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ABSTRACT

The National Academies of Sciences, Engineering, and Medicine released a consensus study re-
port in 2022 regarding concerns of the resiliency of medical supply chains. Narrowing the focus to
pharmaceutical drugs, disruptions have plagued pharmaceutical supply chains long before 2022,
but gaps in research prevail regarding how to improve inventory decision-making to help mitigate
the negative effects of these disruptions. Supply chain disruptions impact the availability of the
drug whereas demand disruptions impact the quantity of a drug needed. Pharmaceutical drugs are
also a perishable product implying that hospital pharmacies cannot simply stock-up on a drug to be
“safe". This dissertation makes contributions at the intersection of operations research and health-
care by creating a series of mathematical models to improve decision-making, provide insights,
and challenge administrative policies in current practice for hospital pharmacy inventory systems.

This dissertation consists of four technical chapters where each chapter has its own model and
research contributions. The first technical chapter consists of a simulation-optimization model that
is used to solve for reorder point s and order-up-to level S periodic review inventory policies for a
hospital pharmacy inventory system with supply chain disruptions and perishability. The model is
quickly solved using a Binary Grid-Search algorithm.

From the first technical chapter, we recognize that not all hospital pharmacies have the re-
sources to implement simulation-optimization models in practice. Therefore, we modify some of
the assumptions made in the first technical chapter and provide a closed-form model in the sec-
ond technical chapter. Specifically, the second technical chapter provides closed-form solutions
for length of the review period R and order-up-to level S periodic review inventory policies in a
hospital pharmacy inventory system with supply chain disruptions and perishability. The model
provides the inventory policy quickly and is easy to implement.

Beyond supply chain disruptions and perishability, we recognize that hospital pharmacy inven-
tory systems may face demand disruptions. The third technical chapter builds upon the second
technical chapter by creating an adaptive inventory system that incorporates these demand disrup-
tions. The research is designed to answer the following question: How does a drug’s shortage-
waste weighting along with the duration of and time between supply chain disruptions influence
the benefits (or detriments) of adapting to demand disruptions? We also create a ranking procedure
that provides a way of discerning which drugs are of most concern and illustrates which policies

xii



to update given that a limited number of inventory policies can be updated.
We recognize that strict regulations in current practice generally prohibit hospital network phar-

macies from sharing drugs outside of their network or make it very difficult for hospital network
pharmacies to stay compliant when sharing drugs outside of their network. To this end, the fourth
technical chapter builds upon the second technical chapter and includes a modeling framework
to solve for continuous review order-up-to level inventory policies in a two-hospital network phar-
macy inventory system with supply chain disruptions, perishability, and lateral transshipments (i.e.,
sharing of inventory; integrated inventory system).

The technical chapters of this dissertation capture the challenging characteristics of a hospital
pharmacy inventory system like disruptions and perishability. These technical chapters also build
upon one another which allows for more in-depth models and insights. Furthermore, patients
depend on pharmaceutical drugs for treatment, and this dissertation is designed to help ensure that
these patients have access to the treatment that they need.

xiii



CHAPTER 1

Introduction

Hospital pharmacy managers face a fundamental trade-off: drug waste versus drug shortages. Drug
waste is costly; U.S. hospital pharmacies discard approximately $800 million worth of expired
drugs a year (Allen, 2017). On the other hand, drug shortages are a public health crisis that in-
crease costs for patients, increase medication errors, lead to inferior treatments, and lead to severe
consequences such as death (Phuong et al., 2019). Drug shortages are often the result of fragile
pharmaceutical supply chains (Tucker, 2020). Furthermore, there have been recent concerns re-
garding the resiliency of medical supply chains and with the current geo-political environment in
which energy sources are being weaponized, it is very likely that drugs will follow soon if China
or India elect to do so (i.e., drug shortages are likely to get worse than better) (NASEM, 2022).

To address both drug waste and drug shortages, three aspects need to be considered: (1) Per-
ishability and supply chain disruptions make it difficult to select the appropriate levels of drug
inventories to maintain. This leads to hospitals ending up with more drugs than needed [waste]
or an insufficient number of drugs [shortage]. (2) Demand disruptions (i.e., declines or surges in
demand) are prevalent in the inventory system, but few studies have investigated how inventory
policies should adapt to decreases [often leads to waste] and increases [often leads to shortages] in
demand. (3) Hospital networks do not work in isolation, but it is unclear if sharing drug inventory
between hospital networks would help to mitigate drug waste and drug shortages.

This dissertation considers these aspects by (see Figure 1.1): (1) solving for periodic review
inventory policies for a hospital pharmacy with perishability and supply chain disruptions, (2)
creating an adaptive periodic review inventory system that endogenously detects and responds to
significant shifts in demand to account for demand disruptions, while still accounting for perisha-
bility and supply chain disruptions, and (3) formulating and solving a multi-location model that
quantifies the impact of an integrated inventory system across hospital networks with respect to
drug waste and drug shortages. From model conception, design, and publication of this disserta-
tion research, I, Lauren L. Czerniak, worked closely with a interdisciplinary team consisting of
Mariel S. Lavieri and Mark S. Daskin (academic co-advisors at the University of Michigan [UM];
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Industrial and Operations Engineering), Eunshin Byon (Industrial and Operations Engineering As-
sociate Professor at the UM), Burgunda V. Sweet (Assistant Dean for Curriculum Assessment and
Clinical Professor of Pharmacy at the UM), and Jennifer Erley-Leja, Matthew A. Tupps, and Karl
Renius (licensed pharmacists and Central Pharmacy managers at the UM).

Lauren L. Czerniak; University of Michigan

Aspects That Need Consideration

Chapter 4: 
Adaptive closed-form inventory policies for 

one hospital pharmacy

Chapter 2: 
Simulation-optimization to solve for inventory 

policies for one hospital pharmacy

Chapter 3: 
Closed-form inventory policies for 

one hospital pharmacyDemand 
disruptions

Perishability and supply chain 
disruptions

Chapter 5: 
Integrated inventory policies for 
two hospital network pharmacies

Sharing of 
inventory across 

hospital networks

Figure 1.1: Depiction illustrating how this dissertation incorporates the three aspects that need
consideration. Chapters 2-5 correspond to the four technical chapters of this dissertation.

We proceed to provide an overview of the four technical chapters of this dissertation (i.e., Chap-
ters 2-5) where each chapter is a standalone paper. For each technical chapter, the key contributions
are highlighted. At the end of this chapter, we provide a note on the application of the models from
the four technical chapters and describe how this dissertation is organized.

1.1 Chapters 2-3: Inventory Policies with Perishability and
Supply Chain Disruptions

To reduce drug waste and drug shortages, it is essential to consider perishability and supply chain
disruptions when establishing how much inventory to have on-hand and when to place orders in a
hospital pharmacy inventory system. However, hospital pharmacy managers are often responsible
for thousands of different drugs (e.g., 2,500+ drugs at the UM). Hence, it is crucial to have models
that provide quick computation times for inventory policies that account for perishability and sup-
ply chain disruptions. In Chapters 2-3 of this dissertation, we tackle this challenge by developing
two models which quickly solve for inventory policies in a hospital pharmacy inventory system.
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1.1.1 Chapter 2: Simulation-optimization Model

In Chapter 2, the reorder point s and order-up-to level S periodic review inventory policy are
identified using simulation-optimization. The contributions of this research are as follows:

1. We develop a simulation-optimization model to determine near-optimal (s,S) periodic re-
view inventory policies for a perishable system that faces supply chain disruptions, stochas-
tic demand, and positive lead time. Further, there are no probability distribution restrictions
for the uncertain parameters.

2. We implement a Binary Grid-Search algorithm which uses the structure of the objective func-
tion to solve for the (s,S) policies rather than taking an Exhaustive Grid-Search approach.

This research is published in the Proceedings of the 2021 Winter Simulation Conference and has
the following co-authors: Lauren L. Czerniak, Mark S. Daskin, Mariel S. Lavieri, Burgunda V.
Sweet, Jennifer Erley-Leja, and Matthew A. Tupps (Czerniak et al., 2021).

1.1.2 Chapter 3: Closed-form Model

The model presented in Chapter 2 provides quick computation times and offers great flexibility
in terms of the system characteristics. Still, not all hospital pharmacies have the resources to
implement simulation-optimization models in practice. Hence, in Chapter 3, we derive optimal
length of the review period R and order-up-to level S periodic review inventory policies in closed-
form by relaxing the stochastic demand and positive lead time assumption. The contributions of
this research are as follows:

1. We derive exact closed-form solutions for a non-perishable and perishable lost-sales (R,S)
periodic review inventory system with supply chain disruptions.

2. We provide insights regarding how model inputs and parameters influence the (R,S) inven-
tory policies using the closed-form expressions and numerical sensitivity analysis.

3. Our models are applied to a hospital pharmacy inventory system to (i) illustrate the con-
sequences of not implementing the proposed closed-form model in a perishable inventory
system with supply chain disruptions, (ii) analyze the influence of supply chain disruption
patterns, (iii) study the impact of stochastic demand, and (iv) investigate the trade-off be-
tween model simplicity and model accuracy.

This research is published in INFOR: Information Systems and Operational Research and has the
following co-authors: Lauren L. Czerniak, Mark S. Daskin, Mariel S. Lavieri, Burgunda V. Sweet,
Jennifer Erley-Leja, Matthew A. Tupps, and Karl Renius (Czerniak et al., 2023a).
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1.2 Chapter 4: Adaptive Inventory Policies

In addition to perishability and supply chain disruptions, demand disruptions pose an additional
challenge for hospital pharmacy managers when deciding how much inventory to have on-hand
and when to place orders. Demand disruptions were prevalent during the Covid-19 pandemic
(e.g., surges in demand to treat Covid-19 patients and declines in demand for other drugs due to
the cancellation of elective surgeries). Failing to adapt to disruptions that increase or decrease
demand often leads to drug shortages and drug waste, respectively. To this end, Chapter 4 answers
the following question: how does a drug’s shortage-waste weighting and supply chain disruption
profile (i.e., duration of and time between supply chain disruptions) influence the benefits (or
detriments) of adapting to demand disruptions? The contributions of this research are as follows:

1. We create an adaptive (R,S) periodic review inventory system that accounts for perishability,
supply chain disruptions, and demand disruptions. All expressions are presented in closed-
form providing quick solution times and easy implementation which is critical in a hospital
pharmacy where managers are often responsible for thousands of different drugs.

2. The adaptive inventory system relies on the expected proportion of drugs wasted per day
in a (R,S) periodic review perishable inventory system with supply chain disruptions and
stochastic demand. To the best of our knowledge, we are the first to present this value in
closed-form.

3. We use the adaptive inventory system to create a ranking procedure. The ranking procedure
provides a way of discerning which drugs are of most concern and illustrates which policies
to update given that a limited number of inventory policies can be updated.

4. We leverage simulation modeling and perform an extensive numerical analysis using real-
world demand data from the University of Michigan’s Central Pharmacy to distinguish how
a drug’s shortage-waste weighting and supply chain disruption profile influence the benefits
(or detriments) of adapting to demand disruptions.

This paper has been submitted for publication and has the following co-authors: Lauren L. Czer-
niak, Mariel S. Lavieri, Mark S. Daskin, Eunshin Byon, Karl Renius, Burgunda V. Sweet, Jennifer
Erley-Leja, and Matthew A. Tupps (Czerniak et al., 2023b).

1.3 Chapter 5: Integrated Inventory Policies

Strict regulations in current practice generally prohibit hospital network pharmacies (HNP; i.e., a
central pharmacy that provides drugs for all hospitals in the healthcare network) from sharing drugs
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outside of their network or make it very difficult for HNPs to stay compliant when sharing drugs
outside of their network. However, it is unclear if sharing drug inventory between hospital networks
(i.e., lateral transshipments [LT]; shipments between hospital networks) would help mitigate drug
waste and drug shortages. In Chapter 5, we create a new modeling framework that solves for
continuous review order-up-to level inventory policies in a two-HNP integrated inventory system
with supply chain disruptions and perishability. The contributions of this research are as follows:

1. We create a modeling framework to solve for the continuous review inventory policies that
minimize the expected cost per day in a two-HNP non-perishable integrated inventory sys-
tem with independent suppliers experiencing supply chain disruptions. To incorporate per-
ishability, we introduce a constraint on the probability drugs are wasted at each HNP. This
modeling framework can also be applied to many inventory systems of interest (e.g., blood
banks).

2. Working closely with our hospital pharmacy collaborators at the University of Michigan,
we numerically study a two-HNP perishable integrated inventory system to (i) demonstrate
when it is beneficial to allow two HNPs with independent suppliers experiencing supply
chain disruptions to share inventory and (ii) provide insights on how the supply chain dis-
ruption characteristics of the two HNPs influence whether it is beneficial to share inventory.

This paper is published in IISE Transactions on Healthcare Systems Engineering and has the fol-
lowing co-authors: Lauren L. Czerniak, Mariel S. Lavieri, Mark S. Daskin, Burgunda V. Sweet,
Jennifer Erley-Leja, Matthew A. Tupps, and Karl Renius (Czerniak et al., 2023c).

1.4 Application of the Models

The four technical chapters of this dissertation focus on hospital pharmacy inventory systems. We
note that the application of this research may not be directly applicable to other pharmacy inven-
tory systems (e.g., retail pharmacy inventory systems). For example, hospital pharmacies often
stock thousands of different drugs (e.g., 2,500+ drugs at the UM) for a wide-range of treatments
(e.g., surgical procedures, cancer treatment, daily care). However, retail pharmacies often only
stock a small subset of the drugs that hospital pharmacies stock making quick computation times
less of a concern. Furthermore, we discuss how strict regulations in current practice generally
prohibit HNPs from sharing drugs outside of their network or make it very difficult for HNPs to
stay compliant when sharing drugs outside of their network. In a retail pharmacy setting, sharing
regulations may be less of a concern. As an example, consider a patient whose primary retail phar-
macy (e.g., Walgreens in their neighborhood) does not have the medication that the patient needs
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on-hand. The patient may either drive to a Walgreens outside of their neighborhood to get the
medication that they need or have the prescription transferred to a different community pharmacy
that has the medication in stock.

1.5 Organization of Dissertation

We proceed to describe how the remainder of this dissertation is organized. Chapters 2-5 consist of
the four technical chapters. Each of these chapters have its own introduction and motivation, liter-
ature review, model, numerical analysis, and concluding remarks. Chapter 6 provides concluding
thoughts and future research directions.
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CHAPTER 2

Improving Simulation Optimization Run Time
When Solving for Periodic Review Inventory Policies

in a Pharmacy

2.1 Introduction

It is estimated the United States spends about $329 billion annually on drugs (Hartman et al., 2018).
However, demand and supply uncertainties in a pharmacy inventory system make decision-making
a challenging task. Having insufficient inventory can lead to shortages which increase cost for care,
increase medication errors, and lead to inferior treatments (Phuong et al., 2019). In contrast, drugs
are a perishable product, so holding too much inventory can lead to waste. Accounting for these
different sources of uncertainty, perishability, and system characteristics (like positive lead time)
make it computationally difficult to determine how much inventory to keep on hand and when
orders should be placed.

We develop a simulation-optimization model to determine near-optimal (s,S) periodic review
inventory policies where s denotes the reorder point and S denotes the order-up-to level. The ob-
jective is to minimize the expected cost per day and the model represents a drug at one hospital
pharmacy. Simulation-optimization is often used for optimization problems where the objective
function cannot be computed exactly, usually due to stochastic parameters in the problem of inter-
est. Instead, replications of a simulation model with realized random variables are used to estimate
the objective function (Fu, 2015). In the pharmacy system of interest, an inventory manager can
be responsible for over 2,500 drugs. Hence, quickly solving the simulation-optimization model
is crucial. To do this, we implement a Binary Grid-Search (GS) algorithm to solve for the near-
optimal periodic review policies and compare its run time to an Exhaustive GS and a Convergent
Optimization via Most-Promising-Area Stochastic Search (COMPASS). We refer to these solu-
tions as near-optimal because we discretize the solution space. Also, throughout this chapter, we
refer to this discretized solution space as a square grid where the rows correspond to the values of
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s and the columns correspond to the values of S.
To illustrate our solution framework, we apply our methodology to solve for the (s,S) param-

eters in a periodic review inventory system for a drug test case. While this chapter looks at the
problem from a pharmacy perspective, the models presented can be applied to other first-in-first-
out perishable inventory systems such as chemicals and food warehouses. Also, the model places
no restrictions on the probability distributions for the uncertain parameters, which provides greater
flexibility for products that may be of interest. Below, we present related research from inventory
management to motivate how the simulation-optimization model expands upon current literature.
We also explicitly highlight the contributions of this chapter.

Past literature includes a variety of methodologies to solve for periodic review inventory poli-
cies: stochastic programming, reinforcement learning, simulation, closed-form solutions. With
respect to (s,S) periodic review policies, it is important to recognize the valuable research that
studies (s,S) policies from a gradient estimation perspective (e.g., Bashyam & Fu, 1991; Fu &
Hu, 1997) and early research that does not consider a perishable and supply disrupted system like
the one presented in this research (e.g., Sahin, 1982; Zheng & Federgruen, 1991). Recent perish-
able inventory research uses models such as stochastic programming and reinforcement learning
to determine optimal periodic review policies in the presence of stochastic demand (Dillon et al.,
2017; Rajendran & Ravindran, 2019, Rajendran & Srinivas, 2020; Kara & Dogan, 2018). Further,
Nguyen & Chen (2019) use stochastic programming to model stochastic demand and stochastic
yield supply. When looking at the supply disruption side, Atan & Rousseau (2016) consider sup-
ply disruptions in a perishable inventory system, but they do not account for uncertain demand.
For supply disruptions in non-perishable inventory systems, some researchers include stochastic
demand with supply disruptions (Schmitt et al., 2010) and some only account for supply disrup-
tions (Skouri et al., 2014; Konstantaras et al., 2019), but again, these models do not account for
perishability.

For research that solves for optimal inventory policies in a pharmacy system, Zhang et al. (2014)
use a deterministic demand and supply model whereas Saedi et al. (2016) account for uncertain
demand and supply disruptions, but they assume there is no lead time. Other researchers look into
the lead time question like Li et al. (2018) who consider stochastic lead time, but no uncertainty
in terms of supply and demand, while Franco & Alfonso-Lizarazo (2020) include stochastic de-
mand and lead time, but they do not consider supply disruptions. In summary, there is a gap in
periodic review policies for perishable products that face stochastic demand, supply disruptions,
and positive lead time.

The two main contributions of this chapter are:

1. We develop a simulation-optimization model to determine near-optimal (s,S) periodic re-
view inventory policies for a perishable system that faces stochastic demand, supply disrup-
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tions, and positive lead time. Further, there are no probability distribution restrictions for the
uncertain parameters.

2. We implement a Binary GS algorithm which uses the structure of the objective function to
solve for the (s,S) policies rather than taking an Exhaustive GS approach.

The remainder of the chapter is organized as follows: Section 2.2 describes a (s,S) inventory
system and how to model this system using simulation. Section 2.3 presents three methods for
solving the simulation-optimization model: Exhaustive GS, COMPASS, and Binary GS. Section
2.4 provides numerical results using all three methods. Finally, Section 2.5 closes the chapter with
concluding thoughts and future research.

2.2 (s,S) Periodic Review Inventory System

2.2.1 (s,S) Inventory Process

There exists a variety of inventory policies that any given system can follow. Consistent with
the system of interest, this research focuses on (s,S) periodic review inventory policies. We define
inventory position as the amount of inventory on hand plus the amount of inventory en route. When
the inventory position falls below s, an order is placed for S minus the inventory position. Here,
the review period is 1 day. Figure 2.1 illustrates (s,S) inventory policies in a perishable lost-sales
inventory system where H is the total inventory on hand, H ′ is the total inventory on hand that
expires at the end of day t, P is the inventory position, d is the demand, s is the reorder point, and
S is the order-up-to level.

Lauren Czerniak
Inventory (s,S) Process
January 2021
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Figure 2.1: Process flow of (s,S) perishable inventory system ( (#) correspond to model in Section
2.2.2.3).
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2.2.2 Simulation Model

To develop a simulation-optimization model, the first step is to create a simulation model that
represents a (s,S) periodic review inventory system and outputs the objective of the model given
(s,S) as inputs. The objective of the model is to minimize the expected cost per day where cost
is measured relative to purchasing cost. The costs of interest are shortage, waste, holding, and
ordering.

2.2.2.1 Assumptions

The simulation model represents a drug at one hospital pharmacy and drug substitutes are not con-
sidered. Our modeling framework makes this no substitute assumption because in practice, there is
often a preferred choice and even when substitutes are available, these substitutes often come with
additional logistics like ensuring the patient does not have a certain comorbidity. Drugs typically
have an expiration date that is with respect to the end of the month (e.g., July 31). Therefore, our
model assumes all drugs that arrive in the same month come from the same production batch and
have the same end of the month expiration date. Hence, drugs are only discarded at the end of
the month. We assume the inventory on-hand and estimated days until inventory expires is known
each day t. Also, the lead time is deterministic and non-negative (l ∈ N0) where l = 0 implies an
order placed at the end of day (t −1) arrives at the beginning of day t. Demand is stochastic and
supply uncertainty is due to disruptions (i.e., no supply yield uncertainty). We assume these two
sources of uncertainty are independent from one another. Last, we assume all demand not met is
lost, first-in-first-out protocols are always followed, and there is no seasonal demand.

2.2.2.2 Input Parameters

For input parameters, we consider a planning horizon of length |T| days t = 1,2, ..., |T|. We denote
l as the deterministic lead time (l ∈N0), e as the shelf-life of the drug (months), |R| as the number
of simulation replications (r denotes a particular replication), and b, z, h, and o as the shortage,
waste, holding, and ordering cost relative to purchasing cost, respectively. For the discretized
square grid, we denote sl = Sl as the minimum value for s and S, su = Su as the maximum value for
s and S, and ∆ as the grid increment for s and S. For example, sl = 25, su = 100, ∆ = 25 =⇒ s ∈
[25,50,75,100]. For the uncertain parameters in the model, we define dt as the demand on day t

and yt as a binary variable for the supply disruption status on day t. For the binary variable, yt = 0
denotes supply is disrupted and yt = 1 denotes supply is not disrupted. There are no restrictions on
the probability distributions of these sources of uncertainty.
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2.2.2.3 Simulation Model Description

Given these assumptions and input parameters, we describe the simulation model at a high level.
Pseudocode for the simulation model can be found in Appendix A.1 and the steps in the simulation
model are identified on Figure 2.1. Also, it is important to note the decision variables (s,S) are
inputs to the simulation model and we discuss how to optimize these decision variables in Section
2.3.

The simulation model begins with the function StaticSim where for each replication r, the func-
tion generates a daily demand pattern and supply disruption pattern using the associated input
parameters and probability distributions. Then, the InventoryProcess function is called to calculate
the number of shortages, drugs wasted, orders placed, and drugs held during the planning horizon
for this replication r. The function InventoryProcess calculates these values by taking the input
parameters, demand pattern for replication r, supply pattern for replication r, s, and S and simu-
lating how the system would operate with these parameters. For each day in the planning horizon,
(1) orders arrive to the pharmacy at the beginning of the day, (2) inventory levels are updated, (3)
inventory levels are updated based on the demand observed on day t, (4) if day t corresponds to
the end of the month, expired drugs are discarded, and (5) an order is placed according to the (s,S)
inputs if supply is not disrupted. This process continues until the end of the planning horizon is
achieved. At this point, the objective value is calculated and InventoryProcess returns this output
to the StaticSim function. All replications r follow the same process (computed in parallel to re-
duce computation time) and at the end, StaticSim calculates the average objective value over all
replications r.

2.3 Simulation-optimization

When using the simulation model described in Section 2.2.2 to solve for the near-optimal (s,S)
periodic review policies, we consider three approaches: Exhaustive GS, COMPASS, and Binary
GS. Also, we use common random numbers regardless of the search procedure.

2.3.1 Near-Optimal Policies Using Exhaustive Grid-Search

Exhaustive GS takes a discretized grid for the parameters s and S and enumerates the objective
value for all feasible solutions. In this inventory policy setting, a solution is only feasible if s ≤ S.
Since one is enumerating all solutions, the computation time can become excessive, especially for
fine grid spaces.
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2.3.2 Near-Optimal Policies Using COMPASS

COMPASS is a discrete simulation-optimization algorithm where at each iteration, a most promis-
ing area is defined which depends on the distance between a feasible solution and the best solution
found thus far (Hong & Nelson, 2006). This most promising area is adaptive and to keep consis-
tency with the other search procedures, we allocate the same number of simulation replications
to all enumerated solutions. Also, the algorithm requires a uniform search procedure over the
discretized grid, so we implement the RMD algorithm (Hong & Nelson, 2006).

2.3.3 Near-Optimal Policies Using Binary Grid-Search

Binary GS takes a discretized grid for the parameters s and S, but instead of enumerating all solu-
tions, binary searches are completed successively on the rows and columns until no improvement
to the objective value is made. For initialization, the algorithm enumerates all diagonal solutions
on the discretized grid.

2.3.3.1 Structural Properties of the Objective Function

Our empirical observations support that we cannot assume the objective function is always mono-
tonically decreasing and then monotonically increasing with respect to s for fixed S and S for fixed
s (i.e., the negation of the objective function is unimodal). Consider the drug test case (described in
Section 2.4) with 5,000 replications and solved using an Exhaustive GS (Section 2.3.1). Figure 2.2
displays (a) Expected Cost Per Day vs Reorder Point s and (b) Expected Cost Per Day vs Order-
up-to Level S for five different values of S and s, respectively. For (a), one may consider why the
objective function is flat up to some reorder point s. This occurs in cases where the reorder point,
s, is too small and the order-up-to level, S, is too large resulting in there (almost surely) being a
significant number of drugs that expire before there is sufficient demand to use these drugs (i.e.,
inventory position drops to 0). Therefore, an order is placed to bring the inventory level up to S

regardless of the value of s and it is important to consider that all of these drugs have the same ex-
piration date. Figure 2.2 illustrates the objective function is not always monotonically decreasing
and then monotonically increasing, but that it does exhibit characteristics of this structure.
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(a) Expected cost per day vs reorder point s. (b) Expected cost per day vs order-up-to level S.

Figure 2.2: Objective function (expected cost per day) with respect to s for fixed S and S for fixed
s.

We also consider if the monotonically decreasing and then increasing property does not hold
for this test case due to simulation error. Regardless of the number of simulation replications
completed, there will be some error with respect to the objective value since this output is a result of
a stochastic process. When considering solutions that are significantly different from one another
at a confidence level of 95%, 5.7% of the pairwise comparisons with respect to the columns of
the grid and 3.9% of the pairwise comparisons with respect to the rows of the grid fail to meet the
monotonically decreasing then increasing structure. These results demonstrate the proportion of
time the monotone property does not hold is relatively small.

These findings motivate a regular binary search coupled with a forced binary search to ensure
one is not caught in a local optimum. Forced binary search means we complete a binary search
above, to the right, below, and to the left of the current solution regardless of the objective value
of the neighboring solutions. The algorithm can be seen as a metaheuristic where we exploit when
neighboring solutions improve the objective value. However, before terminating, we also accept
worse neighbors with the aim of avoiding local optimality. We simply refer to the algorithm as
Binary GS and details follow in the subsequent section.

2.3.3.2 Description of Binary Grid-Search

Throughout the explanation of the Binary GS algorithm, we will refer to the discretized grid de-
scribed earlier (square grid matrix where the rows correspond to s values in increasing magnitude
and the columns correspond to S values in increasing magnitude). A binary search, also known as
a half-interval search, is when one successively divides a unimodal search interval in half to find
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the global maximum (i.e., negation finds global min). For example, consider the objective value,
V , for a fixed s across nine increasing S values: V = (100,99,75,72,84,88,94,100,106). One
first starts at the midpoint of the full interval (i.e., 84). Then, one considers the neighboring solu-
tions (i.e., 72 and 88). Since 72 < 84, one considers the midpoint (i.e., 75) of the halved interval
(100,99,75,72,84) and the same procedure continues.

To initialize the algorithm, (a) we enumerate all feasible solutions on the diagonal of the dis-
cretized grid with the number of replications desired by the user. From these initial enumerations,
(b) we select the column that minimizes the objective function and perform a binary search on this
column. (c) The feasible solution minimizing the objective function is chosen as the starting point.

Then, we begin an iterative process where (1) we enumerate the objective value to the left and
right of our current solution. If both of these objective values are greater than the current solution,
no change is made to the current solution. Otherwise, we carry out a binary search on this row
of the grid and update our current solution with the new minimum found. (2) We enumerate the
objective value above and below our current solution. If both of these objective values are greater
than the current solution, no change is made to the current solution. Otherwise, we carry out a
binary search on this column of the grid and update our current solution with the new minimum
found. (3) We check if the solution found in the previous iteration is the same solution as this
iteration. If not, the iterative process starts back at (1) with the current solution. If yes, then
(4) a binary search is completed on the interval above, to the right, below, and to the left of the
current solution to avoid local optimality (Section 2.3.3.1). As an example, the above interval
means we consider the Scurrent column and search the interval s ∈ [sl,scurrent ]. These four interval
searches are completed regardless of the value of the neighboring solutions of the current solution
(i.e., the neighboring solutions may be worse). The key idea is that if the current solution is truly
optimal, then performing a binary search on these four intervals should find a solution no better
than the current solution. If the current solution remains optimal, the algorithm terminates. If not,
then the iterative procedure starts back at (1) with the best solution found thus far as the current
solution. Figure 2.3 below demonstrates the process where the light shaded circle with (*) denotes
the solution and the fully shaded black circles denote the search area for that step. Pseudocode for
the algorithm can be found in the Appendix A.2.
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Figure 2.3: Process flow of binary grid-search (s: reorder point, S: order-up-to level, V : objective
value).

2.4 Experimental Analysis

To evaluate the performance of the simulation-optimization model solved with an Exhaustive GS,
COMPASS, and Binary GS, we present eight different cases where we vary the number of repli-
cations (“computational cost") for each method. We vary the replications from 100-10,000. We
provide this range because |R| = 5,000 replications ensures a confidence interval width, w, of at
most 1. Specifically, one can determine |R| by ensuring w > (2cdmax)/(

√
|R|) where c is a user-

specified confidence level (e.g., c = 1.96 for 95%), dmax is the maximum standard deviation from
the simulation model when analyzed on a discretized grid, and w is the desired confidence interval
width. For each of these eight cases, we present the near-optimal objective value, near-optimal s,
near-optimal S, and run time when using (a) Exhaustive GS, (b) COMPASS, and (c) Binary GS.
Objective values are rounded to the nearest tenths place. For COMPASS, we consider m = 1

10 (no.

of feasible solutions) solutions to randomly and uniformly search with replacement each iteration
and consider a warm-up of W = 10 iterations for the uniform search. We terminate this algorithm
when all neighboring solutions have been enumerated and the same solution has been found for 10
iterations in a row. All numerical experiments are completed in R (Version 4.0.3) on a Windows
desktop (4.28GHz).
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2.4.1 Pharmacy Model Input Parameters and Numerical Results

We use the input parameters across all eight cases where the cost (relative to purchasing cost)
associated with waste, shortages, holding, and ordering are relevant to the pharmacy system of
interest. We define |T| = 360 Days (30 Days/Month), l = 6 Days, e = 3 Months, b = 5 (Haijema,
2013), z = 1 (Haijema, 2013), h = 0.001 (Jia & Zhao, 2017), o = 0.5 (Haijema, 2013), sl = Sl = 100,
su = Su = 5000, ∆ = 100, Demand ∼ Poisson(λ = 25/day), Days to Supply Disruption [Recovery]
∼ Geometric(p1 = 0.01) [Geometric(p2 =

1
30 )].

Figure 2.4 below displays (a) Expected Cost Per Day vs Number of Simulation Replications and
(b) Run Time (hours) vs Number of Simulation Replications. For Figure 2.4 (a), we present the
objective value with replications independent of the replications used to optimize the (s,S) poli-
cies to avoid optimization bias. Notice that in all cases, the Binary GS algorithm finds the exact
same solution as the Exhaustive GS algorithm or a solution that is better in objective value when
accounting for optimization bias. This also holds for the COMPASS algorithm. Furthermore, the
Binary GS stays within an hour run time (maximum run time is approximately 30 minutes) whereas
the Exhaustive GS increases to a computation time of approximately 10.5 hours at 10,000 replica-
tions. Another interesting aspect is the Binary GS algorithm always outperforms the COMPASS
algorithm with respect to run time.

(a) Expected cost per day vs number of simulation
replications (no. in () represent the (s,S) policies).

(b) Simulation run time vs number of simulation
replications (run time indicated for 10,000 reps).

Figure 2.4: Numerical results with pharmacy model input parameters.

The Exhaustive GS guarantees the best solution is found (before considering optimization bias).
However, it is not only computationally inefficient, but also unrealistic for the pharmacy system of
interest. In particular, when considering the demand for all drugs at the University of Michigan’s
Central Pharmacy, the 20% highest demand drugs (545 drugs) make up about 85% of the total
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demand. Hence, if one is interested in updating policies every 3 months (2,160 hours) using 10,000
replications, one would need (545) ∗ (10.5hrs) = 5,722.5hrs, or about 7.95 months, when using
the Exhaustive GS. Hence, even if one desktop computer was solely utilized to run the exhaustive
algorithm for the entire 3 months, one could not solve for all policies within this time frame.
However, if using the Binary GS, one could solve for the policies in (545)∗ (0.5hrs) = 272.5hrs ≈
11.35 days.

2.5 Conclusion and Future Research

We create a simulation-optimization (s,S) periodic review inventory model that accounts for
stochastic demand, supply disruptions, perishability, and positive lead time. We solve the
simulation-optimization model using a Binary GS algorithm which uses the structural properties
of the objective function. Based on our experimental results, we notice this algorithm improves
computation time without sacrificing accuracy of the solution.

As for limitations, we assume a first-in-first-out system. If this is violated, then one can expect
more waste and more shortages. However, through observations at the Central Pharmacy at the
University of Michigan, first-in-first-out is a valid assumption with the protocols in place. We also
assume demand and supply are independent of one another. When constructing the demand and
supply patterns for a replication, r, one can consider the dependency of these uncertainties and
we leave that to future work. Other assumptions such as lost-sales, deterministic lead time, and
expired drugs being discarded at the end of the month can easily be adjusted in the model to tailor
it to the characteristics of the system of interest.

In this research, we do not theoretically exploit the structure of the objective function and we
do not provide theoretical guarantees on the Binary GS algorithm. Also, we find the Binary GS
algorithm does not sacrifice the accuracy of the solution when defining the discretized grid with
respect to s and S, but an alternative approach is defining the discretized grid with respect to s and
δ = S− s. Finally, we compare the Binary GS algorithm to an Exhaustive GS and the COMPASS
algorithm, but other methods one can consider for comparison are stochastic gradient descent
with random restart, random search, and Bayesian optimization. We leave these ideas for future
research.

This research provides pharmacy inventory managers with a valuable tool that can aid decision-
making in the complex pharmacy system.
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CHAPTER 3

Closed-form (R,S) Inventory Policies for Perishable
Inventory Systems with Supply Chain Disruptions

3.1 Introduction

Hospital pharmacy managers make inventory decisions like how much to order and the frequency
of orders for thousands of different drugs (e.g., 2,500+ drugs at the University of Michigan’s Cen-
tral Pharmacy). Commonly, these managers do not have the resources to implement advanced
mathematical models (e.g., stochastic programs, simulation/simulation-optimization). Closed-
form solutions for inventory policies in this setting are attractive because they provide the inventory
policy quickly and are easy to implement (Borwein & Crandall, 2013), but existing closed-form
solutions do not account for perishability and supply chain disruptions. Supply chain disruptions
are defined as ‘random events that cause a supplier or other element of the supply chain to stop
functioning, either completely or partially, for a (typically random) amount of time’ (Snyder et
al., 2016). There have been recent concerns regarding the resiliency of medical supply chains
(NASEM, 2022). It is critical to account for supply chain disruptions because having insufficient
inventory can lead to drug shortages which increase the cost for care and lead to inferior/cancelled
treatments (Phuong et al., 2019). Not accounting for perishability can lead to drug waste (HDMA,
2009; Allen, 2017).

We consider a (R,S) periodic review inventory system with perishability, supply chain disrup-
tions, and deterministic demand. Here, R denotes the length of the review period and S denotes
the order-up-to level (i.e., attempt to place an order up to S every R days). In a hospital pharmacy
setting, R is typically small (e.g., R ≤ 7 days) and it takes very little time to receive the drug when
the supply chain is not disrupted (i.e., negligible/small lead times). However, when the supply
chain is disrupted, the disruption can last weeks, months, or years (median duration of 14 months;
Tucker et al., 2020a). From the perspective of a hospital pharmacy inventory system, we derive
closed-form solutions that minimize the expected holding, ordering, and waste costs while ensur-
ing a certain proportion of demand is satisfied for a (a) lost-sales (R,S) periodic review inventory
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system with (b) supply chain disruptions and (c) perishability. For a lost-sales (R,S) periodic re-
view inventory system (i.e., (a)), it is well known that higher fixed ordering costs encourage the
system to place orders less frequently (i.e., have a larger R) and that higher holding costs encourage
the system to stock less inventory on-hand (i.e., have a smaller S).

When incorporating supply chain disruptions into a lost-sales (R,S) periodic review inventory
system (i.e., (a)-(b)), we expect to stock more inventory on-hand (i.e., have a higher S) and attempt
to place orders more frequently (i.e., have a smaller R) due to the unreliability of the supply chain.
We will attempt to place orders more frequently because (1) a greater number of order attempts
implies a greater chance of placing an order when supply is not disrupted and (2) for any fixed S, a
smaller R implies a larger expected inventory on-hand. We show that R and S depend on both the
supply disruption parameters (e.g., disruption probability and recovery probability) and the type of
the supply disruption process.

When adding perishability into a lost-sales (R,S) periodic review inventory system with supply
chain disruptions (i.e., (a)-(c)), we expect that if the expiration lifetime of the drug is long enough,
we will not waste any drug product if we simply follow a non-perishable (R,S) model with supply
chain disruptions (i.e., (a)-(b)). However, how long is long enough? This ultimately depends on
the order-up-to level S and deterministic daily demand q. We show that if the expiration lifetime
is not long enough, following a non-perishable (R,S) inventory policy leads to unnecessary waste.
Even worse, the expected proportion of demand satisfied is less than the demand satisfied when
using a perishable (R,S) model.

The contributions of this chapter are as follows:

1. We derive exact closed-form solutions for a non-perishable and perishable lost-sales (R,S)
periodic review inventory system with supply chain disruptions (two-state supply process;
defined later).

2. We provide insights regarding how model inputs and parameters influence the (R,S) inven-
tory policies using the closed-form expressions and numerical sensitivity analysis.

3. Our models are applied to a hospital pharmacy inventory system to (i) illustrate the con-
sequences of not implementing the proposed closed-form model in a perishable inventory
system with supply chain disruptions, (ii) analyze the influence of supply chain disruption
patterns, (iii) study the impact of stochastic demand, and (iv) investigate the trade-off be-
tween model simplicity and model accuracy.

The remainder of this chapter is organized as follows: Section 3.2 presents literature relevant
to this research. Section 3.3 provides the model notation and assumptions. Section 3.4 provides
closed-form solutions for a non-perishable lost-sales (R,S) periodic review inventory system with
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supply chain disruptions. In Section 3.5, we extend the model to incorporate perishability. Section
3.6 provides a numerical analysis of a hospital pharmacy inventory system to draw managerial
insights and address (i)-(iv). Section 3.7 provides concluding thoughts and future research direc-
tions.

3.2 Literature Review

Literature reviews on inventory models with supply chain disruptions are presented in Paul et al.
(2016), Snyder et al. (2016), Shen & Li (2017), and Ivanov et al. (2017). While this setting might
seem similar to stochastic lead time models, we start by describing some of the literature and
discuss key differences between a stochastic lead time model and supply chain disruption model.
We proceed to define the two common ways supply chain disruptions are modeled in the literature
and discuss the early research that considers supply chain disruptions in an inventory system.
Then, we present the research most relevant to this chapter: non-perishable closed-form solutions
and perishable closed-form solutions. We consistently use R as the length of the review period, S

as the order-up-to level, s as the reorder point, and Q as the order quantity.

Supply Chain Disruptions versus Stochastic Lead Time

Our supply chain disruption setting is distinct from a stochastic lead time setting (e.g., Janakiraman
& Roundy, 2004; Bischak et al., 2014; Tai et al., 2021; Duc et al., 2022 [(R,S) examples]). In our
setting, during the supply chain disruption, no orders are successfully placed and no orders are
en route. When the supply chain is properly functioning again on a review period day, an order
is placed to raise the inventory position (i.e., inventory on-hand plus inventory en route) to the
order-up-to level S. All of the drugs in this order arrive at the same time. In contrast, stochastic
lead time implies that every R days, an order is always successfully placed to raise the inventory
position to the order-up-to level S. The order is immediately en route, but there is some variability
in when this order will arrive to the pharmacy (e.g., 5 days to receive the drug instead of 3 days).
For every successful order with the supply chain disruption model, there could be multiple orders
en route with the stochastic lead time model. We proceed to define the two common ways supply
chain disruptions are modeled.

Two-State versus Bernoulli Supply Process

In the literature, researchers often model supply chain disruptions in two ways: two-state supply
process and Bernoulli supply process. A two-state supply process is when the system alternates
between a not disrupted state and disrupted state. Most researchers assume the length of time
in each state is exponentially (or geometrically if discrete) distributed and thus form a Markov
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chain (Snyder et al., 2016). Specifically, when time is discrete, researchers define α as the
disruption probability (i.e., α = Pr(disrupted|not disrupted)) and β as the recovery probability
(i.e., β = Pr(not disrupted|disrupted)). Defining these parameters with respect to the length of the
review period R implies that the probability the system has been disrupted for exactly j review
periods is π j =

β

α+β
when j = 0 and π j =

αβ

α+β
(1− β ) j−1 when j ≥ 1 (Snyder & Shen, 2019).

In the two-state supply process, the future state of the system depends on the current state of the
system.

In contrast, a Bernoulli supply process assumes the future state of the system is independent of
the current state of the system. In other words, the probability the system is disrupted in the next
review period is the same, regardless of the current state of the system (Snyder et al., 2016). When
disruptions follow a Bernoulli supply process, the number of review periods the system has been
disrupted is a geometric random variable where π j = p(1− p) j, j ≥ 0 (Skouri et al., 2014). In the
definition, p (0 ≤ p ≤ 1) is the supply quality where p = 1 means perfect supply quality.

The long-run probability that the supply chain is not disrupted for a two-state and Bernoulli
supply process are β

α+β
and p, respectively, implying this probability is the same when β

α+β
= p

(Snyder & Shen, 2019; Skouri et al., 2014). An important question is whether supply should
be modeled as a two-state or Bernoulli supply process. Even though supply chain disruptions in
a pharmaceutical supply chain can be exogenous to the supply chain (e.g., natural disasters) or
endogenous to the supply chain (e.g., drug recalls) (Konstantaras et al., 2019), we model supply
as a two-state supply process as the duration of and time between supply chain disruptions in
a pharmaceutical supply chain are well represented by the geometric probability distribution
(Tucker et al., 2020b). To this end, all closed-form solutions presented in this chapter correspond
to a two-state supply process. In the Appendix, we provide the general model for a two-state
and Bernoulli supply process (in Appendix B.1) and the closed-form solutions for the Bernoulli
supply process (in Appendix B.2). The Bernoulli supply process solutions are easier to interpret
and implement as the closed-form expressions are much more condensed in comparison to the
two-state supply process. We want to highlight that the Bernoulli supply process comes at a cost
of not capturing the duration of and time between supply chain disruptions. Consider α1 = 0.5
and β1 = 0.5 which corresponds to frequent supply chain disruptions, but short recovery times
and α2 = 0.01 and β2 = 0.01 which corresponds to infrequent supply chain disruptions, but long
recovery times. Both have a long-run probability that supply is not disrupted of β1

α1+β1
= β2

α2+β2
= 1

2

implying p = 1
2 for both. However, the disruption profile is not captured in p. Later (in Section

3.6.3), we illustrate the importance of accounting for the duration of and time between supply
chain disruptions when making inventory decisions. We also investigate (in Section 3.6.5) the
consequences of using the Bernoulli solutions (i.e., simpler/more-condensed solutions) instead of
the two-state solutions. We now proceed to present past literature relevant to our research.
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Early Supply Chain Disruption Research

Research on inventory systems with complete supply chain disruptions was started by Parlar &
Berkin (1991) with corrections made by Berk & Arreola-Risa (1994). In this research, the authors
formulate an economic order quantity (EOQ) model with supply chain disruptions. The model
is solved using line search techniques because of the exponential term in the formulation (i.e.,

λ

λ+µ
(1−e−

(λ+µ)Q
q ) where q is the deterministic daily demand, λ is the disruption rate, and µ is the

recovery rate; (1− e−
(λ+µ)Q

q ) indicates that when the inventory on-hand reaches zero, the supply
chain was not disrupted Q

q days ago; Snyder, 2014; Snyder & Shen, 2019). Also, the researchers
assume that orders are placed when the inventory position is zero (i.e., s = 0). Parlar & Perry
(1995) relax the zero reorder point assumption and treat the reorder point, s, as a decision variable
in the model. All of this early research considers supply chain disruptions as a two-state supply
process, but none of this research derives closed-form solutions nor considers perishability.

Non-perishable Closed-Form Solutions

We first present research that models supply chain disruptions as a two-state supply process and
then present research that models supply chain disruptions as a Bernoulli supply process. For both
supply disruption processes (i.e., two-state and Bernoulli), none of the past closed-form (R,S)

models consider a complete lost-sales system, an objective that minimizes the expected cost with
a constraint on the proportion of demand satisfied, and perishability.

For disruptions that follow a two-state supply process, Snyder (2014) replaces the exponential

term (i.e., λ

λ+µ
(1−e−

(λ+µ)Q
q )) with a constant (i.e., λ

λ+µ
r where 0 < r ≤ 1) in the EOQ formulation

by Berk & Arreola-Risa (1994) to derive approximate closed-form solutions for a non-perishable
inventory system. Recall, this model assumes the reorder point, s, is zero, so only the order quantity
is optimized. Qi et al. (2009) derive approximate closed-form solutions for the extended model that
considers supply chain disruptions at both the supplier and retailer. These researchers assume that
the reorder point is zero and that when a supply disruption occurs at the retailer, all inventory is
lost. In contrast to the zero reorder point models, Heimann & Waage (2007) consider the non-
zero reorder point EOQ model developed by Parlar & Perry (1995) and formulate approximate
closed-form solutions for the reorder point and order quantity. Schmitt et al. (2010) present closed-
form solutions for a periodic review (R,S) inventory system with an arbitrarily fixed R = 1 that
has deterministic demand, and the authors derive closed-form approximations for systems with
stochastic demand or stochastic supply yield. Saithong & Lekhavat (2020) extend the deterministic
demand model by deriving periodic review (R,S) policies with an arbitrarily fixed R = 1 closed-
form solutions with partial backordering and lost sales.

For disruptions that follow a Bernoulli supply process, Gullu et al. (1997) derive periodic review
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(R,S) policies with an arbitrarily fixed R = 1 closed-form solutions for an inventory system with
deterministic dynamic demand and stochastic supply that depends on the period in the planning
horizon. Skouri et al. (2014) derive closed-form reorder point, s, and order quantity, Q, policies
for an inventory system that minimizes the expected cost per day which consists of holding, back-
ordering, and ordering costs. These authors assume deterministic demand so the problem can be
directly redefined as a (R,S) policy (i.e., q is the deterministic daily demand, R = Q

q , S = s+Q).
Further, the authors assume S ≤ qR implying orders cannot be placed unless the inventory position
is at most zero (Konstantaras et al., 2019). This research has been extended by Salehi et al. (2016)
and Taleizadeh (2017) who consider partial backorders with lost sales and partial backorders with
advance payment, respectively.

Recall, Skouri et al. (2014) assume S ≤ qR. More recent research by Konstantaras et al. (2019)
relax this assumption and the authors derive closed-form solutions for the same non-perishable
(R,S) inventory system. Taleizadeh et al. (2021) extend the model to consider partial backordering
with lost-sales. These models minimize the expected holding, ordering, and backordering costs
per day. For the lost-sales component in the partial backordering with lost-sales model, Taleizadeh
et al. (2021) use a pessimistic approximation by including the total lost-sales cost in the objective
function. In comparison to this chapter, this more recent research also assumes deterministic
demand, but only models supply chain disruptions as a Bernoulli supply process. Also, this more
recent research considers backordering or partial backordering whereas we focus on a complete
lost-sales system with a constraint on the proportion of demand not satisfied. Zero backordering
is a natural assumption in our hospital pharmacy setting of interest because patients cannot wait
days, weeks, or months to receive a drug that they need at this very moment (e.g., post-surgery
medication).

Perishable Closed-Form Solutions

We note that researchers often use methodologies such as stochastic programming (e.g., Dillon
et al., 2017; Nguyen & Chen, 2019; Rajendran & Srinivas, 2020; Franco & Alfonso-Lizarazo,
2020) or simulation (e.g., Syawal & Alfares, 2020; Chapter 2) instead of considering closed-form
models. For emphasis, in this chapter, we focus on closed-form solutions which provide the
inventory policy quickly and are easy to implement. Atan & Rousseau (2016) derive closed-form
solutions for the order-up-to level, S, in periodic review (R,S) policies with an arbitrarily fixed
R = 1 perishable inventory system with supply chain disruptions (two-state supply process). The
authors assume backordering is allowed, and they assume a periodic review (R = 1,S) ordering
policy is optimal. However, inventory control literature demonstrates that when the fixed ordering
cost, k > 0, a (R,S) inventory policy where R is not fixed to 1 may be more appropriate since each
order placed has a cost associated with it (Snyder & Shen, 2019). Kouki et al. (2020) consider
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a (s = S − 1,S) perishable inventory system (either lost-sales or backordering) with Poisson
demand, stochastic lead time, stochastic lifetime, and no supply uncertainty. The authors provide
the explicit expression for the expected cost of the system.

3.3 Model Notation and Assumptions

We study a perishable lost-sales (R,S) inventory system with supply chain disruptions that min-
imizes the expected holding, ordering, and waste costs while ensuring the proportion of demand
not satisfied is at most γ . We describe the modeling notation (see Table 3.1) and assumptions.

Table 3.1 Summary of the modeling notation.
Notation Description
Decision Variables
R Length of the review period (i.e., attempt to place an order every R days; R ≥ 1)
S Order-up-to level (i.e., attempt to place an order up to S every R days)
Input Parameters
h Holding cost per day per drug (h > 0)
k Fixed ordering cost (i.e., for each order attempted; k > 0)
q Deterministic demand per day (q > 0)
e Expiration lifetime in days (e ≥ 1)
γ Maximum proportion of demand not satisfied over infinite horizon (0 < γ < 1; lost-sales)
Other Parameters
j State indicating the number of consecutive review periods that supply has been disrupted
π j Probability supply has been disrupted for exactly j consecutive review periods
I+j Average inventory held per day over a review period that starts in state j (in Section 3.4.1)
I−j Average inventory short per day over a review period that starts in state j (in Section 3.4.1)
m Number of review periods the order-up-to level, S, fully satisfies demand; m = ⌊ S

qR⌋ (in Section 3.4.2)
Two-state Supply
α Disruption probability with respect to the length of the review period (0 < α < 1)
β Recovery probability with respect to the length of the review period (0 < β < 1)
π0 Probability supply is disrupted for 0 consecutive review periods (i.e., not disrupted); π0 =

β

α+β

π j Probability supply is disrupted for exactly j consecutive review periods; π j =
αβ

α+β
(1−β ) j−1, j ≥ 1

3.3.1 Assumptions

We consider an infinite planning horizon and treat the length of the review period R and order-up-
to level S as continuous decision variables to allow the derivation of the solutions in closed-form.
For supply, we assume supply is completely disrupted; once a supply chain disruption occurs, the
current inventory on-hand is not lost, but no additional inventory can be acquired until the supply
chain is properly functioning again. Consistent with pharmaceutical supply chains, we assume
supply chain disruptions follow a two-state supply process (Tucker et al., 2020b). For the review
period of length R, we assume orders can only be attempted in increments of R (e.g., R = 3 implies
orders can only be attempted on days 1,4,7, ...), regardless of the supply status between review
periods, and that orders are only processed successfully when supply is not disrupted (i.e., the
order is lost during a supply chain disruption). This implies that if an order is attempted at the start
of a review period, say day t, but supply is disrupted, then the inventory on-hand is not raised to the
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order-up-to level S, until the first day t ∈ {(t +R),(t +2R), ...} that has non-disrupted supply. In a
hospital pharmacy setting, we want to highlight that the length of the review period R is typically
much less than the length of the supply chain disruption, and hospital pharmacies often do not
know the exact instance that the supply chain is not disrupted. These characteristics support the
increments of R assumption. We assume the lead time is zero which is a common assumption
in the application area of interest. Managers at the University of Michigan’s Central Pharmacy
report very small lead times (e.g., 36-72 hours) while supply chain disruptions can last weeks,
months, or years (Tucker et al., 2020a). Due to these two prior assumptions, inventory on-hand
(i.e., amount in stock) and inventory position (i.e., amount in stock plus orders en route) are the
same, so we consistently refer to inventory as inventory on-hand for clarity. We assume daily
demand is deterministic and constant, but demonstrate how much of an impact this assumption has
on a system’s performance in Section 3.6.4. Also, we assume the lifetime of the perishable product
is deterministic, has no quality decay (Khan et al., 2014), and begins when the product arrives, as
the expiration lifetime of drugs is well known. Finally, we assume first-in-first-out protocols are in
place, which is in accordance with practice at the University of Michigan’s Central Pharmacy.

3.4 Non-perishable (R,S) Inventory System

We derive closed-form solutions for a non-perishable lost-sales (R,S) periodic review inventory
system with supply chain disruptions. We start by illustrating the procedure in Figure 3.1.

Optimization 
Problem w.r.t. 

R and S
(in Section 4.1)

Holding Inventory 
versus Having 

Shortages
(in Section 4.2)

Optimization 
Problem w.r.t. 
m, R, and S

(in Section 4.3) 

Find m* 
Satisfying 

(in Section 4.4)

Use m* to Solve 
for R* and S*

(in Section 4.5)

(a) (b) (c) (d) (e)

Figure 3.1: Summary of the non-perishable derivation.

Step (e) in Figure 3.1 presents the final closed-form solutions and implementation (in Section
3.4.5). We conclude this section by developing insights from the closed-form solutions (in Section
3.4.6). We provide the derivation details for this section in Appendix B.1.2.

3.4.1 Optimization Problem w.r.t. R and S

For the (R,S) inventory system, the model minimizes the expected (i) ordering cost and (ii) holding
cost while (iii) ensuring the proportion of demand not satisfied is at most γ .

In regards to ordering cost, (i) a fixed cost of k is incurred for each order attempted, regard-
less of the supply status (i.e., cyclic delivery contract; Konstantaras et al., 2019). Hence, with a
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review period of length R, the expected ordering cost per day is k
R . For systems that experience a

cost for each order attempted (e.g., k1) and each order received (e.g., k2), the fixed cost k can be
replaced with k = k1+π0k2 to account for both types of cost where π0 corresponds to the long-run
probability that supply is not disrupted.

(ii) We only incur holding costs when we have positive inventory on-hand, so we first consider
the inventory on-hand at the start of the review period (i.e., we just received an order recalling
the zero lead time assumption). If we had no supply chain disruptions, then our current inventory
on-hand would always be S at the start of the review period. However, we have supply chain
disruptions. From Table 3.1, state j indicates a supply chain disruption that has lasted j consecutive
review periods. Therefore, we let t indicate the time since the inventory on-hand has been reviewed
to find that our current inventory on-hand is (S− jqR−qt)+ = max{0,(S− jqR−qt)} at the start
of the review period (i.e., t = 0). We define I+j as the average inventory held per day over a review
period that starts in state j. We have:

I+j =
1
R

R∫
0

(S− jqR−qt)+dt (3.1)

where (S− jqR−qt)+ corresponds to holding cost only being incurred when inventory on-hand is
positive (Konstantaras et al., 2019).

(iii) When ensuring the proportion of demand not satisfied is at most γ , we must consider the
average number of shortages per day. Similar to holding, we define I−j as the average number of
shortages per day over a review period that starts in state j. Given a daily demand of q, we have:

I−j =
1
R

R∫
0

[(S− jqR−qt)−− (S− jqR−q(t −1))−]dt (3.2)

where (S− jqR−qt)− =−min{0,(S− jqR−qt)} indicates the cumulative shortages with respect
to t days. To get the shortages per day, we subtract the cumulative shortages with respect to t −1
days (i.e., (S− jqR− q(t − 1))−). Then, dividing I−j by the daily demand (q > 0) indicates the
expected proportion of shortages per day.

Using (i), (ii), and (iii) and recalling that π j indicates the probability the system has been
disrupted for exactly j review periods, we can write the optimization problem as Formulation (3.3).
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minimize
R,S

C(R,S) =
k
R
+

∞

∑
j=0

(hπ jI+j )

subject to

∞

∑
j=0

(π jI−j )

q
≤ γ

(3.3)

In Formulation (3.3), the objective function minimizes the expected ordering and holding cost
per day and the constraint ensures the proportion of demand not satisfied is at most γ . We consider
this constrained optimization problem because hospital pharmacies often aim to achieve certain
service levels (Gebicki et al., 2014).

3.4.2 Holding Inventory versus Having Shortages

For any given review period of length R, we may only hold inventory (Case 1), hold inventory and
have shortages (Case 2), or only have shortages (Case 3). We define m = ⌊ S

qR⌋ which denotes how
many review periods S fully satisfies demand (Konstantaras et al., 2019). Consider a daily demand
of q = 1, review period of length R = 4 days, and order-up-to level of S = 10. Here, m = ⌊10

4 ⌋= 2
implying S fully satisfies demand for 2 review periods (i.e., 8 days). For 3 review periods (i.e., 12
days), S satisfies demand for day 9 and day 10, but not for day 11 and day 12 explaining why S

only fully satisfies demand for 2 review periods. We use m and consider the three cases that define
the system’s status when we start in state j (see Figure 3.2).

System that Starts in State j

S

S-qR

S-2qR

S-mqR

S-(m-1)qR

0 1 m-12 m+1 m+2m

In
ve

nt
or

y 
O

n-
ha

nd
 a

t t
he

 
S

ta
rt

 o
f a

 R
ev

ie
w

 P
er

io
d

Case 1 Case 2 Case 3

Only satisfies 
demand for 

      days 
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Only

Shortages 
Only

Holding
+

Shortages

Figure 3.2: Holding inventory versus shortages.

Case 1: j ≤ m−1
In this case, the system has been disrupted for less than m review periods. Therefore, S can fully
satisfy the demand in this review period, so we never have shortages and only hold inventory (i.e.,
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I+j ≥ 0 and I−j = 0). If we consider the difference between I+j and I+m−1, we find:
I+j − I+m−1 = (S− jqR−qt)− (S− (m−1)qR−qt) = (m−1− j)qR.

Case 2: j = m

In this case, the system has been disrupted for m review periods (i.e., starting inventory on-hand is
S−mqR), but recall that S only fully satisfies demand for m review periods. Hence, we will have
days that we hold inventory and days that we are short (i.e., I+j ≥ 0 and I−j ≥ 0). Specifically, we
hold inventory from the start of the review period until time S−mqR

q (i.e., S−mqR−qt = 0). From
time S−mqR

q until the end of the review period, we are short.

Case 3: j ≥ m+1
In this case, we have exhausted all of our inventory on-hand since S only fully satisfies demand for
m review periods. Therefore, we always have shortages and never hold inventory (i.e., I+j = 0 and
I−j ≥ 0). For j ≥ m+1, we always have a shortage (i.e., lost-sales) of q per day. If we consider the
difference between I−j and I−m+1, we find:
I−j − I−m+1 = q−q = 0.

3.4.3 Optimization Problem w.r.t. m, R, and S

Defining m = ⌊ S
qR⌋ and using the holding versus shortage cases (in Section 3.4.2), we combine the

findings to obtain the optimization problem with respect to m, R, and S in Formulation (3.4).

minimize
R,S,m

C(R,S,m) =
k
R
+

Case 1︷ ︸︸ ︷
m−1

∑
j=0

hπ jI+j +

Case 2︷ ︸︸ ︷
hπmI+m

subject to

Case 2︷ ︸︸ ︷
πmI−m +

Case 3︷ ︸︸ ︷
∞

∑
j=m+1

π jI−j

q
≤ γ

(3.4)

Applying basic rules of addition and subtraction to Formulation (3.4), we notice:

minimize
R,S,m

C(R,S,m) =
k
R
+

m−1

∑
j=0

hπ j(I+j − I+m−1)+
m−1

∑
j=0

hπ jI+m−1 +hπmI+m

subject to
πmI−m +

∞

∑
j=m+1

π j(I−j − I−m+1)+
∞

∑
j=m+1

π jI−m+1

q
≤ γ

(3.5)
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Using the findings from Section 3.4.2 in Formulation (3.5) and simplifying leads to:

minimize
R,S,m

C(R,S,m) =
k
R
+h

m−2

∑
j=0

π j(m−1− j)qR+hπmI+m +hI+m−1

m−1

∑
j=0

π j

subject to
πmI−m + I−m+1

∞

∑
j=m+1

π j

q
≤ γ

(3.6)

where:

I+m =
(S−mqR)2

2qR
(3.7)

I−m =
q
R

(
R− S−mqR

q

)
(3.8)

I+m−1 = S−mqR+
1
2

qR (3.9)

I−m+1 = q (3.10)

Using Equations (3.7)-(3.10) in Formulation (3.6) and simplifying using the definition of π j
(see Table 3.1), we have the optimization problem in Formulation (3.11).

minimize
R,S,m

C(R,S,m) =
k
R
+h
(

S− 1
2

qR
)(

β

α +β
− αβ

(1−β )(α +β )

)
+

hqR
(

1
β

)
(mβ −1+(1−β )m)

(
α

(1−β )(α +β )

)
+h

(S−mqR)2

2qR
(1−β )m−1

(
αβ

(α +β )

)
+

h
(

S−mqR+
1
2

qR
)
(1− (1−β )m)

(
α

(1−β )(α +β )

)
subject to

(
1
β
+m− S

qR

)
(1−β )m−1

(
αβ

(α +β )

)
≤ γ

(3.11)

3.4.4 Find m∗ Satisfying m = ⌊ S
qR⌋

For Any Fixed m, Optimize R and S

When considering the objective function in Formulation (3.11), we find that for any fixed m,
the Hessian is positive semi-definite and we have that S and R are jointly convex. We can solve
the model presented in Formulation (3.11) using a Lagrange multiplier (λ1). From the Lagrange
multiplier formulation, we find that the constraint in Formulation (3.11) must be satisfied with
equality (i.e., the constraint must be tight) to satisfy the requirements of a two-state supply
process. We use these findings to solve for m∗.

Solving For m∗

Since the constraint in Formulation (3.11) must be satisfied with equality, we can use the definition
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of m to solve for the unique and optimal m∗.
Using the definition of m, we have:

m = ⌊ S
qR

⌋ =⇒ m ≤ S
qR

< m+1 (3.12)

Considering the constraint in Formulation (3.11) satisfied with equality, we have:

S
qR

=
1
β
+m− γ(α +β )

αβ (1−β )m−1 (3.13)

Combining Equation (3.12) and Equation (3.13) simplifies to:

ln( γ(α+β )(1−β )
α

)

ln(1−β )
−1 < m ≤

ln( γ(α+β )(1−β )
α

)

ln(1−β )
(3.14)

Using Equation (3.14), we define m∗ in Equation (3.15).

(Solving for m∗) =⇒ m∗ =

⌊
ln( γ(α+β )(1−β )

α
)

ln(1−β )

⌋
(3.15)

Considering Equation (3.15), we have four input parameter requirements:
(R1) γ ≤ α

α+β
; (R2) γ > 0; (R3) α > 0; (R4) 0 < β < 1

(R1) ensures m ≥ 1 (i.e., S covers at least one review period) and this requirement implies
that the maximum proportion of demand not satisfied must be less than or equal to the long-run
probability that supply is disrupted (i.e., α

α+β
). This requirement is not restrictive as it aligns with

the intuition of the problem. Consider the extreme case of α = 0. This case implies the supply
chain is never disrupted, so we should be able to fully satisfy demand. Thus, it is appropriate to
set γ = 0 (i.e., we satisfy all of the demand). In general, the requirement implies that the more
confident we are about our supply (i.e., the smaller α

α+β
is), the smaller we need to set γ .

(R2)-(R4) ensure m is defined with the ln( γ(α+β )(1−β )
α

) term in the numerator and the ln(1−β )

term in the denominator of Equation (3.15). All three requirements are also not restrictive. γ > 0
implies that the maximum proportion of demand not satisfied must be greater than 0. This is
appropriate because we can never guarantee that all of our demand will be satisfied since we have
supply uncertainty (i.e., supply chain disruptions). α > 0 corresponds to a positive probability that
the supply chain will transition to the disrupted state given it is currently not disrupted. Since α is
a probability, the only other possibility is α = 0 which implies supply is perfect. If this were the
case, a supply chain disruption model would not be necessary. For 0 < β < 1, β = 0 corresponds
to the supply chain never recovering after a disruption (i.e., the disrupted state is an absorbing state
in the two-state Markov chain). If this were the case, the purchaser would find another supplier
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who is more reliable. On the other hand, β = 1 corresponds to the supply chain recovering exactly
one review period after the disruption occurs. This implies supply recovery is deterministic and
thus, a supply chain disruption model would not be necessary.

3.4.5 Use m∗ to Solve for R∗ and S∗

Using the optimal m∗ (see Equation (3.15)), we can solve for the non-perishable closed-form
(R,S) inventory policies as presented in Equations (3.16)-(3.17). We numerically verify that
A1 > 0 in Equation (3.16) for all γ ∈ {0.001,0.002, ...,0.999}, α ∈ {0.001,0.002, ...,0.999}, and
β ∈ {0.001,0.002, ...,0.999} combinations that meet requirement (R1). For each combination, we
use the corresponding m∗ (see Equation (3.15)) for the verification.

(Solving for R∗) =⇒ R∗ = max

{
1,

√
2kαβ (α +β )(1−β )m∗+1

qh(A1)

}
(3.16)

where:

A1 =
(
−2α

2
γ −2β

2
γ +4β

3
γ −2β

4
γ +α

2
γ

2 +β
2
γ

2 −2β
3
γ

2 +β
4
γ

2 −4αβ
2
γ

2 −2α
2
βγ

2 −2α
2
β

2
γ +2αβ

3
γ

2

−4αβγ +α
2
β

2
γ

2 +2αβγ
2 +8αβ

2
γ +4α

2
βγ −4αβ

3
γ +2α

2
β

2
γ(1−β )m∗ −2αβ

2
γ(1−β )m∗ −2α

2
βγ(1−β )m∗

+2αβ
3
γ(1−β )m∗

+α
2(1−β )2m∗

+2αβ (1−β )m∗ −3αβ
2(1−β )m∗ −α

2
β (1−β )m∗

+αβ
3(1−β )m∗

+α
2
β (1−β )2m∗

+α
2
β

2(1−β )m∗)
+
(
m∗(2αβ (1−β )m∗

)(−αβ +αβ (1−β )m∗
+β +α −β

2)
)

(Solving for S∗) =⇒ S∗ = qR∗

(
1
β
+m∗− γ(α +β )

αβ (1−β )m∗−1

)
(3.17)

The two-state supply process assumes the future state of the supply chain depends on the current
state of the supply chain (Snyder & Shen, 2019). This implies the future state of the supply
chain is dependent on the length of the review period R, so the disruption probability and recovery
probability parameters, α and β , must be with respect to the length of the review period. However,
we do not know the length of the review period R beforehand. Therefore, to properly solve for the
(R,S) policies, we consider an iterative algorithm. For the algorithm, we denote η as the iteration
number, R∗

η as the length of the review period obtained on iteration η , S∗η as the order-up-to level
obtained on iteration η , α(i) as the disruption probability with respect to a review period of length
i, β (i) as the recovery probability with respect to a review period of length i, and P(i) as the i-step
transition probability matrix (Kulkarni, 2011) where:

P(i) =

(
not disrupted

disrupted

(
· α(i)

β (i) ·

))
=

(
not disrupted

disrupted

(
(1−α(1)) α(1)

β (1) (1−β (1))

)i)
The algorithm has 3-steps: initialization, iterative procedure, and ensure model requirements

are satisfied. At a high level, the algorithm iteratively solves for the (R∗,S∗) inventory policy until
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α(R∗) and β (R∗) output R∗ as the optimal length of the review period. We proceed to formally
present the algorithm.

Algorithm 1 Iterative algorithm for two-state supply process.
1: Step 1: Initialization
2: Set η = 0, R∗

(−1) = 0, R∗
0 = 1, α = α(1), β = β (1); ensure γ ≤ α

α+β
, γ > 0, α > 0, and 0 < β < 1

3:

4: Step 2: Iterative Procedure
5: while R∗

η−1 ̸= R∗
η

6: η = η +1 % update iteration number
7: Solve for (R∗

η ,S
∗
η ) using α and β % solve for inventory policy (see Equations (3.16)-(3.17))

8: Set α = α
(R∗

η ), β = β
(R∗

η ) % update α and β to correspond to the length of the review period
9:

10: Termination to Avoid Infinite While Loop
11: if R∗

η−2 = R∗
η and R∗

η−1 ̸= R∗
η for 10 consecutive η values % check if an alternating pattern arises

12: R∗ = min{R∗
η−1,R

∗
η}; terminate while loop % terminate while loop and define R∗ as the minimum

13: end if
14: if round(R∗

η ) = round(R∗
η−1) for 10 consecutive η values % check if integer solutions remain the same

15: R∗ = min{R∗
η−1,R

∗
η}; terminate while loop % terminate while loop and define R∗ as the minimum

16: end if
17: end while
18:

19: Step 3: Ensure Model Requirements are Satisfied
20: if γ ≤ α

α+β

21: output: (R∗,S∗) for two-state supply process.
22: else
23: output: Model not feasible with given input parameters. Decrease γ and repeat procedure.
24: end if

3.4.6 Insights from the Non-perishable Solutions

From the closed-form solutions, we gain insights about the (R,S) inventory policies. From R∗ (see
Equation (3.16)), we notice an increase in ordering cost (i.e., k) corresponds to an increase in R∗

(i.e., place orders less frequently). An increase in daily demand (i.e., q) leads to a decrease in
R∗. Ordering cost is incurred per order attempted whereas holding cost is incurred for each item
on-hand each day. Therefore, an increase in daily demand implies we want to place orders more
frequently, incurring greater ordering costs and less holding costs. We notice that R∗ is dependent
on the supply disruption process parameters (i.e., α and β ). R∗ cannot be expressed as a function
of β

α+β
implying that only considering the long-run probability that supply is not disrupted is

insufficient when solving for R∗.
From S∗ (see Equation (3.17)), we notice a higher daily demand (i.e., q) and longer length of the

review period (i.e., R∗) implies a larger S∗ (i.e., stock more inventory). When considering the max-
imum proportion of demand not satisfied (i.e., γ), a larger γ implies we need to fulfill less demand,
leading to a smaller S∗. A smaller γ implies we need to satisfy more demand, leading to a larger S∗.
This conclusion is obtained using the negative term in the S∗ expression (i.e., − γ(α+β )

αβ (1−β )m∗−1 ). Like
R∗, we notice that S∗ is dependent on the supply disruption process parameters (i.e., α and β ). S∗

cannot be expressed as a function of β

α+β
implying that only considering the long-run probability

that supply is not disrupted is insufficient when solving for S∗.
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Using Equations (3.15)-(3.17), we numerically verify that the model reduces to the well-known
standard EOQ model in the limiting case where the supply chain becomes perfect (i.e., no supply
chain disruptions). We consider α −→ 0 and β −→ 1 when studying the limiting case that the
supply chain becomes perfect. With (R1), we also have that γ −→ 0. We find that m∗ −→ 1,

R∗ −→
√

2k
qh , and S∗ −→

√
2kq
h which is equivalent to the standard EOQ model.

3.5 Perishable (R,S) Inventory System

In this section, we present closed-form solutions for a perishable lost-sales (R,S) periodic review
inventory system with supply chain disruptions. We provide the derivation details for this section in
Appendix B.1.4. Atan & Rousseau (2016) derive closed-form solutions for a perishable periodic
review (R = 1,S) inventory system with supply chain disruptions where all demand not met is
backordered. The objective of the model is to minimize the expected holding (h), backordering
(b), and waste (z) costs. Extending this work to the lost-sales case (i.e., all demand not met is lost),
we find the optimal policy has the form S∗ = min{ f (h,b,α,β ),eq} where f (h,b,α,β ) indicates
a closed-form expression dependent on the input parameters (·) (in Appendix B.1.3). This result
shows that it is never optimal to set S > eq (i.e., we never waste items). It is important to recall
the deterministic demand assumption. When introducing a review period of length R ≥ 1 into the
problem, it is also never optimal to set S > eq. Ordering more than what is demanded in a lifetime
cycle (i.e., eq) would have no impact on the proportion of demand satisfied. The excess inventory
would simply be discarded (i.e., S−eq) and this excess inventory would contribute to an increase in
holding costs. Therefore, reconsidering the question ‘how long is long enough?’ stated in Section
3.1, we claim e is long enough if e ≥ S

q , in which case, it is sufficient to use a non-perishable (R,S)
model with supply chain disruptions. We can analytically find the smallest e that is long enough
by setting e = S

q and solving for e. Using these findings, we provide the following procedure (see
Figure 3.3) to extend the non-perishable closed-form (R,S) solutions presented in Section 3.4 to a
perishable system.

Step 1: Solve for 
Non-Perishable 

m*, R*, S* 

Step 2: Check if 

Optimal 
Perishable Policy

Step 3: Set Solve for Largest 
            Satisfying 

the Contraint
Optimal 

Perishable Policy

Yes

No

Figure 3.3: Summary of the perishable derivation.
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Step 1: Solve for the Non-Perishable m∗, R∗, and S∗ Inventory Policy
Solve for m∗, R∗, and S∗. See Equations (3.15), (3.16), and (3.17).

Step 2: Check if S∗ ≤ eq

If S∗ ≤ eq, then (m∗,R∗,S∗) denotes the optimal policy for the perishable inventory system.
Otherwise, continue to Step 3.

Step 3: Enforce Perishability Condition by Setting S∗new = eq

Since it is never optimal to have S > eq, we first modify S∗ to be S∗new = eq. Then, we are interested
in finding the largest R∗

new such that our shortage constraint (see Formulation (3.11)) is satisfied
when S∗new = eq. Given we set S∗new = eq, both holding and ordering costs (i.e., costs in the objective
function) are the smallest when R∗

new is the largest. Hence, we are interested in finding the largest
R∗

new because this solution will have the smallest objective value. Stating this as an optimization
problem, we have Formulation (3.18).

maximize
R

R

subject to
(

1
β
+m− S∗new

qR

)
(1−β )m−1

(
αβ

(α +β )

)
≤ γ

(3.18)

Solution to the Optimization Problem

Rearranging the constraint in Formulation (3.18) and recalling S∗new = eq, we have:

R ≤ e

( 1
β
+m)− γ(α+β )

αβ (1−β )m−1
(3.19)

To maximize R, Constraint (3.19) must be satisfied with equality (i.e., the constraint is tight)
and similar to Section 3.4.4, we use the relation that m = ⌊S∗new

qR ⌋= ⌊ e
R⌋ =⇒ m ≤ e

R < m+1 to find:

(Solving for m∗
new) =⇒ m∗

new = m∗ =

⌊
ln( γ(α+β )(1−β )

α
)

ln(1−β )

⌋
(3.20)

with the requirements of (R1) γ ≤ α

α+β
, (R2) γ > 0, (R3) α > 0, and (R4) 0 < β < 1 to ensure
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m∗
new = m∗ is defined. Having found m∗

new = m∗, we have:

(Solving for R∗
new) =⇒ R∗

new = max

{
1,

e

( 1
β
+m∗)− γ(α+β )

αβ (1−β )m∗−1

}
(3.21)

(m∗
new = m∗,R∗

new,S
∗
new = eq) provides the final solution when the perishability condition is

enforced. These (R∗
new,S

∗
new) policies are solved iteratively like the procedure defined in Section

3.4.5. However, instead of starting with R∗
0 = 1, α = α(1), and β = β (1), we use the non-perishable

length of the review period found in Step 1 to initialize the algorithm: R∗
0 = R∗, α = α(R∗), and

β = β (R∗).
We require R∗

new ≥ 1 in Equation (3.21) which is consistent with periodic review inventory
policies. In the non-perishable case (see Equation (3.16)), we enforce R∗ ≥ 1 and we use this R∗ to
solve for S∗. In the perishable case, S∗new is fixed to S∗new = eq. Therefore, if R∗

new is forced to 1 due
to the maximum function in Equation (3.21), then the maximum proportion of demand not fulfilled
constraint (γ) is not satisfied. With the given inputs, one must increase γ to satisfy the constraint.
We demonstrate in Section 3.6.2 and Section 3.6.4 examples of when this occurs.

3.5.1 Insights from the Solutions with Perishability Enforced (Step 3)

When enforcing the perishability condition by setting S∗new = eq (see Step 3), we notice that an
increase in the expiration lifetime corresponds to an increase in R∗

new (i.e., place orders less fre-
quently; see Equation (3.21)). Like the non-perishable closed-form solutions, we notice that R∗

new

is dependent on the supply disruption process parameters (i.e., α and β ). R∗
new cannot be expressed

as a function of β

α+β
implying that only considering the long-run probability that supply is not

disrupted is insufficient when solving for R∗
new. Moving forward, we simply refer to the optimal

inventory policy as (R∗,S∗).

3.6 Numerical Analysis

We proceed to analyze the perishable closed-form (R∗,S∗) policies (in Section 3.5) in a hospital
pharmacy setting. The results generalize to other inventory systems of interest (e.g., blood banks,
chemical plants). It is important to consider that the closed-form (R∗,S∗) policies treat the decision
variables as continuous variables. To not obscure the results, we simply present the inventory
policies as continuous variables. We also consistently refer to the disruption probability (α) and
the recovery probability (β ) with respect to a review period of length 1 day (i.e., α = α(1) and
β = β (1)).
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We first present the input parameters for a hospital pharmacy drug base case where we consider
Fentanyl 50mcg/mL 30mL (Fentanyl) which is a synthetic opioid used to manage pain (Centers
for Disease Control and Prevention, 2021). In particular, the Central Pharmacy at the University of
Michigan uses this drug for continuous pain relief treatment during surgeries making it a critical
asset to hospital operations. This form of Fentanyl is classified as a 503B drug which pharmacists
define as pre-compounded drugs available for commercial sale without a specific patient order.

We (i) illustrate the importance of implementing the closed-form solutions presented in this
chapter for a perishable inventory system with supply chain disruptions (in Section 3.6.2). Next,
we (ii) analyze how supply chain disruption patterns influence the inventory policies (in Section
3.6.3) and (iii) study the impact of stochastic demand (in Section 3.6.4). We also (iv) investigate
the trade-off between model simplicity and model accuracy (in Section 3.6.5). For (i) and (iii),
we utilize a simulation model of the inventory system where we round R∗ down to the nearest
whole number, consider a 12-month warm-up period (i.e., 360 days), consider a 5-year planning
horizon (i.e., 1800 days), and we perform 500 simulation replications. The timing and duration
of the supply chain disruptions are the random events in the model. 500 simulation replications
ensures (with respect to the base case) asymptotic convergence for the expected number of drugs
wasted per day, expected number of drug shortages per day, and expected cost per day (holding
plus ordering; see Appendix B.3). We conclude this section by presenting a sensitivity analysis (in
Section 3.6.6) for model validation and to gain additional managerial insights.

3.6.1 Base Case

Table 3.2 presents the model parameters and the optimal perishable (R∗,S∗) periodic review in-
ventory policy for the hospital pharmacy base case. We consider a holding cost of h = $0.025
(Fentanyl average wholesale price approximately $25, IBM Watson Health, 2022; holding cost
relative to drug price 0.001, Jia & Zhao, 2017) and an ordering cost of k = $250 (ordering cost
relative to drug price 10). Using 6 months of the most recent data available from the University of
Michigan’s Central Pharmacy (i.e., October 22, 2020-March 22, 2021; missing data imputed using
linear interpolation with respect to the day of the week), we consider a daily demand of q = 45.
Consistent with 503B drugs at the University of Michigan, we assume the expiration lifetime of the
drug is e = 90 days. Drugs may have smaller (e.g., e ∈ {14,30,60} days) or larger (e.g., e = 120
days) expiration lifetimes in comparison to the base case of e = 90 days. We consider these smaller
and larger expiration lifetimes and perform a sensitivity analysis when drawing conclusions from
the numerical analysis. Also, the base case ensures 95% of demand is satisfied (i.e., γ = 0.05)
when supply is disrupted on average every three months (i.e., α = 1

90 days ) and remains disrupted
for about 1 month (i.e., β = 1

30 days ). These values satisfy the requirements presented in Section

37



3.4.4 (i.e., γ ≤ α

α+β
, γ > 0, α > 0, and 0 < β < 1).

Table 3.2 Base case input parameters.
Notation Description
Input Parameters
h = $0.025 Holding cost per day per drug (h > 0)
k = $250 Fixed ordering cost (i.e., for each order attempted; k > 0)
q = 45 Deterministic demand per day (q > 0)
e = 90 days Expiration lifetime in days (e ≥ 1)
γ = 0.05 Maximum proportion of demand not satisfied over infinite horizon (0 < γ < 1)
Two-state Supply
α(1) = 1

90 Disruption probability with respect to a review period of length 1 day (i.e., expected time not disrupted is
90 days)

β (1) = 1
30 Recovery probability with respect to a review period of length 1 day (i.e., expected time disrupted is 30

days)
Decision Variablesa

R∗ = 4.95 Length of the review period (i.e., attempt to place an order every R days; R ≥ 1)
S∗ = 2412.92 Order-up-to level (i.e., attempt to place an order up to S every R days)

aRounding to (R∗ = 5,S∗ = 2400) changes the objective value and proportion of demand not satisfied by less than 1%

3.6.2 Importance of Considering Perishability and Supply Chain Disrup-
tions

The closed-form (R∗,S∗) periodic review inventory policies presented in Section 3.5 are derived
for a perishable inventory system with supply chain disruptions. We proceed to quantify the im-
portance of accounting for perishability and supply chain disruptions (SCD) using four models:
(a) No SCD/Perish, (b) Perish Only, (c) SCD Only, and (d) SCD/Perish (this research).

For models (a)-(d), Table 3.3 provides a model description and (R∗,S∗) when using the base case
input parameters (see Table 3.2). We observe that (R∗,S∗) for models (a) and (b) are equivalent
and (R∗,S∗) for models (c) and (d) are equivalent. The reason for the equivalence is that S∗ ≤ eq

implying the perishability condition is never enforced. We notice that the safety stock for models
(a) and (b) is S∗−R∗q = 0 and that the safety stock for models (c) and (d) is S∗−R∗q = 2190.
Recalling the maximum demand not satisfied constraint (i.e., γ), models (c) and (d) keep extra
inventory on-hand to ensure this constraint remains satisfied even in the presence of supply chain
disruptions. Models (a) and (b) have no safety stock because they do not consider supply chain
disruptions.
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Table 3.3 Description of the four models analyzed (Section 3.6.2).
Model Solving for (R,S) (R∗, S∗)
(a) No SCD/Perish Use the standard EOQ model (Snyder & Shen, 2019) which does not consider supply chain

disruptions nor perishability (see Appendix B.4).
(21.08,948.68)

(b) Perish Only Use the standard EOQ model, but enforce the perishability condition by setting S∗ = eq when
S∗EOQ > eq.

(21.08,948.68)

(c) SCD Only Use the closed-form solutions for a non-perishable inventory system with supply chain disrup-
tions presented in Section 3.4.

(4.95,2412.92)

(d) SCD/Perish (this
research)

Use the closed-form solutions for a perishable inventory system with supply chain disruptions
presented in Section 3.5 (i.e., enforce the perishability condition by setting S∗ = eq when the
non-perishable solution provides a S∗ > eq).

(4.95,2412.92)

Using the base case input parameters with varying expiration lifetimes, e ∈ {60,90,120} days,
and varying disruption probabilities, α ∈ {0.01, ...,0.25}, we solve for the (R∗,S∗) inventory poli-
cies using each of the four models (i.e., (a)-(d)). Figure 3.4 illustrates the expected proportion
of drug shortages per day and expected proportion of drugs wasted per day. The proportion is
measured relative to the daily demand of the base case (i.e., q = 45). These results are obtained
by simulating the perishable inventory system with the (R∗,S∗) inventory policy using the defined
expiration lifetime (e), disruption probability (α), and other input parameters defined in Table 3.2.
The timing and duration of the supply chain disruptions are the random events in the simulation
model. When S > eq (i.e., waste will occur), we must record the age of the inventory to appro-
priately calculate the proportion of drug shortages and drugs wasted. Thus, we use a simulation
model of the (R,S) inventory system to keep the calculations consistent across all models (a)-(d).
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Figure 3.4: Importance of accounting for perishability and supply chain disruptions.

We first notice (see Figure 3.4) that the No SCD/Perish and Perish Only models perform the
same for all disruption probabilities (α) and expiration lifetimes (e). This occurs because the
order-up-to level S∗ is at most eq for all input parameters considered when using the standard
EOQ model. S∗ does not exceed eq unless e ≤ 21 (S∗EOQ =

√
2(250)(45)/0.025 = 949 and q =

45 =⇒ e < 949
45 = 21.1). When e ≤ 21, the Perish Only model would set S∗ = eq (i.e., enforce

perishability condition). We also notice that when the (R∗,S∗) inventory policy for the SCD Only
model and SCD/Perish (this research) model are not the same (i.e., α ≥ 0.02 for e = 60 and
α ≥ 0.09 for e = 90), this implies that the SCD/Perish (this research) model sets S∗ = eq (i.e.,
enforces perishability condition). We proceed to highlight the importance of accounting for both
perishability and supply chain disruptions simultaneously.

If we only consider perishability (i.e., Perish Only model), we have an increase in the expected
proportion of drug shortages per day in comparison to the SCD/Perish (this research) model. Using
the base case disruption probability α = 1

90 ≈ 0.01 for all expiration lifetimes (e), the Perish Only
model leads to demand not being satisfied 22.5% of the time in comparison to the SCD/Perish
(this research) model of 4.6% (i.e., about 5 times the amount of shortages). The difference in
the expected proportion of drug shortages per day between the two models increases as the dis-
ruption probability (α) increases. This aligns with our intuition as a larger disruption probability
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corresponds to a larger long-run probability that supply is disrupted (i.e., α

α+β
). For the expected

proportion of drugs wasted, there is zero waste when using the Perish Only model and SCD/Perish
(this research) model. These results show that only considering perishability instead of simulta-
neously considering perishability and supply chain disruptions increases the proportion of drug
shortages, especially for drugs with large disruption probabilities (α).

The consequences of only considering supply chain disruptions (i.e., SCD Only model) are
highlighted when S∗ > eq with the non-perishable model. The SCD/Perish (this research) model
enforces the perishability condition by setting S∗ = eq, but the SCD Only model keeps S∗ > eq.
When S∗ > eq with the non-perishable model, the SCD/Perish (this research) model leads to no
waste, but the SCD Only model leads to a positive proportion of drugs wasted that increases as
the disruption probability (α) increases. A larger disruption probability corresponds to a larger
long-run probability that supply is disrupted (i.e., α

α+β
) and thus, a larger order-up-to level (see the

fourth column panel in Figure 3.4). For disruption probabilities α ≥ 0.23, the expected number
of drugs wasted per day is at least 50% of the daily demand (see Figure 3.4). Even worse, the
SCD Only model increases the expected proportion of drug shortages per day in comparison to the
SCD/Perish (this research) model. For disruption probability α = 0.18, there is a 65% increase in
the proportion of drug shortages (see Figure 3.4). When S∗ ≤ eq with the non-perishable model,
the SCD Only and SCD/Perish (this research) model perform the same. These results show that
only considering supply chain disruptions instead of simultaneously considering perishability and
supply chain disruptions can increase the proportion of drugs wasted, but can also increase the
proportion of drug shortages.

From Figure 3.4, we notice that the expected proportion of drug shortages with the SCD/Perish
(this research) model is not always less than or equal to γ = 0.05 (i.e., the demand satisfaction
constraint) for e = 60 and e = 90 days. These are cases where the perishability condition is en-
forced (i.e., S∗ = eq; see the fourth column panel in Figure 3.4), but there is not a feasible R∗ ≥ 1
such that the proportion of demand not satisfied is at most γ = 0.05. We set R∗ = 1 (in Section
3.5; see the third column panel in Figure 3.4) and while the γ constraint is no longer satisfied, the
SCD/Perish (this research) model continues to outperform or perform the same as the other mod-
els considered from a drug shortage and drug waste perspective. Also, in Figure 3.4, we observe
that the expected proportion of drug shortages per day decreases as α goes from 0.18 to 0.19 for
e ∈ {60,90,120} days. Recall, the closed-form solutions treat the length of the review period (R)
and order-up-to level (S) as continuous decision variables. However, the simulation model rounds
the optimal length of the review period R∗ down to the nearest whole number to model a periodic
review inventory system. This explains the decrease between the two values of α .
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3.6.3 Influence of Supply Chain Disruption Patterns

Using the perishable closed-form model, we analyze how supply chain disruption patterns influ-
ence the inventory policies. We consider the disruption probability (α) and define the recovery
probability (β ) such that α = yβ (0 < α < 1; y ∈ R+; 0 < β < 1). For any fixed value of y, the
corresponding α and β values that satisfy the relation α = yβ have the same long-run probability
of being in the disrupted state (i.e., α

α+β
). However, the supply chain disruption pattern may differ.

Figure 3.5 illustrates the supply pattern interpretation between y : α = yβ and α .
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Figure 3.5: Illustration of different supply chain disruption patterns.

We study the expected cost per day (holding plus ordering), the length of the review period (R),
and the order-up-to level (S) when considering a disruption probability (α) and recovery proba-
bility (β ) such that α = yβ (0 < α < 1; y ∈ R+; 0 < β < 1). Figure 3.6 presents the results for
α ∈ {0.01,0.02, ...,0.1} and y ∈ {1

3 ,
2
3 ,1,

4
3 ,

5
3} with all other inputs fixed (see Table 3.2). When the

disruption probability (α) is small and/or y is large, the supply chain is less reliable (see quadrants
I-III in Figure 3.5). In these cases, it is optimal to enforce the perishability condition by setting
S∗ = eq. Further, when y = 5

3 , it is optimal to enforce the perishability condition by setting S∗ = eq

with the same R∗ for both α = 0.01 and α = 0.02. When α = 0.01, we have β = 0.006 and when
α = 0.02, we have β = 0.012. For both cases, the long-run probability that supply is disrupted is

α

α+β
= 0.625. However, when α = 0.02 and β = 0.012, the supply chain recovers more quickly

than the α = 0.01 and β = 0.006 case. This implies we have a greater chance of holding inventory
(or equivalently, not stocking out) when α = 0.02 over α = 0.01 explaining why the expected cost
per day increases in Figure 3.6. Parallel arguments hold for y = 5

3 and α ∈ {0.03,0.04}.
More generally, the results illustrate that for any value of y, there exists a disruption probability

α ′ such that for α ≥ α ′, it becomes optimal to follow the (R∗,S∗) using the non-perishable model
(e.g., α ′ = 0.03 when y = 1). Another key takeaway is that the inventory policies differ based on
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the value of α and y. This illustrates that it is not sufficient to solely use the long-run probability
that supply is not disrupted (i.e., β

α+β
) when making inventory decisions and instead, both the

duration of and time between supply chain disruptions should be considered.

Figure 3.6: Results for different supply chain disruption patterns.

3.6.4 Impact of Stochastic Demand

Using the perishable closed-form model, we study the impact of stochastic demand that is normally
distributed. With the base case input parameters (see Table 3.2), we solve for the optimal (R∗,S∗)

inventory policies using expiration lifetimes of e ∈ {14,30,60,90,120} days. Using these (R∗,S∗)

inventory policies, we simulate how the inventory system would perform using the (R∗,S∗) policies
with stochastic demand. Specifically, we consider daily demand that is normally distributed with
mean, q = 45, and standard deviation, σ ∈ {0,2,4, ...,20} (with the demand in any realization
forced to 0 if a negative demand is generated). We consider this range of standard deviations
because the most recent 6 months of Fentanyl data has a standard deviation of 15. We calculate the
proportion of drug shortages and drugs wasted per day as a fraction of the average daily demand for
the simulation run. Figure 3.7 presents the expected cost per day (holding plus ordering), expected
proportion of drug shortages per day, and expected proportion of drugs wasted per day versus the
standard deviation of daily demand.

The change in standard deviation (i.e., variability in daily demand) has a negligible impact on
the expected cost per day which consists of holding and ordering costs. With respect to shortages,
the increase in variability in daily demand leads to a negligible increase in the expected propor-
tion of drug shortages for e ∈ {60,90,120} days, and the (R∗,S∗) policies continue to satisfy the
γ = 0.05 constraint for all standard deviation values (σ ). For e ∈ {14,30} days, the expected
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proportion of drug shortages has a negligible increase as demand variability increases. These ex-
piration lifetimes are examples where given the perishability condition is enforced with S∗ = eq,
there is not a feasible R∗ ≥ 1 such that the proportion of demand not satisfied is at most γ = 0.05.
Therefore, all shortage results for e ∈ {14,30} days are greater than 0.05. Also, no feasible R∗

implies the length of the review period is set to R∗ = 1 (in Section 3.5). Consequently, orders are
placed every day, which explains the large difference in the expected cost between e = {14,30}
days and e ∈ {60,90,120} days. With respect to waste, the expected proportion of drugs wasted
linearly increases with an increase in daily demand variability, but only impacts drugs with an
expiration lifetime of e ∈ {14,30,60} days.

We believe the negligible increase in the proportion of drug shortages in contrast to a significant
increase in the proportion of drug shortages for all expiration lifetimes is a result of the inventory
system holding extra inventory on-hand to guard against supply chain disruptions. We also believe
the extra inventory on-hand leads to a negligible change in the expected cost per day for all expira-
tion lifetimes. For small expiration lifetimes (i.e., e∈ {14,30} days), we suspect the increase in the
expected proportion of drugs wasted is a result of the inventory system having an order-up-to level
S∗ equal to the maximum inventory level with the defined perishability condition (i.e., S∗ = eq).
Other small lifetimes like e = 60 days require a large standard deviation (i.e., σ = 14) to see an
increase in waste. The (R∗,S∗) policies are insensitive to changes in the standard deviation when
demand is normally distributed, but when a drug’s expiration lifetime is small, waste increases
linearly as the standard deviation increases.

Figure 3.7: Impact of not considering stochastic demand.
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3.6.5 Model Simplicity versus Model Accuracy

We investigate the trade-off between model simplicity and model accuracy. In Section 3.6.3, we
showed it is critical to account for the duration of and time between supply chain disruptions
which are captured when modeling the inventory system as a two-state supply process. These are
not captured when modeling the inventory system as a Bernoulli supply process. The Bernoulli
closed-form solutions are much more condensed in comparison to a two-state supply process (see
Appendix B.2). We consider the base case input parameters with the relationship α = 1

3β (see Fig-
ure 3.6 in Section 3.6.3). We solve for the (R∗,S∗) inventory policy using the two-state closed-form
solutions (Chapter 3) and Bernoulli closed-form solutions (see Appendix B.2). When solving for
the (R∗,S∗) inventory policy with the Bernoulli closed-form solutions, we use the long-run proba-
bility that the supply chain is not disrupted as the input parameter (i.e., p= β

α+β
= 3

4 ). We calculate
the expected proportion of drug shortages per day using the left-hand side of the constraint in For-
mulation (3.11) with the (R∗,S∗) inventory policy and the corresponding α(R) and β (R). Figure 3.8
presents the results.

With the disruption probability (α) fixed, we first observe that the (R∗,S∗) inventory policies are
not always equivalent for the two-state supply process and Bernoulli supply process. We conclude
that R∗ and S∗ are dependent on the supply chain disruption process. We find that as the disrup-
tion probability (α) increases, the two systems have similar inventory policies and thus, similar
performance. However, for small disruption probabilities, the (R∗,S∗) inventory policies can be
significantly different leading to an increase in the expected proportion of drug shortages per day
when using the Bernoulli closed-form solutions instead of the two-state closed-form solutions.
Specifically, the two-state supply process model and Bernoulli supply process model with the base
case disruption probability α = 1

90 ≈ 0.01 leads to demand not being satisfied 5% and 16% of the
time, respectively (i.e., 3 times the number of shortages with the Bernoulli model). For waste, the
two-state and Bernoulli closed-form solutions both ensure S∗ ≤ eq which guarantees no waste in
the system. Hence, there is no impact on waste when using the Bernoulli closed-form solutions
instead of the two-state closed-form solutions.
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Figure 3.8: Results for two-state versus Bernoulli supply process where α = 1
3β .

3.6.6 Managerial Insights

We study the sensitivity of the model outputs (i.e., the expected cost per day [holding plus order-
ing], R, and S) with respect to changes in the input parameters: expiration lifetime (e), disruption
probability (α), recovery probability (β ), maximum proportion of demand not satisfied (γ), hold-
ing cost (h), and ordering cost (k). We present the key findings as (a)-(f) (see Appendix B.5 for the
detailed analysis along with the corresponding figures).

(a) As the expiration lifetime (e) increases, the length of the review period (R) and the order-
up-to level (S) increase. Also, there exists a lifetime e′ beyond which it becomes optimal to
always follow the non-perishable policies for e ≥ e′. For e < e′, the expected cost per day
increases.

(b) As the disruption probability (α) increases, the long-run probability that supply is disrupted
increases leading to an increasing expected cost per day, decreasing length of the review
period (R), and increasing order-up-to level (S).

(c) As the recovery probability (β ) increases, the long-run probability that supply is disrupted
decreases leading to a decreasing expected cost per day, increasing length of the review
period (R), and decreasing order-up-to level (S).

(d) As the maximum proportion of demand not satisfied (γ) increases, the constraint in the model
becomes less restrictive resulting in a decreasing expected cost per day, increasing length of
the review period (R), and decreasing order-up-to level (S).
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(e) As the holding cost (h) increases, the expected cost per day increases, the length of the review
period (R) decreases, and the order-up-to level (S) decreases.

(f) As the ordering cost (k) increases, the expected cost per day increases, the length of the
review period (R) increases, and the order-up-to level (S) increases.

3.7 Conclusion

A key finding from this chapter is that it is critical to account for perishability and supply chain
disruptions simultaneously, especially in hospital pharmacy inventory systems where shortages can
be life-threatening. In particular, we show that following a non-perishable (R,S) inventory policy
with supply chain disruptions can lead to unnecessary waste and even worse, a decrease in the
expected proportion of demand satisfied in comparison to a perishable (R,S) inventory policy with
supply chain disruptions (in Section 3.6.2). This implies that an inventory manager cannot sim-
ply choose a supply chain disruption model (without perishability) to be ‘safe’. This chapter also
demonstrates that it is crucial to account for the duration of and time between supply chain disrup-
tions, as the long-run probability that the supply chain is not disrupted is insufficient for inventory
decision-making (in Section 3.6.3). We illustrate the consequences of ignoring the duration of and
time between supply chain disruptions by simply modeling the inventory system as a Bernoulli
supply process (in Section 3.6.5). We find that making this assumption has no impact on waste,
but increases the expected proportion of drug shortages per day, especially for small disruption
probabilities holding the long-run probability that the supply chain is not disrupted fixed. This
shows that a simple model (i.e., more condensed closed-form solutions) that does not accurately
depict the supply chain disruption process (i.e., Bernoulli supply process instead of a two-state
supply process) comes at the cost of model performance.

It is worth noting how the closed-form model in this chapter may be implemented in our hospital
pharmacy setting of interest. As a first step, we would work closely with our hospital pharmacy
collaborators at the University of Michigan to conduct a pilot study of our closed-form model
with a subset of drugs (e.g., 503B drugs). For the pilot study, the closed-form model could be
coded in a programming language (e.g., R, Python), and ideally, this code would be embedded
in an application that has a “user-friendly" front end (e.g., Excel). The front end would require a
hospital pharmacy manager to enter the proportion of demand not satisfied for a particular drug (or
category of drugs) and the other input parameters (i.e., demand, costs, expiration lifetime, supply
chain disruption parameters) would be directly computed/retrieved on the back end from databases.
A hospital pharmacy manager would interact with this front end, the application would output the
optimal (R,S) inventory policy, and the (R,S) inventory policy would be manually entered into the
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ordering system (e.g., BD Logistics). We would proceed this way with our pilot study because
in current practice, it is challenging to integrate applications directly into the ordering system.
However, given the pilot study is successful, we could foresee working with inventory automation
vendors to embed the application into the ordering system to eliminate the manual (R,S) entry.
Furthermore, if the pilot study is successful, we could foresee extending the implementation of the
closed-form model to all drugs at the University of Michigan, other hospitals in the United States,
and worldwide.

For perishability, we assume that the expiration lifetime of the product is deterministic and
begins when it arrives at the inventory system. Future research can study stochastic expiration
lifetimes (e.g., exponential lifetimes) and/or stochastic arrival lifetimes (i.e., the remaining lifetime
of the product when it arrives at the inventory system is stochastic). Another avenue for future
research is considering the capacity of the inventory system. For example, a hospital pharmacy
may have limited storage to hold a particular drug (e.g., a medicine refrigerator). Constraining the
amount of inventory held may be appropriate in this setting, and we leave this for future research.

The easy to implement closed-form solutions in this chapter provide the inventory policy
quickly for non-perishable and perishable lost-sales (R,S) periodic review inventory systems with
supply chain disruptions. This can help policy and decision makers avoid consequences of per-
ishability, like waste, and supply chain disruptions, like shortages.
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CHAPTER 4

The Benefits (or Detriments) of Adapting to Demand
Disruptions in a Hospital Pharmacy with Supply

Chain Disruptions

4.1 Introduction

Hospital pharmacy managers are responsible for determining how much inventory to have on-hand
and when to place orders. Key aspects that need consideration when making these inventory deci-
sions are supply chain disruptions and demand disruptions. A supply chain disruption is a random
amount of time such that the hospital pharmacy is unable to receive a particular drug (Snyder et
al., 2016). The resiliency of pharmaceutical supply chains is an active area of concern (NASEM,
2022). Insufficient inventory during these supply chain disruptions leads to drug shortages which
can increase costs, increase drug errors, and decrease the quality of care (Phuong et al., 2019).
Shortages in a food inventory system may cause you to change your recipe and shortages in a
concert inventory system may cause you to miss your favorite band. However, drug shortages in
a hospital pharmacy inventory system can cause significant drawbacks such as patients experienc-
ing denied/delayed care (e.g., cancelled surgeries) or being provided with sub-optimal treatment
(e.g., substitute drugs with less efficacy or more side effects). A simple solution is stocking more
inventory than is needed, but holding too much inventory leads to waste as drugs have a finite shelf
life.

Balancing the drug shortage versus drug waste trade-off is further complicated by demand dis-
ruptions. Demand disruptions occur when the demand mean is different from “normal/baseline”
(i.e., it increases or decreases) for a random or extended amount of time. Demand disruptions were
prevalent during the Covid-19 pandemic (e.g., surges in demand to treat Covid-19 patients and de-
clines in demand for other drugs due to the cancellation of elective surgeries). Failing to adapt to
disruptions that increase or decrease demand often leads to drug shortages and drug waste, respec-
tively. However, drugs differ in their shortage-waste weighting (i.e., concern for shortages versus
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concern for waste) and supply chain disruption profile (i.e., duration of and time between supply
chain disruptions). We are interested in studying how these differences influence the benefits (or
detriments) of adapting to demand disruptions.

A drug’s shortage-waste weighting defines the shortage concern versus waste concern for a
particular drug of interest. For the supply chain disruption profile, we analyze both the duration
of supply chain disruptions and time between supply chain disruptions. With the varying drug
shortage-waste weightings and supply chain disruption profiles, simulation modeling is a viable
method to assess the performance of the inventory system given different inventory policies, such
as adaptive inventory policies (i.e., inventory policies change over time), are in place.

To analyze the performance of adaptive inventory policies, we recognize that hospital pharmacy
managers decide how frequently to place orders and how much inventory to have on-hand. To this
end, we develop an adaptive lost-sales (R,S) periodic review inventory system where R denotes
the length of the review period (i.e., attempt to place an order every R days) and S denotes the
order-up-to level (i.e., attempt to place an order up to S every R days). By adaptive, we imply
that the (R,S) inventory policy changes over time to reflect the shifts in the demand mean. We
design the adaptive inventory system such that it (1) solves for the (R,S) inventory policy in a
hospital pharmacy with supply chain disruptions, (2) endogenously detects when the inventory
policy needs to be updated due to a demand disruption, and (3) appropriately updates the (R,S)

inventory policy. Contracts, logistics, and resources can make it challenging to update the (R,S)

inventory policy very frequently. We use the drug’s shortage-waste weighting, the change in the
expected proportion of drug shortages per day, and the change in the expected proportion of drugs
wasted per day to support when the (R,S) inventory policy needs to be updated. Furthermore,
we recognize that hospital pharmacy managers are often responsible for thousands of different
drugs. To provide quick solution times and easy implementation, we create an adaptive inventory
system that consists solely of closed-form expressions. Although, hospital pharmacy managers
may only be able to adapt a limited number of (R,S) inventory policies at any given time. To give
these managers a sense of which drugs are of most concern, we use the adaptive inventory system
and provide a procedure to rank drugs based on multiple characteristics of a drug (e.g., expiration
lifetime, shortage concern, waste concern, demand for the drug).

This chapter makes the following contributions:

1. We create an adaptive (R,S) periodic review inventory system that accounts for perishability,
supply chain disruptions, and demand disruptions. All expressions are presented in closed-
form providing quick solution times and easy implementation which is critical in a hospital
pharmacy where managers are often responsible for thousands of different drugs.

2. The adaptive inventory system relies on the expected proportion of drugs wasted per day
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in a (R,S) periodic review perishable inventory system with supply chain disruptions and
stochastic demand. To the best of our knowledge, we are the first to present this value in
closed-form.

3. We use the adaptive inventory system to create a ranking procedure. The ranking procedure
provides a way of discerning which drugs are of most concern and illustrates which policies
to update given that a limited number of inventory policies can be updated.

4. We leverage simulation modeling and perform an extensive numerical analysis using real-
world demand data from the University of Michigan’s Central Pharmacy to distinguish how
a drug’s shortage-waste weighting and supply chain disruption profile influence the benefits
(or detriments) of adapting to demand disruptions.

The remainder of the chapter is organized as follows: Section 4.2 provides literature relevant
to this research. Section 4.3 presents the adaptive inventory system and the ranking procedure.
Section 4.4 presents the simulation models of the multiple inventory systems we consider in this
chapter. In Section 4.5, we conduct a numerical analysis using real-world demand data from the
University of Michigan’s Central Pharmacy. Section 4.6 closes the chapter and provides future
research directions.

4.2 Literature Review

Disruptions in a supply chain, whether from demand, supply, or transportation, are not a new
problem. Paul et al. (2016), Snyder et al. (2016), Shen & Li (2017), and Ivanov et al. (2017)
provide insightful review articles on the topic. To demonstrate how this chapter expands upon
past research, we present literature in three areas: perishable inventory models without disruptions,
perishable inventory models with disruptions, and adaptive inventory models. We close this section
by using past literature to motivate adaptive inventory policies in a hospital pharmacy setting.

In Table 4.1, we present (a) perishable inventory models without disruptions, (b) perishable
inventory models with disruptions, (c) adaptive inventory models, and (d) this research. For each
paper, we characterize the research by perishability (NP: non-perishable, P: perishable), demand
(D: deterministic, S: stochastic, DD: demand disruptions), supply (SSC: stochastic supply capacity,
SLT: stochastic lead time, SCD: supply chain disruptions), adaptive (i.e., inventory policy/control
parameters change over time or research uses thresholds to incorporate dynamic decision-making),
and methodology. We note that some perishable inventory models have NP when characterizing
their perishability (e.g., Zhang et al., 2014). This implies that the authors consider a perishable
inventory system, but the authors do not capture perishability in their models (i.e., the authors do
not capture the finite lifetime of the product).
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Table 4.1 Summary of relevant literature.
Paper NP/P Demand Supply Adaptive Methodology
(a) Perishable Inventory Models without Disruptions
Zhang et al. (2014) NP D Simulation-optimization
Little & Coughlan (2008) NP S Constraint program
Neve & Schmidt (2022) NP S Cost/service level optimization
Dillon et al. (2017) P S Stochastic program
Kara & Dogan (2018) P S Reinforcement learning
Rajendran & Srinivas (2020) P S Stochastic program
Syawal & Alfares (2020) P S Simulation-optimization
Xu & Szmerekovsky (2022) P S Stochastic program
Li et al. (2018) P D SLT Nonlinear program and closed-form
Franco & Alfonso-Lizarazo (2020) P S SLT Stochastic program
Nguyen & Chen (2019) P S SSC Stochastic program
Nguyen & Chen (2022) P S SSC Stochastic program

(b) Perishable Inventory Models with Disruptions
Atan & Rousseau (2016) P D SCD Closed-form
Chapter 3 P D SCD Closed-form
Azghandi (2019) NP S SCD Simulation model
Saedi et al. (2016) P S SCD Continuous time Markov chain
Chapter 2 P S SCD Simulation-optimization
He & Wang (2012) P DD Analytical model
Rana et al. (2021) P DD Analytical model
Uthayakumar & Karuppasamy (2019) P DD Economic order quantity model

(c) Adaptive Inventory Models
Eilon & Elmaleh (1970) NP S SLT ✓ Forecasting procedure
Peterson et al. (1972) NP S ✓ Heuristics for dynamic program
Kim et al. (2005) NP S ✓ Reinforcement learning
Schmitt et al. (2017) NP S SCD ✓ Simulation model
Li et al. (2016) P S ✓ Dynamic program

(d) This Research
Chapter 4 P DD SCD ✓ Closed-form framework

NP: non-perishable, P: perishable, other abbreviations defined in Section 4.2

In comparison to the literature, we would like to motivate adaptive inventory policies and the
importance of assessing the performance of the inventory policies for a hospital pharmacy inven-
tory system. From a hospital pharmacy perspective, Azghandi (2019) creates a simulation model to
study a multi-echelon pharmaceutical supply chain faced with supply chain disruptions and finds
that adaptive inventory policies (i.e., inventory policies change over time) may help decrease drug
shortages and drug costs for an inventory system with supply chain disruptions. However, demand
disruptions are not taken into consideration. On the contrary, our research incorporates supply
chain disruptions when solving for the optimal inventory policy and adapts the inventory policy
over time to account for demand disruptions to overcome drug shortages and drug waste.

From a disruption perspective, Snyder et al. (2016) discuss the need for integrating proactive
(i.e., guard against future uncertainties) and reactive (i.e., implemented when unexpected events
occur) strategies when overcoming disruptions (Ivanov et al., 2017). In this chapter, we account for
supply chain disruptions when solving for the optimal (R∗,S∗) inventory policy [proactive] as well
as endogenously detect demand disruptions and update the (R∗,S∗) inventory policy [reactive]
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to tackle the drug shortage and drug waste challenges in a hospital pharmacy inventory system.
Furthermore, by detecting demand disruptions and appropriately updating the (R∗,S∗) inventory
policy, we are able to adapt to changing conditions and consequently, improve the viability of the
inventory system (Ivanov, 2021).

Also, we leverage simulation modeling to assess the performance of multiple inventory systems,
including adaptive inventory systems, for varying drug shortage-waste weightings (i.e., concern for
shortages versus concern for waste) and supply chain disruption profiles (i.e., duration of and time
between supply chain disruptions). Gebicki et al. (2014) encourages the use of the criticality of the
drug (i.e., concern for shortages defined by a drug’s shortage-waste weighting in this chapter) and
availability of the drug (i.e., supply chain disruption profile in this chapter) in inventory decision-
making to improve the outcomes of a hospital pharmacy. But, they do not study adaptive inventory
policies.

4.3 Adaptive (R,S) Inventory System

We proceed to present the adaptive (R,S) inventory system. We start by presenting how to solve for
a (R,S) inventory policy for a perishable inventory system with supply chain disruptions (in Section
4.3.1) and how to adapt this (R,S) inventory policy over time to respond to demand disruptions (in
Section 4.3.2). We close this section by presenting a ranking procedure (in Section 4.3.3) which
provides a way of discerning which drugs are of most concern and illustrates which inventory
policies to update given that a limited number of inventory policies can be updated.

4.3.1 (R,S) Inventory Policies with Supply Chain Disruptions

We start by modeling a lost-sales (R,S) perishable inventory system with supply chain disruptions
as done in Chapter 3. The closed-form expressions derived in Chapter 3 provide quick-to-solve
and easy-to-implement (R,S) periodic review inventory policies. We simply refer to this model as
the (R,S) model. We refer the reader to Chapter 3 for the full model and implementation details.
In Table 4.2, we present the notation for the (R,S) model and then we proceed to present the model
assumptions.
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Table 4.2 Summary of the modeling notation for the (R,S) model (Chapter 3).
Notation Description
Input Parameters
k Fixed ordering cost (i.e., for each order attempted; k > 0)
h Holding cost per day per drug (h > 0)
q Deterministic demand per day (q > 0)
e Expiration lifetime in days (e ≥ 1)
γ Maximum proportion of drug shortages per day over the infinite horizon (0 < γ < 1)
α(R) Supply chain disruption probability with respect to the length of the review period R (0 < α(R) < 1)
β (R) Supply chain recovery probability with respect to the length of the review period R (0 < β (R) < 1)
Variables
R Length of the review period (R ≥ 1)
S Order-up-to level (S ≥ 0)
m Number of review periods S fully covers (m = ⌊ S

qR⌋; m ≥ 1)

The (R,S) model minimizes the expected ordering and holding cost, while constraining the
proportion of drug shortages per day to be at most γ over an infinite horizon. The constraint on
the proportion of drug shortages per day is tight with the optimal (R∗,S∗) inventory policy (i.e.,
the proportion of drug shortages per day is γ over an infinite horizon). The model also enforces
zero waste in the inventory system by always ensuring S∗ ≤ eq where e is the expiration lifetime
in days and q is the deterministic daily demand. With this upper bound on S∗, there may be
instances where the maximum proportion of drug shortages constraint cannot be satisfied. When
the maximum proportion of drug shortages constraint cannot be satisfied, the optimal inventory
policy is always (R∗ = 1,S∗ = eq) (i.e., the smallest R∗ and the largest S∗) as this maximizes the
expected inventory on-hand.

The (R,S) model assumes that the lead time is zero which is consistent with hospital pharmacies
that tend to see very small lead times. The Central Pharmacy at the University of Michigan expe-
riences lead times of 36-72 hours. Also, the model assumes orders can only be attempted at times
that are integer multiples of R (regardless of the not disrupted versus disrupted status of the supply
chain between review periods) and that orders are only successfully placed when the supply chain
is not disrupted. Given these assumptions, we can simply refer to inventory position as inventory
on-hand. When applying the (R,S) model in this chapter, we assume that we have full and accurate
knowledge of the inventory on-hand. Furthermore, we note that supply chain disruptions often last
weeks, months, or years (Tucker et al., 2020a) which is much longer than the typical time between
orders (i.e., R).

The (R,S) model assumes that supply chain disruptions follow a two-state supply process which
is consistent with pharmaceutical supply chains (Tucker et al., 2020b). A two-state supply process
is modeled as a two-state discrete time Markov chain where the time the supply chain is in the
not disrupted state is a geometric random variable with parameter α(1) (i.e., disruption probability;
mean up time of 1

α(1) ) and the time the supply chain is in the disrupted state is a geometric random
variable with parameter β (1) (i.e., recovery probability; mean down time of 1

β (1) ) (Snyder et al.,
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2016). A two-state supply process accounts for the duration of and time between supply chain
disruptions. For perishability, the (R,S) model assumes that the drugs have no quality decay (Khan
et al., 2014) and have a deterministic lifetime that starts when the drug arrives at the pharmacy.
Also, the model assumes first-in-first-out protocols are in place which is consistent with practice
at the University of Michigan’s Central Pharmacy. For demand, the (R,S) model assumes that the
daily demand, q > 0, is deterministic and static. For emphasis, our hospital pharmacy setting of
interest does not have deterministic or static demand. In Section 4.3.2, we discuss how to use the
(R,S) model in the adaptive framework to account for the real-world hospital pharmacy system
that has stochastic and variable demand.

4.3.1.1 Supply Chain Disruption Parameters in the (R,S) Model

In the (R,S) model, α(R) and β (R) represent the supply chain disruption and recovery probability,
respectively, for a review period of length R days. An important observation is that these values
depend on the length of the review period R (i.e., a decision variable). Chapter 3 illustrates how to
use the closed-form expressions to solve for the optimal (R∗,S∗) with only α(1) and β (1) as input
by leveraging P(i) which is the i-step transition probability matrix (see Equation (4.1); Kulkarni,
2011).

P(i) =

(
· α(i)

β (i) ·

)
=

(
(1−α(1)) α(1)

β (1) (1−β (1))

)i

(4.1)

In practice, we can find the values of α(1) and β (1) by answering the following questions:

1. What proportion of the time is the drug short? Define this value as Q1 (Q1 ∈ (0,1); 0 implies
never short and 1 implies always short).

2. If the drug goes short, how long do you think the shortage will last (in days)? Define this
value as Q2 (Q2 > 1).

With Q2 >
Q1

1−Q1
(due to the (R,S) model requirement of α(R)≤α(1)< 1; see Table 4.2) and Q2 > 1

(due to the (R,S) model requirement of β (R) ≤ β (1) < 1; see Table 4.2), we can solve for α(1) and
β (1) using the relation that Q1 = α(1)

α(1)+β (1) and Q2 = 1
β (1) . Here, Q1 corresponds to the long-run

probability that the supply chain is disrupted (Snyder & Shen, 2019). Using these equations, we
have the results presented in Equations (4.2)-(4.3).

α
(1) =

Q1

Q2(1−Q1)
(4.2)

β
(1) =

1
Q2

(4.3)
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Through discussions with our hospital pharmacy collaborators, the value of Q2 is very difficult
to quantify in practice, but it is an important parameter as it defines α(1) and β (1) in Equation (4.2)
and Equation (4.3), respectively. With this, we provide the expression for the ratio of the expected
proportion of drug shortages per day given a value Q2 and the true value Q∗

2 in Appendix C.1.1.

4.3.2 Adapting the (R,S) Inventory Policy Over Time

We want to emphasize that in practice, contracts, logistics, and resources can make it challenging
to update the (R,S) inventory policy very frequently (e.g., every day/week/month). A more com-
mon approach is updating the inventory policy every 3 or 6 months (i.e., update every B days where
B ∈ {90,180}) where the average demand from the past B days is used to update the (R,S) inven-
tory policy. We refer to this approach as a benchmark inventory system. Unlike the benchmark
inventory system that updates the inventory policy on long fixed intervals, we create an adaptive
inventory system that endogenously detects when the (R,S) inventory policy needs to be updated at
any point in time. We endogenously detect a change in the inventory policy is needed using a short-
age threshold δs and waste threshold δw. These thresholds represent the change in the proportion
of drug shortages per day and drugs wasted per day, respectively, that the inventory system is will-
ing to tolerate. Specifically, these thresholds guard against shortages when an increasing demand
disruption and waste when a decreasing demand disruption occur, respectively. When considering
demand, as mentioned in Section 4.3.1, the (R,S) model assumes that demand is deterministic and
static. However, our hospital pharmacy system of interest has stochastic and variable demand. For
the deterministic aspect of the (R,S) model, we replace the deterministic daily demand (q) with
the expected daily demand (q̄current) when solving for the (R,S) inventory policy; the term cur-

rent implies that this expected daily demand defines the current (R,S) inventory policy. For the
static aspect of the (R,S) model, we update this (R,S) inventory policy using a new expected daily
demand when we endogenously detect a demand disruption.

We define the additional notation necessary for the adaptive inventory system in Table 4.3.
We also present a depiction of how the adaptive demand parameters and estimates relate to one
another in Figure 4.1. We then proceed to define the expected proportion of drug shortages and
drugs wasted per day for the (R,S) inventory system. We also explain how to endogenously detect
when the inventory policy needs to be updated.
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Table 4.3 Summary of the modeling notation for the adaptive inventory system.
Notation Description
Thresholds
δs Change in the proportion of drug shortages per day that signals a change in the (R,S) inventory policy when exceeded

(0 < δs < 1; input parameter)
δw Change in the proportion of drugs wasted per day that signals a change in the (R,S) inventory policy when exceeded

(0 < δw < 1; input parameter)
Adaptive
N Number of past daily demand observations to consider for the adaptive inventory system daily demand estimates (input

parameter)
qt Daily demand observed on day t (real-world hospital pharmacy data)
q̄current Expected daily demand used for the current (R,S) policy
q̄new Expected daily demand calculated using the average of the most recent N daily demand observations
σnew Standard deviation of daily demand calculated using the most recent N daily demand observations
Pshort|(q̄,R,S) Expected proportion of drug shortages per day when following a (R,S) inventory policy for an inventory system that

has an expected daily demand of q̄
Pwaste|(q̄,σ ,R,S) Expected proportion of drugs wasted per day when following a (R,S) inventory policy for an inventory system that has

an expected daily demand of q̄ and standard deviation of daily demand σ

Benchmark
B Number of days the inventory system follows the same (R,S) inventory policy where the average of the last B days is

used to update the inventory policy (input parameter)
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Figure 4.1: Depiction of the adaptive demand parameters and estimates. q̄new and σnew are calcu-
lated at the end of day i after demand has been observed.

4.3.2.1 Expected Proportion of Drug Shortages and Drugs Wasted Per Day

We proceed to present the closed-form expressions for the expected proportion of drug shortages
per day and drugs wasted per day. When calculating these proportions, we assume that the daily
demand is normally distributed. We make this assumption because of the quantile-quantile plots
(i.e., QQ-plots) with the real-world unique training daily demand observations.

Expected Proportion of Drug Shortages Per Day

Using the (R,S) model (see Section 4.3.1), Equation (4.4) represents the expected proportion of
drug shortages per day when following a (R,S) inventory policy for an inventory system that has an
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expected daily demand of q̄ (in Appendix C.2.1). Proportion is measured relative to the expected
daily demand q̄. From Equation (4.4), the expected proportion of drug shortages per day depends
on the length of the review period (R), the order-up-to level (S), the expected daily demand (q̄),
the disruption probability (α(R)), and the recovery probability (β (R)). It is worth noting that the
(R,S) policy is calculated using q̄current which ensures that m = ⌊ S

q̄currentR
⌋ ≥ 1. However, with an

expected daily demand of q̄, the m ≥ 1 requirement may no longer be satisfied which explains the
two cases presented in Equation (4.4). Furthermore, Chapter 3 illustrates that stochastic demand
that is normally distributed has a negligible impact on the expected proportion of drug shortages
per day with the (R,S) model. The reason for this finding is that the (R,S) model incorporates
supply chain disruptions which encourage the inventory system to hold extra inventory on-hand.
As a result, there is a negligible impact on the expected proportion of drug shortages per day when
demand is stochastic. Hence, we simply consider a deterministic expected daily demand q̄.

(4.4)

Pshort|(q̄,R,S) =



α(R)β (R)(1−β (R))m−1

(α(R)+β (R))

(
m+1− S

q̄R

)
+
(

α(R)(1−β (R))m

(α(R)+β (R))

)
; m ≥ 1 where m = ⌊ S

q̄R⌋

β (R)

α(R)+β (R)

( q̄R−S
q̄R

)
+
(
1− β (R)

α(R)+β (R)

)
; m < 1 where m = ⌊ S

q̄R⌋

Expected Proportion of Drugs Wasted Per Day

Equation (4.5) represents the expected proportion of drugs wasted per day when following a (R,S)
inventory policy for an inventory system that has an expected daily demand of q̄ and standard
deviation of daily demand σ (in Appendix C.2.2). Proportion is measured relative to the expected
number of drugs ordered. To our knowledge, we are the first to present this value in closed-form.
The expected proportion of drugs wasted per day in Equation (4.5) depends on the length of the
review period (R), the order-up-to level (S), the expected daily demand (q̄), the standard deviation
of daily demand (σ ), the disruption probability (α(R); in π j), the recovery probability (β (R); in
π j), and the expiration lifetime (e). Z denotes a standard normal random variable and Appendix
C.2.2 provides the closed-form expressions for the summations including π j. π j is the probability
that the supply chain is disrupted for exactly j consecutive review periods (π0 = β (R)

α(R)+β (R) ; π j =

α(R)β (R)

(α(R)+β (R))(1−β (R))
(1− β (R)) j, j ≥ 1). Equation (4.5) accounts for stochastic demand where we

assume that the daily demand is independent and normally distributed with mean q̄ and standard
deviation σ . Chapter 3 illustrates that the expected proportion of drugs wasted with the (R,S)

model is sensitive to stochastic demand that is normally distributed, especially for drugs with short
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expiration lifetimes.

Pwaste|(q̄,σ ,R,S) =

(4.5)

Ew
S ; ⌈ e

R⌉= 1

Ew

(⌈ e
R ⌉Rq̄+Ew)π0+

∞

∑
j=⌈ e

R ⌉−1
π j(S+Rq̄(

(⌈ e
R ⌉−1)

2 ))
; ⌈ e

R⌉= 2

Ew

(⌈ e
R ⌉Rq̄+Ew)(π0+

⌈ e
R ⌉−2

∑
j=1

π j− 1
⌈ e

R ⌉

⌈ e
R ⌉−2

∑
j=1

jπ j)+
S

⌈ e
R ⌉

⌈ e
R ⌉−2

∑
j=1

jπ j+
Rq̄
⌈ e

R ⌉

⌈ e
R ⌉−2

∑
j=1

j2π j+
∞

∑
j=⌈ e

R ⌉−1
π j(S+Rq̄(

(⌈ e
R ⌉−1)

2 ))

; ⌈ e
R⌉ ≥ 3

where Ew =

(
S ·Pr(Z <

S− eq̄√
eσ2

)− eq̄− 1
2π

(
− e−

(S−eq̄)2

2eσ2 + e−
(−eq̄)2

2eσ2
)√

eσ2

)

4.3.2.2 Detecting When the Inventory Policy Needs to Be Updated

On any day t, we follow a particular (R,S) inventory policy which is defined with respect to an
expected daily demand of q̄current . In the presence of increasing and/or decreasing demand dis-
ruptions, we may need to update the inventory policy to avoid excessive drug shortages and/or
drug waste. The key idea is that we consider how a shift in the expected daily demand impacts
the expected proportion of drug shortages per day and expected proportion of drugs wasted per
day. For the shift in the expected daily demand, we estimate the new expected daily demand q̄new

by averaging the most recent N daily demand observations and we compare this to q̄current ; the
expected daily demand used to define the current (R,S) inventory policy. We detect a change in the
inventory policy is necessary if (a) q̄new ≥ q̄current and the shift in the expected daily demand causes
the change in the expected proportion of drug shortages per day to exceed δs or (b) q̄new < q̄current

and the shift in the expected daily demand causes the change in the expected proportion of drugs
wasted per day to exceed δw. If (a) or (b) holds, we update the (R,S) inventory policy using the
new expected daily demand q̄new. It is worth noting that if q̄new < q̄current , the estimated standard
deviation of demand (i.e., σnew) will influence the expected proportion of drugs wasted per day as
illustrated in Equation (4.5). We illustrate an overview of the procedure in Figure 4.2.
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Figure 4.2: Overview of the adaptive inventory system.

We proceed to describe the daily demand estimates and expected proportions needed for the
adaptive inventory system. We then formally define the conditions that detect when the inventory
policy needs to be updated.

Daily Demand Estimates and Expected Proportions

We estimate the expected daily demand q̄new by averaging the most recent N daily demand obser-
vations. We initially considered other prediction approaches (e.g., ARIMA), but we found that a
simple average approach performed just as well or better. We hypothesize that an averaging ap-
proach performs well due to the variable and noisy real-world daily demand data. We also found
that knowing everything about the future (i.e., knowing the future N daily demand observations ex-
actly) had a small or negligible impact on the performance. For drugs with seasonal data over a pe-
riod of daily demand observations (e.g., demand is dependent on the day of the week), we suggest
selecting N such that it is a multiple of the seasonal period (e.g., N ∈ {7,14,21,28,35,42,49,56}
days for weekly seasonality). For drugs that experience longer periods of seasonality (e.g., yearly),
we note that the adaptive inventory system will endogenously detect changes in the demand over
this longer period of time and appropriately update the (R,S) inventory policy. For the standard
deviation of daily demand, we estimate the standard deviation of daily demand (i.e., σnew) using
the most recent N daily demand observations.

We first calculate the expected proportion of drug shortages per day when following a particular
(R,S) inventory policy. We calculate this proportion for an inventory system that has an expected
daily demand of q̄new (i.e., Pshort|(q̄new,R,S), see Equation (4.4)) which corresponds to the proportion
estimate with the new demand mean. We also calculate this proportion for an inventory system
that has an expected daily demand of q̄current (i.e., Pshort|(q̄current ,R,S), see Equation (4.4)) which
corresponds to the proportion estimate with the demand mean that defines the current (R,S)

inventory policy. Next, we calculate the expected proportion of drugs wasted per day when
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following a particular (R,S) inventory policy. We calculate this proportion for an inventory system
that has an expected daily demand of q̄new and standard deviation of daily demand σnew (i.e.,
Pwaste|(q̄new,σnew,R,S), see Equation (4.5)) which corresponds to the proportion estimate with the new
demand mean and new standard deviation of daily demand. We also calculate this proportion for
an inventory system that has an expected daily demand of q̄current and standard deviation of daily
demand σnew (i.e., Pwaste|(q̄current ,σnew,R,S), see Equation (4.5)) which corresponds to the proportion
estimate with the demand mean that defines the current (R,S) inventory policy and new standard
deviation of daily demand.

Conditions that Detect When the Inventory Policy Needs to Be Updated

Given q̄new ≥ q̄current , we have an increase or no change in the expected daily demand. In this
case, we compare Pshort|(q̄new,R,S) − Pshort|(q̄current ,R,S) to the shortage threshold δs; the change in
the proportion of drug shortages per day that signals a change in the (R,S) inventory policy
when exceeded. δs provides a numerical value to quantify the shortage concern. A smaller δs

is recommended for drugs that have a high shortage concern. We note that when q̄new = q̄current ,
Pshort|(q̄new,R,S)−Pshort|(q̄current ,R,S) will equal zero, but we include this scenario to simply break the
analysis into two cases.

Given q̄new < q̄current , we have a decrease in the expected daily demand. In this case, we com-
pare Pwaste|(q̄new,σnew,R,S)−Pwaste|(q̄current ,σnew,R,S) to the waste threshold δw; the change in the propor-
tion of drugs wasted per day that signals a change in the (R,S) inventory policy when exceeded.
δw provides a numerical value to quantify the waste concern. A smaller δw is recommended for
drugs that have a high waste concern.

Formally, the adaptive inventory system detects that the inventory policy needs to be updated if
either condition in Equation (4.6) is satisfied. We provide a detailed discussion on the selection of
the input parameters δs and δw in Section 4.5.2.Pshort|(q̄new,R,S)−Pshort|(q̄current ,R,S) > δs; q̄new ≥ q̄current

Pwaste|(q̄new,σnew,R,S)−Pwaste|(q̄current ,σnew,R,S) > δw; q̄new < q̄current

(4.6)

Given we detect that the (R,S) inventory policy needs to be updated, we set q̄current = q̄new and
solve for the new (R,S) inventory policy using the (R,S) model.

4.3.3 Ranking Drugs

Managers at the University of Michigan’s Central Pharmacy are responsible for making inventory
decisions for 2,500+ drugs. We create a ranking procedure to address the following questions:
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1. Out of the 2,500+ drugs, which (if any) drugs should the hospital pharmacy be most con-
cerned about?

2. If only a limited number of inventory policies can be updated, which drugs (if any) should
the hospital pharmacy focus on?

We present a ranking procedure that depends on the:

(a) storage/holding cost for the drug (h)

(b) expiration lifetime of the drug (e)

(c) supply chain disruption profile of the drug (α(R) and β (R))

(d) shortage concern (δs; change in the proportion of drug shortages per day that the decision-
maker is willing to tolerate)

(e) waste concern (δw; change in the proportion of drugs wasted per day that the decision-maker
is willing to tolerate)

(f) demand for the drug (q̄current and q̄new)

(g) demand variability of the drug (σnew)

For the ranking procedure, we observe that the adaptive inventory system keeps a record of
the change in the expected proportion of drug shortages per day and the change in the expected
proportion of drugs wasted per day (see Equation (4.6)). We are interested in ranking the drugs in
order of decreasing concern. We introduce a proportion exceedance metric denoted Pmetric which
measures how much the shortage threshold δs is exceeded given q̄new ≥ q̄current and waste threshold
δw is exceeded given q̄new < q̄current . We define Pmetric in Equation (4.7) where it is important to
note that the adaptive inventory system only indicates that the (R,S) inventory policy needs to be
updated when Pmetric > 0.

Pmetric =

max{0,Pshort|(q̄new,R,S)−Pshort|(q̄current ,R,S)−δs}; q̄new ≥ q̄current

max{0,Pwaste|(q̄new,σnew,R,S)−Pwaste|(q̄current ,σnew,R,S)−δw}; q̄new < q̄current

(4.7)

Pmetric encompasses characteristics (a)-(g). We rank the drugs in order of decreasing concern
by sorting the drugs from largest to smallest using Pmetric. There are multiple ways that decision-
makers can implement the ranking procedure in practice (e.g., update drugs based on Pmetric every
day, update drugs based on the average value of Pmetric over a fixed interval of days). In Section
4.5.5, we illustrate one way of implementing the ranking procedure in practice and we analyze the
results.
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4.4 Simulation Models

With the varying drug shortage-waste weightings and supply chain disruption profiles, we use sim-
ulation modeling to assess the performance of multiple inventory systems. We create simulation
models of four inventory systems: (A) Adaptive Inventory System (in Section 4.4.1), (B) Adaptive
with Buyback Inventory System (in Section 4.4.2), (C) Benchmark Inventory System (in Section
4.4.3), and (D) Static Inventory System (in Section 4.4.3). We let t denote the day in the planning
horizon where the decision-maker can select the initialization of t. We let r denote the number
of days remaining in the review period until the next order is attempted, b denote the number of
days since the (R,S) inventory policy has been updated, Ii denote the inventory on-hand with a
lifetime remaining of i days (i = 1, ...,e), and Itot denote the total inventory on-hand. To assess the
performance of the system, we record the number short each day t (i.e., shortt), the number wasted
each day t (i.e., wastet), the number held each day t (i.e., ht), and the number successfully ordered
each day t (i.e., ot).

4.4.1 (A) Adaptive Inventory System

Ignoring the bold text, Figure 4.3 provides a step-by-step description of the simulation model
representing a periodic review inventory system with adaptive inventory policies. To initialize the
model, we (a) define q̄current using the first B daily demand observations and solve for the optimal
(R∗,S∗) inventory policy. We then (b) initialize r = R∗ (i.e., there are R∗ days remaining in the
review period until an order should be attempted), b = 0 (i.e., it has been 0 days since the inventory
policy has been updated), Ii = 0 ∀i = 1, ...,e (i.e., the inventory system has zero inventory on-hand
across all lifetimes), Itot = 0 (i.e., the total inventory on-hand is zero), and ot−1 = S∗ (i.e., S∗ drugs
will arrive on day t).

After initializing the model, an iterative procedure begins. At the beginning of day t, (c) an
order placed on day t −1 arrives at the hospital pharmacy (when supply is not disrupted) recalling
the (R,S) model zero lead time assumption. The inventory levels are appropriately updated. Then,
we (d) observe the real-world daily demand (i.e., qt). At the end of day t, we (e) record the number
of drug shortages on day t (i.e., shortt), record the number of drugs wasted on day t (i.e., wastet),
and discard these wasted drugs. Then, we (f) subtract one day from the number of days remaining
in the review period (i.e., r = r−1), add one day to the number of days since the inventory policy
has been updated (i.e., b = b+1), and appropriately update the inventory levels. Then, (g) if r = 0
(i.e., there are zero days remaining in the review period), an order should be attempted. Thus, we
proceed to step (h). Otherwise, no order attempt is necessary so we (n) record the number of drugs
held (i.e., ht = Itot) and ordered (i.e., ot = 0) on day t, and start the process back at step (d).

Given an order should be attempted, we (h) use the most recent N daily demand observations
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to estimate the expected daily demand q̄new and standard deviation of daily demand σnew. Then,
we (i) determine if the (R,S) inventory policy needs to be updated by seeing if either condition
in Equation (4.6) is satisfied (i.e., q̄new ≥ q̄current & Pshort|(q̄new,R∗,S∗) −Pshort|(q̄current ,R∗,S∗) > δs or
q̄new < q̄current & Pwaste|(q̄new,σnew,R∗,S∗)− Pwaste|(q̄current ,σnew,R∗,S∗)> δw). If the (R,S) inventory policy
needs to be updated, we (j) update the inventory policy by setting q̄current = q̄new and solve for
the corresponding optimal (R∗,S∗) inventory policy. After step (j), we (k) set b = 0 to indicate
that it has been zero days since the inventory policy has been updated. Finally, we (l) attempt to
place an order based on the (R∗,S∗) inventory policy and set r = R∗. When supply is not disrupted,
the order is successful. We (m) record the number of drugs held (i.e., ht = Itot) and ordered (i.e.,
ot = S∗− Itot) on day t, and start the process back at step (c). When supply is disrupted, the order
is unsuccessful. We (n) record the number of drugs held (i.e., ht = Itot) and ordered (i.e., ot = 0)
on day t, and start the process back at step (d).
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Figure 4.3: Simulation model road map for the (A) Adaptive, (B) Adaptive with Buyback, and
(C) Benchmark inventory systems. For (A), follow steps (a)-(n) and omit the bold text. For (B),
follow steps (a)-(n) and implement the bold text to incorporate buyback. For (C), starting at step
(g), replace the process with the dashed shapes/lines.

4.4.2 (B) Adaptive Inventory System with Buyback

Through discussions with our hospital pharmacy collaborators at the University of Michigan’s
Central Pharmacy, some contracts allow the pharmacy to return drugs if the hospital pharmacy has
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too much inventory on-hand. With these buyback programs in mind, we create a simulation model
of a periodic review inventory system with adaptive inventory policies where the hospital pharmacy
can return drugs to the supplier given the inventory on-hand exceeds the optimal order-up-to level
S∗. Taking notice to the bold text, Figure 4.3 presents the step-by-step description of the simulation
model. We add an extra operation (see bold text) in step (k) where we allow the hospital pharmacy
to return all drugs that cause the inventory on-hand to exceed the optimal order-up-to level S∗. We
assume that the newest inventory (i.e., longest remaining lifetime) is returned and that the hospital
pharmacy receives full compensation for the returned drugs.

4.4.3 (C) Benchmark Inventory System and (D) Static Inventory System

The simulation model for the benchmark inventory system and static inventory system is the same
as the adaptive inventory system (i.e., (A) Adaptive) except the (R,S) inventory policy is only
updated when b = B (see dashed shapes/lines in Figure 4.3) and the (R,S) inventory policy is
never updated, respectively.

4.5 Numerical Analysis

We use daily demand data from the University of Michigan’s Central Pharmacy (October 2019-
November 2021). This two year period captures demand before the Covid-19 pandemic and fluctu-
ations in demand during the Covid-19 pandemic. We analyze how a drug’s shortage-waste weight-
ing and supply chain disruption profile influence the benefits (or detriments) of adapting to demand
disruptions. We present the data (in Section 4.5.1), shortage-waste weightings (in Section 4.5.2),
and input parameters (in Section 4.5.3). We proceed to study the benefits (or detriments) of adapt-
ing to demand disruptions in Section 4.5.4. Then, we analyze the ranking procedure (see Section
4.3.3) in Section 4.5.5. Throughout the numerical analysis, we denote days t ≤ 0 as the training
horizon and days t > 0 as the testing horizon. Also, the (R,S) model treats R and S as continuous
decision variables. We take a conservative approach by rounding R down to the nearest whole
number and S up to the nearest whole number. For all other computations that require an integer
value, we round to the nearest whole number (e.g., q̄current). We also ensure that all daily demand
values are positive as the (R,S) model requires a positive daily demand (q̄current > 0) and demand
is always non-negative in practice.

4.5.1 Real-world Data

The Central Pharmacy at the University of Michigan manages and keeps records for 2,500+ drugs
(e.g., surgical, cancer, daily care for inpatients). Except when analyzing the ranking procedure
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(in Section 4.5.5), we focus on 503B drugs which are pre-compounded drugs that arrive to the
pharmacy in ready-to-use presentations (Jones, 2020). If a 503B drug experiences a shortage,
hospital pharmacies will often substitute the drug with the form that requires compounding before
administration. This form of the drug requires additional pharmacy resources and has a very small
expiration lifetime once compounded (e.g., 24 hours). If a 503B drug is wasted due to expiration,
hospital pharmacies experience a higher waste cost because a 503B drug is often more expensive
than the form that requires compounding before administration. These are additional reasons why
it is critical to avoid drug shortages and drug waste for this class of drugs.

We start by analyzing two 503B drugs. The first drug is (a) Rocuronium 10 mg/1mL (Rocuro-
nium) which is a paralyzing agent that is critical to have on-hand and is most often used for rapid
sequence intubation. The second drug is (b) Labetalol 5mg/1mL (Labetalol) which is a critical drug
used for blood pressure reduction for several indications. Figure 4.4 presents the weekly demand
where the red horizontal lines denote the corresponding mean weekly demand that minimizes the
sum of squared errors for the daily demand data. It is worth noting that the red horizontal lines for
Rocuronium resemble an increasing demand disruption and the red horizontal lines for Labetalol
resemble a decreasing demand disruption. Furthermore, for both Rocuronium and Labetalol, the
two groups of daily demand observations corresponding to the red horizontal lines are statistically
different at a 0.05 significance level when applying a non-parametric Mann Whitney U test to the
two groups. The training horizon (i.e., t ≤ 0) consists of the first 56 unique daily demand observa-
tions (i.e., 8 weeks) stacked four times to have 224 observations. Then, we only select observations
45−224 to obtain 180 daily demand training observations (i.e., about 6 months). We replicate and
stack these daily demand observations when constructing the training data set to have a training
data set that is not impacted by the Covid-19 pandemic. Beyond Rocuronium and Labetalol, we
consider four additional 503B drugs at the end of Section 4.5.4.

(a) Rocuronium. (b) Labetalol.

Figure 4.4: Weekly demand versus day in the planning horizon. Numerical values are removed on
the y-axis for data confidentiality.
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4.5.2 Shortage-Waste Weighting

A drug’s shortage-waste weighting defines the shortage concern (defined by δs) and waste concern
(defined by δw) for a particular drug of interest. Working closely with our hospital pharmacy
collaborators, we study a range of (δs,δw) values such that δs + δw = 0.1 where δs ∈ [0.01,0.09]
and δw ∈ [0.01,0.09] to capture the trade-off between these two measures. In the following section,
we select γ = 0.05. This implies that the (R,S) model ensures that shortages occur 5% of the time
given the shortage constraint can be satisfied in the (R,S) model (see Section 4.3.1). Therefore,
our range of δs ∈ [0.01,0.09] values detects when shortages occur more than 6%− 14% of the
time, respectively. It is important to note that a shift from 5% of the time to 6% of the time
is a 20% increase in shortages. Also, the adaptive inventory system considers the percentage
of drugs wasted with the mean demand used to define the current (R∗,S∗) inventory policy (i.e.,
100∗Pwaste|(q̄current ,σnew,R∗,S∗)%) and the new mean demand (i.e., 100∗Pwaste|(q̄new,σnew,R∗,S∗)%) given
a standard deviation of daily demand σnew. Therefore, our range of δw ∈ [0.01,0.09] values detects
when the difference in the percentage of drugs wasted is more than 1%−9%, respectively. Figure
4.5 illustrates a drug’s shortage-waste weighting where we also provide drug examples in black
italics. We note that when (δs,δw) = (0.05,0.05), the model is equally sensitive to drug shortages
and drug waste.

12

Shortage Concern

(0.09, 0.01)⋅,⋅  denotes 
()!, )")

Waste Concern

(0.01, 0.09)

Defining a drug’s profile

Oxytocin
Norepinephrine

Zolgensma Rocuronium
Labetalol

(0.05, 0.05)

Figure 4.5: A drug’s shortage-waste weighting. From left to right, the concern for shortages
increases (i.e., δs decreases) and the concern for waste decreases (i.e., δw increases).

4.5.3 Model Input Parameters

We provide a summary of the input parameters for the numerical analysis in Table 4.4. For the
(R,S) model, we consider an ordering cost (k) relative to drug price of 10 (i.e., k = 10·(drug
price)). We consider a daily holding cost (h) relative to drug price of 0.001 (i.e., h = 0.001·(drug
price); Jia & Zhao, 2017). Through discussions with our hospital pharmacy collaborators, Rocuro-
nium and Labetalol have a wholesale price of about $12 and $7 per dose, respectively. We
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consider an expiration lifetime of 90 days (i.e., e = 90) which is consistent with the class of
503B drugs. When solving for the optimal (R∗,S∗) policy, we constrain shortages to occur
only 5% of the time (i.e., γ = 0.05). Also, we consider four supply chain disruption profiles,
(α(1),β (1)) = {( 1

30 ,
1

10),(
1

90 ,
1

30),(
1

270 ,
1

90),(
1

810 ,
1

270)}, where 1
x corresponds to an expected dura-

tion of x days. Our hospital pharmacy collaborators at the University of Michigan have observed
a variety of supply chain disruption lengths in practice (e.g., 1-3 months and 8-9 months). These
(α(1),β (1)) supply chain disruption profiles all have the same long-run probability that the supply
chain is disrupted: α(1)

α(1)+β (1) = 0.25.
Drug demand often depends on the day of the week, so we consider N = 56 past daily demand

observations when estimating the expected daily demand and standard deviation of daily demand
for the adaptive inventory system (i.e., 56 is divisible by 7). We provide additional details on the
selection of N in Section 4.5.6. We consider a benchmark inventory system that follows the same
inventory policy for B = 90 days (i.e., about 3 months).

For all simulation models, we initialize q̄current using the first B = 90 training daily demand
observations as shown in Section 4.4. However, to warm-up the simulation model, we replicate
and stack the entire set of 180 training daily demand observations 4 times to have a total warm-
up period of 4(180) days (i.e., ≈ 2 years). Following the warm-up period, we always consider
a testing horizon of 720 days (i.e., ≈ 2 years). We first note that we consider a long warm-up
period to ensure that the inventory on-hand is appropriately balanced across the potential lifetimes
of the drug (i.e., not all of the inventory on-hand is “new"). Also, a sufficient warm-up period
coupled with 1,000 simulation replications makes it likely that all possible supply chain disruption
patterns are well represented. We specifically select 1,000 simulation replications as this ensures
a 95% confidence interval half-width of at most 0.01 for the proportion of drug shortages per
day for Rocuronium and Labetalol with the (A) Adaptive model when (δs,δw) = (0.05,0.05) and
(α(1),β (1)) = ( 1

270 ,
1

90).
For the adaptive models (i.e., (A) Adaptive and (B) Adaptive with Buyback), we use the most

recent N = 56 daily demand observations to endogenously detect demand disruptions and update
the (R,S) inventory policy. It is worth noting that we initialize all the simulation models using
the first B = 90 training daily demand observations which keeps consistency across all four in-
ventory systems of interest: (A) Adaptive, (B) Adaptive with Buyback, (C) Benchmark, and (D)
Static. Furthermore, we implement a long warm-up period that uses the first 180 training daily
demand observations stacked 4 times for the simulation models (i.e., ≈ 2 years). But, the sole
purpose of consistent initialization and long warm-up periods is to compare the performance of the
systems without bias. When implementing these inventory systems in practice, the (A) Adaptive
and (B) Adaptive with Buyback inventory systems only require N daily demand observations for
initialization. The (C) Benchmark inventory system only requires B daily demand observations
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for initialization. The (D) Static inventory system only requires N or B daily demand observations
(based on the decision-maker) for initialization.

Table 4.4 Numerical analysis input parameters.
Notation Description
Input Parameters
k = 10·(drug price) Fixed ordering cost (i.e., for each order attempted)
h = 0.001·(drug price) Holding cost per day per drug
e = 90 Expiration lifetime in days
γ = 0.05 Maximum proportion of drug shortages per day over the infinite horizon
α(1) ∈ { 1

30 ,
1
90 ,

1
270 ,

1
810} Supply chain disruption probability with respect to 1 day

β (1) ∈ { 1
10 ,

1
30 ,

1
90 ,

1
270} Supply chain recovery probability with respect to 1 day

δs ∈ [0.01,0.09] Change in the proportion of drug shortages per day that signals a change in the (R,S) inventory
policy when exceeded

δw ∈ [0.01,0.09] Change in the proportion of drugs wasted per day that signals a change in the (R,S) inventory
policy when exceeded

N = 56 Number of past daily demand observations to consider for the adaptive inventory system daily
demand estimates

B = 90 Number of days the inventory system follows the same (R,S) inventory policy where the average
of the last B days is used to update the inventory policy

Warm-up= 4(180) Length of the warm-up period in days for the simulation models
Reps= 1,000 Number of simulation replications

4.5.4 Drug Case Studies

We proceed to present the results for the drug case studies. Specifically, we provide the results for
(a) Rocuronium and (b) Labetalol. At the end of this section, we consider four additional 503B
drugs and summarize the results in a table. For all analyses, we use the real-world demand data
provided by the Central Pharmacy at the University of Michigan and we simulate the performance
of the (A) Adaptive, (B) Adaptive with Buyback, (C) Benchmark, and (D) Static models. For
clarity, from a shortage perspective, we claim that adaptive inventory policies are beneficial if the
adaptive model (e.g., (A) Adaptive and (B) Adaptive with Buyback) leads to a smaller proportion
of drug shortages per day in comparison to the (D) Static model. We claim that adaptive inventory
policies are detrimental if the adaptive model has a larger proportion of drug shortages per day in
comparison to the (D) Static model. From a waste perspective, we claim that adaptive inventory
policies are beneficial if the adaptive model (e.g., (A) Adaptive and (B) Adaptive with Buyback)
leads to a smaller proportion of drugs wasted per day in comparison to the (D) Static model. We
claim that adaptive inventory policies are detrimental if the adaptive model has a larger proportion
of drugs wasted per day in comparison to the (D) Static model. We also provide additional insights
using the (C) Benchmark model.
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4.5.4.1 Rocuronium and Labetalol Case Studies

We present the results for Rocuronium (see Figure 4.6) and Labetalol (see Figure 4.7). We present
the overall expected proportion of drug shortages per day and proportion of drugs wasted per day
over the testing horizon. The testing horizon is 720 days (i.e., ≈ 2 years). We also present the
expected number of inventory policy changes made over the course of the testing horizon. For the
shortage-waste weightings (see x-axis in Figures 4.6 and 4.7), we consider δw ∈ [0.01,0.09] such
that δs + δw = 0.1. For the supply chain disruption profile, we focus on supply chain disruptions
with an expected duration of 90 days: (α(1),β (1)) = ( 1

270 ,
1

90). Also, for the supply chain disruption
profile, we provide the disruption probability with respect to 1 day (i.e., α(1)), recovery probability
with respect to 1 day (i.e., β (1)), and optimal (R∗,S∗) inventory policy when the mean of the first
B = 90 training daily demand observations (i.e., initial q̄current) are used for the expected daily
demand q̄current (see Figure 4.3 step (a)).
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Figure 4.6: Rocuronium results with models (A)-(D). We consider long supply chain disruption
durations where α(1) = 1

270 and β (1) = 1
90 . We have that (R∗,S∗) = (1,8910) with an initial

q̄current = 98. The x-axis illustrates δw such that δw + δs = 0.1 implying δw increases from left
to right and δs decreases from left to right. Recall that δw and δs represent the change in the pro-
portion of drugs wasted per day and drug shortages per day that the inventory system is willing to
tolerate. See Figure 4.4(a) for the observed demand over the planning horizon.
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Figure 4.7: Labetalol results with models (A)-(D). We consider long supply chain disruption dura-
tions where α(1)= 1

270 and β (1)= 1
90 . We have that (R∗,S∗)= (1,3780) with an initial q̄current = 43.

The x-axis illustrates δw such that δw + δs = 0.1 implying δw increases from left to right and δs
decreases from left to right. Recall that δw and δs represent the change in the proportion of drugs
wasted per day and drug shortages per day that the inventory system is willing to tolerate. See
Figure 4.4(b) for the observed demand over the planning horizon.

From Figures 4.6 and 4.7, we find that (a) for a fixed supply chain disruption profile, a drug’s
shortage-waste weighting dictates the magnitude of the benefits (or detriments) of adaptive inven-
tory policies. For example, consider the proportion of drugs wasted per day for Rocuronium (see
Figure 4.6 column 2). When the model is more concerned with shortages implying δw is large
since δw + δs = 0.1 (see x-axis), the detriments of an adaptive model (i.e., (A) Adaptive and (B)
Adaptive with Buyback) in comparison to the static model (i.e., (D) Static) are greater than a model
that is more concerned with waste implying δw is small. We note that the (D) Static model always
performs well in terms of the proportion of drugs wasted. We most likely observe this because
Rocuronium resembles an increasing demand disruption (see Figure 4.4). The (D) Static model
never changes the inventory policy when the increase in demand occurs implying the (D) Static
model is always under-ordering. As a result, the (D) Static model performs well from a waste
perspective (see Figure 4.6 column 2), but not a shortage perspective (see Figure 4.6 column 1).
Consider the proportion of drugs wasted per day for Labetalol (see Figure 4.7 column 2). When
the model is more concerned with shortages implying δw is large (see x-axis), the benefits of an
adaptive model (i.e., (A) Adaptive and (B) Adaptive with Buyback) in comparison to the static
model (i.e., (D) Static) are slightly less than a model that is more concerned with waste implying
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δw is small.
Selecting a shortage-waste weighting with a high shortage [waste] concern often performs better

than a shortage-waste weighting with a low shortage [waste] concern with respect to the proportion
of drug shortages [drugs wasted] per day. However, it is worth noting that we do not always observe
a monotone property for the proportion of drug shortages per day and the proportion of drugs
wasted per day as we vary (δs,δw). For example, consider the proportion of drugs wasted per day
for Rocuronium (see Figure 4.6 column 2). There are instances where a shortage-waste weighting
that is less concerned with waste (e.g., δw = 0.05) has a smaller proportion of drugs wasted per day
in comparison to a shortage-waste weighting that is more concerned with waste (e.g., δw = 0.04).
Taking a deeper look, we also find that the 95% confidence intervals around the point estimates for
the proportion of drugs wasted per day for δw = 0.04 and δw = 0.05 do not intersect. However,
it is important to note that the difference in the expected proportion of drugs wasted per day with
δw = 0.04 and δw = 0.05 is very small (i.e., difference of 0.019). Furthermore, if we consider all
non-monotone instances across the six 503B drugs of interest in this chapter, we continue to find
a very small difference in the expected proportion of drug shortages per day or drugs wasted per
day (i.e., difference ≤ 0.03). From a practical perspective, these very small differences may not
be significant. We suspect that these non-monotone instances are a combination of (1) simulation
sampling error and (2) the drug shortage concern (i.e., δs) and drug waste concern (i.e., δw) causing
small differences on when an inventory policy is updated and the frequency of an inventory policy
being updated.

When looking at the number of policy changes, we find that (b) the number of policy changes
with the (A) Adaptive and (B) Adaptive with Buyback models is largely influenced by the drug
shortage concern (i.e., δs) and drug waste concern (i.e., δw). Consider the number of policy changes
for Rocuronium (see Figure 4.6 column 3). As the model becomes more concerned with shortages
(i.e., δw increases), the number of policy changes generally increase. Consider the number of
policy changes for Labetalol (see Figure 4.7 column 3). The number of policy changes is fairly
stable for the multiple (δs,δw) shortage-waste weightings. But, the number of policy changes starts
to increase as the model becomes more concerned with shortages.

We next take a deeper look at the (C) Benchmark model which updates the inventory policy
every B = 90 days using the average daily demand from the most recent B = 90 days. In the
upcoming Section 4.5.6, we emphasize that (c) the (C) Benchmark model can lead to very poor
performance. If we consider Figures 4.6 and 4.7, we can start to see this finding. The proportion
of drug shortages per day with the (A) Adaptive, (B) Adaptive with Buyback, and (C) Benchmark
models are very similar. But, the proportion of drugs wasted per day with the (C) Benchmark
model is much greater than the proportion of drugs wasted per day with the (A) Adaptive and (B)
Adaptive with Buyback models for almost all shortage-waste weightings.
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We also find that (d) when considering the proportion of drugs wasted per day particularly
for a drug that resembles a decreasing demand disruption (e.g., Labetalol; see Figure 4.7), the
(B) Adaptive with Buyback model outperforms the (A) Adaptive model (see Figure 4.7 column
2). Recall that the (B) Adaptive with Buyback model allows the hospital pharmacy to return
drugs when the order-up-to level S∗ is less than the inventory on-hand. The improvement in
the proportion of drugs wasted per day with zero to negligible impact on the proportion of drug
shortages per day encourages the use of such buyback programs.

Other Drugs of Interest and Statistical Significance

In addition to Rocuronium and Labetalol, we summarize the results (see Table 4.5) for four other
503B drugs of interest: Avastin 1.25mg/0.05mL (chemotherapy with several indications; wholesale
price of about $55 per dose), Oxytocin 30 units/500mL (induction of labor; wholesale price of
about $10 per dose), Cefazolin 2gm/100mL (antibiotic; wholesale price of about $14 per dose),
Norepinephrine 16mg/250mL (vasopressor used to increase blood pressure; wholesale price of
about $25 per dose). The wholesale prices were obtained through discussions with our hospital
pharmacy collaborators. The weekly demand data are provided in Appendix C.3.1. In Table 4.5,
we present the ratio of the proportion of drug shortages per day with the (D) Static model to the
proportion of drug shortages per day with the (A) Adaptive model for varying shortage-waste
weightings and supply chain disruption profiles. We present the ratio to the hundredths place. A
ratio that is greater than 1 implies that the (A) Adaptive model is beneficial (i.e., decreases the
proportion of drug shortages per day) and a ratio that is less than 1 implies that the (A) Adaptive
model is detrimental (i.e., increases the proportion of drug shortages per day). We do the same for
the proportion of drugs wasted per day. Numbers with asterisks indicate that the proportion with
the (A) Adaptive model and (D) Static model are statistically different at a 0.05 (*) and 0.01 (**)
significance level when applying a non-parametric Wilcoxon signed-rank paired test to the 1,000
simulation replications. Furthermore, when the proportion with the (A) Adaptive model or (D)
Static model is zero, we present the difference between the two proportions (i.e., (A) Adaptive -
(D) Static) and indicate this with a “D" before the numerical value.

In Table 4.5, we present three shortage-waste weightings: (δs,δw) ∈ {(0.075,0.025),
(0.05,0.05), (0.025,0.075)}. When viewing Table 4.5, we note that the drug shortage concern
increases and the drug waste concern decreases when viewing the shortage-waste weightings from
left to right. In Table 4.5, we present four supply chain disruption profiles: (α(1),β (1))= { ( 1

30 ,
1

10),

( 1
90 ,

1
30), (

1
270 ,

1
90), (

1
810 ,

1
270)}. All of the supply chain disruption profiles have the same long-run

probability that the supply chain is disrupted (i.e., α(1)

α(1)+β (1) = 0.25). Fixing the long-run probabil-
ity that the supply chain is disrupted, from top to bottom, the four supply chain disruption profiles
are listed in order of increasing supply chain disruption duration.
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In Table 4.5, we find that (e), for a fixed shortage-waste weighting and long-run probability that
the supply chain is disrupted, if adaptive inventory policies are beneficial from a shortage [waste]
perspective, the benefits generally decrease as the supply chain disruption duration increases. Sim-
ilarly, if adaptive inventory policies are detrimental from a shortage [waste] perspective, the detri-
ments generally decrease as the supply chain disruption duration increases. As an example, con-
sider Labetalol with (δs,δw) = (0.05,0.05). The shortage ratio is less than 1 implying there are
detriments in implementing the (A) Adaptive model in comparison to the (D) Static model. As
the supply chain disruption duration increases (move down the rows of the table), we notice that
the shortage ratio increases implying the detriments decrease. It is likely that the (D) Static model
performs better than the (A) Adaptive model for Labetalol from a shortage perspective because this
drug resembles a decreasing demand disruption (see Figure 4.4(b)). Therefore, if we never change
the inventory policy as done in the (D) Static model, we will always be over-ordering. Conse-
quently, the (D) Static model leads to less shortages in comparison to the (A) Adaptive model that
updates the inventory policy when changes in the mean demand occur. Keeping in mind that we
are over-ordering with the (D) Static model, as we would expect, the (A) Adaptive model leads
to a smaller proportion of drugs wasted per day in comparison to the (D) Static model which is
seen with the waste ratio being greater than 1. We notice that as the supply chain disruption dura-
tion increases (move down the rows of the table), the waste ratio decreases implying the benefits
decrease.

It is also worth noting that when a drug’s inventory policy shifts from beneficial to detrimental
as the supply chain disruption duration increases (e.g., see Avastin (δs,δw) = (0.05,0.05)), the
same conclusion (e) holds. Specifically, for these instances, as the supply chain disruption duration
increases, the benefits of adaptive inventory policies decrease until the adaptive inventory policies
become detrimental. When the adaptive inventory policies become detrimental, the detriments
decrease as the supply chain disruption duration increases. Furthermore, when stating finding (e),
we use the term generally because there are instances where the relationship does not hold exactly,
but the difference in performance is very small (e.g., see Labetalol with (δs,δw) = (0.025,0.075)
where 1.89 > 1.83). Although, this is most likely a result of simulation sampling error.

We find that (f) as the expected supply chain disruption duration increases, the trade-off between
drug shortages and drug waste becomes more apparent as improving one often negatively impacts
the other. To see this finding, consider (δs,δw) = (0.05,0.05) for Rocuronium. We notice that
the (A) Adaptive model is always beneficial from a shortage perspective as the shortage ratio is
greater than 1. However, as the supply chain disruption duration increases, we notice that the (A)
Adaptive model becomes detrimental from a waste perspective as the ratio is less than 1 illustrating
the trade-off between drug shortages and drug waste.
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Table 4.5 Case study results for all 503B drugs of interest.

(α(1),β (1))
Disruption
Duration
Description

(δs ,δw)
(0.075, 0.025)

more concerned with waste (0.05, 0.05) (0.025, 0.075)
more concerned with shortages

Shortage Ratio Waste Ratio Shortage Ratio Waste Ratio Shortage Ratio Waste Ratio
Rocuronium

(1/30, 1/10) Short 2.15** D0 2.68** D0 2.94** D0
(1/90, 1/30) Moderate 1.89** D0 2.53** D0 2.14** D0
(1/270, 1/90) Long 1.24** 1.1** 1.34** 0.82** 1.44** 0.31**
(1/810, 1/270) Very Long 0.96** 1** 1.11** 0.9** 1.13** 0.87**

Labetalol
(1/30, 1/10) Short 0.88** 2.99** 0.88** 2.99** 0.88** 2.99**
(1/90, 1/30) Moderate 0.93** 2.46** 0.93** 2.46** 0.93** 2.46**
(1/270, 1/90) Long 0.93** 2.05** 0.94** 2.02** 0.94** 1.83**
(1/810, 1/270) Very Long 0.98** 1.84** 0.98** 1.82** 0.98** 1.89**

Avastin
(1/30, 1/10) Short 1.12** D0 1.12** D0 1.12** D0
(1/90, 1/30) Moderate 1.08** D0 1.08** D0 1.08** D0
(1/270, 1/90) Long 0.86** 2.35** 0.88** 2.09** 0.95** 1.03**
(1/810, 1/270) Very Long 0.95** 1.36** 0.95** 1.3** 0.97** 0.84**

Oxytocin
(1/30, 1/10) Short 3.04** D0 3.04** D0 4.05** D0
(1/90, 1/30) Moderate 1.9** D0 1.9** D0 2.4** D0
(1/270, 1/90) Long 1.3** 0.36** 1.31** 1.18** 1.43** 0.23**
(1/810, 1/270) Very Long 0.98** 0.99** 0.98** 0.99** 1.11** 0.45**

Cefazolin
(1/30, 1/10) Short 8.42** D0 8.36** D0 9.56** D0
(1/90, 1/30) Moderate 4.53** D0 5.05** D0 6.21** D0
(1/270, 1/90) Long 1.44** D0.01 1.59** D0 1.66** D0.07
(1/810, 1/270) Very Long 1.02** D0 1.12** D0 1.2** D0.02

Norepinephrine
(1/30, 1/10) Short 2.06** D0 2.5** D0 2.7** D0
(1/90, 1/30) Moderate 1.25** D0.02 1.7** D0 1.39** D0.01
(1/270, 1/90) Long 0.97** 0.04** 1.02** 0.06** 0.99* 0.03**
(1/810, 1/270) Very Long 0.99** 1** 0.99** 1** 1 0.12**

Values represent the ratio of the proportion with the (D) Static model to the proportion with the (A) Adaptive
model. Significance levels of 0.05 (*) and 0.01 (**) are indicated. When the proportion with the (A)
Adaptive model or (D) Static model is zero, the value represents the difference between the two proportions
(i.e., (A) Adaptive - (D) Static) and this is indicated with a “D" before the numerical value.

4.5.5 Ranking Analysis

In Section 4.3.3, we present a Pmetric ranking procedure that prioritizes drugs and indicates which
drugs are of most concern. We proceed to describe a way of implementing the ranking procedure
in practice and we analyze the performance when applying this method to the 500 highest (unit
price)·(demand) drugs at the University of Michigan’s Central Pharmacy. We consider the total
yearly demand when selecting the 500 highest (unit price)·(demand) drugs. When considering the
highest (unit price)·(demand) drugs, we only consider drugs that have demand data available for
the time period of interest (i.e., October 2019-November 2021) and we ensure that the data only
includes drugs (e.g., removed medical supplies). 370 drugs meet this criteria.

For implementation, we consider that the Central Pharmacy at the University of Michigan keeps
record of Pmetric every day for all drugs. We consider that every 30 days, the Central Pharmacy
decides which drugs to update using the average value of Pmetric over the most recent 30 days.
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However, instead of updating all drugs that have an average value of Pmetric greater than 0 (i.e.,
a value that signals a change in the (R,S) inventory policy is needed), we only allow the Central
Pharmacy to update at most M(%) percent of drugs: M(%) ∈ {0,2.5,5, ...,15}. If more than M(%)

percent of drugs need to updated, we sort the average value of Pmetric from largest to smallest for
all drugs, and we only update the top M(%) percent of drugs. For the analysis, we consider the
input parameters defined in Section 4.5.3. But, we assume that all 503B drugs have an expiration
lifetime of 90 days (i.e., about 3 months) and all non-503B drugs have an expiration lifetime of 360
days (i.e., about 1 year). Through discussions with our hospital pharmacy collaborators, non-503B
drugs have a variety of expiration lifetimes and much longer lifetimes than 503B drugs. We select
360 days for these drugs because it is a conservative expiration lifetime estimate. Also, we con-
sider (δs,δw) = (0.05,0.05) for the shortage-waste weighting, (α(1),β (1)) = ( 1

90 ,
1
30) for the supply

chain disruption profile, and we focus on the (A) Adaptive model where updates can only occur
every 30 days (i.e., no buyback is in place). We present the average proportion of drug shortages
per day across all drugs and the average proportion of drugs wasted per day across all drugs. We
also present the cost of wasting a drug relative to the cost of a drug shortage that is required for
the reduction in drug shortages to equally outweigh the detriments of drug waste. To calculate this
value, we take the absolute difference between the average number of drug shortages with M(%)

percent and 0 percent updates across all drugs divided by the absolute difference between the aver-
age number of drugs wasted with M(%) percent and 0 percent updates across all drugs. When the
cost of wasting a drug relative to the cost of a drug shortage exceeds this value, it implies that the
reduction in drug shortages does not outweigh the detriments of drug waste. Figure 4.8 illustrates
the results.

We find that (g) there is a decreasing marginal benefit from a drug shortage perspective as the
maximum percent of drugs that can be updated increases. This implies that a decision-maker needs
to update a very small proportion of drugs at any point in time to get the greatest benefits of adaptive
inventory policies. From a drug waste perspective, there is a decreasing marginal detriment as the
maximum percent of drugs that can be updated increases. However, the detriments from a drug
waste perspective are very small practically speaking. Furthermore, with the results illustrating
the trade-off between drug shortages and drug waste (i.e., decrease in drug shortages but increase
in drug waste), we take a deeper look at the cost of wasting a drug relative to the cost of a drug
shortage that is required for the reduction in drug shortages to equally outweigh the detriments of
drug waste (see Figure 4.8 row 3). We find that (h) the cost of wasting a drug would need to be
far greater than the cost of a drug shortage for the reduction in drug shortages to not outweigh the
detriments of drug waste. For example, consider M% = 2.5. The cost of wasting a drug would
need to be about 3.5 times the cost of a drug shortage for the reduction in drug shortages to not
outweigh the detriments of drug waste. Drug shortages can increase the cost of care, increase drug
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errors, and delay/cancel treatment (Phuong et al., 2019). Therefore, except for the few very high
priced drugs purchased on an order-by-order basis, it is highly unlikely that the cost of wasting a
drug would be greater than a drug shortage let alone 3.5 times the cost of a drug shortage. It is
worth noting that when we consider the 500 highest priced drugs and the 500 highest demanded
drugs (total yearly demand), findings (g) and (h) continue to hold.

18

Average 
Proportion of 

Drug Shortages

Average 
Proportion of 
Drugs Wasted

Cost of
Drug Waste: 

Drug Shortage

/(%): Maximum Percentage of Drugs to Update

Figure 4.8: Proportion of drug shortages, proportion of drugs wasted, and the cost of wasting a drug
relative to the cost of a drug shortage that is required for the reduction in drug shortages to equally
outweigh the detriments of drug waste. The analysis focuses on the highest (unit price)·(demand)
drugs at the University of Michigan’s Central Pharmacy and for the analysis, a decision-maker can
update at most M(%) percent of drugs every 30 days.

4.5.6 Additional Takeaways

In the Appendix, we gain additional takeaways by analyzing (T1) the sensitivity of N (i.e., number
of past daily demand observations used to estimate the expected daily demand; in Section C.3.2)
and (T2) the length of demand disruptions (in Section C.3.3). We find that:

(T1) It is important to have a large enough N to avoid high shortage and/or waste detriments, but
not too large such that the benefits of an adaptive model start to decrease. Furthermore, a
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drug with a higher variability in demand (i.e., a larger standard deviation) often requires a
larger N to avoid high shortage and/or waste detriments. As a rule of thumb, we suggest
using about 50 daily demand observations when selecting N (e.g., N = 49, 7 weeks; N = 56,
8 weeks).

(T2) Given we vary the length of the demand disruption (for both increasing and decreasing de-
mand disruptions), the benchmark model that only updates the inventory policy every B= 90
days using the average demand from the recent B = 90 days can lead to very poor perfor-
mance. Furthermore, the adaptive model with buyback often performs better than the adap-
tive model without buyback for varying demand disruption lengths encouraging the use of
such programs.

4.6 Conclusion

This research considers a perishable inventory system with supply chain disruptions and demand
disruptions. This chapter leverages simulation modeling to distinguish how a drug’s shortage-
waste weighting (i.e., concern for shortages versus concern for waste) along with the duration of
and time between supply chain disruptions influences the benefits (or detriments) of adapting to
demand disruptions. We find that when fixing the mean duration of and mean time between sup-
ply chain disruptions, a drug’s shortage-waste weighting dictates the magnitude of the benefits (or
detriments) of adaptive inventory policies. We also find that for a fixed shortage-waste weight-
ing and long-run probability that the supply chain is disrupted, if adaptive inventory policies are
beneficial from a shortage [waste] perspective, the benefits generally decrease as the supply chain
disruption duration increases. Similarly, if adaptive inventory policies are detrimental from a short-
age [waste] perspective, the magnitude of the negative impact of the adaptive inventory policies
decreases as the supply chain disruption duration increases. Furthermore, when fixing the long-run
probability that the supply chain is disrupted, we find that long supply chain disruption durations
are the most sensitive to the trade-off between drug shortages and drug waste as improving one
often negatively impacts the other. The results also suggest that hospital pharmacies should avoid
updating the inventory policy on long fixed intervals and negotiate for buyback programs when
establishing contracts with their suppliers/wholesalers. For the latter, this is under the assump-
tion that a buyback program adds no additional costs to the hospital pharmacy inventory system.
When looking at a large collection of drugs, we find that a decision-maker needs to update a very
small proportion of drugs (e.g., < 5%) at any point in time to get the greatest benefits of adaptive
inventory policies.

Our research illustrates that it is often beneficial for hospital pharmacies to participate in buy-
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back programs. We do not consider buyback programs from the supplier perspective and we as-
sume that the hospital pharmacy receives full compensation for the returned drug. If we assume
that the hospital pharmacy does not receive full compensation for the returned drug, then the sup-
plier may greatly benefit from buyback programs because they can possibly sell this collected drug
to other hospital pharmacies at full price. However, there is no guarantee that another hospital
pharmacy will purchase this returned drug before it expires. Hence, it would be interesting to
study if the supplier should only accept a certain number of drugs or drugs with a certain remain-
ing shelf life from the hospital pharmacy to reduce costs and waste at the supplier. We leave these
studies for future research. In addition, we consider (R,S) inventory policies which are commonly
implemented in practice. Future research can study other inventory policies (e.g., (s,S) inventory
policies) and how adapting these policies impact the performance of the inventory system. Fur-
thermore, when considering (R,S) inventory policies, we assume full and accurate knowledge of
the inventory on-hand. Future research can consider the case where inventory records are inaccu-
rate (Neve & Schmidt, 2022). A final direction for future research is using the adaptive inventory
system presented in this chapter and analyzing how dynamic supply chain disruption parameters
(i.e., α(1) and β (1)) influence the results.

Decision-making is difficult in hospital pharmacy inventory systems due to perishability, supply
chain disruptions, and demand disruptions. A drug’s shortage-waste weighting and supply chain
disruption profile influence the benefits (or detriments) of adapting to demand disruptions, and hos-
pital pharmacy managers should consider these characteristics when implementing such policies
in practice.
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CHAPTER 5

When Is It Worth It for Two Hospital Network
Pharmacies to Operate as an Integrated Inventory

System In the Presence of Supply Chain Disruptions?

5.1 Introduction

Supply chain disruptions are prevalent in many perishable inventory systems (e.g., hospital phar-
macies, blood banks, chemical warehouses). However, perishability limits how much the inventory
system can “stock up" to avoid the negative effects of shortages caused by these supply chain dis-
ruptions. In a hospital pharmacy inventory system, it is crucial to avoid shortages as they increase
the potential for medication errors, result in the use of inferior treatments, and increase the overall
cost of care (Phuong et al., 2019). Further, there has been much interest in the resiliency of phar-
maceutical supply chains (NASEM, 2022). We define supply chain disruptions as random periods
of time where the supplier completely stops functioning (Snyder et al., 2016). A potential solution
to alleviate the negative effects of supply chain disruptions is lateral transshipments (i.e., sharing
of inventory); the shipment of products between retailers in the same echelon of the supply chain
(Paterson et al., 2011). Literature from non-perishable inventory systems illustrates that lateral
transshipments reduce shortages, increase service levels, and decrease costs (Herer et al., 2006;
Özdemir et al., 2013; Noham & Tzur, 2014). These thoughts give rise to two research questions.
(1) How can decision-making be optimized in perishable inventory systems with supply chain
disruptions and lateral transshipments and (2) when do lateral transshipments benefit perishable
inventory systems with independent suppliers experiencing supply chain disruptions?

A hospital network pharmacy (HNP) is a central pharmacy that provides drugs for all hospitals
in the healthcare network. Strict regulations in current practice generally prohibit HNPs from
sharing drugs outside of their network or make it very difficult for HNPs to stay compliant when
sharing drugs outside of their network. However, it has been hypothesized that relaxing these strict
regulations may improve the performance of the inventory systems. Such improvements are needed
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to ensure that patients have access to the treatment that they need. Further, in a HNP setting, it
is critical to have inventory policies that are accurate and quick-to-solve since hospital pharmacy
managers are often responsible for thousands of different drugs.

We model a two-HNP integrated inventory system using a continuous time Markov chain. By
integrated, we mean that the two HNPs participate in lateral transshipments when one HNP has
positive inventory on-hand, and the other HNP has zero inventory on-hand (due to supply chain
disruptions). Each HNP follows a continuous review order-up-to level inventory policy (i.e., HNP
1 [HNP 2] always has an inventory on-hand of S1 [S2] when the supply chain for HNP 1 [HNP
2] is not disrupted) and each HNP has their own independent supplier that experiences supply
chain disruptions. We first create an exact model which relies on solving the system of balance
equations to find the long-run probability of being in each state of the Markov chain. The long-
run probabilities are used to calculate the expected cost per day: holding cost, shortage cost, and
lateral transshipment cost. To solve for the optimal order-up-to levels in the integrated inventory
system (i.e., S∗1 and S∗2), we perform an exhaustive search over all feasible inventory policies.
Second, we create an approximate model which formulates the Markov chain balance equations
by conditioning on the inventory on-hand at one of the HNPs. The approximation achieves high
accuracy and our numerical studies illustrate that the expected cost per day calculated with the
approximate model is within 2.6% of the expected cost per day calculated with the exact model.
With the approximate long-run probabilities, we quickly solve for the optimal order-up-to levels for
the integrated inventory system (i.e., S∗1 and S∗2) solely using closed-form expressions and a subset
of feasible inventory policies. Then, we extend the exact and approximate models to incorporate
perishability by defining a perishability condition and we perform a two-HNP numerical analysis.
We note that for our base case numerical analysis, the approximate model solves for the optimal
order-up-to levels in only 10 seconds when perishability does not influence the order-up-to levels
[23 seconds when perishability influences the order-up-to levels]. Further, the approximate model
with these optimal order-up-to levels calculates an expected cost per day that is only 1% different
[2% different] than the expected cost per day when simulating the integrated inventory system with
these optimal order-up-to levels (in Appendix D.2.1).

In the two-HNP integrated inventory system, we assume that the cost of a lateral transshipment
is less than the cost of a shortage. Otherwise, it is always optimal to operate as a non-integrated
inventory system. However, is this assumption sufficient to conclude that it is always optimal to
operate as an integrated inventory system? Unfortunately, it is not as shown in Section 5.5.1. The
cost of a lateral transshipment must be sufficiently less than the cost of a shortage where sufficient
is largely influenced by the supply chain disruption profile (i.e., disruption rate and recovery rate)
for each HNP. It is worth noting that sufficiently less is typically satisfied in a pharmaceutical
setting where shortage costs tend to be high. Furthermore, we assume that each HNP has their own
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supply chain disruption profile (i.e., disruption rate and recovery rate). When selecting a HNP to
partner with, is it important for a HNP to consider the supply chain disruption profile of the other
HNP? Yes, as shown in Section 5.5.2, it is critical for a HNP to consider the duration of and time
between supply chain disruptions when selecting a HNP with which to share inventory.

The contributions of this chapter are as follows:

1. We create a modeling framework to solve for the continuous review inventory policies that
minimize the expected cost per day in a two-HNP non-perishable integrated inventory sys-
tem with independent suppliers experiencing supply chain disruptions. To incorporate per-
ishability, we introduce a constraint on the probability drugs are wasted at each HNP. This
modeling framework can also be applied to many inventory systems of interest (e.g., blood
banks).

2. Working closely with our hospital pharmacy collaborators at the University of Michigan,
we numerically study a two-HNP perishable integrated inventory system to (i) demonstrate
when it is beneficial to allow two HNPs with independent suppliers experiencing supply
chain disruptions to share inventory and (ii) provide insights on how the supply chain dis-
ruption characteristics of the two HNPs influence whether it is beneficial to share inventory.

The remainder of this chapter is organized in the following manner: Section 5.2 provides litera-
ture related to this research. Section 5.3 describes the modeling notation and assumptions. Section
5.4 presents the exact model and approximate model for the two-HNP non-perishable integrated
inventory system, and how to extend the models to incorporate perishability. In this section, we
also present other inventory systems for comparison. In Section 5.5, we provide a two-HNP nu-
merical analysis. In Section 5.6, we provide concluding remarks and outline opportunities for
future research.

5.2 Literature Review

Paterson et al. (2011) and Kumari et al. (2022) provide good reviews of lateral transshipments
in supply chains. We highlight that lateral transshipments in perishable inventory systems with
supply chain disruptions (e.g., hospital pharmacies) are not well understood. We proceed to define
how supply chain disruptions are modeled and define common lateral transshipment terminology.
Then, we present past research relevant to our perishable integrated inventory models: (a)
multi-retailer non-perishable inventory systems with lateral transshipments and imperfect supply,
and (b) multi-retailer perishable inventory systems. We use the term retailer for generality, but in
our hospital network pharmacy setting of interest, a retailer refers to a HNP. We finish this section
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by presenting how our research is distinct from past research.

Modeling Supply Chain Disruptions

Supply chain disruption research usually defines disruptions as a Bernoulli or two-state supply
process. In a Bernoulli supply process, the status of the supplier on day t (i.e., disrupted or
not disrupted) is independent of the status of the supplier on day t − 1 (Snyder et al., 2016). A
drawback of modeling supply chain disruptions in this manner is that it fails to capture the duration
of and time between supply chain disruptions, which is critical in inventory decision-making
(Chapter 3). Instead, we model supply chain disruptions as a two-state supply process where
the time in each state (i.e., disrupted or not disrupted) is exponentially distributed (Snyder et al.,
2016). We define λ1 [λ2] as the disruption rate (i.e., the rate of transitioning from the not disrupted
state to the disrupted state) and µ1 [µ2] as the recovery rate (i.e., the rate of transitioning from
the disrupted state to the not disrupted state) for the supplier of retailer 1 [retailer 2]. A two-state
supply process is consistent with pharmaceutical supply chains (Tucker et al., 2020b).

Supply chain disruptions are a type of supply uncertainty, but supply uncertainty can also
be modeled as supply capacity (i.e., a finite amount can be ordered from the suppliers each
period; deterministic or stochastic). We want to highlight that supply chain disruptions and supply
capacity are distinctly different as supply chain disruptions cause no inventory to be received for a
random period of time whereas supply capacity limits the amount of inventory that can be received
(Yao & Minner, 2017). Also, we want to highlight that supply chain disruptions are distinct from
stochastic lead time. Supply chain disruptions imply that orders are only successfully placed
when the supply chain is not disrupted whereas stochastic lead time implies that orders are always
successfully placed, but the time at which the order arrives is variable. It is also worth noting that
in a pharmaceutical supply chain, disruptions often last weeks, months, or years (Tucker et al.,
2020a), far longer than the typical time between orders.

Lateral Transshipment Terminology

There are two types of lateral transshipment models: proactive and reactive. Proactive lateral
transshipments are made to redistribute stock to maximize the performance of the system whereas
reactive lateral transshipments are made in response to a stock out (Paterson et al., 2011). The
two-retailer integrated inventory system modeled in this chapter implements reactive lateral
transshipments by allowing one retailer that has positive inventory on-hand to share with the other
if it has zero inventory on-hand (due to supply chain disruptions). We present past research that
considers either type of lateral transshipments as they both quantify the importance of sharing in
a multi-retailer inventory system. In addition, lateral transshipment models fall within one of two
categories: centralized or decentralized (Paterson et al., 2011). Centralized models optimize the
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overall performance of the integrated inventory system where as decentralized models optimize
the performance at each individual retailer in the integrated inventory system. The two-retailer
integrated inventory system modeled in this chapter minimizes the total cost of the system
(i.e., centralized) because in our setting, we are interested in quantifying the overall benefit of
allowing two HNPs to share inventory. We present past literature focusing on this category as
decentralized systems introduce competition into the model which is beyond the scope of this
chapter (decentralized; see Hu et al., 2007; Lee & Park, 2016; Avci & Selim, 2016; Arikan &
Silbermayr, 2018).

Relevant Past Research

Table 5.1 presents past research most relevant to our perishable integrated inventory models. We
separate the research summary into (a) multi-retailer non-perishable inventory systems with lateral
transshipments and imperfect supply, (b) multi-retailer perishable inventory systems, and (c) this
research. We characterize the research by perishability (NP: non-perishable, P: perishable), the
number of retailers/suppliers (No.: number), the number of echelons in the supply chain, demand
(D: deterministic, S: stochastic), supply (DSC: deterministic supply capacity, SSC: stochastic
supply capacity, SCD: supply chain disruptions), lateral transshipments (LT; R: reactive, P:
proactive), and model/methodology.

Table 5.1 Summary of relevant literature.

Paper NP/P No.
Retailers

No.
Suppliers

3+
Echelons Demand Supply LT Model

(a) Multi-retailer Non-perishable Inventory Systems with Lateral Transshipments and Imperfect Supply
Özdemir et al. (2013) NP 2+ 1 S DSC R Stochastic program
Hu et al. (2008) NP 2 2 S SSC R Dynamic program
Firouz et al. (2017) NP 2+ 2+ S SSC, SCD P Stochastic program
Nasr et al. (2012) NP 2 1 D SCD R Non-linear program
Avci (2019) NP 2+ 2+ S SCD P Simulation-optimization
Ghomi-Avili et al. (2017) NP 2+ 2+ ✓ D SCD R Stochastic program
Jabbarzadeh et al. (2018) NP 2+ 2+ ✓ S SCD R Stochastic program

(b) Multi-retailer Perishable Inventory Systems
Puranam et al. (2017) P 1 2+ S SSC - Dynamic program
Rajendran & Ravindran (2019) P 2+ 1 S - - Stochastic program
Shih & Rajendran (2020) P 2+ 1 S SSC - Stochastic program
Dolgui et al. (2018) P 2+ 2+ ✓ D DSC - Mixed-integer program
Dehghani & Abbasi (2018) P 2 1 S - R Heuristic that uses PDE
Jin & Agirbas (2013) P 2+ 1 S - P Transshipment decision rule
Nakandala et al. (2017) P 2+ 2+ ✓ S - R Transshipment decision rule
Dehghani et al. (2021) P 2+ 1 S - P Stochastic program
Zhang et al. (2022) P 2 1 S - R Markov decision process
Wei et al. (2022) P 2+ 1 S - P Dynamic program
Shokouhifar et al. (2021) P 2+ 2+ S SSC P Whale optimization algorithm
Arani et al. (2021) P 2+ 2+ ✓ S SSC R Stochastic program
Larimi et al. (2019) P 2+ 2+ ✓ S DSC R Stochastic program
Zhou et al. (2021) P 2+ 2+ S SSC R Chance-constrained program
Wang & Ma (2015) P 2+ - S SCD R Mixed-integer program
Bozkir et al. (2022) P 2+ 1 S SCD P Closed-form service-level metrics
Aldrighetti et al. (2019) P 2+ 1 S SCD R Simulation

(c) This Research
Chapter 5 P 2 2 S SCD R Markov chain/Closed-form solutions
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Distinction of Our Research

The two-HNP perishable integrated inventory system in this chapter captures stochastic demand
(Poisson distribution), supply chain disruptions (two independent suppliers), lateral transshipments
(reactive), and perishability, which to our knowledge, has not yet been studied in the literature.
Looking at the past research presented (non-perishable and perishable), most researchers use math-
ematical programming, dynamic programming, or simulation-optimization. There are not always
resources available to implement these methodologies in practice since they are typically solved
using an optimization solver (e.g., Gurobi, CPLEX), backward induction, or simulation and they
can also require long computation times. In this chapter, we use a continuous time Markov chain
to analytically study a two-HNP integrated inventory system following continuous review order-
up-to level inventory policies. Calculating the exact expected cost per day can be computationally
intensive as the problem size increases. We create an approximate model, which achieves high
accuracy, where all expressions are presented in closed-form. The approximate model provides
easy-to-implement and quick-to-solve inventory policies.

Using a continuous time Markov chain is a common approach in the queueing inventory system
stream of literature (recent review; see Karthikeyan & Sudhesh, 2016). This stream of literature is
different from traditional inventory management because it assumes that each customer is serviced
before leaving the system, and consequently, reduces the inventory on-hand by one upon departure.
This implies that when there are a positive number of customers in the queue (in service plus
waiting), inventory is used according to the service rate rather than the arrival rate (Karthikeyan &
Sudhesh, 2016). Traditional inventory management literature also employs Markov chains (e.g.,
Ross et al., 2008; Vicil & Jackson, 2016; Saedi et al., 2016; Saha & Ray, 2019; Fathi et al.,
2021; Poormoaied & Demirci, 2021). None of the past research considers our non-perishable
nor perishable setting: two-HNP integrated inventory system following continuous review order-
up-to level inventory policies with stochastic demand, lateral transshipments, and supply chain
disruptions. For example, Saedi et al. (2016) consider a hospital pharmacy inventory system, but
focus on substitute products and use a continuous time Markov chain to optimize a single reorder
point fixed order quantity (r,Q) inventory policy. We create a continuous time Markov chain to
determine the order-up-to levels for two distinct HNPs (i.e., S∗1 for HNP 1 and S∗2 for HNP 2). We
also highlight that in this chapter, we use the long-run probability of being in each state of the
continuous time Markov chain to solve for the optimal (S∗1,S

∗
2) integrated inventory policy.

We note the difference between our research and a past research paper that analytically studies
an inventory system with lateral transshipments. Li & Zhang (2012) study a two-retailer inte-
grated inventory system following order-up-to level inventory policies with reactive lateral trans-
shipments by expressing the cost function and requirements for optimality in closed-form. These
researchers look at the lateral transshipment problem from a stochastic demand perspective and do
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not consider supply uncertainty nor perishability. In this chapter, we consider stochastic demand
(Poisson distribution), supply chain disruptions, lateral transshipments, and perishability. Also,
our research focuses on lateral transshipments between HNPs to improve the performance of the
inventory system. This is in contrast to past research that studies the partial or complete removal
(i.e., direct-ship) of wholesalers in a pharmaceutical supply chain to improve the performance of
the system (Niziolek et al., 2012).

A final important note is that our research contributes to the area of literature focused on viable
supply chains (e.g., Ruel et al., 2021; Ivanov, 2022). In particular, by allowing the two HNPs to
participate in lateral transshipments, we (i) intersect the supply chains of each system (i.e., sup-
plier + HNP). This intersection introduces flexible redundancy into the integrated inventory system
because it allows a HNP that has a disrupted supplier and zero inventory on-hand to receive inven-
tory from the other HNP during this time of need (intertwined supply networks; Ivanov & Dolgui,
2020). Furthermore, the intersection (ii) captures each area of a reconfigurable supply chain at the
micro-level: structural redundancy (structural variety), process risk pooling (process flexibility),
inventory buffers (parametric redundancy), and coordination (execution visibility; see Dolgui et
al., 2020). With our two-HNP integrated inventory system that incorporates characteristics (i) and
(ii), we illustrate the reduction in drug shortages by operating as an integrated inventory system
when two HNPs with independent suppliers experience supply chain disruptions. Equivalently, we
illustrate the viability of the two-HNP integrated inventory system; “ability to maintain itself and
survive in a changing environment over a long period of time through a redesign of the structures
and replanning of economic performance with long-term impacts" (Ivanov, 2022).

5.3 Model Notation and Assumptions

We consider a two-HNP perishable integrated inventory system (i.e., lateral transshipments are
permitted) where each HNP has their own independent supplier experiencing supply chain disrup-
tions. The integrated inventory system is centralized and the objective of the integrated inventory
system is to minimize the expected sum of holding, shortage, and lateral transshipment costs per
day with a constraint on the probability drugs are wasted at each HNP. We present the notation for
the integrated inventory system in Table 5.2, and we proceed to describe the modeling assumptions.
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Table 5.2 Summary of the modeling notation.
Notation Description
Decision Variables
S1 Order-up-to level for HNP 1 (S1 ≥ 1; i.e., continuously attempt to place an order up to S1)
S2 Order-up-to level for HNP 2 (S2 ≥ 1; i.e., continuously attempt to place an order up to S2)
Input Parameters
h1 Holding cost per day per drug for HNP 1 (h1 > 0)
h2 Holding cost per day per drug for HNP 2 (h2 > 0)
b aShortage cost per unsatisfied demand (b > 0; lost-sales)
t12 Lateral transshipment cost from HNP 1 to HNP 2 per drug (t12 > 0)
t21 Lateral transshipment cost from HNP 2 to HNP 1 per drug (t21 > 0)
x aExpiration lifetime in days (x ≥ 1)
q1 Daily demand rate for HNP 1 (q1 > 0; Poisson distribution)
q2 Daily demand rate for HNP 2 (q2 > 0; Poisson distribution)
λ1 Supply chain disruption rate with respect to days for HNP 1 (λ1 > 0; exponential distribution)
µ1 Supply chain recovery rate with respect to days for HNP 1 (µ1 > 0; exponential distribution)
λ2 Supply chain disruption rate with respect to days for HNP 2 (λ2 > 0; exponential distribution)
µ2 Supply chain recovery rate with respect to days for HNP 2 (µ2 > 0; exponential distribution)
Markov Chain
I1 Inventory and supply status at HNP 1 (0 ≤ I1 ≤ S1 +1;I1 ∈ Z+

0 )
*0 ≤ I1 ≤ S1 denotes inventory on-hand is I1 and the supply chain is disrupted
*I1 = S1 +1 denotes inventory on-hand is S1 and the supply chain is not disrupted

I2 Inventory and supply status at HNP 2 (0 ≤ I2 ≤ S2 +1; I2 ∈ Z+
0 )

*0 ≤ I2 ≤ S2 denotes inventory on-hand is I2 and the supply chain is disrupted
*I2 = S2 +1 denotes inventory on-hand is S2 and the supply chain is not disrupted

Xt State at time t (t ≥ 0) defined as the tuple (I1, I2)
Pi j Exact long-run probability that the integrated inventory system is in state X = (I1 = i, I2 = j) (i.e.,

Pi j = Pr(I1 = i, I2 = j))
P(p,s)

i Approximate long-run probability that the primary HNP p has inventory and supply status i (i.e.,
P(p,s)

i = Pr(Ip = i)); s denotes the secondary HNP where p ̸= s
P(p,s)

j|i Approximate long-run probability that the secondary HNP s has inventory and supply status j
given the primary HNP p has inventory and supply status i (i.e., P(p,s)

j|i = Pr(Is = j|Ip = i))

P(p,s)
i j Approximate long-run probability that the integrated inventory system is in state X = (Ip = i, Is =

j) (i.e., P(p,s)
i j = Pr(Ip = i, Is = j) = P(p,s)

j|i P(p,s)
i )

Perishability Condition
δ aUpper limit (i.e., tolerance) on the probability that drugs are wasted at each HNP

aWith very minor changes, the shortage cost b, expiration lifetime x, and tolerance δ can be made hospital dependent.

5.3.1 Model Assumptions

In the two-HNP perishable integrated inventory system, we assume that each HNP follows an
order-up-to level inventory policy (i.e., S1 and S2) for the same perishable drug. We assume that
each HNP operates as a continuous review inventory system and that when supply is not disrupted
at HNP 1 [HNP 2], the inventory level at HNP 1 [HNP 2] is instantaneously replenished (i.e., zero
lead time) to S1 [S2]. Therefore, we simply refer to inventory as inventory on-hand since inventory
on-hand and inventory-position are equivalent in this case. We assume that each HNP has a static
daily demand rate that follows a Poisson distribution (i.e., q1 and q2). Poisson distributed demand
implies that the time between demand observations is exponentially distributed. For perishability,
we assume that the drug has no quality decay (Khan et al., 2014) and a deterministic lifetime of
x days since expiration dates for drugs are well regulated by pharmaceutical manufacturers. Also,
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we assume the expiration lifetime begins when the drug arrives at the HNP and that first-in-first-out
protocols are in place like they are at the University of Michigan’s Central Pharmacy.

For supply, we assume that each HNP has a supplier (independent of the other HNP’s sup-
plier) that experiences supply chain disruptions that follow a two-state supply process (Tucker
et al., 2020b). In a HNP setting, purchasing contracts are well established between a healthcare
network and their supplier/wholesaler, and there often exists restrictions on purchasing from sup-
pliers/wholesalers outside of the purchasing contract. We note that truly independent suppliers
require knowledge of the entire supply chain which may not exist in pharmaceutical supply chains
nor any other type of supply chain. Further, since some drugs are made by a single pharmaceutical
company (e.g., vinblastine and vincristine sulfate [generic oncology drugs]; Tucker et al., 2020b),
we also consider the case where the two HNPs use the same supplier/wholesaler in Section 5.4.3.

By integrated inventory system, we assume that the HNPs participate in lateral transshipments
when one HNP has zero inventory on-hand (due to a supply chain disruption), and the other HNP
has positive inventory on-hand (i.e., reactive lateral transshipments, Paterson et al., 2011). We
assume that the transport time for lateral transshipments between the two HNPs is zero and that a
transshipment cost (i.e., t12 or t21 depending on the direction of the transshipment) is incurred for
each drug transshipped. In our HNP setting of interest, these two assumptions imply that if HNP 1
has zero inventory on-hand and has a patient that needs the drug, the patient immediately receives
the drug from HNP 2 given HNP 2 has positive inventory on-hand. Consequently, a cost of t21 is
incurred. Also, when both HNPs have zero inventory on-hand, a shortage cost (i.e., b) is incurred
for each unsatisfied demand. We assume that unsatisfied demand on any given day is completely
lost (i.e., lost-sales) and that this unsatisfied demand does not impact the demand rate on another
day (i.e., independent). In our numerical analysis (in Section 5.5), we consider a pre-compounded
form of Fentanyl that is given to patients during surgery. Given this form of Fentanyl is unavailable,
the University of Michigan’s Central Pharmacy prescribes one of three alternatives (based on their
availability) and still completes the surgery as scheduled (i.e., lost-sales). Since surgeries only
happen one time, the unsatisfied demand for this form of Fentanyl has no impact on the future
demand for this form of Fentanyl (i.e., independent). For the alternatives, we want to note that
the first alternative requires additional resources as it involves compounding the drug in-pharmacy
whereas the second and third alternative are morphine and hydromorphone, respectively. Through
conversations with the pharmacists at the University of Michigan’s Central Pharmacy, the second
and third alternative are difficult changes to make which further highlights the importance of having
the first-choice drug on-hand when needed. Furthermore, in this case, the shortage cost (i.e., b)
can be seen as the incremental cost of having to use one of the three alternatives instead of the
first-choice drug. It is worth noting that when substitutes are not available for a first-choice drug,
the shortage cost (i.e., b) needs to capture the impacts of delaying and/or cancelling treatment. In
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this case, the shortage cost needs to be high enough to capture the detriments of sub-optimal care
and ultimately encourage extra inventory on-hand (i.e., design for resiliency), but not too high such
that excess inventory is held on-hand (i.e., design for efficiency; see Ivanov, 2021). We assume that
the cost of a shortage exceeds the cost of a lateral transshipment in either direction (i.e., b > t12

and b > t21) as drug shortages can be life-threatening in our pharmaceutical setting. If b ≤ t12

and b ≤ t21, it would always be optimal to follow a non-integrated inventory policy (i.e., act as
independent HNPs).

5.4 Two-HNP Integrated Inventory System

We model a two-HNP integrated inventory system with independent suppliers experiencing supply
chain disruptions (see Figure 5.1). First, we consider a two-HNP non-perishable integrated inven-
tory system where we model the inventory system as a continuous time Markov chain (in Section
5.4.1.1) and express the expected cost per day (in Section 5.4.1.2). Then, we present the exact
model (in Section 5.4.1.3) and approximate model (in Section 5.4.1.4) to solve for the inventory
policies that minimize the exact and approximate expected cost per day, respectively. In Section
5.4.1.4, we also evaluate the accuracy of the approximate model. Then, we define a perishability
condition which provides a way of extending the two-HNP non-perishable integrated inventory
policies to a two-HNP perishable integrated inventory system (in Section 5.4.2). We close this
section by presenting two inventory systems that we are interested in comparing to the two-HNP
integrated inventory system with two independent suppliers (in Section 5.4.3).

HNP 1 HNP 2

Supplier 1 Supplier 2

Figure 5.1: Two-HNP integrated inventory system with independent suppliers.

5.4.1 Two-HNP Non-perishable Integrated Inventory System

5.4.1.1 Non-perishable Integrated Inventory System Markov Chain

For the two-HNP non-perishable integrated inventory system, at HNP 1 and HNP 2, we assume
that demand follows a Poisson distribution with static daily demand rates of q1 and q2, respectively.
HNP 1 [HNP 2] experiences supply chain disruptions according to a two-state supply process
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where the time in each state is exponentially distributed with a corresponding disruption rate, λ1

[λ2], and recovery rate, µ1 [µ2]. Therefore, we can model the integrated inventory system as
a continuous time Markov chain as depicted in Figure 5.2. The structure of the Markov chain
presented in Figure 5.2 assumes that each order-up-to level (i.e., S1 and S2) is at least 1. This is
appropriate as our HNP setting of interest tends to stock at least 1 drug dose for any particular
drug. A few drugs are ordered on a patient-by-patient basis, but these drugs are outside the scope
of this chapter.
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Figure 5.2: Integrated inventory system Markov chain with independent suppliers. Columns k =
0, ...,S1 imply that HNP 1 has k inventory on-hand and the supply chain is disrupted. Column
S1 + 1 implies that HNP 1 has S1 inventory on-hand and the supply chain is not disrupted. Row
S2 + 1 implies that HNP 2 has S2 inventory on-hand and the supply chain is not disrupted. Rows
v = S2, ...,0 imply that HNP 2 has v inventory on-hand and the supply chain is disrupted.

In Figure 5.2, the state at any time t (Xt ; t ≥ 0) is defined as the tuple (I1, I2) (0≤ I1 ≤ S1+1; 0≤
I2 ≤ S2 + 1; I1, I2 ∈ Z+

0 ). For 0 ≤ I1 ≤ S1; 0 ≤ I2 ≤ S2, we let I1 and I2 represent the inventory
on-hand at HNP 1 and HNP 2, respectively, when the supply chain is disrupted at the respective
HNP. We introduce I1 = S1+1 to denote that the inventory on-hand at HNP 1 is S1 plus the supply
chain is not disrupted. Similarly, we introduce I2 = S2+1 to denote the inventory on-hand at HNP
2 is S2 plus the supply chain is not disrupted. For emphasis, S1 and S2 are the order-up-to levels
for the continuous review inventory system and S1 and S2 denote the maximum inventory on-hand
at any point in time for HNP 1 and HNP 2, respectively.
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5.4.1.2 Non-perishable Expected Cost Per Day

The non-perishable expected cost per day consists of holding, shortage, and lateral transshipment
costs. When both HNPs have positive inventory on-hand, only holding costs are incurred. When
one HNP has positive inventory on-hand and the other HNP has zero inventory on-hand, holding
costs and lateral transshipment costs are incurred. When both HNPs have zero inventory on-hand,
only shortage costs are incurred. Figure 5.3 illustrates when each cost is incurred based on the
inventory on-hand at each HNP in the integrated inventory system.
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Figure 5.3: Costs incurred in the inventory system.

Using the cost parameters (see Table 5.2) and the long-run probability that the inventory system
is in each state X = (I1 = i, I2 = j) (i.e., Pi j), we have the expected cost per day as presented in
Equation (5.1). The expected cost per day is comprised of four components: holding cost only,
holding cost and transshipment cost from HNP 1 to HNP 2, holding cost and transshipment cost
from HNP 2 to HNP 1, and shortage cost only.
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E[cost per day] = (5.1)
Holding Cost Only︷ ︸︸ ︷

(h1S1 +h2S2)P(S1+1)(S2+1)+
S1

∑
i=1

(h1i+h2S2)Pi(S2+1)+
S2

∑
j=1

(h1S1 +h2 j)P(S1+1) j +
S1

∑
i=1

S2

∑
j=1

(h1i+h2 j)Pi j

+

Holding Cost and Transshipment Cost from HNP 1 to HNP 2︷ ︸︸ ︷(
h1S1 + t12q2

)
P(S1+1)0 +

S1

∑
i=1

(
h1i+ t12q2

)
Pi0+

Holding Cost and Transshipment Cost from HNP 2 to HNP 1︷ ︸︸ ︷(
h2S2 + t21q1

)
P0(S2+1)+

S2

∑
j=1

(
h2 j+ t21q1

)
P0 j

+

Shortage Cost Only︷ ︸︸ ︷
b(q1 +q2)P00

5.4.1.3 Exact Model: Non-perishable Integrated Inventory Policies

The integrated inventory system Markov chain (see Figure 5.2) is irreducible and it has a finite
number of states where all states are positive recurrent. Thus, the limiting distribution exists and
is unique (Sericola, 2013). Using Markov chain theory, we can write the balance equations for the
integrated inventory system Markov chain to solve for the long-run probability (i.e., steady-state
probability) that the integrated inventory system is in each state X = (I1, I2) (Kulkarni, 2011). The
system of equations to solve for the long-run probability of being in each state of the Markov Chain
in Figure 5.2 (i.e., Pi j) is provided in Appendix D.1.1.1.

Exact Model: Solving for the Optimal Order-up-to Levels
To solve for the optimal integrated (S∗1,S

∗
2) inventory policy, we exhaustively calculate the expected

cost per day using Equation (5.1) for all feasible integer order-up-to level combinations (S1,S2):
S1 ∈ [S1(min),S1(max)] and S2 ∈ [S2(min),S2(max)]. Sk(min) and Sk(max) are bounds that denote the min-
imum and maximum order-up-to level for HNP k, respectively. In Appendix D.1.2.5, we illustrate
how to strategically select S1(min), S1(max), S2(min), and S2(max). To strategically select these bounds,
we use the input parameters for both HNPs and leverage the optimal order-up-to level for a sin-
gle HNP inventory system with one supplier. We note that it is important to strategically select
these bounds instead of making naive selections like Sk(min) = 1 and Sk(max) = 106 for k = 1,2 to
reduce the computation time of the model. We select (S∗1,S

∗
2) corresponding to the solution with

the smallest expected cost per day.
Exhaustively calculating the expected cost per day can be time consuming, but the bigger is-

sue is that the system of equations to solve for the long-run probability of being in each state of
the Markov chain consists of (S1 + 2) · (S2 + 2) variables. This large number of variables makes
the calculation computationally intensive as the problem size increases. A potential solution is
reducing the demand rates and adding a correction to the cost parameters (e.g., when q1 = q2,
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set q′1 = 1, q′2 = 1, h′1 = h1q1, h′2 = h2q2, t ′21 = t21q1, t ′12 = t12q2, b′ = bq1 = bq2) as this will
reduce the order-up-to levels. But, “batching" the demand reduces the variance of the demand as
it follows a Poisson distribution (i.e., variance equals the demand rate; Kulkarni, 2011). As an al-
ternative, we present an approximate model in the following section that provides all calculations
in closed-form. Further, the approximate model requires a search over a subset of feasible inte-
ger order-up-to level combinations instead of all feasible combinations. These two characteristics
make the approximate model quick-to-solve which is critical in a hospital pharmacy setting that
stocks thousands of different drugs. Fortunately, the approximate model achieves high accuracy.

5.4.1.4 Approximate Model: Non-perishable Integrated Inventory Policies

When creating the approximate model, we make two observations. First, we notice that the ex-
pected holding cost per day at HNP 1 and HNP 2 depends on the summation of each column and
each row of long-run probabilities in the Markov chain (see Figure 5.2), respectively. This implies
that the approximate model needs to accurately estimate the summation of each row and column.
Second, the expected shortage cost per day depends on the long-run probability P00 and the lateral
transshipment costs per day depend on the summation of column 0 and the summation of row 0
of long-run probabilities in the Markov chain (see Figure 5.2) excluding P00. This implies that the
approximate model needs to accurately estimate P00 and the summation of the other probabilities
in column 0 as well as the summation of the other probabilities in row 0 of the Markov chain.
It is worth noting that in our hospital pharmacy setting, the demand rates are far greater than the
disruption and recovery rates (i.e., q1 > λ1 +λ2 +µ1 +µ2 and q2 > λ1 +λ2 +µ1 +µ2) as the vast
majority of drugs have an expected daily demand of at least one, the time between supply chain
disruptions is far greater than one day, and supply chain disruptions often last weeks, months, or
years (Tucker et al., 2020a). When one or both suppliers are disrupted, this encourages movement
to three of the corner states of the Markov chain: (0,0), (S1 +1,0), (0,S2 +1).

With these two observations, we use conditional probability where we let P(p,s)
i = Pr(Ip = i) and

P(p,s)
j|i = Pr(Is = j|Ip = i) to approximate the long-run probabilities for the Markov chain depicted

in Figure 5.2. We use the notation p and s to denote the primary HNP (i.e., the HNP conditioned
on) and secondary HNP, respectively. Using conditional probability in this way segments the
Markov chain by rows and columns and as a result, we lose some of the interaction between the
states of the full Markov chain. Hence, the long-run probabilities are approximate. However, we
find that the conditional probability approach accurately estimates the summation of each row and
each column of the exact long-run probabilities (i.e., probabilities that influence the holding cost).
Also, since the demand rates push the system to the three corner states when one or both suppliers
are disrupted, we find that the conditional probability approach provides good estimates for P00

and the summation of the other probabilities in column 0 as well as the summation of the other
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probabilities in row 0 of the Markov chain (i.e., probabilities that influence the shortage and lateral
transshipment costs). Further, we find that the accuracy of the approximate model improves when
conditioning on the HNP p that leads to the larger estimate for P00 (see Equations (5.4) and (5.9)).
We analyze the accuracy of the approximate model at the end of this Section 5.4.1.4.

We use Equations (5.2)-(5.9) to calculate the approximate joint long-run probability that the
integrated inventory system is in state X = (Ip = i, Is = j): P(p,s)

i j = P(p,s)
j|i P(p,s)

i . We analytically

verify that
Sp+1
∑

i=0

Ss+1
∑
j=0

P(p,s)
j|i P(p,s)

i = 1.

P(p,s)
Sp+1 =

µp

µp +λp
(5.2)

P(p,s)
i =

µp

µp +λp

(
λp

µp +qp +qsP
(p,s)
0|Sp

)( qp +qsP
(p,s)
0|Sp

µp +qp +qsP
(p,s)
0|Sp

)Sp−i

; i = 1, ...,Sp (5.3)

P(p,s)
0 =

(qp +qsP
(p,s)
0|Sp

µp

)
P(p,s)

1 (5.4)

P(p,s)
Ss+1|i =

µs

µs +λs
; i = 0,1, ...,Sp +1 (5.5)

P(p,s)
j|i =

µs

µs +λs

(
λs

qs +µs

)(
qs

qs +µs

)Ss− j

; i = 1, ...,Sp +1, j = 1, ...,Ss (5.6)

P(p,s)
0|i =

(
qs

µs

)
P(p,s)

1|i ; i = 1, ...,Sp +1 (5.7)

P(p,s)
j|0 =

µs

µs +λs

(
λs

qp +qs +µs

)(
qp +qs

qp +qs +µs

)Ss− j

; j = 1, ...,Ss (5.8)

P(p,s)
0|0 =

(
qp +qs

µs

)
P(p,s)

1|0 (5.9)

Approximate Model: Solving for the Optimal Order-up-to Levels
We replace the exact long-run probability Pi j in Equation (5.1) with the approximate long-run
probability P(p,s)

i j = P(p,s)
j|i P(p,s)

i using Equations (5.2)-(5.9). Simplifying, we have the expected
cost per day as shown in Equation (5.10). In Equation (5.10), cp (corresponds to the constant
term), ep (corresponds to the exponential term), and 0 < rp < 1 (corresponds to the ratio term)
are fixed values that only depend on the input parameters hp, hs, b, tps, tsp, qp, qs, λp, µp, λs, µs

(see Table 5.2) and the order-up-to level Ss. We use the subscript p to clarify that these are the
fixed values when approximating the expected cost per day given we condition on HNP p. We
also introduce the fixed values θp (long-run probability that HNP p is disrupted), θs (long-run
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probability that HNP s is disrupted), αp, and βp to condense the expressions in Equation (5.10).

E[cost per day|P(p,s)
i j ] = cp +hpSp + eprSp

p (5.10)

cp =hs(Ss +(
qsθs

µs
)(αp −1))−hp(

θp

µp
)(qp +qsθsαp)+ tpsqsθsαp

ep =hsθsθp(
−qsαp

µs
−

qp

µs
+(

qp +qs

µs
)βp)+hp(

θp

µp
)(qp +qsθsαp)− tpsqsθsθpαp + tspqpθp(1−θsβp)+b(qp +qs)θsθpβp

rp =
qp +qsθsαp

µp +qp +qsθsαp

θp =
λp

µp +λp
; θs =

λs

µs +λs
; αp = (

qs

qs +µs
)Ss ; βp = (

qp +qs

µs +qp +qs
)Ss

Given Equation (5.10), we can solve for the optimal value of Sp (see Equation (5.11)) with all
input parameters and the order-up-to level Ss fixed. In Equation (5.10), when ep > 0, the constant
function, linear function, and function eprSp

p are convex. Thus, Equation (5.10) is convex as the
sum of convex functions is convex. In the convex case, we set the first derivative equal to 0 to

find the optimal value of Sp =
ln( −hp

ep ln(rp)
)

ln(rp)
; hp > 0, ep > 0, and 0 < rp < 1 implies the numerator

and denominator are always defined. The maximum function in Equation (5.11) comes from the
assumption that Sp ≥ 1. When ep ≤ 0, the constant function, linear function, and function eprSp

p

are concave implying Equation (5.10) is concave as the sum of concave functions is concave. In
the concave case, we use the boundary condition that Sp ≥ 1 to find the optimal value of Sp.
Equation (5.10) treats Sp as a continuous decision variable, so we round up to the nearest integer
(i.e., conservative).

Sp =

max{1,
ln( −hp

ep ln(rp)
)

ln(rp)
}; ep > 0

1; ep ≤ 0
(5.11)

To solve for the optimal order-up-to levels in the integrated inventory system with the approxi-
mate long-run probabilities, we consider two properties of the problem. First, the accuracy of the
approximate model improves when conditioning on the HNP p that leads to the larger estimate for
P00. Second, given we condition on HNP p, we can solve for the optimal value of Sp in closed-form.
We use these properties to construct a search algorithm to solve for the optimal order-up-to levels
(S∗1,S

∗
2) in the integrated inventory system. The search algorithm consists solely of closed-form

expressions and requires a search over a subset of feasible integer order-up-to level combinations
making the approximate model quick-to-solve; complexity O(S2(max)−S2(min)+S1(max)−S1(min)).
We proceed to formally present the search algorithm.
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Algorithm Search algorithm for approximate model.
1: Input: h1, h2, b, t12, t21, q1, q2, λ1, µ1, λ2, µ2 (see Table 5.2)
2:

3: Step A.1: Fix S2 and solve for S∗1
4: for S2 in [S2(min),S2(max)] % Iterate through feasible S2 values
5: Solve for S∗1 given S2 % See equation (5.11)
6: Store combination (⌈S∗1⌉,S2) in Ssubset % Store combination with S∗1 rounded up to the nearest integer
7: end for
8:

9: Step A.2: Fix S1 and solve for S∗2
10: for S1 in [S1(min),S1(max)] % Iterate through feasible S1 values
11: Solve for S∗2 given S1 % See equation (5.11)
12: Store combination (S1,⌈S∗2⌉) in Ssubset % Store combination with S∗2 rounded up to the nearest integer
13: end for
14:

15: Step A.3: Calculate P00 estimate for the subset of feasible (S1,S2) policies stored in Ssubset
16: for (S1,S2) in Ssubset % Iterate through the subset of feasible (S1,S2) policies
17: Calculate P(1,2)

00 = P(1,2)
0|0 P(1,2)

0 % See equations (5.4) and (5.9)

18: Calculate P(2,1)
00 = P(2,1)

0|0 P(2,1)
0 % See equations (5.4) and (5.9)

19: if P(1,2)
00 ≥ P(2,1)

00 % Check if it is better to condition on HNP 1

20: Calculate E[cost per day|P(1,2)
i j ] % See equation (5.10)

21: else
22: Calculate E[cost per day|P(2,1)

i j ] % See equation (5.10)
23: end if
24: end for
25:

26: Output: (S∗1,S
∗
2) = min

(S1 ,S2)∈Ssubset
E[cost per day] denotes the optimal non-perishable integrated inventory policy

Approximate Model: Evaluating the Accuracy
We first evaluate the accuracy of the two-HNP integrated approximate model with two independent
suppliers using the expected cost per day for the non-perishable integrated inventory system. We
evaluate the accuracy by (1) calculating the expected cost per day given a fixed (S∗1,S

∗
2) when using

the system of equations for the exact model and (2) calculating the expected cost per day given
a fixed (S∗1,S

∗
2) when using the closed-form expressions for the approximate model (in Section

5.4.1.4). Our numerical studies suggest comparable results (difference in expected total cost per
day ≤ 2.6%; in Appendix D.2.1) supporting the finding that the approximate model achieves high
accuracy.

Second, we evaluate the accuracy of the two-HNP integrated approximate model with two inde-
pendent suppliers using the optimal order-up-to levels for the non-perishable integrated inventory
system. We evaluate the accuracy by (1) solving for the optimal order-up-to levels (S∗1,S

∗
2) for

the non-perishable integrated inventory system using the exact model in Section 5.4.1.3 where
we consider increments of 5 for the exhaustive search and (2) solving for the optimal order-up-to
levels (S∗1,S

∗
2) for the non-perishable integrated inventory system using the approximate model in

Section 5.4.1.4. We then calculate the expected cost per day with these two sets of (S∗1,S
∗
2) policies

using the system of equations for the exact model. Our numerical studies suggest comparable re-
sults (difference in expected total cost per day ≤ 0.2%; in Appendix D.2.2) further supporting the
conclusion that the approximate model achieves high accuracy.
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5.4.2 Two-HNP Perishable Integrated Inventory System

5.4.2.1 Defining the Perishability Condition

Next, we examine the case in which the drug has a finite and deterministic lifetime of x days.
To capture this, we define a perishability condition which can be seen as a chance constraint at
each HNP. The perishability condition addresses the question: Are the order-up-to levels (S∗1,S

∗
2)

too large for the expiration lifetime (i.e., x)? Formally, when following the (S∗1,S
∗
2) integrated

inventory policy, we want the probability that drugs are wasted at each HNP to be at most δ .

Supply is Never Disrupted at HNP p

We consider when supply is never disrupted at HNP p for p= 1,2 (i.e., no supply chain disruptions;
Ip = Sp + 1). Using Equations (5.5)-(5.7), we calculate P(p,s)

j|Sp+1 for j = 0,1, ...,Ss + 1. We note

that since we are conditioning on supply never being disrupted at HNP p, the value P(p,s)
j|Sp+1 for

j = 0,1, ...,Ss + 1 from the approximate model is exact in this case. When j = 1, ...,Ss + 1, this
implies that HNP s has positive inventory-hand. Hence, HNP s is not depending on HNP p for
inventory (i.e., HNP p has a demand rate of qp). When j = 0, this implies that HNP s is depending
on HNP p through lateral transshipments (i.e., HNP p has a demand rate of qp + qs). Next, we
consider the demand that occurs in a time period of x days (i.e., expiration lifetime). Formally, we
define the random variables Qx,qp and Qx,qp+qs as the number of demand arrivals in a time period
of x days when the Poisson demand rate is qp and qp+qs, respectively. We present the probability
that drugs are wasted at HNP p given supply at HNP p is never disrupted (ND) and an expiration
lifetime x in Equation (5.12).

Pwaste HNP p|(ND, x) =

(Ss+1

∑
j=1

P(p,s)
j|Sp+1

)
Pr(Qx,qp ≤ Sp −1)+P(p,s)

0|Sp+1 Pr(Qx,qp+qs ≤ Sp −1) (5.12)

Using the Poisson cumulative distribution function, we have the probability that drugs are wasted
at HNP p given supply at HNP p is never disrupted and an expiration lifetime x in Equation (5.13).

Pwaste HNP p|(ND, x) =

(Ss+1

∑
j=1

P(p,s)
j|Sp+1

)(
e−qpx

Sp−1

∑
i=0

(qpx)i

i!

)
+P(p,s)

0|Sp+1

(
e−(qp+qs)x

Sp−1

∑
i=0

((qp +qs)x)i

i!

)
(5.13)

Perishability Condition as a Chance Constraint at Each HNP
When following the (S∗1,S

∗
2) integrated inventory policy, we want the probability that drugs are

wasted at HNP p (p = 1,2) given supply at HNP p is never disrupted to be at most δ . For p = 1,2,
we use P(p,s)

j|Sp+1 ( j = 0, ...,Ss+1) and Equation (5.13) to formally define the perishability condition
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in Equation (5.14). When the perishability condition is satisfied, (S∗1,S
∗
2) provides the optimal

integrated inventory policy for the perishable system. When the perishability condition is violated
(i.e., Pwaste HNP 1|(ND, x) > δ or Pwaste HNP 2|(ND, x) > δ ), we enforce the perishability condition as
shown in Section 5.4.2.2.

Pwaste HNP 1|(ND, x) =

Only HNP 1 is using the inventory on-hand at HNP 1︷ ︸︸ ︷(
µ2

µ2 +λ2

(
1+

λ2

µ2

(
1− (

q2

q2 +µ2
)S∗2
)))(

e−q1x
S∗1−1

∑
i=0

(q1x)i

i!

)

+

HNP 1 and HNP 2 are using the inventory on-hand at HNP 1︷ ︸︸ ︷(
q2

µ2

)(
λ2

q2 +µ2

)(
µ2

µ2 +λ2

)(
q2

µ2 +q2

)S∗2−1(
e−(q1+q2)x

S∗1−1

∑
i=0

((q1 +q2)x)i

i!

)
≤ δ

and

Pwaste HNP 2|(ND, x) =

Only HNP 2 is using the inventory on-hand at HNP 2︷ ︸︸ ︷(
µ1

µ1 +λ1

(
1+

λ1

µ1

(
1− (

q1

q1 +µ1
)S∗1
)))(

e−q2x
S∗2−1

∑
j=0

(q2x) j

j!

)

+

HNP 1 and HNP 2 are using the inventory on-hand at HNP 2︷ ︸︸ ︷(
q1

µ1

)(
λ1

q1 +µ1

)(
µ1

µ1 +λ1

)(
q1

µ1 +q1

)S∗1−1(
e−(q1+q2)x

S∗2−1

∑
j=0

((q1 +q2)x) j

j!

)
≤ δ

(5.14)

In Equation (5.14), we condition on supply never being disrupted at HNP 1 and HNP 2. First,
we condition on each HNP individually to capture that the HNPs participate in lateral transship-
ments when one HNP has positive inventory on-hand and the other has zero inventory on-hand.
Second, we condition on supply never being disrupted because we want to know if the order-up-to
levels (S∗1,S

∗
2) are too large for the expiration lifetime (i.e., x). Alternatively, we could have condi-

tioned on supply never being disrupted at each HNP and then multiplied by the respective long-run
probability that the supply chain is not disrupted for each HNP (i.e., µ1

λ1+µ1
and µ2

λ2+µ2
for HNP 1

and 2, respectively). However, performing this multiplication would imply that when the supply
chain is very unreliable (i.e., µk

λk+µk
for k = 1,2 is very small), the probability that drugs are wasted

may be very small simply because we multiplied by µk
λk+µk

. As an example, consider a simple sin-
gle HNP inventory system where demand is exactly 1 per day (i.e., deterministic), the drug has an
expiration lifetime of 90 days, and supply chain disruptions occur according to the following pro-
cess: the supply chain is not disrupted for 1 day and then the supply chain is disrupted for 99 days
(i.e., deterministic; the long-run probability that the supply chain is not disrupted is 1

100 = 0.01).
Consider you select an order-up-to level of S = 100 for this single HNP inventory system. The
probability that drugs are wasted when supply is never disrupted for this single HNP inventory
system is 1. Multiplying this probability by the long-run probability that the supply chain is not
disrupted (i.e., 0.01) results in 1 · 0.01 = 0.01, which is very small. Calculating the probability
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that drugs are wasted in this way hides the fact that every 100 days, you order-up-to 100, satisfy
demand for exactly 90 days, and then discard 10 drugs due to the 90-day lifetime of the drug. The
order-up-to level (i.e., S) is too high for the demand that occurs in a time period of x days (i.e.,
expiration lifetime) and this information could have been lost given we multiplied by the long-run
probability that the supply chain is not disrupted.

5.4.2.2 Enforcing the Perishability Condition

When the perishability condition is violated (i.e., Pwaste HNP 1|(ND, x) > δ or Pwaste HNP 2|(ND, x) > δ ;
see Equation (5.14)) with the optimal order-up-to levels (S∗1,S

∗
2) for the non-perishable integrated

inventory system, we enforce the perishability condition to ensure that the order-up-to levels
(S∗1,S

∗
2) are appropriate for the expiration lifetime of x days. We notice that Pwaste HNP 1|(ND, x)

and Pwaste HNP 2|(ND, x) depend on both S∗1 and S∗2. Therefore, to enforce the perishability condition,
we decrease S∗1 and S∗2 iteratively until the probability that drugs are wasted at HNP p (p = 1,2)
given supply is never disrupted at HNP p is at most δ . When iteratively decreasing S∗1 and S∗2, we
always start with S∗1. We proceed to formally present the algorithm.

Algorithm Enforcing the perishability condition.
1: Input:
2: Parameters: h1, h2, b, t12, t21, q1, q2, λ1, µ1, λ2, µ2 (see Table 5.2)
3: Optimal non-perishable policy: (S∗1,S

∗
2)

4:

5: Step A: Decrease S∗1 and/or S∗2 Until the Perishability Condition is Satisfied
6: while Pwaste HNP 1|(ND, x) > δ or Pwaste HNP 2|(ND, x) > δ % Perishability condition not satisfied; See equation (5.14)
7: Step A.1: Consider Decreasing S∗1
8: if Pwaste HNP 1|(ND, x) > δ % Waste constraint not satisfied at HNP 1
9: S∗1 = max{1,S∗1 −1} % Decrease the order-up-to level at HNP 1 by 1 if the boundary condition is not met

10: Calculate Pwaste HNP 1|(ND, x) and Pwaste HNP 2|(ND, x) with (S∗1,S
∗
2) % See equation (5.14)

11: end if
12:

13: Step A.2: Consider Decreasing S∗2
14: if Pwaste HNP 2|(ND, x) > δ % Waste constraint not satisfied at HNP 2
15: S∗2 = max{1,S∗2 −1} % Decrease the order-up-to level at HNP 2 by 1 if the boundary condition is not met
16: Calculate Pwaste HNP 1|(ND, x) and Pwaste HNP 2|(ND, x) with (S∗1,S

∗
2) % See equation (5.14)

17: end if
18:

19: Step A.3: Check if the Order-up-to Level Boundary Condition is Met at Each HNP
20: if S∗1 = 1 and S∗2 = 1 % Boundary condition is met at each HNP
21: break while loop (note: perishability condition may still be violated)
22: end if
23: end while
24:

25: Output: (S∗1,S
∗
2) denotes the optimal perishable integrated inventory policy

5.4.3 Other Inventory Systems for Comparison

In this chapter, we focus on a two-HNP integrated inventory system with independent suppliers.
For comparison, we are also interested in studying a (a) two-HNP non-integrated inventory system
and (b) two-HNP integrated inventory system with one supplier (see Figure 5.4).
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HNP 1 HNP 2

Supplier 2Supplier 1

(a) Non-integrated inventory system.

HNP 1 HNP 2

Supplier

(b) Integrated inventory system with one supplier.

Figure 5.4: Other inventory systems for comparison.

5.4.3.1 Two-HNP Non-Integrated Inventory System

The non-integrated inventory system largely resembles the strict regulations in current practice that
generally prohibit HNPs from sharing drugs outside of their network or make it very difficult for
HNPs to stay compliant when sharing drugs outside of their network. In this inventory system, the
two HNPs act independently of one another, so the non-perishable order-up-to levels are obtained
by considering a single HNP single supplier non-perishable inventory system. The optimal order-
up-to level Sk for HNP k (k = 1,2) is expressed in Equation (5.15) (see Appendix D.1.2). Equation
(5.15) treats Sk as a continuous decision variable, so we round up to the nearest integer (i.e.,
conservative).

Sk = max{1,

ln
(

−hk

(
λkqk

µk+λk
)(

hk
µk
+b) ln( qk

qk+µk
)

)
ln( qk

qk+µk
)

} (5.15)

To incorporate perishability, we decrease Sk (k = 1,2) until the probability that drugs are wasted at
HNP k is at most δ given supply is never disrupted at HNP k and an expiration lifetime x as shown
in Equation (5.16) (see Appendix D.1.3).

Pwaste HNP k|(ND, x) = e−qkx
Sk−1

∑
i=0

(qkx)i

i!
≤ δ (5.16)

5.4.3.2 Two-HNP Integrated Inventory System with One Supplier

We also study a two-HNP integrated inventory system with one supplier. In this case, when the
supplier is disrupted, both HNP 1 and HNP 2 are unable to replenish their drug inventory. For the
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two-HNP non-perishable integrated inventory system with one supplier, we express the expected
cost per day in closed-form (see Appendix D.1.4.1-D.1.4.2), but to solve for the optimal order-up-to
levels, we must exhaustively calculate the expected cost per day for all feasible integer order-up-to
level combinations (S1,S2): S1 ∈ [S1(min),S1(max)] and S2 ∈ [S2(min),S2(max)].

To incorporate perishability, we introduce a constraint on the probability drugs are wasted at
each HNP. A one supplier system implies that when supply is never disrupted at one HNP (recall
we condition on supply never being disrupted for the perishability condition), supply is also never
disrupted at the second HNP since they have the same supplier. As a result, the probability that
drugs are wasted only depends on the individual HNP’s order-up-to level like the non-integrated
inventory system. Therefore, we decrease Sk (k = 1,2) until the probability that drugs are wasted
at HNP k is at most δ given supply is never disrupted at HNP k and an expiration lifetime x as
shown in Equation (5.16) (see Appendix D.1.5). We provide a summary of all inventory systems
in Table 5.3.

Table 5.3 Description of the inventory systems.
Notation Description
Two Supplier Integrated Non-perishable Two independent supplier integrated inventory system without enforcing the

perishability condition (in Section 5.4.1)
Two Supplier Integrated Perishable Two independent supplier integrated inventory system with the perishability

condition enforced when appropriate (in Section 5.4.2)
Non-Integrated Non-perishable Non-integrated inventory system where each HNP acts independently without

enforcing the perishability condition (in Section 5.4.3.1 and Appendix D.1.2)
Non-Integrated Perishable Non-integrated inventory system where each HNP acts independently with

the perishability condition enforced when appropriate (in Section 5.4.3.1 and
Appendix D.1.3)

One Supplier Integrated Non-perishable One supplier integrated inventory system without enforcing the perishability
condition (in Section 5.4.3.2 and Appendix D.1.4)

One Supplier Integrated Perishable One supplier integrated inventory system with the perishability condition en-
forced when appropriate (in Section 5.4.3.2 and Appendix D.1.5)

5.5 Numerical Analysis

We consider our approximate model and numerically study a two-HNP perishable integrated in-
ventory system. We consider Fentanyl 50mcg/mL 30mL (Fentanyl) which is a synthetic opioid
used to provide pain relief (Centers for Disease Control and Prevention, 2021). This drug is essen-
tial in hospital operations as the University of Michigan’s Central Pharmacy prescribes the drug
for continuous pain relief during surgeries. This drug is defined as a 503B drug which is a pre-
compounded drug that is ready-for-use when delivered to the HNP (Jones, 2020). The average
wholesale price of the drug is approximately $25 per dose (IBM Watson Health, 2022).

Table 5.4 provides the input parameters for the Fentanyl base case. For both HNPs, we consider
equal holding costs (i.e., h1 = h2 = $0.025; holding cost relative to drug price 0.001, Jia & Zhao,
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2017). We select a shortage cost twice the cost of the drug (i.e., b = $50). We consider equivalent
lateral transshipment costs (i.e., t12 = t21) since the HNPs are sharing the same drug and from
discussions with our hospital pharmacy collaborators, we assume that lateral transshipment costs
are 25% the cost of a shortage (i.e., t12 = t21 = $12.50). We also assume that the two HNPs are
comparable in size supporting equivalent daily demand rates (i.e., q1 = q2). We use the average
daily demand from the most recent six months of available data at the University of Michigan’s
Central Pharmacy (i.e., October 22, 2020-March 22, 2021; missing data imputed using linear
interpolation with respect to the day of the week) to get a daily demand rate estimate of q1 = q2 =

45/day. We assume the expiration lifetime of the drug is x = 90 days which is consistent with the
class of 503B drugs. We set the upper limit on the probability that drugs are wasted at each HNP to
0.05 (i.e., δ = 0.05). For both suppliers, we assume that supply chain disruptions occur about every
three months (i.e., 90 days; λ1 = λ2 =

1
90 ). For both suppliers, we also assume that supply chain

disruptions last for about 1 month (i.e., 30 days; µ1 = µ2 = 1
30 ; perishability condition does not

need to be enforced) or 3 months (i.e., 90 days; µ1 = µ2 =
1

90 ; perishability condition needs to be
enforced). Our hospital pharmacy collaborators have observed disruption durations of 1-3 months.
But, due to the difficulty in selecting the disruption rate and recovery rate input parameters, we
consider multiple combinations and ranges of these input parameters throughout the numerical
analysis (see Table 5.4).

Table 5.4 Numerical analysis input parameters.
Notation Base Case Sensitivity Description
h1 $0.025 Holding cost per day per drug for HNP 1 (h1 > 0; Jia & Zhao, 2017)
h2 $0.025 Holding cost per day per drug for HNP 2 (h2 > 0; Jia & Zhao, 2017)
b $50 Shortage cost per unsatisfied demand (b > 0; lost-sales)
t12 $12.50 [$0,$50] Lateral transshipment cost from HNP 1 to HNP 2 per drug (t12 > 0)
t21 $12.50 [$0,$50] Lateral transshipment cost from HNP 2 to HNP 1 per drug (t21 > 0)
x 90 Expiration lifetime in days (x ≥ 1)
q1 45 Daily demand rate for HNP 1 (q1 > 0; Poisson distribution)
q2 45 Daily demand rate for HNP 2 (q2 > 0; Poisson distribution)
δ 0.05 Upper limit (i.e., tolerance) on the probability that drugs are wasted at each HNP
λ1

1
90 [0.01,0.3] Supply chain disruption rate with respect to days for HNP 1

µ1
1
30 ,

1
90 [0.01,0.1] Supply chain recovery rate with respect to days for HNP 1

λ2
1
90 [0.001,0.3] Supply chain disruption rate with respect to days for HNP 2

µ2
1
30 ,

1
90 [0.001,0.1] Supply chain recovery rate with respect to days for HNP 2

In Sections 5.5.1-5.5.2, we provide the expected total, holding, shortage, and lateral transship-
ment cost per day from the closed-form approximate model. We note that the closed-form ex-
pressions are derived for a non-perishable inventory system. However, our HNP setting of interest
requires a small probability of waste (i.e., δ = 0.05) and consequently, there is a small chance of
waste when following the optimal perishable order-up-to levels. As a result, there is a negligible
difference between the expected cost per day (sum of holding, shortage, and lateral transshipment
costs) for a non-perishable and perishable inventory system when using the optimal perishable
order-up-to levels (e.g., difference with respect to each cost component ≤ 0.3% when simulating
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the two inventory systems with a warm-up period of 500 days, a planning horizon of 10,000 days,
and 1,000 simulation replications for the base case with µ1 = µ2 = 1

90 which enforces the per-
ishability condition). We also present the probability that drugs are wasted given supply is never
disrupted at each respective HNP and the optimal perishable order-up-to levels (S∗1,S

∗
2) at each

HNP.

5.5.1 Benefit of Sharing Inventory

We show when it is beneficial to allow two HNPs with independent suppliers experiencing sup-
ply chain disruptions to share inventory. In Figure 5.5, we consider the Two Supplier Integrated
Perishable and Non-Integrated Perishable inventory systems with the base case input parameters
(see Table 5.4), but varying lateral transshipment costs (i.e., t12 = t21 ∈ [$0,$50]). The results cor-
respond to infrequent supply chain disruptions (i.e., λ1 = λ2 =

1
90 ) and either short supply chain

disruptions (i.e., µ1 = µ2 =
1

30 ) or long supply chain disruptions (i.e., µ1 = µ2 =
1

90 ). Since we are
using the same input parameters for both HNPs, the approximate model leads to identical order-
up-to levels (see column 4) and consequently, the same probability of waste (see column 3).

We find that (a) the greatest benefit of an integrated inventory system (i.e., Two Supplier Inte-
grated Perishable) is when the system has small lateral transshipment costs relative to the cost of a
shortage (see row 1 column 1). From a shortage perspective, we find that (b) an integrated inven-
tory system (i.e., Two Supplier Integrated Perishable) always reduces the expected shortage cost
regardless of the cost of a lateral transshipment (see row 1 column 2). From a waste perspective,
we find that (c) when the integrated inventory system (i.e., Two Supplier Integrated Perishable) and
non-integrated inventory system (i.e., Non-Integrated Perishable) have the same optimal order-up-
to levels, the probability that drugs are wasted with the integrated inventory system is slightly less
since sharing between the HNPs occur (see triangular curves in column 3). We also find that when
the order-up-to levels for the integrated inventory system (i.e., Two Supplier Integrated Perishable)
are larger than the order-up-to levels for the non-integrated inventory system (i.e., Non-Integrated
Perishable), the probability that drugs are wasted may be greater with the integrated inventory sys-
tem compared to the non-integrated inventory system (see t12 = t21 = $50 and circular curves in
column 3).

The most interesting finding is that (d) it is not always beneficial to operate as an integrated in-
ventory system given the cost of a lateral transshipment is less than the cost of a shortage. Instead,
there exists a lateral transshipment cost t∗ ≤ b such that it becomes optimal to operate as a non-
integrated inventory system given t12 = t21. This t∗ may be strictly less than b. This finding holds
in integrated inventory systems without supply chain disruptions (e.g., Needham & Evers, 1998)
and integrated inventory systems with supply chain disruptions and one supplier (e.g., Nasr et al.,

103



2012). We proceed to elaborate on the intuition behind why this finding holds in our two-HNP in-
tegrated inventory system with independent suppliers experiencing supply chain disruptions. The
intuition stems from the number of shortages plus the number of lateral transshipments from the
time that both suppliers are simultaneously disrupted to the time that both suppliers are simultane-
ously not disrupted. During this time frame, in the integrated inventory system with two indepen-
dent suppliers, the number of lateral transshipments plus the number of shortages is always greater
than or equal to the number of shortages in the non-integrated inventory system (recall that there
are no lateral transshipments in the non-integrated inventory system). As a concrete example, con-
sider the case that both suppliers are currently disrupted, HNP 1 has 1 unit of inventory on-hand,
and HNP 2 has 0 units of inventory on-hand. Next, assume that the next sequence of events is
(A) demand occurs at HNP 2, (B) demand occurs at HNP 1, (C) the supplier for HNP 1 recovers,
and (D) the supplier for HNP 2 recovers. From the time that both suppliers are simultaneously
disrupted to the time that both suppliers are simultaneously not disrupted, the integrated inventory
system experiences 1 lateral transshipment and 1 shortage. The non-integrated inventory system
only experiences 1 shortage.

In Figure 5.5, the expected total cost illustrates this finding (see row 1 column 1) where
t∗ = $42.50 for µ1 = µ2 = 1

90 (see triangular curves). Given t12 ̸= t21, the result still holds, but
there exists lateral transshipment costs t∗12 ≤ b and t∗21 ≤ b such that it becomes optimal to operate
as a non-integrated inventory system. In the remainder of the chapter, we claim the lateral trans-
shipment costs are sufficiently less than the cost of a shortage if t12 < t∗12 and t21 < t∗21 (i.e., it is
optimal to operate as an integrated inventory system). In our HNP setting, drugs are critical to
patient care and can be life-saving. Hence, the lateral transshipment cost is generally sufficiently
less than the cost of a shortage.

Building upon our finding (d), we are interested in gaining a better understanding of the sensitiv-
ity of t∗. Specifically, with our interest in supply chain disruptions, we analyze how the disruption
and recovery rate influence t∗. Recall that t∗ (t∗ ≤ b) is the value of the lateral transshipment cost
such that it becomes optimal to operate as a non-integrated inventory system given t12 = t21. An
alternative interpretation is that for all lateral transshipment costs t12 = t21 < t∗, it is beneficial
to operate as an integrated inventory system as it results in cost savings. In Appendix D.3.1, we
present the full analysis where we find that (e) the value of t∗ is largely influenced by the disruption
rate and recovery rate. More specifically, when λ1 = λ2 and µ1 = µ2, t∗ decreases as the long-run
probability that the supply chain is disrupted increases. Consider the case when both suppliers have
a very large long-run probability that the supply chain is disrupted. This finding implies that the
lateral transshipment cost often needs to be much less than the cost of a shortage for it to remain
beneficial to operate as an integrated inventory system (e.g., the lateral transshipment cost must
be less than 40% the cost of a shortage for it to be beneficial to operate as an integrated inventory
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system; see Appendix D.3.1). We also find that (f) regardless of the disruption and recovery rate
combination, we reach the same conclusion that the lateral transshipment cost must be sufficiently
less than the cost of a shortage for it to be beneficial to operate as an integrated inventory system.

In contrast to strict regulations in current practice that generally prohibit HNPs from sharing
drugs outside of their network or make it very difficult for HNPs to stay compliant when sharing
drugs outside of their network, results (a)-(c) along with lateral transshipment costs that are suffi-
ciently less than the cost of a shortage (result (d)) show that policy makers may consider relaxing
these restrictions to improve the performance of the HNPs.

Figure 5.5: Results for the benefit of sharing inventory.

5.5.2 Supply Chain Disruption Characteristics

We now provide insights into how the supply chain disruption characteristics of the two HNPs
influence whether it is beneficial to share inventory. In Figure 5.6, we present the Two Supplier
Integrated Perishable and Non-Integrated Perishable inventory systems with the base case input
parameters (see Table 5.4), but varying disruption and recovery rates at HNP 1 and HNP 2. With
the base case input parameters, we want to emphasize that t12 = t21 = $12.50 is sufficiently less than
the cost of a shortage b = $50 for all disruption and recovery rate combinations in this analysis
to result in cost savings when using the integrated inventory system (see result (d) in Section

105



5.5.1). We consider varying recovery rates (i.e., µ1 ∈ [0.01,0.1]) at HNP 1 such that λ1 = 1
3 µ1.

For all (λ1,µ1) combinations, the long-run probability that the supply chain is not disrupted is
µ1

µ1+λ1
= 3

4 = 0.75. Also, all (λ1,µ1) combinations correspond to expected disruption durations
(i.e., down time) that are shorter than the expected time until a disruption given the supply chain
is currently not disrupted (i.e., up time). For the second HNP, we consider the same long-run
probability that the supply chain is not disrupted (i.e., λ2 =

1
3 µ2; µ2

µ2+λ2
= 0.75), but only distinguish

two recovery rates: long disruptions (i.e., µ2 = 0.01) and short disruptions (i.e., µ2 = 0.1).
In Figure 5.6, we notice that the HNPs have identical order-up-to levels (see column 4) and

consequently, the same probability of waste (see column 3) when the input parameters for both
HNPs are identical. Identical in Figure 5.6 occurs when (i) µ1 = 0.01 (see x-axis) and µ2 = 0.01
(see circular curves) and (ii) µ1 = 0.1 (see x-axis) and µ2 = 0.1 (see triangular curves). We find that
(a) an integrated inventory system is beneficial as it minimizes the expected total cost and shortage
cost per day regardless of the supply chain disruption patterns. Also, similar to past research
(Chapter 3), we find that (b) when solving for the optimal order-up-to levels, it is insufficient to
only consider the long-run probability that the supply chain is not disrupted. Both the disruption
rate and recovery rate impact the optimal order-up-to levels (see column 4) and consequently, the
cost metrics.

We next consider the expected length of a disruption (i.e., 1
µ1

and 1
µ2

) to verify that it is beneficial
to operate as an integrated inventory system even when the expected length of a disruption is long in
comparison to the expiration lifetime x. We find that (c) when the expected length of a disruption is
long in comparison to the expiration lifetime x for HNP 1 (e.g., µ1 = 0.01; 1

µ1
= 100 days > x = 90

days), the decrease in the expected total cost with the Two Supplier Integrated Perishable inventory
system (see black curves) in comparison to the Non-Integrated Perishable inventory system (see red
curves) shows that it is beneficial to operate as an integrated inventory system. This statement holds
when the expected length of a disruption for HNP 2 is long in comparison to the expiration lifetime
x (e.g., µ2 = 0.01; 1

µ2
= 100 days > x = 90 days; see circular curves) and short in comparison to

the expiration lifetime x (e.g., µ2 = 0.1; 1
µ2

= 10 days < x = 90 days; see triangular curves).
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Figure 5.6: Results for supply chain disruption characteristics.

The final interesting finding is that (d) when selecting a partner HNP, it is critical to consider the
supply chain disruption profile (i.e., disruption rate and recovery rate) of the partner HNP. Other
research supports that a system’s performance and decision-making depends on the supply chain
disruption profile (e.g., Chapter 3; Rozhkov et al., 2022; Li et al., 2023). But, we hone in on how
the disruption rates and recovery rates impact the performance of the HNPs and how these rates
influence whether the HNPs should operate as an integrated or non-integrated inventory system.
From the results in Figure 5.6, it is recommended to select a second HNP with similar disruption
and recovery rates to the first HNP. For example, consider µ1 = 0.1 (see x-axis) and µ2 = 0.1 (see
triangular curves). Recalling that both systems have equivalent holding costs, lateral transshipment
costs, and demand rates, both HNPs experience the same benefit of an integrated inventory system
from a decrease in order-up-to level perspective. Furthermore, while not shown in the figure,
both HNPs have an equivalent reduction in shortage costs and holding costs by operating as an
integrated inventory system instead of a non-integrated inventory system. Again, this implies that
the two HNPs experience the same benefit of an integrated inventory system.

It is worth noting that as the long-run probability that the supply chain is disrupted increases,
there are instances where failing to consider the disruption rate and recovery rate of the partner
HNP can cause one HNP to be “worse-off". In Appendix D.3.2, we provide an example of such an
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instance. The example considers two HNPs and compares the cost metrics when operating as an
integrated versus a non-integrated inventory system. In the example, one HNP reaps benefits (i.e.,
expected shortage cost with the integrated inventory system is about 4% the shortage cost of the
non-integrated inventory system). However, the second HNP is “worse-off" (i.e., expected shortage
cost with the integrated inventory system is almost double the shortage cost of the non-integrated
inventory system). To take a deeper look at this finding, we start by fixing the disruption rate and
recovery rate for HNP 1 such that HNP 1 has infrequent supply chain disruptions (i.e., λ1 =

1
90 ) and

short supply chain disruptions (i.e., µ1 =
1
30 ). We vary the disruption rate (i.e., λ2 ∈ [0.001,0.1])

and recovery rate (i.e., µ2 ∈ [0.001,0.1]) for HNP 2. For all other input parameters, we continue
to consider the base case input parameters (see Table 5.4). We then distinguish which HNPs have
a reduction in shortages with the integrated inventory system by calculating the percent change
in shortages with the Two Supplier Integrated Perishable and Non-Integrated Perishable inventory
systems (see Figure 5.7). Figure 5.7(a) presents the results for HNP 1. Figure 5.7(a) illustrates
that there are instances where HNP 1 is “worse-off" by operating as an integrated inventory system
because HNP 1 experiences an increase in shortages (see areas where percent change > 0). Figure
5.7(b) presents the results for HNP 2. Figure 5.7(b) illustrates that HNP 2 always has a reduction
in shortages with an integrated inventory system since the percent change in shortages is always
negative. In summary, the results illustrate that HNPs need to take into consideration the disruption
rate and recovery rate of the partner HNP’s supplier before deciding if it is beneficial to operate as
an integrated inventory system.

(a) % change in shortages at HNP 1. (b) % change in shortages at HNP 2.

Figure 5.7: Percent change in shortages at HNP 1 and HNP 2 with the Two Supplier Integrated
Perishable and Non-Integrated Perishable inventory systems. Percent change is calculated as fol-
lows:
Percent change = (Shortages with Integrated Perishable) - (Shortages with Non-Integrated Perishable)

Shortages with Non-Integrated Perishable ∗100
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5.5.3 Additional Takeaways

In the Appendix, we gain additional takeaways by studying (T1) two independent suppliers versus
one supplier (in Appendix D.3.3.1) and (T2) the impact of HNPs not sharing inventory given both
suppliers are disrupted (i.e., “hoard" inventory; in Appendix D.3.3.2). We find:

(T1) Operating as an integrated inventory system when the two HNPs share the same supplier
provides negligible to no benefit. This implies that hospital pharmacy managers should focus
on drugs that provide the opportunity to partner with a HNP that has a supplier independent
of it’s own supplier.

(T2) Given both suppliers are disrupted, it is beneficial to always allow the HNPs to share inven-
tory (i.e., have lateral transshipments). Our numerical studies suggest that hoarding inven-
tory (i.e., no lateral transshipments) when both suppliers are disrupted can cause significantly
more shortages in comparison to the integrated inventory system that always allows lateral
transshipments.

5.6 Summary and Conclusions

We provide a modeling framework that optimizes decision-making in a perishable inventory sys-
tem with supply chain disruptions and lateral transshipments. The modeling framework first solves
for the optimal (S∗1,S

∗
2) integrated inventory policy for a non-perishable inventory system. To in-

corporate perishability, we introduce a perishability condition which ensures the probability that
drugs are wasted at each HNP does not exceed some tolerance level. When the perishability condi-
tion is violated, we illustrate how to enforce this perishability condition. It is worth noting that it is
insufficient to ignore the optimal (S∗1,S

∗
2) integrated inventory policy for the non-perishable inven-

tory system and simply consider the largest (S∗1,S
∗
2) integrated inventory policy that satisfies the

perishability condition. As one example, there are cases where the optimal (S∗1,S
∗
2) integrated in-

ventory policy for the non-perishable inventory system satisfies the perishability condition. There-
fore, the perishability condition does not need to be enforced. In these cases, simply solving for
the largest (S∗1,S

∗
2) integrated inventory policy that satisfies the perishability condition can result

in a sub-optimal (S∗1,S
∗
2) integrated inventory policy. With our modeling framework, we illustrate

when it is beneficial to operate as an integrated inventory system.
Strict regulations in current practice generally prohibit HNPs from sharing drugs outside of

their network or make it very difficult for HNPs to stay compliant when sharing drugs outside of
their network. However, through discussions with our hospital pharmacy collaborators, there have
been instances where hospital pharmacies have shared with other hospital pharmacies outside of
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their network. This sharing of drugs required extra time, energy, and resources to stay compliant.
But, had this sharing not taken place, patients would have been denied care which emphasizes
the benefits of and need for sharing. Our modeling framework takes this idea one step further by
not only shedding light on when it is beneficial to share drugs and how beneficial it is to share
drugs, but also how to incorporate sharing into the inventory decision-making process. Further-
more, while real-world systems may not satisfy every assumption in our modeling framework, our
results show that operating as a non-integrated inventory system leads to overall higher shortage
costs in comparison to an integrated inventory system. With U.S. hospitals spending more than
$350 million annually due to the labor costs alone associated with drug shortages (Vizient, 2019),
operating as an integrated inventory system can lead to significant cost savings.

Our research sheds light on some interesting findings. We first find that the cost of a lateral
transshipment must be sufficiently less than the cost of a shortage for it to be beneficial to operate
as an integrated inventory system. Sufficient is largely influenced by the supply chain disruption
profile (i.e., disruption rate and recovery rate) for each HNP. The intuition behind this finding
is that in the integrated inventory system with two independent suppliers, the number of lateral
transshipments plus the number of shortages is always greater than or equal to the number of
shortages in the non-integrated inventory system (recall that there are no lateral transshipments in
the non-integrated inventory system). We also verify this finding for a broad range of disruption
and recovery rates due to the difficulty in selecting these input parameters. We find that it is critical
for HNPs to consider the duration of and time between supply chain disruptions when selecting
a HNP to share inventory with. Given equivalent input parameters at the HNPs, we show that
both HNPs experience similar benefits of an integrated inventory system when the HNPs have
similar disruption and recovery rates. We also discuss how failing to consider the duration of
and time between supply chain disruptions can cause one HNP to be “worse-off". Furthermore,
when considering operating as an integrated inventory system, hospital pharmacy managers should
partner with a HNP that has a supplier independent from it’s own supplier and avoid hoarding
inventory. Hoarding inventory can cause significantly more shortages.

We consider a two-HNP integrated inventory system where each HNP has their own indepen-
dent supplier and for comparison, we also study a two-HNP integrated inventory system with one
supplier. Future research can consider the case where two suppliers exist, but have supply chain
disruptions that are correlated to one another. For example, consider two suppliers/wholesalers
that receive their drug from the same manufacturer. Even though the two suppliers/wholesalers
receive drug from the same manufacturer, if a supply chain disruption occurs at the manufacturer,
this does not necessarily imply that the suppliers/wholesalers will stock out at the exact same time
due to different inventory practices and storage capabilities at the suppliers/wholesalers. We ex-
pect that the results for a two-HNP integrated inventory system with correlated suppliers will fall
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between the two independent supplier and one supplier models, but we leave the formal analysis
for future research. Also, we consider a two-HNP integrated inventory system with independent
suppliers, but future research can extend this to a larger number of HNPs. Although, it is unlikely
that more than three independent suppliers exist for a particular drug. Furthermore, in the two-
HNP integrated inventory system with independent suppliers, we assume that the lead time is zero
for shipments from the supplier to the respective hospital network pharmacy. Future research can
consider positive deterministic or stochastic lead times. In these instances, demand variability will
increase and the order-up-to levels for each HNP will often increase given the perishability con-
dition remains satisfied. When providing insights on selecting a HNP to partner with (in Section
5.5.2), we assume that we have full knowledge of the supply chain disruption profile (i.e., disrup-
tion rate and recovery rate) for both HNPs in the two-HNP integrated inventory system. Future
research can take our modeling framework and study how sensitive the holding costs, shortage
costs, lateral transshipments costs, and probability of waste are to changes in these input parame-
ters. Future research can also study non-exponential times for these input parameters. In our HNP
setting, exponential times are consistent with the current pharmaceutical supply chain literature
(Tucker et al., 2020b). Furthermore, we emphasize that a HNP needs to consider the duration
of and time between supply chain disruptions when selecting a partner HNP. There are instances
where failing to do so can cause one HNP to be “worse-off" (e.g., higher shortage costs when oper-
ating as an integrated inventory system instead of a non-integrated inventory system). This is under
the assumption that the integrated inventory system is centralized (i.e., minimize the expected total
cost of the two-HNP integrated inventory system). Future research can consider the model from a
decentralized perspective to overcome these “worse-off" consequences. In the decentralized case,
our finding that a HNP can be “worse-off" from a shortage cost perspective encourages the use
of a decision-rule for lateral transshipments. We recommend that future researchers consider that
it may only be optimal for HNP 1 to share inventory if the inventory on-hand is at least I1 and
similarly, it may only be optimal for HNP 2 to share inventory if the inventory on-hand is at least
I2.

The integrated inventory policies justify that perishable inventory systems with supply chain
disruptions may benefit from sharing inventory. In our HNP setting of interest, this contradicts the
strict regulations in current practice that generally prohibit HNPs from sharing drugs outside of
their network or make it very difficult for HNPs to stay compliant when sharing drugs outside of
their network. Our findings encourage policy makers to consider the restrictions for drug sharing
across HNPs, especially for drugs that can benefit from integration.
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CHAPTER 6

Conclusion

Pharmaceutical drugs are essential to patient care. This makes it crucial to have a large enough
quantity of drugs on-hand to avoid shortages, but not too much as this can result in drug waste. In
this dissertation, we make contributions at the intersection of operations research and healthcare by
creating a series of mathematical models to improve decision-making, provide insights, and chal-
lenge administrative policies currently used in practice for hospital pharmacy inventory systems.
Regarding insights, the results suggest that decision-making is not always intuitive.

We proceed to briefly summarize the four technical chapters (i.e., Chapters 2-5) of this disser-
tation. We close this chapter by providing thoughts for future research.

6.1 Summary of Technical Chapters

In Chapters 2-3, we address how perishability and supply chain disruptions make it difficult to
select the appropriate levels of drug inventories to maintain. In Chapter 2, we create a simulation-
optimization model and develop a Binary Grid-Search algorithm which exploits the structure of
the objective function to solve for reorder point s and order-up-to level S periodic review inventory
policies in a hospital pharmacy. The research provides an efficient method to solve for near-optimal
(s,S) periodic review inventory policies which is essential in a hospital pharmacy inventory system
that stocks thousands of different drugs.

In Chapter 3, we derive exact closed-form solutions for length of the review period R and order-
up-to level S periodic review inventory policies in a hospital pharmacy. Closed-form solutions
imply that the model provides the inventory policy quickly and is easy to implement. This is
the first research to derive closed-form solutions for a lost-sales (R,S) periodic review inventory
system with supply chain disruptions and perishability. The results using the closed-form model
suggest that decision-making is not always intuitive. For example, hospital pharmacy managers
must consider supply chain disruptions and perishability simultaneously. Only considering supply
chain disruptions can cause the inventory system to be “worse-off" from both a drug waste and
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drug shortage perspective.
In Chapter 4, we address how demand disruptions are prevalent in a hospital pharmacy inven-

tory system, but few studies have investigated how inventory policies should adapt to increases and
decreases in demand. In this technical chapter, we create a new adaptive periodic review inven-
tory system solely comprised of closed-form expressions to illustrate how a drug’s shortage-waste
weighting along with the duration of and time between supply chain disruptions influence the ben-
efits (or detriments) of adapting to demand disruptions. We also use the adaptive inventory system
to create a ranking procedure. The ranking procedure provides a way of discerning which drugs are
of most concern and illustrates which policies to update given that a limited number of inventory
policies can be updated.

In Chapter 5, we address how hospital networks do not work in isolation, but it is unclear if
sharing drug inventory between hospital networks would help to mitigate drug waste and drug
shortages. In this technical chapter, we create a new modeling framework that solves for contin-
uous review order-up-to level inventory policies in a two-HNP integrated inventory system with
supply chain disruptions and perishability. This is the first research to analytically model an in-
tegrated two-HNP inventory system with supply chain disruptions and perishability. This is also
the first research to provide a closed-form approximation that is quick-to-solve. Like Chapter 3,
the results using the modeling framework suggest that decision-making is not always intuitive. For
example, the lateral transshipment cost must be sufficiently less than the cost of a shortage for it to
be beneficial to operate as an integrated inventory system; sufficient largely influenced by the du-
ration of and time between supply chain disruptions. Also, hoarding inventory (i.e., no sharing of
inventory when both suppliers are disrupted) can cause significantly more shortages. Furthermore,
placing this model into perspective, this technical chapter illustrates that there are instances where
perishable inventory systems with supply chain disruptions can benefit from sharing inventory. In a
HNP setting, this contradicts the strict regulations in current practice that generally prohibit HNPs
from sharing drugs outside of their network or make it very difficult for HNPs to stay compliant
when sharing drugs outside of their network.

6.2 Future Research

This dissertation creates models that improve decision-making, provide insights, and challenge ad-
ministrative policies in hospital pharmacy inventory systems. It is worth noting that this disserta-
tion captures many complexities of a hospital pharmacy inventory system, but additional complex-
ities remain. There exists storage capacity constraints, substitute drugs, interest in the resiliency of
inventory policies, data challenges, and many echelons when expanding to the entire pharmaceuti-
cal supply chain network. These thoughts provide promising directions for future research and we
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proceed to elaborate on these future research directions.
All four technical chapters in this dissertation (see Chapters 2-5) consider that hospital pharma-

cies are often responsible for thousands of different drugs, making it crucial to have quick-to-solve
inventory policies. However, when hospital pharmacies stock these thousands of different drugs
on-hand, there exists storage capacities. Therefore, it may not be possible to stock the optimal
order-up-to level for every drug held on-hand in the hospital pharmacy. Future research can con-
sider models that solve for all inventory policies simultaneously (e.g., constraint programming;
see Little & Coughlan, 2008). This approach will allow storage capacity constraints to be consid-
ered in the model. It is also likely that this approach will shed light on which drug factors (e.g.,
expiration lifetime, duration of supply chain disruptions, time between supply chain disruptions)
influence whether the true order-up-to level should be stocked or if a reduced order-up-to level
should be stocked to satisfy the storage capacity constraints.

Throughout this dissertation, we aim to reduce drug shortages to ensure that patients have ac-
cess to the care that they need. It is worth noting that when a patient requires a drug that is currently
out of stock (i.e., short), hospital pharmacists may be able to prescribe a substitute drug. However,
this substitute drug may cause additional side effects, may be less effective, and may require addi-
tional pharmacy resources (e.g., first-choice drug may be pre-compounded whereas the substitute
drug may need to be compounded by a hospital pharmacist). These consequences emphasize the
importance of having the first-choice drug on-hand when needed. We also note that prescribing
the substitute drug while the first-choice drug is out of stock (i) may require an update to the cur-
rent inventory policy for the substitute drug due to the possible increase in demand and (ii) may
increase the likelihood of the substitute drug being out of stock because the supplier/wholesaler
may not have the capacity to keep up with the possible increase in demand for the substitute drug.
Given these ideas, an interesting future research direction is capturing substitute drugs in inventory
decision-making and analyzing how the dependency between drugs influence the optimal inventory
policies.

The research in this dissertation relies on expert opinion, data, and sensitivity analyses for the
model input parameters. Two input parameters in use throughout all four technical chapters of this
dissertation are the supply chain disruption probability (rate) and supply chain recovery probability
(rate) in the discrete (continuous) case. These parameters drive the time between supply chain
disruptions and duration of supply chain disruptions, respectively. An interesting future research
direction is to reverse engineer the models developed in this dissertation to gain insights on the
resiliency of an inventory system. For example, Chapter 3 derives closed-form solutions for a (R,S)
periodic review inventory system with supply chain disruptions and perishability. Time is treated as
discrete for this model and the model includes a constraint to guarantee that a certain proportion of
demand is satisfied. Given a hospital pharmacy has a drug with a particular (R,S) policy, it would
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be interesting to solve for the supply chain disruption probabilities and supply chain recovery
probabilities that ensure the proportion of demand satisfied constraint is met. Taking a reverse
engineer approach may shed insights on how resilient a (R,S) inventory policy is for a particular
drug of interest.

Another thought is that this dissertation aims to improve decision-making in hospital pharmacy
inventory systems particularly in the presence of supply chain disruptions. Taking a step back
from the modeling and methodology perspective, another area for future research is improving the
tracking of a drug’s supply status and the data collected in a hospital pharmacy inventory system.
In terms of tracking a drug’s supply status at the hospital pharmacy level, it would be beneficial
for hospital pharmacies to keep record of all instances where the supplier/wholesaler is unable to
supply the drug. Although, it would be ideal for hospital pharmacies to form close connections with
their supplier/wholesaler such that they know all instances (e.g., days) that the supplier/wholesaler
is unable to supply the drug (i.e., the days that the supplier is disrupted). Furthermore, daily
demand data in hospital pharmacies often correlates to how many drug units are administered
on a given day. However, daily demand data does not often capture if this was the true demand
for the drug or if this was the number of drug units administered simply because that is all of
the inventory that the hospital pharmacy had on-hand. With this in mind, it would be beneficial
for hospital pharmacies to keep record of their lost-sales for all drugs, even in the case where a
substitute can be used. Improving the tracking of a drug’s supply status and the data collected
can provide additional guidance when selecting input parameters for models of hospital pharmacy
inventory systems.

A pharmaceutical supply chain typically consists of an active pharmaceutical ingredient (API)
manufacturer, final drug product manufacturer, supplier/wholesaler, and hospital pharmacy. All
four technical chapters in this dissertation create models that focus on the supplier/wholesaler and
hospital pharmacy levels of the supply chain. Future research can consider decision-making along
every level of the supply chain to reduce both drug waste and drug shortages. From a model-
ing perspective, simulation-optimization provides a viable method to optimize decision-making
for this complex system. But, it would be necessary to find current algorithms or develop new
algorithms to quickly solve the simulation-optimization model. Also, to provide intuition and in-
sights, it would be beneficial to model a simplified version of the multi-echelon supply chain and
provide an analytical model (e.g., Markov chain model, closed-form model) that can be used to
optimize decision-making. Furthermore, when considering an entire pharmaceutical supply chain
network consisting of an API manufacturer, final drug product manufacturer, supplier/wholesaler,
and hospital pharmacy, an interesting characteristic is that the location and identity of the API
manufacturer is not generally known (NASEM, 2022). Future research can (i) quantify the benefit
of making the location and identity of the API manufacturer known and (ii) gain a better under-
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standing of how long it takes a supply chain disruption at the API manufacturer to propagate down
to the hospital pharmacy level. Simulation modeling is a viable method to address (i) and (ii).

In conclusion, this dissertation consists of four technical chapters where each chapter has its
own model and research contributions. We hope that the contributions at the intersection of opera-
tions research and healthcare help ensure that patients have access to the care that they need.
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APPENDIX A

Chapter 2 Appendix

We proceed to present the pseudocode for the (s,S) inventory policy simulation model and binary
grid-search algorithm in Appendix A.1 and Appendix A.2, respectively.

118



A.1 Pseudocode for (s,S) Inventory Policy Simulation Model

function StaticSim
1: for r=1:|R| % iterate through all replications
2: Generate Demand dt for t = 1,2, ..., |T| % generate demand pattern using appropriate probability distribution
3: Generate Supply yt for t = 1,2, ..., |T| % generate supply pattern using appropriate probability distributions
4: ObjValue[r] = InventoryProcess % calculate objective value using InventoryProcess function
5: —————–
6: function InventoryProcess
7: for t=1:|T| % iterate through each day in planning horizon
8: Step 1: Update inventory based on amount that arrives at the beginning of day t
9: Inventory[e]=Inventory[e]+InventoryArrival[1] % store the amount that arrives as the “newest" inventory

10: Step 2: Update inventory en-route levels
11: if l = 0 % lead time is l = 0
12: InventoryArrival[1]=0 % inventory to arrive tomorrow updated when order decision is made below
13: else
14: InventoryArrival[i]=InventoryArrival[i+1] ∀i = 1, ..., l % shift all inventory en route by one day
15: InventoryArrival[l +1]=0 % inventory to arrive in l days updated when order decision made below
16: end if
17: Step 3: Update inventory levels based on the amount of demand observed on day t
18: NeedsFilled= dt % keep track of amount of demand that needs filled on day t
19: Short[t]=max{0,dt − sum(Inventory)} % keep track of the amount short on day t
20: i = 1 % keep track of remaining lifetime index to enforce FIFO policy (lifetime is in months)
21: while NeedsFilled ̸= 0 % iterate until all demand filled or all inventory used
22: if Short[t]>0 % check if one is short on day t
23: NeedsFilled=0 % all inventory is used
24: Inventory[i]=0 ∀i = 1,2, ...,e % update that all inventory is used
25: else if NeedsFilled ≥ Inventory[i] % drug with lifetime remaining i has less inventory than required
26: NeedsFilled=NeedsFilled-Inventory[i] % update how much demand needs filled after satisfying demand with “oldest" stock
27: Inventory[i]=0 % indicate all inventory with remaining lifetime i is used
28: else
29: Inventory[i]=Inventory[i]-NeedsFilled % update inventory for this remaining lifetime i
30: NeedsFilled=0 % no more demand for day t needs filled
31: end if
32: i = i+1 % increment lifetime remaining index
33: end while
34: Step 4: Discard any expired drugs after observing demand on day t (this only occurs at the end of the month)
35: if t ∈ {30,60,90,120,150,180,210,240,270,300,330,360} % last day of the month
36: Waste[t]=max{0,Inventory[1]} % calculate waste in day t
37: Inventory[1]=0 % update inventory after discarding expired
38: end if
39: Step 5: Place order based on (s,S) inventory policy
40: if [sum(Inventory)+sum(InventoryArrival)]< s % place an order because inventory position falls below reorder point s
41: Arrival=S-[sum(Inventory)+sum(InventoryArrival)] % place an order for S minus the current inventory position
42: Arrival=(yt )Arrival % inventory only arrives if supply is not disrupted
43: Order[t]=1(yt ) % indicate an order is placed on day t if supply is not disrupted
44: else
45: Arrival=0 % do not place an order
46: end if
47: InventoryArrival[l +1]=Arrival % update inventory en route based on most recent order decision
48: Step 6: Update inventory levels by age (this only occurs at the end of the month)
49: if t ∈ {30,60,90,120,150,180,210,240,270,300,330,360} % last day of the month
50: Inventory[i]=Inventory[i+1] ∀i = 1, ...,(e−1) % subtract 1 month from remaining lifetime
51: Inventory[e]=0 % “newest" inventory set to 0 until order arrives next day
52: end if
53: Hold[t]=sum(Inventory) % store how many drugs are held on day t
54: end for

55: Output: ObjRep[r]=
|T|
∑

t=31

b(Short[t])+z(Waste[t])+o(Order[t])+h(Hold[t])
(b+z+o+h)(|T|−30) % begin at day 31 to remove intialization bias

56: —————–
57: end for

58: Output: Expected Cost Per Day = 1
|R|

|R|
∑

r=1
ObjValue[r]
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A.2 Pseudocode for Binary Grid-Search

function BinaryOptGrid
1: Step 1: Initialize the Grid for s and S
2: sGrid=[sl ,su]; by=∆ % initialize grid for s
3: SGrid=[Sl ,Su]; by=∆ % initialize grid for S
4: Step 2: Form Matrix and Denote Infeasible Solutions
5: Matrix is |sGrid| by |SGrid|, but referred to by (s,S) for clarity
6: ObjMatrix=matrix(|sGrid|, |SGrid|) % initialize matrix to store objective values
7: ObjMatrix[s,S]=In f easible ∀s,S such that s > S % denote infeasible solutions
8: Step 3: Determine Objective Value for Main Diagonal
9: ObjMatrix[s,S]=StaticSim(s = c, S = c) ∀c ∈ sGrid % store objective value from StaticSim function given the s and S inputs

10: CurrentOpt=[minimum solc, smin c, Smin c] % store the current minimum objective value from the main diagonal solution and the associated
(s,S) in a vector

11: CurrentOpt=[s = max{sl ,⌊ Scurrent
2 ⌋}, S = Scurrent ] % update the current solution using the midpoint value of s for this column

12: Step 4: Perform a Binary Search on the Column With the Current Solution
13: CurrentOpt=BinarySearch(column, CurrentOpt) % Perform binary search on the column; store new objective value and associated (s,S)
14: OptFound=FALSE % initialize an indicator variable for iterative process
15: MaxIter % define the maximum number of iterations
16: while OptFound==FALSE
17: Step 5: Check Solutions to the Left and Right
18: % Left of Current Solution
19: ObjMatrix[s,S]=StaticSim(s′=scurrent , S = max{s′,max{Sl ,Scurrent −∆}})
20: % Right of Current Solution
21: ObjMatrix[s,S]=StaticSim(s′=scurrent , S = max{s′,min{Su,Scurrent +∆}})
22: if CurrentOpt ≤ LeftSolution & CurrentOpt < RightSolution % no improvement to objective value
23: continue algorithm
24: else
25: % moving improves the objective value
26: CurrentOpt=BinarySearch(row, CurrentOpt) % Perform binary search on the row; store new objective value and associated (s,S)
27: end if
28: Step 6: Check Solutions Above and Below
29: % Above Current Solution
30: ObjMatrix[s,S]=StaticSim(s′=max{sl ,scurrent −∆}, S = Scurrent )
31: % Below Current Solution
32: ObjMatrix[s,S]=StaticSim(s′=min{su,scurrent +∆}, S = Scurrent )
33: if CurrentOpt ≤ AboveSolution & CurrentOpt < BelowSolution % no improvement to objective value
34: continue algorithm
35: else
36: % moving improves the objective value
37: CurrentOpt=BinarySearch(column, CurrentOpt) %Perform binary search on column; store new objective value and associated (s,S)
38: end if
39: Step 7: Check If Solution Remains Unchanged from Prior Iteration
40: if (solcurrent ,scurrent ,Scurrent)==(solprior iteration,sprior iteration,Sprior iteration)
41: % Perform Forced Binary Search When True
42: Perform binary search on the search interval above, to the right, below, and to the left of (scurrent ,Scurrent) regardless of the value of the

neighboring solutions
43: if All solutions are inferior to (scurrent ,Scurrent)
44: OptFound==TRUE % near-optimal solution found and algorithm completed
45: else
46: % a new near-optimal solution is found
47: Replace (scurrent ,Scurrent) with the new optimal found and continue algorithm
48: end if
49: else
50: continue algorithm
51: end if
52: if MaxIter is exceeded
53: terminate algorithm early
54: % if the algorithm is not terminating, increase the number of simulation replications
55: end if
56: end while
57: Output: Near-Optimal Solution = (solcurrent ,scurrent ,Scurrent)

120



APPENDIX B

Chapter 3 Appendix

B.1 General Model for Two-state and Bernoulli Supply Process

B.1.1 General Model Description

In the Chapter 3, we focus on a two-state supply process when modeling supply chain disruptions.
However, past research often models supply chain disruptions as a two-state supply process or
Bernoulli supply process. Therefore, we generalize the notation using the constants c0, c1, and
c2 so that the results presented in Appendix B.1 can be applied to either supply chain disruption
process. When considering the probability the system has been disrupted for exactly j consecutive
review periods (i.e., π j), the structure of this value differs for the two-state and Bernoulli supply
process. We let π j = c1(1−c0)

j; j ≥ 1 and let π0 = c1+c2 where c0, c1, and c2 are constants. For
the two-state supply process, we have c0 = β , c1 =

αβ

(1−β )(α+β ) , and c2 =
β

α+β
− αβ

(1−β )(α+β ) . For
the Bernoulli supply process, we have c0 = p, c1 = p, and c2 = p(1− p)0 − p = 0. We present all
model parameters, the two-state supply process parameters, Bernoulli supply process parameters,
and the general notation in Table B1.
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Table B1 Summary of the modeling notation with both supply processes.
Notation Description
Decision Variables
R Length of the review period (i.e., attempt to place an order every R days; R ≥ 1)
S Order-up-to level (i.e., attempt to place an order up to S every R days)
Input Parameters
h Holding cost per day per drug (h > 0)
k Fixed ordering cost (i.e., for each order attempted; k > 0)
q Deterministic demand per day (q > 0)
e Expiration lifetime in days (e ≥ 1)
γ Maximum proportion of demand not satisfied over infinite horizon (0 < γ < 1)
Other Parameters
j State indicating the number of consecutive review periods that supply has been disrupted
π j Probability supply has been disrupted for exactly j consecutive review periods
I+j Average inventory held per day over a review period that starts in state j (in Section 3.4.1)
I−j Average inventory short per day over a review period that starts in state j (in Section 3.4.1)
m Number of review periods the order-up-to level, S, fully satisfies demand; m = ⌊ S

qR⌋ (in Section 3.4.2)
Two-state Supply
α Disruption probability with respect to the length of the review period (0 < α < 1)
β Recovery probability with respect to the length of the review period (0 < β < 1)
π0 Probability supply is disrupted for 0 consecutive review periods (i.e., not disrupted); π0 =

β

α+β

π j Probability supply is disrupted for exactly j consecutive review periods; π j =
αβ

α+β
(1−β ) j−1, j ≥ 1

Bernoulli Supply
p Supply quality (0 < p < 1; a larger p implies a better supply quality)
π j Probability supply is disrupted for exactly j consecutive review periods; π j = p(1− p) j, j ≥ 0
General Notation for Supply
Chain Disruptions
c0 Term in π j = c1(1− c0)

j; j ≥ 1
c1 Term in π j = c1(1− c0)

j; j ≥ 1
c2 Constant representing c2 = π0 − c1

B.1.2 (R,S) Non-perishable Lost-Sales Inventory System

We present the optimization problem for the (R,S) non-perishable lost-sales inventory system. We
proceed to provide the derivation details to solve for the optimal length of the review period R∗ and
order-up-to level S∗ in closed-form.

Optimization Problem w.r.t. m, R, and S
For the non-perishable (R,S) periodic review inventory system with supply chain disruptions, we
have the optimization problem presented in Formulation (B.1.1).

minimize
R,S,m

C(R,S,m) =
k
R
+

m−2

∑
j=0

hπ j(m−1− j)qR+πm(hI+m )+hI+m−1

m−1

∑
j=0

π j

subject to
πm(I−m )+ I−m+1

∞

∑
j=m+1

π j

q
≤ γ

(B.1.1)
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where:

I+m =
1
R

R∫
0

(S−mqR−qt)+dt =
(S−mqR)2

2qR
(B.1.2)

I−m =
1
R

R∫
0

[(S−mqR−qt)−− (S−mqR−q(t −1))−]dt =
q
R

(
R− S−mqR

q

)
(B.1.3)

I+m−1 =
1
R

R∫
0

(S− (m−1)qR−qt)dt = S−mqR+
1
2

qR (B.1.4)

I−m+1 =
1
R

R∫
0

[(S− (m+1)qR−qt)−− (S− (m+1)qR−q(t −1))−]dt = q (B.1.5)

Using Equations (B.1.2)-(B.1.5), the definition of π j, properties of the geometric series, and
simplifying, we find:

minimize
R,S,m

C(R,S,m) =
k
R
+h(m−1)qRc2 +hqRc1

(
1
c2

0

)
(mc0 −1+(1− c0)

m)+

(c1)(1− c0)
m
(

h
(S−mqR)2

2qR

)
+h
(

S−mqR+
1
2

qR
)

c1

(
1− (1− c0)

m

c0

)
+

h
(

S−mqR+
1
2

qR
)

c2

subject to (c1)(1− c0)
m
(

1
R

(
R− S−mqR

q

))
+

(
1− c2 − c1

(
1− (1− c0)

m+1

c0

))
≤ γ

(B.1.6)

Find m∗ Satisfying ⌊ S
qR⌋ Derivations

For Any Fixed m, Optimize R and S Derivations
When considering the optimization problem presented in Formulation (B.1.6), we find that for any
fixed m, the Hessian is positive semi-definite and thus we have that S and R are jointly convex.
When calculating the Hessian, we find:[

∂ 2C(R,S,m)

∂S2

][
∂ 2C(R,S,m)

∂R2

]
−

[
∂ 2C(R,S,m)

∂R∂S

]2

=

(
(c1)(1− c0)

m
(

h(
1

qR
)

)
2k
R3

)
≥ 0 (B.1.7)

For any fixed m, we can solve the optimization problem presented in Formulation (B.1.6) by
optimizing R and S using a Lagrange multiplier (λ1). Equation (B.1.8) represents the objective
function for the optimization problem. Equation (B.1.9) represents the constraint in the optimiza-
tion problem with the slack variable t2 since the constraint is an inequality.

C(R,S,m, t) =
k
R
+h(m−1)qRc2 +hqRc1

(
1
c2

0

)
(mc0 −1+(1− c0)

m)+(c1)(1− c0)
m
(

h
(S−mqR)2

2qR

)
+h
(

S−mqR+
1
2

qR
)

c1

(
1− (1− c0)

m

c0

)
+h
(

S−mqR+
1
2

qR
)

c2

(B.1.8)
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g(R,S,m, t) = γ − (c1)(1− c0)
m
(

1
R

(
R− S−mqR

q

))
−
(

1− c2 − c1

(
1− (1− c0)

m+1

c0

))
− t2 (B.1.9)

Using Equations (B.1.8)-(B.1.9), we present the Lagrange Multiplier Formulation which con-
sists of Equations (B.1.10)-(B.1.13).

∂C(R,S,m, t)
∂S

= λ1
∂g(R,S,m, t)

∂S

=⇒ (c1)(1− c0)
m
(

h
(

S
qR

−m
))

+hc1

(
1− (1− c0)

m

c0

)
+hc2 = λ1c1(1− c0)

m
(

1
qR

)
(B.1.10)

∂C(R,S,m, t)
∂R

= λ1
∂g(R,S,m, t)

∂R

=⇒ −k
R2 +h(m−1)qc2 +hqc1

(
1
c2

0

)
(mc0 −1+(1− c0)

m)+(c1)(1− c0)
mh
(

−S2

2qR2 +
m2q

2

)
+h(−mq+

1
2

q)c1

(
1− (1− c0)

m

c0

)
+h(−mq+

1
2

q)c2 = λ1c1(1− c0)
m
(
−S
qR2

)
(B.1.11)

∂C(R,S,m, t)
∂ t

= λ1
∂g(R,S,m, t)

∂ t
=⇒ 0 = λ1(−2t) (B.1.12)

γ − (c1)(1− c0)
m
(

1
R

(
R− S−mqR

q

))
−
(

1− c2 − c1

(
1− (1− c0)

m+1

c0

))
− t2 = 0 (B.1.13)

Solving For m∗ Derivations

The Lagrange Multiplier Formulation consisting of Equations (B.1.10)-(B.1.13) provides the
requirements for the optimality of R and S. Before optimizing R and S, we use Equations
(B.1.10)-(B.1.13) to find the unique and optimal m∗ (m = ⌊ S

qR⌋) that satisfies these equations.
From Equation (B.1.12), we can see we have two cases: t = 0 or λ1 = 0. To ensure that S covers
at least one review period (i.e., m ≥ 1) and to ensure that all numerators and denominators are
defined, we find that only case t = 0 is feasible for both a two-state supply process and Bernoulli
supply process. t = 0 implies that the constraint in Formulation (B.1.6) is satisfied with equality
(i.e., the constraint is tight).

Feasible Case: t = 0
Using Equation (B.1.13) and setting t = 0 leads to:

γ − (c1)(1− c0)
m
(

1
R

(
R− S−mqR

q

))
−
(

1− c2 − c1

(
1− (1− c0)

m+1

c0

))
− t2 = 0 (B.1.14)
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=⇒ S
qR

=
−γ + c1(1− c0)

m(m+1)+(1− c2 − c1(
1−(1−c0)

m+1

c0
)

c1(1− c0)m
(B.1.15)

Using the definition of m, we have:

m = ⌊ S
qR

⌋ =⇒ m ≤ S
qR

< m+1 (B.1.16)

Using Equation (B.1.15) and Equation (B.1.16), we have:

(Left bound) =⇒ m ≤
−γ + c1(1− c0)

m(m+1)+(1− c2 − c1(
1−(1−c0)

m+1

c0
))

c1(1− c0)m
(B.1.17)

=⇒ m ≤
ln
( γ−(1−c2−

c1
c0
)

c1
c0

)
ln(1− c0)

(B.1.18)

(Right bound) =⇒ m+1 >
−γ + c1(1− c0)

m(m+1)+(1− c2 − c1(
1−(1−c0)

m+1

c0
))

c1(1− c0)m
(B.1.19)

=⇒ m >

ln
( γ−(1−c2−

c1
c0
)

c1
c0

)
ln(1− c0)

−1
(B.1.20)

With the left bound (Equation (B.1.18)) and right bound (Equation (B.1.20)) results, we can
simply write:

m∗ =

⌊ ln(
γ−(1−c2−

c1
c0
)

c1
c0

)

ln(1− c0)

⌋
(B.1.21)

Four Requirements for the Closed-form Solutions:

(R1)
ln
( γ−(1−c2−

c1
c0

)

c1
c0

)
ln(1−c0)

≥ 1 =⇒ (1− c0)≥
γ−(1−c2−

c1
c0
)

c1
c0

=⇒ γ ≤ 1− c1 − c2.

(R2) γ − (1− c2 − c1
c0
)> 0 =⇒ γ > 1− c2 − c1

c0
.

(R3) c1 > 0.
(R4) 0 < c0 < 1.
(R1) ensures m ≥ 1 (i.e., S covers at least one review period). (R2)-(R4) ensure the numerator and
denominator in Equation (B.1.21) are defined.

Use m∗ to Solve for R∗ and S∗ Derivations
Having found m∗ using Equation (B.1.21), we can use this m∗ to solve for S∗ and R∗. Recall, we
require γ ≤ 1− c1 − c2, γ > 1− c2 − c1

c0
, c1 > 0, and 0 < c0 < 1. Also, we have that t = 0. Using

Equations (B.1.10)-(B.1.13), we find:

(Solving for R∗) =⇒ R∗ = max

{
1,

√
2k(1− c0)m∗c2

0c1

qh(A1)

}
(B.1.22)
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where:

A1 =
(
m∗(2c2

0c2
1(1− c0)

2m∗
+2c0c2

1(1− c0)
m∗

+2c2
0c1c2(1− c0)

m∗
)
)

+
(
(c2

1(1− c0)
2m∗ −2c2

0γ + c2
0γ

2 −2c2
0c1γ(1− c0)

m∗
+ c2

0 − c2
1 − c2

0c2
2 − c0c2

1(1− c0)
m∗

+2c2
0c1(1− c0)

m∗ −2c0c1c2 + c0c2
1(1− c0)

2m∗
+2c0c1c2(1− c0)

m∗ −3c2
0c1c2(1− c0)

m∗
)
)

(Solving for S∗) =⇒ S∗ = qR∗

(
−γ + c1(1− c0)

m∗
(m∗+1)+(1− c2 − c1(

1−(1−c0)
m∗+1

c0
)

c1(1− c0)m∗

)
(B.1.23)

B.1.3 (R = 1,S) Perishable Lost-Sales Inventory System

Atan & Rousseau (2016) present closed-form solutions for a perishable (R = 1,S) inventory
system with supply chain disruptions where all demand not met is backordered. The objective
of the model is to minimize the expected holding (h), backordering (b), and waste (z) costs.
Extending this research to the lost-sales case (i.e., all demand not met is lost), we can write the
objective function as presented in Equations (B.1.24)-(B.1.25).

Case 1: S < eq

C(R = 1,S) = h

S
q−1

∑
i=0

πi(S− (i+1)q)+bq
∞

∑
i= S

q

πi (B.1.24)

Case 2: S ≥ eq

C(R = 1,S) =
1
e

[
h

e−1

∑
i=0

πi(e− i−1)S+ z(S− eq)
e−1

∑
i=0

πi +bq
∞

∑
i=e

πi

]
(B.1.25)

Taking the same approach as Atan & Rousseau (2016), the optimal solution to the lost-sales
(R = 1,S) model with supply chain disruptions is:

S∗ = min

{
q

ln(
h(c2+

c1
c0
)

bc1+h c1
c0

)

ln(1− c0)
,eq

}
(B.1.26)

B.1.4 (R,S) Perishable Lost-Sales Inventory System (Step 3)
From Appendix B.1.3, it is never optimal to set S > eq given R = 1, and this claim also holds
given R > 1 (in Section 3.5). Therefore, if the non-perishable model has an optimal order-up-to
level S∗ > eq, we first enforce the perishability condition by setting S∗ to S∗new = eq. Then, we are
interested in finding the largest R∗

new such that our shortage constraint (see Formulation (B.1.6) in
Appendix B.1.2) is satisfied when S∗new = eq. Given we set S∗new = eq, both holding and ordering
costs (i.e., costs in the objective function) are the smallest when R∗

new is the largest. Hence, we are
interested in finding the largest R∗

new because this solution will have the smallest objective value.
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Formulating this as an optimization problem, we are interested in:

maximize
R

R

subject to (c1)(1− c0)
m
(

1
R

(
R− S∗new −mqR

q

))
+

(
1− c2 − c1

(
1− (1− c0)

m+1

c0

))
≤ γ

(B.1.27)

Solving the optimization problem in Formulation (B.1.27) with the approach described in Ap-
pendix 3.5, we find:

(Solving for m∗
new) =⇒ m∗

new = m∗ =

⌊ ln(
γ−(1−c2−

c1
c0
)

c1
c0

)

ln(1− c0)

⌋
(B.1.28)

(Solving for R∗
new) =⇒ R∗

new = max

{
1,

e

−γ+c1(1−c0)m∗
(m∗+1)+(1−c2−c1(

1−(1−c0)
m∗+1

c0
)

c1(1−c0)m∗

}
(B.1.29)

(m∗
new,R

∗
new,S

∗
new = eq) provides the final solution when the perishability condition is enforced.

B.2 Bernoulli Supply Process Model

For a Bernoulli supply process, we provide the closed-form solutions for the non-perishable (R,S)
inventory system. Given S∗ ≤ eq, these closed-form solutions provide the optimal inventory policy
for the perishable inventory system. Given S∗ > eq, we provide Step 3 which extends the non-
perishable closed-form solutions to account for perishability.

B.2.1 Bernoulli Supply Process (R,S) Non-perishable Closed-form Solutions

For a Bernoulli supply process, we have c0 = p, c1 = p, and c2 = 0. The four requirements are:
(R1) γ ≤ 1− c1 − c2 =⇒ γ ≤ (1− p).
(R2) γ > 1− c2 − c1

c0
=⇒ γ > 0.

(R3) c1 > 0 =⇒ p > 0.
(R4) 0 < c0 < 1 =⇒ 0 < p < 1.

With requirements (R1)-(R4), we can use the definition of c0, c1, and c2 in Equations (B.1.21),
(B.1.22), and (B.1.23) to solve for m∗, R∗, and S∗ for the Bernoulli supply process model:

(Solving for m∗) =⇒ m∗ =

⌊
ln(γ)

ln(1− p)

⌋
(B.2.1)

(Solving for R∗) =⇒ R∗ = max

{
1,

√
2kp(1− p)m∗

qh(A1)

}
(B.2.2)
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where:

A1 =m∗(2p(1− p)m∗
+2p2(1− p)2m∗

)

+(−2γ + γ
2 −2γ p(1− p)m∗

+ p(1− p)2m∗
+(1− p)2m∗

+ p(1− p)m∗
)

(Solving for S∗) =⇒ S∗ = qR∗

(
1
p
+m∗− γ

p(1− p)m∗

)
(B.2.3)

We numerically verify that A1 > 0 in Equation (B.2.2) for all γ ∈ {0.001,0.002,...,0.999} and
p ∈ {0.001,0.002,...,0.999} combinations that meet requirement (R1). For each combination, we
use the corresponding m∗ (see Equation (B.2.1)) for the verification.

B.2.2 Bernoulli Supply Process (R,S) Perishable Closed-form Solutions
(Step 3)

Given S∗ > eq, we set S∗new = eq. Using c0, c1, and c2 for a Bernoulli supply process in Equations
(B.1.28)-(B.1.29), we have m∗

new and R∗
new as presented in Equations (B.2.4)-(B.2.5), respectively,

along with the definition of S∗new presented in Equation (B.2.6).

(Solving for m∗
new) =⇒ m∗

new = m∗ =

⌊
ln(γ)

ln(1− p)

⌋
(B.2.4)

(Solving for R∗
new) =⇒ R∗

new = max

{
1,

e
( 1

p +m∗)− γ

p(1−p)m∗

}
(B.2.5)

(Solving for S∗new) =⇒ S∗new = eq (B.2.6)

B.3 Number of Simulation Replications

For the numerical analysis in Chapter 3 (in Section 3.6), we utilize a simulation model of the inven-
tory system where we round R∗ down to the nearest whole number, consider a 12-month warm-up
period (i.e., 360 days), consider a 5-year planning horizon (i.e., 1800 days), and we perform 500
simulation replications. We perform 500 simulation replications as this number ensures (with re-
spect to the base case) asymptotic convergence for the expected number of drugs wasted per day,
expected number of drug shortages per day, and expected cost per day (holding plus ordering; see
Figure B1).
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Figure B1: Number of simulation replications analysis.

B.4 Standard EOQ Model

In Section 3.6.2 of Chapter 3, we consider the standard EOQ model (Snyder & Shen, 2019) to
illustrate the importance of implementing the perishable closed-form (R,S) inventory policies (in
Section 3.5) for a perishable inventory system with supply chain disruptions. For the EOQ model,
we solve for the (R,S) inventory policies using Equations (B.4.1)-(B.4.2).

(Solving for S∗EOQ) =⇒ S∗EOQ =

√
2kq
h

(B.4.1)

(Solving for R∗
EOQ) =⇒ R∗

EOQ =
S∗EOQ

q
(B.4.2)

B.5 Managerial Insights

We study the sensitivity of the model outputs (i.e., the expected cost per day [holding plus order-
ing], R, and S) with respect to changes in the input parameters: expiration lifetime (e), disruption
probability (α), recovery probability (β ), maximum proportion of demand not satisfied (γ), holding
cost (h), and ordering cost (k).
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B.5.1 Sensitivity Analysis for Expiration Lifetime (e)

Figure B2: Sensitivity analysis for expiration lifetime (e).

Figure B2 illustrates that as the expiration lifetime (e) increases with the other inputs and pa-
rameters fixed, the length of the review period and order-up-to level increase. In particular, the
order-up-to level and the length of the review period increase until e = 60 days. At this point, it
is always optimal to follow the (R,S) policy found for with the non-perishable model making the
expected cost per day for e ≥ 60 the same. For e < 60, it is optimal to enforce the perishability
condition (i.e., S∗ = eq) leading to an increase in the expected cost per day due to the additional
holding cost as e increases (ordering cost equivalent with R = 1 for e < 60).

B.5.2 Sensitivity Analysis for Disruption Probability (α)

Figure B3: Sensitivity analysis for disruption probability (α).
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Figure B3 illustrates how increasing the disruption probability (α) with all other inputs and pa-
rameters fixed, impacts the expected cost per day, order-up-to level, and the length of the review
period. In the long-run, the probability that supply is disrupted is α

α+β
(Snyder & Shen, 2019).

Therefore, as α increases, supply becomes less reliable leading to an increasing expected cost per
day, decreasing length of the review period, and increasing order-up-to level.

B.5.3 Sensitivity Analysis for Recovery Probability (β )

Figure B4: Sensitivity analysis for recovery probability (β ).

Figure B4 illustrates how increasing the recovery probability (β ) with all other inputs and parame-
ters fixed, impacts the expected cost per day, the length of the review period, and order-up-to level.
In the long-run, the probability that supply is not disrupted is β

α+β
(Snyder & Shen, 2019). There-

fore, as β increases, supply becomes more reliable leading to a decreasing expected cost per day,
increasing length of the review period, and decreasing order-up-to level. Also, when considering
the results for a change in β , it is important to consider that when β is very small (e.g., β ≤ 0.01),
supply is usually disrupted, so it is optimal to set S = eq = 4050. Then, as β increases, it is optimal
to follow the (R,S) policies found for the non-perishable model.
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B.5.4 Sensitivity Analysis for Maximum Proportion of Demand Not Satis-
fied (γ)

Figure B5: Sensitivity analysis for maximum proportion of demand not satisfied (γ).

Figure B5 shows that as the maximum proportion of demand not satisfied (γ) increases with the
other inputs and parameters fixed, the expected cost per day decreases. It is important to note
that γ drives how much demand is satisfied and there is no penalty in the objective function for
not satisfying demand. Also, when γ is very small (e.g., γ ≤ 0.02), the non-perishable model
solves for an order-up-to level where S > eq. Therefore, enforcing the perishability condition (i.e.,
S = eq = 4050) is optimal in this case.

B.5.5 Sensitivity Analysis for Holding Cost (h)

Figure B6: Sensitivity analysis for holding cost (h).
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Figure B6 demonstrates that as the holding cost (h) increases with all other inputs and parameters
fixed, the expected cost per day increases, but the length of the review period and order-up-to level
decrease.

B.5.6 Sensitivity Analysis for Ordering Cost (k)

Figure B7: Sensitivity analysis for ordering cost (k).

Figure B7 illustrates that as the ordering cost (k) increases with all other inputs and parameters
fixed, the expected cost per day, the length of the review period, and order-up-to level increase.
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APPENDIX C

Chapter 4 Appendix

C.1 The (R,S) Model

The (R,S) model provides the optimal length of the review period R∗ and order-up-to level S∗ in
closed-form for a lost-sales perishable inventory system with supply chain disruptions. We proceed
to provide the expression for the ratio of the expected proportion of drug shortages per day given
uncertainty in Q2 in the (R,S) model.

C.1.1 Uncertainty in Q2 in the (R,S) Model

In Section 4.3.1.1 of Chapter 4, the duration of the supply chain disruption in days (i.e., Q2)
is difficult to quantify in practice. But, it is an important parameter as it defines α(1) and β (1)

(see Equations (4.2)-(4.3) in Section 4.3.1.1). With this, we provide the expression for the ratio
of the expected proportion of drug shortages per day given a value Q2 and the true value Q∗

2.
The true value Q∗

2 has a corresponding disruption probability with respect to 1 day (i.e., α∗(1)),
recovery probability with respect to 1 day (i.e., β ∗(1)), m∗, R∗, and S∗. The selected value Q2 has
a corresponding disruption probability with respect to 1 day (i.e., α(1)), recovery probability with
respect to 1 day (i.e., β (1)), m, R, and S. We denote Pshort|(q,R,S) as the expected proportion of drug
shortages per day given the inventory system has a daily demand q and follows a (R,S) inventory
policy.

We first consider the value of S∗
qR∗ which corresponds to the true value Q∗

2 and S
qR which corre-

sponds to the selected value Q2. We have S∗
qR∗ as shown in Equation (C.1.1) which uses the m∗, R∗,

and S∗ found using Q∗
2.

S∗

qR∗ =
−γ(α∗(R∗)+β ∗(R∗))(1−β ∗(R∗))+α∗(R∗)(1−β ∗(R∗))m∗

+α∗(R∗)β ∗(R∗)(m∗)(1−β ∗(R∗))m∗

α∗(R∗)β ∗(R∗)(1−β ∗(R∗))m∗ (C.1.1)
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We present S
qR in Equation (C.1.2) which uses the m, R, and S found using Q2.

S
qR

=
−γ(α(R)+β (R))(1−β (R))+α(R)(1−β (R))m +α(R)β (R)(m)(1−β (R))m

α(R)β (R)(1−β (R))m
(C.1.2)

For Q∗
2 which corresponds to α∗(1), β ∗(1), m∗, R∗, and S∗, we can use Equation (4.4) in Section

4.3.2 and Equation (C.1.1) to get the expected proportion of drug shortages per day as presented
in Equation (C.1.3).

Pshort|(q,R∗,S∗) =
α∗(R∗)β ∗(R∗)(1−β ∗(R∗))m∗−1

(α∗(R∗)+β ∗(R∗))
(m∗+1− S∗

qR∗ )+
α∗(R∗)(1−β ∗(R∗))m∗

(α∗(R∗)+β ∗(R∗))
(C.1.3)

=



γ; (R∗ ̸= 1 or S∗ ̸= eq) i.e., γ constraint satisfied (see Chapter 3)

α∗(1)
(

1−β ∗(1)
)e−1(

α∗(1)+β ∗(1)
) ; (R∗ = 1,S∗ = eq)

Recall, we select Q2 which corresponds to α(1), β (1), m, R, and S. However, the true value is
Q∗

2 (i.e., the true disruption and recovery probability values are α∗(R) and β ∗(R), respectively, for a
review period of length R). Hence, we use Equation (4.4) in Section 4.3.2 with α∗(R) and β ∗(R) and
Equation (C.1.2) to get the expected proportion of drug shortages per day as presented in Equation
(C.1.4).

Pshort|(q,R,S) =
α∗(R∗)β ∗(R∗)(1−β ∗(R∗))m−1

(α∗(R∗)+β ∗(R∗))
(m+1− S

qR
)+

α∗(R∗)(1−β ∗(R∗))m

(α∗(R∗)+β ∗(R∗))
(C.1.4)

=



α∗(R)
(

1−β ∗(R)
)m−1(

α∗(R)+β ∗(R)
) (

1+
γβ ∗(R)

(
α(R)+β (R)

)
α(R)β (R)

(
1−β (R)

)m−1 −
β ∗(R)

β (R)

)
; (R ̸= 1 or S ̸= eq) i.e., γ constraint satisfied

α∗(1)
(

1−β ∗(1)
)e−1

α∗(1)+β ∗(1) ; (R = 1,S = eq)

The ratio of the expected proportion of drug shortages per day with Q2 (i.e., (R,S) policy) and
Q∗

2 (i.e., (R∗,S∗) policy) is presented as two cases: Q2 < Q∗
2 and Q2 > Q∗

2.

Case 1: Q2 < Q∗
2

When Q2 selects (R = 1,S = eq) as the optimal inventory policy, the ratio of the expected propor-
tion of drug shortages per day with Q2 (i.e., (R,S) policy) and Q∗

2 (i.e., (R∗,S∗) policy) is presented
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in Equation (C.1.5).

Pshort|(q,R,S)
Pshort|(q,R∗,S∗)

=

α∗(1)
(

1−β ∗(1)
)e−1(

α∗(1)+β ∗(1)
)

α∗(1)
(

1−β ∗(1)
)e−1(

α∗(1)+β ∗(1)
) = 1 (C.1.5)

In Equation (C.1.5), the ratio is 1 because Q2 selects (R = 1,S = eq) as the optimal inventory
policy which corresponds to the smallest R and largest S. In comparison to Q2, the true value Q∗

2

implies the supply chain takes even longer to recover (i.e., Q∗
2 > Q2). There will be no change in

the inventory policy because the inventory policy is already at the limits for both decision variables.
Given Q2 selects (R ̸= 1 or S ̸= eq) as the optimal inventory policy, the ratio of the expected

proportion of drug shortages per day with Q2 (i.e., (R,S) policy) and Q∗
2 (i.e., (R∗,S∗) policy) is

presented in Equation (C.1.6).

Pshort|(q,R,S)
Pshort|(q,R∗,S∗)

=
1

max{γ,
α∗(1)

(
1−β ∗(1)

)e−1(
α∗(1)+β ∗(1)

) }

(
α∗(R)(1−β ∗(R))m−1(

α∗(R)+β ∗(R)
) (

1+
γβ ∗(R)(α(R)+β (R)

)
α(R)β (R)

(
1−β (R)

)m−1 − β ∗(R)

β (R)

))
(C.1.6)

In Equation (C.1.6), the denominator max{γ,
α∗(1)

(
1−β ∗(1)

)e−1(
α∗(1)+β ∗(1)

) } reflects when the maximum pro-

portion of drug shortages per day constraint (i.e., γ) is (1) satisfied or (2) not satisfied, respectively.

When
α∗(1)

(
1−β ∗(1)

)e−1(
α∗(1)+β ∗(1)

) > γ , this implies that the maximum proportion of drug shortages per day

constraint (i.e., γ) cannot be satisfied with Q∗
2 (i.e., (2)). The model will select the inventory policy

that maximizes the expected inventory on-hand which is (R∗ = 1,S∗ = eq) and has a correspond-

ing expected proportion of drug shortages per day of
α∗(1)

(
1−β ∗(1)

)e−1(
α∗(1)+β ∗(1)

) . Otherwise (i.e., (1)), the

maximum proportion of drug shortages per day constraint is satisfied with Q∗
2 and the constraint is

tight. Hence, the expected proportion of drug shortages per day is γ .

Case 2: Q2 > Q∗
2

When Q2 selects (R = 1,S = eq) as the optimal inventory policy, the ratio of the expected propor-
tion of drug shortages per day with Q2 (i.e., (R,S) policy) and Q∗

2 (i.e., (R∗,S∗) policy) is presented
in Equation (C.1.7).

Pshort|(q,R,S)
Pshort|(q,R∗,S∗)

=

α∗(1)
(

1−β ∗(1)
)e−1(

α∗(1)+β ∗(1)
)

max{γ,
α∗(1)

(
1−β ∗(1)

)e−1(
α∗(1)+β ∗(1)

) }
(C.1.7)

In Equation (C.1.7), the denominator max{γ,
α∗(1)

(
1−β ∗(1)

)e−1(
α∗(1)+β ∗(1)

) } reflects when the maximum pro-

portion of drug shortages per day constraint (i.e., γ) is (1) satisfied or (2) not satisfied, respectively.

When
α∗(1)

(
1−β ∗(1)

)e−1(
α∗(1)+β ∗(1)

) > γ , this implies that the maximum proportion of drug shortages per day

136



constraint (i.e., γ) cannot be satisfied with Q∗
2 (i.e., (2)). The model will select the inventory policy

that maximizes the expected inventory on-hand which is (R∗ = 1,S∗ = eq) and has a correspond-

ing expected proportion of drug shortages per day of
α∗(1)

(
1−β ∗(1)

)e−1(
α∗(1)+β ∗(1)

) . Otherwise (i.e., (1)), the

maximum proportion of drug shortages per day constraint is satisfied with Q∗
2 and the constraint is

tight. Hence, the expected proportion of drug shortages per day is γ .
Given Q2 selects (R ̸= 1 or S ̸= eq) as the optimal inventory policy, the ratio of the expected

proportion of drug shortages per day with Q2 (i.e., (R,S) policy) and Q∗
2 (i.e., (R∗,S∗) policy) is

presented in Equation (C.1.8).

Pshort|(q,R,S)
Pshort|(q,R∗,S∗)

=
1
γ

(
α∗(R)(1−β ∗(R))m−1(

α∗(R)+β ∗(R)
) (

1+
γβ ∗(R)(α(R)+β (R)

)
α(R)β (R)

(
1−β (R)

)m−1 − β ∗(R)

β (R)

))
(C.1.8)

In Equation (C.1.8), we divide by γ because Q2 selects (R ̸= 1 or S ̸= eq) as the optimal inventory
policy illustrating the maximum proportion of drug shortages per day constraint (i.e., γ) is satisfied
with Q2. In comparison to Q2, the true value Q∗

2 implies that the supply chain recovers more quickly
(i.e., Q∗

2 < Q2). If Q2 satisfies the maximum proportion of drug shortages per day constraint, then
Q∗

2 will also satisfy the constraint. When the constraint is satisfied, it is tight and hence, the
expected proportion of drug shortages per day is γ .

C.1.1.1 Uncertainty in Q2 Validation

Case 1 and Case 2 provide closed-form expressions for the ratio of the expected proportion of drug
shortages per day given a value Q2 and the expected proportion of drug shortages per day given
the true value Q∗

2. We proceed to validate the closed-form expressions presented as Case 1 and
Case 2 by comparing the closed-form expression results to a simulated ratio. The simulated ratio
is determined using a simulation model of the (R,S) inventory system. Using Q2 (i.e., the value
selected), we first calculate the optimal inventory policy (i.e., (R,S)). For the simulation model,
we require R to be integer, so after solving for R, we round R down to the nearest whole number
(i.e., conservative rounding; reduces shortages). Then, we use the simulation model to calculate
the (a) proportion of drug shortages per day given the inventory system truly has the characteristics
of Q∗

2, but operates under the (R,S) inventory policy. Using Q∗
2 (i.e., the true value), we calculate

the optimal inventory policy (i.e., (R∗,S∗); R∗ rounded down to the nearest whole number). We use
the simulation model to calculate the (b) proportion of drug shortages per day given the inventory
system has the characteristics of Q∗

2, and operates under the (R∗,S∗) inventory policy. We then
calculate the ratio by taking a

b .
Table C1 provides the input parameters we use for the validation of the ratio. These input pa-

rameters are consistent with the numerical analysis in Chapter 4 and the drug case study presented
in Chapter 3. Also, consistent with this earlier research, we consider a simulation model of the
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(R,S) inventory system with a warm-up period of 360 days (i.e., approx 1 year), a 5-year planning
horizon (i.e., 1800 days), and 500 simulation replications.

Table C1 Input parameters for the uncertainty in Q2 validation.
Notation Description
k = 250 Fixed ordering cost (i.e., for each order attempted; k > 0)
h = 0.025 Holding cost per day per drug (h > 0; Jia & Zhao, 2017)
q = 45 Deterministic demand per day (q > 0; Chapter 3)
e = 90 Expiration lifetime in days (e ≥ 1)
γ = 0.05 Maximum proportion of drug shortages per day over the infinite horizon (0 < γ < 1)
Q∗

1 = 0.25 True value for the answer to Question 1 (in Section 4.3.1.1)
Q∗

2 ∈ {30,60} True value for the answer to Question 2 (in Section 4.3.1.1)

We validate the ratio using Q∗
2 = 30 (see Figure C1) and Q∗

2 = 60 (see Figure C2). It is worth
noting that we consider Q∗

2 = 60 which is not considered in the numerical analysis in Chapter 4 as
it provides insights on when the optimal inventory policy is at the limits for both decision variables
R∗ and S∗. Figures C1 and C2 present the length of the review period (R) and the order-up-to
level (S) when using the true value Q∗

2 (i.e., Optimal (R∗,S∗)) and selected value Q2 (i.e., Selected
(R,S)). The figures also present the ratio of the expected proportion of drug shortages per day
using the simulation model (i.e., Simulated Ratio) and the closed-form expressions (i.e., Closed-
form Ratio). Both figures show that the closed-form expressions are valid as the curves for the
Simulated Ratio (see blue curves) and Closed-form Ratio (see purple curves) lie fairly close to one
another. We want to highlight that the curves are close and not always exactly overlapping because
the (R,S) model treats the decision variables as continuous variables. However, a simulation model
of a periodic review inventory system must define the length of the review period (R) as an integer.
In this analysis, we round R down to the nearest whole number (i.e., conservative rounding; places
orders more frequently then necessary). As a result, there are instances where the curves do not
exactly coincide.
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Figure C1: Uncertainty around Q2 when Q∗
2 = 30.

Figure C2: Uncertainty around Q2 when Q∗
2 = 60.

In line with our intuition, a key takeaway from Figures C1 and C2 is that when we underestimate
Q2 (i.e., Q2 <Q∗

2; we claim the supply chain recovers more quickly than reality), we expect to have
more or no change to shortages (ratio ≥ 1). When we overestimate Q2 (i.e., Q2 > Q∗

2; we claim the
supply chain takes longer to recover than reality), we expect to have less or no change to shortages
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(ratio ≤ 1). Specifically, Figure C1 illustrates that underestimating Q2 by about 20 days keeps the
ratio below 2.75, and overestimating Q2 by about 20 days keeps the ratio above 0.25. Figure C2
illustrates that underestimating Q2 by about 20 days keeps the ratio below 1.6, and overestimating
Q2 has no impact on the ratio. No impact on the ratio occurs because the optimal (R∗,S∗) policy
for Q∗

2 = 60 is (R∗ = 1,S∗ = eq), which is already at the limits for both decision variables. Hence,
claiming the supply chain takes longer to recover than reality (i.e., Q2 > Q∗

2) will lead to the same
optimal inventory policy of (R = 1,S = eq).

C.2 Proportion Metrics

We present how to calculate the expected proportion of drug shortages per day (in Appendix C.2.1)
and the expected proportion of drugs wasted per day (in Appendix C.2.2).

C.2.1 Expected Proportion of Drug Shortages

In Section 4.3.2.1 of Chapter 4, we present the expected proportion of drug shortages per day
in Equation (4.4). The expected proportion of drug shortages per day depends on the length of
the review period (R), the order-up-to level (S), the expected daily demand (q̄), the disruption
probability (α(R)), and the recovery probability (β (R)). Proportion is measured relative to the
expected daily demand q̄.

When deriving the closed-form (R,S) inventory policy solutions, Chapter 3 assumes that m =

⌊ S
q̄R⌋ ≥ 1 (i.e., S covers at least 1 review period; see Table 4.2 in Section 4.3.1). Therefore, when

m ≥ 1, we directly use the two-state supply process results found in Chapter 3. When m < 1, the
order-up-to level S does not cover a full review period (i.e., q̄R > S). The expected proportion of
drug shortages consists of two components: (a) the long-run probability that the supply chain is not
disrupted (i.e., β (R)

α(R)+β (R) ) multiplied by the expected number of drug shortages in a review period
of length R (i.e., q̄R− S) divided by the demand in a review period of length R (i.e., q̄R) and (b)
the long-run probability that the supply chain is disrupted (i.e., 1− β (R)

α(R)+β (R) ) multiplied by 1. For
(b), m does not cover a full review period, so any time the supply chain is disrupted, the inventory
system has zero inventory on-hand resulting in an expected proportion of drug shortages per day
of 1. We do not account for stochastic demand as past research illustrates that stochastic demand
that is normally distributed has a negligible impact on the expected proportion of drug shortages
per day with the (R,S) model.
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C.2.2 Expected Proportion of Drugs Wasted

In Section 4.3.2.1 of Chapter 4, we present the expected proportion of drugs wasted per day in
Equation (4.5). We calculate the expected proportion of drugs wasted given a (R,S) inventory pol-
icy with expected daily demand q̄ and standard deviation of daily demand σ (i.e., Pwaste|(q̄,σ ,R,S)).
We consider the expiration lifetime (e), the length of the review period (R), the order-up-to level
(S), the expected daily demand (q̄), the standard deviation of daily demand (σ ), the disruption prob-
ability (α(R)), and the recovery probability (β (R)). Proportion is measured relative to the expected
number of drugs ordered.

To derive Equation (4.5), we first consider the case with deterministic daily demand q̄ and no
supply chain disruptions. When we follow a (R,S) inventory policy for a perishable drug with
expiration lifetime e, the inventory system follows a cyclic pattern where each cycle lasts ⌈ e

R⌉ ·R
days. We note that the (R,S) model assumes e ≥ 1 and R ≥ 1. On day e in the cycle, we discard
max{0,S−eq̄} drugs. As a specific example, consider R = 3 days and e = 5 days. In Table C2, we
present the cyclic pattern of the inventory system where we vary S in increments of q̄. We use the
same table convention as presented in Atan & Rousseau (2016). For S < eq̄, the inventory system
has a cycle of R days which is a factor of ⌈ e

R⌉ ·R and for S ≥ eq̄, the inventory system has a cycle
of ⌈ e

R⌉ ·R days, so we simply conclude each cycle lasts ⌈ e
R⌉ ·R days.
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Table C2 Cyclic pattern of the (R,S) inventory system with perishability.
S Day Start. Inv. Waste Short End Inv. Age=1 Age=2 Age=3 Age=4 Order size

q̄ 1 q̄ 0 0 0 0 0 0 0 0
2 0 0 q̄ 0 0 0 0 0 0
3 0 0 q̄ 0 0 0 0 0 q̄

2q̄ 1 2q̄ 0 0 q̄ q̄ 0 0 0 0
2 q̄ 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 2q̄

3q̄ 1 3q̄ 0 0 2q̄ 2q̄ 0 0 0 0
2 2q̄ 0 0 q̄ 0 q̄ 0 0 0
3 q̄ 0 0 0 0 0 0 0 3q̄

4q̄ 1 4q̄ 0 0 3q̄ 3q̄ 0 0 0 0
2 3q̄ 0 0 2q̄ 0 2q̄ 0 0 0
3 2q̄ 0 0 q̄ 0 0 q̄ 0 3q̄
4 4q̄ 0 0 3q̄ 3q̄ 0 0 0 0
5 3q̄ 0 0 2q̄ 0 2q̄ 0 0 0
6 2q̄ 0 0 q̄ 0 0 q̄ 0 3q̄

S ≥5q̄ 1 S 0 0 S-q̄ S-q̄ 0 0 0 0
2 S-q̄ 0 0 S-2q̄ 0 S-2q̄ 0 0 0
3 S-2q̄ 0 0 S-3q̄ 0 0 S-3q̄ 0 3q̄
4 S 0 0 S-q̄ 3q̄ 0 0 S-4q̄ 0
5 S-q̄ S-5q̄ 0 3q̄ 0 3q̄ 0 0 0
6 3q̄ 0 0 2q̄ 0 0 2q̄ 0 S-2q̄
7 S 0 0 S-q̄ S-2q̄ 0 0 q̄ 0
8 S-q̄ 0 0 S-2q̄ 0 S-2q̄ 0 0 0
9 S-2q̄ 0 0 S-3q̄ 0 0 S-3q̄ 0 3q̄

10 S 0 0 S-q̄ 3q̄ 0 0 S-4q̄ 0
11 S-q̄ S-5q̄ 0 3q̄ 0 3q̄ 0 0 0
12 3q̄ 0 0 2q̄ 0 0 2q̄ 0 S-2q̄

We now formally define a cycle as a period of time such that on day e in the cycle, max{0,S−
eq̄} drugs are wasted. There is zero waste on all other days in the cycle. With deterministic daily
demand q̄ and no supply chain disruptions, we have the results presented in Equations (C.2.1)-
(C.2.2).

E[no. of drugs wasted per cycle] = max{0,S− eq̄} (C.2.1)

E[no. of drugs ordered in a cycle] =

no. used︷ ︸︸ ︷
⌈ e

R
⌉Rq̄+

no. wasted︷ ︸︸ ︷
max{0,S− eq̄} (C.2.2)

We next consider that we have deterministic daily demand q̄ and supply chain disruptions that
follow a two-state supply process. Given we have a supply chain disruption, we need to consider
which day in the cycle the supply chain disruption begins to accurately calculate the number of
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drugs ordered in the cycle. Recall that a cycle lasts ⌈ e
R⌉ ·R days when the supply chain is not

disrupted. Each cycle has ⌈ e
R⌉ days that correspond to a review period day. Given we know that

a supply chain disruption occurs in the cycle, out of the ⌈ e
R⌉ days in the cycle that correspond to

a review period day, there is an equal probability that the supply chain disruption begins on any
of these review period days. Hence, the probability that the supply chain disruption starts on any
review period day in the cycle is 1

⌈ e
R⌉

. Taking into account the day the supply chain disruption
starts in a cycle, we have the results presented in Equations (C.2.3)-(C.2.4). π j is the probability
that the supply chain is disrupted for exactly j consecutive review periods (π0 = β (R)

α(R)+β (R) ; π j =

α(R)β (R)

(α(R)+β (R))(1−β (R))
(1−β (R)) j, j ≥ 1).

E[no. of drugs wasted per cycle] = max{0,S− eq̄} (C.2.3)

E[no. of drugs ordered in a cycle] = (C.2.4)

S; ⌈ e
R⌉= 1

(⌈ e
R⌉Rq̄+max{0,S− eq̄})π0 +

∞

∑
j=⌈ e

R ⌉−1
π j(S+Rq̄( (⌈

e
R ⌉−1)

2 )); ⌈ e
R⌉= 2

(⌈ e
R⌉Rq̄+max{0,S− eq̄})(π0 +

⌈ e
R ⌉−2

∑
j=1

π j − 1
⌈ e

R ⌉

⌈ e
R ⌉−2

∑
j=1

jπ j)+
S

⌈ e
R ⌉

⌈ e
R ⌉−2

∑
j=1

jπ j +
Rq̄
⌈ e

R ⌉

⌈ e
R ⌉−2

∑
j=1

j2π j

+
∞

∑
j=⌈ e

R ⌉−1
π j(S+Rq̄( (⌈

e
R ⌉−1)

2 )); ⌈ e
R⌉ ≥ 3

where π0 =
β (R)

α(R)+β (R)

⌈ e
R ⌉−2

∑
j=1

π j =
α(R)β (R)

α(R)+β (R)

(
1− (1−β (R))⌈

e
R ⌉−2

β (R)

)
∞

∑
j=⌈ e

R ⌉−1
π j = 1−

⌈ e
R ⌉−2

∑
j=0

π j = 1−π0 −
⌈ e

R ⌉−2

∑
j=1

π j

⌈ e
R ⌉−2

∑
j=1

jπ j =
α(R)β (R)

(α(R)+β (R))(1−β (R))

(
1− (⌈ e

R⌉−1)(1−β (R))⌈
e
R ⌉−2 +(⌈ e

R⌉−2)(1−β (R))⌈
e
R ⌉−1

(β (R))2

)
⌈ e

R ⌉−2

∑
j=1

j2
π j =

α(R)β (R)

(α(R)+β (R))(1−β (R))
(

1
β (R)

)

(
− (1−β

(R))
(1− (1−β (R))⌈

e
R ⌉−2

β (R)

)
− (⌈ e

R
⌉−2)2(1−β

(R))⌈
e
R ⌉−1

+2
( (1−β (R))− (⌈ e

R⌉−1)(1−β (R))⌈
e
R ⌉−1 +(⌈ e

R⌉−2)(1−β (R))⌈
e
R ⌉

(β (R))2

))
Next, we incorporate stochastic demand where we assume that the daily demand is normally

distributed with mean q̄ and standard deviation σ . For the deterministic demand case, we have a
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demand of exactly eq̄ in a period of e days. Thus, we waste exactly max{0,S− eq̄} drugs in each
cycle. When we have stochastic demand, we may not have a demand of exactly eq̄ in a period of
e days. Letting Qi denote a normal random variable with mean q̄ and standard deviation σ for the
demand on day i, we consider the expectation of max{0,S−eq̄} presented in Equation (C.2.5) and

simplified in Equation (C.2.6). In Equation (C.2.6), we assume that
e
∑

i=1
Qi ≥ 0 as demand is always

non-negative. It is worth noting that Equation (C.2.6) can easily be modified to accommodate
other probability distributions (e.g., Poisson) by using the appropriate expectation and cumulative
distribution function.

E[max{0,S−
e

∑
i=1

Qi}] = Ew = Pr(
e

∑
i=1

Qi < S) · (S−E[
e

∑
i=1

Qi|
e

∑
i=1

Qi < S])+Pr(
e

∑
i=1

Qi ≥ S) ·0

(C.2.5)

E[max{0,S−
e

∑
i=1

Qi}] = Ew = S ·Pr(Z <
S− eq̄√

eσ2
)− eq̄− 1

2π

(
− e−

(S−eq̄)2

2eσ2 + e−
(−eq̄)2

2eσ2
)√

eσ2

(C.2.6)
Using Equation (C.2.6) in Equations (C.2.3)-(C.2.4) and the relation presented in Equation

(C.2.7), we have the expected proportion of drugs wasted per day presented in Equation (4.5) of
Chapter 4. Equation (4.5) accounts for a (R,S) inventory system with supply chain disruptions
that follow a two-state supply process and stochastic demand that is independent and normally
distributed.

Ewaste|(q̄,σ ,R,S) =
E[no. of drugs wasted per cycle]
E[no. of drugs ordered in a cycle]

(C.2.7)

C.3 Numerical Analysis: Additional Data and Takeaways

We proceed to present the weekly demand data for the four other 503B drugs of interest presented
in Section 4.5.4 of the numerical analysis: Avastin, Oxytocin, Cefazolin, Norepinephrine (in Sec-
tion C.3.1). We also gain additional takeaways by analyzing (T1) the sensitivity of N (i.e., number
of past daily demand observations used to estimate the expected daily demand; in Section C.3.2)
and (T2) the length of demand disruptions (in Section C.3.3).

C.3.1 Weekly Demand Data for the Other 503B Drugs of Interest

We present the weekly demand data for the four other 503B drugs of interest: Avastin
1.25mg/0.05mL (chemotherapy with several indications; see Figure C3a), Oxytocin 30 units/500
mL (induction of labor; see Figure C3b), Cefazolin 2gm/100mL (antibiotic; see Figure C3c), Nore-
pinephrine 16 mg/250mL (vasopressor used to increase blood pressure; see Figure C3d). The red
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lines in the figures denote the corresponding mean weekly demand that minimizes the sum of
squared errors for the daily demand data. For Avastin, Oxytocin, and Cefazolin, we consider two
mean weekly demand values and for Norepinephrine, we consider three mean weekly demand
values.

(a) Avastin. (b) Oxytocin.

(c) Cefazolin. (d) Norepinephrine.

Figure C3: Weekly demand versus day in the planning horizon. We remove the weekly demand
values on the y-axis for data confidentiality.

C.3.2 (T1) Sensitivity to N

In the adaptive inventory system in Chapter 4 (in Section 4.3.2), N denotes the number of past daily
demand observations used to estimate the expected daily demand q̄new and standard deviation of
daily demand σnew.

We first consider the sensitivity of this parameter N by analyzing the proportion of drug short-
ages per day, proportion of drugs wasted per day, and number of policy changes during the test-
ing horizon for varying N ∈ [7,105] days (i.e., about 1-15 weeks) and varying supply chain dis-
ruption durations. We consider the daily demand data for the Rocuronium and Labetalol case
study presented in Section 4.5.1. We consider the input parameters defined in Section 4.5.3,
(δs,δw) = (0.05,0.05) for the shortage-waste weighting, and varying supply chain disruption pro-
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files: (α(1),β (1)) = {( 1
30 ,

1
10),(

1
90 ,

1
30),(

1
270 ,

1
90),(

1
810 ,

1
270)}. Figures C4 and C5 illustrate the re-

sults for Rocuronium (resembles an increasing demand disruption) and Labetalol (resembles a
decreasing demand disruption), respectively. We present the (A) Adaptive, (B) Adaptive with
Buyback, (C) Benchmark, and (D) Static models. The supply chain disruption profiles are distin-
guished into four rows where all supply chain disruption profiles have the same long-run proba-
bility that the supply chain is disrupted (i.e., α(1)

α(1)+β (1) ). For each supply chain disruption profile,

we provide the disruption probability with respect to 1 day (i.e., α(1)), recovery probability with
respect to 1 day (i.e., β (1)), and optimal (R∗,S∗) inventory policy when the mean of the first B = 90
training demand observations is used for the expected daily demand.

5

Rocuronium (503B) –
N sensitivity

Supply chain 
disruption 
duration

Short

Moderate

Long

Very long

N: Number of Past Daily Demand Observations to Average for the Daily Demand Estimate

Figure C4: Sensitivity to N for Rocuronium for varying supply chain disruption durations.
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6

Labetalol (503B) – N 
sensitivity

Supply chain 
disruption 
duration

Short

Moderate

Long

Very long

N: Number of Past Daily Demand Observations to Average for the Daily Demand Estimate

Figure C5: Sensitivity to N for Labetalol for varying supply chain disruption durations.

We second consider the sensitivity of the parameter N by analyzing the proportion of drug
shortages per day and proportion of drugs wasted per day during the testing horizon for vary-
ing N ∈ [7,105] days (i.e., about 1-15 weeks) and multiple variabilities in demand. We con-
sider the daily demand data for the Rocuronium and Labetalol case study presented in Section
4.5.1. However, we modify this real-world demand data. We first take notice to the two red
horizontal lines denoting the corresponding mean weekly demand that minimizes the sum of
squared errors for the daily demand data in Figure 4.4. We modify the real-world daily de-
mand data using these mean weekly demand values divided by 7 (i.e., mean daily demand values;
q̄corresponding red mean daily demand where “corresponding red mean daily demand" implies that we use
the red horizontal mean weekly demand divided by 7 that corresponds to the day in the planning
horizon for the demand observation) to study multiple variabilities in demand. In particular, for
any demand observation qoriginal , we obtain a modified demand observation as shown in Equation
(C.3.1).

qmodi f ied = (qoriginal − q̄corresponding red mean daily demand)+a · q̄corresponding red mean daily demand

(C.3.1)
We consider a ∈ {0.5,1,2,3} where a < 1 implies that the variability of the modified daily de-
mand data is less than the original daily demand data and a > 1 implies that the variability of the
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modified daily demand data is greater than the original daily demand data. When a = 1, the orig-
inal and modified daily demand data are equivalent. We consider the input parameters defined in
Section 4.5.3, (δs,δw) = (0.05,0.05) for the shortage-waste weighting, and (α(1),β (1)) = ( 1

90 ,
1
30)

for the supply chain disruption profile. Figures C6 and C7 illustrate the results for Rocuronium
(resembles an increasing demand disruption) and Labetalol (resembles a decreasing demand dis-
ruption), respectively. We present the (A) Adaptive, (B) Adaptive with Buyback, (C) Benchmark,
and (D) Static models. Also, a ∈ {0.5,1,2,3} is denoted on the right-hand side of the figures and
the vertical arrow denotes that the variance increases when reading the figures from top to bottom.

7

Rocuronium (503B) – N 
sensitivity (variability)

N: Number of Past Daily Demand Observations to Average for the Daily Demand Estimate

Variance 
Increases

Figure C6: Sensitivity to N for Rocuronium for multiple variabilities in demand.
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8

Labetalol (503B) – N 
sensitivity (variability)

N: Number of Past Daily Demand Observations to Average for the Daily Demand Estimate

Variance 
Increases

Figure C7: Sensitivity to N for Labetalol for multiple variabilities in demand.

From the results in Figures C4-C7, we find that:

1. As N increases, the metrics often begin to stabilize. Furthermore, a drug with a higher
variability in demand often requires a larger N to stabilize.

2. Selecting too small of an N can cause high shortage and/or waste detriments, especially for
drugs with a high variability in demand.

3. Selecting too large of an N can start to reduce the benefits of an adaptive model.

4. Selecting a value of N = 56 is appropriate for the numerical analysis.

C.3.3 (T2) Length of the Demand Disruption

Another viewpoint of interest is the length of the demand disruption. However, we do not have
data that represents every possible length of the disruption. Therefore, we consider a transformed
version of the Labetalol data. For the analysis, we first replicate and stack the Labetalol real-world
daily demand data from October 1, 2019-January 31, 2020 (i.e., pre-Covid; not disrupted/stable
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demand) to have 1,080 daily demand observations (i.e., 180 training and 900 testing). Starting at
test day t = 181 (i.e., about 6 months into the testing horizon), we transform this “not disrupted”
demand based on the length of disruption l ∈ [60,360] days. Consistent with the change in the two
demand means that minimize the sum of squared errors (see red horizontal lines on Figure 4.4), we
assume an increasing demand disruption adds 1.5 times the mean training data and a decreasing
demand disruption subtracts 0.9 times the mean training data (non-positive values forced to 1). We
assume that the first 30 days and last 30 days of the demand disruption have a linear change. Figure
C8 depicts the transformed data for (a) increasing demand disruptions and (b) decreasing demand
disruptions of lengths l ∈ {180,360} days.

(a) Increasing demand disruptions. (b) Decreasing demand disruptions.

Figure C8: Labetalol daily demand data for varying lengths of demand disruptions. We remove
the numerical values on the y-axis for data confidentiality.

Increasing and Decreasing Demand Disruption Results

Using the transformed data in Figure C8 for the respective type of demand disruption (i.e., in-
creasing or decreasing), we consider the model input parameters defined in Section 4.5.3 with the
Labetalol wholesale price of about $7. We simulate the performance of the (A) Adaptive, (B)
Adaptive with Buyback, (C) Benchmark, and (D) Static models. We present the overall expected
proportion of drug shortages per day and proportion of drugs wasted per day from test day t = 181
(i.e., start of the demand disruption) to test day t = 900 (i.e., end of the testing horizon). We con-
sider demand disruptions lengths l ∈ [60,360] days, (δs,δw) = (0.05,0.05) for the shortage-waste
weighting, and (α(1),β (1)) = {( 1

30 ,
1
10),(

1
90 ,

1
30),(

1
270 ,

1
90),(

1
810 ,

1
270)} for the varying supply chain

disruption profiles.
For increasing demand disruptions (see Figure C9), we find that (a) the length of the demand

disruption has the greatest influence on the (D) Static model when we consider the proportion of
drug shortages per day and the (C) Benchmark model when we consider the proportion of drugs
wasted per day. In particular, the (C) Benchmark model performs very poorly when we consider

150



the proportion of drugs wasted per day for long and very long supply chain disruption durations.
For decreasing demand disruptions (see Figure C10), we find that (b) the length of the demand dis-
ruption has little to no impact on the proportion of drug shortages per day for all four models when
considering moderate, long, and very long supply chain disruption durations. For short supply
chain disruption durations, the length of the demand disruption influences the proportion of drug
shortages when considering the (A) Adaptive, (B) Adaptive with Buyback, and (C) Benchmark
models. For decreasing demand disruptions, we also find that the superior performance of the (A)
Adaptive and (B) Adaptive with Buyback models when it comes to the proportion of drugs wasted
per day becomes more apparent as the supply chain disruption duration increases. Focusing on
the (C) Benchmark model for both increasing and decreasing demand disruptions, we overall find
that (c) the model performs poorly from a shortage perspective when the supply chain disruption
duration is short and the model performs poorly from a waste perspective when the supply chain
disruption duration is long. Hence, we do not recommend implementing a benchmark policy that
updates the inventory policies on long fixed intervals. Furthermore, we find that for both increasing
and decreasing demand disruptions, (d) the (B) Adaptive with Buyback model often has a smaller
proportion of drugs wasted per day in comparison to the (A) Adaptive model with zero to negligi-
ble difference in the proportion of drug shortages. This finding encourages the implementation of
such buyback programs.

151



6

Labetalol (503B) -
increase

Supply chain 
disruption 
duration

Short

Moderate

Long

Very long

Figure C9: Results for varying lengths of increasing demand disruptions.
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APPENDIX D

Chapter 5 Appendix

D.1 Inventory System Descriptions and Derivations

We present the descriptions and/or derivations for the Two Supplier Integrated Non-perishable
(in Section D.1.1), Non-Integrated Non-perishable (in Section D.1.2), Non-Integrated Perishable
(in Section D.1.3), One Supplier Integrated Non-perishable (in Section D.1.4), and One Supplier
Integrated Perishable (in Section D.1.5) inventory systems.

D.1.1 Non-Perishable Integrated Inventory System with Two Independent
Suppliers

D.1.1.1 Exact Model: Long-run Probabilities (Two Supplier Integrated)

Figure 5.2 in Chapter 5 illustrates the two-HNP integrated inventory system continuous time
Markov chain when the suppliers are independent from one another. We find the long-run proba-
bility of being in each state of the Markov chain by solving the system of equations presented in
Equations (D.1.1)-(D.1.14).
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(λ1 +λ2)P(S1+1)(S2+1) = µ1

S1

∑
i=0

Pi(S2+1)+µ2

S2

∑
j=0

P(S1+1) j (D.1.1)

(λ1 +q2 +µ2)P(S1+1)S2 = λ2P(S1+1)(S2+1)+µ1

S1

∑
i=0

PiS2 (D.1.2)

(λ1 +q2 +µ2)P(S1+1) j = q2P(S1+1)( j+1)+µ1

S1

∑
i=0

Pi j; j = 1, ...,S2 −1 (D.1.3)

(λ1 +µ2)P(S1+1)0 = q2P(S1+1)1 +µ1

S1

∑
i=0

Pi0 (D.1.4)

(λ2 +q1 +µ1)PS1(S2+1) = λ1P(S1+1)(S2+1)+µ2

S2

∑
j=0

PS1 j (D.1.5)

(λ2 +q1 +µ1)Pi(S2+1) = q1P(i+1)(S2+1)+µ2

S2

∑
j=0

Pi j; i = 1, ...,S1 −1 (D.1.6)

(λ2 +µ1)P0(S2+1) = q1P1(S2+1)+µ2

S2

∑
j=0

P0 j (D.1.7)

(µ1 +µ2 +q1 +q2)PS1S2 = λ1P(S1+1)S2 +λ2PS1(S2+1) (D.1.8)

(µ1 +µ2 +q1 +q2)PS1 j = λ1P(S1+1) j +q2PS1( j+1); j = 0,1, ...,S2 −1 (D.1.9)

(µ1 +µ2 +q1 +q2)PiS2 = λ2Pi(S2+1)+q1P(i+1)S2 ; i = 0,1, ...,S1 −1 (D.1.10)

(µ1 +µ2 +q1 +q2)Pi j = q1P(i+1) j +q2Pi( j+1); i = 1, ...,S1 −1, j = 1, ...,S2 −1 (D.1.11)

(µ1 +µ2 +q1 +q2)Pi0 = (q1 +q2)P(i+1)0 +q2Pi1; i = 1, ...,S1 −1 (D.1.12)

(µ1 +µ2 +q1 +q2)P0 j = (q1 +q2)P0( j+1)+q1P1 j; j = 1, ...,S2 −1 (D.1.13)
S1+1

∑
i=0

S2+1

∑
j=0

Pi j = 1 (D.1.14)

Having two independent suppliers guarantees that P(S1+1)(S2+1) = ( µ1
µ1+λ1

)( µ2
µ2+λ2

) (i.e., long-

run probability that both HNPs are not disrupted),
S1
∑

i=0
Pi(S2+1) = ( λ1

µ1+λ1
)( µ2

µ2+λ2
) (i.e., long-run

probability that HNP 1 is disrupted and HNP 2 is not disrupted), and
S2
∑
j=0

P(S1+1) j = ( µ1
µ1+λ1

)( λ2
µ2+λ2

)

(i.e., long-run probability that HNP 1 is not disrupted and HNP 2 is disrupted). We verify that
these results hold in Equation (D.1.1).

D.1.2 Non-Perishable Non-Integrated Inventory System

In the numerical analysis in Chapter 5 (in Section 5.5), we are interested in comparing a two inde-
pendent supplier integrated inventory system to a non-integrated inventory system (i.e., no lateral
transshipments between HNPs). This implies that each HNP acts independently. Thus, we can
solve for the optimal order-up-to level at each HNP by modeling a one HNP one supplier system
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as a continuous time Markov chain (see Figure D1; we simply use q to indicate the daily demand
rate for the single HNP, λ to indicate the supply chain disruption rate for the single supplier, and µ

to indicate the supply chain recovery rate for the single supplier). In this continuous time Markov
chain, the state at any time t (Xt ; t ≥ 0) is defined as I. For 0 ≤ I ≤ S; I ∈ Z+

0 , the supply chain
is disrupted and I represents the inventory on-hand at the HNP. For I = S+ 1, the supply chain
is not disrupted and the inventory on-hand is S. The structure of the Markov chain assumes that
the order-up-to level (i.e., S) is at least 1. Also, the Markov chain is irreducible and it has a finite
number of states where all states are positive recurrent. Thus, the limiting distribution exists and
is unique (Sericola, 2013).

Markov Chain
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Figure D1: One HNP with one supplier Markov chain.

D.1.2.1 One HNP with One Supplier Long-run Probabilities (Non-Integrated)

Using Figure D1, we write the balance equations for the Markov chain and solve for the long-run
probability that the Markov chain is in state X = (I) (i.e., Pi = Pr(I = i)) as shown in Equations
(D.1.15)-(D.1.17).

PS+1 =
µ

µ +λ
(D.1.15)

Pi =

(
λ

µ +q

)(
µ

µ +λ

)(
q

µ +q

)S−i

; i = 1,2, ...,S (D.1.16)

P0 =

(
q
µ

)(
λ

µ +q

)(
µ

µ +λ

)(
q

µ +q

)S−1

(D.1.17)

D.1.2.2 One HNP with One Supplier Expected Cost Per Day (Non-Integrated)

In a one HNP inventory system, we have no lateral transshipment costs since we are focusing on
one HNP. Therefore, the non-perishable expected cost per day only consists of holding costs (h)
and shortage costs (b). Using the cost parameters (see Table 5.2) and the long-run probability that
the inventory system is in state X = (I) (i.e., Pi; see Equations (D.1.15)-(D.1.17)), we have the
expected cost per day as presented in Equation (D.1.18). We define c(1H1S) (corresponds to the
constant term) and e(1H1S) (corresponds to the exponential term) which are fixed values that do not
depend on the order-up-to level S for the one HNP system with one supplier (i.e., 1H1S).
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E[cost per day]1H1S = h(S)PS+1 +
S

∑
i=1

h(i)Pi +b(q)P0

=−h
(

λq
µ
(
µ +λ

))︸ ︷︷ ︸
c(1H1S)

+

(
h
(

µ

µ +λ

)
+h
(

λ

µ +λ

)
︸ ︷︷ ︸

h

)
S

+

((
λq

µ +λ

)(
h
µ
+b
)

︸ ︷︷ ︸
e(1H1S)

)(
q

q+µ

)S

= c(1H1S)+hS+ e(1H1S)

(
q

q+µ

)S

(D.1.18)

D.1.2.3 One HNP with One Supplier Optimal Order-up-to Level (Non-Integrated)

We consider Equation (D.1.18) to solve for the optimal order-up-to level S for the one HNP in-
ventory system with one supplier. Using the same approach and arguments presented in Section
5.4.1.4 of Chapter 5 along with observing that e(1H1S) =

(
λq

µ+λ

)( h
µ
+b
)
> 0, we present the optimal

order-up-to level S in Equation (D.1.19).

S = max{1,
ln
(

−h
e(1H1S) ln( q

q+µ
)

)
ln( q

q+µ
)

} (D.1.19)

D.1.2.4 Solving for the Non-Integrated Inventory Policies (Non-Integrated)

Using Equation (D.1.19), we can independently solve for the optimal non-integrated order-up-
to level for HNP 1 (i.e., S∗1) and HNP 2 (i.e., S∗2) by using the respective input parameters for
each HNP. It is important to consider that when the two-HNP system operates as a non-integrated
inventory system, it is not necessary to distinguish two independent suppliers and one supplier
given the same disruption rates (i.e., λ1 = λ2) and recovery rates (i.e., µ1 = µ2). The reason is
that the HNPs act independently and thus, in the long-run, the expected costs and waste at each
HNP will be the same regardless of distinguishing two independent suppliers and one supplier.
However, if the disruption rates (i.e., λ1 ̸= λ2) and/or recovery rates (i.e., µ1 ̸= µ2) are different
from one another, it must be assumed that the system consists of two independent suppliers.
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D.1.2.5 Using the Non-Integrated Inventory System to Determine Sk(min) and Sk(max) (Non-
Integrated)

In Section 5.4.1.3 of Chapter 5, we define the feasible integer order-up-to levels as S1 ∈
[S1(min),S1(max)] and S2 ∈ [S2(min),S2(max)]. An important observation is that we can use the one
HNP with one supplier optimal order-up-to level derived for the non-integrated inventory sys-
tem to strategically select these values. For Sk(min) (k = 1,2), we use Equation (D.1.19) with
q = min{q1,q2}, h = h1+h2, λ = λ1λ2

λ1+λ2
, and µ = µ1+µ2. For Sk(max) (k = 1,2), we use Equation

(D.1.19) with q = q1 +q2, h = min{h1,h2}, λ = max{λ1,λ2}, and µ = min{µ1,µ2}.

D.1.3 Perishable Non-Integrated Inventory System

In Section 5.4.2 of Chapter 5, we describe how to extend the non-perishable integrated inventory
system with two independent suppliers to a perishable inventory system using a perishability con-
dition. We apply the same approach to the non-integrated inventory system and we proceed to
formally describe the procedure.

D.1.3.1 Defining the Perishability Condition (Non-Integrated)

After solving for the optimal non-perishable (S∗1,S
∗
2) inventory policies for a non-integrated inven-

tory system (in Appendix D.1.2), we consider that the drug has a finite and deterministic lifetime
of x days. To capture this, we define a perishability condition which can be seen as a chance
constraint at each HNP. Like the two independent supplier inventory system, when following the
(S∗1,S

∗
2) non-integrated inventory policy, we want the probability that drugs are wasted at each

HNP to be at most δ . To calculate the corresponding probability for each HNP, we assume that
the supplier for each HNP is never disrupted (i.e., no supply chain disruptions). We define the ran-
dom variable Qx,qk as the number of demand arrivals in a time period of x days when the Poisson
demand rate is qk for k = 1,2.

Using these definitions, we present the probability that drugs are wasted at HNP 1 given sup-
ply at HNP 1 is never disrupted and an expiration lifetime x (i.e., Pwaste HNP 1|(ND, x)) in Equation
(D.1.20). We present the probability that drugs are wasted at HNP 2 given supply at HNP 2 is
never disrupted and an expiration lifetime x (i.e., Pwaste HNP 2|(ND, x)) in Equation (D.1.21).

Pwaste HNP 1|(ND, x) = Pr(Qx,q1 ≤ S1 −1) =
(

e−q1x
S1−1

∑
i=0

(q1x)i

i!

)
(D.1.20)

Pwaste HNP 2|(ND, x) = Pr(Qx,q2 ≤ S2 −1) =
(

e−q2x
S2−1

∑
j=0

(q2x) j

j!

)
(D.1.21)
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D.1.3.2 Perishability Condition as a Chance Constraint (Non-Integrated)

When following the (S∗1,S
∗
2) non-integrated inventory policy, we want the probability that drugs

are wasted at HNP k (k = 1,2) given supply is never disrupted at HNP k to be at most δ . With this,
we formally define the perishability condition in Equation (D.1.22).

Pwaste HNP 1|(ND, x) = e−q1x
S1−1

∑
i=0

(q1x)i

i!
≤ δ

and

Pwaste HNP 2|(ND, x) = e−q2x
S2−1

∑
j=0

(q2x) j

j!
≤ δ

(D.1.22)

When the perishability condition is satisfied, (S∗1,S
∗
2) provides the optimal non-integrated in-

ventory policy for the perishable system. When the perishability condition is violated (i.e.,
Pwaste HNP 1|(ND, x) > δ or Pwaste HNP 2|(ND, x) > δ ), we enforce the perishability condition as de-
scribed in Appendix D.1.3.3.

D.1.3.3 Enforcing the Perishability Condition (Non-Integrated)

When the perishability condition is violated (i.e., Pwaste HNP 1|(ND, x) > δ or Pwaste HNP 2|(ND, x) > δ ),
we enforce the perishability condition to ensure that the order-up-to levels (S∗1,S

∗
2) are appropri-

ate for the expiration lifetime of x days. From the perishability condition presented in Equa-
tion (D.1.22), we notice that Pwaste HNP 1|(ND, x) only depends on S∗1 and Pwaste HNP 2|(ND, x) only
depends S∗2. Therefore, we reduce S∗1 until Pwaste HNP 1|(ND, x) ≤ δ and similarly, we reduce S∗2 until
Pwaste HNP 2|(ND, x) ≤ δ . We proceed to formally present the algorithm.
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Algorithm Enforcing the perishability condition for the non-integrated inventory system.
1: Input:
2: Parameters: h1, h2, b, t12, t21, q1, q2, λ1, µ1, λ2, µ2 (see Table 5.2)
3: Optimal non-perishable policy: (S∗1,S

∗
2)

4:

5: Step A: Decrease S∗1 Until the Waste Constraint is Satisfied at HNP 1
6: while Pwaste HNP 1|(ND, x) > δ % Waste constraint not satisfied at HNP 1; See equation (D.1.22)
7: Step A.1: Decrease S∗1
8: S∗1 = max{1,S∗1 −1} % Decrease the order-up-to level at HNP 1 by 1 if the boundary condition is not met
9: Calculate Pwaste HNP 1|(ND, x) with S∗1 % See equation (D.1.22)

10:

11: Step A.2: Check if the Order-up-to Level Boundary Condition is Met
12: if S∗1 = 1 % Boundary condition is met at HNP 1
13: break while loop (note: perishability condition may still be violated)
14: end if
15: end while
16:

17:

18: Step B: Decrease S∗2 Until the Waste Constraint is Satisfied at HNP 2
19: while Pwaste HNP 2|(ND, x) > δ % Waste constraint not satisfied at HNP 2; See equation (D.1.22)
20: Step B.1: Decrease S∗2
21: S∗2 = max{1,S∗2 −1} % Decrease the order-up-to level at HNP 2 by 1 if the boundary condition is not met
22: Calculate Pwaste HNP 2|(ND, x) with S∗2 % See equation (D.1.22)
23:

24: Step B.2: Check if the Order-up-to Level Boundary Condition is Met
25: if S∗2 = 1 % Boundary condition is met at HNP 2
26: break while loop (note: perishability condition may still be violated)
27: end if
28: end while
29:

30: Output: (S∗1,S
∗
2) denotes the optimal perishable non-integrated inventory policy

D.1.4 Non-Perishable Integrated Inventory System with One Supplier

D.1.4.1 Long-run Probabilities (One Supplier Integrated)

Figure 5.2 in Chapter 5 illustrates the integrated inventory system Markov chain when the two
suppliers are independent from one another. In Section 5.5.3 of the numerical analysis, we are
interested in illustrating the impact of operating as an integrated inventory system (i.e., lateral
transshipments are permitted) when the HNPs have the same supplier.

For one supplier, we have the modified integrated inventory system Markov chain as presented
in Figure D2. We let λ and µ represent the disruption rate and recovery rate, respectively, for the
single supplier. We let Xt = (I1, I2) represent the state at time t. For 0 ≤ I1 ≤ S1; 0 ≤ I2 ≤ S2, we let
I1 and I2 represent the inventory on-hand at HNP 1 and HNP 2, respectively, when the supply chain
is disrupted. We introduce the state (I1 = S1 + 1, I2 = S2 + 1) to denote the inventory on-hand at
HNP 1 and HNP 2 is S1 and S2, respectively, plus the supply chain is not disrupted (recall, S1 and
S2 denote the maximum inventory on-hand at any point in time). The integrated inventory system
Markov chain with one supplier is irreducible and it has a finite number of states where all states
are positive recurrent. Thus, the limiting distribution exists and is unique (Sericola, 2013).
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Figure D2: Integrated inventory system Markov chain with one supplier.

Using Figure D2, we write the balance equations for the Markov chain and solve for the long-
run probability that the integrated inventory system with one supplier is in state X = (I1, I2) (i.e.,
Pi j). We present the long-run probabilities in Equations (D.1.23)-(D.1.30).

P(S1+1)(S2+1) =
µ

µ +λ
(D.1.23)

PS1S2 =

(
µ

µ +λ

)(
λ

µ +q1 +q2

)
(D.1.24)

PS1 j =

(
q2

µ +q1 +q2

)S2− j(
µ

µ +λ

)(
λ

µ +q1 +q2

)
; j = 0,1, ...,S2 −1 (D.1.25)

PiS2 =

(
q1

µ +q1 +q2

)S1−i(
µ

µ +λ

)(
λ

µ +q1 +q2

)
; i = 0,1, ...,S1 −1 (D.1.26)

Pi j =

(
S1 − i+S2 − j

S1 − i

)(
q1

µ +q1 +q2

)S1−i( q2

µ +q1 +q2

)S2− j(
µ

µ +λ

)(
λ

µ +q1 +q2

)
;

i = 1,2, ...,S1 −1, j = 1,2, ...,S2 −1 (D.1.27)

Pi0 =
S1−i

∑
k=0

((
S2 + k−1

k

)(
q1 +q2

µ +q1 +q2

)S1−i−k( q2

µ +q1 +q2

)S2
(

q1

µ +q1 +q2

)k(
µ

µ +λ

)(
λ

µ +q1 +q2

))
;

i = 1,2, ...,S1 −1 (D.1.28)

P0 j =
S2− j

∑
k=0

((
S1 + k−1

k

)(
q1 +q2

µ +q1 +q2

)S2− j−k( q1

µ +q1 +q2

)S1
(

q2

µ +q1 +q2

)k(
µ

µ +λ

)(
λ

µ +q1 +q2

))
;

j = 1,2, ...,S2 −1 (D.1.29)

P00 =

(
q1 +q2

µ

)(
P01 +P10

)
(D.1.30)
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D.1.4.2 Expected Cost Per Day (One Supplier Integrated)

Using the cost parameters (see Table 5.2) and the long-run probability that the inventory system is
in state X = (I1 = i, I2 = j) (i.e., Pi j; see Equations (D.1.23)-(D.1.30)), we have the expected cost
per day for the two-HNP integrated inventory system with one supplier (i.e., 2H1S) as presented
in Equation (D.1.31).

E[cost per day]2H1S =

Holding Cost Only︷ ︸︸ ︷
(h1S1 +h2S2)P(S1+1)(S2+1)+

S1

∑
i=1

S2

∑
j=1

(h1i+h2 j)Pi j

+

Holding and t12 Cost︷ ︸︸ ︷
S1

∑
i=1

(
h1i+ t12q2

)
Pi0+

Holding and t21 Cost︷ ︸︸ ︷
S2

∑
j=1

(
h2 j+ t21q1

)
P0 j

+

Shortage Cost Only︷ ︸︸ ︷
b(q1 +q2)P00

(D.1.31)

D.1.4.3 Optimal Order-up-to Levels (One Supplier Integrated)

We exhaustively calculate the expected cost per day for all feasible integer order-up-to level com-
binations (S1,S2): S1 ∈ [S1(min),S1(max)] and S2 ∈ [S2(min),S2(max)]. Sk(min) and Sk(max) are bounds
that denote the minimum and maximum order-up-to level for HNP k, respectively. In Appendix
D.1.2.5, we illustrate how to strategically select S1(min), S1(max), S2(min), and S2(max). We select
(S∗1,S

∗
2) corresponding to the solution with the smallest expected cost per day.

D.1.5 Perishable Integrated Inventory System with One Supplier

In Appendix D.1.3, we describe how to extend the non-perishable non-integrated inventory system
to a perishable inventory system using a perishability condition. A one supplier system implies that
when supply is never disrupted at one HNP (recall we condition on supply never being disrupted
when establishing the perishability condition), supply is also never disrupted at the second HNP
since they have the same supplier. As a result, the probability that drugs are wasted only depends
on the individual HNP’s order-up-to level like the non-integrated inventory system. Hence, we can
enforce the perishability condition as described in Appendix D.1.3.3.

D.2 Evaluating the Accuracy of the Approximate Model

We proceed to evaluate the accuracy of the Two Supplier Integrated (Approximate Model) inven-
tory system.
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D.2.1 Evaluating the Accuracy with the Expected Cost Per Day

We first evaluate the accuracy of the two-HNP integrated approximate model with two independent
suppliers using the expected cost per day for the non-perishable integrated inventory system. We
consider all input parameter combinations presented in (i) demonstrating when it is beneficial to
allow two HNPs with independent suppliers experiencing supply chain disruptions to share inven-
tory (in Section 5.5.1 Figure 5.5) and all input parameter combinations presented in (ii) providing
insights on how the supply chain disruption characteristics of the two HNPs influence whether it
is beneficial to share inventory (in Section 5.5.2 Figure 5.6). However, to ensure that the system of
equations with the two-HNP integrated exact model is computationally possible in an appropriate
amount of time, we multiply all costs by q1 = q2 = 45 (i.e., h1,h2, t12, t21,b) and simply consider
a daily demand rate of q′1 = q′2 = 1. Since we convert the input parameters, it is important to keep
in mind that the true order-up-to levels are S∗1(true) = 45 · S∗1 and S∗2(true) = 45 · S∗2. However, we
highlight that these order-up-to levels are not exact since we are “batching" the demand, and hence,
reducing the variance of the demand as it follows a Poisson distribution (i.e., variance equals the
demand rate; Kulkarni, 2011).

With these modified input parameter combinations, we first solve for the non-perishable opti-
mal order-up-to levels (S∗1,S

∗
2) using the two-HNP integrated approximate model. We record the

expected cost per day for this (S∗1,S
∗
2) integrated inventory policy when using the approximate

model. Then, we use this same (S∗1,S
∗
2) policy and calculate the expected cost per day when using

the system of equations for the exact model. We find comparable results (difference in expected
total cost per day ≤ 2.6%) supporting that the approximate model achieves high accuracy.

Above, we consider a daily demand rate of q′1 = q′2 = 1 to ensure that the system of equations
with the two-HNP integrated exact model is computationally possible in an appropriate amount
of time. To further validate the approximate model, we consider the original base case input
parameters (see Table 5.4; in Section 5.5) with µ1 = µ2 = 1

30 [µ1 = µ2 = 1
90 ]. We solve for the

optimal order-up-to levels with the two-HNP perishable integrated approximate model which leads
to S∗1 = S∗2 = 2,666 [S∗1 = S∗2 = 3,952]. The approximate model calculates that the expected cost
per day is $171.76 [$603.06]. These optimal order-up-to levels are far too large to calculate the
expected cost per day with the exact model in an appropriate amount of time. Instead, we simulate
the two-HNP non-perishable integrated inventory system (1,000 simulation replications, warm-up
period of 500 days, planning horizon of 10,000 days; since the input parameters for both HNPs
are equivalent, these simulation parameters ensure the difference ≤ 2.5% with respect to each cost
component). We find an expected cost per day of $173.23 [$615.38]. Therefore, the approximate
model calculates an expected cost per day that is only 1% different [2% different] than the ex-
pected cost per day with the simulation model. This again supports that the approximate model
achieves high accuracy. We highlight that we consider a simulation model of the non-perishable
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inventory system when evaluating the accuracy of the approximate model because the closed-form
expressions for the approximate model are derived for a non-perishable inventory system.

D.2.2 Evaluating the Accuracy with the Order-up-to Levels

We second evaluate the accuracy of the two-HNP integrated approximate model with two inde-
pendent suppliers using the optimal order-up-to levels for the non-perishable integrated inventory
system. We consider the input parameter combinations presented in (i) demonstrating when it is
beneficial to allow two HNPs with independent suppliers experiencing supply chain disruptions to
share inventory (in Section 5.5.1 Figure 5.5) and the input parameter combinations presented in (ii)
providing insights on how the supply chain disruption characteristics of the two HNPs influence
whether it is beneficial to share inventory (in Section 5.5.2 Figure 5.6). However, to ensure that
the system of equations with the two-HNP integrated exact model is computationally possible in
an appropriate amount of time, we multiply all costs by q1 = q2 = 45 (i.e., h1,h2, t12, t21,b) and
simply consider a daily demand rate of q′1 = q′2 = 1. Furthermore, to ensure that the exhaustive
search runs in an appropriate amount of time, we only consider cases where the approximate model
solves for order-up-to levels ≤ 100 (i.e., S∗1 ≤ 100 and S∗2 ≤ 100) and we consider increments of 5
for the exhaustive search.

With the modified input parameter combinations, we first solve for the non-perishable optimal
order-up-to levels (S∗1,S

∗
2) using the two-HNP integrated exact model and calculate the expected

cost per day when using the exact model. Second, we solve for the optimal order-up-to levels
(S∗1,S

∗
2) using the two-HNP integrated approximate model, but calculate the expected cost per day

when using the exact model. We find comparable results (difference in expected total cost per day
≤ 0.2%) supporting that the approximate model achieves high accuracy.

D.3 Numerical Analysis Explanations

In Section 5.5 of Chapter 5, we complete a numerical analysis where we study a two-HNP in-
ventory system. We proceed to present details regarding the sensitivity of t∗ for a broad range
of disruption and recovery rates, an instance where a HNP can be “worse-off", and additional
takeaways.
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D.3.1 Numerical Analysis: Sensitivity of t∗ for a Broad Range of Disruption
and Recovery Rates

In Section 5.5.1 of Chapter 5, the most interesting finding is that (d) it is not always beneficial
to operate as an integrated inventory system given the cost of a lateral transshipment is less than
the cost of a shortage for a two-HNP inventory system with independent suppliers. Instead, there
exists a lateral transshipment cost t∗ ≤ b such that it becomes optimal to operate as a non-integrated
inventory system given t12 = t21. This t∗ may be strictly less than b. Using the base case input
parameters (see Table 5.4; in Section 5.5), we study the sensitivity of t∗ for varying disruption
and recovery rate combinations. Furthermore, due to the difficulty in selecting the disruption rate
and recovery rate, we study an even broader range than those presented in Table 5.4 (in Section
5.5). We consider varying disruption rates such that λ1 = λ2 ∈ [0.001,0.1]; expected time between
supply chain disruptions within 10-1000 days. We consider varying recovery rates such that µ1 =

µ2 ∈ [0.001,0.1]; expected supply chain disruption durations within 10-1000 days. When finding
the value of t∗, we consider t∗ in increments of $2.50.

Figure D3 illustrates the results where for generalizability, we present the dimensionless value
t∗
b . The value t∗

b represents the ratio of the lateral transshipment cost such that it becomes optimal
to operate as a non-integrated inventory system given t12 = t21 to the shortage cost. We find that
(a) the value of t∗ is largely influenced by the disruption rate and recovery rate (i.e., supply chain
disruption parameters). More specifically, when λ1 = λ2 and µ1 = µ2, t∗ decreases as the long-run
probability that the supply chain is disrupted increases. We also find that (b) regardless of the
disruption and recovery rate combination, we reach the same conclusion that the lateral transship-
ment cost must be sufficiently less than the cost of a shortage for it to be beneficial to operate as
an integrated inventory system.

$∗
%

Very large long-run 
probability that the 

supply chain is 
disrupted

Very small long-run 
probability that the 

supply chain is 
disrupted

Figure D3: Results for the sensitivity of t∗.
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D.3.2 Numerical Analysis: “Worse-Off" Example

In Section 5.5.2 of Chapter 5, the final interesting finding is that (d) when selecting a partner
HNP, it is critical to consider the disruption rate and recovery rate of the partner HNP. It is also
worth noting that as the long-run probability that the supply chain is disrupted increases, there
are instances where failing to consider the disruption rate and recovery rate of the partner HNP
can cause one HNP to be “worse-off". In Figure D4, we present the Two Supplier Integrated
Perishable (Approximate Model) and Non-Integrated Perishable inventory systems with the base
case input parameters (see Table 5.4; in Section 5.5), but varying disruption and recovery rates at
HNP 1 and HNP 2. For all instances in Figure D4, the long-run probability that the supply chain
is not disrupted is µk

λk+µk
= 3

7 = 0.43 for k = 1,2. With the base case input parameters, we want
to emphasize that t12 = t21 = $12.50 is sufficiently less than the cost of a shortage b = $50 for
all disruption and recovery rate combinations in this analysis to result in cost savings when using
the integrated inventory system (see result (d) in Section 5.5.1). We provide the expected total,
lateral transshipment, holding cost at HNP 1, holding cost at HNP 2, shortage cost at HNP 1, and
shortage cost at HNP 2 per day. We also present the probability that drugs are wasted given supply
is never disrupted at each respective HNP and the optimal perishable order-up-to levels (S∗1,S

∗
2) at

each HNP.
In Figure D4, consider when we have long expected disruption durations at one HNP (e.g.,

µ1 = 0.01; 1
µ1

= 100 days; see x-axis) in comparison to the second HNP (e.g., µ2 = 0.1; 1
µ2

= 10
days; see triangular curves). The results illustrate that the second HNP has a larger order-up-to
level for the integrated inventory system in comparison to the non-integrated inventory system (see
second row fifth column). Even worse, the second HNP has a larger expected shortage cost (i.e.,
expected shortage cost almost doubles; second row third column). The first HNP reaps benefits
(i.e., expected shortage cost with the integrated inventory system is about 4% the shortage cost
of the non-integrated inventory system; see first row third column). But, the results illustrate that
HNPs need to take into consideration the disruption rate and recovery rate of the partner HNP’s
supplier before deciding if it is beneficial to operate as an integrated inventory system.
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Figure D4: Results for “worse-off" example.

D.3.3 Numerical Analysis: Additional Takeaways

We proceed to present additional takeaways from the numerical analysis. In Appendix D.3.3.1,
we provide the expected total, holding, shortage, and lateral transshipment cost per day. We also
present the probability that drugs are wasted given supply is never disrupted at each respective
HNP and the optimal perishable order-up-to levels (S∗1,S

∗
2) at each HNP. In Appendix D.3.3.2, we

summarize the results in tables.

D.3.3.1 (T1) Two Independent Suppliers versus One Supplier

We illustrate the difference between two independent suppliers and one supplier. In Figure D5,
we present the Two Supplier Integrated Perishable (Approximate Model), One Supplier Integrated
Perishable, and Non-Integrated Perishable inventory systems with the base case input parameters
(see Table 5.4; in Section 5.5), but we multiply all costs by q1 = q2 = 45 (i.e., h1,h2, t12, t21,b) and
simply consider a daily demand rate of q′1 = q′2 = 1 to reduce the time of the exhaustive search
for the One Supplier Integrated Perishable inventory system. We also consider varying disruption
rates λ = λ1 = λ2 such that λ = 1

3 µ where µ = µ1 = µ2. By setting λ = 1
3 µ , all combinations

have the same long-run probability that the supply chain is not disrupted (i.e., µ

λ+µ
= 0.75). Also,

all combinations correspond to expected disruption durations (i.e., down time) that are shorter than
the expected time until a disruption given the supply chain is currently not disrupted (i.e., up time).

With the modified base case input parameters, we want to emphasize that t12 = t21 = $12.50(45)
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is sufficiently less than the cost of a shortage b = $50(45) for all disruption and recovery rate
combinations in this analysis to result in cost savings when using the integrated inventory system
with two independent suppliers (see result (d) in Section 5.5.1). We find that (a) the greatest
benefit of an integrated inventory system is seen with two independent suppliers, as opposed to
one supplier. In Figure D5, the Two Supplier Integrated Perishable inventory system (see black
circular curves) falls below the One Supplier Integrated Perishable inventory system (see blue
triangular curves) for the expected total cost (see row 1 column 1). When comparing the One
Supplier Integrated Perishable inventory system (see blue triangular curves) to the Non-Integrated
Perishable inventory system (see red square-shaped curves), we find that (b) partnering with a
HNP with the same supplier provides negligible to no benefit. This implies that hospital pharmacy
managers should focus on drugs that provide the opportunity to partner with a HNP that has a
supplier independent of it’s own supplier.

Figure D5: Results for two independent suppliers versus one supplier.

D.3.3.2 (T2) Hoarding Inventory when Both Suppliers are Disrupted

In the Two Supplier Integrated Perishable inventory system, we assume that the HNPs participate in
lateral transshipments when one HNP has zero inventory on-hand, and the other HNP has positive
inventory on-hand. This implies that these lateral transshipments are even possible when both
suppliers are disrupted. We are interested in gaining a better understanding of what happens when
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HNPs hoard inventory (i.e., do not participate in lateral transshipments when both suppliers are
disrupted). For the analysis, we consider the base case input parameters (see Table 5.4; in Section
5.5), but we multiply all costs by q1 = q2 = 45 (i.e., h1,h2, t12, t21,b) and simply consider a daily
demand rate of q′1 = q′2 = 1 to reduce the run time of the simulation models. Even the modified
parameters require a large run time and number of simulation replications (defined later) to ensure
that both HNPs have similar holding, lateral transshipment, and shortage costs (difference ≤ 2.5%
with respect to each cost component) which is required for model stability given the two HNPs
have equivalent input parameters.

With the modified base case parameters, we first solve for the optimal perishable order-up-to
levels using the Two Supplier Integrated (Approximate Model). We find (S∗1,S

∗
2) = (60,60) when

µ1 = µ2 =
1

30 and (S∗1,S
∗
2) = (76,76) when µ1 = µ2 =

1
90 . For both sets of inventory policies, we

use the respective recovery rate and we simulate a Two Supplier Integrated Perishable inventory
system (i.e., always allow lateral transshipments), Hoarding Two Supplier Integrated Perishable
inventory system (i.e., no lateral transshipments when both suppliers are disrupted), and Non-
Integrated Perishable inventory system (i.e., no lateral transshipments). For all simulation models,
we consider 1,000 simulation replications, a warm-up period of 500 days, and a planning horizon
of 10,000 days. We present the expected costs (E[T ]: expected total cost, E[H]: expected holding
cost, E[LT ]: expected lateral transshipment cost, E[S]: expected shortage cost) for the three sim-
ulation models in Table D1 and Table D2 for µ1 = µ2 =

1
30 and µ1 = µ2 =

1
90 , respectively. We

normalize these costs with respect to the Two Supplier Integrated Perishable inventory system.
The results in Table D1 consider µ1 = µ2 = 1

30 which is the base case that does not require
the perishability condition to be enforced. The results illustrate that (a) the Hoarding Two Sup-
plier Integrated Perishable inventory system (i.e., no lateral transshipments when both suppliers
are disrupted) can cause 2.4 times the number of shortages in comparison to the Two Supplier
Integrated Perishable inventory system (i.e., always allows lateral transshipments). We also find
that (b) the Non-Integrated Perishable inventory system can lead to 9.4 times the number of short-
ages in comparison to the Two Supplier Integrated Perishable inventory system that always allows
lateral transshipments emphasizing the benefit of integration.

Table D1 Hoarding inventory analysis for µ1 = µ2 =
1

30 .
Model S∗1 S∗2 E[T ] E[H] E[LT ] E[S]
Two Supplier Integrated Perishable 60 60 1.0 1.0 1.0 1.0
Hoarding Two Supplier Integrated Perishable 60 60 1.1 1.0 0.8 2.4
Non-Integrated Perishable 60 60 1.6 1.0 0 9.4

The results in Table D2 consider µ1 = µ2 = 1
90 which is the base case that requires the per-

ishability condition to be enforced. The results illustrate that (a) the Hoarding Two Supplier
Integrated Perishable inventory system (i.e., no lateral transshipments when both suppliers are
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disrupted) can cause 1.2 times the number of shortages in comparison to the Two Supplier Inte-
grated Perishable inventory system (i.e., always allows lateral transshipments). We also find that
(b) the Non-Integrated Perishable inventory system can lead to 2.5 times the number of shortages in
comparison to the Two Supplier Integrated Perishable inventory system that always allows lateral
transshipments again emphasizing the benefit of integration.

Table D2 Hoarding inventory analysis for µ1 = µ2 =
1

90 .
Model S∗1 S∗2 E[T ] E[H] E[LT ] E[S]
Two Supplier Integrated Perishable 76 76 1.0 1.0 1.0 1.0
Hoarding Two Supplier Integrated Perishable 76 76 1.1 1.0 0.7 1.2
Non-Integrated Perishable 76 76 1.6 1.0 0 2.5
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