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Abstract

Dementia affects approximately 1 in 10 persons aged 65 years and older in the U.S., and
African Americans (AA) are more likely to develop dementia compared to European Americans
(EA). However, the underlying molecular mechanisms and impact of their interactions with
socio-contextual risk factors on cognitive function and brain structures in AA are not fully
understood. This dissertation examines the molecular effects of genetic, epigenetic, and
transcriptomic markers, as well as socio-contextual determinants of health, on cognitive function
and white matter hyperintensity (WMH) prior to dementia onset in a well-curated cohort of older
AA from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. In Aim 1, we
investigated whether single nucleotide polymorphisms (SNPs), epigenetic variants, and/or their
interactions in the ABCA7 gene region, which was previously associated with Alzheimer’s
Disease (AD) in AA, are associated with general cognitive function in cognitively normal older
AA. Although ABCA7 sentinel SNPs and CpG sites were not associated with general cognitive
function, we did see evidence of SNP-by-CpG interactions. We found that rs3764647 and
rs115550680 may regulate the effects of DNA methylation (DNAmM) on cognitive function. As
such, while AD risk SNPs in ABCA7 were not associated with cognitive function in this sample,
DNAm at local CpGs may influence cognitive function in people with specific ABCA7
genotypes. In Aim 2, we assessed whether DNAm from peripheral blood leucocytes mediates the
relationships between neighborhood characteristics and cognitive function/WMH in cognitively
healthy AA, using high-dimensional mediation methods. For a 1-mile buffer around a

participant’s residence, each additional fast-food destination or unfavorable food store with

XVi



alcohol per square mile was associated with 0.05 (p=0.04) and 0.04 (p=0.04) second
improvements in visual conceptual tracking score, respectively. Also, each additional alcohol
drinking place per square mile was associated with a 0.62 word increase in delayed recall score
(p=0.03), indicating better memory function. Although the presence of these destinations
encourages unhealthy diet and behaviors, they may provide meeting places for community
members that allow for greater interaction and stimulation of cognitive health. In this study, there
was no evidence that DNAmM mediated the observed associations between neighborhood
characteristics and cognitive function. Further examination of the pathways between
neighborhood characteristics and cognitive function/WMH may allow for development of
behavioral, infrastructural, and pharmaceutical interventions to facilitate healthy brain aging in
older AA. In Aim 3, we conducted a multi-ancestry transcriptome wide association study
(TWAS) that leveraged gene expression data collected from EA and AA in GENOA, through a
joint likelihood-based inference framework, to identify genes associated with general cognitive
function, WMH, and AD. After fine-mapping within genomic regions, we identified 266, 23, and
69 genes associated with general cognitive function, WMH, and AD, respectively (Bonferroni-
corrected alpha level =P<2.9x10-%). These genes were enriched for innate immunity, vascular
dysfunction, and neuroinflammation. The WMH and AD TWAS also indicated that
downregulation of ICAL1L may contribute to overlapping AD and vascular dementia (VaD)
neuropathology. To our knowledge, this study is the first TWAS of cognitive function and
neurocognitive disorders that used expression mapping studies in multiple ancestries. This work
may expand TWAS studies beyond a single ancestry group to identify gene targets for

pharmaceutical or preventative treatment for dementia. Together, these studies advance
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knowledge of the relationships between multi-omic mechanisms and socio-contextual factors

that contribute to neurocognitive outcomes and structural brain measures in older AA.
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Chapter 1 . Introduction

1.1 Overview

Adult-onset dementia consists of a group of neurocognitive disorders caused by abnormal
brain changes that result in a gradual and irreversible loss of neurons and brain functions. These
brain changes may lead to the loss of memory, language, problem-solving and other cognitive
functions, impacting an individual’s daily life and independence.! Approximately one-third of
adults aged 85 and older have some form of dementia. Although dementia is more common
among older people, it is not a normal part of aging. Currently, there are approximately 55
million people diagnosed with dementia. As the proportion of older people worldwide increases,
this prevalence is expected to rise to 78 million by 2030 and 139 million by 2050.%2

Alzheimer’s disease (AD) accounts for 60-80% of late-onset dementia cases. Other less-
common forms of dementia include vascular dementia (VaD; 5-10%), Lewy body dementia (5-
10%), frontotemporal dementia (5-10%), Huntington’s and Parkinson’s-related dementias and
mixed dementia.® These forms of dementia are often difficult to distinguish from AD because
they share many pathological features and cognitive symptoms. Notably, VaD often co-occurs
with AD and is underdiagnosed.*® Both AD and VaD are characterized by noticeable cognitive
impairment in areas of episodic and semantic memory, as well as executive function. However,
AD also shows aggregation of amyloid-beta protein and neurofibrillary tangles in brain tissue

that may precede the illness by 10-20 years,”® while VaD may be caused by reduced blood flow



to the brain as a result of small vessel disease (SVD) or following one or more strokes, and is
commonly seen in hypertensive patients.® Since VaD and AD often coexist, it has been
hypothesized that vascular changes and other brain abnormalities may interact in ways that
increase the likelihood of cognitive impairment. A further challenge in the field is distinguishing
between individuals who are aging normally from those aging pathologically with multiple forms
of dementia.

A greater understanding of the pathological cascade of events that influence cognitive
function and lead to cognitive decline in older adults is critical for early intervention during the
long preclinical or prodromal phase prior to dementia onset.!%! Biological pathways related to
lipid metabolism, inflammation and immune function have been linked to cognitive decline and
preclinical AD.*?13 Additionally, genetic factors have a strong influence on cognition and
dementia. Cognitive ability is highly heritable (from 55% in adolescence to 66% in young
adulthood in twin studies)'* and hundreds of genetic loci are associated with individual
differences in cognitive ability,*>1 including a handful that have been previously associated with
AD."1% However, identifying biological pathways associated with cognition has proven
challenging, in part because many identified genetic loci are located within intergenic non-
coding regions®® which do not directly code for proteins. Through advances in high-throughput
technologies and the integration of multi-omic studies, we can better understand downstream
pathways and how they interact with the environment to affect demential’ and cognitive
pathologies.'81°

Although the primary risk factor for late-onset dementia is age, there are significant
disparities in incidence and prevalence by race and ethnicity.?%-?? Several studies have found that

African Americans (AA) have a greater burden of and risk for developing dementia compared to



Non-Hispanic Whites (NHW).2123-25 On average, AA perform lower than their white
counterparts on cognitive tests, have higher prevalence of AD, and have higher incident risk of
AD.?8 Cognitive function in AA is especially important to study during the preclinical period
because unique combinations of socio-contextual or genetic exposures may influence the
biological mechanisms that underlie racial/ethnic health disparities. For example, these
differences in cognitive performance, cognitive reserve and AD risk in AA may in part be caused
by racial disparities in education (amount and quality), access to material and social resources,
exposure to discrimination, and exposure to neurotoxicants.?”-?8 Potential biological mediators
for these social influences on health disparities include plasma biomarkers,?® genomic risk
factors,1230-32 and the influences of epigenomic®® and transcriptomic factors.®* Further, dementia
research has mainly focused on diagnosis, mechanisms, as well as management and treatment of
disease among NHW. As such, the lack of biological and epidemiologic research among AA
poses a barrier to understanding how cognitive aging and the development of dementia differ in
racial and ethnic minorities, particularly in the AA population. Given the multifactorial and
complex nature of cognitive decline preceding dementia, it is important to integrate multi-omic
layers of data to better understand these disparities. This may allow the identification of targets

for intervention and treatment, especially in populations that are most at risk.

1.2 Specific Aims

In this dissertation, we will characterize the potential molecular effects of genetic,
epigenetic, and transcriptomic markers, as well as socio-contextual determinants of health, on
cognition and white matter hyperintensity (WMH) prior to dementia onset in a well-curated

cohort of older AA adults from the Genetic Epidemiology Network of Arteriopathy (GENOA)



study. GENOA is one of the few studies to combine genetic, DNA methylation, and gene
expression data with rich measures of socio-environmental context, cognitive function, and brain
structure in a large cohort of AA. GENOA has both cross-sectional and longitudinal data (Phase
I: 1995-2000, Phase 11: 2000-2004, and several ancillary studies thereafter).3¢

Specifically, we will investigate whether single nucleotide polymorphisms (SNPs),
epigenetic variants (CpGs) and/or their interactions in the ABCA7 gene region, which was
previously associated with AD in AAs, are associated with general cognitive function in
cognitively normal older AAs (Aim 1). Next, we will investigate whether CpGs mediate the
association between socio-contextual factors and cognitive/WMH outcomes in the same cohort
of cognitively normal older AAs (Aim 2). Lastly, we will examine gene-trait associations for
general cognitive function, WMH and AD to understand underlying transcriptomic mechanisms
using multi-ancestry data from European Americans (EA) and AA (Aim 3). Our findings will
assist in the ongoing efforts to better understand the etiological precursors of dementia and their

impact on socioeconomic and racial/ethnic health disparities.



Figure 1-1. Conceptual model of three aims in GENOA. Arrows refer to mechanistic
pathways in Aim 1 (green), Aim 2 (blue), and Aim 3 (yellow).

Genetic variants
(SNPs)

from peripheral blood
leukocytes

Aim 3

Aim 1: General cognitive function

Aim 2: General cognitive function
and White matter hyperintensity

Gene
Expression Genetics of Microangiopathic Brain Injury

Methylation (GMBI; 2001-2006)

from peripheral
blood leukocytes
Phase I Phase IT
(1996-2001) (2000-2004)

from transformed
beta-lymphocytes

\ 4

Aim 3: General cognitive function,
White matter hyperintensity,
Alzheimer's disease

GENOA gene expression data and GWAS
summary statistics

Neighborhood-level
socio-contextual
factors

Phase I
(1996-2001)

1.2.1 Aim1

The ABCAT gene confers the largest genetic risk for AD in AA after the apolipoprotein E
(APOE) &4 allele.>"3® However, the relationship between ABCA7 and cognitive function has not
been thoroughly examined. This aim will investigate whether previously identified AD risk
SNPs in ABCA7, DNA methylation at CpG sites in ABCA7 measured in peripheral blood
leukocytes, and their interactions are associated with general cognitive function in 634 GENOA
AA without dementia. To understand the potential functional consequences of our findings at the
molecular level, we will also evaluate whether identified SNPs or CpGs are also associated with
ABCAT gene expression from transformed beta lymphocytes in the same cohort. Studying the

relationship between SNPs and CpGs in ABCA7 and cognition may illuminate the role of ABCA7



in cognitive aging preceding AD. To our knowledge, this study will be the first assessment of the
associations and interactions between DNA methylation and genetic risk factors in ABCA7 on
cognition in AA without dementia. Investigating the interplay of multi-omic markers and later-
life cognition may help us characterize the underlying genetic architecture of cognition in older
adults preceding dementia. It may also allow us to identify targets for intervention and treatment

in AA, a population at high risk for AD and dementia.

Aim 1: To examine whether genetic and epigenetic variations in the ABCA7 gene region, and/or
their interactions, are associated with general cognitive function in older African Americans.
Hypothesis 1: We hypothesize that a number of SNPs in ABCA7, DNA methylation sites in
ABCAY7, and their interactions are associated with general cognitive function in older AA from

the GENOA study.

1.2.2 Aim 2

To date, there are no treatments to prevent cognitive impairment or slow cognitive
decline prior to onset of dementia. However, treating vascular risk factors, improving diet, and
engaging in cognitively stimulating activities and environments may delay cognitive
impairment.®*-#! In addition to individual health behaviors, socio-contextual factors such as low
neighborhood socioeconomic status (SES), the presence of racial segregation, and low
availability of healthy food, recreation, and social engagement are significant predictors of
worsening cognitive health and increased susceptibility to dementia.** DNA methylation is
associated with both cognitive function and WMH, as well as neighborhood-level disadvantage

indicators; however, little is known about the role of DNA methylation in mediating the



associations between neighborhood-level factors and cognitive function or WMH. The few
studies that have been conducted in this area focus primarily on EA and/or those with dementia,
so additional research is needed to examine these pathways in other racial/ethnic groups and
those without dementia.

In Aim 2, we will examine whether neighborhood-level factors (e.g., summary
neighborhood SES as assessed by Census data and the densities of available healthy food,
recreation, and social engagement) are associated with cognitive function and WMH in older AA
without dementia. For significant associations, we will conduct epigenome-wide mediation
analysis to identify CpG sites mediating the relationship between neighborhood factors and
cognitive function/WMH using the Sobel-Comp method that assesses sparse mediation effects
under the composite null hypothesis. Investigating DNA methylation as a mediator between
neighborhood factors and cognitive function/WMH may help us understand potential underlying

epigenetic pathways influencing cognitive function in older adults prior to the onset of dementia.

Aim 2: To examine whether DNA methylation in peripheral blood leukocytes mediates the
relationship between neighborhood-level factors and cognitive function or white matter
hyperintensity in older African Americans.

Hypothesis 2: We hypothesize that associations of neighborhood-level socio-contextual factors
with cognitive function and/or WMH are partially mediated by DNA methylation levels in older

AA from the GENOA study.

1.2.3 Aim 3



Genome-wide association studies (GWAS) have identified thousands of genetic variants
associated with complex traits and diseases. However, GWAS results are difficult to interpret
functionally because many potential causal variants may be located in non-coding regions, and
their associations with health-related traits may be obscured by other variants in linkage
disequilibrium (LD).4>3 Transcriptome-wide association studies (TWAS) can be utilized to
elucidate transcriptomic mechanisms underlying disease etiology by integrating GWAS with
expression mapping studies. However, to date, TWAS methods have predominantly been
performed in a single ancestry, typically EA, and few TWAS have focused on cognitive function
or structural brain measures. Due to differences in allele frequencies LD patterns across different
ancestries, genetically regulated gene expression (GReX) patterns may vary across populations
of EA and AA. As a result, expression could thus impede TWAS effectiveness. Further, previous
TWAS methods have not able to take advantage of recent expression quantitative trait loci
(eQTL) studies conducted in different ancestries. As such, a powerful TWAS method that
leverages data from different ancestries is important for identifying gene-trait associations.

In this aim, we will conduct a TWAS to identify genes associated with general cognitive
function, WMH and AD, using gene expression data from both AA and EA adults. We will
utilize a newly developed computational TWAS method, the Multi-ancEstry TRanscriptOme-
wide analysis (METRO),* to leverage recent eQTL studies performed in multiple genetic
ancestries (N=801 EA and N=1,032 AA individuals from GENOA) and summary statistics from
large GWAS studies in EA. We will construct expression prediction models in these ancestries to
capture the distinct genetic architectures underlying gene expression in each ancestry, which will
provide complementary information to improve TWAS effectiveness in AA. Using METRO, we

will apply a joint likelihood-based inference framework to leverage association evidence across



the EA and AA ancestries to increase TWAS power to better understand gene-trait associations
in AA. This will allow us to both harness the power of using multiple ancestries as well as
interrogate ancestry-dependent transcriptomic mechanisms underlying genetic associations with

general cognitive function, WMH and AD.*

Aim 3: To conduct a transcriptome-wide association study (TWAS) using the Multi-ancEstry
TRanscriptOme-wide analysis (METRO) to identify genes associated with cognitive function,
white matter hyperintensity and Alzheimer’s disease in older African Americans.

Hypothesis 3: We hypothesize that a number of genes will be significantly associated with
general cognitive function, WMH and/or AD, and that there will be overlapping genes and

biological pathways between the three traits/diseases.

1.3 Background

1.3.1 Preclinical dementia and the dementia continuum

The progression from normal cognitive function to dementia can last many years and is
affected by multiple risk factors including age, sex, education, cardiovascular disease, socio-
contextual factors (e.g., neighborhood conditions), and genetics. The pathophysiological process
is thought to begin decades’? prior to dementia diagnosis and is characterized by noticeable
cognitive impairment and decline.*>% The distinction between preclinical (asymptomatic) and
early clinical (symptomatic) disease is subtle, with symptoms emerging gradually over time.
Individuals with preclinical dementia exhibit longitudinal decline on cognitive tests, even in the

absence of clinically significant symptoms.t147=49 Clinical diagnosis is also difficult due to the



spectrum of symptom presentation in those with dementia. Currently, dementia is screened for
using a brief assessment such as the Mini-Mental State Exam (MMSE),* and diagnosis requires
impairment in at least two cognitive domains measured using a neuropsychological test battery.
Since dementia is generally diagnosed by cognitive test performance below a specific threshold,
investigating general cognitive function and age-related cognitive impairment prior to meeting
the diagnostic threshold is important in understanding etiology and disparities in dementia risk
which may inform interventions and therapeutics that could prevent disease progression can be

developed.>?
1.3.2 Cognitive function and brain structure

A. General cognitive function

Cognitive function refers to the action of knowing and processing information. It affects
every individual throughout their life course and has the potential to influence the development
of different important life outcomes.>>°3 Cognitive function has been shown to positively predict
socioeconomic status,> educational achievement,> occupational status, job performance,® mate-
choice,’’ life-expectancy®®-¢ and dementia.5! Conversely, studies have found lower cognitive
performance to be strongly associated with both subsequent dementia and mortality.%?
Considering that individuals with higher measured general cognitive function tend to live longer
and healthier lives, retaining high cognitive function in late adulthood is an important aspect of
healthy aging.

There are socioeconomic and racial/ethnic disparities in cognitive function prior to
dementia onset.52* Several studies have shown that AA are at increased risk for mild cognitive
impairment (MCI1)%% and conversion from MCI to AD, compared to NHW.%¢ In cross-sectional

studies of cognitive function, AA had lower cognitive test scores than NHW on various cognitive

10



measures across multiple cognitive domains.®” Differences in cognitive test performance
between AA and NHW may be due to methodological and sampling challenges in study design,
but also due to differences in the burden of risk factors (e.g., socioeconomic status, stress, etc.)
over the life course associated with increased incidence and progression of cognitive impairment.
Considering that many risk factors may culminate and interact over the life course to contribute
to cognitive impairment and decline, it is critical to understand the impact and interplay of such
risk factors within AA populations to develop strategies to modify and mitigate dementia risk
and burden.

Dementia typically results from decreased cognitive function over time. Thus,
longitudinal studies that show within-individual cognitive decline over time, where participants
serve as their own controls, are key in characterizing cognitive aging and its disparities. While
there are consistent cross-sectional differences in dementia risk and cognitive test performance
among AA and NHW, there are mixed results for cognitive decline. Some studies have shown
that the rate of decline among blacks on tests of executive function is slower than in NHW 836770
Also NHW performed higher on cognitive tests but had faster rates of cognitive decline.?
However, others found no difference in rates of cognitive decline at all.%8 7172 Such findings in
the literature may be explained by differences in cognitive reserve caused by racial disparities
over the lifespan. Reserve-building opportunities, such as high educational attainment,”37#
increased occupational complexity” and engagement in mentally stimulating leisure activities,’®
may slow cognitive decline through learned skills and behavioral patterns that are protective
from age-related damage in the brain. These markers of cognitive reserve are also indicative of
socioeconomic status, which is strongly associated with race and ethnicity.?” In addition, other

socio-contextual factors, such as the presence of racial discrimination, low healthcare utilization
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and exposure to environmental neurotoxicants, have also been shown to be associated with
cognitive decline.”’="° Potential racial disparities in access to reserve-building opportunities may
underlie observed racial disparities in rates of cognitive decline. However, inconsistencies across
studies in associations of race/ethnicity with cognitive decline could also be explained by
methodological factors such as differing sampling strategies across studies, regional variability
among subgroups enrolled in specific studies, and use of different cognitive tests that vary in

their sensitive to cognitive decline.

B. White matter hyperintensity

Cerebral SVD is the most common, chronic and progressive vascular disease in older
adults.® Its changes affect arterioles, capillaries and small veins that supply white matter and
deep structures of the brain with oxygen and nutrients.®° Cerebral SVD causes one quarter of all
ischemic strokes and is the most common cause of vascular cognitive impairment and VaD.81-83
It manifests as lacunar infarction (ischemia from a perforated artery) and leukoaraiosis (diffuse
ischemic changes). Leukoaraiosis is a subclinical marker of cerebrovascular disease and can be
detected and measured as WMH?® using magnetic resonance imaging (MRI) in the
periventricular and deep white matter regions of the brain. Leukoaraiosis has been shown to
predict ischemic stroke, cognitive decline and VaD.81:83

Predictors of leukoaraiosis progression include age, blood pressure, current smoking and
presence of lacunar infarcts.8 Uncontrolled hypertension is associated with ischemic damage of
the brain and is thought to underlie cerebrovascular disease.?4 Leukoaraiosis is thought to be a
mechanistic marker on the pathway from hypertension to clinical endpoints such as ischemic

stroke and VaD. Hypertension also increases risk of developing impairments in mobility,
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cognitive function and mood — pathways that are most likely mediated by the presence of
WMH.8 Progression of WMHs is associated with decline in information processing speed,
general cognitive function, and MMSE scores. Studies have shown that the presence and severity

of WMHs are important predictors of cognitive and functional impairment.®

1.3.3 Individual-level and neighborhood risk factors for cognitive impairment, cognitive

decline and dementia

Risk factors related to structural and socio-contextual determinants of health may help us
to better understand the disproportionate burden of cognitive impairment and dementia among
AA. Approximately a third of AD cases worldwide might be attributable to modifiable risk
factors—AD incidence may be reduced through improved access to education and healthcare,
interventions on vascular diseases (e.g., via physical activity, smoking cessation, improved diet,
etc.) and depression.® Educational attainment is associated with AD in NHW and AA, but the
lower educational attainment among AA may be an important contributor to racial disparities in
AD, according to one meta-analysis.” Other factors such as psychosocial stress, physical
activity, and obesity have been indicated as individual-level risk factors related to cognitive
impairment in AA. Altogether, AA are more likely to live in neighborhoods with social
conditions (e.g., discrimination, education, SES, etc.) that may affect their stress levels, and in
turn, affect their physiological regulation.®8 This may lead to higher levels of cognitive
impairment or dementia.

Neighborhoods are defined as living and work environments that possess both physical
and social attributes that may affect the health of their residents. Specifically, characteristics of

the neighborhood environment are associated with cognitive function in older adults.** The
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underlying mechanisms may relate to the contextual influences on personal mobility, sense of
security and safety, the potential for social interactions and physical activity, access to healthy
foods and green space, and exposure to pollution, crime and social deprivation. Since older
adults are more likely to spend less time in motorized transportation, have less mobility, and
have more time at home and/or in the neighborhood, the neighborhood may play an important
role in their health and cognitive function.®? For example, the neighborhood may play a strong
role in providing social ties and stimulating recreation and social participation among older
adults, which in turn may affect their psychological and cognitive health and overall well-
being.®%%! Neighborhood environments may provide stimulating activities that may delay the
onset of cognitive impairment and reduce dementia pathology. Understanding how neighborhood
environments impact dementia pathology may allow us to develop better interventions to prevent

disease onset.

1.3.4 Role of genetic factors in Alzheimer’s disease and cognitive function

Genetics have been shown to be a strong influence on cognitive function and dementia.
AD has high heritability, ranging from 58-79%,° while episodic memory has 30-60%
heritability.®3% Twin studies have found general cognitive function to have a heritability of
more than 50%, starting from adolescence to young adulthood (ranging from 55-66%);%-°" while
SNP-based estimates are lower (20-30%). As such, there is a gap between SNP heritability
estimates and twin- or family-based heritability estimates. This gap may be explained by the idea
that GWAS does not capture other structural variants beyond SNPs, rare variants, poorly tagged
or multiple independent variants, dominant and epistatic effects, epigenetics, and gene-

environment interaction.®® Differences in the measures of cognitive function used across studies,

14



as well as differences in the heritability of cognitive measures across age groups, may also
contribute to differences in heritability estimates across studies.®® There are also socio-contextual
influences that change over time, which contribute to heritability estimates.®>% However,
considering the relatively strong relationship between genetics and cognitive function, cognitive
decline and dementia, understanding the body of genetic research pertaining to these outcomes
will help us to better understand future research to prevent or treat preclinical dementia.

In addition to age, genetic variants in the APOE gene are the largest risk factor for AD in
AA 7 with one copy of the APOE &4 allele increasing AD risk by 3-5 fold. °*-191 ABCA7 is the
second largest genetic risk factor for AD in AA, with genetic variants increasing AD risk by 70-
80%.%" There have been at least 75 loci associated with late-onset AD (LOAD) at genome-wide
significance, in at least two EA GWAS.31192-112 \Vjth respect to general cognitive function, 148
genetic loci have been identified (among older EA adults), with biological pathways related to
neural and cell development.t>1¢ Some of the genes identified in the general cognitive function
GWAS have also been associated with AD, including APOE, TOMM40, ABCA7, ABCG1,
MEF2C, and SLC39A1.%516 Qverlapping biological pathways include lipid metabolism,
inflammation and immune function.?13

While previous GWAS for general cognitive function and AD have shown some
overlapping loci, !> further studies of cognitively “resilient” individuals who live to an older
age with intact cognitive function, despite the presence of AD neuropathology, have found the
genetic architecture of cognitive resilience to be distinct from that of AD.2 At this point,
relatively little is known about the pathways involving genetic variants and cognitive aging in

those without dementia. Thus, studying variants affect general cognitive function in those

15



without dementia, as well as their interactions with socio-contextual factors, may identify novel

pathways for therapeutic targets.

1.3.5 Role of epigenetic and transcriptomic factors in Alzheimer’s disease and cognitive

function

A. Epigenetics
Epigenetics are a potentially reversible molecular link between an individual’s

environment and gene expression.'* Epigenetic changes may mediate or be an effect modifier on
the pathway from risk factor to disease outcome, or they may be early biomarkers of disease and
thus may be used to improve early detection (and reduce misclassification).'*> DNA methylation
is one of the most studied epigenetic modifications and involves the transfer of a methyl group to
a C-5 position of a cytosine, most prominently in a cytosine:guanine (CpG) sequence of DNA.
Depending on the genomic context, methylation may up- or down-regulate gene expression.
Epigenetic markers may explain individual variation in disease phenotypes and identify
environmentally driven disease mechanisms, including gene-by-environment interactions.*’

Epigenome-wide association studies (EWAS) interrogate CpG sites across the genome to
evaluate the association between methylation levels and a trait of interest. Recently, an EWAS
meta-analysis was performed on seven measures of cognitive function in circulating leucocytes
among 6,809 healthy, older-aged adults in 11 independent cohorts, including GENOA.8 At an
epigenome-wide significance level, there was an association between cg21450381 (located in an
intergenic region on chromosome 12) and global cognitive function (MMSE score), as well as
between ¢g12507869 (located in INPP5A) and phonemic verbal fluency. INPP5A is a member of
the INPP5 family of gene family that has been implicated in cerebellar degeneration in mice*®

and is associated with AD and cognitive decline in humans.1212° CpGs identified in the

16



cognitive function EWAS as suggestive, but not epigenome-wide significant, were in or near
genes related to inflammation (CCR9, PRRC2A, SOCS3) and neurodegeneration (through the
beta-amyloid precursor protein interactor, GAPDH), among others. To that end, there is
increasing evidence that there are strong and specific changes in DNA methylation in both
peripheral blood and the brain that may indicate, and/or lead to, cognitive decline and
impairment prior to dementia onset,18121-123

Epigenetic variation in the brain is also associated with AD.1?1:122.124-126 | two studies,
investigation of postmortem AD brain tissue showed epigenetic dysregulation in genes with
pathways related to neuroinflammation, neurogenesis, and cognitive function.*?:128 Brain DNA
methylation in five of 28 AD loci identified from GWAS (ABCA7, SORL1, HLA-DRBS5,
SLC24A4, and BIN1) were associated with hallmark AD pathologies, including Ap load and tau
tangle density.'?® There is also increasing evidence for AD-related alterations in DNA
methylation, with specific brain regions being either hyper- or hypomethylated.*?*-123 While
there are still many unanswered questions in this research area, studies point to a strong but

specific manner in which the epigenome is associated with AD pathogenesis in the brain.

B. Transcriptomics

Transcriptomics is the study of RNA transcripts in a cell (i.e., mMRNAS, non-coding RNAs,
and small RNAs) and their quantity at a specific developmental stage or with respect to a specific
physiological condition.'?® Studying RNA is essential for interpreting the functional elements of
the genome, such as the transcriptional structure of genes, alternative splicing patterns, post-
transcriptional modifications, and gene expression levels during developmental processes and/or

conditions.

17



TWAS characterize underlying genetically regulated mechanisms between genetic
variants and health-related outcomes by aggregating genomic information into functionally
relevant units that map genes to their expression.'® To date, only a few TWAS for cognitive
function have been conducted, and they have all been in relatively small samples of EA
(N<700).53%132 These studies have shown that CCR2'2° and POU6F1%° are associated with
cognitive function. Gene set enrichment conducted in the latter study*3? pointed to protein and
RNA metabolism, the immune system, and infectious disease pathways.

A TWAS3 was conducted to study transcriptomics underlying AD and detected 13
genes for AD dementia diagnosis (based on cognitive status) and pathology, including a
previously identified TWAS gene TRAPPC6A.%33 Of the 13 genes identified, 6 were previously
identified in AD GWAS, including TOMM40.30.134 pPleiotropic effects suggested biological
mechanisms linking AD risk genes, via f-amyloid and tangles, with AD dementia. This
mechanism is further supported by the association between RNA expression of transcripts in
SORL1 and ABCA7 genes with paired helical filament tau tangle density, and BIN1 with -
amyloid load.'?®

Considering that these processes are involved in both normal and pathologic brain aging,
and that some studies have shown gene expression in brain regions affected by AD (e.g.,
hippocampus) and peripheral blood among genes related to neuronal function and repair to be
upregulated in cognitively impaired individuals!3>36 and then transcriptionally
downregulated®37138 in AD cases, it is hypothesized that there may be complex compensatory
mechanisms preceding dementia onset.136138.13% TWAS may further clarify previous GWAS

results and elucidate biological mechanisms underlying the gene-trait associations.
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1.3.6 The importance of multi-omics and socio-contextual research in African Americans

The central dogma informs us that there is a cascade of information from the genetic code
being transcribed into MRNA, which is then translated into proteins. The epigenome acts as a
regulatory mechanism that mediates environmental influences on the expression of genes in a
dynamic and adaptive fashion. In addition, the transcriptome consists of RNA molecules that are
translated into proteins, which may undergo post-translational modifications. All of these levels
interact in a complex and nonlinear way to contribute to phenotypic variations. Integrating data
from different types of “omic” data (i.e., genomic, epigenomic, transcriptomic, and proteomic)
would allow a more comprehensive prediction of how complex traits or phenotypes are
expressed, and potentially shed light on the evolutionary mechanisms (i.e., natural selection) that
shape new phenotypes.!4°

It is especially important to study risk of multifactorial disease in different populations
and ethnic groups using these multi-omic layers. By understanding how genetic risk factors and
molecular variation interplay with important contextual variation in a group of individuals, we
may better understand the biological mechanisms underlying disease risk and onset,4%14! as well
as modifiable socio-contextual factors that contribute to the health disparities between EA and
AA. Recent analysis of the GWAS catalog has revealed a lack of diversity and under-
representation of non-European ancestral populations: only 19% of GWAS populations are non-
European, even though over 75% of the world population live in Africa and Asia.**? Individuals
of African and Hispanic or Latin American ethnicity, specifically, contribute less to GWAS and
may have a greater impact on discovery due to their higher level of genetic variation, compared
to European or Asian populations. Genetic variants that affect a phenotype may vary across

ethnicities, even if the underlying genetic mechanisms are the same. These differences are due to
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allelic heterogeneity across different ancestral groups from mutation and linkage disequilibrium
(LD), or SNP correlation, patterns that differ across ethnic groups. A thorough investigation of
the relationship between these multi-omic layers and later-life cognition and brain structures
(WMH) can help characterize the underlying genetic architecture of cognition in older
adulthood, prior to dementia onset, in understudied AA populations. This may allow the
identification of targets for intervention and treatment, especially in populations like AA that are

most at risk.3®

1.4 Study Design and Measures in The Genetic Epidemiology Network of Arteriopathy

1.4.1 Study design and source population

A. The Genetic Epidemiology Network of Arteriopathy (GENOA)

The GENOA study is a community-based longitudinal study aimed at examining the
genetic effects of hypertension and related target organ damage.*® EA and AA hypertensive
sibships were recruited if at least 2 siblings were clinically diagnosed with hypertension before
age 60. All other siblings were invited to participate, regardless of their hypertension status.
Exclusion criteria included secondary hypertension, alcoholism or drug abuse, pregnancy,
insulin-dependent diabetes mellitus, active malignancy, or serum creatinine levels >2.5mg/dL. In
Phase 1 (1996-2001), 1,854 AA participants (Jackson, MS) and 1,583 EA participants
(Rochester, MN) were recruited.**® In Phase 11 (2000-2004), 1,482 AA and 1,239 EA participants
were successfully followed up, and their potential target organ damage from hypertension was
measured. Demographics, medical history, clinical characteristics, information on medication

use, and blood samples were collected in each phase. Methylation levels were measured only in
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AA participants using blood samples collected in Phases | and 11. Written informed consent was
obtained from all participants, and approval was granted by participating institutional review

boards (University of Michigan, University of Mississippi Medical Center, and Mayo Clinic).

B. Genetics of Microangiopathic Brain Injury (GMBI) ancillary study

In an ancillary study, the Genetics of Microangiopathic Brain Injury (GMBI; 2001-2006),
1,010 AA and 967 EA Phase Il GENOA participants that had a sibling willing and eligible to
participate underwent a battery of established neurocognitive tests to assess several domains of
cognitive function, including learning, memory, attention, concentration, and language. The goal
of GMBI was to investigate susceptibility genes for ischemic brain injury. Ischemic brain
damage to the subcortical and periventricular white matter (leukoaraiosis) was quantified by
MRI as WMH in participants with no history of stroke or neurological disease and no implanted

metal devices.

C. Exclusion criteria

Within GENOA, participants were excluded if they were diagnosed with the following:
secondary hypertension, alcoholism or drug abuse, pregnancy, insulin-dependent diabetes
mellitus, active malignancy, or serum creatinine levels >2.5mg/dL. For our study, to create a
sample of “cognitively normal” AA adults, we excluded participants who were less than 45 years
of age, had evidence of stroke, and/or preliminary evidence of dementia as indicated by a score
of <24 on the MMSE.*#41%> The MMSE is a 30-question assessment of cognitive function that
can be rapidly administered as a diagnostic instrument by healthcare professionals.'** MMSE has

been used to pre-screen for cognitive decline using its total score. Several studies have reported
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lower performance on cognitive tests like MMSE to indicate lower cognitive functioning among

individuals who go on to develop dementia.®2146

1.4.2 Measures of cognitive function and brain structure

A. Five neurocognitive domain measures
The following five neurocognitive domains were evaluated a year after Phase 11, on
average, as part of GMBI:147.148

1. The Weschler Adult Intelligence Scale-Revised: Digit Symbol Substitution Test (DSST)
measured complex visual attention, sustained and focused concentration, response speed and
visuomotor coordination. The DSST relates to the executive function of working memory.4°
In this test, participants matched symbols to numbers according to a key located at the top of
the page. The DSST score comprised the number of symbols correctly matched within 90
seconds.

2. The Controlled Oral Word Association Test (COWA-FAS) tested for verbal fluency
(phonetic association) and language. This required participants to generate as many words as
possible that start with F, A, and S in 1 minute. The score consisted of the total number of
admissible words generated.

3. The Rey Auditory Verbal Learning Test (RAVLT) measured delayed recall, relating to the
cognitive functions of new learning, immediate memory span and vulnerability to
interference in learning and recognition memory. Its score was determined by the number of
words recalled after a 30-minute delay. Scores ranged from 0 to 15.

4. The Stroop Color-Word Test (SCWT) assessed concentration effectiveness by requiring

participants to state the color of a word, rather than the word written. The score sums the
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number of color words that were correctly stated in 45 seconds. Specifically, the ability to

shift perceptual sets in response to novel stimuli, was tested.

5. The Trail Making Test A (TMTA) evaluated visual conceptual tracking as participants need

to connect a set of 25 circles quickly and accurately. TMTA provides information on the

cognitive functions of visual search, scanning, processing speed and executive functions. The

natural logarithm of seconds to completion for the task was used and recoded so that higher

scores indicate better cognitive function. The maximum was 240 seconds to complete.

Table 1-1. Descriptions of cognitive functions and neurocognitive domains associated with

each cognitive test and measure.

Cognitive outcome

Description of cognitive
measure

Cognitive domain**

General cognitive function

Summary measure of overall
cognitive performance.

Complex measure
encompassing multiple
domains.

Weschler Adult Intelligence
Scale-Revised: Digit Symbol
Substitution Test (DSST)

Complex visual attention,
sustained and focused
concentration, response speed
and visuomotor coordination.

Executive function, working

The Controlled Oral Word
Association Test (COWA-
FAS)

Verbal fluency (phonetic
association) and language.

Fluency (language) and
executive function.t®!

Rey Auditory Verbal Learning
Test (RAVLT)

Delayed recall, relating to the
cognitive functions of new
learning, immediate memory
span and vulnerability to
interference in learning and
recognition memory.

Episodic memory and fluency
(verbal learning).152

Stroop Color-Word Test
(SCWT)

Concentration effectiveness,
or the ability to shift
perceptual sets in response to
novel stimuli (also called the
Stroop Effect).3

Attention, processing speed,
cognitive flexibility'®* and
working memory.1®

Trail Making Test A (TMTA)

Visual searching and
scanning, processing speed,
motor function.

Complex attention, executive
functions.%6
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B. General cognitive function

General cognitive function, a measure of overall cognitive performance, can be captured
by a summary measure of tests in multiple cognitive domains.® General cognitive function is
calculated as the first unrotated principal component (FUPC) from a principal component
analysis (PCA) of the five positively correlated cognitive tests taken by all participants in the full
sample. This data reduction procedure loads all tests on the first unrotated principal component,
and scores on this component can be calculated for each person. In GENOA, the FUPC accounts
for 53% of the total variance in the neurocognitive measures and loading values of the five
measures ranged from 0.52 to 0.87.

Cognitive decline is calculated as the slope of an individual’s general cognitive function
change (change in cognitive function over time) between the initial cognition measurement
(GMBI, approximately a year after Phase Il) and Phase I11. Studying cognitive decline allows

examination of intra-individual differences in the rate of decline in cognitive functioning.

C. White matter hyperintensity

WMH was evaluated a year after Phase 11, on average, as part of GMBI. The presence of
WMH in brain samples indicates leukoaraiosis, areas of ischemic damage to small vessels and
surrounding areas. Brain magnetic resonance images were measured from MRI, using Signa
1.5T MRI scanners (GE Medical Systems, Waukesha, WI, USA) at Mayo Clinic.*>” WMH and
total brain volume in the coronaradiata and periventricular zone were quantified from axial fluid-
attenuated inversion recovery (FLAIR) images.® WMH in the coronaradiata and periventricular
zone, as well as central gray infarcts (i.e., lacunes), were included in the leukoaraiosis

measurements. Brain scans with cortical infarctions were excluded from the analyses because of
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the distortion of WMH volume estimates that would be introduced in the automated

segmentation algorithm. For additional details, see Smith et al.*>°

1.4.3 Genetic (SNP) data

A. Genome-wide chip data

Blood samples were genotyped using the Affymetrix® Genome-Wide Human SNP Array
6.0 or the Illumina 1M Duo. Samples and SNPs with a call rate <95%, samples with mismatch
sex, and duplicate samples were removed. Genotypes were imputed using the 1000 Genomes
Project Phase I integrated variant set (v.3) in NCBI build 37 (hg19) coordinates (released in
March 2012). SNPs with high imputation quality will be assessed (r?>0.7). Genetic principal
components were calculated from genotyped SNPs and included in regression models to control

for population stratification.

B. Apolipoprotein E (APOE) £2 and €4 alleles

To evaluate confounding and/or effect modification by APOE isoforms known to
influence dementia risk, we measured rs7412 (to capture the APOE &2 allele) and rs429359 (to
capture the APOE &4 allele) using a TagMan assay and ABI Prism® Sequence Detection
(Applied Biosystems, Foster City, CA) in 1544 participants. Participants were classified as

having 0, 1, or 2 copies of €2 (rs7412 T allele) and/or €4 (rs429359 C allele).

1.4.4 DNA methylation data
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Genomic data was extracted from stored peripheral blood leukocytes from 1,106 AA
participants from Phase | and 304 AA participants from Phase Il using the AutoGen FlexStar
(AutoGen, Holliston, MA). Bisulfite conversion was performed with the EZ DNA Methylation
Kit (Zymo Research, Irvine, CA), and methylation was measured using the Illumina
HumanMethylationEPIC BeadChip. The raw intensity data was visualized using the shinyMethyl
R package 1 to identify sex mismatches and outliers, which were removed. Samples with
incomplete bisulfite conversion were identified using Qcinfo in the Enmix R package®! and
removed. Background correction and dye-bias normalization were performed using Noob in the
Minfi R package.'62162 We also checked sample identity using the 59 SNP probes on the EPIC
chip, and mismatched samples were removed. Probe-type bias was adjusted using the Regression
on Correlated Probes (RCP) method.'® Probes with detection p-value <1016 were considered
successfully detected, and probes and samples with detection rate<10% were removed.'> After
quality control, a total of 1,396 samples (N=1,100 from Phase | and N=294 from Phase II) and
857,121 CpG sites were available for analyses. For this analysis, all methylation data was from
Phase | samples.

We used Illumina annotation to identify genes near each CpG site using the UCSC
database and characterize each CpG site as being in a gene promoter, enhancer, DNAse |
hypersensitive site (DHS), CpG Island (CGI), and/or CGl flanking shore/shelf.1%¢ A CpG site
was considered to be in a promoter region if it was 0-1500 bases upstream of a transcriptional
start site. A CpG site was assigned to CGI flanking shore/shelf if it was located within 4kb of a
CGlI. White blood cell proportions for CD8 T lymphocytes, CD4 T lymphocytes, natural killer
cells, B cells, monocytes, and granulocytes were estimated using the Houseman method.*” For

each CpG site prior to analysis, the methylation beta value!®®16° was multiplied by 100 to
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approximate the percent methylation at that site. Methylation beta values were pre-adjusted for
batch effects (sample plate, row, and column) and white blood cell proportions using linear

mixed modeling, and the resulting residuals were added to the mean values.

1.4.5 Gene expression data

Gene expression levels in transformed beta-lymphocyte cell lines from blood samples
taken primarily at GENOA Phase Il were measured using the Affymetrix Human Transcriptome
Array 2.0. The Affymetrix Expression Console was used for quality control, and all array images
passed visual inspection. Affymetrix Power Tool software was used to process raw intensity
data.’® We normalized Affymetrix CEL files using the Robust Multichip Average (RMA)
algorithm, including background correction, quantile normalization, logz-transformation and
probe set summarization.’* Linearity was also maintained using GC correction (GCCN), signal
space transformation (SST), and gain lock (value=0.75). We used the Brainarray custom CDF'"?
version 19 to map the probes to genes, specifically removing probes with non-unique matching
cDNAV/EST sequences that can be assigned to more than one gene cluster. As a result, the gene
expression data processed through the custom CDF is expected to be free of mappability issues;
however, alignment bias may still exist due to genetic variation, errors in the reference genome,

and other complications.*”® After mapping, Combat was used to remove batch effects.1’*

1.5 Summary

This body of work will contribute to a better understanding of the risk factors that impact

cognition among older AA adults and lend insight into how the interactions among multi-omic,
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biological, and socio-contextual risk factors contribute to preclinical dementia in this population.
Several genetic, epigenetic, medical and lifestyle factors are associated with dementia; however,
the research has been primarily in overwhelmingly white populations. Focusing on data from one
population and applying it to other populations (especially marginalized populations such as AA,
individuals of low socioeconomic status, rural Americans, sexual and gender minorities, other
racial and ethnic minorities, immigrants, and people with disabilities) is problematic because this
research could lead to false conclusions.

We currently know much less about the social, biological, and multi-omic determinants
of health in AA individuals. To better treat and prevent dementia and other diseases, we need to
research the drivers of dementia in AA. It is worth noting that in addition to the multi-omics and
socio-contextual factors that we study in this project, AD disparities for this population in
particular have roots in structural and social determinants.1’> Considering that cognition is not
only connected to dementia but also to healthcare utilization and quality and mortality, makes it
an important focus of research in AA. By combining high-throughput “omics” technologies (e.g.,
genomics, transcriptomics, methylomics), and examining them within socio-contextual
environments, we seek to provide deeper insight into the molecular features of cognition and

dementia in this population.
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Chapter 2 . SNP-by-CpG Interactions in ABCA7 are Associated with Cognition in Older

African Americans

2.1 Abstract

SNPs in ABCA7 confer the largest genetic risk for Alzheimer’s Disease (AD) in African
Americans (AA) after APOE e4. However, the relationship between ABCA7 and cognitive
function has not been thoroughly examined. We investigated the effects of five known AD risk
SNPs and 72 CpGs in ABCA7, as well as their interactions, on general cognitive function
(cognition) in 634 older AA without dementia from Genetic Epidemiology Network of
Avrteriopathy (GENOA). Using linear mixed models, no SNP or CpG was associated with
cognition at FDR <0.1, but five CpGs were nominally associated (P<0.05). Four SNP-by-CpG
interactions were associated with cognition (FDR g<0.1). Contrast tests show that methylation is
associated with cognition in some genotype groups (P<0.05): a 1% increase at cg00135882 and
€g22271697 is associated with a 0.68 SD decrease and 0.14 SD increase in cognition for those
with the rs3764647 GG/AG (P=0.004) and AA (P=0.0002) genotypes, respectively. Also, a 1%
increase at cg06169110 and cg17316918 is associated with a 0.37 SD decrease (P=0.0002) and
0.33 SD increase (P=0.004), respectively, in cognition for those with the rs115550680 GG/AG
genotype. While AD risk SNPs in ABCA7 are not associated with cognition in this sample, some

have interactions with proximal methylation on cognition.
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2.2 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the
dysregulation of the amyloid-B (Ap) pathway leading to A plaques® and the aggregation of tau
tangles.? AD accounts for 60-80% of dementia cases in the elderly.3-> Approximately 6.2 million
Americans age 65 and older are living with AD, and this estimate is projected to rise to 13.8
million by 2060.2 AD risk differs by race, with African Americans (AA) twice as likely to
develop AD compared to European Americans (EA).® Because this health disparity places a
greater burden of personal and medical care on AA, it is crucial to better understand AD and its
development in this population.

AD is a multifactorial disease that is likely influenced by interactions between genetic,
environmental, and epigenetic factors, along with age-related neurodegeneration.” In addition to
age, genetic variants in the apolipoprotein E (APOE) gene are the largest risk factor for AD in
AA 2 with one copy of the APOE ¢4 allele increasing AD risk by 3-5 fold.®>1* ABCA7 is the
second largest genetic risk factor for AD in AA, with genetic variants increasing AD risk by 70-
80%.8 The ABCA7 gene encodes the ATP-binding cassette (ABC) transporter A7 that regulates
homeostasis of phospholipids and cholesterol in the central nervous system and peripheral
tissues.'224 This gene is mostly expressed in the brain, spleen, lungs, and adrenal gland.®®
Studies suggested that mutations in ABCA7 are associated with AD susceptibility through the
dysregulation of lipid metabolism which facilitates Ag clearance.'®’

Though ABCAY is a risk locus for AD in both EA and AA, the specific risk variants differ
across groups.*® In EA, three ABCA7 SNPs, rs3764650, rs3752246 and rs4147929, are associated
with AD. They represent two independent signals as rs3752246 and rs4147929 are in nearly

complete linkage disequilibrium (LD) in EA. Although rs3764650 shows the strongest
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association with AD in EA, it is only nominally associated in AA.131° In AA, two additional
ABCA7 SNPs, rs3764647 and rs3752239, have stronger associations with AD,° with rs3764647
being in the same LD block as rs3764650 in AA. Interestingly, another independent SNP in
ABCA7, rs115550680, which is monomorphic in EA, is strongly associated with AD in AA. In
particular, the G allele of rs115550680 confers an AD risk comparable to APOE €4 (OR=1.79) in
AAZB

Epigenetic modifications, such as DNA methylation, are potential molecular mechanisms
that can modulate the effect of genetic risk factors.?® When methylation sites (CpGs) are
clustered together as a CpG island (CGI), it often serves as a hub for gene expression regulation.
CGils in the promoter region usually suppress transcription whereas CGls in the intragenic region
can interact with multiple regulatory elements to have a variety of impacts on gene expression
(e.g., influence MRNA isoforms, promote enhancer function).?* Given the regulatory role of
DNA methylation on gene expression, there has been a growing interest in understanding the
extent to which DNA methylation contributes to AD risk.??-26 In particular, recent studies of
post-mortem brain tissue found evidence of association between DNA methylation in ABCA7
and both AD and AD-related pathologies, including AB load and tau tangle density.?32* This
evidence suggests that methylation in ABCA7 has a non-trivial functional role that is worthy of
further investigation.

Although the relationships between AD and ABCA7 SNPs are well-characterized, there
are limited studies on the association between genetic variation in ABCA7 and measures of
cognitive function and/or cognitive decline prior to the development of dementia. An imaging
study showed that ABCA7 SNPs were associated with amyloidosis among cognitively healthy

individuals and those with mild cognitive impairment (MCI), but not among those with AD,
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suggesting an early effect of ABCA7 on cognition and cognitive decline.?” A few studies in EA
found inconsistent results for the effect of ABCA7 SNPs on cognition, with associations varying
by sex, APOE status, and disease progression.?® For example, in healthy older adults, a
longitudinal study found association between rs3764650 and cognitive decline, but only in
females.?® Also, interactions between APOE ¢4 allele and SNPs rs3764650 and rs3752246 were
associated with three cognitive factor scores related to Verbal Learning and Memory, Working
Memory, and Intermediate Memory, in a genotype dependent manner: in the absence of ABCA7
minor alleles, each additional €4 allele was associated with lower memory scores; and
conversely, in the presence of ABCA7 minor alleles, each additional €4 allele was associated with
better memory scores.® Lastly, rs3764650 was significantly associated with increased rates of
memory decline among individuals with MCI or AD.3!

To our knowledge, no study has investigated the relationship between ABCA7 genetic
variation and cognition in cognitively healthy AA. Further, few studies have examined the
relationship between DNA methylation in ABCA7 and/or its interaction with genetic variants on
general cognitive function. In this study, we investigate whether previously identified risk SNPs
(referred to as sentinel SNPs) in ABCA7, DNA methylation in ABCA7, and their interactions are
associated with general cognitive function in older AA without dementia. To better understand
the functional consequence of these risk factors at the molecular level, we also evaluated whether
identified epigenetic or genetic risk factors are associated with transcript level ABCA7 gene
expression in transformed beta lymphocytes from the same cohort. A thorough investigation of
the relationship between these multi-omic layers and later-life cognition can help characterize the

underlying genetic architecture of cognition in older adulthood, prior to dementia onset. This
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may allow the identification of targets for intervention and treatment, especially in populations

that are most at risk.32

2.3 Materials and Methods

2.3.1 Sample

The Genetic Epidemiology Network of Arteriopathy (GENOA) study is a community-based
longitudinal study aimed at examining the genetic effects of hypertension and related target
organ damage.®® European American (EA) and African American (AA) hypertensive sibships
were recruited if at least two siblings were clinically diagnosed with hypertension before age 60.
All other siblings were invited to participate, regardless of hypertension status. Exclusion criteria
included secondary hypertension, alcoholism or drug abuse, pregnancy, insulin-dependent
diabetes mellitus, active malignancy, or serum creatinine levels >2.5mg/dL. In Phase I (1996-
2001), 1,854 AA participants (Jackson, MS) and 1,583 EA participants (Rochester, MN) were
recruited.3 In Phase Il (2000-2004), 1,482 participants AA participants and 1,239 EA
participants were successfully followed up, and their potential target organ damage from
hypertension was measured. Demographics, medical history, clinical characteristics, information
on medication use, and blood samples were collected in each phase. Methylation levels were
measured only in AA participants using blood samples collected in Phases | and I1. In an
ancillary study (2001-2006), 1010 AA and 967 EA GENOA participants underwent a battery of
established neurocognitive tests to assess several measures of cognitive function, including
learning, memory, attention, concentration, and language. Written informed consent was
obtained from all participants, and approval was granted by participating institutional review

boards (University of Michigan, University of Mississippi Medical Center, and Mayo Clinic).
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A total of 850 AA participants had non-missing genetic and demographic data. Since
participants with a history of stroke or dementia may have changes in general cognitive function
that differ from non-pathological cognitive aging, we excluded those who had a history of stroke
(N=43) and/or preliminary evidence of dementia as indicated by a score of <24 on the Mini-
Mental State Examination (MMSE) (N=76).34 We also excluded participants younger than age
45 (N=16). A total of 634, 494 and 429 participants were available for SNP, methylation, and

gene expression analyses, respectively (Figure S2-3).

2.3.2 Measures

A. General cognitive function
General cognitive function was calculated using five neurocognitive measures evaluated at

Phase 11:34%

6. Weschler Adult Intelligence Scale-Revised: Digit Symbol Substitution Test (DSST)
measured complex visual attention, sustained and focused concentration, response speed and
visuomotor coordination. DSST relates to the executive function of working memory in
cognition.® The score comprised the number of symbols correctly matched within 90
seconds.

7. The Controlled Oral Word Association Test (COWA-FAS) tested for verbal fluency
(phonetic association) and language. This required participants to generate as many words as
possible that start with F, A, and S in 1 minute. The score consisted of the total number of
admissible words generated.

8. Rey Auditory Verbal Learning Test (RAVLT) measured delayed recall, relating to the

cognitive functions of new learning, immediate memory span and vulnerability to
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10.

interference in learning and recognition memory. Its score was determined by the number of
words recalled after a 30-minute delay. Scores ranged from 0 to 15.

Stroop Color-Word Test (SCWT) assessed concentration effectiveness by taking the sum of
the color words that were correctly stated in 45 seconds. Specifically, the ability to shift
perceptual sets in response to novel stimuli, was tested.

Trail Making Test A (TMTA) evaluated visual conceptual tracking as participants need to
connect a set of 25 circles quickly and accurately. TMTA provides information on the
cognitive functions of visual search, scanning, processing speed and executive functions. The
TMTA score was measured as the amount of time (seconds) the participants took to complete
the task. The maximum time allowed was 240 seconds. Prior to analysis, TMTA scores were

natural log transformed and recoded so that higher scores indicate better cognitive function.

General cognitive function, a measure of overall cognitive performance, can be quantified as

a summary measure of cognitive tests in multiple cognitive domains.®” In this study, general

cognitive function was calculated as the first unrotated principal component (FUPC) from a

principal component analysis (PCA) of the five neurocognitive measures in the full sample

(N=634). The FUPC accounted for 53% of the total variance in the neurocognitive measures and

loading values of the five measures ranged from 0.52 to 0.87.

B. Demographic data

Age was assessed at cognitive testing. Educational attainment, measured at Phase 11, was

categorized into a three-level variable of (1) less than high school degree (reference group), (2)

high school degree or GED, and (3) at least some college. Smoking has been shown to have
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substantial impact on the epigenome 8, so we used smoking data from the same timepoint as the
DNA methylation measures (Phase 1). Participants were categorized as current, former, or never

smokers (reference group).

C. Genetic data

Blood samples were genotyped using the Affymetrix® Genome-Wide Human SNP Array
6.0 or the Illumina 1M Duo. Samples and SNPs with a call rate <95%, samples with mismatch
sex, and duplicate samples were removed. Genotypes were imputed using the 1000 Genomes
Project phase | integrated variant set (v.3) (Hg19, released in March 2012). Of the six SNPs of
interest identified from existing literature (rs3764647, rs3764650, rs115550680, rs3752246,
rs3752239 and rs4147929), five had high imputation quality (r>>0.7), and one (rs3752239) was
excluded due to low imputation quality (r>=0.49). SNPs were coded as the dosage of the
corresponding AD risk allele as specified in the previous literature. Genetic principal
components were calculated from genotyped SNPs and included in regression models to control
for population stratification. To evaluate confounding and/or effect modification by APOE
isoforms known to influence dementia risk, we measured rs7412 (to capture the APOE &2 allele)
and rs429359 (to capture the APOE &4 allele) using a TagMan assay and ABI Prism® Sequence
Detection (Applied Biosystems, Foster City, CA) in 1544 participants. Participants were

classified as having 0, 1, or 2 copies of €2 (rs7412 T allele) and/or &4 (rs429359 C allele).

D. Methylation measures
Genomic data was extracted from stored peripheral blood leukocytes from 1,106 AA

participants from Phase | and 304 AA participants from Phase Il using the AutoGen FlexStar
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(AutoGen, Holliston, MA). Bisulfite conversion was performed with the EZ DNA Methylation
Kit (Zymo Research, Irvine, CA), and methylation was measured using the Illumina
HumanMethylationEPIC BeadChip. The raw intensity data was visualized using the shinyMethyl
R package * to identify sex mismatches and outliers, which were removed. Samples with
incomplete bisulfite conversion were identified using Qcinfo in the Enmix R package *° and
removed. Background correction and dye-bias normalization were performed using Noob in the
Minfi R package.**? We also checked sample identity using the 59 SNP probes on the EPIC
chip, and mismatched samples were removed. Probe-type bias was adjusted using the Regression
on Correlated Probes (RCP) method.*® Probes with detection p-value <1016 were considered
successfully detected, and probes and samples with detection rate<10% were removed.** After
quality control, a total of 1,396 samples (N=1,100 from Phase | and N=294 from Phase II) and
857,121 CpG sites were available for analyses. For this analysis, all methylation data was from
Phase | samples.

We selected all CpG sites within 5kb of the ABCA7 gene (a total of 72 CpG sites within the
ABCAT region: chr19, 1040102-1065570, hg19). We used Illumina annotation “° to characterize
each CpG site as being in a promoter region and/or CGI, CGI shore, or CGI shelf. White blood
cell proportions for CD8+ T lymphocytes, CD4+ T lymphocytes, natural killer cells, B cells,
monocytes, and granulocytes were estimated using the Houseman method.*¢ For each CpG site
prior to analysis, the methylation beta value 4748 was multiplied by 100 to approximate the
percent methylation at that site. Methylation beta values were pre-adjusted for batch effects
(sample plate, row, and column) and white blood cell proportions using linear mixed modelling,

and the resulting residuals were added to the mean values.
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E. Gene expression measures

Gene expression levels in transformed beta-lymphocyte cell lines from blood samples taken
primarily at GENOA Phase 11 were measured using the Affymetrix Human Transcriptome Array
2.0. The Affymetrix Expression Console was used for quality control, and all array images
passed visual inspection. Affymetrix Power Tool software was used to process raw intensity
data.*® We normalized Affymetrix CEL files using the Robust Multichip Average (RMA)
algorithm, including background correction, quantile normalization, logz-transformation and
probe set summarization.*®® Linearity was also maintained using GC correction (GCCN), signal
space transformation (SST), and gain lock (value=0.75). We used the Brainarray custom CDF 5!
version 19 to map the probes to genes, specifically removing probes with non-unique matching
cDNAV/EST sequences that can be assigned to more than one gene cluster. As a result, the gene
expression data processed through the custom CDF is expected to be free of mappability issues;
however, alignment bias may still exist due to genetic variation, errors in reference genome, and

other complications.>? After mapping, Combat was used to remove batch effects.5

2.3.3 Statistical analysis

A. Genetic analysis

We first calculated Pearson correlations between sentinel SNPs. Next, the association
between ABCA7 sentinel SNPs and general cognitive function was analyzed using linear mixed
models with random effects to adjust for relatedness. Model 1 adjusted for age at cognitive
testing, sex, and the first four genetic principal components (PC1-4), with family as a random
effect to account for sibships. Model 2 additionally adjusted for educational attainment. Model 3

further adjusted for APOE €2 and &4. For any SNPs that were significantly associated with
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general cognitive function, we further examined the association between those SNPs and each of
the five neurocognitive measures to identify the domain(s) that most strongly drive the
association. Since prior studies suggest that the effect of ABCA7 SNPs may vary by sex,
education and/or APOE status, we also assessed the interaction between the sentinel SNPs and

sex, education or APOE (€2 and €4) on cognitive outcomes.

B. Epigenetic analysis

Pearson correlations were calculated among all 72 CpG sites. Next, linear mixed models
were used to test the associations between each of the 72 CpG sites and general cognitive
function. Model 1 adjusted for basic covariates including age at cognitive testing, sex, four
genetic principal components, age difference between methylation and cognition measurements,
smoking status, and family as a random effect to account for sibships. Model 2 additionally
adjusted for educational attainment, and Model 3 further adjusted for APOE €2 and €4. The
cOMET package was used to create a regional plot to visualize association P-values, correlations,
and Ensembl genes.>* BioRender was used to annotate and format the figure.>® For any CpGs
that were significantly associated with general cognitive function, we further examined the
association between those CpGs and each of the five neurocognitive measures to identify the

domain(s) that most strongly drive the association.

C. Genetic-epigenetic interaction analysis
We next examined the interaction between each CpG site and sentinel ABCA7 SNPs in
association with general cognitive function. In this analysis, we adjusted for age at cognitive

testing, sex, four genetic principal components, age difference between methylation and
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cognition measurements, smoking status, and APOE &2 and &4, with family as a random effect to
account for sibships (Model 4). Models 1-4 that are used to assess genetic, epigenetic and
genetic-epigenetic interaction associations with general cognitive function are shown in Figure
S2-4. To improve interpretability, we mean-centered methylation so that the estimated betas
reflect the effect sizes for those with average methylation in the population. For any identified
significant interaction, we stratified the genotypes by number of risk alleles (0, 1, or 2 risk
alleles) and estimated the marginal means for linear trend (Emtrends function) using the
Emmeans % package in R. Contrast tests were also conducted to obtain the effect size of the CpG
associated with general cognitive function in each genotype group. Minor homozygote genotype
groups that were <5% of the sample size were grouped with heterozygous genotype groups to
increase power as appropriate. Plots of SNP-by-CpG interactions on general cognitive function
were generated using the effects > and ggplot2 ° packages in R. Any identified SNP-by-CpG
interactions significantly associated with general cognitive function were also tested for
association with each of the five neurocognitive measures.

As a sensitivity analysis for significant interactions (FDR g<0.1), we tested the association
after excluding outlying CpG values that were more than four standard deviations from the mean
(Model 4). We then assessed whether the SNP-by-CpG interactions (FDR g<0.1) were driven by
potential SNP-CpG correlations by testing the association between each SNP and its
corresponding CpG, adjusting for age at methylation measurement, sex, first four genetic
principal components, with family as a random effect. If the SNP and CpG were associated at
P<0.05, we adjusted out the effect of the SNP from the CpG site and re-tested the interaction

(Model 4).
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D. Gene expression analysis

Among the 494 participants with methylation and genetic data, 429 participants also had gene
expression data. Figure S2-5 presents a graphical depiction of ABCA7 transcripts observed in the
Genotype Tissue Expression (GTEX) project,> which assesses gene expression levels in a variety
of cell types. A total of 17 transcripts, along with a measure of overall ABCA7 gene expression,
were available for analysis in our study. For SNPs, CpGs, or interactions that were significantly
associated with general cognitive function, we assessed their association with ABCA7 gene-level
expression and transcripts (Model 5) using linear mixed models. Model 5 adjusted for age at
which gene expression data was generated (age at blood draw), sex, first four genetic principal
components, and family as a random effect. For models that included CpG sites, Model 5 also
included the age difference between methylation and gene expression measurements. Contrast
tests were conducted to obtain the effect size in each genotype group. Minor homozygote
genotype groups (<5% sample size) were grouped with heterozygous genotype groups to
increase power as appropriate.

We next evaluated whether the identified CpG sites within the ABCA7 region, including
within the promoter region (chr19, 1,037,800-1,043,201),%° correlate with gene expression of
ABCAY and/or nearby genes. For this, we used cis-eQTM results from peripheral blood
mononuclear cells (PBMCs) and three specific white blood cell types (CD4+T lymphocytes,
monocytes and neutrophils) in the IMETHY L database,®-:6? which integrates genotype,
methylation, and gene expression data from 102 individuals. We also examined gene expression
levels of ABCA7 in different cell types available from the Genotype Tissue Expression (GTEX)

project.>®
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E. Multiple testing correction

All statistical analyses were conducted in R (version 3.6).%% For genetic analysis, Bonferroni
corrected p-value cut off (p<0.05/5) was used to claim significance. For all other analyses, false
discovery rate (FDR) correction was applied to each model, and FDR ¢<0.1 was considered
significant. Since the SNPs, CpG sites, and transcripts in ABCA7 are all correlated, applying
stringent multiple testing corrections might be too conservative, thus any nominal associations

are also noted.

2.4 Results

2.4.1 Sample characteristics

The sample included 634 AA without dementia (Table 2-1). Overall, the participant age
ranged from 45 to 85 years (mean=63.3 years), and the mean age difference between Phase |
methylation and cognitive measurements was 6.0 years (SD=1.3). More than half of participants
(74.9%) were female, and 47.3% had at least some college education. General cognitive function
was normally distributed. Mean RAVLT score was 7.1 (SD=3.3) words recalled, mean DSST
score was 34.4 (SD=12.6) symbols, mean COWA-FAS score was 29.7 (SD=11.6) words, mean
SCWT score was 22.5 (SD=9.8) items, and mean TMTA score was 61.6 (SD=32.0) seconds to

completion.

2.4.2 Correlation among six cognitive outcomes

Pearson correlations (r) among the six cognitive outcomes (general cognitive function and

the five individual neurocognitive measures) are shown in Table S2-4. The five neurocognitive
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measures were moderately correlated (Pearson r ranged from 0.24 to 0.66), with the highest

correlation between DSST and TMTA (r=0.66, P<0.001).

2.4.3 Correlation among ABCA7 SNPs

Pearson correlations among the five sentinel ABCA7 SNPs are shown in Table S2-5.
Rs3764647 was strongly correlated with rs3764650 (r=0.84, P<0.001), and rs3752246 was
highly correlated with rs4147929 (r=0.96, P<0.001). Otherwise, the other sentinel SNP pairs had

low but significant correlations ranging from -0.14 to -0.004 (p<0.05).

2.4.4 Genetic associations

In Models 1 and 2, there were no ABCA7 SNPs that met the nominal significance threshold
(p<0.05, Table S2-6). Although APOE is not part of the primary analysis, APOE €2 and &4 were
analyzed separately as exposures in Models 1 and 2. APOE &4 was associated with general
cognitive function in both models in the expected direction (higher dosage of €4 was associated
with lower cognitive function), but only met the Bonferroni-corrected significance threshold in
Model 2. After adjusting for educational attainment and APOE ¢2 and ¢4 in Model 3, no sentinel
SNPs were significantly associated with general cognitive function. There were no observed
significant interactions between SNPs and sex, APOE isoforms, or educational attainment on

general cognitive function.
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2.4.5 Epigenetic associations

Among the 72 CpG sites examined, six were nominally associated with general cognitive
function in at least one of the three Models (Table S2-7). After adjusting for educational
attainment and APOE &2 and &4 (Model 3), five CpGs (cg22271697, cg00874873, cg11714200,
€g26264438 and cg12082025) in the ABCAY7 region were nominally associated with general
cognitive function. Figure 2-1 illustrates the regional plot of association P-values of the 72 CpGs
in the ABCAY region with general cognitive function according to the chromosomal positions of

CpG sites, as well as the correlations between the CpGs (Model 3).

2.4.6 Genetic-epigenetic associations

Since rs3764647 and rs3764650, as well as rs4147929 and rs3752246, are highly correlated
with each other (Table S2-5), we removed one SNP from each pair and analyzed three
independent risk SNPs (r<0.60) in the interaction analysis. Two of the independent SNPs we
selected have previously been identified in AA GWAS (rs3764647 and rs115550680) &1° and the
third one is the only ABCA7 missense variant (p.Gly1527Ala) to be identified by GWAS
(rs3752246).54 We assessed the interaction between each of the three independent sentinel SNPs
(rs3764647, rs115550680 and rs3752246) and 72 CpG sites on general cognitive function and
identified four significant SNP-by-CpG interactions (FDR g<0.1) that were associated with
general cognitive function (Table 2-2): rs3764647*cg00135882 (P=1.46E-04),
rs3764647*cg22271697 (P=5.77E-04), rs115550680*cg06169110 (P=2.18E-04),
rs115550680*cg17316918 (P=4.84E-04). The two SNPs and four CpGs that were involved in
the four significant SNP-by-CpG interactions are shown in Figure 2-1 to highlight their positions

with respect to neighboring genes, regulatory elements, and CGls in the ABCA7 region. All
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interactions with at least nominal significance are shown in Table S2-8. Notably, an additional
seven CpG sites had nominally significant interactions with rs115550680, and one additional site
had a nominally significant interaction with rs3764647. In Table S2-9, we present Pearson
correlations among the ABCA7 CpG sites that were nominally associated with general cognitive
function (Table S2-7) and/or were involved in an FDR-significant SNP-by-CpG interaction
(Table 2-2). The majority of these CpGs were weakly correlated or uncorrelated.

For interactions with FDR g<0.1, we performed contrast tests to estimate the effect size of
the specific CpG site per genotype group. In all four cases, the minor homozygote genotype
group had a small frequency (<5% of the sample size), thus we combined them with the
corresponding heterozygote genotype group. Contrast tests show that methylation is associated
with general cognitive function in some genotype groups, but not others (P<0.05; Table 2-3 and
Figure 2-2).

Rs3764647 had significant interactions with two CpGs (cg00135882 and ¢g22271697). For
those with the risk genotype (GG/AG), a 1% increase at cg00135882 is associated with a 0.68
SD decrease in general cognitive function (P=0.004, Figure 2-2A); whereas for those with the
AA genotype, a 1% increase at cg22271697 is associated with a 0.14 SD increase in general
cognitive function (P=2.00E-04, Figure 2-2B). Similarly, rs115550680 had interactions with two
CpGs (cg06169110 and cg17316918). For those with the risk genotype (GG/AG), a 1% increase
at cg06169110 is associated with a 0.37 SD decrease in general cognitive function (P=2.00E-04,
Figure 2-2C), and a 1% increase at cg17316918 is associated with a 0.33 SD increase in general
cognitive function (P=0.004, Figure 2-2D).

We performed a sensitivity analysis by excluding outlying CpG values beyond four standard

deviations of mean methylation, and our results remained consistent (Table S2-10). To test
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whether the interaction was driven by potential SNP-CpG correlation, we assessed the
association between each SNP-CpG pair. We observed nominal associations between rs3764647
and ¢g22271697, as well as between rs115550680 and cg06169110. For these two SNP-CpG
pairs, we regressed out the SNP effect from the corresponding CpGs and re-tested the
interactions. The results remained consistent with those reported in Table 2-3 (Table S2-11). We
also tested the association between all four significant interactions with each of the five
neurocognitive domains. Similar interactions were observed for multiple neurocognitive
measures, especially DSST and SCWT, in which all four interactions were significantly

associated (Table S2-12).

2.4.7 Gene expression associations

To understand the functional effects of identified SNP-by-CpG interactions, we examined
their interaction effects (Table S2-13 and S2-14) as well as marginal effects (Table S2-15 and
Table S2-16) on ABCAY7 gene and transcript expression. At the gene level, none of the identified
SNP-by-CpG interactions were associated with gene expression in our sample. However, we
found a negative association between one of the SNPs, rs115550680, and ENSG00000064687:
for each additional rs115550680 G allele, there is a 0.05 decrease in gene expression (P=0.027).

At the transcript level, two SNP-by-CpG interactions (rs115550680*cg17316918 and
rs3764647*cg22271697) were nominally associated with two different transcripts
(ENST00000525939 and ENST00000531467) (Table S2-13). ENST00000531467 (Chromosome
19:1,062,261-1,063,945 forward strand) is a protein coding transcript with four coding exons
(Figure S2-5). ENST00000525939 (Chromosome 19: 1,062,261-1,063,945 forward strand) is a

retained intron, found primarily in the spleen, pituitary, whole blood and brain (cerebellum and
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cerebellar hemisphere) (Figure S2-5). Although the interactions were only nominally significant,
we performed contrast tests to estimate the effect size of the CpG site in each genotype group on
each identified transcript. Contrast tests show that methylation at cg17316918 trends toward a
positive association with ENST00000525939 among those with the rs115550680 risk genotype
(GG/AG) but does not reach nominal significance (Table S2-14). We also assessed the marginal
associations of the two SNPs and two CpGs involved in the interactions on each of the ABCA7
transcripts (Table S2-15 and S2-16). We found that rs115550680 is negatively associated with
11 ABCATY transcripts, including ENST00000531467, after FDR correction (Table S2-15).
Rs3764647 was positively associated with only ENST00000530703 (P=0.037; Table S2-15).
Among CpGs involved in the interactions, cg06169110 was positively associated with two
transcripts (Table S2-16).

The IMETHYL  cis-eQTM results for PBMCs and the three white blood cell types showed
that there are CpGs within the ABCA7 region, including within the promoter region, that regulate
expression of both ABCA7 and nearby genes. However, the CpGs identified in the significant
SNP-by-CpG interactions in our study were not associated with gene expression of ABCA7 or

nearby genes at FDR g<0.05.

2.5 Discussion

While previous studies have implied that ABCA7 is a causal gene for AD,%>-¢8 there is a
dearth of studies examining the relationship between ABCA7 and cognitive function. AD is a
gradual neurodegenerative disease, characterized by noticeable cognitive impairment in areas of
episodic memory, semantic memory, and executive function, with pathophysiology preceding

the illness decades prior.5%70 Studying the relationship between SNPs and CpGs in ABCA7 and
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cognition may enhance our understanding of cognitive health and further elucidate the role of
ABCA7 in cognitive aging preceding AD. To our knowledge, this study is the first assessment of
the association, and interaction, between DNA methylation and genetic risk factors in ABCA7 on
cognition in AA without dementia.

In this study, we found no association between known AD-associated SNPs and cognitive
measures. This is perhaps not surprising, as previous studies have been inconsistent regarding the
association between ABCA7 SNPs and cognition. Most of the studies, however, have been
conducted in primarily European ancestral populations.?®3%71 For example, the Three-City Dijon
study found no association between ABCA7 common variants and global cognition, as well as
other cognitive outcomes.’* Other studies in EA show that SNPs may be associated with
cognition in subgroups stratified on gender,?® APOE status® or disease progression.®! In light of
this, we also assessed whether ABCA7 SNP associations are modified by sex, APOE major
isoforms, and/or education status. Unlike prior studies,?°3 we did not find any evidence of
interaction. Lack of association with cognition for the sentinel SNP-by-sex and SNP-by-APOE
interactions may be due to differences in ancestry or to small sample size as those studies have a
sample size ranges from 1,153 to 3,267. Our study also did not find SNP-by-education
associations interactions on cognition. This is consistent with another study that observed no
interaction between education and ABCA7 variants on memory performance in either EA or AA;
however a weak signal was observed for memory decline in AA, which is a cognitive measure
more related to AD and dementia.”

Other lines of evidence also suggest that the ABCA7 risk variants may not be highly relevant
to the neurological pathways underlying normal cognitive function and/or cognitive reserve. For

example, previous GWAS for general cognitive function and AD have shown few overlapping
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loci.3""® Further, studies of cognitively “resilient” individuals who live to an older age with intact
cognitive function, despite the presence of AD neuropathology, have found the genetic
architecture of cognitive resilience to be distinct from that of AD.”* At this point, relatively little
is known about the pathways involving genetic variants and cognitive aging in those without
dementia. Thus, studying variants that affect general cognitive function in those without
dementia may identify novel pathways for therapeutic targets.

Only one epigenome-wide association study (EWAS) has examined the association between
all CpG sites across the genome, including CpGs in ABCA7 gene, and general cognitive function
in participants from multi-ethnic backgrounds.” This study did not identify any significant
associations between ABCA7 and general cognitive function. However, due to large numbers of
CpG sites tested, the EWAS could have missed signals with smaller effect sizes. Moreover, the
EWAS sample was mostly comprised of EA. Our study, which focuses on CpG sites in ABCA7
in an AA cohort, would give us more power to detect an association in this region among AA.
Nevertheless, we also failed to detect any associations between CpGs and general cognitive
function after multiple testing correction, although six CpGs were associated at a nominal level.
Importantly, we examined methylation levels in whole blood leukocytes, which is not the most
relevant tissue for brain function. A study in post-mortem brain tissue found associations
between CpGs in ABCA7 and AD as well as increased burden of pathologies (e.g., Ap load and
tau tangle density), whereas another study failed to demonstrate differential methylation in
peripheral blood between AD patients and controls.?® Although methylation patterns differ
between blood and brain tissues,?>’® blood cells touch every cell bed that affects the brain, and

are related to chronic inflammation and oxidative stress, which are linked to cognitive
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performance.”””® Studying methylation in blood also allows us to study epigenetic associations
with cognition in living participants in an inexpensive and non-invasive manner.

Although ABCA7 sentinel SNPs and CpG sites were not associated with general cognitive
function, we did see evidence of SNP-by-CpG interactions. Four interactions reached FDR
significance (rs3764647*cg00135882, rs3764647*cg22271697, rs115550680*cg06169110, and
rs115550680*cg17316918). Further, a total of nine CpG sites had nominally significant
interactions with rs115550680 on cognition function. For participants who are homozygous for
the rs115550680 major allele (AA), local methylation does not seem to have an effect on
cognitive function. However, for the participants who carry the risk allele (GG/AG), methylation
at local CpG may play an important role on cognition. This might be related to the different
ABCAT7 transcripts that are involved in each case. Rs115550680 is located in an LD block that
spans several introns and exons.? A prior study suggests that there is a 44-base pair exonic
deletion (rs142076058, p.Arg578 fs) among rs115550680 G carriers, which could cause a
frameshift in the ABCA7-coding sequence resulting in the formation of a premature termination
codon (PTC).” Indeed, our gene expression analysis found that the risk allele (G) at
rs115550680 was strongly associated with decreased expression of 11 ABCA?7 transcripts. Taken
together, this suggests that this SNP might influence the major isoforms that are expressed, and
the expressed alternative transcripts may influence cognitive function. Furthermore, alternative
transcripts that are expressed in those carrying the risk allele may be further modulated by
methylation level at local CpG sites, which may lead to differences in cognitive function in this
group. Consistent with this hypothesis, methylation at cg17316918 was associated with transcript
ENST00000525939 in rs115550680 risk allele carriers (GG/AG) only. Interestingly, this

transcript is largely expressed in the brain. However, there is no prior evidence to show an
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association between this transcript and AD and/or cognition. Nonetheless, alternative splicing of
ABCAT7 is likely to play a similar important role in cognition as has been demonstrated in
AD.80’81

The other SNP that had significant interactions with ABCA7 CpG sites, rs3764647, is a
missense mutation where the risk allele (G) leads to the amino acid change p.His395Arg in the
first extracellular loop of the ABCA7 protein.*® One CpG site (cg00135882) is associated with
cognitive function in participants who carry the risk allele (GG/AG) and another CpG site
(cg22271697) is associated with cognitive function in those who do not carry risk allele (AA).
This differential pattern may be due to different functions of the two transcripts instead of
alternative splicing. Consistently, we did not observe a direct association between this SNP or
CpG with expression of ABCAY transcripts. Notably, three of the CpGs (cg00135882,
€g22271697, and ¢g06169110) in the significant SNP-by-CpG interactions are either flanking or
within CGls. Active intragenic CGIls may change the major isoforms that are expressed by
interfering with splicing and/or polyadenylation. Alternatively, they may promote enhancer
function or act directly as an enhancer to regulate gene expression.?! Consistent with this
hypothesis, all four CpGs are located in regions that contain at least one important regulatory
element (i.e., promoters, enhancers and/or CTCF binding sites). Taken together, these results
suggest that SNPs and CpG sites in ABCA7 may interact to modulate the expression and/or
function of ABCA7 transcripts, and that some of the affected transcripts may influence cognitive
function in older AA.

Indeed, recent literature suggests that SNP-by-CpG interactions might be an important
mechanism underlying human complex diseases.®?84 Similar SNP-by-CpG interactions have

been identified in association with complex human disorders, such as breast cancer,® type 2
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diabetes,®® alcohol dependence®” and suicide attempt in schizophrenia.® One thing to note,
though, is that SNPs could have a cis-regulatory effects on local CpGs, which could cause a
spurious interaction. However, our sensitivity analysis demonstrates that the interactions we
observed were not solely due to SNP-CpG correlations. In summary, we demonstrate that a
complicated interplay between genetic and epigenetic risk factors in the ABCA7 region may play
an important role in cognitive function. Future studies are needed to disentangle this complicated
relationship.

Our study is not without limitations. First, our gene expression measures were taken from
transformed beta-lymphocytes from immortalized cell lines. While transformed beta-
lymphocytes are a convenient source of DNA, the transformation process causes epigenetic
changes to the immortalized cells that are not fully understood.®® However, they provide a unique
and efficient way to examine the functional effects of genetic and epigenetic variation on gene
expression since the environmental conditions of the cells are the same across individuals.
Second, our findings need to be replicated in a larger sample of AA. Further studies in animal
and cellular models are also warranted to confirm our findings and reveal how SNPs and
methylation jointly contribute to cognitive function. Finally, due to the cross-sectional nature of
our study, we cannot infer causality of our findings or quantify how the SNP-by-CpG
interactions alone impact cognition. To that end, longitudinal studies are necessary to investigate
how cognitive function changes over time. Also, previous cis-eQTM studies in white blood cells
have shown that at least some CpGs within the ABCA7 region promote or repress gene
expression of ABCA7 and nearby genes, but we did not observe eQTM relationships with those
same CpGs in our study. One reason for this may be that our methylation was measured in blood

and included a mix of white blood cells, while our gene expression was measured in transformed
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beta-lymphocytes. Additional work is needed to understand how ABCA7 CpGs and their
interactions with SNPs influence proximal gene expression in a variety of white blood cell types
to further shed light on the complicated biological mechanisms that contribute to cognitive
function. However, to our knowledge, our study is the first to take a multi-omic approach to
investigate the relations between the ABCA7 gene region and cognitive function in a population-
based cohort of older adults without diagnosed dementia. Our study was also conducted in AA,
an understudied population with a higher prevalence of AD3® and higher conferred risk of AD
from ABCA7 compared to EA.8 Additionally, with comprehensive cognition measures, we were
able to assess associations with multiple neurocognitive domains, as well as general cognitive

function.

2.6 Conclusion

In the present study, we evaluated the association between ABCA7 genetic, epigenetic,
and transcriptomic markers and cognitive function in 634 AA participants without preliminary
evidence of dementia. We found that DNA methylation levels at local CpG sites modify the
relationship between genetic variants and general cognitive function. Specifically, two SNPs in
the ABCA7 gene region (rs3764647 and rs115550680) may regulate the effects of methylation on
cognition. Differential gene expression analysis further highlighted the potentially causal
transcripts. In conclusion, our findings suggest that a complicated interplay between genetic and

epigenetic factors in ABCA7 may influence cognition in older AA without dementia.
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2.8 Tables

Table 2-1. Sample characteristics of Genetic Epidemiology Network of Arteriopathy
(GENOA) African Americans (N=634).

Mean (SD) or N%

Age at cognition measurement (years) 63.31 (8.08)
Age difference between methylation and cognition measurements (years)? 6.03 (1.29)
Sex

Female 475 (74.90%)

Male 159 (25.10%)
Educational attainment

At least some college 300 (47.32%)

High school degree/GED 169 (26.66%)

Less than High School degree/GED 165 (26.03%)
Smoking Status

Current Smoker 105 (16.56%)

Former Smoker 146 (23.03%)

Never Smoker 383 (60.41%)
General cognitive function 0.00 (1.00)
Delayed recall (RAVLT, number of words recalled) 7.05(3.34)
Processing speed (DSST, number of symbols) 34.44 (12.62)
Word fluency (COWA-FAS, number of words) 29.73 (11.61)
Concentration effectiveness (SCWT, number of items) 22.53 (9.83)
Visual conceptual tracking (TMTA, seconds to test completion) 61.63 (31.96)

Abbreviations: HS, High School; RAVLT, Rey Auditory Verbal Learning Test; DSST, Digit Symbol
Substitution Test; COWA-FAS, Controlled Oral Word Association Test; SCWT, Stroop Color-Word Test;
TMTA, Trail Making Test A.

a. Subset sample (n=494) consists of subjects with available genotype and methylation data
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Table 2-2. Interaction of ABCA7 sentinel SNPs and CpG sites on general cognitive function
(FDR g<0.1; N=494).

SNP annotation

CpG site annotation Main effects Interaction
SNP * CpG site Interaction  SNP Position ::Ii:lt RAF  CpG site Position  Site Type 2:::::1::13 Bsxe  P-value  Pep  P-value Bteacion  P-value
rs3764647 * cg00135882 rs3764647 1044712 G 0.20 cg00135882 1065783  Promoter North Shore -0.01  0.875 0.24 0.086 -0.80 1.46E-04**
rs3764647 * cg22271697 rs3764647 1044712 G 0.20 €g22271697 1042537  Promoter North Shelf -0.07 0319 0.16 7.23E-06* -0.18 5.77E-04**
rs115550680 * cg06169110 rs115550680 1050420 G 0.06 €g06169110 1046615 Gene Body  CG Island -0.23  0.045* 0.06 0.143 -0.38 2.18E-04**
rs115550680 * cg17316918 rs115550680 1050420 G 0.06 €g17316918 1056930 Gene Body Open Sea -0.05  0.661 -0.06 0.164 0.41 4.84E-04**

Abbreviations: AA, African American; EA, European American; RAF, risk allele frequency in GENOA

Model 4: General cognitive function ~SNP + CpG + SNP*CpG + age at cognitive testing + age difference between methylation and cognition measurements + sex + educational attainment + APOE €2 + APOE ¢4
+ smoking status + PC1-4 + familial relatedness (random effect)

* p<0.05, ** q<0.1 (FDR-corrected significance level)
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Table 2-3. Estimated effect of CpG site on general cognitive function for given ABCA7 SNP
genotype group (N=494).

SNP CpG site Genotype Bcpc P-value
AA 0.09 0.566
rs37646472 cg00135882
GG/AG -0.68 0.004*
AA 0.14 2.00E-04*
rs3764647 @ €g22271697
GG/AG -0.02 0.719
AA 0.05 0.221
rs115550680°  ¢g06169110
GG/AG -0.37 2.00E-04*
AA -0.06 0.202
rs115550680°  ¢g17316918
GG/AG 0.33 0.004*

a. GG (N=17) and AG (N=156) groups were combined in the GG/AG group (N=173).

b. GG (N=5) and AG (N=54) groups were combined in the GG/AG group (N=59).

Model 4: General cognitive function~ SNP + CpG + SNP*CpG + age at cognition measurement
+ age difference between methylation and cognition measurements + sex + educational status +
APOE £2 + APOE ¢4 + smoking status + PC1-4 + familial relatedness (random effect)

*p<0.05
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2.9 Figures

Figure 2-1. Regional plot of the association between DNA methylation in the ABCA7 region and general
cognitive function.
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The top panel shows -logzo (P value) for the association between methylation and general cognitive function,
adjusting for age, sex, age difference between methylation and cognition measurements, educational attainment,
APOE &2, APOE &4, smoking status, PC1-4, and familial relatedness (random effects; Model 3), according to
chromosomal positions. Nominally significant (P<0.05) associations are above the dashed line. The middle panels
show Ensembl genes, regulatory elements, and CpG islands (UCSC Genome Browser) in the ABCAT7 region. The
lower panel shows the correlations in the DNA methylation levels among the 72 CpG sites in this region. The five
CpGs that have a nominal association with general cognitive function are marked by asterisks. The four CpGs and
two intronic SNPs that were identified in the SNP-by-CpG interactions associated with general cognitive function
are marked by diamond symbols (CpGs) and arrows (SNPs).
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Figure 2-2. Linear prediction of CpG sites (% methylated) on general cognitive function for a given SNP
genotype group in the ABCA7 region.

~
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Linear prediction of CpG sites (% methylated) on general cognitive function for a given SNP genotype group in the
ABCAT region: (A) rs3764647*cg00135882, (B) rs3764647*cg22271697, (C) rs115550680*cg06169110, and (D)
rs115550680*cg17316918. Models were adjusted for age, sex, age difference between methylation measurement
and cognition measurement, educational attainment, APOE &2, APOE &4, smoking status, PC1-4, and familial
relatedness as a random effect (Model 4). Regression lines are shown with standard error bands. For rs3764647, GG
(N=17) and AG (N=156) groups were combined in the GG/AG group (N=173). For rs115550680, GG (N=5) and
AG (N=54) groups were combined in the GG/AG group (N=59).
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2.10 Supplementary Mater

ial

Table S2-4. Pearson’s correlations among the six cognitive measures (n=634)

RAVLT DSST CO\I/:V:S' SCWT TMTA coGgenr:f_i?el
function
RAVLT 1.000
DSST 0.365*** 1.000
COWA-FAS 0.248*** 0.516*** 1.000
SCWT 0.251*** 0.516*** 0.336*** 1.000
TMTA 0.241*** 0.663*** 0.419*** 0.432%** 1.000
General cognitive function 0.522%** 0.874*** 0.698*** 0.704*** 0.791*** 1.000

Abbreviations: RAVLT, Rey Auditory Verbal Learning Test; DSST, Digit Symbol Substitution Task; COWA-
FAS, Controlled Oral Word Association Test; SCWT, Stroop Color-Word Test; TMTA, Trail Making Test A

* p<0.05, **p<0.01, ***p<0.001
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Table S2-5. Pearson’s correlations among the five sentinel ABCA7 SNPs (n=634)

rs3764647 rs3764650 rs115550680 rs3752246 rs4147929

rs3764647 1.000

rs3764650 0.843*** 1.000

rs115550680 -0.117**  -0.141%** 1.000

rs3752246 -0.139*** -0.004 -0.101* 1.000

rs4147929 -0.140*** -0.026 -0.110**  0.956*** 1.000

* p<0.05, **p<0.01, ***p<0.001
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Table S2-6. Association between ABCA7 sentinel SNPs and general cognitive function

(n=634)
Model 1 Model 2 Model 3

PMID? Ancestry P SNP Chr Position RA  RAF p. p. p.
Psw  alue Pswe value Pwe value
28480329 AA rs3764647 19 1044712 G 0.20 -0.04 0.518 -0.02 0.786 -0.01 0.823
21460840 EA rs3764650 19 1046520 G 0.25 -0.03 0.598 -0.02 0.768 -0.02 0.716
23571587 AA rs115550680 19 1050420 G 0.06 -0.03 0.748 -0.01 0.928 -0.01 0.884
21460841 EA 13752246 19 1056492 G 0.04 0.21 0.088 0.15 0.180 0.15 0.186
24162737 EA 1s4147929 19 1063443 A 0.05 0.21 0.075 0.12 0.243 0.12 0.241

APOE &2 19 45411941 T 0.12 0.07 0.317 0.11 0.087

APOE &4 19 45412079 C 0.23 -0.11  0.046* -0.12 0.022*

Abbreviations: PMID, Pubmed ID; AA, African American; EA, European American; Chr, chromosome; RA, risk

allele; RAF, risk allele frequency in GENOA
a. Pubmed ID numbers for studies that identified sentinel SNPs in the ABCA7 region in association with Alzheimer’s

disease.

b. Ancestry of cohorts in which significant associations were identified between sentinel SNPs in the ABCA7 region
and Alzheimer’s disease

Model 1: General cognitive function ~ SNP + age at cognition measurement + sex + PC1-4 + familial relatedness

(random effect)
Model 2: Model 1 + educational

attainment

Model 3: Model 2 + APOE 2 + APOE &4

*p<0.05; no associations were significant after Bonferroni correction at o = 0.05/5 = 0.01.
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Table S2-7. Association of CpGs in the ABCA7 region and general cognitive function

(p<0.05; n=494)

CpG site Position  Site Type II'\;T;?]t(ijon to CpG Model 1 Model 2 Model 3

ied P Ber P Beps P
€g22271697 1042537  Gene Body North Shelf 0.08 0.009* 0.07 0.007* 0.08 0.004*
€g00874873 1051161  Gene Body CG Island 0.12 0.074 0.13 0.025*  0.12 0.034*
€g11714200 1065689  Promoter North Shore 0.06 0.101 0.08 0.030*  0.07 0.037*
€g26264438 1039942  Promoter CG Island 0.53 0.236 0.84 0.039* 0.83 0.041*
€g12082025 1064219  Gene Body CG Island 0.05 0.394 0.11 0.047*  0.11 0.042*
€g18644543 1067356  1stExon;5'UTR  CG Island -0.51 0.031*  -0.33 0.132 -0.34 0.118

Model 1: General cognitive function ~ CpG site + sex + age at cognition measurement + age difference between methylation and

cognition measurements + smoking status+ PC1-4 + familial relatedness (random effect)
Model 2: Model 1 + educational attainment
Model 3: Model 2 + APOE €2 + APOE &4

*p<0.05; No associations are significant at FDR g<0.1
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Table S2-8. Interaction between ABCA7 sentinel SNPs and CpG sites on general cognitive
function (p<0.05; n=494)

CpG Main effects Interaction
SNP * CpG site Interaction position Bsnp p-value Bepe p-value Binteraction p-value
rs3764647 * cg00135882 1065783 -0.01 0.875 0.24 0.086 -0.80 1.46x104**
rs115550680 * 906169110 1046615 -0.23 0.045* 0.06 0.143 -0.38 2.18x104**
rs115550680 * cg17316918 1056930 -0.05 0.661 -0.06 0.164 0.41  4.84x10%**
rs3764647 * ¢g22271697 1042537 -0.07 0.319 0.16 7.23%x10°* -0.18  5.77x10% **
rs115550680 * cg05372495 1063625 -0.04 0.707  4.92x10° 0.837 0.17 0.008*
rs115550680 * 902913166 1041178 -0.10 0.329 -0.02 0.244 0.17 0.010*
rs115550680 * 909467711 1037732 -0.26 0.049* -0.01 0.632 0.10 0.011*
rs115550680 * cg12817436 1068561 -0.01 0.961 -0.02 0.376 0.20 0.011*
rs115550680 * cg07726048 1039944 -0.03 0.799 0.30 0.031* -1.02 0.012*
rs115550680 * cg07690733 1066986 -0.11 0.301 -0.14 0.60 2.27 0.014*
rs115550680 * cg07325521 1040062 -0.02 0.872 -0.12 0.627 -1.50 0.015*
rs3764647 * cg09467711 1037732 -0.07 0.315 0.03 0.109 -0.07 0.017*
rs3752246 * ¢g06169110 1046615 4.94x10°° 0.967 -0.02 0.597 0.24 0.033*

Model 4: General cognitive function ~ SNP + CpG + SNP*CpG + age at cognition measurement + age difference between methylation
and cognition measurements + sex + educational attainment + APOE ¢2 + APOE &4 + smoking status + PC1-4 + familial relatedness
(random effect)

* p<0.05; ** FDR ¢<0.1
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Table S2-9. Pearson’s correlations among ABCA7 CpG sites? (n=494)

€g00135882  cg22271697 906169110 cgl17316918 cg00874873 cgl1714200 cg26264438 cg12082025 cg18644543
€g00135882  1.000
€g22271697  0.243*** 1.000
€g06169110  0.273*** 0.085 1.000
cgl7316918 0.114* 0.152*** -0.051 1.000
cg00874873  0.056 0.166*** 0.037 0.216*** 1.000
cgl1714200 0.128** 0.173*** -0.039 0.213*** 0.139** 1.000
€g26264438  -0.291*** -0.119** -0.105* -0.259%** -0.091* -0.104* 1.000
€g12082025  0.400*** 0.121** 0.217*%** 0.151*** 0.043 0.070 -0.223%** 1.000
€g18644543  -0.220*** -0.130** 0.041 -0.380*** -0.235%** -0.152%** 0.407*** -0.125** 1.000

a. CpG sites in this correlation matrix were chosen from Tables 2 and S4. Cg00135882, cg22271697, cg06169110 and
cg17316918 are significant CpG sites in the SNP-by-CpG interactions on general cognitive function (FDR ¢<0.1; Table
2). Cg22271697, cg00874873, cg11714200, cg26264438, 912082025 and cg18644543 are nominally associated with

general cognitive function (p<0.05; Table S4).

* p<0.05, **p<0.01, ***p<0.001
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Table S2-10. Estimated effect of CpG site on general cognitive function for given ABCA7
SNP genotype group, after excluding outlying values for CpG sites®

SNP CpG site Genotype Bcpc p-value
rs3764647 €g00135882 gg IAG (())14‘; 000321
rs3764647 cg22271697 ’22 IAG _%.1042 100)(;97_1;
rs115550680 906169110 22 IAG _%%67 200)(261_? °
rs115550680  cg17316918 gg IAG 'é)_ 3?5 o%éii

a. Outliers greater or less than 4 standard deviations were excluded: 4 values were excluded for
€g00135882 (n = 490), 2 values were excluded for cg22271697 (n = 492) and cg17316918 (n = 492), and
1 value was excluded for cg06169110 (n = 493)

Model 4: General cognitive function~ SNP + CpG + SNP*CpG + age at cognition measurement + age
difference between methylation and cognition measurements + sex + educational status + APOE €2 +
APOE &4 + smoking status + PC1-4 + familial relatedness (random effect)

* p<0.05
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Table S2-11. Estimated effect of CpG? site on general cognitive function for given ABCA7
SNP genotype group, after adjusting for SNP effect.

SNP CpG site Genotype Bcpc p-value
AA 0.15 1.00x104*
rs3764647 €g22271697 GG/AG 0.02 0.571
AA 0.06 0.120

rs115550680 ~ ¢g06169110 .. .- -0.37 2.00x104*

a. Sensitivity analysis was conducted on identified SNP-by-CpG interactions from Table 2 whose CpGs
were associated with their corresponding SNPs (p<0.05). The SNP effect was adjusted out of the CpG site
effect, and the interaction analysis was conducted using the adjusted CpG value

Model 4: General cognitive function~ SNP + CpG + SNP*CpG + age at cognition measurement + age
difference between methylation and cognition measurements + sex + educational status + APOE &2 +
APOE ¢4 + smoking status + PC1-4 + familial relatedness (random effect)
*

p<0.05
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Table S2-12. Interaction between ABCA?7 sentinel SNPs and CpG sites on neurocognitive

measurements (n=494)

Main effects Interaction
DSST
Bsne p-value  Bepe p-value Binteraction p-value
rs3764647 * cg00135882 -0.35 0.679 0.68 0.709 -71.73 0.005*
rs3764647 * ¢g22271697 -0.88 0.307 1.22 0.008* -1.37 0.047*
rs115550680 * cg06169110 -2.19 0.145 0.49 0.340 -4.24 0.002*
rs115550680 * cg17316918 -0.07 0.959 -0.54 0.319 3.38 0.028*
Main effects Interaction
COWA-FAS
Psne p-value  Bepe p-value Binteraction  p-value
rs3764647 * cg00135882 -0.20 0.828 2.85 0.143 -6.79 0.023*
rs3764647 * ¢g22271697 -0.64 0.488 1.15 0.021* -1.04 0.158
rs115550680 * cg06169110 -1.67 0.300 0.01 0.978 -1.76 0.219
rs115550680 * cg17316918 -0.59 0.684 0.07 0.905 3.56 0.030*
Main effects Interaction
RAVLT
Psne p-value  Pepe p-value Binteraction  p-value
rs3764647 * cg00135882 0.53 0.055 0.19 0.747 -0.87 0.346
rs3764647 * ¢g22271697 0.50 0.070 0.27 0.075 -0.48 0.036*
rs115550680 * cg06169110 -0.32 0.511 0.07 0.688 -0.71 0.107
rs115550680 * cg17316918 0.09 0.831 -0.06 0.737 1.20 0.017*
Main effects Interaction
SCWT
Psne p-value  Pepe p-value Binteraction  p-value
rs3764647 * cg00135882 -055 0498 2092 0.089 -7.68 0.004*
rs3764647 * ¢g22271697  -1.06 0.187 1.68 1.21x10%4* -1.79 0.006*
rs115550680 * cg06169110 -2.70 0.058 0.93 0.056 -3.29 0.009*
rs115550680 * cg17316918 -1.23  0.340 -0.89 0.083 3.52 0.016*
Main effects Interaction
TMTA
Psne p-value  Bepe p-value Binteraction  p-value
rs3764647 * cg00135882 -0.03 0.333 0.05 0.484 -0.23 0.043*
rs3764647 * ¢g22271697 -0.05 0.143 0.06 0.002* -0.07 0.020*
rs115550680 * cg06169110 -0.08 0.187 0.02 0.423 -0.15 0.006*
rs115550680 * cg17316918 -0.01  0.903 -0.02 0.272 0.11 0.089

Key: DSST, Digit Symbol Substitution Task; COWA-FAS, Controlled Oral Word Association Test; RAVLT,
Rey Auditory Verbal Learning Test; SCWT, Stroop Color-Word Test; TMTA, Trail Making Test A
Model 4: Cognitive test score ~ SNP+ CpG + SNP*CpG  + age at cognition measurement + age difference
between methylation and cognition measurements + sex + educational attainment + APOE &2 + APOE ¢4 +
smoking status + PC1-4 + familial relatedness (random effect)

* p<0.05



Table S2-13. Interaction between ABCA?7 sentinel SNPs and CpG sites? on transcripts in
the ABCAT7 gene region (p<0.05; n =429)

Main effects Interaction
Transcript SNP * CpG site Interaction Psnp vallﬁje-: Bcpc vaILE) é Binteraction ~ p-value
ENST00000525939 rs115550680 * cg17316918 0.03 0.428 -9.82x10°  0.493 0.09 0.026*
ENST00000531467  rs3764647 * 922271697 0.03  0.085 -0.012 0.270 0.03  0.046*

Model 5: Transcript ~ SNP + CpG + SNP*CpG + age at gene expression measurement + age difference between methylation
and gene expression measurements + sex + PC1-4 + familial relatedness (random effect)

a. Significant SNP-by-CpG interactions in Table 2
* p<0.05; No associations are significant at FDR g<0.1
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Table S2-14. Estimated effect of CpG site on ABCA7 transcripts for given ABCA7 SNP
genotype group (n=429)

Transcript 2 SNP CpG site Genotype Bcpc  p-value
AA -0.01 0.319
ENST00000531467 rs3764647° €g22271697
GG/AG 0.02 0.120
AA -7.6x1073 0.597
ENST00000525939 rs115550680 ¢  ¢g17316918
GG/AG 0.07 0.054

a. Transcripts associated with previously identified SNP-by-CpG interactions in Table S10
b. GG (n = 15) and AG (n = 156) groups were combined in the GG/AG group (n = 151)
c. GG (n=3) and AG (n = 47) were combined in the GG/AG group (n = 50)

Model 5: Transcript ~ SNP + CpG + SNP*CpG + age at gene expression measurement + age
difference between methylation and gene expression measurements + sex + PC1-4 + familial
relatedness (random effect)

No associations are significant at p<0.05
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Table S2-15. Association of SNPs? on transcripts in the ABCA7 gene region (p<0.05; n=429)

Transcript SNP Bsnp p-value

ENST00000531467 rs115550680 -0.13 3.17x1075**
ENST00000527496 rs115550680 -0.13 2.14x10-4**
ENST00000529442 rs115550680 -0.10 5.07x10-4**
ENST00000524850 rs115550680 -0.09 0.001**
ENST00000526885 rs115550680 -0.06 0.008**
ENST00000532194 rs115550680 -0.07 0.009**
ENST00000433129 rs115550680 -0.06 0.012**
ENST00000525238 rs115550680 -0.06 0.012**
ENST00000263094 rs115550680 -0.05 0.015**
ENST00000530703 rs115550680 -0.06 0.024**
ENST00000435683 rs115550680 -0.05 0.026**
ENST00000530703 rs3764647 0.03 0.037*

Model 5: Transcript ~ SNP + age at gene expression measurement + sex + PC1-4 +
familial relatedness (random effect)
a. SNPs shown were previously significant in the SNP-by-CpG interactions in Table 2

* p<0.05, ** FDR ¢<0.1

94



Table S2-16. Association of CpG sites? on transcripts in the ABCA7 region (p<0.05; n=429)

Transcript CpG Site Bcoc p-value
ENST00000531478 cg06169110 0.02 0.008*
ENST00000526885 cg06169110 0.02 0.037*

Model 5: Transcript ~ CpG + age + age difference between methylation measurement and
gene expression measurement + sex + PC1-4 + familial relatedness (random effect)

a. CpG sites shown were previously significant in the SNP-by-CpG interactions in Table 2
*p<0.05; No associations are significant at FDR g<0.1
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Figure S2-3. Flow diagram illustrating sample sizes for genetic (n = 634), epigenetic (n =
494), and transcriptomic (n = 429) analyses in GENOA AA.

African Americans (AA) with complete SNP and phenotype data (» = 850)

Exclude participants with history of stroke (» = 43)
Exclude participants with preliminary evidence of dementia
” |(MMSE <24) (n = 76)

Exclude participants with age <45 years (n = 16)

v

AA with complete SNP and phenotype data who fit inclusion criteria
(n=1715)

» |Exclude participants without cognitive test data (n = 81)

v

Sample for genetic analysis: AA with complete SNP, phenotype, and cognitive
test data that fit inclusion criteria (n = 634)

Exclude participants without EPIC chip (methylation) data
(n=140)

v

A 4

Sample for epigenetic analysis: AA with complete SNP, phenotype, cognitive
test, and methylation data that fit inclusion criteria (7 = 494)

Exclude participants without gene expression data from
immortalized beta lymphocytes (7 = 65)

Sample for transcriptomic analysis: AA with complete SNP, phenotype,
cognitive test, methylation, and transcriptomic data that fit inclusion criteria

(n = 429)
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Figure S2-4. Models used to assess genetic, epigenetic and genetic-epigenetic interaction
associations with general cognitive function.

Genetic associations

Model 1: General cognitive function ~ SNP + age at cognition measurement + sex +
PC1-4+ familial relatedness (random effect)

Model 2: Model 1 + educational attainment

Model 3: Model 2 + APOE €2 + APOE €4

Epigenetic associations

Model 1: General cognitive function ~ CpG site + sex + age at cognition
measurement + age difference between methylation and cognition measurements +
smoking status + PC1-4 + familial relatedness (random effect)

Model 2: Model 1 + educational attainment

Model 3: Model 2 + APOE €2 + APOE €4

Genetic-epigenetic interaction associations

Model 4: General cognitive function ~ SNP + CpG + SNP*CpG + age at cognition
measurement + age difference between methylation and cognition measurements +
sex + educational attainment + APOE €2 + APOE €4 + smoking status + PC1-4 +
familial relatedness (random effect)
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Figure 2-5. Transcript expression of ABCA7: ENSG00000064687 (12 ATP binding cassette

subfamily A member 7
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Transcript expression of ABCA7: ENSG00000064687 (12 ATP binding cassette subfamily A member 7 [Source: HGNC Symbol,
Acc:HGNC:37]). The upper panel shows the tissue expression levels for all ABCA7 transcripts available in GTEX. The lower
panel shows exonic positions of the ABCA7 transcript isoforms. ENST00000525939 and ENST00000531467, which are
associated with rs115550680*cg17316918 and rs3764647*cg22271697 interactions, respectively (Table S10), are indicated by
red and blue arrows. Introns within the ABCA7 gene that are included in each of the two transcripts are colored red and blue
correspondingly. Transcripts that are associated with rs115550680 (Table S12) are indicated by asterisks. Figure adapted from
https://www.gtexportal.org/home/gene/ENSG00000064687. Data Source: GTEx Analysis Release V8 (dbGaP Accession
phs000424.v8.p2) [59].

98


https://www.gtexportal.org/home/gene/ENSG00000064687

Chapter 3 . Neighborhood Environment Associations with Cognitive Function and

Structural Brain Measures in Older African Americans

3.1 Abstract

Since older adults spend a large proportion of their time in their neighborhood
environment, factors such as neighborhood socioeconomic disadvantage, high racial segregation,
low healthy food availability, low access to recreation, and minimal social engagement may have
adverse effects on cognitive function and increase susceptibility to dementia. DNA methylation,
which is associated with neighborhood characteristics as well as cognitive function and white
matter hyperintensity (WMH), may act as a mediator between neighborhood characteristics and
neurocognitive outcomes. In this study, we examined whether DNA methylation in peripheral
blood leukocytes mediates the relationship between neighborhood characteristics and cognitive
function (N=477) or WMH (N=404) in older AA participants without preliminary evidence of
dementia from the Genetic Epidemiology Network of Arteriopathy (GENOA). For a 1-mile
buffer around a participant’s residence, each additional fast food destination or unfavorable food
store with alcohol per square mile was associated with a 0.05 (p=0.04) and a 0.04 (p=0.04)
second improvement in visual conceptual tracking score, respectively. Also, each additional
alcohol drinking place per square mile was associated with a 0.62 word increase in delayed recall
score (p=0.03), indicating better memory function. Although the presence of these destinations
encourage unhealthy diet and behaviors, they may provide meeting places for community

members that allow for greater interaction and stimulation of cognitive health. In this study, there
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was no evidence that DNA methylation mediated the observed associations between
neighborhood characteristics and cognitive function. Further examination of the potential
pathways between the neighborhood environment and cognitive function/WMH may allow the
development of potential behavioral, infrastructural, and pharmaceutical interventions to
facilitate aging in place and healthy brain aging in older adults, especially in marginal

populations that are most at risk.

3.2 Introduction

Dementia is preceded by a noticeable decline in cognitive abilities that becomes severe
enough to interfere with daily functioning.* Among U.S. adults ages 65 and older, approximately
10% of have dementia and 22% have mild cognitive impairment (MCI).! Dementia, which
includes Alzheimer’s disease (AD), vascular dementia (VaD), and other types of dementia,
places a substantial burden on family, friends, and healthcare systems.? To date, there are no
effective treatments available to prevent or cure dementia. However some research suggests
performing cognitively stimulating exercises and treating cardiovascular risk factors may delay
or prevent the onset of dementia and reduce its associated pathology.3# While individual-level
factors, such as educational attainment, > smoking habits,” and physical activity,®° are
associated with cognitive function, there is growing interest in how neighborhood characteristics
may shape health behaviors and health outcomes in older adults.%!

Neighborhoods are defined as living and work environments that possess both physical
and social attributes that may affect the health of their residents. Specifically, characteristics of
the neighborhood social environment and neighborhood socioeconomic status (SES) are

associated with cognitive function,?-1> and higher incidence of ischemic stroke!®’ in older
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adults. Cerebral small vessel disease (SVD), detected on magnetic resonance imaging (MRI) as
white matter hyperintensities (WMH), causes one quarter of all ischemic strokes and is
associated with cognitive function'® and VaD.*-2! Since older adults spend a large proportion of
their time in their neighborhood environment, factors such as neighborhood socioeconomic
disadvantage,?? high racial segregation,?>-%¢ low healthy food availability,?” low access to
recreation,?®2° and minimal social engagement®® may have adverse effects on cognitive function
and SVD and may also increase susceptibility to dementia. As such, specific neighborhood
infrastructures may support or hinder cognitive health among older adults aging in place.
Understanding how neighborhood environments impact dementia pathology may allow us to
develop better interventions to prevent disease onset.

Previous studies have linked several individual- and neighborhood-level social
disadvantage indicators, including low adult socioeconomic status (SES)3!32 and living in
disadvantaged neighborhoods,**-%° to DNA methylation patterns. After adjusting for individual
SES, neighborhood socioeconomic disadvantage and social environment were also associated
with DNA methylation in stress- and inflammation-related genes.®* In addition, epigenome-wide
association studies (EWAS) have shown associations between methylation and cognitive
function®¢3” and WMH.383° Since DNA methylation has been associated with both
neighborhood-level factors and cognitive function/WMH, it may act as a mediator between
neighborhood-level risk factors and cognitive outcomes. To date, a handful of studies have
examined whether epigenome-wide markers mediate the effects of social disadvantage on health
outcomes and risk factors. For example, in the New England Family Study, epigenetic markers
from adipose tissue partially mediated the association between individual-level social

disadvantage and body mass index (BMI) in adulthood.*%4! In the Multi-Ethnic Study of
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Atherosclerosis (MESA), methylation from monocytes partially mediated the associations
between adult SES and/or neighborhood socioeconomic disadvantage and several CVD risk
factors.*? To our knowledge, no studies have examined epigenetic mediation in the association
between neighborhood characteristics and cognitive function/WMH.

African Americans (AA) have a greater burden of and risk for developing dementia,*3-4
and stroke,*” compared to Non-Hispanic Whites (NHW). Underlying causes of these disparities
remain poorly understood but are likely due to multifactorial and multilevel factors that occur
over the life-course. For example, differences in cognitive performance and dementia risk in AA
may in part be caused by racial disparities in education (amount and quality), availability of
material and social resources, access to favorable food and physical activity environments,
exposure to discrimination, and neurotoxicants.*®4° While studies have examined individual-
level risk factors as explanations for racial/ethnic disparities (e.g., socioeconomic, psychosocial,
genetic, epigenetic, biological), there is increasing interest in the role of the neighborhood on
health outcomes in AA populations. Altogether, AA are more likely to live in neighborhoods
with social factors that may affect their stress levels (e.g., higher discrimination, lower
educational attainment, and lower SES) that over time may result in physiological
dysregulation® that ultimately leads to hypertension, diabetes, coronary heart disease, and
depression. Dysregulation of neurocognitive processes may also lead to cognitive decline or
dementia.

To better understand the mechanisms underlying relationships between neighborhood
environment and dementia risk factors in older AA, we used high-dimensional mediation
methods to identify DNA methylation sites (CpGs) in peripheral blood leukocytes that may

mediate the relationship between neighborhood-level factors and cognitive function or WMH in
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the Genetic Epidemiology Network of Arteriopathy (GENOA) study. To better understand the
functional consequences of identified CpG mediators at the molecular level, we also examined
whether gene-level expression in transformed beta lymphocytes mediates CpG associations with

cognitive function or WMH in the same cohort.

3.3 Materials and Methods

3.3.1 Sample

The Genetic Epidemiology Network of Arteriopathy (GENOA) is a community-based
longitudinal study intended to examine the genetic effects of hypertension and related target
organ damage.>® European American (EA) and African American (AA) hypertensive sibships
were recruited if at least 2 siblings were clinically diagnosed with hypertension before age 60.
All other siblings were invited to participate, regardless of hypertension status. Exclusion criteria
included secondary hypertension, alcoholism or drug abuse, pregnancy, insulin-dependent
diabetes mellitus, active malignancy, or serum creatinine levels >2.5mg/dL. In Phase | (1996-
2001), 1,854 AA participants (Jackson, MS) and 1,583 EA participants (Rochester, MN) were
recruited.® In Phase Il (2000-2004), 1,482 participants AA participants and 1,239 EA
participants were successfully followed up, and their potential target organ damage from
hypertension was measured. Demographics, medical history, clinical characteristics, medication
use, and blood samples were collected in each phase. Methylation levels were measured only in
AA participants using blood samples collected in Phases | and 1.

In an ancillary study, the Genetics of Microangiopathic Brain Injury (GMBI; 2001-2006),
1,010 AA and 967 EA GENOA participants underwent a battery of established cognitive tests to

assess measures of cognitive function.5>52 White matter hyperintensity (WMH) was also
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measured using brain Magnetic Resonance Imaging (MRI). The GMBI exam occurred
approximately one year after the participant completed Phase Il (mean time between Phase Il and
GMBI = 1.1 years, SD=1.0 year). Written informed consent was obtained from all participants,
and approval was granted by participating institutional review boards (University of Michigan,
University of Mississippi Medical Center, and Mayo Clinic).

A total of 710 AA participants had non-missing demographic, cognitive, and methylation
data. Since participants with a history of stroke or dementia may have had changes in general
cognitive function that differed from non-pathological cognitive aging, we excluded those with a
history of stroke (n=31) and/or preliminary evidence of dementia indicated by a Mini-Mental
State Examination Score (MMSE) of <24 (n=38). Participants younger than age 45 were also
excluded (n=28). A total of 542 and 477 participants were available with neighborhood spatial
(density measures) and neighborhood socioeconomic disadvantage analyses, respectively (Figure
S3-4).

A total of 602 AA participants had non-missing demographic, WMH, and methylation
data. Participants with a history of stroke (n=17), and/or preliminary evidence of dementia
indicated by a Mini-Mental State Examination Score (MMSE) of <24 (n=23) were excluded.
Participants younger than age 45 were also excluded (n=17). A total of 466 and 404 participants
were available for neighborhood spatial (density measures) and neighborhood socioeconomic

disadvantage analyses, respectively (Figure S3-5).
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3.3.2 Measures

A. Measures of cognitive function

The following four cognitive domains were evaluated: delayed recall (Rey Auditory
Verbal Learning Test (RAVLT)), processing speed (Digit Symbol Substitution Test (DSST)),
word fluency (Controlled Oral Word Association Test (COWA-FAS)) and visual conceptual
tracking (Trail Making Test A (TMTA)).5152 All cognitive domains were coded so that a higher
score corresponds to better cognitive function. See Supplementary Methods for additional
details.

In addition to analyzing individual cognitive domains, we assessed a summary measure
of general cognitive function, which is often quantified using cognitive tests in multiple
cognitive domains.® In this study, general cognitive function was calculated as the first
unrotated principal component (FUPC) from a principal component analysis (PCA) of the four
cognitive domains in the full sample (N=542). The FUPC accounted for 57% of the total
variance in the cognitive measures and loading factors of the four measures were 0.61 for
delayed recall (RAVLT), 0.88 for processing speed (DSST), 0.70 for word fluency (COWA-

FAS) and 0.81 for visual conceptual tracking (TMTA).

B. White matter hyperintensity

Presence of WMH in brain samples indicates areas of ischemic damage to small vessels
and surrounding areas. Brain magnetic resonance images were measured from magnetic
resonance imaging (MRI), using Signa 1.5T MRI scanners (GE Medical Systems, Waukesha,
WI, USA) at Mayo Clinic.>* For additional details, see Smith et al.>®> WMH and total brain

volume in the coronaradiata and periventricular zone were quantified from axial fluid-attenuated
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inversion recovery (FLAIR) images.®® Brain scans with cortical infarctions were excluded from
the analyses because of the distortion of WMH volume estimates that would be introduced in the
automated segmentation algorithm. Models assessing WMH were adjusted for total intracranial
volume (TIV). Distributional plots indicated that the measures of WMH are right-skewed, so the

WMH variable was transformed as In(WMH + 1).

C. DNA methylation measures

Genomic data was extracted from stored peripheral blood leukocytes from 1,106 AA
GENOA participants from Phase | and 304 AA participants from Phase Il using the AutoGen
FlexStar (AutoGen, Holliston, MA). Bisulfite conversion was performed with the EZ DNA
Methylation Kit (Zymo Research, Irvine, CA), and methylation was measured using the Illumina
HumanMethylationEPIC BeadChip. The raw intensity data was visualized using the shinyMethyl
R package °’ to identify sex mismatches and outliers, which were removed. Samples with
incomplete bisulfite conversion were identified using Qcinfo in the Enmix R package®® and
removed. Background correction and dye-bias normalization were performed using Noob in the
Minfi R package.>®® Sample identity was verified using 59 SNP probes on the EPIC array, and
mismatched samples were removed. Probe-type bias was adjusted using the Regression on
Correlated Probes (RCP) method.5! Probes with detection p-value <1016 were considered
successfully detected, and probes and samples with detection rate<10% were removed.%? We also
excluded cross-reactive probes® and probes with a SNP at the target CpG site or within a single-
base extension. After quality control, a total of 1,396 samples (N=1,100 from Phase | and N=294
from Phase I1) and 857,121 CpG sites were available for analysis. For this analysis, all
methylation data were from Phase | samples. White blood cell proportions for CD8+ T

lymphocytes, CD4+ T lymphocytes, natural Killer cells, B cells, monocytes, and granulocytes
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were estimated using the Houseman method.%* For each CpG site prior to analysis, the
methylation beta-values®®% were pre-adjusted for batch effects (sample plate, row, and column)
and white blood cell proportions using linear mixed modeling, and the resulting residuals were

added to the mean values.

D. Gene expression measures

Gene expression levels in transformed beta-lymphocyte cell lines from blood samples
taken primarily at GENOA Phase Il were measured using the Affymetrix Human Transcriptome
Array 2.0. The Affymetrix Expression Console was used for quality control, and all array images
passed visual inspection. Affymetrix Power Tool software was used to process raw intensity
data.®” We normalized Affymetrix CEL files using the Robust Multichip Average (RMA)
algorithm, including background correction, quantile normalization, logz-transformation, and
probe set summarization.% Linearity was also maintained using GC correction (GCCN), signal
space transformation (SST), and gain lock (value=0.75). We used the Brainarray custom CDF®°
version 19 to map the probes to genes, specifically removing probes with non-unique matching
cDNAV/EST sequences that can be assigned to more than one gene cluster. As a result, the gene
expression data processed through the custom CDF is expected to be free of mappability issues;
however, alignment bias may still exist due to genetic variation, errors in the reference genome,
and other complications.’”® After mapping, Combat was used to remove batch effects.”* A total of

17,616 gene-level expression values were available for analysis.
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E. Individual-level measures

Age was assessed at cognitive testing. Adult socioeconomic status (SES) was indicated
by the respondent’s highest level of educational attainment, categorized as: (1) less than high
school degree/GED (reference group), (2) high school degree or GED, and (3) at least four years
of college or trade/technical school. Smoking has a substantial impact on the epigenome’? so we
used smoking data from the same timepoint as the DNA methylation measures (Phase I).

Participants were categorized as current, former, or never smokers (reference group).

F. Neighborhood characteristics

i. GIS-based measures

Neighborhood density characteristics were derived from Geographic Information System
(GIS)™ data (1996-2015). Simple densities per square mile were created for Y2-mile, 1-mile, and
3-mile buffer sizes around home addresses of GENOA participants at Phase | using ArcGIS
V.9.3 (ESRI, Inc., Redlands, California)’*’> We used 1-mile buffer in our primary analysis, as
previous studies have done,’®"” and examined %- and 3-mile buffers in sensitivity analysis.
Kernel densities per square mile, with greater weighting towards destinations located closer to
the home of a participant, were also created for GENOA participants using the kernel density
command in ArcGIS V.9.3747 for the same buffer sizes; these were also explored in sensitivity
analysis.

For each participant, simple densities were estimated for the following 12 destinations:
fast food restaurants (including both chain and non-chain), total physical activity facilities, total
social engagement destinations, and alcohol outlets. Summary density measures were also
created for densities of unfavorable food stores with and without alcohol, healthy (favorable)

food stores, popular walking destinations, total stores, and total food stores. The modified retail
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food environment index (MRFEI) was calculated from the number of healthy and less healthy
food retailers within census tracts across states, based on typical food offerings in specific retail

stores.”® See Supplementary Methods for additional details.

ii. Census measures

Briefly, neighborhood socioeconomic disadvantage was assessed using data collected in
the 2000 U.S. Census,”8 American Community Survey (ACS) 2005-2009,8! and ACS 2007-
2011.22 Data was linked to GENOA participant data (Phase I; 1995-2000) by census tract using
Census and ACS estimates for the closest time period. To derive neighborhood socioeconomic
disadvantage, we used six variables that reflected aspects of wealth and income, education, and
occupation for each census tract.83 Z-scores for each census tract were estimated for each
variable, and neighborhood socioeconomic disadvantage was defined as the sum of Z-scores
from the six variables, with higher scores indicating more disadvantage. See Supplementary

Methods for additional details.

3.3.3 Statistical analysis

We first calculated Pearson correlations among the five cognitive outcomes (general
cognitive function and the four cognitive domains), and among the 13 neighborhood
characteristics (12 density measures and neighborhood socioeconomic disadvantage). Since areas
of increased population density (e.g., urban neighborhoods) generally have a higher absolute
number of destinations, we next examined the neighborhood characteristics after pre-adjusting

for census tract population density using linear modeling. Correlations were calculated among
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the neighborhood characteristics for simple and kernel densities per square mile for 1-mile buffer

sizes.

Associations between neighborhood measures and cognitive function/WMH

To identify which exposures and outcomes have a significant total effect, we tested for
association between each neighborhood characteristic (exposure) and general cognitive function,
each cognitive domain, or WMH (outcome), and assessed significance at alpha=0.05. We first
tested for association between a neighborhood characteristic (socioeconomic disadvantage or
simple density measures) and general cognitive function, adjusting for age at cognitive function
measurement, sex, current smoking status, the first 5 genetic principal components (PCs) of
ancestry, and family relatedness as a random effect (Model 1a). In Model 1b, we tested for
association between each neighborhood characteristic and WMH, adjusting for the same
covariates as Model 1a and TIV. In Models 2a/2b, we additionally adjusted for census tract
population density in 2000 and included census tract as a random effect. We also tested for
associations between each neighborhood characteristic and each of the four cognitive domains
using Model 2a. Associations between neighborhood characteristics and cognitive
function/WMH that were significant at P<0.05 in Models 1a/1b or 2a/2b were selected for
mediation analysis. In sensitivity analysis, we tested the same associations using simple densities
at ¥%2- and 3-mile buffers as well as kernel densities at all 3 buffers. The total effects model is

outlined below:

Yij = BO + lejk + aCljk + Wk + Sjk

Bo: intercept value; cognitive function/WMH value when neighborhood characteristic (exposure)
equals zero
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w: effect estimate of neighborhood characteristic (exposure) on cognitive function/WMH

X1 jk- neighborhood characteristic (exposure) for participant j in sibship k at Phase |

Cy jx: set of covariates (age at cognitive function/WMH measurement, sex, and genetic principal
components at Phase I; and TIV for WMH outcome).

W, : random effect (familial relatedness).

& residual error (independent and normal distribution) for participant j in sibship k.

Y jx: cognitive function/WMH for participant j in sibship k at Phase I

Mediation analysis

If a significant association (total effect) was identified between a neighborhood
characteristic and a cognitive/WMH outcome, we conducted an epigenome-wide high-
dimensional mediation analysis to identify CpG sites that may partially mediate the relationship.
We used a cross-product-based mediation approach in which the mediation effect is obtained by
multiplying the exposure-mediator effect (1) and the mediator-outcome effect (f3; see Equations
1 and 2 below). We obtained these parameters for each exposure and outcome tested using linear
mixed models to separately estimate the association between neighborhood characteristics with
DNA methylation (mediator), while adjusting for covariates (Equation 1), and the association
between DNA methylation and cognitive function/WMH, while adjusting for the corresponding
exposure tested and the same set of covariates (Equation 2). The covariate sets in Equations 1
and 2 are the same as in Models 1a/b and 2a/b. The specified models (Equations 1 and 2) for a

given exposure-outcome association are outlined below:

Mji = Bo + B1Xvji + aViji + Wi + € (Equation 1)

Yajk = Bo + BoXijic + BaMj + aVyj + Wi + € (Equation 2)
Bo: intercept value; cognitive function/WMH value when neighborhood characteristic (exposure)
equals zero

M;,.: DNA methylation (mediator; beta-value) for participant j in sibship k
X, jx: neighborhood characteristic (exposure) for participant j in sibship k at Phase |

111



V1 k- adjustment covariates for participant j in sibship k at Phase |

W, : random effect for each sibship which accounts for the multiple siblings within sibships
&ji- residual error (independent and normal distribution) for participant j in sibship k

Y, jx- cognitive function/WMH (outcome) for participant j in sibship k at Phase |1

ph: effect estimate of neighborhood characteristic (exposure) on DNA methylation (mediator)
pe: direct effect estimate of the neighborhood characteristic (exposure) on cognitive
function/WMH (outcome)

p3: effect estimate of DNA methylation (mediator) on cognitive function/WMH (outcome),
adjusting for the direct effect (52)

Using Equations 1 and 2 above, the epigenetic mediation effect was tested using the following:
Ho: 183 =0
Ha: By Bs # 0
The null hypothesis was comprised of three sub-hypotheses: (1) Hoi: §; = 0, B3 # 0; (2) Hao:
By # 0, B3 = 0; and (3) Hoo: B; = B3 = 0. To that end, o1, w10 and oo are the true proportions
of (8; =0,B5; #0), (B, #0, B3 = 0) and (B; = B3 = 0) among all J tests. Figure 3-1 shows a
directed acyclic graph (DAG) of the hypothesized associations. To test for the mediation effect,
we used the Sobel-comp® method in the medScan package in R, which uses a corrected mixture
reference distribution for Sobel’s test statistic according to the composite structure of the null
hypothesis. We corrected for multiple testing using the false discovery rate (FDR)® on the

mediation p-values (FDR <0.10).8°

3.4 Results

3.4.1 Sample Characteristics

The sample included 542 AA without dementia (Table 3-1). Participant age ranged from
45 to 83 years (mean = 62.5 years). More than half of participants (73%) were female. A total of

25.0% had less than a high school degree/GED, 46.5% attained a high school degree/GED, and
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28.6% completed at least four years of college or trade school. General cognitive function was
normally distributed (Figure 3-2). Mean delayed recall (RAVLT) score was 7.0 (SD=3.3) words
recalled, mean processing speed (DSST) was 33.8 (SD=13.0) symbols, mean word fluency
(COWA-FAS) score was 29.4 (SD=11.6) words, and mean visual conceptual tracking (TMTA)
score was 63.8 (SD=35.2) seconds to completion. Participants had a mean WMH of 9.42 cm?
(SD=9.19). WMH distribution was severely right skewed but had a normal distribution after log

transformation.

3.4.2 Correlation among cognitive and WMH outcomes

The four cognitive domains were moderately correlated (Pearson r ranged from 0.21 to
0.68), with the highest correlation among processing speed (DSST) and visual conceptual
tracking (TMTA) (r=0.68, p<0.001, Table S3-6). WMH was negatively and weakly correlated
with all the cognitive measures except COWA-FAS (Pearson r ranged from -0.27 to -0.34 for

significant correlations).

3.4.3 Correlation among the neighborhood exposures

Pearson correlations among the neighborhood exposures, including neighborhood
socioeconomic disadvantage and the 12 neighborhood simple density measures per square mile
for 1-mile buffer size, are shown in Table S3-7. Neighborhood exposures were moderately
correlated (Pearson r ranged from -0.237 to 0.995), with the highest correlation between the
simple densities of total social engagement and MRFEI with alcohol (r = 0.995, p<0.001).

Neighborhood socioeconomic disadvantage was positively, but weakly, correlated with
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unfavorable food stores without alcohol, total social engagement destinations, total popular
walking destinations and alcoholic drinking places.

After adjusting for census tract population density, the correlations between
neighborhood socioeconomic disadvantage and neighborhood characteristics increased in
magnitude in the positive direction for all measures except fast food destinations, alcoholic
drinking places, and the MRFEI measures. For instance, neighborhood socioeconomic
disadvantage was negatively correlated with fast food destinations (r=-0.20, p<0.01) and
unfavorable food stores with alcohol (r=-0.21, p<0.001); however, after adjusting for census tract
population density, fast food destinations were weakly correlated with neighborhood
disadvantage (r=-0.02, p<0.001) and positively correlated with unfavorable food stores (r=0.92,
p<0.001; Table S3-8). The simple and kernel densities of each neighborhood characteristic are
strongly and positively correlated with each other (Pearson r ranged from 0.702 to 0.934; Table

$3-9).

3.4.4 Associations between neighborhood characteristics and cognitive/WMH outcomes

A. Neighborhood socioeconomic disadvantage associations

Neighborhood socioeconomic disadvantage was not associated with general cognitive
function or WMH either before (Models 1a/1b) or after adjusting for census tract population
density and census tracts as a random effect (Models 2a/2b, Table 3-2). Further, neighborhood
socioeconomic disadvantage was not associated with any of the four cognitive domains (Model

2a, Table 3-3).
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A. Density associations

There was no association between the 12 neighborhood simple density exposures at 1-
mile buffer size and cognitive/WMH outcomes either before (Models 1a/1b) or after adjusting
for census tract population density and census tracts as a random effect (Models 2a/2b; Table 3-
4). The associations between simple neighborhood densities per square mile for %2- and 3-mile
buffer sizes and cognitive function/WMH are reported in Table S3-10. One additional alcoholic
drinking place per square mile for the 3-mile buffer size was associated with a 0.71 SD decrease
in general cognitive function after adjusting for census tract population density and census tracts
as a random effect (p=0.03; Model 2a; Table S3-10).

We also tested the association between the 12 neighborhood simple density exposures
examined at 1- mile buffer region with each of the four cognitive domains (Model 2a; Table 3-
5). One additional fast food destination or unfavorable food store with alcohol per square mile
was associated with a 0.05 (p=0.04) and a 0.04 (p=0.04) second increase in visual conceptual
tracking score, respectively, indicating that more of these destinations was associated with better
visual conceptual tracking. In addition, one additional alcohol drinking place per square mile was
associated with a 0.62 word (p=0.03) increase in delayed recall score (Table 3-5), indicating
better memory function. The associations between simple neighborhood densities per square
mile for ¥2- and 3-mile buffer sizes and cognitive/WMH measures are also reported in Tables S3-
10 and S3-11.

We also tested the association between the 12 neighborhood kernel density exposures at
Y-, 1- and 3- mile buffer sizes with cognitive function/WMH (Table S3-12) and the cognitive
domains (Table S3-13). There were no associations between the kernel density neighborhood

exposures and general cognitive function or WMH in Models 1a/2a and 1b/2b (Table S3-12). At
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the 1-mile buffer, kernel density of fast food destinations and unfavorable food stores with
alcohol were both associated with better visual conceptual tracking, consistent with the simple
density associations; however, the association between kernel density of alcohol drinking places
and delayed recall score was not. We also found that at the 1-mile buffer, kernel densities of
unfavorable food stores without alcohol, total popular walking destinations, and total food stores
were all associated with better visual conceptual tracking as well. The associations between
kernel neighborhood densities per square mile for ¥2- and 3-mile buffer sizes and

cognitive/WMH measures are also reported in Tables S3-12 and S3-12.

3.4.5 Mediation analysis

When the total effect of a neighborhood characteristic (simple density at 1-mile buffer)
and cognitive function/WMH was significant at p<0.05, we conducted epigenome-wide high-
dimensional mediation analysis to identify possible CpG sites that may partially mediate the
relationship between the neighborhood exposure and corresponding outcome using Model 2a in
477 participants with complete data. The following exposure-outcome combinations were
investigated: (a) alcohol drinking places and delayed recall, (b) fast food destinations and visual
conceptual tracking, and (c) unfavorable food stores with alcohol and visual conceptual tracking.
Figure 3-3 shows quantile-quantile (QQ) plots for the 5 exposure-outcome relationships using
Sobel-Comp. The p-values from Sobel-Comp test were deflated, potentially due to the large
number of zero exposure-mediator (41) and mediator-outcome (f3) estimates and the small

sample size (Figure 3-3). No associations were significant at FDR <0.1.
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3.5 Discussion

As the aging population rapidly grows, a better understanding of how the neighborhood
environment may affect cognitive health is needed to mitigate the future burden of dementia in
the U.S. While there are studies showing the effect of individual factors, such as lifestyle,
genetics and biomarkers on cognitive function, there is little research on the association between
neighborhood characteristics and cognitive function to date.?® Further, only a few studies have
examined the potential molecular mechanisms linking neighborhood environment and cognitive
health.'?8” To our knowledge, this study is the first assessment of whether DNA methylation
partially mediates the association between various neighborhood environment characteristics and
cognitive function in AA without dementia. This cross-sectional study suggests that greater
simple densities of alcohol drinking places may be associated with better memory as measured
by delayed recall (RAVLT), and greater densities of fast-food destination and unfavorable food
stores with alcohol with better attention and task switching as measured by visual conceptual
tracking (TMTA) in cognitively normal AA. However, we did not find associations between
neighborhood characteristics and WMH. We also were unable to detect mediating effects of
DNA methylation on the associations between these neighborhood characteristics on cognitive
function and cognitive measures in this sample.

We initially expected higher densities of unfavorable food stores to be associated with
worse cognitive function, suggesting that increased access to unhealthy food and drink may
encourage unhealthy dietary choices that lead to lower cognitive health. Instead, we found that
greater densities of alcohol drinking places, fast-food, and unfavorable stores with alcohol that
may encourage unhealthy dietary choices were associated with better cognitive function as

measured by delayed recall and visual conceptual tracking after adjustment for population
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density. Considering that Jackson, MS does not have a highly dense population (approximately
1,300 people per square mile in 2010), the presence of these walking destinations may provide
meeting places for community members, allowing for greater interaction and stimulation of
cognitive health, regardless of their impact on unhealthy diet and behaviors. As such, these
meeting hubs may contribute to better cognitive function through increased access to community
residents, neighborhood community resources, and proximal walking destinations that improve
cognitive health by increasing physical activity levels, social engagement, mental health or
quality of life.8®

To date, results from previous studies examining similar characteristics of the
neighborhood environment and cognitive function have been mixed. In the Chicago Health and
Aging Project (CHAP), increasing densities of social and walking destinations such as
community centers were associated with slower cognitive decline,® yet a study in the Multi-
Ethnic Study of Atherosclerosis (MESA) showed an inverse association between these same
measures and cognitive function, and most noticeably in individuals of non-white race.?® Also,
closer access to community resources has been associated with better cognitive function in
NHW, but worse cognitive function in AA,°! while other studies showed no association between
the presence of neighborhood built environment characteristics, such as recreation centers and
institutional resources (e.g., libraries, schools and community centers) and cognitive
function.8%°192 In our study, the plausible mechanisms and direction or presence of
neighborhood-cognitive function association may depend on the neighborhood characteristic and
cognitive domain being studied, and more than one mechanism may be at play.

Different underlying mechanisms of neighborhood environment on cognitive function

have been examined to understand how interventions can prevent dementia onset. In MESA,
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increasing social destination density, walking destination density, and intersection density were
associated with worse cognitive function, and increasing proportion of land dedicated to retail
was associated with better processing speed.®® While we did not observe similar patterns among
simple densities, we did observe greater kernel densities of total popular walking destinations per
square mile (for ¥%2- and 1-mile buffer sizes) were associated with higher visual conceptual
tracking and greater kernel densities of total social engagement destinations per square mile (Y-
mile buffer) were associated with higher delayed recall. Access to a safe and walkable
neighborhood environment may help older adults age in place and delay the onset of cognitive
impairment and decline prior to dementia.®>%+% In addition, the positive relationship between
proportion of land dedicated to retail and processing speed may be explained by increased
utilitarian physical activity and social engagement, or increased cognitive stimulation that
contributes to the cognitive reserve.®? Also, fast-food outlets and local retail food environments
may play a role in providing social and community engagement, connectedness, emotional
support and cognitive stimulation for older adults outside of more formal or age-graded settings
such as doctor’s office, church or senior center.?®%7

Other studies have found inverse relationships between neighborhood characteristics and
cognitive function that may be related to cognitive overload among older adults due to stress
from greater number of destination choices or navigation of traffic. It is possible that highly
dense areas consisting of social and walking destinations and street intersections have increased
vehicular pollutant exposure due to decreased distances to busy roadways and decreased air
ventilation created by buildings.?® Airborne pollutants have been associated with worse cognitive

function and brain structure in older adults.®® Factors such as neighborhood socioeconomic

disadvantage,?? low healthy food availability,?’ low access to recreation,?®2° high racial
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segregation,?-26 and minimal social engagement®® may have adverse effects on cognitive
function and increase susceptibility to dementia as well. These mixed results from other studies
may be affected by residual confounding from unmeasured factors. Thus, additional research on
the many confounders and mechanisms related to the relationship between the neighborhood
environment and cognitive function is necessary.

In addition, we found correlations between favorable and unfavorable destinations, even
after adjusting for population density, which may further illuminate our findings in the context of
cognitive health and behaviors. For example, greater densities of fast-food destinations were
associated with greater densities of favorable food stores, physical activity destinations, and
MRFEI (the proportion of favorable food stores to total food stores), even after adjusting for
population density. These correlations in Jackson may be attributed to a complex interplay of
socioeconomic, urban planning, cultural, historical and policy-related factors and confounders.
Further, socioeconomic disparities often lead to variations in access to health-promoting
resources, with neighborhoods of lower SES facing limited access to healthy options and an
increased prevalence of unhealthy alternatives. The availability of favorable food stores may
reflect the demand from residents, according to their purchasing power, who can afford healthier
options. To account for this discrepancy, we adjusted for neighborhood socioeconomic
disadvantage in our associations. The city’s urban planning, historical development (e.g.,
redlining and discriminatory housing practices in the past) and government policies may play
crucial roles in shaping the distribution of health-related destinations. Another possibility is that
areas with higher commercial zoning may attract both fast food establishments and favorable
food stores, creating clusters of businesses in certain neighborhoods. Additionally, cultural

preferences and consumer demand influence the types of businesses and amenities in specific
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neighborhoods. For example, the high correlation between favorable and unfavorable food store
density may be due to a micro-cultural artifact at play Jackson that encourages increased
densities of fast food in Black neighborhoods.®® This micro-culture, which results from shared
race/ethnicity, beliefs, styles, skills, and habits of residents of a particular area, may disfavor
physical activity and other healthy behaviors, even in the presence of features that allow for
them.100,101

Considering that the neighborhood context has the potential to influence cognitive
function, it is important to clarify the potential biological mechanisms linking neighborhood
characteristics and cognitive function to shed light on the etiology and causal mechanisms
driving health disparities. DNA methylation may help us better understand the pathways that
mediate or interact with the environment and cognitive function. Previous studies have shown
that the neighborhood context affects DNA methylation, even after adjusting for individual level
factors, and that DNA methylation patterns in stress and inflammatory pathways may be
responsive to interventions.>* EWAS have also found multiple CpGs related to
neurodegeneration associated with cognitive function.®¢:3” Considering these factors and that past
studies have found CpGs mediating the relationship between neighborhood socioeconomic
disadvantage and various cardiovascular risk factors,*°-4? which are potential upstream factors of
cognitive function and dementia, we expected to detect mediating CpG sites in the associations
between neighborhood characteristics and cognitive function/WMH.

One reason that we may not have observed epigenetic mediation is the choice of
mediation model implemented. Sobel-Comp®* is a more powerful extension of high-dimensional
mediation hypothesis testing (HDMT) 36 that is preferred when almost all exposure-mediator and

mediator-outcome associations are equal to O (oo is close to 1), and there are almost no non-zero
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exposure-mediator or mediator-outcome associations (mo1 and mio are close to 0). One limitation
is that Sobel-Comp is conservative under these conditions, compared to other high-dimensional
mediation methods such as JT-Comp;'%? however Sobel-Comp has the advantages of using the
correct mixture reference distribution for Sobel’s test statistic, maintain a false positive rate
(FPR) close to the nominal level, and it yielding larger true positive rates (TPRs). In this study,
Sobel-Comp was the appropriate method because oo was bounded away from 1 for all
associations tested, but we did not detect significant mediation effects due to a potentially large
number of zero exposure-mediator (51) and mediator-outcome (f3) estimates, deflated p-values
and small sample size. In addition, DNAm levels of proximal CpGs in the same biological
pathways may be correlated, resulting in properties that are not desirable for TPR and FPR.5®
When there correlated mediators, single-mediator hypothesis testing methods like Sobel-Comp
are unable to fully account for all the mediator-outcome confounders affected by the exposure
(also known as co-mediators), thus reducing the power to detect mediating CpGs and potentially
biasing our effect estimates.*>193-105 While it is possible to jointly model multiple mediators
using the Bayesian high-dimensional mediation method'% and its use may have reduced the
multiple testing burden and increased the power to detect independent effects, this method is
computationally heavy and only a few thousand mediators would have been evaluated
simultaneously at a time.1%6-108 Evaluating our mediation analysis models to account for multiple
correlated mediators are of interest for future analysis. Our results may indicate that methylation
is not a critical component of the mediating pathway between neighborhood exposures and
cognitive/WMH outcomes. Our observed associations should also be considered with caution
due to the limited statistical power inherent in our sample. The small sample size may have

restricted our ability to detect the total effects between neighborhood characteristics and
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cognitive/WMH outcomes that could exist within the population. As a result, our findings may
not be generalizable beyond our sample.

Our study also had other limitations. Our findings may be affected by residual
confounding by unmeasured variables, increased exposure to factors including air pollution,
potential for chance social interactions, crime, physical disability, discrimination and structural
racism that may be due to increased walking in the neighborhood which influences cognitive
function, or factors related to study design (e.g., cross-sectional nature). Moreover, we did not
investigate the important ways in which air pollution, structural racism and stress are mediators
on the pathways of specific neighborhood-cognitive function/WMH associations. Also, further
longitudinal and life-course studies that explore mediation pathways between early-life, mid-life
and late-life neighborhood, methylation, and cognitive function/WMH measures are needed. In
this study, neighborhood characteristics were based on current home addresses, and we did not
take into account that earlier or longer-term neighborhood exposures may be important for late-
life cognitive function/WMH.

Our study also has notable strengths. To our knowledge, this study is the first to examine
the role of DNA methylation in mediating the relationships between neighborhood
characteristics and cognitive function/WMH in a cohort of older adults without diagnosed
dementia. Our study was also conducted in AA, an understudied population with a higher
prevalence of demential®®11% and higher conferred risk of cognitive decline and dementia from
neighborhood environment compared to EA.1*! Additionally, with rich cognitive and WMH
measures, we were able to assess associations with multiple cognitive domains, general cognitive
function, and a risk factor for VaD. We were also able to adjust for neighborhood socioeconomic

disadvantage to control for the influence of income, education, employment and other SES
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indicators that might independently affect cognitive health. We also controlled for confounding
by census tract population density because it could influence the availability of stores and
cognitive outcomes. High-density urban areas may have greater access to stores and services and
low-density rural areas may have lower access to these destinations. Both densities may affect
cognitive health, so adjusting for population density ensures that our results are not skewed by
these population differences and are more accurate. Also, we utilized a powerful high
dimensional mediation method that reduced the likelihood of false positives. Lastly, our primary
analysis used 1-mile density buffers around participants’ homes, which provide more precise
spatial representation of neighborhoods than administrative boundaries and may more accurately

reflect nearby places and distances that an older adult would walk.

3.6 Conclusion

In the present study, we found that destination density had small but notable effects on
several domains of cognitive function in AA without dementia. However, we detected no
significant mediating effects of DNA methylation on these associations. Upon further
examination of the potential pathways between the neighborhood environment and cognitive
function, we may develop potential behavioral, infrastructural, and pharmaceutical interventions
to allow aging in place and healthy brain aging in older adults, especially marginal populations

that are most at risk.
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3.8 Tables

Table 3-1. Sample characteristics of Genetic Epidemiology Network of Arteriopathy

(GENOA) African Americans (N = 542)

Mean (SD) or n%

Age at cognition measurement (years) 62.52 (7.69)
Sex
Female 403 (74.35%)
Male 139 (25.65%)
Educational attainment
Completed at least four years of college or technical/trade school 155 (28.60%)
Completed high school degree/GED 252 (46.49%)
Less than high school degree/GED 135 (24.91%)

Smoking status
Current smoker

83 (15.31%)

Former smoker 125 (23.06%)
Never smoker 334 (61.62%)
General cognitive function 0.03 (0.99)
Delayed recall (RAVLT, number of words recalled) 6.95 (3.29)
Processing speed (DSST, number of symbols) 33.82 (13.04)
Word fluency (COWA-FAS, number of words) 29.40 (11.64)
Visual conceptual tracking (TMTA, seconds to test completion) 63.75 (35.22)
White matter hyperintensity (WMH, cm?) 2 9.42 (9.19)
Total intracranial volume (TIV, cm3)2 1376.58 (129.81)
Neighborhood characteristics
Neighborhood socioeconomic disadvantage 3.41 (3.46)
Fast food destination density ° 0.75 (0.85)
Unfavorable food stores without alcohol density ° 1.94 (1.75)
Unfavorable food stores with alcohol density ° 1.24 (1.13)
Favorable food stores density ° 0.22 (0.31)
Total physical activity destinations density ° 0.34 (0.37)
Total social engagement destinations density ° 14.37 (10.85)
Total popular walking destination density ° 3.53(3.13)
Alcoholic drinking places density ° 0.36 (0.62)
Total stores density ° 15.82 (12.80)
Total food stores density ° 3.34 (3.08)
MRFEI with alcohol ¢ 0.10 (0.13)
MRFEI without alcohol © 0.12 (0.14)

Abbreviations: RAVLT, Rey Auditory Verbal Learning Test; DSST, Digit Symbol Substitution Test; COWA-FAS,
Controlled Oral Word Association Test; TMTA, Trail Making Test A; WMH, White Matter Hyperintensity;

MRFEI, Modified Retail Food Environment Index

Abbreviations: RAVLT, Rey Auditory Verbal Learning Test; DSST, Digit Symbol Substitution Test; COWA-FAS,
Controlled Oral Word Association Test; TMTA, Trail Making Test A; WMH, White Matter Hyperintensity

a. Sample size = 466.

b.  Simple density measures per square mile for 1-mile buffer size.
c. Derived from simple density measures per square mile for 1-mile buffer size.
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Table 3-2. Associations between neighborhood socioeconomic disadvantage and cognitive
function/ White matter hyperintensity

General cognitive function (N=477) White matter hyperintensity (N=404)
Model 1a Model 2a Model 1b Model 2b
p P p P p P p P
Neighborhood
socioeconomic
disadvantage -0.01  0.30 -0.01  0.36 2.0E-3 0.83 0.01 0.28

Model 1a: cognitive function = neighborhood socioeconomic disadvantage + age at measurement + sex +
PC1-4 + education + smoking status + familial relatedness (random effect)

Model 2a: cognitive function = Model 1a + census tract population density + census tract (random effect)
Model 1b: WMH = Model 1a + total intracranial volume

Model 2b: WMH = Model 2a + total intracranial volume

*P<0.05
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Table 3-3. Associations between neighborhood socioeconomic disadvantage and cognitive
measures (Model 2a; N=477)

DSST COWA-FAS RAVLT TMTA

B P B P p P B P

Neighborhood
socioeconomic
disadvantage -0.01 0.95 0.02 0.92 -0.03 0.66 0.02 0.07

Abbreviations: DSST, Digit Symbol Substitution Test; COWA-FAS, Controlled Oral Word Association
Test; RAVLT, Rey Auditory Verbal Learning Test; TMTA, Trail Making Test A.

Model 2a: neurocognitive measure = neighborhood socioeconomic disadvantage + age at measurement +
sex + PC1-4 + education + smoking status + population density + familial relatedness (random effect) +
census tract (random effect)

*P<0.05
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Table 3-4. Associations between simple density of neighborhood destinations per square
mile for 1-mile buffer size and cognitive function/WMH

General cognitive function White matter hyperintensity

. L Model 1a Model 2a Model 1b Model 2b

Neighborhood characteristics (N=542) (N=477) (N=466) (N=404)
p P p P p P p P

Fast food destination density -0.02 0.53 -0.03 0.39 0.03 0.23 0.04 0.25
Unfavorable food stores without -0.02 0.38 -0.02 037 0.01 0.40 0.02 0.24
alcohol density
Unfavorable food stores with -0.03  0.26 -0.05 0.14 0.02 0.26 0.03 0.25
alcohol density
Favorable food stores density -0.08  0.45 -0.11 0.31 0.02 0.83 -0.01 0.84
Total physical activity -0.07 0.36 -0.05  0.58 0.03 0.65 0.05 0.58
destinations density
Total social engagement -3.16E-03  0.29 -3.59E-03  0.35 1.59E-03 0.49 3.46E-03 0.24
destinations density
Total popular walking destination -3.75E-03  0.71 -2.49E-03  0.84 0.01 0.38 0.01 0.25
density
Alcoholic drinking places density -0.01 0.78 0.01 0.89 1.86E-03 0.99 0.03 0.52
Total stores density -1.47E-03  0.49 -2.80E-03  0.36 7.55E-04 0.66 2.90E-03 0.21
Total food stores density -5.15E-03 0.63 -3.80E-03 0.77 2.21E-03 0.78 8.61E-03 0.37
Modified Retail Food -0.10 0.73 -0.13 0.69 0.17 0.41 0.08 0.74
Environment Index with alcohol
Modified Retail Food -0.02  0.93 -0.05 0.85 0.10 0.58 0.03 0.90
Environment Index without
alcohol

Model 1a: cognitive function = neighborhood characteristic + age at measurement + PC1-4 + sex + education + smoking
status + familial relatedness (random effect)

Model 2a: cognitive function = Model 1a + neighborhood socioeconomic disadvantage + census tract population density
(random effect) + census tract (random effect)

Model 1b: WMH = Model 1a + total intracranial volume
Model 2b: WMH = Model 2a + total intracranial volume
*P<0.05
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Table 3-5. Associations between simple density of neighborhood destinations per square
mile for 1-mile buffer size and cognitive measures (Model 2a; N=477)

Neighborhood characteristics DSST COWA-FAS RAVLT TMTA

B P B P B P B P
Fast food destination density -0.39 0.45 0.27 0.63 0.10 0.57 0.05 0.04*
Unfavorable food stores without
alcohol density -0.17 0.55 -0.19 0.52 0.13 0.18 0.02 0.19
Unfavorable food stores with
alcohol density -045 0.28 -0.07 0.87 001 094 0.04 0.04*
Favorable food stores density -1.46  0.30 0.20 0.89 -0.31 0.52 0.12 0.08
Total physical activity destinations
density -1.07 0.39 -1.18 0.37 044 0.30 0.05 0.38
Total social engagement
destinations density -0.06 0.26 -0.03 0.61 0.02 0.25 2.14E-03 0.36
Total popular walking destination
density -0.05 0.77 0.02 0.88 0.09 0.09 0.01 0.20
Alcoholic drinking places density 0.16 0.85 -0.93 0.28 0.62 0.03* -3.11E-03  0.94
Total stores density -0.05 0.19 -0.02 0.67 0.02 0.24 1.44E-03 0.44
Total food stores density -0.01 0.95 -0.11 0.53 0.10 0.07 001 041
Modified Retail Food Environment
Index with alcohol -3.56 0.36 415 0.32 -0.64  0.65 020 0.28
Modified Retail Food Environment
Index without alcohol -3.29 0.36 443 0.25 055 0.66 020 0.21

Abbreviations: DSST, Digit Symbol Substitution Test; COWA-FAS, Controlled Oral Word Association Test;

RAVLT, Rey Auditory Verbal Learning Test; TMTA, Trail Making Test A

Model 2a: neurocognitive measure = neighborhood characteristic + age at measurement + PC1-4 + sex +
education + smoking status + neighborhood socioeconomic disadvantage + census tract population density +
familial relatedness (random effect) + census tract (random effect)

*P<0.05
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3.9 Figures

Figure 3-1. Directed acyclic graph (DAG) of the hypothesized associations for the
epigenetic mediation between neighborhood characteristics (exposures) and
cognitive/\WMH outcomes.

(a) ‘ w y .
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Hypotheses tested for total effect models:

Ho: w=0
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(outcome)
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‘\ Confounders (C] //

Hypotheses tested for mediation models:
Ho: B;ﬁ'c =0
Ha: 5/ 55 Z0

Directed acyclic graph (DAG) of the hypothesized associations for the epigenetic mediation
between neighborhood characteristics (exposures) and cognitive/WMH outcomes. (a) The total
effect associations between neighborhood characteristic (X) and cognitive function/WMH (Y). w
is the effect estimate of the neighborhood characteristic on cognitive function/WMH. (b) The
mediation effect obtained through the cross-product-based mediation approach obtained by
multiplying the exposure-mediator effect (51) and the mediator-outcome effect (fs).
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Figure 3-2. Distributions of cognitive and structural brain measures
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Distributions of cognitive and structural brain measures. (a) General cognitive function, (b) Digit
symbol substitution test, (c) Trail making test A, (d) Rey auditory verbal learning test, (e)
Controlled oral word association test and (f) Log-transformed white matter hyperintensity
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Figure 3-3. Quantile-quantile plots for the epigenetic mediation of the associations between
neighborhood characteristics and cognitive function.
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Quantile-quantile (QQ) plots for the epigenetic mediation of the associations between
neighborhood characteristics and cognitive function. QQ plots for the Sobel-Comp mediation
hypothesis testing method with N=477 observations. The exposures are simple densities per
square mile for 1-mile buffer sizes, the outcomes are neurocognitive measures, and the mediators
are 857,121 CpG sites. The exposure — outcome models tested are as follows: (a) alcohol
drinking places density — RAVLT, (b) fast food destination density — TMTA, and (c) unfavorable
food stores (with alcohol) density — TMTA. Mediation models are adjusted for age, sex,
education, smoking status, first four principal components, neighborhood socioeconomic
disadvantage, and census tract population density, with family and census tracts as random
effects.
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3.10 Supplementary Methods

General cognitive function
The following four cognitive domains were evaluated a year after Phase 1, on average, as
part of GMBI:12

1. The Weschler Adult Intelligence Scale-Revised: Digit Symbol Substitution Test (DSST)
measured complex visual attention, sustained and focused concentration, response speed and
visuomotor coordination. The DSST measures executive function of working memory.2 In
this test, participants matched symbols to numbers according to a key located at the top of the
page. The DSST score comprised the number of symbols correctly matched within 90
seconds. Scores ranged from 3 symbols to 88 symbols correctly matched within 90 seconds.

2. The Controlled Oral Word Association Test (COWA-FAS) tested for verbal fluency
(phonetic association) and language. This test requires participants to name as many animals
as possible that start with the letters F, A, and S in 1 minute. The score consisted of the total
number of admissible animal names generated.

3. The Rey Auditory Verbal Learning Test (RAVLT) measured delayed recall, relating to the
cognitive functions of new learning, immediate memory span and vulnerability to
interference in learning and recognition memory. Its score was determined by the number of
words recalled after a 30-minute delay. Scores ranged from 0 to 15.

4. The Trail Making Test A (TMTA) evaluated visual conceptual tracking as participants need
to connect a set of 25 circles quickly and accurately. TMTA provides information on the

cognitive functions of visual search, scanning, processing speed and executive functions. The
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natural logarithm of seconds to completion for the task was used and recoded so that higher

scores indicate better cognitive function. The maximum was 240 seconds to complete.

Neighborhood environment exposures
1. GIS-based measures

Population densities of recreational, social, and healthy food environments were derived
from GIS® data using Dun and Bradstreet data as compiled by Walls and Associates in the
National Establishment Series (NETS) database® for 1996-2015. Addresses were geocoded using
the TeleAtlas EZ-Locate web-based geocoding software (Tele Atlas North America, Inc.,
Lebanon, New Hampshire). NETS yearly datasets were categorized based on Standard Industrial
Classification (SIC) codes. Densities per square mile were created for 0.5-,1-, and 3-mile buffers
around the home addresses of GENOA participants at Phase | using ArcGIS V.9.3 (ESRI, Inc.,
Redlands, California).”® Densities were calculated using two approaches: 1) simple densities per
square mile within the buffer region and 2) kernel densities per square mile within the buffer
region, with greater weighting towards resources located closer to the home of a participant.
Total density scores by category were created by adding together densities from each type of
establishment.

For each participant, we estimated the densities for the following destinations: fast-food
restaurants (chain and non-chain), total physical activity facilities, total social engagement
destinations, and alcohol outlets. Summary density measures were also created for densities of
unfavorable food stores (with and without alcohol), healthy (favorable) food stores, popular

walking destinations, total stores, and total food stores.
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Fast food restaurants are places that specialize in low preparation time foods that are
eaten cafeteria-style or take-away (SIC #581203, except for coffee shops (#58120304)). Physical
activity facilities measure was created using 114 SIC codes consisting of the recreational and
physical activity establishments such as indoor conditioning, dance, bowling, golf, team and
racquet sports, and water activities derived from lists used in previous studies.!''? Healthy food
availability was defined using healthy food stores such as fruit and vegetable markets (SIC
#5431) and supermarkets (grocery stores (SIC #5411) with at least $2 million in annual sales or
at least 25 employees or name being on standardized supermarket chain name lists as described
in other studies).'® Social engagement destinations, consisting of places which promote social
interaction, were derived from 430 SIC codes based on previous work.#®> These SIC codes
include locations such as beauty shops and barbers, sports entertainment, exercise facilities,
amusements, libraries, museums and art galleries, religious organizations, eating and dining
places. Alcohol outlets were identified as liquor stores and on-site drinking places (restaurants
and nightclubs/bars).

Categories for favorable food stores consisted of supermarkets (chain and non-chain) and
fruit and vegetable markets. Unfavorable food stores (without alcohol) included convenience
stores, bakeries/nuts/candy/ice cream stores, and fast-food restaurants (chain and non-chain).
Unfavorable food stores with alcohol included alcohol outlets. Popular walking destinations were
created from six different categories including postal service, drug stores and pharmacy, banks
and credit unions, food stores (non-beverage), eating and dining places (non-beverage) and
drinking places (non-alcoholic). Total stores variable was created by summing food stores,

recreational facilities, popular walking destinations (non-food- and food-based), and social
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engagement (non-food- and food-based). Total food stores variable was calculated from the sum
of favorable food stores, neutral food stores, unfavorable food stores and other eating places.

The modified retail food environment index (MRFEI) measured the number of healthy
and less healthy food retailers within census tracts across states, based on typical food offerings
in specific retail stores.'® The MREI was a proportion calculated as the number of favorable food
stores divided by the total of favorable and unfavorable stores (with and without alcohol outlets).
The MRFEI represents the proportion of all food retailers in a given census tract that are healthy
and ranges from 0 or “food desert” (e.g., no healthy food vendors) to 1 or “healthy” food vendors

only. MRFEI variables were calculated for 0.5-, 1- and 3-mile buffer regions.

2. Census-based measures

Neighborhood socioeconomic disadvantage was assessed using data collected in the 2000
U.S. Census,"*8 American Community Survey (ACS) 2005-2009,'° and ACS 2007-2011%°
estimates. Data was linked to GENOA participant data (Phase I; 1995-2000) by Census tract
using Census and ACS estimates for the closest time period. A composite index was previously
developed using factor analysis to determine which socioeconomic indicator variables from the
Census can be meaningfully combined into a summary score. Six variables representing the
dimensions of wealth and income (log of the median household income; log of the median value
of housing units; and percent of household with interest, dividend or net rental income),
education (the percentage of adults 25 years of age or older who had completed high school and
the percentage of adults 25 years of age or older who had completed college (i.e., Bachelor’s
degree)), and occupation (the percentage of employed persons 16 years of age or older in

executive, managerial or professional specialty occupations) were used to characterize

145



neighborhood socioeconomic disadvantage for each census tract.?* Z-scores for each census tract
were estimated for each variable, and neighborhood socioeconomic disadvantage was defined as

the sum of Z-scores from the six variables, with higher scores indicating more disadvantage.
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3.11 Supplementary Material

Table S3-6. Pearson’s correlations among the cognitive/ WMH outcomes (N=466)

General cognitive function RAVLT DSST COWA-FAS TMTA WMH
General cognitive function 1
RAVLT 0.597*** 1
DSST 0.897***  (0.425*** 1
COWA-FAS 0.670*** 0.214**  0.483*** 1
TMTA 0.792***  (0.290***  0.681*** 0.304*** 1
WMH -0.335***  -0.276***  -0.322*** -0.119  -0.272*** 1

Abbreviations: RAVLT: Rey Auditory Verbal Learning Test; DSST: Digit Symbol Substitution Task; COWA-
FAS: Controlled Oral Word Association Test; TMTA: Trail Making Test A; WMH: White Matter Hyperintensity
* p<0.05, **p<0.01, ***p<0.001
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Table 3-7. Pearson’s correlations among neighborhood socioeconomic disadvantage and
neighborhood simple density measures per square mile for 1-mile buffer size (N=542)

Unfavor Unfavor Total
Fast  -able -able Favor- Total social Total MR-
Neighborhoo Food food food able  physical engage- popular Alcohol Total FEI
Neighbor- d -Socio- destin- stores stores food activity ment walking  -ic food with
hood economic ation  without with stores destinate destinate destinate drinking Total stores MRFEI out
characterist-  Dis- den-  alcohol alcohol densit -ions -ions -ion places  stores densit with alco-
ics advantage sity density  density 'y density  density density  density density y alcohol hol
Neighborhood 1.00
Socio-
economic
Disadvantage
Fast Food -0.20 1.00
destination *k
density
Unfavorable 0.33 0.60 1.00
food stores *kk kkk
without
alcohol
density
Unfavorable -0.21 0.93 0.56 1.00
food stores *kk Kk Hkk
with alcohol
density
Favorable 4,00E-3 037 0.15* 0.37 1.00
food stores *kk Kok
density
Total physical 0.14* 0.26 0.34 0.18 0.44 1.00
activity *kk *kk Kk Kkk
destinations
density
Total social 0.56 0.38 0.68 0.34 0.40 0.56 1.00
engagement KKk *kk KKk *kk KKk KKk
destinations
density
Total popular 0.19 0.59 0.52 0.65 0.47 0.49 0.72 1.00
Walking *% Fkk Fkok Fkk Fkok Fkk Kkk
destination
density
Alcoholic 0.54 -0.05 0.72 -0.16* -0.11 0.27 0.52 0.08 1.00
drinking Hodkk Hodkok Hodk Fokk
places density
Total stores -1.00E-3 0.23 -0.05 0.24 0.92 0.38 0.30 036 -024 1.00
density Fkk Fkk *hk *hk Fkk Fkk *hk
Total food 0.17 0.18 0.13* 0.15* 0.89 0.41 0.43 0.40 0.05 091 1.00
Stores density ** * % *kk *kk *k*k *kk *k*k
MRFEI with 0.55 0.39 0.68 0.37 0.43 0.55 0.99 0.77 0.49 032 045 1.00
alcohol Kk Hkk Fkk Fkk Hkk Kk *kk Hkk Kk *kk Hkk
MRFEI 0.45 0.43 0.84 0.43 0.18 0.45 0.78 0.76 0.64 004 024 0.78 1.00
W|th0ut *k*k *kk *k*k *kk ** *k*k *kk *kk *k*k *kk *kk
alcohol

Abbreviations: MRFEI, Modified Retail Food Environment Index

* p<0.05, **p<0.01, ***p<0.001
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Table S3-8. Associations among neighborhood socioeconomic disadvantage and

neighborhood simple density measures per square mile for 1-mile buffer size after
adjusting for census tract population density (N=542)

Total

Total

Neigh- Unfav. Unfav Favor hysi Total on- Alcoh Tota
Neighbor- borhood  Fast food food ' -able Ealy social Elapr -olic Total | MR-
hoo?j Socio- Food  stores stores food activ €90 ik drink- stores food FEI MRFEI
character- economi  dest. withou with stores it ement -in ing dens- store  with  without
o ¢ Dis- densi  t . Y dest. Y places . alco  alcohol
istics alcohol  densit  dest. dest. ity
advanta ty alcohol . . Den- . dens- dens  hol
- density y densi - densi . .
ge density sity ity ity
ty ty
Neighborhood 1.00
Socio-
economic
Disadvantage
Fast Food -0.02 1.00
dest. density Hokk
Unfav. food 0.68  0.29* 1.00
stores without wokk o
alcohol
density
Unfav. food 0.92 -0.05 0.68 1.00
stores with wokk el
alcohol
density
Favorable 0.38  0.14* 0.14 0.39 1.00
food stores *kk * *kKk *kk
density
Total physical 0.36  0.11* 0.36 0.28 0.43 1.00
activity dest *kk *kKk *kk *kk
density
Total social 0.52  0.39* 0.71 0.52 0.40 0.59 1.00
engagement *kk ** *kKk *Khk *hKk *hk
dest. density
Total popular 0.68 0.06 0.58 0.75 0.49* 0.52 0.74 1.00
Walk'ng dest *hk *kk *kk *k KKk k=
density
Alcoholic 0.11*  0.42* 0.74 0.02 -0.15 0.26 0.51 0.11* 1.00
d”nklng *% *kk *k KKk k=
places density
Total stores 0.53  0.36* 0.70 0.55 0.44  0.59* 0.99 0.79 0.47 1.00
dEnSIty *hk *% *kk KKk *kk *x k= *kk k=
Total food 0.60  0.29* 0.89 0.61 0.19 0.43  0.78** 0.77 0.65 0.78 1.00
stores dens|ty *hk *% *kk KKk *kk *kk * *kk k= KKk
MRFEI with 0.17  0.16* -0.12* 0.15 0.86* 0.33*  0.23** 0.28 -0.28 0.25 -0.03 1.00
alcohol *hk *% *kk *% *k * *kk *kk KKk
MRFEI 0.16  0.25* -0.01 0.12* 0.85* 0.32* 0.28** 0.31* -0.12* 0.30 0.09 0.94 1.00
WIthOUt *hk *% *% *k * *% KKk *kk
alcohol

Abbreviations: unfav., unfavorable; dest., destinations; MRFEI, Modified Retail Food Environment Index
* p<0.05, **p<0.01, ***p<0.001
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Table S3-9. Pearson’s correlations among neighborhood socioeconomic disadvantage and

simple and kernel densities per square mile for 1-mile buffer size (N=542)2

Kernel density measures

Unfav.
food Fav Total MRF
stores  Unfav.  or- Total popul  Alcoho El
Neigh- withou  food able  Total social ar lic Tot Total MRFE with
borhood Fast t stores food physical engage walki  drinkin al food lwith  out
character- Food alcoho  with stor  activity ment ng g stor store alcoho alcoh
istics dest. | alcohol  es dest. dest. dest. places  es s | ol
0.78 0.46 0.77 034 0.23 0.34 0.48 -0.04 02 0.14* 035 0.30
Fast Food *kk *khk *kk *kk *kk *kk *kk l *kk *kk
dest. ookl
0.59 0.86 0.56 0.05 0.38 0.72 0.49 0.68 - -004 071  0.73
Unfav. food Kk *kk —— *kk Kk ke *kk 0.1 Kk Kk
stores without 0
alcohol)
0.69 0.38 0.78 0.35 0.10 0.25 048 -0.16* 0.2 0.18 0.27  0.26
Unfav fOOd *kk *kk *kk *kk *kk *kk 5 ** *kk *kk
stores with e
alcohol
0.30 0.09 031 0.70 0.27 0.29 033 -0.14* 07 0.68 0.32  0.09
Favorable *kk *khk *kk *kk *kk *kk 1 *kk *kk
food stores el
I 0.20 0.27 0.14* 0.26 0.72 0.47 0.35 028 02 024 047 032
Tr?ta I *% *kk *kk *kk *k*k *k*k *kk 5 *kKk *k*k *k*k
pnysica -
. _activity dest.
2 0.30 0.53 024 0.22 0.42 0.87 0.59 052 01 029 088  0.63
§ Total soc|a| *kk *kk *kk *kk *kk *kk *kk *kk 9 *kk *kk *kk
*x
£  engagement
2 _dest.
S 0.37 0.33 039 0.37 0.18** 0.50 0.78 009 03 041 056  0.56
S Total popular *k*k *kk KKKk *kk *k*k *k*k 2 *kKk *k*k *k*k
TED- walking dest. falelel
> 0.14* 0.70 0.03 - 0.38 0.65 0.18 0.93 - -0.19 0.62  0.66
1 KKKk *kk *k*k *% *kk **x *k*k *k*k
Alcoholic 0.22 0.3
drinking il 1
places falaiel
0.16* -0.09 0.14* 0.67 0.18** 0.15* 0.23 -024 08 0.77 0.17 -0.03
*k*k *k*k *kk 2 *kKk *%
Total stores ool
021 012 0.16** 0.60 0.26 0.36 0.34 004 06 074 038 0.21
*kk Kk, *k*k *k*k *kk *kk *k*k *kk
Total food 9
stores falelel
030 0516 0.246 0.24 0.392 0.853 0.621 048 02 032 0868 0.62
*kk *kk KKk 8 *kk E *kk *kk 22 KKk *k*k 9
MRFEI Wlth *kk *kKk *k*k
alcohol
0.34  0.673 0.31 0.06 0.292 0.688  0.660 0.634 - 0128 0701 0.83
*k*k *khk *khk 4 *kk *k*k *kk *k*k 00 * *kh*k 9
MRFEI .
without 19
alcohol

a. Values with grey shading correspond to the correlations between kernel and simple densities per square mile for

1-mile buffer size

Abbreviations: unfav., unfavorable; dest., destinations; MRFEI, Modified Retail Food Environment Index
* p<0.05, **p<0.01, ***p<0.001
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Table S3-10. Associations between simple density of neighborhood destinations per square

mile for Y-, 1- and 3- mile buffer sizes and cognitive function/WMH

Neigh- General cognitive function White matter hyperintensity
borhood Buffer Model 2a Model 2b
character- Size Model 1a (N=542) (N=477) Model 1b (N=466) (N=404)
istics B p B P B P B P
1/2- 9.82E-
Fast Food mile -0.01 0.55 -0.01 0.61 04 0.95 -0.01 0.75
destination 1-mile -0.02 0.53 -0.03 0.39 0.03 0.23 0.04 0.23
density 9.56E-
3-mile 0.03 0.70 05 0.99 -0.10 0.10 -0.05 048
without 1-mile -0.02 0.38 -0.02 0.37 0.01 0.40 002 024
alcohol -4.72E-
density 3-mile -0.02 0.69 -0.04 0.40 -0.03 0.32 03 001
1/2- -8.83E-
Unf bl :
fan BN mile -0.02 0.28 2002 028 001 058 04 095
with alcohol ~ 1-mile -0.03 0.26 -0.05 0.14 0.02 0.26 003 024
density 3-mile 0.01 0.89 -0.01 0.86 -0.05 0.19 002 072
1/2-
Favorable mile 0.03 0.57 0.02 0.69 -0.01 0.90 -0.01 0.79
g‘é‘r’]‘iif;‘”es 1-mile 008 045 011 031 002 083 001 090
3-mile -0.04 0.85 -0.12 0.68 -0.13 0.46 9.32E-04  0.99
Total 1/2- 3.58E-
physical mile -0.02 0.59 -0.01 0.91 03 0.92 -0.05 0.19
activity 1-mile -0.07 0.36 -0.05 0.58 0.03 0.65 0.05 053
destinations -4.34E-
density 3-mile 0.01 0.96 03 0.98 -0.15 0.23 -0.03 083
1/2- -2.02E- -1.91E- -4.65E- -5.88E-
Total social mile 03 0.27 03 0.40 04 0.75 04 0.74
engagement -3.16E- -3.59E- 1.59E-
destinations 1-mile 03 0.29 03 0.35 03 0.49 3.46E-03 0.24
density -4.13E- -1.57E-
3-mile 03 0.39 -0.01 0.25 03 0.67 1.14E-03 0.81
1/2- -1.39E- 6.43E- 1.11E- -1.56E-
Total popular  mile 03 0.82 05 0.99 03 0.81 03 0.78
walking -3.75E- -2.49E-
destination 1-mile 03 0.71 03 0.84 0.01 0.38 001 0.25
density -3.79E- -2.14E-
3-mile 03 0.47 -0.01 0.63 -0.01 0.38 03 088
1/2- 9.17E-
Alcoholic mile -0.02 0.50 -0.01 0.65 04 0.96 3.21E-03 0.88
drinking 1.86E-
places density  1-mile -0.01 0.78 0.01 0.89 03 0.96 0.03 053
3-mile -0.40 0.12 -0.71 0.03* 0.04 0.85 0.08 074
Total stores 1/2- -9.52E- -1.67E- -8.86E- -4.61E-
density mile 04 0.48 03 0.38 04 0.41 04 0.75
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Total food
stores density

Modified
Retail Food
Environment
Index with
alcohol

Modified
Retail Food
Environment
Index without
alcohol

1-mile

3-mile
1/2-
mile

1-mile

3-mile
1/2-
mile

1-mile
3-mile

1/2-
mile

1-mile

3-mile

-1.47E-
03
-1.31E-
03
-4.19E-
03

-0.01
-4.73E-
03

0.20
-0.10

-0.22

0.34
-0.02

-0.07

0.49

0.68

0.47

0.63

0.82

0.54
0.73

0.66

0.25
0.93

0.88

-2.80E-
03

-0.01
-2.84E-
03
-3.80E-
03

-0.02

0.10
-0.13

-0.17

0.26
-0.05

-0.01

0.36

0.23

0.67

0.77

0.51

0.78
0.69

0.82

0.40
0.85

0.99

7.55E-
04
-1.08E-
03
-4.58E-
04
2.21E-
03

-0.02

0.14
0.17
3.28E-
04
0.06
0.10

0.16

0.66

0.67

0.92

0.66

0.33

0.51
0.41

0.99

0.74
0.58

0.64

2.95E-03

1.26E-03
-6.68E-
04

0.01
-3.81E-
03

0.20
0.08

0.27

0.11
0.03

0.30

0.21

0.72

0.90

0.38

0.85

0.39
0.71

0.61

0.59
0.88

0.53

Model 1a: Cognitive function = age at measurement+ PC1-4+ sex+ education+ smoking status + family (random effect)

Model 1b: WMH = Model 1a + total intracranial volume

Model 2a: Cognitive function = Model 1a + neighborhood socioeconomic disadvantage + census tract population density + family
(random effect) + census tracts (random effect)

Model 2b: WMH = Model 2a + total intracranial volume

*P<0.05
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Table S3-11. Associations between simple density of neighborhood destinations per square
mile for %-, 1- and 3- mile buffer sizes and cognitive measures (N=477)

_ COWA-
Neighborhood Buffer DSST FAS RAVLT TMTA
characteristics Size
B P B P B P B P
1/2- mile -0.25 0.37 0.01 0.97 0.09 0.34 0.02 0.11
Fast Food destination _ 0.04
density 1-mile 039 0.45 027 0.63 010 057 0.05 *
3-mile 0.17 0.90 0.61 0.66 0.42 0.37 0.02 0.74
Unfavorable food Yo- mile -0.16  0.24 017 025 005  0.29 001 0.07
stores -
without alcohol density ~ 1-mile -0.17 055 019 052 013 0.8 002 0.9
3-mile -0.50 0.47 -0.4 0.58 0.11 0.63 0.03 0.32
- -4 54E-
Y- mile -0.25 0.27 0.04 0.86 03 0.95 0.02 0.07
Unfavorable food i 0.04
stores . 1-mile 045 0.8 0.07 0.87 001  0.94 0.04 *
with alcohol density i
3-mile 0.01 0.99 0.43 0.64 0.27 0.37 0.02 0.63
1/2- mile 0.65 041 0.92 0.28 -0.04 0.89 0.02 0.60
ga"o.rab'e food stores 4 _ije 146  0.30 0.2 0.89 031 052 012 008
ensity )
3-mile -0.62 0.87 259 051 0.39 0.76 0.08 0.66
1/2- mile -0.49 047 0.62 0.38 0.08 0.73 -0.02 0.48
Total physical activity -
destinations density 1-mile -1.07 0.39 1.18 0.37 0.44 0.30 0.05 0.38
3-mile 054 0.84 1.23 0.66 1.28 0.16 0.04 0.76
. 1/2- mile -0.03 0.24 0.04 0.23 0.01 0.27 1.23E-03 0.35
Total social )
engagement 1-mile -0.06  0.26 0.03 061 002 025 000 0.36
destinations density i
3-mile -0.07 041 0.07 042 0.01 0.78 3.87E-03 0.32
1/2- mile 497E-03 0.96 0.09 041 0.05 0.13 3.92E-03 0.35
Total popular walking )
destination density 1-mile -0.05 077 002 088 009  0.09 001 0.20
3-mile -0.04 0.88 0.14 0.59 0.06 0.49 0.01 0.50
- 4,75E
1/2- mile -0.27 0.46 0.44 0.27 0.25 -02* 0.01 0.56
Alcoholic drinking - -3.11E-
places density 1-mile 0.16 0.85 093 0.28 0.62 0.03* 03 094
0.03 - 0.04
3-mile -9.57 * 233 0.61 -0.80 0.59 0.42 *
1/2- mile -0.03 0.21 0.03 0.24 0.01 0.29 9.66E-04 0.38
Total stores density 1-mile 005 019 002 067 002 024  144E-03 044
3-mile -0.07 0.28 0.05 041 0.01 0.76 2.16E-03 0.46
Total food stores - 4.83E
density 1/2- mile -0.03 0.74 0.14 0.14 0.06 -02* 4.73E-03 0.22
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Modified Retail Food
Environment Index
with alcohol

Modified Retail Food
Environment Index
without alcohol

1-mile
3-mile
1/2- mile

1-mile

3-mile
1/2- mile

1-mile

3-mile

-0.01
-0.17

421
-3.56

0.26
531
-3.29

0.20

0.95
0.63
0.35
0.36

0.98
0.18
0.36

0.98

0.11
-0.2
5.87
4.15

6.93
6.2
4.43

0.91

0.53
0.60
0.21
0.32

0.45
0.14
0.25

0.91

0.10
0.07
-0.69
-0.64

1.33
0.07
0.55

0.62

0.07
0.56
0.63
0.65

0.64
0.96
0.66

0.81

0.01
0.01
0.14
0.20

0.12
0.07
0.20

0.06

0.41
0.42
0.53
0.28

0.77
0.72
0.21

0.86

Abbreviations: DSST, Digit Symbol Substitution Test; COWA-FAS, Controlled Oral Word Association
Test; RAVLT, Rey Auditory Verbal Learning Test; TMTA, Trail Making Test A.

Model 2a: cognitive measure = age at measurement + PC1-4 + sex + education + smoking status +

neighborhood socioeconomic disadvantage + census tract population density + family (random effect) +

census tracts (random effect)

*P<0.05
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Table S3-12. Associations between kernel density of neighborhood destinations per square

mile for Y-, 1- and 3- mile buffer sizes and cognitive function/WMH

Neighbor- General cognitive function White matter hyperintensity
hood Buffer Model 1a Model 2a Model 2b
character- Size (N=542) (N=477) Model 1b (N=466) (N=404)
o
ISUICS B p B p B p B p
1/2- 4.35E-
FastFood  mile 001 068 03 077 001 054 001  0.46
ggffs‘ﬂ;“"” 1-mile 003 031 004 022 001 057 001 062
3-mile -0.05 044 -0.10  0.20 -1.83E-03 0.7 0.04 045
Unfavor- 1/2- -1.52E- -7.92E-
ablefood  mile 03 084 04 092 5.75E-04  0.92 -1.38E-03  0.82
\S,\tlftfjut 1-mile 001 025 002 0.26 001 057 001 0.3
alcohol
density 3-mile 004 026 -0.06  0.14 -2.68E-03  0.92 002 046
Unfavor- 1/2- -2.05E- -1.71E-
able food  mile 03 086 03  0.89 2.22E-04  0.98 -2.70E-03  0.77
Stores with 1 nije 003 022 003 016 001 0.8 001 042
alcohol
density 3-mile -0.04 0.36 -0.07 0.8 -2.24E-03  0.95 0.03 043
1/2- -3.47E-
Favorable  mile 002 068 03 093 001 075 001 0.70
LOOd.Stores 1-mile 004 058 010 025 001 085 001 090
ensity
3-mile 018 0.32 031 0.5 -3.02E-03  0.98 0.07 0.64
Total 1/_2'
physical mile 003 033 004 028 002 051 -0.02 0.8
activity ) -4.32E-
destinations  1-mile 002 080 03 095 2.18E-03  0.96 004  0.42
density 3-mile 017 0.22 022 0.19 0.03 076 0.06 0.63
1/2- 8.09E-
Total social ~ mile 5.47E-04  0.68 04 059 3.76E-06  1.00 1.91E-05  0.99
engagement -2.53E- -3.37E-
destinations  1-mile 03 028 03 025 483E-05  0.98 4.20E-04 0.85
density -4,79E-
3-mile 03 023 001 0.10 1.09E-04  0.97 2.00E-03  0.58
Total 1/2- 2.24E-
popular mile 1.30E-03  0.78 04 097 175E-03  0.65 -344E-03  0.42
walking ) -3.50E-
destination  1-mile 03 066 001  0.56 227E-03 071 2.75E-03  0.71
density 3-mile 001 038 -0.02 0.8 -2.08E-03  0.84 001 054
. 1/2-
Alcoholic— j) 001  0.76 001 070 127E-03  0.93 001 074
drinking
places 1-mile 002 068 001  0.82 001 078 001  0.87
densit .
Snsty 3-mile 012 033 014 043 003 0.80 001 095
1/2- 5.97E-
mile 461E-04  0.70 04  0.66 2.48E-05  0.98 -357E-05  0.97
Total stores -2.06E- -2.80E-
density 1-mile 03 031 03 028 1.14E-04  0.94 461E-04 0.82
-3.95E-
3-mile 03 024 001 0.10 6.11E-05  0.98 1.87E-03  0.55
1/2- 1.04E-
mile 1.35E-04  0.98 03 0.84 -1.86E-03 061 -257E-03 051
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Total food
stores
density
Modified
Retail Food
Environmen
t Index with
alcohol
Modified
Retail Food
Environmen
t Index
without
alcohol

1-mile

3-mile
1/2-
mile

1-mile

3-mile
1/2-
mile

1-mile

3-mile

-0.01
-0.02

0.34
-0.03
-0.31

0.51
0.04

-0.20

0.48
0.34

0.25
0.92
0.45

0.05
0.85

0.60

-0.01
-0.03

0.03
-0.14
-0.70

0.24
-0.08

-0.42

0.51
0.20

0.92
0.59
0.19

0.43
0.75

0.37

1.47E-04
-4.96E-03

0.17
0.18
0.12

0.15
0.09

0.19

0.98
0.71

0.38
0.32
0.69

0.40
0.59

0.49

2.36E-03
0.01

0.28
0.20
0.23

0.27
0.12

0.21

0.74
0.62

0.18
0.29
0.56

0.18
0.50

0.54

Model 1a: Cognitive function = age at measurement+ PC1-4+ sex+ education+ smoking status + family (random effect)
Model 1b: WMH = Model 1a + total intracranial volume

Model 2a: Cognitive function = Model 1a + neighborhood socioeconomic disadvantage + census tract population density +

family (random effect) + census tracts (random effect)
Model 2b: WMH = Model 2a + total intracranial volume

*P<0.05

158



Table 3-13. Associations between kernel density of neighborhood destinations per square
mile for %-, 1- and 3- mile buffer sizes and cognitive measures (N=477)

Neighbor

DSST COWA-FAS RAVLT TMTA

-hood Buffer —_—

character Size

-istics B P B P B P B P

Fast 1/2-

Food mile -0.13  0.49 020 0.33 011  0.08 001 0.14

:;ztr']“' 1-mile -0.49 0.20 0.04 093 008 052 0.05 0.01*

density  3-mile -1.16  0.23 010 092 -0.04  0.90 0.08  0.09

Unfavor- 1/2-

able food mile -0.07 050 0.05 067 0.07 005 001 0.3

stores I-mile  -0.15 0.44 -0.15  0.48 008  0.19 002 0.03*

(without

alcohol)

density  3-mile 071  0.19 027 064 006 074 0.04 0.11

Unfavor- 1/2-

able food mile 015 032 016 0.33 005 0.34 001 0.14

?\tl\‘l’iﬁs 1-mile 035 0.24 -0.03 092 003 0.78 0.04 0.01*

alcohol)

density  3-mile -0.80 0.23 026 0.72 002 092 005 0.12
1/2-

eFaf‘éggab' mile 013 0.80 029 062 007 070 002 047

stores 1-mile -0.76  0.49 -0.06 0.96 043 025 0.08 0.1

density 3 mile 268 0.32 -1.35  0.64 -1.05  0.26 0.14 0.30

Total 1/2-

physical ~ mile -0.09 085 024  0.65 024 013 001 051

actvity g mile 063 0.52 040 070 039 0.3 0.0l 0.89

destin-

ations

density  3-mile -3.30 0.3 259 027 076 031 015 0.15

Total 1/2- 9.26E-

social mile -0.01 0.54 001 068 0.02 0.01* 04 0.29

engage- 3.24E-

ment 1-mile -0.05 023 004 032 002 012 03 0.7

destin-

ations 1.44E 4.38E-

density  3-mile -0.09 0.6 -0.07 031 03 0.95 03 0.8

Total 1/2-

popular mile -0.03 0.68 001 0091 0.04 0.07 0.01 0.04*

walking 1 e 003 078 008 055 007 008 0.01 0.03*

destin-

ation

density  3-mile 021 031 021 035 003  0.69 001 017

'CA"COhO" 1/2- 1.03E

drinking  Mile 04 1.00 0.05 0.85 0.24 0.01* 001 046

places 1-mile -0.07 0.90 056 0.34 037  0.06 001 0.61

density 3 e -1.55 0.48 -1.36 056 028 073 0.06 0.60
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Total
stores
density

Total
food
stores
density

MRFEI
with
alcohol

MRFEI
without
alcohol

1/2-
mile

1-mile

3-mile
1/2-
mile

1-mile

3-mile
1/2-
mile

1-mile

3-mile
1/2-
mile

1-mile
3-mile

-0.01

-0.04

-0.07

-0.01
-0.02
-0.28

2.51
-3.75
-6.17

4.86
-3.20
-341

0.56

0.28

0.17

0.85
0.86
0.33

0.54
0.25
0.36

0.19
0.30
0.57

0.01

-0.03

-0.06

0.01
-0.13
-0.23

4.54
3.10
-7.32

6.06
3.77
-3.16

0.69

0.35

0.32

0.94
0.31
0.45

0.29
0.39
0.30

0.14
0.26
0.61

0.02

0.02
1.83E
-03
0.05
0.08
0.05

-1.08
-0.97
-1.40

-0.59
-0.31
-0.99

0.01*

0.10

0.92

0.03*
0.05
0.60

0.42
0.41
0.53

0.63
0.77
0.62

1.09E-
03
2.95E-
03
3.69E-
03
4.61E-
03

0.01
0.02

0.04
0.08
0.27

-0.02
0.09
0.18

0.17

0.06

0.17

0.10
0.04*
0.16

0.83
0.61
0.40

091
0.54
0.53

Abbreviations: DSST, Digit Symbol Substitution Test; COWA-FAS, Controlled Oral Word Association Test;

RAVLT, Rey Auditory Verbal Learning Test; TMTA, Trail Making Test A; MRFEI, Modified Retail Food
Environment Index

Model 2a: cognitive measure = age at measurement + PC1-4 + sex + education + smoking status + neighborhood
socioeconomic disadvantage + census tract population density + family (random effect) + census tracts (random

effect)
*P<0.05
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Figure 3-4. Flow diagram illustrating sample sizes for neighborhood density and
neighborhood socioeconomic disadvantage analyses for cognitive measures in GENOA
African Americans.

African American (AA) individuals who underwent a battery of
neurocognitive tests (n=1010)

Exclude participants with missing neurocognitive tests
data for The Digit Symbol Substitution Test, The Rey
Auditory Learning Test, The Controlled Oral Word
Association Test, and The Trail Making Test A (n = 93)

AA individuals with complete neurocognitive test data (n=917)

Exclude participants with missing EPIC (methylation)
array data (n = 207)

AA individuals with complete neurocognitive test data, available
methylation data at Phase 1, and phenotype data
(n=710)

Exclude participants with exclusion criteria:
History of stroke (n=31)

Preliminary evidence of dementia (n = 38)
Age less than 45 years (n=28)

AA individuals with complete neurocognitive tests, methylation
data, and phenotype data that fit inclusion criteria (n= 613)

Exclude participants with missing first four genetic
principal components (PCs; n=71)

AA individuals with complete neurocognitive tests, methylation
——l data, and phenotype data that fit inclusion criteria, genetic PCs,
and neighborhood density measures (n = 542)

Exclude participants with missing neighborhood
socioeconomic disadvantage measures (n = 65)

AA individuals with complete neurocognitive tests, available
methylation data at Phase 1, phenotype data, genetic PCs,
——l neighborhood density measures, neighborhood socioeconomic
disadvantage and census measures

(n=477)

Flow diagram illustrating sample sizes for neighborhood density and neighborhood
socioeconomic disadvantage analyses for cognitive measures in GENOA AA.

Flow diagram illustrating sample sizes for neighborhood density analyses (Model 1a, n=542;
blue arrow) and neighborhood socioeconomic disadvantage analyses (Model 2a, n=477; red
arrow) for cognitive measures in GENOA AA.

161



Figure 3-5. Flow diagram illustrating sample sizes for neighborhood density and
neighborhood socioeconomic disadvantage analyses for white matter hyperintensity in
GENOA African Americans.

African American (AA) individuals who had non-missing white
matter hyperintensity (WMH) measurements from MRI (n = 808)

Exclude participants with no lesion and structural
usage ("LEUKOSTRUCT"= NO excluded) (n = 14)

African American (AA) individuals with lesion and structural usage
(n=794)

Exclude participants with missing EPIC (methylation)
array data (n= 192)

AA individuals with complete WMH data, available methylation
data at Phase 1, and phenotype data
(n=602)

Exclude participants with exclusion criteria:
History of stroke (n=17)

Preliminary evidence of dementia (n = 23)
Age less than 45 years (n=17)

AA individuals with complete WMH, methylation data, and
phenotype data that fit inclusion criteria (n = 525)

Exclude participants with missing first four genetic
*| principal components (PCs; n = 59)

AA individuals with complete WMH data, available methylation
— data at Phase 1, phenotype data, genetic PCs and neighborhood
measures (n = 466)

Exclude participants with missing neighborhood
socioeconomic disadvantage and census measures
(n=62)

AA individuals with complete WMH data, available methylation
5 data at Phase 1, phenotype data, genetic PCs, neighborhood
density measures, neighborhood socioeconomic disadvantage
and census measures (n = 404)

Flow diagram illustrating sample sizes for neighborhood density and neighborhood
socioeconomic disadvantage analyses for white matter hyperintensity in GENOA AA. Flow
diagram illustrating sample sizes for neighborhood density analyses, (Model 1b, n=466; blue
arrow) and neighborhood socioeconomic disadvantage analyses (Model 2b, n=404; red arrow)
for white matter hyperintensity in GENOA AA.
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Chapter 4 . Multi-Ancestry Transcriptome-Wide Association Studies of Cognitive

Function, White Matter Hyperintensity, and Alzheimer’s Disease

4.1 Abstract

Genetic variants increase the risk of neurocognitive disorders in later life including
Vascular Dementia (VaD) and Alzheimer’s disease (AD), but the precise relationships between
genetic risk factors and underlying disease etiology are not well understood. Transcriptome-wide
association studies (TWAS) can be leveraged to better characterize the genes and biological
pathways underlying genetic influences on disease. To date, almost all existing TWAS have been
conducted using expression studies from individuals of a single genetic ancestry, primarily
European. Using the joint likelihood-based inference framework in Multi-ancEstry
TRanscriptOme-wide analysis (METRO), we leveraged gene expression data from European
(EA) and African ancestries (AA) to identify genes associated with general cognitive function,
white matter hyperintensity (WMH) and AD. Regions were fine-mapped using Fine-mapping Of
CaUsal gene Sets (FOCUS). We identified 266, 23, and 69 genes associated with general
cognitive function, WMH, and AD, respectively (Bonferroni-corrected alpha level =P<2.9x10°9),
some of which were previously identified. Enrichment analysis showed that many of the
identified genes were in pathways related to innate immunity, vascular dysfunction, and
neuroinflammation. Further, downregulation of ICA1L was associated with higher WMH and
with AD, indicating its potential contribution to overlapping AD and VaD neuropathology. To

our knowledge, our study is the first TWAS of cognitive function and neurocognitive disorders
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that used expression mapping studies in multiple ancestries. This work may expand the benefits
of TWAS studies beyond a single ancestry group and help to identify gene targets for

pharmaceutical or preventative treatment for dementia.

4.2 Introduction

Adult-onset dementia is comprised of a group of aging-related neurocognitive disorders
caused by the gradual degeneration of neurons and the loss of brain function. These changes lead
to a decline in cognitive abilities and impairment of daily activities and independent function. In
the United States, Alzheimer’s disease (AD), the most common cause of dementia, affects 6.8
million adults age 65 and older.! The second most common form of dementia is vascular
dementia (VaD), which often co-occurs with AD and is underdiagnosed.? VaD is often difficult
to distinguish from AD because these diseases share cognitive symptoms including noticeable
impairment in episodic and semantic memory. While AD and VaD often co-occur, each form of
dementia has differing pathophysiology that may precede the illness decades prior.

AD is characterized by aggregation of amyloid-beta protein and neurofibrillary tangles in
brain tissue,®* while VaD may be caused by reduced blood flow to the brain as a result of small
vessel disease (SVD) or stroke and is commonly seen in people with hypertension.> AD is
diagnosed based on a battery of memory tests, brain-imaging tests for degeneration of brain cells
and laboratory tests to assess the presence of amyloid and tau proteins in cerebrospinal fluid.®
SVD is primarily detected on magnetic resonance imaging (MRI) as white matter
hyperintensities (WMH). It has been hypothesized that vascular and neurodegenerative changes

in the brain may interact in ways that increase the likelihood of cognitive impairment. A further
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challenge in the field is distinguishing between individuals who are aging normally from those
with dementia pathology.

A greater understanding of the pathological processes that influence cognitive function in
older adults is critical for early intervention during the long preclinical or prodromal phase prior
to dementia onset, especially in vulnerable populations.”8 For example, individuals of African
ancestry (AA) have a greater burden of and risk for developing dementia compared to Non-
Hispanic Whites.® 2 Differences in gene expression, which are influenced by both genetic and
non-genetic factors, likely play a role in shaping racial/ethnic health disparities in neurological
outcomes. However, the underlying molecular and environmental mechanisms that influence
gene expression are not fully understood, especially in populations with non-European
ancestries. Given the multifactorial and complex nature of dementia, multi-omic data integration
across ancestry groups may lend insight into these disparities, allowing the identification of
targets for intervention and treatment in populations that are most at risk.*3

Genome-wide association studies (GWAS) have identified genetic variants associated
with cognitive function and dementia; however, most GWAS variants are located in non-coding
regions so their functional consequences are difficult to characterize.'* Transcriptome-wide
association studies (TWAS) utilize gene expression and genetic data to increase power for
identifying gene-trait associations and characterizing transcriptomic mechanisms underlying
complex diseases. To date, however, few TWAS have been conducted on cognitive or structural
brain measures. Further, previous TWAS have primarily been conducted in populations of
European ancestry (EA), but these results cannot always be generalized to other genetic
ancestries due to differences in allele frequencies, patterns of linkage disequilibrium (LD), and

relationships between SNPs and gene expression between populations.'>-8 To better identify
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gene-trait associations in non-EA ancestries, it is necessary to incorporate results from recent
expression quantitative trait locus (eQTL) mapping studies, which identify genetic variants that
explain variations in gene expression levels, conducted in different ancestry groups.*®
Multi-ancEstry TRanscriptOme-wide analysis (METRO)% is a TWAS method that uses a
joint likelihood-based inference framework to borrow complementary information across
multiple ancestries to increase TWAS power. In this study, we used genotype and gene
expression data from 1,032 AA and 801 EA from the Genetic Epidemiology Network of
Arteriopathy (GENOA) and summary statistics from published GWAS?22 to identify genes
associated with general cognitive function, white matter hyperintensity, and AD. We then
examined the contribution of different ancestry-dependent transcriptomic profiles on the gene-
trait associations. Greater knowledge of the underlying molecular mechanisms of dementia that
are generalizable to both EA and AA is a critical step in evaluating potential causal variants and

genes that could be targeted for pharmaceutical development.

4.3 Materials and Methods

4.3.1 Sample

The Genetic Epidemiology Network of Arteriopathy (GENOA)

The GENOA study is a community-based longitudinal study aimed at examining the
genetic effects of hypertension and related target organ damage.?* EA and AA hypertensive
sibships were recruited if at least 2 siblings were clinically diagnosed with hypertension before
age 60. All other siblings were invited to participate, regardless of their hypertension status.
Exclusion criteria included secondary hypertension, alcoholism or drug abuse, pregnancy,

insulin-dependent diabetes mellitus, active malignancy, or serum creatinine levels >2.5mg/dL. In
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Phase 1 (1996-2001), 1,854 AA participants (Jackson, MS) and 1,583 EA participants
(Rochester, MN) were recruited.?* In Phase 11 (2000-2004), 1,482 AA and 1,239 EA participants
were successfully followed up, and their potential target organ damage from hypertension was
measured. Demographics, medical history, clinical characteristics, information on medication
use, and blood samples were collected in each phase. After data cleaning and quality control, a
total of 1,032 AA and 801 EA with genotype and gene expression data were available for
analysis. Written informed consent was obtained from all participants, and approval was granted
by participating institutional review boards (University of Michigan, University of Mississippi

Medical Center, and Mayo Clinic).

4.3.2 Measures

A. Genetic data

AA and EA blood samples were genotyped using the Affymetrix® Genome-Wide
Human SNP Array 6.0 or the Illumina 1M Duo. We followed the procedures outlined by Shang
et al.!® for data processing. For each platform, samples and SNPs with a call rate <95%, samples
with mismatched sex, and duplicate samples were excluded. After removing outliers identified
from genetic principal component analysis, there were 1,599 AA and 1,464 EA with available
genotype data. Imputation was performed using the Segmented HAPlotype Estimation &
Imputation Tool (SHAPEIT) v.2.r® and IMPUTE v.2% using the 1000 Genomes project phase |
integrated variant set release (v.3) in NCBI build 37 (hg19) coordinates (released in March
2012). Imputation for each genotyping platform was performed separately and then combined.
The final set of genotype data included 30,022,375 and 26,079,446 genetic variants for AA and

EA, respectively. After removing genetic variants with MAF < 0.01, imputation quality score
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(INFO score) < 0.4 in any platform-based imputation, and indels, a total of 13,793,193 SNPs in
AA and 7,727,215 SNPs in EA were available for analysis. We used the GENESIS package?’ in
R to infer population structure in the analytic sample, and the PC-AIR function was used to
extract the first five genotype PCs which were subsequently used to adjust for population

structure.

B. Gene expression data

Gene expression levels were measured from Epstein-Barr virus (EBV) transformed B-
lymphoblastoid cell lines (LCLs) created from blood samples from a subset of GENOA AA
(n=1,233) and EA (n=919). Gene expression levels of AA samples were measured using the
Affymetrix Human Transcriptome Array 2.0, while gene expression levels of EA samples were
measured using Affymetrix Human Exon 1.0 ST Array. We followed the procedures outlined by
Shang et al.'® In particular, the Affymetrix Expression Console was used for quality control and
all array images passed visual inspection. In AA, 28 samples were removed due to either low
signal-to-noise ratio (n=1), abnormal polyadenylated RNA spike-in controls (Lys < Phe < Thr <
Dap; n=24), sample mislabeling (n=2), or low RNA integrity (n=1), resulting in a total of
n=1,205 AA samples for analysis. In EA, duplicated samples (n=31), control samples (n=11) and
sex mismatch samples (n=2) were removed, resulting in n=875 EA samples for analysis. We
processed data in each population separately. Raw intensity data were processed using the
Affymetrix Power Tool software.?® AffymetrixCEL files were normalized using the Robust
Multichip Average (RMA) algorithm which included background correction, quantile
normalization, logz-transformation, and probe set summarization.?® The algorithm also includes

GC correction (GCCN), signal space transformation (SST), and gain lock (value=0.75) to
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maintain linearity. The Brainarray custom CDF% v.19 was used to map the probes to genes. This
custom CDF uses updated genomic annotations and multiple filtering steps to ensure that the
probes used are specific for the intended gene cluster. Specifically, it removes probes with non-
unique matching cONA/EST sequences that can be assigned to more than one gene cluster. As a
result, gene expression data processed using custom CDF are expected to be largely f