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Abstract 

 
 The vaginal microbiome (VMB) is critical to female reproductive health, with 

Lactobacillus spp. dominance associated with health and a diverse, anaerobic community 

composition associated with a variety of adverse reproductive outcomes as well as increased 

susceptibility to sexually transmitted infections. This dysbiosis, known as bacterial vaginosis 

(BV), impacts nearly 30% of reproductive-age women. Therapies to treat this condition have 

largely remained the same over the last three decades despite the high frequency of recurrent 

cases. Difficulty in treating BV stems from several challenges such as there is not a single 

microbe causing the condition, complex ecological interactions between microbial species and 

the microenvironment dictate community composition and stability, and lack of adequate 

preclinical models to assess therapies. Ordinary differential equation (ODE)-based modeling can 

help capture these complexities and model the dynamics and stability of multi-species 

communities to better characterize key drivers of composition shifts to BV-associated 

communities and in response to therapies aimed to re-establish optimal composition. 

 Here, we established a series of mathematical models to help address key aspects of 

modeling the vaginal microbiome and the impact of BV therapies. In the first aim, a novel multi-

species model was developed to replicate shifts between BV-associated bacteria and optimal 

composition (Lactobacillus spp. dominance) after treatment with a standard-of-care antibiotic, 

metronidazole. This model captured microbial metabolism by the target microbial species, G. 

vaginalis, and sequestration of metronidazole by the non-target species, Lactobacillus iners. 

Using this model, sensitivity analyses indicated that a key driver in antibiotic efficacy was the 



 xiii 

pre-treatment ratio of G. vaginalis relative to L. iners. Counterintuitively, the model associated 

higher amounts of L. iners relative to G. vaginalis with worse treatment outcomes due to L. iners 

sequestering metronidazole to an extent that reduced the amount that could inhibit G. vaginalis 

growth. This association was validated with in vitro co-cultures and in two small clinical cohorts.  

In the second aim, we used a model to understand the stability of VMB community state 

types and to identify specific microbial interactions that drive variability in stability. For this 

approach, we used a generalized Lotka-Volterra model, which predicts community composition 

as a function of pairwise interspecies interactions, microbial growth rates, and carrying 

capacities. Physiological parameter ranges were defined and used to generate virtual populations 

that predicted the frequency of mono- and multi-stable states observed across two clinical 

cohorts. Virtual populations were refined and then validated for community composition changes 

during and after menses and antibiotic therapies in separate clinical cohorts. The virtual 

population emphasized the importance of how BV-associated bacteria interact with Lactobacillus 

spp. for maintaining or reestablishing Lactobacillus spp. dominance.  

Lastly, in aim 3 a similar approach using virtual populations was applied to the 

assessment of optimal probiotic characteristics for treating BV. The model explored two dosing 

regimens, an acute probiotic regimen and a regimen described for a phase 2b clinical trial of 

Lactin-V. Simulations supported that both resident Lactobacillus spp. and BV-associated 

bacteria interactions with probiotics could significantly impact probiotic efficacy, and thus 

should be an additional probiotic screening criterion. Model predictions exhibited similar 

population-level recurrence frequencies as observed in the Lactin-V trial and allowed for 

exploration of the relationship between probiotic strain characteristics and dosing regimens. 



 xiv 

Overall, these three aims describe new frameworks to help explore and design new BV therapies 

that otherwise would be difficult to study in vitro or preclinically.  
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Chapter 1 Introduction 

1.1 The Vaginal Microbiome 

The vaginal microbiome (VMB) is centrally involved in female reproductive health, 

impacting fertility [1–3],  pregnancy [4–9],  pelvic inflammatory disease [1,10,11], as well as 

fungal, urinary, and sexually transmitted infections [12–17]. The VMB has also been implicated 

in heterogeneous drug efficacy, as certain VMB species metabolize therapeutic compounds to 

reduce bioavailability [18–20]. Despite these critical associations between the VMB and 

women’s health, it has been challenging to identify mechanisms that link VMB composition and 

function to physiological outcomes due to the multitude of species that contribute to these 

conditions and the dynamic nature of the VMB. At a high level, an optimal composition is 

defined as having a Lactobacillus spp.-dominant homogenous community structure, whereas 

shifts to a polymicrobial anaerobic community structure are associated with negative 

reproductive outcomes and a common condition known as bacterial vaginosis (BV) [21,22]. 

Linking VMB composition with health outcomes was revolutionized by using a 

community grouping method that was first described by Ravel et al. (2011) called community 

state types (CST) [21]. The CST or the community grouping method helped simplify the 

hundreds of species in the VMB to five core compositional profiles, allowing VMB to be more 

easily associated with host characteristics and health outcomes [21]. CSTs were first determined 

using complete linkage hierarchical clustering, which is an unsupervised data-driven method that 

identified the five commonly accepted CSTs: CST-I (L. crispatus dominated), CST-II (L. gasseri 

dominated), CST-III (L. iners dominated), CST-IV (diverse group), and CST-V (L. jensenii 
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dominated). The observations that Ravel et al. reported with CSTs aligned with previous studies 

that analyzed a group of healthy Caucasian and Black women as well as with a study that 

characterized a group of Japanese women [23–25]. By stratifying patient populations with CSTs, 

VMB composition was linked with race/ethnicity, pH, and Nugent scores (assessment for clinical 

BV). Notably, healthy Hispanic and Black women tended to be overrepresented in the diverse 

CST group which is correlated with higher pH and BV-associated Nugent scores (an “unhealthy” 

VMB). This observation raised questions on the common assumption that Lactobacillus spp. 

dominated communities are required to be healthy.   

CSTs have also been used to understand the relationship between the composition and 

temporal dynamics of the VMB [22]. One of the earliest studies that explored temporal 

variability in composition was Gajer et al. (2012) [22]. In this study, samples were collected 

twice weekly for 16 weeks (n = 32 women) and hierarchical clustering with silhouette values 

was used to classify each sample as a CST. This study then analyzed stability in terms of a 

normalized Jensen-Shannon divergence index as well as the frequency of transitions between 

CSTs across time points. The normalized Jensen-Shannon divergence index captured the 

differences between pairs of CSTs by calculating the median of Jensen-Shannon distances, with 

lower values indicating stability. Notably, the results supported two interesting findings: (1) the 

VMB could be stable and exhibit consistently high, BV-associated, Nugent scores and (2) the 

VMB could exhibit instability and have consistently low Nugent scores (healthy). These two 

findings suggested that variation in composition over time did not always equate to non-optimal 

VMB composition. When the data were analyzed by calculating the transitions between CSTs, 

CSTs associated with L. crispatus or L. gasseri dominance were most stable. In contrast, CSTs 

associated with L. iners dominance had more variable stability trends with some subjects stable 
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over time and others undergoing transitions to a variety of CSTs. To understand possible drivers 

of CST transitions a linear mixed effects model adjusted for several host factors was used, which 

revealed that bacterial communities tended to lack stability during menses and stability 

corresponded with estradiol and progesterone concentration.  

Recently, there was a new methodology proposed to update how CSTs are determined so 

that it can be more consistently applied across different studies using a nearest centroid 

classification method [26]. Previously, CSTs were specific to each dataset due to the nature of 

hierarchical clustering, which depends on the relative similarity to the samples included in a 

study. The newly proposed methodology, VALENCIA (VAginaL community state type Nearest 

CentroId clAssfier), overcomes this barrier by using an internal reference composition that was 

generated from 13,160 taxonomic profiles from 1,975 women in the United States [26]. This 

study additionally was able to characterize further subclasses to the original CSTs, especially the 

diverse group CST-IV where it is possible for non-Lactobacillus spp. to dominate the community 

such as Streptococcus, Enterococcus, Bifidobacterium, and Staphylococcus, some of which were 

not accounted for when Nugent scoring was designed to diagnose BV. 

Non-optimal VMB states are associated with an altered vaginal microbiota including an 

increase in a diverse array of facultative and obligate anaerobes, frequently linked with cases of 

bacterial vaginosis (BV). BV is a condition that affects nearly one-third of reproductive-age 

women in the United States and common symptoms are an increase in vaginal pH, abnormal 

discharge, vaginal discomfort, and a fish-like odor which altogether can have a mild to severe 

impact on the quality of life [27–29]. BV is most commonly diagnosed using Amsel criteria, 

which are four parameters that capture symptoms of BV including (i) thin, white, yellow, 

homogenous discharge (ii) clue cells on wet mount microscopy (iii) vaginal fluid pH over 4.5 
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(iv) release of fishy odor when mixed with 10% potassium hydroxide solution (“whiff test”, 

Figure 1.1.1) [30]. Traditionally, three of the four criteria were required for diagnosis, but more 

recently this requirement has been relaxed to two of the four for diagnosis [31]. The gold 

standard methodology to diagnose BV is Nugent scoring, which is less commonly used because 

it requires a physician that is highly skilled at microscopy. The Nugent scoring system uses 

Gram staining of vaginal smears to examine the counts of Lactobacillus, Gardnerella, and 

curved Gram-variable rods resulting in a score of 0-10, where 0-3 is negative for BV, 4-6 is 

intermediate, and 7+ is positive for BV [32]. Although more complex, Nugent scoring is reported 

to have similar diagnosing power to Amsel criteria [33]. Recent shifts in diagnostics are focusing 

on capturing the composition of vaginal microbes using molecular methods such as 16S rRNA 

qPCR or sequencing. Basing a BV diagnosis based on sequencing that captures vaginal 

microbiome composition is referred to as molecular BV [34,35]. 

Understanding shifts between optimal and non-optimal VMB compositional states has 

been the focus of recent VMB research yet is limited due to the complex interactions between 

host physiology, behavior, and microbial ecology [36–41]. For example, longitudinal studies 

have demonstrated that menses-related hormone changes are associated with fluctuations in 

Figure 1.1.1 Amsel criteria and relationship with vaginal microbiota. Modified from Coleman and Gaydos, 2018.  
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community composition and that the base community state type is associated with stability [22]. 

Additionally, hormonal birth control is associated with reduced susceptibility to BV compared to 

no contraceptives or copper intrauterine devices [39]. Pregnancy, which is also associated with 

hormonal shifts, has reported concomitant shifts in vaginal microbiome composition to be 

Lactobacillus spp. dominated, which is more pronounced in women of African descent [40]. 

Other studies have linked hygienic behaviors such as douching with shifts to non-optimal states 

[36]. In addition to these host factors, microbial inter-species interactions (through competition 

for vaginal microenvironment substrates) and antagonism (through the production of toxins by 

VMB) further complicate understanding of community composition and function and motivate 

the implementation of new analytical techniques [42–45]. 

1.2 The Ecosystem of the Vaginal Microbiome 

The vagina hosts a diverse mucosal ecosystem. At the core of this ecosystem are vaginal 

epithelial cells, which form a stratified squamous non-keratinized epithelium covered by a 

mucosal layer with commensal bacteria bathed in cervicovaginal fluid [46]. The contents of the 

cervicovaginal fluid can change dramatically given the composition of the vaginal microbiome 

as well as the hormonal and inflammatory state of the vagina. For example, the menstrual phase 

has associated shifts in hormones, such as oestradiol and progesterone concentrations. During 

menstruation, there are lower levels of oestradiol and progesterone that are associated with lower 

levels of glycogen, IgA, and IgG [47]. In the proliferative phase, oestradiol increases alongside 

glycogen levels and then drops again post-ovulation in the secretory phase. Glycogen is believed 

to be one of the main carbon sources in the vagina, and higher levels of free glycogen are 

associated with Lactobacillus spp. dominated communities [48]. In addition to glycogen, mucus 
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produced in the cervix is hypothesized to also be a nutrient source full of proteins, lipids, and 

glycoproteins known as mucins [49]. 

The interplay between microbial species and their environment also impacts vaginal 

ecology [41]. For example, L. crispatus, L. gasseri, and L. jensenii-dominated communities are 

considered the most beneficial and stable from maintaining a low pH environment and producing 

antimicrobial compounds [50]. Antimicrobial compounds associated with maintaining 

Lactobacillus dominance include bacteriocins, surfactants, hydrogen peroxide, and lactic acid. In 

the 1990s, a popular belief was that hydrogen peroxide was the main driver of antimicrobial 

activity by Lactobacillus spp., which later met criticism because the molecular oxygen level in 

vivo is low (15 – 35 mmHg) and the cervicovaginal microenvironment is hypoxic [51]. The 

reducing capabilities of cervicovaginal fluid are reported to additionally inactivate hydrogen 

peroxide in vivo [52]. Thus, due to the oxidative state, lactic acid would be predominantly 

produced via the fermentation of polysaccharides [53]. Lactic acid is not only associated with 

lower vaginal pH, but also anti-inflammatory properties on cervicovaginal epithelial cells, and at 

physiological levels inhibited 17 BV-associated bacterial species in contrast to supra-

physiological levels of hydrogen peroxide that only inhibited one of the evaluated BV-associated 

bacterial species [54]. Lower pH also is reported to aid the inhibitory effect of lactic acid and 

some bacteriocins are also more effective at low pH [55,56]. The polysaccharides needed to 

produce lactic acid are associated with glycogen and glycogen derivatives present in the vaginal 

microenvironment. Traditionally, it was believed that L. crispatus was dependent on amylases to 

break down glycogen in the vaginal microenvironment, but recent studies support that some L. 

crispatus strains can directly metabolize glycogen [57,58]. Metabolic variability is also likely 

tied to the variability observed in inhibiting BV-associated bacteria, as the production of lactic 
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acid is a core to the inhibition. For example, the ability of Lactobacillus spp. to inhibit BV-

associated bacteria is reported to be strain dependent, with some strains able to have near total 

inhibition of BV-associated bacteria over the course of 4 hours while other strains had little to no 

effect [55].  

  In contrast, L. iners-dominated communities are more commonly associated with 

bacterial vaginosis than L. crispatus, L. jensenii, and L. gasseri. One explanation for the 

association of L. iners with BV is the observation that certain strains of L. iners can facilitate the 

adhesion and growth of a microbe commonly associated with bacterial vaginosis, Gardnerella 

vaginalis [59]. This observation is consistent with in vitro findings that support that L. iners does 

not produce the core health-associated compounds that the other three Lactobacillus spp. 

produce such as D-lactic acid and bacteriocins. Thus, due to the potential for L. iners to mediate 

the growth of BV-associated bacteria, recent efforts to develop selective L. iners inhibitors are of 

interest and include identification of L. iners-specific bacteriocins or capitalizing on unique 

metabolic requirements for L. iners growth, such as L. iners cysteine dependence [60,61].  L. 

iners also has a much smaller genome (~1.3 Mbp) than other Lactobacillus spp., which aligns 

with a parasitic and host-dependent lifestyle [62]. Additionally, L. iners exhibits a few 

characteristics that may promote the ability to adapt rapidly to changes in the vaginal 

microenvironment by unique mechanisms to obtain nutrients. For example, L. iners can produce 

a cholesterol-dependent cytolysin, inerolysin, which is active under acidic conditions and can 

lyse vaginal epithelial cells, increasing nutrients in the vaginal microenvironment [63,64]. 

Another unique characteristic is associated with PG synthesis and hydrolysis, which increases 

the absorption of nutrients compared to other Lactobacillus spp. [65]. Altogether, these adaptions 
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could help explain the ability of L. iners to coexist in both Lactobacillus spp. dominated 

communities and BV-associated bacteria dominated communities.  

Lastly, non-optimal or BV-associated communities are linked with many facultative and 

strict anaerobes such as Gardnerella, Atopobium, Prevotella, Peptostreptococcus, Mobiluncus, 

Sneathia, Leptotrichia, and  Mycoplasma [66–68],. Notably, an overgrowth of non-Lactobacillus 

spp. does not always result in symptomatic BV, which is more common in women of African or 

Hispanic heritage [21]. One of the most common species associated with BV is G. vaginalis, which 

has several strains with distinct characteristics (sialidase activity, antibiotic resistance, gene 

sequences) that are now defined into new species (G. piotti, G. swidsinkii, G. leopoldii) [69]. 

Gardnerella spp. produce a cholesterol-dependent cytolysin, vaginolysin, that can lyse vaginal 

epithelial cells, breaking down the mucosal barrier, increasing inflammation, and significantly 

altering the nutritional environment [63,70,71]. BV-associated bacteria are believed to mutually 

benefit species in the community through a variety of mechanisms, such as biofilm formation, 

cross-feeding, or acid tolerance mechanisms [72–75]. For example, Mobiluncus spp. generate 

biogenic amines that raise vaginal pH levels, which benefit species that do not produce biogenic 

amines like G. vaginalis [76]. Biogenic amines also are reported to impact the growth 

characteristics of Lactobacillus spp. such as lag time, growth rates, and lactic acid production [75].  

Another example of cooperation is reported between four strains of G. vaginalis and six strains of 

P. bivia, where these two species exhibited cross-feeding between ammonia and amino acid 

metabolism and production [74]. Altogether, the diversity associated with BV-associated bacteria 

and the complex ecological interactions these species have with each other and Lactobacillus spp. 

contribute to challenges associated with understanding BV pathogenesis and additionally, 

treatment failure, discussed further next. 
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1.3 Therapies for Bacterial Vaginosis 

First-line treatment regimens for BV include antibiotics with broad-spectrum anaerobic 

coverage, such as metronidazole (MNZ) and clindamycin. Dosing is typically over 5-7 days and 

includes both oral and intravaginal routes of administration such as a 7-day course of oral MNZ 

(500 mg, twice daily), a 7-day course of intravaginal clindamycin cream (2%, once daily), or a 5-

day MNZ gel (0.75%, once daily) [77]. Treatment with these antibiotics is aimed at decreasing 

the overgrowth of the polymicrobial anaerobic bacteria associated with BV and facilitating the 

restoration of a Lactobacillus spp.-dominated microbiota. However, treatment outcomes remain 

suboptimal and exhibit variable responses ranging from no, delayed, or transient clearance of the 

polymicrobial anaerobic microbiota associated with BV [78]. Transient clearance, where initially 

women respond to antibiotic therapy and later experience another episode, is a hallmark of BV, 

occurring within 12 months for greater than 50% of women who undergo antibiotic therapy 

[77,79–81].  

Immediately after antibiotic therapy, there is a reported 80% cure rate for BV [82,83]. 

For women who do not respond to therapy, there are a few potential mechanisms recognized 

such as inherent resistance of BV-associated bacteria or that biofilms may be limiting penetration 

of antibiotics to target microbes. In vitro studies support that some strains of G. vaginalis can be 

resistant to antibiotics, with a study on 50 strains of G. vaginalis reporting 68% were resistant to 

MNZ and 24% resistant to clindamycin [84]. Another common microbe present during episodes 

of BV, Atopobium vaginae, also has documented intrinsic resistance to MNZ [85,86]. Other 

studies report that antimicrobial susceptibility varies by culture type, with planktonic cultures 

more sensitive to antibiotics than biofilms. For MNZ, biofilm-forming isolates had a 10-fold 

higher MIC than planktonic isolates (7.3 ± 2.6 μg/mL vs. 72.4 ± 18.3 μg/mL; p = 0.005). 
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Clindamycin followed similar trends, where biofilm-forming G. vaginalis isolates had a MIC of 

23.7 ± 9.49 μg/mL compared to 0.099 ± 0.041 μg/mL of planktonic isolates [87]. While 

clindamycin may seem like a better option to eradicate G. vaginalis in vitro, Lactobacillus spp. 

also are reported to be more sensitive to clindamycin, whereas MNZ typically has little to no 

effect on Lactobacillus spp. [88]. The resilience of BV-associated bacteria may be jointly 

associated with how Lactobacillus spp. interact with antibiotics aimed at decreasing BV-

associated bacteria, as the impact of MNZ is hypothesized to be impacted by redox states within 

the vaginal microenvironment [89,90], with aerobic bacteria known to decrease levels of MNZ 

and efficacy for the treatment of Trichomonas vaginalis [91]. 

As suffering from repeat BV episodes is extremely common, developing new strategies 

to combat BV is of interest. One option for individuals experiencing repeat episodes of BV is a 

longer course of antibiotics, such as intravaginal metronidazole gel twice a week for 4-6 months. 

For recurrent BV, which is defined as having three or more episodes of BV within a year, 

maintenance therapy is recommended, which includes both long-term dosing of intravaginal 

MNZ gel and intravaginal boric acid. This regimen follows a course of antibiotics for 21-30 

days, and boric acid a few times a week. Boric acid is believed to help disrupt the biofilm 

associated with BV and allow antibiotics to better access BV-associated bacteria; however, the 

mechanism of action is not well characterized [92]. Other biofilm-disrupting agents are in 

consideration for new therapies such as intravaginal boric acid enhanced with 

ethylenediaminetetraacetic acid (TOL-463), amphoteric tenside (WO3191), and pHyph 

(glucono-delta-lactone and sodium gluconate) [93–95]. TOL-463 completed a Phase 2 clinical 

trial in 2019 demonstrating safety and tolerance for BV. WO3191 is undergoing study for safety, 

tolerability, and efficacy and was based on in vitro results that supported that amphoteric tenside 
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could disrupt existing G. vaginalis biofilms [96]. In contrast, pHyph, which is hydrolyzed to 

gluconic acid in the vaginal microenvironment, has demonstrated in preclinical studies the ability 

to re-establish optimal pH, inhibit biofilm formation and remove established biofilms, as well as 

inhibit the growth of BV-associated bacteria [93,97]. Treatments aimed at lowering pH using 

compounds like lactic acid have had mixed results, and unlike boric acid, are not recommended 

for treating BV [98]. 

Live Biotherapeutic Products, more commonly referred to as probiotics, as well as 

vaginal microbiome transplantation (VMT) are proposed alternatives or combinational options to 

promote lasting treatment for BV [99,100]. Clinical trials have yielded promising, but mixed 

results for the use of these therapies for a variety of reasons including: the selection of strain(s) 

to be administered, administration method (oral or intravaginal, applicator formulations), 

whether the probiotic is administered in combination or sequentially with prebiotics or 

antibiotics, and a variation in time points during evaluation of intervention [80]. Until recently, a 

significant number of formulations included Lactobacillus spp. from the gut microbiome, which 

demonstrate markedly different phenotypic characteristics such as preferred carbon sources and 

microenvironment pH [57,101]. One of the most promising and well-designed studies uses a 

vaginal Lactobacillus spp., L. crispatus CTV-05 (LACTIN-V), which exhibited significantly 

decreased recurrence and increased Lactobacillus spp. colonization when administered 

intravaginally post-antibiotic treatment [102–104]. Several studies implement oral administration 

with the belief that either the impact on the gut microbiome will result in changes to the vaginal 

environment or that the probiotic strains will survive passage through the gastrointestinal tract 

and transfer to the vagina, which has exhibited limited success [105–107]. The few analyses 

assessing the importance of the route of administration suggest the intravaginal route may be 
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more effective as it allows for the strains to directly interact with the vaginal microbiome 

[108,109]. Lastly, many regimens include a pre-treatment with antibiotics aimed at increasing 

the likelihood that probiotic strains will colonize the microenvironment by reducing the species 

present that could impede probiotic growth.  

Overall, developing new therapies for the vaginal microbiome presents unique 

challenges, as there are limited in vitro and animal models that satisfactorily recapitulate 

behaviors observed in the human vaginal microbiome [110]. Thus, the reliance on clinical 

samples presents unique challenges that arise from both host, microbiome, and temporal 

heterogeneity. The development of sophisticated experimental models, such as organ-on-a-chip 

systems, and in silico approaches will greatly benefit the study of new vaginal microbiome 

therapies [111]. 

1.4 Systems Biology and the VMB 

Systems biology offers the ability to overcome some of the unique challenges presented 

by the VMB compared to other microbiome communities, especially its dynamic nature and lack 

of adequate experimental and clinical models (Table 1.4.1). For example, cross-sectional data, 

the most readily available data to study the microbiome, is best applied in scenarios where one 

time point is representative of an individual. This challenge is problematic for studying the VMB 

as it can shift between optimal and non-optimal compositional states over the course of a few 

days, which is a relatively rapid change compared to gut, skin, and oral microbiomes that are 

often stable in composition over the course of months to years [112,113].  Moreover, even 

healthy individuals can have a highly dynamic (unstable) VMB composition, specifically during 

menses when Lactobacillus spp. tend to decline [22,68,114]. Thus, the dynamic nature of the 
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VMB and BV means cross-sectional data should be used with caution presents a challenge not 

always associated with other, more stable microbiome sites [21,22,68,115].  

 Table 1.4.1 Comparison of microbiome characteristics 

Another major challenge is that both in vitro and in vivo animal studies have major 

discrepancies with the human VMB. In vitro studies are hindered because many species are 

fastidious or unculturable [127], and culture conditions can vary significantly across  

Site 
Stability 
Associated with 
Health 

Diversity & Health Experimental 
Considerations Human Sampling 

Gut 
Months to years, 
considered most 
stable [112] 

Diversity is associated 
with health 

Well-defined culture 
conditions and media; 
animal models share 
enough human 
physiological traits to be 
widely accepted tools 

Non-invasive, stool 
samples, high bacterial 
load; many samples 
publicly available  

Oral 

Months to years, 
some reports of 
being more stable 
than 
skin[116,117] 

Less diverse states are 
associated with health 
(subgingival)[117] 

Less than half of species 
culturable using common 
anaerobic methods[118]; 
humanized murine models 
used 

Relatively non-
invasive, endodontic 
paper points or saliva, 
good bacterial load; 
trending to more data 
available 

Skin Months, up to 2 
years[116,119]  

High-diversity sites 
are less stable and 
diversity depends on 
skin site (foot, palm, 
etc.), overall healthy 
states are diverse 
[113]  

80% of skin microbiota are 
culturable[120]; animal 
models exhibit more 
diversity[121] 

Non-invasive, swabs 
and tape strips, 
primary source of 
samples for current 
studies good bacterial 
load; trending to more 
data available 

Lung 

Not well studied, 
considered to be 
more dynamic 
than the gut[122] 

Limited knowledge of 
healthy microbiome, 
but is typically more 
diverse and distinct 
from diseased states  

In vitro methods are not 
well defined; animal 
models are used but 
costly[123] 

Invasive to collect 
(sputum, bronchial 
lavage or brushings) 
and has low bacterial 
load compared to gut 
an oral cavities[124], 
few studies in the 
healthy human lung 

Vaginal 
Days to weeks, 
considered least 
stable[21,115] 

Diversity is associated 
with instability and 
unhealthy states 

Key species are difficult to 
culture; animal models 
vary significantly from 
human physiology, 
preventing adoption of 
these models[125,126] 

Relatively non-
invasive, swabs or 
lavages, low bacterial 
load (slowed 
generation of 
metagenome 
sequencing data); 
hormonal cycles 
should be considered 
during sampling; good 
number of samples 
publicly available 
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media types and from the cervicovaginal microenvironment [128].  Likewise, there are no 

representative animal models of the VMB; even non-human primates lack core characteristics 

such as low pH and Lactobacillus spp. dominance [126,129]. Thus, studies of the VMB heavily 

rely on clinical measurements of microbial abundance that can be difficult to interpret due to 

confounding variables that arise from the host as well as inherent characteristics of 16S rRNA 

gene and metagenomic data, such as high dimensionality and compositionality. High 

dimensionality and compositional data can make integration of microbial abundance with 

functional data difficult, as these qualities require the implementation of feature selection 

methods, data transformations, and awareness of inherent correlation bias from compositional 

data that impact the use of a multitude of statistical methods [130,131]. This last challenge, while 

relevant to all microbiome sites, is particularly applicable to the VMB because of its lack of 

experimental models that allow for the interrogation of vaginal microbiota under controlled 

conditions. In other areas of medicine, the use of computational modeling to create in silico 

representations of patient factors has demonstrated promise. One example is the Digital Twin 

approach, which was first introduced in 2002 as a solution to manufacturing intelligence [132]. 

For precision medicine, the “Health Digital Twin” is proposed to be a virtual representation of 

ourselves that can capture personalized medical history using both data-driven and theory-driven 

knowledge which has been applied to disease cases in oncology [133–135], cardiology [136–

139], infectious diseases [140,141], and neurology [142–144]. An extension of digital twin 

modeling is the use of virtual patients and virtual populations that then can be used to run in 

silico clinical trials [145]. These modeling techniques often use a mixture of quantitative system 

pharmacology (QSP) and statistical modeling to make predictions on drug efficacy and complete 

subpopulation analyses [145]. Thus, future advancements in characterizing VMB composition, 
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function, and host-microbiome interactions could be catalyzed by the development of human 

VMB in silico models. 

Quantitative systems biology approaches, which encompasses statistical, mathematical, 

and computational techniques to study biological processes, have the potential to complement 

current experimental studies of the VMB by overcoming challenges associated with complexity, 

thus providing new insight into the key drivers of optimal and non-optimal VMB states. These 

approaches can effectively deconvolve large data sets, account for confounding host factors, test 

hypotheses prior to the use of animal models [146], and integrate data across time and 

physiological scales. In situations with large amounts of high-throughput data and little prior 

knowledge, data-driven (or statistical) models are especially useful for inferring microbial 

signatures associated with either health or disease states ( , top). These methods are applicable 

when large amounts of data can be mined for further insight, and especially when there is limited 

pre-existing knowledge of relationships between system components [147]. For example, these 

approaches have been already applied when characterizing CSTs through hierarchical clustering 

and nearest centroid classifiers [21,26]. Other examples of data-driven approaches applied to the 

VMB include unsupervised techniques such as Principal Component Analysis (PCA), Principal 

Coordinate Analysis (PCoA) and hierarchical clustering and supervised techniques such as 

logistic regression, linear discriminant analysis (LDA) and partial least squares (PLS) methods. 

Sparse methods are often employed to minimize compositional effects, such as using Least 

Absolute Shrinkage and Selection Operator (LASSO) in combination with PLS methods or 
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correlational analyses [148]. LDA with effect size analysis (LDA/LEfSe) has been used to link 

species abundance with HPV and Chlamydia infections, as well as preterm prelabor rupture of 

fetal membranes, which emphasized the protective nature of Lactobacillus spp. [5,15,149].   

Figure 1.4.1 Overview of systems biology techniques applied to the vaginal microbiome.  

The approaches go from the top, which provide statistical association to bottom which covers mechanistic methods. 
In the top section, input data such as 16S rRNA sequencing data or multi-omic data (such as 16S rRNA sequencing 
data and metabolomic data) can be used for unsupervised approaches, feature selection or data transformation 
techniques (medium blue box,). When an outcome is included in combination with the input data (medium blue 
box), supervised methods can be used to provide association with clinical outcomes or measurements using 
regression or classifiers and include the sub-methods in the light-blue boxes such as feature importance in respect to 
these outcomes. The middle section describes methods that use a combination of statistical methods and a priori 
knowledge from databases like KEGG, to connect microbial composition and –omics level data to mechanisms 
associated with different outcomes. The bottom section describes mechanistic methods based on a priori knowledge 
which can help build predictive models and test mechanistic hypotheses driving clinical outcomes. 
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In contrast, theory-based (or mechanistic) methods are best employed when a priori 

knowledge of the system is available or can be derived from biophysical, genetic, or other 

empirical observations [146,150]. Theory-based approaches have the added value of providing 

direct mechanistic insight into cause-effect relationships that drive biological function. These 

may include mass-action kinetic or population dynamics models (differential equation-based 

models), genome-scale metabolic models (GEMs), and agent-based models (ABM) [151–153] ( , 

bottom) which each create predictive models with different strengths and weaknesses. These 

models are valuable because they can identify specific mechanisms that underpin community 

behavior or function that can then be targeted by therapeutics or to better understand drivers of 

therapeutic efficacy. However, theory-based methodologies have not been widely applied in the 

VMB, with only a few studies recently using GEMs [5,154]. The use of ordinary differential 

equation (ODE)-based models to predict drug efficacy has a longstanding history in 

understanding pharmacokinetics, drug metabolism, as well as any pharmacodynamic effects on 

bacterial populations [155–157]. Thus, models that can incorporate microbial-drug metabolism 

and therapeutic impact on microbial communities hold great promise to better understand VMB-

associated therapeutics, particularly for BV, which has reported recurrence rates upwards of 50% 

[77,79]. ODE-based models have shown promise in understanding the gut microbiome which has 

emphasized the importance of capturing community inter-species interactions to understand 

compositional stability and resilience to perturbations [158–163]. For example, Coyte et al. 2015 

used generalized Lotka-Volterra models to understand microbiome stability by exploring the 

impact of the frequency of competitive versus cooperative interspecies interactions, observing 

that cooperative communities are often unstable [158]. Stein et al. 2013 fit generalized Lotka-

Volterra models directly to 16S rRNA sequencing data, and used stability analysis to understand 
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how antibiotic perturbations and C. difficile exposure could led to dramatic shifts in gut 

microbiome composition [159].  Others used generalized Lotka-Volterra models to explore how 

community types form in the gut microbiome, demonstrating that heterogeneity in interspecies 

interactions or the presence of species that strongly interact with each other could promote 

distinct community compositional types [162]. The application of similar techniques using 

generalized Lotka-Volterra models could recapitulate known or uncertain interactions between 

vaginal microbiota (Figure 1.4.2). Altogether, the use of ODE-based models for the VMB could 

help identify mechanisms for BV treatment failure across both a drug-interaction and community 

inter-species interaction perspective, revealing new strategies to treat or prevent BV. 

1.5 Structure of Thesis 

The vaginal microbiome significantly lags behind gut microbiome research in terms of 

characterization and methodologies to develop new therapies. Here I present a dissertation that 

introduces a mechanistic ODE modeling framework for characterizing vaginal microbiota 

growth characteristics, which dictate community composition alterations that are associated with 

health and disease. By integrating principles of mathematical ecology with interventions such as 

antibiotics and prebiotics alongside host-driven factors like menses, these approaches will help 

guide better design for BV therapeutics and preventatives. 

Figure 1.4.2. Vaginal microbiome ecological interactions translated to generalized Lotka-Volterra interspecies 
interaction terms. 
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In the following aims, I developed models to interrogate different contributors to BV 

treatment failure and inherent community composition stability. Where possible, models were 

validated with in vitro and clinical data. This work aimed to quantify and characterize possible 

mechanisms of resistance and resilience to standard-of-care antibiotics aimed to treat BV and 

provide a high-level framework to assess the efficacy of alternative therapies. We addressed 

these challenges with the following aims: 

 

Aim 1: Determine the relative importance of antibiotic uptake, sensitivity, and metabolism on 

antibiotic efficacy in multi-species models of BV. Antibiotics used to treat BV (such as 

metronidazole) influence multiple parallel parameters across VMB species. We will use an ODE 

model to determine the relative importance of each and understand how variability in these 

parameters may account for differences in antibiotic recurrence rates across women.  

 

Aim 2: Determine how heterogeneity in microbial parameters drives differences in equilibrium 

behaviors observed clinically. VMB communities exhibit variable stability behavior across 

women, including stable optimal communities, stable non-optimal (BV) communities, and 

communities with bi-stable behavior between optimal and non-optimal states. To understand and 

identify microbial drivers of equilibrium behaviors, simulated VMB communities will be 

analyzed to determine which microbial parameters influence equilibrium state accessibility in 

response to common vaginal perturbations such as menses and antibiotic therapies. 

 

Aim 3: Identify optimal probiotic design criteria to reorient vaginal communities to 

Lactobacillus spp. dominated states. Diverse post-treatment responses are observed from 
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probiotic and live biotherapeutic agent regimens ranging from no effect to increased endogenous 

Lactobacillus spp., to the dominance of the probiotic strain. To determine microbial 

characteristics that drive successful probiotic treatment, we will use ODE models to optimize 

probiotic strain characteristics across heterogeneous microbial communities.  

 

Completion of these aims is presented in the following format. Aim 1 is addressed in 

Chapter 2, with published work that describes the impact of core vaginal microbiota on 

antibiotic sequestration and metabolism on antibiotic efficacy to reorient communities to 

Lactobacillus spp. dominance. Aim 2 is addressed in Chapter 3, which presents a published 

work that uses ordinary differential equation models to identify parameters that drive VMB 

equilibrium state using in silico population. This work captures clinical variability in microbial 

parameters to explain heterogeneity in individual responses to perturbations such as menses and 

antimicrobial therapy. Chapter 4 presents a manuscript that describes work where in silico BV 

patient populations are used to screen probiotic candidates to determine optimal characteristics 

for re-orientation of communities to Lactobacillus spp. dominance.  
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Chapter 2 Quantitative Modeling Predicts Mechanistic Links between Pre-treatment 

Microbiome Composition and Metronidazole Efficacy in Bacterial Vaginosis  

 

Christina Y. Lee1#, Ryan K. Cheu2,3#, Melissa M. Lemke1, Andrew Gustin2,3, Michael France4, 

Benjamin Hampel5, Andrea Thurman6, Gustavo F. Doncel6, Jacques Ravel4, Nichole R. 

Klatt2,3,7*, Kell B. Arnold1* 

Nature Communications. 2020; 11: 6147. 
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2.2 Abstract 

Bacterial vaginosis is a condition associated with adverse reproductive outcomes and 

characterized by a shift from a Lactobacillus-dominant vaginal microbiota to a polymicrobial 
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microbiota, consistently colonized by strains of Gardnerella vaginalis. Metronidazole is the first-

line treatment; however, treatment failure and recurrence rates remain high. To understand 

complex interactions between Gardnerella vaginalis and Lactobacillus involved in efficacy, we 

developed an ordinary differential equation model that predicts bacterial growth as a function of 

metronidazole uptake, sensitivity, and metabolism. Here we report model findings that a critical 

factor in efficacy is Lactobacillus sequestration of metronidazole, and efficacy decreases when 

the relative abundance of Lactobacillus is higher pre-treatment. We validate results in 

Gardnerella and Lactobacillus co-cultures, and in two clinical cohorts, finding women with 

recurrence have significantly higher pre-treatment levels of Lactobacillus relative to bacterial 

vaginosis-associated bacteria. Overall results provide mechanistic insight into how personalized 

differences in microbial communities influence vaginal antibiotic efficacy. 

2.3 Introduction 

Bacterial vaginosis (BV) is a condition that affects 30-60% of women worldwide 

[29,164], with negative outcomes including increased susceptibility to sexually transmitted 

infections (STIs) and greater likelihood for adverse reproductive outcomes [6,10,11,17,165]. BV 

is characterized by a shift from Lactobacillus species (spp.)-dominated vaginal microbiota to a 

wide array of anaerobic bacteria including Gardnerella vaginalis (Gv) and Atopobium vaginae 

[66–68]. Treatment of symptomatic BV with metronidazole (MNZ) aims to restore 

Lactobacillus-dominated microbiota; however,  recurrence rates remain high,  occurring in 57-

90% of women who receive adequate treatment [77,79–81]. Recurrence is associated with 

several host factors including previous episodes of BV, douching, and sexual activity, but no one 

factor emerges as a single driver of treatment failure [36,79,166–168]. Additionally, associations 
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between vaginal microbiota composition and BV recurrence have been reported but remain 

poorly understood, with several studies citing conflicting results [166,167,169]. 

Recent improvements in 16S rRNA sequencing have enhanced the ability to identify and 

more accurately quantify the composition of the vaginal microbiota in BV,[22,35] finding that 

the transition is frequently associated with an abundance of Lactobacillus iners (Li) [170,171].  

Despite the association between Li and incidence of BV, identifying how Li dictates 

communities of optimal and non-optimal microbiota remains elusive, as the vaginal microbiota 

can change significantly over time and vary between women [172–174], especially in the 

presence of MNZ.  The recommended treatment regimen for BV consists of oral or vaginal MNZ 

oriented towards selectively targeting anaerobic bacteria with little effect on Lactobacillus 

spp.,[175,176] but high variability in efficacy indicates that further study is required to 

understand the reestablishment of optimal vaginal microbiota ecosystems. 

Recent research in the HIV microbicide field has highlighted the importance of vaginal 

microbiome composition in drug treatment efficacy. In a landmark study, variability in tenofovir 

(TFV) microbicide efficacy was accounted for by differences in the vaginal microbiome, 

specifically the presence of the non-target species Gv, which were shown to metabolize TFV 

[19]. Likewise for MNZ treatment of Trichomonas vaginalis, a proposed mechanism of 

treatment failure was decreased bioavailability of MNZ due to the absorbance of the antibiotic by 

other microorganisms in the vagina [91,177,178]. In the context of BV, it is difficult to discern 

the role of multiple possible interactions that have the potential to influence MNZ efficacy, 

including MNZ metabolism, resistance, and sequestration across multiple bacterial species that 

vary considerably among women. We propose that variability in MNZ efficacy may result from 

underlying differences in MNZ uptake and susceptibility in target and non-target species, and 
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therefore would be highly dependent on individual differences in pre-treatment vaginal 

microbiota composition. 

In this work, we use an ordinary differential equation based (ODE) model and 

experimentally measure parameters (MNZ internalization by bacteria, metabolism, and bacterial 

antibiotic susceptibility) to predict Li and Gv growth dynamics with MNZ treatment. The model 

demonstrates that a critical factor in MNZ efficacy may be Li sequestration of MNZ and predicts 

that MNZ efficacy decreases in individuals with higher pre-treatment amounts of the non-target 

species, Li, relative to the target species, Gv. We validate this finding with in vitro co-cultures 

and extend our analysis to more representative models which illustrate that this behavior is also 

expected in microbial environments with additional species, interspecies interactions, and strain 

variability. Finally, by analyzing cervicovaginal samples from BV-infected women treated with 

MNZ in two distinct cohorts we demonstrate that our initial findings have clinical relevance in 

characterizing BV treatment outcomes [78,115]. Overall, our findings highlight the importance 

of leveraging quantitative models that evaluate interactions of target bacteria and non-target 

Lactobacillus spp. with MNZ in improving insight into personalized differences in BV 

recurrence and treatment failure. 

2.4 Results 

2.4.1 The model predicts Lactobacillus MNZ sequestration influences efficacy  

To determine how MNZ treatment efficacy can be altered by bacterial-mediated 

interactions in vitro, we created an ODE model to predict growth of Gv and Li upon co-culture 

and treatment with MNZ (Figure 2.4.1). Parameters for each bacterial species were obtained by 

least squares fitting of in vitro kinetic data and dose-response curves for MNZ exposure with 

each species in monoculture (Figure 2.7.1), before the ODE model was used to predict co-



 25 

culture conditions with Gv and Li both interacting with extracellular MNZ. The model assumes 

that Gv and Li internalize or sequester MNZ at rates kint-Gv and kint-Li, respectively, and Gv can 

convert MNZ to the stable metabolite, acetamide and unknown metabolites at rate kmet.[179] The 

model additionally assumes logistic growth at rates kgrow-Gv and kgrow-Li, with carrying capacities 

of KGv and KLi and growth inhibition by MNZ toxicity at rates kkill-Gv and kkill-Li in a dose-

dependent manner based on 50% effective concentrations of MNZ on Gv and Li (EC50Gv, 

EC50Li) [180,181]. Since MNZ is a pro-drug that is activated when internalized by anaerobic 

bacteria, the cytotoxicity of MNZ in the model is dependent on the intracellular concentration of 

Figure 2.4.1 Model schematic for bacterial growth dynamics in BV with MNZ treatment.  
(a) MNZ is internalized by both G. vaginalis (Gv) and L. iners (Li) at rates kint-GV and kint-LI, cells 
are proliferating at kgrow-GV and kgrow-LI and MNZ inhibits growth by kkill-GV and kkill-LI. For 
G. vaginalis, a potential mechanism of MNZ resistance is the bacterial-mediated interactions to the drug 
leading to the formation of metabolites (kmet).  (b) Sensitivity of Gv growth with 500 g/ml MNZ 
when parameters directly related to Gv growth are varied 0.001x to 1,000x baseline values. Percent 
maximal growth refers to the final cell count compared to the carrying capacity of the culture, or the 
maximum cell density the unperturbed culture can reach at 48h based on initial cell density (c) 
Sensitivity of Gv growth with 500 g/ml MNZ when parameters related to Li survival are varied 0.001x 
to 1,000x baseline values. (d) Percent maximal growth of Gv (left) and Li (right) when the initial ratio 
of Gv to Li is varied with 500 g/ml MNZ treatment. e Percent maximal growth of Gv when MNZ 
internalization rate of Li is varied at three different population compositions with 500 g/ml MNZ 
treatment. 
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MNZ rather than extracellular MNZ concentration; however, we used the external MNZ 

concentration as the basis for EC50 of internalized MNZ, as experimentally determining the 

intracellular level of MNZ per cell was challenging and the main goal was to capture the relative 

sensitivity between Gv and Li [175–177,182]. 

To identify model parameters that were most critical for decreasing Gv growth, we 

performed a 1-dimensional (1D) sensitivity analysis by altering each parameter three orders of 

magnitude above and below baseline and evaluated Gv growth (Figure 2.4.1B-C). Growth was 

scaled relative to the predicted growth in an unperturbed co-culture based on the time point and 

initial population sizes evaluated and is referred to as percent maximum growth. The sensitivity 

analysis identified Gv growth as highly dependent on the MNZ internalization/sequestration rate 

into Li (kint-Li). A 50-fold increase in this rate increased the growth of Gv from 7.42% to 69.5% 

its maximal growth upon 48h treatment with MNZ, where percent maximal growth describes the 

expected proportion of cell density with antibiotic treatment relative to cell density with the same 

initial culture conditions without antibiotic (Figure 2.4.1C).  Likewise, changing the MNZ 

internalization rate into Gv (kint-Gv) has similar effects on Li, where increasing this rate 50-fold 

resulted in 89.7% Li’s maximal growth (Figure 2.7.3). Overall, these results illustrate how MNZ 

efficacy in inhibiting Gv growth is influenced by the competition between each bacterium to 

internalize the drug.  

From this result we hypothesized that the relative quantity of cells internalizing MNZ 

(ratio of Gv and Li) could significantly influence growth of both strains. We tested this 

hypothesis in our computational framework by predicting Gv survival after varying the starting 

ratio of Gv to Li (Gv:Li ratio) from 1,000x fold to 0.001x. Results indicated that altering the 

initial Gv:Li ratio influences the growth of both Gv and Li. Counterintuitively, Gv survival was 
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high when Li initially outnumbers Gv 1,000x and Li growth is optimal when Gv initially exceeds 

Li 1,000x (Figure 2.4.1D).  Stated differently, the model suggested that more Gv present at MNZ 

treatment initiation resulted in a better treatment outcome. The importance of MNZ 

internalization rate into Li became more apparent as Li became the predominating species, 

Figure 2.4.2 A higher initial Gv:Li ratio improves MNZ treatment efficacy.  
(a) Surface plot to illustrate predicted percent maximal growth of Gv (z-axis) when concentration of MNZ (x-axis) 
and the ratio of Gv:Li (y-axis) are varied in simultaneously.  Arrows indicate the concentration of MNZ and ratios of 
Gv:Li used for model validation. (b) Percent maximal growth of Li after simultaneous variation of MNZ dose and 
Gv:Li ratio. (c – d) Comparison of model simulations to experimental data for 500 g/ml MNZ at 1,000x and 0.001x 
Gv:Li. Gv percent maximal growth 0.001x initial Gv:Li ratio and 1,000x initial Gv:Li ratio experimental vs 
simulation, and experimental vs experimental P-values were: P = 0.430, t = 0.809, df = 17; P = 0.680, t = 0.420, df = 
17; P = 4.67x10-8, t = 6.99, df = 34, respectively. Li percent maximal growth 0.001x initial Gv:Li ratio and 1,000x 
initial Gv:Li ratio experimental vs simulation, and experimental vs experimental P-values were P = 1.43x10-5, t = 
6.00, df = 17; P = 0.726, t = 0.357, df = 17; P = 3.29x10-9, t = 7.91, df = 34, respectively. Data are presented as 
mean ± SD, n = 18 independent, biological replicates for each initial ratio, asterisks indicate significance as: * P < 
0.05, ** P < 0.01, *** P < 0.001 without adjustment for multiple comparisons, unpaired two-sided t-test. 
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leading to increased growth of Gv (Figure 2.4.1E).  This result additionally supports that Li 

competes with Gv to internalize or sequester extracellular MNZ, as when one bacterial strain is 

in excess, it likely depletes available extracellular MNZ and decreases the amount of drug 

internalized by the non-dominating bacterial strain.  

We used our model to explore this ratio-dependent behavior over a range of relevant 

MNZ concentrations extending from 100 g/ml to 1,600 g/ml, as estimates for vaginal 

accumulation range from 20 g/ml to greater than 1,000 g/ml  (Figure 2.4.2A-B)[45,183]. 

Doses below 100 g/ml had no effect on Gv or Li growth and doses above 1,600 g/ml exhibited 

near complete cell killing for both bacterial strains (Figure 2.4.2A-B); these data are in 

agreement with experimentally determined effective concentrations of MNZ on Gv and Li 

cultured individually (Figure 2.7.2). However, for doses between 100 and 1,600 g/ml there 

were significant differences depending on the initial Gv:Li ratio, where MNZ was most 

efficacious in eliminating Gv when more Gv than Li was present. 

2.4.2 Model validation in Gv and Li co-cultures 

We validated these counterintuitive model predictions experimentally in vitro by varying 

the initial Gv:Li ratios in the presence of 500 g/ml MNZ and tracking growth for 48h (Figure 

2.4.2C-D). Experimental measurements confirmed model predictions that MNZ efficacy for 

inhibiting Gv growth decreased when Li was initially dominant (P = 4.67x10-8), and were not 

significantly different than model predictions (0.001x Gv:Li, P = 0.430; 1,000x Gv:Li ratio, P = 

0.689, Fig. 3c), with Gv exhibiting a predicted 30.3% and experimental 41.4%  13.3% maximal 

growth after treatment when Li was initially dominant compared to a predicted 2.1% and 

experimental 9.4%  13.8% maximal growth when Gv initially was dominant. Li growth in the 
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presence of 500 g/ml MNZ was also dependent on the initial Gv:Li ratio, where MNZ inhibited 

Li growth the most when Li was initially dominant, 7.2%  3.9% maximal growth compared to 

when Gv was initially dominant, 70.5%  33.8% (P = 3.29x10-9, Fig. 2d). Notably, the model 

over-predicted the growth of the Li population when Li was initially dominant (0.001x Gv:Li), 

where the model prediction of 23.9% maximal growth was over 3-fold higher than 

experimentally observed, 7.19%  3.91% growth (0.001x Gv:Li experiment vs simulation, P = 

1.43x10-5), suggesting efficacy dependence on a high pre-treatment Gv:Li ratio may be even 

greater than that predicted by the model. Experimental and model predictions of Li growth were 

not significantly different when Gv was initially dominant (1,000x Gv:Li, P = 0.726). Likewise, 

model predictions of MNZ and MNZ metabolite concentrations were not significantly different 

from experimental results in cultures starting with a 0.001x Gv:Li ratio (extracellular MNZ: p = 

0.255, intracellular MNZ: p = 0.336, acetamide: p = 0.877), but predictions for extracellular 

MNZ, intracellular MNZ, and acetamide concentrations in cultures with a 1,000x Gv:Li ratio did 

vary significantly from experimental data (Figure 2.7.4). The deviation of model predictions 

when Gv is initially dominant suggests that experimental investigation of detailed mechanisms of 

Gv interactions with MNZ is warranted (for example the potential ability of Gv to externally 

degrade MNZ). Despite some deviation of peripheral model predictions from experimental 

measurements, the Gv:Li ratio-dependent trends were reproduced by the model. The dependency 

on initial culture ratios of Gv to Li on growth suggests that non-target bacteria that sequester 

MNZ could significantly alter drug efficacy. 

We observed some variation in the sensitivity (EC50) of Li to MNZ. Variability in 

minimum inhibitory concentrations (MIC) estimations have been reported, as changes in culture 

conditions including incubation length and the inoculum effect can influence the apparent 
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sensitivity of bacteria to antibiotic [181,184]. Additionally, the sensitivity of Lactobacillus sp. 

and Gv to MNZ and their MICs are reported to range from 500 µg/ml – 4,000 µg/ml and 0.75 

µg/ml to greater than 256 µg/ml, respectively [88,185,186]. To ascertain whether our results 

would be influenced by variation in Li sensitivity to MNZ, we repeated the simulations over a 

range of EC50 values. To represent the reported resistance of Lactobacillus sp. in vitro, we 

increased the EC50 value of Li to be 10-fold higher than Gv (EC50Li = 4,200 µg/ml). MNZ 

efficacy in inhibiting Gv growth was similarly decreased at low Gv:Li ratios (36.5% max growth 

at 0.001x Gv:Li) compared to high Gv:Li ratios (3.96% max growth at 1000x Gv:Li, Figure 

2.7.5). Li had little to no susceptibility over the range of MNZ concentrations tested (Figure 

2.7.5). Additionally, these EC50 values replicated trends in experimental data for growth 

kinetics. These results support that the initial Gv:Li ratio dependent trends in MNZ efficacy for 

inhibiting Gv growth are independent of Li’s sensitivity to MNZ. 

2.4.3 Optimal MNZ doses are dependent on pre-treatment microbiome  

We next used the model to determine specific combinations of MNZ concentrations and 

initial Gv:Li ratios that resulted in optimal final Li proportion after 48 MNZ exposure.  The 

initial Gv:Li ratio was highly associated with the final Gv:Li ratio for doses of MNZ greater than 

250 µg/ml (Figure 2.4.3A). Interestingly, cultures that were initially Li dominant (0.001x Gv:Li), 

were nearly insensitive to any dose of MNZ, resulting consistently with >50% Gv (Figure 

2.4.3A). This result carries the surprising implication that women with Li-dominant vaginal 

microbiomes at treatment initiation are likely to undergo recurrence, regardless of MNZ dose.  

Of note, cultures that were originally Gv dominant (Gv:Li > 1) were the most likely to be Li 

dominated after 48h exposure to MNZ. Experimental data supported these trends, as the 
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simulation predictions were not significantly different for the final proportion of Li at 500 µg/ml 

for 1,000x (p = 0.680, t = 0.420, df = 17).  The model did over-estimate the final proportion of Li 

at the 0.001x Gv:Li ratio (predicting a 44.1% proportion of Li compared to 14.2%  7.16% 

Figure 2.4.3 Initial Gv:Li ratios dictate final microbial populations.  
(a) Surface plot illustrates model predictions for proportion of Li relative to Gv 48h at different starting 
Gv:Li ratios (x-axis) and at different doses of MNZ (y-axis). Experimental validation was performed in 
in vitro co-cultures of Li and Gv (n = 18 independent, biological replicates for each ratio) and is plotted 
on the surface, with mean  SD represented by nodes and vertical lines. (b) Phase diagram of microbial 
growth dynamics 48hrs after exposure to various MNZ doses, dots indicate experimental conditions 
evaluated. There are four possibilities: Both Gv and Li populations are increased after treatment, both 
Gv and Li populations are decreased, only the Gv population is increased and only the Li population is 
increased. Pie charts indicate the fraction of experimental samples that agree with the predicted trends 
(right). 
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obtained experimentally); however, this result suggests an even more significant reduction in Li 

proportion when Gv is initially dominant (P = 0.008, t = 4.06, df = 17).  

A phase diagram of MNZ therapy outcomes at 48h was created to characterize both Li 

and Gv endpoint growth dynamics, which depict either an increase/expansion or decrease in 

population size relative to the initial population. The optimal growth dynamics would depict the 

expansion of only the Li population and the least optimal growth dynamics would be the 

expansion of only Gv. A decrease in both populations is additionally not optimal, as lower levels 

of beneficial microbiota are often associated with opportunistic infections or overgrowth of non-

optimal species.[187],[188] We observed that higher initial Gv:Li ratios in conjunction with 

MNZ concentrations over 250 µg/mL were more likely to result in optimal final growth 

dynamics where the Li bacterial population was the only population expanding (Figure 2.4.3B).  

Likewise, it was possible for only the Gv population to grow and the Li population to decrease 

when the initial Gv:Li ratio was less than 1x. Interestingly, the diagram predicts that it is possible 

that both Gv and Li populations would decrease for intermediate ratios of Gv:Li, which expand 

to include a wider range of ratios as the dose of MNZ is increased.  Overall, in vitro co-culture 

experimental data supported the model predictions for endpoint growth dynamics, with 15 of 18 

samples agreeing with the dynamics predicted by the phase diagram for the 1,000x Gv:Li, 500 

µg/ml group and for all 18 samples agreeing with the predictions for the 0.001x Gv:Li ratio, 500 

µg/ml group (Figure 2.4.3B, right). This result reinforces the importance of pre-treatment Gv:Li 

ratio on post-treatment bacterial community composition. 

2.4.4 Initial composition influences efficacy in more complex models 
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While our model results emphasize the importance of pre-treatment Gv:Li ratios in MNZ 

efficacy in co-cultures, BV in women is more complex, and involves interspecies interactions 

and strain variability across many different bacterial species.  We created three additional model 

structures to evaluate the above results in more complex settings that include multiple species, 

Figure 2.4.4 High pre-treatment BV:LB ratio is predicted to reduce MNZ efficacy in more complex microbial 
environments regardless of strain variability.  
(a) Original model structure validated in Fig. 2.2. (b) Two species model with negative interaction between other 
Lactobacillus sp. (oLB) and Gv. (c) Four species model of Gv and Li with additional representative bacteria for BV-
associated bacteria and Lactobacillus sp. (d) Four species model with inter-species interactions. Within BV-
associated bacteria and Lactobacillus sp. interactions were simulated from mutualistic (both benefit) to commensal 
(one benefits, the other is neutral). Inhibitory (amensal) interactions are included between D-lactic acid producing 
bacteria, other Lactobacillus sp., with both BV-associated bacteria. (e – h) post-MNZ treatment (48h, 500 g/ml) 
Lactobacillus spp. relative abundances at. 0.6x and 100x BV-associated bacteria to Lactobacillus spp (BV:LB) 
ratios for each model type (n = 100 independent simulations for each ratio, data are presented as mean ± SD). Each 
point represents a parameter set randomly sampled from physiological ranges. Statistical analysis was completed 
using unpaired, two-sided t-tests: Model A (P = 7.20x10-7, t ratio = 5.32, df = 198), Model B (P = 1.67x10-7, t ratio 
= 5.649, df = 198), Model C (P = 8.05x10-18, t ratio = 9.725, df = 198), and Model D (P = 1.70x10-13, t ratio = 7.954, 
df = 198), which were corrected for multiple comparisons using the Benjamini and Hochberg method. (i) 
Significantly sensitive parameters were assessed by partial rank correlation for each model structure (a-d) in a 
global sensitivity and uncertainty analysis, multiple comparisons were adjusted for using Bonferroni correction 
(asterisks indicate significance as: * P < 0.05, ** P < 0.01, *** P < 0.001).   
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interspecies interactions, and strain variability (Figure 2.4.4). In Model B and Model D, we 

account for potential interspecies interactions, such as amensalism between Lactobacillus spp. 

and BV-associated bacteria and commensal or mutualistic behavior within BV-associated 

bacteria subpopulations and Lactobacillus spp. (Figure 2.4.4A,D) [53,55,56,74]. In Models C 

and D, we add additional representative species; a second BV-associated species and a second 

Lactobacillus sp. (Figure 2.4.4C,D). To address potential variability in associated parameters, 

we randomly selected parameter values from physiologically relevant ranges determined from 

previously published studies (Table 2.7.1 and Table 2.7.2). Notably, across all four model 

structures we found that higher initial relative amounts of BV-associated bacteria to 

Lactobacillus spp. had higher relative post-antibiotic levels of Lactobacillus spp. (BV:LB ratio, 

Figure 2.4.4E-F, Figure 2.7.6, P < 1E-6, P < 1E-6, P < 1E-6, P < 1E-6). This result held for a 

range of ratios (0.6x BV:LB and 100x BV:LB) chosen to reflect the observed relative abundance 

of Lactobacillus spp. in BV positive women (60% - 1.0%) [21].  Moreover, for each of these 

model structures, the global sensitivity analyses consistently selected the MNZ 

internalization/sequestration parameter (kint) and the initial relative abundance of BV-associated 

bacteria to Lactobacillus sp. (BV:LB ratio) as significantly sensitive parameters in post-antibiotic 

treatment Lactobacillus spp. relative abundance. Variability in Gv sensitivity to MNZ (EC50) 

and growth rate were also selected as critical parameters in dictating response to MNZ treatment, 

which of interest as there is significant variability across Gv subclasses in terms of resistance to 

MNZ, and metabolism [189]. Furthermore, when models were modified such that Lactobacillus 

spp. could not internalize/sequester MNZ, the ratio-dependent effect was abrogated, and was 

additionally independent of the sensitivity of Lactobacillus spp. to MNZ (Figure 2.7.7). 
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Altogether, this provides additional quantitative evidence that Lactobacillus spp. sequestration of 

MNZ may contribute to BV recurrence in more complex microbial environments. 

2.4.5 Pre-treatment composition is associated with clinical outcome  

We next evaluated whether the influence of initial BV:LB ratio on MNZ efficacy is 

observed clinically. We compared the pre-treatment ratio of BV-associated bacteria to 

Lactobacillus spp. (BV:LB ratio) in vaginal samples collected from women who underwent 

MNZ treatment for BV and were cured or experienced recurrence, in two clinical studies; the 

UMB-HMP study [115] (n = 11) and CONRAD BV study [78] (n = 33). We chose to evaluate 

each study separately to minimize effects of differences in sample collection and in methods of 

microbial species measurements. In the UMB-HMP cohort, 11 women were observed over the 

course of 10 weeks and provided cervicovaginal lavage (CVLs) samples each day for 

quantification of relative microbial abundances by sequencing of the V3 and V4 regions of 16S 

rRNA. Patients underwent treatment for BV that consisted of one week of 500-mg oral MNZ, 

taken twice daily. Of the 11 women, 8 met inclusion criteria and were classified as recurrent or 

cured dependent on Nugent scoring, where recurrent patients were described as women who 

responded to treatment but exhibited a second episode of BV during the 10-week period (Table 

2.7.4). Results resonated with model predictions where individuals who experienced recurrence 

had higher amounts of Lactobacillus spp. relative to BV-associated bacteria (lower BV:LB 

ratios, P = 0.0366) and tended to have higher abundances of Lactobacillus spp., particularly Li, 

but abundance of individual species were not statistically significant after adjustment for 

multiple comparisons (P = 0.201, Figure 2.4.5A, Figure 2.7.8A). Additionally, Gv relative 

abundance was not significantly different between groups (P = 0.984, Figure 2.7.8B).  

Furthermore, when we analyzed the specific species in the original two-species model, we also 
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observed similar results where cured women had significantly higher ratios of Gv to Li (p = 

0.0497, Figure 2.4.5B).  It is important to note that since the Gv:Li ratio comparison was a 

selective analysis, we did not correct for multiple comparisons based on individual species in the 

original data set (over ~190 species measured).  These results support both the in vitro 

experimental data and model results that predicted a lower efficacy of MNZ treatment when a 

lower ratio of Gv to Li was present pre-treatment. 

Figure 2.4.5 Increased initial BV:LB ratios associated with successful treatment of BV.  
(a – b) Clinical results for the UMB-HMP cohort (n = 3 individuals for the cured group, n = 5 individuals for 
the recurrent group) describing the (a) log base 10 transform of initial BV-associated bacteria relative 
abundance to Lactobacillus spp. relative abundance, P = 0.0366, t = 2.678, df = 6. (b) initial Gv:Li ratio, P = 
0.0497, t = 2.451, df = 6. (c – d) Clinical results for the CONRAD BV cohort (n = 10 individuals for the cured 
group, n = 11 individuals for the recurrent group) describing (c) log base 10 transform of initial BV-associated 
bacteria relative abundance to Lactobacillus spp. relative abundance, P = 0.0242, t = 2.449, df = 19. (d) initial 
Gv:Li ratio, P = 0.0338, t = 2.287, df = 19. Data are presented as median, 25th and 75th quartiles, statistical 
analysis was completed with unpaired, two-sided t-tests that were not adjusted for multiple comparisons. 
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We also evaluated model findings in a second clinical cohort, the CONRAD BV study, 

which consisted of 33 women whose vaginal microbiome was sampled at enrollment in the 

study, one week after MNZ treatment and one month after MNZ treatment. Relative abundances 

were determined by sequencing of the V4 region of the 16S rRNA. Women were excluded from 

this subset analysis if they failed to finish antibiotic regimen, contracted a secondary vaginal 

infection, did not respond, or had delayed response of treatment. Of the 33 women, 21 met 

inclusion criteria and were evaluated by molecular-BV criteria (dominance of Lactobacillus spp.) 

at one week and one month, with women exhibiting a vaginal microbiota composition of less 

than 50% Lactobacillus sp. classified as BV positive. The group analyzed consisted of women 

who were cured (n=10) and or were determined to have recurrent BV (n=11; Lactobacillus was 

dominant at one week, but molecular-BV returned after one month, Table 2.7.5). Like the 

previous study, we found that women who experienced recurrence had higher levels of 

Lactobacillus spp. relative to BV-associated bacteria (lower BV:LB ratio, P = 0.0242, Figure 

2.4.5C). Comparison of CLR-transformed relative abundance did not result in statistically 

significant differences for Li or Gv, but tended to support the trend of recurrent women having 

higher Li and lower Gv (Figure 2.7.8C, D; P = 0.521, P = 0.694). Similarly, analysis of the Gv:Li 

ratio supported higher pre-treatment Gv relative to Li was associated with better treatment 

outcomes (Figure 2.4.5D; p = 0.0338).  Though preliminary and limited by low sample numbers, 

these results support the model predictions and suggest that successful BV treatment could be 

driven by competition for MNZ, where non-target bacterial populations, Lactobacillus spp., like 

Li sequester MNZ away from target bacterial populations like Gv, A. vaginae, Sneathia, etc., 

ultimately decreasing MNZ efficacy.  
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2.5 Discussion 

Here we show a personalized tolerance mechanism that may contribute to BV recurrence 

and treatment failure. Our model illustrates how non-target bacteria, such as Li or other 

Lactobacillus spp., may sequester antibiotic and lower the amount of MNZ available to target 

bacteria like Gv.  This model result implies that MNZ efficacy may be dependent on highly 

variable pre-treatment relative abundances of Lactobacillus spp. such as Li to BV-associated 

bacteria populations (BV:LB ratios) and raises the question of whether patients with higher 

levels of Lactobacillus spp. are more susceptible to recurrent BV than those with higher degrees 

of dysbiosis. Importantly, results from the model, in vitro experiments, and clinical data all point 

to a higher pre-treatment BV-associated bacteria population relative to Lactobacillus spp. as a 

driver of MNZ efficacy in inhibiting Gv growth and facilitating post-treatment Lactobacillus-

dominance. This study complements ongoing work in the search for drivers of BV treatment 

efficacy, in which experimental studies are often limited to delineating the role of individual 

bacteria, and it is challenging to assess the importance of numerous clinical and microbial 

variables that are associated with treatment outcome [166]. 

The potential for non-antibiotic-target bacterial populations to act as a sink for MNZ and 

alter efficacy is similar to a concept that has been previously explored in bacterial ecology, 

termed the inoculum effect (IE), which describes an increase in antibiotic MICs due to increased 

bacterial load and decreased per cell antibiotic concentration [190]. While the IE and the ability 

of bacterial species to influence MNZ bioavailability has been previously reported, to our 

knowledge its role in BV recurrence has not yet been considered.  Furthermore, the ODE model 

used here was essential for determining the critical importance of MNZ sequestration by 

Lactobacillus spp. across multiple interactions that have the potential to influence efficacy and 
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recurrence, including metabolism, proliferation, and susceptibility to MNZ of both target and 

non-target species.  The model was also necessary for translating the importance of this 

parameter to microbial communities with varying compositions and with different MNZ dosing 

regimens.  Though the proposed MNZ sequestration mechanisms were not experimentally 

validated in this study, the model predictions for associated relationships between pre-treatment 

microbial composition and BV recurrence were recapitulated in both co-cultures and in 

cervicovaginal samples providing an additional mechanism for recurrence that has not previously 

been considered.   

Recent studies evaluating pre-treatment vaginal microbiota composition on MNZ 

efficacy have reported inconsistent results, likely due to differences in patient exclusion criteria, 

timepoint of treatment outcome assessment, drug regimen, and methods to collect and quantify 

the vaginal microbiota. One study that employed a similar drug regimen (oral MNZ) and sample 

collection methods to the clinical cohorts evaluated here supported our results, finding higher 

pre-treatment loads of antibiotic-target species, Gv and A. vaginae, associated with BV treatment 

efficacy [169].  Other studies that used different sample collection methods and antibiotic 

regimens did not explicitly evaluate the pre-treatment ratio of BV-associated bacteria to 

Lactobacillus spp.; generally suggested there was an association between total Lactobacillus 

relative abundance and successful treatment [166,191,192].  Notably, some of these studies 

focused on analyzing treatment outcome immediately after antibiotic therapy was completed, and 

in some cases treatment failure was due to no response to therapy. We propose that recurrence 

and failure to respond to therapy likely arise from different factors, where recurrence is due to a 

collective bacterial population’s resilience to antibiotic therapy and failure to respond is due to 

inherent resistance of BV-associated bacteria. Studies that have associated higher Gv loads with 
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treatment failure correspond with the latter and could be due to the formation of biofilms or other 

resistance mechanisms [192]. As our model predicts immediate post-therapy Lactobacillus spp. 

relative abundance, no response to treatment would be equivalent to predicting no change or low 

Lactobacillus spp. relative abundance at 48h. An additional limitation of our model is that it does 

not appear to be applicable to cases of MNZ treatment failure in women who initially had very 

low levels of Lactobacillus sp. (<1%), which our model would predict should promote MNZ 

efficacy [78]. However, we propose that treatment failure in this case may be a result of the 

Allee effect [193,194], which can be caused by a variety of mechanisms that lead to decreased 

fitness at low population densities, suggesting these women have Lactobacillus abundances that 

are too low to recolonize the vagina and may be associated with more precisely modeling inter-

species interactions. Moreover, since Li is the only Lactobacillus sp. observed to date to 

significantly sequester MNZ, it will be important to characterize how other vaginal bacterial 

species interact with MNZ to further explore the role of non-target bacterial species on MNZ 

efficacy. Altogether, conflicting results in clinical studies of pre-treatment vaginal microbiota 

composition support the need for the development of quantitative platforms to evaluate the 

interplay between multiple microbial species, clinical variables, and dosing regimens that 

contribute to personalized differences in treatment failure. 

Models presented here are only simple reconstructions of the minimal possible 

interactions between bacterial species and an antibiotic that have been established as key species 

by the existing literature [68,166,167], with a time-scale that was limited by in vitro co-culture 

conditions. While the model provided useful insight into how non-target bacterial species may 

influence BV recurrence after MNZ treatment, predicting regrowth of Lactobacillus spp., and the 

full quantitative mechanisms underlying responses to treatment are likely more nuanced.  More 
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complex model frameworks did suggest key results would hold true in microbial communities 

with additional microbial species, interspecies interactions, and strain variability, though we 

were not able to validate this experimentally. Interspecies interactions in our models were 

incorporated with generalized Lotka-Volterra equations which simplifies relationships to a single 

term, but represent a good starting point for recapitulating ecosystem-level complexities  

[159,195–198]. Specific metabolic interactions that dictate survival and elimination of bacterial 

species in the vagina could be included with greater mechanistic detail in the future. In instances 

where parameters are unknown or difficult to measure experimentally, this work demonstrates 

the value of a global computational sensitivity analysis for understanding the relative importance 

of strain-level differences in antibiotic uptake, metabolism, or sensitivity.  Predictive simulations 

can be run across multiple possible parameter ranges to determine the effects of variation prior to 

costly experimental measurements. This tool will be valuable in isolating the role of individual 

parameters in making a bacterial population or community more tolerant to antibiotic therapy. 

In this study we demonstrated that ODE models can provide insights into antibiotic-microbe 

interactions pertinent to understanding BV treatment efficacy. Our work highlights that it is 

possible for BV treatment to fail, even if target bacteria are not resistant to MNZ as vaginal 

bacterial populations as a whole can be resilient to antibiotic, resulting in recurrent BV. While 

our clinical analysis is limited in sample size and therefore should be considered preliminary, 

future extensions of this work could be used to inform clinical decision-making regarding 

personalized therapy options. More generally, we envision that the use of quantitative models 

such as this will provide a framework for integrating knowledge of interactions between multiple 

bacterial species and drug treatments in mucosal tissues to give insight into the diverse responses 

observed in infectious disease and other syndromes of the female reproductive tract. 
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2.6 Methods 

2.6.1 Bacterial Strains and Culture Conditions 

Lactobacillus iners ATCC 55195 and Gardnerella vaginalis ATCC 14018 (group C) 

were obtained from the American Type Culture Collection (ATCC) and maintained on Human 

Bilayer Tween Agar (BD) plates and New York City III (NYCIII) medium according to the 

manufacturer’s instructions. Agar plates and liquid cultures were incubated at 37°C with 

anaerobic gas mixture, 80% N2, 10% CO2, and 10% H2. Frozen stocks of strains were stored at -

80°C in 40% (v/v) glycerol. 

2.6.2 Metronidazole Quantification by Tandem Mass Spectrometry 

MNZ concentrations were determined by validated LC-MS/MS assays. Sample aliquots 

were centrifuged at 3000xG and divided between supernatant and cell pellet. Extracellular MNZ 

was extracted from supernatant via protein precipitation using acetonitrile. For intra-cellular 

concentration measurements, cell pellets were lysed using sonication and re-suspended in 100L 

of sterile water. Samples were subjected to positive electrospray ionization (ESI) and detected 

via multiple reaction monitoring (MRM) using a LC-MS/MS system (Agilent Technologies 6460 

QQQ/MassHunter). Calibration standards were prepared with an inter- and intra-day precision 

and accuracy of ≤5% with an r2 value of 0.9988±0.0009. Quantification was performed using 

MRM of the transitions of m/z 172.2→128.2 and 176.2 → 128.2 for MNZ and MNZ-d4 

respectively. Each transition was monitored with a 100-ms dwell time. Stock solutions of MNZ 

and MNZ-d4 were prepared at 1mg/mL in acetonitrile-water and stored at -20°C. Mobile phase 

A is 0.1% acetic acid in H2O and mobile phase B is 0.1% acetic acid in ACN, and 

chromatographic separation was achieved using a gradient elution with a Chromolith 
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Performance RP-C18 column maintained at 25C from 0-4.6 minutes, B% 0-100, with 

0.5L/min flow. During pre-study validation, calibration curves were defined in multiple runs on 

the basis of triplicate assays of spiked media samples as well as QC samples. This method was 

validated for its sensitivity, selectivity, accuracy, precision, matrix effects, recovery, and 

stability. Replicates of reference samples were included every 6 samples and evenly distributed 

throughout the MS analysis to monitor consistency and performance and to utilize for 

downstream normalization. 

2.6.3 Bacterial Quantification 

Bacterial quantification determined via turbidimetry was completed by measuring the 

optical density at each time point, 100 L of sample inoculum was read at O.D. 600nm using a 

SpectraMax Plus 384 UV spectrophotometer. Time points were recorded within 5 minutes of 

sampling and stored at 4C. 

Bacterial quantification using plate counting was done by doing a 10-fold dilution using 

sterile water and aliquoting 100 L spread evenly onto BD agar plates. Cultures were incubated 

at 37C. Plating was done in triplicates and were counted manually. Prior optimization ensured 

the dilution would result in no more than 300 colonies making quantification as accurate as 

possible. 

For co-culture validation experiments, 100uL of sample was aliquoted on Rogosa agar 

and Gardnerella selective agar. Experiments were conducted to verify absence of Lactobacillus 

growth on Gardnerella selective media and absence of G. vaginalis growth on Rogosa agar, to 

confirm that colony formation specific to respective taxa. Cultures were incubated at 37C, with 

a total of 36 biological replicates for the 1,000x and 0.001 Gv:Li ratio cultures (n = 18 cultures 
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for each ratio). Plating was done in triplicates and were counted manually. Prior optimization 

ensured the dilution would result in no more than 300 colonies making quantification as accurate 

as possible. 

2.6.4 Bacteria-MNZ experiments 

For the MNZ experiments, 50L MNZ was added at appropriate concentrations to 5mL 

of NYCII media. Samples equilibrated at 37C for 1 hour prior to the addition of 50uL of 

bacterial inoculum (2x106). 150L aliquot was taken for time point readings for MNZ and 

bacterial quantification (as described above). Samples were incubated at 37C under constant 

mixing and only removed for time point measurements. 

For the co-culture experiments, Gv:Li ratios were added at appropriate experimental 

conditions in a likewise manner. For each varying ratio sample within each experiment, a side-

by-side duplicate was performed without MNZ as a negative control. The negative control was 

assessed only for bacterial quantification to ensure that no growth condition or external stimuli 

promoted the growth of one over another. Negative control experiments demonstrated bacterial 

proliferation that modelled growth curves of each individual bacterium cultured alone thus 

confirming any changes in growth seen in our bacteria-MNZ experiments were the result of the 

addition of MNZ. 

2.6.5 ODE Models 

The model equations were constructed assuming both Li and Gv internalize MNZ at rates 

kint-Li and kint-Gv, MNZ toxicity to Li and Gv occurred at rates dependent on the maximum rates 

kkill-Li and kkill-Gv and the concentration of internalized MNZ where growth inhibition increased as 

internalized MNZ exceeded a threshold as described by 50% effective concentrations, EC50Li 
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and EC50Gv. The growth of Li and Gv was assumed to be logistic in behavior at rates kgrow-Li and 

kgrow-Gv with distinct carrying capacities for each bacterium, KLi and KGv The parameters for kgrow-

Li, kgrow-Gv, KLi and KGv were determined by nonlinear least squares fitting of the logistic function 

to growth curves for Li and Gv grown in separate cultures (Figure 2.7.2) [199]. The kkill-Li, kkill-

Gv, EC50Li and EC50Gv were determined by fitting the Hill equation to kill curves for Li and Gv 

cultured in isolation (Figure 2.7.2). Internalization rates, kint-Li and kint-Gv and metabolism rates, 

kacet and kmet were determined from fitting the ODE model to time course mass spectrometry data 

for external MNZ, internal MNZ and acetamide and cell densities (Optical density) using a 

multi-start local optimization strategy (Multistart) with the local solver lsqcurvefit. 

2.6.6 Model Simulations and Validation.  

Unless otherwise noted, all simulations were completed at MNZ concentration of 500 

g/ml over the course of 48h. Growth outputs were normalized to the maximal growth density 

(KLi and KGv) for comparison across simulations and to experimental data. External MNZ, 

internal MNZ and acetamide concentrations were relative to the total volume of cellular pellet. 

Sensitivity analyses were completed by perturbing a single model parameter while keeping the 

rest of the parameters constant over 1,000x-0.001x the original value. Surfaces were generated 

over three orders of magnitude for MNZ concentration (10 – 1,500 g/ml) and eight orders of 

magnitude for ratio of Gv:Li (1.6x10-4 – 1.6x104) at 1225 combinations of MNZ concentration 

and Gv:Li ratio. Model validation was completed by comparing the experimental co-culture data 

to model predictions using unpaired t-tests.  

2.6.7 Generalized Models and Global Sensitivity Analysis 
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To incorporate intraspecies and interspecies variation we developed three additional 

model structures and ran simulations with randomized parameter sets to determine if the 

influence of initial Gv:Li ratio, or the more generalized BV:LB ratio, on endpoint Lactobacillus 

spp. composition is consistently observed across these model structures. 

For capturing intraspecies variation, we used Latin Hypercube Sampling of parameter 

ranges for each parameter to create 100 parameter sets. We derived these parameter ranges from 

the literature and a summary of these ranges can be found in Table 2.7.2 and Table 2.7.3. These 

same parameter ranges and sampling method were used for the global sensitivity and uncertainty 

analysis, which analyzed the partial rank correlation coefficient with 2,000 randomly generated 

parameter sets with endpoint (48h, 500 g/ml MNZ) Lactobacillus spp. relative abundance 

(Marino et al., 2008) [200]. For capturing interspecies variation, and microbe-microbe 

interactions like cross-feeding, we developed a four species model that includes two 

representative BV-associated bacteria, and two Lactobacillus species, L. iners and a second 

species representing L. crispatus, L. jensenii, or L. gasseri. 

Internalization/Uptake Rates (kint): To our knowledge, this is the first publication that 

demonstrates that G. vaginalis and L. iners uptake or sequester MNZ. Previous literature 

describing uptake of MNZ in other bacterial species, including both obligate and facultative 

anaerobes has been published by Ralph and Denise Clarke (1978) [178], Tally et al (1978) [175] 

and Narikawa (1986) [201]. These publications demonstrate that even bacteria that are resistant 

to MNZ can still uptake MNZ, and at similar rates. Despite the fact that facultative anaerobes are 

believed to be largely insensitive to MNZ, Narikawa specifically demonstrates that 

nitroreductase activity is associated with the ability to uptake MNZ, and that pyruvate: 

ferrodoxin activity is associated with sensitivity to MNZ as an explanation for why the 
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facultative anaerobes Escherichia coli, K. pneumoniae, M. morganii and S. faecalis exhibited 

high MICs, but reduced supernatant MNZ. We calculated the rates of MNZ uptake for five 

species, one obligate anaerobe, B. fragilis, and four facultative anaerobes (E. coli, S. aureus, P. 

morganii and S. faecalis) by digitizing the kinetic data for cell counts and extracellular MNZ 

concentrations in Ralph and Denise Clarke (1978) [178] and fitting second order reaction 

kinetics by ordinary least squares regression. The rates ranged from 2x10-17 to 0.15 cell density-

1h-1. To determine the likelihood that these parameters could be a basis for Lactobacillus spp. 

uptake of MNZ, we assessed the similarity between E. coli’s oxygen independent NADPH-

nitroreductase, nsfA, with nitroreductase protein sequences of G. vaginalis (34.7%), L. crispatus 

(31.0%), L. iners (29.4%), L. jensenii (19.4%) and L. gasseri (18.52%). Additionally, Guillen et 

al (2009) [202] reported that L. plantarum had selective nitroreductase activity, that shared 32-

43% sequence similarity with several Lactobacillus species, and in comparison had similarity 

with  G. vaginalis (24.0%), L. crispatus (38.5%), L. iners (25.5%), L. jensenii (52.8%) and L. 

gasseri (30.0%). Sequence similarity was assessed by NCBI’s protein BLAST [203]. As obligate 

anaerobes were observed to uptake MNZ at higher rates, we assumed that the other BV-

associated bacteria, which could be an obligate anaerobe could potentially have higher capacity 

to internalize MNZ.  

Growth Rates (kgrow) and Carrying Capacities (K): To account for potential variability in 

growth rates, we surveyed previously published to determine ranges in growth. For Lactobacillus 

species, we calculated growth rates by digitizing growth curves from Chetwin et al (2019) [101] 

and analyzed growth rates reported in Juárez-Tomás (2003) [204], Anukam and Reid (2008) 

[187]. G. vaginalis and other bacterial strains growth curves were less abundant in the literature, 

but we did calculate growth rates from Atassi et al., 2019 [56] and Anukam and Ried (2008) 
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[187]. Generally, G. vaginalis and other BV-associated bacteria seemed to have slower growth 

rates than Lactobacillus species, and in the same culture conditions, this was observed in 

Anukam and Reid (2008) [187]. For carrying capacity we assumed that there were similar 

carrying capacities for all species, except the BV-associated bacteria based on data from Castro 

et al. (2020) [73], that reported A. vaginae at lower levels that G. vaginalis at steady state [73]. 

Sensitivity to MNZ (EC50 and kkill): MNZ is highly variable, and typically obligate 

anaerobes are considered the most sensitive to MNZ. The strain of G. vaginalis used in the basis 

of this model is relatively resistant to MNZ, with growth barely inhibited at 256 g/ml (9% 

inhibition compared to 0 g/ml control, Figure 2.7.2). For A. vaginae, the MIC can range 2 

ug/ml – 256 ug/ml and G. vaginalis can range from 0.75 g/ml to > 500 g/ml [88,186]. 

Generally, it is assumed that Lactobacillus spp. are insensitive to MNZ; however, this also 

appears to be highly strain and species dependent with some Lactobacillus isolates in similar 

ranges of sensitivity as G. vaginalis [185,187]. The rate at which MNZ inhibits growth is more 

difficult to find, as the experiments to determine this rate are more laborious than the standard 

kill curve to calculate EC50 so we assumed all kill rates to be equal across all species.  

Metabolism of MNZ: To our knowledge, this is the first manuscript to describe the 

metabolism of MNZ by vaginal microbiota. We solely based the parameter value on the rate 

observed for the G. vaginalis strain from the model. Additionally, we assumed that only BV-

associated bacteria metabolism MNZ based on the observation that only BV-associated bacteria 

metabolize HIV microbicide drugs [19]. 

Inter-species Interaction Terms: Gause (1934) [205] first noted the calculation for 

interaction terms for a generalized Lotka-Volterra model describing competitive exclusion 

(Equations (1) and (2)). In our model, we generalized the interaction terms further to be able to 
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capture many different interactions, specifically amensal behavior where Lactobacillus spp. can 

inhibit BV-associated bacterial growth with no effect of BV-associated bacteria on Lactobacillus 

species growth (-/0) as well as mutualistic (both species benefit from the other +/+) and 

commensal behaviors (one species benefits 0/+) between BV-associated bacteria or within the 

Lactobacillus population. The amensal behavior between Lactobacillus species has been 

documented experimentally in co-culture (Jackman et al., 2019)[206] and we calculated the 

interaction term for many different species and strains of Lactobacillus on G. vaginalis and 

Prevotella bivia from Atassi et al. (2006) [55]. It is largely believed that D-lactic acid produced 

by many Lactobacillus species inhibits the growth of BV-associated bacteria; however, L. iners 

does not produce this isomer of lactic acid and is the reasoning behind not including an 

interaction term between L. iners and the BV-associated bacteria [53,62]. It is believed that 

commensal behavior exists between G. vaginalis and P. bivia in the form of cross-feeding, so we 

allowed the model to simulate this behavior [74]. Additionally, G. vaginalis is associated with 

promoting the growth of other BV-associated bacteria like A. vaginae [73]. Calculations were 

completed assuming the reported mono and co-cultures were at steady state to derive Equation 

(3) and (4). Equations (3) and (4) relate to the parameters in Table 2.7.3 by Equations (5) and (6), 

which generalizes the reported interaction strength from the literature to be able to be adjusted 

for varying carrying capacities simulated in the model that do not equal the carrying capacities 

from the literature. 

𝑑𝑁
𝑑𝑡
=  𝑟𝑁𝑁 [1 −

𝑁+ sP→N𝑃
𝐾𝑁

]    (1) 

𝑑𝑃
𝑑𝑡
=  𝑟𝑃𝑃 [1 −

𝑃+ sN→P𝑁
𝐾𝑃

]    (2) 

𝑠P→N =  [𝐾𝑁−𝑁
𝑃
]    (3) 

𝑠N→P =  [𝐾𝑃−𝑃
𝑁
]    (4) 
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𝑠P→N =  [𝐾𝑁−fP→N𝐾𝑁
fN→P𝐾𝑃

]    (5) 

𝑠N→P =  [𝐾𝑃−fN→P𝐾𝑃
fP→N𝐾𝑁

]    (6) 

2.6.8 Software 

 Parameterization, ODE modeling, sensitivity analyses, and PLSDA were completed using 

Matlab® 2018b (Matlab, Natick, MA). Statistical analyses were performed using PRISM 8, 

exact p-values less than 1E-6 were calculated in Matlab. 

2.6.9 Clinical data and study population  

The UMB-HMP cohort: The study results and associated clinical data were previously 

published (Ravel et al., 2013) [115]and all data provided was de-identified to this study. The 

UMB-HMP study was not an interventional study, but an observational prospective study, where 

treatment information was recorded during a clinical exam at week 5 and week 10 for 135 

nonpregnant women of reproductive age. Within this study, MNZ treatment was provided as 

standard of care, as recommended by the CDC (Metronidazole 500 mg orally twice a day for 7 

days) [207]. The original study protocol was approved by the Institutional Review Board of the 

University of Alabama at Birmingham and the University of Maryland School of Medicine. 

Written informed consent was appropriately obtained from all participants, who also provided 

consent for storage and use in future research studies related to women’s health.  

Women self-collected cervicovaginal swabs for 10 weeks. Vaginal microbiota data was 

generated by sequencing the V3-V4 regions of the 16S rRNA gene and is available at in dbGAP 

BioProject PRJNA208535. In this study, the vaginal microbiota composition data from 11 

women who experienced BV and were treated with MNZ during the UMB-HMP study were 

analyzed. Any participants who failed to complete the MNZ regimen, who did not have BV 
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according to Nugent scoring at the time of MNZ treatment, or who did not have follow-up data 

available were excluded from the analysis. The initial relative abundances were averaged across 

the week before starting MNZ treatment. Patients were classified to have recurrent BV if they 

exhibited a second episode of BV based on Nugent scoring (7-10) during remaining of the 10-

week observation period.  

The CONRAD BV cohort: The study results and associated clinical data were previously 

published (Thurman et al., 2015) [78] and all data provided was de-identified to this study. The 

original clinical study protocol was approved by the Chesapeake Institutional Review Board 

(IRB) (Pro #00006122) with a waiver of oversight from the Eastern Virginia Medical School 

(EVMS) and registered in ClinicalTrials.gov (#NCT01347632). A total of 69 women were 

screened from symptomatic discharge and 35 women were enrolled in the study.  Vaginal 

microbiota data was generated by sequencing the V4 region of the 16s rRNA gene, providing 

taxonomic resolution at the genera level. 

Thirty-three women completed all three visits. BV was evaluated by vaginal microbiota 

compositional data (molecular-BV) [208]. After biological samples were obtained at visit 1 (V1), 

women with BV were prescribed twice daily, 500-mg MNZ for 7 days. Participants returned for 

visit 2 (V2) 7-10 days after completing the course of MNZ therapy and visit 3 (V3) 28-32 days 

after completing treatment. At all three visits samples were obtained to evaluate vaginal semen 

(ABAcard, West Hills, Ca), vaginal pH, gram stain for Nugent score and semiquantitative 

vaginal flora culture. CVLs were collected, followed by vaginal swabs and three full-thickness 

biopsies.  

2.6.10 Analysis of Clinical Outcomes.  
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In the Human Microbiome Project cohort, patients were defined as cured or recurrent 

based on whether after initial MNZ treatment the patient suffered an additional episode of BV 

(Nugent 7-10) during the 10-week course of data collection. For analysis, initial flora relative 

abundances were averaged across the 7 days prior to the reported treatment start date. To analyze 

the relative ratio between BV-associated bacteria and Lactobacillus spp., we combined the 

relative abundances for the top twenty BV-associated bacteria and all Lactobacillus spp. The 

genera BV-associated bacteria included were: Gardnerella, Atopobium, Megasphaera, BVAB1-

3, Streptococcus, Prevotella, Leptotrichia, Anaerococcus, Peptoniphilus, Eggerthella, 

Veillonella, Sneathia, Mobiluncus, Corynebacterium, Ureaplasma, Eubacterium, 

Porphyromonas, Dialister, Peptostreptococcus, Bacteroides, Fusobacterium, Actinomyces, 

Bifidobacterium. Before statistical analysis, the BV:LB ratio was log-transformed, and the 

relative abundances of L. iners, G. vaginalis were center-log ratio (CLR) transformed, with 

pseudocounts added to taxonomic units with relative abundances equal to zero. Statistical 

analysis of the BV:LB ratio and Gv:Li ratio was completed using two-sided unpaired Student’s t-

tests and analysis of the CLR-transformed single species abundances were completed using two-

sided unpaired Student’s t-tests and were corrected using the FDR method of Benjamini and 

Hochberg (PRISM 8).  

For the CONRAD BV cohort, treatment outcome was defined based on Lactobacillus 

dominance evaluated at enrollment, 7 days after treatment and 28-32 days after treatment. 

Patients that exhibited Lactobacillus dominance at both 1 week and 1 month after treatment were 

considered cured, and patients that exhibited Lactobacillus dominance only at week 1 and not at 

1 month were considered recurrent. The statistical analysis followed the same methodology as 

the HMP Cohort. 
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2.7 Appendix 

2.7.1 Supplementary Figures 

 

Figure 2.7.1 Kinetic data for parameterization of MNZ interactions with L. iners and G. vaginalis. 

Kinetic data was collected at two doses of MNZ (a) low dose (100 g/ml) and (b) high dose (500 g/ml) for cultures 
with Gv and Li treated with MNZ Data are presented as mean ± SD, n = 3 biological replicates for each treatment 
group. Source data are provided as a Source Data file.   
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Figure 2.7.2 Model parameterization of growth dynamics with and without MNZ.  

a-b growth curves fit to a logistic equation using least-squares regression, growth rates and carrying capacity was 
determined from this data (n = 9 independent, biological replicates for each species). Red dashed lines represent the 
confidence interval, values represent mean ± SD. c-d Kill curves used to determine the maximal kill rate and EC50 
of MNZ for Gv (n = 3 independent, biological replicates for each dose, statistical analysis was completed using 
multiple unpaired two-tailed t-tests corrected using the Benjamini and Hochberg method: P = 0.212, t ratio = 2.05, 
df = 2; P = 0.152, t ratio = 2.90, df = 2; P = 0.415, t ratio = 1.02, df = 2; P = 0.030, t ratio = 14.2, df = 2; P = 0.104, t 
ratio = 4.58, df = 2; P = 0.104, t ratio = 4.21, df = 2) and Li (n = 5 independent, biological replicates for each dose, 
statistical analysis was completed using multiple unpaired two-tailed t-tests corrected using the Benjamini and 
Hochberg method: P = 0.736, t ratio = 1.37, df = 4; P = 0.736, t ratio = 0.758, df = 4; P = 0.912, t ratio = 0.135, df = 
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4; P = 0.736, t ratio = 1.282, df = 4; P = 0.736, t ratio = 0.950, df = 3; P = 0.912, t ratio = 0.1388, df = 1). Data in c-d 
are presented as mean ± SD, P-value *P < 0.05. Source data are provided as a Source Data file. 
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Figure 2.7.3 L. iners 1D sensitivity analysis.  

a Sensitivity of Li growth with 500 g/ml MNZ when parameters directly related to Li growth and survival are 
varied 0.001x to 1,000x fold baseline values. Percent maximal growth refers to the final cell count compared to the 
carrying capacity of the culture, the maximum cell density the culture can reach. b Sensitivity of Li growth with 500 
g/ml MNZ when parameters related to Li survival are varied 0.001x to 1,000x fold baseline values. 
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Figure 2.7.4 Comparison of model predictions with observed levels of MNZ and metabolites.  

Validation for the model for extracellular MNZ, intracellular MNZ and acetamide. Intracellular MNZ is the sum of 
MNZ concentration in Li and Gv in the model. Statistical analyses were completed with unpaired two-sided t-tests. 
Extracellular MNZ 0.001x initial Gv:Li ratio and 1000x initial Gv:Li ratio experimental vs simulation, and 
experimental vs experimental P-values were: P = 0.2551, t = 1.178, df = 17; P = 2.17x10-12, t = 17.70, df = 17; P = 
2.33x10-16, t = 14.77, df = 34, respectively. Intracellular MNZ: P = 0.3356, t = 0.991, df = 17; P = 0.0149, t = 2.71, 
df = 17; P = 1.12x10-19, t = 18.99, df = 34. Acetamide: P = 0.8766, t = 0.1576, df = 17; P = 2.24x10-5, t = 5.811, df = 
17; P = 9.68x10-28, t = 33.77, df = 34. P-values: * P < 0.05, ** P < 0.01, *** P < 0.001. Data are presented as mean 
± SD with n = 18 biological replicates for each ratio. Source data are provided as a Source Data file. 
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Figure 2.7.5 L. iners susceptibility to MNZ does not influence Gv:Li ratio dependent MNZ efficacy. 

a – b Surface plot to illustrate predicted percent maximal growth of Gv and Li (z-axis) when concentration of MNZ 
(x-axis) and the initial ratio of Gv:Li (y-axis) are varied in simultaneously. c – d Model predicted growth dynamics 
for monoculture response to MNZ at 100 µg/ml and 500 µg/ml, respectively. 
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Figure 2.7.6 : BV:LB ratios influence endpoint BV-associated bacteria and Lactobacillus spp. abundances even with 
strain variation.  

a Model A: two species, no interactions percent of maximal growth for Gv (P = 1.08x10-5, t ratio = 4.52, df = 198) 
and Li (P = 1.40x10-6, t ratio = 5.06, df = 198). b Model B: two species with interactions percent of maximal growth 
for Gv (P = 2.21x10-6, t ratio = 4.877, df = 198) and Li (P = 1.17x10-6, t ratio = 5.10, df = 198). c Model C: four 
species, no interactions percent of maximal growth for Gv (P = 6.89x10-9, t ratio = 6.10, df = 198), other BV-
associated bacteria (oBV, P = 1.62x10-8, t ratio = 5.89, df = 198), Li (P = 9.08x10-14, t ratio = 8.10, df = 198), and 
other Lactobacillus sp. (oLB, P = 6.50x10-15, t ratio = 8.59, df = 198). d Model D: four species, with interactions 
percent of maximal growth for Gv (P = 1.03x10-13, t ratio = 8.08, df = 198), other BV-associated bacteria (oBV, P = 
7.88x10-10, t ratio = 6.46, df = 198), Li (P = 9.73x10-16, t ratio = 8.89, df = 198), and other Lactobacillus sp. (oLB). 
Data are presented as mean ± SD, multiple unpaired two-tailed t-test p-values were adjusted using Benjamini and 
Hochberg correction, n = 100 independent simulations for each ratio. 
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Figure 2.7.7 Uptake or Sequestration of Lactobacillus spp. with MNZ drives initial BV:LB ratio influence of MNZ 
efficacy.  

a Post-treatment proportion of Lactobacillus sp. for Models A – D at 48h with 500 g/ml MNZ with the rate of 
internalization of all Lactobacillus spp. (LB) set to zero. P-values for Model A-D respectively: P = 0.789, t ratio = 
0.268, df = 198; P = 0.558, t ratio = 0.587, df = 198; P = 0.211, t ratio = 1.54, df = 198; P = 0.604, t ratio = 0.519, df 
= 198. b Post-treatment proportion of Lactobacillus sp. for Models A – D at 48h with 500 g/ml MNZ with the 
EC50 set to 10,000 g/ml for all Lactobacillus spp. (LB). P-values for Model A-D respectively: P = 2.04x10-6, t 
ratio = 4.98, df = 198; P = 1.15x10-4, t ratio = 3.94, df = 198; P = 3.68x10-15, t ratio = 8.68, df = 198; P = 2.35x10-8, t 
ratio = 6.00, df = 198. Data are presented as mean ± SD, multiple unpaired two-sided t-test p-values were adjusted 
using Benjamini and Hochberg correction, n = 100 independent simulations for each ratio. Source data are provided 
as a Source Data file. 
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Figure 2.7.8 Initial relative abundance data for L. iners and G. vaginalis for clinical outcomes.  

a - b UMB-HMP cohort (n = 3 individuals for cured group, n = 5 individuals for recurrent group) for CLR-
transformed relative abundances of L. iners (P = 0.201, t = 2.69, df = 6) and G. vaginalis (P = 0.984, t = 0.0204, df = 
6). c - d CONRAD BV cohort (n = 10 individuals for cured group, n = 11 individuals for recurrent group) CLR-
transformed relative abundances for L. iners (P = 0.521, t = 0.963, df = 19) and G. vaginalis (P = 0.694, t = 0.624, df 
= 19). Data are presented as median (centre), 25th and 75th percentiles. Statistical analysis was completed with 
multiple two-sided unpaired t-tests, with p-values adjusted for multiple comparisons using the Benjamini and 
Hochberg method. Source data are provided as a Source Data file. 
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2.7.2 Supplementary Tables 

Table 2.7.1 Parameters for two species model. 

[1] Determined from Figure 2.7.1 

 [2] Determined from Figure 2.7.2a, b 

 [3] Determined from Figure 2.7.2c, d 

  

Parameter Name Description Value Units Ref 
kint-GV internalization rate of MNZ into GV 0.0139 cell density-1 hr-1 [1] 
kgrow-GV maximal growth rate of GV 0.2269 hr-1 [2] 
KGV carrying a capacity for GV 4.2 cell density (106 mL-1) [2] 
kkill-GV kill rate of MNZ on GV 1.004 hr-1 [3] 
EC50GV concentration of MNZ to kill 50% of GV 420 µg mL-1 [3] 
kmet rate of MNZ conversion to unknown metabolites 0.0174 cell density-1 hr-1 [1] 
kint-LI internalization rate of MNZ into LI 0.0042 cell density-1 hr-1 [1] 
kgrow-LI maximal growth rate of LI 0.2309 hr-1 [2] 
KLI carrying a capacity for LI 3.569 cell density (106 mL-1) [2] 
kkill-LI kill rate of MNZ on LI 1.049 hr-1 [3] 
EC50LI concentration of MNZ to kill 50% of LI 598.87 µg mL-1 [3] 
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Table 2.7.2 Parameter ranges used to simulate intra-species variability. 

 

 

Table 2.7.3 Inter-species interaction terms.  

These terms descript the fold change in bacterial population that occurred from monoculture compared co-culture, a 
number greater than 1 indicates an increase in growth and less than 1 indicates an inhibition of growth.  

 

Table 2.7.4 UMB-HMP cohort data. 

Patient 
ID 

log10 
(BV:LB 
ratio) 

BV:LB 
ratio 

Total BV 
relative 
abundance 

Total LB 
relative 
abundance 

log10 
(Gv:Li 
ratio) 

Gv:Li 
ratio 

Li relative 
abundance 

Gv relative 
abundance 

UAB128 0.291 1.954 0.620 0.317 -0.164 0.685 0.492 0.337 

UAB003 0.185 1.532 0.574 0.374 -0.044 0.903 0.372 0.336 

UAB005 0.090 1.230 0.517 0.420 -0.068 0.855 0.318 0.272 

UAB035 0.086 1.219 0.502 0.411 -0.165 0.684 0.348 0.238 

UAB053 0.104 1.269 0.535 0.422 -0.440 0.363 0.52 0.189 

UAB127 0.961 9.143 0.799 0.087 0.683 4.817 0.093 0.448 

UAB130 1.367 23.295 0.916 0.039 0.764 5.809 0.047 0.273 

UAB135 0.192 1.555 0.548 0.352 -0.381 0.416 0.394 0.164 
Grey shading denotes patients that exhibited recurrent BV. 

 Source (fs->t) 

Target 

 Gv oBV Li oLB 
Gv  1.0 – 1.3 1.0 – 1.0  1x10-6 – 1.0 
oBV 1.0 – 2.5  1.0 – 1.0 1x10-6 – 1.0 
Li 1.0 – 1.0 1.0 – 1.0  1.0 – 1.3 
oLB 1.0 – 1.0 1.0 – 1.0 1.0 – 1.3  

 

 Units G. vaginalis Other BV-
associated L. iners Other Lactobacillus 

1) kint cell density-1hr-1 0.015 – 0.15 0.0 – 0.20 0.0015 – 0.15 0.0 – 0.10 

2) kgrow hr-1 0.20 – 0.60 0.20 – 0.40 0.20 – 0.80 0.20 – 1.00 

3) K cell density (106 

mL-1) 3.0 – 4.5 2.0 – 4.5 3.0 – 5.0 3.0 – 5.0 

4) EC50 µg mL-1 50 - 500 50 - 500 400 – 4,000 400 – 4,000 

5) kkill hr-1 1 1 1 1 

6) kmet cell density-1hr-1 0.005 – 0.05 0.005 – 0.05 0 0 
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Table 2.7.5 CONRAD BV cohort data. 

Patient 
ID 

log10 
(BV:LB 
ratio) 

BV:LB 
ratio 

Total BV 
relative 
abundanc
e 

Total LB 
relative 
abundanc
e 

log10 
(Gv:Li 
Ratio) 

Gv:Li 
ratio 

Gv 
relative 
abundanc
e 

Li 
relative 
abundanc
e 

24_v1 0.976 9.453 0.713 0.075 0.667 4.640 0.348 0.075 
25_v1 1.357 22.747 0.386 0.017 0.247 1.765 0.03 0.017 
26_v1 0.577 3.776 0.609 0.161 -1.304 0.050 0.008 0.161 
27_v1 1.537 34.442 0.136 0.004 0.628 4.250 0.017 0.004 
28_v1 1.303 20.071 0.837 0.042 0.176 1.500 0.063 0.042 
29_v1 1.722 52.692 0.290 0.006 0.544 3.500 0.021 0.006 
30_v1 1.156 14.307 0.293 0.020 -0.125 0.750 0.015 0.02 
31_v1 1.254 17.934 0.723 0.040 0.495 3.125 0.125 0.04 
33_v1 1.465 29.206 0.581 0.020 0.860 7.250 0.145 0.02 
34_v1 0.697 4.975 0.660 0.133 -0.391 0.406 0.054 0.133 
35_v1 0.712 5.155 0.656 0.127 0.437 2.738 0.345 0.126 
14_v1 1.579 37.958 0.824 0.022 0.740 5.500 0.121 0.022 
15_v1 1.803 63.541 0.438 0.007 0.660 4.571 0.032 0.007 
16_v1 2.369 233.627 0.823 0.004 1.224 16.750 0.067 0.004 
17_v1 1.973 93.879 0.798 0.009 1.139 13.778 0.124 0.009 
18_v1 0.896 7.868 0.747 0.095 0.282 1.916 0.182 0.095 
19_v1 1.290 19.506 0.342 0.018 -0.051 0.889 0.016 0.018 
20_v1 1.723 52.821 0.783 0.015 0.000 1.000 0.015 0.015 
21_v1 2.032 107.535 0.223 0.002 1.230 17.000 0.034 0.002 
22_v1 0.675 4.734 0.633 0.134 0.236 1.723 0.224 0.13 
23_v1 2.578 378.471 0.440 0.001 1.114 13.000 0.013 0.001 

Grey shading denotes patients that exhibited recurrent BV. 

2.7.3 Supplementary Equations 

𝑑[Li]
𝑑𝑡
=  [𝐺𝐿𝑖 − DLi] ∙ [Li]     (3) 

𝑑[Gv]
𝑑𝑡

= [𝐺𝐺𝑣 − 𝐷𝐺𝑣] ∙ [Gv]     (4) 

𝑑[MNZext]
𝑑𝑡

=  − 𝑘𝑖𝑛𝑡_𝐿𝑖 ∙ [MNZext] ∙ [Li] −  𝑘𝑖𝑛𝑡_𝐺𝑣 ∙ [MNZext] ∙ [Gv]      (5) 

𝑑[MNZint_Li]
𝑑𝑡

=  𝑘𝑖𝑛𝑡_𝐿𝑖 ∙ [MNZext] ∙ [𝐿𝑖] −  𝐷𝐿𝑖 ∙ [Li] ∙ [MNZint
Li
]       (6) 

𝑑[MNZint_Gv]
𝑑𝑡

=  𝑘𝑖𝑛𝑡_𝐺𝑣 ∙ [MNZext] ∙ [Gv] −  𝑘𝑚𝑒𝑡 ∙ [MNZintGv] ∙ [𝐺𝑣]  − 𝐷𝐺𝑣 ∙ [Gv] ∙ [MNZint
Gv
]      (7) 

𝑑[Met]
𝑑𝑡

=  𝑘𝑚𝑒𝑡 ∙ [MNZintGv] ∙ [Gv]      (8) 
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𝐷 = 𝑘𝑘𝑖𝑙𝑙 (
[MNZint]

EC50 +  [MNZint]
)      (9) 

𝐺 = 𝑘𝑔𝑟𝑜𝑤 (1 −
[cell density]

𝐾
)     (10) 

MNZint/cell =  
[MNZint]

[cell density]∙𝑉𝑐𝑢𝑙𝑡𝑢𝑟𝑒
𝑉𝑐𝑒𝑙𝑙      (11) 

Equation (1) represents the growth dynamics of the Li population, Equation (2) the Gv 

population, Equation (3) the extracellular MNZ concentration, Equation (4) the bulk intracellular 

MNZ concentration for Li, Equation (5) the bulk intracellular MNZ concentration for Gv, 

Equation (6) the concentration of metabolites produced by Gv. In Equation (7), “D” represents 

the death rate of the population and is dependent on the respective intracellular MNZ 

concentrations, EC50s and maximum kill rates. In Equation (8), “G” represents the logistic 

growth of the respective populations dependent on the maximum growth rate and carrying 

capacities. In Equation (9), “MNZint/cell” represents the mass of MNZ internalized in each cell 

and is dependent on the bulk concentration of MNZ, per cell (cell density * culture volume) and 

cell volume.  
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3.2 Abstract 

The vaginal microbiome (VMB) is a dynamic and complex ecological community closely 

tied to reproductive health. Understanding community stability is critical for preventing shifts to 

communities associated with adverse reproductive outcomes (including bacterial vaginosis, BV). 

Understanding drivers of stability is challenging as women with similar composition can exhibit 

either sustained or temporary transitions in response to perturbations such as antibiotic therapy or 

menses. Here, we use a computational model to determine whether differences in microbial 

growth and interaction parameters could alter equilibrium state accessibility and account for 

variability in stability across women. Using a global uncertainty and sensitivity analysis that 

mailto:kbarnold@umich.edu
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captures parameter sets sampled from a physiologically relevant range, model simulations 

suggested that 79% of communities were predicted to be mono-stable and 21% were predicted to 

be multi-stable, which was not significantly different from observations in clinical measurements 

(81% and 19%, respectively). The model identified key microbial parameters that governed 

equilibrium state accessibility, pinpointing the non-intuitive importance of non-optimal 

anaerobic bacteria on the growth of Lactobacillus spp., which is largely understudied. Finally, 

simulations were performed to illustrate how this quantitative framework can be used to gain 

insight into the development of new combinatorial therapies involving altered prebiotic and 

antibiotic dosing strategies. Altogether, dynamical models could guide development of more 

precise therapeutic strategies to manage BV. 

3.3 Introduction 

The vaginal microbiome is a complex system that plays a fundamental role in women’s 

health, influencing fertility [209,1], susceptibility to infectious disease [15,210], and drug 

efficacy [18–20].  An optimal vaginal microbiome is characterized by low microbial diversity 

and an abundance of Lactobacillus species (spp.), which can shift to a non-optimal state 

associated with a diverse array of anaerobic bacterial spp., commonly Gardnerella vaginalis, 

Atopobium vaginae and Prevotella spp. [21]. Previously published clinical observations suggest 

that the VMB gravitates to five main compositions known as community state types (CSTs): 

three that are dominated by Lactobacillus (LB) species and associated with optimal health (L. 

crispatus, CST -I; L. gasseri, CST -II; L. jensenii, CST -V); one dominated by L. iners and 

associated with an increased transition rate to non-optimal states (CST -III); and a high bacterial 

diversity state, lacking Lactobacillus spp., commonly associated with BV (CST -IV) [21]. 

Understanding the equilibrium states and associated stability is challenging and limited by a lack 
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of longitudinal studies in humans with frequent (daily) sampling; however, the limited 

longitudinal studies support a biological system that has set equilibrium points where 

perturbations impacting the cervicovaginal environment such as menses, sexual or hygienic 

behaviors and antibiotics, can either transiently influence the system or result in dramatic, 

sustained shifts in composition that are hallmarks of mono-stable versus multi-stable systems.  

Assessing the propensity for a community to have multiple equilibrium states has been 

studied in macro-ecology to determine factors driving dramatic composition (regime) shifts after 

short term environmental changes with hopes these factors could be used to regulate ecosystem 

composition and function [211,212]. Whether the vaginal microbial community has a single 

equilibrium state (mono-stable) or multiple equilibrium states (multi-stable) could have 

important implications in understanding community responses to menses or antibiotic therapies. 

For example, several studies report changes in the VMB composition during menses, typically 

characterized by temporary high diversity states lacking Lactobacillus spp. However, not all 

women are affected to the same degree, with some women exhibiting little to no fluctuations 

which would be indicative of a mono-stable system and others undergoing dramatic, sustained 

switches in composition indicative of multiple possible equilibrium states [22,114,115]. 

Similarly, understanding non-optimal mono-stable systems could help explain the high rate of 

BV recurrence after standard of care antibiotic, metronidazole or clindamycin, as mono-stable 

systems would be resilient to the temporary regimen of antibiotics and would require other 

specific and lasting alterations to prevent recurrent BV episodes [165].  

Factors that dictate whether the VMB exists in a mono-stable or multi-stable equilibrium 

state are likely a mix of host and microbial factors that impact growth characteristics and 

interactions between species. Both host characteristics and microbial characteristics are highly 
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variable, with individuals of comparable VMB compositions exhibiting variable phenotypes due 

to complex inter-species interactions working in concert or antagonistically to regulate 

community composition and function [115]. For example, a common assumption is that certain 

Lactobacillus spp. (including L. crispatus, L. jensenii and L. gasseri) inhibit the growth of BV-

associated bacteria by producing compounds like D-lactic acid, L-lactic acid (except L. jensenii), 

and bacteriocins [53,73,74]. Despite this assumption, reports suggest that these species have 

variable inhibitory strengths and even strains of the same Lactobacillus spp. can have vastly 

differing capabilities at decreasing the abundance of BV-associated bacteria [55]. One 

Lactobacillus sp., L. iners, does not produce D-lactic acid and is more commonly associated with 

BV [213]. L. iners can produce a cytolysin similar to G. vaginalis, suggesting this L. iners may 

play a different role in vaginal ecology than those aforementioned. Additionally, of the core 

Lactobacillus spp., L. iners is most associated with vaginal dysbiosis [115,214]. Communities 

associated with BV have high species diversity as well as have the ability to engage in 

cooperative behavior via cross-feeding or biofilm formation that could influence system stability 

and susceptibility to antibiotics [215,216]. Like the Lactobacillus spp., there is also a high degree 

of intra-species variability, especially for one of the most commonly observed bacteria with BV, 

G. vaginalis, where some species and strains are more associated with recurrent BV and 

suboptimal treatment outcomes [55,71,189,217]. The combination of intra-species variability 

with inter-species ecological interactions complicates assembly of microbial communities and 

convolutes understanding of BV pathogenesis as well as responsiveness to antibiotic treatment. 

Considering all these contributing factors, the ability to quantitatively assess how combinations 

of these variables contribute to community stability or multi-stability could be essential in 

understanding VMB composition shifts after menses or antibiotic therapy.  
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The application of quantitative mathematical models to unravel complexities of inter-

species interactions and host-microbiota interactions demonstrate promise for understanding 

complex microbial dynamics. Generalized Lotka-Volterra models (gLVM), which represent 

inter-species interactions with a coefficient that describes pairwise, additive, abundance (density) 

dependent interaction strengths, have been used to model the gut microbiome [159,218] and in 

theoretical microbial ecology [158,162]. However, obtaining parameters for these models 

requires dense longitudinal sampling, absolute abundance data, and population level consistency 

of species present, which are features that are lacking for in vivo studies of the VMB due to 

inadequate animal models [110], difficulty in clinical sample collection, and unique 

characteristics of VMB composition, where communities can be nearly completely dominated by 

a single species [21,22,26,115]. Even when all these conditions are met, the fitting of these 

models to noisy temporal data can lead to variable results dependent on data pre-processing steps 

or from assumptions that arise across different model fitting algorithms [219]. As a result, these 

methods have not yet been used to reveal mechanistic insight into the VMB, which would be 

especially valuable for understanding which microbial parameters govern mathematical 

equilibrium states related to VMB CSTs.  

Here we use a simplified gLVM of VMB community state types (CSTs) consistently 

observed across women to understand how variability in microbial parameters may govern 

equilibrium state accessibility and differences in resilience after antibiotic therapy or menses. We 

address challenges related to parameter availability by capturing physiologically relevant 

variability using a global sensitivity and uncertainty analysis [200] and compare results to 

clinical subpopulations based on observed equilibrium behaviors in a longitudinal clinical study 

of women. By matching clinically observed equilibrium behavior subpopulations to parameter 
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spaces that share that same behavior, we can interrogate which parameters differentiate these 

subpopulations and make predictions on how each subpopulation responds to perturbations and 

overcome challenges associated with inconsistent parameter estimations that arise from fitting 

gLVMs directly to in vivo data. Our goal was to pinpoint key species interaction and growth 

terms that determine mono- vs. multi-stability, which could be used to focus future research 

regarding specific interspecies interactions that can re-orient a system to an ideal stability type, 

which could encompass metabolic targets (such as substrates that promote or inhibit the growth 

of select species or production of lactic acid [47,48,61]) or selective bacteriocins [60]. We also 

demonstrate how this framework could be used to identify new dosing regimens and 

combinatorial therapies to improve BV treatment outcomes across heterogenous populations and 

given individual’s equilibrium state accessibility.  

3.4 Results 

3.4.1 The model reveals the potential for the VMB to exist in mono-stable or multi-stable 

states depending on microbial parameters that vary across individuals 

A computational model that linked microbial growth and interaction characteristics to 

community composition and stability was created using a generalized Lotka-Volterra ODE 

Model (gLV) that represent simplified, core groups of VMB CSTs. The simplified CSTs 

included the “optimal” Lactobacillus spp. (oLB dominated, combined CST -I, -II, -V), the 

transitory Lactobacillus sp., L. iners (Li dominated, CST -III), and the high bacterial diversity 

group associated with non-optimal anaerobic bacteria (nAB) and BV (nAB dominated, CST -IV; 

Figure 3.4.1A). This model had seven nonzero steady states with the potential for multiple of the 

seven states to be stable for a given set of microbial parameters (multi-stability, Supplementary 
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Text). The model steady states describe the inherent stability of the microbial community to exist 

 

Figure 3.4.1 Mathematical model of vaginal community state types.  

(A) Model schematic of a generalized Lotka-Volterra Model for three community groups: optimal Lactobacillus spp. 
(oLB), L. iners (Li), and non-optimal anaerobic bacteria (nAB). Model equations capture growth rates, carrying 
capacity and interaction terms. (B) Mapping of the predicted steady-state compositions to clinically defined CSTs 
using a nearest centroid model based on VALENCIA centroids. (C) Parameter ranges used to define uniform 
distributions for a global uncertainty and sensitive analysis using Latin Hypercube Sampling (LHS). (D) Model 
predicted frequencies of equilibrium behaviors which include 1SS oLB dominated (CST -I/II/V), 1SS Li dominated, 
(CST -III), 1SS nAB dominated (CST -IV), 2SS nAB dominated/oLB dominated, 2SS Li dominated/oLB 
dominated, and 2SS nAB dominated/Li dominated. (E) Analysis of overall frequency of mono-stable (gold) and 
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multi-stable (blue) states from the model predicted to the clinical observation. Statistical comparisons were made 
using χ2-tests. 

 

at a given community composition without the impact of external perturbations like antibiotic, 

menses, sexual behavior, hygienic behavior, or contraceptives, which can be simulated as 

perturbations to the model system. To characterize the relationship between microbial growth 

characteristics and ecological interactions on the internal stability of VMB community 

composition a physiological parameter space was generated using Latin Hypercube Sampling 

(LHS) of uniform distributions created from experimental and empirical observations for each 

microbial parameter (Table 3.7.1; Figure 3.7.1; group associated with non-optimal anaerobic 

bacteria (nAB) and BV (nAB dominated, CST -IV; Figure 3.4.1B). Then, local stability analysis 

was performed to analytically determine the steady states for each parameter set (simulated 

sample) generated from the LHS (N = 5,000; Supplementary Text). Model predictions for 

community steady states were converted to CSTs (oLB dominated CST -I/II/V, nAB dominated 

CST -IV, and Li dominated CST -III) using a nearest centroid classifier on the analytically 

predicted equilibrium composition similar to previously used methodologies to classify CSTs 

clinically (Table 3.7.2, [26]). This classification method link predicted in silico equilibrium 

behavior subtypes to clinically observed subpopulations at the CST level (Figure 3.7.2). Overall 

model results demonstrated six, physiologically relevant equilibrium behavior subtypes that were 

either mono-stable (1SS, one stable state) or multi-stable (>2SS, two or more stable states; 

Figure 3.7.1D-E). 

The most common equilibrium behavior subpopulations corresponded to three mono-

stable systems: (1) the optimal L. crispatus species dominant mono-stable equilibrium subtype 

(1SS oLB dominated CST -I/II/V; 43.5% of simulated samples), (2) the L. iners species 

dominant equilibrium subtype (1SS Li dominated CST -III ; 20.3% of simulated samples), and 
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(3) the nAB species dominated (BV-associated) equilibrium subpopulation (1SS nAB dominated 

CST -IV; 15.8% of simulated samples; Figure 3.7.1E). To compare model predictions to clinical 

equilibrium behavior frequencies, clinical equilibrium behavior subtypes were determined from 

two longitudinal cohorts, the Human Microbiome Project Cohort (HMP Cohort, N = 101 

patients) [115]  and the Gajer et al. 2012 cohort (Gajer cohort, N = 32 patients [22]; Figure 

3.7.1E). Equilibrium behavior subtypes were calculated from each time series by calculating a 

CST transition matrix (Figure 3.7.2). For example, patients whose transition matrix was 

primarily associated with within-state transitions (i.e. CST -I/II/V to CST -I/II/V) were classified 

as mono-stable (1SS oLB dominated; Figure 3.7.2A), whereas patients whose transition matrix 

had two cases of high within state transitions rates (for example, 65% were CST -IV to CST -IV 

and 31% were CST -I/II/V to CST -I/II/V) were classified as multi-stable (2SS nAB 

dominated/oLB dominated; Figure 3.7.2B). There was no significant difference in the frequency 

of predicted multi-stable vaginal communities compared to the clinical data (predicted 20.3% vs. 

24.8% in the HMP cohort and 21.9% in the Gajer cohort; P = 0.2630 and 0.8258, respectively; 

Figure 3.7.1D). At the equilibrium behavior level, frequencies differed both between the model 

and clinical observations and between the two clinical cohorts (Figure 3.7.1E). The model 

tended to underestimate nAB dominated equilibrium behaviors in favor of oLB dominated 

equilibrium behaviors, with the 2SS nAB dominated/Li dominated subtype having the most 

consistent discrepancy when compared to the two clinical cohorts (Figure 3.7.1E). The 

underestimation of subtypes that exhibit nAB dominated compositions is likely due to 

constraining the interaction of oLB on nAB to be negative (inhibitory), favoring oLB dominated 

equilibrium subtypes.  Calibration of the parameter distributions to be more representative of the 

population could increase the predictive power of the model when external perturbations are 
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simulated. Overall, this analysis supports that the vaginal microbiome can exist as either a mono-

stable or a multi-stable system, and the predominant state can be replicated by the specific 

growth and microbial interaction parameters that vary across women. 

3.4.2 Mono-stability is driven by specific interspecies interaction terms 

To understand intrinsic factors that drive stability toward one equilibrium composition (mono-

stable) versus factors that facilitate more than one possible equilibrium composition for a given 

community (multi-stable) communities, simulated samples generated from the global sensitivity 

analysis of known equilibrium behavior subtypes were compared using multiple Mann-Whitney 

rank sum tests with FDR-adjusted p-values (Figure 3.4.2). This analysis characterizes the 

inherent stability of the microbial community, which helps define whether the community will 

undergo compositional shifts given an external perturbation such as sexual and hygienic 

behaviors, menses, or antibiotic therapies (Table 3.7.3). The comparison of mono-stable optimal 

subtypes (1SS Li dominated and 1SS oLB dominated) to multi-stable optimal/non-optimal 

subpopulations (2SS Li dominated/nAB dominated and 2SS oLB dominated/nAB dominated 

revealed that the interaction of nAB with Li and oLB (αnAB→Li, αnAB→oLB) was significantly 

associated with mono-stable subtypes (Figure 3.4.2A,B). This result indicates the effect nAB 

have on Lactobacillus spp. could dictate inherent community stability from external 

perturbations. This observation is notable, as there are few studies that describe the impact nAB 

on Lactobacillus spp. (oLB or Li). The comparison of the stable non-optimal subpopulations 

(1SS nAB dominated) to multi-stable subpopulations (2SS nAB dominated/Li dominated and 

2SS nAB dominated/oLB dominated) supported the importance of the associated Lactobacillus 

spp. in driving mono-stability, where weaker interactions between oLB or Li with nAB were 
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associated with the 1SS nAB dominated group (αLi→nAB,αoLB→nAB; Figure 3.4.2C,D). 

Additionally, the interactions between Lactobacillus spp. were associated with the 1SS nAB 

dominated group, with more positive interactions between Lactobacillus spp.  associated with the 

1SS nAB dominated communities (αLi→oLB,αoLB→Li; Figure 3.4.2C,D). Mediation of pairwise 

Lactobacillus spp. interactions is a potential non-intuitive target for altering microbial 

community equilibrium behavior, as interactions between species like L. iners and L. crispatus, 

L. jensenii or L. gasseri remain poorly characterized. Altogether these results indicate that 

drivers of mono- vs multi-stability are specific to equilibrium subpopulations and indicate that 

inter-species interactions are drivers of mono-stable versus multi-stable states. 

Figure 3.4.2 Assessment of parameters that drive multi-stable vs mono-stable states.  

Volcano plots from multiple Mann-Whitney rank sum tests with FDR-adjusted p-values. Colored points indicate 
parameters that were significantly different between comparison groups. (A) 1SS Li dominated (gray) vs 2SS Li 
dominated/nAB dominated (pink). (B) 1SS oLB dominated (blue) vs 2SS oLB dominated/nAB dominated (purple) 
(C) 1SS nAB dominated (red) vs 2SS nAB dominated/Li dominated (pink) (D) 1SS nAB dominated (red) vs 2SS 
nAB dominated /oLB dominated (purple). 
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3.4.3 Equilibrium subpopulations may explain variability in temporary vs. sustained CST 

switches observed from menses 

The vaginal microbiota is subject to external and internal factors that dictate whether the 

community will undergo changes in composition over time. One common perturbation is 

menses, where studies report changes in VMB composition during menses, typically a temporary 

change from low diversity, Lactobacillus spp. dominance, to high diversity states associated with 

BV. Notably, reports indicate variability in the  degree of impact of menses on composition, 

ranging from no noticeable impact on VMB composition to individuals undergoing dramatic and 

sustained shifts after menses [22,114,115]. To explore the impact of menses on initially optimal 

microbial communities, equilibrium behavior subtypes that could exhibit oLB or Li dominance 

were evaluated (1SS oLB dominated, 1SS Li dominated, 2SS oLB dominated/nAB dominated, 

2SS Li dominated/oLB dominated). To be able to assess model predictions to clinical data at a 

population level, an in silico HMP cohort was created by resampling the base parameter space 

and matching the equilibrium behavior distribution exhibited by the HMP cohort (Figure 3.7.3). 

The parameters were also scaled to be on the time scale observed for growth rates and interaction 

terms observed in a murine gut microbiome model [159]. Menses was simulated based on the 

connection between elevated levels of certain biogenic amines during menstruation and their 

associated connection with transitions to BV positive states [75]. These biogenic amines were 

reported to alter Lactobacillus spp. characteristics in vitro including decreased growth rates of 

Lactobacillus spp. (kgrow-Li, kgrow-oLB) and decreased production of lactic acid (less inhibitory 

αLi→nAB and αoLB→nAB). 
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First, a two-dimensional sensitivity (bifurcation) analysis was used to assess how menses-

related parameter changes could shift steady-state accessibility across the four Lactobacillus 

dominated equilibrium behavior subtypes. The global bifurcation analysis of the 1SS oLB 

dominated and the 2SS oLB dominated/nAB dominated equilibrium behavior subpopulations 

demonstrated that the mono-stable groups were resilient to changes in menses-affected 

parameters, requiring growth rates of oLB to be inhibited to point where these populations would 

be actively dying (negative; Figure 3.4.3A). In contrast, the multi-stable simulated samples 

Figure 3.4.3 Bifurcation analysis to explore menses-associated parameter alterations.  

Bifurcations were completed on each simulated sample for a given equilibrium behavior. Bifurcation plots represent 
the predicted equilibrium behavior subtype over a range of parameter changes. The most frequently observed 
equilibrium behavior across all simulated samples for a given parameter combination is plotted. Parameter changes 
are represented as a fold addition from the original parameter value. For example, the origin (0,0) indicates the 
baseline values for each sample and (-1,0.5) would indicate a 100% decrease in αoLB →nAB and αLi →nAB and a 50% 
increase in kgrow-Li and kgrow-oLB. Menses-associated changes are in the lower right quadrant (decrease in the growth 
of oLB and Li, less negative interactions between oLB and Li on nAB. (A) 1SS oLB dominated (N = 388) (B) 2SS 
oLB dominated/nAB dominated (N = 58) (C) 1SS Li dominated (N = 123) (D) 2SS Li dominated/nAB dominated 
(N = 186) equilibrium subtypes.  
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required less significant inhibition of oLB/Li growth and could be switched to a 1SS nAB 

dominated equilibrium behavior with only increases in the interaction of oLB and Li. on nAB  

(αLi→nAB and αoLB→nAB; Figure 3.4.3B). These trends were mirrored in the global bifurcation of 

the 1SS Li dominated and the 2SS Li dominated/nAB dominated subtypes where the mono-

stable groups were more resilient to changes in equilibrium behavior, and the multi-stable 

systems were more sensitive to switching to the 1SS nAB dominated equilibrium behavior 

(Figure 3.4.3C,D). These results demonstrate that multi-stable communities are more likely to 

switch to nAB dominated equilibrium subtypes for the same alteration of parameters than mono-

stable communities. 

Since the bifurcation analyses assume sustained alterations in parameters, it does not 

necessarily demonstrate mechanisms for dynamic and dramatic changes that can occur due to 

temporary. external alterations on microbial communities such as menses. Thus, a simulated 

seven-day menses was completed at four different menses ranging from a 50% decrease in kgrow-

Li and kgrow-oLB and 50% increase in αLi→nAB, αoLB→nAB to a 200% decrease in kgrow-Li and kgrow-oLB 

and 100% increase in αLi→nAB, αoLB→nAB (Figure 3.7.4, Figure 3.7.5). Four magnitudes were 

evaluated because of uncertainty on how strongly vaginal microbiota. Of the simulated 

magnitudes, the perturbation that was most similar to the HMP clinical cohort was the 200% 

decrease in kgrow-Li and kgrow-oLB and 100% increase in αLi→nAB, αoLB→nAB which was further 

evaluated by patients that were oLB dominated or Li dominated pre-menses (Figure 3.4.4). 

For samples with equilibrium behaviors that are oLB dominant (1SS oLB dominated and 

2SS oLB dominated/nAB dominated) the average sample exhibited a transient decrease in oLB 

abundance during menses (Figure 3.4.4A, left). Of the oLB dominated equilibrium behavior 

samples, 33.0% exhibited nAB dominance on the last day of menses (day 0, resilient group) and 
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8.1% of simulated samples exhibiting sustained nAB dominance at 1 month (day 30, Figure 

3.4.4A, middle). Lastly, a subset of samples did not undergo a shift to nAB dominance as 

evaluated on the last day of menses (resilient group, Figure 3.4.4A, right). 

 

Figure 3.4.4 Menses-associated compositional fluctuations in silico and in clinical samples.  

The analysis was stratified dependent on the Lactobacillus spp. that was dominant pre-menses (A-D) are associated 
with oLB dominated equilibrium behavior (1SS oLB dominated and 2SS oLB dominated/nAB dominated) and (E-
H) are associated with Li dominated equilibrium behavior (1SS Li dominated and 2SS Li dominated/nAB dominated 
subtypes). (A) Mean and ± 95% confidence interval of model predicted composition before, during (red), and after 
menses for nAB, Li, and oLB relative abundance. Data are plotted in aggregate (all data) and stratified by 
composition on the last day of menses. Samples that were nAB became dominant by the last day of menses were 
considered sensitive (middle) and those that remained Lactobacillus spp. dominant were considered resilient (right). 
(B) Mean and ± 95% confidence interval of nAB, Li, and oLB relative abundance for the HMP cohort data five days 
before menses, four representative time points during menses, and five days after menses. Data are plotted by 
aggregate and response types as described in panel A.  (C) Volcano plot comparing parameter differences between 
the sensitive (blue) and resilient (gold) response types from the model simulation. (D) Comparison of clinical versus 
model predictions for the frequency of menses-sensitive samples. (E-H) Corresponding analysis for the Li 
dominated states (E) Model simulations in aggregate and stratified by response type (F) Clinical observations in 
aggregate and stratified by response type. (G) Volcano plot of parameters that differ between response types. (H) 
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Comparison of clinical versus model predictions for the frequency of menses-sensitive samples. Statistical 
comparisons of frequency were made using χ2-tests. The magnitude of menses perturbation in this figure was -200% 
kgrow-oLB/kgrow-Li and +100% αoLB→nAB/αoLi→nAB. 

 

To identify microbial characteristics driving the differences in response to, multiple 

Mann-Whitney Rank Sum tests were completed to compare parameters associated with sensitive 

versus resilient menses response groups (Figure 3.4.4B). Drivers of sensitivity were the growth 

rate of the nAB species (kgrow-nAB) and the strength of oLB and Li inhibition of the nAB species 

(αoLB→nAB αLi→nAB). In contrast, the interaction of the nAB species on oLB (αnAB→oLB) was 

associated with resilience and stability. This parameter is an understudied interaction in vaginal 

communities as most research focuses on the inhibitory properties of oLB on nAB species when 

assessing probiotics and vaginal ecology [55]. Menses data from the HMP cohort was 

categorized by equilibrium behavior subtype and visualized in a comparable manner to the 

simulations, demonstrating similar trends in composition fluctuations due to menses (Figure 

3.4.4C). Evaluation of the frequency of communities switched to nAB dominance after menses 

was comparable between the model predicted and clinically observed frequency (Figure 3.4.4D, 

33.0% versus 34.4%, P =0.8694). This analysis was repeated for the Li-dominated equilibrium 

states (1SS Li dominated and 2SS Li dominated/ nAB dominated). Like the oLB states, on 

average Li abundance underwent transient composition shifts over time (Figure 3.4.4E, left). Of 

the simulated samples, 31.4% underwent a switch to nAB dominance as evaluated on the last day 

of menses (day 0, sensitive group, Figure 3.4.4E, middle) and 21.7% underwent sustained 

switches to nAB dominance (day 30). The remaining 68.6% of samples did not undergo a switch 

to nAB dominance at the last day of menses (resilient group, Figure 3.4.4E, right). Comparison 

of parameter value differences by volcano plot implicated the importance of Li on nAB (αLi→nAB) 

and Li on oLB (αLi→oLB) with the response groups, highlighting the need to better understand the 
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relationship of Li with facilitating or inhibiting vaginal microbiota associated with health and BV 

states (Figure 3.4.4F). Clinical data for the Li states was visualized by the overall average 

abundances (Figure 3.4.4G, left), the subset of sensitive samples (middle) and the subset of 

resilient samples (right). Evaluation of the frequency of communities switched to nAB 

dominance after menses was comparable between the model predicted and clinically observed 

frequency (Figure 3.4.4H, 31.4% versus 43.8%, P =0.1555). Overall, this assessment supports 

the use of this modeling framework to predict response types to menses and to links microbial 

parameters that could be potential targets to promote stability of optimal composition.  

3.4.4 BV clearance responses after antimicrobial therapy are associated with equilibrium 

behavior subtype 

 Antimicrobial therapies to treat bacterial vaginosis exhibit high rates of treatment failure, 

particularly recurrence [79]. To explore factors that can contribute to treatment failure, a 

bifurcation analysis and simulated course of antibiotics were completed for equilibrium behavior 

subtypes that can exhibit nAB dominance (1SS nAB dominated, 2SS nAB dominated/oLB 

dominated, 2SS nAB dominated/Li dominated). Like the menses analysis, the in silico HMP 

population was used to replicate expected frequencies of each equilibrium behavior subtype. The 

Figure 3.4.5 Bifurcation analysis to explore the impact of antibiotics on nAB dominated communities.   

One-dimensional bifurcation analysis altering kgrow-nAB to decrease to negative (death rates) to model antibiotic 
therapy. Colors indicate the equilibrium behavior subtype, and the y-axis is the percent of samples at each given 
value of kgrow-nAB perturbation for (A) 1SS nAB dominated subtypes (B) 2SS nAB dominated/oLB dominated 
subtypes (C) 2SS nAB dominated/oLB dominated subtypes.   
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bifurcation analysis, which explore sustained alterations in the inhibition magnitude of nAB 

growth (kgrow-nAB) demonstrated that the 1SS nAB dominated communities required stronger 

inhibition to reach Lactobacillus spp. dominated equilibrium behavior subtypes (Figure 3.4.5A), 

whereas the 2SS nAB dominated/oLB dominated and 2SS nAB dominated/Li dominated 

communities switched to 1SS oLB dominated or 1SS Li dominated communities in greater than 

50% of samples by the lowest decay rate reported in Mayer et al. 2015 (0.95 d-1; Table 3.7.4; 

Figure 3.4.5B,C). 

Another challenge to understanding treatment failure arises from the temporal differences 

in BV clearance patterns. Individuals can exhibit no clearance of nAB during therapy (BV 

positive at therapy cessation and one month later), temporary clearance (BV negative at therapy 

Figure 3.4.6 Predicted and clinically observed antibiotic response types.  

(A) Model predicted antibiotic response types. Each plot depicts the mean and ± 95% confidence interval for the 
relative abundance of nAB, Li, and oLB before antibiotic therapy, during antibiotic therapy (green), and the 
following month after therapy. The four plots represent trends observed in each response type (left to right): No 
response (no shift to oLB or Li dominance), temporary response (recurrence, initial oLB/Li dominance by last day 
of treatment, but returns to nAB dominance by 1 month), sustained response (cured, oLB/Li dominance at last day 
of treatment and 1 month later), and delayed response (nAB dominance at last day of treatment, oLB/Li dominance 
by 1 month). Below each plot is a breakdown of the percentage of equilibrium behaviors associated with each 
response type. (B) Comparison of model frequencies to the CONRAD BV cohort described in Gustin et al. 2022 (N 
= 28, χ2-tests). (C) Volcano plot exploring the parameter differences of model predicted treatment success group 
(sustained and delayed response) versus the treatment failure group (no response and recurrent response) samples 
using multiple Wilcoxon rank sum tests with FDR-adjusted p-values. 
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cessation, BV positive at 1 month), delayed clearance (BV positive at therapy cessation, BV 

negative at 1 month), or sustained clearance (BV negative at therapy succession and 1 month 

post [220]). To understand the complexities that microbial characteristics can contribute to these 

variable response types, a 7-day course of antibiotic was simulated by changing the growth rate 

of nAB (kgrow-nAB) to a decay rate. The decay rate was determined from clinical measurements of 

BV-associated bacteria abundance after a 5-day course of metronidazole gel (Table 3.7.4, [221]). 

Simulations were assessed across three equilibrium behavior subtypes associated with BV, the 

mono-stable subpopulation (1SS nAB dominated), and two types of multi-stable subpopulations 

(2SS nAB dominated/Li dominated and 2SS nAB dominated/oLB dominated) at frequencies 

defined by the HMP cohort. Simulation results recapitulated all four clearance types reported for 

bacterial vaginosis, with 13.0% of samples exhibited no shift to oLB/Li dominance (no 

clearance), 47.7% of samples exhibiting a temporary shift to oLB/Li dominance (BV recurrence, 

temporary clearance), 37.9% exhibiting a sustained shift to oLB/Li dominance through 1 month 

post therapy (cured, sustained clearance), and 1.5% exhibiting no composition shift by the end of 

treatment, but oLB/Li dominance 1 month post (delayed clearance, Figure 3.4.6A). These results 

agreed well with a cohort of 28 women reported by Gustin et al. 2022 (BV CONRAD cohort), 

which reported 18% no clearance, 39% temporary clearance, 36% sustained clearance, and 7% 

delayed clearance (P = 0.454, P = 0.385, P = 0.818, P =0.0257, respectively with model 

predictions; Figure 3.4.6B). Using the model to gain insight into microbial parameters that may 

drive differences in therapy success, model parameters in simulated samples that underwent 

successful treatment vs failed treatment by 1 month were evaluated with multiple Wilcoxon 

Rank Sum tests and visualized on a volcano plot (Figure 3.4.6C). The main drivers that 

differentiated response types were the pairwise interactions between nAB and Li (αLi→nAB, 
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αnAB→Li), supporting the importance for better characterizing the relationship between Li and 

different species or strains of nAB. Notably, certain response types were associated with 

equilibrium behavior subtypes, particularly the transient BV clearance group suggesting 

recurrent BV may be driven by inherent microbial community stability to perturbations (Figure 

3.4.6A). 

3.4.5 Combinatorial therapies and modified treatment duration demonstrate alternative 

strategies to treat BV 

To demonstrate how this framework could benefit the development of new BV therapies, we 

assessed how the combination of an antibiotic and prebiotic would impact treatment efficacy and 

the relationship between dose and treatment duration. For the combination prebiotic (increase in 

Figure 3.4.7 Simulated antibiotic regimens.  

(A) Combination antibiotic (kgrow-nAB) and prebiotic (kgrow-oLB) across mono- and multi-stable subtypes. The 
percentage of parameter sets that underwent successful treatment 30 days after the regimen is displayed in the 
heatmap. (B) Alterations of antibiotic dose (kgrow-nAB) and duration. The percentage of parameter sets that underwent 
successful treatment 30 days after the regimen is displayed in the heatmap. 
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kgrow-oLB) and antibiotic (decrease in kgrow-nAB), forty-nine combinations of doses were tested 

ranging from no change to a 2.64 d-1 increase or decrease was simulated (Figure 3.4.7A). As 

observed previously, the 1SS nAB dominated subtype had the lowest rates of successful 

treatment (decreased nAB relative abundance to less than 50% at day 30 post treatment; 

maximally 24.2%) compared to the multi-stable subpopulations, which generally had higher 

success rates across all combinations of therapies (maximally 94.7% and 88.9% for the 2SS nAB 

dominated/oLB dominated and 2SS nAB dominated/Li dominated, respectively). Antibiotic 

impact on nAB growth rates was more important than prebiotic impact on oLB growth rates. 

Additionally, the maximum dose of only antibiotic had significantly higher success rates across 

the 1SS nAB dominated, 2SS nAB dominated/oLB dominated and 2SS nAB dominated/Li 

dominated subtypes compared to the maximum dose of only prebiotic (P = 0.0091, P = 

1.175x10-5, P = 3.50x10-9). Similar trends were observed across the equilibrium subpopulations 

for the dose-duration analyses where the 1SS nAB dominated had lower success rates 

(maximally 23.3%) compared to the 2SS nAB dominated/oLB dominated and the 2SS nAB 

dominated/Li dominated (maximally 89.5% and 98.3%, Figure 3.4.7B). Long-term antibiotic 

therapies (60 days) had similar efficacy in clearing BV at one month as the maximum dose 

combination of prebiotic and antibiotic across the three groups (1SS nAB dominated group: 

23.3% vs 24.2%, P = 0.6389; 2SS nAB dominated/oLB dominated: 89.5% vs 94.7%, P = 0.0813; 

and 2SS nAB dominated/Li dominated: 98.3% vs 88.9%, P 0.0511).  Overall, these results 

demonstrate that the model can be used to assess trade-offs between dose, duration, and the 

addition of new therapeutic strategies such as prebiotics. 
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3.5 Discussion 

Here we show how linking ODE model equilibrium behavior with clinical VMB 

equilibrium behavior can give important insights into clinical VMB stability and dynamics in 

terms of microbial growth characteristics and interactions between species that are variable 

across women. This methodology overcomes challenges associated with the application of 

gLVMs to in vivo data, by using a top-down approach of matching parameter sets to observed 

equilibrium behaviors, rather than depending on direct parameter estimation from noisy, 

longitudinal data. From this methodology, the model predicted similar frequencies of mono- and 

multi-stable subpopulations as observed in a clinical cohort, which highlighted how clinically 

women exist in three main states: (1) Mono-stable optimal (1SS oLB dominated, 1SS Li 

dominated subpopulations); (2) Mono-stable non-optimal (1SS nAB dominated subpopulation) 

and (3) Multi-stable (many combinations). The multi-stable subpopulations, which comprised 

about a fifth of women, were observed across different combinations of CSTs, and were mainly 

associated with the 2SS Li dominated/nAB dominated subpopulation. We further demonstrated 

how mono-stable vs multi-stable subpopulations could help explain variable responses to menses 

and suboptimal treatment outcomes for BV. Moreover, the model helped identify microbial 

factors that dictated differences between subpopulations which could provide potential targets 

for new strategies to manage recurrent BV, pointing to the importance of nAB and L. iners 

interactions with oLB (L. crispatus, L. jensenii, L. gasseri). Overall, the results suggest modeling 

the VMB as an ecosystem with set equilibrium behaviors based on bacterial growth 

characteristics and interactions can improve understanding of VMB dynamics and help identify 

target microbial characteristics to assess at a mechanistic level (such as by characterizing 

metabolic drivers behind these terms) to treat or prevent BV. 
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Our work highlighted how ecological interactions could explain variable responses to 

menses and mainly pointed to the strength of Lactobacillus spp. inhibition of non-optimal 

anaerobic bacteria (nAB), suggesting supplementation of that interaction with treatments such as 

lactic acid supplements could promote stability in healthy individuals [98]. Notably, the model 

predicted that most women would undergo little to no shifts due to menses with even multi-

stable simulated individuals switching in less than a quarter of scenarios. This result could be due 

to limitations in knowledge on how and to what degree menses impacts microbial parameters 

(growth characteristics or interaction terms). In comparison to the antibiotic simulations, the 

simulated impact of the menses parameters was small in absolute change, maintaining net 

positive growth rates for the Lactobacillus spp. and decreased interaction strengths by 50%, 

whereas the antibiotic simulations led to net negative growth rates for the nAB likely 

contributing to increased importance of multi-stability for antibiotic regimens [221]. 

 A major motivation of this study was to determine if it is possible for the VMB to exist in 

mono-stable or multi-stable equilibrium states was to provide insight into responses to antibiotic 

therapy. The model and clinical observations support that many women exist in a mono-stable 

nAB dominated state, which suggests that most women with BV will have difficulty successfully 

resolving the condition after a 5-7 day regimen of antibiotics, even if the BV-associated bacteria 

(nAB) are sensitive to the antibiotic. This prediction was comparable to two clinical cohorts were 

assessed and aligns with the high rates of recurrence reported in the literature which range from 

15-52% at 4 weeks or more after therapy [82]. In some women with a history of recurrent BV, 

alternative dosing regimens are recommended such as 750 mg metronidazole twice weekly for 3 

months, but typically the benefits observed during treatment do not continue if the dosing is 

stopped [222]. Other regimens and new formulations have also been tested and have shown to 
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prolong time to BV recurrence, but no one method appears to be completely effective [223–225]. 

Overall, the implication of the VMB as a primarily mono-stable system suggests that long-term 

treatments (antibiotics, probiotics, prebiotics, intravaginal gels with active agents that inhibit 

BV-associated bacterial growth) would be more effective for those with recurrent BV, as these 

systems require permanent alterations that impact microbial parameters such as growth rates or 

interaction terms to re-orient the system to a new state. Candidate parameters implicated by our 

model included inhibition of the growth of the nAB (kgrow-nAB), and an understudied 

characteristic, the inhibition strength of nAB on oLB community members (αnAB→oLB).  The 

former would relate to traditional inhibition of BV-associated bacteria growth rates with long-

term antibiotic treatments or other therapies inhibiting BV-associated bacteria growth (such as 

lactic acid containing products and boric acid) and the latter points to potential alternative 

strategies to re-condition the cervicovaginal microenvironment by decreasing the ability of nAB 

to outcompete oLB spp., which is likely mediated by metabolic phenotypes that are still poorly 

understood [47,48,57,226]. Additionally, the response of multi-stable subpopulations to 

antibiotic therapy indicated the importance of L. iners, both in its interaction with the oLB and 

nAB, suggesting competition between L. iners and oLB as well as cooperation with nAB could 

promote treatment failure. This duality is interesting, as reports indicate the L. iners phenotype 

can vary dependent on environmental and community contexts and may be a fulcrum point that 

leads to dramatic shifts in community composition [227]. L. iners is also of interest as a target 

during BV treatment, with recent publications suggesting elimination of L. iners promotes stable 

transition to more optimal Lactobacillus spp. dominance [60,61]. 

 Lastly, the model was used to explore alternative regimens for BV therapy, including 

combinatorial therapies and alterations to antibiotic dose and duration. These simulations 
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highlight how the model may be applied to identify treatments that are most efficacious across a 

population with unknown stability status or to identify personalized regimens given a known 

stability status. A known stability status could be determined from a patient’s history, which 

could be as simple as known recurrent episodes of BV (1SS nAB dominated subpopulation) to 

more nuanced identification of stability behavior which is becoming more accessible with 

companies tailored to personalized VMB characterization like Juno Bio and Evvy. Future 

developments of the model can also begin to characterize efficacy of probiotic therapies and the 

how the timing or probiotic therapy relative to the antibiotic regimen can impact predicted 

treatment efficacy[80]. Notably, from the context of our results and ecological theory, it will be 

important to characterize not only how the probiotic interacts with target, BV-associate bacteria 

(nAB), but also how a woman’s existing vaginal microbiota interacts with the probiotic, as 

communities can commonly exclude newly introduced species (competitive exclusion) 

[228,229]. While the latter is likely intractable clinically as women can vary significantly in 

terms of composition, species, and strains, it could be simulated to identify key characteristics 

that make a probiotic most likely to succeed across a multitude of different VMBs.  

While developing a personalized predictive model of VMB dynamics may be 

challenging, the generation of representative models that recapitulate clinically observed 

equilibrium subpopulations could provide insights for strategies to mitigate BV. By defining 

appropriate physiological ranges that capture interpersonal and intrapersonal variability, these 

models could be used to help develop therapies that are either effective in specific 

subpopulations (mono-stable vs multi-stable) or are effective more universally across 

heterogenous populations. Future studies are warranted to better define parameters that dictate 

the growth and interactions between microbial species in the vagina, as well as how host-



 91 

microbiome interactions may contribute to system dynamics (i.e., role of host-provided nutrients 

such as mucus). Cervicovaginal fluid composition, which is impacted by host-hormone and 

immune responses, likely dictates substrates required for microbial growth and ability to cross-

feed or produce compounds that regulate the growth of other microbial species [47,230]. 

Additionally, interactions between BV-associated bacteria (nAB) or L. iners with vaginal 

epithelial cells could impact microbiome dynamics, as both produce cytolysins that lyse VECs 

increasing available nutrients, such as glycogen, which is preferentially metabolized by select 

vaginal species [48,57,63,70]. Models with increased resolution into these interactions through 

microbial metabolism of preferred carbon sources could help identify mechanisms of microbial 

shifts at the molecular level and help define new strategies to regulate the VMB. 

3.6 Methods 

3.6.1 Model Construction 

A generalized Lotka-Volterra model (gLVM) with three equations was used as the 

ordinary differential equation-based model. gLVM include the growth rate of each species, the 

self-interaction term (contributes to carrying capacity) and inter-species interaction terms. 

Growth rates were always assumed to be positive when the system is not under any perturbation 

like menses of antibiotic therapy, self-interaction terms are assumed to always be negative and 

the inter-species interaction terms can be either positive or negative. For the three species model 

(oLB, Li or nAB), there are seven possible non-zero steady states. These seven states were 

related to clinical data using a nearest centroid classifier of the predicted relative abundances. 

The centroids were determined from VALENCIA (Table 3.7.2) [26]. All model simulations were 

completed in MATLAB 2020b and are published at: https://doi.org/10.5281/zenodo.7843698. 
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𝑑[𝑛𝐴𝐵]
𝑑𝑡 = 𝑘𝑔𝑟𝑜𝑤−𝑛𝐴𝐵[𝑛𝐴𝐵] + 𝛼𝑛𝐴𝐵→𝑛𝐴𝐵[𝑛𝐴𝐵][𝑛𝐴𝐵] + 𝛼𝐿𝑖→𝑛𝐴𝐵[𝑛𝐴𝐵][𝐿𝑖]

+ 𝛼𝑜𝐿𝐵→𝑛𝐴𝐵[𝑛𝐴𝐵][𝑜𝐿𝐵] 

𝑑[𝐿𝑖]
𝑑𝑡 = 𝑘𝑔𝑟𝑜𝑤−𝐿𝑖[𝐿𝑖] + 𝛼𝐿𝑖→𝐿𝑖[𝐿𝑖][𝐿𝑖] + 𝛼𝑛𝐴𝐵→𝐿𝑖[𝐿𝑖][𝑛𝐴𝐵] + 𝛼𝑜𝐿𝐵→𝐿𝑖[𝐿𝑖][𝑜𝐿𝐵] 

𝑑[𝑜𝐿𝐵]
𝑑𝑡 = 𝑘𝑔𝑟𝑜𝑤−𝑜𝐿𝐵[𝑜𝐿𝐵] + 𝛼𝑜𝐿𝐵→𝑜𝐿𝐵[𝑜𝐿𝐵][𝑜𝐿𝐵] + 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵[𝑜𝐿𝐵][𝑛𝐴𝐵]

+ 𝛼𝐿𝑖→𝑜𝐿𝐵[𝑜𝐿𝐵][𝐿𝑖] 

3.6.2 Parameter Selection 

Parameter values were selected based on experimental and empirical observations (S1 

Table). Since many of these parameters are unknown or expected to be variable, parameter value 

ranges were used throughout the manuscript. Often these parameter ranges were either based on 

calculations from digitized data as reported in Lee et al. (2020) or on assumptions of 

directionality (positive or negative interaction) from calculations or empirical observation. As the 

relative magnitude of inter-species interaction term relative to self-interaction term provides a 

normalized metric of interaction strength, maximum and minimum inter-species interaction 

terms were matched with experimental observations. By selecting a minimal self-interaction term 

of -0.04 time-1density-1 and a maximal inter-species interaction term of ±0.12 time-1density-1, a 

maximal ratio of ±30x inter-/self-interactions was observed which was matched to maximal 

inter-/self-interactions strengths estimated from in vitro observations of various Lactobacillus 

strains co-cultured with G. vaginalis or Prevotella bivia providing a maximal absolute ratio of 

40x (Figure 3.7.1). In vivo estimated gLV parameters were on the same order of magnitude of 

maximal inter/self-interaction ratio of 11x. In vitro and in vivo time scales are reported to be 
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different, so in vitro parameter values are in terms of hours and in vivo parameters are in terms of 

days where relative differences between parameters are maintained [159]. 

3.6.3 Base in silico Population 

Sensitivity analyses were completed on a global scale and in a two-dimensional global 

bifurcation analysis. For the global sensitivity analysis, Latin Hypercube Sampling (LHS) was 

used to generate parameter sets that have biological feasibility. Briefly, LHS is a stratified 

sampling method that evenly samples across defined parameter distributions. The parameter 

distributions used in this publication were defined from uniform distributions with minimum and 

maximum values reported in Table 3.7.1. Growth rates and inter-species interaction terms we set 

to range 10-fold based on calculate values from in vitro studies and ranged from 0.1 – 1.00 time-1 

and the inter-species interaction terms ranged from -0.004 to -0.04 density-1time-1 (See S1 

Table). Interspecies interaction terms ranged from -0.12 – 0.12 density-1time-1, except in the case 

of oLB on nAB, as many reports suggest this interaction is only negative (-0.12 – 0 density-1time-

1). Then, each of the parameter sets (N = 5,000) was analytically assessed for steady state 

stability using local stability analysis, which determines which of the seven non-zero states are 

stable (Supplementary Text).  

3.6.4 Bifurcation Analyses 

For the two-dimensional bifurcation analysis, a base parameter set with known steady-

state behavior was selected and two groups of parameters (growth rates versus inter-species 

interaction terms) were varied from that starting point over the combination of 50x50 parameter 

combinations. For each of the 2,500 parameter combinations the stability of the steady states was 

evaluated using local stability analyses. This process was repeated for all LHS parameter sets 
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that had the same equilibrium behavior. For example, for all LHS sets that were 1SS oLB 

dominated 2,500 parameter combinations were calculated for each and the most frequently 

observed equilibrium behavior at each point was plotted.  

3.6.5 Perturbation Analyses 

Perturbation analyses were completed to simulate menses and antibiotic therapy using the 

in silico HMP cohort with certain equilibrium behaviors. For the menses analyses, the 1SS oLB 

dominated, 2SS oLB dominated/nAB dominated, 1SS Li dominated, 2SS Li dominated/nAB 

dominated were assessed with a perturbation that decreased the growth rates for Li and oLB 

(kgrow-Li and kgrow-oLB) as well as the interaction terms for oLB/Li on nAB (αoLB→nAB and αLi→nAB) 

over four set menses indices where “p” indicates the original parameter value (control/no 

change: kgrow-Li and kgrow-oLB  = p + 0.0 x p, αoLB→nAB and αLi→nAB = p + 0.0 x p; light: kgrow-Li and 

kgrow-oLB  p – 0.5 x p , αoLB→nAB and αLi→nAB = p + 0.5 x p; moderate: kgrow-Li and kgrow-oLB  p – 1.0 

x p , αoLB→nAB and αLi→nAB = p + 1.0 x p; and strong: kgrow-Li and kgrow-oLB  p – 2.0 x p , αoLB→nAB 

and αLi→nAB = p + 1.0 x p). The average trajectory ±95% confidence interval of all the parameter 

sets exhibiting sensitivity or resilience to the menses perturbation were plotted and the number of 

simulated samples that had switched to a BV state (nAB composition greater than 50%) at day 0 

and 30 after menses completed was reported. Menses sensitive individuals were defined as 

shifting to nAB dominance evaluated on the last day of the simulated menses. Parameters 

differentiated sensitive versus resilient groups were compared using multiple Mann-Whitney 

Rank Sum tests with FDR-adjusted p-values. Frequencies of menses sensitive individuals were 

compared with the strongest menses index to the clinical data using χ2-tests. 

For the antibiotic simulations, the simulated samples analyzed were in the 1SS nAB 

dominated, 2SS nAB dominated/Li dominated and the 2SS nAB dominated/oLB dominated 
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subpopulations, with the perturbation modeled off a decrease in nAB growth rate (kgrow-nAB 

minus 2.64 d-1) calculated from digitized data in reporting shifts in BV associated bacteria (nAB) 

following antibiotic treatment clinically (Table 3.7.4) [221]. The average trajectory ±95% 

confidence interval of all the parameter sets exhibiting sensitivity or resilience to the antibiotic 

perturbation were plotted and the number of simulated samples that had switched to a 

Lactobacillus spp. dominated state (nAB composition less than 50%) at day 0 and 30 after the 

antibiotic regimen was completed was reported. The frequency of four BV clearance profiles was 

analyzed and compared to reported frequencies in the CONRAD BV cohort based on the day 0 

and day 30 post-antibiotic composition. Parameters differentiated sensitive versus resilient 

groups were compared using multiple Mann-Whitney Rank Sum tests with FDR-adjusted p-

values. 

3.6.6 Clinical Datasets 

The University of Maryland Baltimore, Human Microbiome Project (UMB-HMP) cohort 

data was previously published (Ravel et al., 2013 [115]) and all data provided was de-identified 

to this study. The original study was an observational prospective study, where treatment 

information was recorded daily by the participants and during a clinical exam at week 5 and 

week 10 for 135 nonpregnant women of reproductive age. Self-identified ethnicities of the 101 

patients that met inclusion criteria (greater than 10 samples) were Black/African descent (60%), 

White/Caucasian (34%), Hispanic/Latina (5.0%), multi-racial (1%). Within this study, 

metronidazole treatment was provided as standard of care, as recommended by the CDC 

(Metronidazole 500 mg orally twice a day for 7 days) [82,207]. The original study protocol was 

approved by the Institutional Review Board of the University of Alabama at Birmingham and the 

University of Maryland School of Medicine. Written informed consent was appropriately 
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obtained from all participants, who also provided consent for storage and use in future research 

studies related to women’s health. Patients self-collected cervicovaginal swabs for 10 weeks. 

Vaginal microbiota data was generated by sequencing the V3-V4 regions of the 16S rRNA gene 

and is available in dbGAP under BioProject PRJNA208535. Menses time series data were 

analyzed by extracting composition data for the five days prior and five days post menses, for all 

occurrences of menstrual bleeding longer than 3 days. 

The Gajer cohort was previously published and data were downloaded from the 

supplementary files [22]. Briefly, the study collected longitudinal samples, twice weekly for 16 

weeks in healthy reproductive-age women (n = 32) and quantified bacterial diversity using 

pyrosequencing of V1-V2 regions of 16S rRNA genes. Ethnicities of the 32 women included 

individuals that self-identified as White (41%), Black (50%), Hispanic (6%), or other (3%). 

The CONRAD BV study has previously been described [78,220]. Patients with Nugent 

score of 4 or higher were screened across three visits, pre-treatment (visit 1), 7-10 days post-

treatment (visit 2), and 28-32 days post-treatment (visit 3). Self-reported ethnicities in the 

original study included Hispanic White (3%), Hispanic Black (3%), Non-Hispanic Black (79%), 

Non-Hispanic White (6%), and mixed race (9%).  Response types were characterized by patterns 

observed across the three visits, namely whether individuals improved to a Lactobacillus spp. 

dominated CST. Of the 28 patients, 25% failed to clear BV (no clearance), 35.7% exhibited 

transient clearance, 7.1% exhibited clearance at the final visit (delayed clearance), and 32.1% 

exhibited sustained clearance. These frequencies were compared with model predicted BV 

clearance profiles using Chi-square tests. 

The UMB-HMP and Gajer cohort data were assessed for multi-stability by analyzing 

patients who had greater than 10 sampled time points (HMP, N = 101; Gajer, N = 32). Each time 
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point was converted to a CST type using the nearest centroid classifier described above (required 

conversion of relative abundance data to oLB, Li and nAB dominated groups). Using the 

classified CSTs at each time point, a matrix of state transitions was generated, which describes 

the frequency fluctuations in CST states, with individuals who are stable staying in “within” state 

CSTs. Transition matrices were then used to identify mono-stable vs multi-stable individuals 

using a nearest centroid classifier, where centroids were based at 100% within state transitions 

(mono-stable) and 50%/50% of pairwise CSTs (bi-stable). 

3.6.7 Code and Data Availability 

The code and data used to generate the model simulations are published 

(https://doi.org/10.5281/zenodo.7843698). 

  

https://doi.org/10.5281/zenodo.7843698
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3.7 Appendix 

3.7.1 Supplementary Figures 

 

Figure 3.7.1 Analysis of Inter-species/Self-interaction Parameter Ranges.  

The maximum magnitude of parameter ranges was set based on relative estimation of inter-species interaction terms 
to intra-species interaction terms, reaching ±30x using the selected parameter ranges in S1 Table (top left 
histogram). These ranges are on the same order of magnitude as gLV parameters estimated from in vivo gut 
microbiome experiments (Stein et al., 2013[159]; top right histogram). Interaction terms calculated from Atassi et 
al. 2006[55] in vitro co-cultures observed high estimated ratios of inter/self-interaction terms, of up to 46x. 
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Figure 3.7.2 Determination of Clinical Equilibrium Behavior Subtypes.  

(A-B) Example time series CST classifications from two patients in the HMP cohort and their respective state 
transition frequencies. State transition matrices display the frequency of switches across a time step, where 
combinations across the diagonal indicate the current time step and the next time step were in the same 
compositional state. (A) Example of a 1SS oLB dominated equilibrium behavior. (B) Example of 2SS nAB or oLB 
dominated equilibrium behavior. (C-D) Classification of each patient to an equilibrium behavior based on the 
frequency at which the patient remained within a transition state over each time step for (C) the HMP cohort (N = 
101) and (D) the Gajer et al. cohort (N = 32). 
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Figure 3.7.3 Generating matched in silico populations to clinical data.  

(A) Workflow to create base population parameter sets from empirical observations for parameter ranges. (B) 
Creation of a reference population for each equilibrium behavior subtype. For example, the parameter sets generated 
in the base population that had 1SS oLB dominated equilibrium behavior were used to create a new probability 
distribution for each parameter to sample with Latin Hypercube Sampling. For each equilibrium behavior, 5000 
parameter sets were selected from the equilibrium behavior specific probability distribution to create a reference 
population for each equilibrium type shown in panel (C). Lastly, parameter sets were randomly sampled at 
frequencies defined by clinical observations to create an in silico cohort tailored to a specific clinical cohort shown 
in (D). 
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Figure 3.7.4 Menses simulations at varying degrees of simulated strength for oLB dominated states.  

In (A-D) plots indicate the average of all simulated samples (left), the average for a subset of samples that undergo a 
composition shift (middle), and the average for a subset that does not undergo a composition shift (right) and a 
volcano plot representing parameters that significantly differed in the sensitive and resilient samples. (A) The impact 
of no parameter change on samples used in the menses analysis (control). (B) The impact of a -0.5x fold addition to 
kgrow-Li and kgrow-oLB with a +0.5x folder addition to αLi→nAB and αoLB→nAB (light perturbation). (C) The impact of a -1x 
fold addition to kgrow-Li and kgrow-oLB with a +1x folder addition to αLi→nAB and αoLB→nAB (moderate perturbation). (D) 
The impact of a -2x fold addition to kgrow-Li and kgrow-oLB with a +1x folder addition to αLi→nAB and αoLB→nAB (strong 
perturbation). (E) Clinical observations for all samples (left), sensitive samples (middle) and resilient samples 
(right). (F) Statistical comparison of clinically observed sensitive sample frequency with model predicted 
frequencies at varying degrees of menses strength described in panels B-D. Statistical comparisons were made using 
χ2-tests. 
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Figure 3.7.5 Menses simulations at varying degrees of simulated strength for Li dominated states.  

In (A-D) plots indicate the average of all simulated samples (left), the average for a subset of samples that undergo a 
composition shift (middle), and the average for a subset that does not undergo a composition shift (right) and a 
volcano plot representing parameters that significantly differed in the sensitive and resilient samples. (A) The impact 
of no parameter changes on samples used in the menses analysis (control). (B) The impact of a -0.5x fold addition to 
kgrow-Li and kgrow-oLB with a +0.5x folder addition to αLi→nAB and αoLB→nAB (light perturbation). (C) The impact of a -1x 
fold addition to kgrow-Li and kgrow-oLB with a +1x folder addition to αLi→nAB and αoLB→nAB (moderate perturbation). (D) 
The impact of a -2x fold addition to kgrow-Li and kgrow-oLB with a +1x folder addition to αLi→nAB and αoLB→nAB (strong 
perturbation). (E) Clinical observations for all samples (left), sensitive samples (middle) and resilient samples 
(right). (F) Statistical comparison of clinically observed sensitive sample frequency with model predicted 
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frequencies at varying degrees of menses strength described in panels B-D. Statistical comparisons were made using 
χ2-tests. 

3.7.2 Supplementary Tables 

Table 3.7.1 Description of LHS parameter ranges.  

Note the determination of inter-species interaction terms was based on empirical observation and hypothesis on 
interaction term strength and directionality. More information is in Figure 3.7.1. 

Parameter Value Explanation References 

kgrow-nAB (hr-1) 0.1 to 
1.00 

Growth rate calculated in previous publication from 
growth curves (Lee et al., 2020)[20] and assessed from 
digitized growth curves from literature such as Atassi et 
al., 2019[55] and Anukam and Reid (2008)[187]. 

[20,56,187] 

kgrow-Li (hr-1) 0.1 to 
1.00 

Growth rate calculated in previous publication from 
growth curves (Lee et al., 2020)[20] and from doubling 
times (Borgogna et al., 2021)[75]. 

[20,75] 

kgrow-oLB (hr-1) 0.1 to 
1.00 

Growth rate calculated in previous publication from 
growth curves (Lee et al., 2020) and from digitized data 
in Chetwin et al., 2019[101] and Juarez-Tomas (2003) 
[204] as well as Borgogna et al (2021)[75]. 

[20,75,101,230] 

αnAB→ nAB, αLi → Li,  
αoLB → oLB 
(hr-1cell density-1) 

-0.004 
to  
-0.04 

Assumed similar carrying capacities are possible across 
species and a 10-fold variability. This value and the 
growth rate value facilitate up to 100-fold variation in 
carry capacity and clinically relative abundance can 
upwards of range 1000-fold. 

[21,22,115] 

αnAB → Li, αnAB → oLB, 
αLi → nAB, αLi → oLB, 
αoLB → Li 
(hr-1cell density-1) 

-0.12 
to  
0.12 

Assumed directionally of these parameters to be positive 
or negative dependent on the literature. Magnitude of the 
values was determined from the largest ratio of 
interaction term to self-interact term observed 
experimentally (S1 Fig). The fold-ratio is on the same 
order of magnitude as clinically estimated gLV terms 
(Stein et al. 2013). 

[59,159,206] 

αoLB → nAB 
(hr-1cell density-1) 

-0.12 
to  
0.00 

Assume directionality based on experimental 
observations that oLB spp. commonly inhibit non-
optimal spp. (nAB), such as in Atassi et al. (2006). 

[55,206] 

 

Table 3.7.2 Model CST centroids. 

 Relative Abundance 
 

nAB Li oLB 

[nAB dominated] CST-IV 0.912 0.0592 0.0289 

[Li dominated] CST-III 0.146 0.759 0.0946 

[oLB dominated] CST -I/II/V 0.153 0.0952 0.752 
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Table 3.7.3 Examples of how external factors can be simulated in the modeling framework. 

External Factor Methodology Parameters Impacted 
BV Therapy 
(Metronidazole or 
Clindamycin) 

1. Identified metronidazole impact on nAB is 
in vivo, from reported estimates on nAB 
population decay rates across multiple species 
with absolute abundance measurements [221] 

1. Population growth rate of nAB 
becomes negative (death rate), 
metronidazole is bactericidal  

Menses 1. Identified how menses impact vaginal 
microbial species (impact of increased 
biogenic amines associated with CST -IV and 
menses)  

1. Biogenic amines are associated 
with decreased growth rates L. 
crispatus, L. gasseri, L. jensenii, 
and L. iners as well as decreased 
D/L-lactic acid production [75] 

Sexual Behavior / 
Partner Microbiome 

1. Model transfer of microbial species by 
“spiking in” microbial species into pre-
existing in silico patient 
2. Model the impact of increased pH 
associated with sexual activity (semen, 
lubricant, etc.) 

1. Alter abundance of model 
species at the frequency of sexual 
activity 
2. Increased pH could alter growth 
rates (increase growth rate of nAB 
[96,231]) and decrease the impact 
of lactic acid/bacteriocins on nAB 
[55,56,232] 

Hygienic Behavior 1. Model loss or “wash out” of microbial 
species present in the pre-existing in silico 
patient 
2. Model the impact of increased pH due to 
douching   

1. Alter abundance of model 
species at the frequency of 
douching 
2. Increased pH could alter growth 
rates (increase growth rate of nAB 
[96,231]) and decrease the impact 
of lactic acid/bacteriocins on nAB 
[55,56,232] 

Antifungal Therapy 1.  Would need to identify the impact of 
antifungals on microbial growth rates (reports 
are limited and some indicate that 
azithromycin, clotrimazole, or fluconazole 
have no substantial impact on Lactobacillus 
spp. [233,234])  

1. Model change in microbial 
parameters (currently no in vitro 
data to support which parameters 
are impacted) 

Contraceptives 1. Identify impact of contraceptive on the 
vaginal microenvironment (e.g., glycogen and 
mucus levels) 
2. Model competitive advantages gained by 
Lactobacillus spp. 

Increased glycogen is associated 
with acidification of the vaginal 
that would promote stronger 
inhibition of nAB [47,48] 

 

Table 3.7.4 Digitized decay rates of BV associated bacteria treated with intravaginal metronidazole.  

Calculated Decay Rate (d-1) 

G. vaginalis BVAB2 BVAB1 Sneathia/Lepto Megasphaera A. vaginae 

3.82 4.61 3.50 5.04 4.08 5.44 

3.12 2.15 2.26 4.18 4.08 4.81 

2.45 2.15 2.26 3.19 3.88 4.81 
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2.12 2.15 2.08 2.87 2.76 3.80 

1.84 1.88 
 

2.41 2.03 3.48 

1.72 1.69 
 

2.13 2.03 3.23 

1.40 1.66 
 

2.07 2.03 2.38 

1.33 
  

1.82 1.74 1.88 

1.33 
  

1.73 
 

1.88 

0.95 
  

1.44 
 

1.54 

 

3.7.3 Supplementary Text 

Steady-States: 

1. (0, 0, 0) 

2. ( 𝛼𝐿𝑖→𝑛𝐴𝐵𝜇𝐿𝑖 − 𝛼𝐿𝑖→𝐿𝑖𝜇𝑛𝐴𝐵
𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝛼𝐿𝑖→𝐿𝑖 − 𝛼𝑛𝐴𝐵→𝐿𝑖𝛼𝐿𝑖→𝑛𝐴𝐵

, − 𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝜇𝐿𝑖 − 𝛼𝑛𝐴𝐵→𝐿𝑖𝜇𝑛𝐴𝐵
𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝛼𝐿𝑖→𝐿𝑖 − 𝛼𝑛𝐴𝐵→𝐿𝑖𝛼𝐿𝑖→𝑛𝐴𝐵

, 0) 

3. ( 𝛼𝑜𝐿𝐵→𝑛𝐴𝐵𝜇𝑜𝐿𝐵 − 𝛼𝑜𝐿𝐵→𝑜𝐿𝐵𝜇𝑛𝐴𝐵
𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝛼𝑜𝐿𝐵→𝑜𝐿𝐵 − 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵𝛼𝑜𝐿𝐵→𝑛𝐴𝐵

, 0, 𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝜇𝑜𝐿𝐵 − 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵𝜇𝑛𝐴𝐵
𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝛼𝑜𝐿𝐵→𝑜𝐿𝐵 − 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵𝛼𝑜𝐿𝐵→𝑛𝐴𝐵

) 

4. (0, 𝛼𝑜𝐿𝐵→𝐿𝑖𝜇𝑜𝐿𝐵 − 𝛼𝑜𝐿𝐵→𝑜𝐿𝐵𝜇𝐿𝑖
𝛼𝑜𝐿𝐵→𝑜𝐿𝐵𝛼𝐿𝑖→𝐿𝑖 − 𝛼𝑜𝐿𝐵→𝐿𝑖𝛼𝐿𝑖→𝑜𝐿𝐵

,− 𝛼𝐿𝑖→𝐿𝑖𝜇𝑜𝐿𝐵 − 𝛼𝐿𝑖→𝑜𝐿𝐵𝜇𝐿𝑖
𝛼𝑜𝐿𝐵→𝑜𝐿𝐵𝛼𝐿𝑖→𝐿𝑖 − 𝛼𝑜𝐿𝐵→𝐿𝑖𝛼𝐿𝑖→𝑜𝐿𝐵

, 0) 

5. (− 𝜇𝑛𝐴𝐵
𝛼𝑛𝐴𝐵→𝑛𝐴𝐵

, 0, 0) 

6. (0,− 𝜇𝐿𝑖
𝛼𝐿𝑖→𝐿𝑖

, 0) 

7. (0, 0,− 𝜇𝑜𝐿𝐵
𝛼𝑜𝐿𝐵→𝑜𝐿𝐵

) 

8. 

(

 
 
− 𝛼𝐿𝑖→𝑛𝐴𝐵𝛼𝑜𝐿𝐵→𝐿𝑖𝜇𝑜𝐿𝐵 − 𝛼𝑛𝐴𝐵→𝐿𝑖𝛼𝑜𝐿𝐵→𝑜𝐿𝐵𝜇𝑜𝐿𝑖 + 𝛼𝐿𝑖→𝐿𝑖𝛼𝑜𝐿𝐵→𝑜𝐿𝐵𝜇𝑛𝐴𝐵 + 𝛼𝐿𝑖→𝑜𝐿𝐵𝛼𝑜𝐿𝐵→𝐿𝑖𝜇𝐿𝑖− 𝛼𝐿𝑖→𝑜𝐿𝐵𝛼𝑜𝐿𝐵→𝐿𝑖𝜇𝑛𝐴𝐵
𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝛼𝐿𝑖→𝐿𝑖𝛼𝑜𝐿𝐵→𝑜𝐿𝐵− 𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝛼𝐿𝑖→𝑜𝐿𝐵𝛼𝑜𝐿𝐵→𝐿𝑖− 𝛼𝑛𝐴𝐵→𝐿𝑖𝛼𝐿𝑖→𝑛𝐴𝐵𝛼𝑜𝐿𝐵→𝐿𝑖+ 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵𝛼𝐿𝑖→𝑛𝐴𝐵𝛼𝑜𝐿𝐵→𝐿𝑖+ 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵𝛼𝐿𝑖→𝐿𝑖𝛼𝑜𝐿𝐵→𝑛𝐴𝐵

,

− 𝛼𝐿𝑖→𝑛𝐴𝐵𝛼𝑜𝐿𝐵→𝐿𝑖𝜇𝑜𝐿𝐵 − 𝛼𝐿𝑖→𝑛𝐴𝐵𝛼𝑜𝐿𝐵→𝑜𝐿𝐵𝜇𝐿𝑖 + 𝛼𝐿𝑖→𝐿𝑖𝛼𝑜𝐿𝐵→𝑛𝐴𝐵𝜇𝑜𝐿𝐵 + 𝛼𝐿𝑖→𝐿𝑖𝛼𝑜𝐿𝐵→𝑜𝐿𝐵𝜇𝑛𝐴𝐵− 𝛼𝐿𝑖→𝑜𝐿𝐵𝛼𝑜𝐿𝐵→𝐿𝑖𝜇𝑛𝐴𝐵
𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝛼𝐿𝑖→𝐿𝑖𝛼𝑜𝐿𝐵→𝑜𝐿𝐵− 𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝛼𝐿𝑖→𝑜𝐿𝐵𝛼𝑜𝐿𝐵→𝐿𝑖− 𝛼𝑛𝐴𝐵→𝐿𝑖𝛼𝐿𝑖→𝑛𝐴𝐵𝛼𝑜𝐿𝐵→𝐿𝑖+ 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵𝛼𝐿𝑖→𝑛𝐴𝐵𝛼𝑜𝐿𝐵→𝐿𝑖+ 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵𝛼𝐿𝑖→𝐿𝑖𝛼𝑜𝐿𝐵→𝑛𝐴𝐵

  ,
𝛼𝑁𝑂→𝑁𝑂𝛼𝑜𝐿𝐵→𝐿𝑖𝜇𝑜𝐿𝐵 − 𝛼𝑁𝑂→𝑁𝑂𝛼𝑜𝐿𝐵→𝑜𝐿𝐵𝜇𝐿𝑖 + 𝛼𝑁𝑂→𝐿𝑖𝛼𝑜𝐿𝐵→𝑜𝐿𝐵𝜇𝑁𝑂 + 𝛼𝑁𝑂→𝑜𝐿𝐵𝛼𝑜𝐿𝐵→𝑁𝑂𝜇𝐿𝑖− 𝛼𝑁𝑂→𝑜𝐿𝐵𝛼𝑜𝐿𝐵→𝐿𝑖𝜇𝑁𝑂

𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝛼𝐿𝑖→𝐿𝑖𝛼𝑜𝐿𝐵→𝑜𝐿𝐵− 𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝛼𝐿𝑖→𝑜𝐿𝐵𝛼𝑜𝐿𝐵→𝐿𝑖− 𝛼𝑛𝐴𝐵→𝐿𝑖𝛼𝐿𝑖→𝑛𝐴𝐵𝛼𝑜𝐿𝐵→𝐿𝑖+ 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵𝛼𝐿𝑖→𝑛𝐴𝐵𝛼𝑜𝐿𝐵→𝐿𝑖+ 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵𝛼𝐿𝑖→𝐿𝑖𝛼𝑜𝐿𝐵→𝑛𝐴𝐵 )
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Example Stability Conditions: 

The 100% nAB state, the eigen values of the Jacobian must be less than zero. Therefore, given 

the below eigen values the effect of the existing species (nAB) on the eliminated species (Li and 

oLB) must be negative. 

𝜆1 =  𝜇𝐿𝑖 + 𝛼𝑛𝐴𝐵→𝐿𝑖[𝑛𝐴𝐵] 

𝜆2 =  𝜇𝑜𝐿𝐵 + 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵[𝑛𝐴𝐵] 

𝜆3 =  𝜇𝑁𝑂 +  2𝛼𝑛𝐴𝐵→𝑛𝐴𝐵[𝑛𝐴𝐵] 

The mixed nAB and Li state eigen values are more complicated and suggest the growth rate of 

the excluded species contributes to stability of this state, as well as at least one of the co-existing 

communities (nAB or Li) must inhibit the excluded species (oLB). The second eigen value also 

indicates the interactions between the co-existing species contribute to the stability of this state. 

𝜆1 =  𝜇𝑜𝐿𝐵 + 𝛼𝑛𝐴𝐵→𝑜𝐿𝐵[𝑛𝐴𝐵] + 𝛼𝐿𝑖→𝑜𝐿𝐵[𝐿𝑖] 

𝜆2/3 =  
𝛼𝑛𝐴𝐵→𝑛𝐴𝐵[𝑛𝐴𝐵] + 𝛼𝐿𝑖→𝐿𝑖[𝐿𝑖]

2  

±  
√𝛼𝑛𝐴𝐵→𝑛𝐴𝐵2 [𝑛𝐴𝐵]2 − 2𝛼𝑛𝐴𝐵→𝑛𝐴𝐵𝛼𝐿𝑖→𝐿𝑖[𝑛𝐴𝐵][𝐿𝑖] + 𝛼𝐿𝑖→𝐿𝑖2 [𝐿𝑖]2 + 4𝛼𝑛𝐴𝐵→𝐿𝑖𝛼𝐿𝑖→𝑛𝐴𝐵𝑛𝐴𝐵[𝑛𝐴𝐵][𝐿𝑖]

2  
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4.2 Abstract 

Bacterial vaginosis is a common condition characterized by a shift in vaginal microbiome 

composition, linked to negative reproductive outcomes and increased susceptibility to sexually 

transmitted infections. Despite the commonality of BV, standard of care antibiotics provide 

limited control of recurrent BV episodes. Development of new therapies is limited by the lack of 

controlled models of the vaginal microbiome needed to evaluate new treatments and regimens. 

Here, we develop an in silico framework to evaluate selection criterion for probiotic strains, test 

adjunctive therapy with antibiotics, and alternative dosing strategies. This framework highlighted 

the importance of resident microbial species on the efficacy of probiotic strains, identifying 

specific interaction parameters between resident non-optimal anaerobic bacteria (nAB) and 

Lactobacillus spp., and candidate probiotic strains that should be a selection criterion. Model 

predictions were able to replicate results from a recent phase 2b clinical trial for the live 
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biotherapeutic product, Lactin-V, demonstrating the relevance of our novel in silico platform. 

Results from the model support that the probiotic strain in Lactin-V requires adjunctive antibiotic 

therapy to be effective, and that increasing dosing frequency of probiotic could have a moderate 

impact on BV recurrence at 12 and 24 weeks. Altogether, this framework could provide evidence 

for rational selection of probiotic strains and help optimize dosing frequency or adjunctive 

therapies.  

4.3 Introduction 

The vaginal microbiome (VMB) is critical to female reproductive health, with the 

composition of the VMB associated with benefits such as decreased risk for sexually transmitted 

infections [14,15,17,235,236], pelvic inflammatory disease [1,10,11], and pre-term birth 

[4,5,237]. The most health-associated compositions are associated with Lactobacillus spp. 

dominance, particularly by L. crispatus, L. gasseri, and L. jensenii with are observed to be 

dominant species across three community state types (CSTs, CST -I, CST -II, CST -V). A fourth 

Lactobacillus sp., L. iners, is less associated with health, lacks the ability to produce compounds 

most associated with the inhibition of pathogens (H2O2, D-lactic acid), and is commonly 

associated with shifts to a non-optimal composition characterized by an overgrowth of 

facultative and obligate anaerobes known as bacterial vaginosis (BV). BV is a common 

condition, affecting approximately 30% of reproductive-age women resulting in abnormal 

vaginal discharge and odor, discomfort, and higher risk for the adverse reproductive outcomes. 

Despite the commonality of BV, treatment outcomes with standard antibiotic regimens 

(nitroimidazoles or clindamycin) remain suboptimal, with short-term cure rates around 80% [83] 

and long-term (6-12 months) cure rates at less than 50% [79]. Thus, alternative methods for 

long-term resolution of BV are needed. 
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 Several alternative strategies for treating recurrent and repeated episodes of BV have 

been evaluated based on empirical observations, which include extended first-line antimicrobial 

regimens, combinatorial first-line regimens, therapies targeted at biofilm removal (boric acid, 

TOL-463), pH lowering agents (lactic acid), and probiotics. Women with persistent or recurrent 

BV prescribed twice weekly doses of metronidazole for three months had reduced recurrences 

during therapy, but once discontinued had repeat episodes of BV [225,238]. There is limited data 

on the use of boric acid in conjunction with long-term suppressive antimicrobial regimens, with 

one study supporting higher cure rates at 12, 16 and 28 weeks, but by week 36 was less than 50% 

[223]. pH lowering agents like lactic acid have also been studied, but have not shown ability to 

significantly impact VMB composition and are not recommended by any guidelines [98]. Many 

randomized control trials have tried to support the use of probiotics for the treatment of BV, with 

mixed results [103,104,239–242]. One recent trial of L. crispatus CVT-05 (Lactin-V) showed 

promise for reducing the recurrence of BV at 12 weeks when compared to placebo, but is not yet 

cleared by the FDA or commercially available [104]. The study and use of probiotics for the 

treatment of BV has been limited by inconsistent probiotic characteristics (vaginal vs intestinal 

species, vaginal strains), routes of administration (oral vs vaginal), and dosing strategies 

(frequency and duration) [99]. Methodical selection of probiotic characteristics and dosing 

regimens could greatly improve efforts to develop a probiotic or live biotherapeutic products that 

can resolve recurrent BV.  

Here, we develop a model that can systematically test probiotic characteristics and dosing 

strategies against a variety of in silico BV communities. The model reveals that resident 

community members can have a significant impact on probiotic efficacy, particularly 

highlighting that any antagonistic interaction of non-optimal anaerobic bacteria (nAB) on the 
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probiotic strain can drastically decrease probiotic success at re-orienting communities to a 

Lactobacillus spp. dominated state. Additionally, we observe that the relationship between 

resident Lactobacillus spp. with probiotic can impact whether the post-treatment communities 

will be dominated by optimal Lactobacillus (oLB), L. iners, or the probiotic species. Lastly, the 

modeling framework was evaluated in the context of regimen reported for Lactin-V in a phase 2b 

clinical trial demonstrating the model can replicate clinical observations. Overall, these results 

highlight the importance of characterizing probiotic strains in co-culture with endogenous VMB 

and suggest personalized differences in microbial characteristics can help explain variability 

efficacy observed clinically.  

4.4 Results 

4.4.1 Simulated probiotic strains result in variable response types across a virtual population 

To simulate BV communities, a three-community state type (CST) ODE model was used 

to represent core VMB compositional types: optimal Lactobacillus (L. crispatus, L. jensenii, or 

L. gasseri) dominated (oLB; CST -I/II/V), L. iners (Li; CST -III), and non-optimal anaerobic 

bacteria (nAB, associated with BV; CST -IV). The model captures the growth characteristics and 

interspecies interaction terms between each community group as well as how the community and 

the probiotic interact using generalized Lotka-Volterra equations (Figure 4.4.1A). To test 

probiotic regimens, a base virtual population was created using Latin Hypercube Sampling of 
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defined parameter distributions (30,000 parameter sets; Table 4.7.1, Figure 4.7.1). From the base 

virtual population of Latin Hypercube Sampling generated parameter sets, 2,000 virtual patients 

were selected to replicate a distribution of BV-relevant CST equilibrium behaviors observed 

clinically [243]. BV-relevant CST equilibrium behaviors were defined as virtual patients that 

were analytically predicted to be nAB dominant at steady-state. For proof of concept, a simple, 

7-day regimen of probiotic was simulated on each virtual patient, and the impact on community 

composition was evaluated at several time points from therapy cessation (therapy cessation, 1 

month, 3 months, 6 months, 12 months; Figure 4.4.1B). The impact of the probiotic on 

Figure 4.4.1 Overview of probiotic strain modeling.  

(A) Schematic of parameters associated with probiotic – resident community interactions. (B) Base probiotic dosing 
regimen modeling. Unless otherwise specified, probiotic dosing occurs once daily for seven days across 2000 virtual 
BV+ patient samples. At several time points the dominating species is assessed, which can result in a mix of nAB-, 
Li-, oLB-, or Probiotic-dominant communities for the same strain of probiotic. (C) Results for a “null” strain 
probiotic that has a moderate growth rate (0.5 d-1) and negligent interspecies interactions, the stacked bar graph 
represents the frequency of communities in one of four states: nAB dominant, Li Dominant, oLB Dominant, or 
Probiotic dominant at time points therapy cessation, 1 wk, 2wk, 1 mo, 3mo, 6mo and 12mo post. (D) Example of a 
conceptually traditional probiotic strain (null parameters with P->nAB = -0.010 density-1d-1). (E) Example time 
series relative abundance responses of the in silico BV+ patients. Each plot is the average ± 99% confidence interval 
of the relative abundance for each species of in silico BV+ patients that exhibited a response a set response type of 
nAB dominant (top left), Li dominant (top right), oLB dominant (bottom left), and P dominant (bottom right). 
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community composition was defined by CST classification at a set evaluation time point. These 

classifications included nAB dominant (probiotic failure rate) as well as dominance by 

Lactobacillus spp. (probiotic efficacy rate): Li-dominant, oLB-dominant, or Probiotic (P)-

dominant.  

 Current characterization or interactions between probiotic bacteria strains and bacteria 

present in the vagina primarily focus on the impact of the probiotic on nAB associated with BV. 

There is limited data on how probiotic strains impact endogenous Lactobacillus spp. or how 

endogenous community members impact probiotic strains. For simplicity, a null probiotic strain 

and a traditional probiotic strain were developed to explore the possible response types. The null 

probiotic strain was modeled as having negligible interspecies interactions (nAB→P,  nAB→Li,  

nAB→oLB,  P→nAB,  P→Li, P→oLB = 0.0 density-1d-1) a moderate growth rate (kgrow-P = 0.5 d-1), 

and a moderate self-interaction term (P→P = -0.022 density-1d-1). Resulting model predictions 

indicated that the null probiotic strain was predicted to have primarily P-dominated or nAB-

dominated response types at each evaluation point, with a maximal failure rate of 46.5% at 12 

months (Figure 4.4.1C). A second strain, designed with traditional or standard considerations of 

ensuring the probiotic strain could inhibit nAB growth was simulated using the null probiotic 

strain parameters and  P→nAB set to -0.01 density-1d-1 (Figure 4.4.1D). The traditional strain had 

a lower rate of treatment failure, with nAB dominant communities comprising 32% of virtual 

patients for times greater than 1-month post-treatment cessation. To demonstrate how 

community composition changes during and after the probiotic therapy, abundance-time profiles 

were plotted for each response type (Figure 4.4.1E). For nAB-dominated and P-dominated 

response groups, nAB relative abundance was lowest on the last day of therapy and then re-

equilibrated to a higher abundance. For responses where endogenous Lactobacillus spp. were the 
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most abundant post-treatment (Li- or oLB-dominant response types), nAB populations continued 

to decline over time alongside the probiotic population. Altogether these results demonstrate the 

utility of testing a probiotic strain and regimen across a heterogenous simulated population, as 

even the same probiotic strain can induce variable responses across patients.  

4.4.2 Sensitivity analyses reveal alternative probiotic characteristics that can improve probiotic 

strain efficacy 

To determine which parameters are most associated with improving probiotic efficacy 

(frequency of Li-, oLB-, P-dominant states post-treatment), local sensitivity analyses were 

completed for all parameters describing probiotic strain characteristics (Figure 4.4.2). Notably, 

the two most sensitive parameters were between nAB and probiotic (nAB→P and P→P=nAB). The 

importance of probiotic inhibition of nAB (nAB→P) is unsurprising, given the selection of 

probiotics that produce inhibitory compounds (D/L-lactic acid, hydrogen peroxide, or 

bacteriocins) for nAB is a standard practice [55,56,128,244,245]. In contrast, the high degree of 

sensitivity for nAB on probiotic (nAB→P) is less intuitive and not well characterized in vitro or in 

vivo. The pairwise interactions of endogenous Lactobacillus (Li and oLB) with the probiotic did 

not have as strong of an effect on predicted probiotic efficacy (nAB→Li,  nAB→oLB,  P→Li, 
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P→oLB), but could alter which type of Lactobacillus spp. dominated state the community 

assembled to post-treatment (P→Li, P→oLB). The ability to dictate which Lactobacillus spp. 

community dominates post-treatment could be useful, as recent studies have started to design 

therapies to inhibit L. iners populations as a methodology to prevent BV recurrence [60,61].  

 To analyze the impact of combinatorial changes in probiotic characteristics, a four-

parameter sensitivity analysis was used. The four-parameter sensitivity analysis covered the two 

parameters most sensitive for probiotic efficacy (nAB→P and P→nAB) and for specificity to boost 

oLB or Li-dominated response types (P→Li, P→oLB; Figure 4.7.2). Each parameter was 

simulated as a -0.01, 0.00, or +0.01 density-1d-1 value, for all possible combinations (81 

parameter combinations total). Overall, the probiotics with the lowest failure rate (nAB-

dominant frequency) exhibited a positive value for nAB→P. The next important driver was 

P→nAB. Statistical analysis of select strains versus the null probiotic strain was used to 

emphasize the best 1-parameter, 2-parameter, and 3-parameter probiotic designs (Figure 4.4.3A). 

All selected strains were significantly from the null strain. The traditional strain had a 

Figure 4.4.2 Local sensitivity analysis of probiotic characteristics.  

One-at-a-time parameter perturbation analysis for probiotic characteristics. The proportion of the 2,000 in silico 
BV+ communities that exhibited each response type is plotted on the y-axis. The x-axis represents the parameter 
value change from the defined “null” probiotic strain. 
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significantly higher rate of treatment failure than the 1-parameter alteration of nAB→P (31.9% vs 

14.4%; P < 1x10-6), highlighting the importance of considering the effect of endogenous nAB 

populations on probiotic efficacy. Combining the two best single-parameter perturbations 

decreased the treatment failure rate to 4.8%, promoting probiotic growth rates alongside the 2-

parameter change decreased the failure rate t 1.9% (P = 6.141x10-7). 

 

Figure 4.4.3 Selection of optimal probiotics.  

(A) Probiotics that improve probiotic efficacy by reducing nAB-dominant response types. (B) Probiotics that boost 
endogenous oLB populations to increase oLB-dominant response types. Plots indicate the percentage of the 2,000 in 
silico BV+ positive samples for a given response type. The heatmap below the plots indicates the parameter change 
and the value of the change: no change (white), +0.01 (pink), -0.01 (green). Statistical comparisons were made with 
chi-square tests, asterisks indicate statistical significance. 
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When nAB→P is negative, it can counteract the effect of a probiotic selected for inhibition of 

nAB (negative P→nAB) and perform worse than a probiotic with no interspecies interactions (null 

strain, 59.3% vs 46.5%; P = 1.221x10-15). Altering the impact of probiotic on nAB, Li, and oLB 

were observed to impact the selection of Li- and oLB-dominant response types in the 1-

parameter sensitivity analysis. Selection of parameter modifications to boost oLB-dominant 

response types was assessed, increasing the oLB-dominant response type from 2.0%, to 23.2% 

with a 1-parameter modification (+0.05  P→oLB), 35.4% with a 2-parameter modification (+0.05 

P→oLB & -0.05 P→nAB), and 60.6% with a 3-parameter modification (+0.05 P→oLB, -0.05 P→Li, 

&  -0.05 P→Li; Figure 4.4.3B). These results suggest that understanding the interaction between 

nAB and probiotic, as well as the impact probiotic has on endogenous Lactobacillus spp. can 

help tailor desired compositional changes with probiotics. 

4.4.3 Combinatorial regimens can lower BV recurrence rates 

Commonly, a course of probiotics is given after treatment with standard antimicrobial 

therapy [99] (Table 4.7.3). To evaluate the impact of different treatment regimens, the model was 

used to simulate pre-treatment with antibiotics followed by a short-term probiotic regimen, 

versus a short-term probiotic only regimen, and antibiotic only regimens (Figure 4.4.4A). The 

antibiotic therapy simulated was a 7-day course of oral MTZ and the probiotic regimen was a 

short-term (7-day), daily regimen using the traditional strain (null strain with P→nAB = -0.01 

density-1d-1). Treatment outcomes were evaluated at the end of treatment, 1 month, 3 months, and 

6 months post-treatment cessation (Figure 4.4.4A). The antibiotic regimen without probiotic 

performed the worst at all time points except immediately after treatment cessation, where the 

antibiotic regimen had a 15% failure rate versus the 21.6% failure rate for the probiotic only 

regimen (P < 1x10-6). At all evaluation time points, the combination pre-treatment antibiotic 
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followed by probiotic was most efficacious. At the later time points, the difference between 

combination antibiotic with probiotic versus probiotic only regimen decreased with the failure 

rate within 4% of each other. The failure rate for antibiotic at 3 month and 6 months was nearly 

double that of the regimens including probiotic, supporting the use of probiotic to reduce repeat 

episodes of BV.

 

Figure 4.4.4 Adjunctive antimicrobial therapy versus probiotic or antibiotic therapies in isolation.  

(A) Assessment of the impact of adjunct antimicrobial therapy (ABX + Pr) versus probiotic only (Pr) or antibiotic 
only (ABX) BV treatment regimens across four time points (therapy cessation, 1 month post, 3 months post and 6 
months post). The percent of the 2,000 in silico BV+ subjects that exhibit each response type are reported. (B-C) 
Comparison of model predictions with Lactin-V trial results at 12 and 12 weeks for (B) placebo (C) treatment arm. 
For the treatment arm, 4 strains were simulated by the model encompassing a traditionally designed probiotic, null 
probiotic, moderately/conservatively designed probiotic, and bad/negative control probiotic. 
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 Probiotic regimens can vary significantly, with some strategies using short-term (daily) 

regimens, intermittent regimes (weekly), or long-term regimens (treatment over several months). 

A promising probiotic and associated regimen (Lactin-V) recently underwent phase 2 clinical 

trials demonstrating significant reduction in BV recurrence and utilized a combination of the 

aforementioned dosing strategies [104]. The phase 2b trial administered a 5-day regimen of 

intravaginal MTZ, followed by vaginally administered Lactin-V or placebo. Dosing of Lactin-

V/placebo occurred over 11 weeks, where week 1 was dosed once daily for 4 days, and weeks 2 

– 11 were dosed twice weekly. To demonstrate the model can recapitulate complex dosing 

strategies and replicate clinical observations, the Lactin-V regimen was simulated across 2,000 

virtual patients and the predicted recurrence rates at 12 weeks and 24 weeks were compared to 

clinically reported frequencies. The placebo (Lactin-V regimen with no probiotic strain added) 

results agreed well between clinical observation and model results (66.1% versus 71.0%; P = 

0.4029), but deviated at the 12 week mark (53.1% versus 70.5%; P = 0.002; Figure 4.4.4B). 

Since the strength of antibiotic is a parameter that exhibits significant variability (5-fold 

differences in decay rates; Table 4.7.2), a stronger dose was simulated which demonstrated 

comparable results at both the 12 and 24 week mark for the placebo arm (Figure 4.7.3). The 

simulation of the Lactin-V treatment arm included for possible probiotic strains: the traditional 

probiotic strain (positive control), the null probiotic strain, a strain with moderate competition 

with endogenous vaginal microbiota, and a strain where nAB is antagonistic with the probiotic 

(negative control). The traditional probiotic strain had significantly lower rates of treatment 

failure at both 12 weeks and 24 weeks compared to the clinical observations (P = 0.0127, P < 

1x10-6, respectively). In contrast, the null and moderate strains had comparable predicted BV 

treatment failure rates at both time points. At 12 weeks, the clinically reported frequency was 
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34.6% versus the null strain (39.2%; P = 0.294) and moderate strain (36.2%; P = 0.703). At 24 

weeks, the clinically reported frequency was 48.4% versus the null strain (40.7%; P = 0.0954) 

and moderate strain (42.4%; P = 0.1949). A negative control was evaluated to demonstrate that 

probiotics could perform worse than the null strain, which exhibited a 57.5% and 64.4% 

recurrence rate at 12 weeks and 24 weeks. Altogether, these results suggest the Lactin-V 

probiotic strain has a relatively neutral interaction with endogenous Lactobacillus spp. and the 

probiotic has a stronger impact on nAB (P→nAB) than nAB has on the probiotic (nAB→P). 

Selection of probiotic strains with less competition with endogenous Lactobacillus spp. may help 

promote treatment efficacy. 

4.4.4 Adjunctive antimicrobial therapy improves probiotic strain efficacy for underperforming 

strains 

To systematically assess the importance of probiotic strain characteristics with respect to 

promoting Lactobacillus spp. dominated communities post-treatment, 500 in silico strains were 

evaluated. The 500 in silico strains were generated by Latin Hypercube Sampling of probability 

distributions similar to the reference virtual population. Each of the 500 strains was then 

evaluated on the 2,000 subject virtual patient population for both the short-term probiotic 

regimen (no pre-treatment antibiotic) and the Lactin-V regimen. Each strain was assigned to a 

designated response profile based on the strain’s performance across the 2,000 subjects. A Partial 

Least Squares Discriminant Analysis was used to evaluate the relationship between model 

parameters and response profiles (Figure 4.4.5). For the short-term therapy without antibiotic 

pre-treatment, the most important parameters driving a Lactobacillus spp. dominated response 

were separated along latent variable 1 (LV1) with nAB→P having the strongest association 

(Figure 4.4.5A). Separation across LV2 captured differences between Lactobacillus spp., with 
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Li-dominated responses most associated with Li inhibiting probiotic (more negative Li→P) and 

probiotic promoting the growth of Li (more positive P→Li).  In contrast, the Lactin-V regimen 

(antibiotic pre-treatment followed by 11-week probiotic regimen) was more sensitive to the 

interaction of endogenous Lactobacillus spp., namely Li (Li→P, Figure 4.4.5B).  Between the 

two regimens, there were several probiotic strains that were predicted to promote probiotic 

dominance across greater than 99% of the virtual patients.  

 Characteristics of strains that were best at promoting a certain response over the 2,000 

virtual patient population were similar between the regimens (Figure 4.7.4, Figure 4.7.5). Strains 

most associated with treatment failure (nAB dominant response profiles) typically had strong 

negative interactions of nAB on P (nAB→P). Strains that most frequently exhibited boosted 

endogenous Lactobacillus spp. were associated with probiotic having a positive impact on Li 

(P→Li) for Li response types and oLB (P→oLB) for oLB response types. Lastly, high probiotic 

abundance was associated with the probiotic inhibiting all resident vaginal microbiota (P→nAB, 

Figure 4.4.5 Drivers of population level composition alterations for a short-term regimen and Lactin-V regimen.  

Partial least squares discriminant analysis (PLS-DA) models were constructed using strain characteristics to predict 
a population-level profile type (consistently nAB, Li, oLB, or P-dominated across the 2,000 subject virtual 
population) after (A) short-term regimen of probiotic and (B) Lactin-V regimen of probiotic. 
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P→Li, P→oLB) and with the resident microbiota tending to have positive interactions (nAB→P, 

Li→P, oLB→P).  

 

Figure 4.4.6 Comparison of Lactin-V regimen with the short-term probiotic only regimen.  

(A) Interspecies interaction parameter values of top probiotic strains for the Lactin-V regimen. (B) Abundance-time 
profile of community groups for each probiotic strain and predicted 12mo frequency of response types. (C) Short-
term regimen abundance-time profile and predicted 12mo frequency of response types for strains defined in (A). 
Red indicates time of antibiotic dosing. 

To evaluate the impact of regimen on probiotic efficacy, 5 strains were evaluated with the 

Lactin-V regimen and the short-term probiotic regimen (Figure 4.4.6). The 5 strains selected 

were strains that promoted one of the four response types across the highest percent of the virtual 

population.  For example, the strain for nAB response types elicited nAB dominance in 91% of 

the virtual patients, the strain for Li elicited Li dominance in 86% of virtual patients, the oLB 

strain elicited oLB dominance in 73% of the virtual patients, and the probiotic strain elicited a 

probiotic dominant response in 100% of the patients.  The fifth strain was a strain that most 

closely replicated the Lactin-V phase 2b clinical trial results for BV recurrence at 12 and 24 
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weeks. Overall, the selected strains had similar long-term effects on compositions for the Lactin-

V regimen and the short-term regimen (Figure 4.4.6B,D). This result was also observed when the 

top strains selected from the short-term regimen were tested with the Lactin-V regimen (Figure 

4.7.6). Effects differed for the representative strain for the Lactin-V formulation, where without 

the pre-treatment of antibiotic, the addition of the probiotic had little to no impact on re-orienting 

the vaginal microbiome composition. This result suggests that pre-treatment with antibiotics is 

critical for probiotics that cannot stably engraft into the existing vaginal community. 

4.4.5 Lactin-V efficacy is moderately dependent on probiotic dosing frequency 

Lastly, the Lactin-V probiotic dosing regimen was analyzed across 5 representative 

strains. The dosing regimen during weeks 2 – 10 were altered to be, bi-weekly (1 dose every 

other week), once weekly, twice weekly, four times weekly, and daily. There was a gradual 

decrease in treatment failure rate with increasing dose frequency (Figure 4.4.7). Differences were 

more prominent at week 12, where the original Lactin-V regimen (twice weekly) had a 

statistically significant failure rate (40.0%) than the bi-weekly (47.3%) and daily (29.6%) dosing 

Figure 4.4.7 Impact of alternative dosing frequency on predicted BV recurrence rates.  

The Lactin-V regimen has a 10-week period of intermittent dosing (2x weekly). Alternative dosing strategies 
for the 10-week period tested were bi-weekly, weekly, 4x weekly and daily. Treatment failure rate (recurrence 
rate) was evaluated at week 12 and 24. Dots indicate the recurrence rates of the 5 representative strains that 
recapitulated observed Lactin-V recurrence rates. Bars are the mean ± standard deviation. Multiple Mann-
Whitney rank sum tests were used to compare groups and were adjusted using Benjamini & Hochberg 
procedure. 
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frequencies (P = 0.0165 and P = 0.0165, respectively; Figure 4.4.7A). At 24 weeks, results were 

more similar regardless of the dosing regimen and only the daily regimen differed from the less 

frequent dosing strategies (Figure 4.4.7B). Altogether these results demonstrate that dosing 

regimen for Lactin-V can have moderate impacts on BV recurrence rates in the short-term, and 

dosing regimen becomes less impactful in the long-term. 

4.5 Discussion 

To examine characteristics of probiotic strains that can aid in re-orienting the vaginal 

microbiome from a nAB-dominated, BV-associated state, to a Lactobacillus spp. dominated 

state, we developed an in silico framework. This framework used generalized Lotka-Volterra 

ODEs to represent growth characteristics and interspecies interactions of three core community 

compositional types of the VMB. Probiotic strain characteristics were systematically evaluated 

across a virtual patient population, allowing for the investigation of probiotic parameters and 

probiotic regimens that elicit desired compositional changes that include Li-dominant, oLB-

dominant, or probiotic-dominant communities. 

 Local and global sensitivity analyses implicated the importance of resident community 

members on probiotic efficacy. This result is not unsurprising, as it aligns with the ecological 

principle of community invasibility, which is driven by how the resident community members 

interact with the invading species (probiotic strain) [246,247].  Regimens without a course of 

antibiotics prior to probiotic were particularly sensitive to the impact of nAB on the probiotic 

strain (nAB→P). This parameter is interesting as few studies report the impact of nAB on 

Lactobacillus spp. or probiotic strains. One study that reports the pairwise impact of G. vaginalis 

with L. jensenii observed a 50% decrease in L. jensenii cell density from mono-culture to co-

culture [206]. Another study reported that certain G. vaginalis strains could selectively inhibit 
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the L. crispatus to adherence to epithelial cells over L. iners [59]. nAB associated with BV may 

also inhibit the growth of Lactobacillus spp. through the production of biogenic amines, which 

were shown to increase Lactobacillus spp. lag-time, decrease growth rates, and decrease the 

production of D/L-lactic acid [75]. These results suggest that critical selection criteria for 

probiotic strains used to treat BV include the ability for the strain to outcompete a variety of nAB 

for adhesion to epithelial cells, disrupt biofilms, as well as be tolerant to biogenic amines. 

 For probiotic regimens that include pre-treatment with antimicrobials like metronidazole 

of clindamycin, the impact of nAB on the probiotic strain becomes less important and the impact 

of endogenous Lactobacillus spp. is more prominent (Li→P, oLB→P). Notably, colonization with 

endogenous Lactobacillus spp. is reported to decrease probiotic (L. crispatus CTV-05) in healthy 

individuals [228], supporting the importance in considering probiotic strain interactions with 

Lactobacillus spp. Despite the importance of interactions between resident Lactobacillus spp. 

and the probiotic strain, little is known about the pairwise relationship. A publication analyzing 

17 L. crispatus strains, two L. gasseri strains, two L. jensenii strains and a L. iners strain using 

spot agar tests demonstrated that all human strains of L. crispatus could slightly inhibit L. iners 

growth [42]. Not all strains of L. gasseri and L. jensenii inhibited L. iners. Co-culture data 

demonstrated that some Lactobacillus strains had a 4-6 log reduction in cells with certain L. 

crispatus strains [42]. Thus, screening of the relationship between probiotic strains and 

endogenous Lactobacillus spp. could help improve probiotic design. 

 Boosting endogenous levels of optimal species like L. crispatus, L. gasseri, or L. jensenii 

(oLB) could be preferential to stably incorporating a probiotic strain, particularly if the strain is 

not native or known to have the same functional capacity in the vaginal microbiome as 

endogenous Lactobacillus spp. This framework indicated for endogenous oLB to become 
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dominant after treatment that probiotic strains must have a facilitative interaction with oLB 

(positive P→oLB), inhibitory interaction with Li (negative P→Li), and oLB must have a weak or 

inhibitory (negative oLB→P) interaction with the probiotic strain. A potential oLB-promoting 

probiotic strain could be strains that exhibit selective inhibition of L. iners such as the human 

intestinal Lactobacillus spp. strain (L. paragasseri K7) and less potent vaginal strain (L. gasseri 

105-1) [60]. Combinatorial therapy that is selective against L. iners, could possibly supplement a 

probiotic strain that is not inherently selective against L. iners. Recent studies indicated that L. 

iners cysteine dependence could be a potential target to reduce competition between L. iners and 

oLB [61]. Overall, this result further supports the idea that increased characterization between 

probiotic strains and endogenous Lactobacillus spp. could greatly benefit probiotic design.  

 This framework replicated the results of the phase 2b clinical trial for Lactin-V and 

indicated that L. crispatus CTV-05 likely exhibits weak competitive interactions with resident 

community members. Of in silico strains that could replicate the Lactin-V trial results at 12 and 

24 weeks, most were predicted to not stably integrate into the community. Additionally, the 

efficacy of these strains was highly dependent on pre-treatment antibiotic, supporting the need 

for adjunctive use of antibiotics with Lactin-V. In published randomized control trials, dosing 

frequency is variable and often not clearly justified (Table 4.7.3). To evaluate the impact of dose 

frequency for Lactin-V, dosing was simulated bi-weekly, once weekly, twice weekly (Lactin-V), 

four times weekly, and daily and the frequency of BV recurrence was evaluated at 12 and 24 

weeks. Dosing frequency had a moderate impact on probiotic efficacy evaluated at 12 weeks, but 

less of an impact at 24 weeks, which is 3 months after subjects finished therapy. The importance 

of dosing frequency is likely strain dependent, with strains that are unable to engraft into the 
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community most dependent on frequent dosing. This framework could help guide, optimize, and 

provide rationale for future probiotic regimen designs.  

 A major limitation of this model is that it does not account for variability in host 

behavior. Factors such as hormonal fluctuations due to menstrual cycles, birth control, or 

pregnancy can impact the stability and composition of the vaginal microbiome over time 

[22,115,68,248,249]. Additionally, sexual and hygienic behavior would also be predicted to 

impact composition by introducing or removing species present and changes in vaginal pH 

[36,228,250]. Additionally, this methodology is a reductionist approach at recapitulating the 

vaginal microbiome and capturing species interactions. Species interactions are likely dependent 

on competition for limited substrates as well as cross-feeding, which in future iterations can be 

incorporated into the model using methodologies like Monod equations [44,197,251]. Future 

iterations of the model can begin to incorporate these levels of detail and be personalized to 

subject behavior and metabolic microenvironment.  

 Overall, this work provides a new framework to characterize and predict how probiotic 

strain characteristics contribute to compositional changes during and after treatment cessation. 

An in silico framework to test probiotic strains is particularly important for the vaginal 

microbiome, as standard in vitro and in vivo models fail to replicate the base characteristics of 

the vaginal microenvironment such as co-existence of appropriate vaginal microbiota or low 

vaginal pH [111,129]. Moreover, current therapeutic regimens to modulate vaginal microbiome 

composition have high rates of treatment failure, emphasizing the need to develop better tools to 

evaluate alternative therapies [29]. This framework could be particularly informative in 

combination with newly developed vagina-on-a-chip technologies to effectively screen new 

probiotic strains [111]. Together, the use of in silico models and new developments in 
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experimental technologies will inform rational selection of probiotic strains and intelligent 

design of dosing regimens with or without adjunct antimicrobial use.  

4.6 Methods 

4.6.1 Model Construction 

We used a generalized Lotka-Volterra model (gLVM) [252,253] with four equations was 

used as the ordinary differential equation-based model. gLVMs include the growth rate of each 

species, the self-interaction term (contributes to carrying capacity) and inter-species interaction 

terms. Growth rates were always assumed to be positive when the system is not under any 

perturbation like menses of antibiotic therapy, self-interaction terms are assumed to always be 

negative and the inter-species interaction terms can be either positive or negative. For the three 

species model (oLB, Li or nAB), there are seven possible non-zero steady states. These seven 

states were related to clinical data using a nearest centroid classifier of the predicted relative 

abundances. The centroids were determined from VALENCIA as described in Lee et al. 2023 

[26,243]. For the addition of the probiotic into the model, a fourth microbial population was 

created resulting in the following equations. All model simulations were completed in MATLAB 

2020b and are published at: https://github.com/chyylee/CST_Probiotic  

𝑑[𝑛𝐴𝐵]
𝑑𝑡 =  𝑘𝑔𝑟𝑜𝑤−𝑛𝐴𝐵[𝑛𝐴𝐵] + 𝛼𝑛𝐴𝐵→𝑛𝐴𝐵[𝑛𝐴𝐵][𝑛𝐴𝐵] +  𝛼𝐿𝑖→𝑛𝐴𝐵[𝑛𝐴𝐵][𝐿𝑖]

+ 𝛼𝑜𝐿𝐵→𝑛𝐴𝐵[𝑛𝐴𝐵][𝑜𝐿𝐵] + 𝛼𝑃→𝑛𝐴𝐵[𝑛𝐴𝐵][𝑃]  

𝑑[𝐿𝑖]
𝑑𝑡 =  𝑘𝑔𝑟𝑜𝑤−𝐿𝑖[𝐿𝑖] + 𝛼𝐿𝑖→𝐿𝑖[𝐿𝑖][𝐿𝑖] + 𝛼𝑛𝐴𝐵→𝐿𝑖[𝐿𝑖][𝑛𝐴𝐵] + 𝛼𝑜𝐿𝐵→𝐿𝑖[𝐿𝑖][𝑜𝐿𝐵]  

+ 𝛼𝑃→𝐿𝑖[𝐿𝑖][𝑃] 

https://github.com/chyylee/CST_Probiotic


 128 

𝑑[𝑜𝐿𝐵]
𝑑𝑡 =  𝑘𝑔𝑟𝑜𝑤−𝑜𝐿𝐵[𝑜𝐿𝐵] + 𝛼𝑜𝐿𝐵→𝑜𝐿𝐵[𝑜𝐿𝐵][𝑜𝐿𝐵] +  𝛼𝑛𝐴𝐵→𝑜𝐿𝐵[𝑜𝐿𝐵][𝑛𝐴𝐵]

+ 𝛼𝐿𝑖→𝑜𝐿𝐵[𝑜𝐿𝐵][𝐿𝑖] + 𝛼𝑃→𝑜𝐿𝐵[𝑜𝐿𝐵][𝑃] 

𝑑[𝑃]
𝑑𝑡 =  𝑘𝑔𝑟𝑜𝑤−𝑃[𝑃] +  𝛼𝑃→𝑃[𝑃][𝑃] + 𝛼𝑛𝐴𝐵→𝑃[𝑃][𝑛𝐴𝐵] +  𝛼𝐿𝑖→𝑃[𝑃][𝐿𝑖] + 𝛼𝑜𝐿𝐵→𝑃[𝑃][𝑜𝐿𝐵] 

4.6.2 Virtual Population Development 

To test the impact of a probiotic strain at the population level, a virtual patient population 

was generated using Latin Hypercube Sampling of physiologically defined parameter ranges as 

described in Lee et al. 2023 ([243], Table 4.7.1). The virtual patient population was selected to 

match the CST equilibrium behavior distribution pattern of the Human Microbiome Project 

Cohort (HMP) described in Lee et al. 2023. Briefly, the CST equilibrium behavior describes the 

stability in CST classification over time, where subjects that consistently exhibit the same CST 

are considered mono-stable (1SS) and those that switch between different CSTs are considered 

multi-stable (2SS). Probiotic strains were tested on virtual patients that could obtain a nAB-

dominant (BV positive) state at equilibrium which includes the 1SS nAB dominant (60%), 2SS 

nAB dominant / Li dominant (31%), and 2SS nAB dominant / Li dominant CST (9%) 

equilibrium behaviors. The HMP cohort had a similar frequency of self-identified 

White/Caucasian subjects relative to persons of color as the Lactin-V cohort (32% versus 35%, 

respectively). 

4.6.3 BV Treatment Regimens 

The probiotic dose was calibrated to the relative abundance distribution observed in 

Dausset et al. [239], 1 day after an initial dose was given and kept constant throughout the 

manuscript. Two main probiotic regimens were evaluated: a short-term probiotic therapy without 
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antibiotic pre-treatment and a long-term probiotic therapy with antibiotic treatment modeled after 

the regimen for a phase 2b study of Lactin-V [104]. The short-term therapy included a 7-day, 

once daily dosing of probiotic strains. The Lactin-V regimen included a 5-day antibiotic regimen 

followed by 4-days of daily dosed probiotics and then 10-weeks of twice weekly probiotic doses. 

Evaluation of the impact of probiotic was evaluated at multiple time points. The 5-day antibiotic 

regimen was simulated as a negative impact on nAB growth rate at magnitudes calculated from 

Mayer et al. [221]. For the short-term probiotic, impact on composition was evaluated at 

treatment cessation, 1 week, 1 month, 3 months, 6 months, and 12 months. For the Lactin-V 

regimen, impact on composition was evaluated at 12 weeks (1 week after therapy cessation) and 

24 weeks (3 months after therapy cessation). Impact of composition was assessed by classifying 

the CST after treatment using a nearest centroid classifier. Possible classes were nAB-dominant 

(BV+), Li-dominant, oLB-dominant, or P-dominant. The regimens were simulated across 2,000 

patients, and the frequency of each response type was reported per strain tested.  

4.6.4 Local Sensitivity Analysis 

Local sensitivity analyses were centered at the parameters for a null probiotic strain and 

evaluated at 12 months post treatment cessation. The null probiotic strain was defined as a 

probiotic strain that had a moderate growth rate (0.5 d-1) and negligible interspecies interactions 

(nAB→P,  nAB→Li,  nAB→oLB,  P→nAB,  P→Li, P→oLB = 0.0 density-1d-1) and a moderate self-

interaction term (P→P = -0.022 density-1d-1). For the 1 dimensional (1D) perturbation analysis, 

each probiotic strain parameter was altered one-at-a-time over a set parameter range. The range 

was -0.10 to 0.10 density-1d-1 for the interspecies interaction terms, 0 to 1.0 d-1 for the growth 

rate, and -0.004 to -0.04 density-1d-1 for the self-interaction term. For the four-parameter 

perturbation analysis, up to four parameters were modified at a time. Two parameters that were 
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most sensitive to altering probiotic efficacy (changes in rate of nAB-dominant states) and two 

parameters most sensitive to altering frequency of Li/oLB-dominated states were selected. 

Parameters could undergo a positive change (+0.01 density-1d-1), no change (0.00 density-1d-1), or 

negative (-0.01 density-1d-1) alteration for each parameter, in combination (3 values4 parameters = 81 

combinations). 

4.6.5 Systematic Probiotic Strain Selection 

A global uncertainty analysis was used to systematically evaluate probiotic strain 

characteristics that could consistently promote nAB-dominant, Li-dominant, oLB-dominant, P-

dominant communities across the 2,000 subject virtual population as described in Lee et al. 2023 

[243]. Latin Hypercube Sampling was used to generate 500 in silico candidate probiotic strains. 

Parameter values were sampled from uniform distributions defined with the same ranges used to 

create the virtual population, excluding P→nAB, which was constrained to be negative. Each of 

the 500 candidate strains was tested in the framework for the short-term regimen and the Lactin-

V regimen. Each strain was then classified by the response type that occurred in the highest 

frequency across the virtual population. For example, if a strain was 10% nAB-dominant, 20% 

Li-dominant, 60% oLB-dominant, and 10% P-dominant the strain would be classified as an oLB-

promoting strain. The association between probiotic strain characteristics and the response 

classification was assessed using Partial Least Squares Discriminant Analysis (PLS-DA). The 

top 5 strains that promoted nAB, Li, oLB, and P-dominant states for each regimen were 

visualized and compared against the other regimen. To understand the Lactin-V regimen, the top 

5 in silico strains that had similar BV recurrence rates at 12 and 24 weeks were identified by the 

sum of absolute distance from the predicted and observed rates.  
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4.6.6 Statistical Analyses 

All statistical analyses were completed in MATLAB. Chi-square tests were used to 

compare frequencies of response types between groups. Wilcoxon rank sum tests were used to 

compare numerical data. Where noted, P-values were adjusted using Benjamini & Hochberg 

procedure. The PLS-DA model was created using the PLS Toolbox in MATLAB 2017b using 

10-fold cross-validation. Briefly, PLS models are a supervised approach that assigns a loading to 

each feature (probiotic strain characteristics) and identifies a linear combination of loadings that 

best separates the response variable (nAB-, Li-, oLB-, P-promoting classification). The linear 

combination of loadings is referred to as a latent variable (LV) and indicates the magnitude of 

association between a feature and the response group.  

4.6.7 Code and Data Availability 

All code and data used in this study are available at: https://github.com/chyylee/CST_Probiotic 

4.7 Appendix 

4.7.1 Supplementary Tables 

Table 4.7.1 Explanation of LHS parameter ranges.  

Note the determination of inter-species interaction terms was based on empirical observation and hypothesis on 
interaction term strength and directionality. More information is in supplementary note 1. Values were scaled to in 
vivo rates based on Stein et al. [159] 

Parameter 

(in vitro/in vivo) 

Value Explanation References 

kgrow-nAB (hr-1)/(d-1) 0.1 to 

1.00 

Growth rate calculated in previous publication from growth 

curves (Lee et al., 2020)[20] and assessed from digitized 

growth curves from literature such as Atassi et al., 2019[55] 

and Anukam and Reid (2008)[187]. 

[20,56,187] 

https://github.com/chyylee/CST_Probiotic
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kgrow-Li (hr-1)/(d-1) 0.1 to 

1.00 

Growth rate calculated in previous publication from growth 

curves (Lee et al., 2020)[20] and from doubling times 

(Borgogna et al., 2021)[75]. 

[20,75] 

kgrow-oLB (hr-1)/(d-1) 0.1 to 

1.00 

Growth rate calculated in previous publication from growth 

curves (Lee et al., 2020) and from digitized data in Chetwin et 

al., 2019[101] and Juarez-Tomas (2003) [204] as well as 

Borgogna et al (2021) [75]. 

[20,75,101,230] 

αnAB→ nAB, αLi → Li,  

αoLB → oLB 

(hr-1cell density-1)/ 

(d1cell density-1) 

-0.004 

to  

-0.04 

Assumed similar carrying capacities are possible across species 

and a 10-fold variability. This value and the growth rate value 

facilitate up to 100-fold variation in carry capacity and 

clinically relative abundance can upwards of range 1000-fold. 

[21,22,115] 

αnAB → Li, αnAB → oLB, 

αLi → nAB, αLi → oLB, 

αoLB → Li 

(hr-1cell density-1)/ 

(d1cell density-1) 

-0.12 to  

0.12 

Assumed directionally of these parameters to be positive or 

negative dependent on the literature. Magnitude of the values 

was determined from the largest ratio of interaction term to 

self-interact term observed experimentally (S1 Fig). The fold-

ratio is on the same order of magnitude as clinically estimated 

gLV terms (Stein et al. 2013). 

[59,159,206] 

αoLB → nAB 

(hr-1cell density-1)/ 

(d1cell density-1) 

-0.12 to  

0.00 

Assume directionality based on experimental observations that 

oLB spp. commonly inhibit non-optimal spp. (nAB), such as in 

Atassi et al. (2006). 

[55,206] 

 

Table 4.7.2 Calculated antibiotic impact on BV-associated bacteria (nAB). 

Calculated Decay Rate (d-1) 

G. vaginalis BVAB2 BVAB1 Sneathia/Lepto Megasphaera A. vaginae 

3.82 4.61 3.50 5.04 4.08 5.44 

3.12 2.15 2.26 4.18 4.08 4.81 

2.45 2.15 2.26 3.19 3.88 4.81 

2.12 2.15 2.08 2.87 2.76 3.80 

1.84 1.88 
 

2.41 2.03 3.48 
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1.72 1.69 
 

2.13 2.03 3.23 

1.40 1.66 
 

2.07 2.03 2.38 

1.33 
  

1.82 1.74 1.88 

1.33 
  

1.73 
 

1.88 

0.95 
  

1.44 
 

1.54 

 

Table 4.7.3 Clinical probiotic regimens. 

Probiotic 

Duration 

Reference Antibiotic Route Probiotic 

Regimen 

Strain Results Metric End 

Point 

Acute Petricevic et 

al. 2008 

Yes Vaginal 7 days L. casei var. 

rhamnosus 

(Lcr35) 

Significant Nugent 5 

weeks 

Acute Hemmerling 

2010 

Yes Vaginal 5 days, 

1/wk for 2 

weeks 

L. crispatus 

CTV-05 

Significant Recurrence 

rate 

28 days 

Acute Happel 2020 Yes Both oral or 

vaginal 

spray (15 

days, 5 

days oral 

followed 

by 10 

days oral 

+ vaginal 

spray) 

L. acidophilus, 

L. 

rhamnosus 

GG, B. 

bifidum and 

B. longum 

Mixed 

results 

  

Acute Ehrstrom  

2010 

Yes Vaginal 5 days L. gasseri 

LN40, L. 

fermentum 

LN99, L. 

casei subsp. 

rhamnosus 

LN113 and P. 

Not 

significant 

Cure rate 
 



 134 

acidilactici 

LN23 

Acute Mastro-

marino 2009 

No Vaginal 7 days Florisia  

(L. brevis 

CD2 + L. 

salivarus 

subsp. 

Salicinius FV2 

+ L. plantarum 

FV9) 

Significant Cure rate, 

Recurrence 

rate 

 

Acute Bradshaw 

2012 

Yes Vaginal 12 days Gynoflor 

(L. 

acidophilus 

KS400 + 0.03 

MG 

ESTRIOL) 

Mixed 

results 

Cure rate 30 days 

Acute Hemalatha 

2012 

No Vaginal 8 days Florisia  

(L. brevis 

CD2 + L. 

salivarus 

subsp. 

Salicinius FV2 

+ L. plantarum 

FV9) 

Not 

significant 

  

Acute Ling 2013 Yes Vaginal 7 days L. delbrueckii 

subsp. Lactis 

DM8909 

Significant Recurrence 

rate 

5 days 

Acute Bisanz 2014 Yes Vaginal 3 days L. rhamnosus 

GR-1, L. 

reuteri RC-14 

Not 

significant 
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Acute Verdenelli 

2016 

Yes Vaginal 7 days SYNBIO gin 

(L. rhamnosus 

IMC 501 + L. 

paracasei 

IMC 502) 

Significant Nugent 21 days 

Acute Rapisarda 

2018 

No Vaginal 14 days L. acidophilus 

LA 14 

Significant Cure rate 28 days 

Intermittent Marcone et 

al. 2008 

Yes Vaginal 2 months 

(1/wk) 

L. rhamnosus Significant 
  

Intermittent Marcone et 

al. 2010 

Yes Vaginal 6 months 

(1/wk) 

L. rhamnosus Significant 
 

12 mo 

Intermittent Heczko 2015 Yes Oral 10 

days/mont

h 

L. fermentum 

57A, L. 

plantarum 

57B, L. 

gasseri 57C 

Significant Time to 

recurrence 

 

Intermittent Hummelen 

2010  

Yes Oral 2x/wk, ~6 

months 

L. rhamnosus 

GR-1, L. 

reuteri RC-14 

Not 

significant 

Nugent 
 

Intermittent Larsson 

2008 

Yes Vaginal 10days/cy

cle, 3 

cycles 

EcoVag (L. 

gasseri, L. 

rhamnosus) 

Significant 
  

Intermittent Eriksson 

2005 

Yes Vaginal 2 cycles L. fermentum, 

L. casei, 

L. rhamnosus, 

and L. 

gasseri 

Not 

significant 

Nugent 
 

Intermittent van de 

Wijgert 2020 

Yes Vaginal Intermitte

nt 

EF+ 

(Bifidobacteri

um 

bifidum W28, 

Lactobacillus 

acidophilus 

W70, L. 

Significant Reduce BV 

bacteria 
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helveticus 

W74, 

L. brevis 

W63, L. 

plantarum 

W21, L. 

Intermittent van de 

Wijgert 2020 

Yes Vaginal Intermitte

nt 

Gynophilus 

LP (Lcr 

regenerans, L. 

rhamnosus 

35) 

Significant Reduce BV 

bacteria 

 

Long-term Bohbo et al.  

2018 

Yes Vaginal 56 days Physioflor (L. 

crispatus IP 

174178) 

Significant Time to 

recurrence 

 

long-term Martinez 

2009 

Yes Oral 28 days L. rhamnosus 

GR-1, L. 

reuteri RC-14 

Significant Cure rate 
 

long-term Sudha 2012 Yes, non-

traditional 

Oral 90 days B. coagulans 

Unique IS-2 

Significant Symptoms 
 

long-term Anukam 

2006 

Yes Oral 30 days L. rhamnosus 

GR-1, L. 

reuteri RC-14 

Significant Cure rate, 

Recurrence 

rate 

30 days 

long-term, 

intermittent 

Cohen 2020 Yes Vaginal 4 days, 

2/wk for 

10 weeks 

L. crispatus 

CTV-05 

Significant Recurrence 

rate 

12 wk, 

24 wk 

long-term, 

intermittent 

Marcotte 

2019 

Yes, non-

traditional 

Vaginal 30days, 

1x/wk 

190days 

L. rhamnosus 

DSM 

14870, L. 

gasseri DSM 

14869 

Not 

significant 

Cure rate, 

Recurrence 

rate 
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4.7.2 Supplementary Figures 

 

Figure 4.7.1 Overview of analysis methodology.  

A virtual population was generated based on the Human Microbiome Project cohort. The analysis included two 
regimen types, a short-term probiotic regimen with no antibiotic pre-treatment and the regimen described in a phase 
2b Lactin-V clinical trial (Cohen et al. 2020). 

 

Figure 4.7.2 Four parameter local sensitivity analysis.  
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The top sensitive parameters for BV clearance and top parameters for modulating endogenous Lactobacillus spp. 
levels were modified systematically from -0.01, 0.00, +0.01 density-1d-1 from the null probiotic strain parameter 
values giving rise to 81 possible parameter combinations (top heatmap). The percent of the 2,000 in silico BV+ 
subjects that elicited a certain response type were visualized (nAB-dominant, Li-dominant, oLB-dominant, or P-
dominant). Data is plotted from most efficacious (left) to least (right). The null probiotic strain is indicated by “B>” 
and the red line. Asterisks indicate a significant change in efficacy relative to the null probiotic strain. 

 

Figure 4.7.3 Lactin-V phase 2b clinical trial versus model simulations with increased antibiotic effect. 

Comparison of model predictions with Lactin-V trial results at 12 and 12 weeks for the placebo and the treatment 
arm. For the treatment arm, 4 strains were simulated by the model encompassing a traditionally designed probiotic, 
null probiotic, moderately/conservatively designed probiotic, and bad/negative control probiotic. The impact of 
antibiotic was simulated at a magnitude that was equivalent to the most sensitive G. vaginalis strain in Mayer et al. 
2015. 
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Figure 4.7.4 Parameter values for strains that could elicit consistent population-level compositional changes for a 
short-term regimen.  

Strains in the 90th percentile or higher for imparting a certain compositional effect across the virtual population are 
visualized. (A) Consistently promote nAB-dominant communities (B) Li-dominant communities (C) oLB-dominant 
communities (D) P-dominant communities. 

 

Figure 4.7.5 Parameter values for strains that could elicit consistent population-level compositional changes with 
the Lactin-V regimen.  

Strains in the 90th percentile or higher for imparting a certain compositional effect across the virtual population are 
visualized. (A) Consistently promote nAB-dominant communities (B) Li-dominant communities (C) oLB-dominant 
communities (D) P-dominant communities. 
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Figure 4.7.6 Comparison short-term probiotic only regimen top strains with Lactin-V regimen.  

(A) Interspecies interaction parameter values of top probiotic strains for the short-term probiotic only regimen. (B) 
Abundance-time profile of community groups for each probiotic strain and predicted 12mo frequency of response 
types. (C) Lactin-V regimen abundance-time profile and predicted 12mo frequency of response types for strains 
defined in (A). Red indicates time of antibiotic dosing. 
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Chapter 5 Discussion and Conclusion 

5.1 Concluding Remarks 

The vaginal microbiome is centrally important to female reproductive health, yet 

treatments to re-establish optimal composition exhibit high recurrence rates [29]. In this thesis, I 

present new frameworks for mechanistic analysis of factors that drive community composition 

that can also be used to test new therapies on in silico populations. In my first aim, we address 

how analysis of both target species for BV therapy and non-target, optimal species, can impact 

BV clearance demonstrating the importance of pre-treatment composition on treatment outcomes 

which were validated in vitro and clinically. In my second aim, we characterized and developed 

a framework to simulate patterns in community composition (CSTs) over time that could 

replicate menses and antimicrobial associated composition shifts observed clinically. In my third 

aim, we examined the impact of probiotic strains across virtual patient populations to identify 

strain characteristics most predictive of BV clearance. Within this aim we also replicated the 

findings of a recent phase 2b clinical trial, demonstrating the applicability of the model in vivo. 

Altogether, the work in this dissertation has demonstrated the utility of using ordinary 

differential equations-based models to understand shifts in vaginal microbiome composition and 

lays the groundwork for the use of in silico models to make decisions on new therapies or 

optimize dosing regimens. 

5.1.1 Model Predicts Importance of Pre-treatment Composition on Treatment Efficacy 
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 For the first time, a multi-species in vitro model was used to determine antibiotic efficacy 

in the context of BV [20]. The model accounted for the metabolism and degradation of the 

standard of care antibiotic, metronidazole, by BV-associated bacteria, G. vaginalis, as well as the 

unexpected uptake of metronidazole by L. iners. This two-species model represented a BV-

associated state (G. vaginalis) and a more optimal state (L. iners). Using this model, the 

importance of pre-treatment relative abundance of G. vaginalis to L. iners was identified, where 

higher levels of L. iners resulted in decreased efficacy in reducing the G. vaginalis population. 

This result, which would suggest less severe cases of dysbiosis would be less likely to respond to 

treatment, was accredited to the L. iners population reducing the amount of metronidazole in the 

extracellular environment and validated in vitro. Models with additional species, interspecies 

interactions, and simulated heterogeneity, were created to assess if this finding would generalize 

across microbial communities. Consistently, results pointed toward the importance of higher pre-

treatment ratios of BV-associated bacteria to Lactobacillus spp. to decrease the efficacy of 

metronidazole. This result was then validated in two clinical cohorts, that supported higher pre-

treatment ratios of BV-associated bacteria relative to Lactobacillus spp. were associated with 

higher rates of BV recurrence 1 month after metronidazole therapy.  

 Pre-treatment bacterial abundances have been linked to varying outcomes of 

antimicrobial therapy in other settings. The impact of bacterial load on antimicrobial efficacy is 

known as the inoculum effect and is commonly reported for beta-lactam antibiotics when 

treating beta-lactamase-producing bacteria [190]. We propose a similar effect is contributing to 

BV recurrence, where higher levels of non-target species are reducing the concentration of 

metronidazole that can act on target species to treat BV. In line with bacterial populations 

impacting metronidazole efficacy, inactivation of metronidazole is reported for aerobic 
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organisms, and associated with decreased metronidazole efficacy to treat Trichomonas vaginalis 

[91]. Thus, the finding that Lactobacillus spp. can also sequester MNZ and reduce effective 

concentrations aimed to reduce BV-associated bacteria would mirror reported drivers for 

decreased T. vaginalis treatment efficacy. 

In contrast, studies that aimed to use pre-treatment abundances of BV-associated bacteria 

and Lactobacillus spp. to predict BV treatment outcomes have had mixed results. One study 

aligned with our findings, reporting that treatment failure was not associated with higher levels 

of BV-associated bacteria, G. vaginalis and A. vaginae, [169]. Other reports have observed 

difficulty in linking microbial pre-treatment abundances to treatment outcomes [254–257]. These 

observations are likely due to a variety of confounding factors such as antibiotic route of 

administration, history of BV, time during menstrual cycle, and sexual or hygienic behaviors. 

Inconsistency in how BV treatment failure is defined likely contributes from differences in 

observations, as mechanisms that drive tolerance to metronidazole therapy versus recurrence 

likely differ as some BV-associated strains are reported to be resistant to metronidazole [217]. 

For example, Armstrong et al. 2023 stratified their data as responders and non-responders based 

on Nugent score 1 month post-treatment, whereas our study focused specifically on patients that 

initially responded to therapy, but were BV positive 1 month post-treatment [257]. Turner et al. 

2021 defined their cohort into three groups, refractory, recurrent, and remission where refractory 

patients were BV positive by Amsel criteria at their second visit and recurrent if negative at the 

second visit, and positive at a later date. Again, the main findings were linked with the refractory 

group, where higher levels of BV-associated bacteria (Gsp07) were reported pre-treatment [256].  

Another study reported higher relative abundances of L. iners pre-treatment with treatment 

success also evaluated refractory BV rather than recurrent BV and used intravaginal 
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metronidazole rather than oral metronidazole [255]. Lastly, the impact of non-target species on 

metronidazole is likely one of many contributors to suboptimal treatment outcomes, as aspects 

such as biofilm penetration, genetic or phenotypic resistance mechanisms from BV-associated 

bacteria are also linked with antibiotic efficacy [69,87,189]. 

 While our modeling technique was useful at quantifying the relative importance of 

factors that contribute to metronidazole efficacy, it lacks several components that could make the 

model more translational to clinical data. First, the model was parameterized to a limited number 

of bacterial species and strains. This limitation was partially abrogated using sensitivity analyses, 

but further characterization of interactions of specific species and strains would be helpful for 

understanding the interactions between vaginal microbiota and antibiotic as well as between 

species. Second, the model assumes a well-mixed environment, which is likely not the case in 

vivo as biofilms are hypothesized to be key contributors to BV pathogenesis and treatment failure 

[258]. The incorporation of a biofilm compartment could help better understand synergistic 

interactions within BV communities and characterize the protective properties of biofilms 

against antibiotic penetration [72,92,95,96,259,260]. Lastly, the current model does not capture 

host factors that may dictate the vaginal microenvironment, such as the concentration of 

antibiotic that is present in the in vivo microenvironment, immune milieu, nutrients, or pH levels. 

As the relationship between vaginal microbiota and the vaginal microenvironment improves, 

these factors can be incorporated into a model that is more representative of in vivo conditions. 

5.1.2 Compositional States of VMB Demonstrate Mono- and Multi-Stability 

In this work, we were able to link equilibrium composition states observed in human 

clinical data to predicted steady states using an ordinary differential equations-based model. By 

making this link, information about microbial characteristics was inferred from the relationship 
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of growth rates, self-interaction terms, and interspecies interaction terms which govern predicted 

equilibrium behavior. A global uncertainty analysis was used to recapitulate a physiological 

parameter space, predicting that around 20% of the population would exhibit alternative 

compositional states (multi-stability) which was validated by two clinical cohorts [22,115]. By 

building a virtual patient population based on the frequency at which each equilibrium 

composition subtype was observed in the Human Microbiome Project cohort, we were able to 

compare model predictions against clinical observations of compositional changes due to menses 

and antimicrobial therapy. The strongest simulated menses was predicted to not have a 

statistically significant difference in the frequency of subjects predicted to switch to nAB-

dominated states. For antimicrobial therapy, BV clearance profiles based on two evaluation 

points were used and compared to the CONRAD BV study [220]. Overall, the predicted 

frequency of each clearance type was comparable to the clinically observed frequencies and 

suggested that mono-stability was a major driver of recurrent BV. Lastly, we demonstrated that 

the model could be used to simulate new therapy types, such as combination prebiotics and 

antibiotics, as well as alternative dosing regimens. Overall, the use of a mechanistic model that 

can predict compositional changes in the vaginal microbiome will be useful for the rational 

design of new strategies to treat and prevent BV. 

This work is an extension to classical studies of ecosystems, where communities have 

been reported to exhibit stability in their species-level populations over time as well as undergo 

dramatic shifts to an alternative composition of community members [261]. These shifts in 

composition are hypothesized to be associated with alternative stable states in the system, or 

multi-stability. Macro-scale examples of these events have been observed in coral reefs [262], 

standing water vegetation [263], savanna vegetation [211], and lakes [212]. Evidence of multi-
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stability also exists for microbial communities [44,160,229,264,265]. For example, a study of the 

gut microbiome identified evidence of alternative compositional states by analyzing a thousand 

western adults for bimodal distributions of gut microbiota in a cross-sectional study, followed by 

an analysis of compositional stability in a longitudinal study [160]. Another study of the gut 

microbiome and osmatic perturbations from laxatives additionally supported alternative 

compositional states [266]. The potential of alternative compositional states is important, 

particularly in the vaginal microbiome where there are compositional states associated with 

health and disease. Empirical evidence supports that some individuals can be either stable in an 

optimal state or stable in a non-optimal compositional state [22,115]. The latter is important in 

the context of BV therapy, as it suggests that a temporary regimen of antibiotics would not be 

able to re-establish Lactobacillus spp. dominance if only one stable state is accessible (mono-

stable). This connection to ecological stability could potentially explain why recurrence rates to 

standard of care antibiotic regimens are so high, and why individuals with recurrent BV respond 

to therapy while the regimen persists, but ultimately return to pre-treatment compositions upon 

therapy cessation [29]. 

 Lastly, this work introduces the idea of using in silico or virtual cohorts to assess vaginal 

microbiome therapeutics. Virtual cohort modeling of the vaginal microbiome provides a 

powerful tool, as the study of the vaginal microbiome is limited by the lack of relevant animal 

and in vitro models and allows for characterization uncertainty that arises in clinical samples 

(both host and microbial-related) on treatment success [267]. Virtual cohorts and populations 

historically have been used in quantitative systems pharmacology models to explore possible 

ranges in outcomes and can help predict dose feasibility [268,269]. The ultimate result is a 

prediction for the likelihood of attaining a set treatment success metric, which occurs from 
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sampling parameter values defined by probability distributions that recapitulate population-level 

variability [270]. By using this approach with the vaginal microbiome, new regimens and 

therapeutic targets can more easily be assessed. 

5.1.3 Probiotic Strain Efficacy is Driven by Resident Community Characteristics 

In our work, we used a virtual patient population with equilibrium composition 

frequencies observed in the Human Microbiome Cohort and focused on communities that were 

able to reach a BV state (nAB-dominated) [115]. Two probiotic regimens were assessed, one that 

was a short-term 7-day regimen of probiotic with no pre-treatment period with antibiotic and the 

other modeled a regimen reported in a phase 2b clinical trial for Lactin-V [104]. Response types 

were quantified by the classified community state type after probiotic treatment and were 

observed to be nAB-dominant (treatment failure), Li-dominant, oLB-dominant, or probiotic 

dominant. Outcomes were then expressed a percentage of the virtual patient population that 

exhibited each response type. To unilaterally assess drivers of probiotic strain efficacy, we 

created a control or “null” probiotic that had a moderate growth rate and no interspecies 

interactions. Local sensitivity analyses were then used to identify drivers, revealing the 

importance of resident nAB populations on probiotic strain efficacy. We were additionally able 

to show that probiotic interactions with Li and oLB could be designed to selectively boost a 

specific Lactobacillus spp. response type. The model was then used to assess the Lactin-V 

regimen, resulting in comparable predictions of the placebo arm at 24 weeks and the treatment 

arm at 12 and 24 weeks. We systematically screened probiotic strains to identify characteristics 

that were associated with probiotic efficacy in the two regimen types. Notably, the probiotic 

strains were more sensitive to the impact of resident Lactobacillus spp. with pre-treatment 

antibiotic. Additionally, strains that exhibited similar predicted BV recurrence rates as Lactin-V 
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were observed to be dependent on pre-treatment antibiotic therapy to have a significant effect on 

vaginal microbiome composition. Overall, these results demonstrate that this framework could 

be used to help guide the selection of probiotic strain characteristics and evaluate dosing 

frequency and duration for probiotic therapies. 

The limitations of this modeling framework are similar to those previously described, as 

the model does not capture any host characteristics or the impact of biofilms. Additionally, while 

our model predicted similar outcomes as reported for the phase IIb Lactin-V study, there is a 

high degree of uncertainty in key microbial growth and interspecies interaction strengths of the 

Lactin-V strain. Further characterization of the probiotic strain with common resident 

community members such as Lactobacillus spp. (L. crispatus, L. gasseri, L. jensenii, L. iners) 

and BV-associated bacteria (G. vaginalis, A. vaginae, P. bivia) are needed for higher confidence 

in model predictions to ensure appropriate parameter distributions are selected for the in silico 

populations [271].  

A computational framework to screen probiotics will be a useful tool to help develop 

alternative therapies that can combat recurrent episodes of BV. The development of probiotics 

has been popular but remains relatively unregulated [99]. Traditionally, strains have been 

selected based on their ability to inhibit urogenital pathogens and adhere to epithelial cells; 

however, strain selection criteria vary significantly and are dependent on the route of 

administration. For example, probiotics given orally need to be able to survive the 

gastrointestinal tract and thus exhibit acid, bile salt, and lysozyme tolerance [272]. Then, 

probiotics must engraft into the community or survive long enough to promote a state that 

increases the abundance of endogenous Lactobacillus spp. [273]. Screening for probiotic strains 

does not often include co-cultures with strains expected to be present in resident communities, 
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especially endogenous Lactobacillus spp. which may directly compete for the same niche [228]. 

Our work suggests that an additional criterion for probiotic strain selection may be competition 

with common Lactobacillus spp., particularly L. iners which is most associated with BV. 

Screening of probiotics on the impact of ex vivo cultures with human vaginal microbiota could 

also help identify strains that have the highest probability of survival when introduced to pre-

existing communities.  

5.2 Future Work 

The use of modeling frameworks to understand the vaginal microbiome can provide 

powerful insights into the vaginal microbiome that are difficult to assess with current techniques, 

particularly because the VMB is highly dynamic and there is a lack of adequate in vitro and 

preclinical models [129]. However, to curate increasingly realistic models of the VMB some 

additional experimental data is needed. For example, knowledge of how key vaginal microbiota 

grow under the same conditions is needed to better recapitulate in vivo conditions. Furthermore, 

metabolism likely drives how microbial consortia assemble, dictating the need for measuring key 

substrates that are growth-limiting or cross-fed between species [196,229,274]. By assessing the 

metabolic interactions, we will be able to start answering questions surrounding how changes in 

vaginal microenvironment (e.g., glycogen [47,48,275], amylases [58,276,277], biogenic amines 

[75,278], sialidases, mucins, and organic acids [279]) relate to changes in community 

composition, which can be incorporated into future iterations of model mechanistic resolution. 

Secondly, our models have been limited to focusing specifically on vaginal microbiota, while the 

interactions with host cells such as vaginal epithelial and stromal cells likely dictate the 

composition of the vaginal microenvironment [64,70,111,280]. The addition of vaginal epithelial 

cells will also allow for interrogation beyond compositional shifts associated with BV to 



 150 

characterizing epithelial barrier damage that is hypothesized to drive negative reproductive 

outcomes. Moreover, we would also be able to explore a key outstanding question of the VMB, 

of what are the functional differences between asymptomatic and symptomatic BV, which are 

associated with similar shifts to non-optimal composition, but vastly different impacts on host 

health [21,71,281]. Lastly, biofilm formation is hypothesized to be a major driver of treatment 

recurrence in the vaginal microenvironment but is not captured in our modeling framework 

[87,92,165,225,258–260,282–285]. Model development that can capture key components of 

biofilms that promote the existence of BV-associated microbiota and tolerance to antibiotics will 

be critical to testing new therapies and answering questions surrounding the importance of 

disrupting biofilms on treatment outcomes for BV. 

5.2.1 Validation in Controlled Systems 

One of the major challenges in developing in silico models for the VMB is that there is 

limited experimental data to calibrate and validate the models. In vitro studies rarely have more 

than two species in co-culture, and when the two species are in co-culture it becomes difficult to 

quantify each population. Moreover, it is difficult to co-culture non-optimal vaginal microbiota 

like G. vaginalis with both L. iners and L. crispatus as each species has unique growth 

requirements. As a result, skilled experimentalists are required to generate this data and access to 

such data is limited. In vivo studies also present challenges as data are noisy and have many 

external factors impacting the system that makes relating a model directly, such as through 

standard calibration processes, intractable as the estimated parameter values have a high degree 

of uncertainty.  

Ideal experimental data would include pairwise co-culture of representative vaginal 

microbiota similar to Venturelli et al [286]. Venturelli et al proposed a data-driven pipeline to 
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elucidate ecological forces in synthetic gut microbiome communities [286]. The first step in their 

pipeline was to evaluate temporal behaviors in monoculture and pairwise co-cultures for major 

phyla of the gut microbiome (12-member synthetic community) using a serial dilution 

methodology. Community member relative abundance was quantified by 16S rRNA gene 

sequencing and biomass was measured by OD600. Model calibration was completed on the 

pairwise co-culture data and validation was completed using multi-species assemblages. Another 

study that analyzed urinary tract infection assemblages used conditioned media experiments to 

determine interspecies interaction strengths, which constrained their Lotka-Volterra model 

parameters [161]. For analysis of communities relevant to the vaginal microbiome, pairwise co-

cultures between different G. vaginalis strains, L. crispatus strains, and L. iners strains should be, 

at minimum, analyzed. It is important that multiple strains of each be evaluated as growth 

requirements and interspecies interactions are reported to vary in vitro [42,55,57,59,69,276,287]. 

For example, a G. vaginalis strain (5-1) that was isolated from a women without BV and a 

woman with BV (strain 101) had variable interactions with L. iners, where the pathogenic strain 

exhibited enhanced cell adhesion when in co-culture with L. iners [59]. Additionally, L. 

crispatus strains have exhibited variable production of lactic-acid and ability to metabolize 

glycogen [57,226,276]. 

Recently, a new microfluidic culture model was developed for the human vaginal mucosa 

[111]. This organ-on-a-chip model was able to host consortia of optimal L. crispatus and non-

optimal G. vaginalis containing consortia. The model also included primary vaginal epithelium 

and underlying stroma fibroblasts, which together work to replicate the vaginal 

microenvironment. Model design for a vagina-on-a-chip could be based on a chemostat or 

continuous-flow culture model. Basic chemostat equations are well-established for tracking 
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microbial biomass and the amount of nutrient in a vessel [288]. In the simplest framework, only 

a flow rate will need to be added to the system of ordinary differential equations. Bacteria 

populations can then be described as a reproduction term minus an outflow term. For example, 

the vagina-on-a-chip, the reported flow rate was 40µl/h and measured effluent abundances of 

bacterial species that would be necessary to understand the system dilution rate [111]. Often 

chemostat models relate bacterial growth to nutrient concentration, which includes the impact of 

cell growth on depleting nutrients, depletion due to outflow, and replenishment due to stock 

solution. Monod equations are often used to relate nutrient concentration to the growth rate of 

microbial species. Development of this relationship would require the identification of rate-

limiting substrates for the microbial species of interest.  

5.2.2 Resolution of Interspecies Interactions 

 The generalized Lotka-Volterra model is a reductionist approach to capturing ecological 

interactions between microbial species [158]. One important distinction from classical use of 

pairwise interaction modeling from macro-scale ecology (e.g., hare-lynx) is that microbial 

interactions can be contact-independent [197,289].  The difficulty with contact-independent 

mediators is that these metabolites or substrates may not be directly proportional to the bacterial 

abundance. One study analyzed the difference between reducing the interaction term to one 

parameter versus modeling the intermediary substrates [197]. This work highlighted that 

pairwise Lotka-Volterra models can fail under certain circumstances where interactions are 

chemically-mediated and could be sensitive to the relative fitness of the species and the initial 

conditions in each model. Notably, the authors discuss that the level of abstraction (mechanism) 

for models is dependent on the amount of information available on the interactions within a 
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community. Currently, the information on pairwise, chemically-mediated, interactions is limited, 

but is an area of growth within the field (Figure 5.2.1). 

 

Figure 5.2.1 Comparison of gLV interspecies interaction term versus modeling with a chemically-mediated 
interaction for the competition for a growth limiting carbon source. 

 To improve modeling of vaginal communities, pairwise co-culture or spent media 

experiments could help resolve the magnitude and directionality of interspecies interactions as 

well as the chemical mediators. For gut microbiota, one experimental and computational 

framework unraveled the interactions between six members of a defined murine microbiota in 

vitro [196].  This group used pair-wise co-cultures to understand growth interactions between 

species and then incorporated mono- versus co-culture supernatant metabolomics into a Constant 

Yield Expectation (ConYE) framework. From the mono- and co-culture growth data, the group 

was able to identify the interaction type between species as amensal (0/- or -/0), competitive (-/-), 

parasitic (+/- or -/+), commensal (0/+ or 0/+), mutual (+/+), or neutral. ConYE identifies 

metabolites that have consumption or production behavior changed in co-culture, where 

significant differences from the null hypothesis indicates that at least one strain altered its 
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metabolism. ConYE was then used to identify cross-fed metabolites that could explain a growth 

benefit between two species by analyzing patterns in metabolites relative to ConYE predictions. 

Candidate substrates that did not reject the null hypothesis by ConYE were tyramine, valine, and 

choline and candidate substrates that did reject the null hypothesis were isoleucine, alanine, 

proline, and formate. However, from the mono- vs co-culture data it was difficult to resolve what 

drove differences in biomass production. Another strategy to assess the impact of metabolites on 

biomass is the use of genome-scale metabolic reconstructions (GENREs). GENREs 

mathematically reconstruct all metabolic reactions of an organism and can be related to biomass 

production [152]. Using flux based analysis, in silico predictions on the dependence of biomass 

production on the presence or absence of a metabolite can be tested [290]. Using this analysis on 

the candidate metabolites from ConYE, Medlock et al. determined that valine was most essential 

for Clostridium ASF356 growth, whereas alanine, proline, choline, and formate were not 

predicted to be impact growth rates [196]. The observation that individual metabolites in excess 

did not confer a growth benefit led to the assessment of interactions between metabolites, leading 

to the validation of combinations of proline (Strickland reaction electron acceptors) and electron 

donors (such as alanine) in promoting growth in vitro.  

 GENREs can be used to assess pairwise interactions between species [291–293]. Pairwise 

interaction analysis involves determining the metabolic exchange between two GENREs using a 

joint matrix. In the gut microbiome, this work was employed as a part of the characterization of 

773 human gut bacteria (AGORA, assembly of gut organisms through reconstruction and 

analysis) [291]. These models have been used to demonstrate the importance of environmental 

conditions, such as the impact of diet, on interspecies interactions. For example, one report tested 

13 different diet types and analyzed the change in growth rate for Eubacterium halli and 
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Bifidobacterium adolescentis, reporting amensalism, neutralism, commensalism, and parasitism 

dependent on the diet type [292]. Such an analysis could be useful for understanding the vaginal 

microbiome, as host associated behavior and hormone shifts are linked to changes in the vaginal 

microenvironment that may dynamically shift the way the vaginal community interacts. Notably, 

a second release of AGORA (AGORA2) was published in 2023 that covers 7,302 strains and 

several microbe-drug interactions [294]. Additionally, AGORA2 includes 83 vaginal strains 

including Atopobium vaginae, Bifidobacterium, Dialister, G. vaginalis, several L. crispatus, L. 

jensenii, L. iners, and L. gasseri strains, Mobiluncus, and Prevotella spp.  

 Methodologies to use genome-scale metabolic models in dynamic and multi-species 

settings exist [295]. These methodologies extend dynamic flux balance analysis (dFBA), which 

relate the growth rate of the microbial species and the consumption/production rate to every 

metabolite in the model environment.  These rate parameters are then coupled to ordinary 

differential equations that predict species abundance and metabolite concentrations [296]. One 

such study demonstrated multi-stability and hysteresis in a two species model relevant to small 

intestinal bacterial overgrowth [296]. This work was particularly interested in the role of oxygen 

flux in promoting shifts between aerobe-anaerobe compositions, identifying two metabolic 

pathways that lead to two distinct steady states under the same environmental conditions. A 

hybrid generalized Lotka-Volterra and joint GENRE FBAs has also been proposed [297]. Unlike 

traditional model fitting for generalized Lotka-Volterra models which requires dense, 

longitudinal sampling, this methodology only requires a single compositional sample. Using this 

framework, Brunner and Chia demonstrated that this methodology could predict engraftment of a 

probiotic, which they validated with previously published invasion experiments [298–300]. 

Similar work in the vaginal microbiome to understand shifts between optimal and non-optimal 
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compositions could help pinpoint metabolic drivers of conditions like bacterial vaginosis and 

explain why some individuals undergo compositional shifts and others do not [22,115]. Within 

the past few years the first GENREs for vaginal microbiota have been reported, which will make 

these analyses more obtainable [5,154,301]. 

 A main drawback of GENREs is the intensive curation needed to validate core metabolic 

processes. An alternative approach to capturing metabolic interactions is to use Monod growth 

equations or a MacArthur consumer resource model [251,289,302]. Monod equations quantify 

the growth of a microbe on a growth limiting substrate. If two species compete for the same 

substrate, the interaction can be captured through the consumption and requirement for that 

substrate for the species to grow rather than the generalized Lotka-Volterra interspecies 

interaction term [44]. Examples could be glycogen, glucose, or other glycogen metabolites. Until 

recently, L. crispatus strains were not believed to be able to directly metabolize glycogen [57]. 

Other reports suggest that BV-associated bacteria such as G. vaginalis may degrade glycogen 

more efficiently than Lactobacillus spp., providing an opportunity for their growth [303]. To be 

able to parameterize vaginal microbiota Monod-kinetic models, experimental data relating the 

growth rate of each microbe needs to be characterized at several different concentrations of the 

carbon source. For example, to fit a G. vaginalis Monod-kinetics model, growth curves of G. 

vaginalis collecting biomass measurements over 24-48h would need to be conducted at 0.125, 

0.25, 0.5, 1, 2, 4 g/L glucose. Metabolites that benefit the growth of another species could be 

modeled in an additive manner and characterized similarly to the proposed G. vaginalis 

experiment. An example could be characterizing the dependence of G. vaginalis growth on 

ammonia, given the reports that ammonia produced by P. bivia promotes G. vaginalis growth 

[74]. Cross-feeding, or the potential for microbial species to facilitate the growth of other 
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species, has been explored using the MacArthur consumer-resource model.  A landmark 

application of quantitative consumer-resource models analyzed community assembly in soil 

microbiomes [198]. The MacArthur consumer-resource model contained a single carbon source 

(glucose) and non-specific cross-feeding interactions using a stochiometric matrix describing the 

ratio of consumed resources to secreted resources. This methodology allowed the group to 

explore the stabilization effect cross-feeding has on a community that is competing for the same 

carbon source. The use of MacArthur consumer-resource models have also been applied to 

human microbiomes [163,304]. 

5.2.3 Incorporation of Vaginal Epithelium 

A major limitation in our current modeling framework is the inability to precisely 

integrate the impact of the host on microbial communities and vice versa. The vagina-on-a-chip 

will facilitate the collection of experimental data required to build and validate computational 

models of microbe-epithelial interactions, including adhesion or lysis of vaginal epithelial cell 

barriers, as well as how vaginal microbiota impact immune responses [101,280,305]. Moreover, 

this experimental framework could provide insights into the interplay of host hormones with 

vaginal microbiota, as the vagina-on-a-chip model was shown to be responsive to hormones, 

mimicking accumulation and thickening of vaginal epithelium at increased estrogen levels that 

will allow for the interrogation of the impact of contraceptives and menstrual cycles.  Altogether, 

the vagina-on-a-chip technology will provide a valuable tool to build improved in silico models 

of the VMB through the characterization of interactions between vaginal epithelium and vaginal 

microbes. To model vaginal epithelial cells, an additional cell population will need to be 

incorporated into the model. This addition will require identifying possible growth rates and 

carrying capacities for the vaginal epithelial cell populations, which will can be determined from 
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growth curves like those reported in Iguchi et al. 1983 [306]. Next, the interaction between BV-

associated bacteria and vaginal epithelial cells could be incorporated by modeling the impact of 

vaginolysin (which is produced by BV-associated bacteria) on vaginal epithelial cell lysis. This 

lysis could be modeled using a death rate and half-maximal killing model like those used to 

model antibiotic killing. Parameters can be estimated from previous publications that 

demonstrate the relationship between vaginolysin concentration and epithelial cell lysis [70]. 

Similarly, the impact of L. iners inerolysin could be modeled [64]. The function of both 

cytolysins is pH dependent with inerolysin more active at acidic pH and vaginolysin more active 

at neutral pH and less active at acidic pH. Thus, incorporation of the pH in the model will be 

critical for predicting the impact of community member composition on vaginal epithelial cells 

[307]. Expression of vaginolysin is also tied to phenotype, where mono-species biofilms of 

Gardnerella were associated with less production of vaginolysin [308,258]. However, multi-

species biofilms were reported to have higher expression vaginolysin, driving additional 

complexity that could be captured by incorporating biofilm-specific populations into the model. 

Lastly, L. crispatus was observed to decrease vaginolysin expression and could be modeled as a 

negative feedback loop within the system [309]. 

To model pH, either the rate of acidification or the production rate of lactic acid by 

Lactobacillus spp. would need to be simulated [54]. For the former, some publications have 

reported the rate of acidification for a variety of Lactobacillus spp. [310]. Absolute 

measurements of lactic acid production are most commonly reported [55,75,213,232,311–313], 

but some publications have reported time curves of lactic acid production required to calculate 

the production rate [314]. The concentration of lactic acid and its impact on BV-associated 

bacteria cell killing can be parameterized from previously published kill curves [54]. Acid 
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tolerance mechanisms from BV-associated bacteria may also be of interest, with the 

predominating mechanism believed to be through the production of biogenic amines [278,75]. 

Modeling the impact of pH and lactic acid concentration using ODE models has been reported, 

and requires the addition of equations relating the impact of pH on the bulk growth rate of the 

desired species [315]. 

Lastly, modeling the competition for substrates will be vital to predicting community 

composition. The primary carbon source in the vagina on a chip could be controlled or assumed 

to be glycogen from the vaginal epithelial cells [47,275]. For example, the model could capture 

nuances in the ability of certain microbiota to metabolize glycogen prior to its degradation into 

simpler metabolites like glucose or maltose [58,316]. Recently, publications on the kinetics of 

carbon source metabolism were reported for key vagina microbiota, L. crispatus, L. iners, and G. 

vaginalis for glycogen, amylose and pullulan [58]. The kinetic parameters characterized include 

kcat, Km and the specificity constant needed to model the consumption of these substrates in an 

ODE-based framework using Michaelis Menten kinetics. The enzymes associated with glycogen 

metabolism are also pH-dependent, which supports another mechanism that could promote L. 

crispatus dominance at low pH [58]. Thus, the mechanistic exploration of competition for 

glycogen and environmental conditions (pH) could provide new insights for drivers of 

compositional shifts or stability.  

 Altogether, the incorporation of both microbial composition and key functional outputs 

such as pH and damage to vaginal epithelial cells will make understanding the nuances of BV 

more obtainable. One major outstanding question is why some healthy women exhibit 

compositions that are similar to those who are BV-positive [21]. This framework could help 

interrogate what functional factors could be different, such as the impact of the community on 
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vaginal epithelium. Additionally, it could help settle questions between asymptomatic and 

symptomatic BV, such as whether these conditions are unique health states or different stages of 

BV [317]. For example, typically adverse effects of BV are associated with increased epithelium 

shedding with a recent report suggesting that asymptomatic BV had decreased shedding even 

compared to healthy controls [317]. When assessing cell maturity, it was revealed that 

asymptomatic patients may be in a phase post-symptomatic BV as cells were less mature than 

healthy samples. Our framework could be used to test this hypothesis, by tracking longitudinal 

changes in vaginal epithelium and microbial composition which then can be validated using the 

vagina-on-a-chip technology. Altogether, the vagina-on-a-chip technology will facilitate the 

controlled study of vaginal consortia needed to develop mechanistic in silico models that can 

pinpoint drivers of BV pathogenesis and treatment failure. 

5.2.4 Incorporation of Biofilms 

An important characteristic of BV is the polymicrobial biofilm that adheres to the vaginal 

epithelium. Biofilms are reported to decrease sensitivity to antibiotics as well as compounds 

produced by Lactobacillus spp. typically associated with inhibited BV-associated bacteria 

[259,260]. Thus, new therapies and regimens to treat BV are being designed to disrupt these 

biofilms such as through the use of boric acid [223], enhanced derivatives of boric acid (TOL-

463) [94], and amphoteric tensides (WO3191) [95]. To be able to simulate and capture the 

importance of biofilm disruption in BV treatment outcomes, additional components will need to 

be incorporated into our modeling framework. A minimal model for biofilm formation would 

require delineation between planktonically growing species and biofilm-growing species. This 

framework could be similar to semimechanistic PK/PD models used to predict antibiotic efficacy 

[157,318]. These models capture phenotypic switching between two populations of cells: 
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normally growing cells and persister cells that typically have reduced growth rates and decreased 

susceptibility to antibiotics. In relation to biofilm modeling, each species would have two states 

to transition between a planktonic state with increased sensitivity to antibiotics and a biofilm 

state that is less sensitive to antibiotic and antimicrobial agents generated by other species in the 

vaginal microbiome. Modeling of the impact of disrupting agents would be simulated as 

changing the rate at which cells switch between these two phenotypes. More complex models of 

biofilms have been extensively studied, but likely not necessary for our framework [319]. These 

models include capturing heterogeneity in fluid flow associated with the physical properties of 

the biofilm and require partial differential equations. Since decreased antibiotic penetration can 

be captured as a decreased sensitivity (higher EC50), there is not a current need to capture the 

system at a resolution that models advection-diffusion in biofilms.  
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