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Abstract 

 
 A new generation of drinking water management tools that incorporate real-time sensing 

and data-driven control stand to transform our interactions with drinking water systems in a more 

comprehensive way. Sensors have been lauded for their promise to revolutionize drinking water 

management, but the adoption of real-time data technologies lags behind other infrastructure 

sectors and their value as a tool in the management of drinking water systems is still unknown. 

Using low-cost sensors, programmable microcontrollers, and wireless communications, this work 

introduces a suite of next-generation tools to monitor drinking water quality throughout 

distribution systems and building plumbing in real-time.  

 To advance the goal of adopting sensor networks for drinking water distribution systems, 

this work first introduces a novel open-source, end-to-end wireless platform for the real-time 

monitoring of drinking water systems capable of measuring pH, oxidation-reduction potential, 

electroconductivity, temperature, and pressure. Second, the applications and value of these tools 

are evaluated in three unprecedented real-world deployments in Ann Arbor and Ypsilanti, 

Michigan, USA and in Mexico City, Mexico with a total cumulative 34 sites – resulting in the 

largest deployment effort of a wireless sensor network to measure drinking water quality directly 

in residential taps.  

In each of these deployments, we demonstrate the detection of phenomena that would have 

been missed through existing, low-throughput monitoring approaches. The deployment in Ann 

Arbor emphasizes the importance of real-time measurements in a drinking water distribution 

system, highlighting shifts in neighborhood-scale electroconductivity (a proxy for total dissolved 
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solids) that would have been missed as part of established sampling procedures. The deployment 

in Ypsilanti actively measured with ORP the decay of free chlorine after overnight stagnation in 

building plumbing. The Mexico City deployment demonstrates highly variable water quality and 

supply in intermittent systems and characterizes the variability of chlorine concentrations between 

continuous and intermittent portions of the city.  

Manual flushing of building plumbing is commonly used to address water quality issues 

that arise from water stagnation. Autonomous flushing informed by sensors has the potential to 

aid in the management of building plumbing. To further our understanding of water quality in 

building plumbing and develop smart flushing practices, an experiment was designed to flush the 

tap twice per day in buildings with free chlorine (Ypsilanti) and chloramine (Ann Arbor). The 

overnight decrease in ORP measured in Ypsilanti was not observed when tap water was 

automatically flushed. Results from the experiment also show that a “smart” flushing protocol 

could be informed by temperature signals to detect when flushing is done, potentially leading to 

water savings.  

Lastly, sensor nodes are used to better understand the spectrum of intermittent water supply 

and its impacts on the experience of water quality. This study goes beyond the technology 

application by using a combination of anthropology and statistical methods to understand the 

effects of intermittent water supply on public health at the household level. The analysis 

demonstrates that dynamics in water supply and water quality are key factors in shaping people’s 

water quality experience.  

As we embark on unprecedented water challenges around the world, including natural and 

anthropogenic pressures in water resources, real-time water quality monitoring systems should be 
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considered as part of a new generation of information-driven infrastructure to support drinking 

water management and research as shown in this dissertation. 

 

 



 1 

Chapter 1  
Introduction 

 

There are unprecedented and increasing challenges to fresh water around the world, including 

natural and anthropogenic pressures on water resources [1,2]. Addressing these pressures means 

using water and resources more efficiently. Real-time water quality monitoring can help support 

information-driven infrastructure that helps drinking water management and research [3–6], but 

the adoption of real-time data technologies, including sensors, wireless communications, and 

adaptive control lags behind other infrastructure sectors [4]. Ongoing calls to increase drinking 

water monitoring have largely gone unanswered over the last twenty years [7–9], but aging 

infrastructure, emerging contaminants, and increased urbanization may provide the impetuses 

necessary to improve monitoring in our drinking water systems.  

Innovations in sensors, microcontrollers, and data services are underpinning a broader smart 

cities movement that includes real-time traffic surveillance to reduce traffic congestion [10], air 

quality monitoring to alert of environmental exposures, and watershed automation to prevent flash 

floods [11]. To date, however, the value and possibility of sensors as tools in the management of 

drinking water systems remains largely underutilized. Ultimately smart drinking water systems are 

built with sensors and the resulting data could transform infrastructure management and foster 

collaborations with users in real-time. 

A number of key knowledge gaps hinder the ability to enable this vision of smart drinking 

water systems. First and foremost, water utilities have lacked the necessary tools to measure 
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drinking water systems continuously at the scale of individual taps. Without these tools, there is a 

paucity of data on the dynamics of water quality at the tap, and how to effectively counter sudden 

degradation of water quality experienced in household and building plumbing. With respect to the 

drinking water users, there is a need to understand how household water dynamics are experienced 

by residents, and if “smart water” technology can improve drinking water experiences. Finally, in 

the wake of rapid urbanization and diminishing water resources, information is needed on how 

water supply issues (i.e. intermittency) will affect the performance of household drinking water 

sensor technologies. 

The drinking water quality experiences shape confidence, trust, and are known to be rooted in 

complex interactions between the built environment and social constructs [12]. Trends show 

increasing per-capita consumption of purchased water [13], often reported to have worse water 

quality, and bottled products, including sugared drinks [14,15], which have led to global obesity 

and diabetes type 2 epidemics [16]. Trust in water quality is a complex subject requiring cross 

disciplinary research. Sensors and real-time technology stand to fill a gap that describes an 

otherwise invisible infrastructure that could help explain links between water quality and trust; 

however, the social constructs and the complexity of surrounding built environments are best 

studied through ethnography [17]. Ethnography is a tool designed to study people in naturally 

occurring surroundings with the goal of capturing social meanings and ordinary activities. In the 

context of drinking water quality experiences, ethnography is needed to collect data in a systematic 

manner without meaning being imposed on people externally [17].  

The goal of this dissertation is to enable the study, control, and management of drinking water 

systems using wireless sensor networks (Figure 1.1). This dissertation begins to close the 

knowledge gaps described above and will ultimately serve as the foundational work for the 
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development and adoption of “smart” drinking water systems. The three research chapters address 

three different aspects of drinking water data: 

Chapter 2: The development and deployment of a reliable low-cost sensor node network 

leveraging cloud platforms.  

Chapter 3: The first experimental autonomous building flushing protocol using the 

wireless sensor networks from Chapter 2 

Chapter 4: An analysis of the experience of water quality and supply at the household 

level in Mexico City.  
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Figure 1.1: Drinking water distribution system components and research areas 
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1.1 Background and Significance 

1.1.1 Drinking water quality monitoring: From grab sampling to online sensing. 
Under current safety guidelines and regulations (WHO, USEPA), drinking water utilities 

physically collect grab samples throughout the distribution system. The samples are subsequently 

analyzed in a laboratory for various management drivers, including safety, treatment efficiency, 

and quality of service. The frequency of samples depends on the size of the system measured by 

population and the severity of the health-related risk of each contaminant, with fecal contamination 

and residual disinfectant concentrations typically setting the minimum required grab samples 

(Table 1.1). Plans for spatial distribution of grab samples are drafted by each community water 

system. It is often recommended that sampling sites be representative of water quality throughout 

the distribution system, including end-of-system and low-pressure zones, population density, and 

where multiple water sources enter the system. Sampling frequency and spatial distribution are 

important factors in monitoring plans, but comprehensive or scientifically-driven protocols that 

include spatial and temporal resolution based on grab samples continue to be sparse. Rather, it is 

much more common to sample water quality at set locations on a regular schedule (e.g. every 

month or every few weeks). 

Table 1.1: Minimum grab sample monitoring frequency for fecal contamination and disinfectant residual analysis 

 System Size# 

(Population) 

WHO Guidelines for Drinking Water 

Quality [18] 

USEPA Total Coliform Rule  

[19] and 

Stage 1 Disinfectants and DBP Rule 

[20] 

 Samples per year Samples per year 

5,000 12 60 

500,000 720 2,520 

>3.96M 1,550 5,760 
# More ranges in the source tables; * Residual disinfectant analysis is done with each fecal sample. 
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Manual sampling and analyses are labor and resource intensive. For many service providers, 

this represents an enormous effort. As such, many providers are often not able to comply [21]. 

Additionally, important information can be missed through grab sampling plans if changes in water 

quality happen day-to-day, especially health-based parameters that are known to change during 

distribution, such as disinfectant residual, turbidity, and microbial counts. Studies on the trade-offs 

between grab-sample and online monitoring approaches have concluded that grab sampling plans 

are not adequately capturing dynamics at locations with higher disinfectant variability [22,23]. The 

development of online continuous monitoring technologies stands to fill two pain points, namely, 

by helping resource-constrained service providers to increase their sampling capacity [21] and by 

adding spatiotemporal resolution to capture highly variable dynamics [9]. 

Online continuous monitoring tools can be easily integrated into water safety plans to increase 

the spatiotemporal resolution of water quality measurements. Recent work with online continuous 

measurements has been successful in detecting anomalies in water quality. For example, pilot- and 

lab-scale studies have developed algorithms that locate simulated leaks and main breaks using 

high-frequency pressure measurements [24–26]. Organic, inorganic, and biological contaminants 

have been detected in controlled lab-scale experiments through relative changes in physical 

parameters, such as free and total chlorine, pH, ORP, EC, and chloride [27–30]. The US EPA has 

also noted that the operational benefits of sensor-based monitoring can eliminate frequent site 

visits, data processing and reporting [21]. Pilot studies in collaboration with drinking water utilities 

have been implemented in large cities of the United States [31] describing challenges to large-

scale deployments such as cost of maintenance [30], storage of big data sets, and sensor reliability 

[6]. Several resources are now available through the EPA for utilities to implement online water 



 7 

quality monitoring technologies, from system design to data processing [32]. To date, however, 

cities and municipalities have not yet implemented sensors at a large scale. 

Most online monitoring has relied on wired infrastructure that drives up cost and hinders spatial 

coverage. The development of wireless platforms has the potential to extract the most 

spatiotemporal value out of online monitoring systems. The rapid development in wireless 

communication technologies has been driving a collective movement called the Internet of Things 

[10], opening the door for reduced-cost solutions for data communication. Wireless Sensor 

Networks leverage these technologies to deploy sensors in difficult-to-access locations to monitor 

infrastructure systems, track environmental phenomena, and control municipal services [9]. 

Wireless Sensor Networks also have the advantage of encrypted security and the web services 

readily available for cloud-hosted data processing. Several wireless platforms that include water 

quality sensors have been designed [25,26,33–35], but only two were deployed and tested in full-

size distribution systems (Table 1.2) – PipeNet in Boston, MA, USA [25] and WaterWiSe in 

Singapore [26]. While these two studies demonstrated reliability of network data communication, 

with water quality probes included as a proof of concept, the main priority was hydraulic 

monitoring for leaks, main breaks, and high-frequency transient events. There is therefore a need 

for the investigation and deployment of wireless sensor networks focused on drinking water 

quality. 

In addition to showing promise for monitoring drinking water distribution systems, 

wireless sensor networks may help manage water quality inside building plumbing. Building 

plumbing can cause elevated levels of lead and copper [36] and elevated levels of Legionella spp 

[37,38] at the tap.  Approaches to decrease contamination at the tap include flushing fixtures, 

adding residual disinfectant, controlling water temperature, or cleaning and replacing fixtures [37]. 
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Management protocols for building plumbing are complicated by the large variability in water 

quality dynamics from building to building. In the United States, guidelines and regulations exist 

for health, institutional, and federal buildings, but lack guidance in all other buildings (including 

residential single-family houses). A recent systematic review of guidelines concluded that 

recommendations on pipe materials, flushing frequency, and minimum disinfectant residual are 

inconsistent and lack a scientific basis [37]. To that end, there is a need for scientifically based 

knowledge and tools for managing drinking water quality in buildings. Taps inside buildings can 

be retrofitted with water quality sensor nodes and provide real-time data, both to further our 

understanding of the variability in quality due to building pluming, and to make management 

decisions in real-time.  

Building plumbing water quality remains an active area of academic research [39]. Focus 

has been placed on understanding the role of water age, temperature, contact surface area, pipe 

and fixture materials affect the physicochemical [40,41] and biological [42] composition of water 

at the tap. To date, research involving continuous on-line measurements to study water quality is 

limited to three recent efforts (Table 1.2). One study applied internet-connected on-line sensors in 

different stories of an institutional building to measure and predict chlorine residuals based on 

floor occupancy [43]. Another study looked at tap water usage based on temperature signals from 

thermostatic mixing valves inside a hospital drinking water system [44]. The third study used 

online water quality and flow measurements from all three floors of a residential building hot and 

cold water fixtures in order to study the variability in water use and its effects on quality [45]. All 

three studies found spatial and temporal quality variations within each building and determined 

that sensors are valuable for increased monitoring and decision making. The third study 

specifically called for more affordable continuous monitoring tools (after spending $100,000 USD 
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in sensors, special fixtures, and installation) at building taps to uncover more findings and broaden 

our understanding of water quality deterioration and its implications to public health [45]. A 

reliable and compact solution to deploy water quality sensors inside buildings would provide 

insights where drinking water is ultimately used. 

Table 1.2: Selected development and applications of wireless sensor networks in drinking water 

Project Deployment Parameters Monitored Major applications 

PipeNET [25] Distribution 
System 

Pressure, pH Hydraulic and water quality monitoring of 
transmission and distribution systems including 
capturing transient pressure events and pH 

WaterWISE [26] Distribution 
System 

Pressure, pH On-line hydraulic modeling, leak and burst 
detection experimentation and operational event 
analysis 

Saeta et al [43] Building 
Plumbing 

pH, conductivity, temperature, 
ORP, dissolved oxygen, free 
chlorine 

Assess water quality patterns inside a seven 
story building and predict chlorine residual 
based on building occupancy 

Salehi et al [45] Building 
Plumbing 

Taps: water flow, temperature 
Service Line: water flow, 
temperature, chlorine residual, 
turbidity, pH 

Investigate temporal and spatial variations of 
drinking water chemical quality in a net-zero 
energy green building. 

Whiley et al [44] Building 
Plumbing 

Temperature Monitoring real-time temperature fluctuations 
in thermostatic mixing valves located in a 
hospital that were linked to flow events and their 
relation to microbial water quality. 

Chapter 2 of this 
dissertation [46] 

Building 
Plumbing 

Taps and service line: 
pressure, pH, conductivity, 
ORP, temperature 

System-wide monitoring of drinking water 
quality. Assess value of increased 
spatiotemporal resolution featuring event 
detection with conductivity, water quality 
variability due to intermittent supply, and 
differences in water quality across system. 

Chapter 3 of this 
dissertation  

Building 
Plumbing 

Taps: Temperature and ORP Understand variability of water quality in 
building plumbing as measured with ORP in 
systems with free chlorine and chloramine. 
Autonomous flushing to counter degradation. 

Chapter 4 of this 
dissertation 

Building 
Plumbing 

Service Line: pressure, pH, 
conductivity, ORP, temperature 

Harness high-resolution pressure and water 
quality data to understand the experience of 
water quality at the household level in Mexico 
City. 

 

1.1.2 Intermittent water supply, domestic storage, and the experience of water quality 
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As global water resources become increasingly strained from anthropogenic and 

environmental stressors [47], highly urbanized communities around the world will face more water 

shortages. As a result, an increasing number of water supply systems may be forced to provide 

drinking water on an intermittent basis. In many cities, especially in developing countries, 

intermittent water supply systems are already prevalent, with an estimated 1 billion people globally 

receiving intermittent water supply [48]. Intermittent water systems are known to pose public 

health risks and thus may contribute to the estimated 1,560 annual deaths that are caused by the 

consumption of tap water contaminated with fecal material [49]. Intermittent water supply may 

also be linked to chronic disease through reduced water availability, exposure to trace 

contaminants, and consumption of alternative beverages.  

Under the specific lens of Civil and Environmental Engineering, intermittent water systems 

have been largely studied on their effects on drinking water quality and public health [50]. For 

example, “first flush” events have been characterized as having high turbidity, low disinfectant 

residual, and high microbial activity after water sits in the pipes during the intermittent periods 

[48,51,52]. The pressure cycling that occurs in intermittent systems produces structural stresses on 

water mains reducing their service life, while also promoting soil and groundwater intrusion into 

the water mains [52]. Additional issues such as backflow, high demand, and the negative pressures 

caused when pumps are used to extract water from the supply system, are common characteristics 

of intermittent systems that pose risks to public health and system integrity [52].  

Compared to research on the effects of intermittency on system integrity and public health, 

relatively little research has focused on how households manage intermittent systems [50,52]. 

Intermittency is managed by people with domestic water storage [53]. Domestic storage provides 

the stability for daily needs, but may cause water quality deterioration. In particular, studies have 
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observed chlorine residual decay and microbial communities regrowing during domestic storage 

[53]. The latter specifically leading to higher risk of illness associated with fecal contamination in 

containers without proper lids, improper handling, and poor maintenance [51,54,55].  

Intermittent water supply is disruptive to people’s daily lives, as well as mental and 

physical health. The frequency of cutoffs may have characteristic attributes describing the service 

– predictable, irregular, and unreliable [50] – reflecting the inherent complexity of intermittent 

systems. Their impact to system integrity, public health and domestic storage needs is well 

documented. However, many of the implications of intermittent systems remain to be explored at 

the household level, partially because of the complexity of the systems, the difficulty to obtain 

data at the household level, and the unknown extent of mediated effects. The need to manage 

intermittent supplies can lead to economic, physical, or emotional burdens to household members. 

For example, purchasing trucked water to supplement public supply, carrying buckets where 

needed, or cleaning storage tanks [50,52]. Understanding the requirements of domestic water 

management placed in households in relation to the spectrum of intermittency may help engineers 

and policy makers understand the mediated effects of intermittency on “less immediate” public 

health and socioeconomic outcomes. 

Novel sensing techniques can be leveraged to uncover the temporal granularity associated 

with intermittent systems and make deductions of the associated dependencies for domestic 

storage; however, studying intermittency requires interdisciplinary research. Water quality and 

hydraulics expertise is necessary to understand the physics governing intermittency and domestic 

water infrastructure. Direct observation is necessary to uncover the deeper layers and mediated 

effects of intermittent water supply on domestic life, chronic health effects, and the experience of 

water quality at the household level. Importantly, human-based observations are needed to link 
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supply dynamics and water quality to the experience of the water consumer, including the 

management of domestic infrastructure. Ethnography, an anthropological tool that combines 

rigorous observation with social analysis provides a means to gather data on the impact of water 

intermittency on households. Combining smart sensor technologies to characterize water supply, 

and quality, with fine grained observation of household experiences across intermittent water 

systems provides us with a continuum of information with which we can study the effects of 

intermittency at the household level. Without the continuum of information, sensors alone could 

not explain human behaviors, the same way that household observations could not explain the 

dynamics of water supply and quality.   

1.2 Research Outcomes and Aims 

To fill the knowledge and data gaps discussed in this introductory chapter, this work 

establishes next-generation tools to monitor drinking water distribution systems and building 

plumbing systems. The use of low-cost sensors, programmable microcontrollers, wireless 

communications, and cloud-based data analytics will enable real-time monitoring protocols that 

are deeply integrated into adaptive water management plans. Ultimately this research will result 

in the acquisition of higher resolution data streams that better inform the state of water availability 

and quality. This dissertation provides insight on the dynamics of water quality in full-scale 

distribution systems and in real building plumbing systems with different residuals and over time. 

Additionally, by combining sensing technology data and ethnographic data, this dissertation 

provides insights from intermittent systems that link variability of water supply to dependencies 

and effects at the household level. Toward these outcomes, this dissertation is split into three 

chapters. 
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In Chapter 2 two real-world studies are summarized – one in Ann Arbor, Michigan and 

another in Mexico City, Mexico. A total of 29 combined sites in both cities resulted in the largest 

deployment effort of a wireless sensor network to measure drinking water quality directly in 

residential taps. The added value of wireless sensor networks and importance of increased 

spatiotemporal measurements of drinking water quality at the tap are discussed. Specifically, in 

Ann Arbor we show a system-wide electroconductivity event, and in Mexico City we show the 

spatial variability in drinking water quality as measured with ORP.  

In Chapter 3 we deploy sensor nodes under the kitchen sink of single-family houses in Ann 

Arbor and Ypsilanti, Michigan. In Ann Arbor, the drinking water is supplied with chloramine 

disinfection residuals and in Ypsilanti, the drinking water is supplied with free chlorine residuals. 

High resolution ORP and temperature measurements are summarized to quantify the variability in 

water quality associated with building plumbing. An experiment was designed to flush the tap 

twice per day and the impacts to water quality as measured with ORP are discussed. We then show 

how a “smart” flushing protocol could be informed by temperature signals to detect when flushing 

is done, potentially leading to water savings. In this chapter we explore the benefits and drawbacks 

of using ORP sensors in real-time to study building plumbing water quality, this includes an 

evaluation of the sensor when measuring free chlorine or chloramine under decaying and transient 

conditions. Altogether this chapter improved the understanding of the variability of water quality 

in single-family households building plumbing and how to use real-time data and control to 

autonomously flush the tap. Suggestions are presented for future work on the development of 

autonomous building plumbing flushing systems. 

In Chapter 4 we focus on harnessing a multi-faceted data set including rich ethnographic 

observations from an intensive nine month field work from 60 households in Mexico City, and 
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real-time data to better understand the spectrum of intermittent water supply and its impacts on the 

experience of water quality through domestic water storage. Our analysis demonstrates that 

dynamics in water supply and water quality affect how people interact with water at the household 

level, ultimately shaping their water quality experience. Using data from the sensor node 

deployments in Chapter 2 and a rich ethnographic data set, this chapter explores the implications 

of rapid urbanization, depleting water resources, and climate change on drinking water at the 

household level. This chapter uses a unique combination of methods from various fields in addition 

to the use of sensor networks to answer the research questions. First, rich ethnographic data was 

methodically coded to extract insights about water management and hypothesize connections 

between intermittency to the experience of water quality. Second, factor analysis is used to build 

latent constructs associated with household storage, intermittency, water quality, and the 

experience of water quality. And lastly linear regression is used to quantify the hypothesized 

pathways linking the constructs. We show that while the water quality of supplied water shapes 

the experience of water quality, the need to manage intermittency through domestic storage also 

influences the experience of water quality.  

Finally, chapter 5 presents a summary of results, highlights the key takeaways, and poses 

a number of future research questions to promote the continuation of this work. 
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Chapter 2  
Wireless Sensors for Measuring Drinking Water Quality in Building Plumbing: 

Deployments and Insights from Continuous and Intermittent Water Supply Systems 

 

2.1 Publication Information 

This chapter was adapted from its published version for this dissertation. For citation please use 

the following information: 

Martinez Paz EF, Tobias M, Escobar E, Raskin L, Roberts EFS, Wigginton KR, et al. Wireless 

Sensors for Measuring Drinking Water Quality in Building Plumbing: Deployments and Insights 

from Continuous and Intermittent Water Supply Systems. ACS EST Eng. 2022 Mar 11;2(3):423–

33. 

2.2 Abstract 

Despite continued calls to increase the monitoring of drinking water systems, few 

communities and utilities have adopted modern, distributed, and real-time monitoring systems. 

Measurements of drinking water quality are often only made at the treatment plant, with limited 

grab sampling taking place throughout the distribution system. At the building level, where most 

of the public’s exposure to drinking water takes place, the capacity to make continuous 

measurements to characterize water quality dynamics has been almost impossible. Innovation in 

sensors, microcontrollers, and data services is underpinning a broader smart cities movement, but 

their value as a tool in the management of drinking water systems is still unclear. In this paper, we 
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present a new open-source wireless sensor platform, which allows water quality to be measured at 

the tap. Our internet-connected devices transmit data back to cloud hosted services, where they 

can be analyzed in real-time. We provide examples of large-scale deployments within buildings in 

Ann Arbor, MI, USA and Mexico City, Mexico. In each of these studies, we demonstrate the 

detection of phenomena that would have been missed through existing, low-throughput monitoring 

approaches. The deployment in Ann Arbor emphasizes the importance of real-time measurements 

in a drinking water distribution system, highlighting shifts in neighborhood-scale 

electroconductivity (a proxy for total dissolved solids) that would have been missed as part of 

established sampling procedures. The Mexico City deployment demonstrates highly variable water 

quality and supply in intermittent systems and characterizes the variability of chlorine 

concentrations between continuous and intermittent portions of the city. 

 

2.3 Introduction 

Despite continued calls to increase the monitoring of drinking water systems [7–9], few 

communities and utilities have adopted comprehensive, distributed and real-time monitoring 

systems [6]. Sensors have been lauded for their promise to revolutionize drinking water 

management, but the adoption of real-time data technologies lags behind other infrastructure 

sectors [4]. As we embark on unprecedented water challenges around the world, including natural 

and anthropogenic pressures on water resources [1,2], real-time water quality monitoring systems 

should be considered as part of a new generation of information-driven infrastructure to support 

drinking water management and research [3–6]. 

In most countries, federal regulations require public water managers to monitor treated 

drinking water to support safety and public health. Such monitoring typically includes quantifying 
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the concentrations of disinfectant residuals, disinfection by-products, lead, copper, total coliforms, 

and some waterborne pathogens at the entry points of and throughout the distribution system. In 

the United States, nearly 100 contaminants are required to be monitored periodically [19], and 

regulations are regularly updated based on public health risk [56]. Because water quality 

characteristics change throughout distribution, most parameters are required to be monitored by 

collecting water from different locations in the distribution system (e.g. residual disinfectant, total 

coliforms), while a few contaminants are monitored at the tap due to the impact plumbing materials 

have on water quality (i.e. lead and copper)[19]. The required residual disinfectant and total 

coliforms monitoring frequency for a public water system depends on the number of people served, 

ranging from 480 samples per month in the largest systems (>3.96 M people) to once per month 

for the smallest systems (<1000 people) [19].  Manual sampling and analyses are labor and 

resource intensive, which limits the number of measurements that can be collected. Achieving a 

high spatiotemporal measurement resolution, therefore, is not possible with grab sampling and 

important information can be missed if water quality varies across the distribution system or 

changes from day to day [9]. 

 Innovations in sensors, microcontrollers, data communications, and web services have 

allowed for the rapid expansion of wireless sensor networks, which are increasingly used to 

monitor, model, and control municipal services as part of a broader smart cities movement [9,10]. 

The fields of stormwater and wastewater management [57,58], transportation [59], and power 

distribution [60], for example, have improved performance and lowered operational costs through 

the adoption of real-time analytics and control. There is an equally exciting opportunity to harness 

these technologies for a better understanding of drinking water systems.  
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A number of sensor platforms for drinking water have been evaluated over the past decade 

[25,26,33–35,61]. Most recently, a study used multiple sensors to study water quality in different 

stories of an institutional building to predict chlorine residuals at each floor based on floor 

occupancy [43]. Organic, inorganic, and biological contaminants have been detected in lab-scale 

experiments using high frequency sensor data from free and total chlorine, pH, oxidation-reduction 

potential (ORP), electroconductivity (EC), and chloride probes [27–30]. To our knowledge, no 

studies have measured water distributions at the scale of an entire city, nor at the residential tap 

level. Despite the demonstrated benefits of real-time monitoring, cities and municipalities have 

not yet implemented sensors at a large scale. 

To date, most examples of using wireless sensor networks to monitor drinking water rely 

on single-site demonstrations or short-term deployments. Challenges to large-scale deployments 

include the maintenance cost of the systems [30], the management and storage of real-time, high-

frequency data, and the uncertainty of sensor behavior [6]. PipeNet [25] in Boston, MA, USA and 

WaterWiSe [26] in Singapore are examples of large-scale deployments that demonstrated the 

reliability of node network data communications and detected leaks and pipe bursts with high-

frequency pressure sampling. These two systems also included pH sensors as a proof of concept 

for water quality monitoring. In the PipeNet, WaterWiSe, and Skadsen et al [30] deployments 

sensors were placed into distribution system pipes or reservoirs. A reliable and compact formfactor 

to deploy water quality sensors in buildings would provide insights where drinking water is 

ultimately used.  

Drinking water quality changes throughout the distribution system, as well as inside 

building plumbing. Variables like water age, temperature, pipe and fixture materials, and pipe 

surface area to volume ratio have effects on the physicochemical and biological composition of 
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water at the tap [37,39]. This is part of the reason why some contaminants, such as lead and copper, 

are required to be monitored at the tap [36]. Additionally, granular data at the building level could 

provide information about water quality across intermittent water supply systems. Intermittent 

water supply is often unreliable and inconsistent, and has been shown to pose risks to public health 

[48,52]. An estimated one billion people worldwide depend on intermittent water supply, and that 

number is projected to increase significantly in the next decades [48,49]. 

To advance the goal of adopting sensor networks for drinking water distribution systems, 

this paper introduces a novel open-source, end-to-end wireless platform for the real-time 

monitoring of drinking water systems capable of measuring pH, ORP, EC, temperature, and 

pressure (Figure 2.1).  We provide results and observations of two large-scale wireless sensor 

network deployments, one within buildings in Ann Arbor, MI, USA and one within homes in 

Mexico City, Mexico.  Our specific objective is to evaluate the performance of this platform in-

situ and to summarize practical deployment considerations for others interested in carrying out 

similar studies. 
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Figure 2.1: Drinking water quality sensing and valve node architecture. A) is the compact formfactor deployed on 
standard household pipes, such as kitchen sinks or outdoor spigots. The flow cell with the sensors and electronics 
are contained within the enclosure. B) is the system hardware and cloud architecture including data collection and 

conditioning within the enclosure and the cloud architecture for data management and visualization. 

2.4 Materials and Methods 

An open-source wireless sensor node for monitoring drinking water quality was designed 

and constructed using low-cost commercial sensors and electronics, web services, cloud analytics, 

and real-time visualization. The design objective was to create a small, portable, and reproducible 

platform that can be connected to a wide range of complex piping setups used in drinking water 

distribution, including standard building taps (Figure 2.1-A). With the use of existing in-home 

internet or cellular connectivity, sensor nodes report data in real-time and are deployable in most 

buildings and neighborhoods. The system’s architecture includes A) hardware and B) cloud 

services and applications. The hardware includes wireless microcontrollers, analog conditioning 

circuits, and sensors. The cloud services include a central database, visualization capabilities, and 

remote management tools. An architecture diagram is provided in Figure 2.1-B. 

2.4.1 Hardware 
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The communications core of the hardware platform was built upon the Particle-series of 

microcontrollers (Photon and Boron 2G/3G), which can be programmed in C++ and updated over-

the-air using a web interface [62]. The node connects to the internet using Wi-Fi or cellular – 

depending on the connection stability at each site. The core is powered by a DC 12 V power supply, 

allowing the node to be plugged directly into a nearby wall socket or powered via a 12 V battery. 

Although the system can operate across lower voltages (3-5 V), 12 V is necessary to open most 

commercial solenoid valves, which are used to trigger sampling. The remaining electronics, 

including the microcontroller, carrier boards, and the sensors operate with 5 V delivered by an 

embedded voltage converter. A backup battery ensures that the nodes remain operational, even 

when household power goes out. 

The sensors communicate with the microcontroller using the I2C protocol [63]. The sensors 

are implemented with signal-conditioning circuits (Atlas Scientific EZO™) that facilitate required 

and customizable sensor operations, such as calibrations, temperature corrections, and 

measurements. The EZO™ circuits are electrically isolated and mounted on a carrier board 

designed by ©Whitebox Labs [64]. A pressure transducer is connected to the microcontroller’s 

analog to digital converter (ADC) via a voltage divider. The measurement timing and transmission 

frequency of all parameters can be easily modified remotely to suit a wide range of field conditions. 

The sensors are described in more technical detail in Appendix A. 

The flow cell (housing that exposes the sensors to the water flow stream) was designed to 

have a low water consumption footprint, to include simple operational requirements using readily 

available parts, and to be modular. It was built using off-the-shelf plastic tubing and PVC fittings 

that hold the sensors in place. The arrangement of the flow cell, valve, and the sensors is presented 

in Figure 2.1-B. The pressure transducer was placed first in line and outside of the flow cell so that 
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pressure can always be measured without actuating the valve. The solenoid valve separates the 

sensors from the pressurized pipes and only opens to flush new water into the flow cell. The flow 

cell was designed to exhibit plug flow hydraulics to minimize mixing with previous samples and 

to prevent the probes from drying. At the time of writing (2021), the cost of materials to build the 

entire unit was approximately 1,200 USD. The sensor nodes can be built entirely by a single person 

with limited electronics experience. The plans for building the entire unit are shared on our open-

source website: https://github.com/kLabUM/DrinkingWaterNodes. 

2.4.2 Cloud Services 

The cloud services layer provides storage of sensor data in an online, secure, timeseries 

database (InfluxDB®) and facilitates interactions between user-defined applications (Kapacitor™) 

and visualization tools (Grafana®). Node operations push conditioned sensor readings to the 

database in a custom JSON format after each measurement, the user-defined applications query 

the database for the latest reported readings, and the user can write commands to change the 

behavior of desired nodes. The cloud architecture also facilitates remote management of individual 

nodes through Particle’s web-based development environment [62].  

 
 

2.5 Deployments 

The sensor nodes (29 nodes in total) were deployed in two cities that differ in size, 

demographics, and drinking water distribution characteristics. One deployment took place in Ann 

Arbor, MI, USA and another in Mexico City, Mexico (Figure 2.2). Both deployments took place 

within residences, at the tap level or entry point into the home. This approach provided us with 

two distinct data sets to evaluate the sensor system. In each study, we detected phenomena that 

would have been missed by using existing, low-throughput monitoring approaches. The 
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deployment in Ann Arbor illustrates the importance of collecting real-time measurements in a 

continuous supply drinking water system that is consistently in compliance with regulations by 

highlighting shifts in neighborhood-scale EC that would have been missed as part of established 

monitoring. The deployment in Mexico City results in the first dense and continuous water quality 

data set available for an intermittent water supply system. The Mexico City data demonstrate 

highly variable water quality and supply, and variable chlorine concentrations between continuous 

and intermittent portions of the city. The two cities use different secondary or residual 

disinfectants, which offered an opportunity to apply ORP sensors in systems with chloramine or 

combined chlorine (Ann Arbor) and free chlorine (Mexico City). 

 

Figure 2.2: Deployment locations of drinking water quality sensor nodes. A) Map of Ann Arbor, MI, USA, 
deployments. Ten sensor nodes were deployed within the time period of August 2019 and June 2020. B) Map of 
Mexico City, Mexico deployments. Nineteen deployment sites were part of the study, which took place between 

January 2019 and March 2020. 

2.5.1 Ann Arbor 
The sensor network in Ann Arbor, MI, USA (Figure 2.2-A) was deployed to study 

spatiotemporal building plumbing water quality in a city with a relatively homogeneous system.  

Ann Arbor has a population of 120,000 people, covers 75 km2, and contains 800 km of water 

distribution pipes. The drinking water is supplied by one drinking water treatment plant that blends 

surface water (Huron River) and groundwater. The source waters are blended with varying ratios, 
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with higher proportions of surface water during the spring, summer, and fall, and a higher 

proportion of groundwater during the winter months. The treatment plant provides 400 L per capita 

per day and finished drinking water is distributed with monochloramine as the residual disinfectant 

at a concentration of approximately 3 mg/L as Cl2. The distribution system is divided into five 

pressure districts, all of which are operated independently and have interconnections to regulate 

flow, pressure, and water quality. Previous studies have documented the drinking water 

infrastructure in Ann Arbor, including detailed descriptions of the water treatment train [30,65], 

the distribution system, and water quality parameters [65,66].  The Ann Arbor drinking water 

system is part of the 1% of public water systems in the United States that serve more than 100,000 

people; more than 50% of the population in the United States is provided drinking water through 

public water systems within this size range [67]. 

A total of ten sensor nodes were deployed in four of the five pressure districts at a range of 

distances between 1.7 and 8.5 km from the treatment plant (as measured from a street layout, not 

the distribution system). Sensor nodes were placed inside single family homes; two under a kitchen 

sink, one under a bathroom sink, and seven under a laundry/utility room sink.  The deployments 

lasted from 29 days to 177 days starting in August 2019 and ending in July 2020, and thus included 

seasonal transitions. The deployment study was interrupted by the COVID-19 pandemic and visits 

to households were not possible for maintenance or collection of grab samples. 

Minor and reversible plumbing modifications were made to accommodate the sensor node 

water intake and to allow all effluent water to be discharged directly to the closest drain. The 

sampling protocol was identical for all nodes and throughout the deployment period. It consisted 

of pressure readings every five minutes, an open valve flushing action of five seconds followed by 
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water quality measurements every 60 minutes. The samples taken represented building plumbing 

water due to the short amount of time the valve remained open.  

2.5.2 Mexico City 

The sensor network in Mexico City (Figure 2.2-B) was used to study spatial differences in 

household water quality and supply dynamics in neighborhoods across the city. Technical 

information on the operation and management of the drinking water system of Mexico City is not 

readily available through public channels.  Regions of the city have continuous water supplies 

(70% of grid connections) while others have intermittent water supplies (30% of grid connections) 

[68]. The city has a population of 9 million, covers 3,773 km2, and contains 12,500 km of water 

distribution pipes [68]. The city’s drinking water sources consist of 42% surface water and 58% 

groundwater from 450 wells of various depths tapping into multiple aquifers [69]. There are 58 

drinking water treatment plants that supply an average of 200 L per capita per day and distribute 

water with free chlorine as the residual disinfectant. More information about the Mexico City water 

situation is available in the Appendix C. 

Of the 19 sensor nodes deployed across the city, 13 were placed at homes with continuous 

drinking water supply and six were in homes with intermittent supply. Of the six sites with 

intermittent supply, three were supplied water for eight hours per day (daily intermittency) and 

three were supplied water for a few hours at a time throughout the week (weekly intermittency). 

The duration of each sensor node deployment ranged from four days to nine months between 

January 2019 and April 2020. This period encompassed dry winter and spring as well as wet 

summer seasons. 

The sensor nodes were connected to a tap next to the water meter to capture pressure data 

from the distribution system and to provide the water availability dynamics at locations with 
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intermittent water supply. The sampling protocol included a pressure reading every five minutes, 

an open-valve flush action of 10 seconds followed by a water quality reading every 60 minutes. 

When pressure readings were zero, the flushing and water quality readings were postponed until 

water was available again. In one intermittent home, water quality was measured continuously to 

evaluate any potential impacts of stagnation in the flow cell.   

Grab samples were also collected from each deployment site, ranging from one to three 

times per location during household visits, and select water quality parameters were measured on-

site, including free chlorine (Palintest 7100, DPD method), and pH and EC (Hanna handheld pH-

EC combo sensor). 

 

 

2.6 Results and Discussion 

2.6.1 Ann Arbor 
The ten sensor nodes in Ann Arbor collected 437,157 pressure readings and 85,405 water 

quality measurements. The average readings obtained for each of the ten sensor nodes fell in the 

following ranges: pH: 9.2 – 10.0, ORP: 356 – 669 mV, EC: 558 – 997 uS/cm, and pressure: 24 – 

88 psi. A summary of water quality results is provided in Table 2.1. 

Table 2.1: Ann Arbor water quality nodes deployment summary statistics per pressure district 

pH  EC (uS/cm)  ORP (mV)  Pressure (psi)  
Mean1  SD1  Mean  SD  Mean  SD  Mean  SD  

Northeast                
9.2  0.2  755  55  505  129  24  34  
10.0  0.1  774  58  418  14  74  20  

West                
9.7  0.0  744  133  409  22  88  2  

Gravity                
9.4  0.2  740  59  489  132  55  20  
9.5  0.2  832  63  555  94  60  1  
9.3  0.2  737  30  493  66  60  2  
9.3  0.2  997  352  669  147  59  7  
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pH  EC (uS/cm)  ORP (mV)  Pressure (psi)  
Mean1  SD1  Mean  SD  Mean  SD  Mean  SD  

Geddes                
9.5  0.3  717  55  541  100  69  7  
9.8  0.0  732  48  424  40  73  5  
9.5  0.2  588  272  356  76  50  5  

1Due to common probe malfunction, pH statistics were calculated  
using only the first five days of data 

 

The ORP sensors have a “warmup” time (Figure SI-A- 1), requiring an average of three 

hours to reach equilibrium once deployed. We therefore filtered the full data set to remove start-

up data (Figure 2.3-B and Figure SI-A- 1). The resulting ORP data averaged 454 mV, with a range 

of 300 – 750 mV (Figure 2.3-B). Based on average replicate data reported by Copeland and Lytle 

[70], at pH 9 and 23 °C, the average ORP value (454 mV) corresponds to a monochloramine 

concentration of 2.7 mg/L as Cl2 and the ORP range corresponds to monochloramine 

concentrations ranging from 0.4 to >4 (out of range) mg/L as Cl2. Considering the finished water 

distributed by the Ann Arbor treatment plant has a monochloramine concentration of 

approximately 3 mg/L as Cl2, and monochloramine concentrations in the distribution system 

average 2.55 mg/L as Cl2 (data provided by the Ann Arbor treatment plant), our ORP results agree 

with expected monochloramine concentrations. Three nodes exhibited and increase in ORP 

starting in March 2020 (Figure 2.3-B). All three of these devices were located in the same pressure 

district. 
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Figure 2.3: Signals from the sensor deployment in Ann Arbor, MI. The time series are color-coded by the site shown 
in the map. A) EC signals from deployed sensor nodes are shown capturing a system-wide event. B) ORP signals are 

used as an indicator to monochloramine concentrations. Three signals from the same pressure district exhibited a 
rise in ORP, shown by the triangular, square and diamond markers. For interpretation of the references to color, the 

reader is referred to the web version of this article. 

 

The deployment in Ann Arbor highlights the benefits of a sensor network for the purposes 

of event detection and system-scale monitoring. The network captured events that would have 

been missed as part of conventional sampling campaigns. For example, the entirety of the Ann 

Arbor system experienced a rise in EC across a number of weeks (Figure 2.3-A). This period would 

provide sufficient time to utility personnel to investigate the change in more detail, for example by 

performing laboratory tests or by running a cross-reference data log to check operational status at 

the plant. Grab sampling was not possible as part of this study due to the COVID-19 pandemic 

and stay-at-home orders. 

Given that all sensors measured the EC event, a strong case can be made for the occurrence 

of a system-scale event, compared to if just one sensor node or grab sample would have reported 

the change. In consultation with Ann Arbor drinking water treatment plant personnel, we believe 

the increase in EC was related to operational and maintenance changes at the treatment plant, 

which included changes in source water blend ratio and chemical dose adjustments. While these 

events did not pose a health risk to the public, our observations highlight the potential benefits of 
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continuous and distributed monitoring for future events. It also emphasizes that water quality 

parameters do not only vary at the plant, but variations can extend throughout the water system 

and can be measured at the tap. The sensor nodes continuously measured the event as it developed, 

capturing a baseline trend, a maximum, a return to baseline conditions, and an additional rise 

(Figure 2.3-A, Figure SI-A-2). While EC is not a regulated parameter under the U.S. EPA’s 

primary drinking water standards, it still provides aesthetic information about water quality since 

a typical conversion factor between EC and TDS is 0.5. TDS (total dissolved solids) is included 

on the U.S. EPA’s list of secondary drinking water standards and is recommended to be below 500 

mg/L [71]. This means that the observed peak in Figure 2.3-A (933 uS/cm, 466 ppm TDS) did not 

reach the threshold of TDS that may negatively influence the taste, smell, or color of drinking 

water.  

 Using ORP signals to accurately measure residual disinfectant remains a challenge. 

Copeland and Lytle [70] reported an increasing variation between ORP duplicate (using two 

different sensors) measurements of the same solution, at increasing pH values. For a sample with 

chloramine at a pH of 9, they observed an average and maximum ORP variation of 47 mV and 71 

mV. Ann Arbor maintains its chloraminated finished water at a pH slightly above 9, suggesting 

that ORP measurements across the system may exhibit high variation associated to the probes. The 

relative fluctuations of ORP signals correspond to changes in disinfection residual, which make 

the sensors a valuable tool to detect fluctuations in disinfectant residual and assist with flushing 

strategies during regular distribution system maintenance. For granular decision making, we 

recommend taking grab samples for ORP checks to complement the real-time sensor node signals. 

As shown in Figure 2.3-B, three sensor nodes located in buildings in the same pressure 

district showed gradually increasing ORP signals. In the context of drinking water, ORP is 
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typically associated with disinfectant concentration because disinfectants are the strongest 

oxidants present in drinking water. Therefore, this increase in ORP may point to a higher 

concentration of disinfectant in this neighborhood. Following the event, the ORP sensors were 

inspected and tested; they did not show any damage nor biofilm growth, and they responded 

accurately during calibration. This absence of sensor problems suggests that a transient event 

indeed may have transpired in this neighborhood, but no clear cause could be identified (we 

verified that no disinfection booster stations are used in Ann Arbor’s distribution system). This 

observation underscores why continuous and distributed sampling is important, as it could be used 

as a tool to detect water quality regime shifts as they occur. 

2.6.2 Mexico City 

The 19 sensor nodes deployed across Mexico City resulted in 358,761 pressure readings 

and 168,685 water quality data points. The average ranges measured by all sensor nodes were as 

follows: pH: 6.8 – 8.2, EC: 212 – 1064 uS/cm, ORP: 204 – 921 mV, and pressure: 2 – 50 psi. ORP 

values from each deployment site were compared to free chlorine from grab samples for 

continuous systems (Table 2.2) and intermittent systems (Table 2.3). EC signals from the sensor 

nodes are compared to grab samples at each deployment site in Table 2.4. The average pH signals 

are compared to the respective grab samples per site and shown in Table SI-A-1 in Appendix A. 

Table 2.2: Mexico City sensor deployments summary statistics from deployments in continuous systems 

ORP Signal (mV)  Free Chlorine  (mg/L as Cl2)  
Mean  SD  Mean  SD  n  

Chlorinated      
795*  18  1.06  0.18  3  
806*  58  1.25  0.18  3  
808*  25  0.88  0.41  3  
688  169â€   0.68  0.08  3  
922  68  1.34  0.62  2  

Not Chlorinated    
257  154  0.04  0.02  2  
204  50  0.04  NA  1  

Variable Chlorination    
542  159  0.78  0.74  3  
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ORP Signal (mV)  Free Chlorine  (mg/L as Cl2)  
Mean  SD  Mean  SD  n  
493  144  0.17  0.14  2  
533  94  0.89  0.56  3  
644  156  0.37  0.30  2  
736  281  0.00  NA  1  

*Nodes deployed in the same neighborhood. 
â€ High variability likely attributed to probe  lowered sensitivity during deployment period. 

 

For the 13 sensor nodes placed in households with continuous supply, chlorine residuals 

from grab samples were used to bin the ORP signals into categories of chlorinated, not chlorinated, 

or having varying levels of chlorination. Measurement time series for these households are 

categorized and shown in Figure 2.4, with summaries provided in Table 2.2. The ORP averages 

for chlorinated systems ranged from 688 to 922 mV, with the corresponding average free chlorine 

concentrations ranging from 0.68 to 1.34 mg/L as Cl2. The ORP averages in systems categorized 

as not chlorinated ranged from 204 to 257 mV, corresponding to grab samples that had free 

chlorine concentrations below the detection limit. The third category — varying levels of 

chlorination — exhibited average ORP readings ranging from 493 to 736 mV and the free chlorine 

concentrations in the corresponding grab samples ranging from zero to 0.89 mg/L as Cl2.  

The ORP signals measured in the intermittent households are summarized in Table 2.3. 

Two of the three ORP signals obtained from the weekly intermittent households averaged 325 and 

733 mV, with standard deviations 79 and 137 mV; these were normalized to the duration of 

intermittency. One of the three ORP signals with weekly intermittency – measuring water quality 

continuously – resulted in an average of 500 mV with a standard deviation of 219 mV. This means 

the data among these signals is not necessarily comparable, as the former explains the variability 

of supplied water only, while the latter explains variability of supplied and stored water. The latter 

ORP signal is shown in Figure 2.4-C, The variability was caused by free chlorine decay during 

periods of stagnation in between intermittency periods [48,51,72]. 



 
 

 32 

Table 2.3: Mexico City Intermittent Systems 

Supply Type  ORP Signal (mV)  Free Chlorine (mg/L as Cl2)  

Mean  SD  Mean  SD  n  

Weekly Intermittency*        
Chlorinated  733â€   137  0.17 0.13  3 â€¡  
Chlorinated  500â€   219Â§  0.01 0.01  3 â€¡   
Chlorinated  325â€   79  0.12 0.11  2 â€¡   

Daily Intermittency*          
Variable Cl2 497  151  0.73  0.98  2  
Chlorinated  769  75  0.86  NA  1  

*Determined from pressure data and from interviews with household members. 
â€ Nodes deployed in the same neighborhood. 
â€¡Grab samples associated with these deployments are from household storage since  
 field visits did not align with water supply hours. 
Â§Node with continuous measurements. High variability associated to water quality change 
 during storage periods. Statistics not normalized to the intermittency time. 

 

Of the three daily intermittent sites, one signal was determined to be associated to a variable 

chlorination system based on the high standard deviations from the grab samples and the ORP 

signal. The second site with daily intermittency shows the highest signal average as well as the 

lowest standard deviation of all intermittent sites.  The third site with daily intermittent supply was 

removed from the data set because of technical issues.  

 

Figure 2.4: ORP and pressure signals from three different deployment sites in Mexico City. ORP and pressure 
signals from three different deployment sites in Mexico City show the difference in water quality and supply 

experienced in neighborhoods across the city: A) signal from a continuous supply household in the west of the city 
with measurable free chlorine and high diurnal pressure variations, B) signal from a continuous supply household 

located in the east of the city without measurable free chlorine and a consistently low supply pressure – gaps in data 
due to connectivity issues, and C) signal from a weekly intermittent supply household in the southwest of the city 
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with measurable free chlorine and chlorine decay during periods of intermittency, spikes in pressure correspond to 
periods of supply, while the flat line corresponds to periods of no supply. 

Use of wireless sensor nodes in Mexico City captured previously unmeasured supply 

dynamics across a large intermittent system. Intermittency varies across the city and can be highly 

variable in terms of time and water quality. A grab-sample schedule that captures multiple 

intermittent events is complicated, may miss the first flush window, and is likely impractical in a 

city the size of Mexico City. ORP signals from intermittent systems with measurable free chlorine 

showed high variability throughout the study period. As confirmed by grab samples, the observed 

ORP variability corresponded with variability of the disinfectant concentrations. Although our data 

sets are not sufficiently large to allow for a detailed comparative analysis that links ORP to free 

chlorine concentrations, we found that compared to weekly intermittency sites, one daily 

intermittent site resulted in higher ORP average and lower standard deviation (Table 2.3), this may 

be related to less chlorine variability in supplied water when the intermittency periods are shorter. 

This suggests that the frequency of intermittency plays a role in delivering consistent disinfectant 

residual concentrations. In other words, the longer the period between water delivery times, the 

higher the risk of not meeting a particular residual disinfectant concentration target. Generally, the 

risk of microbial contamination and transmission of illnesses increases as the duration of  in-home 

storage increases [72]. Data from real-time sensor networks could be used to manage risk 

associated with poor water quality and inform flushing strategies in intermittent systems.  

As water resources become more limited and rationed, intermittency may become the new 

norm for many cities. For example, the water utility of Mexico City expects that, if the amount of 

government investment into water supply systems does not increase, the proportion of 

intermittency systems within the city will increase from 30% to 72% over the next decade [68]. 

Real-time wireless sensor networks provide an opportunity to monitor and manage such systems 
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more closely, which could become increasingly useful as more continuous systems around the 

world will face greater water demands and a decrease in water resources [48,49,52]. 

The system in Mexico City is highly heterogeneous due to the multiple water sources and 

treatment plants that supply the city – surface water, 450 wells and 58 drinking water treatment 

plants [68]. This heterogeneity was captured through our wireless sensor network, which provided 

an unprecedented spatiotemporal data set. As seen in Figure 2.4 (A – C), water quality (ORP) 

varied significantly across the city, as compared to Ann Arbor. The pressure signals show different 

supply quality that may have impacts on water quality during distribution. Similarly, EC signals 

varied across the city (Table 2.4). For example, as measured by the grab samples, 11 sites show an 

average range of 178 – 243 uS/cm, two sites range from 404 – 615 uS/cm, and four sites range 

from 1030 – 1688 uS/cm. Similar ranges resulted from the EC signals in the sensor nodes. 

 Heterogeneity across the Mexico City water supply has been studied by Mazari-Hiriart et al. 

(2019), who provide results from a grab sample campaign [69]. Their findings report varying 

concentrations of metals, other inorganic contaminants, and biological contaminants. While our 

wireless sensor network focused on a limited set of physical parameters, our data are consistent 

with the assessment that the system is highly heterogenous. This is particularly evident when 

comparing the variability of measurements in Mexico City to those made in Ann Arbor. 

Table 2.4: Mexico City electroconductivity 

EC Signal (uS/cm)  Grab Sample (uS/cm)  
Mean  SD  Mean  SD  n  

Continuous  
9*  1  216  26  3  
9*  1  218  41  3  
9*  0  243  54  3  

309  293  232  28  2  
296  12  204  6  2  
772  1,695  1,688  NA  1  

1,065  5,194  1,041  NA  1  
8*  2  224  44  3  

278  5,442  1,030  406  2  
10*  1  212  11  2  
573  72  615  170  2  
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EC Signal (uS/cm)  Grab Sample (uS/cm)  
Mean  SD  Mean  SD  n  

26*  11  1,031  NA  1  
Weekly Intermittent 

8*  5  199  19  3  
224  6,334  197  1  2  
213  90  178  8  2  

Daily Intermittent 
475  35  404  9  2  
301  89  181  NA  1  

*Early calibration issue, which was subsequently resolved  

 

Public knowledge about drinking water quality stands at the core of public health around 

the world. Trends and projections show increasing per-capita consumption of purchased water 

[13], often reported to have worse water quality, and bottled products, including sugared drinks 

[14,15], which have led to global obesity and diabetes type 2 epidemics [16]. Trust in water quality 

is a complex subject requiring cross disciplinary research. Our sensor network deployment in 

Mexico City is currently being cross-analyzed with qualitative and quantitative data sets studying 

public trust in drinking water [73,74]. Sensors may serve as an objective tool to help households 

and utility managers “turn on the lights” on an otherwise invisible infrastructure.  

2.6.3 Platform Performance 

As measured by data transmission reliability (expected vs delivered data packets), the 

sensor nodes and cloud architecture successfully collected and delivered data throughout the 

deployment study. By leveraging proven hardware and commercial cloud services, reliability and 

server uptime could be maintained without interruption. One of the novel elements of our sensor 

node and cloud architecture is its ability to be deployed at any location with Wi-Fi or cellular 

service. Some individual sensor nodes experienced outages, mainly due to instability of residential 

Wi-Fi. The nodes have a built-in feature to automatically reconnect once Wi-Fi outages resolve. 

The easy upgrade to cellular connectivity provides added reliability with an extra cost per node 

and excess data transferred. In terms of cellular coverage, Particle Inc provides a list of countries 
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currently supported through their cellular data plans [75]. Regardless of preliminary connectivity, 

test should be performed to scout the wireless reliability of each location prior to deployment. 

Some outages were also caused by residents moving the unit or disconnecting it manually, but not 

due to the architecture of the system. 

The platform reliably time stamped system-wide events such as the EC event in Ann Arbor, 

and distributed water quality and supply variations across Mexico City. By making technology 

more accessible and easier to use, these sensors nodes provide the potential to begin capturing 

building plumbing dynamics that have so far remained elusive. To our knowledge, our study is the 

first example of a large-scale deployment in distributed and intermittently supplied households 

made possible by a built-for-purpose technology. 

2.6.4 Constrains, limitations, and practical considerations 

This paper presents a first step towards making water quality measurements more 

accessible through an open source, real-time water quality wireless sensor network. As with any 

new tool, several new venues remain to be studied before it can become a vetted method. For those 

interested in carrying out similar studies, a major time barrier should be reduced since the steps of 

our study are provided in detailed web guides, source code, and blueprints that accompany this 

paper. While the platform is an end-to-end solution, it cannot be bought as an off-the-shelf product, 

and will require hands-on construction, calibration, and fine tuning. We expect these practical 

barriers to be reduced as the community of adopters grows.  

The ease of deployment ensured that our team could instrument each household with a 

sensor node in a single visit of one hour.  This feature limited the need for professional installations 

and reduced the burden on residents. All things considered, we recommend a team of at least two 

people construct and build a fleet of devices. Given the sporadic need to troubleshoot the nodes or 
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expand their functionality, some basic knowledge of circuits, electronics, and coding is required. 

A basic undergraduate course in these topics should be sufficient to cover these. Installations 

require non-intrusive plumbing modifications (e.g. connecting and disconnecting threaded 

fittings), and system maintenance require data monitoring and field visits. For reference, the ten 

nodes used in the Ann Arbor deployment were built and tested by two students in two weeks and 

deployed over a period of two weeks. Recruiting household participants is perhaps the most 

practical constraint and may require approval by city authorities or an internal review board (IRB). 

This should be considered as early as possible, as it may take a long time to establish these 

relationships. For comparison, the nodes used in the Mexico City were deployed over nine months. 

The limiting factor in Mexico City was coordination with residents, and the sheer logistics 

deploying and maintaining a system in one of the largest cities in the world. This underscores even 

further the reliability of the network, as this limits long and unnecessary trips and coordination 

across large areas.  

Our sampling protocol remained static throughout the study period (pressure every five 

minutes, water quality every hour), we recommend the use of more advanced operational scripts 

to automatically modify the sampling frequency as needed and to label data points within the script 

for a more streamlined analysis (e.g. first flush, bulk supply, building vs water main). Groups can 

do this by taking advantage of the microcontroller’s internet features by simply writing new code 

and uploading it wirelessly to field deployed units.  

The limitations of the water quality sensors should be characterized further. When signals 

show gradual or sudden changes, but grab samples are not available to validate such observations, 

it remains challenging to draw general conclusions about water quality. pH and ORP signals can 

drift or spike due to sensor malfunction, but unexpected results may also point to previously 
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unrecognized water quality dynamics at the tap. Spatial redundancy of a deployment is a benefit 

of our cost effective and distributed approach in such cases, since it is unlikely that multiple sensors 

will fail in the same neighborhood. Further research is needed to understand the sensor signal 

dynamics of water quality at the tap. In the meantime, we recommend the deployment of multiple 

sites within a single study region. Furthermore, the real-time dashboard accompanying the 

platform should be used daily for quality control (at least in the early weeks of a deployment) to 

ensure that no major sources of noise or outages are present. As the team becomes more familiar 

with the individual nuances of their deployment, the need to quality control the data daily will 

become less important.  

ORP and EC sensors showed the most potential in our study, but more detailed process 

studies are needed to evaluate the strength of the correlation between measure ORP and 

disinfectant residual. While these specific parameters have been studied in a broad range of water 

applications, their use as part of real-time drinking water monitoring networks remains uncharted. 

The sensitivity of ORP sensors to new conditions needs to be further evaluated, since there are 

existing known relationships between the ionic strength of a solution and the time it takes an ORP 

sensor to stabilize. Currently ORP sensors can take anywhere between 15 minutes to several hours 

to reach equilibrium when measuring low ionic strength waters, such as some drinking waters [76]. 

Because this is the case, real-time ORP measurements will need further operational tuning and 

technology development to achieve measurements that can be confidently linked to other 

parameters of interest. 

During regular operation, the time to reach ORP sensor stabilization was variable (one to 

three hours). The Mexico City deployment shows that the sensor stabilization is an initial 

phenomenon when sensors are first turned on, rather than caused by exposure to water (intermittent 
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vs continuous). While it should be evaluated on a deployment-by-deployment basis, this 

stabilization period is likely caused by power supply state, which underscores the need for a stable 

power source and battery backup. Our platform supports this with using a built-in backup battery, 

which we recommend as a vital component of future deployments. When nodes are reset, the 

stabilization time period should be accounted for through visual inspection and an initial grab 

sample. 

2.6.5 Research Opportunities 

In addition to event detection and monitoring benefits, the EC signals from the Ann Arbor 

deployment (Figure 2.3-A) show how a study may be conducted to quantify the water age and 

hydraulic patterns of a distribution system based on the delay and magnitude of the signals. A 

dedicated sensor node at the treatment plant could serve as the baseline for water quality 

characteristics, while a deployed sensor network within the distribution system could inform the 

time and possible flow paths of the water in the distribution system. We see future potential to use 

these sensor nodes in applications such as water age model calibration using approaches such as 

the ones published by Rubulis et al. (2011) [77], where EC was proposed as a natural tracer to 

track the flow of various water sources within the distribution system. Hyoungmin Woo et al. 

(2019) [78] implement Dynamic Time Warping to computationally find the corresponding 

elements of various water quality signals that are offset by a time component and signal magnitude. 

Access and availability to sensors has been a major barrier to release these theoretical approaches, 

but it is now entirely possible to accomplish this with our platform.  

Even when relying on sensors that are lower cost and less maintained than those used at 

the plant, the option to generate long-term summary statistics and time-series using real-time 

wireless sensor networks has the potential to provide substantial value. After the sensor network 
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has been deployed and the water quality baseline has been established through summary statistics, 

specific signals can be queried for relative changes. For example, stable ORP signals can be taken 

as validation that chloramine concentrations throughout the day and across the city remain within 

a safe range. If the average and range continuously correspond to previously set values (e.g.  400 

± 100 mV in chloraminated waters), the wireless sensor network may have the potential to alleviate 

some of the efforts required in field grab sampling, assuming the regulator would allow for a 

reduced number of regulatory samples. Furthermore, the real-time data could point to locations of 

the distribution system that require more attention. Although U.S. EPA regulations in the United 

States still require mandatory grab samples for compliance, more resources are becoming available 

for utilities to adopt real-time online water quality tools that can be used to monitor common water 

quality incidents such as nitrification and corrosion.[79] The sensor node architecture presented in 

this paper (Figure 2.1) can be modified to address and monitor the parameters that are most 

relevant to each system and study site. 

2.7 Conclusion 

Our wireless sensor network shows how a drinking water distribution system can be 

continuously monitored at the level of building plumbing using a cloud-based architecture.  This 

may present a valuable tool for water quality monitoring, compliance, research, maintenance, 

warning system design, and operations. Potential allocation of resources for infrastructure projects 

may benefit from continuous monitoring to ensure that designs meet intended goals. For those 

wishing to implement and evaluate these technologies, our team has made available all the 

blueprints and guides as part of a broader effort to open-source water technologies.  
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2.8 Supporting Information 

Details on the methods and deployments specific to each city are described. Summary 

statistics tables of the signals and grab samples of Mexico City nodes (pH in Table SI-A-1, 

Pressure in Table SI-A-2). Ann Arbor’s deployment results from Figures SI-A-1 and SI-A-2 

complement Figures 2.3 A and B. 
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Chapter 3  
Toward the Autonomous Flushing of Building Plumbing: Characterizing Oxidation-

Reduction Potential and Temperature Sensor Dynamics 

 

3.1 Abstract 

Manual flushing of building plumbing is commonly used to address water quality issues that arise 

from water stagnation. Autonomous flushing informed by sensors has the potential to aid in the 

management of building plumbing, but a number of knowledge gaps hinder its application. This 

study evaluates autonomous flushing of building plumbing with online sensor and actuator nodes 

deployed under kitchen sinks in five residential houses. Online oxidation-reduction potential 

(ORP) and temperature data were collected for nine weeks during the winter and summer in houses 

with both free chlorine and chloramine. ORP levels in houses with free chlorine residuals 

decreased after overnight stagnation. The overnight decrease in ORP was not observed when tap 

water was automatically flushed for five minutes at 6:00 h every morning. ORP levels in houses 

with chloramine residuals did not decrease consistently after overnight stagnation, and daily 

automated flushes did not have an observable effect on the ORP signals. Additional laboratory 

experiments were carried out to evaluate ORP signals during chlorine decay and after incremental 

changes in chlorine, as would be expected in building plumbing conditions. Results from the lab 

and field deployments suggest on-line ORP sensors may be used to detect free chlorine decay due 

to stagnating water, but are not as effective in detecting chloramine decay. However, field results 

also suggest ORP may not respond as expected on a timely manner after free chlorine or 
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chloramine have been restored, hindering their applicability in developing control algorithms. In 

this paper we tested twice-daily five-minute automatic flushing and found that it counteracts water 

quality degradation associated with overnight stagnation in free chlorine systems. An automatic 

sensor-based flushing is proposed using online temperature sensor data to determine when flushing 

has reached water from the main. The results suggest that flushing informed by temperature 

sensors can reduce the flushing time by 46% compared to the preset five-minute static flush.  

 

3.2 Introduction 

Drinking water quality deterioration in building plumbing is a public health issue of 

growing concern. Varying factors in plumbing can affect residual disinfectant levels [80,81], may 

increase the concentrations of harmful metals like lead and copper in the water [41,82], and can 

allow biofilms sometimes containing pathogenic microorganisms to grow [83]. To that end, 

operational guidelines have been developed to address and mitigate risks [84–86]. The most 

commonly recommended approaches include disinfectant boosters, water heater temperature 

control, and manual flushing of taps, with the latter typically considered the most practical to 

implement. However, many of these guidelines are inconsistent and some even lack a scientific 

basis [37]. This can lead building occupants to falsely believe they are addressing water quality 

deterioration by following guidelines. Overall, many knowledge gaps exist in our understanding 

of building plumbing water quality and risk mitigation practices [39]. 

In the United States, federal regulations require utilities, with the exception of filtered 

groundwater systems, to maintain a residual disinfectant in drinking water delivered through 

distribution systems [87,88]. The purpose of the residual disinfectant is to prevent microbial 

growth and inactivate pathogens that are introduced after the drinking water exits the treatment 
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plant. Federal regulations further require all public water systems to maintain chemical stability of 

pipe materials in building plumbing through corrosion control measures [36]. Since regulations 

focus on distribution system water quality and centralized treatment, building managers and 

residents are left with the responsibility of ensuring adequate water quality at their tap. A common 

approach is routine flushing, whereby stagnant water in pipes is replaced with fresh water from 

the distribution system by opening the tap for a certain time period.  

Prior studies have found that flushing building plumbing replenishes disinfectant residual, 

decreases the levels of viable bacteria [89], and reduces the concentrations of dissolved heavy 

metals like lead and copper [90–92]. Overall, however, existing flushing guidelines are scattered 

or nonexistent for various building types [37,39]. A universally-accepted guideline does not exist 

due to variations in plumbing and lack of clear scientific guidance [38].  

Guidelines suggest that building managers or residents flush faucets manually and 

determine flushing duration by gaging temperature changes with their hand or a handheld 

thermometer [85]. This approach assumes that tap water at room temperature is associated with 

building plumbing and colder water is associated with the distribution main. Alternatively, 

flushing can be carried out for 30 seconds to 2 minutes [19§141.154]. However, the time each tap 

takes to reach the distribution main water depends on many factors and requires flushing from a 

few seconds to anywhere between ten minutes to longer than one hour [93]. This makes routine 

flushing practices prone to error, impractical to implement, and unsustainable in regions 

experiencing water scarcity.  

Flushing durations are important since incomplete and inadequate flushing may 

inadvertently increase lead and copper concentrations mostly originating from service lines [91], 

but also from fixtures, galvanized steel pipes, solder and other components in building plumbing 
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[82,94,95]. In addition to concerns with flushing durations, the daily to weekly flushing 

frequencies found in guidelines may be insufficient in some cases [89,93]. For example, Totaro et 

al. found that hospital hot water taps needed to be flushed as frequent as every two hours to reduce 

Legionella counts from 102 – 105 to 0 cfu/L, despite the presence of total chlorine concentrations 

ranging from 0 – 0.23 mg/L as Cl2 [96].  

When long, high frequency flushing is required to achieve the desired safety standards, 

manual flushing may not be feasible. This presents an opportunity for the development of 

technology-based or automatic flushing mechanisms. Advances in computing, sensing, and 

electronics have paved the way for infrastructure automation [9,97]. Infrastructure systems are 

increasingly being retrofitted with sensors and actuators to allow autonomous responses and 

dynamic management [98].  These technologies now have the potential to measure and automate 

tap water management at the scale of individual buildings, for example by measuring water quality 

in real-time to inform when and for how long flushing should take place. Presently, however, most 

common uses of water technology in buildings are related to conservation [99]. Proximity sensors 

have become common in public restrooms to flush toilets, urinals, and faucets [99]. Decreasing 

water use increases water age and may invertedly cause greater contaminant exposures [100]. 

Verifying this at scale and with high granularity, however, remains challenging as water quality 

sensors are not deployed at points of use. 

Maintaining a residual disinfectant (free chlorine or chloramine) is an important strategy 

in drinking water system management [101]. Disinfectant sensing technology, however, is 

currently not applied in public or residential plumbing as there are no readily available commercial 

products. Direct and reliable measurements of residual disinfectant concentrations via sensors are 

complicated by operational requirements, cost, and frequent maintenance necessary to provide 
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reliable measurements [102]. Albeit rare, recent studies have deployed disinfectant sensors in 

institutional and residential plumbing fixtures [43,45] showing that technical implementation is 

possible. These studies mentioned the high cost of these sensors limiting their widespread adoption 

and called for the development of sensing technology to facilitate research and management of 

building plumbing. 

Indirect measurements can provide a low-cost alternative to directly measuring a 

compound of interest in water. Oxidation-Reduction Potential (ORP) sensors measure the 

oxidation potential set by the strongest oxidant in solution, which in drinking water is the residual 

disinfectant. Some studies have correlated ORP to disinfectant concentrations in test waters 

[70,103], and have correlated ORP with biological inactivation [103–105]. The U.S. 

Environmental Protection Agency (USEPA) recognizes ORP as an important water safety 

parameter for detecting contamination incidents and monitoring disinfectant residual, and provides 

resources for utilities and practitioners to develop online real-time monitoring tools [32]. ORP has 

recently been used to monitor disinfectant levels in chlorinated and chloraminated full-scale 

drinking water systems [43,46,106]. The potential of ORP sensing in residential and commercial 

plumbing remains understudied, so it is unclear if these technologies could be used at scale to 

adaptively manage water quality. 

Temperature is another important, but even more indirect parameter for the 

characterization of water quality in buildings. Temperature plays an important role in the growth 

of opportunistic pathogens (e.g., Legionella pneumophila) in building plumbing (CDC 2022). 

Temperature sensors are reliable and readily available, and real-time measurements could be used 

to assess if water from the distribution main has reached the tap during flushing or to monitor if 

the temperature is above or below the optimal temperature range for Legionella growth. 
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Applications of temperature sensors have included detection of individual flow events at hospital 

thermostatic mixing valves [44] and automatic shut off of showers when a temperature set point is 

reached [99].  To our knowledge, no studies to date have directly characterized the value of using 

in-situ temperature sensors to inform flushing frequency and duration.  

Technologically, opening and closing valves based on sensor readings to flush plumbing is 

feasible. However, the viability of autonomous flushing as a management strategy is underpinned 

by several knowledge gaps. Toward that end, the goal of this study is to address three key 

questions, which must be answered before sensor-mediated flushing can be deployed: 

1. Does the dynamic response of ORP sensors provide a reliable correlation to estimate tap 

water disinfectant residual concentrations? 

2. How are in-situ ORP and temperature measurements affected by automated flushing at 

residential taps? 

3. Which practical constraints should guide the deployment of sensor-driven flushing of 

building taps?  

3.3 Materials and Methods 

Field experiments using the sensors were performed in Ann Arbor and Ypsilanti, Michigan, 

USA and validation laboratory experiments were conducted at the University of Michigan. The 

Ann Arbor distribution system serves a population of 120,000 people and chloramine is used as 

the residual disinfectant [30]. Ypsilanti’s distribution system serves a population of 110,000 and 

receives water from the Great Lakes Water Authority, which uses chlorine as the residual 

disinfectant [107,108].  

3.3.1 Laboratory Evaluation 
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Prior to field deployments, ORP sensors (Atlas Scientific #ENV-40-ORP) were evaluated 

under two controlled scenarios in the laboratory to assess operational performance. All laboratory-

based experiments were carried out at 22 °C.  Experimental solutions for sensor evaluation were 

prepared with tap water collected in Ypsilanti and Ann Arbor (physicochemical water quality 

parameters are reported in Table SI-B-1 in Appendix B). All glassware was treated in a chlorine 

bath (5,000 mg/L as Cl2 for >1 hour) and rinsed thoroughly prior to use. Residual disinfectant 

concentrations were measured with a Hach DR900 Colorimeter using the DPD method [109]. 

Hach Method 8021 was used to measure free chorine and Hach Method 10250 was used to measure 

total chlorine. The dynamic range for both methods was 0.05 to 4.00 mg/L as Cl2. Chloramine in 

Ann Arbor water was assumed to be the sole contributor to total chlorine measurements. 

The first scenario sought to characterize how the ORP sensor data correlate to discrete 

disinfectant concentrations over ranges typically found in building plumbing. Tap water was 

diluted to concentrations ranging from 0 – 2 mg/L as Cl2, placed in 250 ml flasks, and the ORP 

was measured with ORP sensors after a five-minute signal stabilization period. The ionic strength 

of the diluted samples was kept similar to the tap water ionic strength by matching the chemical 

composition of dilution water to that of tap water. Dilution water was prepared by adding sodium 

bicarbonate (NaHCO3), sodium phosphate monobasic (H2NaPO4), sodium sulphate (Na2SO4 

2H2O), calcium chloride (CaCl2 2H2O), and sodium hydroxide (NaOH) in deionized water (DI) to 

match total alkalinity, total hardness, phosphate, chloride, sulphate, conductivity, and pH of the 

tap water samples. The results of these experiments were used to model the relationship between 

each disinfectant concentration and ORP using a local statistical regression (LOESS) in R. 

The second scenario focused on the response of the ORP sensors to the gradual decay of 

residual disinfectant, seeking to reflect conditions corresponding to water stagnating in building 
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plumbing. Tap water samples (4 L) were placed in large conical flasks, continuously stirred, 

sealed, and covered with aluminum foil. ORP decay for each sample was monitored in a single 

flask containing three ORP sensors that collected measurements every five minutes. The 

measurements collected at each timepoint by the three ORP probes were averaged, and the 

standard deviations were calculated. Aliquots were removed from the flask two times a day for 

free chlorine and total chlorine measurements. These measurements were discontinued when the 

residual disinfectant concentration was below the detection limit. The experiments lasted from 

seven to 21 days and the decay experiment was repeated multiple times for each disinfectant. 

Decay constants were estimated using first-order exponential decay models (Eq. 3.1) as first order 

kinetics have been applied previously to model free chlorine and chloramine decay in bulk water 

and pipes [81,101,110].  

ln[𝐶𝑙]! =	−𝑘𝑡 +	 ln[𝐶𝑙]"   Equation 3.1 

where k is the decay coefficient, t is time in hours, [Cl]t is the residual disinfectant 

concentration in mg/L as Cl2 at time t, and [Cl]0 is the initial concentration. 

3.3.2 Field Experiment 
The wireless sensor and actuator package (Figure 3.1) was designed as described by 

Martinez Paz et al. (2022). The WiFi enabled package was connected under a standard household 

sink (Figure 3.1-B), without affecting regular use of the fixture by residents. The device was 

equipped with an ORP sensor and a thermistor. To make an in-situ measurement of ORP and 

temperature, a solenoid valve was actuated to fill a flow cell (250 ml) and divert the sampled water 

into the drain. The wireless system transmitted ORP and temperature to cloud-hosted services, 

where server-side logic was implemented to trigger new samples or initiate flushing. The same 

solenoid valve used to take samples was used for flushing by keeping the valve open for a longer 
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period. The sensor sampling frequency was configured remotely, but the device reported ORP and 

temperature measurements at five-minute intervals. In total, two households in Ypsilanti and three 

households in Ann Arbor (Table SI-B-2, Figure SI-B-1) were part of the field experiment with a 

duration of approximately nine weeks per household. 

 

Figure 3.1: Wireless sensor nodes and actuation system deployed under kitchen sink. A valve was actuated to flush 
water using cloud connected services while temperature and ORP measurements were used to study the resulting 

water quality dynamics. 

ORP and temperature measurements were made at each home and categorized across two 

scenarios: (1) Baseline and (2) Flush. In the Baseline scenario, water measurements were taken 

hourly, seeking to characterize baseline use conditions for each home. During the Flush scenario, 

the solenoid was triggered remotely to flush the flow cell for five minutes. The five-minute 

flushing duration was chosen based on observation that temperature measurements stabilized 

within a five-minute flush period. Here, we assumed that stabilized temperature readings reflected 

water arriving from the distribution system at the tap. A fixed schedule for flushing was 

implemented on the server, triggering the system to flush water at 6:00 h (before waking up) and 

17:00 h (before residents returned from work). The flushing flowrate was set at 3 L/min, resulting 

in approximately 15 liters being flushed each time. After flushing, ORP and temperature 
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measurements were recorded. Measurements were summarized hourly across days to compare 

trends across the Baseline and Flush scenarios.  

A modified flush scenario was conducted in which the cell was flushed for 15 minutes and 

the ORP and temperature measurements were recorded every second. This scenario was only 

triggered for approximately one week per site during the multi-month deployment – a total of 219 

high-resolution flushes were collected across all sites. An algorithm was designed to identify 

flushing stop points on these high-resolution signals based on sensor signal stability. The algorithm 

used linear regression to calculate the slope of three consecutive measurements using a sliding 

window. A stable signal was identified when five consecutive slopes were less then |±0.002| 

°C/sec. The criterion was chosen based on stable signals observed in the data set. 

Grab samples were collected from taps during both Baseline and Flush scenarios between 

9:00 h and 17:00 h to characterize the pre- and post-flush residual disinfectant concentrations 

(Table SI-B-3, Figure SI-B-2). The free chlorine and chloramine concentrations were measured as 

described above. An additional pair of pre- and post-flush samples from the households in 

Ypsilanti were collected at 7:00 am to assess the effect of overnight stagnation (Figure SI-B-3). 

Access limitations prevented similar samples to be analyzed in the Ann Arbor households. 

3.4 Results 

3.4.1 Laboratory evaluation 
The response of the probes to different free chlorine and chloramine concentrations was tested 

with tap water samples diluted and measured with the probes after a five-minute stabilization 

period (Figure 3.2). Visualized as a regression, the figure illustrates that ORP provides a linear 

prediction of free chlorine concentrations in a range of 0.1 - 0.5 mg/L as Cl2 with slope equal to 

834 mV/mg/L as Cl2 (R2 = 0.89), followed by a plateauing of the signal at > 0.5 mg/L as Cl2 with 
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an approximate linear relationship with slope of 49 mV/mg/L as Cl2 (R2 = 0.36). ORP sensors 

submerged in chloraminated water also exhibited a linear relationship with a slope of 256 

mV/mg/L as Cl2 (R2 = 0.70) in a range of 0.1 – 0.6 mg/L chloramine as Cl2. The ORP values were 

not reliable predictors of higher disinfectant concentrations for chloramine. These results for 

chlorine and chloramine agree with a previous study in which ORP levels plateaued at free chlorine 

and chloramine concentrations greater than 0.5 mg/L [70]. Copeland and Lytle reported higher 

ORP variability with increasing pH. Chloramine formation and longevity are known to be more 

effective at high pH (> 8.5) [101,111], which explains the higher variability in ORP measurements 

for chloramine samples with a pH value of 9.3 compared to free chlorine samples with a pH value 

of 7 (Figure 3.2). 

 

Figure 3.2: Relationship between ORP and residual disinfectant concentrations.  Triplicate ORP measurements were 
taken at different concentrations of free chlorine and chloramine. Solutions were prepared by diluting tap water and 
then measuring ORP and residual concentrations after five minutes. A LOESS regression model was used to fit the 

data. 

The response of the probes was also tested in laboratory experiments tracking tap water 

disinfectant and ORP decay over long periods of time, reflecting temporal dynamics that may be 

observed as water stagnates in pipes (Figure 3.3). In these samples, the initial free chlorine 

concentrations in Ypsilanti tap water ranged from 0.68 to 1.00 mg/L as Cl2, and the initial 

chloramine concentration in Ann Arbor tap water ranged from 1.14 to 2.70 mg/L as Cl2 (Figure 
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3.3). ORP decay curves for the water containing free chlorine exhibited a gradual ORP decrease 

followed by a rapid ORP decline after the free chlorine concentrations reached approximately 0.10 

mg/L as Cl2. This transition occurred after 4 – 8 days. On the contrary, the ORP signals in the 

samples containing chloramine fluctuated over the first 2-3 weeks even though the chloramine 

concentrations were decreasing.  The ORP signal eventually began to decrease consistently after 

the chloramine concentrations had decreased by >50%. The ORP sensors reached approximately 

260 mV when the chloramine was no longer present. These inconsistent temporal dynamics of the 

ORP sensors in the decaying chloramine solutions do not support direct conversions from absolute 

ORP (mV) to chloramine concentrations.  A defining feature of the free chlorine ORP signals was 

the relatively low variability among the triplicate probes submerged in the batch reactor. This was 

contrary to the replicate probes in the chloramine solutions, which exhibited high levels of signal 

variability. This higher variability in the chloramine samples is likely related to the complex decay 

mechanism of chloramine in drinking water [111]. 
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Figure 3.3: Residual disinfectant concentration and ORP decay in batch reactors containing tap water. Top: 

Results from grab sample free chlorine (left) and chloramine (right) measurements. Data points are connected 

by lines to clarify replicate experiments. Bottom: ORP results obtained by using the average ORP value of 

three sensors, with the gray bars indicating the standard deviation. 

In systems under surface water influence, the US EPA minimum standard for free chlorine 

and chloramine concentrations at the entry to the distribution system is 0.2 mg/L as Cl2, and 

detectable throughout the distribution system [87]. In the decay experiments (Figure 3.3), 0.2 mg/L 

as Cl2 corresponded to 695 mV (σ = 26 mV, n = 9) for free chlorine and 306 mV (σ = 19 mV, n = 

12) for chloramine. In the discrete change experiments (Figure 3.2), 0.2 mg/L as Cl2 corresponded 

to 476 mV (σ = 11 mV) for free chlorine and 275 mV (σ  = 17 mV) for chloramine. These 

experiments indicate that ORP levels differ in situations where the disinfectant is decaying 

compared to situations where the probe is exposed to a freshly prepared sample containing 

residual. The mechanisms behind these observations are not clear, but highlight issues with 

calibrating sensors solely with freshly prepared residual solutions.  
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The first order decay constant (𝑘#) for free chlorine was 1.35 × 10$%	ℎ$& (σ = 0.421	ℎ$& 

, n = 2) and for chloramine was 8.25 × 10$'	ℎ$& (σ = 0.753	ℎ$&, n = 4). At these rates, the free 

chlorine concentrations took 3 – 7 days and the chloramine levels took 4 – 24 days to drop below 

the US EPA standard of 0.2 mg/L as Cl2. These decay rate constants were similar to those measured 

in tap water samples in a beaker or water mains [81,110,112] and are 20-140 times slower than 

rate constants measured in experimental building plumbing rigs and in real building plumbing 

systems [81,110,112]. This is likely due to the greater disinfectant demand in premise plumbing 

systems compared to glass flasks and water main pipe materials. In the case of chloramine, the 

additional effects of nitrification may also contribute to the discrepancy [81,110,112]. Twenty-

fold faster decay rates in building plumbing means that free chlorine and chloramine could 

decrease from 1.0 to 0.2 mg/L as Cl2 in roughly seven hours and 15 hours, respectively.  Although 

the decay kinetics observed with ORP sensors (Figure 3.3) are much slower compared to chlorine 

and chloramine decay kinetics, these calculations along with our bench scale results suggest that 

ORP sensors may detect low disinfectant residuals due to stagnation. Overall, the laboratory results 

underscore the need to study the sensors in real household systems.  

The laboratory experiments suggest that an absolute ORP measurement may not provide 

an accurate estimate of decaying disinfectant concentrations in building plumbing. These data, 

especially in chloraminated systems, demonstrate the challenges with using ORP sensors in 

systems with high water age for capturing disinfectant decay. On the other hand, experiments using 

freshly diluted samples (Figure 3.2) suggest that ORP may capture when the disinfectant has been 

replenished with fresh water from the distribution main.  
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3.4.2 Field Experiments 

Five-minute manual flushes that took place between 9:00 h and 19:00 h resulted in modest 

improvements in chlorine and chloramine concentrations immediately after flushing (Table SI-B-

3, Figure SI-B-2). Specifically, the free chlorine levels increased between 1.4% and 33% and the 

chloramine concentrations increased between -1% and 18.3%. Larger increases in disinfectant 

residual concentrations were observed when flushes took place after overnight stagnation, which 

yielded a 52% and 45% increase for free chlorine systems immediately after flushing (Figure SI-

B-3). These data demonstrate that while flushing improves residual disinfectant levels in most 

cases, it has a larger impact on residual disinfectant levels after long periods of water stagnation.  

In most homes, a five-minute flush yielded discernable temperature shifts observed with 

the in-situ sensors (Figure 3.4), likely corresponding with water arriving in the home from the 

main. Notably, each household resulted in a unique temperature profile; some households 

exhibited a rapid temperature change with flushing, whereas others took as long as five minutes of 

flushing for temperatures to stabilize. The temperature shift was less pronounced in September 

and October, when differences between indoor and outdoor temperatures are smaller in Southeast 

Michigan. These high-resolution signals show that temperature changes measured by in situ 

sensors could be used as an indicator that building plumbing has been flushed and that the 

household is receiving water from the distribution system. This approach may work better during 

some parts of the year than others, as the temperature differential may be easier to measure. Of the 

219 flushes across the five households that lasted 15-minutes and had high-resolution temperature 

measurements, 51% of the flushes required less than five-minutes to reach a stable temperature 

(Figure 3.4). A five-minute flush was equivalent to 15 L, which is roughly 4.7% of the average 

daily water use per person per day [113]. This water loss is relatively small compared to the water 
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use associated with showering (an eight-minute shower using a low-flow showerhead uses 

approximately 60 L of water) and corresponds to 2.5 toilet flushes (6 L per flush) [99]. 

Nevertheless, our experiment highlights an opportunity to reduce the flushing time to save water 

without changing water quality. Specifically, an average 8-L flush in the summer (46.6% 

reduction), and 14-L flush in the winter (4.6% reduction), would have been sufficient if 

temperature sensors would have been used as cutoff indicators. Of note, the flow rate of the sensor 

node (3 L/min) is lower than faucet flow rates in the US (5.6 – 8.3 L/min)[99]. Depending on each 

faucet, a manual flush may need less time to reach water mains.  

 

 

Figure 3.4: Response of temperature sensors during flushing of household taps. Solid lines represent individual 
flushing events (n = 219), average of lines per site is shown in bold lines, dashed vertical lines represent the start and 

end of a five-minute flush. Flow rate at 3 L/min. 

Similar to the laboratory observations, the ORP sensor readings in homes with chlorinated 

water increased during a flush (Figure SI-B-4). However, the trends were noisier than the 

temperature trends. The ORP sensors in homes with chloraminated water resulted in inconsistent 

trends through flushes, and often exhibited no shift during a flush (Figure S1-B-4). This is likely 
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due to the fact that the chloramine concentrations were typically well above 0.6 mg/L as Cl2 (Table 

S1-B-3) and the ORP signals were no longer responsive with our sensors at these concentrations 

(Figure 3.2).  

Water temperatures at the tap generally corresponded with room temperatures throughout 

the day and averages were slightly higher in the warm periods compared to the cool periods (Figure 

3.5). This was expected as homes were often climate controlled. Temperatures dropped the most 

following the scheduled flushing in the morning. This temperature decrease was larger in the cool 

months compared to the warm months. Temperatures generally returned to room temperature 

within an hour of the morning and evening flushes. During the winter, the flush-induced median 

temperature dip was -5.5 °C, -6.6 °C, and -3.7 °C in Arb 1, Arb 2, and Arb 3 from each of their 

baseline temperatures. During the summer, the impact of flushing on median temperatures was -

2.3 °C, -3.8 °C, -2.1 °C, and -3.8 °C in Yps 1, Yps 2, Arb 1, and Arb 2, respectively.  

 

 

Figure 3.5: Hourly water temperature variability during field experiments, comparing the distribution of 

temperatures across baseline and flushing scenarios. Summaries include median (Q2) as circles and squares, whisker 
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bars extend to 𝑄! − 1.5 × 𝐼𝑄𝑅  and 𝑄" + 1.5 × 𝐼𝑄𝑅 or the max/min value of the data set, where IQR is Q3 – Q1, and 

minimum values shown as x’s if smaller than the whisker bar range. 

For homes with free chlorine residuals (Yps1, Yps2), the median ORP values measured by 

the sensors corresponded to 811 mV and 737 mV (Figure 3.6). A drop in the median ORP was 

detected in these homes overnight (-17 mV and -27 mV), becoming most pronounced around 8:00 

h. The drop in the median at 8:00 h was accompanied by an increase in the variability of the 

measured signals. This drop aligns with the water stagnation that typically occurs in households 

overnight. While we did not have access to water usage data, ORP values in homes with free 

chlorine residuals generally increased in the morning and this aligns with common household 

water use patterns. Flushing daily at 6:00 h eliminated the ORP minimum observed at 8:00 h when 

no flushing occurred. Flushing also reduced the variability in measured signals overnight, with the 

most significant change seen at 8:00 h (IQR shift from 39 mV to 11 mV). The potential use of 

ORP as an indicator for stagnation is incidentally supported by the observations of extreme outliers 

when no flushing took place in households (Figure SI-B-5). ORP levels dropped to as low as 242 

mV without flushing, and this corresponded with a 3-day household vacancy, as reported by the 

household residents. ORP outliers were not observed when flushing took place. Combined, our 

results suggest that ORP sensors can serve as general indicators of improved water quality due to 

flushing in homes with free chlorine residuals. 

In sites with chloramine as the residual disinfectant (Arb 1, Arb 2, Arb 3), the median ORP 

values measured during the Baseline period were 426 mV, 411 mV, and 416 mV respectively, 

with aggregate variability between 7 mV and 12 mV. Differences in Baseline ORP between the 

cold and warm months were minimal, with slightly lower values during September and October in 

one of the sites (Arb 2). Similar to the results from lab experiments, no strong pattern in ORP could 

be detected for systems with chloramine residuals. This provides further evidence against using 
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the ORP sensors as dynamic indicators of stagnation in chloraminated systems. The relatively 

stable ORP values in the chloramine deployments reflect the continuous presence of chloramine, 

and the lack of hourly trends overnight and throughout the day may be due to the lower chloramine 

decay rates compared to those of chlorine [80].  

 

Figure 3.6: Hourly ORP variability during field experiments, comparing the distribution of ORP across baseline and 

flushing scenarios. Summaries include median (Q2) as circles and squares, whisker bars extend to 𝑄! − 1.5 × 𝐼𝑄𝑅  

and 𝑄" + 1.5 × 𝐼𝑄𝑅 or the max/min value of the data set, where IQR is Q3 – Q1, and minimum values represented as 

“x” if smaller than the whisker bar range. 

3.4.3 Towards autonomous flushing 
This study supports several practical guidelines, which could be considered for future 

“smart” or sensor-mediated flushing. Flushing has the potential to improve disinfectant residual 

concentrations, but a major barrier to implement flushing involves the need to flush manually. As 

our study shows, automated flushing could be scheduled during expected times of stagnation (early 
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morning and evening), and the schedule could be adjusted remotely to comply with management 

goals or observed usage patterns.  A flushing device can be constructed with parts that cost under 

100 USD, and future work should focus on easy installation methods and training for homeowners 

and technicians. As with recent advances in home automation, such as smart thermostats, flushing 

devices could be put into a “vacation mode” while residents are traveling to limit water waste. 

Flushing devices could be installed in buildings within areas of the distribution system that are of 

concern, such as high-water age sectors, dead-ends. Since our study locations generally had 

acceptable disinfectant residual concentrations, future studies should be carried out in locations 

that experience low disinfectant residuals to further evaluate the potential of automated flushing. 

Adding temperature sensors to the flushing system is relatively inexpensive (less than 40 

USD additional cost) and could help reduce wasted water from flushing. Thermistors are relatively 

stable and can last for years without the need for calibration. Since many homes are climate 

controlled, temperature itself will not be an indicator of stagnation over time. Rather, a change and 

subsequent stabilization in temperature during flushing could result in the solenoid being shut off 

earlier than would be the case in a scheduled flush of a fixed duration. In our study, we showed 

that temperature-mediated flushing could result in 3 – 5 L of water being flushed, as opposed to 

the 15 L used by the 5-min fixed duration flush. As such, while not adding more complexity to the 

system in terms of cost and maintenance, temperature-mediated flushing could help conserve water 

and serve as an indicator that building plumbing has been flushed with water from the main. It 

should be noted however, that the greatest benefit is expected in non-temperate regions where 

there is a discernable temperature difference in main to household water. 

While adding ORP sensors to the flushing system will provide value in some cases, ORP 

sensors are relatively expensive (additional 150 USD for parts) and the use of this technology 
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should be closely evaluated for the value it provides.  In homes receiving chlorinated water, ORP 

sensors could serve as indicators that the residual disinfectant has fallen below requirements 

consistent with distribution system regulations. ORP sensors can also serve as inputs for a residual 

disinfectant estimation model, as indicated by a linear repones range in the 0 - 0.5 mg/L as Cl2 free 

chlorine range in our study. ORP sensors could therefore serve as remote points of water 

monitoring and allow for water to be flushed only when a setpoint ORP is reached. This could 

ultimately shift management away from fixed schedule flushing to flushing on an as-needed basis. 

In this case, temperature sensors could still be used to shut off flushing when the temperature 

stabilizes. For homes receiving chloraminated water, ORP sensors appear less valuable. They may 

in some cases serve as an indicator of very low residual disinfectant levels, but the high variability 

of ORP measurements and the lack of an ORP decrease during chloramine decay make it difficult 

to justify their value in the context or real-time decisions. Additionally, ORP sensing electrodes 

are prone to fouling and it is unknown how the probes may operate under different calibration 

frequencies. Future work should explore their broader value by deploying ORP sensors in 

distribution systems with known low residual disinfectant levels. 

Finally, the sensing technology in this study including the probes, the signal processing 

circuits, and board carriers were limited to one manufacturer. Despite confirmation in the 

laboratory, by limiting to one manufacturer questions arise to the reliability and accuracy of the 

sensors that may be manufacturer-associated. Future research in the application of ORP should 

take these inherent variabilities in mind and should include measurements with additional sensors. 

Our study focused on flushing cold water kitchen taps in single-family homes in Michigan, USA. 

Larger buildings with variable occupancy likely exhibit different water quality dynamics and 

flushing requirements. Future research should expand to develop and test flushing protocols in 
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different building types based on pre-established baseline dynamics, assess the effect of 

autonomous flushing on hot water taps, and to measure the effects of automatic flushing on 

chemical and microbial water quality. 

3.5 Conclusions 

Toward the goal of supporting the autonomous management of building plumbing water, 

this study sought to answer questions underpinning sensor-mediated flushing of household water 

systems. First, we evaluated the dynamic response of ORP sensors to free chlorine and chloramine 

concentrations in lab experiments under expected building plumbing conditions.  Second, we 

established baseline water quality signals from field deployments using ORP, temperature, and 

actuator valve nodes, followed by the response of temperature and ORP signals during flushing. 

The dynamic response of ORP sensors provides information on water stagnation by measuring 

free chlorine decay and will likely provide the biggest benefit in systems with free chlorine 

residuals.  Results of ORP response to free chlorine may provide viable means by which to detect 

significant stagnation and support automated flushing. ORP sensors generated high variability in 

measurements during chloramine decay, but there is potential in detecting very low residual 

concentrations of chloramine, such as those falling below regulated standards.  We showed that 

flushing generally increases residual concentrations, but since stagnation did not lead to drops 

below regulated standards in our study, the value of flushing should be evaluated by managers and 

residents or confined to use cases where residuals are very low. Finally, we provided a set of 

practical guidelines that could be used in continuing improvement of flushing implementation, for 

example in the use of temperature sensors to stop flushing when is no longer necessary. Future 

work should focus on exploring these techniques in multi-story and variable-occupancy buildings, 

high water age parts of distribution systems with low or without residual. As discussed above, 
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flushing is a recognized and recommended practical solution to water stagnation, ORP and 

temperature sensors may now be used in real-time to develop better flushing protocols.  
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Chapter 4  
Intermittent Supply, Domestic Water Storage, and Management Shape Experiences of 

Drinking Water in Mexico City Neighborhoods 

4.1 Abstract 

Intermittent water supply affects more than 1 billion people globally. Intermittency is 

linked to water quality deterioration, and to an estimated 1,560 annual deaths. Additionally 

intermittency places the burden on households residents to manage domestic water storage. 

Increased pressures on water resources are expected to increase the prevalence of intermittent 

water supply. For this reason, this study explores the impacts of intermittency on water quality and 

water trust at the household level. Using a multi-faceted data set that included ethnographic 

observations, water sensor data, and drinking water quality measurements collected from field 

visits to 60 households in Mexico City, we test hypothesized pathways linking intermittency to the 

management of domestic infrastructure and to the experience of drinking water quality. Statistical 

tools, including factor analysis and multiple linear regression, were applied to assess several 

proposed pathways linking intermittency to the experience of water quality. We found that more 

intermittent systems require more complex domestic storage systems. Systems in households with 

intermittency included underground storage (cisterns), pumps, and rooftop tanks (tinaco), whereas 

households with less frequent shutoffs who usually have only a tinaco to manage variability in 

pressure. Our results suggest that households that are more involved in the day-to-day management 

of their domestic water infrastructure may report a more positive experience of water quality. Our 

results also suggest that measured water quality from the public supply is an important determinant 
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of the experience of water quality at the kitchen tap, regardless of the domestic infrastructure type. 

These findings are important for developing water trust information campaigns and encouraging 

utilities and engineers to provide the best water supply and quality service possible. 

4.2 Introduction 

As global water resources become increasingly strained from anthropogenic and 

environmental stressors [47], highly urbanized communities around the world will face more water 

shortages. As a result, an increasing number of water supply systems may be forced to provide 

drinking water on an intermittent basis. Intermittent water supply systems are already prevalent, 

presently experienced by an estimated 1 billion people [48,49]. Intermittency is not only a problem 

of water quantity but also water quality. Intermittency is linked to deteriorating water quality 

[52,114,115]. As a result, an estimated 1,560 annual deaths are caused by the consumption of tap 

water contaminated with fecal matter that is linked to intermittency [49].  

The effects of intermittency on the integrity of the distribution system, water quality, and 

illnesses are well documented [51,52,114]. Effects of household management of intermittency, 

however, are poorly understood due to the complexity of studying the multitude of relationships 

between physical infrastructure and household dynamics. We anticipate that intermittency has 

indirect impacts on a number of household-level experiences, including household economics, 

physical or emotional burdens, chronic health effects, and factors leading to experience, trust, or 

distrust of publicly supplied water.  

Anthropological methods have rarely been used to study intermittency. A review on 

intermittent water supply found that between 2001 and 2015 only 4 of 126 publications relevant 

to intermittency had anthropologists in the author list [50]. Typically research at the household 

level employs surveys to obtain data. Surveys are an efficient tool because they yield large data 
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sets and results with statistical significance. However, the downside of surveys is that pre-

determined questions might not fully capture the experience of intermittency. The opposite is true 

with open-ended ethnographic observations, which gathers data from a much smaller sample size, 

but which affords the capacity for more fully understanding the phenomena under study. In this 

study, we use a combination of methods from anthropology, biostatistics, and environmental 

engineering to explore post-distribution effects of intermittency at the household level. 

Specifically, we test hypotheses linking intermittency to water quality experience through 

intermediary factors, such as domestic storage, management, and supplied and tap water quality. 

Understanding such pathways is critical to develop policy and engineering solutions to the 

inevitable increase of intermittency.  This study combines methods involving both survey and 

ethnography tools to study intermittency at the household level.  

 

4.2.1 Background 

Intermittent water systems are known to compromise drinking water quality, pose risks to 

public health, and jeopardize system integrity [50]. Pressure cycling produces structural stresses 

that reduce water mains service life, and promotes soil and groundwater intrusion [52]. Following 

an off-cycle, “first flush” water is characterized by high turbidity, low disinfectant residual, and 

high microbial activity [48,51,52]. This compromised water is supplied into building plumbing, 

domestic storage, and eventually household taps, and this can lead to contaminant exposures. 

Additional issues such as backflow, high demands, and negative pressure are common 

characteristics of intermittent systems that pose risks to public health and system integrity [52].  

Intermittent systems are broadly managed in binary states, namely on and off. Water 

availability is generally less than 24 hours per day or less than 7 days per week [115], however 
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intermittency operates on a spectrum, varying in cycle frequency (i.e. daily, semi daily), pressure 

fluctuations, and unexpected shutoffs [52]. A lack of a systematic definition to classify drinking 

water intermittency makes it difficult to confidently assess its prevalence, extent of implications, 

broader public health impacts, and to make comparisons among studies [50]. Recently Galantis et 

al. proposed a three-level definition to categorize intermittency from least to most disruptive to 

people’s lives – predictable, irregular, and unreliable [50]. Together these definitions highlight the 

complexity of intermittent systems and studying the impact to system integrity, human health, and 

the implications to domestic life. Indeed, many of the implications of intermittent systems remain 

to be explored.  

Intermittency is often managed by people in the form of domestic storage [51,53]. 

Domestic storage, including tinacos (rooftop tanks), and small cisterns (underground storage tank), 

is a practical solution that counteracts the variability in supply by providing continuous water 

availability at the tap. Although this storage provides the stability for daily needs, there are some 

drawbacks. For example, domestic storage is a reinforcer of intermittency [50], meaning that cities 

and utilities will continue to provide water intermittently to neighborhoods equipped with domestic 

storage, especially in poorer areas, rather than providing long-term solutions and converting to 

continuous supply. Furthermore, water quality tends to deteriorate in storage [53,72]. The latter 

specifically leads to higher risks of illness associated with fecal contamination in storage 

containers without proper lids, improper handling, and poor maintenance [51,54,55]. Domestic 

storage is both a need and a liability. It is thus important to minimize the impact of domestic storage 

on water quality, public health, and socioeconomics while maximizing the stability of water 

availability with intermittent supply.  
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Unlike in continuously supplied water systems, the need to work around the unique 

challenges of intermittent supplies can lead to economic, physical, or emotional burdens to 

household members. For example, residents often purchase trucked water to supplement public 

supply, carry buckets of water between the water source and where it is needed, and clean storage 

tanks [50,52]. Households in intermittent systems ration water use by prioritizing needs and 

reusing certain water streams. Understanding the requirements of domestic water management 

placed in households in relation to the spectrum of intermittency may help engineers and policy 

makers understand the mediated effects of intermittency on “less immediate” public health and 

socioeconomic outcomes. 

How individuals experience their drinking water quality can influence their decision to find 

alternative drinking water sources. The processes underlying experience of water quality are not 

fully understood as there are multiple complex interactions among factors including tap water 

quality, organoleptic experience, prior experiences, information sources, etc. [116,117]. A study 

comparing a community with continuous water supply to another community with intermittent 

supply found that residents in the intermittent supply community had a preference for retailed 

bottled water rather than tap water [54]. This correlation suggests there might be a determinant 

link between intermittency and experiences of water quality that may influence drinking water 

source decision making. Previous studies exploring determinants of bottled water preference have 

found that taste, risk aversion, and income influence decision making [118], but these complex 

interactions in intermittent systems have not been studied, especially in the context of domestic 

infrastructure and management as potential mediating factors. 

Studying the relationships between factors related to the experience of water quality is 

difficult because the variables cannot be measured directly (e.g., domestic infrastructure 
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management, water quality experience, etc.). In lieu of direct measurements, latent variables or 

constructs are made by combining measurable variables. In recent water quality experience 

studies, latent variables have been used to model multiple linear regression pathways using 

structural equation modeling [119–121]. These studies found that perceived water quality is largely 

influenced by flavor, whereas perceived risk and contextual indicators have a weak connection. 

However, risk perception seems to be a result of external information, past health problems, and 

water color [119]. These statistical methods have helped pull out valuable insights into the 

pathways affecting water quality experience. To date, however, these methods have not been 

applied to study the relationships between intermittency and domestic storage at the household 

level.  

In this study we use exploratory factor analysis to build latent variables relevant to the 

experience of water quality, intermittency, and infrastructure management and then use multiple 

linear regression to test hypothesized pathways. Specifically, we hypothesize that intermittency 

affects water quality experience through intermediary factors, such as domestic storage and 

management. Additionally, we hypothesize that higher intermittency is met by more variable 

domestic storage layouts and management, indirectly leading to worse deterioration in water 

quality and more impact on water quality experience. Through testing this hypothesis, this work 

will answer the following questions: How can we measure intermittency? How are households 

adapting to the spectrum of intermittency? What effect is domestic storage having on water 

quality? And how are these direct factors of intermittency affecting water quality experience? As 

intermittent systems continue to increase in prevalence, the results of this study provide engineers, 

policy makers, and utilities information needed to counteract broader public health and 

socioeconomic issues associated with the consumption of tap water. 
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4.3 Methods 

4.3.1 Constructing hypothesized pathways between variables 

The hypothesized direct and indirect pathways between variables are shown in Figure 4.1. 

In short, we hypothesized that people develop negative experiences of water quality the more they 

need to manage it. This model allows us to quantify the different pathways through the complex 

interactions that derive from intermittency. The pathways were informed by field work 

observations and insights that emerged from the ethnographic research. One of the novelties of 

this work looks into experience changes, specifically whether or not there is a difference in 

experience from freshly supplied water to the water coming out of the kitchen tap. We therefore 

created two variables, namely Experience of Public Supply Water Quality and Experience of 

Kitchen Tap Water Quality. The former is freshly supplied from the distribution system while the 

latter has flowed through domestic storage. An example of how the relationships can be understood 

is as follows: Experience of Kitchen Tap Water Quality is negatively affected by the domestic 

infrastructure, intermittency, and infrastructure management. A detailed description and 

justification for all relationships are provided in Table 4.1. 
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Figure 4.1: Hypothesized pathways linking intermittency to domestic storage, management, water quality 
deterioration, and experience. 
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Table 4.1: Hypothesized pathways connecting water supply to water quality experience 

Determinant Variable Response Variable Justification 

Intermittency 

Domestic Infrastructure  Intermittency affects the way the system is built. i.e. need for cisterns, pumps, tinacos, etc. The need for 
storage comes from the dynamics in water supply. Dynamics of water supply are called “Intermittency” 
and include characteristics such as daily, weekly, reliable, and low pressure. 

Infrastructure Management Class The intermittency levels affect how much effort/work residents need to put into the system to make it 
work. We measured domestic infrastructure management in terms of various tasks and need for tinaco or 
cistern specifically.  

Experience of Public Supply Water 
Quality 

Intermittency affects the experience/experience of outdoor water quality.  

Measured Water Quality Public Supply Intermittency is known to affect outdoor water quality during periods of supply, especially the first flush. 
More intermittency may be measured in lower water quality 

Domestic Infrastructure   

Infrastructure Management Class The domestic infrastructure layout affects how much management needs to happen. A more complicated 
layout may lead to more management. 

Measured Water Quality at Kitchen Tap The domestic water infrastructure layout may be affecting water quality during storage and flow. 

Experience of Kitchen Tap Water 
Quality 

A more complicated layout in domestic infrastructure may influence residents’ experiences of water quality 
at the kitchen tap after it passed through storage. 

Water Quality Deterioration Various flow paths available for water to flow, higher water age, affect water quality 

Socioeconomic Level 

Experience of Public Supply Water 
Quality 

Neighborhood socioeconomics and communication may influence the experience of water quality 

Domestic Infrastructure More purchasing power leads to more storage and pipe connections for whenever it might be needed 
Infrastructure Management Class Collective neighborhood economics might be reflected in the need to manage domestic infrastructure 
Measured Water Quality Public Supply Neighborhood economics might be reflected in the water quality supplied 

Infrastructure Management 
Class 

Experience of Kitchen Tap Water 
Quality 

Storage and interaction with storage affects the experience of water quality 

Measured Water Quality Kitchen Tap Storage and different management tasks affect water quality 

Measured Water Quality 
Public Supply 

Water Quality Deterioration Water quality parameters may deteriorate more than others. Outdoor water quality provides a baseline 
measurement for each parameter. For example, if free chlorine is present it will deteriorate, but if absent 
it won’t be captured as deterioration.  

Measured Water Quality Kitchen Tap The indoor water quality can only be as good as the outdoors water quality 

Experience of Public Supply Water 
Quality 

Participants sensory experiences may be related to the measured outcomes of outdoor water quality. 

Measured Water Quality 
Kitchen Tap 

Experience of Kitchen Tap Water 
Quality 

Participants sensory experiences may be related to the measured outcomes of indoor water quality 
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4.3.2 Participants for study 

To test the hypotheses we used data collected from January 2019 to March 2020. We 

recruited participants from 60 households in 46 neighborhoods across 12 out of 16 Alcaldías of 

Mexico City (Figure SI-C-1). 17 of the households were in neighborhoods posted in the 2019 

intermittency city memo,[122] 41 of the households were in neighborhoods with continuous water 

supply, and two were not connected to the grid so they were supplied by trucked water. The 

selection, recruitment, and data collection of the 60 households was through the multidisciplinary 

research project “Neighborhood Environments as Socio-Techno-bio systems in Mexico City 

(NESTSMX)” [123]. Recruited participants were selected from a longitudinal cohort “Early-life 

exposures in Mexico to environmental toxins” (ELEMENT) [74], that consisted of hundreds of 

mother-child pairs recruited at birth in social security health clinics of Mexico City. The 

NESTSMX participant selection criteria were designed to include households in neighborhoods 

across the city with known differences in water quality and supply.  

From January 2019 to March 2020, each of the 60 households was visited in person at least 

once and up to three times. An additional phone interview was conducted with members of each 

of the 60 households during the stay-at-home orders and public health Covid-19 crisis in 2020. All 

data used for analysis in this study originated from information measured, observed, and recorded 

by the researchers during the visits and phone interviews. 

4.3.3 Ethnographic data 

Interviews with open-ended questions were designed to give participants opportunities to 

provide more information and elaboration in their answers while maintaining boundaries and 

consistency of information across houses. Interviews were recorded and transcribed for each visit. 

Field notes with detailed descriptions of the conversations, experience, and observations were 
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written by the field team members. Altogether, audio recordings, transcriptions, and field notes 

comprise the bulk of the ethnographic data. Post-collection analysis of the qualitative data was 

coded by two researchers that participated in the majority of the visits and were both fluent in 

English and Spanish. The work was supervised for consistency by a third researcher familiar with 

the codebook and research objectives of the project.  

A codebook (Table SI-C-1) was developed to extract specific information from each 

household relevant to the experience of water quality and to answer specific questions: 1) What is 

the experience of water quality coming from the distribution main? and 2) What is the experience 

of water quality during and after storage? Examples of coded excerpts are provided in Table SI-

C-2. 

Reports including all instances where the codes were tagged were created for each 

household. The experience of public supply and kitchen tap water quality was extracted 

systematically from the reports by assessing mentions of common water quality aesthetics (Table 

SI-C-3). Each mention was tagged as a “positive” or “negative” connotation as interpreted by the 

coding researcher. If there was no mention of water quality aesthetics the site was tagged as no 

mention. Example quotes from the reports (Table SI-C-4) show how some participants described 

water quality. 

4.3.4 Water Tours 
During the first visit, the participants walked the researchers through the domestic water 

storage layout of their household from the service connection point to the kitchen tap. Flow 

schematics were sketched during the tours including the major components of the water system – 

all storage units (i.e. cisterns, tinacos, drums), pumps, pipe layouts, bathrooms, and other taps 

(Table SI-C-5). Points of human input and information needed for decision-making were recorded 



 
 

 77 

in the flow diagrams and described in more detail in the field notes. We define human input as 

physical management tasks required to maintain an operational system with water available at the 

tap at all times. These tasks could include physical work such as moving filled buckets within the 

premises or lifting concrete lids to underground cisterns (Table SI-C-5). The compilation of flow 

schematics, management tasks, and information-driven decisions were used as variables to 

evaluate the dependency of a system on human input. The combined variables explain how much 

participants are interacting with their domestic water systems to counteract intermittent water 

supply. All flow schematics were categorized by specific paths water could take from the public 

supply to the kitchen tap (Table SI-C-5), a list of tasks is summarized (Table SI-C-6). 

4.3.5 Pressure measurements and assessment 

Continuous pressure values at the service connection point were measured in 19 

households using an on-line pressure transducer. Transducers were deployed for a duration of two 

weeks to nine months and took measurements every 5 minutes. Details of the deployments and 

equipment are described in Martinez et al. 2022 [46] and Chapter 2 of this dissertation.  

Qualitative assessments of pressure were made for the 60 households and categorized as 

“adequate” or “inadequate” based on information given by the residents. An “adequate” system 

was defined as a system with water from the public supply that is continuously available at high 

pressure and with no dips in pressure that require residents to retrofit the domestic water 

infrastructure to make up for the low pressure (i.e. with cisterns and pumps). An “inadequate” 

system was defined as a system whose residents complained about dips and fluctuations in pressure 

and required upgrades to make water reach the tinaco and indoor taps. Systems that experienced 

only short dips in pressure due to local peak demand were not considered inadequate. 
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The numerical pressure values measured in the 19 households were compared with the 

qualitative data from the household members. Combined, these pressure data provide context into 

how household members experience pressure dips and fluctuations and how a household may 

retrofit a system if pressure is consistently low (Figures SI-C-2 – 21). 

4.3.6 Water Quality Grab Samples 

One liter grab samples were collected during each visit from taps, storage tanks, and bottled 

water in autoclaved Nalgene bottles. Measurements of water quality were conducted in situ using 

a handheld probe (Hanna) for pH and conductivity (µS/cm), a field colorimeter (Palintest) for free 

and total chlorine, total hardness, sulphate, phosphate, chloride, alkalinity, and a turbidity meter 

for turbidity. After samples were collected and analyzed in-situ, the remaining sample was treated 

with sodium thiosulphate to quench residual disinfectant and then transported in a cooler to a sterile 

environment for total and fecal coliform analyses. Samples were filtered through a 0.45 mm pore 

membrane filter and placed in Membrane Lauryl Sulphate Broth (MLSB), a culture medium 

selective for coliform growth, then incubated for 24 hours at 35 ˚C for total coliforms and 44 ˚C 

for fecal coliforms. Samples were processed as soon as possible after each visit, usually within 4-

12 hours after collection.  

4.3.7 Dimensionality Reduction with Factor Analysis and Latent Class Analysis 
Factor analysis was applied to reduce the number of measured and observed variables 

associated with each household into conceptually cohesive latent variables.  

Latent Constructs and Correlation 

A latent construct is a cohesive collection of measured or observed variables that seek to 

describe a phenomenon that cannot be directly measured or observed. It is assumed that the latent 

construct is responsible for the generation of the observed variables [124]. We used correlation 
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analysis to ensure that our proposed latent constructs were cohesive. High correlations indicate 

that the variables belong to the same construct, whereas poorly correlated variables (< 0.4) are not 

likely part of the same construct and were thus removed. For constructs built with ordinal variables 

we used Polychoric correlation from the R library package Polycor. Constructs with continuous 

variables (e.g. water quality) were treated with Spearman correlation rather than Pearson 

correlation due to the data containing outliers and exhibiting non-normal distribution. 

Exploratory Factor Analysis and Latent Class Analysis 

A factor analysis was derived for each latent construct with the Psych library in R and the 

correlation matrices built for the latent constructs as inputs (Table SI-C-7). Exploratory factor 

analysis assigns loadings to each variable of the construct based on their correlation. The Ordinary 

Least Squares algorithm was used to find the minimum residual solution. This approach produces 

similar solutions to maximum likelihood and is recommended for unmodeled small factors 

[125,126]. The number of factors expected was determined via “scree” plots of the successive 

eigenvalues but was limited to two factors where more factors were suggested. The loadings were 

used as coefficients to measured variables to calculate factor scores.  

Latent class analysis was used to classify households based on the management tasks 

(Table SI-C-6). Bayesian information criterion (BIC) was used to select the appropriate number of 

classes with the information given. BIC penalizes models that increase maximum likelihood with 

additional parameters used. Latent class analysis was done in R with the package poLCA.  

4.3.8 Hypothesis testing with Linear Regression 
Linear regressions were used to evaluate the strength of the hypothesized relationships 

using least-squares to find the best fitting line between factors. Coefficients of determination (R2), 

p-values, and coefficients’ signs were used to assess the hypothesized relationships. Regressions 
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were built according to the hypothesized paths in Figure 4.1 and Table 4.1. Statistical significance 

was used to accept (p < 0.05) and reject (p > 0.05) each hypothesis (Table SI-C-8). 

4.4 Results 

4.4.1 Summary Statistics 
Domestic Storage 

We found that 58 of the 60 houses studied had domestic storage. This represented all 46 

neighborhoods included in the study. Of the houses with storage, 11 households were in mid- to 

high-rise apartment buildings where storage is expected due to the need to pump water to reach 

the top floors, and 2 households were off-grid making storage also needed. This high number of 

households with domestic storage was unexpected considering only 17 of the 46 neighborhoods 

appeared in the city’s intermittency memo [122]. This was evidence that even houses with 

continuous supply exhibited some level of domestic storage. The households’ median storage 

capacity per person in single-family buildings and family compounds was 368 L/person, with two 

off-grid households having as much as 28,000 and 14,000 L/person capacity.  

Pressure 

Pressure was a recurring theme during interviews, with 25 households mentioning low 

pressure as a reason to retrofit the household infrastructure to adequately manage the service. The 

on-line continuous pressure measurements at 19 households in 17 neighborhoods resulted in highly 

variable profiles across neighborhoods. For the purpose of this discussion, we classified a 

neighborhood as having adequate or “good” pressure if the average home had an operational 

threshold of 10.7 psi (7.5 m of head) based on the least amount of pressure to reach tinacos in an 

average-size construction.  In neighborhoods with pressure that was considered good (n = 17), the 

average was 24.2 psi, whereas neighborhoods with pressure that was considered bad (n = 2) had 
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an average pressure of 6.5 psi. For perspective, many countries around the world have a minimum 

recommended pressure of 20 psi (14 m), but it is normal to find operating pressures as high as 50-

60 psi to ensure enough pressure for both domestic supply and fire flows [127]. In most households 

with average pressures that resulted in a good classification, fluctuations between peak and off-

peak demand were as drastic as 30 psi. Consequently houses in neighborhoods with continuous 

water supply often experience intermittency a few hours per day. In the neighborhoods with bad 

average pressure, pressure was low throughout the day forcing the households to depend on 

underground storage tanks and pumps to lift water to the rooftop tank.  

Domestic Infrastructure Management 

A closer inspection of all domestic water system schematics revealed there are common 

flow patterns among all systems. 43 of the 58 households with storage have a single flow path (i.e. 

all water flows through the same storage components before reaching the tap), whereas 17 of the 

systems included two or more flow paths (Table SI-C-6). This built-in system redundancy allows 

households to operate under varying pressure conditions and with planned and unexpected shutoffs 

from the distribution grid. We hypothesized this system redundancy makes them more complex, 

which results in more operational interaction and compromised water quality in comparison to the 

less complex systems.  

Measured Water Quality 

Samples from distribution system sampling taps show there is heterogeneity in the supplied 

water quality across the city. Of the 60 locations, 12 had average free chlorine concentrations 

below 0.05 mg/L as Cl2, 4 had average concentrations between 0.05 and 0.2 mg/L as Cl2, and the 

remainder had average concentrations above 0.2 mg/L as Cl2, with an average of 0.85 mg/L free 

chlorine as Cl2 (sd = 0.37). The conductivity distribution ranged from 49 to 2,317 uS/cm with three 



 
 

 82 

peaks, namely 255 uS/cm (n=47, sd = 81), 716 uS/cm (n = 4, sd=77), and 1,375 uS/cm (n = 7, sd 

= 506). The spread and multimodal distribution of conductivity suggest there is heterogeneity in 

water quality across the city, perhaps spatially related to different water sources. Total coliforms 

were detected in 14 locations at low levels (below 10 cfu/100 ml on average), two locations had 

high counts (greater than 10 cfu/100 ml on average), and 39 households never had a positive 

sample. Eight locations had low fecal coliform levels (below 10 cfu/100 ml), one location had high 

fecal coliform levels (greater than 10 cfu/100 ml), and 46 locations did not have a positive fecal 

coliform result. For reference, the local drinking water quality regulations require an absence of 

total coliforms and fecal coliforms [128]. Although total and fecal coliforms are indicator 

organisms and therefore do not themselves cause a microbiological risk, their presence suggests 

environmental contamination. Combined with the chlorine and conductivity results, the fecal 

coliform results highlight the heterogeneity of water quality throughout the neighborhoods. 

Contextual drinking water sources, distribution, and quality of Mexico City is available in 

Appendix C. 

Samples collected from the kitchen tap had flowed through the domestic storage and 

exhibited water quality differences from the distribution system. At the tap, 23 households had 

average chlorine concentrations below 0.05 mg/L as Cl2, ten households had average chlorine 

concentrations between 0.05 and 0.2 mg/L as Cl2, and 24 had average concentrations above 0.2 

mg/L as Cl2, with an average of 0.76 mg/L as Cl2. Total coliforms were detected in kitchen tap 

samples from six locations with low levels (below 10 cfu/100 ml in average), three locations had 

high levels (between 10 and 50 cfu/100 ml average), ten locations had very high levels (> 50 

cfu/100 ml), and 36 households did not have a sample positive for total coliforms. In terms of fecal 

coliforms in tap waters, eight locations had low levels (< 10 cfu/100 ml), and 4 had high levels (> 
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10 cfu/100 ml), and there was absence of fecal coliforms in 43 locations. Overall, domestic storage 

corresponded to changes in water quality as seen in the reduction of free chlorine and increase in 

total and fecal coliforms. Changes in water quality are summarized in Table 4.2. 

Table 4.2: Number of locations within ranges of drinking water quality 

Source Free Chlorine Total Coliforms Fecal Coliforms 
 Below 

0.05 
Below 
0.2 

Above 
0.2 

Not 
Detected 

Below 10 
cfu/100ml 

Above 10 
cfu/100 ml 

Not 
Detected 

Below 10 
cfu/100 ml 

Above 10 
cfu/100ml 

Public 
Supply 12 4 44 39 14 2 46 8 1 

Kitchen Tap 23 10 24 36 6 13 43 8 4 
Bad 
Change 11 6 12 3 -8 11 3 0 3 

 

Experience of drinking water and preferences 

Of the four parameters we explored in public supply water, color was mentioned by 25 

households, chlorine was mentioned in 13, taste and odor in 12, and solids were mentioned in 26 

(Table 4.3). This suggests that the public supply influences the overall experience, even though 

this water has not yet traveled through the domestic storage. From these aggregated mentions 

across all households, 41 of 60 households had at least one negative comment about public supply 

water quality. After water flowed through domestic storage, one household mentioned chlorine, 

two mentioned color, five mentioned the taste and odor, and four mentioned solids (Table 4.3). Of 

the 60 households, nine mentioned a negative aspect of water quality associated with the domestic 

storage. This suggests that a smaller number of participants are relating domestic storage to the 

deterioration of water quality.  

Table 4.3: Aggregated mentions of water quality parameters during structured interviews (n=60) 

Source Chlorine Color Taste/Odor Solids 
Public 
Supply 13 25 12 26 

Kitchen 
Tap 1 2 5 4 

4.4.2 Factor Analysis 
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All factor analyses, including the loaded parameters and their respective loadings (Table 

SI-7), resulted from a reduction in dimensionality and the creation of latent variables; these latent 

variables were subsequently used to test hypothesized pathways. 

Measured Water Quality 

Seven outdoor and indoor water quality parameters were loaded into two factors with 

extracted cumulative variances of 51.6% and 53.5% from the parameters. The individual variable 

loadings into each factor ranged from 0.2 – 1, with pH (0.2) and turbidity (0.3) being the weakest 

loadings, and free chlorine (1.0), total chlorine (1.0), total coliforms (0.5), fecal coliforms (0.5), 

and conductivity (0.5) being the stronger ones. The stronger the loadings the more variability 

within the variable, thus more information can be extracted from it. As described above, free 

chlorine was highly variable across the neighborhoods, followed by conductivity, and then total 

and fecal coliforms. Water quality deterioration was calculated by subtracting outdoor from indoor 

water quality parameters. The two factors resulting from the new variable extracted 48.1% 

variance from the variables. 

Intermittency 

To approximate a measurement of intermittency, five variables of water supply (pressure, 

supply type and frequency, availability confidence, and unexpected shutoffs) were loaded to a 

single factor.  One of the five, Unexpected Shutoffs, did not meet the standardized loading (< 0.3) 

and was therefore removed. The remaining 4 aspects contribute a cumulative variance of 71.5%. 

Experience of Water Quality 

Four assessments of water quality experience (chlorine, taste and odor, color, and solids) 

were loaded into a single factor, and information was further split by field visits (V1) and phone 

interview (V4), for a total of four factors. Factors for experience of public supply water quality 
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yielded 50% and 42.4% of the explained variances for V1 and V4 respectively. The individual 

loadings ranged from 0.1 – 1. The loadings of each variable based on the field visits were different 

than those from the phone interviews. For example, during the field visits, negative mentions of 

chlorine had a stronger loading (0.5) than during the phone interviews (0.3). Similarly, loadings 

of negative mentions of solids during the field visits (0.1) had a smaller effect than the mentions 

gathered during the phone interview (0.5). This means that the information collected during the 

visits is different, either due to temporal changes in experienced water quality or due to the less 

structured nature of collecting data in person through semi-structured conversations.  

The factor explaining the experience of water quality at the kitchen tap obtained during the 

field visits was dropped from further analysis due to a low response rate. We believe this is because 

the conversations during the field visits mostly revolved around the supplied water quality, while 

in the phone interview we purposedly made distinctions with each question regarding their 

experience of water quality. The remaining factor originating from phone interviews for kitchen 

tap water quality had an explained variance of 69.3%, with individual variable loadings ranging 

from 0.7 (chlorine) to 1.0 (solids). 

Domestic Infrastructure Layout and Management 

A two-class latent class analysis on management tasks and storage containers resulted in 

the lowest Bayesian information criterion (BIC). The distinction between the two classes is related 

to the presence and absence of cisterns and pumps, with 23 households belonging to the class in 

which cisterns are needed. Of these, 19 manually turn on the pump at frequencies between twice 

a day to biweekly, and four have installed devices to automate the operation of the pump when 

needed. The other 37 households operate their systems with a combination of tinacos and 

miscellaneous containers. Many of the households perform tasks like filling up disconnected 
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containers and disconnecting hoses. We did not observe a direct relationship between the 

performance of these tasks and whether or not the household had cisterns. 

The domestic infrastructure layout, the number of components of the system, and the 

storage per person were the variables used to approximate the latent construct called Domestic 

Infrastructure. The factor loadings ranged from 0.3 (storage per person) to 1 (flow schematic). The 

flow schematic showed more variability and better explained the complexity of the construct than 

the storage capacity. Together these variables explain 45% of the variance in the construct. 

4.4.3 Linear Regressions and Hypothesis testing 

Multivariate linear regressions were used to evaluate each hypothesized pathway by 

regressing latent constructs onto combinations of other latent constructs (Figure 4.1, Table 4.1). 

For each regression, the significant determinant variables (p < 0.05) are plotted in Figure 4.2. 

Adjusted R2 are reported at the nodes as the strength of the combined determinants in explaining 

the variance of the node. Figure 4.2 includes the significant pathways that may link intermittency 

to the experience of water quality.   
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Figure 4.2: Statistically significant pathways linking intermittency to the experience of water quality. Solid lines 
represent significant pathways, bold dashed lines represent non-significant with p < 0.1, and  grey dashed lines 

represent non-significant pathways. Numerical values next to significant pathways are the estimate of the regression 
with its level of significance (. p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001). Adjusted R2 includes all possible 

determinants.  

Our latent construct for Intermittency has a positive effect on Domestic Infrastructure (p < 

0.1). This means that households experiencing longer periods without water supply, higher 

fluctuations in pressure, or low pressure altogether, result in domestic systems with more 

components, flow paths, and storage capacity. Intermittency also resulted in a positive effect on 

Infrastructure Management (p < 0.05). This means that more intermittent systems influence how 

a household might be classified based on the components and tasks needed to make the system 

operational. Furthermore, more intermittent supply may consistently result in a set of tasks strictly 

associated with cisterns required at the household. These results align with previous studies 

involving how a household might react to intermittency. For example, households in four 

intermittent systems in Panama exhibited larger storage capacity in households with more 
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intermittency [72]. Combined, our results and the results of previous studies suggest that more 

intermittent systems need more domestic infrastructure and more management at the household. 

Measured water quality from the public supply was independent from other factors, 

including socioeconomic status and intermittency. This suggests that even though the quality of 

distributed water quality varied across the city the data did not suggest that the neighborhoods 

experiencing the highest intermittency were also experiencing lower water quality. Measuring the 

impacts of intermittency on water quality is difficult because most of the impacts occur during the 

first flush [51]. After water supply is fully restored (i.e. following a shutoff period) water quality 

is also restored, and domestic storage serves as a buffering agent, meaning that any impacts to 

water quality associated with the first flush are diluted (or settled in the case of particulates) in 

storage.   

Impact of domestic storage on water quality 

The impact of domestic storage on indoor water quality was not statistically significant via 

regression, however our statistical summary discussed above does explain there were measured 

changes in water quality. In the regression analysis the strongest variable in explaining the 

variability in deterioration of water quality was the measured water quality form the public supply. 

This could mean that regardless of the variability in capacity and layout seen in domestic storage, 

the water quality in the distribution system is what drives the measured water quality at the kitchen 

tap. Although the summary statistics of grab samples show there is measurable change in water 

quality from the public supply to the kitchen tap, the factor analysis and regression analysis 

suggests there is not a significant change that is explained by domestic storage or management. 

This suggests that quality is not impacted by people, quality at the kitchen tap is pre-determined 

by the quality supplied. This analysis is based on a small sample size and may not be conclusive 
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to all domestic storage systems, in particular because this analysis is based on the impact of tinacos 

and cisterns, which could be considered as safer and more formal than the more improvised 

solutions such as buckets and drums.  

Experience of water quality 

Our results suggest that the experience of public supply water quality is influenced by the 

actual measured water quality supplied. The first factor of public supply water quality is comprised 

of fecal coliforms and inversely affects the experience of water quality. In other words, the result 

suggests that more fecal coliforms are correlated with negative experiences of public supply water 

quality. The second factor of public supply water quality is comprised mostly of chlorine residual 

and in part by total coliforms and conductivity. The second factor positively affects the experience 

of water quality from the public supply, meaning that more chlorine corresponds to a positive 

experience of supplied water quality. The effect of the two water quality factors interacting 

together means that even though residents are not measuring these parameters, they are sensing 

aspects of the water quality associated with these parameters and that this is driving their 

experience.  

We expected chlorine levels to correspond with negative experiences of water quality 

based on field observations and previous literature [129]. Some participants explicitly mentioned 

not liking the chlorine in the water because of the taste, odor, and chemical nature of it. This 

analysis suggests that the presence of chlorine is partially influencing the positive experience. This 

may not be because a positive experience is explicitly mentioned by people, but rather because 

adequate chlorine treatment and residual contributes to removing odors and colors, and in 

preventing microbial growth. In effect, chlorine is treating other organoleptic parameters that 
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shape the experience of water quality, and this highlights the importance of incorporating multiple 

parameters into latent variables. 

A modification to the linear regression was made to test different pathways between 

measured water quality at the public supply to the experience of water quality in the kitchen tap 

(Figure 4.3). The results show that there may be multiple pathways, Figure 4.3-A linking measured 

public supply water quality directly to- and through the measured water quality at the kitchen tap 

to the experience of water quality at the kitchen tap. While Figure 4.3-B makes the link through 

the experience of public supply water quality as discussed above and shown in Figure 4.2. 

Intermittency affecting the experience of water quality of kitchen tap water 

Our hypothesis linking intermittency to experience of kitchen tap water quality through 

infrastructure management as a mediator was not rejected. We originally anticipated that 

household members would associate cisterns with poorer water quality and experience due to 

comments made during field visits about the higher vulnerability of cisterns to contamination than 

tinacos. However, the effect of interaction was counterintuitive to what was expected. The pathway 

suggests that more intermittent systems lead to more domestic infrastructure and domestic 

management, especially the need for cisterns. The pathway also suggested that the houses that 

depend on a cistern are more likely to have a positive experience of water quality at the kitchen 

tap, as opposed to houses without the need for a cistern. The effects of this pathway suggest that 

households with less intermittency (i.e. more continuous supply) are not required to manage water 

in their household and are more likely to have a negative experience of water quality at the tap. 

This may be because of differences in supplied water quality by neighborhood, or because people 

associate domestic storage as an extension of the public supply system and is part of an “invisible” 

infrastructure, meaning there is no sense of water quality or supply dynamics. 
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Perc_wq_in_V4 ~ Domestic_infrastructure + LatClass2 +  
    WQ_in_1 + WQ_in_2 + WQ_det_2 + WQ_det_1 + WQ_out_2 + 
WQ_out_1 +  
    Perc_wq_out_V4 + Perc_wq_out_V1 

 

Perc_wq_in_V4 ~ Domestic_infrastructure + LatClass2 +  
    WQ_in_2 + WQ_in_1 + Perc_wq_out_V4 + Perc_wq_out_V1 

 

Figure 4.3: Different significant paths influencing the experience of kitchen water quality. Different combinations of 
predictors result in different paths. 

4.5 Discussion 

Intermittency affects experience of water quality 

Within the limitations of the data set and hypothesis testing, these results suggest that a 

link exists between intermittency and the experience of water quality at the tap through mediating 

variables. More intermittent systems require more complex domestic infrastructure systems and 

are determinants of the management class (cisterns vs. tinacos; Figure 4.2). Our hypothesis stated 

that households interacting more with their systems were more likely to develop negative 

experiences of water quality at the tap, as it turns out the opposite is true according to our 

hypothesis testing. Households with cisterns end up developing a better experience of water quality 

indoors than households that don’t. This is counterintuitive based on field-work observations. A 

possible reason for the outcome is that more interaction with the domestic water infrastructure 

results in more familiarity with the water and its quality, in this cases people may be extracting 

information that helps them make decisions, for example when to clean the systems or purchase 
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point-of-use filtering devices. However, these actions are not reflected in our summary data 

regarding the water source from which people are drinking. When split into the two classes, 28% 

of households with cisterns are drinking water from the tap and 72% are drinking bottled water, 

whereas 30% of households without cisterns are drinking water from the tap and 70% are drinking 

bottled water.  

Another possible reason for more management related to a positive experience of water 

quality is not related to management tasks necessarily (even though that is how its coded). Again, 

the difference between management is the having a cistern or not, which provides storage and 

buffering capacity to more intermittent supply. Storage as an equalizer might in this case be related 

to the outcome of positive experience of water quality at the tap. There may be a sense of ownership 

which gives people control, autonomy, and a sense of confidence over their experience of water 

quality. In the same sense, households with only a tinaco or households where superintendents 

manage the system, do not have a sense of autonomy, control, or access to information regarding 

the state of the water, negatively affecting their experience of water quality.  

Reliable and comprehensive information campaigns regarding water quality and domestic 

management might be useful tools to address the uncertainty faced by households, regardless of 

intermittency. Households need information to make decisions about the water they purchase, 

consume, or treat, and these results might be exposing the effects of the access to information. If 

we think about intermittency as access to information, we can extrapolate that households 

managing intermittency are enabled to search for information on how to better manage, treat, or 

purchase water. Something that households with continuous systems are not, therefore creating a 

negative experience of water quality.  

Measured public supply water quality affected the experience of water quality 
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Our data and analysis suggest that the supplied water quality influences water quality 

experience at the kitchen tap. Utilities must supply water quality that meets the safety regulations 

for people to have a positive experience of water quality, regardless of their domestic management 

and storage.  

Limitations 

The factor analysis and multivariate linear regression used for hypothesis testing can go as 

far as confirming or rejecting pathways of influence. The significance of the pathways should not 

be interpreted as direct or indirect causation of an outcome nor as a prediction tool. The R2 is used 

as a metric that quantifies how much of the variance in the outcome variable is explained by the 

explanatory variables, typically for prediction a high R2 is desired (R2 > 0.9), but as seen in figure 

3 the R2 of various significant paths are rather small. Smaller R2 means that the combined effect 

of explanatory variables does not accurately predict the outcome, rather it highlights the 

complexity of these interactions by showing there are unaccounted and unmeasured factors that 

are likely interacting in these same pathways. The significance (p-value) of the links shows that a 

relationship exists between the two variables. Other studies using multivariate linear regression 

and structural equation modeling have reported R2 as high as 0.5 for some relationships, and as 

low as 0.08 for others [121].   

The statistical significance in this work is further compromised by the relatively small n (n 

= 60) of the study. For this reason, some of the rejected pathways in this work should not 

necessarily be excluded from future works. For example, our pathways have shown that measured 

public supply water quality is independent of socioeconomic level, however, because of the nature 

of our participant’s pool the socioeconomic level of the neighborhoods is mostly uniform, and the 

incorporation of a broader participant pool may uncover different results.  
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The power of factor analysis helped us create latent constructs that cannot be measured or 

observed. Within this framework, factor analysis also helped us understand which measured 

variables did not belong in the same construct. This is important in the scope of study design 

because factor analysis helps us understand which variables do not need to be collected. Although, 

a factor analysis for latent constructs do not tell you that other potential variables do not belong in 

the same construct. In summary, factor analysis can tell us what not to measure, but it doesn’t tell 

us what to measure.  

Finally, a limitation of this work is that all the latent constructs were calculated solely with 

data extracted from field work data sets. With field work and ethnographic data collection there 

are vulnerabilities that can carry-over to the analysis, for example, a conversation regarding the 

experience of water quality might have gone in different directions in the households; Meaning 

that some households may have mentioned chlorine, taste, and odour, while other households may 

not. This does not mean that those households did not have anything to say, but that the nature of 

the conversation went elsewhere. These gaps in the data carry-on throughout the analysis, thus 

creating a limitation.  

Overall, ethnographic field work helped us develop hypotheses, the required data was 

extracted from the various data streams, then tested using statistical tools. What we have learned 

is that the ethnographic field work drove the hypothesis development and testing, while the 

statistical results of this work may be used for a study design with a larger participant pool and a 

lower ethnographic involvement. Ethnography remains a core part of socio-techno research to 

uncover household-level trends, challenge system-level assumptions, and develop better research 

questions. 
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4.6 Conclusion 

In this paper we sought to explore the implications of intermittency beyond the need for 

domestic storage at the household level. We explored how households manage intermittent supply 

and how intermittency is related to the experience of water quality at the tap. This work had 

challenges associated with multidisciplinary research, especially when studying socio-techno 

systems. Innovative methods from anthropology, engineering, and public health were used to 

answer questions about measuring intermittency, how households adapt with domestic storage and 

management, the effects storage have on water quality, and which impact experiences of water 

quality.  

To this end, we built latent constructs that explain various factors associated with 

intermittency, domestic infrastructure and management, measured water quality and the 

experience of water quality at the tap. Using linear regression modeling we found one significant 

pathway linking intermittency to the experience of water quality in the kitchen tap. The pathway 

is mediated through the need for domestic management, suggesting that households more involved 

in the management of domestic water have a positive water quality experience, as opposed to 

households without the need to manage intermittency report a negative experience of water quality. 

A separate and independent pathway links the public supply water quality to the experience at the 

tap, showing that the water quality provided through distribution system plays an important role 

in a positive experience of water quality at the tap. 

The implications of these findings are translated to practical applications and interventions 

in the face of increasingly prevalent intermittent water supply systems. Centralized efforts for 

water treatment throughout the system are of upmost importance regardless of intermittency. These 

efforts fall on local governments and public utilities to maintain water treatment plants and 
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distribution systems. To address the pathway linking intermittency to experience of water quality, 

local information campaigns are needed to facilitate information access about water quality, 

domestic intermittency management strategies, and risks associated with drinking water.  

As intermittency continues to grow, the cross-disciplinary methods used in this study 

should continue to be considered to uncover more implications, create better interventions, but 

most importantly – ask better questions. 
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Chapter 5  
Conclusions 

 

5.1 Overview 

The goal of this dissertation was to lay the foundations for the real-time study and 

management of drinking water systems. To that end, specific contributions of this work tackled 

practical, technological, and theoretical challenges, which ultimately led to a number of 

fundamental conclusions. 

In Chapter 2 we illustrated that real-time monitoring of drinking water systems have 

practical applications and potential to quickly expand monitoring of our drinking water systems. 

In Chapter 3 we uncovered daily residual disinfectant dynamics experienced at the tap, and we 

showed implementations of real-time flushing are feasible, yield water quality improvements, and 

could reduce excess water flushed. In Chapter 4 we combined real-time monitoring with 

ethnographic observations to better understand the dynamics of intermittent water supply and 

learned that intermittency may be indirectly related to shaping the water quality experience at the 

tap. 

A unique aspect of this dissertation was the focus on household-level taps. Thanks to the 

built-for-purpose approach and compact size, our platform is the first to be deployed in people’s 

homes. Although most of the work in this dissertation focused on applications and research 

contextualized around the validity of sensors for subject-area specialists, a large underdiscussed 

contribution of this work is the feasibility of real-time drinking water quality information for non-
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subject area experts. In the context of smart homes, sensors may soon be used to report water 

quality information to residents with the sole goal of providing objective information about the 

safety of their water.  

Overall, in this dissertation we designed, constructed, and deployed a system built upon 

low-cost sensors, microcontrollers, and cloud services. Subsequently, we provided two example 

applications with specific management and research goals. Accessibility to these technologies is 

increasing both in affordability, reliability, and in implementation – meaning that soon more 

utilities, researchers, and people will be able to build and deploy their own sensor nodes for custom 

applications. Our hope is that the foundations laid in this dissertation will help others get a jump 

start and quickly uncover new grounds on smart drinking water systems. To aid in future efforts, 

we provide key areas that need further development towards smart drinking water systems. 

5.2 Future work 

Drinking water distribution systems are increasing in complexity due to sprawling 

urbanization and changes in water usage patterns. Utilities are constantly trying to understand how 

their distribution system may behave under various scenarios including fate and transport of 

chemical contamination, increased water age, and in the case of mixing different water sources to 

understand how the water quality may be affected throughout the system. Real-time water quality 

measurements may be used to calibrate models using conductivity and pressure sensors, 

conductivity as tracer indicator and pressure as a hydraulic correction.  

Following the system-wide conductivity event observed in Chapter 2 there are questions 

remaining to be answered. To begin to understand what the phenomena measured by wireless 

sensor networks mean, we need to combine our data streams with source water quality, operational 

and maintenance changes happening at the treatment plant. The treatment plant in Ann Arbor 
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blends ground water and surface water at different ratios throughout the year. These changes may 

require a change in coagulant chemical dose that may eventually reflect some changes in water 

quality throughout the system. In a similar note, operational and maintenance schedules may be 

responsible for some of the changes seen in water quality across distribution systems. In this line 

of research, it is therefore important to gather information at source waters and treatment plant that 

may be linked to baseline cyclic behaviors measured at the tap. Close relationships with treatment 

plant operators and managers are guaranteed to facilitate sharing data and insights for this research. 

During the development process of this dissertation, we had conversations with Ann Arbor 

water treatment plant managers. The objective of the conversations was to find a common interest 

from the academic research side and the operational side of wireless sensor networks. We found 

that the application of automatic hydrant flushing needed real-time sensing tools. At the time of 

these conversations (2021) automatic hydrant flushing devices using fixed timers were being 

deployed throughout the city, but there was a large need in increased sensing and monitoring to 

understand the effects of flushing at different flushing frequencies. Flushing plans for the city of 

Ann Arbor are well documented [130]. An ideal goal of using smart sensors and actuators to flush 

hydrants is to decide when to start and end flushing. For this a study should be designed to identify 

the best parameters to understand hydrant flushing. To start, ORP, temperature, color, and turbidity 

could provide the information necessary. The effects of hydrant flushing should be measured in a 

similar fashion to how the Chapter 3 study was designed – measuring a baseline followed by a 

flushing period, and finally a signal processing approach to determine when to start and stop 

flushing.  

Signal processing will continue to be a pain point of real-time monitoring systems. Issues 

like calibration loss, fouling, signal drifting, physically unlikely measurements, and broken probes, 
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are likely issues that are encountered. Future research on anomaly detection should focus on 

differentiating noise signals from true events. For this we need to understand baseline behaviors 

by combining treatment plant operational data and sensors historical data. Additionally, as seen in 

Chapter 3 with ORP probes, there are sensors with high variation between probes when measuring 

the same waters, this highlights the inherent complexity of environmental sensing. Research in the 

area of environmental sensing should also focus on developing measurement confidence tools to 

assess the validity of measurements. 

Building plumbing flushing will be an active area of research. In Chapter 3 we started to 

make headway into real-time tap water flushing applications in single-family houses. We proposed 

a smart flushing protocol that automatically stops flushing based on temperature signal stability, 

but we were not able to deploy and test it. It remains to be determined what can be generalized 

between a smart flushing real-time control algorithm to a timer. After investigating the variability 

in ORP at the tap, it may appear that longer periods of stagnation are needed in single-family 

homes to observe dips in ORP, especially in systems with chloramine residual. An adaptive 

sensing plan may be developed to reduce the number of samples taken based on the variability of 

past measurements. This would reduce the load on data collection and processing, and in turn 

would provide a forecast estimate to when take the next sample.  

Next steps in understanding building plumbing water quality and flushing in real-time is 

the combination of online flow-cytometry and physicochemical parameters. Flow-cytometry is a 

novel tool used to measure viable bacteria concentrations. Researchers have used it to study the 

concentration of bacteria in building plumbing [131], source and fate of microorganisms in 

drinking water distribution systems [132], and to study full-scale ozone disinfection processes in 

Ann Arbor’s drinking water treatment plant [133]. There is a feasible opportunity to use these tools 
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to understand the impact of flushing on bacteria concentrations in real-time. An experiment similar 

to the one designed in Chapter 3 may evaluate the effect of building plumbing flushing on bacteria 

concentrations. 

An investigation on how real-time information may induce changes in people’s experiences 

of drinking water. In Chapter 3 we developed an automatic flushing protocol that may provide 

better water quality at the tap. Then in Chapter 4 our results suggested that more automatic 

domestic water systems may lead to negative experiences of water quality at the tap. We posit that 

the lack of information about water quality may be responsible for the negative experiences, thus 

it would be appropriate to research the changes in water quality experience once real-time 

information is available at the tap. 

In Chapter 4 we have laid the foundations to study in more depth the effects of 

intermittency on the experience of water quality at the tap. We found evidence that suggests there 

is a connection linking intermittency to the experience of water quality, however the data set cannot 

be used to confidently establish these pathways as statistically significant. The next steps are to 

design a survey that captures these questions more specifically so we can increase the sample size. 

Finally, a further connection linking the experience of drinking water quality to the desire to treat 

the water, purchase bottled water, or purchase sugar drinks should be tested. This is the next link 

associating intermittency to any effects on public health related to water consumption. 

Lastly, the deployment of sensors in Chapter 4 left multiple questions unanswered. We 

now know that intermittency is variable, both in pressure and frequency spatially. We still need to 

understand how these technologies could be leveraged by homeowners to understand the water 

supply and quality dynamics experienced at their tap and make informed decisions on how to build 

and manage their domestic storage systems. 
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Many technological and theoretical challenges remain, including social, economic, and 

political barriers to the wider adoption of smart drinking water systems. Smart water systems 

require highly multidisciplinary teams to continue to evolve. This work was possible through 

collaborations ranging from engineering, to social, political, and biological sciences, so it is only 

expected that more multidisciplinary collaborations will continue this work. 
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Appendix A  

Supplementary Information for Chapter 2 

A.1 Sensors 

A.1.1 ORP 
The ORP sensor used (Atlas Scientific #ENV-40-ORP) and its conditioning circuit (Atlas 

Scientific #EZO-ORP) have a measurement range of +/- 1,019.9 mV with an accuracy of +/- 1 mV, 

and a response time of one reading per second. The sensors use a silver – silver chloride half-cell 

with a platinum tip, and a potassium chloride reference solution. The ORP sensors were calibrated 

with one point using the ZoBell’s solution (Atlas Scientific #chem-ORP), which is a standard with 

an ORP of 225 mV at 25 oC [134], with a frequency of once per year or once per deployment, 

whichever occurred first. 
The oxidation reduction potential (ORP) is a measurement of the ability of an aqueous 

environment to oxidize or reduce chemicals [135]. Drinking water containing a disinfectant 

residual is highly oxidative and the ORP often correlates with different disinfectants and their 

concentrations [70]. 
In a water sample with pH 8, the concentration range of free chlorine 0 – 3.5 mg/L as Cl2 

has an ORP range of roughly 199 - 680 mV, while the concentration range of monochloramines 0 

– 3.5 mg/L as Cl2 has an ORP range of 239 - 450 mV [70]. These ORP values are reported in 

reference to the platinum Ag/AgCl electrode for consistency to the reported values in Chapter 2. 

The conversion factor to the Standard Hydrogen Electrode is described in Standard Methods 2580 
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B [134].  All ORP values reported here are in reference to the platinum Ag/AgCl electrode with a 

4 M KCl internal solution. 
Alternative sensors, such as those that utilize amperometric or colorimetric methods, are 

advantageous because they can measure specific disinfection compounds. However, the 

underlying operational requirements tend to be complicated. For example, amperometric sensors 

require constant flow, constant pressure, and regular membrane replacements [136].  Colorimetric 

analyzers require frequent reagent refills (6 months) and create waste streams that may require 

special handling [137]. Both amperometric or colorimetric analyzers need to be recalibrated and 

cleaned once per month according to most manufacturers. Consequently, these sensors are best 

suited for applications where regular operational maintenance can be implemented. Measurements 

of ORP are straight forward and do not require complicated operating protocols. This suits the 

simple flow cells necessary for sensor deployment in buildings with limited access. 
ORP sensors have an ionic-strength dependent equilibrium time. ORP equilibrium is 

reached faster in higher ionic strength waters than it does in medium to low ionic strength waters. 

Finished drinking water can have low or medium ionic strengths, depending on the source water 

quality and the treatment processes. In medium ionic strength water, ORP can take anywhere in 

between 15 minutes to one hour to reach equilibrium, while in low ionic strength water it can take 

up to several hours [76]. 

A.1.2 Electroconductivity 
EC is a measure of the water’s ability to conduct an electric current and is directly related 

to the concentration and valence of ions in solution, also referred to as ionic strength. EC 

measurements are correlated with total dissolved solids (TDS), a measure for the combined 

concentrations of salts and minerals dissolved in the water [135]. Relative changes in EC can be 



 
 

 107 

related to sudden events that change the chemical composition of a water sample. Their 

measurement speed and sensitivity make them suitable for real-time monitoring systems. 

The sensor used (Atlas Scientific #ENV-40-EC-K1.0) and its conditioning circuit (Atlas Scientific 

#EZO-EC) have a K constant of 1.0 for a measurement range of 5 – 200,000 uS/cm and an accuracy 

of +/- 2%, and a response time of one reading per second. The sensors were calibrated using two 

points – 0 (dry measurement) and 1,413 uS/cm (Atlas Scientific #chem-EC-0.1), with a frequency 

of once per year or once per deployment, whichever occurred first. The measurements were 

corrected for temperature at the time of collection using the manufacturer’s EZO protocols. The 

sensing area was specifically placed in parallel to the flow of the water to avoid trapped air bubbles 

and flow short-circuiting. 

A.1.3 pH 

pH measurements provide information on the activity of hydrogen ions in solution. 

Hydrogen ions play an important role in the equilibrium and kinetics of chemical reactions that 

take place in aquatic environments, such as disinfection kinetics, acid-base reactions, metal 

complexation, and mineral precipitation [135]. The sensor used (Atlas Scientific #ENV-40-pH) and 

its conditioning circuit (Atlas Scientific #EZO-pH) have a range of 0 – 14, a resolution of +/- 0.001 

and an accuracy of +/- 0.002, and a response time of one reading per second. Calibrations were 

made using the 7, 4, and 10 standard points (Atlas Scientific #C-pH-4-7-10), with a frequency of 

once per year or once per deployment, whichever happened first. Measurements were corrected 

for temperature at the time of collection using the manufacturer’s EZO protocols. 

Maintaining specific pH ranges is of critical importance for achieving effective 

disinfection. In drinking water distribution systems, where free chlorine is the main residual 
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disinfectant, the pH should be below 7.5. In systems where monochloramine is the main residual 

disinfectant, the pH should be above 8.3 [135,138]. 

A.1.4 Temperature 

Temperature influences the kinetics of aquatic chemical and biological reactions [135]. In 

our sensor nodes, the temperature probes were primarily used to correct conductivity and pH 

measurements. The sensor used (Atlas Scientific #PT-1000) and its conditioning circuit (Atlas 

Scientific #EZO-RTD) have a range of -200 to 850 oC, an accuracy of +/- 0.15, and a response time 

of one reading per second. 

As the nodes were connected to building plumbing, a room temperature sample usually 

represented samples from the building, whereas a colder sample indicated water samples from 

underground water mains. Temperature must be recorded if ORP values need to be referenced 

back to the Standard Hydrogen Electrode. Temperature measurements were used to correct pH and 

EC measurements at the time of collection through the EZO temperature-corrected sampling 

protocols. 

A.1.5 Pressure 
An analog pressure transducer (Atlas Scientific #A100-APS) was included to characterize 

water supply dynamics. The sensor has a range of 100 psig (689.47 kPa) with a resolution of 0.025 

psi (0.17 kPa). The analog signal produced has a range of 0.5 - 4.5 VDC, this signal was stepped 

down with a voltage divider to get it in a 0.5 – 3.0 VDC and converted with the microcontroller’s 

ADC. 

The high-resolution pressure measurements from intermittent systems were used to 

evaluate the dynamics of water availability in Mexico City households. The sensor node 

microcontroller interprets the pressure data in real-time and determines if there is water to sample 
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or not. If there was water available, the node took new samples to capture first flush events. In 

continuous systems the pressure measurements were used to monitor day-to-day hydraulic trends 

and make spatial comparisons among neighborhoods. 

Pressure has an important role in overall system management. For example, pumps are 

activated once certain pressure threshold is crossed. Although mostly associated with hydraulic 

operations, pressure is also of interest for water quality. Fluctuations in water pressure are related 

to the suspended solids at the tap. High water pressure tends to correspond with low velocity, and 

vice versa. High demand situations increase velocity of water in the distribution system and the 

flow becomes more turbulent, mixing up previously settled solids and particles [139]. 

A.1.6 Leak Detector 

A water leak detector (Seeed Studio #SEN11304P ) for the purpose of detecting leaks inside the 

sensor node was implemented using a microcontroller digital pin. If water was detected in the node 

enclosure, the sensor triggered a node shutdown until the device could be serviced. 

5.2.1 Calibration 
                  The water quality probes (pH, ORP, EC) were calibrated prior to deployments using 

Atlas Scientific protocols. After calibration and before deployments, each node was tested in a 

control site where reproducibility was verified by connecting the sensor nodes to the same 

sampling water source and waited for stable readings. The manufacturer’s specifications suggested 

yearly recalibration of probes and deployments were shorter than one year; therefore, 

recalibrations were not conducted on probes while they were deployed at a site.  For nodes that 

were deployed at multiple sites over the period of the study, the recalibration protocol per 

manufacturer specifications was applied in between deployments. 
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The electroconductivity probes calibration protocol was modified from two-point 

calibration (84 uS/cm and 1413 uS/cm) to one-point calibration (1413 uS/cm). Under the new 

protocol the signals reported matched the Hanna handheld probe measurements. In Table 2.4 

there is evidence of the values reported by the probe under the two-point and one-point 

calibrations in comparison to the Hanna handheld probe. 

A.2 Sensor node hydraulic limitations impact on water quality signals 

Hydraulic conditions within the flow cell created by the fast-closing solenoid valve were 

likely contributors to pH probe damage. Both pH and ORP probes contain a reference electrolyte 

and a delicate glass electrode subject to irreversible damage under transient flow and pressure 

conditions. When damage occurs the signal drifts and it becomes evident that it broke – especially 

the pH probes. However, there are cases when more than one sensor node in close proximity to 

one another reports drifting. It is possible in that case to infer there is a water quality change picked 

up by three nodes such as the one seen in Figure 2.3-A in the main text. 

It is recommended to use a motorized ball valve instead of a solenoid valve to avoid the 

high pressure transients and damaging the probes. For an added cost, there is an option to obtain 

slow-closing solenoid valves, which have the advantage that will remain in the closed position if 

failure or power loss should happen. 

Furthermore in the specific case of studying low pressure systems, including intermittent 

systems, it is important to investigate and consider the head loss throughout the node and its 

implications on the water actually being measured. For example - when a domestic connection 

pipe is under constant flow to fill an underground cistern, the pressure is not enough to make water 

flow into a perpendicular branch upstream of the cistern, such as a sampling tap. And thus the 
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question to consider is whether or not the sensor probes are measuring “new” distribution water or 

node-stagnant water. 

A.3 Ann Arbor 

Each sensor node was tested for two days in the University of Michigan laboratories to 

establish a water quality baseline. From the test period in Ann Arbor the resulting average ranges 

are as follows (min average, max average): pressure (70, 78) psi, pH of (9.31, 9.76), ORP of (336, 

425) mV, EC of (649, 818) uS/cm, and temperature of (21, 23) °C. The testing periods of each 

node were on different dates. Differences and variability in pressure may be attributed to a 

combination of the day-to-day changes in water supply, differences in ORP, EC, and pH may be 

inherent variability associated with each probe. Cited studies in this paper have also reported 

differences between probes when measuring in duplicates [30,70]. 

A.4 Mexico City 

The installation was made with standard and removable connectors (such as a wye with 

garden hose threads) and the flushed water was collected in a bucket for the resident to use for 

cleaning or watering the plants. Collecting water in a bucket or flushing directly into a planter was 

our preferred method (over flushing directly to the drain) because Mexico City residents are 

acutely aware of water shortages.  Unlike Ann Arbor homes, there were usually some household 

residents at home throughout the day, who could monitor the bucket and use the collected water 

for domestic tasks. Bucket water collection may not be the best approach in households where 

residents are away during the day.  

We needed to move a number of sensor nodes across multiple sites.  We recalibrated and 

tested the sensor between each deployment. The period of time each sensor node remained 
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deployed was dependent on logistical factors relating to larger parallel health studies who manage 

the relationships to participant cohorts [74,123]. In total, 15 sensor nodes were used in our Mexico 

City case study, two were deployed in three locations each, two were deployed in two locations 

each, nine were deployed in only one location each, one sensor node was not deployed because of 

technical malfunction, and one sensor node remained deployed in the control site. The decisions 

for deploying the same sensor node multiple times were based on various factors including field 

conditions and participants willingness to continue hosting a sensor node. 

Each site presented unique challenges and a number of deployment attempts were 

unsuccessful due to unforeseen circumstances. The team encountered issues such as leaking 

sampling taps, Wi-Fi or cellular connectivity issues, lack of power source in the vicinity of the 

water tap, low water pressure unable to flow through our solenoid valve, non-standardized 

household plumbing, and pets interfering with the deployment setups. We were limited to 

deployments at single family dwellings in order to avoid neighbor conflict, unwanted handling, 

and intrusion. 

Pressure data varied both spatially and temporally in the continuous systems (Table SI-A-

2). Some households exhibited diurnal cycles with large ranges, and other households exhibited 

consistently low pressures. Some of the systems that were categorized as continuous by the official 

city’s government intermittency schedule [122] exhibited pressure signals that were near-zero at 

some points of the day. 

The ORP signal showed in Figure 2.4-C is highly variable and we believe it is the result of 

water distributed with free chlorine once per week followed by a period of stagnation where it 

decays. The intermittency in this particular household did not overlap with one of our field visits 

and therefore there are no grab samples to confirm the concentration of chlorine during the first 
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flush or during the bulk supply. Instead, the grab samples were taken from a storage tank inside 

the household, typically 5 days after the last supply day and the free chlorine averages were below 

the detection limits as mg/L as Cl2. The ORP signal increasing to a level previously associated 

with free chlorine and grab samples from household storage with low chlorine (several days after 

supply) are evidence to show that the ORP signal is indeed measuring change in free chlorine over 

a stagnation period. This shows the duration of intermittency has large implications on water 

quality at the household level, even if households have enough storage to hold water for a long 

period of time, the deterioration in water quality will be inevitable. 

The classification bins of supply systems (chlorinated, not chlorinated, or having varying 

levels of chlorination in Tables 2.2 and 2.3) was made depending on the standard deviations of 

both the ORP signals and the Free Chlorine grab samples. A low variability of both ORP and free 

chlorine (with a free chlorine mean > 0.5 mg/L as Cl2) meant a system was chlorinated. A low 

ORP average with low variability and no measurable chlorine from grab samples – then the system 

was not chlorinated. Finally, a medium-range ORP signal average, with a high variation would put 

the system as variable chlorination. 

A.5 Figures 

 

Figure SI-A- 1: ORP signal cleaning and processing from Ann Arbor Deployments. The ORP signals were quality to 
remove sensor startup values. The ORP sensor exhibited a three hour “warmup” period, which corresponds with the 
amount of time that the dry electrode and membrane need to be in contact with the water before providing a stable 
values. Raw values are shows in A. Grayed out values in B reflect data that was removed to produce the final figure 
C, shown in in the paper. 
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Figure SI-A- 2: Expanded system-wide conductivity event. from October 2019 to June 2020. In the main text Figure 
3B shows the same event, but from the dates March 2020 – April 2020. Colors of the timeseries (left) correspond 

with locations on the map (right). For color reference is advised to refer to the digital online version of this 
document. 

A.6 Tables 

Table SI-A- 1: pH Summary Statistics of deployment signals and grab samples from Mexico City 

pH Signal  pH Grab Sample  
Mean  SD  Mean  SD  n  

Continuous 
10.66*  1.73  7.30  0.41  3  
7.90  0.18  7.45  0.39  3  
7.98  0.05  7.82  0.55  3  
7.77  0.12  7.31  0.17  2  
7.44  0.09  7.46  0.45  2  
7.43  0.32  7.60  NA  1  
7.98  0.11  7.63  NA  1  
5.60*  0.73  7.84  0.65  3  
8.20  0.31  7.73  0.23  2  
7.86  0.91  7.24  0.08  2  
6.81  0.03  7.69  0.01  2  
6.89  1.25  7.70  NA  1  

Weekly Intermittent 
7.87  0.09  7.56  0.42  3  
7.97  0.39  7.40  0.12  3  
7.62  0.21  7.80  0.28  2  

Daily Intermittent 
7.16  0.16  7.25  0.49  2  
7.93  0.26  7.43  NA  1  
*Signal likely resulted from damaged probes. 
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Table SI-A- 2: Pressure Summary Statistics of deployment signals from Mexico City 

Pressure Signal (psi) 
Mean  SD  

Continuous 
48.97 15.59 
32.20 12.17 
50.82 12.02 
18.74 1.09 
40.03 14.35 
19.25 3.20 
18.29 1.74 
23.38 1.51 
22.67 5.64 
34.79 10.83 
16.30 3.67 
18.52 1.84 

Weekly Intermittent 
18.88 4.15 
18.64 3.72 
4.12 11.82 

Daily Intermittent 
21.61 2.56 
2.51 4.28 
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Appendix B  

Supplementary Information for Chapter 3 

B.1 Tables 

Table SI-B- 1: Water quality characteristics for Ypsilanti and Ann Arbor drinking water 

City Ypsilanti Ann Arbor 
Disinfectant 
(mg/L as Cl2) 

Free Chlorine 
0.69 

Chloramine 
2.6 

pH 6.9 9.3 
Conductivity (µS/cm) 224 613 

Total Hardness (mg/L as CaCO3) 100 125 
Chloride (mg/L) 10.6 117 
Sulphate (mg/L) 25.2 51 

Alkalinity (mg/L as CaCO3) 71 64 
Nitrate (mg/L as N) 0.55 (max) 0.8 (max) 
Nitrite (mg/L as N) Not Detected 0.09 

Note: Physicochemical water quality parameters are average values as reported in each system’s 
annual water quality report 2021: 

https://www.ycua.org/waterreport.pdf 

https://www.a2gov.org/departments/water-treatment/Documents/water_quality_report_2021.pdf 

https://www.ycua.org/waterreport.pdf
https://www.a2gov.org/departments/water-treatment/Documents/water_quality_report_2021.pdf
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Table SI-B- 2: Sites characteristics and deployment durations 

Site 
Name 

Household Size: 
Occupants  

( bed / bath ) 

Experiment Durations (days) 
February – March 

(Cold) 
September – 

October (Warm) Total 
Baseline Flush Baseline Flush 

Free Chlorine. Ypsilanti, Michigan. 
Yps 1 1    ( 2 / 2 ) 0 0 29 23 52 
Yps 2 2    ( 2 / 1 ) 0 0 13 14 27  

Chloramine. Ann Arbor, Michigan. 
Arb 1 2    ( 3 / 1 ) 17 14 22 18 71 
Arb 2 5    ( 4 / 2.5 ) 17 14 22 21 74 
Arb 3 3    ( 3 / 2 ) 14 17 0 0 31 
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Table SI-B- 3: Grab samples summary taken during the study periods. 

 Baseline Period Flush Period 

 First Draw Full Flush % Increase  First Draw Full Flush % Increase  

 Mea
n sd Mean sd Mean 

(%) 
sd 

(%) n Mean sd Mean sd Mean 
(%) 

sd 
(%) n 

Free Chlorine 

Yps 1 0.64 0.11 0.78 0.09 26.60 35.62 2 0.59 0.11 0.72 0.05 22.64 15.13 2 

Yps 2 0.50 0.01 0.64 0.14 26.55 26.23 2 0.51 NA 0.55 NA 7.84 NA 1 

Chloramine 

Arb 1 2.36 0.04 2.52 0.06 6.83 4.31 2 2.23 0.18 2.33 0.17 4.54 1.10 3 

Arb 2 2.15 0.25 2.38 0.08 11.50 9.58 2 2.08 0.01 2.07 0.03 -0.24 1.02 2 

Arb 3 2.73 NA 2.76 NA 1.10 NA 1 2.68 0.04 2.83 0.02 5.23 2.18 2 

 
 



 
 

 119 

B.2 Figures 

 

Figure SI-B- 1: Deployment calendar. Shaded squares represent Summer and Fall, blank squares represent Winter 
and Spring. Colored squares are the dates when the experiments took place. Due to the need to coordinate with 

homeowners, site access was constrained to specific periods (winter/spring or summer/fall), with two homeowners 
permitting us to return and measure during both time periods. 
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Figure SI-B- 2: Grab samples from the sites shown as percent increase pre- to post flush. Data are grouped by 
disinfectant to minimize effect of different number of observations per site. Free and total chlorine concentrations 

were measured using the DPD method. 

 

 

Figure SI-B- 3: Response of ORP, chlorine in grab samples, and temperature to flush after overnight stagnation. . 
Chlorine grab samples were grabbed every 15 – 30 seconds until change was less than 0.1 mg/L as Cl2 and are 

connected by lines to highlight trend, ORP and temperature were measured every second for the duration of 
flushing. Line types (Solid, dash, etc) and color are consistent across sites. 
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Figure SI-B- 4: Response of ORP sensors during high resolution flushing of household taps. Solid lines represent 
individual flushing events (n = 219), average of lines per site is shown in bold lines, dashed vertical lines represent 

the start and end of a 5-minute flushing timer. 
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Figure SI-B- 5: Extreme ORP outliers during extended stagnation in a free chlorine kitchen tap. ORP values are 
given in reference to the Ag-AgCl half-cell. Summaries include median (Q2) as circles and squares, whisker bars 
extend to 𝑄! − 1.5 × 𝐼𝑄𝑅  and 𝑄" + 1.5 × 𝐼𝑄𝑅 or the max/min value of the data set, where IQR is Q3 – Q1, and 
minimum values shown as x’s if smaller than the whisker bar range. Data include extreme outliers during No Flush 
at site Yps 1. 
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Appendix C  

Supplementary Information for Chapter 4 

C.1 Mexico City, Study location, contextual water situation 

With a population of 9 million people within the jurisdictional city boundaries, and 20 

million people in the greater metropolitan area, Mexico City is the largest city in Latin America 

and one of the largest cities globally. As seen in other megacities in the world, water resources and 

supply are one of the city’s biggest challenges. For decades, Mexico City’s residents have 

experienced an ever-changing water landscape, both literally and figuratively, thanks to challenges 

associated with increased population, depletion of aquifers, and natural disasters. A complete 

chronology of strategies implemented by the federal and local governments to maintain water 

supply for the city is described by Tellman et al. and helps understand the challenges the city and 

residents have adapted to [140]. Mainly a repeating cycle of technical solutions to urban and social 

problems that create other unforeseen problems years or decades later. Global urbanization trends 

create more stress on freshwater resources and cities continuously look for adaptation strategies, 

Mexico City, with a long history of adaptations, serves as an ideal study location to understand the 

impacts of large-scale water stress on the experience of water supply and the experience of water 

quality in urban settings. 

The water distribution system in Mexico City is supplied with 33% surface and 67% 

groundwater [68]. A small fraction of the surface water comes from the mountain ranges and 

natural springs on the west and southwest boundaries of the city, while the bulk of the surface 

water is imported from the Cutzamala system roughly 140 km west of the city. And while a small 
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portion of groundwater is also imported from the west through the Lerma system, most of the 

groundwater is extracted from local aquifers through 450 wells distributed across the city [69,141]. 

The geopolitical governance of water is complex, the federal commission of water resources 

(CONAGUA) is in charge of treating and allocating water resources outside of the political 

boundaries of Mexico City, including the Cutzamala and Lerma systems. Inside the city limits the 

local utility, SACMEX, is in charge of primary distribution systems and allocates water to each of 

the Mexico City’s 16 alcaldias. Each alcaldia’s government operates and maintains the secondary 

distribution system within their jurisdiction, and determine each neighborhood’s water supply 

schedule [142].  

Public information regarding infrastructure assets, treatment trains, disinfectant booster 

stations, pumping stations, and storage tanks is not available. However, it has been reported in the 

literature there are varying levels of source water quality [69] and varying levels of distributed 

water quality across the city at sampling taps [69,143]. This may be directly related to inconsistent 

levels of treatment at system-entry points, creating a highly heterogeneous system that further 

amplifies a socioeconomic divides and reinforces city-wide skepticism in distributed water quality, 

the utility, and the local governments. 

C.2 Household Visits Description 

When the team arrived to a house for a visit a letter of consent approved by the IRB 

(Institutional Review Board) at the University of Michigan (UofM) and the Instituto Nacional de 

Salud Publica (INSP) was read and signed by the participants. At this time the participants were 

verbally informed about the goals of the study, the visit structure (or agenda), and the type of 

information we were there to collect. After a few minutes of introductions, settling down, and 

small talk, the participants were asked to walk the research team through a “Domestic Water 
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Infrastructure” tour of their house and to provide descriptions on components’ functionality, flow 

patterns, operational information, and decision-making processes behind managing the system. 

During the tour water samples were collected from five main points – starting with outdoor tap 

closest to the distribution mains, then following to the cistern (underground storage tank), tinaco 

(rooftop storage tank), kitchen tap, and their preferred drinking water if different than any of the 

already collected samples (bottled, filtered, boiled, etc.). This part of the visit had the objective to 

learn directly from the participants how they experience water supply and the adaptive measures 

required to maintain a functioning water system in their home. At this time, we learned from the 

participants if they experience pressure fluctuations, water shutoffs, and anything related to water 

supply in their neighborhood. The collected water samples would be analyzed concurrently during 

the following structured parts of the visit. 

After the tour, team members and participants all convened in the living space, kitchen, or 

dining area, where the rest of the interview would take place. The interview continued with 

socioeconomic information about the immediate family members, extended family living in the 

premises, and about the construction of the house. Then immediately followed into the open-ended 

questions where themes about water quality, supply, and management experiences were further 

explored. 
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Figure SI-C- 1: Map of Mexico City divided into 16 local governments (alcaldias). Study participants are 
represented by points. 

 

Table SI-C- 1: NESTSMX Visit Summary 

Visit n( ) 
1 60 
2 24 
3 7 
4 (phone) 56 

 

C.3 Variable Descriptions 

C.3.1 Experience of Water Quality 
Ethnographic data was coded using codes (Table SI-C-2) that target the experience and 

experience of drinking water quality before, during, and after passing through domestic storage. 

During the interview all participants were asked to describe their experience and their take on 

water quality in their neighborhood. However, a question regarding their experience of water 

quality during/after storage was not part of the script. These codes were developed post-collection 

to answer the specific questions relevant to this study. 
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Table SI-C- 2:  Codebook for water quality experience 

Code Description 
Water quality experience – public 
supply 

Descriptions of water quality in the public supply or at the point of arrival to the 
household from the public supply. For example, "the water arrives yellow."  

Water quality experience – household Descriptions of water quality within the household, after it has arrived from the 
public supply. For example, "water comes out of the kitchen tap yellow." 

Water quality related to domestic 
management/infrastructure 

A code to capture all instances where participants attribute a change in their water 
quality to their household water infrastructure or water management. e.g. "The tinaco 
pollutes the water."; "I trust the water from the public supply, but not from the 
tinaco", etc. 

Note: When unclear whether a participant is discussing public water management or "within building" or "within household" 
water management, both "Water quality experience - household" and "Water quality experience - public supply" codes were 
used. For example, "Yes, we trust the water because they [and they is undefined/unspecified] clean the tinacos" should be 
coded WQ-household + WQ – public supply + WQ related to domestic management 
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Table SI-C- 3: Experience and Experience of Water Quality. 

Water Aesthetic Justification Examples Levels Numerical 
Representation 

Chlorine Experience Participants mention experience of chlorine 
through smell or taste. Chlorine is good for water 
safety standards, but some people may perceive it 
in a negative way.  

Question: Do you consider that water 
quality in your neighborhood is 
better, worse, or same as other 
neighborhoods in the city? 

Mentioned with good connotation. 
 
 
 
Not Mentioned 
 
 
 
 
Mentioned with Bad Connotation 

1 
 
 
 
 
0 
 
 
 
 
-1 
 
 
 
 
 

Color Experience Color originates from dissolved metals and 
organic compounds, its a sign of untreated water, 
high disinfectant demand, and high disinfection 
by-products 

 

Taste/Odor Experience Taste and odor are also indicative of poorly 
treated water 

 

Solids Experience Suspended solids are indicative of water that has 
been in contact with soil, either through disturbed 
pipe material, leaks in the distribution system or 
not properly closed tanks. 
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Table SI-C- 4: Example of coding and water quality experience quotes 

 Codes Datatype Water Quality 
Aesthetic  

Connotation Quotation ID, Folio    

Ex
am

pl
e 

1 

Water quality experience – 
public supply 

Transcription Chlorine 
 
Taste 

Negative 
 
Positive 

3:14 
0049 
V4 

   

Translated text: 
Interviewer: Do you consider that water quality in your neighborhood is better, worse, or same as in other neighborhoods? Why? 
Participant: I say it is better, because if you taste it, it has a very good taste, I mean I know that water is unflavored, he, he, he, but try it in other places it has chlorine flavor 
I don’t know and this one does not, it tastes good, it is fresh, good. Ask the neighbors they will say the same he, he, he… sorry. 
Original Text: 
E: Claro en algunos lugares no la valoran, y la desperdician y en otros no tienen, claro si…..he….okey….usted considera que la calidad del agua en su colonia es mejor, peor 
o igual que en otras partes de la ciudad de México? P: Yo digo que es mejor E: Porque? P: Porque si prueba esta agua tiene un sabor muy rico, o sea ya sé que el agua es 
insabora, je, je,je pero prueba en otros lados le sabe a cloro no sé y esta agua no, está rica, está fresca, rica E: Claro si, no si pues incluso a veces? P: Pregúntele a vecinos 
te van a contestar lo mismo, je, je, je…perdón  
 

Ex
am

pl
e 

2 

Water quality experience – 
public supply 

Transcription Solids Experience Negative 35:1 
0263 
V4 

   

Translated text: 
Interviewer: Generally, do you all trust the water coming from the public supply? Why? 
Participant: No, because it comes very dirty, I mean very, with dirt, well more with dirt, so that’s why not. 
Original text: 
E: Generalmente ustedes confían en el agua que viene de la calle, del suministro público? P: No E: Porque? P: Porque viene bien sucia, o sea muy, con tierra…..bueno más 
seguro con tierra, entonces por eso no 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C.3.2 Flow Diagrams 

All systems are built using a combination of the same components depending on the needs 

at each house. Underground storage units (cisterns) and rooftop tanks (tinacos) are the primary 

storage elements that are used in response to variable water supply. As opposed to tinacos, which 

are found almost universally across the city, cisterns are found with less frequency usually in 

neighborhoods with exceptionally low water pressure but can also be found in apartment buildings 

and some single-family buildings with added vertical living space. Most houses had very unique 

set ups and solutions particular to solve their needs, however, at the very core of the flow diagrams 

there were similitudes among all systems. All households flow diagrams were broken down into 

‘building blocks’ (Table SI-C-5, A – C) of components and flow configurations in order to classify 

categorically each system. The most basic configurations have a single flow path connecting all 

components from the service line through the storage, pipes, or pumps, to the taps. We describe 

increasingly complex systems by adding the most basic configurations that best describe the flow 

diagram for each household (Table SI-C-5). More complex systems have multiple flow paths, 

creating situations for residents that require more active interaction with the system for proper 

operation and creating conditions for increasing water age depending on the primary hydraulic 

path. 
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Table SI-C- 5: Domestic infrastructure flow schematics 

Domestic Infrastructure Flow Schematic Notes 

 

n = 7 
 

 

n = 10 

 

n = 26 
In some cases this setup is the only one 
possible due to the height of the 
building. 
Management Tasks: It is common for 
the pump to be activated through a light 
switch, although some tinacos are 
integrated with water level sensors that 
activate the pump automatically. 
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Domestic Infrastructure Flow Schematic Notes 

 

n = 5 
Redundancy is added to the system for 
various reasons.  
Stagnation point: This leads to 
increased water age in the tinaco. 
Management tasks: Some tasks in this 
set up could include unplugging water 
hoses to fill up the tinaco. 

 

n = 2 
Redundancy same as above, but with a 
cistern because the pressure is not 
strong to lift the water.  
Stagnation Point: Cistern and tinaco if 
water from “A” is primary flow. 
Management tasks: Lift cistern lid to 
check water level. Turn valves to 
choose where to direct the water after 
the cistern. 

 

n = 9 
Stagnation Points: Cistern if “B” is the 
primary flow. 
Management Tasks: Potentially lift 
cistern lid to check water level. If low 
and cistern not piped to public supply 
then connect hose and fill it for a few 
hours.  
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Domestic Infrastructure Flow Schematic Notes 

 

n = 1 
Stagnation Points: Cistern if “B” or “A” 
is the primary flow. Tinaco if “B” and 
“A” are primary flow.  
Management Tasks: Potentially lift 
cistern lid to check water level. If low 
and cistern not piped to public supply 
then connect hose and fill it for a few 
hours. If more than one tinaco, turn 
valves, turn on pump, until desired tank 
is full. 

M = Meter, P = Pump, S = Light Switch 
 

C.3.3 Management tasks and system state 
During the domestic infrastructure tours the participant described how the system worked. 

Generally the narrative used to describe these systems had passive process verbs, as if the water 

and the flow process was happening autonomously, however most of the systems did not work 

automatically and rather needed constant human input. The field notes taken during the tours were 

coded for “water management” and reports were compiled. A short list containing the most 

reoccurring tasks (Table SI-C-6) was created after reading the reports and for each household a 

binary indicator was attached to each task. Although not immediately obvious from the task’s 

names, the way in which participants collect information from the system is embedded into the 

tasks.  

Table SI-C- 6: Management tasks summary 

Management Task Number of households (n) 
Turn Valves 7 
Connect and Disconnect garden hoses 10 
Fill Up Disconnected Containers 20 
Move Water Containers 4 
Turn on/off pump 19 
Collect and move preferred water 6 
Recycle water task 25 
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C.4 Latent Constructs and Factor Analysis Results 

Table SI-C- 7: Proposed latent constructs and factor analysis 

Latent Construct Observed 
Variables 

Assessing 
Method 

Levels Numerical 
Assignment 

Factor Analysis Loadings 

Intermittency 

Supply Type City Memo 

Continuous 1 

 

Off-Grid 0 

Intermittent -1 

Frequency 
Type Field Notes 

Continuous 2 

Continuous with 
regular shutoffs 

1 

Daily -1 

Weekly -2 

Pressure Field Notes 
Adequate 1 

Inadequate -1 

Availability 
Confidence Field Notes 

High 1 

Low -1 

Unusual 
Shutoffs Field Notes 

Yes -1 

No 1 

Experience/Experi
ence of Outdoor 
Water Quality  

Chlorine 
Experience 

Field Notes 

Mentioned with 
good 
connotation  

1  

Color 
Experience 

Field Notes 

Not Mentioned 

0 

Taste/Odor 
Experience 

Field Notes 

-1 
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Latent Construct Observed 
Variables 

Assessing 
Method 

Levels Numerical 
Assignment 

Factor Analysis Loadings 

Solids 
Experience 

Field Notes Mentioned with 
bad connotation 

 
 

Experience/Experi
ence of Indoor 
Water Quality  

Chlorine 
Experience Field Notes Mentioned with 

good 
connotation  

1  

 
 

Color 
Experience Field Notes 

Not Mentioned 

0 

Taste/Odor 
Experience Field Notes 

Mentioned with 
bad connotation 

-1 

Solids 
Experience Field Notes 

Measured Outdoor 
Water Quality 

pH 

Measured 

  
 

 

Free Chlorine   
 

Total Chlorine   
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Latent Construct Observed 
Variables 

Assessing 
Method 

Levels Numerical 
Assignment 

Factor Analysis Loadings 

Electroconduc
tivity 

  
 

 
 

Turbidity   
 

Total 
Coliforms 

  
 

Fecal 
Coliforms 

  
 

Hardness   
 

Sulphate   
 

Measured Indoor 
Water Quality 

pH 

Measured 

  
 

 
 

Free Chlorine   
 

Total Chlorine   
 

Electroconduc
tivity 

  
 

Turbidity   
 

Total 
Coliforms 

  
 

Fecal 
Coliforms 

  
 

Hardness   
 

Sulphate   
 

Domestic 
Infrastructure 
Management 
Class 

Turn Valves 

Field Notes 

Yes 1  
 (Dis)connect 

hoses 
Fill Up 
Disconnected 
Containers 
Move Water 
Containers 

No 0 

Turn on/off 
pump 
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Latent Construct Observed 
Variables 

Assessing 
Method 

Levels Numerical 
Assignment 

Factor Analysis Loadings 

Collect and 
move 
preferred 
water 

 
Note: For the regression the scale was transformed by changing the sign of each 
class. i.e. (-1, -2) 
 

Recycle water 
task 
Cistern 

Infrastructure 
Maps Tinaco 

Domestic 
Infrastructure  

Storage per 
person 

Infrastructure 
Maps, Field 
Notes 

N/A 100 - 200 

 

Number of 
Components 

Infrastructure 
Maps 

N/A 1-5 

Flow 
diagrams  

Infrastructure 
Maps, Field 
Notes 

A 1 

B 1 

C 3 

AB 3 

BC 4 

AC 4 

ABC 5 

Socioeconomic 
Level 

Index ELEMENT A/B 7  
C+ 6 
C 5 
C- 4 
D+ 3 
D 2 
E 1 
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C.5 Linear Regression Pathway Results 

Table SI-C- 8: Linear Regressions Results 

Response Variable Determinant Variable Regression Summary 
DomesFc Infrastructure Intermi)ency  Call: 

lm(formula = Domestic_infrastructure ~ intermittency + amai_8x7,  
    data = regression_df) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2.4315 -0.6938  0.2778  0.3552  1.9099  
 
Coefficients: 
                Estimate Std. Error t value Pr(>|t|)   
(Intercept)     -0.03656    0.41846  -0.087   0.9307   
intermittency_1  0.23141    0.12435   1.861   0.0686 . 
amai_8x7         0.01295    0.10310   0.126   0.9006   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.9822 on 50 degrees of freedom 
Multiple R-squared:  0.0648, Adjusted R-squared:  0.02739  
F-statistic: 1.732 on 2 and 50 DF,  p-value: 0.1873 
 

Socioeconomic Level 

Infrastructure 
Management Class  

Intermi)ency Call: 
lm(formula = LatClass2 ~ intermittency_1 + amai_8x7 + Domestic_infrastructure,  
    data = .) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.78632 -0.36000 -0.08404  0.34686  0.66570  
 
Coefficients: 
                        Estimate Std. Error t value Pr(>|t|)     
(Intercept)             -1.68333    0.17757  -9.480 1.15e-12 *** 
intermittency_1          0.11926    0.05456   2.186 0.033640 *   
amai_8x7                 0.01583    0.04375   0.362 0.719104     
Domestic_infrastructure  0.22091    0.06001   3.682 0.000578 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4168 on 49 degrees of freedom 
Multiple R-squared:  0.3288, Adjusted R-squared:  0.2877  
F-statistic:     8 on 3 and 49 DF,  p-value: 0.0001936 
 

Socioeconomic Level 

Domes3c Infrastructure 

Measured Water Quality 
Public Supply (factor 1/2) 

Intermi)ency Call: 
lm(formula = WQ_out_1 ~ intermittency_1 + amai_8x7, data = regression_df) 
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Response Variable Determinant Variable Regression Summary 
Socioeconomic Level  

Residuals: 
    Min      1Q  Median      3Q     Max  
-1.1026 -0.5494 -0.3049  0.1281  2.5543  
 
Coefficients: 
                Estimate Std. Error t value Pr(>|t|) 
(Intercept)      0.15698    0.41170   0.381    0.705 
intermittency_1  0.06170    0.14360   0.430    0.670 
amai_8x7        -0.06502    0.10217  -0.636    0.528 
 
Residual standard error: 0.9276 on 44 degrees of freedom 
  (6 observations deleted due to missingness) 
Multiple R-squared:  0.01459, Adjusted R-squared:  -0.0302  
F-statistic: 0.3257 on 2 and 44 DF,  p-value: 0.7237 
 

Measured Water Quality 
Public Supply (factor 2/2) 

Intermi)ency Call: 
lm(formula = WQ_out_2 ~ intermittency_1 + amai_8x7, data = regression_df) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-1.9843 -0.8365  0.1879  0.5782  2.0963  
 
Coefficients: 
                Estimate Std. Error t value Pr(>|t|) 
(Intercept)      0.37463    0.45270   0.828    0.412 
intermittency_1 -0.08783    0.15789  -0.556    0.581 
amai_8x7        -0.10263    0.11234  -0.914    0.366 
 
Residual standard error: 1.02 on 44 degrees of freedom 
  (6 observations deleted due to missingness) 
Multiple R-squared:  0.02335, Adjusted R-squared:  -0.02104  
F-statistic: 0.5261 on 2 and 44 DF,  p-value: 0.5946 
 

Socioeconomic Level 

Measured Water Quality 
Kitchen Tap (factor 1/2) 

Domes3c Infrastructure Call: 
lm(formula = WQ_in_1 ~ intermittency_1 + Domestic_infrastructure +  
    LatClass2 + WQ_out_1 + WQ_out_2, data = .) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2.2503 -0.6922 -0.1022  0.6184  2.6029  
 
Coefficients: 
                        Estimate Std. Error t value Pr(>|t|)   
(Intercept)              0.11097    0.67998   0.163   0.8713   
intermittency_1         -0.05744    0.18952  -0.303   0.7636   
Domestic_infrastructure  0.03784    0.20521   0.184   0.8547   
LatClass2                0.04326    0.40546   0.107   0.9156   
WQ_out_1                 0.14091    0.17649   0.798   0.4299   
WQ_out_2                -0.41693    0.17229  -2.420   0.0207 * 
--- 

Infrastructure Management 
Class 
Measured Water Quality 
Public Supply (factor 1/2) 
Measured Water Quality 
Public Supply (factor 2/2) 
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Response Variable Determinant Variable Regression Summary 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.017 on 36 degrees of freedom 
  (11 observations deleted due to missingness) 
Multiple R-squared:  0.1788, Adjusted R-squared:  0.0647  
F-statistic: 1.567 on 5 and 36 DF,  p-value: 0.1941 
 

Measured Water Quality 
Kitchen Tap (factor 2/2) 

Domes3c Infrastructure Call: 
lm(formula = WQ_in_2 ~ intermittency_1 + Domestic_infrastructure +  
    LatClass2 + WQ_out_1 + WQ_out_2, data = .) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-1.0249 -0.4704 -0.1122  0.3278  2.4992  
 
Coefficients: 
                        Estimate Std. Error t value Pr(>|t|)     
(Intercept)             -0.43417    0.54182  -0.801    0.428     
intermittency_1         -0.07442    0.15101  -0.493    0.625     
Domestic_infrastructure  0.17620    0.16352   1.078    0.288     
LatClass2               -0.26211    0.32308  -0.811    0.423     
WQ_out_1                 0.03957    0.14063   0.281    0.780     
WQ_out_2                 0.60561    0.13728   4.411 8.93e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.8102 on 36 degrees of freedom 
  (11 observations deleted due to missingness) 
Multiple R-squared:  0.4408, Adjusted R-squared:  0.3631  
F-statistic: 5.675 on 5 and 36 DF,  p-value: 0.000587 
 

Infrastructure Management 
Class 
Measured Water Quality 
Public Supply (factor 1/2) 
Measured Water Quality 
Public Supply (factor 2/2) 

Water Quality 
DeterioraFon (factor 1/2) 

Domes3c Infrastructure Call: 
lm(formula = WQ_det_1 ~ Domestic_infrastructure + WQ_out_2 +  
    WQ_out_1, data = .) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2.3710 -0.4085 -0.1499  0.4605  2.1022  
 
Coefficients: 
                        Estimate Std. Error t value Pr(>|t|)   
(Intercept)             -0.05943    0.15742  -0.378   0.7079   
Domestic_infrastructure  0.15954    0.17598   0.907   0.3703   
WQ_out_2                -0.29992    0.15749  -1.904   0.0644 . 
WQ_out_1                -0.26729    0.17159  -1.558   0.1276   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.012 on 38 degrees of freedom 
  (11 observations deleted due to missingness) 
Multiple R-squared:  0.1585, Adjusted R-squared:  0.09209  

Measured Water Quality 
Public Supply (factor 1/2) 
Measured Water Quality 
Public Supply (factor 2/2) 
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Response Variable Determinant Variable Regression Summary 
F-statistic: 2.386 on 3 and 38 DF,  p-value: 0.0842 
 

Water Quality 
DeterioraFon (factor 2/2) 

Domes3c Infrastructure Call: 
lm(formula = WQ_det_2 ~ Domestic_infrastructure + WQ_out_2 +  
    WQ_out_1, data = .) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.60791 -0.63994  0.04282  0.42930  2.61438  
 
Coefficients: 
                        Estimate Std. Error t value Pr(>|t|)    
(Intercept)              0.06388    0.14137   0.452  0.65394    
Domestic_infrastructure  0.13945    0.15803   0.882  0.38309    
WQ_out_2                -0.41326    0.14143  -2.922  0.00583 ** 
WQ_out_1                 0.38924    0.15409   2.526  0.01582 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.9091 on 38 degrees of freedom 
  (11 observations deleted due to missingness) 
Multiple R-squared:  0.2864, Adjusted R-squared:  0.2301  
F-statistic: 5.084 on 3 and 38 DF,  p-value: 0.004667 
 

Measured Water Quality 
Public Supply (factor 1/2) 
Measured Water Quality 
Public Supply (factor 2/2) 

Experience of Public 
Supply Water Quality (Visit 
1) 

Intermi)ency Call: 
lm(formula = Perc_wq_out_V1 ~ intermittency_1 + amai_8x7 + WQ_out_2 +  
    WQ_out_1, data = .) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-2.11933 -0.40311 -0.01766  0.34633  2.48162  
 
Coefficients: 
                Estimate Std. Error t value Pr(>|t|) 
(Intercept)     -0.18887    0.48401  -0.390    0.698 
intermittency_1 -0.02655    0.16819  -0.158    0.875 
amai_8x7         0.05811    0.12065   0.482    0.633 
WQ_out_2         0.23670    0.15969   1.482    0.146 
WQ_out_1        -0.16656    0.17559  -0.949    0.348 
 
Residual standard error: 1.08 on 42 degrees of freedom 
  (6 observations deleted due to missingness) 
Multiple R-squared:  0.07435, Adjusted R-squared:  -0.0138  
F-statistic: 0.8434 on 4 and 42 DF,  p-value: 0.5056 
 

Socioeconomic Level 

Measured Water Quality 
Public Supply (factor 1/2) 
Measured Water Quality 
Public Supply (factor 2/2) 

Experience of Public 
Supply Water Quality (Visit 
4) 

Intermi)ency Call: 
lm(formula = Perc_wq_out_V4 ~ intermittency_1 + amai_8x7 + WQ_out_2 +  
    WQ_out_1, data = .) 
 
Residuals: 

Socioeconomic Level 
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Response Variable Determinant Variable Regression Summary 
Measured Water Quality 
Public Supply (factor 1/2) 

    Min      1Q  Median      3Q     Max  
-1.5749 -0.5588 -0.1128  0.4951  1.8783  
 
Coefficients: 
                Estimate Std. Error t value Pr(>|t|)   
(Intercept)     -0.18290    0.40095  -0.456   0.6509   
intermittency_1 -0.23383    0.14712  -1.589   0.1203   
amai_8x7         0.01409    0.10019   0.141   0.8889   
WQ_out_2         0.34068    0.13434   2.536   0.0154 * 
WQ_out_1        -0.33992    0.14446  -2.353   0.0239 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.8718 on 38 degrees of freedom 
  (10 observations deleted due to missingness) 
Multiple R-squared:  0.3067, Adjusted R-squared:  0.2337  
F-statistic: 4.203 on 4 and 38 DF,  p-value: 0.006479 
 

Measured Water Quality 
Public Supply (factor 2/2) 

Experience of Kitchen Tap 
Water Quality (Visit 4) 

Domes3c Infrastructure Call: 
lm(formula = Perc_wq_in_V4 ~ Domestic_infrastructure + LatClass2 +  
    WQ_det_2 + WQ_det_1 + Perc_wq_out_V4 + Perc_wq_out_V1, data = .) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2.6278 -0.2479 -0.0267  0.1771  2.1562  
 
Coefficients: 
                         Estimate Std. Error t value Pr(>|t|)   
(Intercept)              1.195266   0.557452   2.144   0.0400 * 
Domestic_infrastructure  0.031077   0.154554   0.201   0.8420   
LatClass2                0.676424   0.322887   2.095   0.0444 * 
WQ_det_2                -0.067479   0.125021  -0.540   0.5932   
WQ_det_1                -0.006574   0.130043  -0.051   0.9600   
Perc_wq_out_V4           0.338721   0.159553   2.123   0.0418 * 
Perc_wq_out_V1           0.144917   0.130873   1.107   0.2767   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.7615 on 31 degrees of freedom 
  (15 observations deleted due to missingness) 
Multiple R-squared:  0.2733, Adjusted R-squared:  0.1326  
F-statistic: 1.943 on 6 and 31 DF,  p-value: 0.105 
 

Infrastructure Management 
Class 
Water Quality Deteriora3on 
(factor 1/2) 
Water Quality Deteriora3on 
(factor 2/2) 
Experience of Public Supply 
Water Quality (Visit 1) 
Experience of Public Supply 
Water Quality (Visit 4) 

Experience of Kitchen Tap 
Water Quality (Visit 1) 

Domes3c Infrastructure Call: 
lm(formula = Perc_wq_in_V1 ~ Domestic_infrastructure + LatClass2 +  
    WQ_in_1 + WQ_in_2 + WQ_det_2 + WQ_det_1 + Perc_wq_out_V4 +  
    Perc_wq_out_V1, data = .) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  

Infrastructure Management 
Class 
Water Quality Deteriora3on 
(factor 1/2) 



 
 

 143 

Response Variable Determinant Variable Regression Summary 
Water Quality Deteriora3on 
(factor 2/2) 

-0.62359 -0.31962 -0.18430  0.07664  2.04942  
 
Coefficients: 
                        Estimate Std. Error t value Pr(>|t|)   
(Intercept)             -0.09682    0.52973  -0.183   0.8562   
Domestic_infrastructure  0.21733    0.14867   1.462   0.1545   
LatClass2                0.21143    0.30772   0.687   0.4975   
WQ_in_1                 -0.09508    0.15188  -0.626   0.5362   
WQ_in_2                 -0.12537    0.14125  -0.888   0.3820   
WQ_det_2                 0.11353    0.12992   0.874   0.3894   
WQ_det_1                 0.04158    0.14705   0.283   0.7794   
Perc_wq_out_V4           0.10805    0.14775   0.731   0.4704   
Perc_wq_out_V1          -0.22151    0.12310  -1.799   0.0824 . 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.694 on 29 degrees of freedom 
  (15 observations deleted due to missingness) 
Multiple R-squared:  0.1982, Adjusted R-squared:  -0.02302  
F-statistic: 0.8959 on 8 and 29 DF,  p-value: 0.5325 
 

Measured Water Quality 
Kitchen Tap (factor 1/2) 
Measured Water Quality 
Kitchen Tap (factor 2/2) 
Experience of Public Supply 
Water Quality (Visit 1) 
Experience of Public Supply 
Water Quality (Visit 4) 

Experience of Kitchen Tap 
Water Quality (Visit 1) 

N/A  
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