step and two-step estimators of
DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.5 and Adjusted R2
O = 0.3.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.02 0.08 0.08 0.96 0.00 0.08 0.08 0.96
Independent DEL(l, l∗) (0,1,0,0) 0.01 0.08 0.08 0.95 0.00 0.08 0.08 0.94
Independent DEL(l, l∗) (0,0,1,0) 0.01 0.08 0.08 0.95 0.00 0.08 0.08 0.95
Independent DEL(l, l∗) (0,0,0,1) 0.02 0.09 0.08 0.94 0.00 0.08 0.08 0.94
Product DEL(l, l∗) (1,0,0,0) 0.02 0.08 0.08 0.96 0.00 0.08 0.08 0.96
Product DEL(l, l∗) (0,1,0,0) 0.01 0.08 0.08 0.95 0.00 0.08 0.08 0.94
Product DEL(l, l∗) (0,0,1,0) 0.01 0.08 0.08 0.95 0.00 0.08 0.08 0.94
Product DEL(l, l∗) (0,0,0,1) 0.02 0.09 0.08 0.94 0.00 0.08 0.08 0.94

Independent IEL(l, l∗) (1,0,0,0) -0.01 0.03 0.03 0.94 0.00 0.03 0.03 0.95
Independent IEL(l, l∗) (0,1,0,0) -0.01 0.03 0.03 0.93 0.00 0.03 0.03 0.94
Independent IEL(l, l∗) (0,0,1,0) -0.01 0.03 0.03 0.94 0.01 0.03 0.03 0.97
Independent IEL(l, l∗) (0,0,0,1) -0.01 0.03 0.03 0.93 0.00 0.03 0.03 0.95
Product IEL(l, l∗) (1,0,0,0) -0.01 0.03 0.03 0.93 0.00 0.03 0.03 0.94
Product IEL(l, l∗) (0,1,0,0) -0.01 0.03 0.03 0.93 0.00 0.03 0.03 0.94
Product IEL(l, l∗) (0,0,1,0) -0.01 0.03 0.03 0.94 0.01 0.03 0.03 0.96
Product IEL(l, l∗) (0,0,0,1) -0.01 0.03 0.03 0.93 0.00 0.03 0.03 0.94

Independent TEL(l, l∗) (1,0,0,0) 0.01 0.08 0.09 0.96 0.00 0.08 0.08 0.95
Independent TEL(l, l∗) (0,1,0,0) 0.00 0.09 0.09 0.94 0.00 0.09 0.08 0.93
Independent TEL(l, l∗) (0,0,1,0) 0.00 0.09 0.09 0.95 0.00 0.09 0.08 0.94
Independent TEL(l, l∗) (0,0,0,1) 0.01 0.09 0.09 0.94 0.01 0.09 0.08 0.93
Product TEL(l, l∗) (1,0,0,0) 0.01 0.08 0.09 0.96 0.00 0.08 0.08 0.94
Product TEL(l, l∗) (0,1,0,0) 0.00 0.09 0.09 0.94 0.00 0.09 0.08 0.93
Product TEL(l, l∗) (0,0,1,0) 0.00 0.09 0.09 0.95 0.00 0.09 0.08 0.94
Product TEL(l, l∗) (0,0,0,1) 0.01 0.09 0.09 0.94 0.01 0.09 0.08 0.93

Table C.3: Simulation results for the n = 2000 IE sparse simulation setting for the one-step and two-step estimators
of DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.5 and Adjusted R2
O = 0.3.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.04 0.14 0.13 0.93 0.03 0.13 0.12 0.91
Independent DEL(l, l∗) (0,1,0,0) 0.06 0.14 0.13 0.93 0.04 0.13 0.12 0.92
Independent DEL(l, l∗) (0,0,1,0) 0.07 0.14 0.13 0.91 0.06 0.14 0.11 0.90
Independent DEL(l, l∗) (0,0,0,1) 0.06 0.14 0.13 0.93 0.05 0.13 0.11 0.90
Product DEL(l, l∗) (1,0,0,0) 0.04 0.14 0.13 0.93 0.03 0.13 0.12 0.91
Product DEL(l, l∗) (0,1,0,0) 0.05 0.14 0.13 0.94 0.04 0.13 0.12 0.92
Product DEL(l, l∗) (0,0,1,0) 0.07 0.14 0.13 0.92 0.06 0.14 0.11 0.89
Product DEL(l, l∗) (0,0,0,1) 0.06 0.14 0.13 0.93 0.05 0.13 0.11 0.90

Independent IEL(l, l∗) (1,0,0,0) 0.00 0.02 0.03 1.00 0.01 0.02 0.03 1.00
Independent IEL(l, l∗) (0,1,0,0) 0.00 0.02 0.03 1.00 0.01 0.02 0.03 1.00
Independent IEL(l, l∗) (0,0,1,0) 0.00 0.00 0.01 1.00 0.00 0.00 0.01 1.00
Independent IEL(l, l∗) (0,0,0,1) 0.00 0.00 0.01 1.00 0.00 0.00 0.01 1.00
Product IEL(l, l∗) (1,0,0,0) 0.00 0.01 0.01 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,1,0,0) 0.00 0.01 0.01 1.00 0.00 0.00 0.01 1.00
Product IEL(l, l∗) (0,0,1,0) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,0,0,1) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

Independent TEL(l, l∗) (1,0,0,0) 0.04 0.14 0.13 0.93 0.04 0.14 0.12 0.90
Independent TEL(l, l∗) (0,1,0,0) 0.06 0.14 0.13 0.93 0.05 0.14 0.12 0.91
Independent TEL(l, l∗) (0,0,1,0) 0.07 0.14 0.13 0.92 0.06 0.14 0.11 0.90
Independent TEL(l, l∗) (0,0,0,1) 0.06 0.14 0.13 0.93 0.05 0.13 0.11 0.90
Product TEL(l, l∗) (1,0,0,0) 0.04 0.14 0.13 0.93 0.03 0.13 0.12 0.91
Product TEL(l, l∗) (0,1,0,0) 0.05 0.14 0.13 0.94 0.04 0.13 0.12 0.91
Product TEL(l, l∗) (0,0,1,0) 0.07 0.14 0.13 0.92 0.06 0.14 0.11 0.90
Product TEL(l, l∗) (0,0,0,1) 0.06 0.14 0.13 0.93 0.05 0.13 0.11 0.90

Table C.4: Simulation results for the n = 400 IE zero simulation setting for the one-step and two-step estimators of
DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.5 and Adjusted R2
O = 0.6.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.05 0.12 0.11 0.92 0.03 0.12 0.10 0.90
Independent DEL(l, l∗) (0,1,0,0) 0.06 0.12 0.11 0.92 0.04 0.12 0.10 0.91
Independent DEL(l, l∗) (0,0,1,0) 0.06 0.12 0.11 0.92 0.04 0.11 0.10 0.91
Independent DEL(l, l∗) (0,0,0,1) 0.05 0.12 0.11 0.92 0.04 0.11 0.10 0.91
Product DEL(l, l∗) (1,0,0,0) 0.05 0.12 0.11 0.92 0.03 0.12 0.10 0.90
Product DEL(l, l∗) (0,1,0,0) 0.06 0.12 0.11 0.92 0.04 0.12 0.10 0.91
Product DEL(l, l∗) (0,0,1,0) 0.06 0.12 0.11 0.92 0.04 0.11 0.10 0.91
Product DEL(l, l∗) (0,0,0,1) 0.05 0.12 0.11 0.92 0.04 0.11 0.10 0.91

Independent IEL(l, l∗) (1,0,0,0) -0.03 0.06 0.05 0.91 -0.03 0.07 0.06 0.89
Independent IEL(l, l∗) (0,1,0,0) -0.02 0.06 0.05 0.93 -0.03 0.07 0.06 0.92
Independent IEL(l, l∗) (0,0,1,0) -0.02 0.06 0.05 0.91 -0.03 0.07 0.06 0.90
Independent IEL(l, l∗) (0,0,0,1) -0.03 0.06 0.05 0.91 -0.03 0.07 0.06 0.89
Product IEL(l, l∗) (1,0,0,0) -0.04 0.08 0.05 0.81 -0.06 0.11 0.05 0.69
Product IEL(l, l∗) (0,1,0,0) -0.04 0.08 0.05 0.82 -0.06 0.11 0.05 0.70
Product IEL(l, l∗) (0,0,1,0) -0.04 0.08 0.05 0.82 -0.06 0.11 0.05 0.69
Product IEL(l, l∗) (0,0,0,1) -0.04 0.08 0.05 0.82 -0.06 0.11 0.05 0.68

Independent TEL(l, l∗) (1,0,0,0) 0.02 0.13 0.12 0.95 0.00 0.13 0.11 0.91
Independent TEL(l, l∗) (0,1,0,0) 0.03 0.13 0.12 0.94 0.01 0.13 0.11 0.91
Independent TEL(l, l∗) (0,0,1,0) 0.04 0.12 0.12 0.94 0.02 0.12 0.11 0.91
Independent TEL(l, l∗) (0,0,0,1) 0.03 0.12 0.12 0.95 0.01 0.13 0.11 0.91
Product TEL(l, l∗) (1,0,0,0) 0.01 0.14 0.12 0.93 -0.03 0.15 0.11 0.84
Product TEL(l, l∗) (0,1,0,0) 0.02 0.14 0.12 0.91 -0.02 0.15 0.11 0.84
Product TEL(l, l∗) (0,0,1,0) 0.02 0.13 0.12 0.92 -0.02 0.14 0.11 0.86
Product TEL(l, l∗) (0,0,0,1) 0.01 0.13 0.12 0.92 -0.02 0.14 0.11 0.84

Table C.5: Simulation results for the n = 400 IE sparse simulation setting for the one-step and two-step estimators of
DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.5 and Adjusted R2
O = 0.6.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.07 0.14 0.11 0.89 0.05 0.12 0.10 0.89
Independent DEL(l, l∗) (0,1,0,0) 0.08 0.14 0.11 0.87 0.05 0.12 0.10 0.88
Independent DEL(l, l∗) (0,0,1,0) 0.09 0.14 0.11 0.87 0.06 0.12 0.10 0.88
Independent DEL(l, l∗) (0,0,0,1) 0.08 0.13 0.11 0.88 0.05 0.12 0.10 0.89
Product DEL(l, l∗) (1,0,0,0) 0.06 0.13 0.11 0.90 0.05 0.12 0.10 0.89
Product DEL(l, l∗) (0,1,0,0) 0.07 0.13 0.11 0.88 0.05 0.12 0.10 0.88
Product DEL(l, l∗) (0,0,1,0) 0.08 0.13 0.11 0.88 0.06 0.12 0.10 0.88
Product DEL(l, l∗) (0,0,0,1) 0.07 0.13 0.11 0.90 0.05 0.12 0.10 0.89

Independent IEL(l, l∗) (1,0,0,0) -0.06 0.08 0.04 0.66 -0.15 0.15 0.04 0.22
Independent IEL(l, l∗) (0,1,0,0) -0.06 0.08 0.04 0.68 -0.15 0.15 0.04 0.24
Independent IEL(l, l∗) (0,0,1,0) -0.06 0.08 0.04 0.69 -0.14 0.15 0.04 0.23
Independent IEL(l, l∗) (0,0,0,1) -0.06 0.08 0.04 0.66 -0.15 0.15 0.04 0.22
Product IEL(l, l∗) (1,0,0,0) -0.13 0.15 0.02 0.34 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,1,0,0) -0.13 0.15 0.02 0.33 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,0,1,0) -0.13 0.15 0.02 0.34 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,0,0,1) -0.13 0.15 0.02 0.33 -0.20 0.20 0.00 0.00

Independent TEL(l, l∗) (1,0,0,0) 0.01 0.12 0.11 0.93 -0.10 0.16 0.10 0.78
Independent TEL(l, l∗) (0,1,0,0) 0.02 0.12 0.11 0.94 -0.09 0.15 0.10 0.81
Independent TEL(l, l∗) (0,0,1,0) 0.02 0.12 0.12 0.94 -0.09 0.15 0.10 0.82
Independent TEL(l, l∗) (0,0,0,1) 0.01 0.12 0.11 0.95 -0.09 0.15 0.10 0.80
Product TEL(l, l∗) (1,0,0,0) -0.07 0.16 0.11 0.81 -0.15 0.19 0.10 0.62
Product TEL(l, l∗) (0,1,0,0) -0.06 0.15 0.11 0.83 -0.15 0.18 0.10 0.65
Product TEL(l, l∗) (0,0,1,0) -0.06 0.15 0.11 0.84 -0.14 0.18 0.10 0.69
Product TEL(l, l∗) (0,0,0,1) -0.07 0.15 0.11 0.83 -0.15 0.18 0.10 0.65

Table C.6: Simulation results for the n = 400 IE dense simulation setting for the one-step and two-step estimators of
DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.5 and Adjusted R2
O = 0.6.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) -0.04 0.19 0.20 0.96 -0.09 0.21 0.18 0.92
Independent DEL(l, l∗) (0,1,0,0) -0.03 0.18 0.20 0.96 -0.07 0.20 0.18 0.92
Independent DEL(l, l∗) (0,0,1,0) 0.04 0.19 0.20 0.96 0.03 0.19 0.18 0.94
Independent DEL(l, l∗) (0,0,0,1) 0.03 0.18 0.20 0.96 0.01 0.18 0.18 0.94
Product DEL(l, l∗) (1,0,0,0) -0.08 0.20 0.20 0.95 -0.09 0.21 0.18 0.93
Product DEL(l, l∗) (0,1,0,0) -0.06 0.19 0.20 0.96 -0.07 0.20 0.18 0.93
Product DEL(l, l∗) (0,0,1,0) 0.03 0.19 0.20 0.96 0.03 0.19 0.18 0.94
Product DEL(l, l∗) (0,0,0,1) 0.02 0.18 0.20 0.97 0.01 0.18 0.18 0.93

Independent IEL(l, l∗) (1,0,0,0) 0.00 0.01 0.03 1.00 0.01 0.02 0.03 1.00
Independent IEL(l, l∗) (0,1,0,0) 0.00 0.01 0.03 1.00 0.01 0.02 0.03 1.00
Independent IEL(l, l∗) (0,0,1,0) 0.00 0.01 0.02 1.00 0.00 0.00 0.02 1.00
Independent IEL(l, l∗) (0,0,0,1) 0.00 0.01 0.02 1.00 0.00 0.00 0.02 1.00
Product IEL(l, l∗) (1,0,0,0) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,1,0,0) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,0,1,0) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,0,0,1) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

Independent TEL(l, l∗) (1,0,0,0) -0.04 0.19 0.20 0.96 -0.08 0.20 0.18 0.93
Independent TEL(l, l∗) (0,1,0,0) -0.03 0.18 0.20 0.96 -0.06 0.19 0.18 0.92
Independent TEL(l, l∗) (0,0,1,0) 0.03 0.19 0.20 0.96 0.03 0.19 0.18 0.94
Independent TEL(l, l∗) (0,0,0,1) 0.02 0.18 0.20 0.97 0.01 0.18 0.18 0.94
Product TEL(l, l∗) (1,0,0,0) -0.08 0.20 0.20 0.95 -0.09 0.21 0.18 0.93
Product TEL(l, l∗) (0,1,0,0) -0.06 0.19 0.20 0.96 -0.07 0.20 0.18 0.93
Product TEL(l, l∗) (0,0,1,0) 0.03 0.19 0.20 0.96 0.03 0.19 0.18 0.94
Product TEL(l, l∗) (0,0,0,1) 0.02 0.18 0.20 0.97 0.01 0.18 0.18 0.93

Table C.7: Simulation results for the n = 400 IE zero simulation setting for the one-step and two-step estimators of
DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.1 and Adjusted R2
O = 0.6.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.01 0.17 0.17 0.95 -0.06 0.17 0.15 0.92
Independent DEL(l, l∗) (0,1,0,0) 0.02 0.17 0.17 0.95 -0.04 0.16 0.15 0.92
Independent DEL(l, l∗) (0,0,1,0) 0.03 0.17 0.17 0.95 -0.04 0.16 0.15 0.94
Independent DEL(l, l∗) (0,0,0,1) 0.02 0.17 0.17 0.96 -0.05 0.16 0.15 0.93
Product DEL(l, l∗) (1,0,0,0) -0.04 0.16 0.17 0.96 -0.06 0.17 0.15 0.93
Product DEL(l, l∗) (0,1,0,0) -0.02 0.15 0.17 0.97 -0.05 0.16 0.15 0.92
Product DEL(l, l∗) (0,0,1,0) -0.02 0.16 0.16 0.96 -0.04 0.16 0.15 0.94
Product DEL(l, l∗) (0,0,0,1) -0.03 0.15 0.17 0.96 -0.05 0.16 0.15 0.93

Independent IEL(l, l∗) (1,0,0,0) -0.08 0.11 0.07 0.76 -0.10 0.14 0.07 0.64
Independent IEL(l, l∗) (0,1,0,0) -0.08 0.11 0.07 0.77 -0.10 0.14 0.07 0.64
Independent IEL(l, l∗) (0,0,1,0) -0.08 0.11 0.07 0.78 -0.10 0.14 0.08 0.64
Independent IEL(l, l∗) (0,0,0,1) -0.08 0.11 0.07 0.78 -0.10 0.14 0.07 0.64
Product IEL(l, l∗) (1,0,0,0) -0.17 0.18 0.02 0.20 -0.18 0.19 0.02 0.14
Product IEL(l, l∗) (0,1,0,0) -0.17 0.18 0.02 0.20 -0.18 0.19 0.02 0.13
Product IEL(l, l∗) (0,0,1,0) -0.17 0.18 0.02 0.19 -0.18 0.19 0.02 0.12
Product IEL(l, l∗) (0,0,0,1) -0.17 0.18 0.02 0.20 -0.18 0.19 0.02 0.14

Independent TEL(l, l∗) (1,0,0,0) -0.07 0.20 0.19 0.92 -0.16 0.24 0.17 0.80
Independent TEL(l, l∗) (0,1,0,0) -0.05 0.20 0.19 0.94 -0.14 0.23 0.17 0.82
Independent TEL(l, l∗) (0,0,1,0) -0.05 0.20 0.19 0.93 -0.14 0.23 0.17 0.83
Independent TEL(l, l∗) (0,0,0,1) -0.06 0.20 0.19 0.95 -0.15 0.23 0.17 0.83
Product TEL(l, l∗) (1,0,0,0) -0.20 0.27 0.17 0.74 -0.23 0.29 0.15 0.62
Product TEL(l, l∗) (0,1,0,0) -0.19 0.26 0.17 0.78 -0.22 0.28 0.15 0.66
Product TEL(l, l∗) (0,0,1,0) -0.19 0.26 0.17 0.78 -0.22 0.28 0.15 0.67
Product TEL(l, l∗) (0,0,0,1) -0.19 0.26 0.17 0.78 -0.23 0.28 0.15 0.64

Table C.8: Simulation results for the n = 400 IE sparse simulation setting for the one-step and two-step estimators of
DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.1 and Adjusted R2
O = 0.6.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.02 0.18 0.17 0.95 -0.08 0.18 0.15 0.90
Independent DEL(l, l∗) (0,1,0,0) 0.03 0.18 0.17 0.94 -0.07 0.17 0.15 0.91
Independent DEL(l, l∗) (0,0,1,0) 0.03 0.19 0.17 0.93 -0.07 0.17 0.15 0.92
Independent DEL(l, l∗) (0,0,0,1) 0.03 0.18 0.17 0.94 -0.08 0.16 0.15 0.91
Product DEL(l, l∗) (1,0,0,0) -0.07 0.17 0.16 0.94 -0.08 0.18 0.15 0.90
Product DEL(l, l∗) (0,1,0,0) -0.06 0.16 0.16 0.94 -0.07 0.17 0.15 0.91
Product DEL(l, l∗) (0,0,1,0) -0.06 0.16 0.16 0.95 -0.07 0.17 0.15 0.91
Product DEL(l, l∗) (0,0,0,1) -0.06 0.16 0.16 0.94 -0.08 0.16 0.15 0.92

Independent IEL(l, l∗) (1,0,0,0) -0.13 0.14 0.05 0.39 -0.18 0.18 0.03 0.09
Independent IEL(l, l∗) (0,1,0,0) -0.13 0.14 0.05 0.40 -0.18 0.18 0.03 0.08
Independent IEL(l, l∗) (0,0,1,0) -0.13 0.14 0.05 0.42 -0.18 0.18 0.03 0.09
Independent IEL(l, l∗) (0,0,0,1) -0.13 0.14 0.05 0.42 -0.18 0.18 0.03 0.07
Product IEL(l, l∗) (1,0,0,0) -0.20 0.20 0.00 0.02 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,1,0,0) -0.20 0.20 0.00 0.02 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,0,1,0) -0.20 0.20 0.00 0.03 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,0,0,1) -0.20 0.20 0.00 0.02 -0.20 0.20 0.00 0.00

Independent TEL(l, l∗) (1,0,0,0) -0.11 0.23 0.18 0.85 -0.26 0.31 0.15 0.56
Independent TEL(l, l∗) (0,1,0,0) -0.10 0.22 0.18 0.87 -0.25 0.30 0.15 0.60
Independent TEL(l, l∗) (0,0,1,0) -0.09 0.23 0.18 0.87 -0.25 0.29 0.15 0.61
Independent TEL(l, l∗) (0,0,0,1) -0.10 0.23 0.18 0.88 -0.26 0.30 0.15 0.57
Product TEL(l, l∗) (1,0,0,0) -0.27 0.31 0.16 0.58 -0.28 0.32 0.15 0.50
Product TEL(l, l∗) (0,1,0,0) -0.26 0.30 0.16 0.63 -0.27 0.31 0.15 0.54
Product TEL(l, l∗) (0,0,1,0) -0.25 0.30 0.16 0.65 -0.27 0.31 0.15 0.55
Product TEL(l, l∗) (0,0,0,1) -0.26 0.30 0.16 0.62 -0.28 0.31 0.15 0.51

Table C.9: Simulation results for the n = 400 IE dense simulation setting for the one-step and two-step estimators of
DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.1 and Adjusted R2
O = 0.6.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) -0.05 0.28 0.29 0.95 -0.07 0.29 0.27 0.94
Independent DEL(l, l∗) (0,1,0,0) -0.03 0.27 0.29 0.97 -0.05 0.27 0.27 0.94
Independent DEL(l, l∗) (0,0,1,0) 0.04 0.27 0.28 0.96 0.03 0.27 0.26 0.95
Independent DEL(l, l∗) (0,0,0,1) 0.02 0.26 0.28 0.96 0.01 0.26 0.26 0.95
Product DEL(l, l∗) (1,0,0,0) -0.07 0.28 0.28 0.95 -0.07 0.29 0.27 0.94
Product DEL(l, l∗) (0,1,0,0) -0.05 0.27 0.28 0.97 -0.05 0.27 0.27 0.95
Product DEL(l, l∗) (0,0,1,0) 0.03 0.27 0.28 0.96 0.03 0.27 0.26 0.94
Product DEL(l, l∗) (0,0,0,1) 0.02 0.26 0.28 0.96 0.01 0.26 0.26 0.95

Independent IEL(l, l∗) (1,0,0,0) 0.00 0.01 0.04 1.00 0.01 0.01 0.03 1.00
Independent IEL(l, l∗) (0,1,0,0) 0.00 0.01 0.04 1.00 0.01 0.01 0.03 1.00
Independent IEL(l, l∗) (0,0,1,0) 0.00 0.01 0.02 1.00 0.00 0.00 0.02 1.00
Independent IEL(l, l∗) (0,0,0,1) 0.00 0.01 0.02 1.00 0.00 0.00 0.02 1.00
Product IEL(l, l∗) (1,0,0,0) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,1,0,0) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,0,1,0) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Product IEL(l, l∗) (0,0,0,1) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

Independent TEL(l, l∗) (1,0,0,0) -0.04 0.28 0.28 0.95 -0.06 0.29 0.27 0.94
Independent TEL(l, l∗) (0,1,0,0) -0.02 0.26 0.28 0.96 -0.04 0.27 0.27 0.95
Independent TEL(l, l∗) (0,0,1,0) 0.03 0.27 0.28 0.96 0.03 0.27 0.26 0.95
Independent TEL(l, l∗) (0,0,0,1) 0.02 0.26 0.28 0.96 0.01 0.26 0.26 0.95
Product TEL(l, l∗) (1,0,0,0) -0.07 0.28 0.28 0.95 -0.07 0.29 0.27 0.94
Product TEL(l, l∗) (0,1,0,0) -0.05 0.27 0.28 0.97 -0.05 0.27 0.27 0.95
Product TEL(l, l∗) (0,0,1,0) 0.03 0.27 0.28 0.96 0.03 0.27 0.26 0.94
Product TEL(l, l∗) (0,0,0,1) 0.02 0.26 0.28 0.96 0.01 0.26 0.26 0.95

Table C.10: Simulation results for the n = 400 IE zero simulation setting for the one-step and two-step estimators of
DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.1 and Adjusted R2
O = 0.3.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.03 0.25 0.25 0.95 -0.05 0.24 0.22 0.94
Independent DEL(l, l∗) (0,1,0,0) 0.04 0.24 0.25 0.95 -0.03 0.23 0.23 0.94
Independent DEL(l, l∗) (0,0,1,0) 0.05 0.25 0.25 0.95 -0.02 0.23 0.22 0.94
Independent DEL(l, l∗) (0,0,0,1) 0.04 0.24 0.25 0.95 -0.04 0.23 0.22 0.95
Product DEL(l, l∗) (1,0,0,0) -0.04 0.24 0.24 0.95 -0.05 0.24 0.22 0.94
Product DEL(l, l∗) (0,1,0,0) -0.03 0.23 0.24 0.96 -0.03 0.23 0.23 0.94
Product DEL(l, l∗) (0,0,1,0) -0.02 0.23 0.24 0.96 -0.03 0.23 0.22 0.94
Product DEL(l, l∗) (0,0,0,1) -0.03 0.22 0.24 0.96 -0.04 0.22 0.22 0.95

Independent IEL(l, l∗) (1,0,0,0) -0.09 0.12 0.07 0.72 -0.11 0.14 0.07 0.63
Independent IEL(l, l∗) (0,1,0,0) -0.09 0.12 0.07 0.72 -0.10 0.14 0.07 0.64
Independent IEL(l, l∗) (0,0,1,0) -0.09 0.11 0.07 0.73 -0.10 0.14 0.07 0.64
Independent IEL(l, l∗) (0,0,0,1) -0.09 0.12 0.07 0.72 -0.10 0.14 0.07 0.63
Product IEL(l, l∗) (1,0,0,0) -0.19 0.20 0.01 0.06 -0.19 0.19 0.01 0.10
Product IEL(l, l∗) (0,1,0,0) -0.19 0.20 0.01 0.05 -0.19 0.19 0.01 0.10
Product IEL(l, l∗) (0,0,1,0) -0.19 0.20 0.01 0.05 -0.19 0.19 0.01 0.09
Product IEL(l, l∗) (0,0,0,1) -0.19 0.20 0.01 0.05 -0.19 0.19 0.01 0.10

Independent TEL(l, l∗) (1,0,0,0) -0.07 0.27 0.26 0.93 -0.15 0.30 0.24 0.86
Independent TEL(l, l∗) (0,1,0,0) -0.05 0.26 0.26 0.95 -0.14 0.28 0.24 0.89
Independent TEL(l, l∗) (0,0,1,0) -0.04 0.26 0.26 0.95 -0.13 0.28 0.24 0.91
Independent TEL(l, l∗) (0,0,0,1) -0.05 0.26 0.26 0.95 -0.14 0.28 0.24 0.90
Product TEL(l, l∗) (1,0,0,0) -0.24 0.34 0.24 0.82 -0.23 0.34 0.23 0.79
Product TEL(l, l∗) (0,1,0,0) -0.22 0.32 0.24 0.84 -0.22 0.32 0.23 0.83
Product TEL(l, l∗) (0,0,1,0) -0.21 0.31 0.24 0.86 -0.21 0.31 0.23 0.84
Product TEL(l, l∗) (0,0,0,1) -0.23 0.32 0.24 0.86 -0.22 0.32 0.23 0.84

Table C.11: Simulation results for the n = 400 IE sparse simulation setting for the one-step and two-step estimators
of DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.1 and Adjusted R2
O = 0.3.
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One-Step Two-Step
Shrinkage Parameter (l− l∗)⊤ Bias RMSE Posterior SD Coverage Bias RMSE Posterior SD Coverage

Independent DEL(l, l∗) (1,0,0,0) 0.04 0.26 0.24 0.95 -0.06 0.24 0.22 0.93
Independent DEL(l, l∗) (0,1,0,0) 0.06 0.25 0.25 0.94 -0.04 0.23 0.22 0.94
Independent DEL(l, l∗) (0,0,1,0) 0.07 0.26 0.24 0.94 -0.04 0.23 0.22 0.95
Independent DEL(l, l∗) (0,0,0,1) 0.06 0.25 0.24 0.94 -0.05 0.22 0.22 0.94
Product DEL(l, l∗) (1,0,0,0) -0.05 0.24 0.23 0.94 -0.06 0.24 0.22 0.93
Product DEL(l, l∗) (0,1,0,0) -0.04 0.23 0.23 0.96 -0.04 0.23 0.22 0.94
Product DEL(l, l∗) (0,0,1,0) -0.03 0.23 0.23 0.96 -0.04 0.23 0.22 0.94
Product DEL(l, l∗) (0,0,0,1) -0.04 0.22 0.23 0.96 -0.05 0.22 0.22 0.94

Independent IEL(l, l∗) (1,0,0,0) -0.14 0.15 0.05 0.35 -0.18 0.18 0.03 0.07
Independent IEL(l, l∗) (0,1,0,0) -0.14 0.15 0.05 0.34 -0.18 0.18 0.03 0.08
Independent IEL(l, l∗) (0,0,1,0) -0.14 0.15 0.05 0.36 -0.18 0.18 0.03 0.09
Independent IEL(l, l∗) (0,0,0,1) -0.14 0.15 0.05 0.36 -0.18 0.18 0.03 0.07
Product IEL(l, l∗) (1,0,0,0) -0.20 0.20 0.00 0.01 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,1,0,0) -0.20 0.20 0.00 0.00 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,0,1,0) -0.20 0.20 0.00 0.01 -0.20 0.20 0.00 0.00
Product IEL(l, l∗) (0,0,0,1) -0.20 0.20 0.00 0.01 -0.20 0.20 0.00 0.00

Independent TEL(l, l∗) (1,0,0,0) -0.10 0.28 0.25 0.91 -0.24 0.34 0.22 0.77
Independent TEL(l, l∗) (0,1,0,0) -0.09 0.27 0.25 0.92 -0.22 0.32 0.22 0.82
Independent TEL(l, l∗) (0,0,1,0) -0.07 0.27 0.25 0.93 -0.22 0.31 0.22 0.83
Independent TEL(l, l∗) (0,0,0,1) -0.09 0.27 0.25 0.93 -0.23 0.32 0.22 0.82
Product TEL(l, l∗) (1,0,0,0) -0.25 0.34 0.23 0.79 -0.26 0.35 0.22 0.75
Product TEL(l, l∗) (0,1,0,0) -0.24 0.33 0.23 0.82 -0.24 0.33 0.22 0.80
Product TEL(l, l∗) (0,0,1,0) -0.23 0.32 0.23 0.83 -0.24 0.33 0.22 0.81
Product TEL(l, l∗) (0,0,0,1) -0.24 0.33 0.23 0.83 -0.25 0.33 0.22 0.80

Table C.12: Simulation results for the n = 400 IE dense simulation setting for the one-step and two-step estimators of
DEL(l, l∗), IEL(l, l∗), and TEL(l, l∗) when R2

L = 0.1 and Adjusted R2
O = 0.3.
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Estimated Number of Latent Factors
Method 4* 5 6 7

n = 400

One-Step Independent 999 (99.9%) 1 (0.1%) 0 (0.0%) 0 (0.0%)
One-Step Product 999 (99.9%) 1 (0.1%) 0 (0.0%) 0 (0.0%)
Two-Step 236 (23.6%) 543 (54.3%) 205 (20.5%) 16 (1.6%)

n = 2000

One-Step Independent 603 (60.3%) 365 (36.5%) 31 (3.1%) 1 (0.1%)
One-Step Product 623 (62.3%) 347 (34.7%) 29 (2.9%) 1 (0.1%)
Two-Step 13 (1.3%) 311 (31.1%) 406 (40.6%) 270 (27.0%)

Table C.13: Results for estimating of the number of latent factors under the IE zero simulation settings whenR2
L = 0.5

and Adjusted R2
O = 0.3. The numbers in the table indicate the number of times out of 1000 simulation replications

each number of latent factors was selected via BIC. *The true number of latent factors is r = 4.

Estimated Number of Latent Factors
Method 4* 5 6 7

n = 400

One-Step Independent 999 (99.9%) 1 (0.1%) 0 (0.0%) 0 (0.0%)
One-Step Product 998 (99.8%) 2 (0.2%) 0 (0.0%) 0 (0.0%)
Two-Step 232 (23.2%) 565 (56.5%) 187 (18.7%) 16 (1.6%)

n = 2000

One-Step Independent 594 (59.4%) 374 (37.4%) 30 (3.0%) 2 (0.2%)
One-Step Product 613 (61.3%) 359 (35.9%) 26 (2.6%) 2 (0.2%)
Two-Step 15 (1.5%) 331 (33.1%) 399 (39.9%) 255 (25.5%)

Table C.14: Results for estimating of the number of latent factors under the IE sparse simulation settings when R2
L =

0.5 and AdjustedR2
O = 0.3. The numbers in the table indicate the number of times out of 1000 simulation replications

each number of latent factors was selected via BIC. *The true number of latent factors is r = 4.
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C.4 Supplementary Results for Data Example
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Figure C.1: Pairwise spearman rank correlations for specific-gravity corrected chemical concentrations in PROTECT
corresponding to the total effect only mediation mixture map models (n = 478).
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Eicosanoid Pathway Latent Factor 1 Latent Factor 2 Latent Factor 3 Latent Factor 4
11,12-DHET Cytochrome p450 0.01 (-0.02, 0.04) -0.03 (-0.09, 0.04) -0.01 (-0.06, 0.03) -0.07 (-0.23, 0.20)
11(12)-EET Cytochrome p450 0.02 (-0.01, 0.07) 0.05 (-0.02, 0.13) -0.03 (-0.10, 0.01) -0.02 (-0.14, 0.11)
11-HETE Cytochrome p450 0.01 (-0.08, 0.10) -0.19 (-0.29, -0.09) -0.03 (-0.17, 0.14) -0.38 (-0.79, 0.77)
12,13-DiHOME Cytochrome p450 0.00 (-0.05, 0.06) -0.12 (-0.20, -0.05) -0.01 (-0.09, 0.09) -0.22 (-0.50, 0.47)
12(13)-EpoME Cytochrome p450 0.01 (-0.04, 0.07) 0.14 (0.08, 0.22) -0.01 (-0.10, 0.08) 0.21 (-0.45, 0.48)
14(15)-EET Cytochrome p450 -0.01 (-0.09, 0.07) -0.22 (-0.32, -0.13) -0.01 (-0.13, 0.15) -0.35 (-0.75, 0.72)
16-HETE Cytochrome p450 -0.01 (-0.09, 0.08) -0.24 (-0.34, -0.14) -0.01 (-0.14, 0.16) -0.37 (-0.78, 0.75)
17-HETE Cytochrome p450 0.00 (-0.09, 0.08) -0.24 (-0.34, -0.14) -0.01 (-0.15, 0.17) -0.39 (-0.82, 0.79)
18-HETE Cytochrome p450 0.01 (-0.08, 0.10) -0.22 (-0.32, -0.12) -0.02 (-0.15, 0.15) -0.38 (-0.79, 0.77)
CAA Cytochrome p450 0.00 (-0.10, 0.10) -0.27 (-0.38, -0.16) -0.02 (-0.18, 0.19) -0.46 (-0.94, 0.91)
20-HETE Cytochrome p450 -0.01 (-0.05, 0.03) 0.05 (-0.02, 0.11) 0.02 (-0.04, 0.08) 0.12 (-0.28, 0.31)
5,6-DHET Cytochrome p450 0.00 (-0.10, 0.09) -0.25 (-0.35, -0.15) -0.01 (-0.17, 0.18) -0.43 (-0.89, 0.86)
5(6)-EET Cytochrome p450 0.01 (-0.04, 0.05) -0.07 (-0.14, 0.00) -0.01 (-0.09, 0.06) -0.15 (-0.38, 0.35)
8,9-DHET Cytochrome p450 -0.01 (-0.09, 0.07) -0.21 (-0.30, -0.12) 0.00 (-0.12, 0.15) -0.33 (-0.70, 0.68)
8(9)-EET Cytochrome p450 0.02 (-0.01, 0.07) 0.08 (0.01, 0.16) -0.03 (-0.09, 0.01) 0.04 (-0.14, 0.17)
9,10-DiHOME Cytochrome p450 -0.01 (-0.05, 0.02) -0.09 (-0.16, -0.03) 0.01 (-0.04, 0.08) -0.09 (-0.28, 0.25)
9(10)-EpoME Cytochrome p450 -0.01 (-0.05, 0.03) -0.11 (-0.19, -0.05) 0.01 (-0.06, 0.08) -0.15 (-0.38, 0.35)
9S-HODE Cytochrome p450 -0.01 (-0.08, 0.06) -0.18 (-0.27, -0.10) 0.00 (-0.10, 0.14) -0.29 (-0.64, 0.61)
LTB4 Lipoxygenase 0.03 (-0.03, 0.09) 0.20 (0.11, 0.30) -0.04 (-0.15, 0.06) 0.21 (-0.45, 0.48)
LTD4 Lipoxygenase 0.00 (-0.05, 0.05) -0.11 (-0.18, -0.04) 0.00 (-0.08, 0.08) -0.17 (-0.41, 0.38)
LTE4 Lipoxygenase 0.02 (-0.01, 0.08) 0.06 (-0.01, 0.15) -0.04 (-0.11, 0.01) 0.01 (-0.10, 0.12)
RVD1 Lipoxygenase 0.01 (-0.03, 0.06) 0.10 (0.04, 0.18) -0.01 (-0.09, 0.05) 0.14 (-0.32, 0.34)
RVD2 Lipoxygenase 0.00 (-0.06, 0.05) -0.12 (-0.19, -0.05) 0.00 (-0.08, 0.09) -0.20 (-0.46, 0.43)
12-HETE Lipoxygenase -0.01 (-0.04, 0.02) 0.00 (-0.07, 0.06) 0.01 (-0.03, 0.06) 0.03 (-0.12, 0.15)
12-oxoETE Lipoxygenase -0.02 (-0.10, 0.06) -0.24 (-0.34, -0.15) 0.01 (-0.12, 0.17) -0.35 (-0.74, 0.71)
13-oxoODE Lipoxygenase 0.00 (-0.07, 0.06) -0.17 (-0.25, -0.09) 0.00 (-0.11, 0.12) -0.26 (-0.58, 0.55)
13S-HODE Lipoxygenase -0.02 (-0.09, 0.05) -0.20 (-0.30, -0.11) 0.02 (-0.09, 0.14) -0.26 (-0.57, 0.54)
15-HETE Lipoxygenase 0.00 (-0.05, 0.05) -0.12 (-0.19, -0.05) 0.00 (-0.08, 0.09) -0.20 (-0.47, 0.44)
15-oxoETE Lipoxygenase -0.01 (-0.08, 0.06) -0.17 (-0.26, -0.09) -0.01 (-0.11, 0.12) -0.28 (-0.62, 0.59)
5-HETE Lipoxygenase 0.01 (-0.07, 0.09) -0.17 (-0.27, -0.08) -0.03 (-0.16, 0.13) -0.35 (-0.74, 0.72)
5-oxoETE Lipoxygenase 0.01 (-0.07, 0.10) -0.17 (-0.26, -0.07) -0.03 (-0.17, 0.12) -0.35 (-0.73, 0.71)
8-HETE Lipoxygenase 0.03 (-0.06, 0.12) -0.14 (-0.24, -0.03) -0.05 (-0.19, 0.12) -0.37 (-0.77, 0.74)

Table C.15: One-step mediation mixture map results for αa with independent shrinkage corresponding to gestational
age at delivery (n = 466). Estimates in the table are Posterior Mean (95% Credible Interval). Bolded entries cor-
respond to credible intervals that do not cover zero. Latent Factor 2 summarizes exposure to MCNP, MCOP, and
MCPP.
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Eicosanoid Pathway Posterior Mean (95% CI)
11,12-DHET Cytochrome p450 -0.05 (-0.25, 0.03)
11(12)-EET Cytochrome p450 -0.02 (-0.16, 0.06)
11-HETE Cytochrome p450 -0.02 (-0.19, 0.08)
12,13-DiHOME Cytochrome p450 0.02 (-0.07, 0.14)
12(13)-EpoME Cytochrome p450 0.02 (-0.07, 0.20)
14(15)-EET Cytochrome p450 0.01 (-0.10, 0.12)
16-HETE Cytochrome p450 -0.02 (-0.17, 0.07)
17-HETE Cytochrome p450 -0.01 (-0.15, 0.09)
18-HETE Cytochrome p450 0.02 (-0.07, 0.18)
CAA Cytochrome p450 0.05 (-0.06, 0.40)
20-HETE Cytochrome p450 -0.01 (-0.11, 0.08)
5,6-DHET Cytochrome p450 -0.03 (-0.23, 0.07)
5(6)-EET Cytochrome p450 -0.01 (-0.13, 0.07)
8,9-DHET Cytochrome p450 -0.02 (-0.19, 0.06)
8(9)-EET Cytochrome p450 0.00 (-0.11, 0.10)
9,10-DiHOME Cytochrome p450 -0.01 (-0.11, 0.09)
9(10)-EpoME Cytochrome p450 -0.03 (-0.21, 0.06)
9S-HODE Cytochrome p450 0.02 (-0.07, 0.17)
LTB4 Lipoxygenase -0.01 (-0.14, 0.08)
LTD4 Lipoxygenase -0.03 (-0.17, 0.06)
LTE4 Lipoxygenase -0.05 (-0.24, 0.04)
RVD1 Lipoxygenase 0.00 (-0.09, 0.10)
RVD2 Lipoxygenase 0.01 (-0.09, 0.11)
12-HETE Lipoxygenase -0.03 (-0.19, 0.05)
12-oxoETE Lipoxygenase 0.02 (-0.08, 0.16)
13-oxoODE Lipoxygenase 0.04 (-0.05, 0.24)
13S-HODE Lipoxygenase 0.02 (-0.06, 0.16)
15-HETE Lipoxygenase 0.00 (-0.10, 0.12)
15-oxoETE Lipoxygenase 0.05 (-0.05, 0.27)
5-HETE Lipoxygenase -0.01 (-0.13, 0.10)
5-oxoETE Lipoxygenase 0.01 (-0.10, 0.13)
8-HETE Lipoxygenase -0.04 (-0.23, 0.06)

Table C.16: One-step mediation mixture map results for βm with independent shrinkage corresponding to gesta-
tional age at delivery (n = 466). Estimates in the table are Posterior Mean (95% Credible Interval). Bolded entries
correspond to credible intervals that do not cover zero.
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Figure C.2: Estimated loadings matricies corresponding to the mediation mixture model with product shrinkage for
gestational age at delivery (n = 466). Gestational age at delivery models are adjusted for maternal age and educational
attainment.

Exposure IE IE 95% CI TE TE 95% CI % Mediated Largest Weights
One-Step

Latent Factor 1 0.00 (-0.03, 0.03) 0.06 (-0.18, 0.29) 1% MECPP, MEHHP, MEHP, MEOHP
Latent Factor 2 -0.01 (-0.16, 0.12) -0.01 (-0.24, 0.22) 57% MCNP, MCOP, MCPP
Latent Factor 3 0.00 (-0.04, 0.04) -0.28 (-0.54, -0.03) 0% MBP, MBzP, MiBP
All Phthalates -0.01 (-0.17, 0.14) -0.23 (-0.56, 0.12) 4%

Two-Step
Latent Factor 1 0.00 (0.00, 0.00) 0.05 (-0.16, 0.27) 0% MECPP, MEHHP, MEHP, MEOHP
Latent Factor 2 0.00 (-0.03, 0.01) 0.14 (-0.08, 0.36) - MCNP, MCOP, MCPP
Latent Factor 3 0.00 (0.00, 0.00) -0.24 (-0.45, -0.03) 0% MBP, MBzP, MiBP
All Phthalates 0.00 (-0.03, 0.01) -0.03 (-0.35, 0.29) 9%

Table C.17: One-step and two-step mediation mixture map results with product shrinkage corresponding to gestational
age at delivery (n = 466). Estimated IEs and TEs in the table correspond to changes in gestational age at delivery
(weeks) for an IQR increase in exposure.
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