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Abstract 

 

Dementia affects approximately 1 in 10 persons aged 65 years and older in the U.S., and 

African Americans (AA) are more likely to develop dementia compared to European Americans 

(EA). However, the underlying molecular mechanisms and impact of their interactions with 

socio-contextual risk factors on cognitive function and brain structures in AA are not fully 

understood. This dissertation examines the molecular effects of genetic, epigenetic, and 

transcriptomic markers, as well as socio-contextual determinants of health, on cognitive function 

and white matter hyperintensity (WMH) prior to dementia onset in a well-curated cohort of older 

AA from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. In Aim 1, we 

investigated whether single nucleotide polymorphisms (SNPs), epigenetic variants, and/or their 

interactions in the ABCA7 gene region, which was previously associated with Alzheimer’s 

Disease (AD) in AA, are associated with general cognitive function in cognitively normal older 

AA. Although ABCA7 sentinel SNPs and CpG sites were not associated with general cognitive 

function, we did see evidence of SNP-by-CpG interactions. We found that rs3764647 and 

rs115550680 may regulate the effects of DNA methylation (DNAm) on cognitive function. As 

such, while AD risk SNPs in ABCA7 were not associated with cognitive function in this sample, 

DNAm at local CpGs may influence cognitive function in people with specific ABCA7 

genotypes. In Aim 2, we assessed whether DNAm from peripheral blood leucocytes mediates the 

relationships between neighborhood characteristics and cognitive function/WMH in cognitively 

healthy AA, using high-dimensional mediation methods. For a 1-mile buffer around a 

participant’s residence, each additional fast-food destination or unfavorable food store with 



 

 xvii 

alcohol per square mile was associated with 0.05 (p=0.04) and 0.04 (p=0.04) second 

improvements in visual conceptual tracking score, respectively. Also, each additional alcohol 

drinking place per square mile was associated with a 0.62 word increase in delayed recall score 

(p=0.03), indicating better memory function. Although the presence of these destinations 

encourages unhealthy diet and behaviors, they may provide meeting places for community 

members that allow for greater interaction and stimulation of cognitive health. In this study, there 

was no evidence that DNAm mediated the observed associations between neighborhood 

characteristics and cognitive function. Further examination of the pathways between 

neighborhood characteristics and cognitive function/WMH may allow for development of 

behavioral, infrastructural, and pharmaceutical interventions to facilitate healthy brain aging in 

older AA. In Aim 3, we conducted a multi-ancestry transcriptome wide association study 

(TWAS) that leveraged gene expression data collected from EA and AA in GENOA, through a 

joint likelihood-based inference framework, to identify genes associated with general cognitive 

function, WMH, and AD. After fine-mapping within genomic regions, we identified 266, 23, and 

69 genes associated with general cognitive function, WMH, and AD, respectively (Bonferroni-

corrected alpha level =P<2.9x10-6). These genes were enriched for innate immunity, vascular 

dysfunction, and neuroinflammation. The WMH and AD TWAS also indicated that 

downregulation of ICA1L may contribute to overlapping AD and vascular dementia (VaD) 

neuropathology. To our knowledge, this study is the first TWAS of cognitive function and 

neurocognitive disorders that used expression mapping studies in multiple ancestries. This work 

may expand TWAS studies beyond a single ancestry group to identify gene targets for 

pharmaceutical or preventative treatment for dementia. Together, these studies advance 
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knowledge of the relationships between multi-omic mechanisms and socio-contextual factors 

that contribute to neurocognitive outcomes and structural brain measures in older AA.  
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Chapter 1 . Introduction 

 

1.1 Overview 

Adult-onset dementia consists of a group of neurocognitive disorders caused by abnormal 

brain changes that result in a gradual and irreversible loss of neurons and brain functions. These 

brain changes may lead to the loss of memory, language, problem-solving and other cognitive 

functions, impacting an individual’s daily life and independence.1 Approximately one-third of 

adults aged 85 and older have some form of dementia. Although dementia is more common 

among older people, it is not a normal part of aging. Currently, there are approximately 55 

million people diagnosed with dementia. As the proportion of older people worldwide increases, 

this prevalence is expected to rise to 78 million by 2030 and 139 million by 2050.1,2  

Alzheimer’s disease (AD) accounts for 60-80% of late-onset dementia cases. Other less-

common forms of dementia include vascular dementia (VaD; 5-10%), Lewy body dementia (5-

10%), frontotemporal dementia (5-10%), Huntington’s and Parkinson’s-related dementias and 

mixed dementia.3 These forms of dementia are often difficult to distinguish from AD because 

they share many pathological features and cognitive symptoms. Notably, VaD often co-occurs 

with AD and is underdiagnosed.4–6 Both AD and VaD are characterized by noticeable cognitive 

impairment in areas of episodic and semantic memory, as well as executive function. However, 

AD also shows aggregation of amyloid-beta protein and neurofibrillary tangles in brain tissue 

that may precede the illness by 10-20 years,7,8 while VaD may be caused by reduced blood flow 
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to the brain as a result of small vessel disease (SVD) or following one or more strokes, and is 

commonly seen in hypertensive patients.9 Since VaD and AD often coexist, it has been 

hypothesized that vascular changes and other brain abnormalities may interact in ways that 

increase the likelihood of cognitive impairment. A further challenge in the field is distinguishing 

between individuals who are aging normally from those aging pathologically with multiple forms 

of dementia. 

 A greater understanding of the pathological cascade of events that influence cognitive 

function and lead to cognitive decline in older adults is critical for early intervention during the 

long preclinical or prodromal phase prior to dementia onset.10,11 Biological pathways related to 

lipid metabolism, inflammation and immune function have been linked to cognitive decline and 

preclinical AD.12,13 Additionally, genetic factors have a strong influence on cognition and 

dementia. Cognitive ability is highly heritable (from 55% in adolescence to 66% in young 

adulthood in twin studies)14 and hundreds of genetic loci are associated with individual 

differences in cognitive ability,15,16 including a handful that have been previously associated with 

AD.15,16 However, identifying biological pathways associated with cognition has proven 

challenging, in part because many identified genetic loci are located within intergenic non-

coding regions15 which do not directly code for proteins. Through advances in high-throughput 

technologies and the integration of multi-omic studies, we can better understand downstream 

pathways and how they interact with the environment to affect dementia17 and cognitive 

pathologies.18,19 

Although the primary risk factor for late-onset dementia is age, there are significant 

disparities in incidence and prevalence by race and ethnicity.20–22 Several studies have found that 

African Americans (AA) have a greater burden of and risk for developing dementia compared to 
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Non-Hispanic Whites (NHW).21,23–25 On average, AA perform lower than their white 

counterparts on cognitive tests, have higher prevalence of AD, and have higher incident risk of 

AD.26 Cognitive function in AA is especially important to study during the preclinical period 

because unique combinations of socio-contextual or genetic exposures may influence the 

biological mechanisms that underlie racial/ethnic health disparities. For example, these 

differences in cognitive performance, cognitive reserve and AD risk in AA may in part be caused 

by racial disparities in education (amount and quality), access to material and social resources, 

exposure to discrimination, and exposure to neurotoxicants.27,28 Potential biological mediators 

for these social influences on health disparities include plasma biomarkers,29 genomic risk 

factors,12,30–32 and the influences of epigenomic33 and transcriptomic factors.34 Further, dementia 

research has mainly focused on diagnosis, mechanisms, as well as management and treatment of 

disease among NHW. As such, the lack of biological and epidemiologic research among AA 

poses a barrier to understanding how cognitive aging and the development of dementia differ in 

racial and ethnic minorities, particularly in the AA population. Given the multifactorial and 

complex nature of cognitive decline preceding dementia, it is important to integrate multi-omic 

layers of data to better understand these disparities. This may allow the identification of targets 

for intervention and treatment, especially in populations that are most at risk.35  

 

1.2 Specific Aims 

In this dissertation, we will characterize the potential molecular effects of genetic, 

epigenetic, and transcriptomic markers, as well as socio-contextual determinants of health, on 

cognition and white matter hyperintensity (WMH) prior to dementia onset in a well-curated 

cohort of older AA adults from the Genetic Epidemiology Network of Arteriopathy (GENOA) 
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study. GENOA is one of the few studies to combine genetic, DNA methylation, and gene 

expression data with rich measures of socio-environmental context, cognitive function, and brain 

structure in a large cohort of AA. GENOA has both cross-sectional and longitudinal data (Phase 

I: 1995-2000, Phase II: 2000-2004, and several ancillary studies thereafter).36  

Specifically, we will investigate whether single nucleotide polymorphisms (SNPs), 

epigenetic variants (CpGs) and/or their interactions in the ABCA7 gene region, which was 

previously associated with AD in AAs, are associated with general cognitive function in 

cognitively normal older AAs (Aim 1). Next, we will investigate whether CpGs mediate the 

association between socio-contextual factors and cognitive/WMH outcomes in the same cohort 

of cognitively normal older AAs (Aim 2). Lastly, we will examine gene-trait associations for 

general cognitive function, WMH and AD to understand underlying transcriptomic mechanisms 

using multi-ancestry data from European Americans (EA) and AA (Aim 3). Our findings will 

assist in the ongoing efforts to better understand the etiological precursors of dementia and their 

impact on socioeconomic and racial/ethnic health disparities.  
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Figure 1-1. Conceptual model of three aims in GENOA. Arrows refer to mechanistic 

pathways in Aim 1 (green), Aim 2 (blue), and Aim 3 (yellow). 

 

 

1.2.1 Aim 1 

The ABCA7 gene confers the largest genetic risk for AD in AA after the apolipoprotein E 

(APOE) ε4 allele.37,38 However, the relationship between ABCA7 and cognitive function has not 

been thoroughly examined. This aim will investigate whether previously identified AD risk 

SNPs in ABCA7, DNA methylation at CpG sites in ABCA7 measured in peripheral blood 

leukocytes, and their interactions are associated with general cognitive function in 634 GENOA 

AA without dementia. To understand the potential functional consequences of our findings at the 

molecular level, we will also evaluate whether identified SNPs or CpGs are also associated with 

ABCA7 gene expression from transformed beta lymphocytes in the same cohort. Studying the 

relationship between SNPs and CpGs in ABCA7 and cognition may illuminate the role of ABCA7 
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in cognitive aging preceding AD. To our knowledge, this study will be the first assessment of the 

associations and interactions between DNA methylation and genetic risk factors in ABCA7 on 

cognition in AA without dementia. Investigating the interplay of multi-omic markers and later-

life cognition may help us characterize the underlying genetic architecture of cognition in older 

adults preceding dementia. It may also allow us to identify targets for intervention and treatment 

in AA, a population at high risk for AD and dementia. 

 

Aim 1: To examine whether genetic and epigenetic variations in the ABCA7 gene region, and/or 

their interactions, are associated with general cognitive function in older African Americans. 

Hypothesis 1: We hypothesize that a number of SNPs in ABCA7, DNA methylation sites in 

ABCA7, and their interactions are associated with general cognitive function in older AA from 

the GENOA study.  

 

 

1.2.2 Aim 2 

To date, there are no treatments to prevent cognitive impairment or slow cognitive 

decline prior to onset of dementia. However, treating vascular risk factors, improving diet, and 

engaging in cognitively stimulating activities and environments may delay cognitive 

impairment.39–41 In addition to individual health behaviors, socio-contextual factors such as low 

neighborhood socioeconomic status (SES), the presence of racial segregation, and low 

availability of healthy food, recreation, and social engagement are significant predictors of 

worsening cognitive health and increased susceptibility to dementia.41 DNA methylation is 

associated with both cognitive function and WMH, as well as neighborhood-level disadvantage 

indicators; however, little is known about the role of DNA methylation in mediating the 
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associations between neighborhood-level factors and cognitive function or WMH. The few 

studies that have been conducted in this area focus primarily on EA and/or those with dementia, 

so additional research is needed to examine these pathways in other racial/ethnic groups and 

those without dementia. 

In Aim 2, we will examine whether neighborhood-level factors (e.g., summary 

neighborhood SES as assessed by Census data and the densities of available healthy food, 

recreation, and social engagement) are associated with cognitive function and WMH in older AA 

without dementia. For significant associations, we will conduct epigenome-wide mediation 

analysis to identify CpG sites mediating the relationship between neighborhood factors and 

cognitive function/WMH using the Sobel-Comp method that assesses sparse mediation effects 

under the composite null hypothesis. Investigating DNA methylation as a mediator between 

neighborhood factors and cognitive function/WMH may help us understand potential underlying 

epigenetic pathways influencing cognitive function in older adults prior to the onset of dementia. 

 

Aim 2: To examine whether DNA methylation in peripheral blood leukocytes mediates the 

relationship between neighborhood-level factors and cognitive function or white matter 

hyperintensity in older African Americans. 

Hypothesis 2: We hypothesize that associations of neighborhood-level socio-contextual factors 

with cognitive function and/or WMH are partially mediated by DNA methylation levels in older 

AA from the GENOA study. 

 

1.2.3 Aim 3 

 



 

 8 

Genome-wide association studies (GWAS) have identified thousands of genetic variants 

associated with complex traits and diseases. However, GWAS results are difficult to interpret 

functionally because many potential causal variants may be located in non-coding regions, and 

their associations with health-related traits may be obscured by other variants in linkage 

disequilibrium (LD).42,43 Transcriptome-wide association studies (TWAS) can be utilized to 

elucidate transcriptomic mechanisms underlying disease etiology by integrating GWAS with 

expression mapping studies. However, to date, TWAS methods have predominantly been 

performed in a single ancestry, typically EA, and few TWAS have focused on cognitive function 

or structural brain measures. Due to differences in allele frequencies LD patterns across different 

ancestries, genetically regulated gene expression (GReX) patterns may vary across populations 

of EA and AA. As a result, expression could thus impede TWAS effectiveness. Further, previous 

TWAS methods have not able to take advantage of recent expression quantitative trait loci 

(eQTL) studies conducted in different ancestries. As such, a powerful TWAS method that 

leverages data from different ancestries is important for identifying gene-trait associations. 

In this aim, we will conduct a TWAS to identify genes associated with general cognitive 

function, WMH and AD, using gene expression data from both AA and EA adults. We will 

utilize a newly developed computational TWAS method, the Multi-ancEstry TRanscriptOme-

wide analysis (METRO),44 to leverage recent eQTL studies performed in multiple genetic 

ancestries (N=801 EA and N=1,032 AA individuals from GENOA) and summary statistics from 

large GWAS studies in EA. We will construct expression prediction models in these ancestries to 

capture the distinct genetic architectures underlying gene expression in each ancestry, which will 

provide complementary information to improve TWAS effectiveness in AA. Using METRO, we 

will apply a joint likelihood-based inference framework to leverage association evidence across 



 

 9 

the EA and AA ancestries to increase TWAS power to better understand gene-trait associations 

in AA. This will allow us to both harness the power of using multiple ancestries as well as 

interrogate ancestry-dependent transcriptomic mechanisms underlying genetic associations with 

general cognitive function, WMH and AD.44   

 

Aim 3: To conduct a transcriptome-wide association study (TWAS) using the Multi-ancEstry 

TRanscriptOme-wide analysis (METRO) to identify genes associated with cognitive function, 

white matter hyperintensity and Alzheimer’s disease in older African Americans. 

Hypothesis 3: We hypothesize that a number of genes will be significantly associated with 

general cognitive function, WMH and/or AD, and that there will be overlapping genes and 

biological pathways between the three traits/diseases. 

 

1.3 Background 

1.3.1 Preclinical dementia and the dementia continuum 

The progression from normal cognitive function to dementia can last many years and is 

affected by multiple risk factors including age, sex, education, cardiovascular disease, socio-

contextual factors (e.g., neighborhood conditions), and genetics. The pathophysiological process 

is thought to begin decades7,8 prior to dementia diagnosis and is characterized by noticeable 

cognitive impairment and decline.45,46 The distinction between preclinical (asymptomatic) and 

early clinical (symptomatic) disease is subtle, with symptoms emerging gradually over time. 

Individuals with preclinical dementia exhibit longitudinal decline on cognitive tests, even in the 

absence of clinically significant symptoms.11,47–49 Clinical diagnosis is also difficult due to the 



 

 10 

spectrum of symptom presentation in those with dementia. Currently, dementia is screened for 

using a brief assessment such as the Mini-Mental State Exam (MMSE),50 and diagnosis requires 

impairment in at least two cognitive domains measured using a neuropsychological test battery. 

Since dementia is generally diagnosed by cognitive test performance below a specific threshold, 

investigating general cognitive function and age-related cognitive impairment prior to meeting 

the diagnostic threshold is important in understanding etiology and disparities in dementia risk 

which may inform interventions and therapeutics that could prevent disease progression can be 

developed.51 

1.3.2 Cognitive function and brain structure 

A. General cognitive function 

Cognitive function refers to the action of knowing and processing information. It affects 

every individual throughout their life course and has the potential to influence the development 

of different important life outcomes.52,53 Cognitive function has been shown to positively predict 

socioeconomic status,54 educational achievement,55 occupational status, job performance,56 mate-

choice,57 life-expectancy58–60 and dementia.61 Conversely, studies have found lower cognitive 

performance to be strongly associated with both subsequent dementia and mortality.62 

Considering that individuals with higher measured general cognitive function tend to live longer 

and healthier lives, retaining high cognitive function in late adulthood is an important aspect of 

healthy aging.  

 There are socioeconomic and racial/ethnic disparities in cognitive function prior to 

dementia onset.63,64 Several studies have shown that AA are at increased risk for mild cognitive 

impairment (MCI)65,66 and conversion from MCI to AD, compared to NHW.66 In cross-sectional 

studies of cognitive function, AA had lower cognitive test scores than NHW on various cognitive 
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measures across multiple cognitive domains.67 Differences in cognitive test performance 

between AA and NHW may be due to methodological and sampling challenges in study design, 

but also due to differences in the burden of risk factors (e.g., socioeconomic status, stress, etc.) 

over the life course associated with increased incidence and progression of cognitive impairment. 

Considering that many risk factors may culminate and interact over the life course to contribute 

to cognitive impairment and decline, it is critical to understand the impact and interplay of such 

risk factors within AA populations to develop strategies to modify and mitigate dementia risk 

and burden. 

Dementia typically results from decreased cognitive function over time. Thus, 

longitudinal studies that show within-individual cognitive decline over time, where participants 

serve as their own controls, are key in characterizing cognitive aging and its disparities. While 

there are consistent cross-sectional differences in dementia risk and cognitive test performance 

among AA and NHW, there are mixed results for cognitive decline. Some studies have shown 

that the rate of decline among blacks on tests of executive function is slower than in NHW.63,67–70 

Also NHW performed higher on cognitive tests but had faster rates of cognitive decline.26 

However, others found no difference in rates of cognitive decline at all.68,71,72 Such findings in 

the literature may be explained by differences in cognitive reserve caused by racial disparities 

over the lifespan. Reserve-building opportunities, such as high educational attainment,73,74 

increased occupational complexity75 and engagement in mentally stimulating leisure activities,76 

may slow cognitive decline through learned skills and behavioral patterns that are protective 

from age-related damage in the brain. These markers of cognitive reserve are also indicative of 

socioeconomic status, which is strongly associated with race and ethnicity.27 In addition, other 

socio-contextual factors, such as the presence of racial discrimination, low healthcare utilization 
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and exposure to environmental neurotoxicants, have also been shown to be associated with 

cognitive decline.77–79 Potential racial disparities in access to reserve-building opportunities may 

underlie observed racial disparities in rates of cognitive decline. However, inconsistencies across 

studies in associations of race/ethnicity with cognitive decline could also be explained by 

methodological factors such as differing sampling strategies across studies, regional variability 

among subgroups enrolled in specific studies, and use of different cognitive tests that vary in 

their sensitive to cognitive decline. 

 

B. White matter hyperintensity 

Cerebral SVD is the most common, chronic and progressive vascular disease in older 

adults.80 Its changes affect arterioles, capillaries and small veins that supply white matter and 

deep structures of the brain with oxygen and nutrients.80 Cerebral SVD causes one quarter of all 

ischemic strokes and is the most common cause of vascular cognitive impairment and VaD.81–83 

It manifests as lacunar infarction (ischemia from a perforated artery) and leukoaraiosis (diffuse 

ischemic changes). Leukoaraiosis is a subclinical marker of cerebrovascular disease and can be 

detected and measured as WMH83 using magnetic resonance imaging (MRI) in the 

periventricular and deep white matter regions of the brain. Leukoaraiosis has been shown to 

predict ischemic stroke, cognitive decline and VaD.81,83  

 Predictors of leukoaraiosis progression include age, blood pressure, current smoking and 

presence of lacunar infarcts.83 Uncontrolled hypertension is associated with ischemic damage of 

the brain and is thought to underlie cerebrovascular disease.84 Leukoaraiosis is thought to be a 

mechanistic marker on the pathway from hypertension to clinical endpoints such as ischemic 

stroke and VaD. Hypertension also increases risk of developing impairments in mobility, 
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cognitive function and mood – pathways that are most  likely mediated by the presence of 

WMH.85 Progression of WMHs is associated with decline in information processing speed, 

general cognitive function, and MMSE scores. Studies have shown that the presence and severity 

of WMHs are important predictors of cognitive and functional impairment.85  

 

1.3.3 Individual-level and neighborhood risk factors for cognitive impairment, cognitive 

decline and dementia 

Risk factors related to structural and socio-contextual determinants of health may help us 

to better understand the disproportionate burden of cognitive impairment and dementia among 

AA. Approximately a third of AD cases worldwide might be attributable to modifiable risk 

factors—AD incidence may be reduced through improved access to education and healthcare, 

interventions on vascular diseases (e.g., via physical activity, smoking cessation, improved diet, 

etc.) and depression.86 Educational attainment is associated with AD in NHW and AA, but the 

lower educational attainment among AA may be an important contributor to racial disparities in 

AD, according to one meta-analysis.87 Other factors such as psychosocial stress, physical 

activity, and obesity have been indicated as individual-level risk factors related to cognitive 

impairment in AA. Altogether, AA are more likely to live in neighborhoods with social 

conditions (e.g., discrimination, education, SES, etc.) that may affect their stress levels, and in 

turn, affect their physiological regulation.88 This may lead to higher levels of cognitive 

impairment or dementia. 

Neighborhoods are defined as living and work environments that possess both physical 

and social attributes that may affect the health of their residents. Specifically, characteristics of 

the neighborhood environment are associated with cognitive function in older adults.41 The 
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underlying mechanisms may relate to the contextual influences on personal mobility, sense of 

security and safety, the potential for social interactions and physical activity, access to healthy 

foods and green space, and exposure to pollution, crime and social deprivation. Since older 

adults are more likely to spend less time in motorized transportation, have less mobility, and 

have more time at home and/or in the neighborhood, the neighborhood may play an important 

role in their health and cognitive function.89 For example, the neighborhood may play a strong 

role in providing social ties and stimulating recreation and social participation among older 

adults, which in turn may affect their psychological and cognitive health and overall well-

being.90,91 Neighborhood environments may provide stimulating activities that may delay the 

onset of cognitive impairment and reduce dementia pathology. Understanding how neighborhood 

environments impact dementia pathology may allow us to develop better interventions to prevent 

disease onset. 

 

1.3.4 Role of genetic factors in Alzheimer’s disease and cognitive function 

Genetics have been shown to be a strong influence on cognitive function and dementia. 

AD has high heritability, ranging from 58-79%,92 while episodic memory has 30-60% 

heritability.93,94  Twin studies have found general cognitive function to have a heritability of 

more than 50%, starting from adolescence to young adulthood (ranging from 55-66%);95–97 while 

SNP-based estimates are lower (20-30%). As such, there is a gap between SNP heritability 

estimates and twin- or family-based heritability estimates. This gap may be explained by the idea 

that GWAS does not capture other structural variants beyond SNPs, rare variants, poorly tagged 

or multiple independent variants, dominant and epistatic effects, epigenetics, and gene-

environment interaction.98 Differences in the measures of cognitive function used across studies, 
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as well as differences in the heritability of cognitive measures across age groups, may also 

contribute to differences in heritability estimates across studies.98 There are also socio-contextual 

influences that change over time, which contribute to heritability estimates.95,98 However, 

considering the relatively strong relationship between genetics and cognitive function, cognitive 

decline and dementia, understanding the body of genetic research pertaining to these outcomes 

will help us to better understand future research to prevent or treat preclinical dementia. 

In addition to age, genetic variants in the APOE gene are the largest risk factor for AD in 

AA,37 with one copy of the APOE 𝜀4 allele increasing AD risk by 3-5 fold. 99–101 ABCA7 is the 

second largest genetic risk factor for AD in AA, with genetic variants increasing AD risk by 70-

80%.37 There have been at least 75 loci associated with late-onset AD (LOAD) at genome-wide 

significance, in at least two EA GWAS.31,102–112 With respect to general cognitive function, 148 

genetic loci have been identified (among older EA adults), with biological pathways related to 

neural and cell development.15,16 Some of the genes identified in the general cognitive function 

GWAS have also been associated with AD, including APOE, TOMM40, ABCA7, ABCG1, 

MEF2C, and SLC39A1.15,16 Overlapping biological pathways include lipid metabolism, 

inflammation and immune function.12,13  

While previous GWAS for general cognitive function and AD have shown some 

overlapping loci,15,16 further studies of cognitively “resilient” individuals who live to an older 

age with intact cognitive function, despite the presence of AD neuropathology, have found the 

genetic architecture of cognitive resilience to be distinct from that of AD.113 At this point, 

relatively little is known about the pathways involving genetic variants and cognitive aging in 

those without dementia. Thus, studying variants affect general cognitive function in those 
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without dementia, as well as their interactions with socio-contextual factors, may identify novel 

pathways for therapeutic targets. 

1.3.5 Role of epigenetic and transcriptomic factors in Alzheimer’s disease and cognitive 

function 

A. Epigenetics 

Epigenetics are a potentially reversible molecular link between an individual’s 

environment and gene expression.114 Epigenetic changes may mediate or be an effect modifier on 

the pathway from risk factor to disease outcome, or they may be early biomarkers of disease and 

thus may be used to improve early detection (and reduce misclassification).115 DNA methylation 

is one of the most studied epigenetic modifications and involves the transfer of a methyl group to 

a C-5 position of a cytosine, most prominently in a cytosine:guanine (CpG) sequence of DNA. 

Depending on the genomic context, methylation may up- or down-regulate gene expression.116 

Epigenetic markers may explain individual variation in disease phenotypes and identify 

environmentally driven disease mechanisms, including gene-by-environment interactions.117 

Epigenome-wide association studies (EWAS) interrogate CpG sites across the genome to 

evaluate the association between methylation levels and a trait of interest. Recently, an EWAS 

meta-analysis was performed on seven measures of cognitive function in circulating leucocytes 

among 6,809 healthy, older-aged adults in 11 independent cohorts, including GENOA.118 At an 

epigenome-wide significance level, there was an association between cg21450381 (located in an 

intergenic region on chromosome 12) and global cognitive function (MMSE score), as well as 

between cg12507869 (located in INPP5A) and phonemic verbal fluency. INPP5A is a member of 

the INPP5 family of gene family that has been implicated in cerebellar degeneration in mice119 

and is associated with AD and cognitive decline in humans.102,120 CpGs identified in the 
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cognitive function EWAS as suggestive, but not epigenome-wide significant, were in or near 

genes related to inflammation (CCR9, PRRC2A, SOCS3) and neurodegeneration (through the 

beta-amyloid precursor protein interactor, GAPDH), among others. To that end, there is 

increasing evidence that there are strong and specific changes in DNA methylation in both 

peripheral blood and the brain that may indicate, and/or lead to, cognitive decline and 

impairment prior to dementia onset.118,121–123 

Epigenetic variation in the brain is also associated with AD.121,122,124–126 In two studies, 

investigation of postmortem AD brain tissue showed epigenetic dysregulation in genes with 

pathways related to neuroinflammation, neurogenesis, and cognitive function.127,128 Brain DNA 

methylation in five of 28 AD loci identified from GWAS (ABCA7, SORL1, HLA-DRB5, 

SLC24A4, and BIN1) were associated with hallmark AD pathologies, including Aβ load and tau 

tangle density.128  There is also increasing evidence for AD-related alterations in DNA 

methylation, with specific brain regions being either hyper- or hypomethylated.121–123  While 

there are still many unanswered questions in this research area, studies point to a strong but 

specific manner in which the epigenome is associated with AD pathogenesis in the brain. 

 

B. Transcriptomics 

Transcriptomics is the study of RNA transcripts in a cell (i.e., mRNAs, non-coding RNAs, 

and small RNAs) and their quantity at a specific developmental stage or with respect to a specific 

physiological condition.129 Studying RNA is essential for interpreting the functional elements of 

the genome, such as the transcriptional structure of genes, alternative splicing patterns, post-

transcriptional modifications, and gene expression levels during developmental processes and/or 

conditions.  
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TWAS characterize underlying genetically regulated mechanisms between genetic 

variants and health-related outcomes by aggregating genomic information into functionally 

relevant units that map genes to their expression.130 To date, only a few TWAS for cognitive 

function have been conducted, and they have all been in relatively small samples of EA 

(N<700).131,132 These studies have shown that CCR2129 and POU6F1130 are associated with 

cognitive function. Gene set enrichment conducted in the latter study132 pointed to protein and 

RNA metabolism, the immune system, and infectious disease pathways.  

 A TWAS133 was conducted to study transcriptomics underlying AD and detected 13 

genes for AD dementia diagnosis (based on cognitive status) and pathology, including a 

previously identified TWAS gene TRAPPC6A.133 Of the 13 genes identified, 6 were previously 

identified in AD GWAS, including TOMM40.30,134 Pleiotropic effects suggested biological 

mechanisms linking AD risk genes, via β-amyloid and tangles, with AD dementia. This 

mechanism is further supported by the association between RNA expression of transcripts in 

SORL1 and ABCA7 genes with paired helical filament tau tangle density, and BIN1 with β-

amyloid load.128  

 Considering that these processes are involved in both normal and pathologic brain aging, 

and that some studies have shown gene expression in brain regions affected by AD (e.g., 

hippocampus) and peripheral blood among genes related to neuronal function and repair to be 

upregulated in cognitively impaired individuals135,136 and then transcriptionally 

downregulated137,138 in AD cases, it is hypothesized that there may be complex compensatory 

mechanisms preceding dementia onset.136,138,139 TWAS may further clarify previous GWAS 

results and elucidate biological mechanisms underlying the gene-trait associations. 
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1.3.6 The importance of multi-omics and socio-contextual research in African Americans 

The central dogma informs us that there is a cascade of information from the genetic code 

being transcribed into mRNA, which is then translated into proteins. The epigenome acts as a 

regulatory mechanism that mediates environmental influences on the expression of genes in a 

dynamic and adaptive fashion. In addition, the transcriptome consists of RNA molecules that are 

translated into proteins, which may undergo post-translational modifications. All of these levels 

interact in a complex and nonlinear way to contribute to phenotypic variations. Integrating data 

from different types of “omic” data (i.e., genomic, epigenomic, transcriptomic, and proteomic) 

would allow a more comprehensive prediction of how complex traits or phenotypes are 

expressed, and potentially shed light on the evolutionary mechanisms (i.e., natural selection) that 

shape new phenotypes.140 

 It is especially important to study risk of multifactorial disease in different populations 

and ethnic groups using these multi-omic layers. By understanding how genetic risk factors and 

molecular variation interplay with important contextual variation in a group of individuals, we 

may better understand the biological mechanisms underlying disease risk and onset,140,141 as well 

as modifiable socio-contextual factors that contribute to the health disparities between EA and 

AA. Recent analysis of the GWAS catalog has revealed a lack of diversity and under-

representation of non-European ancestral populations: only 19% of GWAS populations are non-

European, even though over 75% of the world population live in Africa and Asia.142 Individuals 

of African and Hispanic or Latin American ethnicity, specifically, contribute less to GWAS and 

may have a greater impact on discovery due to their higher level of genetic variation, compared 

to European or Asian populations. Genetic variants that affect a phenotype may vary across 

ethnicities, even if the underlying genetic mechanisms are the same. These differences are due to 
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allelic heterogeneity across different ancestral groups from mutation and linkage disequilibrium 

(LD), or SNP correlation, patterns that differ across ethnic groups. A thorough investigation of 

the relationship between these multi-omic layers and later-life cognition and brain structures 

(WMH) can help characterize the underlying genetic architecture of cognition in older 

adulthood, prior to dementia onset, in understudied AA populations. This may allow the 

identification of targets for intervention and treatment, especially in populations like AA that are 

most at risk.35 

 

1.4 Study Design and Measures in The Genetic Epidemiology Network of Arteriopathy 

1.4.1 Study design and source population 

A. The Genetic Epidemiology Network of Arteriopathy (GENOA) 

The GENOA study is a community-based longitudinal study aimed at examining the 

genetic effects of hypertension and related target organ damage.143 EA and AA hypertensive 

sibships were recruited if at least 2 siblings were clinically diagnosed with hypertension before 

age 60. All other siblings were invited to participate, regardless of their hypertension status. 

Exclusion criteria included secondary hypertension, alcoholism or drug abuse, pregnancy, 

insulin-dependent diabetes mellitus, active malignancy, or serum creatinine levels >2.5mg/dL. In 

Phase I (1996-2001), 1,854 AA participants (Jackson, MS) and 1,583 EA participants 

(Rochester, MN) were recruited.143 In Phase II (2000-2004), 1,482 AA and 1,239 EA participants 

were successfully followed up, and their potential target organ damage from hypertension was 

measured. Demographics, medical history, clinical characteristics, information on medication 

use, and blood samples were collected in each phase. Methylation levels were measured only in 
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AA participants using blood samples collected in Phases I and II. Written informed consent was 

obtained from all participants, and approval was granted by participating institutional review 

boards (University of Michigan, University of Mississippi Medical Center, and Mayo Clinic). 

 

B. Genetics of Microangiopathic Brain Injury (GMBI) ancillary study 

In an ancillary study, the Genetics of Microangiopathic Brain Injury (GMBI; 2001-2006), 

1,010 AA and 967 EA Phase II GENOA participants that had a sibling willing and eligible to 

participate underwent a battery of established neurocognitive tests to assess several domains of 

cognitive function, including learning, memory, attention, concentration, and language. The goal 

of GMBI was to investigate susceptibility genes for ischemic brain injury. Ischemic brain 

damage to the subcortical and periventricular white matter (leukoaraiosis) was quantified by 

MRI as WMH in participants with no history of stroke or neurological disease and no implanted 

metal devices. 

 

C. Exclusion criteria 

Within GENOA, participants were excluded if they were diagnosed with the following: 

secondary hypertension, alcoholism or drug abuse, pregnancy, insulin-dependent diabetes 

mellitus, active malignancy, or serum creatinine levels >2.5mg/dL. For our study, to create a 

sample of “cognitively normal” AA adults, we excluded participants who were less than 45 years 

of age, had evidence of stroke, and/or preliminary evidence of dementia as indicated by a score 

of <24 on the MMSE.144,145 The MMSE is a 30-question assessment of cognitive function that 

can be rapidly administered as a diagnostic instrument by healthcare professionals.144 MMSE has 

been used to pre-screen for cognitive decline using its total score. Several studies have reported 
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lower performance on cognitive tests like MMSE to indicate lower cognitive functioning among 

individuals who go on to develop dementia.62,146 

 

1.4.2 Measures of cognitive function and brain structure 

A. Five neurocognitive domain measures 

The following five neurocognitive domains were evaluated a year after Phase II, on 

average, as part of GMBI:147,148 

1. The Weschler Adult Intelligence Scale-Revised: Digit Symbol Substitution Test (DSST) 

measured complex visual attention, sustained and focused concentration, response speed and 

visuomotor coordination. The DSST relates to the executive function of working memory.149 

In this test, participants matched symbols to numbers according to a key located at the top of 

the page. The DSST score comprised the number of symbols correctly matched within 90 

seconds. 

2. The Controlled Oral Word Association Test (COWA-FAS) tested for verbal fluency 

(phonetic association) and language. This required participants to generate as many words as 

possible that start with F, A, and S in 1 minute. The score consisted of the total number of 

admissible words generated.  

3. The Rey Auditory Verbal Learning Test (RAVLT) measured delayed recall, relating to the 

cognitive functions of new learning, immediate memory span and vulnerability to 

interference in learning and recognition memory. Its score was determined by the number of 

words recalled after a 30-minute delay. Scores ranged from 0 to 15.  

4. The Stroop Color-Word Test (SCWT) assessed concentration effectiveness by requiring 

participants to state the color of a word, rather than the word written. The score sums the 
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number of color words that were correctly stated in 45 seconds. Specifically, the ability to 

shift perceptual sets in response to novel stimuli, was tested.  

5. The Trail Making Test A (TMTA) evaluated visual conceptual tracking as participants need 

to connect a set of 25 circles quickly and accurately. TMTA provides information on the 

cognitive functions of visual search, scanning, processing speed and executive functions. The 

natural logarithm of seconds to completion for the task was used and recoded so that higher 

scores indicate better cognitive function. The maximum was 240 seconds to complete.  

 

Table 1-1. Descriptions of cognitive functions and neurocognitive domains associated with 

each cognitive test and measure. 

Cognitive outcome Description of cognitive 

measure 

Cognitive domain150 

General cognitive function Summary measure of overall 

cognitive performance. 

Complex measure 

encompassing multiple 

domains. 

Weschler Adult Intelligence 

Scale-Revised: Digit Symbol 

Substitution Test (DSST) 

Complex visual attention, 

sustained and focused 

concentration, response speed 

and visuomotor coordination. 

Executive function, working 

memory.147,149 

The Controlled Oral Word 

Association Test (COWA-

FAS) 

Verbal fluency (phonetic 

association) and language. 

Fluency (language) and 

executive function.151 

Rey Auditory Verbal Learning 

Test (RAVLT) 

Delayed recall, relating to the 

cognitive functions of new 

learning, immediate memory 

span and vulnerability to 

interference in learning and 

recognition memory. 

Episodic memory and fluency 

(verbal learning).152 

Stroop Color-Word Test 

(SCWT) 

Concentration effectiveness, 

or the ability to shift 

perceptual sets in response to 

novel stimuli (also called the 

Stroop Effect).153 

Attention, processing speed, 

cognitive flexibility154 and 

working memory.155  

Trail Making Test A (TMTA) Visual searching and 

scanning, processing speed, 

motor function. 

Complex attention, executive 

functions.156 
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B. General cognitive function 

General cognitive function, a measure of overall cognitive performance, can be captured 

by a summary measure of tests in multiple cognitive domains.16 General cognitive function is 

calculated as the first unrotated principal component (FUPC) from a principal component 

analysis (PCA) of the five positively correlated cognitive tests taken by all participants in the full 

sample. This data reduction procedure loads all tests on the first unrotated principal component, 

and scores on this component can be calculated for each person. In GENOA, the FUPC accounts 

for 53% of the total variance in the neurocognitive measures and loading values of the five 

measures ranged from 0.52 to 0.87. 

 Cognitive decline is calculated as the slope of an individual’s general cognitive function 

change (change in cognitive function over time) between the initial cognition measurement 

(GMBI, approximately a year after Phase II) and Phase III. Studying cognitive decline allows 

examination of intra-individual differences in the rate of decline in cognitive functioning.  

 

C. White matter hyperintensity 

WMH was evaluated a year after Phase II, on average, as part of GMBI. The presence of 

WMH in brain samples indicates leukoaraiosis, areas of ischemic damage to small vessels and 

surrounding areas. Brain magnetic resonance images were measured from MRI, using Signa 

1.5T MRI scanners (GE Medical Systems, Waukesha, WI, USA) at Mayo Clinic.157 WMH and 

total brain volume in the coronaradiata and periventricular zone were quantified from axial fluid-

attenuated inversion recovery (FLAIR) images.158 WMH in the coronaradiata and periventricular 

zone, as well as central gray infarcts (i.e., lacunes), were included in the leukoaraiosis 

measurements. Brain scans with cortical infarctions were excluded from the analyses because of 
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the distortion of WMH volume estimates that would be introduced in the automated 

segmentation algorithm. For additional details, see Smith et al.159  

 

1.4.3 Genetic (SNP) data 

A. Genome-wide chip data 

Blood samples were genotyped using the Affymetrix® Genome-Wide Human SNP Array 

6.0 or the Illumina 1M Duo. Samples and SNPs with a call rate <95%, samples with mismatch 

sex, and duplicate samples were removed. Genotypes were imputed using the 1000 Genomes 

Project Phase I integrated variant set (v.3) in NCBI build 37 (hg19) coordinates (released in 

March 2012). SNPs with high imputation quality will be assessed (r2>0.7). Genetic principal 

components were calculated from genotyped SNPs and included in regression models to control 

for population stratification.  

 

B. Apolipoprotein E (APOE) ε2 and ε4 alleles 

To evaluate confounding and/or effect modification by APOE isoforms known to 

influence dementia risk, we measured rs7412 (to capture the APOE ε2 allele) and rs429359 (to 

capture the APOE ε4 allele) using a TaqMan assay and ABI Prism© Sequence Detection 

(Applied Biosystems, Foster City, CA) in 1544 participants. Participants were classified as 

having 0, 1, or 2 copies of ε2 (rs7412 T allele) and/or ε4 (rs429359 C allele). 

 

1.4.4 DNA methylation data 
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Genomic data was extracted from stored peripheral blood leukocytes from 1,106 AA 

participants from Phase I and 304 AA participants from Phase II using the AutoGen FlexStar 

(AutoGen, Holliston, MA). Bisulfite conversion was performed with the EZ DNA Methylation 

Kit (Zymo Research, Irvine, CA), and methylation was measured using the Illumina 

HumanMethylationEPIC BeadChip. The raw intensity data was visualized using the shinyMethyl 

R package 160 to identify sex mismatches and outliers, which were removed. Samples with 

incomplete bisulfite conversion were identified using Qcinfo in the Enmix R package161 and 

removed. Background correction and dye-bias normalization were performed using Noob in the 

Minfi R package.162,163 We also checked sample identity using the 59 SNP probes on the EPIC 

chip, and mismatched samples were removed. Probe-type bias was adjusted using the Regression 

on Correlated Probes (RCP) method.164 Probes with detection p-value <10-16 were considered 

successfully detected, and probes and samples with detection rate<10% were removed.165 After 

quality control, a total of 1,396 samples (N=1,100 from Phase I and N=294 from Phase II) and 

857,121 CpG sites were available for analyses. For this analysis, all methylation data was from 

Phase I samples. 

We used Illumina annotation to identify genes near each CpG site using the UCSC 

database and characterize each CpG site as being in a gene promoter, enhancer, DNAse I 

hypersensitive site (DHS), CpG Island (CGI), and/or CGI flanking shore/shelf.166 A CpG site 

was considered to be in a promoter region if it was 0-1500 bases upstream of a transcriptional 

start site. A CpG site was assigned to CGI flanking shore/shelf if it was located within 4kb of a 

CGI. White blood cell proportions for CD8 T lymphocytes, CD4 T lymphocytes, natural killer 

cells, B cells, monocytes, and granulocytes were estimated using the Houseman method.167 For 

each CpG site prior to analysis, the methylation beta value168,169 was multiplied by 100 to 
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approximate the percent methylation at that site. Methylation beta values were pre-adjusted for 

batch effects (sample plate, row, and column) and white blood cell proportions using linear 

mixed modeling, and the resulting residuals were added to the mean values. 

 

1.4.5 Gene expression data  

Gene expression levels in transformed beta-lymphocyte cell lines from blood samples 

taken primarily at GENOA Phase II were measured using the Affymetrix Human Transcriptome 

Array 2.0. The Affymetrix Expression Console was used for quality control, and all array images 

passed visual inspection. Affymetrix Power Tool software was used to process raw intensity 

data.170 We normalized Affymetrix CEL files using the Robust Multichip Average (RMA) 

algorithm, including background correction, quantile normalization, log2-transformation and 

probe set summarization.171 Linearity was also maintained using GC correction (GCCN), signal 

space transformation (SST), and gain lock (value=0.75). We used the Brainarray custom CDF172 

version 19 to map the probes to genes, specifically removing probes with non-unique matching 

cDNA/EST sequences that can be assigned to more than one gene cluster. As a result, the gene 

expression data processed through the custom CDF is expected to be free of mappability issues; 

however, alignment bias may still exist due to genetic variation, errors in the reference genome, 

and other complications.173 After mapping, Combat was used to remove batch effects.174  

 

1.5 Summary 

This body of work will contribute to a better understanding of the risk factors that impact 

cognition among older AA adults and lend insight into how the interactions among multi-omic, 
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biological, and socio-contextual risk factors contribute to preclinical dementia in this population. 

Several genetic, epigenetic, medical and lifestyle factors are associated with dementia; however, 

the research has been primarily in overwhelmingly white populations. Focusing on data from one 

population and applying it to other populations (especially marginalized populations such as AA, 

individuals of low socioeconomic status, rural Americans, sexual and gender minorities, other 

racial and ethnic minorities, immigrants, and people with disabilities) is problematic because this 

research could lead to false conclusions. 

We currently know much less about the social, biological, and multi-omic determinants 

of health in AA individuals. To better treat and prevent dementia and other diseases, we need to 

research the drivers of dementia in AA. It is worth noting that in addition to the multi-omics and 

socio-contextual factors that we study in this project, AD disparities for this population in 

particular have roots in structural and social determinants.175 Considering that cognition is not 

only connected to dementia but also to healthcare utilization and quality and mortality, makes it 

an important focus of research in AA. By combining high-throughput “omics” technologies (e.g., 

genomics, transcriptomics, methylomics), and examining them within socio-contextual 

environments, we seek to provide deeper insight into the molecular features of cognition and 

dementia in this population. 
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Chapter 2 . SNP-by-CpG Interactions in ABCA7 are Associated with Cognition in Older 

African Americans 

 

2.1 Abstract 

SNPs in ABCA7 confer the largest genetic risk for Alzheimer’s Disease (AD) in African 

Americans (AA) after APOE ε4. However, the relationship between ABCA7 and cognitive 

function has not been thoroughly examined. We investigated the effects of five known AD risk 

SNPs and 72 CpGs in ABCA7, as well as their interactions, on general cognitive function 

(cognition) in 634 older AA without dementia from Genetic Epidemiology Network of 

Arteriopathy (GENOA). Using linear mixed models, no SNP or CpG was associated with 

cognition at FDR q<0.1, but five CpGs were nominally associated (P<0.05). Four SNP-by-CpG 

interactions were associated with cognition (FDR q<0.1). Contrast tests show that methylation is 

associated with cognition in some genotype groups (P<0.05): a 1% increase at cg00135882 and 

cg22271697 is associated with a 0.68 SD decrease and 0.14 SD increase in cognition for those 

with the rs3764647 GG/AG (P=0.004) and AA (P=0.0002) genotypes, respectively. Also, a 1% 

increase at cg06169110 and cg17316918 is associated with a 0.37 SD decrease (P=0.0002) and 

0.33 SD increase (P=0.004), respectively, in cognition for those with the rs115550680 GG/AG 

genotype. While AD risk SNPs in ABCA7 are not associated with cognition in this sample, some 

have interactions with proximal methylation on cognition. 
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2.2 Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the 

dysregulation of the amyloid-β (Aβ) pathway leading to Aβ plaques1 and the aggregation of tau 

tangles.2 AD accounts for 60-80% of dementia cases in the elderly.3–5 Approximately 6.2 million 

Americans age 65 and older are living with AD, and this estimate is projected to rise to 13.8 

million by 2060.3 AD risk differs by race, with African Americans (AA) twice as likely to 

develop AD compared to European Americans (EA).6 Because this health disparity places a 

greater burden of personal and medical care on AA, it is crucial to better understand AD and its 

development in this population. 

AD is a multifactorial disease that is likely influenced by interactions between genetic, 

environmental, and epigenetic factors, along with age-related neurodegeneration.7 In addition to 

age, genetic variants in the apolipoprotein E (APOE) gene are the largest risk factor for AD in 

AA,8 with one copy of the APOE 𝜀4 allele increasing AD risk by 3-5 fold.9–11 ABCA7 is the 

second largest genetic risk factor for AD in AA, with genetic variants increasing AD risk by 70-

80%.8 The ABCA7 gene encodes the ATP-binding cassette (ABC) transporter A7 that regulates 

homeostasis of phospholipids and cholesterol in the central nervous system and peripheral 

tissues.12–14 This gene is mostly expressed in the brain, spleen, lungs, and adrenal gland.15 

Studies suggested that mutations in ABCA7 are associated with AD susceptibility through the 

dysregulation of lipid metabolism which facilitates A𝛽 clearance.16,17 

Though ABCA7 is a risk locus for AD in both EA and AA, the specific risk variants differ 

across groups.18 In EA, three ABCA7 SNPs, rs3764650, rs3752246 and rs4147929, are associated 

with AD. They represent two independent signals as rs3752246 and rs4147929 are in nearly 

complete linkage disequilibrium (LD) in EA. Although rs3764650 shows the strongest 
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association with AD in EA, it is only nominally associated in AA.18,19 In AA, two additional 

ABCA7 SNPs, rs3764647 and rs3752239, have stronger associations with AD,19 with rs3764647 

being in the same LD block as rs3764650 in AA. Interestingly, another independent SNP in 

ABCA7, rs115550680, which is monomorphic in EA, is strongly associated with AD in AA. In 

particular, the G allele of rs115550680 confers an AD risk comparable to APOE ε4 (OR=1.79) in 

AA.8 

Epigenetic modifications, such as DNA methylation, are potential molecular mechanisms 

that can modulate the effect of genetic risk factors.20 When methylation sites (CpGs) are 

clustered together as a CpG island (CGI), it often serves as a hub for gene expression regulation. 

CGIs in the promoter region usually suppress transcription whereas CGIs in the intragenic region 

can interact with multiple regulatory elements to have a variety of impacts on gene expression 

(e.g., influence mRNA isoforms, promote enhancer function).21 Given the regulatory role of 

DNA methylation on gene expression, there has been a growing interest in understanding the 

extent to which DNA methylation contributes to AD risk.22–26 In particular, recent studies of 

post-mortem brain tissue found evidence of association between DNA methylation in ABCA7 

and both AD and AD-related pathologies, including Aβ load and tau tangle density.23,24 This 

evidence suggests that methylation in ABCA7 has a non-trivial functional role that is worthy of 

further investigation. 

Although the relationships between AD and ABCA7 SNPs are well-characterized, there 

are limited studies on the association between genetic variation in ABCA7 and measures of 

cognitive function and/or cognitive decline prior to the development of dementia. An imaging 

study showed that ABCA7 SNPs were associated with amyloidosis among cognitively healthy 

individuals and those with mild cognitive impairment (MCI), but not among those with AD, 
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suggesting an early effect of ABCA7 on cognition and cognitive decline.27 A few studies in EA 

found inconsistent results for the effect of ABCA7 SNPs on cognition, with associations varying 

by sex, APOE status, and disease progression.28 For example, in healthy older adults, a 

longitudinal study found association between rs3764650 and cognitive decline, but only in 

females.29 Also, interactions between APOE ε4 allele and SNPs rs3764650 and rs3752246 were 

associated with three cognitive factor scores related to Verbal Learning and Memory, Working 

Memory, and Intermediate Memory, in a genotype dependent manner: in the absence of ABCA7 

minor alleles, each additional ε4 allele was associated with lower memory scores; and 

conversely, in the presence of ABCA7 minor alleles, each additional ε4 allele was associated with 

better memory scores.30 Lastly, rs3764650 was significantly associated with increased rates of 

memory decline among individuals with MCI or AD.31  

To our knowledge, no study has investigated the relationship between ABCA7 genetic 

variation and cognition in cognitively healthy AA. Further, few studies have examined the 

relationship between DNA methylation in ABCA7 and/or its interaction with genetic variants on 

general cognitive function. In this study, we investigate whether previously identified risk SNPs 

(referred to as sentinel SNPs) in ABCA7, DNA methylation in ABCA7, and their interactions are 

associated with general cognitive function in older AA without dementia. To better understand 

the functional consequence of these risk factors at the molecular level, we also evaluated whether 

identified epigenetic or genetic risk factors are associated with transcript level ABCA7 gene 

expression in transformed beta lymphocytes from the same cohort. A thorough investigation of 

the relationship between these multi-omic layers and later-life cognition can help characterize the 

underlying genetic architecture of cognition in older adulthood, prior to dementia onset. This 
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may allow the identification of targets for intervention and treatment, especially in populations 

that are most at risk.32 

 

2.3 Materials and Methods 

2.3.1 Sample 

The Genetic Epidemiology Network of Arteriopathy (GENOA) study is a community-based 

longitudinal study aimed at examining the genetic effects of hypertension and related target 

organ damage.33 European American (EA) and African American (AA) hypertensive sibships 

were recruited if at least two siblings were clinically diagnosed with hypertension before age 60. 

All other siblings were invited to participate, regardless of hypertension status. Exclusion criteria 

included secondary hypertension, alcoholism or drug abuse, pregnancy, insulin-dependent 

diabetes mellitus, active malignancy, or serum creatinine levels >2.5mg/dL. In Phase I (1996-

2001), 1,854 AA participants (Jackson, MS) and 1,583 EA participants (Rochester, MN) were 

recruited.33 In Phase II (2000-2004), 1,482 participants AA participants and 1,239 EA 

participants were successfully followed up, and their potential target organ damage from 

hypertension was measured. Demographics, medical history, clinical characteristics, information 

on medication use, and blood samples were collected in each phase. Methylation levels were 

measured only in AA participants using blood samples collected in Phases I and II. In an 

ancillary study (2001-2006), 1010 AA and 967 EA GENOA participants underwent a battery of 

established neurocognitive tests to assess several measures of cognitive function, including 

learning, memory, attention, concentration, and language. Written informed consent was 

obtained from all participants, and approval was granted by participating institutional review 

boards (University of Michigan, University of Mississippi Medical Center, and Mayo Clinic). 
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A total of 850 AA participants had non-missing genetic and demographic data. Since 

participants with a history of stroke or dementia may have changes in general cognitive function 

that differ from non-pathological cognitive aging, we excluded those who had a history of stroke 

(N=43) and/or preliminary evidence of dementia as indicated by a score of <24 on the Mini-

Mental State Examination (MMSE) (N=76).34 We also excluded participants younger than age 

45 (N=16). A total of 634, 494 and 429 participants were available for SNP, methylation, and 

gene expression analyses, respectively (Figure S2-3). 

 

2.3.2 Measures 

A. General cognitive function 

General cognitive function was calculated using five neurocognitive measures evaluated at 

Phase II:34,35  

6. Weschler Adult Intelligence Scale-Revised: Digit Symbol Substitution Test (DSST) 

measured complex visual attention, sustained and focused concentration, response speed and 

visuomotor coordination. DSST relates to the executive function of working memory in 

cognition.36 The score comprised the number of symbols correctly matched within 90 

seconds. 

7. The Controlled Oral Word Association Test (COWA-FAS) tested for verbal fluency 

(phonetic association) and language. This required participants to generate as many words as 

possible that start with F, A, and S in 1 minute. The score consisted of the total number of 

admissible words generated.  

8. Rey Auditory Verbal Learning Test (RAVLT) measured delayed recall, relating to the 

cognitive functions of new learning, immediate memory span and vulnerability to 
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interference in learning and recognition memory. Its score was determined by the number of 

words recalled after a 30-minute delay. Scores ranged from 0 to 15.  

9. Stroop Color-Word Test (SCWT) assessed concentration effectiveness by taking the sum of 

the color words that were correctly stated in 45 seconds. Specifically, the ability to shift 

perceptual sets in response to novel stimuli, was tested.  

10. Trail Making Test A (TMTA) evaluated visual conceptual tracking as participants need to 

connect a set of 25 circles quickly and accurately. TMTA provides information on the 

cognitive functions of visual search, scanning, processing speed and executive functions. The 

TMTA score was measured as the amount of time (seconds) the participants took to complete 

the task. The maximum time allowed was 240 seconds. Prior to analysis, TMTA scores were 

natural log transformed and recoded so that higher scores indicate better cognitive function.  

 

General cognitive function, a measure of overall cognitive performance, can be quantified as 

a summary measure of cognitive tests in multiple cognitive domains.37 In this study, general 

cognitive function was calculated as the first unrotated principal component (FUPC) from a 

principal component analysis (PCA) of the five neurocognitive measures in the full sample 

(N=634). The FUPC accounted for 53% of the total variance in the neurocognitive measures and 

loading values of the five measures ranged from 0.52 to 0.87. 

 

B. Demographic data 

Age was assessed at cognitive testing. Educational attainment, measured at Phase II, was 

categorized into a three-level variable of (1) less than high school degree (reference group), (2) 

high school degree or GED, and (3) at least some college. Smoking has been shown to have 
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substantial impact on the epigenome 38, so we used smoking data from the same timepoint as the 

DNA methylation measures (Phase I). Participants were categorized as current, former, or never 

smokers (reference group).  

 

C. Genetic data 

Blood samples were genotyped using the Affymetrix® Genome-Wide Human SNP Array 

6.0 or the Illumina 1M Duo. Samples and SNPs with a call rate <95%, samples with mismatch 

sex, and duplicate samples were removed. Genotypes were imputed using the 1000 Genomes 

Project phase I integrated variant set (v.3) (Hg19, released in March 2012). Of the six SNPs of 

interest identified from existing literature (rs3764647, rs3764650, rs115550680, rs3752246, 

rs3752239 and rs4147929), five had high imputation quality (r2>0.7), and one (rs3752239) was 

excluded due to low imputation quality (r2=0.49). SNPs were coded as the dosage of the 

corresponding AD risk allele as specified in the previous literature. Genetic principal 

components were calculated from genotyped SNPs and included in regression models to control 

for population stratification. To evaluate confounding and/or effect modification by APOE 

isoforms known to influence dementia risk, we measured rs7412 (to capture the APOE ε2 allele) 

and rs429359 (to capture the APOE ε4 allele) using a TaqMan assay and ABI Prism© Sequence 

Detection (Applied Biosystems, Foster City, CA) in 1544 participants. Participants were 

classified as having 0, 1, or 2 copies of ε2 (rs7412 T allele) and/or ε4 (rs429359 C allele). 

 

D. Methylation measures 

Genomic data was extracted from stored peripheral blood leukocytes from 1,106 AA 

participants from Phase I and 304 AA participants from Phase II using the AutoGen FlexStar 
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(AutoGen, Holliston, MA). Bisulfite conversion was performed with the EZ DNA Methylation 

Kit (Zymo Research, Irvine, CA), and methylation was measured using the Illumina 

HumanMethylationEPIC BeadChip. The raw intensity data was visualized using the shinyMethyl 

R package 39 to identify sex mismatches and outliers, which were removed. Samples with 

incomplete bisulfite conversion were identified using Qcinfo in the Enmix R package 40 and 

removed. Background correction and dye-bias normalization were performed using Noob in the 

Minfi R package.41,42 We also checked sample identity using the 59 SNP probes on the EPIC 

chip, and mismatched samples were removed. Probe-type bias was adjusted using the Regression 

on Correlated Probes (RCP) method.43 Probes with detection p-value <10-16 were considered 

successfully detected, and probes and samples with detection rate<10% were removed.44 After 

quality control, a total of 1,396 samples (N=1,100 from Phase I and N=294 from Phase II) and 

857,121 CpG sites were available for analyses. For this analysis, all methylation data was from 

Phase I samples. 

We selected all CpG sites within 5kb of the ABCA7 gene (a total of 72 CpG sites within the 

ABCA7 region: chr19, 1040102–1065570, hg19). We used Illumina annotation 45 to characterize 

each CpG site as being in a promoter region and/or CGI, CGI shore, or CGI shelf. White blood 

cell proportions for CD8+ T lymphocytes, CD4+ T lymphocytes, natural killer cells, B cells, 

monocytes, and granulocytes were estimated using the Houseman method.46 For each CpG site 

prior to analysis, the methylation beta value 47,48 was multiplied by 100 to approximate the 

percent methylation at that site. Methylation beta values were pre-adjusted for batch effects 

(sample plate, row, and column) and white blood cell proportions using linear mixed modelling, 

and the resulting residuals were added to the mean values. 
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E. Gene expression measures 

Gene expression levels in transformed beta-lymphocyte cell lines from blood samples taken 

primarily at GENOA Phase II were measured using the Affymetrix Human Transcriptome Array 

2.0. The Affymetrix Expression Console was used for quality control, and all array images 

passed visual inspection. Affymetrix Power Tool software was used to process raw intensity 

data.49 We normalized Affymetrix CEL files using the Robust Multichip Average (RMA) 

algorithm, including background correction, quantile normalization, log2-transformation and 

probe set summarization.50 Linearity was also maintained using GC correction (GCCN), signal 

space transformation (SST), and gain lock (value=0.75). We used the Brainarray custom CDF 51 

version 19 to map the probes to genes, specifically removing probes with non-unique matching 

cDNA/EST sequences that can be assigned to more than one gene cluster. As a result, the gene 

expression data processed through the custom CDF is expected to be free of mappability issues; 

however, alignment bias may still exist due to genetic variation, errors in reference genome, and 

other complications.52 After mapping, Combat was used to remove batch effects.53  

 

2.3.3 Statistical analysis 

A. Genetic analysis 

We first calculated Pearson correlations between sentinel SNPs. Next, the association 

between ABCA7 sentinel SNPs and general cognitive function was analyzed using linear mixed 

models with random effects to adjust for relatedness. Model 1 adjusted for age at cognitive 

testing, sex, and the first four genetic principal components (PC1-4), with family as a random 

effect to account for sibships. Model 2 additionally adjusted for educational attainment. Model 3 

further adjusted for APOE ε2 and ε4. For any SNPs that were significantly associated with 
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general cognitive function, we further examined the association between those SNPs and each of 

the five neurocognitive measures to identify the domain(s) that most strongly drive the 

association. Since prior studies suggest that the effect of ABCA7 SNPs may vary by sex, 

education and/or APOE status, we also assessed the interaction between the sentinel SNPs and 

sex, education or APOE (ε2 and ε4) on cognitive outcomes. 

 

B. Epigenetic analysis 

Pearson correlations were calculated among all 72 CpG sites. Next, linear mixed models 

were used to test the associations between each of the 72 CpG sites and general cognitive 

function. Model 1 adjusted for basic covariates including age at cognitive testing, sex, four 

genetic principal components, age difference between methylation and cognition measurements, 

smoking status, and family as a random effect to account for sibships. Model 2 additionally 

adjusted for educational attainment, and Model 3 further adjusted for APOE ε2 and ε4. The 

coMET package was used to create a regional plot to visualize association P-values, correlations, 

and Ensembl genes.54 BioRender was used to annotate and format the figure.55 For any CpGs 

that were significantly associated with general cognitive function, we further examined the 

association between those CpGs and each of the five neurocognitive measures to identify the 

domain(s) that most strongly drive the association.  

 

C. Genetic-epigenetic interaction analysis 

We next examined the interaction between each CpG site and sentinel ABCA7 SNPs in 

association with general cognitive function. In this analysis, we adjusted for age at cognitive 

testing, sex, four genetic principal components, age difference between methylation and 
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cognition measurements, smoking status, and APOE ε2 and ε4, with family as a random effect to 

account for sibships (Model 4). Models 1-4 that are used to assess genetic, epigenetic and 

genetic-epigenetic interaction associations with general cognitive function are shown in Figure 

S2-4. To improve interpretability, we mean-centered methylation so that the estimated betas 

reflect the effect sizes for those with average methylation in the population. For any identified 

significant interaction, we stratified the genotypes by number of risk alleles (0, 1, or 2 risk 

alleles) and estimated the marginal means for linear trend (Emtrends function) using the 

Emmeans 56 package in R. Contrast tests were also conducted to obtain the effect size of the CpG 

associated with general cognitive function in each genotype group. Minor homozygote genotype 

groups that were <5% of the sample size were grouped with heterozygous genotype groups to 

increase power as appropriate. Plots of SNP-by-CpG interactions on general cognitive function 

were generated using the effects 57 and ggplot2 58 packages in R. Any identified SNP-by-CpG 

interactions significantly associated with general cognitive function were also tested for 

association with each of the five neurocognitive measures.  

As a sensitivity analysis for significant interactions (FDR q<0.1), we tested the association 

after excluding outlying CpG values that were more than four standard deviations from the mean 

(Model 4). We then assessed whether the SNP-by-CpG interactions (FDR q<0.1) were driven by 

potential SNP-CpG correlations by testing the association between each SNP and its 

corresponding CpG, adjusting for age at methylation measurement, sex, first four genetic 

principal components, with family as a random effect. If the SNP and CpG were associated at 

P<0.05, we adjusted out the effect of the SNP from the CpG site and re-tested the interaction 

(Model 4). 
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D. Gene expression analysis 

Among the 494 participants with methylation and genetic data, 429 participants also had gene 

expression data. Figure S2-5 presents a graphical depiction of ABCA7 transcripts observed in the 

Genotype Tissue Expression (GTEx) project,59 which assesses gene expression levels in a variety 

of cell types. A total of 17 transcripts, along with a measure of overall ABCA7 gene expression, 

were available for analysis in our study. For SNPs, CpGs, or interactions that were significantly 

associated with general cognitive function, we assessed their association with ABCA7 gene-level 

expression and transcripts (Model 5) using linear mixed models. Model 5 adjusted for age at 

which gene expression data was generated (age at blood draw), sex, first four genetic principal 

components, and family as a random effect. For models that included CpG sites, Model 5 also 

included the age difference between methylation and gene expression measurements. Contrast 

tests were conducted to obtain the effect size in each genotype group. Minor homozygote 

genotype groups (<5% sample size) were grouped with heterozygous genotype groups to 

increase power as appropriate.   

We next evaluated whether the identified CpG sites within the ABCA7 region, including 

within the promoter region (chr19, 1,037,800-1,043,201),60 correlate with gene expression of 

ABCA7 and/or nearby genes. For this, we used cis-eQTM results from peripheral blood 

mononuclear cells (PBMCs) and three specific white blood cell types (CD4+T lymphocytes, 

monocytes and neutrophils) in the iMETHYL database,61,62 which integrates genotype, 

methylation, and gene expression data from 102 individuals. We also examined gene expression 

levels of ABCA7 in different cell types available from the Genotype Tissue Expression (GTEx) 

project.59 
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E. Multiple testing correction 

All statistical analyses were conducted in R (version 3.6).63 For genetic analysis, Bonferroni 

corrected p-value cut off (p<0.05/5) was used to claim significance. For all other analyses, false 

discovery rate (FDR) correction was applied to each model, and FDR q<0.1 was considered 

significant. Since the SNPs, CpG sites, and transcripts in ABCA7 are all correlated, applying 

stringent multiple testing corrections might be too conservative, thus any nominal associations 

are also noted.  

 

2.4 Results 

2.4.1 Sample characteristics  

The sample included 634 AA without dementia (Table 2-1). Overall, the participant age 

ranged from 45 to 85 years (mean=63.3 years), and the mean age difference between Phase I 

methylation and cognitive measurements was 6.0 years (SD=1.3). More than half of participants 

(74.9%) were female, and 47.3% had at least some college education. General cognitive function 

was normally distributed. Mean RAVLT score was 7.1 (SD=3.3) words recalled, mean DSST 

score was 34.4 (SD=12.6) symbols, mean COWA-FAS score was 29.7 (SD=11.6) words, mean 

SCWT score was 22.5 (SD=9.8) items, and mean TMTA score was 61.6 (SD=32.0) seconds to 

completion. 

 

2.4.2 Correlation among six cognitive outcomes 

Pearson correlations (r) among the six cognitive outcomes (general cognitive function and 

the five individual neurocognitive measures) are shown in Table S2-4. The five neurocognitive 
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measures were moderately correlated (Pearson r ranged from 0.24 to 0.66), with the highest 

correlation between DSST and TMTA (r=0.66, P<0.001).  

 

2.4.3 Correlation among ABCA7 SNPs 

Pearson correlations among the five sentinel ABCA7 SNPs are shown in Table S2-5. 

Rs3764647 was strongly correlated with rs3764650 (r=0.84, P<0.001), and rs3752246 was 

highly correlated with rs4147929 (r=0.96, P<0.001). Otherwise, the other sentinel SNP pairs had 

low but significant correlations ranging from -0.14 to -0.004 (p<0.05).  

 

2.4.4 Genetic associations 

In Models 1 and 2, there were no ABCA7 SNPs that met the nominal significance threshold 

(p<0.05, Table S2-6). Although APOE is not part of the primary analysis, APOE ε2 and ε4 were 

analyzed separately as exposures in Models 1 and 2. APOE ε4 was associated with general 

cognitive function in both models in the expected direction (higher dosage of ε4 was associated 

with lower cognitive function), but only met the Bonferroni-corrected significance threshold in 

Model 2. After adjusting for educational attainment and APOE ε2 and ε4 in Model 3, no sentinel 

SNPs were significantly associated with general cognitive function. There were no observed 

significant interactions between SNPs and sex, APOE isoforms, or educational attainment on 

general cognitive function. 
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2.4.5 Epigenetic associations 

Among the 72 CpG sites examined, six were nominally associated with general cognitive 

function in at least one of the three Models (Table S2-7). After adjusting for educational 

attainment and APOE ε2 and ε4 (Model 3), five CpGs (cg22271697, cg00874873, cg11714200, 

cg26264438 and cg12082025) in the ABCA7 region were nominally associated with general 

cognitive function. Figure 2-1 illustrates the regional plot of association P-values of the 72 CpGs 

in the ABCA7 region with general cognitive function according to the chromosomal positions of 

CpG sites, as well as the correlations between the CpGs (Model 3).  

 

2.4.6 Genetic-epigenetic associations 

Since rs3764647 and rs3764650, as well as rs4147929 and rs3752246, are highly correlated 

with each other (Table S2-5), we removed one SNP from each pair and analyzed three 

independent risk SNPs (r<0.60) in the interaction analysis. Two of the independent SNPs we 

selected have previously been identified in AA GWAS (rs3764647 and rs115550680) 8,19 and the 

third one is the only ABCA7 missense variant (p.Gly1527Ala) to be identified by GWAS 

(rs3752246).64 We assessed the interaction between each of the three independent sentinel SNPs 

(rs3764647, rs115550680 and rs3752246) and 72 CpG sites on general cognitive function and 

identified four significant SNP-by-CpG interactions (FDR q<0.1) that were associated with 

general cognitive function (Table 2-2): rs3764647*cg00135882 (P=1.46E-04), 

rs3764647*cg22271697 (P=5.77E-04), rs115550680*cg06169110 (P=2.18E-04), 

rs115550680*cg17316918 (P=4.84E-04). The two SNPs and four CpGs that were involved in 

the four significant SNP-by-CpG interactions are shown in Figure 2-1 to highlight their positions 

with respect to neighboring genes, regulatory elements, and CGIs in the ABCA7 region. All 
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interactions with at least nominal significance are shown in Table S2-8. Notably, an additional 

seven CpG sites had nominally significant interactions with rs115550680, and one additional site 

had a nominally significant interaction with rs3764647. In Table S2-9, we present Pearson 

correlations among the ABCA7 CpG sites that were nominally associated with general cognitive 

function (Table S2-7) and/or were involved in an FDR-significant SNP-by-CpG interaction 

(Table 2-2). The majority of these CpGs were weakly correlated or uncorrelated. 

For interactions with FDR q<0.1, we performed contrast tests to estimate the effect size of 

the specific CpG site per genotype group. In all four cases, the minor homozygote genotype 

group had a small frequency (<5% of the sample size), thus we combined them with the 

corresponding heterozygote genotype group. Contrast tests show that methylation is associated 

with general cognitive function in some genotype groups, but not others (P<0.05; Table 2-3 and 

Figure 2-2).  

Rs3764647 had significant interactions with two CpGs (cg00135882 and cg22271697). For 

those with the risk genotype (GG/AG), a 1% increase at cg00135882 is associated with a 0.68 

SD decrease in general cognitive function (P=0.004, Figure 2-2A); whereas for those with the 

AA genotype, a 1% increase at cg22271697 is associated with a 0.14 SD increase in general 

cognitive function (P=2.00E-04, Figure 2-2B). Similarly, rs115550680 had interactions with two 

CpGs (cg06169110 and cg17316918). For those with the risk genotype (GG/AG), a 1% increase 

at cg06169110 is associated with a 0.37 SD decrease in general cognitive function (P=2.00E-04, 

Figure 2-2C), and a 1% increase at cg17316918 is associated with a 0.33 SD increase in general 

cognitive function (P=0.004, Figure 2-2D).  

We performed a sensitivity analysis by excluding outlying CpG values beyond four standard 

deviations of mean methylation, and our results remained consistent (Table S2-10). To test 
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whether the interaction was driven by potential SNP-CpG correlation, we assessed the 

association between each SNP-CpG pair. We observed nominal associations between rs3764647 

and cg22271697, as well as between rs115550680 and cg06169110. For these two SNP-CpG 

pairs, we regressed out the SNP effect from the corresponding CpGs and re-tested the 

interactions. The results remained consistent with those reported in Table 2-3 (Table S2-11). We 

also tested the association between all four significant interactions with each of the five 

neurocognitive domains. Similar interactions were observed for multiple neurocognitive 

measures, especially DSST and SCWT, in which all four interactions were significantly 

associated (Table S2-12).   

 

2.4.7 Gene expression associations 

To understand the functional effects of identified SNP-by-CpG interactions, we examined 

their interaction effects (Table S2-13 and S2-14) as well as marginal effects (Table S2-15 and 

Table S2-16) on ABCA7 gene and transcript expression. At the gene level, none of the identified 

SNP-by-CpG interactions were associated with gene expression in our sample. However, we 

found a negative association between one of the SNPs, rs115550680, and ENSG00000064687: 

for each additional rs115550680 G allele, there is a 0.05 decrease in gene expression (P=0.027).  

At the transcript level, two SNP-by-CpG interactions (rs115550680*cg17316918 and 

rs3764647*cg22271697) were nominally associated with two different transcripts 

(ENST00000525939 and ENST00000531467) (Table S2-13). ENST00000531467 (Chromosome 

19: 1,062,261-1,063,945 forward strand) is a protein coding transcript with four coding exons 

(Figure S2-5). ENST00000525939 (Chromosome 19: 1,062,261-1,063,945 forward strand) is a 

retained intron, found primarily in the spleen, pituitary, whole blood and brain (cerebellum and 
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cerebellar hemisphere) (Figure S2-5). Although the interactions were only nominally significant, 

we performed contrast tests to estimate the effect size of the CpG site in each genotype group on 

each identified transcript. Contrast tests show that methylation at cg17316918 trends toward a 

positive association with ENST00000525939 among those with the rs115550680 risk genotype 

(GG/AG) but does not reach nominal significance (Table S2-14). We also assessed the marginal 

associations of the two SNPs and two CpGs involved in the interactions on each of the ABCA7 

transcripts (Table S2-15 and S2-16). We found that rs115550680 is negatively associated with 

11 ABCA7 transcripts, including ENST00000531467, after FDR correction (Table S2-15). 

Rs3764647 was positively associated with only ENST00000530703 (P=0.037; Table S2-15). 

Among CpGs involved in the interactions, cg06169110 was positively associated with two 

transcripts (Table S2-16).  

The iMETHYL 60 cis-eQTM results for PBMCs and the three white blood cell types showed 

that there are CpGs within the ABCA7 region, including within the promoter region, that regulate 

expression of both ABCA7 and nearby genes. However, the CpGs identified in the significant 

SNP-by-CpG interactions in our study were not associated with gene expression of ABCA7 or 

nearby genes at FDR q<0.05.  

 

2.5 Discussion 

While previous studies have implied that ABCA7 is a causal gene for AD,65–68 there is a 

dearth of studies examining the relationship between ABCA7 and cognitive function. AD is a 

gradual neurodegenerative disease, characterized by noticeable cognitive impairment in areas of 

episodic memory, semantic memory, and executive function, with pathophysiology preceding 

the illness decades prior.69,70 Studying the relationship between SNPs and CpGs in ABCA7 and 
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cognition may enhance our understanding of cognitive health and further elucidate the role of 

ABCA7 in cognitive aging preceding AD. To our knowledge, this study is the first assessment of 

the association, and interaction, between DNA methylation and genetic risk factors in ABCA7 on 

cognition in AA without dementia.  

In this study, we found no association between known AD-associated SNPs and cognitive 

measures. This is perhaps not surprising, as previous studies have been inconsistent regarding the 

association between ABCA7 SNPs and cognition. Most of the studies, however, have been 

conducted in primarily European ancestral populations.29–31,71 For example, the Three-City Dijon 

study found no association between ABCA7 common variants and global cognition, as well as 

other cognitive outcomes.71 Other studies in EA show that SNPs may be associated with 

cognition in subgroups stratified on gender,29 APOE status30 or disease progression.31 In light of 

this, we also assessed whether ABCA7 SNP associations are modified by sex, APOE major 

isoforms, and/or education status. Unlike prior studies,29,30 we did not find any evidence of 

interaction. Lack of association with cognition for the sentinel SNP-by-sex and SNP-by-APOE 

interactions may be due to differences in ancestry or to small sample size as those studies have a 

sample size ranges from 1,153 to 3,267. Our study also did not find SNP-by-education 

associations interactions on cognition. This is consistent with another study that observed no 

interaction between education and ABCA7 variants on memory performance in either EA or AA; 

however a weak signal was observed for memory decline in AA, which is a cognitive measure 

more related to AD and dementia.72  

Other lines of evidence also suggest that the ABCA7 risk variants may not be highly relevant 

to the neurological pathways underlying normal cognitive function and/or cognitive reserve. For 

example, previous GWAS for general cognitive function and AD have shown few overlapping 
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loci.37,73 Further, studies of cognitively “resilient” individuals who live to an older age with intact 

cognitive function, despite the presence of AD neuropathology, have found the genetic 

architecture of cognitive resilience to be distinct from that of AD.74 At this point, relatively little 

is known about the pathways involving genetic variants and cognitive aging in those without 

dementia. Thus, studying variants that affect general cognitive function in those without 

dementia may identify novel pathways for therapeutic targets. 

Only one epigenome-wide association study (EWAS) has examined the association between 

all CpG sites across the genome, including CpGs in ABCA7 gene, and general cognitive function 

in participants from multi-ethnic backgrounds.75 This study did not identify any significant 

associations between ABCA7 and general cognitive function. However, due to large numbers of 

CpG sites tested, the EWAS could have missed signals with smaller effect sizes. Moreover, the 

EWAS sample was mostly comprised of EA. Our study, which focuses on CpG sites in ABCA7 

in an AA cohort, would give us more power to detect an association in this region among AA. 

Nevertheless, we also failed to detect any associations between CpGs and general cognitive 

function after multiple testing correction, although six CpGs were associated at a nominal level. 

Importantly, we examined methylation levels in whole blood leukocytes, which is not the most 

relevant tissue for brain function. A study in post-mortem brain tissue found associations 

between CpGs in ABCA7 and AD as well as increased burden of pathologies (e.g., Aβ load and 

tau tangle density), whereas another study failed to demonstrate differential methylation in 

peripheral blood between AD patients and controls.23 Although methylation patterns differ 

between blood and brain tissues,25,76 blood cells touch every cell bed that affects the brain, and 

are related to chronic inflammation and oxidative stress, which are linked to cognitive 
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performance.77,78 Studying methylation in blood also allows us to study epigenetic associations 

with cognition in living participants in an inexpensive and non-invasive manner. 

Although ABCA7 sentinel SNPs and CpG sites were not associated with general cognitive 

function, we did see evidence of SNP-by-CpG interactions. Four interactions reached FDR 

significance (rs3764647*cg00135882, rs3764647*cg22271697, rs115550680*cg06169110, and 

rs115550680*cg17316918). Further, a total of nine CpG sites had nominally significant 

interactions with rs115550680 on cognition function. For participants who are homozygous for 

the rs115550680 major allele (AA), local methylation does not seem to have an effect on 

cognitive function. However, for the participants who carry the risk allele (GG/AG), methylation 

at local CpG may play an important role on cognition. This might be related to the different 

ABCA7 transcripts that are involved in each case. Rs115550680 is located in an LD block that 

spans several introns and exons.8 A prior study suggests that there is a 44-base pair exonic 

deletion (rs142076058, p.Arg578 fs) among rs115550680 G carriers, which could cause a 

frameshift in the ABCA7-coding sequence resulting in the formation of a premature termination 

codon (PTC).79 Indeed, our gene expression analysis found that the risk allele (G) at 

rs115550680 was strongly associated with decreased expression of 11 ABCA7 transcripts. Taken 

together, this suggests that this SNP might influence the major isoforms that are expressed, and 

the expressed alternative transcripts may influence cognitive function. Furthermore, alternative 

transcripts that are expressed in those carrying the risk allele may be further modulated by 

methylation level at local CpG sites, which may lead to differences in cognitive function in this 

group. Consistent with this hypothesis, methylation at cg17316918 was associated with transcript 

ENST00000525939 in rs115550680 risk allele carriers (GG/AG) only. Interestingly, this 

transcript is largely expressed in the brain. However, there is no prior evidence to show an 
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association between this transcript and AD and/or cognition. Nonetheless, alternative splicing of 

ABCA7 is likely to play a similar important role in cognition as has been demonstrated in 

AD.80,81  

The other SNP that had significant interactions with ABCA7 CpG sites, rs3764647, is a 

missense mutation where the risk allele (G) leads to the amino acid change p.His395Arg in the 

first extracellular loop of the ABCA7 protein.18 One CpG site (cg00135882) is associated with 

cognitive function in participants who carry the risk allele (GG/AG) and another CpG site 

(cg22271697) is associated with cognitive function in those who do not carry risk allele (AA). 

This differential pattern may be due to different functions of the two transcripts instead of 

alternative splicing. Consistently, we did not observe a direct association between this SNP or 

CpG with expression of ABCA7 transcripts. Notably, three of the CpGs (cg00135882, 

cg22271697, and cg06169110) in the significant SNP-by-CpG interactions are either flanking or 

within CGIs. Active intragenic CGIs may change the major isoforms that are expressed by 

interfering with splicing and/or polyadenylation. Alternatively, they may promote enhancer 

function or act directly as an enhancer to regulate gene expression.21 Consistent with this 

hypothesis, all four CpGs are located in regions that contain at least one important regulatory 

element (i.e., promoters, enhancers and/or CTCF binding sites). Taken together, these results 

suggest that SNPs and CpG sites in ABCA7 may interact to modulate the expression and/or 

function of ABCA7 transcripts, and that some of the affected transcripts may influence cognitive 

function in older AA.  

Indeed, recent literature suggests that SNP-by-CpG interactions might be an important 

mechanism underlying human complex diseases.82–84 Similar SNP-by-CpG interactions have 

been identified in association with complex human disorders, such as breast cancer,85 type 2 
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diabetes,86 alcohol dependence87 and suicide attempt in schizophrenia.88 One thing to note, 

though, is that SNPs could have a cis-regulatory effects on local CpGs, which could cause a 

spurious interaction. However, our sensitivity analysis demonstrates that the interactions we 

observed were not solely due to SNP-CpG correlations. In summary, we demonstrate that a 

complicated interplay between genetic and epigenetic risk factors in the ABCA7 region may play 

an important role in cognitive function. Future studies are needed to disentangle this complicated 

relationship. 

Our study is not without limitations. First, our gene expression measures were taken from 

transformed beta-lymphocytes from immortalized cell lines. While transformed beta-

lymphocytes are a convenient source of DNA, the transformation process causes epigenetic 

changes to the immortalized cells that are not fully understood.89 However, they provide a unique 

and efficient way to examine the functional effects of genetic and epigenetic variation on gene 

expression since the environmental conditions of the cells are the same across individuals. 

Second, our findings need to be replicated in a larger sample of AA. Further studies in animal 

and cellular models are also warranted to confirm our findings and reveal how SNPs and 

methylation jointly contribute to cognitive function. Finally, due to the cross-sectional nature of 

our study, we cannot infer causality of our findings or quantify how the SNP-by-CpG 

interactions alone impact cognition. To that end, longitudinal studies are necessary to investigate 

how cognitive function changes over time. Also, previous cis-eQTM studies in white blood cells 

have shown that at least some CpGs within the ABCA7 region promote or repress gene 

expression of ABCA7 and nearby genes, but we did not observe eQTM relationships with those 

same CpGs in our study. One reason for this may be that our methylation was measured in blood 

and included a mix of white blood cells, while our gene expression was measured in transformed 
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beta-lymphocytes. Additional work is needed to understand how ABCA7 CpGs and their 

interactions with SNPs influence proximal gene expression in a variety of white blood cell types 

to further shed light on the complicated biological mechanisms that contribute to cognitive 

function. However, to our knowledge, our study is the first to take a multi-omic approach to 

investigate the relations between the ABCA7 gene region and cognitive function in a population-

based cohort of older adults without diagnosed dementia. Our study was also conducted in AA, 

an understudied population with a higher prevalence of AD3,5 and higher conferred risk of AD 

from ABCA7 compared to EA.8 Additionally, with comprehensive cognition measures, we were 

able to assess associations with multiple neurocognitive domains, as well as general cognitive 

function.  

 

2.6 Conclusion 

In the present study, we evaluated the association between ABCA7 genetic, epigenetic, 

and transcriptomic markers and cognitive function in 634 AA participants without preliminary 

evidence of dementia. We found that DNA methylation levels at local CpG sites modify the 

relationship between genetic variants and general cognitive function. Specifically, two SNPs in 

the ABCA7 gene region (rs3764647 and rs115550680) may regulate the effects of methylation on 

cognition. Differential gene expression analysis further highlighted the potentially causal 

transcripts. In conclusion, our findings suggest that a complicated interplay between genetic and 

epigenetic factors in ABCA7 may influence cognition in older AA without dementia. 
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2.8 Tables 

Table 2-1. Sample characteristics of Genetic Epidemiology Network of Arteriopathy 

(GENOA) African Americans (N=634). 

    Mean (SD) or N%  

Age at cognition measurement (years) 63.31 (8.08)  

Age difference between methylation and cognition measurements (years)a 6.03 (1.29)  

Sex    

  Female 475 (74.90%)  

  Male 159 (25.10%)  

Educational attainment    

  At least some college 300 (47.32%)  

  High school degree/GED 169 (26.66%)  

  Less than High School degree/GED 165 (26.03%)  

Smoking Status    

  Current Smoker 105 (16.56%)  

  Former Smoker 146 (23.03%)  

  Never Smoker 383 (60.41%)  

General cognitive function 0.00 (1.00)  

Delayed recall (RAVLT, number of words recalled) 7.05 (3.34)  

Processing speed (DSST, number of symbols) 34.44 (12.62)  

Word fluency (COWA-FAS, number of words) 29.73 (11.61)  

Concentration effectiveness (SCWT, number of items) 22.53 (9.83)  

Visual conceptual tracking (TMTA, seconds to test completion) 61.63 (31.96)  

Abbreviations: HS, High School; RAVLT, Rey Auditory Verbal Learning Test; DSST, Digit Symbol 

Substitution Test; COWA-FAS, Controlled Oral Word Association Test; SCWT, Stroop Color-Word Test; 

TMTA, Trail Making Test A. 

 

 
a. Subset sample (n=494) consists of subjects with available genotype and methylation data 
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Table 2-2. Interaction of ABCA7 sentinel SNPs and CpG sites on general cognitive function 
(FDR q<0.1; N=494). 

 

 

 

  

SNP * CpG site Interaction SNP Position
Risk 

allele
RAF CpG site Position Site Type

Relation to 

CpG Island
βSNP P-value βCpG P-value βinteraction P-value

rs3764647 * cg00135882 rs3764647 1044712 G 0.20 cg00135882 1065783 Promoter North Shore -0.01 0.875 0.24 0.086 -0.80 1.46E-04**

rs3764647 * cg22271697 rs3764647 1044712 G 0.20 cg22271697 1042537 Promoter North Shelf -0.07 0.319 0.16 7.23E-06* -0.18 5.77E-04**

rs115550680 * cg06169110 rs115550680 1050420 G 0.06 cg06169110 1046615 Gene Body CG Island -0.23 0.045* 0.06 0.143 -0.38 2.18E-04**

rs115550680 * cg17316918 rs115550680 1050420 G 0.06 cg17316918 1056930 Gene Body Open Sea -0.05 0.661 -0.06 0.164 0.41 4.84E-04**

Abbreviations: AA, African American; EA, European American; RAF, risk allele frequency in GENOA

* p<0.05, ** q<0.1 (FDR-corrected significance level)

Model 4: General cognitive function ~ SNP + CpG + SNP*CpG + age at cognitive testing + age difference between methylation and cognition measurements + sex + educational attainment + APOE  ε2 + APOE  ε4 

+ smoking status + PC1-4 + familial relatedness (random effect)

Main effects InteractionCpG site annotationSNP annotation
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Table 2-3. Estimated effect of CpG site on general cognitive function for given ABCA7 SNP 

genotype group (N=494). 

SNP CpG site Genotype βCpG P-value 

rs3764647 a cg00135882 
AA 0.09 0.566 

GG/AG -0.68  0.004*  

rs3764647 a cg22271697 
AA 0.14  2.00E-04*  

GG/AG -0.02  0.719  

rs115550680 b cg06169110 
AA 0.05  0.221  

GG/AG -0.37  2.00E-04*  

rs115550680 b cg17316918 
AA -0.06  0.202 

GG/AG 0.33 0.004* 

a. GG (N=17) and AG (N=156) groups were combined in the GG/AG group (N=173). 

b. GG (N=5) and AG (N=54) groups were combined in the GG/AG group (N=59). 

Model 4: General cognitive function~ SNP + CpG + SNP*CpG + age at cognition measurement 

+ age difference between methylation and cognition measurements + sex + educational status + 

APOE ε2 + APOE ε4 + smoking status + PC1-4 + familial relatedness (random effect) 

* p<0.05         
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2.9 Figures 

Figure 2-1. Regional plot of the association between DNA methylation in the ABCA7 region and general 

cognitive function. 

 

The top panel shows -log10 (P value) for the association between methylation and general cognitive function, 

adjusting for age, sex, age difference between methylation and cognition measurements, educational attainment, 

APOE ε2, APOE ε4, smoking status, PC1-4, and familial relatedness (random effects; Model 3), according to 

chromosomal positions. Nominally significant (P<0.05) associations are above the dashed line. The middle panels 

show Ensembl genes, regulatory elements, and CpG islands (UCSC Genome Browser) in the ABCA7 region. The 

lower panel shows the correlations in the DNA methylation levels among the 72 CpG sites in this region. The five 

CpGs that have a nominal association with general cognitive function are marked by asterisks. The four CpGs and 

two intronic SNPs that were identified in the SNP-by-CpG interactions associated with general cognitive function 

are marked by diamond symbols (CpGs) and arrows (SNPs). 
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Figure 2-2. Linear prediction of CpG sites (% methylated) on general cognitive function for a given SNP 

genotype group in the ABCA7 region. 

 

Linear prediction of CpG sites (% methylated) on general cognitive function for a given SNP genotype group in the 

ABCA7 region: (A) rs3764647*cg00135882, (B) rs3764647*cg22271697, (C) rs115550680*cg06169110, and (D) 

rs115550680*cg17316918. Models were adjusted for age, sex, age difference between methylation measurement 

and cognition measurement, educational attainment, APOE ε2, APOE ε4, smoking status, PC1-4, and familial 

relatedness as a random effect (Model 4). Regression lines are shown with standard error bands. For rs3764647, GG 

(N=17) and AG (N=156) groups were combined in the GG/AG group (N=173). For rs115550680, GG (N=5) and 

AG (N=54) groups were combined in the GG/AG group (N=59). 
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2.10 Supplementary Material 

Table S2-4. Pearson’s correlations among the six cognitive measures (n=634) 

  RAVLT DSST 
COWA-

FAS 
SCWT TMTA 

General 

cognitive 

function 

RAVLT 1.000           

DSST 0.365*** 1.000         

COWA-FAS 0.248*** 0.516*** 1.000       

SCWT 0.251*** 0.516*** 0.336*** 1.000     

TMTA 0.241*** 0.663*** 0.419*** 0.432*** 1.000   

General cognitive function 0.522*** 0.874*** 0.698*** 0.704*** 0.791*** 1.000 

Abbreviations: RAVLT, Rey Auditory Verbal Learning Test; DSST, Digit Symbol Substitution Task; COWA-

FAS, Controlled Oral Word Association Test; SCWT, Stroop Color-Word Test; TMTA, Trail Making Test A 

* p<0.05, **p<0.01, ***p<0.001 
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Table S2-5. Pearson’s correlations among the five sentinel ABCA7 SNPs (n=634) 

  rs3764647 rs3764650 rs115550680 rs3752246 rs4147929 

rs3764647 1.000         

rs3764650 0.843*** 1.000       

rs115550680 -0.117** -0.141*** 1.000     

rs3752246 -0.139*** -0.004 -0.101* 1.000   

rs4147929 -0.140*** -0.026 -0.110** 0.956*** 1.000 

* p<0.05, **p<0.01, ***p<0.001 
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Table S2-6. Association between ABCA7 sentinel SNPs and general cognitive function 

(n=634) 

 

PMID a Ancestry b SNP Chr Position RA RAF 

Model 1   Model 2   Model 3 

βSNP 
P-

value  

 βSNP 
P- 

value 
 βSNP 

P- 

value 

28480329 AA rs3764647 19 1044712 G 0.20 -0.04 0.518   -0.02 0.786   -0.01 0.823 

21460840 EA rs3764650 19 1046520 G 0.25 -0.03 0.598   -0.02 0.768   -0.02 0.716 

23571587 AA rs115550680 19 1050420 G 0.06 -0.03 0.748   -0.01 0.928   -0.01 0.884 

21460841 EA rs3752246 19 1056492 G 0.04 0.21 0.088   0.15 0.180   0.15 0.186 

24162737 EA rs4147929 19 1063443 A 0.05 0.21 0.075   0.12 0.243   0.12 0.241 

- - APOE ε2 19 45411941 T 0.12 0.07 0.317   0.11 0.087   - - 

- - APOE ε4 19 45412079 C 0.23 -0.11 0.046*   -0.12 0.022*   - - 

Abbreviations: PMID, Pubmed ID; AA, African American; EA, European American; Chr, chromosome; RA, risk 

allele; RAF, risk allele frequency in GENOA 

a. Pubmed ID numbers for studies that identified sentinel SNPs in the ABCA7 region in association with Alzheimer’s 

disease.  

b. Ancestry of cohorts in which significant associations were identified between sentinel SNPs in the ABCA7 region 

and Alzheimer’s disease 

Model 1: General cognitive function ~ SNP + age at cognition measurement + sex + PC1-4 + familial relatedness 

(random effect) 

Model 2: Model 1 + educational 

attainment 
                        

Model 3: Model 2 + APOE ε2 + APOE ε4             

*p<0.05; no associations were significant after Bonferroni correction at α = 0.05/5 = 0.01. 
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Table S2-7. Association of CpGs in the ABCA7 region and general cognitive function 

(p<0.05; n=494) 

 

CpG site Position Site Type 
Relation to CpG 

Island 

Model 1 Model 2 Model 3 

βCpG P βCpG P βCpG P 

cg22271697 1042537 Gene Body North Shelf 0.08 0.009* 0.07 0.007* 0.08 0.004* 

cg00874873 1051161 Gene Body CG Island 0.12 0.074 0.13 0.025* 0.12 0.034* 

cg11714200 1065689 Promoter North Shore 0.06 0.101 0.08 0.030* 0.07 0.037* 

cg26264438 1039942 Promoter CG Island 0.53 0.236 0.84 0.039* 0.83 0.041* 

cg12082025 1064219 Gene Body CG Island 0.05 0.394 0.11 0.047* 0.11 0.042* 

cg18644543 1067356 1st Exon; 5' UTR CG Island -0.51 0.031* -0.33 0.132 -0.34 0.118 

Model 1: General cognitive function ~ CpG site + sex + age at cognition measurement + age difference between methylation and 

cognition measurements + smoking status+ PC1-4 + familial relatedness (random effect) 

Model 2: Model 1 + educational attainment             
Model 3: Model 2 + APOE ε2 + APOE ε4              
*p<0.05; No associations are significant at FDR q<0.1 
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Table S2-8. Interaction between ABCA7 sentinel SNPs and CpG sites on general cognitive 

function (p<0.05; n=494) 

 

  CpG 

position 

Main   effects Interaction 

SNP * CpG site Interaction βSNP p-value βCpG p-value βinteraction p-value 

rs3764647 * cg00135882 1065783 -0.01 0.875 0.24 0.086 -0.80 1.46×10-4 ** 

rs115550680 * cg06169110 1046615 -0.23 0.045* 0.06 0.143 -0.38 2.18×10-4** 

rs115550680 * cg17316918 1056930 -0.05 0.661 -0.06 0.164 0.41 4.84×10-4 ** 

rs3764647 * cg22271697 1042537 -0.07 0.319 0.16 7.23×10-6* -0.18 5.77×10-4 ** 

rs115550680 * cg05372495 1063625 -0.04 0.707 4.92×10-3 0.837 0.17 0.008* 

rs115550680 * cg02913166 1041178 -0.10 0.329 -0.02 0.244 0.17 0.010* 

rs115550680 * cg09467711 1037732 -0.26 0.049* -0.01 0.632 0.10 0.011* 

rs115550680 * cg12817436 1068561 -0.01 0.961 -0.02 0.376 0.20 0.011* 

rs115550680 * cg07726048 1039944 -0.03 0.799 0.30 0.031* -1.02 0.012* 

rs115550680 * cg07690733 1066986 -0.11 0.301 -0.14 0.60 2.27 0.014* 

rs115550680 * cg07325521 1040062 -0.02 0.872 -0.12 0.627 -1.50 0.015* 

rs3764647 * cg09467711 1037732 -0.07 0.315 0.03 0.109 -0.07 0.017* 

rs3752246 * cg06169110 1046615 4.94×10-3 0.967 -0.02 0.597 0.24 0.033* 

Model 4: General cognitive function ~ SNP + CpG + SNP*CpG + age at cognition measurement + age difference between methylation 

and cognition measurements + sex + educational attainment + APOE ε2 + APOE ε4 + smoking status + PC1-4 + familial relatedness 

(random effect)  

* p<0.05; ** FDR q<0.1      
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Table S2-9. Pearson’s correlations among ABCA7 CpG sitesa (n=494) 

  cg00135882 cg22271697 cg06169110 cg17316918 cg00874873 cg11714200 cg26264438 cg12082025 cg18644543 

cg00135882 1.000                 

cg22271697 0.243*** 1.000               

cg06169110 0.273*** 0.085 1.000             

cg17316918 0.114* 0.152*** -0.051 1.000           

cg00874873 0.056 0.166*** 0.037 0.216*** 1.000         

cg11714200 0.128** 0.173*** -0.039 0.213*** 0.139** 1.000       

cg26264438 -0.291*** -0.119** -0.105* -0.259*** -0.091* -0.104* 1.000     

cg12082025 0.400*** 0.121** 0.217*** 0.151*** 0.043 0.070 -0.223***  1.000   

cg18644543 -0.220*** -0.130** 0.041 -0.380*** -0.235*** -0.152*** 0.407*** -0.125** 1.000 

a. CpG sites in this correlation matrix were chosen from Tables 2 and S4. Cg00135882, cg22271697, cg06169110 and 

cg17316918 are significant CpG sites in the SNP-by-CpG interactions on general cognitive function (FDR q<0.1; Table 

2). Cg22271697, cg00874873, cg11714200, cg26264438, cg12082025 and cg18644543 are nominally associated with 

general cognitive function (p<0.05; Table S4). 

* p<0.05, **p<0.01, ***p<0.001     
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Table S2-10. Estimated effect of CpG site on general cognitive function for given ABCA7 

SNP genotype group, after excluding outlying values for CpG sitesa 

SNP CpG site Genotype βCpG p-value 

rs3764647 cg00135882 
AA 0.14 0.311 

GG/AG -0.49 0.005* 

rs3764647 cg22271697 
AA 0.14 1.00×10-4 * 

GG/AG -0.02 0.719 

rs115550680 cg06169110 
AA 0.06 0.130 

GG/AG -0.37 2.00×10-4 * 

rs115550680 cg17316918 
AA -0.05 0.238 

GG/AG 0.33 0.004* 
a. Outliers greater or less than 4 standard deviations were excluded: 4 values were excluded for 

cg00135882 (n = 490), 2 values were excluded for cg22271697 (n = 492) and cg17316918 (n = 492), and 

1 value was excluded for cg06169110 (n = 493) 

Model 4: General cognitive function~ SNP + CpG + SNP*CpG + age at cognition measurement + age 

difference between methylation and cognition measurements + sex + educational status + APOE ε2 + 

APOE ε4 + smoking status + PC1-4 + familial relatedness (random effect) 

* p<0.05         
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Table S2-11. Estimated effect of CpGa site on general cognitive function for given ABCA7 

SNP genotype group, after adjusting for SNP effect. 

SNP CpG site Genotype βCpG p-value 

rs3764647 cg22271697 
AA 0.15 1.00×10-4 *  

GG/AG -0.02 0.571  

rs115550680 cg06169110 
AA 0.06 0.120  

GG/AG -0.37 2.00×10-4 *  

a. Sensitivity analysis was conducted on identified SNP-by-CpG interactions from Table 2 whose CpGs 

were associated with their corresponding SNPs (p<0.05). The SNP effect was adjusted out of the CpG site 

effect, and the interaction analysis was conducted using the adjusted CpG value 

Model 4: General cognitive function~ SNP + CpG + SNP*CpG + age at cognition measurement + age 

difference between methylation and cognition measurements + sex + educational status + APOE ε2 + 

APOE ε4 + smoking status + PC1-4 + familial relatedness (random effect) 

* p<0.05         
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Table S2-12. Interaction between ABCA7 sentinel SNPs and CpG sites on neurocognitive 

measurements (n=494) 

 

DSST 
Main effects Interaction 

βSNP p-value βCpG p-value βinteraction p-value 

rs3764647 * cg00135882 -0.35 0.679 0.68 0.709 -7.73 0.005* 

rs3764647 * cg22271697 -0.88 0.307 1.22 0.008* -1.37 0.047* 

rs115550680 * cg06169110 -2.19 0.145 0.49 0.340 -4.24 0.002* 

rs115550680 * cg17316918 -0.07 0.959 -0.54 0.319 3.38 0.028* 

              

              

COWA-FAS 
Main effects Interaction 

βSNP p-value βCpG p-value βinteraction p-value 

rs3764647 * cg00135882 -0.20 0.828 2.85 0.143 -6.79 0.023* 

rs3764647 * cg22271697 -0.64 0.488 1.15 0.021* -1.04 0.158 

rs115550680 * cg06169110 -1.67 0.300 0.01 0.978 -1.76 0.219 

rs115550680 * cg17316918 -0.59 0.684 0.07 0.905 3.56 0.030* 

              

              

RAVLT 
Main effects Interaction 

βSNP p-value βCpG p-value βinteraction p-value 

rs3764647 * cg00135882 0.53 0.055 0.19 0.747 -0.87 0.346 

rs3764647 * cg22271697 0.50 0.070 0.27 0.075 -0.48 0.036* 

rs115550680 * cg06169110 -0.32 0.511 0.07 0.688 -0.71 0.107 

rs115550680 * cg17316918 0.09 0.831 -0.06 0.737 1.20 0.017* 

              

              

SCWT 
Main effects Interaction 

βSNP p-value βCpG p-value βinteraction p-value 

rs3764647 * cg00135882 -0.55 0.498 2.92 0.089 -7.68 0.004* 

rs3764647 * cg22271697 -1.06 0.187 1.68 1.21×10-4 * -1.79 0.006* 

rs115550680 * cg06169110 -2.70 0.058 0.93 0.056 -3.29 0.009* 

rs115550680 * cg17316918 -1.23 0.340 -0.89 0.083 3.52 0.016* 

              

              

TMTA 
Main effects Interaction 

βSNP p-value βCpG p-value βinteraction p-value 

rs3764647 * cg00135882 -0.03 0.333 0.05 0.484 -0.23 0.043* 

rs3764647 * cg22271697 -0.05 0.143 0.06 0.002* -0.07 0.020* 

rs115550680 * cg06169110 -0.08 0.187 0.02 0.423 -0.15 0.006* 

rs115550680 * cg17316918 -0.01 0.903 -0.02 0.272 0.11 0.089 

Key: DSST, Digit Symbol Substitution Task; COWA-FAS, Controlled Oral Word Association Test; RAVLT, 

Rey Auditory Verbal Learning Test; SCWT, Stroop Color-Word Test; TMTA, Trail Making Test A 

Model 4: Cognitive test score ~ SNP+ CpG + SNP*CpG   + age at cognition measurement + age difference 

between methylation and cognition measurements + sex + educational attainment + APOE ε2 + APOE ε4 + 

smoking status + PC1-4 + familial relatedness (random effect) 

* p<0.05 
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Table S2-13. Interaction between ABCA7 sentinel SNPs and CpG sitesa on transcripts in 

the ABCA7 gene region (p<0.05; n = 429) 

    Main effects   Interaction 

Transcript SNP * CpG site Interaction βSNP 
p-

value 
  βCpG 

p-

value 
  βinteraction p-value 

ENST00000525939 rs115550680 * cg17316918 0.03 0.428   -9.82×10-3 0.493   0.09 0.026* 

ENST00000531467 rs3764647 * cg22271697 0.03 0.085   -0.012 0.270   0.03 0.046* 

Model 5: Transcript ~ SNP + CpG + SNP*CpG + age at gene expression measurement + age difference between methylation 

and gene expression measurements + sex + PC1-4 + familial relatedness (random effect) 

a. Significant SNP-by-CpG interactions in Table 2              

* p<0.05; No associations are significant at FDR q<0.1  
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Table S2-14. Estimated effect of CpG site on ABCA7 transcripts for given ABCA7 SNP 

genotype group (n=429) 

Transcript a SNP CpG site Genotype βCpG p-value 

ENST00000531467 rs3764647 b cg22271697 
AA -0.01  0.319  

GG/AG 0.02  0.120  

ENST00000525939 rs115550680 c cg17316918 
AA -7.6×10-3 0.597 

GG/AG 0.07 0.054 

a. Transcripts associated with previously identified SNP-by-CpG interactions in Table S10 

b. GG (n = 15) and AG (n = 156) groups were combined in the GG/AG group (n = 151) 

c. GG (n = 3) and AG (n = 47) were combined in the GG/AG group (n = 50) 

Model 5:  Transcript ~ SNP + CpG + SNP*CpG + age at gene expression measurement + age 

difference between methylation and gene expression measurements + sex + PC1-4 + familial 

relatedness (random effect) 

No associations are significant at p<0.05         
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Table S2-15. Association of SNPsa on transcripts in the ABCA7 gene region (p<0.05; n=429) 

Transcript SNP βSNP p-value 

ENST00000531467 rs115550680 -0.13 3.17×10-5** 

ENST00000527496 rs115550680 -0.13 2.14×10-4** 

ENST00000529442 rs115550680 -0.10 5.07×10-4** 

ENST00000524850 rs115550680 -0.09 0.001** 

ENST00000526885 rs115550680 -0.06 0.008** 

ENST00000532194 rs115550680 -0.07 0.009** 

ENST00000433129 rs115550680 -0.06 0.012** 

ENST00000525238 rs115550680 -0.06 0.012** 

ENST00000263094 rs115550680 -0.05 0.015** 

ENST00000530703 rs115550680 -0.06 0.024** 

ENST00000435683 rs115550680 -0.05 0.026** 

ENST00000530703 rs3764647 0.03 0.037* 

Model 5: Transcript ~ SNP + age at gene expression measurement + sex + PC1-4 + 

familial relatedness (random effect) 

a. SNPs shown were previously significant in the SNP-by-CpG interactions in Table 2 

* p<0.05, ** FDR q<0.1  
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Table S2-16. Association of CpG sitesa on transcripts in the ABCA7 region (p<0.05; n=429) 

Transcript CpG Site βCpG p-value 

ENST00000531478 cg06169110 0.02 0.008* 

ENST00000526885 cg06169110 0.02 0.037* 

Model 5: Transcript ~ CpG + age + age difference between methylation measurement and 

gene expression measurement + sex + PC1-4 + familial relatedness (random effect) 

a. CpG sites shown were previously significant in the SNP-by-CpG interactions in Table 2 

*p<0.05; No associations are significant at FDR q<0.1 
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Figure S2-3. Flow diagram illustrating sample sizes for genetic (n = 634), epigenetic (n = 

494), and transcriptomic (n = 429) analyses in GENOA AA. 
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Figure S2-4. Models used to assess genetic, epigenetic and genetic-epigenetic interaction 

associations with general cognitive function. 
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Figure 2-5. Transcript expression of ABCA7: ENSG00000064687 (12 ATP binding cassette 

subfamily A member 7 

 

Transcript expression of ABCA7: ENSG00000064687 (12 ATP binding cassette subfamily A member 7 [Source: HGNC Symbol; 

Acc:HGNC:37]). The upper panel shows the tissue expression levels for all ABCA7 transcripts available in GTEx. The lower 

panel shows exonic positions of the ABCA7 transcript isoforms. ENST00000525939 and ENST00000531467, which are 

associated with rs115550680*cg17316918 and rs3764647*cg22271697 interactions, respectively (Table S10), are indicated by 

red and blue arrows. Introns within the ABCA7 gene that are included in each of the two transcripts are colored red and blue 

correspondingly. Transcripts that are associated with rs115550680 (Table S12) are indicated by asterisks. Figure adapted from 

https://www.gtexportal.org/home/gene/ENSG00000064687.  Data Source: GTEx Analysis Release V8 (dbGaP Accession 

phs000424.v8.p2) [59]. 

 

 

https://www.gtexportal.org/home/gene/ENSG00000064687
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Chapter 3 . Neighborhood Environment Associations with Cognitive Function and 

Structural Brain Measures in Older African Americans 

 

3.1 Abstract 

Since older adults spend a large proportion of their time in their neighborhood 

environment, factors such as neighborhood socioeconomic disadvantage, high racial segregation, 

low healthy food availability, low access to recreation, and minimal social engagement may have 

adverse effects on cognitive function and increase susceptibility to dementia. DNA methylation, 

which is associated with neighborhood characteristics as well as cognitive function and white 

matter hyperintensity (WMH), may act as a mediator between neighborhood characteristics and 

neurocognitive outcomes. In this study, we examined whether DNA methylation in peripheral 

blood leukocytes mediates the relationship between neighborhood characteristics and cognitive 

function (N=477) or WMH (N=404) in older AA participants without preliminary evidence of 

dementia from the Genetic Epidemiology Network of Arteriopathy (GENOA). For a 1-mile 

buffer around a participant’s residence, each additional fast food destination or unfavorable food 

store with alcohol per square mile was associated with a 0.05 (p=0.04) and a 0.04 (p=0.04) 

second improvement in visual conceptual tracking score, respectively. Also, each additional 

alcohol drinking place per square mile was associated with a 0.62 word increase in delayed recall 

score (p=0.03), indicating better memory function. Although the presence of these destinations 

encourage unhealthy diet and behaviors, they may provide meeting places for community 

members that allow for greater interaction and stimulation of cognitive health. In this study, there 
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was no evidence that DNA methylation mediated the observed associations between 

neighborhood characteristics and cognitive function. Further examination of the potential 

pathways between the neighborhood environment and cognitive function/WMH may allow the 

development of potential behavioral, infrastructural, and pharmaceutical interventions to 

facilitate aging in place and healthy brain aging in older adults, especially in marginal 

populations that are most at risk. 

 

3.2 Introduction 

Dementia is preceded by a noticeable decline in cognitive abilities that becomes severe 

enough to interfere with daily functioning.4 Among U.S. adults ages 65 and older, approximately 

10% of have dementia and 22% have mild cognitive impairment (MCI).1 Dementia, which 

includes Alzheimer’s disease (AD), vascular dementia (VaD), and other types of dementia, 

places a substantial burden on family, friends, and healthcare systems.2 To date, there are no 

effective treatments available to prevent or cure dementia. However some research suggests 

performing cognitively stimulating exercises and treating cardiovascular risk factors may delay 

or prevent the onset of dementia and reduce its associated pathology.3,4 While individual-level 

factors, such as educational attainment, 5,6 smoking habits,7 and physical activity,8,9 are 

associated with cognitive function, there is growing interest in how neighborhood characteristics 

may shape health behaviors and health outcomes in older adults.10,11  

Neighborhoods are defined as living and work environments that possess both physical 

and social attributes that may affect the health of their residents. Specifically, characteristics of 

the neighborhood social environment and neighborhood socioeconomic status (SES) are 

associated with cognitive function,12–15 and higher incidence of ischemic stroke16,17 in older 
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adults. Cerebral small vessel disease (SVD), detected on magnetic resonance imaging (MRI) as 

white matter hyperintensities (WMH), causes one quarter of all ischemic strokes and is 

associated with cognitive function18 and VaD.19–21 Since older adults spend a large proportion of 

their time in their neighborhood environment, factors such as neighborhood socioeconomic 

disadvantage,22 high racial segregation,23–26 low healthy food availability,27 low access to 

recreation,28,29 and minimal social engagement30 may have adverse effects on cognitive function 

and SVD and may also increase susceptibility to dementia. As such, specific neighborhood 

infrastructures may support or hinder cognitive health among older adults aging in place. 

Understanding how neighborhood environments impact dementia pathology may allow us to 

develop better interventions to prevent disease onset. 

Previous studies have linked several individual- and neighborhood-level social 

disadvantage indicators, including low adult socioeconomic status (SES)31,32 and living in 

disadvantaged neighborhoods,33–35 to DNA methylation patterns. After adjusting for individual 

SES, neighborhood socioeconomic disadvantage and social environment were also associated 

with DNA methylation in stress- and inflammation-related genes.34 In addition, epigenome-wide 

association studies (EWAS) have shown associations between methylation and cognitive 

function36,37 and WMH.38,39 Since DNA methylation has been associated with both 

neighborhood-level factors and cognitive function/WMH, it may act as a mediator between 

neighborhood-level risk factors and cognitive outcomes. To date, a handful of studies have 

examined whether epigenome-wide markers mediate the effects of social disadvantage on health 

outcomes and risk factors. For example, in the New England Family Study, epigenetic markers 

from adipose tissue partially mediated the association between individual-level social 

disadvantage and body mass index (BMI) in adulthood.40,41 In the Multi-Ethnic Study of 
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Atherosclerosis (MESA), methylation from monocytes partially mediated the associations 

between adult SES and/or neighborhood socioeconomic disadvantage and several CVD risk 

factors.42 To our knowledge, no studies have examined epigenetic mediation in the association 

between neighborhood characteristics and cognitive function/WMH.  

African Americans (AA) have a greater burden of and risk for developing dementia,43–46 

and stroke,47 compared to Non-Hispanic Whites (NHW). Underlying causes of these disparities 

remain poorly understood but are likely due to multifactorial and multilevel factors that occur 

over the life-course. For example, differences in cognitive performance and dementia risk in AA 

may in part be caused by racial disparities in education (amount and quality), availability of 

material and social resources, access to favorable food and physical activity environments, 

exposure to discrimination, and  neurotoxicants.48,49 While studies have examined individual-

level risk factors as explanations for racial/ethnic disparities (e.g., socioeconomic, psychosocial, 

genetic, epigenetic, biological), there is increasing interest in the role of the neighborhood on 

health outcomes in AA populations. Altogether, AA are more likely to live in neighborhoods 

with social factors that may affect their stress levels (e.g., higher discrimination, lower 

educational attainment, and lower SES) that over time may result in physiological 

dysregulation25 that ultimately leads to hypertension, diabetes, coronary heart disease, and 

depression. Dysregulation of neurocognitive processes may also lead to cognitive decline or 

dementia. 

To better understand the mechanisms underlying relationships between neighborhood 

environment and dementia risk factors in older AA, we used high-dimensional mediation 

methods to identify DNA methylation sites (CpGs) in peripheral blood leukocytes that may 

mediate the relationship between neighborhood-level factors and cognitive function or WMH in 



 

 103 

the Genetic Epidemiology Network of Arteriopathy (GENOA) study. To better understand the 

functional consequences of identified CpG mediators at the molecular level, we also examined 

whether gene-level expression in transformed beta lymphocytes mediates CpG associations with 

cognitive function or WMH in the same cohort. 

 

3.3 Materials and Methods 

3.3.1 Sample 

The Genetic Epidemiology Network of Arteriopathy (GENOA) is a community-based 

longitudinal study intended to examine the genetic effects of hypertension and related target 

organ damage.50 European American (EA) and African American (AA) hypertensive sibships 

were recruited if at least 2 siblings were clinically diagnosed with hypertension before age 60. 

All other siblings were invited to participate, regardless of hypertension status. Exclusion criteria 

included secondary hypertension, alcoholism or drug abuse, pregnancy, insulin-dependent 

diabetes mellitus, active malignancy, or serum creatinine levels >2.5mg/dL. In Phase I (1996-

2001), 1,854 AA participants (Jackson, MS) and 1,583 EA participants (Rochester, MN) were 

recruited.50 In Phase II (2000-2004), 1,482 participants AA participants and 1,239 EA 

participants were successfully followed up, and their potential target organ damage from 

hypertension was measured. Demographics, medical history, clinical characteristics, medication 

use, and blood samples were collected in each phase. Methylation levels were measured only in 

AA participants using blood samples collected in Phases I and II.  

In an ancillary study, the Genetics of Microangiopathic Brain Injury (GMBI; 2001-2006), 

1,010 AA and 967 EA GENOA participants underwent a battery of established cognitive tests to 

assess measures of cognitive function.51,52 White matter hyperintensity (WMH) was also 
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measured using brain Magnetic Resonance Imaging (MRI). The GMBI exam occurred 

approximately one year after the participant completed Phase II (mean time between Phase II and 

GMBI = 1.1 years, SD=1.0 year). Written informed consent was obtained from all participants, 

and approval was granted by participating institutional review boards (University of Michigan, 

University of Mississippi Medical Center, and Mayo Clinic). 

 A total of 710 AA participants had non-missing demographic, cognitive, and methylation 

data. Since participants with a history of stroke or dementia may have had changes in general 

cognitive function that differed from non-pathological cognitive aging, we excluded those with a 

history of stroke (n=31) and/or preliminary evidence of dementia indicated by a Mini-Mental 

State Examination Score (MMSE) of <24 (n=38). Participants younger than age 45 were also 

excluded (n=28). A total of 542 and 477 participants were available with neighborhood spatial 

(density measures) and neighborhood socioeconomic disadvantage analyses, respectively (Figure 

S3-4).  

A total of 602 AA participants had non-missing demographic, WMH, and methylation 

data. Participants with a history of stroke (n=17), and/or preliminary evidence of dementia 

indicated by a Mini-Mental State Examination Score (MMSE) of <24 (n=23) were excluded. 

Participants younger than age 45 were also excluded (n=17). A total of 466 and 404 participants 

were available for neighborhood spatial (density measures) and neighborhood socioeconomic 

disadvantage analyses, respectively (Figure S3-5). 
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3.3.2 Measures 

A. Measures of cognitive function 

The following four cognitive domains were evaluated: delayed recall (Rey Auditory 

Verbal Learning Test (RAVLT)), processing speed (Digit Symbol Substitution Test (DSST)), 

word fluency (Controlled Oral Word Association Test (COWA-FAS)) and visual conceptual 

tracking (Trail Making Test A (TMTA)).51,52 All cognitive domains were coded so that a higher 

score corresponds to better cognitive function. See Supplementary Methods for additional 

details. 

 In addition to analyzing individual cognitive domains, we assessed a summary measure 

of general cognitive function, which is often quantified using cognitive tests in multiple 

cognitive domains.53 In this study, general cognitive function was calculated as the first 

unrotated principal component (FUPC) from a principal component analysis (PCA) of the four 

cognitive domains in the full sample (N=542). The FUPC accounted for 57% of the total 

variance in the cognitive measures and loading factors of the four measures were 0.61 for 

delayed recall (RAVLT), 0.88 for processing speed (DSST), 0.70 for word fluency (COWA-

FAS) and 0.81 for visual conceptual tracking (TMTA).  

 

B. White matter hyperintensity 

Presence of WMH in brain samples indicates areas of ischemic damage to small vessels 

and surrounding areas. Brain magnetic resonance images were measured from magnetic 

resonance imaging (MRI), using Signa 1.5T MRI scanners (GE Medical Systems, Waukesha, 

WI, USA) at Mayo Clinic.54 For additional details, see Smith et al.55 WMH and total brain 

volume in the coronaradiata and periventricular zone were quantified from axial fluid-attenuated 
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inversion recovery (FLAIR) images.56 Brain scans with cortical infarctions were excluded from 

the analyses because of the distortion of WMH volume estimates that would be introduced in the 

automated segmentation algorithm. Models assessing WMH were adjusted for total intracranial 

volume (TIV). Distributional plots indicated that the measures of WMH are right-skewed, so the 

WMH variable was transformed as ln(WMH + 1). 

C. DNA methylation measures 

Genomic data was extracted from stored peripheral blood leukocytes from 1,106 AA 

GENOA participants from Phase I and 304 AA participants from Phase II using the AutoGen 

FlexStar (AutoGen, Holliston, MA). Bisulfite conversion was performed with the EZ DNA 

Methylation Kit (Zymo Research, Irvine, CA), and methylation was measured using the Illumina 

HumanMethylationEPIC BeadChip. The raw intensity data was visualized using the shinyMethyl 

R package 57 to identify sex mismatches and outliers, which were removed. Samples with 

incomplete bisulfite conversion were identified using Qcinfo in the Enmix R package58 and 

removed. Background correction and dye-bias normalization were performed using Noob in the 

Minfi R package.59,60 Sample identity was verified using 59 SNP probes on the EPIC array, and 

mismatched samples were removed. Probe-type bias was adjusted using the Regression on 

Correlated Probes (RCP) method.61 Probes with detection p-value <10-16 were considered 

successfully detected, and probes and samples with detection rate<10% were removed.62 We also 

excluded cross-reactive probes63 and probes with a SNP at the target CpG site or within a single-

base extension. After quality control, a total of 1,396 samples (N=1,100 from Phase I and N=294 

from Phase II) and 857,121 CpG sites were available for analysis. For this analysis, all 

methylation data were from Phase I samples. White blood cell proportions for CD8+ T 

lymphocytes, CD4+ T lymphocytes, natural killer cells, B cells, monocytes, and granulocytes 
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were estimated using the Houseman method.64 For each CpG site prior to analysis, the 

methylation beta-values65,66 were pre-adjusted for batch effects (sample plate, row, and column) 

and white blood cell proportions using linear mixed modeling, and the resulting residuals were 

added to the mean values. 

 

D. Gene expression measures 

Gene expression levels in transformed beta-lymphocyte cell lines from blood samples 

taken primarily at GENOA Phase II were measured using the Affymetrix Human Transcriptome 

Array 2.0. The Affymetrix Expression Console was used for quality control, and all array images 

passed visual inspection. Affymetrix Power Tool software was used to process raw intensity 

data.67 We normalized Affymetrix CEL files using the Robust Multichip Average (RMA) 

algorithm, including background correction, quantile normalization, log2-transformation, and 

probe set summarization.68 Linearity was also maintained using GC correction (GCCN), signal 

space transformation (SST), and gain lock (value=0.75). We used the Brainarray custom CDF69 

version 19 to map the probes to genes, specifically removing probes with non-unique matching 

cDNA/EST sequences that can be assigned to more than one gene cluster. As a result, the gene 

expression data processed through the custom CDF is expected to be free of mappability issues; 

however, alignment bias may still exist due to genetic variation, errors in the reference genome, 

and other complications.70 After mapping, Combat was used to remove batch effects.71 A total of 

17,616 gene-level expression values were available for analysis. 
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E. Individual-level measures 

Age was assessed at cognitive testing. Adult socioeconomic status (SES) was indicated 

by the respondent’s highest level of educational attainment, categorized as: (1) less than high 

school degree/GED (reference group), (2) high school degree or GED, and (3) at least four years 

of college or trade/technical school. Smoking has a substantial impact on the epigenome72 so we 

used smoking data from the same timepoint as the DNA methylation measures (Phase I). 

Participants were categorized as current, former, or never smokers (reference group).  

F. Neighborhood characteristics 

i. GIS-based measures 

Neighborhood density characteristics were derived from Geographic Information System 

(GIS)73 data (1996-2015). Simple densities per square mile were created for ½-mile, 1-mile, and 

3-mile buffer sizes around home addresses of GENOA participants at Phase I using ArcGIS 

V.9.3 (ESRI, Inc., Redlands, California)74,75 We used 1-mile buffer in our primary analysis, as 

previous studies have done,76,77 and examined ½- and 3-mile buffers in sensitivity analysis. 

Kernel densities per square mile, with greater weighting towards destinations located closer to 

the home of a participant, were also created for GENOA participants using the kernel density 

command in ArcGIS V.9.374,75 for the same buffer sizes; these were also explored in sensitivity 

analysis. 

For each participant, simple densities were estimated for the following 12 destinations: 

fast food restaurants (including both chain and non-chain), total physical activity facilities, total 

social engagement destinations, and alcohol outlets. Summary density measures were also 

created for densities of unfavorable food stores with and without alcohol, healthy (favorable) 

food stores, popular walking destinations, total stores, and total food stores. The modified retail 
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food environment index (MRFEI) was calculated from the number of healthy and less healthy 

food retailers within census tracts across states, based on typical food offerings in specific retail 

stores.78 See Supplementary Methods for additional details. 

 

ii. Census measures 

Briefly, neighborhood socioeconomic disadvantage was assessed using data collected in 

the 2000 U.S. Census,79,80 American Community Survey (ACS) 2005-2009,81 and ACS 2007-

2011.82 Data was linked to GENOA participant data (Phase I; 1995-2000) by census tract using 

Census and ACS estimates for the closest time period. To derive neighborhood socioeconomic 

disadvantage, we used six variables that reflected aspects of wealth and income, education, and 

occupation for each census tract.83 Z-scores for each census tract were estimated for each 

variable, and neighborhood socioeconomic disadvantage was defined as the sum of Z-scores 

from the six variables, with higher scores indicating more disadvantage. See Supplementary 

Methods for additional details. 

 

3.3.3 Statistical analysis 

We first calculated Pearson correlations among the five cognitive outcomes (general 

cognitive function and the four cognitive domains), and among the 13 neighborhood 

characteristics (12 density measures and neighborhood socioeconomic disadvantage). Since areas 

of increased population density (e.g., urban neighborhoods) generally have a higher absolute 

number of destinations, we next examined the neighborhood characteristics after pre-adjusting 

for census tract population density using linear modeling. Correlations were calculated among 
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the neighborhood characteristics for simple and kernel densities per square mile for 1-mile buffer 

sizes.  

 

Associations between neighborhood measures and cognitive function/WMH 

To identify which exposures and outcomes have a significant total effect, we tested for 

association between each neighborhood characteristic (exposure) and general cognitive function, 

each cognitive domain, or WMH (outcome), and assessed significance at alpha=0.05. We first 

tested for association between a neighborhood characteristic (socioeconomic disadvantage or 

simple density measures) and general cognitive function, adjusting for age at cognitive function 

measurement, sex, current smoking status, the first 5 genetic principal components (PCs) of 

ancestry, and family relatedness as a random effect (Model 1a). In Model 1b, we tested for 

association between each neighborhood characteristic and WMH, adjusting for the same 

covariates as Model 1a and TIV. In Models 2a/2b, we additionally adjusted for census tract 

population density in 2000 and included census tract as a random effect. We also tested for 

associations between each neighborhood characteristic and each of the four cognitive domains 

using Model 2a. Associations between neighborhood characteristics and cognitive 

function/WMH that were significant at P<0.05 in Models 1a/1b or 2a/2b were selected for 

mediation analysis. In sensitivity analysis, we tested the same associations using simple densities 

at ½- and 3-mile buffers as well as kernel densities at all 3 buffers. The total effects model is 

outlined below: 

 

𝑌2𝑗𝑘 = 𝛽0 +  𝝎𝑋1𝑗𝑘 +  𝛼𝐶1𝑗𝑘 + 𝑊𝑘 + 𝜀𝑗𝑘  

 

𝛽0: intercept value; cognitive function/WMH value when neighborhood characteristic (exposure) 

equals zero 
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𝜔: effect estimate of neighborhood characteristic (exposure) on cognitive function/WMH 

𝑋1𝑗𝑘: neighborhood characteristic (exposure) for participant j in sibship k at Phase I 

𝐶1𝑗𝑘: set of covariates (age at cognitive function/WMH measurement, sex, and genetic principal 

components at Phase I; and TIV for WMH outcome). 

𝑊𝑘: random effect (familial relatedness). 

𝜀𝑗𝑘: residual error (independent and normal distribution) for participant j in sibship k. 

𝑌2𝑗𝑘: cognitive function/WMH for participant j in sibship k at Phase II 

 

Mediation analysis 

If a significant association (total effect) was identified between a neighborhood 

characteristic and a cognitive/WMH outcome, we conducted an epigenome-wide high-

dimensional mediation analysis to identify CpG sites that may partially mediate the relationship. 

We used a cross-product-based mediation approach in which the mediation effect is obtained by 

multiplying the exposure-mediator effect (β1) and the mediator-outcome effect (β3; see Equations 

1 and 2 below). We obtained these parameters for each exposure and outcome tested using linear 

mixed models to separately estimate the association between neighborhood characteristics with 

DNA methylation (mediator), while adjusting for covariates (Equation 1), and the association 

between DNA methylation and cognitive function/WMH, while adjusting for the corresponding 

exposure tested and the same set of covariates (Equation 2). The covariate sets in Equations 1 

and 2 are the same as in Models 1a/b and 2a/b. The specified models (Equations 1 and 2) for a 

given exposure-outcome association are outlined below: 

 

𝑀𝑗𝑘 = 𝛽0 + 𝜷𝟏𝑋1𝑗𝑘 + 𝛼𝑉1𝑗𝑘 + 𝑊𝑘 + 𝜀𝑗𝑘      (Equation 1) 

𝑌2𝑗𝑘 =  𝛽0 + 𝛽2𝑋1𝑗𝑘 + 𝜷𝟑𝑀𝑗𝑘 + 𝛼𝑉1𝑗𝑘 + 𝑊𝑘 + 𝜀𝑗𝑘     (Equation 2) 

𝛽0: intercept value; cognitive function/WMH value when neighborhood characteristic (exposure) 

equals zero 

𝑀𝑗𝑘: DNA methylation (mediator; beta-value) for participant j in sibship k 

𝑋1𝑗𝑘: neighborhood characteristic (exposure) for participant j in sibship k at Phase I 
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𝑉1𝑗𝑘: adjustment covariates for participant j in sibship k at Phase I 

𝑊𝑘: random effect for each sibship which accounts for the multiple siblings within sibships 

𝜀𝑗𝑘: residual error (independent and normal distribution) for participant j in sibship k 

𝑌2𝑗𝑘: cognitive function/WMH (outcome) for participant j in sibship k at Phase II 

β1: effect estimate of neighborhood characteristic (exposure) on DNA methylation (mediator) 

β2: direct effect estimate of the neighborhood characteristic (exposure) on cognitive 

function/WMH (outcome) 

β3: effect estimate of DNA methylation (mediator) on cognitive function/WMH (outcome), 

adjusting for the direct effect (β2) 

 

Using Equations 1 and 2 above, the epigenetic mediation effect was tested using the following: 

H0: 𝛽1𝛽3 = 0 

HA: 𝛽1𝛽3  0 

The null hypothesis was comprised of three sub-hypotheses: (1) H01: 𝛽1 = 0, 𝛽3 ≠ 0; (2) H10: 

𝛽1 ≠ 0, 𝛽3 = 0; and (3) H00: 𝛽1 = 𝛽3 = 0. To that end, 01, 10 and 00 are the true proportions 

of (𝛽1 = 0, 𝛽3 ≠ 0), (𝛽1 ≠ 0, 𝛽3 = 0) and (𝛽1 = 𝛽3 = 0) among all J tests. Figure 3-1 shows a 

directed acyclic graph (DAG) of the hypothesized associations. To test for the mediation effect, 

we used the Sobel-comp84 method in the medScan package in R, which uses a corrected mixture 

reference distribution for Sobel’s test statistic according to the composite structure of the null 

hypothesis. We corrected for multiple testing using the false discovery rate (FDR)85 on the 

mediation p-values (FDR q<0.10).85 

 

3.4 Results 

3.4.1 Sample Characteristics 

The sample included 542 AA without dementia (Table 3-1). Participant age ranged from 

45 to 83 years (mean = 62.5 years). More than half of participants (73%) were female. A total of 

25.0% had less than a high school degree/GED, 46.5% attained a high school degree/GED, and 
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28.6% completed at least four years of college or trade school. General cognitive function was 

normally distributed (Figure 3-2). Mean delayed recall (RAVLT) score was 7.0 (SD=3.3) words 

recalled, mean processing speed (DSST) was 33.8 (SD=13.0) symbols, mean word fluency 

(COWA-FAS) score was 29.4 (SD=11.6) words, and mean visual conceptual tracking (TMTA) 

score was 63.8 (SD=35.2) seconds to completion. Participants had a mean WMH of 9.42 cm3 

(SD=9.19). WMH distribution was severely right skewed but had a normal distribution after log 

transformation.  

 

3.4.2 Correlation among cognitive and WMH outcomes 

The four cognitive domains were moderately correlated (Pearson r ranged from 0.21 to 

0.68), with the highest correlation among processing speed (DSST) and visual conceptual 

tracking (TMTA) (r=0.68, p<0.001, Table S3-6). WMH was negatively and weakly correlated 

with all the cognitive measures except COWA-FAS (Pearson r ranged from -0.27 to -0.34 for 

significant correlations). 

 

3.4.3 Correlation among the neighborhood exposures 

Pearson correlations among the neighborhood exposures, including neighborhood 

socioeconomic disadvantage and the 12 neighborhood simple density measures per square mile 

for 1-mile buffer size, are shown in Table S3-7. Neighborhood exposures were moderately 

correlated (Pearson r ranged from -0.237 to 0.995), with the highest correlation between the 

simple densities of total social engagement and MRFEI with alcohol (r = 0.995, p<0.001). 

Neighborhood socioeconomic disadvantage was positively, but weakly, correlated with 
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unfavorable food stores without alcohol, total social engagement destinations, total popular 

walking destinations and alcoholic drinking places.  

After adjusting for census tract population density, the correlations between 

neighborhood socioeconomic disadvantage and neighborhood characteristics increased in 

magnitude in the positive direction for all measures except fast food destinations, alcoholic 

drinking places, and the MRFEI measures. For instance, neighborhood socioeconomic 

disadvantage was negatively correlated with fast food destinations (r=-0.20, p<0.01) and 

unfavorable food stores with alcohol (r=-0.21, p<0.001); however, after adjusting for census tract 

population density, fast food destinations were weakly correlated with neighborhood 

disadvantage (r=-0.02, p<0.001) and positively correlated with unfavorable food stores (r=0.92, 

p<0.001; Table S3-8). The simple and kernel densities of each neighborhood characteristic are 

strongly and positively correlated with each other (Pearson r ranged from 0.702 to 0.934; Table 

S3-9). 

 

3.4.4 Associations between neighborhood characteristics and cognitive/WMH outcomes 

A. Neighborhood socioeconomic disadvantage associations 

Neighborhood socioeconomic disadvantage was not associated with general cognitive 

function or WMH either before (Models 1a/1b) or after adjusting for census tract population 

density and census tracts as a random effect (Models 2a/2b, Table 3-2). Further, neighborhood 

socioeconomic disadvantage was not associated with any of the four cognitive domains (Model 

2a, Table 3-3).  
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A. Density associations 

There was no association between the 12 neighborhood simple density exposures at 1-

mile buffer size and cognitive/WMH outcomes either before (Models 1a/1b) or after adjusting 

for census tract population density and census tracts as a random effect (Models 2a/2b; Table 3-

4). The associations between simple neighborhood densities per square mile for ½- and 3-mile 

buffer sizes and cognitive function/WMH are reported in Table S3-10. One additional alcoholic 

drinking place per square mile for the 3-mile buffer size was associated with a 0.71 SD decrease 

in general cognitive function after adjusting for census tract population density and census tracts 

as a random effect (p=0.03; Model 2a; Table S3-10). 

 We also tested the association between the 12 neighborhood simple density exposures 

examined at 1- mile buffer region with each of the four cognitive domains (Model 2a; Table 3-

5). One additional fast food destination or unfavorable food store with alcohol per square mile 

was associated with a 0.05 (p=0.04) and a 0.04 (p=0.04) second increase in visual conceptual 

tracking score, respectively, indicating that more of these destinations was associated with better 

visual conceptual tracking. In addition, one additional alcohol drinking place per square mile was 

associated with a 0.62 word (p=0.03) increase in delayed recall score (Table 3-5), indicating 

better memory function. The associations between simple neighborhood densities per square 

mile for ½- and 3-mile buffer sizes and cognitive/WMH measures are also reported in Tables S3-

10 and S3-11. 

 We also tested the association between the 12 neighborhood kernel density exposures at 

½-, 1- and 3- mile buffer sizes with cognitive function/WMH (Table S3-12) and the cognitive 

domains (Table S3-13). There were no associations between the kernel density neighborhood 

exposures and general cognitive function or WMH in Models 1a/2a and 1b/2b (Table S3-12). At 
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the 1-mile buffer, kernel density of fast food destinations and unfavorable food stores with 

alcohol were both associated with better visual conceptual tracking, consistent with the simple 

density associations; however, the association between kernel density of alcohol drinking places 

and delayed recall score was not. We also found that at the 1-mile buffer, kernel densities of 

unfavorable food stores without alcohol, total popular walking destinations, and total food stores 

were all associated with better visual conceptual tracking as well. The associations between 

kernel neighborhood densities per square mile for ½- and 3-mile buffer sizes and 

cognitive/WMH measures are also reported in Tables S3-12 and S3-12. 

 

3.4.5 Mediation analysis 

When the total effect of a neighborhood characteristic (simple density at 1-mile buffer) 

and cognitive function/WMH was significant at p<0.05, we conducted epigenome-wide high-

dimensional mediation analysis to identify possible CpG sites that may partially mediate the 

relationship between the neighborhood exposure and corresponding outcome using Model 2a in 

477 participants with complete data. The following exposure-outcome combinations were 

investigated: (a) alcohol drinking places and delayed recall, (b) fast food destinations and visual 

conceptual tracking, and (c) unfavorable food stores with alcohol and visual conceptual tracking. 

Figure 3-3 shows quantile-quantile (QQ) plots for the 5 exposure-outcome relationships using 

Sobel-Comp. The p-values from Sobel-Comp test were deflated, potentially due to the large 

number of zero exposure-mediator (β1) and mediator-outcome (β3) estimates and the small 

sample size (Figure 3-3). No associations were significant at FDR q<0.1. 
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3.5 Discussion 

As the aging population rapidly grows, a better understanding of how the neighborhood 

environment may affect cognitive health is needed to mitigate the future burden of dementia in 

the U.S. While there are studies showing the effect of individual factors, such as lifestyle, 

genetics and biomarkers on cognitive function, there is little research on the association between 

neighborhood characteristics and cognitive function to date.86 Further, only a few studies have 

examined the potential molecular mechanisms linking neighborhood environment and cognitive 

health.12,87 To our knowledge, this study is the first assessment of whether DNA methylation 

partially mediates the association between various neighborhood environment characteristics and 

cognitive function in AA without dementia. This cross-sectional study suggests that greater 

simple densities of alcohol drinking places may be associated with better memory as measured 

by delayed recall (RAVLT), and greater densities of fast-food destination and unfavorable food 

stores with alcohol with better attention and task switching as measured by visual conceptual 

tracking (TMTA) in cognitively normal AA. However, we did not find associations between 

neighborhood characteristics and WMH. We also were unable to detect mediating effects of 

DNA methylation on the associations between these neighborhood characteristics on cognitive 

function and cognitive measures in this sample.  

We initially expected higher densities of unfavorable food stores to be associated with 

worse cognitive function, suggesting that increased access to unhealthy food and drink may 

encourage unhealthy dietary choices that lead to lower cognitive health. Instead, we found that 

greater densities of alcohol drinking places, fast-food, and unfavorable stores with alcohol that 

may encourage unhealthy dietary choices were associated with better cognitive function as 

measured by delayed recall and visual conceptual tracking after adjustment for population 
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density. Considering that Jackson, MS does not have a highly dense population (approximately 

1,300 people per square mile in 2010), the presence of these walking destinations may provide 

meeting places for community members, allowing for greater interaction and stimulation of 

cognitive health, regardless of their impact on unhealthy diet and behaviors. As such, these 

meeting hubs may contribute to better cognitive function through increased access to community 

residents, neighborhood community resources, and proximal walking destinations that improve 

cognitive health by increasing physical activity levels, social engagement, mental health or 

quality of life.88   

To date, results from previous studies examining similar characteristics of the 

neighborhood environment and cognitive function have been mixed. In the Chicago Health and 

Aging Project (CHAP), increasing densities of social and walking destinations such as 

community centers were associated with slower cognitive decline,89 yet a study in the Multi-

Ethnic Study of Atherosclerosis (MESA) showed an inverse association between these same 

measures and cognitive function, and most noticeably in individuals of non-white race.90 Also, 

closer access to community resources has been associated with better cognitive function in 

NHW, but worse cognitive function in AA,91 while other studies showed no association between 

the presence of neighborhood built environment characteristics, such as recreation centers and 

institutional resources (e.g., libraries, schools and community centers) and cognitive 

function.89,91,92 In our study, the plausible mechanisms and direction or presence of 

neighborhood-cognitive function association may depend on the neighborhood characteristic and 

cognitive domain being studied, and more than one mechanism may be at play. 

Different underlying mechanisms of neighborhood environment on cognitive function 

have been examined to understand how interventions can prevent dementia onset. In MESA, 
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increasing social destination density, walking destination density, and intersection density were 

associated with worse cognitive function, and increasing proportion of land dedicated to retail 

was associated with better processing speed.93 While we did not observe similar patterns among 

simple densities, we did observe greater kernel densities of total popular walking destinations per 

square mile (for ½- and 1-mile buffer sizes) were associated with higher visual conceptual 

tracking and greater kernel densities of total social engagement destinations per square mile (½-

mile buffer) were associated with higher delayed recall. Access to a safe and walkable 

neighborhood environment may help older adults age in place and delay the onset of cognitive 

impairment and decline prior to dementia.92,94,95 In addition, the positive relationship between 

proportion of land dedicated to retail and processing speed may be explained by increased 

utilitarian physical activity and social engagement, or increased cognitive stimulation that 

contributes to the cognitive reserve.92 Also, fast-food outlets and local retail food environments 

may play a role in providing social and community engagement, connectedness, emotional 

support and cognitive stimulation for older adults outside of more formal or age-graded settings 

such as doctor’s office, church or senior center.96,97  

Other studies have found inverse relationships between neighborhood characteristics and 

cognitive function that may be related to cognitive overload among older adults due to stress 

from greater number of destination choices or navigation of traffic. It is possible that highly 

dense areas consisting of social and walking destinations and street intersections have increased 

vehicular pollutant exposure due to decreased distances to busy roadways and decreased air 

ventilation created by buildings.98 Airborne pollutants have been associated with worse cognitive 

function and brain structure in older adults.98 Factors such as neighborhood socioeconomic 

disadvantage,22 low healthy food availability,27 low access to recreation,28,29 high racial 
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segregation,23–26 and minimal social engagement30 may have adverse effects on cognitive 

function and increase susceptibility to dementia as well. These mixed results from other studies 

may be affected by residual confounding from unmeasured factors. Thus, additional research on 

the many confounders and mechanisms related to the relationship between the neighborhood 

environment and cognitive function is necessary. 

In addition, we found correlations between favorable and unfavorable destinations, even 

after adjusting for population density, which may further illuminate our findings in the context of 

cognitive health and behaviors. For example, greater densities of fast-food destinations were 

associated with greater densities of favorable food stores, physical activity destinations, and 

MRFEI (the proportion of favorable food stores to total food stores), even after adjusting for 

population density. These correlations in Jackson may be attributed to a complex interplay of 

socioeconomic, urban planning, cultural, historical and policy-related factors and confounders. 

Further, socioeconomic disparities often lead to variations in access to health-promoting 

resources, with neighborhoods of lower SES facing limited access to healthy options and an 

increased prevalence of unhealthy alternatives. The availability of favorable food stores may 

reflect the demand from residents, according to their purchasing power, who can afford healthier 

options. To account for this discrepancy, we adjusted for neighborhood socioeconomic 

disadvantage in our associations. The city’s urban planning, historical development (e.g., 

redlining and discriminatory housing practices in the past) and government policies may play 

crucial roles in shaping the distribution of health-related destinations. Another possibility is that 

areas with higher commercial zoning may attract both fast food establishments and favorable 

food stores, creating clusters of businesses in certain neighborhoods. Additionally, cultural 

preferences and consumer demand influence the types of businesses and amenities in specific 
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neighborhoods. For example, the high correlation between favorable and unfavorable food store 

density may be due to a micro-cultural artifact at play Jackson that encourages increased 

densities of fast food in Black neighborhoods.99 This micro-culture, which results from shared 

race/ethnicity, beliefs, styles, skills, and habits of residents of a particular area, may disfavor 

physical activity and other healthy behaviors, even in the presence of features that allow for 

them.100,101   

Considering that the neighborhood context has the potential to influence cognitive 

function, it is important to clarify the potential biological mechanisms linking neighborhood 

characteristics and cognitive function to shed light on the etiology and causal mechanisms 

driving health disparities. DNA methylation may help us better understand the pathways that 

mediate or interact with the environment and cognitive function. Previous studies have shown 

that the neighborhood context affects DNA methylation, even after adjusting for individual level 

factors, and that DNA methylation patterns in stress and inflammatory pathways may be 

responsive to interventions.34 EWAS have also found multiple CpGs related to 

neurodegeneration associated with cognitive function.36,37 Considering these factors and that past 

studies have found CpGs mediating the relationship between neighborhood socioeconomic 

disadvantage and various cardiovascular risk factors,40–42 which are potential upstream factors of 

cognitive function and dementia, we expected to detect mediating CpG sites in the associations 

between neighborhood characteristics and cognitive function/WMH.  

One reason that we may not have observed epigenetic mediation is the choice of 

mediation model implemented. Sobel-Comp84 is a more powerful extension of high-dimensional 

mediation hypothesis testing (HDMT) 36 that is preferred when almost all exposure-mediator and 

mediator-outcome associations are equal to 0 (00 is close to 1), and there are almost no non-zero 
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exposure-mediator or mediator-outcome associations (01 and 10 are close to 0). One limitation 

is that Sobel-Comp is conservative under these conditions, compared to other high-dimensional 

mediation methods such as JT-Comp;102 however Sobel-Comp has the advantages of using the 

correct mixture reference distribution for Sobel’s test statistic, maintain a false positive rate 

(FPR) close to the nominal level, and it yielding larger true positive rates (TPRs). In this study, 

Sobel-Comp was the appropriate method because 00 was bounded away from 1 for all 

associations tested, but we did not detect significant mediation effects due to a potentially large 

number of zero exposure-mediator (β1) and mediator-outcome (β3) estimates, deflated p-values 

and small sample size. In addition, DNAm levels of proximal CpGs in the same biological 

pathways may be correlated, resulting in properties that are not desirable for TPR and FPR.65 

When there correlated mediators, single-mediator hypothesis testing methods like Sobel-Comp 

are unable to fully account for all the mediator-outcome confounders affected by the exposure 

(also known as co-mediators), thus reducing the power to detect mediating CpGs and potentially 

biasing our effect estimates.42,103–105 While it is possible to jointly model multiple mediators 

using the Bayesian high-dimensional mediation method106 and its use may have reduced the 

multiple testing burden and increased the power to detect independent effects, this method is 

computationally heavy and only a few thousand mediators would have been evaluated 

simultaneously at a time.106–108 Evaluating our mediation analysis models to account for multiple 

correlated mediators are of interest for future analysis. Our results may indicate that methylation 

is not a critical component of the mediating pathway between neighborhood exposures and 

cognitive/WMH outcomes. Our observed associations should also be considered with caution 

due to the limited statistical power inherent in our sample. The small sample size may have 

restricted our ability to detect the total effects between neighborhood characteristics and 
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cognitive/WMH outcomes that could exist within the population. As a result, our findings may 

not be generalizable beyond our sample.  

Our study also had other limitations. Our findings may be affected by residual 

confounding by unmeasured variables, increased exposure to factors including air pollution, 

potential for chance social interactions, crime, physical disability, discrimination and structural 

racism that may be due to increased walking in the neighborhood which influences cognitive 

function, or factors related to study design (e.g., cross-sectional nature). Moreover, we did not 

investigate the important ways in which air pollution, structural racism and stress are mediators 

on the pathways of specific neighborhood-cognitive function/WMH associations. Also, further 

longitudinal and life-course studies that explore mediation pathways between early-life, mid-life 

and late-life neighborhood, methylation, and cognitive function/WMH measures are needed. In 

this study, neighborhood characteristics were based on current home addresses, and we did not 

take into account that earlier or longer-term neighborhood exposures may be important for late-

life cognitive function/WMH.  

Our study also has notable strengths. To our knowledge, this study is the first to examine 

the role of DNA methylation in mediating the relationships between neighborhood 

characteristics and cognitive function/WMH in a cohort of older adults without diagnosed 

dementia. Our study was also conducted in AA, an understudied population with a higher 

prevalence of dementia109,110 and higher conferred risk of cognitive decline and dementia from 

neighborhood environment compared to EA.111 Additionally, with rich cognitive and WMH 

measures, we were able to assess associations with multiple cognitive domains, general cognitive 

function, and a risk factor for VaD. We were also able to adjust for neighborhood socioeconomic 

disadvantage to control for the influence of income, education, employment and other SES 
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indicators that might independently affect cognitive health. We also controlled for confounding 

by census tract population density because it could influence the availability of stores and 

cognitive outcomes. High-density urban areas may have greater access to stores and services and 

low-density rural areas may have lower access to these destinations. Both densities may affect 

cognitive health, so adjusting for population density ensures that our results are not skewed by 

these population differences and are more accurate. Also, we utilized a powerful high 

dimensional mediation method that reduced the likelihood of false positives. Lastly, our primary 

analysis used 1-mile density buffers around participants’ homes, which provide more precise 

spatial representation of neighborhoods than administrative boundaries and may more accurately 

reflect nearby places and distances that an older adult would walk.  

 

3.6 Conclusion 

In the present study, we found that destination density had small but notable effects on 

several domains of cognitive function in AA without dementia. However, we detected no 

significant mediating effects of DNA methylation on these associations. Upon further 

examination of the potential pathways between the neighborhood environment and cognitive 

function, we may develop potential behavioral, infrastructural, and pharmaceutical interventions 

to allow aging in place and healthy brain aging in older adults, especially marginal populations 

that are most at risk. 
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3.8 Tables 

Table 3-1. Sample characteristics of Genetic Epidemiology Network of Arteriopathy 

(GENOA) African Americans (N = 542) 

 

    Mean (SD) or n% 

Age at cognition measurement (years) 62.52 (7.69) 

Sex   

 Female 403 (74.35%) 

 Male 139 (25.65%) 

Educational attainment  

 Completed at least four years of college or technical/trade school  155 (28.60%) 

 Completed high school degree/GED  252 (46.49%) 

 Less than high school degree/GED 135 (24.91%) 

Smoking status  

 Current smoker 83 (15.31%) 

 Former smoker 125 (23.06%) 

 Never smoker 334 (61.62%) 

General cognitive function 0.03 (0.99) 

Delayed recall (RAVLT, number of words recalled) 6.95 (3.29) 

Processing speed (DSST, number of symbols) 33.82 (13.04) 

Word fluency (COWA-FAS, number of words) 29.40 (11.64) 

Visual conceptual tracking (TMTA, seconds to test completion) 63.75 (35.22) 

White matter hyperintensity (WMH, cm3) a 9.42 (9.19) 

Total intracranial volume (TIV, cm3) a 1376.58 (129.81) 

Neighborhood characteristics   

             Neighborhood socioeconomic disadvantage 3.41 (3.46) 

             Fast food destination density b 0.75 (0.85) 

             Unfavorable food stores without alcohol density b 1.94 (1.75) 

             Unfavorable food stores with alcohol density b 1.24 (1.13) 

             Favorable food stores density b 0.22 (0.31) 

             Total physical activity destinations density b 0.34 (0.37) 

             Total social engagement destinations density b 14.37 (10.85) 

             Total popular walking destination density b 3.53 (3.13) 

             Alcoholic drinking places density b 0.36 (0.62) 

             Total stores density b 15.82 (12.80) 

             Total food stores density b 3.34 (3.08) 

             MRFEI with alcohol c 0.10 (0.13) 

             MRFEI without alcohol c 0.12 (0.14) 

Abbreviations: RAVLT, Rey Auditory Verbal Learning Test; DSST, Digit Symbol Substitution Test; COWA-FAS, 

Controlled Oral Word Association Test; TMTA, Trail Making Test A; WMH, White Matter Hyperintensity; 

MRFEI, Modified Retail Food Environment Index 

Abbreviations: RAVLT, Rey Auditory Verbal Learning Test; DSST, Digit Symbol Substitution Test; COWA-FAS, 

Controlled Oral Word Association Test; TMTA, Trail Making Test A; WMH, White Matter Hyperintensity 

a. Sample size = 466. 

b. Simple density measures per square mile for 1-mile buffer size. 

c. Derived from simple density measures per square mile for 1-mile buffer size.  
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Table 3-2. Associations between neighborhood socioeconomic disadvantage and cognitive 

function/ White matter hyperintensity 

   

  General cognitive function (N=477)   White matter hyperintensity (N=404) 

  Model 1a   Model 2a   Model 1b   Model 2b 

  β P   β P   β P   β P 

Neighborhood 

socioeconomic 

disadvantage -0.01 0.30   -0.01 0.36   2.0E-3 0.83   0.01 0.28 

Model 1a: cognitive function = neighborhood socioeconomic disadvantage + age at measurement + sex + 

PC1-4 + education + smoking status + familial relatedness (random effect) 

Model 2a: cognitive function = Model 1a + census tract population density + census tract (random effect) 

Model 1b: WMH = Model 1a + total intracranial volume  

Model 2b: WMH = Model 2a + total intracranial volume  

*P<0.05 
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Table 3-3. Associations between neighborhood socioeconomic disadvantage and cognitive 

measures (Model 2a; N=477) 

 

  DSST   COWA-FAS   RAVLT   TMTA 

  β P   β P   β P   β P 

Neighborhood 

socioeconomic 

disadvantage -0.01 0.95   0.02 0.92   -0.03 0.66   0.02 0.07 

Abbreviations: DSST, Digit Symbol Substitution Test; COWA-FAS, Controlled Oral Word Association 

Test; RAVLT, Rey Auditory Verbal Learning Test; TMTA, Trail Making Test A. 

Model 2a: neurocognitive measure = neighborhood socioeconomic disadvantage + age at measurement + 

sex + PC1-4 + education + smoking status + population density + familial relatedness (random effect) + 

census tract (random effect) 

*P<0.05            
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Table 3-4. Associations between simple density of neighborhood destinations per square 

mile for 1-mile buffer size and cognitive function/WMH 

  

Neighborhood characteristics 

General cognitive function   White matter hyperintensity 

Model 1a 

(N=542)   

Model 2a 

(N=477)  

Model 1b 

(N=466)   

Model 2b 

(N=404) 

β P   β P   β P   β P 
Fast food destination density -0.02 0.53 

 
-0.03 0.39 

 
0.03 0.23 

 
0.04 0.25 

Unfavorable food stores without 

alcohol density 

-0.02 0.38 
 

-0.02 0.37 
 

0.01 0.40 
 

0.02 0.24 

Unfavorable food stores with 

alcohol density 

-0.03 0.26 
 

-0.05 0.14 
 

0.02 0.26 
 

0.03 0.25 

Favorable food stores density -0.08 0.45 
 

-0.11 0.31 
 

0.02 0.83 
 

-0.01 0.84 

Total physical activity 

destinations density 

-0.07 0.36 
 

-0.05 0.58 
 

0.03 0.65 
 

0.05 0.58 

Total social engagement 

destinations density 

-3.16E-03 0.29 
 

-3.59E-03 0.35 
 

1.59E-03 0.49 
 

3.46E-03 0.24 

Total popular walking destination 

density 

-3.75E-03 0.71 
 

-2.49E-03 0.84 
 

0.01 0.38 
 

0.01 0.25 

Alcoholic drinking places density -0.01 0.78 
 

0.01 0.89 
 

1.86E-03 0.99 
 

0.03 0.52 

Total stores density -1.47E-03 0.49 
 

-2.80E-03 0.36 
 

7.55E-04 0.66 
 

2.90E-03 0.21 

Total food stores density -5.15E-03 0.63 
 

-3.80E-03 0.77 
 

2.21E-03 0.78 
 

8.61E-03 0.37 

Modified Retail Food 

Environment Index with alcohol 

-0.10 0.73 
 

-0.13 0.69 
 

0.17 0.41 
 

0.08 0.74 

Modified Retail Food 

Environment Index without 

alcohol 

-0.02 0.93   -0.05 0.85   0.10 0.58   0.03 0.90 

Model 1a: cognitive function = neighborhood characteristic + age at measurement + PC1-4 + sex + education + smoking 

status + familial relatedness (random effect) 

Model 2a: cognitive function = Model 1a + neighborhood socioeconomic disadvantage + census tract population density 

(random effect) + census tract (random effect) 

Model 1b: WMH = Model 1a + total intracranial volume  

Model 2b: WMH = Model 2a + total intracranial volume  

*P<0.05 
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Table 3-5. Associations between simple density of neighborhood destinations per square 

mile for 1-mile buffer size and cognitive measures (Model 2a; N=477) 

 

Neighborhood characteristics 
DSST   COWA-FAS   RAVLT   TMTA 

β P   β P   β P   β P 

Fast food destination density -0.39 0.45   0.27 0.63   0.10 0.57   0.05 0.04* 

Unfavorable food stores without 

alcohol density -0.17 0.55   -0.19 0.52   0.13 0.18   0.02 0.19 

Unfavorable food stores with 

alcohol density -0.45 0.28   -0.07 0.87   0.01 0.94   0.04 0.04* 

Favorable food stores density -1.46 0.30   0.20 0.89   -0.31 0.52   0.12 0.08 

Total physical activity destinations 

density -1.07 0.39   -1.18 0.37   0.44 0.30   0.05 0.38 

Total social engagement 

destinations density -0.06 0.26   -0.03 0.61   0.02 0.25   2.14E-03 0.36 

Total popular walking destination 

density -0.05 0.77   0.02 0.88   0.09 0.09   0.01 0.20 

Alcoholic drinking places density 0.16 0.85   -0.93 0.28   0.62 0.03*   -3.11E-03 0.94 

Total stores density -0.05 0.19   -0.02 0.67   0.02 0.24   1.44E-03 0.44 

Total food stores density -0.01 0.95   -0.11 0.53   0.10 0.07   0.01 0.41 

Modified Retail Food Environment 

Index with alcohol -3.56 0.36   4.15 0.32   -0.64 0.65   0.20 0.28 

Modified Retail Food Environment 

Index without alcohol -3.29 0.36   4.43 0.25   0.55 0.66   0.20 0.21 

Abbreviations: DSST, Digit Symbol Substitution Test; COWA-FAS, Controlled Oral Word Association Test; 

RAVLT, Rey Auditory Verbal Learning Test; TMTA, Trail Making Test A 

Model 2a: neurocognitive measure = neighborhood characteristic + age at measurement + PC1-4 + sex + 

education + smoking status + neighborhood socioeconomic disadvantage + census tract population density + 

familial relatedness (random effect) + census tract (random effect) 

*P<0.05   
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3.9 Figures 

Figure 3-1. Directed acyclic graph (DAG) of the hypothesized associations for the 

epigenetic mediation between neighborhood characteristics (exposures) and 

cognitive/WMH outcomes. 

 

Directed acyclic graph (DAG) of the hypothesized associations for the epigenetic mediation 

between neighborhood characteristics (exposures) and cognitive/WMH outcomes. (a) The total 

effect associations between neighborhood characteristic (X) and cognitive function/WMH (Y). 𝜔 

is the effect estimate of the neighborhood characteristic on cognitive function/WMH. (b) The 

mediation effect obtained through the cross-product-based mediation approach obtained by 

multiplying the exposure-mediator effect (β1) and the mediator-outcome effect (β3). 

  

 (a) 

 (b) 
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Figure 3-2. Distributions of cognitive and structural brain measures 

 

Distributions of cognitive and structural brain measures. (a) General cognitive function, (b) Digit 

symbol substitution test, (c) Trail making test A, (d) Rey auditory verbal learning test, (e) 

Controlled oral word association test and (f) Log-transformed white matter hyperintensity 

(ln(WMH+1)) 
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Figure 3-3. Quantile-quantile plots for the epigenetic mediation of the associations between 

neighborhood characteristics and cognitive function. 

 

Quantile-quantile (QQ) plots for the epigenetic mediation of the associations between 

neighborhood characteristics and cognitive function. QQ plots for the Sobel-Comp mediation 

hypothesis testing method with N=477 observations. The exposures are simple densities per 

square mile for 1-mile buffer sizes, the outcomes are neurocognitive measures, and the mediators 

are 857,121 CpG sites. The exposure – outcome models tested are as follows: (a) alcohol 

drinking places density – RAVLT, (b) fast food destination density – TMTA, and (c) unfavorable 

food stores (with alcohol) density – TMTA. Mediation models are adjusted for age, sex, 

education, smoking status, first four principal components, neighborhood socioeconomic 

disadvantage, and census tract population density, with family and census tracts as random 

effects.  
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3.10 Supplementary Methods 

General cognitive function 

The following four cognitive domains were evaluated a year after Phase II, on average, as 

part of GMBI:1,2 

1. The Weschler Adult Intelligence Scale-Revised: Digit Symbol Substitution Test (DSST) 

measured complex visual attention, sustained and focused concentration, response speed and 

visuomotor coordination. The DSST measures executive function of working memory.3 In 

this test, participants matched symbols to numbers according to a key located at the top of the 

page. The DSST score comprised the number of symbols correctly matched within 90 

seconds. Scores ranged from 3 symbols to 88 symbols correctly matched within 90 seconds. 

2. The Controlled Oral Word Association Test (COWA-FAS) tested for verbal fluency 

(phonetic association) and language. This test requires participants to name as many animals 

as possible that start with the letters F, A, and S in 1 minute. The score consisted of the total 

number of admissible animal names generated.  

3. The Rey Auditory Verbal Learning Test (RAVLT) measured delayed recall, relating to the 

cognitive functions of new learning, immediate memory span and vulnerability to 

interference in learning and recognition memory. Its score was determined by the number of 

words recalled after a 30-minute delay. Scores ranged from 0 to 15.  

4. The Trail Making Test A (TMTA) evaluated visual conceptual tracking as participants need 

to connect a set of 25 circles quickly and accurately. TMTA provides information on the 

cognitive functions of visual search, scanning, processing speed and executive functions. The 
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natural logarithm of seconds to completion for the task was used and recoded so that higher 

scores indicate better cognitive function. The maximum was 240 seconds to complete.  

 

Neighborhood environment exposures 

1. GIS-based measures 

 

Population densities of recreational, social, and healthy food environments were derived 

from GIS5 data using Dun and Bradstreet data as compiled by Walls and Associates in the 

National Establishment Series (NETS) database6 for 1996-2015. Addresses were geocoded using 

the TeleAtlas EZ-Locate web-based geocoding software (Tele Atlas North America, Inc., 

Lebanon, New Hampshire). NETS yearly datasets were categorized based on Standard Industrial 

Classification (SIC) codes. Densities per square mile were created for 0.5-,1-, and 3-mile buffers 

around the home addresses of GENOA participants at Phase I using ArcGIS V.9.3 (ESRI, Inc., 

Redlands, California).7,8 Densities were calculated using two approaches: 1) simple densities per 

square mile within the buffer region and 2) kernel densities per square mile within the buffer 

region, with greater weighting towards resources located closer to the home of a participant. 

Total density scores by category were created by adding together densities from each type of 

establishment. 

For each participant, we estimated the densities for the following destinations: fast-food 

restaurants (chain and non-chain), total physical activity facilities, total social engagement 

destinations, and alcohol outlets. Summary density measures were also created for densities of 

unfavorable food stores (with and without alcohol), healthy (favorable) food stores, popular 

walking destinations, total stores, and total food stores. 
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Fast food restaurants are places that specialize in low preparation time foods that are 

eaten cafeteria-style or take-away (SIC #581203, except for coffee shops (#58120304)). Physical 

activity facilities measure was created using 114 SIC codes consisting of the recreational and 

physical activity establishments such as indoor conditioning, dance, bowling, golf, team and 

racquet sports, and water activities derived from lists used in previous studies.11,12 Healthy food 

availability was defined using healthy food stores such as fruit and vegetable markets (SIC 

#5431) and supermarkets (grocery stores (SIC #5411) with at least $2 million in annual sales or 

at least 25 employees or name being on standardized supermarket chain name lists as described 

in other studies).13 Social engagement destinations, consisting of places which promote social 

interaction, were derived from 430 SIC codes based on previous work.14,15 These SIC codes 

include locations such as beauty shops and barbers, sports entertainment, exercise facilities, 

amusements, libraries, museums and art galleries, religious organizations, eating and dining 

places. Alcohol outlets were identified as liquor stores and on-site drinking places (restaurants 

and nightclubs/bars). 

Categories for favorable food stores consisted of supermarkets (chain and non-chain) and 

fruit and vegetable markets. Unfavorable food stores (without alcohol) included convenience 

stores, bakeries/nuts/candy/ice cream stores, and fast-food restaurants (chain and non-chain). 

Unfavorable food stores with alcohol included alcohol outlets. Popular walking destinations were 

created from six different categories including postal service, drug stores and pharmacy, banks 

and credit unions, food stores (non-beverage), eating and dining places (non-beverage) and 

drinking places (non-alcoholic). Total stores variable was created by summing food stores, 

recreational facilities, popular walking destinations (non-food- and food-based), and social 
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engagement (non-food- and food-based). Total food stores variable was calculated from the sum 

of favorable food stores, neutral food stores, unfavorable food stores and other eating places. 

The modified retail food environment index (MRFEI) measured the number of healthy 

and less healthy food retailers within census tracts across states, based on typical food offerings 

in specific retail stores.16 The MREI was a proportion calculated as the number of favorable food 

stores divided by the total of favorable and unfavorable stores (with and without alcohol outlets). 

The MRFEI represents the proportion of all food retailers in a given census tract that are healthy 

and ranges from 0 or “food desert” (e.g., no healthy food vendors) to 1 or “healthy” food vendors 

only. MRFEI variables were calculated for 0.5-, 1- and 3-mile buffer regions. 

 

2. Census-based measures 

 

Neighborhood socioeconomic disadvantage was assessed using data collected in the 2000 

U.S. Census,17,18 American Community Survey (ACS) 2005-2009,19 and ACS 2007-201120 

estimates. Data was linked to GENOA participant data (Phase I; 1995-2000) by Census tract 

using Census and ACS estimates for the closest time period. A composite index was previously 

developed using factor analysis to determine which socioeconomic indicator variables from the 

Census can be meaningfully combined into a summary score. Six variables representing the 

dimensions of wealth and income (log of the median household income; log of the median value 

of housing units; and percent of household with interest, dividend or net rental income), 

education (the percentage of adults 25 years of age or older who had completed high school and 

the percentage of adults 25 years of age or older who had completed college (i.e., Bachelor’s 

degree)), and occupation (the percentage of employed persons 16 years of age or older in 

executive, managerial or professional specialty occupations) were used to characterize 
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neighborhood socioeconomic disadvantage for each census tract.21 Z-scores for each census tract 

were estimated for each variable, and neighborhood socioeconomic disadvantage was defined as 

the sum of Z-scores from the six variables, with higher scores indicating more disadvantage. 
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3.11 Supplementary Material 

Table S3-6. Pearson’s correlations among the cognitive/WMH outcomes (N=466) 

  General cognitive function RAVLT DSST COWA-FAS TMTA WMH 

General cognitive function 1           

RAVLT 0.597*** 1         

DSST 0.897*** 0.425*** 1       

COWA-FAS 0.670*** 0.214** 0.483*** 1     

TMTA 0.792*** 0.290*** 0.681*** 0.304*** 1   

WMH -0.335*** -0.276*** -0.322*** -0.119 -0.272*** 1 

Abbreviations: RAVLT: Rey Auditory Verbal Learning Test; DSST: Digit Symbol Substitution Task; COWA-

FAS: Controlled Oral Word Association Test; TMTA: Trail Making Test A; WMH: White Matter Hyperintensity 

* p<0.05, **p<0.01, ***p<0.001   
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Table 3-7. Pearson’s correlations among neighborhood socioeconomic disadvantage and 

neighborhood simple density measures per square mile for 1-mile buffer size (N=542) 

Neighbor-
hood 

characterist-

ics 

Neighborhoo

d -Socio-
economic 

Dis-

advantage 

Fast 

Food 

destin-
ation 

den-

sity 

Unfavor

-able 

food 

stores 
without 

alcohol 

density 

Unfavor

-able 

food 

stores 
with 

alcohol 

density 

Favor-

able 

food 
stores 

densit

y 

Total 

physical 

activity 
destinate

-ions 

density 

Total 

social 

engage-

ment 
destinate

-ions 

density 

Total 

popular 

walking 
destinate

-ion 

density 

Alcohol

-ic 
drinking 

places 

density 

Total 

stores 

density 

Total 

food 
stores 

densit

y 

MRFEI 

with 

alcohol 

MR-

FEI 

with
out 

alco-

hol 

Neighborhood 

Socio-
economic 

Disadvantage 

1.00 
            

Fast Food 

destination 

density 

-0.20 

** 

1.00 
           

Unfavorable 

food stores 

without 

alcohol 
density 

0.33 

*** 

0.60 

*** 

1.00 
          

Unfavorable 

food stores 

with alcohol 

density 

-0.21 

*** 

0.93 

*** 

0.56 

*** 

1.00 
         

Favorable 

food stores 

density 

4.00E-3 0.37 

*** 

0.15* 0.37 

*** 

1.00 
        

Total physical 
activity 

destinations 

density 

0.14* 0.26 

*** 

0.34 

*** 

0.18 

** 

0.44 

*** 

1.00 
       

Total social 

engagement 
destinations 

density 

0.56 

*** 

0.38 

*** 

0.68 

*** 

0.34 

*** 

0.40 

*** 

0.56 

*** 

1.00 
      

Total popular 

walking 
destination 

density 

0.19 

** 

0.59 

*** 

0.52 

*** 

0.65 

*** 

0.47 

*** 

0.49 

*** 

0.72 

*** 

1.00 
     

Alcoholic 

drinking 

places density 

0.54 

*** 

-0.05 0.72 

*** 

-0.16* -0.11 0.27 

*** 

0.52 

*** 

0.08 1.00 
    

Total stores 

density 
-1.00E-3 0.23 

*** 

-0.05 0.24 

*** 

0.92 

*** 

0.38 

*** 

0.30 

*** 

0.36 

*** 

-0.24 

*** 

1.00 
   

Total food 

stores density 
0.17 

** 

0.18 

** 

0.13* 0.15* 0.89 

*** 

0.41 

*** 

0.43 

*** 

0.40 

*** 

0.05 0.91 

*** 

1.00 
  

MRFEI with 
alcohol 

0.55 

*** 

0.39 

*** 

0.68 

*** 

0.37 

*** 

0.43 

*** 

0.55 

*** 

0.99 

*** 

0.77 

*** 

0.49 

*** 

0.32 

*** 

0.45 

*** 

1.00 
 

MRFEI 

without 
alcohol 

0.45 

*** 

0.43 

*** 

0.84 

*** 

0.43 

*** 

0.18 

** 

0.45 

*** 

0.78 

*** 

0.76 

*** 

0.64 

*** 

0.04 0.24 

*** 

0.78 

*** 

1.00 

Abbreviations: MRFEI, Modified Retail Food Environment Index  

* p<0.05, **p<0.01, ***p<0.001  
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Table S3-8. Associations among neighborhood socioeconomic disadvantage and 

neighborhood simple density measures per square mile for 1-mile buffer size after 

adjusting for census tract population density (N=542) 

Neighbor-

hood 

character-
istics 

Neigh-

borhood 
Socio-

economi

c Dis-

advanta

ge 

Fast 
Food 

dest. 

densi

ty 

Unfav. 

food 
stores 

withou

t 

alcohol 

density 

Unfav. 

food 

stores 

with 
alcohol 

density 

Favor

-able 

food 

stores 
densit

y 

Total 

physi

cal 

activ

ity 
dest. 

densi

ty 

Total 

social 
engag-

ement 

dest. 

Den-

sity 

Total 

pop-

ular 

walk

-ing 
dest. 

densi

ty 

Alcoh

-olic 
drink-

ing 

places 

dens-

ity 

Total 

stores 

dens-
ity 

Tota

l 
food 

store

s 

dens

ity 

MR-
FEI 

with 

alco

hol 

MRFEI 

without 

alcohol 

Neighborhood 
Socio-

economic 
Disadvantage 

1.00 
            

Fast Food 
dest. density 

-0.02 
*** 

1.00 
           

Unfav. food 
stores without 

alcohol 
density 

0.68 
*** 

0.29*
** 

1.00 
          

Unfav. food 
stores with 

alcohol 
density 

0.92 
*** 

-0.05 0.68 
*** 

1.00 
         

Favorable 
food stores 

density 

0.38 
*** 

0.14*
* 

0.14 
*** 

0.39 
*** 

1.00 
        

Total physical 
activity dest. 

density 

0.36 
*** 

0.11* 0.36 
*** 

0.28 
*** 

0.43 
*** 

1.00 
       

Total social 
engagement 

dest. density 

0.52 
*** 

0.39*
** 

0.71 
*** 

0.52 
*** 

0.40 
*** 

0.59 
*** 

1.00 
      

Total popular 
walking dest. 

density 

0.68 
*** 

0.06 0.58 
*** 

0.75 
*** 

0.49*
** 

0.52 
*** 

0.74 
*** 

1.00 
     

Alcoholic 
drinking 

places density 

0.11* 0.42*
** 

0.74 
*** 

0.02 -0.15 
** 

0.26 
*** 

0.51 
*** 

0.11* 1.00 
    

Total stores 
density 

0.53 
*** 

0.36*
** 

0.70 
*** 

0.55 
*** 

0.44 
*** 

0.59*
** 

0.99 
*** 

0.79 
*** 

0.47 
*** 

1.00 
   

Total food 
stores density 

0.60 
*** 

0.29*
** 

0.89 
*** 

0.61 
*** 

0.19 
*** 

0.43 
*** 

0.78**
* 

0.77 
*** 

0.65 
*** 

0.78 
*** 

1.00 
  

MRFEI with 
alcohol 

0.17 
*** 

0.16*
** 

-0.12* 0.15 
*** 

0.86*
** 

0.33*
** 

0.23**
* 

0.28 
*** 

-0.28 
*** 

0.25 
*** 

-0.03 1.00 
 

MRFEI 
without 

alcohol 

0.16 
*** 

0.25*
** 

-0.01 0.12* 0.85*
** 

0.32*
** 

0.28**
* 

0.31*
** 

-0.12* 0.30 
*** 

0.09 0.94 
*** 

1.00 

Abbreviations: unfav., unfavorable; dest., destinations; MRFEI, Modified Retail Food Environment Index  

* p<0.05, **p<0.01, ***p<0.001 
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Table S3-9. Pearson’s correlations among neighborhood socioeconomic disadvantage and 

simple and kernel densities per square mile for 1-mile buffer size (N=542)a 

    Kernel density measures 

  

Neigh-
borhood 

character-

istics 

Fast 

Food 

dest.  

Unfav. 

food 

stores 

withou
t 

alcoho

l  

Unfav. 

food 
stores 

with 

alcohol  

Fav

or-

able 
food 

stor

es  

Total 
physical 

activity 

dest.  

Total 

social 
engage

ment 

dest.  

Total 

popul

ar 
walki

ng 

dest.  

Alcoho

lic 
drinkin

g 

places  

Tot
al 

stor

es  

Total 
food 

store

s  

MRFE
I with 

alcoho

l 

MRF

EI 

with
out 

alcoh

ol 

S
im

p
le

 d
en

si
ty

 m
ea

su
re

s 

Fast Food 
dest.  

0.78 

*** 

0.46 

*** 

0.77 

*** 

0.34 

*** 

0.23 

*** 

0.34 

*** 

0.48 

*** 

-0.04 0.2

1 
*** 

0.14* 0.35 

*** 

0.30 

*** 

Unfav. food 

stores without 
alcohol) 

0.59 

*** 

0.86 

*** 

0.56 

*** 

0.05 0.38 

*** 

0.72 

*** 

0.49 

*** 

0.68 

*** 

-

0.1

0 

-0.04 0.71 

*** 

0.73 

*** 

Unfav. food 

stores with 
alcohol 

0.69 

*** 

0.38 

*** 

0.78 

*** 

0.35 

*** 

0.10 0.25 

*** 

0.48 

*** 

-0.16* 0.2

5 

*** 

0.18 

** 

0.27 

*** 

0.26 

*** 

Favorable 

food stores  

0.30 

*** 

0.09 0.31 

*** 

0.70 

*** 

0.27 

*** 

0.29 

*** 

0.33 

*** 

-0.14* 0.7

1 

*** 

0.68 

*** 

0.32 

*** 

0.09 

Total 

physical 

activity dest.  

0.20 
** 

0.27 
*** 

0.14* 0.26 
*** 

0.72 
*** 

0.47 
*** 

0.35 
*** 

0.28 
*** 

0.2
5 

*** 

0.24 
*** 

0.47 
*** 

0.32 
*** 

Total social 

engagement 

dest.  

0.30 
*** 

0.53 
*** 

0.24 
*** 

0.22 
*** 

0.42 
*** 

0.87 
*** 

0.59 
*** 

0.52 
*** 

0.1
9 

** 

0.29 
*** 

0.88 
*** 

0.63 
*** 

Total popular 

walking dest.  

0.37 
*** 

0.33 
*** 

0.39 
*** 

0.37 
*** 

0.18** 0.50 
*** 

0.78 
*** 

0.09 0.3
2 

*** 

0.41 
*** 

0.56 
*** 

0.56 
*** 

Alcoholic 

drinking 
places  

0.14* 0.70 

*** 

0.03 -

0.22 

*** 

0.38 

*** 

0.65 

*** 

0.18 

** 

0.93 

*** 

-

0.3

1 
*** 

-0.19 

** 

0.62 

*** 

0.66 

*** 

Total stores  

0.16* -0.09 0.14* 0.67 

*** 

0.18** 0.15* 0.23 

*** 

-0.24 

*** 

0.8

2 

*** 

0.77 

*** 

0.17 

** 

-0.03 

Total food 

stores  

0.21 
*** 

0.12* 0.16** 0.60 
*** 

0.26 
*** 

0.36 
*** 

0.34 
*** 

0.04 0.6
9 

*** 

0.74 
*** 

0.38 
*** 

0.21 
*** 

MRFEI with 

alcohol 

0.30 

*** 

0.516 

*** 

0.246 

*** 

0.24

8 
*** 

0.392 

*** 

0.853 

*** 

0.621 

*** 

0.48 

*** 

0.2

22 
*** 

0.32 

*** 

0.868 

*** 

0.62

9 
*** 

MRFEI 
without 

alcohol 

0.34 

*** 

0.673 

*** 

0.31 

*** 

0.06

4 

0.292 

*** 

0.688 

*** 

0.660 

*** 

0.634 

*** 

-

0.0
19 

0.128

* 

0.701 

*** 

0.83

9 
*** 

a. Values with grey shading correspond to the correlations between kernel and simple densities per square mile for 

1-mile buffer size 

Abbreviations: unfav., unfavorable; dest., destinations; MRFEI, Modified Retail Food Environment Index  

* p<0.05, **p<0.01, ***p<0.001 
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Table S3-10. Associations between simple density of neighborhood destinations per square 

mile for ½-, 1- and 3- mile buffer sizes and cognitive function/WMH 

 

Neigh-

borhood 

character-

istics 

Buffer 

Size 

General cognitive function   White matter hyperintensity 

Model 1a (N=542)   

Model 2a 

(N=477)  Model 1b (N=466)   

Model 2b 

(N=404) 

β P   β P   β P   β P 

Fast Food 

destination 

density 

1/2- 

mile -0.01 0.55   -0.01 0.61   

9.82E-

04 0.95   -0.01 0.75 

1-mile -0.02 0.53  -0.03 0.39  0.03 0.23  0.04 0.23 

3-mile 0.03 0.70  

9.56E-

05 0.99  -0.10 0.10  -0.05 0.48 

Unfavorable 

food stores 

without 

alcohol 

density 

1/2- 

mile -0.01 0.17   -0.01 0.22   

2.37E-

03 0.75   

-3.67E-

04 0.96 

1-mile -0.02 0.38  -0.02 0.37  0.01 0.40  0.02 0.24 

3-mile -0.02 0.69  -0.04 0.40  -0.03 0.32  

-4.72E-

03 0.91 

Unfavorable 

food stores 

with alcohol 

density 

1/2- 

mile -0.02 0.28   -0.02 0.28   0.01 0.58   

-8.83E-

04 0.95 

1-mile -0.03 0.26  -0.05 0.14  0.02 0.26  0.03 0.24 

3-mile 0.01 0.89   -0.01 0.86   -0.05 0.19   -0.02 0.72 

Favorable 

food stores 

density 

1/2- 

mile 0.03 0.57  0.02 0.69  -0.01 0.90  -0.01 0.79 

1-mile -0.08 0.45  -0.11 0.31  0.02 0.83  -0.01 0.90 

3-mile -0.04 0.85  -0.12 0.68  -0.13 0.46  9.32E-04 0.99 

Total 

physical 

activity 

destinations 

density 

1/2- 

mile -0.02 0.59   -0.01 0.91   

3.58E-

03 0.92   -0.05 0.19 

1-mile -0.07 0.36  -0.05 0.58  0.03 0.65  0.05 0.53 

3-mile 0.01 0.96   

-4.34E-

03 0.98   -0.15 0.23   -0.03 0.83 

Total social 

engagement 

destinations 

density 

1/2- 

mile 

-2.02E-

03 0.27  

-1.91E-

03 0.40  

-4.65E-

04 0.75  

-5.88E-

04 0.74 

1-mile 

-3.16E-

03 0.29  

-3.59E-

03 0.35  

1.59E-

03 0.49  3.46E-03 0.24 

3-mile 

-4.13E-

03 0.39  -0.01 0.25  

-1.57E-

03 0.67  1.14E-03 0.81 

Total popular 

walking 

destination 

density 

1/2- 

mile 

-1.39E-

03 0.82   

6.43E-

05 0.99   

1.11E-

03 0.81   

-1.56E-

03 0.78 

1-mile 

-3.75E-

03 0.71  

-2.49E-

03 0.84  0.01 0.38  0.01 0.25 

3-mile 

-3.79E-

03 0.47   -0.01 0.63   -0.01 0.38   

-2.14E-

03 0.88 

Alcoholic 

drinking 

places density 

1/2- 

mile -0.02 0.50   -0.01 0.65   

9.17E-

04 0.96   3.21E-03 0.88 

1-mile -0.01 0.78  0.01 0.89  

1.86E-

03 0.96  0.03 0.53 

3-mile -0.40 0.12   -0.71 0.03*   0.04 0.85   0.08 0.74 

Total stores 

density 

1/2- 

mile 

-9.52E-

04 0.48  

-1.67E-

03 0.38  

-8.86E-

04 0.41  

-4.61E-

04 0.75 
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1-mile 

-1.47E-

03 0.49  

-2.80E-

03 0.36  

7.55E-

04 0.66  2.95E-03 0.21 

3-mile 

-1.31E-

03 0.68  -0.01 0.23  

-1.08E-

03 0.67  1.26E-03 0.72 

Total food 

stores density 

1/2- 

mile 

-4.19E-

03 0.47   

-2.84E-

03 0.67   

-4.58E-

04 0.92   

-6.68E-

04 0.90 

1-mile -0.01 0.63  

-3.80E-

03 0.77  

2.21E-

03 0.66  0.01 0.38 

3-mile 

-4.73E-

03 0.82   -0.02 0.51   -0.02 0.33   

-3.81E-

03 0.85 

Modified 

Retail Food 

Environment 

Index with 

alcohol 

1/2- 

mile 0.20 0.54  0.10 0.78  0.14 0.51  0.20 0.39 

1-mile -0.10 0.73  -0.13 0.69  0.17 0.41  0.08 0.71 

3-mile -0.22 0.66  -0.17 0.82  

3.28E-

04 0.99  0.27 0.61 

Modified 

Retail Food 

Environment 

Index without 

alcohol 

1/2- 

mile 0.34 0.25   0.26 0.40   0.06 0.74   0.11 0.59 

1-mile -0.02 0.93  -0.05 0.85  0.10 0.58  0.03 0.88 

3-mile -0.07 0.88   -0.01 0.99   0.16 0.64   0.30 0.53 
Model 1a: Cognitive function = age at measurement+ PC1-4+ sex+ education+ smoking status + family (random effect) 

Model 1b: WMH = Model 1a + total intracranial volume  

Model 2a: Cognitive function = Model 1a + neighborhood socioeconomic disadvantage + census tract population density + family 

(random effect) + census tracts (random effect) 

Model 2b: WMH = Model 2a + total intracranial volume  

*P<0.05 
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Table S3-11. Associations between simple density of neighborhood destinations per square 

mile for ½-, 1- and 3- mile buffer sizes and cognitive measures (N=477) 

Neighborhood 

characteristics 

Buffer 

Size 
DSST   

COWA-

FAS   RAVLT   TMTA 

β P   β P   β P   β P 

Fast Food destination 

density 

1/2- mile -0.25 0.37   0.01 0.97   0.09 0.34   0.02 0.11 

1-mile -0.39 0.45   0.27 0.63   0.10 0.57   0.05 

0.04

* 

3-mile 0.17 0.90   

-

0.61 0.66   0.42 0.37   0.02 0.74 

Unfavorable food 

stores  

without alcohol density 

½- mile -0.16 0.24   

-

0.17 0.25   0.05 0.29   0.01 0.07 

1-mile -0.17 0.55   

-

0.19 0.52   0.13 0.18   0.02 0.19 

3-mile -0.50 0.47   -0.4 0.58   0.11 0.63   0.03 0.32 

Unfavorable food 

stores  

with alcohol density 

½- mile -0.25 0.27   

-

0.04 0.86   

-4.54E-

03 0.95   0.02 0.07 

1-mile -0.45 0.28   

-

0.07 0.87   0.01 0.94   0.04 

0.04

* 

3-mile 0.01 0.99   

-

0.43 0.64   0.27 0.37   0.02 0.63 

Favorable food stores  

density 

1/2- mile 0.65 0.41   0.92 0.28   -0.04 0.89   0.02 0.60 

1-mile -1.46 0.30   0.2 0.89   -0.31 0.52   0.12 0.08 

3-mile -0.62 0.87   

-

2.59 0.51   0.39 0.76   0.08 0.66 

Total physical activity  

destinations density 

1/2- mile -0.49 0.47   

-

0.62 0.38   0.08 0.73   -0.02 0.48 

1-mile -1.07 0.39   

-

1.18 0.37   0.44 0.30   0.05 0.38 

3-mile 0.54 0.84   

-

1.23 0.66   1.28 0.16   0.04 0.76 

Total social 

engagement  

destinations density 

1/2- mile -0.03 0.24   

-

0.04 0.23   0.01 0.27   1.23E-03 0.35 

1-mile -0.06 0.26   

-

0.03 0.61   0.02 0.25   0.00 0.36 

3-mile -0.07 0.41   

-

0.07 0.42   0.01 0.78   3.87E-03 0.32 

Total popular walking  

destination density 

1/2- mile 4.97E-03 0.96   

-

0.09 0.41   0.05 0.13   3.92E-03 0.35 

1-mile -0.05 0.77   0.02 0.88   0.09 0.09   0.01 0.20 

3-mile -0.04 0.88   

-

0.14 0.59   0.06 0.49   0.01 0.50 

Alcoholic drinking  

places density 

1/2- mile -0.27 0.46   

-

0.44 0.27   0.25 

4.75E

-02*   0.01 0.56 

1-mile 0.16 0.85   

-

0.93 0.28   0.62 0.03*   

-3.11E-

03 0.94 

3-mile -9.57 

0.03

*   

-

2.33 0.61   -0.80 0.59   0.42 

0.04

* 

Total stores density 

1/2- mile -0.03 0.21   

-

0.03 0.24   0.01 0.29   9.66E-04 0.38 

1-mile -0.05 0.19   

-

0.02 0.67   0.02 0.24   1.44E-03 0.44 

3-mile -0.07 0.28   

-

0.05 0.41   0.01 0.76   2.16E-03 0.46 

Total food stores  

density 1/2- mile -0.03 0.74   

-

0.14 0.14   0.06 

4.83E

-02*   4.73E-03 0.22 
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1-mile -0.01 0.95   

-

0.11 0.53   0.10 0.07   0.01 0.41 

3-mile -0.17 0.63   -0.2 0.60   0.07 0.56   0.01 0.42 

Modified Retail Food  

Environment Index 

with alcohol 

1/2- mile 4.21 0.35   5.87 0.21   -0.69 0.63   0.14 0.53 

1-mile -3.56 0.36   4.15 0.32   -0.64 0.65   0.20 0.28 

3-mile 0.26 0.98   

-

6.93 0.45   1.33 0.64   0.12 0.77 

Modified Retail Food  

Environment Index 

without alcohol 

1/2- mile 5.31 0.18   6.2 0.14   0.07 0.96   0.07 0.72 

1-mile -3.29 0.36   4.43 0.25   0.55 0.66   0.20 0.21 

3-mile 0.20 0.98   

-

0.91 0.91   0.62 0.81   0.06 0.86 

Abbreviations: DSST, Digit Symbol Substitution Test; COWA-FAS, Controlled Oral Word Association 

Test; RAVLT, Rey Auditory Verbal Learning Test; TMTA, Trail Making Test A. 

Model 2a: cognitive measure = age at measurement + PC1-4 + sex + education + smoking status + 

neighborhood socioeconomic disadvantage + census tract population density + family (random effect) + 

census tracts (random effect) 

*P<0.05 
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Table S3-12. Associations between kernel density of neighborhood destinations per square 

mile for ½-, 1- and 3- mile buffer sizes and cognitive function/WMH 

Neighbor-

hood 

character-

istics 

Buffer 

Size 

General cognitive function   White matter hyperintensity 

Model 1a 

(N=542)   

Model 2a 

(N=477)  Model 1b (N=466)   

Model 2b 

(N=404) 

β P   β P   β P   β P 

Fast Food 

destination 

density 

1/2- 

mile 0.01 0.68   

4.35E-

03 0.77   -0.01 0.54   -0.01 0.46 

1-mile -0.03 0.31  -0.04 0.22  0.01 0.57  0.01 0.62 

3-mile -0.05 0.44  -0.10 0.20  -1.83E-03 0.97  0.04 0.45 

Unfavor-

able food 

stores 

without 

alcohol 

density 

1/2- 

mile 

-1.52E-

03 0.84   

-7.92E-

04 0.92   5.75E-04 0.92   -1.38E-03 0.82 

1-mile -0.01 0.25  -0.02 0.26  0.01 0.57  0.01 0.53 

3-mile -0.04 0.26   -0.06 0.14   -2.68E-03 0.92   0.02 0.46 

Unfavor-

able food 

stores with 

alcohol 

density 

1/2- 

mile 

-2.05E-

03 0.86  

-1.71E-

03 0.89  2.22E-04 0.98  -2.70E-03 0.77 

1-mile -0.03 0.22  -0.03 0.16  0.01 0.38  0.01 0.42 

3-mile -0.04 0.36  -0.07 0.18  -2.24E-03 0.95  0.03 0.43 

Favorable 

food stores 

density 

1/2- 

mile 0.02 0.68   

-3.47E-

03 0.93   -0.01 0.75   -0.01 0.70 

1-mile -0.04 0.58  -0.10 0.25  0.01 0.85  0.01 0.90 

3-mile -0.18 0.32   -0.31 0.15   -3.02E-03 0.98   0.07 0.64 

Total 

physical 

activity 

destinations 

density 

1/2- 

mile 0.03 0.33  0.04 0.28  0.02 0.51  -0.02 0.48 

1-mile -0.02 0.80  

-4.32E-

03 0.95  2.18E-03 0.96  -0.04 0.42 

3-mile -0.17 0.22  -0.22 0.19  -0.03 0.76  0.06 0.63 

Total social 

engagement 

destinations 

density 

1/2- 

mile 5.47E-04 0.68   

8.09E-

04 0.59   3.76E-06 1.00   1.91E-05 0.99 

1-mile 

-2.53E-

03 0.28  

-3.37E-

03 0.25  -4.83E-05 0.98  4.20E-04 0.85 

3-mile 

-4.79E-

03 0.23   -0.01 0.10   -1.09E-04 0.97   2.09E-03 0.58 

Total 

popular 

walking 

destination 

density 

1/2- 

mile 1.30E-03 0.78  

2.24E-

04 0.97  -1.75E-03 0.65  -3.44E-03 0.42 

1-mile 

-3.50E-

03 0.66  -0.01 0.56  2.27E-03 0.71  2.75E-03 0.71 

3-mile -0.01 0.38  -0.02 0.18  -2.08E-03 0.84  0.01 0.54 

Alcoholic 

drinking 

places 

density 

1/2- 

mile 0.01 0.76   0.01 0.70   -1.27E-03 0.93   -0.01 0.74 

1-mile -0.02 0.68  -0.01 0.82  -0.01 0.78  -0.01 0.87 

3-mile -0.12 0.33   -0.14 0.43   -0.03 0.80   -0.01 0.95 

Total stores 

density 

1/2- 

mile 4.61E-04 0.70  

5.97E-

04 0.66  2.48E-05 0.98  -3.57E-05 0.97 

1-mile 

-2.06E-

03 0.31  

-2.80E-

03 0.28  1.14E-04 0.94  4.61E-04 0.82 

3-mile 

-3.95E-

03 0.24  -0.01 0.10  -6.11E-05 0.98  1.87E-03 0.55 

1/2- 

mile 1.35E-04 0.98   

1.04E-

03 0.84   -1.86E-03 0.61   -2.57E-03 0.51 
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Total food 

stores 

density 

1-mile -0.01 0.48  -0.01 0.51  1.47E-04 0.98  2.36E-03 0.74 

3-mile -0.02 0.34   -0.03 0.20   -4.96E-03 0.71   0.01 0.62 

Modified 

Retail Food 

Environmen

t Index with 

alcohol 

1/2- 

mile 0.34 0.25  0.03 0.92  0.17 0.38  0.28 0.18 

1-mile -0.03 0.92  -0.14 0.59  0.18 0.32  0.20 0.29 

3-mile -0.31 0.45   -0.70 0.19   0.12 0.69   0.23 0.56 

Modified 

Retail Food 

Environmen

t Index 

without 

alcohol 

1/2- 

mile 0.51 0.05  0.24 0.43  0.15 0.40  0.27 0.18 

1-mile 0.04 0.85  -0.08 0.75  0.09 0.59  0.12 0.50 

3-mile -0.20 0.60   -0.42 0.37   0.19 0.49   0.21 0.54 

Model 1a: Cognitive function = age at measurement+ PC1-4+ sex+ education+ smoking status + family (random effect) 

Model 1b: WMH = Model 1a + total intracranial volume  

Model 2a: Cognitive function = Model 1a + neighborhood socioeconomic disadvantage + census tract population density + 

family (random effect) + census tracts (random effect) 

Model 2b: WMH = Model 2a + total intracranial volume  

*P<0.05    
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Table 3-13. Associations between kernel density of neighborhood destinations per square 

mile for ½-, 1- and 3- mile buffer sizes and cognitive measures (N=477) 

Neighbor

-hood 

character

-istics 

Buffer 

Size 

DSST   COWA-FAS   RAVLT   TMTA 

β P   β P   β P   β P 

Fast 

Food 

destin-

ation 

density 

1/2- 

mile -0.13 0.49   0.20 0.33   0.11 0.08   0.01 0.14 

1-mile -0.49 0.20  0.04 0.93  0.08 0.52  0.05 0.01* 

3-mile -1.16 0.23  -0.10 0.92  -0.04 0.90  0.08 0.09 

Unfavor-

able food 

stores 

(without 

alcohol) 

density 

1/2- 

mile -0.07 0.50   0.05 0.67   0.07 0.05   0.01 0.13 

1-mile -0.15 0.44  -0.15 0.48  0.08 0.19  0.02 0.03* 

3-mile -0.71 0.19   -0.27 0.64   0.06 0.74   0.04 0.11 

Unfavor-

able food 

stores 

(with 

alcohol) 

density 

1/2- 

mile -0.15 0.32  0.16 0.33  0.05 0.34  0.01 0.14 

1-mile -0.35 0.24  -0.03 0.92  0.03 0.78  0.04 0.01* 

3-mile -0.80 0.23  -0.26 0.72  0.02 0.92  0.05 0.12 

Favorabl

e food 

stores 

density 

1/2- 

mile 0.13 0.80   0.29 0.62   -0.07 0.70   0.02 0.47 

1-mile -0.76 0.49  -0.06 0.96  -0.43 0.25  0.08 0.11 

3-mile -2.68 0.32   -1.35 0.64   -1.05 0.26   0.14 0.30 

Total 

physical 

activity 

destin-

ations 

density 

1/2- 

mile -0.09 0.85  0.24 0.65  0.24 0.13  -0.01 0.51 

1-mile -0.63 0.52  -0.40 0.70  0.39 0.23  0.01 0.89 

3-mile -3.30 0.13  -2.59 0.27  0.76 0.31  0.15 0.15 

Total 

social 

engage-

ment 

destin-

ations 

density 

1/2- 

mile -0.01 0.54   0.01 0.68   0.02 0.01*   

9.26E-

04 0.29 

1-mile -0.05 0.23  -0.04 0.32  0.02 0.12  

3.24E-

03 0.07 

3-mile -0.09 0.16   -0.07 0.31   

1.44E

-03 0.95   

4.38E-

03 0.18 

Total 

popular 

walking 

destin-

ation 

density 

1/2- 

mile -0.03 0.68  0.01 0.91  0.04 0.07  0.01 0.04* 

1-mile -0.03 0.78  -0.08 0.55  0.07 0.08  0.01 0.03* 

3-mile -0.21 0.31  -0.21 0.35  0.03 0.69  0.01 0.17 

Alcoholi

c 

drinking 

places 

density 

1/2- 

mile 

-

1.03E

-04 1.00   0.05 0.85   0.24 0.01*   0.01 0.46 

1-mile -0.07 0.90  -0.56 0.34  0.37 0.06  0.01 0.61 

3-mile -1.55 0.48   -1.36 0.56   0.28 0.73   0.06 0.60 
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Total 

stores 

density 

1/2- 

mile -0.01 0.56  0.01 0.69  0.02 0.01*  

1.09E-

03 0.17 

1-mile -0.04 0.28  -0.03 0.35  0.02 0.10  

2.95E-

03 0.06 

3-mile -0.07 0.17  -0.06 0.32  

1.83E

-03 0.92  

3.69E-

03 0.17 

Total 

food 

stores 

density 

1/2- 

mile -0.01 0.85   0.01 0.94   0.05 0.03*   

4.61E-

03 0.10 

1-mile -0.02 0.86  -0.13 0.31  0.08 0.05  0.01 0.04* 

3-mile -0.28 0.33   -0.23 0.45   0.05 0.60   0.02 0.16 

MRFEI 

with 

alcohol 

1/2- 

mile 2.51 0.54   4.54 0.29   -1.08 0.42   0.04 0.83 

1-mile -3.75 0.25  3.10 0.39  -0.97 0.41  0.08 0.61 

3-mile -6.17 0.36   -7.32 0.30   -1.40 0.53   0.27 0.40 

MRFEI 

without 

alcohol 

1/2- 

mile 4.86 0.19  6.06 0.14  -0.59 0.63  -0.02 0.91 

1-mile -3.20 0.30  3.77 0.26  -0.31 0.77  0.09 0.54 

3-mile -3.41 0.57   -3.16 0.61   -0.99 0.62   0.18 0.53 

Abbreviations: DSST, Digit Symbol Substitution Test; COWA-FAS, Controlled Oral Word Association Test; 

RAVLT, Rey Auditory Verbal Learning Test; TMTA, Trail Making Test A; MRFEI, Modified Retail Food 

Environment Index 

Model 2a: cognitive measure = age at measurement + PC1-4 + sex + education + smoking status + neighborhood 

socioeconomic disadvantage + census tract population density + family (random effect) + census tracts (random 

effect) 

*P<0.05             
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Figure 3-4. Flow diagram illustrating sample sizes for neighborhood density and 

neighborhood socioeconomic disadvantage analyses for cognitive measures in GENOA 

African Americans. 

 

 

Flow diagram illustrating sample sizes for neighborhood density and neighborhood 

socioeconomic disadvantage analyses for cognitive measures in GENOA AA. 

Flow diagram illustrating sample sizes for neighborhood density analyses (Model 1a, n=542; 

blue arrow) and neighborhood socioeconomic disadvantage analyses (Model 2a, n=477; red 

arrow) for cognitive measures in GENOA AA. 
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Figure 3-5. Flow diagram illustrating sample sizes for neighborhood density and 

neighborhood socioeconomic disadvantage analyses for white matter hyperintensity in 

GENOA African Americans. 

 

Flow diagram illustrating sample sizes for neighborhood density and neighborhood 

socioeconomic disadvantage analyses for white matter hyperintensity in GENOA AA. Flow 

diagram illustrating sample sizes for neighborhood density analyses, (Model 1b, n=466; blue 

arrow) and neighborhood socioeconomic disadvantage analyses (Model 2b, n=404; red arrow) 

for white matter hyperintensity in GENOA AA. 
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Chapter 4 . Multi-Ancestry Transcriptome-Wide Association Studies of Cognitive 

Function, White Matter Hyperintensity, and Alzheimer’s Disease  

 

4.1 Abstract 

Genetic variants increase the risk of neurocognitive disorders in later life including 

Vascular Dementia (VaD) and Alzheimer’s disease (AD), but the precise relationships between 

genetic risk factors and underlying disease etiology are not well understood. Transcriptome-wide 

association studies (TWAS) can be leveraged to better characterize the genes and biological 

pathways underlying genetic influences on disease. To date, almost all existing TWAS have been 

conducted using expression studies from individuals of a single genetic ancestry, primarily 

European. Using the joint likelihood-based inference framework in Multi-ancEstry 

TRanscriptOme-wide analysis (METRO), we leveraged gene expression data from European 

(EA) and African ancestries (AA) to identify genes associated with general cognitive function, 

white matter hyperintensity (WMH) and AD. Regions were fine-mapped using Fine-mapping Of 

CaUsal gene Sets (FOCUS). We identified 266, 23, and 69 genes associated with general 

cognitive function, WMH, and AD, respectively (Bonferroni-corrected alpha level =P<2.9x10-6), 

some of which were previously identified. Enrichment analysis showed that many of the 

identified genes were in pathways related to innate immunity, vascular dysfunction, and 

neuroinflammation. Further, downregulation of ICA1L was associated with higher WMH and 

with AD, indicating its potential contribution to overlapping AD and VaD neuropathology. To 

our knowledge, our study is the first TWAS of cognitive function and neurocognitive disorders 
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that used expression mapping studies in multiple ancestries. This work may expand the benefits 

of TWAS studies beyond a single ancestry group and help to identify gene targets for 

pharmaceutical or preventative treatment for dementia. 

 

4.2 Introduction 

Adult-onset dementia is comprised of a group of aging-related neurocognitive disorders 

caused by the gradual degeneration of neurons and the loss of brain function. These changes lead 

to a decline in cognitive abilities and impairment of daily activities and independent function. In 

the United States, Alzheimer’s disease (AD), the most common cause of dementia, affects 6.8 

million adults age 65 and older.1 The second most common form of dementia is vascular 

dementia (VaD), which often co-occurs with AD and is underdiagnosed.1,2 VaD is often difficult 

to distinguish from AD because these diseases share cognitive symptoms including noticeable 

impairment in episodic and semantic memory. While AD and VaD often co-occur, each form of 

dementia has differing pathophysiology that may precede the illness decades prior.  

AD is characterized by aggregation of amyloid-beta protein and neurofibrillary tangles in 

brain tissue,3,4 while VaD may be caused by reduced blood flow to the brain as a result of small 

vessel disease (SVD) or stroke and is commonly seen in people with hypertension.5 AD is 

diagnosed based on a battery of memory tests, brain-imaging tests for degeneration of brain cells 

and laboratory tests to assess the presence of amyloid and tau proteins in cerebrospinal fluid.6 

SVD is primarily detected on magnetic resonance imaging (MRI) as white matter 

hyperintensities (WMH). It has been hypothesized that vascular and neurodegenerative changes 

in the brain may interact in ways that increase the likelihood of cognitive impairment. A further 
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challenge in the field is distinguishing between individuals who are aging normally from those 

with dementia pathology.  

 A greater understanding of the pathological processes that influence cognitive function in 

older adults is critical for early intervention during the long preclinical or prodromal phase prior 

to dementia onset, especially in vulnerable populations.7,8 For example, individuals of African 

ancestry (AA) have a greater burden of and risk for developing dementia compared to Non-

Hispanic Whites.9–12 Differences in gene expression, which are influenced by both genetic and 

non-genetic factors, likely play a role in shaping racial/ethnic health disparities in neurological 

outcomes. However, the underlying molecular and environmental mechanisms that influence 

gene expression are not fully understood, especially in populations with non-European 

ancestries. Given the multifactorial and complex nature of dementia, multi-omic data integration 

across ancestry groups may lend insight into these disparities, allowing the identification of 

targets for intervention and treatment in populations that are most at risk.13 

 Genome-wide association studies (GWAS) have identified genetic variants associated 

with cognitive function and dementia; however, most GWAS variants are located in non-coding 

regions so their functional consequences are difficult to characterize.14 Transcriptome-wide 

association studies (TWAS) utilize gene expression and genetic data to increase power for 

identifying gene-trait associations and characterizing transcriptomic mechanisms underlying 

complex diseases. To date, however, few TWAS have been conducted on cognitive or structural 

brain measures. Further, previous TWAS have primarily been conducted in populations of 

European ancestry (EA), but these results cannot always be generalized to other genetic 

ancestries due to differences in allele frequencies, patterns of linkage disequilibrium (LD), and 

relationships between SNPs and gene expression between populations.15–18 To better identify 
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gene-trait associations in non-EA ancestries, it is necessary to incorporate results from recent 

expression quantitative trait locus (eQTL) mapping studies, which identify genetic variants that 

explain variations in gene expression levels, conducted in different ancestry groups.19 

Multi-ancEstry TRanscriptOme-wide analysis (METRO)20 is a TWAS method that uses a 

joint likelihood-based inference framework to borrow complementary information across 

multiple ancestries to increase TWAS power. In this study, we used genotype and gene 

expression data from 1,032 AA and 801 EA from the Genetic Epidemiology Network of 

Arteriopathy (GENOA) and summary statistics from published GWAS21–23 to identify genes 

associated with general cognitive function, white matter hyperintensity, and AD. We then 

examined the contribution of different ancestry-dependent transcriptomic profiles on the gene-

trait associations. Greater knowledge of the underlying molecular mechanisms of dementia that 

are generalizable to both EA and AA is a critical step in evaluating potential causal variants and 

genes that could be targeted for pharmaceutical development. 

 

4.3 Materials and Methods 

4.3.1 Sample 

The Genetic Epidemiology Network of Arteriopathy (GENOA) 

The GENOA study is a community-based longitudinal study aimed at examining the 

genetic effects of hypertension and related target organ damage.24 EA and AA hypertensive 

sibships were recruited if at least 2 siblings were clinically diagnosed with hypertension before 

age 60. All other siblings were invited to participate, regardless of their hypertension status. 

Exclusion criteria included secondary hypertension, alcoholism or drug abuse, pregnancy, 

insulin-dependent diabetes mellitus, active malignancy, or serum creatinine levels >2.5mg/dL. In 
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Phase I (1996-2001), 1,854 AA participants (Jackson, MS) and 1,583 EA participants 

(Rochester, MN) were recruited.24 In Phase II (2000-2004), 1,482 AA and 1,239 EA participants 

were successfully followed up, and their potential target organ damage from hypertension was 

measured. Demographics, medical history, clinical characteristics, information on medication 

use, and blood samples were collected in each phase. After data cleaning and quality control, a 

total of 1,032 AA and 801 EA with genotype and gene expression data were available for 

analysis. Written informed consent was obtained from all participants, and approval was granted 

by participating institutional review boards (University of Michigan, University of Mississippi 

Medical Center, and Mayo Clinic). 

 

4.3.2 Measures 

A. Genetic data 

AA and EA blood samples were genotyped using the Affymetrix® Genome-Wide 

Human SNP Array 6.0 or the Illumina 1M Duo. We followed the procedures outlined by Shang 

et al.18 for data processing. For each platform, samples and SNPs with a call rate <95%, samples 

with mismatched sex, and duplicate samples were excluded. After removing outliers identified 

from genetic principal component analysis, there were 1,599 AA and 1,464 EA with available 

genotype data. Imputation was performed using the Segmented HAPlotype Estimation & 

Imputation Tool (SHAPEIT) v.2.r25  and IMPUTE v.226 using the 1000 Genomes project phase I 

integrated variant set release (v.3) in NCBI build 37 (hg19) coordinates (released in March 

2012). Imputation for each genotyping platform was performed separately and then combined. 

The final set of genotype data included 30,022,375 and 26,079,446 genetic variants for AA and 

EA, respectively. After removing genetic variants with MAF ≤ 0.01, imputation quality score 
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(INFO score) ≤ 0.4 in any platform-based imputation, and indels, a total of 13,793,193 SNPs in 

AA and 7,727,215 SNPs in EA were available for analysis. We used the GENESIS package27 in 

R to infer population structure in the analytic sample, and the PC-AiR function was used to 

extract the first five genotype PCs which were subsequently used to adjust for population 

structure. 

 

B. Gene expression data 

Gene expression levels were measured from Epstein-Barr virus (EBV) transformed B-

lymphoblastoid cell lines (LCLs) created from blood samples from a subset of GENOA AA 

(n=1,233) and EA (n=919). Gene expression levels of AA samples were measured using the 

Affymetrix Human Transcriptome Array 2.0, while gene expression levels of EA samples were 

measured using Affymetrix Human Exon 1.0 ST Array. We followed the procedures outlined by 

Shang et al.18 In particular, the Affymetrix Expression Console was used for quality control and 

all array images passed visual inspection. In AA, 28 samples were removed due to either low 

signal-to-noise ratio (n=1), abnormal polyadenylated RNA spike-in controls (Lys < Phe < Thr < 

Dap; n=24), sample mislabeling (n=2), or low RNA integrity (n=1), resulting in a total of 

n=1,205 AA samples for analysis. In EA, duplicated samples (n=31), control samples (n=11) and 

sex mismatch samples (n=2) were removed, resulting in n=875 EA samples for analysis. We 

processed data in each population separately. Raw intensity data were processed using the 

Affymetrix Power Tool software.28 AffymetrixCEL files were normalized using the Robust 

Multichip Average (RMA) algorithm which included background correction, quantile 

normalization, log2-transformation, and probe set summarization.29 The algorithm also includes 

GC correction (GCCN), signal space transformation (SST), and gain lock (value=0.75) to 
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maintain linearity. The Brainarray custom CDF30 v.19 was used to map the probes to genes. This 

custom CDF uses updated genomic annotations and multiple filtering steps to ensure that the 

probes used are specific for the intended gene cluster. Specifically, it removes probes with non-

unique matching cDNA/EST sequences that can be assigned to more than one gene cluster. As a 

result, gene expression data processed using custom CDF are expected to be largely free of 

mappability issues. After mapping, ComBat31 was used to remove batch effects. For each gene, 

we applied a linear regression model to adjust for age, sex, and first five genotype principal 

components (PCs). We then extracted the residuals and quantile normalized residuals across all 

samples. We analyzed a common set of 17,238 protein coding genes that were annotated in 

GENCODE (release 12).32 

 

C. GWAS summary statistics 

We used GWAS summary statistics for general cognitive function,21 WMH,22 and AD23 

as input for METRO. These GWASs were selected because they are the largest meta-analyses to 

date with publicly available summary statistics; however, we note that all three were conducted 

in primarily EA samples. Below, we describe each GWAS and also provide information about 

the corresponding TWAS analyses that were reported in two of the input GWAS (WMH  and 

AD)112 which use the same GWAS summary statistics as our analysis but different gene 

expression data. 

 

i. General cognitive function 

We obtained GWAS summary statistics for general cognitive function from a meta-

analysis by Davies et al. (2018) that includes the Cohorts for Heart and Aging Research in 
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Genomic Epidemiology (CHARGE), the Cognitive Genomics Consortium (COGENT) consortia 

and the UK Biobank (UKB; Table 4-1).15 This study included 300,486 EA individuals with ages 

between 16 and 102 years from 57 population-based cohorts. This is the largest available GWAS 

for general cognitive function, and there are currently no large-scale GWAS studies available in 

non-EA. General cognitive function was constructed from a number of cognitive tasks. Each 

cohort was required to have tasks that tested at least three different cognitive domains. Principal 

component analysis was performed on the cognitive tests scores within each cohort, and the first 

unrotated component was extracted as the measure of general cognitive function. Models 

performed within each cohort were adjusted for age, sex, and population stratification. Exclusion 

criteria included clinical stroke (including self-reported stroke) or prevalent dementia. 

 

ii. White matter hyperintensity 

 We obtained the GWAS summary statistics for WMH from a meta-analysis conducted by 

Sargurupremraj et al. (2020) that included 48,454 EA and 2,516 AA with mean age of 66.0 

(SD=7.5) years from 23 population-based studies from the CHARGE consortium and UKB 

(Table 4-1).305 We obtained publicly available GWAS summary statistics from only EA 

individuals. Summary statistics for only EA are publicly available for this GWAS. WMH was 

measured from MRI scans obtained from scanners with field strengths ranging from 1.5 to 3.0 

Tesla and interpreted using a standardized protocol blinded to clinical or demographic features. 

In addition to T1 and T2 weighted scans, some cohorts included fluid-attenuated inversion 

recovery (FLAIR) and/or proton density (PD) sequences to measure WMH from cerebrospinal 

fluid. WMH volume measures were inverse normal transformed, and models adjusted for sex, 
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age, genetic PCs and intracranial volume (ICV). Exclusion criteria included history of stroke or 

other pathologies that influence measurement of WMH at the time of MRI.  

 To functionally characterize and prioritize individual WMH genomic risk loci, 

Sargurupremraj et al305 (2020) conducted TWAS using TWAS-Fusion310 with summary statistics 

from the WMH SNP-main effects (EA only) analysis and weights from gene expression 

reference panels from blood (Netherlands Twin Registry; Young Finns Study), arterial 

(Genotype-Tissue Expression, GTEx), brain (GTEx, CommonMind Consortium) and peripheral 

nerve tissue (GTEx). This study did not perform fine-mapping following TWAS analysis. 

 

iii. Alzheimer’s disease 

 We obtained the GWAS summary statistics for Alzheimer’s disease from stage I meta-

analysis by Bellenguez et al. (2022) that included EA from the European Alzheimer and 

Dementia Biobank (EADB), GR@ACE, EADI, GERAD/PERADES, DemGene, Bonn, the 

Rotterdam study, CCHS study, NxC and the UKB (Table 4-1).112 The meta-analysis was 

performed on 39,106 clinically diagnosed AD cases, 46,828 proxy-AD and related dementia 

(ADD) cases, and 401,577 controls. AD cases were clinically diagnosed in all cohorts except 

UKB, where individuals were identified as proxy-ADD cases if their parents had dementia. 

Participants without the clinical diagnosis of AD, or those without any family history of 

dementia, were used as controls. Models performed within each cohort were adjusted for PCs 

and genotyping centers, when necessary.  

 To examine the downstream effects of new AD-associated variants on molecular 

phenotypes in various AD-relevant tissues, Bellenguez et al. (2022) conducted a TWAS with 

stage I AD GWAS results. The TWAS was performed by training functional expression and 
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splicing reference panels based on the Accelerating Medicines Partnership (AMP)-AD bulk brain 

and EADB lymphoblastoid cell lines (LCL) cohorts, while leveraging pre-calculated reference 

panel weights311 for the GTEx dataset204 in tissues and cells of interest. TWAS associations were 

then fine-mapped using Fine-mapping Of CaUsal gene Sets (FOCUS).312 

 

4.3.3 Statistical Methods 

A. Multi-ancestry transcriptome-wide association study 

Using the Multi-ancEstry TRanscriptOme-wide analysis (METRO),44 we conducted 

high-powered TWAS with calibrated type I error control to identify the key gene-trait 

associations and transcriptomic mechanisms underlying AD, WMH and general cognitive 

function. Since gene expression prediction models constructed in different ancestries may 

contain complementary information, even when the input GWAS was conducted in a single 

ancestry,44 we used METRO to model gene expression from EA and AA simultaneously. 

METRO uses a joint-likelihood framework that accounts for SNP effect size heterogeneity and 

LD differences across ancestries. The framework selectively upweights information from the 

ancestry that has greater certainty in the gene expression prediction model, increasing power and 

allowing characterization of the relative contribution of each ancestry to the TWAS results. 

METRO is described in Li et al.44 Briefly, each gene is examined separately using gene 

expression data from M different genetic ancestries. Zm is the nm-vector of gene expression 

measurements on nm individuals in the mth ancestry with m{1,…,M}. For the gene of interest, 

all cis-SNPs (p), which are in potential linkage disequilibrium (LD) with each other, were 

extracted as predictors for gene expression. Gm is denoted as the nm x p genotype matrix for these 

cis-SNPs. Besides the gene expression data, we also used GWAS summary statistics from n 
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individuals for an outcome trait of interest.   is the n-vector of outcome measurements in the 

GWAS data and G is the corresponding n x p genotype matrix on the same set of p cis-SNPs. 

The expression vector zm, the outcome vector , and each column of the genotype matrixes are 

centered and standardized. Gm and G have a mean of zero and variance of one. For each TWAS, 

we used GWAS summary statistics in the form of marginal z-scores and a SNP-SNP correlation 

(LD) matrix estimated with genotype data from our GENOA EA sample. The following 

equations describe the relationships between the SNPs, gene expression and the outcome: 

 

Equation (1) describes the relationship between gene expression and the cis-SNP 

genotypes in the gene expression study in GENOA for the mth ancestry (EA or AA). m is a p 

vector of the cis-SNP effects on the gene expression in the mth ancestry and m is an nm-vector of 

residual errors with each element following an independent and normal distribution N(0, 2
m) 

with an ancestry specific variance 2
m. Equation (2) describes the relationship between the 

genetically regulated gene expression (GreX), calculated from estimated SNP prediction weights, 

and the outcome trait (general cognitive function, WMH or AD) from the GWAS. There, G 

denotes an n-vector of GreX constructed for the GWAS individuals, where  = m wmm is a p-

vector of SNP effects on the gene expression in the GWAS data, where the weights M
m=1 wm=1 

and wm0. The alpha value () is the effect of GreX constructed for the GWAS individuals on 

the outcome trait, and m is an nm-vector of residual errors with each element following an 

independent and normal distribution N(0, 2
m). Both equations, specified based on separate 

studies, are connected through the predictive SNP effects on the gene expression (m and ). A 
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key assumption made is that the SNP effects on the gene expression in the GWAS, , can be 

expressed as a weighted summation of the SNP effects on gene expression in the expression 

studies conducted across ancestries. 

We derived the overall GreX effect   and the contribution weight of each ancestry (w1 

for AA and w2 for EA) to infer the extent and contribution of the two genetic ancestries in 

informing the GreX-trait association. The joint model defined in Equations 1 and 2 allows us to 

borrow association strength across multiple ancestries to enable powerful inference of GreX-trait 

associations for general cognitive function, WMH and AD. We declared the gene to be 

significant if the p-value was below the corresponding Bonferroni corrected threshold for the 

number of tested genes (P<0.05/17,238 = 2.90x10-6). Manhattan plots and quantile-quantile (QQ) 

plots were generated using the qqman313 R package. 

 

B. Fine-mapping analysis 

Since genes residing in the same genomic region may share eQTLs or contain eQTL 

SNPs in LD with each other, TWAS test statistics for genes in the same region can be highly 

correlated, making it difficult to identify the true biologically relevant genes among them. To 

prioritize the putatively causal genes identified by METRO for general cognitive function, 

WMH, and AD, we conducted TWAS fine-mapping using FOCUS (Fine-mapping Of CaUsal 

gene Sets).312 To identify a genomic region with at least one significant gene detected by 

METRO, we obtained a set of independent, non-overlapping genomic regions, or LD blocks, 

using Ldetect.314 In each analyzed genomic block, using a standard Bayesian approach, we 

assigned a posterior inclusion probability (PIP) for each gene to be causal, given the observed 

TWAS statistics. We used gene-level Z scores, created from p-values using the inverse 
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cumulative distribution function (CDF) of a standard normal distribution, as input into FOCUS. 

We then ranked the PIPs and computed the 90%-credible set that contains the causal gene with 

90% probability. In the FOCUS analysis, a null model which assumes none of the genes in the 

region are causally associated with the trait is also considered as a possible outcome and may be 

included in the credible set. Through fine-mapping, we narrowed down significantly associated 

genes identified by METRO to a shorter list of putatively true associations. 

 

C. Characterization of identified genes 

To interpret our TWAS findings, both before and after fine-mapping, we further 

examined whether the genes identified by METRO overlapped with those previously identified 

by their corresponding input GWAS. We created a set of Venn diagrams of overlapping genes 

identified using METRO with those from the SNP-based GWAS association results15,112,305 

mapped to the nearest gene using the VennDiagram R package.315 We then constructed a second 

set of Venn diagrams showing overlapping genes identified using METRO with genes identified 

by gene-based association analyses in each of the input GWAS studies. The gene-based analyses 

were conducted using MAGMA316 (general cognitive function15 and WMH305) or gene 

prioritization tests (AD112). Finally, we created a set of Venn diagrams comparing genes 

identified using METRO with those identified in the TWAS that were conducted as part of the 

WMH305 and AD112 input GWAS studies. We used the geneSynonym R package317 to ensure that 

genes named differently across studies were captured. 
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D. Functional enrichment analysis 

To characterize the biological function of the identified genes by METRO for general 

cognitive function, WMH and AD, we performed gene set enrichment analysis. Specifically, we 

used the g:GOSt318 tool on the web software g:Profiler and mapped the genes to known 

functional informational sources, including Gene Ontology (GO): molecular function (MF), GO: 

biological process (BP), GO: cellular component (CC), Kyoto Encyclopedia of Genes and 

Genomes (KEGG), Reactome (REAC), WikiPathways (WP), Transfac (TF), MiRTarBase 

(MIRNA), Human Protein Atlas (HPA), CORUM protein complexes, and Human Phenotype 

Ontology (HP). In this analysis, we used the default option g:SCS method (Set Counts and Sizes) 

in g:Profiler for multiple testing correction and presented pathways identified with an adjusted p-

value < 0.05. Driver terms in GO are highlighted using a two-stage algorithm for filtering GO 

enrichment results, providing a more efficient and reliable approach compared to traditional 

clustering methods. This feature groups significant terms into sub-ontologies based on their 

relations, and the second stage identifies leading gene sets that give rise to other significant 

functions in the same group of terms. This method uses a greedy search strategy that recalculates 

hypergeometric p-values and results in the consideration of multiple leading terms in a 

component, rather than selection of terms with the highest significance level. 

 

4.4 Results 

In Table 4-1, we provide descriptive statistics for the samples used in the eQTL mapping 

study (e.g., 1,032 AA and 801 EA from GENOA) and the three input GWAS.15,112,305 The 

GENOA eQTL study included participants with a mean age of 56.9 (SD=10.0) years. More than 

half of participants were female (65.6%). Mean age of participants was 56.9 (SD=7.8) years in 
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the general cognitive function GWAS15, and 64.2 years in the WMH GWAS.305 In the AD 

GWAS,112 mean age was 73.6 (SD=8.1) years for cases and 67.9 (SD=8.6) years for controls. 

Using METRO, we identified 602 genes associated with general cognitive function, 45 

genes associated with WMH, and 231 genes associated with AD that were significant at the 

Bonferroni corrected alpha level (P<2.90x10-6; Figure 4-1, Tables S4-4 – S4-6). Genomic 

inflation factors for the TWAS p-values ranged from 1.45 to 2.55 (Figure 4-2). Among the three 

neurocognitive outcomes, prior to fine-mapping, METRO TWAS identified the ICA1L gene 

overlapping between WMH and AD; the FMNL1 gene overlapping between WMH and general 

cognitive function; and 22 genes enriched in AD-related pathways and functions overlapping 

between general cognitive function and AD (Figure 4-3a; Figure S4-12). After fine-mapping, the 

only overlapping gene that remained was ICA1L between WMH and AD (Figure 4-3b). 

For all identified genes, we also examined the contribution weights of expression 

prediction models for the EA and AA ancestries, prior to fine-mapping (P<2.90x10-6; Figure 4-

4). For the WMH TWAS, we found that the EA weights, on average, had a substantially higher 

contribution than AA weights for the identified genes (65.7%), and the proportion of genes with 

higher EA than AA weights was also large (65.2%). This is consistent with Li et al. (2022)44 who 

found that the gene expression prediction models constructed in the same ancestry as the input 

GWAS, in this case EA, often have larger contribution weights than those constructed in other 

ancestries. However, for both general cognitive function and AD, the contributions from EA and 

AA weights were similar, which likely increased power to identify genes relevant to AA. 

After fine-mapping, there were 266 genes in the 90%-credible set across 172 different 

genomic regions for general cognitive function. This gene set included 82 genes that were not 

previously identified in the SNP-based GWAS results (mapped to the nearest gene) or the gene-
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based analysis results from Davies et al. (2018)15 (Figure 4-5, Table S4-4); however, it is likely 

that some of these genes are in broader genomic regions tagged by the GWAS-identified SNPs. 

Specifically, there were 126 and 168 overlapping genes between METRO and the SNP-based 

and gene-based associations from Davies et al. (2018),15 respectively (Figure 4-5). The 266 

METRO-identified genes were enriched in regulatory pathways involved in protein binding (padj 

= 1.17 x 10-5), developmental cell growth (padj = 3.33 x 10-5), and protein metabolic process (padj 

= 7.18 x 10-4), as well as neurodevelopmental processes such as neuron to neuron synapse (padj = 

1.22 x 10-3) and neuron projection (padj = 7.14 x 10-3; Figure 4-6). The 82 genes that were not 

previously identified in Davies et al. (2018)15 were enriched for positive regulation of biological 

process (padj = 1.77 x 10-2), proteasome activator complex (padj = 1.00 x 10-2), nucleoplasm (padj 

= 1.29 x 10-2) and chromatin (padj = 4.71 x 10-5; Figure S4-13).  

After fine-mapping, there were 23 genes in the 90%-credible set across 15 genomic 

regions for WMH, including 12 genes that were not previously identified in the SNP-based 

GWAS results mapped to the nearest gene or the gene-based analysis results from 

Sargurupremraj et al. (2020)305 (Figure 4-7, Table S4-5). Specifically, there were 7 and 12 

overlapping genes between METRO and the SNP-based and gene-based associations from 

Sargurupremraj et al. (2020),305 respectively (Figure 4-7). The 23 METRO-identified genes were 

enriched for zinc finger motif (padj = 1.27 x 10-2), miRNA has-212-5p (padj = 1.94 x 10-2) and 

retinal inner plexiform layer (padj = 3.86 x 10-2; Figure 4-8). The 12 genes associated with WMH 

that were previously not identified by Sargurupremraj et al. (2020)305 were enriched for DNA 

binding domain Zinc Finger Protein 690 (ZNF690; padj = 2.52 x 10-3) and ClpX protein 

degradation complex (padj = 4.97 x 10-2; Figure S4-14). 
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After fine-mapping, there were 69 genes in the 90%-credible set across 56 genomic 

regions associated with AD, including 45 genes that were not previously identified in the SNP-

based GWAS results mapped to the nearest gene or the gene prioritization analysis results from 

Bellenguez et al. (2022)112 (Figure 4-9, Table S4-6). Specifically, there were 16 and 14 

overlapping genes between METRO and the SNP-based and gene prioritization test results from 

Bellenguez et al. (2022),112 respectively (Figure 4-9). The 69 METRO-identified genes were 

enriched for AD-associated processes including regulation of amyloid fibril formation (padj = 

1.87 x 10-3), amyloid-beta clearance (padj = 1.90 x 10-3), microglial cell activation (padj = 5.79 x 

10-3), amyloid-beta metabolic process (padj = 1.07 x 10-2), and neurofibrillary tangle (padj = 2.80 x 

10-4; Figure 4-10). The 45 genes associated with AD that were previously not identified by 

Bellenguez et al. (2022)112 were enriched for hematopoietic cell lineage (padj = 1.73 x 10-3) and 

neurofibrillary tangle (padj = 9.13 x 10-3; Figure S4-15). 

We compared the genes identified by METRO before and after fine-mapping with those 

identified by TWAS studies in Sargurupremraj et al. (2020)305 and Bellenguez et al. (2022)112 

which used TWAS-Fusion (Figure 4-11). For WMH, there were 16 and 10 genes identified both 

by METRO before and after fine-mapping and by the TWAS-Fusion analysis conducted by 

Sargurupremraj et al. (2020)305, respectively (Table 4-2). For AD, there were 24 and 10 genes 

identified both by METRO before and after fine-mapping and by the TWAS-Fusion followed by 

FOCUS fine-mapping analysis conducted by Bellenguez et al. (2022)112 (Table 4-3). ICA1L was 

the only gene overlapping between all four AD and WMH TWAS association results.  
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4.5 Discussion 

While previous studies have identified genes associated with cognitive function, WMH, 

and AD, there are few TWAS that utilize genetic and gene expression data from multiple 

ancestries to elucidate gene-trait associations and molecular mechanisms underlying the 

etiologies of cognitive function and neurocognitive disorders. Using the METRO method 

followed by FOCUS fine-mapping, we identified 266, 23, and 69 genes associated with general 

cognitive function, WMH, and AD, respectively, with 82, 12 and of them not previously 

identified in the original GWAS. Studying the transcriptomic mechanisms underlying cognitive 

function, WMH and dementia using both EA and AA expression data may enhance our 

understanding of cognitive health prior to and following the onset of dementia and further allow 

us to generalize findings from large scale EA GWAS to other ancestries. 

AD and SVD have overlapping features that contribute to dementia neuropathology 

including breakdown of the blood-brain barrier43 and the presence of small cortical and 

subcortical infarcts, microbleeds, perivascular spacing, and WMH in brain tissue.44 After fine-

mapping, Islet Cell Autoantigen 1 Like (ICA1L) was identified in both the WMH and AD 

TWAS. This is as a highly plausible prioritized gene that is likely to modulate the metabolism of 

amyloid precursor protein (APP)23 and increase risk of AD. ICA1L encodes a protein whose 

expression is activated by type IV collagen and plays a crucial role in myelination.45 Increased 

ICA1L expression is also associated with lower risk of AD46–48 and small vessel strokes (SVS), 

the acute outcomes of cerebral SVD, which may lead to VaD.49 Consistent with these studies, 

our TWAS found that decreased expression of ICA1L is associated with increased risk of AD 

and WMH, a subclinical indicator of SVD. Single-cell RNA-sequencing has shown ICA1L 

expression to be enriched in cortical glutamatergic excitatory neurons, which are crucial 
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components in neural development and neuropathology through their role in cell proliferation, 

differentiation, survival, neural network formation and cell death.50,51 ICA1L has been examined 

as a possible drug target for SVD, AD, and other neurodegenerative diseases;49,52 however, it is 

not recommended as a prioritized drug at this time due to potential side effects including 

increased risk of coronary artery disease and myocardial infarction as well as lower diastolic 

blood pressure.52 Nevertheless, ICA1L may contribute to overlapping AD and VaD 

neuropathology, and it could be a potential target for therapeutics and/or preventative treatments 

for AD and VaD in the future if adverse events can be reduced. 

Our TWAS of AD identified 45 genes that were not identified in the SNP-based GWAS 

results mapped to the nearest gene or the gene-based analysis reported in Bellenguez et al. 

(2022).23 The 45 genes were enriched for hematopoietic cell lineage, which are progenitors of 

red and white blood cells including those related to immunity (e.g., natural killer cells, T- and B- 

lymphocytes and other types of leukocytes).53–59 Our TWAS identified genes that have been 

previously associated with AD, including APOE, TOMM40, APOC4, CLU, PICALM and CR2, 

among others.23,60,61 While our TWAS identified APOE, the largest genetic risk factor for AD in 

AA and EA, we did not identify ABCA7 which confers the greatest genetic risk for AD in AA.62–

64 This finding is perhaps not surprising considering that our TWAS was conducted using an EA 

GWAS. The strength of association between ABCA7 and AD has been shown to be 

comparatively weaker in EA than in AA.64 To identify genes associated with AD risk in AA 

populations, it would be beneficial to perform a TWAS utilizing a well-powered AD GWAS in 

AA. This approach may reveal the involvement of ABCA7 and other genes contributing to AD 

risk in AA populations. 



 

 182 

In our AD TWAS, we also identified genes associated with other neurological and 

autoimmune diseases including Parkinson’s disease (CYB56165 and SLC25A3966), Crohn’s 

disease (ATG16L167), Amyotrophic lateral sclerosis (SIGLEC968), and Riboflavin Transport 

Deficiency (SLC52A169). These diseases have in common the progressive peripheral and cranial 

degeneration of neurons that impact processes such as voluntary muscle movement, vision, 

hearing and sensation. Although not explicitly identified in Bellenguez et al. (2022),23 we also 

identified genes that were associated with AD in other studies including RIN3 that is implicated 

in tau-mediated pathology, the MS4A (4A and 6A) locus associated with mast cell activation, 

TP53INP1 and ZYX that have been linked to myeloid enhancer activity,70 and APOC4, which is 

located proximal to APOE.71 We also identified additional genes involved in B cell 

autoimmunity (HLA-DQA2,72,73 CSTF174), neurodegenerative processes (SUPT4H1,75 C6orf10,76 

IKZF1,77 DEDD78), and neuronal growth (IKZF1,77 STYX79). Our findings support the hypothesis 

that chronic activation of immune cells resident in the brain and peripheral nervous system 

appear to play a critical role in neuroinflammatory responses that drive the progression of 

neurodegeneration in AD.80 Further, consistent with findings that AD and VaD often co-exist, 

our AD TWAS identified genes that were associated with lacunar and ischemic strokes as well as 

cerebral small vessel disease in other studies, including SLC39A13,81 RAPSN,81 MAF1,82 and 

MME.83,84  

Although our WMH TWAS identified 12 genes that were not included in the SNP-based 

GWAS results mapped to the nearest gene or the gene-based analysis reported in Sargurupremraj 

et al. (2020),22 other studies found associations between MAP1LC3B,85 ARMS286,87 and HTRA181 

with ischemic stroke, lacunar stroke, and cerebral SVD. The WMH TWAS also identified genes 

associated with AD (ARMS2),88 atrial fibrillation (NEURL89 and GJC190), innate immunity 
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(EFTUD291) and apoptosis and neurodevelopment (PDCD7,92 FBXO31,93 and ClpX94). The 12 

unique genes identified for WMH were enriched for DNA binding domain Zinc Finger Protein 

690,95 which plays an essential role in gene regulation, transcription and various cellular 

processes, and ClpX protein degradation complex,96 which maintains protein homeostasis. Our 

findings were consistent with studies that showed neuroinflammation to be an immunological 

cascade reaction by glial cells of the central nervous system where innate immunity resides.  

While our TWAS for general cognitive function did not show overlapping genes between 

the TWAS for AD and VaD, we identified genes associated with general cognitive function that 

were not explicitly identified by Davies et al. (2018)21 which were associated with pre-clinical 

AD and VaD risk factors including cardiovascular diseases, immunity and Alzheimer’s 

neuropathology. Our TWAS also identified genes previously associated with cognitive domains, 

neuropathology, and psychiatric illness including reading-related skills and neural structures 

(SEMA6D97 and SETBP198), working memory tasks (CDH1399) and Schizophrenia (HP,100,101 

C18orf1102 and TMEM180103). There are likely also distinct transcriptomic mechanisms that 

differentiate cognitive function and normal age-related brain changes from pathways related to 

dementia. Individuals who never develop dementia or significant cognitive decline still 

experience brain deterioration in normal aging that includes gray and white matter loss and 

ventricular enlargement which is accompanied by memory decline.104 Further, previous GWAS 

for general cognitive function and AD have shown few overlapping loci.21,105 In addition, studies 

of older individuals who are cognitively “resilient” with intact cognitive function, despite the 

presence of AD neuropathology, have found the genetic architecture of cognitive resilience to be 

distinct from that of AD.106 As such, relatively little is known about the pathways underlying 

cognitive aging in those without dementia. Thus, studying transcriptomic mechanisms that affect 
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general cognitive function before development of dementia may shed light on cognitive aging 

without dementia. 

We also compared genes identified by METRO after fine-mapping with those identified 

by TWAS-Fusion in Sargurupremraj et al. (2020)22 and Bellenguez et al. (2022).23 Among the 92 

genes associated with WMH in Sargurupremraj et al. (2020)22 and 23 genes identified by 

METRO, 10 genes overlapped. We note that the Sargurupremraj et al. (2020)22 did not perform 

fine-mapping of their TWAS results, which is likely why we identified substantially fewer genes. 

There were also 10 overlapping genes among the 66 genes associated with AD in Bellenguez et 

al. (2022)23 and 69 genes identified by METRO. For both TWAS comparisons, a relatively small 

number of genes overlap likely due to differences in eQTL prediction modeling. Sargurupremraj 

et al. (2020)22 and Bellenguez et al. (2022)23 used eQTL data from brain tissue, while we used 

eQTL data from transformed beta lymphocytes in blood tissue. While brain tissue is more 

relevant to WMH and AD phenotypes, blood cells do touch every cell bed that affects the brain, 

and are related to chronic inflammation, immunity, and oxidative stress, which are linked to 

cognitive performance and dementia. TWAS results from blood tissue in multiple ancestries 

provide complementary information to those reported in the GWAS. 

Several limitations in the present study should be noted. First, our gene expression levels 

were measured using transformed B-lymphocytes from immortalized cell lines in GENOA. 

While transformed B-lymphocytes are a convenient source of DNA from blood tissue, we lack 

eQTL data for tissues that may be most relevant for AD and WMH (e.g., brain tissue, small brain 

vessels, and microglia). However, B-lymphocytes provide a unique and efficient way to examine 

the functional effects of genetic variations on gene expression that minimizes environmental 

influences.107 Second, METRO follows the standard TWAS approach of analyzing one gene at a 
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time. Since genes residing in the same genomic region may share eQTLs or contain eQTL SNPs 

that are in LD with each other, the TWAS test statistics of genes in the same region may be 

highly correlated. To that end, it may be challenging to identify the truly biologically relevant 

genes among them.36,108 As such, we paired METRO with FOCUS to allow us to narrow down 

the list of potential causal genes for AD, VaD, and cognitive decline.36,109 Lastly, we utilized EA 

GWAS that were publicly available for general cognitive function, WMH, and AD. As expected, 

the gene expression prediction models constructed in the same ancestry as the GWAS (EA) 

tended to have larger contribution weights than AA. As such, a future direction would be to 

conduct TWAS of these traits using summary statistics from GWAS with AA ancestry or 

multiple ancestries as they become available.  

Our study also has notable strengths. To our knowledge, our study is the first TWAS 

using expression mapping studies in multiple ancestries (EA and AA) to identify genes 

associated with cognitive function and neurocognitive disorders. By leveraging the 

complementary information in gene expression prediction models constructed in EA and AA, as 

well as the uncertainty in SNP prediction weights, we were able to conduct a highly powered 

TWAS to identify important gene-trait associations and transcriptomic mechanisms related to 

innate immunity, vascular dysfunction and neuroinflammation underlying AD, VaD, and general 

cognitive function. Using METRO, we were also able to estimate the ancestry contribution 

weights for specific genes and identify the extent to which a gene in EA or AA may contribute to 

the trait. However, it is noteworthy that the larger the contribution of the expression prediction 

models in the same ancestry as the GWAS (EA, in this study) may allow for better predictive 

performance in the same ancestry. We also conducted FOCUS fine-mapping to narrow in on a 

list of putatively causal genes among multiple significant genes in a region. Our results suggest 
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that there are similar pathways that contribute to healthy cognitive aging and progression of 

dementia, as well as distinct pathways that are unique to each neuropathology. By understanding 

overlapping and unique genes and transcriptomic mechanisms associated with each outcome, we 

may identify possible targets for prevention and/or treatments for cognitive aging and dementia. 

 

4.6 Conclusion 

In the present study, we conducted a multi-ancestry TWAS in EA and AA to identify 

genes associated with general cognitive function, WMH and AD. We identified genes associated 

with innate immunity, vascular dysfunction, and neuroinflammation. The WMH and AD TWAS 

also indicated that downregulation of ICA1L may contribute to overlapping AD and VaD 

neuropathology. To our knowledge, this study is the first TWAS analysis using expression 

mapping studies in multiple ancestries to identify genes associated with cognitive function and 

neurocognitive disorders, which may help to identify gene targets for pharmaceutical or 

preventative treatment for dementia. 
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4.8 Tables 

Table 4-1 Sample characteristics of expression quantitative trait locus (eQTL) mapping 

study and genome-wide association studies (GWAS) participants. 

eQTL mapping study: Genetic Epidemiology Network of Arteriopathy (GENOA)  

Mean (SD) or N (%) or N 

N   N=1833 

Age (years) 56.85 (10.0) 

Female 1202 (65.6%) 

Race/Ethnicity   

  African Americans 1032 (56.3%) 

  European Americans 801 (43.7%) 

   

General cognitive function GWAS: CHARGE, COGENT, UKB  

Mean (SD) or N (%) or N 

N   300,486 

Age (years) 56.91 (7.8) 

Female 52.20% 

Excluded for dementia and/or stroke diagnosis N=4919 

  

White matter hyperintensity (WMH) GWAS: CHARGE and UKB 

Mean (SD) or N (%) or N 

N   48,454 

Age (years) 64.17 

Female 29215 (57.6%) 

WMH volume (cm3) 7.06 (8.8) 

Excluded for stroke or pathologies N=1572 

  

Alzheimer's Disease (AD) GWAS: EADB, GR@ACE, EADI, GERAD/PERADES, DemGene, Bonn, 

the Rotterdam study, the CCHS study, NxC and the UKB  

Mean (SD) or N (%) or N 

Discovery sample   

  AD cases N=39,106 

  AD proxy cases N=46,828 

  Controls N=401,577 

Age (years)   

  AD cases or proxy cases 73.55 (8.1) 

  controls 67.86 (8.6) 

Female   

  AD cases or proxy cases 62.90% 

  controls 56.10% 

All GWAS15,112,305 include only European ancestry participants.  
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Table 4-2. Genes for WMH identified both by METRO followed by fine-mapping with 

FOCUS and by TWAS-Fusion conducted by Sargurupremraj et al. (2020) 

 

Gene ENSG Chr Start  End Gene Name  

CALCRL ENSG00000064989 2 188206691 188313187 calcitonin receptor like receptor  

DCAKD ENSG00000172992 17 43100706 43138499 dephospho-CoA kinase domain containing  

EFEMP1 ENSG00000115380 2 56093102 56151274 EGF containing fibulin extracellular matrix protein 1  

GJC1 ENSG00000182963 17 42875816 42908184 gap junction protein gamma 1  

ICA1L ENSG00000163596 2 203637873 203736489 islet cell autoantigen 1 like  

KLHL24 ENSG00000114796 3 183353398 183402307 kelch like family member 24  

NBEAL1 ENSG00000144426 2 203879331 204091101 neurobeachin like 1  

NEURL ENSG00000107954 10 105253462 105352303 neuralized E3 ubiquitin protein ligase 1  

NMT1 ENSG00000136448 17 43035360 43186384 N-myristoyltransferase 1  

WBP2 ENSG00000132471 17 73841780 73852588 WW domain binding protein 2  

Abbreviations: HGNC, Human Genome Organisation Gene Nomenclature Committee 
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Table 4-3. Genes for AD identified both by METRO followed by fine-mapping with FOCUS and by 

TWAS-Fusion followed by fine-mapping with FOCUS conducted by Bellenguez et al. (2022) 

Gene ENSG Chr Start  End Gene Name  

BLNK ENSG00000095585 10 97948927 98031344 B cell linker  

CPSF3 ENSG00000119203 2 9563780 9613230 cleavage and polyadenylation specific factor 3  

DDX54 ENSG00000123064 12 113594978 113623284 DEAD-box helicase 54  

GRN ENSG00000030582 17 42422614 42430474 granulin precursor  

ICA1L ENSG00000163596 2 203637873 203736489 islet cell autoantigen 1 like  

KLF16 ENSG00000129911 19 1852398 1863578 KLF transcription factor 16  

LACTB ENSG00000103642 15 63414032 63434260 lactamase beta  

PPP4C ENSG00000149923 16 30087299 30096697 protein phosphatase 4 catalytic subunit  

SHARPIN ENSG00000179526 8 145153536 145163027 SHANK associated RH domain interactor  

TBX6 ENSG00000149922 16 30097114 30103245 T-box transcription factor 6  

Abbreviations: HGNC, Human Genome Organisation Gene Nomenclature Committee 
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4.9 Figures 

Figure 4-1. Manhattan plots of -log10 p-values for gene-trait associations in METRO. 

 

(a) General cognitive function 
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(b) White matter hyperintensity 
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(c) Alzheimer’s Disease 

 

Manhattan plots of -log10 p-values in METRO for the associations between genes and (a) general 

cognitive function using summary statistics from Davies et al. (2018),15 (b) White matter 

hyperintensity from Sargurupremraj et al. (2020)375 and (c) Alzheimer’s disease from Bellenguez 

et al. (2022),112 using GENOA gene expression data. The red line indicates significance after 

Bonferroni correction (P<2.90x10-6). 

 



 

 204 

Figure 4-2. Quantile-quantile plots of -log10 p-values for gene-trait associations in METRO. 
 

 

Q-Q plots of the associations between genes and (a) general cognitive function (λ= 2.55) using 

summary statistics from Davies et al. (2018),15 (b) white matter hyperintensity (λ= 1.45) from 

Sargurupremraj et al. (2020)375 and (c) Alzheimer’s disease (λ= 2.09) from Bellenguez et al. 

(2022)112 using GENOA gene expression data. 
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Figure 4-3. Venn diagrams comparing number of genes associated with general cognitive 

function, white matter hyperintensity and Alzheimer’s disease using METRO, prior to and 

following FOCUS fine-mapping. 
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Venn diagrams comparing the number of genes associated with general cognitive function 

(purple; N=266 genes), white matter hyperintensity (WMH; green; N=23 genes) and 

Alzheimer’s disease (AD; yellow; N=69 genes) (a) prior to fine-mapping and (b) following 

FOCUS312 fine-mapping using METRO and GENOA expression data after Bonferroni correction 

(P<2.90x10-6), with GWAS summary statistics obtained from the Davies et al. (2018),15 

Sargurupremraj et al. (2020)375 and Bellenguez et al. (2022).112  
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Figure 4-4. Contribution weights of expression prediction models across all significant 

genes identified by METRO. 

 

 

Bar plots of general cognitive function, white matter hyperintensity and Alzheimer’s disease 

comparing (a) the average contribution weights of expression prediction models from African 

ancestry (AA) and European ancestry (EA) and (b) the proportion of significant genes with 

higher contribution weights of expression prediction models across all significant genes 

(P<2.90x10-6). Black bars are the standard errors for the estimated proportions. 

  

(a)

 

a) 

(b)

 

a) 



 

 208 

Figure 4-5. Venn diagram comparing number of METRO-identified genes associated with 

general cognitive function following FOCUS fine-mapping and genes identified by Davies 

et al. (2018) gene-based and SNP-based analyses. 

 

 

Venn diagram comparing the number of genes associated with general cognitive function 

obtained from METRO using GENOA gene expression data after Bonferroni correction 

(P<2.90x10-6) and fine-mapping (red) and Davies et al. (2018).15 Davies et al. results included 

SNP-based association results that were mapped to the nearest gene (P<5x10-8; yellow), and 

gene-based association results (P<2.75x10-6; blue). 
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Figure 4-6. Functional enrichment analysis on the fine-mapped gene set identified for 

general cognitive function using METRO TWAS (N=266 genes). 

 

ID Term ID Term Name Adjusted P-value 

GO:MF 

1 GO:0005515 protein binding 1.17E-05 
2 GO:0140110 Transcription regulator activity 6.23E-03 
3 GO:0003677 DNA binding 2.23E-02 

GO:BP 

4 GO:0048588 developmental cell growth 3.33E-05 
5 GO:0019538 Protein metabolic process 7.18E-04 
6 GO:0006357 Regulation of transcription by RNA polymerase II 4.79E-03 
7 GO:0051171 Regulation of nitrogen compound metabolic processes 4.79E-03 
8 GO:0080090 Regulation of primary metabolic process 5.86E-03 
9 GO:0061387 Regulation of extent of cell growth 1.56E-02 

10 GO:0042221 Response to chemical 3.06E-02 
11 GO:0050794 Regulation of cellular process 3.13E-02 
12 GO:0048518 Positive regulation of biological process 3.24E-02 

GO:CC 

13 GO:0005654 nucleoplasm 8.23E-05 
14 GO:0000785 chromatin 7.56E-04 
15 GO:0098984 Neuron to neuron synapse 1.22E-03 
16 GO:0005737 cytoplasm 1.84E-03 
17 GO:0043005 neuron projection 7.14E-03 
18 GO:0031967 organelle envelope 1.96E-02 

 

The top panel consists of a Manhattan plot that illustrates the enrichment analysis results. The x-

axis represents functional terms that are grouped and color-coded by data sources, including 

Gene Ontology (GO): molecular function (MF; red), GO: biological process (BP; orange), GO: 

cellular component (CC; dark green), Kyoto Encyclopedia of Genes and Genomes (KEGG; 

pink), Reactome (REAC; dark blue), WikiPathways (WP; turquoise), Transfac (TF; light blue), 

MiRTarBase (MIRNA; emerald green), Human Protein Atlas (HPA; dark purple), CORUM 

protein complexes (light green), and Human Phenotype Ontology (HP; violet), in order from left 

to right. The y-axis shows the adjusted enriched -log10 p-values <0.05. Multiple testing 

correction was performed using g:SCS method (Set Counts and Sizes) that takes into account 

overlapping terms. The top panel highlights driver GO terms identified using the greedy filtering 

algorithm in g:Profiler. The light circles represent terms that were not significant after filtering. 

The circle sizes are in accordance with the corresponding term size (i.e., larger terms have larger 

circles). The number in parentheses following the source name in the x-axis shows how many 

significantly enriched terms were from this source. 
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Figure 4-7. Venn diagram comparing number of METRO-identified genes associated with 

white matter hyperintensity following FOCUS fine-mapping and genes identified by 

Sargurupremraj et al. (2020) gene-based and SNP-based analyses. 

 

 

Venn diagram comparing the number of significantly associated genes associated with white 

matter hyperintensity (WMH) obtained from METRO using GENOA expression data after 

Bonferroni correction (P<2.90x10-6), and fine-mapping (red) and Sargurupremraj et al. (2020).375 

Sargurupremraj et al. results included SNP-based association results that were mapped to the 

nearest gene (P<5x10-8; yellow), and gene-based association results (P<2.77x10-6; blue). 
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Figure 4-8. Functional enrichment analysis on the fine-mapped gene set identified for white 

matter hyperintensity using METRO TWAS (N=23 genes). 

 

ID Term ID Term Name Adjusted P-value 

TF 

1 TF:M12713 Factor: ZNF690; motif: GTCTACRCNG 1.27E-02 

MIRNA 

2 MIRNA: has-miR-212-5p hsa-miR-212-5p 1.94E-02 

HPA 

3 HPA:0411242 Retina; inner plexiform layer [Medium] 3.86E-02 

 

The top panel consists of a Manhattan plot that illustrates the enrichment analysis results. The x-

axis represents functional terms that are grouped and color-coded by data sources, including 

Gene Ontology (GO): molecular function (MF; red), GO: biological process (BP; orange), GO: 

cellular component (CC; dark green), Kyoto Encyclopedia of Genes and Genomes (KEGG; 

pink), Reactome (REAC; dark blue), WikiPathways (WP; turquoise), Transfac (TF; light blue), 

MiRTarBase (MIRNA; emerald green), Human Protein Atlas (HPA; dark purple), CORUM 

protein complexes (light green), and Human Phenotype Ontology (HP; violet), in order from left 

to right. The y-axis shows the adjusted enriched -log10 p-values < 0.05. Multiple testing 

correction was performed using g:SCS method (Set Counts and Sizes) that takes into account 

overlapping terms. The top panel highlights driver GO terms identified using the greedy filtering 

algorithm in g:Profiler. The light circles represent terms that were not significant after filtering. 

The circle sizes are in accordance with the corresponding term size (i.e., larger terms have larger 

circles). The number in parentheses following the source name in the x-axis shows how many 

significantly enriched terms were from this source. 
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Figure 4-9. Venn diagram comparing number of METRO-identified genes associated with 

Alzheimer’s disease following FOCUS fine-mapping and genes identified by Bellenguez et 

al. (2020) gene prioritization and SNP-based analyses. 

 

 

Venn diagram comparing the number of significantly associated genes associated with 

Alzheimer’s disease in European ancestry obtained from METRO using GENOA expression 

data after Bonferroni correction (P<2.90x10-6) and fine-mapping (red) and Bellenguez et al. 

(2022).112 Bellenguez et al. results included SNP-based association results that were mapped to 

the nearest gene (P<5x10-8; yellow), and gene prioritization results for the genes in the novel AD 

risk loci (blue). In the gene prioritization analysis, Bellenguez et al. analyzed the downstream 

effects of new AD-associated loci on molecular phenotypes (i.e., expression, splicing, protein 

expression, methylation and histone acetylation) in various cis-quantitative trait loci (cis-QTL) 

catalogues from AD-relevant tissues, cell types and brain regions. 
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Figure 4-10. Functional enrichment analysis on the fine-mapped gene set identified for 

Alzheimer’s disease using METRO TWAS (N=69 genes). 

 

ID Term ID Term Name Adjusted P-value 

GO:BP 

1 GO:1905906 regulation of amyloid fibril formation 1.87E-03 
2 GO:0097242 amyloid-beta clearance 1.90E-03 
3 GO:0001774 microglial cell activation 5.79E-03 
4 GO:0050435 amyloid-beta metabolic process 1.07E-02 
5 GO:0030450 regulation of complement activation, classical pathway 2.71E-02 
6 GO:0050794 regulation of cellular process 3.60E-02 

GO: CC 

7 GO:0097418 neurofibrillary tangle 2.80E-04 
8 GO:0005794 Golgi apparatus 4.39E-03 

 

The top panel consists of a Manhattan plot that illustrates the enrichment analysis results. The x-

axis represents functional terms that are grouped and color-coded by data sources, including 

Gene Ontology (GO): molecular function (MF; red), GO: biological process (BP; orange), GO: 

cellular component (CC; dark green), Kyoto Encyclopedia of Genes and Genomes (KEGG; 

pink), Reactome (REAC; dark blue), WikiPathways (WP; turquoise), Transfac (TF; light blue), 

MiRTarBase (MIRNA; emerald green), Human Protein Atlas (HPA; dark purple), CORUM 

protein complexes (light green), and Human Phenotype Ontology (HP; violet), in order from left 

to right. The y-axis shows the adjusted enriched -log10 p-values < 0.05. Multiple testing 

correction was performed using g:SCS method (Set Counts and Sizes) that takes into account 

overlapping terms. The top panel highlights driver GO terms identified using the greedy filtering 

algorithm in g:Profiler. The light circles represent terms that were not significant after filtering. 

The circle sizes are in accordance with the corresponding term size (i.e., larger terms have larger 

circles). The number in parentheses following the source name in the x-axis shows how many 

significantly enriched terms were from this source. 
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Figure 4-11. Venn diagram comparing METRO TWAS results prior to and following 

FOCUS fine-mapping with TWAS results from Sargurupremraj et al. (2020) and 

Bellenguez et al. (2022). 
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Venn diagram comparing METRO TWAS results (a) prior to and (b) following FOCUS312 fine-

mapping with TWAS results using Fusion for white matter hyperintensity from Sargurupremraj 

et al.375 (2020) without fine-mapping and Alzheimer’s disease from Bellenguez et al.112 (2022) 

with FOCUS fine-mapping. 
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4.10 Supplementary Material 

Table 4-4. Genes associated with general cognitive function using METRO followed by 

fine-mapping with FOCUS (N=266 genes; P<2.9x10-6) 

Gene ENSG alpha w1 w2 P value chr Start End 

RNF123 ENSG00000164068 -0.23 0.58 0.42 3.20E-22 3 49726971 49758962 

RABEP2 ENSG00000177548 -1.16 0.68 0.32 4.20E-22 16 28915742 28947847 

GMPPB ENSG00000173540 -0.28 1.00 0.00 8.35E-22 3 49754277 49761406 

MST1 ENSG00000173531 -0.33 0.00 1.00 1.29E-21 3 49721380 49726934 

APEH ENSG00000164062 0.95 0.00 1.00 2.30E-21 3 49711447 49721404 

IP6K1 ENSG00000176095 -0.76 0.62 0.38 4.32E-21 3 49761727 49823975 

UBA7 ENSG00000182179 0.11 0.76 0.24 1.92E-20 3 49842642 49851386 

TUFM ENSG00000178952 -0.24 0.89 0.11 3.85E-20 16 28853732 28857669 

FOXO6 ENSG00000204060 1.15 0.87 0.13 8.29E-20 1 41827594 41849262 

NFKB2 ENSG00000077150 0.30 0.00 1.00 3.67E-19 10 104153867 104162281 

PSD ENSG00000059915 0.21 0.00 1.00 4.16E-19 10 104162374 104181296 

STAU1 ENSG00000124214 0.17 0.52 0.48 9.53E-19 20 47729876 47804904 

CSE1L ENSG00000124207 -0.55 0.61 0.39 1.74E-18 20 47662783 47713497 

ARFGEF2 ENSG00000124198 0.11 1.00 0.00 3.20E-18 20 47538248 47653230 

USP4 ENSG00000114316 -0.76 0.27 0.73 4.14E-18 3 49314577 49378145 

MEF2C ENSG00000081189 -0.26 0.57 0.43 2.32E-17 5 88012934 88200074 

PTPRD ENSG00000153707 -0.70 1.00 0.00 1.03E-15 9 8314246 10613002 

NEGR1 ENSG00000172260 -0.28 0.22 0.78 1.23E-15 1 71861626 72748222 

SEMA3G ENSG00000010319 -2.55 0.00 1.00 1.96E-15 3 52467051 52479119 

ABT1 ENSG00000146109 0.61 0.39 0.61 2.24E-15 6 26597181 26600967 

FOXP1 ENSG00000114861 1.10 0.93 0.07 3.34E-15 3 71003844 71633129 

TET2 ENSG00000168769 -0.12 0.83 0.17 3.55E-15 4 106067032 106200973 

ZNF322 ENSG00000181315 0.33 0.10 0.90 7.88E-15 6 26634611 26659980 

HMGN4 ENSG00000182952 -0.09 0.00 1.00 1.08E-14 6 26538594 26547161 

NISCH ENSG00000010322 -0.25 1.00 0.00 5.24E-14 3 52489134 52527084 

RBFOX1 ENSG00000078328 0.22 0.96 0.04 8.64E-14 16 5289803 7763342 

ELAVL2 ENSG00000107105 -0.56 0.00 1.00 1.43E-13 9 23690102 23826335 

IL27 ENSG00000197272 1.73 1.00 0.00 1.95E-13 16 28510683 28523372 

TSNARE1 ENSG00000171045 -0.20 0.00 1.00 4.54E-13 8 143293441 143484543 

KCNJ3 ENSG00000162989 0.34 0.00 1.00 5.53E-13 2 155554367 155714866 

MTMR4 ENSG00000108389 -0.12 0.00 1.00 6.56E-13 17 56566890 56595266 

AFF3 ENSG00000144218 -0.31 0.00 1.00 1.32E-12 2 100161881 100808890 

LACE1 ENSG00000135537 -0.24 0.27 0.73 1.42E-12 6 108616195 108847999 

ATXN1 ENSG00000124788 0.82 0.00 1.00 1.83E-12 6 16299343 16761722 

PEF1 ENSG00000162517 0.11 0.79 0.21 2.25E-12 1 32095467 32110497 

LONRF2 ENSG00000170500 0.45 0.00 1.00 3.21E-12 2 100888337 100938963 

OR2J1 ENSG00000204702 -0.12 1.00 0.00 3.23E-12 6 29067267 29070478 

HSF5 ENSG00000176160 -0.73 0.60 0.40 3.93E-12 17 56497528 56565769 

ST3GAL3 ENSG00000126091 -0.09 0.90 0.10 5.88E-12 1 44171495 44396837 

NKIRAS1 ENSG00000197885 -0.08 1.00 0.00 6.15E-12 3 23931442 23988082 

COL16A1 ENSG00000084636 -1.07 0.00 1.00 6.99E-12 1 32117864 32169920 

DCC ENSG00000187323 -2.90 0.00 1.00 7.58E-12 18 49866567 51062273 

FOXO3 ENSG00000118689 -1.70 0.00 1.00 1.09E-11 6 108881038 109005977 

PRSS16 ENSG00000112812 0.30 0.53 0.47 1.11E-11 6 27215480 27224403 

4-SEP ENSG00000108387 -0.60 0.00 1.00 1.49E-11 17 56597611 56621729 

QRICH1 ENSG00000198218 0.09 0.00 1.00 1.73E-11 3 49067140 49131796 

RNF43 ENSG00000108375 -0.21 0.00 1.00 1.82E-11 17 56431037 56494956 

ZNF193 ENSG00000137185 0.25 0.41 0.59 1.84E-11 6 28192664 28201265 

ARF5 ENSG00000004059 0.15 1.00 0.00 2.40E-11 7 127228440 127231754 

ZNF184 ENSG00000096654 0.21 1.00 0.00 2.54E-11 6 27418522 27440897 

DPP4 ENSG00000197635 -1.30 0.02 0.98 2.70E-11 2 162848755 162930904 

OR2J3 ENSG00000204701 -0.29 0.00 1.00 3.13E-11 6 29075835 29082547 

SP4 ENSG00000105866 0.09 1.00 0.00 3.98E-11 7 21467661 21554440 

FSCN3 ENSG00000106328 0.51 0.90 0.10 4.04E-11 7 127231463 127242198 
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GCC1 ENSG00000179562 0.13 0.88 0.12 4.72E-11 7 127220682 127233665 

OR2H1 ENSG00000204688 -0.23 0.00 1.00 4.98E-11 6 29424932 29432105 

SGCZ ENSG00000185053 0.33 1.00 0.00 5.00E-11 8 13942354 15095940 

FBXO41 ENSG00000163013 -0.21 0.99 0.01 5.10E-11 2 73481810 73511606 

NR1D2 ENSG00000174738 -0.17 0.00 1.00 5.30E-11 3 23986777 24022108 

DHODH ENSG00000102967 -0.15 0.90 0.10 5.44E-11 16 72042487 72061563 

HP ENSG00000257017 -1.24 0.19 0.81 7.42E-11 16 72088404 72094954 

ATF4 ENSG00000128272 -0.48 0.09 0.91 7.66E-11 22 39915700 39918688 

TRIM27 ENSG00000204713 -0.92 0.00 1.00 9.36E-11 6 28870779 28891765 

HIST1H2AG ENSG00000196787 -0.17 0.00 1.00 1.00E-10 6 27100822 27101314 

CCT7 ENSG00000135624 0.15 0.00 1.00 1.01E-10 2 73460548 73480149 

THRB ENSG00000151090 0.48 0.00 1.00 1.37E-10 3 24158644 24537247 

ZKSCAN4 ENSG00000187626 0.42 0.23 0.77 1.44E-10 6 28209475 28220047 

SND1 ENSG00000197157 -1.77 0.01 0.99 1.51E-10 7 127292248 127732661 

PURA ENSG00000185129 0.56 0.94 0.06 1.65E-10 5 139487362 139505204 

SLC6A9 ENSG00000196517 0.25 0.37 0.63 1.71E-10 1 44457172 44497139 

MGAT3 ENSG00000128268 0.38 0.00 1.00 1.91E-10 22 39853017 39888199 

POU6F2 ENSG00000106536 0.55 0.00 1.00 1.92E-10 7 39017509 39532694 

PPM1M ENSG00000164088 0.12 0.58 0.42 2.21E-10 3 52279775 52284615 

NPAS3 ENSG00000151322 0.72 1.00 0.00 2.44E-10 14 33403602 34290069 

IST1 ENSG00000182149 0.17 0.00 1.00 2.75E-10 16 71879899 71965102 

PRKAG1 ENSG00000181929 0.11 1.00 0.00 2.76E-10 12 49396057 49412590 

HIST1H2BL ENSG00000185130 -0.05 0.03 0.97 2.77E-10 6 27775257 27775707 

PRADC1 ENSG00000135617 0.32 0.63 0.37 2.79E-10 2 73455138 73460367 

CYSTM1 ENSG00000120306 0.35 0.00 1.00 2.82E-10 5 139554741 139661637 

IPO9 ENSG00000198700 0.09 0.00 1.00 2.92E-10 1 201798277 201853419 

EGR4 ENSG00000135625 0.95 0.87 0.13 3.14E-10 2 73518057 73520829 

PDE4C ENSG00000105650 -0.40 0.00 1.00 3.23E-10 19 18319462 18359010 

HBEGF ENSG00000113070 -0.50 0.00 1.00 3.38E-10 5 139712428 139726188 

KIAA1683 ENSG00000130518 -0.19 0.00 1.00 3.52E-10 19 18367908 18385310 

HPR ENSG00000261701 -0.62 0.02 0.98 3.79E-10 16 72097047 72111145 

NKAIN2 ENSG00000188580 24.44 0.00 1.00 5.73E-10 6 124125010 125146786 

RNF39 ENSG00000204618 -0.53 0.66 0.34 5.95E-10 6 30038043 30043626 

SRPK2 ENSG00000135250 -0.05 1.00 0.00 6.18E-10 7 104751151 105039755 

SFXN5 ENSG00000144040 0.07 1.00 0.00 6.30E-10 2 73169165 73302747 

MLL5 ENSG00000005483 0.25 1.00 0.00 6.40E-10 7 104581390 104755466 

RBL2 ENSG00000103479 -0.11 0.00 1.00 6.89E-10 16 53467889 53525560 

PFDN1 ENSG00000113068 0.16 0.76 0.24 7.66E-10 5 139624620 139682698 

HIST1H2BJ ENSG00000124635 0.04 1.00 0.00 7.95E-10 6 27093676 27100574 

SPPL2C ENSG00000185294 -0.82 0.41 0.59 8.29E-10 17 43922247 43924433 

CDH8 ENSG00000150394 0.37 0.67 0.33 8.67E-10 16 61681146 62070939 

FAM109B ENSG00000177096 -0.13 1.00 0.00 1.03E-09 22 42470252 42475442 

PTPRO ENSG00000151490 -0.19 0.00 1.00 1.08E-09 12 15475191 15755109 

SLC39A8 ENSG00000138821 0.18 0.00 1.00 1.35E-09 4 103172237 103352415 

TNFRSF13C ENSG00000159958 -0.01 0.00 1.00 1.37E-09 22 42318036 42322810 

CPXM2 ENSG00000121898 -0.87 0.30 0.70 1.49E-09 10 125465723 125699783 

PLCL1 ENSG00000115896 0.45 0.00 1.00 1.60E-09 2 198669317 199437305 

NCOA2 ENSG00000140396 0.32 0.09 0.91 2.03E-09 8 71022017 71316043 

PKD2L1 ENSG00000107593 0.26 0.70 0.30 2.28E-09 10 102047906 102090021 

CDKAL1 ENSG00000145996 0.63 0.00 1.00 2.31E-09 6 20534688 21232635 

SORT1 ENSG00000134243 -0.10 0.72 0.28 2.36E-09 1 109852190 109940540 

TANK ENSG00000136560 -0.43 0.69 0.31 2.37E-09 2 161993419 162092741 

SUOX ENSG00000139531 -0.08 0.57 0.43 2.38E-09 12 56390964 56400425 

MLL2 ENSG00000167548 0.23 0.44 0.56 3.06E-09 12 49412758 49454577 

LSM4 ENSG00000130520 0.43 0.55 0.45 4.06E-09 19 18417046 18433922 

TIMM17A ENSG00000134375 0.38 0.14 0.86 4.99E-09 1 201924631 201939792 

RHEBL1 ENSG00000167550 -1.80 0.14 0.86 5.03E-09 12 49458459 49463808 

CALN1 ENSG00000183166 -0.67 0.43 0.57 5.38E-09 7 71244476 71912136 

PDE4D ENSG00000113448 -0.19 1.00 0.00 6.24E-09 5 58264865 59817947 

DDN ENSG00000181418 -0.28 1.00 0.00 6.81E-09 12 49388932 49393158 

CWF19L1 ENSG00000095485 0.07 0.00 1.00 7.48E-09 10 101992055 102027437 

NKX2-1 ENSG00000136352 -0.42 0.56 0.44 8.23E-09 14 36985597 36990354 
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GDF15 ENSG00000130513 0.10 0.00 1.00 9.47E-09 19 18485541 18499986 

NFIX ENSG00000008441 0.24 0.03 0.97 1.02E-08 19 13106289 13209610 

SNX29 ENSG00000048471 0.16 0.00 1.00 1.03E-08 16 12070591 12668144 

AUTS2 ENSG00000158321 -0.25 0.00 1.00 1.16E-08 7 69063282 70258492 

CHUK ENSG00000213341 0.34 0.00 1.00 1.21E-08 10 101948057 101989353 

RALYL ENSG00000184672 -0.34 0.00 1.00 1.66E-08 8 85095022 85834079 

PSMA5 ENSG00000143106 0.00 0.50 0.50 1.87E-08 1 109941664 109969070 

PRKAR2B ENSG00000005249 0.41 0.45 0.55 1.93E-08 7 106685150 106802256 

EPS8 ENSG00000151491 -1.55 0.33 0.67 2.10E-08 12 15773068 16035263 

LYL1 ENSG00000104903 0.25 0.00 1.00 2.25E-08 19 13209847 13213975 

PSMC3 ENSG00000165916 -2.36 0.04 0.96 2.29E-08 11 47440320 47448024 

LRRC14 ENSG00000160959 0.11 0.00 1.00 2.34E-08 8 145743376 145750556 

WNT10B ENSG00000169884 0.42 0.00 1.00 2.49E-08 12 49359123 49365518 

RUNX1T1 ENSG00000079102 0.42 0.94 0.06 2.51E-08 8 92967195 93115514 

PET112 ENSG00000059691 -0.05 0.90 0.10 3.00E-08 4 152591656 152682159 

NKX2-8 ENSG00000136327 -0.20 0.00 1.00 3.10E-08 14 37049209 37051819 

GLYCTK ENSG00000168237 -0.13 0.67 0.33 3.20E-08 3 52321105 52329273 

CAMK2N1 ENSG00000162545 0.18 0.59 0.41 3.50E-08 1 20808884 20812703 

CKB ENSG00000166165 0.10 0.12 0.88 3.68E-08 14 103986004 103989170 

MYLK ENSG00000065534 0.47 0.47 0.53 3.71E-08 3 123328896 123603179 

CALR ENSG00000179218 0.76 0.00 1.00 3.80E-08 19 13049392 13055303 

JMJD1C ENSG00000171988 0.30 0.31 0.69 4.49E-08 10 64926981 65281610 

LRRC25 ENSG00000175489 0.13 1.00 0.00 4.61E-08 19 18501947 18508432 

PPP1R16A ENSG00000160972 0.31 0.45 0.55 4.66E-08 8 145703352 145727504 

KCNJ6 ENSG00000157542 0.28 0.93 0.07 5.22E-08 21 38979675 39493439 

EIF2B5 ENSG00000145191 0.96 0.45 0.55 5.93E-08 3 183852826 183863915 

GADD45GIP1 ENSG00000179271 -0.41 1.00 0.00 5.97E-08 19 13063933 13068037 

TONSL ENSG00000160949 0.40 0.48 0.52 6.17E-08 8 145654158 145669823 

ELK4 ENSG00000158711 -0.33 1.00 0.00 6.92E-08 1 205566684 205601139 

NMNAT2 ENSG00000157064 1.60 0.76 0.24 7.81E-08 1 183217372 183387515 

RAD23A ENSG00000179262 0.16 1.00 0.00 7.92E-08 19 13056669 13064456 

MACROD2 ENSG00000172264 -0.12 1.00 0.00 8.80E-08 20 13976015 16033842 

DBN1 ENSG00000113758 0.07 1.00 0.00 9.91E-08 5 176883609 176901402 

FAM193A ENSG00000125386 0.09 0.10 0.90 1.04E-07 4 2538374 2734300 

FARSA ENSG00000179115 0.11 1.00 0.00 1.13E-07 19 13033293 13044851 

NRBF2 ENSG00000148572 0.25 0.80 0.20 1.16E-07 10 64893007 64914791 

ZSWIM6 ENSG00000130449 -1.09 0.00 1.00 1.18E-07 5 60628085 60841999 

CCDC14 ENSG00000175455 -0.13 0.00 1.00 1.28E-07 3 123616152 123680255 

CDH13 ENSG00000140945 -0.67 1.00 0.00 1.29E-07 16 82660570 83834245 

MFSD4 ENSG00000174514 -0.07 1.00 0.00 1.31E-07 1 205538013 205572046 

EPHA5 ENSG00000145242 0.29 0.00 1.00 1.53E-07 4 66185281 66536213 

TSHZ3 ENSG00000121297 -0.79 0.55 0.45 1.54E-07 19 31640885 31840342 

SLC39A4 ENSG00000147804 -1.75 0.00 1.00 1.65E-07 8 145635126 145642228 

DAND5 ENSG00000179284 1.23 0.00 1.00 1.66E-07 19 13075973 13085574 

PDCL3 ENSG00000115539 -0.11 1.00 0.00 1.79E-07 2 101179455 101193201 

DCAF11 ENSG00000100897 -0.77 0.03 0.97 1.84E-07 14 24583404 24594451 

GCDH ENSG00000105607 0.18 1.00 0.00 1.96E-07 19 13001974 13025021 

TMEM180 ENSG00000138111 -0.09 1.00 0.00 2.03E-07 10 104221152 104236802 

AGAP1 ENSG00000157985 -0.62 0.33 0.67 2.35E-07 2 236402687 237040444 

KLF1 ENSG00000105610 -1.72 0.18 0.82 2.49E-07 19 12995236 12998015 

CDH4 ENSG00000179242 0.36 0.51 0.49 2.63E-07 20 59827317 60515673 

CFB ENSG00000243649 -1.58 0.93 0.07 2.64E-07 6 31913427 31919861 

MAML2 ENSG00000184384 0.24 0.00 1.00 2.71E-07 11 95709762 96076359 

IL34 ENSG00000157368 0.44 0.86 0.14 2.75E-07 16 70613798 70694585 

CPEB1 ENSG00000214575 0.12 0.00 1.00 2.90E-07 15 83211951 83317612 

MTSS1L ENSG00000132613 0.48 1.00 0.00 2.95E-07 16 70695107 70719956 

GRK6 ENSG00000198055 -0.23 0.67 0.33 3.02E-07 5 176830205 176869902 

IL17D ENSG00000172458 0.41 0.50 0.50 3.23E-07 13 21276266 21297237 

FMNL3 ENSG00000161791 -0.26 0.44 0.56 3.28E-07 12 50030282 50101948 

RORA ENSG00000069667 0.25 0.01 0.99 3.44E-07 15 60780483 61521501 

FBXL17 ENSG00000145743 0.37 0.77 0.23 3.45E-07 5 107194736 107717799 

NCAM1 ENSG00000149294 -0.89 0.72 0.28 3.58E-07 11 112831969 113149158 
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CSRNP3 ENSG00000178662 0.34 0.53 0.47 3.60E-07 2 166326157 166545917 

SSBP2 ENSG00000145687 0.42 0.63 0.37 3.82E-07 5 80708623 81047616 

CPNE6 ENSG00000100884 0.26 1.00 0.00 4.05E-07 14 24540046 24547309 

FITM1 ENSG00000139914 -0.42 0.00 1.00 4.07E-07 14 24599868 24602058 

SEMA3E ENSG00000170381 0.20 0.16 0.84 4.08E-07 7 82992554 83278455 

NDUFAF2 ENSG00000164182 -0.17 1.00 0.00 4.27E-07 5 60241004 60450358 

LDB2 ENSG00000169744 0.23 0.00 1.00 4.45E-07 4 16503164 16900301 

MGST2 ENSG00000085871 0.07 0.76 0.24 4.92E-07 4 140586922 140661899 

RNF4 ENSG00000063978 0.05 0.29 0.71 5.04E-07 4 2463947 2627047 

RAI1 ENSG00000108557 -0.08 0.00 1.00 5.43E-07 17 17584772 17714767 

IGSF9B ENSG00000080854 0.26 1.00 0.00 5.50E-07 11 133766333 133826863 

ANKS1B ENSG00000185046 -0.26 0.70 0.30 5.51E-07 12 99120235 100378714 

C6orf108 ENSG00000112667 -0.05 0.75 0.25 5.66E-07 6 43193367 43197219 

C6orf25 ENSG00000204420 -0.18 0.20 0.80 5.80E-07 6 31686371 31694491 

CDH9 ENSG00000113100 -0.28 1.00 0.00 6.16E-07 5 26880706 27121257 

TNRC6A ENSG00000090905 -0.14 1.00 0.00 6.19E-07 16 24621530 24838953 

CRAT ENSG00000095321 -0.03 0.00 1.00 6.32E-07 9 131856421 131873468 

C18orf1 ENSG00000168675 0.69 1.00 0.00 6.32E-07 18 13217497 13652754 

C17orf59 ENSG00000196544 -0.35 0.55 0.45 6.45E-07 17 8091663 8093498 

SLC34A1 ENSG00000131183 -0.33 1.00 0.00 6.89E-07 5 176806236 176825849 

CEP192 ENSG00000101639 0.03 0.10 0.90 6.97E-07 18 12991361 13125051 

FBXL4 ENSG00000112234 -0.11 1.00 0.00 7.02E-07 6 99316411 99395882 

NFAM1 ENSG00000235568 0.17 0.00 1.00 7.09E-07 22 42776413 42828409 

C20orf173 ENSG00000125975 -0.19 0.70 0.30 7.20E-07 20 34111014 34117481 

PRR7 ENSG00000131188 0.51 0.00 1.00 7.29E-07 5 176873446 176883287 

SCN2A ENSG00000136531 0.14 0.00 1.00 8.00E-07 2 166051503 166248820 

SP2 ENSG00000167182 0.16 0.00 1.00 8.10E-07 17 45973516 46006323 

CPD ENSG00000108582 -0.08 0.55 0.45 8.37E-07 17 28705945 28797007 

CRIP3 ENSG00000146215 0.31 1.00 0.00 8.49E-07 6 43267448 43276564 

SHISA9 ENSG00000237515 -0.53 0.28 0.72 8.58E-07 16 12995455 13334273 

SEMA6D ENSG00000137872 -0.76 1.00 0.00 8.84E-07 15 47476298 48066425 

XXbac-BPG32J3.19 ENSG00000250641 0.27 0.71 0.29 8.98E-07 6 31674681 31685695 

MAML3 ENSG00000196782 0.15 0.88 0.12 9.55E-07 4 140637907 141075338 

SMG7 ENSG00000116698 0.00 0.50 0.50 9.78E-07 1 183441351 183567381 

SLC22A7 ENSG00000137204 -0.21 0.00 1.00 1.03E-06 6 43263432 43273276 

CADM2 ENSG00000175161 -0.11 0.82 0.18 1.04E-06 3 85008140 86123579 

PSME2 ENSG00000100911 -0.72 0.04 0.96 1.04E-06 14 24612571 24616779 

GPD2 ENSG00000115159 0.20 1.00 0.00 1.13E-06 2 157291802 157470247 

PTPRT ENSG00000196090 -0.66 0.22 0.78 1.16E-06 20 40701392 41818610 

AKAP6 ENSG00000151320 0.00 0.50 0.50 1.17E-06 14 32798504 33306890 

MTMR2 ENSG00000087053 1.64 0.00 1.00 1.18E-06 11 95554930 95658479 

C19orf81 ENSG00000235034 -0.61 0.62 0.38 1.22E-06 19 51152702 51162567 

RMI1 ENSG00000178966 -0.28 0.63 0.37 1.28E-06 9 86595713 86618989 

CALML5 ENSG00000178372 0.37 0.01 0.99 1.28E-06 10 5540660 5541533 

ATP5H ENSG00000167863 6.63 0.02 0.98 1.28E-06 17 73034958 73043080 

TMBIM6 ENSG00000139644 0.05 1.00 0.00 1.32E-06 12 50101508 50158717 

RGSL1 ENSG00000121446 -0.14 1.00 0.00 1.34E-06 1 182378327 182529734 

AVL9 ENSG00000105778 -0.08 0.00 1.00 1.38E-06 7 32535038 32628338 

TYW5 ENSG00000162971 0.06 0.42 0.58 1.38E-06 2 200793636 200820459 

PSME1 ENSG00000092010 -1.04 0.00 1.00 1.49E-06 14 24605372 24608176 

KCNK3 ENSG00000171303 1.06 0.36 0.64 1.51E-06 2 26915590 26956288 

HSPA1A ENSG00000204389 -0.48 0.06 0.94 1.65E-06 6 31783320 31785723 

LMF1 ENSG00000103227 -0.04 0.93 0.07 1.71E-06 16 903634 1031318 

MCRS1 ENSG00000187778 -0.04 1.00 0.00 1.76E-06 12 49950327 49961928 

SPAG4 ENSG00000061656 -0.12 0.25 0.75 1.82E-06 20 34203751 34209016 

SLC5A11 ENSG00000158865 0.18 1.00 0.00 1.94E-06 16 24857162 24922949 

EXT1 ENSG00000182197 -0.09 0.00 1.00 1.94E-06 8 118806729 119124065 

MAST4 ENSG00000069020 0.11 0.97 0.03 1.94E-06 5 65892208 66465421 

ROMO1 ENSG00000125995 -0.34 0.37 0.63 1.97E-06 20 34287194 34288906 

TMEM170B ENSG00000205269 -0.06 0.81 0.19 1.98E-06 6 11537982 11583757 

RPS17L ENSG00000182774 0.23 0.83 0.17 2.00E-06 15 83205501 83209210 

LRRC9 ENSG00000131951 -0.14 0.00 1.00 2.01E-06 14 60386431 60530277 
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ZNF638 ENSG00000075292 -0.11 0.00 1.00 2.04E-06 2 71503691 71662199 

C9orf64 ENSG00000165118 -0.07 1.00 0.00 2.05E-06 9 86553226 86571901 

SH3RF3 ENSG00000172985 0.08 0.83 0.17 2.09E-06 2 109745661 110262211 

BCL11A ENSG00000119866 -0.28 0.58 0.42 2.11E-06 2 60677655 60781602 

MACROD1 ENSG00000133315 0.21 1.00 0.00 2.14E-06 11 63766030 63933585 

PURG ENSG00000172733 0.15 0.14 0.86 2.15E-06 8 30853318 30891231 

RP11-468E2.4 ENSG00000259529 -2.84 0.00 1.00 2.15E-06 14 24616757 24635661 

CUL9 ENSG00000112659 0.20 0.29 0.71 2.21E-06 6 43149922 43192325 

LARGE ENSG00000133424 -0.18 0.92 0.08 2.21E-06 22 33558212 34318829 

VEGFA ENSG00000112715 0.18 0.12 0.88 2.21E-06 6 43737921 43754224 

PHF20 ENSG00000025293 -0.10 0.99 0.01 2.25E-06 20 34359896 34538292 

SETBP1 ENSG00000152217 0.25 0.89 0.11 2.25E-06 18 42260138 42648475 

C2orf47 ENSG00000162972 0.31 0.48 0.52 2.29E-06 2 200820040 200873263 

KBTBD2 ENSG00000170852 -0.90 0.00 1.00 2.48E-06 7 32907784 32933743 

CNGB3 ENSG00000170289 3.10 1.00 0.00 2.56E-06 8 87566205 87755903 

PCK2 ENSG00000100889 0.35 0.00 1.00 2.56E-06 14 24563262 24579807 

DCAF5 ENSG00000139990 0.16 1.00 0.00 2.64E-06 14 69517598 69619867 

PRPF38A ENSG00000134748 0.20 0.17 0.83 2.67E-06 1 52870274 52886508 

SREBF1 ENSG00000072310 -0.35 0.41 0.59 2.67E-06 17 17713713 17740316 

NCKAP5L ENSG00000167566 0.40 0.75 0.25 2.67E-06 12 50184929 50222533 

FAM76B ENSG00000077458 0.10 1.00 0.00 2.72E-06 11 95502117 95523573 

MED27 ENSG00000160563 0.20 1.00 0.00 2.74E-06 9 134728315 134955254 

CPNE3 ENSG00000085719 0.21 0.63 0.37 2.74E-06 8 87526664 87573726 

SYT3 ENSG00000213023 -0.58 0.27 0.73 2.82E-06 19 51124564 51143138 

DCDC2 ENSG00000146038 0.12 1.00 0.00 2.84E-06 6 24171983 24358287 

CHCHD3 ENSG00000106554 -0.11 0.31 0.69 2.89E-06 7 132469631 132766850 

Abbreviations: ENSG, Ensembl gene ID; alpha, overall effect of the GreX; w1, contribution weight for African ancestry; w2, 

contribution weight for European ancestry; chr, chromosome.  
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Table S4-5. Genes associated with white matter hyperintensity using METRO followed by 

fine-mapping with FOCUS (N=23 genes; P<2.9x10-6) 

Gene ENSG alpha w1 w2 P value chr  Start End 

WBP2 ENSG00000132471 1.52 0.00 1.00 7.92E-54 17 73841780 73852588 

SH3PXD2A ENSG00000107957 0.00 0.50 0.50 5.78E-20 10 105353784 105615342 

DCAKD ENSG00000172992 3.93 0.00 1.00 3.13E-19 17 43100706 43138499 

NMT1 ENSG00000136448 -0.44 0.00 1.00 1.41E-16 17 43035360 43186384 

EFEMP1 ENSG00000115380 0.89 1.00 0.00 1.35E-15 2 56093102 56151274 

ICA1L ENSG00000163596 -0.27 0.36 0.64 5.44E-12 2 203637873 203736489 

NBEAL1 ENSG00000144426 0.57 0.00 1.00 4.91E-11 2 203879331 204091101 

WDR12 ENSG00000138442 -0.64 0.00 1.00 5.73E-11 2 203738984 203879521 

KLHL24 ENSG00000114796 -0.99 0.00 1.00 1.01E-10 3 183353398 183402307 

NEURL ENSG00000107954 0.93 0.44 0.56 3.28E-10 10 105253462 105352303 

CALCRL ENSG00000064989 1.08 0.94 0.06 7.96E-10 2 188206691 188313187 

HAAO ENSG00000162882 -0.24 1.00 0.00 1.18E-08 2 42994229 43019733 

ARMS2 ENSG00000254636 -0.62 0.00 1.00 1.64E-08 10 124214169 124216868 

GJC1 ENSG00000182963 -0.06 0.00 1.00 3.57E-08 17 42875816 42908184 

OXER1 ENSG00000162881 0.53 1.00 0.00 7.02E-08 2 42989639 42991275 

HTRA1 ENSG00000166033 7.07 1.00 0.00 2.53E-07 10 124218067 124274423 

LRRC37A3 ENSG00000176809 -0.44 0.00 1.00 2.54E-07 17 62850248 62915598 

FBXO31 ENSG00000103264 1.11 0.00 1.00 3.05E-07 16 87360593 87425748 

PDCD7 ENSG00000090470 -1.81 0.00 1.00 3.54E-07 15 65409717 65426146 

CLPX ENSG00000166855 0.40 1.00 0.00 3.54E-07 15 65440557 65477680 

EFTUD2 ENSG00000108883 0.00 0.50 0.50 4.49E-07 17 42927316 42976813 

UBAP1L ENSG00000246922 -1.26 0.01 0.99 5.91E-07 15 65385098 65407538 

MAP1LC3B ENSG00000140941 0.37 0.13 0.87 1.94E-06 16 87417559 87438385 

Abbreviations: ENSG, Ensembl gene ID; alpha, overall effect of the GreX; w1, contribution weight for African ancestry; w2, 

contribution weight for European ancestry; chr, chromosome. 
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Table 4-6. Genes associated with Alzheimer’s disease using METRO followed by fine-

mapping with FOCUS (N=69 genes; P<2.9x10-6) 

Gene ENSG alpha w1 w2 P value chr Start End 

CLU ENSG00000120885 0.48 0.29 0.71 4.77E-39 8 27454434 27472217 

TOMM40 ENSG00000130204 -19.78 1.00 0.00 4.77E-39 19 45393826 45406946 

APOE ENSG00000130203 67.11 0.28 0.72 4.77E-39 19 45409048 45412650 

APOC4 ENSG00000224916 -17.64 0.91 0.09 4.77E-39 19 45445495 45452822 

PICALM ENSG00000073921 -0.15 1.00 0.00 9.33E-36 11 85668218 85780924 

CCDC83 ENSG00000150676 0.28 1.00 0.00 1.01E-26 11 85566144 85631064 

CR2 ENSG00000117322 1.26 0.00 1.00 1.87E-25 1 207627575 207663240 

MS4A6A ENSG00000110077 -0.29 0.58 0.42 1.48E-19 11 59939488 59952139 

MS4A2 ENSG00000149534 1.51 0.22 0.78 2.29E-17 11 59855734 59865940 

RIN3 ENSG00000100599 3.19 1.00 0.00 7.51E-17 14 92980125 93155339 

MEPCE ENSG00000146834 -0.22 1.00 0.00 5.62E-16 7 100025945 100031749 

PPP1R35 ENSG00000160813 0.31 1.00 0.00 2.40E-15 7 100032905 100034120 

CYB561 ENSG00000008283 0.12 0.85 0.15 1.66E-14 17 61509665 61523715 

KCNH6 ENSG00000173826 -0.27 0.62 0.38 2.33E-14 17 61600695 61626338 

USP6 ENSG00000129204 -0.38 0.98 0.02 3.47E-14 17 5019327 5078329 

TREM2 ENSG00000095970 1.10 0.00 1.00 7.75E-14 6 41126244 41130924 

ACE ENSG00000159640 0.65 0.24 0.76 8.53E-14 17 61554422 61575741 

ZYX ENSG00000159840 0.17 0.00 1.00 9.46E-14 7 143078388 143088204 

FAM131B ENSG00000159784 -0.28 1.00 0.00 2.78E-13 7 143050493 143059863 

C6orf10 ENSG00000204296 -0.39 0.00 1.00 3.04E-13 6 32256303 32339689 

BTNL2 ENSG00000204290 0.60 0.76 0.24 7.66E-13 6 32361116 32374958 

ATG16L1 ENSG00000085978 -0.12 0.00 1.00 1.33E-12 2 234118697 234204320 

TREML1 ENSG00000161911 -1.07 0.96 0.04 2.31E-12 6 41117075 41122085 

ZNF594 ENSG00000180626 0.98 0.40 0.60 2.44E-12 17 5082830 5095163 

EPHA1 ENSG00000146904 -0.58 0.52 0.48 3.79E-12 7 143087382 143105949 

APP ENSG00000142192 -0.13 0.00 1.00 1.09E-11 21 27252861 27543446 

USP6NL ENSG00000148429 0.08 0.40 0.60 1.33E-10 10 11502509 11653665 

SLC39A13 ENSG00000165915 -0.12 0.00 1.00 2.95E-10 11 47428683 47438047 

PPP4C ENSG00000149923 0.03 0.92 0.08 3.65E-10 16 30087299 30096697 

SLC52A1 ENSG00000132517 0.78 0.27 0.73 3.69E-10 17 4935895 4955304 

AC008394.1 ENSG00000233828 0.17 0.00 1.00 5.07E-10 5 86512423 86534822 

FAM210B ENSG00000124098 -0.14 0.00 1.00 9.14E-10 20 54934030 54943719 

GCNT7 ENSG00000124091 -3.29 0.98 0.02 9.16E-10 20 55066548 55100981 

RAPSN ENSG00000165917 0.14 0.99 0.01 1.37E-09 11 47459315 47470695 

CD55 ENSG00000196352 -0.47 1.00 0.00 1.84E-09 1 207494864 207560149 

HLA-DQA2 ENSG00000237541 -0.06 0.00 1.00 1.87E-09 6 32709168 32714975 

TBX6 ENSG00000149922 -0.11 0.96 0.04 1.95E-09 16 30097114 30103245 

DYDC2 ENSG00000133665 -0.44 0.33 0.67 2.42E-09 10 82104501 82127829 

CSTF1 ENSG00000101138 -4.15 0.00 1.00 2.62E-09 20 54967427 54981418 

CASS4 ENSG00000087589 -0.18 0.37 0.63 4.41E-09 20 54987168 55035443 

DYDC1 ENSG00000170788 0.30 0.39 0.61 4.65E-09 10 82095861 82116511 

LILRA6 ENSG00000244482 0.21 0.13 0.87 5.48E-09 19 54720737 54746649 

MME ENSG00000196549 -0.23 1.00 0.00 5.99E-09 3 154741913 154901493 

NIT1 ENSG00000158793 -0.24 0.32 0.68 7.12E-09 1 161087876 161095235 

KLF16 ENSG00000129911 0.18 1.00 0.00 1.03E-08 19 1852398 1863578 

DEDD ENSG00000158796 0.15 0.00 1.00 1.17E-08 1 161090764 161102478 

MAF1 ENSG00000179632 -0.11 0.00 1.00 1.52E-08 8 145159364 145162514 

TP53INP1 ENSG00000164938 -0.05 0.66 0.34 2.05E-08 8 95938200 95961606 

KANSL1 ENSG00000120071 0.00 0.50 0.50 3.81E-08 17 44107282 44302755 

LACTB ENSG00000103642 0.06 0.41 0.59 4.42E-08 15 63414032 63434260 

SHARPIN ENSG00000179526 0.23 1.00 0.00 9.56E-08 8 145153536 145163027 
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MAPT ENSG00000186868 -0.54 0.51 0.49 1.76E-07 17 43971893 44105700 

IKZF1 ENSG00000185811 -0.13 1.00 0.00 3.33E-07 7 50343664 50472799 

CPSF3 ENSG00000119203 0.19 1.00 0.00 3.85E-07 2 9563780 9613230 

CCNE2 ENSG00000175305 -0.18 0.35 0.65 4.65E-07 8 95891998 95908906 

FAM108A1 ENSG00000129968 -0.81 0.68 0.32 4.69E-07 19 1876809 1885495 

GRN ENSG00000030582 0.18 0.84 0.16 6.31E-07 17 42422614 42430474 

ABI3 ENSG00000108798 -0.05 0.00 1.00 9.18E-07 17 47287773 47300587 

SLTM ENSG00000137776 0.17 1.00 0.00 9.82E-07 15 59171249 59225878 

RNF111 ENSG00000157450 -0.39 0.06 0.94 1.04E-06 15 59157374 59389618 

EPDR1 ENSG00000086289 0.04 1.00 0.00 1.16E-06 7 37723446 37991538 

SUPT4H1 ENSG00000213246 0.06 0.76 0.24 1.27E-06 17 56422536 56430454 

STYX ENSG00000198252 0.10 0.00 1.00 1.38E-06 14 53196884 53241707 

SIGLEC9 ENSG00000129450 -0.17 0.00 1.00 1.82E-06 19 51628163 51639908 

DDX54 ENSG00000123064 0.22 0.36 0.64 2.02E-06 12 113594978 113623284 

TRIB1 ENSG00000173334 0.42 0.00 1.00 2.41E-06 8 126442600 126450645 

BLNK ENSG00000095585 0.40 0.00 1.00 2.55E-06 10 97948927 98031344 

SLC25A39 ENSG00000013306 -0.58 1.00 0.00 2.57E-06 17 42396993 42402238 

ICA1L ENSG00000163596 -0.06 0.41 0.59 2.68E-06 2 203637873 203736489 

Abbreviations: ENSG, Ensembl gene ID; alpha, overall effect of the GreX; w1, contribution weight for African ancestry; w2, 

contribution weight for European ancestry; chr, chromosome. 
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Figure 4-12. Functional enrichment analysis on the gene set identified by METRO for 

general cognitive function and AD (N=22 genes; P<2.90x10-6). 

 

The top panel consists of a Manhattan plot that illustrates the enrichment analysis results. The x-

axis represents functional terms that are grouped and color-coded by data sources, including 

Gene Ontology (GO): molecular function (MF; red), GO: biological process (BP; orange), GO: 

cellular component (CC; dark green), Kyoto Encyclopedia of Genes and Genomes (KEGG; 

pink), Reactome (REAC; dark blue), WikiPathways (WP; turquoise), Transfac (TF; light blue), 

MiRTarBase (MIRNA; emerald green), Human Protein Atlas (HPA; dark purple), CORUM 

protein complexes (light green), and Human Phenotype Ontology (HP; violet), in order from left 

to right. The y-axis shows the adjusted enriched -log10 p-values <0.05. Multiple testing 

correction was performed using g:SCS method (Set Counts and Sizes) that takes into account 

overlapping terms. The top panel highlights driver GO terms identified using the greedy filtering 

algorithm in g:Profiler. The light circles represent terms that were not significant after filtering. 

The circle sizes are in accordance with the corresponding term size (i.e., larger terms have larger 

circles). The number in parentheses following the source name in the x-axis shows how many 

significantly enriched terms were from this source. 
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Figure 4-13. Functional enrichment analysis on the fine-mapped gene set not previously 

identified by Davies et al. (2018)15 for general cognitive function using METRO TWAS 

(N=82 genes). 

 

The top panel consists of a Manhattan plot that illustrates the enrichment analysis results. The x-

axis represents functional terms that are grouped and color-coded by data sources, including 

Gene Ontology (GO): molecular function (MF; red), GO: biological process (BP; orange), GO: 

cellular component (CC; dark green), Kyoto Encyclopedia of Genes and Genomes (KEGG; 

pink), Reactome (REAC; dark blue), WikiPathways (WP; turquoise), Transfac (TF; light blue), 

MiRTarBase (MIRNA; emerald green), Human Protein Atlas (HPA; dark purple), CORUM 

protein complexes (light green), and Human Phenotype Ontology (HP; violet), in order from left 

to right. The y-axis shows the adjusted enriched -log10 p-values <0.05. Multiple testing 

correction was performed using g:SCS method (Set Counts and Sizes) that takes into account 

overlapping terms. The top panel highlights driver GO terms identified using the greedy filtering 

algorithm in g:Profiler. The light circles represent terms that were not significant after filtering. 

The circle sizes are in accordance with the corresponding term size (i.e., larger terms have larger 

circles). The number in parentheses following the source name in the x-axis shows how many 

significantly enriched terms were from this source. 
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Figure 4-14. Functional enrichment analysis on the fine-mapped gene set not previously 

identified by Sargurupremraj et al. (2020)305 for white matter hyperintensity using 

METRO TWAS (N=12 genes). 

 

The top panel consists of a Manhattan plot that illustrates the enrichment analysis results. The x-

axis represents functional terms that are grouped and color-coded by data sources, including 

Gene Ontology (GO): molecular function (MF; red), GO: biological process (BP; orange), GO: 

cellular component (CC; dark green), Kyoto Encyclopedia of Genes and Genomes (KEGG; 

pink), Reactome (REAC; dark blue), WikiPathways (WP; turquoise), Transfac (TF; light blue), 

MiRTarBase (MIRNA; emerald green), Human Protein Atlas (HPA; dark purple), CORUM 

protein complexes (light green), and Human Phenotype Ontology (HP; violet), in order from left 

to right. The y-axis shows the adjusted enriched -log10 p-values <0.05. Multiple testing 

correction was performed using g:SCS method (Set Counts and Sizes) that takes into account 

overlapping terms. The top panel highlights driver GO terms identified using the greedy filtering 

algorithm in g:Profiler. The light circles represent terms that were not significant after filtering. 

The circle sizes are in accordance with the corresponding term size (i.e., larger terms have larger 

circles). The number in parentheses following the source name in the x-axis shows how many 

significantly enriched terms were from this source. 
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Figure 4-15. Functional enrichment analysis on the fine-mapped gene set not previously 

identified by Bellenguez et al. (2022)112 for Alzheimer’s disease using METRO TWAS 

(N=45 genes). 

 

The top panel consists of a Manhattan plot that illustrates the enrichment analysis results. The x-

axis represents functional terms that are grouped and color-coded by data sources, including 

Gene Ontology (GO): molecular function (MF; red), GO: biological process (BP; orange), GO: 

cellular component (CC; dark green), Kyoto Encyclopedia of Genes and Genomes (KEGG; 

pink), Reactome (REAC; dark blue), WikiPathways (WP; turquoise), Transfac (TF; light blue), 

MiRTarBase (MIRNA; emerald green), Human Protein Atlas (HPA; dark purple), CORUM 

protein complexes (light green), and Human Phenotype Ontology (HP; violet), in order from left 

to right. The y-axis shows the adjusted enriched -log10 p-values <0.05. Multiple testing 

correction was performed using g:SCS method (Set Counts and Sizes) that takes into account 

overlapping terms. The top panel highlights driver GO terms identified using the greedy filtering 

algorithm in g:Profiler. The light circles represent terms that were not significant after filtering. 

The circle sizes are in accordance with the corresponding term size (i.e., larger terms have larger 

circles). The number in parentheses following the source name in the x-axis shows how many 

significantly enriched terms were from this source. 
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Chapter 5 . Conclusion 

 

5.1 Summary and Implications of Main Findings 

The objectives of this dissertation were to: (1) investigate whether previously identified 

SNPs, epigenetic variants and/or their interactions in the ABCA7 region were associated with 

general cognitive function in AA participants without preliminary evidence of dementia, using 

linear mixed models; (2) assess whether DNA methylation from peripheral blood leucocytes 

mediates the relationships between neighborhood factors and cognitive function/WMH outcomes 

in cognitively healthy AA, using high-dimensional mediation methods; and (3) conduct TWAS 

that leverage gene expression data collected from EA and AA, through a joint likelihood-based 

inference framework, to identify genes associated with general cognitive function, WMH and 

AD. This dissertation uses data from the GENOA study, a large and well-characterized cohort of 

AA (as well as EA) with rich multi-omic data and neighborhood measures. This body of work 

advances our knowledge of the relationships between genetic variants, methylation, and 

transcriptomic mechanisms, as well as their interactions with socio-contextual factors, 

underlying neurocognitive outcomes and structural brain measures in older adults. 

In Chapter 2, we investigated whether previously identified risk SNPs in ABCA7, DNA 

methylation in ABCA7, and their interactions were associated with general cognitive function in 

older AA without dementia. To better understand the functional consequence of these risk factors 

at the molecular level, we also evaluated whether identified epigenetic or genetic risk factors 

were associated with transcript level ABCA7 gene expression in transformed beta lymphocytes 
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from the same cohort. Although ABCA7 sentinel SNPs and CpG sites were not associated with 

general cognitive function, we did see evidence of SNP-by-CpG interactions. We found that two 

sentinel SNPs in the ABCA7 region (rs3764647 and rs115550680) may regulate the effects of 

methylation on cognitive function. In conclusion, while AD risk SNPs in ABCA7 were not 

associated with cognitive function in this sample, methylation at local CpGs may play an 

important role on cognitive function, depending on the genotype.  

To better understand the functional consequences of these risk factors at the molecular 

level, we also evaluated whether identified epigenetic or genetic risk factors were associated with 

transcript level ABCA7 gene expression in transformed beta-lymphocytes from the same cohort. 

We found that depending on the allele carried, identified SNPs may influence transcript 

expression levels that may affect cognitive function. This differential pattern may be due to 

different functions of the two transcripts instead of alternative splicing. Taken together, these 

results suggest that SNPs and CpG sites in ABCA7 may interact to modulate the expression 

and/or function of ABCA7 transcripts, and that some of the affected transcripts may influence 

cognitive function in older AA. 

Our study findings are important because they fill in the gap in the current literature on 

the effect of ABCA7 risk SNPs and their interplay with DNA methylation on cognitive function 

in older AA without dementia. While ABCA7 has previously been implicated in AD in AA, this 

is the first study to date that has examined this gene in relation to cognitive function in AA. This 

is also the first study to examine whether SNP-by-CpG interactions, which have been shown to 

be an important mechanism underlying human complex diseases,221–223 were associated with 

cognitive outcomes. By further incorporating transcriptomic data, we investigated whether these 

SNP-by-CpG interactions may influence cognitive function through alternative splicing or 
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modulation of expression of specific transcripts in the pathway. In summary, we demonstrated 

that an intricate interplay between genetic and epigenetic risk factors in the ABCA7 region may 

play an important role in cognitive function. Future studies are needed to disentangle this 

complicated relationship. 

 In Chapter 3, we examined whether DNA methylation in peripheral blood leukocytes 

mediates the relationship between neighborhood characteristics and cognitive function or WMH 

in older AA participants without preliminary evidence of dementia. Greater simple densities of 

alcohol drinking places were associated with higher delayed recall, and greater densities of fast-

food destination and unfavorable food stores with alcohol were associated with higher visual 

conceptual tracking in cognitively normal AA. However, we detected no significant mediating 

effects of DNA methylation on the associations between these neighborhood characteristics and 

cognitive function.  

The direction of the total effects is surprising given that greater densities of destinations 

that may encourage unhealthy dietary choices (e.g., such as alcohol drinking places, fast-food 

destinations and unfavorable food stores), were associated with higher cognitive measures of 

delayed recall and visual conceptual tracking. These results may instead be due to increased 

access to neighborhood community resources and walking destinations that were positively 

associated with cognitive health through related to improved physical activity levels, social 

engagement, mental health or quality of life.280 The plausible mechanisms and direction or 

presence of neighborhood-cognitive function association may depend on the neighborhood 

characteristic and cognitive domain being studied, and more than one mechanism may be at play. 

To clarify the underlying potential biological mechanisms linking neighborhood factors 

and cognitive function/WMH, we further investigated whether DNA methylation may mediate 
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the relationship the pathways between the neighborhood environment and cognitive 

function/WMH. Previous studies have shown that the neighborhood context affects DNA 

methylation, even after adjusting for individual level factors, and that DNA methylation patterns 

in stress and inflammatory pathways may be responsive to interventions.255 EWAS have also 

found multiple CpGs related to neurodegeneration associated with cognitive function.118,257 

Considering these factors and that past studies have found epigenetic markers mediating the 

relationship between neighborhood environment and various cardiovascular risk factors,260–262 

which are potential upstream factors of cognitive function and dementia, we expected to detect 

mediating CpG sites in the associations between neighborhood characteristics and cognitive 

function/WMH using Sobel-Comp method in older AA. Our results may indicate that either 

methylation is not a critical component of the mediating pathway, or that we do not have enough 

power to investigate CpG sites that may mediate the relationship between the neighborhood 

environment and cognitive function/WMH.  

 In Chapter 4, we conducted a multi-ancestry TWAS that leveraged gene expression data 

collected from EA and AA in GENOA, through a joint likelihood-based inference framework, to 

identify genes associated with general cognitive function, WMH and AD. We then fine-mapped 

the identified regions using FOCUS and characterized identified genes. We identified 266, 23, 

and 69 genes associated with general cognitive function, WMH, and AD, respectively 

(Bonferroni-corrected alpha-value P<2.9x10-6). Among those, METRO identified 82, 12 and 45 

genes that were not previously identified by the GWAS studies for general cognitive function, 

WMH and AD, respectively. Our TWASs indicated overlapping genes associated with innate 

immunity, vascular dysfunction and neuroinflammation, suggesting that similar mechanisms 

drive the progression of dementia. The WMH and AD TWASs showed that downregulation of 
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ICA1L contributed to overlapping AD and VaD neuropathology and may be a target and/or 

preventative treatment for AD and VaD. To our knowledge, this study was the first TWAS 

analysis using expression mapping studies in multiple ancestries (EA and AA) to identify genes 

associated with cognitive function and neurocognitive disorders. 

 The significance of this study is that by leveraging the complementary information in 

gene expression prediction models constructed in EA and AA, as well as the uncertainty in SNP 

prediction weights, we were able to conduct a highly powered TWAS to identify important gene-

trait associations and transcriptomic mechanisms underlying AD, VaD and general cognitive 

function. We also conducted FOCUS fine-mapping to narrow in on a list of putatively causal 

genes among multiple significant genes in a region. While our study may benefit from the 

inclusion of summary statistics from an AA GWAS, as well as eQTL data in brain tissue, our 

study sheds light on gene-trait associations using publicly available EA GWAS summary 

statistics and eQTL data in peripheral blood leucocytes from EA and AA. In addition, our use of 

eQTL data in EA and AA allows us to increase the effectiveness of TWAS and improve 

generalizability of gene-trait findings to non-EA ancestry groups using the largest AA eQTL to 

date. Also, our use of eQTL in blood in multiple ancestries provides insight into the systemic 

influences and transcriptomic mechanisms affecting cognitive function and dementia 

development. The results of this study are important because while there were similar pathways 

that contribute to healthy cognitive aging and progression of dementia, there were also distinct 

pathways that were unique to each neuropathology. By understanding overlapping and unique 

genes and transcriptomic mechanisms associated with each phenotype, we may identify possible 

targets for prevention and/or treatments for cognitive aging and dementia.  
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 In this dissertation, we utilized a multi-omic approach to investigate how genetic, 

epigenetic and transcriptomic mechanisms affect and interact to affect the pathology of cognitive 

function and dementia. Our findings are particularly relevant to AA, an understudied population 

that has a greater burden of dementia compared to NHW.21,23–25 This collective work sheds light 

on the many overlapping and interacting mechanisms that contribute to healthy cognitive aging 

and neurodegenerative processes of dementia. There seems to be an interplay between cognitive 

function and dementia that is related to cardiovascular processes, such as diabetes and obesity.376  

For example, there is evidence that hyperglycemia, insulin resistance, and increased tau may 

interact with amyloid-beta plaques to induce neurodegeneration.376 In addition, changes in 

neuroinflammatory regulation processes may also contribute to dementia onset. If 

neuroinflammation is not initially resolved, chronic inflammation proceeds to initiate 

neurodegenerative responses in an unregulated, cascading manner.377 Despite the previously-

studied complex factors underlying dementia and cognitive function, these traits still have 

mysterious aspects that contribute to their uncontrollable processes. As such, multi-omic studies 

are a promising tool to investigate the global and dynamic molecular changes underlying 

dementia in the prodromal phase and cognitive decline in healthy individuals. Due to 

inaccessibility of the human brain, it is crucial to differentially diagnose and study the etiology of 

dementia and mild cognitive impairment (MCI) prior to onset using biomarkers in the blood, 

such as genetic and epigenetic variants, and transcriptomic markers. By investigating how these 

mechanisms interact with each other, as well as socio-contextual factors, we may understand 

how these factors converge to contribute to the pathogenesis and clinical expression of 

neurogenerative diseases. This may allow the identification of targets for intervention and 

treatment, especially in populations that are most at risk.35  
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5.2 Strengths and Limitations 

While this dissertation contributes to our understanding of the roles of genetic variants, 

DNA methylation and transcriptomic mechanisms, and their interplay with socio-contextual 

factors in cognitive/WMH outcomes, it is not without limitations. First, recruitment in GENOA 

focused on obtaining a sample enriched with genetic variants related to hypertension among 

sibships. This may be a source of selection bias and may limit the generalizability of our study to 

the general population. To account for sibships, the genetic relatedness matrix was modeled as a 

random effect in all models. There may also have been residual confounding, as well as 

measurement error in cognitive function. We also used MMSE to exclude participants who may 

have had dementia. Several studies have found that the MMSE alone cannot be used to predict 

dementia, and its accuracy in measuring cognitive function could be affected by sociocultural 

variables, age, education, and other factors.  too  However, since we do not have data on dementia 

or AD diagnosis, this measure was adequate to exclude participants whose dementia symptoms 

were more pronounced. 

A further limitation is that our gene expression measures were taken from transformed 

beta-lymphocytes from immortalized cell lines. While these cell lines optimize examination of 

the functional effects of genetic variation on gene expression due to homogeneity in the cellular 

environment, the transformation process causes epigenetic and downstream transcriptional 

changes to the immortalized cells that are not fully understood.228 Since our DNA methylation 

was from peripheral blood leukocytes, a different cell type than the transcriptomic data, the 

inferences from our combined epigenetic and transcriptomic analyses should be verified in a 
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single cell type. In addition, methylation and transcription patterns may differ between blood and 

brain tissues;191,215 However, blood cells touch every cell bed that affects the brain and are 

involved in chronic inflammation and oxidative stress, which are linked to cognitive 

performance.216,217 Further, collecting blood cells is also relatively inexpensive and non-invasive, 

providing a means for investigating multi-omic relationships with neurocognitive outcomes in 

large samples of living participants. Thus, our results provide a starting point for multi-omic 

investigation of neurocognition that need to be further characterized in brain tissue. 

This dissertation has several strengths. First, our studies were conducted among AA, 

where findings may help us better understand cognitive impairment, cognitive decline and 

dementia in a population that is typically underrepresented in multi-omic research. Additionally, 

our interpretations of functional consequences were improved through the use of gene- and 

transcript-level expression data. We also implemented state-of-the-art statistical methods that 

allowed us to assess high-dimensional DNA methylation pathways linking socio-contextual 

factors with cognitive function and WMH (Sobel-Comp; Aim 2), as well as leverage gene 

expression data from multiple ancestries to conduct a well-powered TWAS for cognitive 

function, WMH and AD (METRO; Aim 3). Lastly, with comprehensive cognitive function 

measures, we were able to assess multi-omic associations with general cognitive function, 

individual cognitive domains, and WMH in AA.  

 

5.3 Future Directions 

This dissertation sheds light on the importance of assessing how multi-omic layers of 

information interact with socio-contextual factors to affect cognitive function/WMH and 

dementia etiology in older adults. Our findings show that there may be an intricate network of 
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genetic variants, DNA methylation sites, and transcriptomic mechanisms that underly these 

complex traits and diseases. We were also able to show that the socio-contextual environment, 

which includes the effects of lifestyle and environmental exposures throughout the life course, 

may influence cognitive/WMH outcomes; however, their influence may not operate primarily 

through epigenetics.  

While this body of work has important implications that may allow us to develop 

interventions and/or treatments for cognitive aging prior to dementia onset, replication studies 

are needed to characterize whether our findings are generalizable to other cohorts of AA, as well 

as other ancestries. Future studies with multi-ethnic cohorts and longitudinal multi-omic 

measurements, from early in life to older adulthood, may further elucidate differences in 

neuropathogenesis between groups and improve our understanding of the contribution of multi-

omic and socio-contextual influences on cognitive function and dementia the prodromal period.  

Future directions may further incorporate additional layers of “omic” data including 

proteomics and metabolomics that may further elucidate underlying biological mechanisms and 

processes identified by our findings. Also, future directions may include the use of data from 

brain tissue to understand how our findings apply in more relevant tissue to cognitive/WMH and 

dementia outcomes compared to peripheral blood leucocytes. Further, studies with larger sample 

sizes are necessary, especially important for epigenetic mediation. In Aim 2, we used a relatively 

small sample of 542 participants with available DNA methylation and neighborhood measures. It 

is possible that our lack of findings is due to lower power, and a larger sample could increase the 

statistical power to identify mediating CpG sites throughout the epigenome. In conclusion, future 

adequately powered studies with repeated measures would be beneficial to our understanding of 

the role of multi-omic information in cognitive aging. 
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5.4 Conclusion 

The set of studies in this dissertation are among the first to take a multi-omic approach to 

examining neurocognitive outcomes in AA. Our thorough investigation of the relationships 

between these multi-omic layers and later-life cognitive function characterized the underlying 

etiology of cognitive/WMH outcomes and its interplay with socio-contextual factors in older 

adulthood, prior to dementia onset. This may allow the identification of targets for intervention 

and treatment for cognitive aging and dementia, especially among a highly vulnerable 

population.35  
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