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ABSTRACT

The availability of large observational datasets in healthcare presents an opportunity to

leverage machine learning techniques to learn complex relationships between an individual’s

characteristics, underlying health status, and response to interventions. Despite progress,

there is often a mismatch between how machine learning models are developed and clinical

needs. In this dissertation, we study how considering clinical needs can and should inform

model development in healthcare.

First, in survival analysis, deep learning approaches have been proposed for estimating

an individual’s survival probability over some time horizon. However, these methods often

focus on optimizing discriminative performance and have ignored model calibration. Well-

calibrated survival curves present realistic and meaningful probabilistic estimates of the

true underlying survival process for an individual, an essential characteristic for survival

analysis models in many clinical contexts. In light of the shortcomings of existing approaches,

we propose a new training scheme for optimizing deep survival analysis models for strong

discriminative performance and good calibration. Across two clinical datasets, we show

that our approach yields models with strong discriminative performance while improving

calibration over existing methods.

Second, in causal inference, past work has focused on accurately estimating conditional

average treatment effects (CATEs) to help guide treatment allocation. However, in many

settings, decision-makers only require a ranking of individuals to assist in allocating treat-

ments. Leveraging the insight that ranking can be simpler than CATE estimation and better

CATE accuracy doesn’t necessarily translate to better treatment allocation, we propose an

approach that optimizes directly for rankings of individuals to maximize benefit of treatment.

Our tree-based approach maximizes the expected benefit across all treatment thresholds us-

ing a novel splitting criteria. Through experiments on synthetic datasets, we show that the

proposed approach leads to better sample efficiency and better treatment assignments, as

measured by expected benefit, compared to models optimized for accurate CATEs.

Third, when exact CATEs are needed, we study the mismatch between theoretical results

in CATE estimation and how this theory holds empirically. In recent years, techniques

incorporating estimates of both the propensity score and potential outcomes have gained

xiv



popularity in part due to their strong theoretical guarantees for overcoming confounding

bias. However, how this theory translates to practice across an extensive set of practical

settings, especially in the context of deep learning, has not been well explored. We present

an in-depth exploration of popular techniques, finding that those relying only on estimates

of the outcome, in particular the X-Learner, can consistently outperform more sophisticated

techniques across a variety of practical settings.

Finally, we study how the mismatch between machine learning objectives and clini-

cal needs manifests in existing clinical tools for sepsis risk stratification. Standard risk-

stratification approaches focus on predicting the likelihood of sepsis before the sepsis criteria

is met. However, both the training and evaluation of these models do not match the ultimate

goal of augmenting clinical decision-making to improve patient outcomes. We study both

challenges, finding that: 1) existing risk stratification approaches deteriorate significantly

when evaluating before clinical recognition of sepsis and 2) targeting those most likely to

develop sepsis may be sub-optimal with respect to improving patient outcomes.

Overall, our contributions bridge, in part, the gap between machine learning research and

practice in healthcare. Ultimately, by recognizing domain-specific needs in clinical care as

we have, machine learning practitioners can develop more impactful models.
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CHAPTER 1

Introduction

In recent years, there has been tremendous growth in the availability of observational clin-

ical data [167, 147, 205]. This growth has led to an exponential increase in research at the

intersection of machine learning (ML) and healthcare [77, 62, 86, 50, 6, 154, 181, 206]. A

primary goal in developing ML algorithms for healthcare is to augment clinicians’ under-

standing of patient risk and improve patient care. ML models can achieve this goal in many

ways, including assisting in risk-stratification and treatment allocation. Accordingly, two

major subfields of research are focused on these goals. First, survival analysis is interested in

understanding a patient’s expected risk of an adverse event over time [133]. Second, causal

effect estimation is interested in measuring the causal effect of interventions in patient care

on patient risk [150, 78]. Together, work in these fields can help improve clinical decision

support, towards providing timely interventions to those most in need.

The potential for ML to augment clinical care is exciting, but learning from clinical

data presents many technical challenges. For example, censored individuals, for whom the

presence of a potentially adverse event is unknown, make it difficult for models to estimate

the risk of acquiring the event. Moreover, the presence of confounding in observational data

makes it difficult to learn the causal effect of a treatment or intervention on a patient’s

outcome. To overcome these challenges, researchers in these fields have developed novel

methods for learning ML models from observational data [214, 202].

Despite this progress, ML has had only a limited impact in clinical practice in these fields.

We hypothesize that the lack of adoption is in part due to a mismatch between ML research

and what is needed in certain clinical contexts (Figure 1.1). New methodologies in these

fields are often optimized for and tested via metrics that may not represent how they may be

used in clinical care. Hence, if and how these methods may augment clinical care are often

not incorporated directly into the training and evaluation process. Our central thesis is

that specific clinical needs can and should inform training and evaluation of ML

models for greater impact in clinical care.
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Our Contributions
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Figure 1.1: In this dissertation, we study the mismatch between what ML models are opti-
mized and evaluated for and what the needs of healthcare are. Optimizing for a particular
task, such as predicting estimated risk exactly, may not be aligned with how clinicians would
want to use an ML model, such as for identifying low-risk and high-risk patients. We focus
on aligning the objectives of ML research with the needs of healthcare. We consider how
we can use clinician needs to inform model development to maximize impact and improve
clinical care.

1.1 Challenges and Opportunities

In this dissertation, we develop and evaluate new ML techniques to bridge the disconnect

between ML research and clinical needs for a greater impact in clinical care. We focus on

the fields of survival analysis and causal effect estimation at an individual-level, with an

ultimate eye towards precision medicine [73, 215, 11]. From here, we study how the gap

between ML research and clinical needs manifests in the existing clinical tools for sepsis risk

stratification. Below, we summarize each direction.

First, we consider the disconnect between progress in the field of survival analysis and the

needs in clinical care. Recent work in survival analysis has focused on the use of deep learning

approaches for estimating an individual’s probability of survival over some time horizon [116,

156, 104]. Such approaches can capture complex non-linear relationships, without relying on

restrictive assumptions regarding the relationship between an individual’s characteristics and

their underlying survival process. Moreover, the flexible nature of survival analysis allows

custom loss functions that may affect different aspects of a learned survival model. To date,

deep survival methods have focused primarily on optimizing discriminative performance

and have ignored model calibration. Well-calibrated survival curves present realistic and
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meaningful probabilistic estimates of the true underlying survival process for an individual,

which may be used to better understand how an individual should be treated. However,

due to the lack of ground-truth regarding the underlying stochastic process of survival for

an individual, optimizing and measuring calibration in survival analysis is an inherently

difficult task. In contrast to past work, in Chapter 3, we recognize the importance of

calibration in clinical care and consider optimizing for and evaluating with respect to it

when building survival analysis techniques. In particular, we: i) highlight the shortcomings

of existing approaches in terms of calibration and ii) propose a new training scheme for

optimizing deep survival analysis models that maximizes discriminative performance, subject

to good calibration. We consider both theoretical and empirical justification to highlight our

proposed methods for training and evaluating for calibration in survival analysis.

Next, we consider the field of estimating conditional average treatment effects (CATEs),

or the causal effect of a treatment for an individual given their particular characteristics or

covariates, from observational data [182, 90]. The ability to accurately estimate CATEs can

help guide clinical decision-making and treatment allocation [57]. Assigning treatment based

on a ranking of who is most likely to benefit from a particular resource or intervention, i.e.,

who has a higher estimated CATE, is a potential solution to the problem of resource allo-

cation when the goal is to maximize overall benefit [27, 111, 140, 39]. Hence, current causal

inference approaches for estimating CATEs often prioritize accuracy. However, in resource

constrained-settings, decision makers may only need an accurate ranking of individuals to

allocate treatments. In these scenarios, exact CATE estimation may be an unnecessarily

challenging task, particularly when the underlying function is difficult to learn. Inaccurate

or biased estimates can still lead to the optimal ordering of individuals. In such scenarios,

we hypothesize that we may be able to achieve better sample efficiency by focusing on op-

timizing the ranking of the CATE estimates, as defined by maximizing expected benefit,

instead of their accuracy. In Chapter 4, we study this mismatch between past work which

focuses on optimizing for CATE estimation accuracy and the ultimate goal of optimizing for

ranking to assist in informing treatment allocation in the context of constrained resource al-

location. We demonstrate that optimizing for ranking may be an easier task than optimizing

for accuracy in certain settings, and that better CATE accuracy may not necessarily align

with better rankings. Guided by these insights, we propose an approach that directly opti-

mizes for rankings of individuals. Our tree-based approach maximizes the expected benefit

of the treatment assignment using a novel splitting criteria. Across synthetic datasets, our

approach leads to better treatment assignments compared to CATE estimation methods as

measured by expected benefit.

In situations where exact CATE estimation is necessary, there exists a gap between theory
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in causal effect estimation and practice. Estimating treatment effects from observational data

is challenging, as non-random treatment assignments can lead to confounded and biased

estimates. While there exist many popular approaches for estimating CATEs [145, 214],

they typically fall into one of three categories. The first category relies only on models of

the outcomes (e.g., T-Learner, X-Learner) [112], the second category relies on a model of

the treatment assignment (e.e., inverse propensity score weighting) [12, 15], and the third

category adjusts for both estimates of the propensity score and the outcome (e.g., R-Learner,

DR-Learner) [142, 105]. Approaches that incorporate estimates of both the propensity score

and potential outcomes have gained traction in part due to their strong theoretical guarantees

in the asymptotic setting, in which models can recover from errors in either the propensity

score or the potential outcomes. However, there has been little empirical investigation into

how this theory holds in practical settings such as in different levels of confounding or different

levels of error in the propensity score. In practice, it remains difficult to select among the

multitude of CATE estimation techniques. Moreover, comparisons among techniques are

often confounded by differences in the base learning models used. In Chapter 5, we explore

the gap between theory and practice and present an in-depth exploration of popular CATE

estimation techniques. We find that techniques that rely only on estimates of the outcome, in

particular the X-Learner, can consistently outperform popular propensity score adjustment

techniques.

Finally, we consider how mismatches between ML model development and clinical needs

emerge in existing real-world tools through a case study of sepsis risk stratification. Sepsis

remains a leading cause of death in hospitals around the world [157, 130, 204, 175]. Timely

interventions for individuals diagnosed with sepsis can help reduce downstream mortality,

presenting an opportunity for ML models to augment clinical care [188, 53, 117, 160]. Past

work has considered building risk stratification and resource allocation models for sepsis

based on the likelihood of sepsis infection [208, 44]. However, how these models are trained

and evaluated does not match the ultimate goal of augmenting the clinical workflow to

improve patient outcomes. In Chapter 6, we study this mismatch separately in model

development and evaluation. First, existing risk stratification tools are evaluated using

predictions made before the time of sepsis. However, sepsis may be clinically recognized

and treated before the sepsis definition is met. Predictions occurring after sepsis is clinically

recognized may be of limited utility. Prior work has not investigated the accuracy of sepsis

risk predictions made before treatment. Thus, we evaluate the discriminative performance

of sepsis predictions made throughout a hospitalization relative to the time of treatment.

Empirically, we find that a popular sepsis risk stratification model performs no better than

random for predicting sepsis when excluding predictions after clinical recognition. Second,
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we take a step back and study the mismatch between what existing risk stratification tools

optimize for and what is needed to improve patient outcomes in practice. Existing models

focus on predicting the risk of sepsis and ignore the potentially heterogeneous effects of

the disease. When the likelihood of developing sepsis does not correlate with the effect of

sepsis on downstream mortality, targeting those at high risk of developing sepsis may be

sub-optimal. To probe the potential shortcomings of this approach, we aim to characterize

the heterogeneity of the effect of sepsis on mortality. Across two large clinical populations,

we find that there is substantial heterogeneity in the effect of sepsis on the risk of mortality.

Moreover, the effect of sepsis on downstream mortality does not strongly correlate with the

risk of developing sepsis. Overall, our work explores important gaps between existing sepsis

risk stratification tools and the needs of clinical users to improve patient outcomes.

1.2 Contributions

To address the disconnect between ML research for risk prediction and resource allocation

and clinical practice, we present several contributions in this dissertation that are summarized

below:

• Calibrated Deep Survival Analysis. In Chapter 3, we present a new approach for

optimizing deep survival models for good discriminative performance, subject to good

calibration. Backed by both theoretical and empirical justification, our proposed ap-

proach outperforms state-of-the-art techniques and results in more calibrated survival

estimates [101].

• Optimizing for Treatment Allocation to Maximize Expected Benefit. In

Chapter 4, we study the problem of learning resource allocation models to maximize

benefit via ranking. We demonstrate the mismatch between accurate CATE estimation

and accurate ranking of individuals for maximum benefit. From here, we explore the

potential for optimizing for rankings of individuals to inform treatment strategies that

maximizes benefit across all treatment thresholds in terms of CATEs compared to

baseline techniques that optimize for accurate CATE estimates.

• Empirically Exploring Mismatches Between Theory and Practice for CATE

Estimation. In Chapter 5, we consider an extensive exploration of CATE estimation

techniques in the context of deep learning to understand the mismatch between the-

oretical results and practice. We explore the performance of popular methods across

a variety of relevant settings and highlight key considerations for CATE estimation in

practice.
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• Studying the Mismatch Between Sepsis Risk Stratification and Clinical

Needs. In Chapter 6, we study the clinical problem of sepsis risk stratification and

identify gaps that may preclude the impact of existing tools in practice. We explore the

mismatch between 1) evaluating sepsis prediction models before sepsis time and the

goal of alerting clinicians of an individual who may have sepsis before being recognized

clinically and 2) predicting the likelihood of sepsis and the ultimate goal of reducing

patient mortality.

The promise for ML techniques to reach their potential and truly impact clinical care

remains an exciting opportunity [134, 61]. To do this, however, requires an in-depth explo-

ration of the progress made by recent work towards understanding the gap between research

and the needs for practical applications in healthcare. In this dissertation, we focus on

studying the mismatch between what ML models are optimized and evaluated for in sur-

vival analysis and causal effect estimation, and what is needed in certain clinical contexts

for risk prediction and resource allocation

The rest of the dissertation is organized as follows. In Chapter 2, we describe relevant

background concepts used throughout the remainder of the dissertation. Chapters 3, 4, 5,

and 6 describe the technical details of the contributions of this dissertation. Finally, Chapter

7 reflects on future directions related to the work in this dissertation.
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CHAPTER 2

Background

In this chapter, we cover important topics referenced throughout this dissertation in the

fields of survival analysis and causal effect estimation.

2.1 Survival Analysis

Survival analysis, also known as time-to-event analysis, is a sub-field of statistics focused on

learning both the time to some pre-specified event, as well as the probabilistic uncertainty

of the event occurring at each time over some time horizon [133]. Despite the name, the

application of survival analysis techniques spans many fields, including healthcare, econo-

metrics, finance, and meteorology [64, 25]. In healthcare, survival analysis techniques are

not limited to just predicting the onset of death for an individual, as these techniques can

also be used to study the time to the occurrence of some adverse event, such as infection,

as well [58]. In the context of healthcare, survival analysis techniques can inform clinicians

of an individual’s or a population’s probability of survival over some time interval, allowing

said clinicians to properly allocate resources.

Early works in survival analysis focused on learning the distribution of an adverse event

over time for a full population [103]. Due to the development and advancement of data

acquisition techniques, there has been a rapid rise in the application of ML towards building

new survival analysis techniques to learn at an individual-level [202, 73]. These techniques

can provide personalized recommendations at a patient level when applied in a healthcare

setting.

In the remainder of this section, we first introduce the problem setup and notation used

throughout the rest of this dissertation. We then describe recent work in survival analysis,

with a particular focus on deep learning techniques developed for the problem. From here,

we discuss typical methods for evaluating survival analysis methods.
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Figure 2.1: Each loss function provides a different kind of supervision throughout the time
horizon (shaded region), but none explicitly focuses on calibration.

2.1.1 Problem Set-Up and Notation

Survival analysis aims to learn a time-to-event model using data of the form D =

{(xi, zi, ci)}ni=1, where n is the total number of individuals. Each (xi, zi, ci) ∈ D repre-

sents information for one individual, where xi ∈ Rd represents the individual’s covariates,

zi denotes the observed time of the event, or time of censoring, and ci denotes the individ-

ual’s censoring status. Censoring pertains to examples that do not experience any event

during the data collection period, and whose event outcomes become unobservable at a

certain time. Working with censored data is a primary challenge in survival analysis and

remains an important characteristic of the data survival techniques must overcome. In this

dissertation, we only consider right-censoring, the most common scenario in survival analysis

[41, 103, 187, 202]. An individual i is said to be right-censored (ci = 1) if the event did not

occur at time zi, but instead, the individual was lost to follow-up (i.e., censored) after this

time.

In the rest of this dissertation, we focus on accurately estimating individualized survival

probabilities over some discrete time horizon [73, 116]. Given data from D, our goal is

to learn a model f that maps covariates for individual i xi to individualized estimates of

P (Z = t|xi) for t ∈ {0, 1, ..., τ}, where time is binned into τ intervals [116, 156]. From these

estimates, we can estimate the survival curves S(t|xi) = P (Z > t|xi) =
∑

j>t P (Z = j|xi)

and the cumulative incidence function (CIF) F (t|xi) = P (t ≤ Z|xi) =
∑

j≤t P (Z = j|xi)
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2.1.2 Deep Survival Analysis

In recent years, researchers have focused on utilizing deep learning when developing survival

analysis techniques. Though some works focus on extending traditional techniques, such

as the Cox model, to deep learning [104], others have leveraged the flexible nature of deep

learning to directly model an individual’s underlying survival curve [116, 156]. When doing

so, the objective function used to train the model dictates the resulting characteristics of the

estimated survival curves. Common objective functions include:

• Llog = −
∑n

i=1(1− ci) · log(P̂ (Z = zi|xi)) + ci · log(Ŝ(zi|xi))

• Lend = −
∑n

i=1(1− ci) · log(1− Ŝ(τ |xi))

• Lkernel =
∑

i ̸=j Ai,j · exp(−(Ŝ(zi|xj)−Ŝ(zi|xi))

σ
), where Ai,j = 1ci=cj=0,zi<zj

Llog, often termed the logarithmic loss, maximizes the estimated probability of the event

occurring at the time of observation, while maximizing the estimated survival probability

at the time of censoring for censored individuals [116, 156]. Lend, often used in conjunction

with Llog, adds supervision after the observed event time, by forcing the survival probabil-

ity to zero at the final timestep for uncensored individuals [156]. Lastly, Lkernel penalizes

incorrectly ordering two uncensored individuals [116]. Figure 2.1 shows where these dif-

ferent loss functions provide supervision over the time horizon. Most deep survival models

use Llog during training [135, 116, 156]. Lkernel was explored in early deep survival analysis

works as a method for increasing ranking performance, but has been less explored recently

[116]. DeepHit, a popular feed-forward neural network survival analysis technique, trains its

architecture using a composite of Llog and Lkernel [116]. Meanwhile, deep recurrent survival

analysis (DRSA), which utilizes a long short-term memory (LSTM) network, has achieved

state-of-the-art performance when training using a composite of Llog and Lend [156].

2.1.3 Evaluation

Past work in deep survival analysis often focuses on optimizing and evaluating for discrim-

inative performance. Achieving good discriminative performance means accurately ranking

at-risk individuals. Formally, for any two individuals with covariates x1 and x2, assume

individual 1 has the event at time z1, at which individual 2 has not had the event nor have

they been censored (i.e., z2 > z1, c1 = 0, c2 ∈ {0, 1}). Then, we would expect individual

1 to be at greater risk than individual 2 at time z1, or F̂ (z1|x1) > F̂ (z1|x2). This is often

measured through the C-index, which calculates the proportion of unique pairs of individuals

(that match the criteria above) for which this ranking is correct [9, 116].
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Another important aspect of survival models towards their clinical applicability is cali-

bration. Well-calibrated models should produce survival estimates Ŝ(·|xi) that match the

underlying survival distribution S(·|xi). The Brier score, defined at time t as 1
n

∑n
i=1(1t≤zi −

Ŝ(t|xi))
2, is often used to measure calibration [137, 115, 113]. However, the Brier score mea-

sures how well a prediction matches the observed outcome for different individuals, which

differs from the definition of calibration considered here. In particular, a discontinuous

Heaviside step function that equals 0 at and after the observed event time could qualify as

perfectly calibrated as it perfectly matches the observed outcome (i.e., average Brier score

= 0), despite no meaningful probabilistic interpretation (i.e., it does not correctly reflect the

variation in the probability estimate due to stochasticity in nature). Moreover, the Brier

score over the full survival curve is heavily influenced by the choice of time horizon. In

Chapter 3, we describe and extend metrics more suitable for our definition of calibration

[7, 73].

2.2 Causal Effect Estimation

The ability to estimate the effect of an intervention on an outcome for a population, known

as the average treatment effect (ATE), has been studied extensively in the past few decades

[169, 165, 78]. In particular, information regarding the ATE can help guide clinical care

and treatment allocation at a population level. With the increased availability of large

observational datasets, recent work has focused on leveraging ML techniques to estimate

conditional average treatment effects (CATEs), the effect of a treatment on an outcome,

given an individual’s covariates [63, 4, 182, 200, 78, 75, 220, 219]. Such effect estimates can

guide decision-making in many fields. For example, in healthcare, modeling the effect of an

intervention at the individual level can assist clinicians in matching patients to treatments

[57]. However, accurately estimating CATEs from observational data is often challenging

due to confounding when one or more variables affect both the treatment assignment and

the outcome. This leads to fundamental differences between the treatment and control

groups, which in turn can lead to inaccurate estimates of the unobserved outcome (i.e., the

potential outcome had an individual received a different treatment). Specialized techniques

in ML have focused on overcoming this challenge, with a particular focus on deep learning

approaches with unique objective functions [182, 219, 220, 90, 74, 75, 185]. In the remainder

of this section, we will formally describe the problem of CATE estimation, and introduce

some important notation. We will then give some relevant background regarding techniques

for unbiased CATE estimation, and how models are generally evaluated.

10



2.2.1 Problem Set-Up and Notation

We aim to estimate treatment effects given an observational dataset D = {xi, ti, yi}ni=1, con-

taining n individuals, where each individual i has covariates xi ∈ Rd, has assigned treatment

ti ∈ {0, 1}, and experiences the observed outcome under the assigned treatment yi ∈ R (for

continuous outcomes) or yi ∈ {0, 1} (for binary outcomes). We follow the potential outcome

framework [169, 189]. Specifically, for an individual i with covariates xi, we define potential

outcomes as the outcomes under different treatment choices (i.e., treated and not treated),

and use Yi(0), Yi(1) to denote the potential outcomes under non-treatment and treatment

respectively. Under the rules of do-calculus, E[y|xi, do(t = 1)] corresponds to the potential

outcome Yi(1) [150]. We define the CATE as:

τi = CATE(xi) = E[y|xi, do(t = 1)]− E[y|xi, do(t = 0)]

= Yi(1)− Yi(0).

The ATE could then be estimated as the average CATE over a population.

2.2.2 Assumptions for Identifiable CATE Estimation

The fundamental problem of causal effect estimation is that we only observe one potential

outcome, which corresponds to the observed treatment, and hence we cannot directly esti-

mate the CATE without making some assumptions about the observed data. We follow the

vast majority of work in causal inference in making the following assumptions, which are

sufficient for the identifiability of the causal effect [84, 78].

Assumption 1 (No Hidden Confounders). Given xi, the potential outcomes are inde-

pendent of the treatment assignment, i.e. (Yi(1), Yi(0)) ⊥⊥ ti|xi. Such an assumption is

more likely to hold when the collected covariates are high dimensional, capturing as much

information as possible regarding both the treatment assignment and the outcome.

Assumption 2 (Overlap). Every individual has a non-zero probability of being treated

or not, i.e., 0 < P (t|x < 1),∀x ∈ Rd, t ∈ {0, 1}. The overlap assumption ensures that there

are no individuals for whom the treatment assignment is deterministic.

Assumption 3 (Consistency). The potential outcome of the observed treatment ti is

equal to the observed outcome, i.e. Yi(ti) = yi. The consistency assumption ensures that

treatment selection does not change the observed outcome. Hence, under the consistency

assumption, we have accurately observed exactly one potential outcome.
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2.2.3 Methods for Causal Effect Estimation

In the past years, research in the field of CATE estimation has broadly been focused on a few

key areas, including tree-based techniques [79, 13], meta-learning approaches [112, 142, 105],

and deep learning approaches [182, 219, 220, 90, 74, 75, 185]. The goal of all techniques

is to overcome issues due to confounding, which makes the treatment and control group

look dissimilar from one another. Popular methods can be broken down into three main

categories: outcome-based models, propensity score adjustment models, and models that

adjust using both the propensity score and outcome estimates.

1. Outcome-Based Models. In the first category, algorithms may simply model the

potential outcomes using the input covariates in an indirect approach. These estimates of

the potential outcomes are used in a second stage of training. Two early techniques in

the outcome-based framework were the S-Learner and the T-Learner [112]. The S-Learner

appends the observed treatment assignment with the input covariates of the model to learn

the observed outcome, while the T-Learner trains two separate models for each treatment

group to learn the observed outcomes. In recent years, researchers have proposed a number

of CATE estimation techniques that build on the basic ideas of these estimators, with the

goal of improving the trade-off for sharing information between treatment groups.

2. Adjustment Using Only Propensity Scores During Training. A second cat-

egory of techniques adjusts for the propensity score during training. The propensity score,

ei, is the probability that individual i will receive the treatment, i.e., ei = p(t = 1|xi). Ad-

justing for the propensity score is a sufficient statistic for blocking back-door paths between

the treatment and potential outcomes [165, 78]. By reducing the full set of confounders

to a single value to control on, propensity score techniques can assist in balancing the dis-

tribution of covariates in the treatment groups during training [165, 15, 22]. Traditional

propensity score methods often rely on inversely weighting individuals based on estimates of

their propensity scores to synthesize a population in which the distribution of covariates is

independent of treatment assignment or matching individuals in one treatment group to sim-

ilar individuals in the opposite treatment group, where similarity is defined using propensity

scores [165, 83, 78].

3. Adjustment Using Propensity Score and Outcome Estimates During Train-

ing. Finally, the third category of techniques adjusts for both an estimate of the propensity

score as well as an estimate of the outcome. These techniques utilize an estimate of both the

propensity score and the outcome, often known as ”nuisance estimates”, to recover if there

are errors in one of the models. For example, these methods often build pseudo-outcomes

using estimates of the propensity score and the potential outcomes that are unbiased or are

efficient estimators regardless of errors in the propensity scores or potential outcomes.
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All three categories of models produce CATE estimators that are asymptotically unbi-

ased. However, researchers often prefer methods that incorporate the propensity score over

techniques that only model the outcome, especially in high-dimensional settings with large

levels of confounding [30]. In these situations, learning models that transfer between treat-

ment groups using only outcome-based models may be difficult without explicitly accounting

for this confounding bias, as shown by past theory [3, 22]. Propensity score adjustment tech-

niques are singly robust, in that they only guarantee unbiased CATEs if the propensity score

is accurate. Methods that rely on estimates of both the propensity score and the potential

outcomes provide stronger theoretical robustness guarantees to errors in the propensity score.

For example, these methods show that errors in the propensity score can be mitigated with

a strong estimate of the outcomes, or that despite errors in the propensity score, we may

still achieve oracle efficiency (i.e., efficiency assuming perfect propensity scores and potential

outcomes) for CATE estimation [142, 105]. Given their strong theoretical basis, methods

incorporating both estimates may be preferred for CATE estimation.

2.2.4 Evaluation

The fundamental challenge of causal effect estimation prohibits direct evaluation on real-

world data in which ground-truth treatment effects are not available. Instead, past works

often utilize fully synthetic or semi-synthetic datasets, in which ground-truth treatment

effects and confounding can be simulated. Past works consider calculating the ground-truth

performance of each model in terms of the precision in estimating heterogeneous treatment

effects (PEHE), defined as

√
ϵPEHE =

√√√√ 1

n

n∑
i=1

(τi − (Ŷi(1)− Ŷi(0)))2

[182, 74, 75, 92]. A smaller value of ϵPEHE represents more accurate CATE estimates. Past

work has often measured the value of a CATE estimator based on the resulting models ϵPEHE

across benchmark datasets.
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CHAPTER 3

Calibrated Deep Survival Analysis

3.1 Introduction

To begin, we consider the task of predicting an individual’s risk over time by studying prob-

lems in the field of survival analysis. In survival analysis, one aims to learn the relationship

between an individual’s covariates and the underlying stochastic process of some event (e.g.,

disease onset). Beyond discriminative performance (i.e., how the relative predictions between

individuals match the observed outcomes), to be useful for real-world applications, survival

models must be well calibrated [65]. In clinical settings, making decisions at a patient-level

requires survival estimates that are accurate with respect to the ground-truth survival prob-

ability. Poor calibration can lead to misleading predictions, resulting in potentially clinically

harmful models [197, 196, 180, 191]. Accurate estimates of survival at different time-points

can help augment clinical decision-making at a per-patient level.

We define a calibrated model as one that consistently produces estimates of survival that

match the underlying survival probabilities for each individual [73]. To better understand

what these individualized underlying survival probabilities represent, consider building an

estimate of survival for an entire population using a simple counting-based Kaplan-Meier

estimate [103]. Differences among individuals will lead to events at different time-points,

resulting in a decreasing estimate of population-level survival over time. This estimate

reflects the variation in the time-to-event distribution. Now consider a set of individuals

with identical or near-identical covariates. Despite the similarity among individuals, we

might still expect the time-to-event distribution for this homogeneous population to exhibit

some variation due to the stochasticity in nature, resulting in a gradually decreasing survival

curve for these individuals. Along these lines, the underlying survival curve for an individual

should reflect such variation.

Figure 3.1 illustrates potential differences in discriminative performance and calibration

performance via a hypothetical example. The solid curves represent the true underlying

14



Figure 3.1: Hypothetical Example. Three hypothetical sets of estimated survival curves
for three individuals (dashed) and their corresponding true underlying survival distributions
(solid), where the triangles represent the observed event times. All three sets of estimated
curves correctly rank the individuals (i.e., have good discriminative performance). However,
the first two sets of estimated survival curves consistently overestimate or underestimate
the true survival probability at various points throughout the time horizon. Meanwhile, the
third set of estimated survival curves closely aligns with the true survival curves. Hence, the
estimated survival curves more accurately reflect the probability of survival. The first two
sets of estimated survival curves are miscalibrated, while this third set of estimated survival
curves is well-calibrated.

survival distributions, and the dashed lines represent hypothetical estimates for three dif-

ferent individuals. With respect to the observed event times, all three sets of estimated

survival curves correctly rank the individuals, and hence, have good discriminative perfor-

mance. However, the first two sets of survival curves (a and b) consistently underestimate or

overestimate the survival probabilities with respect to the true survival curve. Hence, these

estimates are miscalibrated. Meanwhile, the third set of estimated survival curves (c) is well

calibrated, since it aligns with the true survival probabilities. These calibrated estimates

provide an accurate probabilistic interpretation of survival for an individual throughout the

time horizon.

Deep survival models have achieved state-of-the-art discriminative performance by relax-

ing any distributional assumptions and directly estimating the underlying process [116, 156].

However, to date, such models are trained by optimizing for discriminative performance and

have not been evaluated in terms of calibration. Though useful for ranking individuals,

the resulting survival curves may consistently overestimate or underestimate an individual’s

probability of survival, as in Figure 3.1.

In light of these issues, we focus on approaches for training and evaluating deep survival

analysis models that account for both calibration and discriminative performance. In this

chapter, our contributions include:
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• we highlight the shortcomings of existing methods for training and evaluating in terms of

calibration,

• we propose a novel training scheme for deep survival analysis models and provide theo-

retical justification for why this training scheme should result in well-calibrated survival

estimates, and

• we empirically demonstrate that the proposed training scheme leads to well-calibrated

models while remaining competitive in terms of discriminative performance

We present a framework for training and evaluating deep survival models that focuses on

calibration. Through a series of experiments on two publicly available datasets, we compare

our approach to state-of-the-art approaches in survival analysis, demonstrating the proposed

approach’s ability to maximize discrimination subject to good calibration.

3.2 Background and Related Work

In Section 2.1, we describe the problem set-up for survival analysis and current techniques

for training deep survival models, including the logarithmic loss. Though the logarithmic loss

corresponds to a proper scoring rule, it is sensitive to extreme cases and outliers [66, 65]. This

sensitivity results in a larger trade-off between making accurate predictions and maintaining

calibration compared to other proper scoring rules, such as the continuous-rank probability

score (CRPS). These methods have not been evaluated for their calibration performance. We

hypothesize that the models trained to minimize Llog could result in miscalibrated survival

estimates. In light of this observation, we consider loss functions that build off of proper

scoring rules without this limitation. In particular, our proposed approach builds on the

CRPS, which is defined as
∫∞
−∞(F̂ (t|xi) − 1z≤t)

2dt, which has been explored in survival

analysis [17]. However, this objective function relies on an infinite integral and thus requires

specific distributional assumptions during training. In contrast, our discrete approximation

avoids relying on any distributional assumptions. Moreover, we consider how this discrete

approximation can be incorporated into a training scheme with other loss functions to elicit

calibrated and accurate survival estimates. Finally, we consider a comprehensive evaluation

framework for properly measuring the efficacy of survival models for both their discriminative

performance and calibration. Concurrent work to ours proposed directly optimizing for a

variant of a calibration metric we use for evaluation [67]. Future work might consider how

the two proposed training schemes could be combined for further improvements.
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3.3 Methods

In this section, we present our proposed training scheme and our comprehensive evaluation

metrics. We begin by proposing a new loss function and theoretically justifying why it

should elicit survival models with good discriminative performance and good calibration.

We continue by discussing and justifying our proposed training scheme, which consists of

combining this new loss function with Lkernel. We explain why this combination should

improve both overall performance. We conclude with a discussion on how to evaluate models

for both discriminative performance and calibration.

3.3.1 Proposed Training Scheme

We propose minimizing the rank probability score (RPS), LRPS, defined as:

n∑
i=1

(1− ci) ·
τ∑

t=1

(Ŝ(t|xi)− 1t<zi)
2 + ci ·

zi∑
t=1

(Ŝ(t|xi)− 1)2

LRPS focuses on the relevant portions of the full time horizon, rather than just the specific

event-time. For uncensored individuals (ci = 0), LRPS pushes the survival probability at

times before an individual has an event to 1, and shrinks the survival probability to 0 at

times after the event has occurred. For uncensored individuals, LRPS is averaged over the

full time horizon τ , as we have access to the survival status for the full time interval. For

censored individuals (ci = 1), LRPS pushes the survival probability to 1 before the individual

is censored, and is averaged over the available time horizon for censored individuals zi, as

we do not know their survival status after this time.

Claim. Training deep survival models using LRPS will result in well-calibrated estimates

of survival.

Proof. Consider n individuals with identical or near-identical covariates with observed

event times {zi}ni=1. Define the counting-based Kaplain-Meier estimate for these individuals

at time t as KMn
t = 1

n

∑n
i=1 1t<zi , where limn→∞KMn

t is the underlying survival probability

at time t for these n individuals.

A survival model will estimate one survival probability for these n individuals at time

t. Define this value as p̂t. A well-calibrated survival model will output a p̂t that closely

aligns with the underlying survival probability limn→∞KMn
t . Consider the optimization

problem of finding p̂t which will minimize LRPS. This problem can formally be set-up as

argminp̂t

∑n
i=1(p̂t − 1t<zi)

2.

First, this optimization problem is strictly convex and has a unique minimum, as the

second derivative is positive everywhere (see Appendix A.2 for more detail).

17



To find the value of p̂t that minimizes this objective function (p̂∗t ), we set the derivative

equal to zero.

∂

∂p̂∗t

(
n∑

i=1

(p̂∗t − 1t<zi)
2

)
= 0

2p̂∗t −
2

n

n∑
i=1

1t<zi = 0

p̂∗t =
1

n

n∑
i=1

1t<zi

The unique estimated survival probability that minimizes the objective function is equiv-

alent to the average survival status for all n individuals at time t. This unique minimum is

equal to KMn
t which, as n gets large, is equal to the true underlying survival probability for

these individuals at time t. Hence, training a survival model to minimize LRPS will result

in estimated survival probabilities that align well with the true survival probabilities. □

A model that minimizes LRPS will theoretically result in well-calibrated survival estimates

that align well with the true survival curves. However, due to the inherent noise in the

training process of deep models and the inability to guarantee a global solution, training

using just LRPS as a loss function might be insufficient. In particular, combining LRPS

with a loss function that can scale survival probabilities and encourages good discriminative

ability would improve overall performance.

Hypothesis. Training deep survival models using a composite loss function LRPS +

λLkernel, yields an accurate, yet calibrated survival model when the value of σ in Lkernel is

appropriately tuned.

Justification. Remember that Lkernel is defined as Lkernel =
∑

i ̸=j Ai,j ·
exp(

−(Ŝ(zi|xj)−Ŝ(zi|xi))

σ
). In this loss function, σ controls the scale of the differences between

survival probabilities for different individuals. When σ is small (i.e. σ ≤ .1) and individuals

are correctly ranked, small or large differences between two individual’s survival probabilities

(numerator) minimize Lkernel. In contrast, when σ is large (i.e. σ ≥ 10) and individuals

are correctly ranked, only large differences between individual’s survival probabilities can

minimize Lkernel. Hence, the value of σ can directly affect how the variation of different

individual’s survival curves over the interval [0, 1]. In particular, we expect that training a

model to minimize Lkernel with a small σ value will result in survival curves that are not

well-spread out while training a model to minimize Lkernel with a large σ value will scale

the survival curves in order to spread them out sufficiently. The value of σ should be tuned

based on a validation set.

The ability to control the variation of individuals’ survival curves can also be thought
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of as rescaling survival curves in order to best minimize Lkernel. If LRPS overestimates or

underestimates the survival probability for individuals at certain times, using Lkernel with

an appropriately tuned value of σ can scale these estimates to more accurately estimate

the true underlying survival probabilities. At the same time, as Lkernel aims to correctly

rank individuals, it will still maximize discriminative performance. Thus, we expect that

the combination of Lkernel and LRPS will encourage good calibration without sacrificing

discrimination.

The value of λ helps control the trade-off between the two loss functions in the composite

loss. As setting λ to 0 translates to simply the LRPS loss function, and setting λ too

high translates to the Lkernel loss function, we hypothesize that an intermediate value of λ

will result in the best trade-off between the theoretical guarantees of correctly estimating

the underlying survival probability obtained by minimizing LRPS and the scaling ability of

Lkernel.

In summary, we introduced a novel loss function LRPS, which we hypothesize will result

in increased calibration performance when used to train survival analysis models. Moreover,

we proposed a new training scheme that involves minimizing a composite loss of LRPS and

Lkernel.

3.3.2 Evaluating Model Performance

We evaluate model performance in terms of both discrimination and calibration. We evaluate

discriminative performance, in terms of the aforementioned C-index, which calculates the

proportion of individuals who are correctly ranked by the estimated models. To measure

calibration, we consider the average Brier score (i.e., mean-square-error over the survival

curve) and D-Calibration [73, 7]. Brier score measures how well a prediction matches the

observed outcome for different individuals, and hence, does not fully capture our definition

of calibration. D-Calibration bins the estimated survival probabilities at the true event times

into ten equal-width intervals between 0 and 1 and performs a chi-squared test to determine

if the distribution is uniform. This more closely aligns with our definition of calibration;

however, the test assumes the model is well-calibrated, placing the burden on disproving the

null hypothesis.

In light of these shortcomings, we also consider the distributional divergence for

calibration (DDC). DDC does not rely on a statistical test and produces a continuous

score that allows for comparisons of different models. Given a set of estimated survival

probabilities for each individual at their observed event times {Ŝ(zi|xi)}ni=1, we compute

DDC as the Kullback-Leibler (KL) Divergence DKL(P ||Q) between a binned distribution
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P = B({Ŝ(zi|xi)}ni=1) and the uniform distribution Q, where B is a function that maps a set

of probabilities into a probability distribution over X , ten equal-width bins covering the unit

interval [119]. Due to the discrete nature of the binning operation, we change the base of the

logarithm when calculating DDC to ensure that it ranges between 0 and 1. DDC measures

the distance between the empirical distribution of estimated probabilities of survival at the

time of the events P and the uniform distribution Q. Lower is better; if P = Q, then

DDC(P,Q) = 0. Survival curves that estimate a single survival probability, such as 0, for

every individual at their observed event time, for which B({Ŝ(zi|xi)}ni=1) = B({0}n), achieve
a maximum DDC of 1.

Claim. A perfectly calibrated survival model necessarily minimizes the divergence between

P and Q for a sufficiently large n.

Proof. The probability integral transform states that for some random variable X with

cumulative distribution function Fx, Fx(X) should be uniformly distributed U(0, 1) [8]. Thus,

given a randomly sampled event time zi, it must be that S(zi) = 1−F (zi) ∼ U(0, 1). Given

a set of randomly sampled event times {zi}ni=1, where n is sufficiently large (e.g., n >> 10),

we then expect the distribution of P = B({Ŝ(zi|xi)}ni=1) ∼ U(0, 1) [73]. Hence, a calibrated

survival model should minimize the divergence between P and a uniform distribution Q. □

Though necessary, minimizing this metric does not guarantee that the estimated survival

curves accurately estimate the true underlying survival process. Despite good calibration,

these probabilistic estimates may still be inaccurate (i.e., poor discrimination). Hence, it

is important to evaluate models in terms of both their calibration and their discriminative

performance. To this end, we seek models that excel with respect to both measures of

performance.

Importantly, DDC is not applied to censored individuals. Though learning with censored

individuals is a key element of survival analysis, evaluating calibration on censored individ-

uals raises a number of issues. Without strong assumptions on the event time distribution

for censored individuals, one cannot make meaningful conclusions regarding the calibration

of a model for censored individuals (see Appendix A.3 for discussion). To this end, while

we measure discriminative performance across both uncensored and censored individuals,

we focus our evaluation of calibration (specifically, DDC and D-Calibration) on uncensored

individuals. This introduces a mismatch between the distribution we evaluate in practice

and the one we aim to evaluate in theory. However, if patients are censored at random, this

estimate of calibration should generalize.

Tradeoff between calibration and discrimination. It is important to note that well-

calibrated survival curves need not have optimal discriminative performance on the observed

sample. A well-calibrated model is one that consistently estimates survival curves that closely
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Figure 3.2: Example survival curves estimated using DRSA trained with Llog + Lend (left),
example survival curves estimated using DRSA trained with the proposed training scheme
(middle), and example survival curves estimated using DRSA trained with Lkernel (right) on
the NACD dataset. Each color represents a randomly selected individual from the test set;
the same individuals are shown in each graph. Visually, training with the proposed scheme
results in survival curves with a greater variation in shape over time, due to the supervision
over the full time horizon and the relative scaling abilities of Lkernel.

match the true survival curves. Due to stochasticity, some individuals may experience the

event when their true survival probability is high. As a perfectly calibrated model will

estimate a high survival probability at the observed event time for these individuals, these

individuals will contribute negatively to the C-Index calculated based on the observed event

times. Hence, when individual time to event varies (which we expect is often the case due

to the stochasticity of nature), there exists a trade-off between obtaining perfect calibration

and perfect observed discriminative performance (i.e. a C-index of 1). This issue arises

due to discrimination being measured with respect to only a single observed sample. This

phenomenon is explored further in Appendix A.4.

Practically speaking, both measures of performance are important. Maintaining discrim-

inative performance with increased calibration represents an important gain for a particular

survival model. Accordingly, we consider the trade-off between the discriminative perfor-

mance and calibration by calculating the harmonic mean between the C-index and 1−DDC,
a value we term the total score. A higher total score corresponds to a model that balances

discriminative performance and calibration.
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3.4 Experiments and Results

Empirically, we test our hypothesis that the proposed approach will outperform baseline

techniques in terms of the trade-off between calibration and discriminative performance.

We present two publicly available datasets on which we test our proposed methods and

benchmark methods to which we compare. We detail the proposed method’s performance

compared to the benchmarks in terms of discrimination and calibration and compare against

different ablations of the proposed method using the new evaluation framework.

3.4.1 Experimental Setup

Datasets. We consider two publicly available datasets:

• theNorthern Alberta Cancer Dataset (NACD) consists of 2,402 individuals with

various forms of cancer [73, 217]. The dataset tracks 51 features for each individual,

including demographics, vital signs, patient characteristics such as appetite, and spe-

cific details about the type and progression of the cancer. 36.6% of the individuals

in the dataset are right-censored, with an average survival time of 16.06 months for

uncensored individuals. For this dataset, we use a τ of 86 months based on the largest

length of stay.

• CLINIC records the survival status of 6,036 patients in a hospital, with 13.2% be-

ing censored [110]. The dataset consists of 14 features for each individual, including

information about demographics, vital signs, onset of diseases, and medications. The

average survival time for uncensored individuals is 5.33 months. For this dataset, we

use a τ of 52 months, such that each time-bin represents one month.

Model Architecture. To demonstrate the efficacy of our approach and compare it

against baseline methods, we consider minimizing the proposed composite loss to train the

Deep Recurrent Survival Analysis (DRSA) architecture [156]. Though the proposed loss

functions are model-agnostic, we consider the DRSA architecture due to its state-of-the-art

discriminative performance, flexibility for allowing variable-length forecasting, and lack of

assumptions regarding the probability at the end of the time horizon. More information

about this architecture choice can be found in Appendix A.1.

Baselines. To evaluate how our proposed approach compares to current state-of-the-art

in deep survival analysis, we compare against two baseline survival analysis models:

• The DRSA architecture with the objectives it was originally proposed with (using Llog

and Lend) [156], and

22



Model
NACD

C-index ↑ DDC ↓ D-Calibration ↑ Brier ↓ Total Score ↑

Ren et al. 2019 .748± .002 .025± .012 1 .101± .002 .846± .004
MTLR .750± .000 .062± .000 0 .101± .000 .834± .000

Proposed - LRPS .741± .008 .305± .089 0 .207± .034 .715± .050
Proposed - Lkernel .742± .003 .012± .002 3 .101± .003 .847± .001

Proposed .742± .006 .007± .003∗ 5 .104± .002 .850± .003

Model
CLINIC

C-index ↑ DDC ↓ D-Calibration ↑ Brier ↓ Total Score ↑

Ren et al. 2019 .616± .003 .138± .002 0 .107± .000 .719± .003
MTLR .608± .000 .168± .000 0 .106± .000 .702± .000

Proposed - LRPS .628± .003 .241± .022 0 .153± .002 .687± .011
Proposed - Lkernel .615± .005 .097± .006 0 .110± .001 .731± .005

Proposed .627± .001 .056± .011∗ 0 .106± .001 .753± .004∗

Table 3.1: The proposed training approach consistently leads to improvements in calibration
(DDC, D-Calibration, Averaged Brier Score) across all baselines and ablations, without
sacrificing discriminative performance (C-index) (mean ± standard deviation across random
initializations, number of times passing the statistical test for D-Calibration). Lower DDC
and Brier scores and higher values of C-index, D-Calibration, and total score indicate better
performance. An * indicates results that are statistically significant over all baselines using
a paired t-test (p < .05).

• Multi-task logistic regression (MTLR) is one of the only survival analysis approaches

that has shown good empirical performance in terms of our definition of calibration

[217, 73]. MTLR trains a separate logistic regression model per time-point to estimate

survival and combines these to estimate the survival distribution over some time hori-

zon. When compared to other methods, such as extensions of the Cox model, MTLR

performed best in terms of both calibration and discrimination [73].

Training/Evaluation Details. Across experiments, we use the same DRSA archi-

tecture: a one-layer LSTM with hidden size 100 and a single feed-forward layer with a

sigmoid activation on the output for each time-step [156]. We separate our data into train-

ing/validation/test sets using a 60/20/20% split. For training, we use Adam and a batch size

of 50 [107]. We train for 100 epochs (which, empirically, was enough for models to converge)

and select the best model based on a validation set. For the proposed composite training

scheme, we tune the value of σ for Lkernel based on the NACD dataset, and use this optimal

value on the CLINIC dataset to test whether the manner in which Lkernel affects LRPS gen-

eralizes across multiple datasets. When training with multiple losses, we use λ = 1. Though

we considered other weighting schemes, it did not appear to affect performance. Note that
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we weighted the LRPS loss function due to the right-skewed time-to-event distribution for

both datasets. We train each model five times, with different weight initializations. We

present the mean and the standard deviation of the results on the test set for all metrics

except D-Calibration, for which we present the number of runs where the resulting survival

estimates passed the D-Calibration test. We evaluate DDC and D-calibration using only

uncensored test individuals, but we evaluate C-index and Brier score using all test individ-

uals. All deep models were built in PyTorch 1, while MTLR was implemented using the

corresponding R package [149, 72].

3.4.2 Results

First, our proposed approach consistently outperforms all baselines with respect to DDC

and D-calibration, while maintaining comparable C-index and average Brier score values

(Table 3.1). Lower values represent better performance for DDC and Brier score, while

higher values represent better performance for the other metrics. The proposed method

consistently leads to estimated survival curves with a better trade-off between calibration

and discrimination, as evidenced by the higher total score compared to MTLR and DRSA

as it was originally proposed. The fact that no model dominates in C-index across datasets

is consistent with recent findings in survival analysis [115].

Compared to the original DRSA [156], the proposed training scheme results in a statisti-

cally significant improvement in calibration across both tasks (NACD DDC: .025 vs. .007,

CLINIC DDC: .138 vs .056). This improvement, however, is accompanied by a small de-

crease in C-index in the NACD dataset. However, the probabilistic estimates of survival are

more likely to accurately represent the true underlying survival processes. We see the same

overall trend when comparing our proposed method with MTLR, where the proposed model

is significantly more calibrated across both datasets (NACD DDC: .062 vs .007, CLINIC

DDC: .168 vs .057), while the relative C-index depends on the dataset.

Compared to training each component of the proposed loss (i.e., LRPS and Lkernel) sepa-

rately, using the composite loss leads to improvements (Table 3.1: NACD total score: .715

and .847 vs .850, CLINIC total score: .687 and .731 vs .753). In particular, note that train-

ing with LRPS results in good calibration performance, while training with Lkernel in and of

itself results in poor calibration performance. Hence, as expected, LRPS itself will elicit cali-

brated and accurate estimates of survival, but combining it with the scaling ability of Lkernel

can improve performance even more. Moreover, training using LRPS alone results in better

calibration than using the logarithmic loss functions (NACD DDC: .025 vs .012, CLINIC

1https://github.com/MLD3/Calibrated-Survival-Analysis
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DDC: .138 vs .097), with minimal drops in discriminative performance. These empirical

results support the original hypothesis that training using LRPS should result in survival

models that better balance discriminative performance and calibration, but the composite

loss results in the best performance.

Next, we focus on a qualitative assessment of our proposed method. Visually, this ap-

proach produces survival curves with a greater variation in shape over the full time horizon

(Figure 3.2). In particular, the baseline training scheme results in survival curves that

decay quickly towards a survival probability of 0. This is evidenced by the high DDC value

due to many individuals’ estimated survival probabilities being very low at the time they

experienced the event. Meanwhile, our proposed loss functions achieve better DDC values

by allowing more flexibility in the shape of the survival curves, such that some individuals

have higher survival probabilities at the time of their observed events. We hypothesize that

this is due in part to the direct supervision over the entire predictive distribution that comes

from training with LRPS. In contrast, Llog provides direct supervision on the survival prob-

ability over only a single time-point, possibly resulting in less flexibility in the shape of the

predictive distribution over the time horizon [64]. This single time-point supervision, along

with the logarithmic losses sensitivity to extreme cases, can result in miscalibrated survival

curves.

We present results for the proposed method using σ = 0.8 in Lkernel for both datasets.

This value was tuned on a validation set on the NACD dataset and applied to the CLINIC

dataset. Hence, the manner in which Lkernel affects LRPS generalizes across multiple datasets,

supporting our original hypothesis. Moreover, we visually confirm the original motivation

for the use of Lkernel: the value of σ helps control the scale of different individual’s survival

curves. As noted in Section 3, we expect a model trained to minimize Lkernel with small

σ (e.g. σ = 0.1) to result in survival curves where different individuals curves are close to

each other in scale, and a model trained to minimize Lkernel with large σ (e.g. σ = 10.0)

to result in more spaced out survival curves. Figure 3.3 shows estimated example curves

for 10 random individuals in the NACD dataset when trained using Lkernel with σs of 0.1

and 10.0. The resulting survival curves display the hypothesized phenomenon, confirming

the ability of Lkernel to control the scale of different individuals’ survival curves. Hence, the

improved performance for the composite loss is in part due to an additional rescaling of the

survival distributions to better match the underlying survival probabilities.

Overall, these results indicate the ability of our proposed training procedure to better

match the true survival distribution, while maintaining the useful property of accurately

ranking individuals. Moreover, the comprehensive evaluation framework helps facilitate

model comparisons for both discriminative performance and calibration.
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Figure 3.3: Survival curves from models trained with Lkernel using σ = 0.1 (left) and σ = 10.0
(right) from the NACD dataset. Each color represents a different individual. These plots
confirm our original hypothesis regarding Lkernel: the value of σ can control the relative
scales of survival probabilities. Hence, by tuning σ, we can scale the survival curves to best
match the true underlying survival distributions.

3.5 Conclusion and Discussion

Given the stochasticity of nature, we expect individuals to have an underlying survival dis-

tribution that corresponds to a meaningful probabilistic interpretation of an individual’s

survival. Though critical to clinical application, calibration to date has been largely over-

looked in survival analysis, especially in deep survival analysis. We hypothesized that recent

work in deep survival analysis that optimizes and evaluates for discriminative performance

alone results in poorly calibrated estimated survival curves. To this end, we introduced a

new approach for training deep survival analysis models to optimize for both discrimina-

tive performance and calibration. We provided both theoretical justification and empirical

evidence for why the proposed approach elicits calibrated estimates of survival. Applied in

the context of a state-of-the-art deep survival analysis architecture, the proposed training

scheme leads to significant gains in calibration across two publicly available datasets, while

achieving similar discriminative performance. Still, there remains room for improvement. In

particular, handling continuous-time survival analysis problems without the use of any distri-

butional assumptions is an interesting line of future work. Nonetheless, this chapter presents

a complete and flexible pipeline for training and evaluating accurate and well-calibrated deep

models for survival analysis.
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CHAPTER 4

Learning to Rank for Treatment Allocation

4.1 Introduction

We next consider the problem of resource allocation or prioritizing interventions, a common

problem across across various fields [27, 111, 140, 39]. In healthcare, for instance, clinicians

must triage patients for different levels of care [163]. In marketing, companies must prioritize

customers for marketing campaigns and retention programs [10, 153]. Similarly, in education,

targeted interventions can lower dropout rates or better school performances [18, 146]. While

numerous other examples exist, in this section, we continue in using the healthcare setting

as a motivating example.

In many healthcare settings, the optimal situation may be to treat all at-risk patients.

However, due to resource constraints such as time, workforce, and availability of treatments,

healthcare workers often have to make important and difficult decisions on how to allocate

resources [108, 68]. For example, clinicians may have to prioritize extra monitoring and care

to a subset of individuals at risk of deteriorating due to some disease, such as sepsis. Such

decisions are often multi-faceted. However, one aspect of the decision might consider who

would benefit most from the decision. Then, the decision could be based on a ranking of

who is likely to benefit most from a particular resource or intervention [108, 177, 212, 85].

Tools that could help clinicians in estimating benefit from observational data could help in

assisting clinicians in defining this ranking. However, estimating treatment effects is not

always straightforward.

Conditional average treatment effects (CATEs) quantify the effect of a treatment on

an outcome given an individual’s covariates using observational data. However, estimat-

ing CATEs is challenging due to confounding when variables affect both the treatment

assignment and outcome [57, 78]. Accordingly, past research has worked to improve accu-

racy and sample efficiency in CATE estimation through novel machine learning techniques

[63, 4, 182, 200, 78, 75, 220, 105]. However, these methods are often optimized for and
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evaluated based on their ability to accurately estimate CATEs.

More recently, there has been interest in how causal inference techniques translate to

downstream decision-making. Specifically, researchers have studied when exact causal effect

estimation may be unnecessary when the goal is to identify whom to treat and framed a new

problem of causal classification for identifying treatment responders [96, 14, 52]. In these

settings, the goal is to learn whether an individual will benefit from treatment, as defined by

some threshold, and prioritize treatment for these individuals. Past work has both studied

the disconnect between this problem and CATE estimation and has studied methods towards

directly optimizing for this use case. In this section, we build upon this recent paradigm

shift and extend this idea even further beyond a binary classification problem and study the

problem of resource allocation policies without the need for an a priori threshold to treat,

similar to triage. As these thresholds for determining who to treat may vary depending

on the application, and may change many times within the same application, it remains

essential to build models agnostic to a particular threshold when everyone benefits from the

treatment.

Recent research in the field of uplift modeling, which often assumes access to data from

a randomized controlled trial has begun to study this problem [171, 21, 222, 223]. For ex-

ample, [223] proposes a new loss function to directly obtain unbiased CATE estimates that

may be used to rank individuals for resource allocation. While related with regards to the

interest in treatment allocation, past work often assumes access to data from a randomized

controlled trial or with binary outcomes. This difference in the problem setting changes

the problem substantially, such that their proposed estimators, and the theory underlying

their estimators, no longer apply as the outcomes and treatments are not independent in our

observational setting. Moreover, we focus on studying the disconnect between the problem

of optimizing for treatment allocation based on expected benefit and unbiased CATE esti-

mation, which often remains the objective of past work [223]. Finally, recent work from [51]

studies how confounded data may affect the task of ranking causal effects, and posit a rank-

preserving assumption that would allow an accurate ranking of CATEs even without access

to all relevant confounders. In this section, we assume access to all confounders and study

the relationship between optimizing for accurate CATE estimation and accurate ranking,

with a focus on the potential for directly optimizing for ranking rather than some estimate

of CATE towards maximizing benefit in resource allocation. Building on these recent works,

we focus on a theoretical and empirical exploration of the disconnect between these two

problem set-ups. We focus on a setting in which the treatment may be beneficial to many

people, but due to resource constraints, it must be allocated to those who benefit most from

the treatment. We take inspiration from the field of learning to rank to tackle this problem
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and consider how to adapt these methods to our setting [32].

In the context of resource allocation, accurate CATE estimates will produce an accurate

ordering of who is most likely to benefit from the resources. While sufficient, accuracy in

CATE estimation is not necessary. Inaccurate or biased estimates can still lead to the best

ranking, i.e., one that maximizes benefit across all treatment thresholds. In this section, we

study the disconnect between accurate CATE estimation and the ultimate goal of prioriti-

zation for resource allocation. We theoretically analyze the mismatch between optimizing

for CATE estimation accuracy and optimizing for rankings towards maximizing downstream

benefit. Based on our findings, we develop a novel approach that aims to learn an accurate

resource allocation ranking. We propose a tree-based approach that produces a ranking of

individuals that maximizes expected benefit across all treatment thresholds. We show that

our approach focused on optimizing for ranking and benefit is more sample-efficient and

outperforms CATE estimation techniques that focus on accuracy in low-sample settings.

Overall, our contributions are as follows:

• We analyze the problem of learning accurate ranking models for maximum benefit

compared to learning accurate CATE estimation models.

• We propose a novel tree-based method to directly maximize expected benefit as mea-

sured by CATEs across all treatment thresholds.

• We provide an empirical case study to explore the potential for directly maximizing

expected benefit compared to optimizing for CATE accuracy. Empirically, across a

range of settings, our approach is more sample-efficient and outperforms methods that

focus solely on accurate CATE estimation in low-data regimes.

4.2 Problem Set-Up

Setup. We study a setting where the decision maker aims to identify the top u% of in-

dividuals who will benefit most from some resource or treatment, for some value of u that

is unknown a priori. We assume access to an observational dataset containing n individ-

uals with tuples S = (xi, ti, yi)
n
i=1, where each individual i has covariates xi ∈ X ⊂ Rd,

assigned treatment ti ∈ {0, 1}, and experiences the observed outcome under the assigned

treatment yi ∈ R (for continuous outcomes) or yi ∈ {0, 1} (for binary outcomes). We follow

the potential outcomes framework and define CATE as in Section 2.2.1.

Goal. To identify the top u% of individuals who will benefit (i.e., have the greatest

CATE), we seek a function f such that ∀i, j ∈ S where τi > τj, f(xi) > f(xj). Given
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this function, we may then apply a threshold u at inference time to identify the top u%

of individuals for treatment, for any u. Given an ordering of individuals, we evaluate the

potential value of it across all thresholds u. Traditional discriminative ranking metrics used

to measure ranking in classification, such as the AUROC or concordance index, calculate

the proportion of individuals misranked, based on the existence of a pairwise truth function

[170, 190]. In our setting, in addition to the pairwise truth function, we also have ground-

truth treatment effects. Classification metrics do not take these effects into account and as

a result, do not capture the full impact of a misranking on the expected benefit. In our

setting, we utilize a metric that incorporates the ground-truth treatment effects, to better

understand the expected benefit of a given ranking.

Measuring Expected Benefit. We define how to measure the expected benefit of

treating the top u% of patients in sample S, as identified by model f . Assume that the

CATE τi is observed and may be used for evaluation. Formally, we define Du
S(f) as the

top u% of individuals scored by the model, i.e., Du
S(f) = {i|f(xi) ≥ ψ({f(xi)i∈S}, u)},

where ψ(a, u) is the uth percentile of the empirical distribution of a. The average benefit

from treatment for these individuals is defined as ATEu
S(f) =

1
|Du

S(f)|
∑

i∈Du
S(f)

τi. A larger

ATEu
S(f) value corresponds to a function f that better identifies who benefits most from

treatment at threshold u%. As in past work, we normalize this value to measure improvement

over a random ranking by defining the targeting operator characteristic (TOC) at u as the

difference between the ATE of the top u% of patients as ordered by f , and the ATE of treating

all individuals, i.e., TOCu
S(f) = ATEu

S(f) − 1
|S|
∑|S|

k=1 τk [212]. A value of 0 represents no

improvement over random. Finally, to measure this across all treatment thresholds u, we use

the Area Under the Targeting Operator Characteristic (AUTOC). For an arbitrary function

f and a sample S,

AUTOCS(f) =
1

|S|

|S|∑
i=1

TOC
100∗ i

|S|
S (f)

The AUTOCmeasures the average benefit from treatment of those identified in the top u%

by f , averaged across all thresholds u, relative to the ATE (i.e., the average treatment benefit

of a random sample) [212]. Larger values of AUTOC represent more accurate identification

of the top u% of individuals, while an AUTOC of 0 represents a random ranking. The

AUTOC may also take negative values if worse than random. While there exist similar

metrics, such as the Qini curve, that reweight the objective at different thresholds u, we use

the AUTOC due to its strong theoretical properties and unbiasedness when estimated using

doubly robust proxies [212].

Causal Identifiability Assumptions. As measuring the AUTOC relies on the true

values of τ , it is not identifiable from observational data without additional assumptions.
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In line with the majority of work in causal inference, we assume no hidden confounding,

overlap, and consistency. These assumptions are sufficient for the identification of causal

effects, and hence, are also sufficient for the ranking of causal effects [182, 78, 84]. We

discuss the implications of these assumptions at the end of this section.

4.3 Theoretical Analysis

In this section, we study the relationship between accurate CATE estimation and optimal

ranking defined by maximizing benefit (Figure 4.1). We begin by exploring what it means

to maximize benefit across all treatment thresholds as measured by AUTOC. From here,

we compare the problem of obtaining accurate CATE estimators to the problem of directly

optimizing for AUTOC.

Figure 4.1: A motivating example. Consider four individuals, and a model that has estimated
CATEs for individuals x2, x3, and x4. To achieve better mean-squared error (MSE), the
model should predict a value close to the true CATE (7.5). However, the model can achieve
a perfect ranking by estimating the CATE of the remaining example (x1) anywhere in the
interval shown by the blue bar. This illustrates important takeaways from Propositions 1
and 2: 1) we may achieve optimal AUTOC even when the CATE function is not estimated
accurately, and 2) a model with better MSE may not result in better AUTOC.

We begin by understanding what it means to maximize AUTOC, where the optimal model

is defined as f ∗(xi) = τi for all xi.

Claim 1 Given a function f and a dataset S, (∀i, j|τi > τj, f(xi) > f(xj)) ↔
AUTOCS(f) = AUTOCS(f

∗)

Claim 1 states that if a function f correctly orders pairs of examples in terms of their

CATE then it will achieve optimal AUTOC performance. Hence, it suffices to find models

that are optimal in the ordering of examples to maximize AUTOC. Given this intuition, we
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study the relationship between estimating CATEs and AUTOC performance and identify if

accurate AUTOC may be easier than accurate CATE estimation.

To do so, we first define LM
S (f) = 1

n

∑n
i=1(f(xi) − τi)

2 as the mean-squared error for

CATE estimation for a function f over a sample S. LM
S can help measure the performance

of a CATE estimation technique as a larger value means worse CATE estimation perfor-

mance. Next, we introduce the notion of margins. We define the margin for point i as

γi = minj:j ̸=i(f
∗(xi) − f ∗(xj)). The margin measures the extent to which a model can

misestimate the CATE without violating an optimal ordering. Given these definitions, we

formally study the relationship between CATE estimation accuracy and optimal AUTOC.

First, we study the case where a model achieves perfect CATE estimation performance.

Claim 2. Given a model f and a sample S, LM
S (f) = 0 → AUTOCS(f) = AUTOCS(f

∗)

If ∀i ∈ S, f(xi) = τi, f is optimal by definition. Hence, a perfect CATE estimator is

a sufficient condition for optimal AUTOC. This means that the solution set for optimal

AUTOC is at least as large as the solution set for perfect CATE estimation. However, the

converse is not true.

Proposition 1. For a sample S, there exists a function f ∈ F such that AUTOCS(f) =

AUTOCS(f
∗), yet LM

S (f) > 0.

The proof is simple and can be found in Appendix B.2. Proposition 1 states that a

model that achieves perfect AUTOC may obtain arbitrarily poor CATE estimation perfor-

mance. Hence, accurate CATE estimation is not a necessary condition for optimal AUTOC.

Our proof technique consisted of creating a function f which is biased in a way that preserves

optimal AUTOC but results in a LM(f) greater than 0. More generally, any function f ∈ F
that biases each example i by less than half of its margin γi will result in optimal AUTOC

and non-zero LM . Hence, the set of solutions that lead to optimal AUTOC may be larger

than the optimal solutions for CATE, especially when the ground-truth margin γ between

examples is sufficiently large. In these settings, solutions for AUTOC, that simply require a

correct ordering of examples, could be easier to learn than the optimal CATE function f ∗.

Up to now, we have shown that the set of solutions to AUTOC will be just as large, if not

larger, than the set of solutions to CATE accuracy. Optimizing for maximal AUTOC can

guide learning towards any of these solutions, potentially resulting in an easier optimization

problem. However, our analysis has focused on the sufficiency and necessity of perfect

CATEs. We next study the finite sample setting where CATEs may not be estimated

perfectly. We show that optimizing for better CATE in these settings does not necessarily

lead to better AUTOC performance.

Proposition 2. For any model f and sample S such that LM
S (f) > 0, there exists a model

g such that LM
S (f) < LM

S (g) and AUTOCS(g) > AUTOCS(f).
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The proof can be found in Appendix B.2. Importantly, Proposition 2 says that

a better CATE estimator may not result in a greater AUTOC. Hence, optimizing for

CATE accuracy does not necessarily translate to better AUTOC in settings

where the CATE function cannot be estimated well.

Given that the solution set for optimal AUTOC is larger than the solution set for perfect

CATE estimation, and better CATE accuracy does not necessarily translate to better AU-

TOC, we hypothesize that optimizing directly for AUTOC, at the cost of CATE estimation

performance, could lead to better performance as measured by ranking for maximal bene-

fit. We expect this will hold in low and finite sample settings, where estimating the CATE

function exactly might be challenging.

In this work, we stop short of characterizing the complexity of the problem of optimizing

for AUTOC compared to optimizing for accurate CATEs. Past work has shown that the

problem of CATE estimation scales with the complexity of the true underlying CATE func-

tion [3]. We hypothesize that the problem of optimizing for AUTOC does not scale with the

complexity of the CATE estimation function, as we have shown that accurate CATEs are not

a necessary condition for accurate AUTOC. However, understanding what the complexity

of optimizing for AUTOC depends on remains difficult. A majority of work in understand-

ing the complexity of ranking simply considers the ordering of different examples and does

not consider how differences in outcomes may factor into the objective [170]. For example,

recent work in uplift modeling, under the assumption of data from a randomized controlled

trial and binary outcomes, showed that the complexity of their objective function could be

decomposed into multiple AUROC bounds by viewing their objective as a bipartite ranking

problem [21]. In our setting with observational data and potentially continuous outcomes,

where the magnitude of CATEs factors into the objective function, their results do not apply.

One challenge in studying the complexity of the AUTOC is the non-differentiability of

the objective function. An interesting future direction could be to study the properties of

a surrogate of the AUTOC, an approach considered in the related field of learning to rank

when understanding the complexity of a different objective function [194]. However, in the

remainder of this section, we instead test our hypothesis that optimizing directly for AUTOC,

at the cost of CATE estimation performance, could lead to better ranking performance. To

do so, we seek approaches that optimize for AUTOC directly in the next section

4.4 Methods

Up to now, we have shown that the solution set for optimal AUTOC is at least as large

as the solution set for accurate CATEs, and may be larger. Moreover, in finite settings, a
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Figure 4.2: The importance of global splits. We define a subtree with a group of data that
have CATEs D, in which we aim to split at decision node M , resulting in either tree A
or B. A ‘local’ split based on only data with CATEs DM results in tree A, as the sum of
ATEu at the first two thresholds (7.6 + 7.6+2.5

2
) is greater than that of tree B (6.3 + 6.3),

with the ATEu at all other thresholds being equal. Globally, tree B is optimal as the sum
of ATEu for the second and third threshold (10+6.3

2
+ 10+5+7.6

3
) is greater than that of tree A

(10+7.6
2

+ 10+7.6+2.5
3

). Many small differences can result in drastically different performance,
so it is important to consider the entire decision tree when selecting splits.
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perfect CATE estimator may not directly translate to a better AUTOC. We hypothesize

that in some settings, such as low sample settings, optimizing directly for AUTOC may

result in better treatment allocation. To test this hypothesis, we next develop a technique

for explicitly optimizing for AUTOC across a sample S.

Optimizing For and Calculating AUTOC. While we aim to maximize AUTOC for

a sample S, this is made difficult due to the non-differentiability of the AUTOC. Thus,

we propose a tree-based approach. Tree-based techniques can be used to tackle arbitrary

optimization problems through the use of novel splitting rules. A splitting rule for creating

new nodes in a decision tree is not required to be differentiable. We utilize decision trees to

directly optimize for AUTOC over a sample S. Moreover, we extend splitting rules to use

training examples beyond those seen in the current node in the tree, inspired by past work

in learning to rank [82].

To begin, for any decision tree T , the AUTOC for a sample S can be calculated as follows:

1. Assign a score T (xi) for each individual i in S based on the average outcome in the

leaf node that the example xi is partitioned into.

2. Calculate AUTOCS(T ) using the scores T (xi) as model outputs. To handle ties where

multiple examples have the same predicted score, average across all possible orderings

to simulate breaking ties at random.

Building Decision Trees to Maximize AUTOC. We propose an approach for build-

ing a tree T to optimize for AUTOC. We first assume we have access to τi for all individuals

in our sample S, later relaxing this assumption. At any decision nodeM in a tree, we denote

the current samples at that node as SM and the current tree as TM . Denote TM
k,v as the tree

when the current decision node M is split into two leaf nodes based on the feature k and

value v. Traditional regression trees select the best splitting k and v that splits the data into

SMk,v
1

and SMk,v
2

by minimizing the weighted variance of the outcomes over resulting nodes.

We propose finding k, v by maximizing the AUTOC for the full sample S. More formally, at

each split, we solve the following optimization problem: k∗, v∗ = argmaxk,v AUTOCS(T
M
k,v).

We use the current estimates at the leaf nodes throughout the decision tree (i.e., the average

τi value of the leaf node that each example is currently placed at) to calculate the AUTOC.

In utilizing these ‘global’ splits, we overcome the limitations of local splits (Figure 4.2).

While all data is considered at each split, the tree is still grown greedily, only slightly in-

creasing computation time (i.e., this is not a globally optimal decision tree). The order in

which the ‘global split’ tree is built is important, as the values of all nodes are used at each

split. We build decision trees in a breadth-first manner to ensure every portion of the tree is
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growing equally, and splits at each node are made using nodes at similar depths. Overall, by

utilizing a splitting rule to maximize the AUTOC, we optimize for our end goal of learning

accurate rankings for treatment allocation based on maximizing expected benefit. Given

this training procedure, we bootstrap our data multiple times and build many decision trees

to overcome overfitting and improve performance, as in traditional random forests [26]. At

inference time, each test sample is evaluated by each tree, and the outputs are averaged.

These estimates are used to rank test data.

Using Doubly Robust Proxies for Training. Relaxing the assumption of oracle

access to the ground truth CATE τi in our training sample, we use a doubly robust proxy

of the treatment effect τ̃i for each individual i. The doubly robust estimate is defined as

τ̃i = m̂(xi, 0) − m̂(xi, 1) +
ti−ê(xi)

ê(xi)(1−ê(xi))
(yi − m̂(xi, ti)), where ê(xi) is an estimate of the

propensity score conditioned on observed covariates, and m̂(xi, ti) is an estimate of the

expected outcome given an individual’s covariates and treatment assignment [37, 105]. The

nuisance parameters represent nonparametric estimates of the ground-truth propensity score

and potential outcome functions. Under our assumptions, E[τ̃i|xi] → τi as n → ∞. To

calculate the AUTOC, we first calculate the ATE at each threshold using these proxies in

place of the true CATEs, i.e., ÃTE
u

S(T ) =
1

|Du
S(T )|

∑
i∈Du

S(T ) τ̃i. From here, we calculate the

TOC and the AUTOC respectively as T̃OC
u

S(T ) = ÃTE
u

S(T )−
∑S

k=1 τ̃k and
˜AUTOCS(T ) =

1
|S|
∑|S|

i=1 T̃OC
100∗ i

|S|
S (T ). Importantly, ˜AUTOCS(T ) calculated using τ̃i in place of the true

τi is an asymptotically unbiased and normal estimate of the true AUTOCS(T ) under mild

conditions [212]. In a first stage, these DR proxies can be built using cross-fitting. Then,

when making a split at decision nodeM , we find the k, v pair that maximizes ˜AUTOCS(T
M
k,v).

model that directly maximizes the AUTOC, as proposed in the previous section, using the

doubly robust proxy will also, in expectation, maximize the true AUTOC.

4.5 Experiments & Results

Empirically, we test our hypothesis that directly optimizing for AUTOC can outperform

models focused on CATE estimation in low-sample sample settings. First, we describe

our experimental setup and baseline methods. From here, we present the datasets used in

our experiments, as well as the evaluation metrics used to measure performance. We then

present results comparing the techniques across both datasets to understand the efficacy of

the proposed methodology.
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4.5.1 Experimental Set-Up

Baseline. As a baseline, we compare to a strong CATE estimation baseline from past work

known as the DR-Learner [105]. The doubly robust proxy τ̃i for each example can only be

built for individuals for whom treatments and outcomes are observed. Hence, on a new set

of examples for whom the treatment and outcome are not observed, these proxies are not

available. To overcome this, the DR-Learner learns a mapping from an example’s covariates

to an estimate of the CATE by regressing τ̃i on an individual’s covariates. Formally, the DR-

Learner is a two-stage approach similar to our proposed technique. However, in the second

stage, the model is trained to accurately estimate the doubly robust proxy using traditional

metrics such as mean-squared error. To build the DR-Learner, we train a random forest

algorithm similarly to our proposed method. However, at each decision node M , k, v are

selected to minimize the balanced variance of outcomes τ̃i; the split at decision nodeM with

data-points SM can be defined as argmink,v

|S
M

k,v
1

|

|SM | V ar({τ̃i}i∈SM
k,v
1

)+
|S

M
k,v
2

|

|SM | V ar({τ̃i}i∈SM
k,v
2

).

At inference, outputs in each tree are aggregated by taking the average doubly robust out-

come. Although numerous other CATE estimation models have been proposed recently, we

opt for a strong baseline approach that is similar to our proposed method to test our primary

hypothesis. We use the same doubly robust proxies for training for both methods such that

any observed differences between the two approaches can be attributed to differences in the

splitting criteria. We tune the number of trees, the proportion of data in each tree, the max-

imum depth of each tree, the threshold for improvement, the minimum number of samples

needed for a split, and the minimum number of samples at a leaf as hyperparameters for

both models (see Appendix B.4 for more detail).

Datasets. While CATE estimation arises frequently in practice, validating these tech-

niques in real data requires close collaboration with domain experts since there is no well-

accepted approach to evaluating these models without ground truth. Hence, as a first step,

we focus on existing synthetic datasets in which the counterfactual is available. We test

our proposed approach using synthetic data-generating procedures adapted from past work

[14, 33]. Specifically, we generate two datasets:
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Dataset 1 Dataset 2

xi ∼ N (0, I10x10), xi ∼ N (0, I10x10)

ti|xi ∼ Bern(
1

1 + e−xi,3
), ti|xi ∼ Bern(

1

1 + e−xi,3
),

ϵi|xi, ti ∼ N (0, 1), ϵi|xi, ti ∼ N (0, 1),

τi|xi=((xi,1)+ + (xi,2)+ − 1)/2, τ(xi) = 1 + 2|xi,4|+ x2
i,10,

yi|xi, τi, ϵi, ti=max(0, xi,3 + xi,4) + tiτi + ϵi yi|xi, τi, ϵi, ti = 5(2 + 0.5 sin(πxi,1)

− 0.5xi,2 + 0.75xi,3xi,9) + tiτi + ϵi

In Dataset 1, the ground truth τi function is built by thresholding certain covariates

in each individual. In doing so, we can create different groups of individuals with different

treatment effects, resulting in large margins between individuals. This is a setting in which

we expect our proposed approach to perform well. Using Dataset 2, we test our approach

in a more complex setting in which the underlying CATE and outcome functions involve

more non-linear terms.

Evaluation Metrics. We assess the performance of our proposed approach and the

baseline on both datasets, each with 30 unique replications for training and testing. To

understand how the proposed method performs with varying amounts of training data, we

sweep the amount of training data N through {100, 250, 500, 1000}, while keeping the test

set size fixed at 5000. We focus on a low-sample regime as in many domains, obtaining in-

terventional trial data is challenging. For example, in the field of healthcare, many diseases

are rare and many patient populations are less represented in the data. Due to this, many

problems in the field of healthcare are plagued with issues due to a limited number of ex-

amples [45, 35]. Efficiently learning accurate rankings in these regimes remains imperative.

We evaluate the performance of the methods on held-out test sets in terms of the AUTOC,

reporting the median and interquartile range (IQR) across all 30 replications. Additionally,

since each dataset may have different optimal AUTOC values, we report the number of times

the proposed method outperforms the baseline across the 30 random seeds. We also evaluate

the ATEu, which helps in understanding the difference in realized benefit at specific thresh-

olds. We test u ∈ {10, 20, 30, 40, 50}, to evaluate realistic settings in which the treatment

can only be administered in a fraction of individuals. Relative to the baseline, we report the

median improvement in ATEs at each threshold across 30 replications. For completeness,

we report both the % of replications the proposed method outperforms the baseline across

the 30 random seeds for each u and TOCu performance across all thresholds in Appendix

B.5.

38



100 250 500 1000
Training Data Size

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
AU

TO
C 

Pe
rfo

rm
an

ce

24/30*

22/30*
20/30*

17/30
Dataset 1

Proposed
Baseline

100 250 500 1000
Training Data Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

AU
TO

C 
Pe

rfo
rm

an
ce

23/30*

24/30*
24/30*

15/30

Dataset 2

Figure 4.3: Median and IQR AUTOC as well as how many times the proposed method
outperforms the baseline across 30 replications. Asterisks represent scenarios where the
proposed method significantly outperforms the baseline technique as measured with the
Wilcoxon signed rank test (α = 0.05). The maximum AUTOC achievable is indicated by
the red dashed line. At low sample sizes, the proposed method outperforms the baseline.

4.5.2 Results

AUTOC Performance: On both datasets, at low-sample settings, our proposed approach

outperforms the baseline CATE estimation technique on a large majority of replications

(N = 100: 24 and 23 /30 replications, N = 250: 22 and 23/30 replications, respectively)

(Figure 4.3). As the sample size increases, both approaches begin to perform similarly. In

data-rich settings (N = 1000), the baseline may be preferable due to its simplicity. Notably,

this trend holds even when using local splits (Appendix B.5). Empirically, local splitting

results in similar splits early on in the tree-building process, but diverges at greater depths.

More recently, researchers have proposed an honest framework for training decision trees for

CATE estimation [13]. In the honest framework, when training, only half of the data is used

to create the splits, and the other half is used to impute outcomes at each leaf node during

inference. To show that our approach is robust to the honest framework, we repeat our

analysis and show that our model still outperforms the baseline technique in a low-sample

setting (Appendix B.5). For completeness, we also compare our approach to that of [223]

in Appendix B.5 and show that our proposed method for directly optimizing for AUTOC

outperforms this baseline significantly.

ATEu Performance: Evaluating the value of a learned ranking at specific treatment

thresholds (i.e., ATEu), our proposed technique outperforms the baseline in low-data settings

when treating between 10% and 50% of individuals (Figure 4.4). Across training set sizes
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Figure 4.4: The median and IQR of improvement of the proposed approach over the baseline
in ATEu across potential thresholds u. Our model excels across treatment thresholds at
low-data settings, despite not being trained for a particular treatment threshold. With more
training data (N = 1000), the efficacy of our model is shown at higher treatment thresholds.

of N = 100 to N = 500, the proposed training scheme consistently outperforms the baseline

in Dataset 1, with improvements in ATEs of up to 0.06. Our model continues to perform

well across thresholds in Dataset 2, outperforming the baseline at almost all thresholds in

low-data settings, with median ATE improvements of up to 0.25. With more training data

(N = 1000), the baseline slightly outperforms the proposed technique at lower treatment

thresholds, but the proposed approach demonstrates efficacy at higher treatment thresholds.

At higher sample sizes, the worse performance at lower treatment thresholds balances out

with the better performance at higher thresholds, resulting in similar overall AUTOCs. In

addition, our proposed method outperforms the baseline technique in terms of ATEu in up

to 80% of replications and outperforms the baseline at thresholds beyond u = 50 consistently

as well (Appendix B.5).

Contextualizing Results: To understand the potential impact of our direct optimiza-

tion of ranking, we introduce an evaluation that emulates a setting where treatment improves

the probability of survival. We shift and normalize CATEs and outcomes in both datasets

such that the maximum values are 1 and 0. An outcome of 1 represents a 100% chance

of survival and an outcome of 0 represents a 0% chance of survival, and a τi of 1 means

that treatment completely reduces the likelihood of death, whereas a τi of 0 means that

treatment does not affect survival. The expected lives saved at any threshold u can then be

calculated as the ATE for individuals allocated the treatment, as this is exactly the expected

improvement in mortality in those treated. We then normalize these values by the maximum

possible lives saved at u given a perfect ranking, which we denote as % lives saved at u. We

40



40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

Pe
rc

en
ta

ge
 o

f P
ot

en
tia

l L
iv

es
 S

av
ed

*

*
*

*
*

Dataset 1, n = 100
Proposed
Baseline

40.0

50.0

60.0

70.0

80.0

90.0

Pe
rc

en
ta

ge
 o

f P
ot

en
tia

l L
iv

es
 S

av
ed

*
*

* * *

Dataset 1, n = 250
Proposed
Baseline

Top 10% Top 20% Top 30% Top 40% Top 50%
Percentage of Individuals to Treat

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

Pe
rc

en
ta

ge
 o

f P
ot

en
tia

l L
iv

es
 S

av
ed

*

*
*

*

Dataset 2, n = 100
Proposed
Baseline

Top 10% Top 20% Top 30% Top 40% Top 50%
Percentage of Individuals to Treat

40.0

50.0

60.0

70.0

80.0

90.0

Pe
rc

en
ta

ge
 o

f P
ot

en
tia

l L
iv

es
 S

av
ed

*
*

*
*

Dataset 2, n = 250
Proposed
Baseline

Figure 4.5: Median and IQR of the percentage of potential lives saved compared to the oracle
across different thresholds in low data settings forDataset 1 (top) andDataset 2 (bottom).
Asterisks represent scenarios in which the proposed method significantly outperforms the
baseline technique as measured using a Wilcoxon signed rank test (α = .05). The proposed
method consistently outperforms the baseline technique in terms of lives saved, with up to
a 6.4% increase.

perform this analysis across all training data settings and thresholds u ∈ {10, 20, 30, 40, 50}.
Across both datasets, the proposed method consistently outperforms the baseline tech-

nique in terms of % lives saved (Figure 4.5). At u = 30, the proposed method consistently

outperforms the baseline (Dataset 1: N = 100: 69.5% vs. 65.6% and N = 250: 79.1% vs

75.2%, Dataset 2: N = 100: 70.0% vs. 68.6% and N = 250: 79.8% vs 74.6%). In data-rich

settings, the proposed method matches the performance of the baseline or performs only

slightly worse (Appendix B.5). Overall, this evaluation demonstrates the potential that

the proposed method could have in resource-constrained settings.

4.6 Conclusion and Discussion

In this chapter, we study the problem of intervention allocation. Past work often considers

solving this problem by accurately estimating CATEs from observational data to help triage
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individuals. However, in situations where all one needs is a ranking of who is more likely to

benefit, there exists an objective mismatch between what one is optimizing for and what one

needs. Our work builds on past research focused on the disconnect between exact causal effect

estimation and the ultimate goal of augmenting downstream decision-making [52, 14, 96].

We show that optimizing for CATE accuracy, while sufficient, is not necessary for optimal

expected benefit, and that the set of solutions for accurate ranking is just as large, if not

larger, than the set of solutions for accurate CATE estimation. We also show that models

achieving better CATE performance may not always translate to better ranking. Based on

this analysis, we hypothesize that optimizing directly for ranking can outperform methods

focused on minimizing mean squared error. To test this hypothesis empirically, we propose

an approach for optimizing ranking in this context and test our hypothesis empirically. With

respect to triaging individuals to maximize benefit, our proposed approach achieves strong

empirical performance and better sample efficiency compared to a baseline CATE estimation

method across two synthetic datasets.

Our study is not without limitations. First, due to the inability to observe ground-truth

CATEs in real observational data, we could not explore performance on real datasets. While

results on different synthetic datasets help demonstrate the initial efficacy of the proposed

method and problem setting, future work should consider how to effectively validate these

models in a multitude of real settings. In particular, it remains important to carefully val-

idate these algorithms in close collaboration with domain experts before they are used to

inform decision-making. Second, as our work focuses on the problem of resource allocation

under constraints, we consider a utilitarian solution to the problem of resource allocation,

such that we maximize the expected benefit across all treatment thresholds. However, deci-

sions on resource allocation are often multi-faceted and require considerations beyond simply

maximizing the expected benefit for the full population [195, 151]. For example, there ex-

ist many ethical constraints that may be considered when allocating sparse interventions,

as recently shown during the COVID-19 pandemic [216]. Our work is intended to study

one tool that may be used to augment this decision-making, which may also be combined

with other important societal considerations. In addition, like most work in causal effect

estimation, we make three common assumptions to ensure the identifiability of CATEs: 1)

unconfoundedness, 2) consistency, and 3) overlap. These assumptions ensured that our dou-

bly robust proxy was identifiable and could be used for training. However, as the problem

of accurate resource allocation based on benefit does not require the ground-truth CATEs

to be estimated perfectly, there exists a potential to relax these assumptions and learn how

to optimize for accurate rankings [51]. We further discuss how these assumptions may be

relaxed at the end of this dissertation. Finally, our proposed approach relies on a proxy for
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learning. Future work could consider how to directly optimize for AUTOC that overcomes

the need for a proxy on the training set. However, our approach still shows the empiri-

cal benefits of directly optimizing for AUTOC in the downstream estimator, as both our

proposed approach and the baseline rely on the same proxy during training.

Despite the obvious relationship to triage, to the best of our knowledge, we are the first

to consider the efficacy of directly optimizing for maximum benefit in treatment allocation

under variable resource constraints in observational data. Overall, our work represents an

important step for bridging the theory and practice of resource allocation techniques.
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CHAPTER 5

Challenging Implicit Assumptions of Theory

Through Empirical Evidence in CATE

Estimation

5.1 Introduction

In precision medicine, there exist many situations in which a ranking of individuals by benefit

may not be sufficient. For example, when deciding on a treatment rule for a particular

individual, accurately estimating CATEs can be critical to weigh the benefit of treating

against other potential alternatives. Hence, estimating CATEs has an immense potential

to improve different aspects of clinical decision-making [120]. To address the challenge of

confounding, a number of different learning algorithms have been proposed that can broadly

be grouped into three categories [145, 214]. The first category of techniques focuses on

only using a model of the outcome during training by using relevant confounders as input

covariates (such as plug-in estimators or g-computation). However, these methods may

be inefficient in high-dimensional settings when the level of confounding is large [165, 30,

179, 22]. Researchers hence often consider a second category of models that incorporate

estimates of the propensity score, the probability of receiving the treatment, during training.

Propensity scores provide a single scalar value that can balance treatment groups, often

making them preferred over simpler outcome-based techniques [165, 179]. However, such

methods may fail when the propensity score cannot be estimated accurately. To overcome

this, recent work has considered a third category of approaches that adjust for both the

propensity score and an estimate of the potential outcome during training [142, 105, 43]. By

using both, these techniques can derive theoretical guarantees for accurate CATE estimation

regardless of errors in one or both of the estimates [142, 105, 56]. For example, doubly robust

approaches are robust to misspecification of either the outcome model or the propensity score

model. Due to this, these adjustment techniques have become increasingly favored over other
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approaches [142, 105, 59].

While theory supports the choice of techniques that incorporate both estimates of the

outcome and the treatment assignment, this theory often does not consider finite sample

performance, resulting in a mismatch between theory and practice. Despite the multitude

of CATE estimation techniques, there is little comprehensive empirical evidence to guide

practice, especially in the modern context of deep learning. Direct comparisons between

different learning algorithms used in the literature are made even more difficult as base

learners used to train these algorithms can vary from linear regression to more complex neural

network approaches. To date, empirical investigations of CATE estimation techniques have

been limited to only a narrow set of CATE estimation approaches, do not focus on a single

strong base learner, or do not explore performance across a wide range of relevant settings,

including different levels of confounding and noise in the estimates of the propensity score

[43, 145, 109, 138].

Leveraging both synthetic and benchmark semi-synthetic datasets, in this chapter, we ex-

plore the performance of popular CATE estimation techniques within each category across

a wide range of settings, including different levels of confounding and propensity score er-

rors. To provide a fair comparison across techniques while considering the modern context of

deep learning, we investigate these approaches using an increasingly popular neural-network

base learner [182, 220, 219, 75, 12, 38]. In contrast to some past work, this also allows us

to compare to popular CATE estimation techniques that are specifically built using neural

networks [48]. Our empirical analyses highlight the failure modes of many popular CATE

estimation techniques. Overall, we find that many popular CATE estimation approaches

fail to consistently outperform simpler approaches using only a model of the outcome dur-

ing training, even when given access to ground-truth propensity scores. Furthermore, our

empirical analyses highlight the sensitivity of many techniques, including doubly robust tech-

niques, to errors in the propensity score. Our findings offer valuable insights and important

considerations for researchers using CATE estimation techniques across many applications,

including healthcare.

5.2 Background and Related Work

We continue with the problem set-up and assumptions described in Section 2.2. We fo-

cus on evaluating the most popular CATE estimation techniques. All techniques utilize

observed confounders xi as input to a machine learning model, with the goal of learning ac-

curate CATEs. Indirect methods learn CATE estimates through learning models f̂ 1, f̂ 0

that map xi → Yi(1) and Yi(0) respectively, and estimate the CATE as the difference
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between the estimated potential outcomes. Assuming continuous outcomes, these meth-

ods are trained to minimize loss on the observed outcomes using the following objective:

Lo = 1
n

∑n
i=1wi(yi − f̂ ti(xi))

2, where wi are weights that may be specific to a particular

algorithm. Direct learners aim to estimate a model f that maps the covariates to the CATE

directly, i.e., xi → τi. These methods first learn relevant nuisance parameters, such as the

propensity score or the observed outcomes, in a first stage to build a proxy estimate τ̃i of

the CATE in the training set. In a second stage, these methods learn a CATE estimator

by building a model f̂ which maps input covariates to the proxy from the first stage by

minimizing L = 1
n

∑n
i wi(τ̃i − f̂(xi))

2, where weights may be specific to a particular algo-

rithm. Across both direct and indirect methods, techniques differ primarily in how they

adjust for confounding during training. Popular methods can be broken down into three

main categories: outcome-based models, propensity score adjustment models, and models

that adjust using both the propensity score and outcome estimates. We next consider dif-

ferent implementations of CATE estimators across these three approaches (Table 5.1). For

all methods, we consider using neural networks as a base learner to optimize the model.

Table 5.1: Overview of all methods considered.

Model Adjustment Learning Type

TARNet [182] Outcome-Based Indirect
X-Learner [112] Outcome-Based Direct

Weighting Propensity Score Indirect
Matching Propensity Score Indirect

R-Learner [142] Propensity Score + Direct
Outcome Estimate

DR-Learner [105] Propensity Score + Direct
Outcome Estimate

DragonNet [185] Propensity Score + Indirect
Outcome Estimate

1. Outcome-Based Models (or Plug-In Methods). As discussed in Section 2.2, two

early techniques under this category were the S-Learner and T-Learner. We continue with

describing new techniques proposed in recent years that build upon these early techniques.

We focus on two popular approaches.

TARNet improves on the S and T-Learner through a multi-task framework [182, 42].

TARNet is an indirect algorithm that learns accurate estimates of the observed outcome by

minimizing Lo using a multi-task neural network architecture with a shared representation

Φ and two separate outcome network heads h1, h0 for each potential outcome. The potential
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outcomes are thus estimated as f̂ t = ht(Φ(xi)) for t ∈ {0, 1}. The strength of this archi-

tecture is supported by generalization bounds for CATE estimation, in which the learning

bound for CATE is determined by the more complex potential outcome function [3]. We set

wi to provide equal supervision to both outcome heads as in past work [182].

X-Learner is a direct CATE estimation algorithm that simply relies on estimates of the

potential outcomes [112]. In the first stage, estimates of the potential outcome µ̂1i, µ̂0i

are obtained by learning f 1 and f 0. Given these estimates, two new datasets D1, D0 are

formed for the treatment and control groups, with modified outcomes yi − µ̂0i and µ̂1i − yi

serving as proxy CATEs for treatment and control individuals separately. In the second

stage, these datasets can then be used to train two direct CATE estimators from D1, D0

respectively by optimizing for L with the proxy CATEs. Finally, at inference, these CATE

estimators can be combined for a final estimate using a weighted average. The X-Learner uses

information from each treatment group to derive better estimators for the other cohort. To

encourage this further, rather than training two separate models using D1 and D0, we train

a multi-task neural network architecture similar to TARNet such that each head corresponds

to the CATE estimate learned from the treatment and control groups separately, but the

learned representation is shared and learned from all training examples. In Appendix

C.2, we show that this modification for the X-Learner substantially improves performance

over the traditional X-Learner. As suggested by the original authors, we use estimates of

the propensity score to weigh the two CATE estimators. Though the X-Learner uses the

propensity scores during inference, it does not adjust for it during training like the techniques

in the next section.

2. Adjustment Using Only Propensity Scores During Training. To implement

these techniques, we consider indirect estimators that build off TARNet and use propensity

scores estimated in a first stage. We focus on two common approaches for propensity score

adjustment. In Appendix C.4, we also describe a direct approach that inversely weights

the observed outcome using the propensity score to create a proxy for CATE. However, we

omit this method from this section due to its poor empirical performance.

Weighting reweights the loss function of the observed outcomes Lo using the inverse of

the propensity score [12, 224]. Specifically, we reweight the loss function by using stabilized

weights, which multiply the traditional weights by the marginal probability of the observed

treatment and reduce variance [16, 78]. Formally, we reweight the loss function using weights

wi = P (t = ti)(
ti
êi
+ 1−ti

1−êi
).

Matching creates a matched set Mi for each individual. For a particular individual i, we

consider including all individuals within a specific distance c from i in terms of the propensity

score in the opposite treatment group, where c is defined as 0.2 times the standard deviation
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of the logit of the propensity score in the population, due to strong theoretical guarantees

with this cut-off [166, 15]. We impute unobserved outcomes ŷ1−ti
i for individual i by taking

the weighted average of outcomes for individuals in Mi, or ŷ
1−ti
i =

∑
j:Mi

wjyj∑
j:Mi

wj
, wj = 1

|êi−êj | .

wj weights examples based on their propensity score distance, allowing individuals closer in

propensity score to contribute more to the estimated outcome and removing training exam-

ples without any relevant nearest neighbor from training. Given these imputed outcomes,

the model is trained to accurately estimate both the observed and estimated unobserved

outcome using a composite loss of Lo + α 1
n

∑n
i=1(ŷ

1−ti
i − Φ(h1−ti(xi))

2, where α > 0.

3. Adjustment Using Propensity Score and Outcome Estimates During Train-

ing. We consider three approaches in this category. The first two approaches are direct

approaches, while the third approach is an indirect approach. In Appendix C.4, we also

consider the U-Learner. However, we omit this method from this section due to its poor

empirical performance.

R-Learner uses both an estimate of the propensity score ei as well as an estimate of

the conditional outcome mi = E[yi|xi] learned in a first stage to create a proxy outcome

τ̃i = yi−m̂i

ti−êi
, where E[τ̃i|xi] = τi [142, 112]. The proxy is regressed on the covariates by

minimizing L, with weights set to (ti − êi)
2 [142, 145, 55]. We utilize a feed-forward neural

network in the second stage to learn the CATE estimator. The R-Learner can achieve similar

error bounds to an oracle approach that has ground-truth estimates of the propensity score

and conditional outcome, regardless of the true accuracy of these estimates. This property

makes it especially attractive for practical use when building CATE estimators.

DR-Learner is a direct approach that uses estimates of both the potential outcome func-

tions µ1i, µ0i obtained from f̂ 1, f̂ 0 as well as the propensity score ei obtained from a first

stage [105]. The second-stage proxy is defined as τ̃i =
ti−êi

êi(1−êi)
(yi− µ̂tii)+ µ̂1i− µ̂0i, also known

as the augmented inverse propensity weighting (AIPW) proxy. A CATE estimator is then

learned by minimizing L using this proxy. The DR-Learner is doubly robust, in that only the

propensity score estimator or the potential outcome estimator needs to be specified correctly

for asymptotically unbiased CATEs, making it a popular choice for CATE estimation. We

utilize a feed-forward neural network in the second stage to learn the CATE estimator.

DragonNet is a single-stage learner which learns and adjusts for the potential outcomes

and propensity scores during training, rather than in separate stages [185]. DragonNet

modifies the TARNet architecture by adding a simple linear map π from the learned shared

representation Φ that is trained to accurately estimate the propensity score in combination

with Lo. In doing so, the model is encouraged to learn a representation that is predictive of

the treatment assignment. Moreover, inspired by the field of targeted regularization, an extra

model parameter ϵ is introduced along with a regularization term defined as 1
n

∑n
i=1(yi−Q)2,
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where Q is a perturbed version of the estimated outcome defined as hti(Φ(xi)) + ϵ[ ti
π(Φ(xi))

−
1−ti

1−π(Φ(xi))
]. Minimizing this regularization term allows the estimate Q to have a doubly

robust property, making it an unbiased estimator if either the outcome or propensity score

estimate is accurate. In Appendix C.4, we also consider DragonNet without the targeted

regularization term.

5.3 Experiments and Results

Theory for techniques that incorporate estimates of both the propensity score and the po-

tential outcomes often make them a preferred estimator over other categories of techniques.

Hence, empirically, we aim to address the following questions to probe the applicability of

different CATE estimation techniques in the context of neural networks:

• Do approaches that rely on both an estimate of the potential outcomes and the propen-

sity score during training outperform approaches that rely only on the propensity score

or modeling the outcome?

• How do our conclusions change when we introduce errors in the estimates of the propen-

sity score?

We first describe our experimental set-up, including datasets and evaluation metrics that

are used to measure performance. We then present results aimed to provide a better under-

standing of the relative performance of different methods.

5.3.1 Experimental Set-Up

To explore the gap between theory and practice for CATE estimation techniques, we investi-

gate models across both synthetic and benchmark semi-synthetic datasets. Validating on real

datasets is difficult due to the fundamental problem of causal inference, or the inability to

observe both potential outcomes. Moreover, evaluations of CATE estimators on real datasets

often rely on inaccurate proxy variables that must be estimated from the data. Errors in the

problem set-up and evaluation may easily result in inaccurate takeaways, with the potential

to lead to harm when applied to real data. Hence, as an important step towards the goal of

real-world applications of these methods, we focus on existing synthetic and semi-synthetic

benchmark datasets in which the counterfactual is available [182, 48, 141]; such datasets

are designed to test practical aspects of CATE estimation. We consider testing these mod-

els under 1) the assumption of ground-truth propensity scores, and 2) the practical setting

with estimated or noisy propensity scores to answer our primary research questions. For all
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methods that require the use of estimated outcomes or propensity scores during training,

though theory often requires these models to be built using different data than the down-

stream estimator, past work has found that using all training examples performs better in

low-sample data [43, 145]. We hence follow this past work and use all training examples

to build these estimators. In Appendix C.3, we confirm that this choice results in better

empirical performance compared to a standard cross-fitting approach. Further training de-

tails, including model architecture, compute infrastructure and hyperparameter tuning can

be found in Appendix C.1.

5.3.1.1 Datasets

Synthetic Dataset. We simulate a synthetic dataset in which we can control the degree

of confounding and have access to ground-truth propensity scores. To induce confounding,

we generate our dataset by imposing a direct relationship between the outcome and the

propensity score, as in past work [71, 33]. Covariates that affect both the outcome and

the propensity score induce confounding, leading to biased treatment effect estimates if not

addressed. We begin by simulating a dataset with significant confounding bias. We simulate

xi ∈ R10 for each individual, generated as correlated uniforms from a Gaussian copula,

where the covariance matrix R is such that Rij = .5|i−j| + .1I[i ̸= j]. The other quantities

for individual i are simulated as follows:

µ(xi) = 5(2 + 0.5 sin(πxi,1)− 0.25x2
i,2 + 0.75xi,3xi,9),

τ(xi) = 1 + 2|xi,4|+ xi,10,

e(xi) = 0.9Λ(1.2− γµ(xi) + ηi),

ηi ∼ U(0, 1),

ti ∼ Bernoulli(e(xi)),

yi = µ(xi) + τ(xi)ti + ϵi,

ϵi ∼ N (0, σ2), σ2 =
στ
2

where Λ is the logistic cumulative distribution function and γ controls the level of confound-

ing in the dataset. The relationship between the baseline outcome µ and the propensity

score e induces confounding. To measure confounding, we calculate the alignment, or the

correlation between the observed outcome and the propensity score (i.e., ρ(y, e)) [48]. A

strong absolute correlation indicates high confounding in the dataset.

We begin by simulating a dataset with significant confounding bias. We measure the

level of confounding using alignment, or the correlation between the observed outcome and

the propensity score (i.e., ρ(y, e)) [48]. A strong absolute correlation (i.e., high absolute
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alignment) indicates high confounding in the dataset. In the synthetic dataset, we first

set the magnitude of alignment to approximately 0.85 (i.e., γ = 1) in our experiments,

resulting in a dataset with strong confounding. In ablation studies, we also analyze model

performance as the level of confounding changes. We simulate N = 1000 examples for

training and testing respectively and repeat the simulation 30 times with different random

seeds and report results averaged over the replications (i.e., 30 datasets)

Semi-Synthetic Datasets. We also use data from the Collaborative Perinatal Project,

a large longitudinal cohort study of pregnant women designed to study factors leading to

developmental disorders [143]. As in past work, we use these data to simulate a twins study

with the goal of estimating the impact of birth weight on a child’s IQ [48]. First, we chose a

set of covariates that serve as potential confounders. Next, we defined treatment assignment

mechanisms and outcome functions using these data to test a variety of settings, resulting

in 77 unique DGPs known as the ACIC 2016 dataset. ACIC allows us to examine the

performance of different techniques on a wide variety of relevant datasets with differing

characteristics. Specifically, the datasets vary in their 1) degree of nonlinearity, 2) the

percentage of treated individuals, 3) overlap, 4) alignment (i.e., confounding), 5) treatment

effect heterogeneity, and 6) the magnitude of the treatment effect. For each DGP, we consider

30 simulations with different random seeds for generating treatments and outcomes. Each

simulation within each DGP consists of 58 covariates. We train using 500 random examples

to mimic a challenging small sample regime and further test the finite-sample nature of these

estimators [3]. The ACIC dataset is available at https://github.com/vdorie/aciccomp.

Table 5.2: Synthetic dataset results when the ground-truth propensity score is available.
This table shows the accuracy as measured by PEHE and the number of replications (out
of 30) in which each model outperforms TARNet. The X-Learner outperforms all other
techniques. Results in bold are a statistically significant improvement over TARNet.

Model PEHE (SD) ↓ Improvements
in PEHE ↑

TARNet 1.113 (0.201) —
X-Learner 0.711 (0.220) 29

Weighting 1.015 (0.161) 20
Matching 0.894 (0.163) 24

R-Learner 0.881 (0.139) 26
DR-Learner 0.714 (0.199) 29
DragonNet 1.011 (0.255) 20
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Table 5.3: Top performing models and average rankings on ACIC 2016 dataset across repli-
cations when using ground-truth propensity scores. Overall, the X-Learner obtains the
best average performance. Many propensity score adjustment techniques, including Drag-
onNet, perform poorly.

Model
# Top-Performing
PEHE (/77) ↑

Average Ranking
PEHE ↓

TARNet 2/77 4.66
X-Learner 29/77 2.03

Weighting 1/77 3.65
Matching 35/77 2.97

R-Learner 0/77 6.25
DR-Learner 10/77 3.14
DragonNet 0/77 5.30
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Figure 5.1: Model performance with ground-truth propensity scores relative to TARNet
across all DGPs in the ACIC 2016 dataset. The X-Learner is the only model able to out-
perform TARNet in almost every DGP, though the DR-Learner performs well. DragonNet
and the R-Learner fail to improve over TARNet in a majority of settings.

5.3.1.2 Evaluation Metrics

As outcomes are simulated for all datasets, as in past work [182, 74, 75, 92], we calculate the

ground-truth performance of each model in terms of the PEHE defined in Section 2.2.4.

In line with a majority of past work in the field, we are interested in evaluating models

for their ability to accurately estimate pointwise CATEs [182, 215, 38]. However, in many
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situations, accurate CATE estimates may not be the end goal; future works may consider

how these methods perform with respect to other tasks, such as confidence interval creation

and downstream use [48].

For the synthetic dataset, we average results over 30 replications and report the mean

and standard deviation, and the number of replications in which a technique outperforms

TARNet. We consider comparing all models to TARNet as it does not incorporate any

extra adjustment beyond the confounders and simply models the outcome. By comparing to

TARNet, we can better measure how extra adjustment techniques improve or fail to improve

the model beyond this baseline. For the ACIC dataset, we also consider performance over the

30 replications for all DGPs. We are interested in understanding model performance across

a wide variety of settings, and hence, do not consider averaging PEHE across all DGPs as in

past work [185, 219, 88]. Instead, we report the number of DGPs in which each model was

the top-performing algorithm and the average rank in performance for each model across

all DGPs. We also visualize the relative performance of each method compared to TARNet

across every DGP to understand their gain over the simplest baseline.

5.3.2 Results

Table 5.4: Synthetic dataset results when utilizing an estimated propensity score during
training. All methods degrade, though the X-Learner remains the most robust and outper-
forms all other methods. Results in bold are statistically significant compared to TARNet.

Model PEHE (SD) ↓ Improvements
in PEHE ↑

TARNet 1.113 (0.201) —
X-Learner 0.713 (0.219) 29

Weighting 1.073 (0.281) 21
Matching 1.615 (0.204) 0

R-Learner 1.285 (0.191) 7
DR-Learner 0.774 (0.222) 28
DragonNet 1.011 (0.275) 20

Results with Ground-Truth Propensity Scores. We first compare all techniques

assuming access to ground-truth propensity scores. In the synthetic data, the X-learner,

a technique that only uses models of the outcomes during training, outperforms almost

all other techniques (PEHE: 0.711, SD: 0.220) (Table 5.2). This includes methods that

incorporate estimates of the propensity score during training as well as techniques that use
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both propensity score estimates and potential outcome estimates during training. The DR-

Learner achieves similar performance to the X-Learner, outperforming all other techniques

(PEHE: 0.714, SD: 0.199).

On the ACIC dataset, the X-Learner continues to outperform all techniques with an aver-

age ranking of 2.03 across all DGPs (Table 5.3). Among methods that incorporate estimates

of both the propensity score and the potential outcomes, the DR-Learner continues to show

strong performance compared to baselines (average ranking: 3.14). However, DragonNet

and the R-Learner, despite their strong theoretical guarantees, perform very poorly with

an average ranking lower than that of all other methods. In Appendix C.4, we find that

DragonNet without targeted regularization performs better. However, the X-Learner still

performs better.

Table 5.5: Top performing models and average rankings on ACIC 2016 using estimated
propensity scores across 77 datasets. The performance of all propensity score adjustment
techniques degrade, with X-Learner still remaining robust.

Model
# Top-Performing

PEHE ↑
Average Ranking

PEHE ↓

TARNet 3/77 4.03
X-Learner 47/77 1.57

Weighting 7/77 3.82
Matching 8/77 4.79

R-Learner 1/77 5.55
DR-Learner 10/77 3.45
DragonNet 1/77 4.79

To study results on the ACIC dataset further, we visualize the variability of each model’s

ability to outperform TARNet across DGPs (Figure 5.1). The X-Learner improves over

all techniques, achieving the highest median performance with low variance across settings

(Median improvement: 0.123, IQR: 0.085, 0.174). Compared to the next best-performing

techniques (Matching median improvement: 0.129, IQR: -0.029, 0.281, DR-Learner median

improvement: 0.078, IQR: -0.001, 0.162), the X-Learner provides the best trade-off between

strong average performance and consistent performance across settings. Other techniques

have high variability in terms of their ability to outperform TARNet, with most techniques

unable to consistently do so and some like the R-Learner and DragonNet consistently per-

forming worse. Figure 5.2 shows that the performance of many methods, as measured by

improvement over TARNet, is positively correlated with the level of confounding present in

the dataset. In the synthetic dataset, TARNet outperforms or matches all models except the

X-Learner and the DR-Learner at confounding levels below an alignment of 0.8. Moreover,
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matching performs best at high levels of confounding but can be outperformed substantially

by TARNet at lower levels, explaining the high variability of the performance of matching

on the ACIC dataset. In the ACIC dataset, the ability of most methods to improve over

TARNet has a positive correlation with the level of confounding. However, the X-Learner

consistently outperforms all other methods across levels of confounding. Moreover, at lower

levels of confounding, simpler methods like TARNet may be preferable over many more

complex propensity score adjustment techniques, even with ground-truth propensity scores.

Results with Incorrect Propensity Scores. In the previous section, we assumed

access to ground-truth propensity scores. However, in practice, ground-truth propensity

scores are rarely available. In our final set of experiments, we examine the performance of

these approaches when propensity scores are noisy or estimated. Note that TARNet and

DragonNet are unaffected by these changes, as they do not use explicit estimates of the

propensity score.

First, we consider when propensity score estimates are noisy yet consistent and unbiased

(i.e., in expectation, the propensity scores are correct). To do so, we perturb ground-truth

propensity scores by adding zero-mean Gaussian noise with increasing standard deviation.

These noised propensity scores are clipped between to be within 0 and 1 and are then incor-

porated into the relevant model training and evaluation schemes for different approaches.

On the synthetic dataset, when the standard deviation of noise is small, most methods

that rely on propensity scores during training still perform well (Figure 5.3). However, as

the noise added to the propensity scores increases, most techniques degrade in performance,

eventually performing worse than TARNet. The DR-Learner degrades the most despite the

use of potential outcome estimates. This can be explained by the fact that if the nuisance

models are both misspecified, The DR-Learner no longer necessarily holds strong theoretical

guarantees. The X-Learner remains robust, consistently outperforming all techniques and

only performing slightly worse as the level of propensity score error increases relative to

other techniques. We note that the performance of the X-Learner does decrease with worse

propensity scores in this setting. When the propensity scores are flipped, the X-Learner

performance degrades from a PEHE of 0.711 to 0.761. However, even in this situation, the

X-Learner is more robust than other techniques. In the ACIC dataset, the results are similar.

The PEHE of all methods using propensity scores during training increases as the level of

noise added to the propensity score increases, with the DR-Learner degrading the most. The

X-Learner remains robust as the propensity score is only used to weight the learned CATE

estimators at inference time.

Second, we consider the performance of different techniques when propensity scores must

be estimated and may be biased. We estimate propensity scores using logistic regression,
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a widely used technique in past work [15, 128]. Though there are many techniques for

estimating the propensity score, we focus on a simple and widely used technique, to examine

the implications of this choice. The results remain similar to the previous setting in both

the synthetic dataset and ACIC datasets, where the performance of all techniques besides X-

Learner degrade. In the synthetic dataset, the only method that uses explicit estimates of the

propensity score during training that is able to consistently outperform TARNet is the DR-

Learner, but even its performance degrades compared to when it is given access to ground-

truth propensity scores (PEHE: 0.774, SD: 0.222 vs. PEHE: 0.714, SD: 0.199) (Table 5.4).

Meanwhile, the X-Learner remains robust, outperforming all techniques (PEHE: 0.713, SD:

0.219). On the ACIC dataset, the same results hold. The X-Learner outperforms all other

techniques (average ranking: 1.57), with the performance of all propensity score adjustment

techniques degrading substantially (DR-Learner: average ranking 3.45 vs. 3.14) (Table 5.5

and Figure 5.4).

In the presence of inaccurate propensity scores, the performance of many techniques

degrades substantially. Recent work has shown the effect of propensity score errors may have

a near-negligible effect on downstream CATE estimation when an estimate of the outcome

is also incorporated [40, 56, 142, 105]. However, our empirical results run in direct contrast

to this and show how errors in the propensity score may cause extreme degradation in

CATE estimation performance. Hence, even in datasets with a high degree of confounding,

without access to ground-truth propensity scores, many more complicated techniques may

not outperform models that simply rely on estimates of the outcome, such as the X-Learner.

5.4 Conclusion and Discussion

There exist many popular techniques for adjusting for confounding when estimating CATEs.

Techniques that incorporate estimates of the propensity score and potential outcomes during

training are popular and theoretically strong techniques that are often favored over other

approaches. However, theoretical results for these techniques often do not consider practical

finite-sample performance, limiting their ability to provide guidance in model selection. In

this chapter, we provided an extensive comparison of a wide variety of CATE estimation

techniques across a multitude of different settings using neural networks as base learners.

Our empirical analysis led to important findings that should be considered when building

and using CATE estimation techniques.

First, the X-Learner was able to consistently outperform all techniques across a mul-

titude of different settings, even when these approaches were given access to ground-truth

propensity scores during training. This includes strong baselines like the DR-Learner that in-
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corporate both estimates of the propensity score and the potential outcomes during training.

This points to the sufficiency of outcome-based modeling approaches in practical settings.

Second, we demonstrated the sensitivity of different CATE estimation techniques to errors in

propensity score estimates. We found that such errors can result in a non-negligible decrease

in CATE estimation performance, even for doubly robust techniques like the DR-Learner.

In these settings, the X-Learner, or even simpler algorithms like TARNet, may be preferable

over these more complicated techniques. Our work suggests that outcome-based modeling

techniques may be a better choice in many practical settings for CATE estimation, especially

when confounding levels are low and propensity scores cannot be estimated accurately.

As with all empirical analyses, our work is not without limitations. We examine a limited

set of neural network architectures and CATE estimation techniques. However, we consider a

well-studied popular architecture from past work and popular CATE estimation approaches

in the literature. Our results are an important case study that future research may build on

to test different settings and approaches.

Our work addresses an important gap between theory and practice in CATE estimation,

demonstrating the importance of rigorously evaluating techniques across a variety of settings

to complement theoretical results. Our findings represent important future steps and practi-

cal considerations when learning CATEs using neural networks. Identifying and empirically

investigating assumptions derived from theoretical results is critical for practical progress

across many fields in machine learning [122, 199]. Given these findings, it remains impera-

tive to further investigate popular approaches for CATE estimation, towards the goal of real

use and impact.
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Figure 5.2: The ability to improve over TARNet varies as confounding is changed in the
synthetic dataset (top), with many methods unable to outperform TARNet at lower levels
of confounding. There exists a significant correlation between the level of confounding and
the performance compared to TARNet for most methods in the ACIC dataset (bottom).
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Figure 5.3: CATE error across models as the propensity score is artificially noised on (top)
the synthetic dataset and (bottom) the ACIC 2016 dataset, over all DGPs. The black-
dashed line shows TARNet performance on the synthetic dataset. Once propensity scores
are sufficiently noisy, all methods are outperformed by covariate adjustment approaches,
including both TARNet and the X-Learner.
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CHAPTER 6

Mismatch in Sepsis Risk Stratification and

Clinical Needs

6.1 Introduction

Finally, we consider how mismatches between machine learning research and real clinical

needs manifest through a case study of existing clinical tools for the problem of sepsis risk

stratification. Sepsis contributes to approximately one out of three in-hospital deaths in

the US [1, 158, 204, 54, 175, 121]. Timely identification and treatment of patients with

sepsis can lead to significant improvements in mortality rates among hospitalized patients

[188, 53, 117, 160, 60, 47, 162]. To enhance clinical decision-making, recent work has focused

on developing predictive models that use electronic health record (EHR) data to identify

patients at risk of sepsis [77, 208, 44, 207, 106]. For example, the Epic sepsis model (ESM) is

one of the most widely implemented systems in US hospitals [164, 127]. Similar to the ESM,

the majority of risk stratification tools aim to identify patients at high risk of developing

sepsis prior to the sepsis criteria being met [2, 178, 184, 183]. In this chapter, we first study

the mismatch between how these models are currently evaluated and their ultimate goal of

augmenting clinical intuition. From here, we take a step back to understand whether the

use of current risk stratification tools aligns with the goal of improving patient outcomes.

6.2 Mismatch Between Evaluation of Sepsis Risk

Stratification Tools and Clinical Utility

First, we focus on potential limitations of the evaluation of current sepsis risk stratification

tools. Models such as the ESM make predictions throughout an individual’s hospitaliza-

tion, incorporating relevant changes in a patient’s health status based on the contents of the

EHR. Discriminative metrics, such as the area under the receiver operating characteristic
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curve (AUROC), are commonly used to assess model performance [208, 125, 174]. Typically,

AUROCs are calculated at a hospitalization-level using predictions before a patient meets

sepsis definitions with the goal of evaluating the model’s ability to predict sepsis before it

occurs [208, 144]. However, clinicians may recognize or begin to treat sepsis well before it

is definitively diagnosed. Consequently, predictions occurring after treatment may not be as

clinically useful as those before recognition. This phenomenon, referred to as “label leak-

age,” may be exacerbated in models that include treatments (e.g., antibiotics) as predictors

because the accuracy of such models may largely be derived from predictions made after

clinical recognition [205, 61]. Though this may lead to greater apparent performance, these

predictions do not provide clinicians with new information and instead may contribute to

alert fatigue [34]. In such cases, many patients correctly identified by the model as high-risk

have already been identified by healthcare practitioners [168]. In contrast, a model that

can identify high-risk patients with sepsis before a clinician recognizes signs or symptoms of

sepsis could enable the more timely delivery of care.

We study the mismatch between how current sepsis risk stratification models are evaluated

and their ultimate goal of adding to clinical intuition. While it is difficult to retrospectively

identify which patients a clinician would have otherwise missed, we can evaluate the accuracy

of predictions in advance of indicators of sepsis treatment, where such indicators serve as

proxies for clinical recognition. We introduce and apply a new sepsis model evaluation

framework that incorporates the timing of various indicators of sepsis treatment and use it

to evaluate the ESM to understand the performance of the model with respect to clinical

recognition of sepsis. Our analysis highlights the gap between existing evaluation schemes

and accurately measures the utility of models for augmenting downstream clinical decision-

making.

6.2.1 Methods

Study Cohort. Our retrospective cohort included adult inpatients admitted to the Uni-

versity of Michigan’s academic medical center, Michigan Medicine (MM) between October

2018 and December 2020. We included all hospitalizations in this time period for evaluation

except hospitalizations from psychiatric and rehabilitation units. This study was approved

by the institutional review board (IRB) at Michigan Medicine (HUM: 00176141), and the

need for consent was waived as there was minimal risk to participants.

Definition of Sepsis, Onset Time, and Sepsis Treatments. Sepsis was defined

based on a composite definition of multiple criteria. The composite definition was based on

meeting one of the following two definitions: 1) the clinical surveillance definition defined
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by the Center for Disease Control and Prevention (CDC) [159, 157], or 2) the Centers

for Medicare and Medicaid Services (CMS) definition, corresponding to meeting 2 criteria

for systemic inflammatory response syndrome (SIRS) and 1 criterion for organ dysfunction

within 6 hours of one another (i.e., SEP-1) [198, 95]. For hospitalizations meeting the CMS

definition, the time of meeting the sepsis criteria was defined as the later time of meeting the

SIRS criteria or the organ dysfunction criteria. For hospitalizations that did not meet the

CMS definition, the time of meeting the sepsis criteria was defined as the first time in which

the CDC definition was met. Through electronic data capture, the timing and compliance

of the ordering and administration of indicators for sepsis treatment were measured with

respect to the time at which sepsis criteria were met [117, 60]. Initial validation of the data

capture was completed manually by a team of clinical analysts and engineers to ensure nearly

perfect accuracy in identifying relevant treatment indicators. We included treatment and

diagnostic orders as indicating the initiation of a treatment plan: fluids, antibiotics, lactate

measurement (captured from both order sets and individual orders), and blood culture.

The Epic Sepsis Model. The ESM is a sepsis risk model developed by Epic Systems

Corporation, Verona, Wisconsin [208, 193]. The ESM uses data recorded within the EHR to

make predictions every 20 minutes during a hospitalization. The ESM is a penalized logistic

regression model that outputs a continuous score between 0 and 100, where 0 represents

the lowest possible risk and 100 represents the highest. We considered individuals with

ESM scores before the first of 1) meeting the sepsis criteria, 2) ordering of any indicator for

treatment of sepsis, or 3) death or discharge.

Evaluation Framework. We evaluated model predictions at key time points during the

hospitalization to understand the performance of the model in relation to clinical recognition

of sepsis (Figure 6.1). To mimic a situation in which a clinician has not yet recognized

sepsis and initiated treatment, we used predictions preceding when sepsis criteria were met

and the first indicator of treatment. We compared the predictive performance resulting from

the evaluation above with that achieved when evaluating using only predictions before the

time that the sepsis criteria were met. In addition, as an upper bound on performance,

we evaluated model performance using predictions up until discharge, including predictions

made after sepsis criteria may have been met. We calculate a hospitalization-level AUROC,

where an AUROC of 0.5 means a model’s performance is no better than random. To calculate

a hospitalization-level AUROC, we take the maximum ESM score as the hospitalization-level

score for predictions before each evaluation time point separately for each hospitalization.

This evaluation mimics how the ESM would generate alerts in a real clinical setting, where

an alert would be fired for a particular hospitalization if the threshold was ever exceeded

up to the time point of interest [208, 144]. We estimated the 95% confidence interval of
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Figure 6.1: Overview of different evaluation schemes. In Patient 1, indicators of treatment
for sepsis occur before sepsis criteria is met. In Patient 2, sepsis criteria is met before
any treatment indication. If the model is relying on treatment indicators, then in the case
of Patient 1, ESM model accuracy should decrease if data collected after the initiation of
treatment are excluded. However, for Patient 2, ESM model accuracy should not change
because no treatments were ordered before the time the sepsis criteria was met. For both
patients, the highest ESM model accuracy should occur when using all data up to the time
of discharge.

the AUROC with 1,000 bootstrap samples. We also measured the positive predictive value

(PPV) and sensitivity of the ESM at a score threshold of 6, which is currently used to

generate alerts at MM.

In a sensitivity analysis, we separately evaluated with respect to each treatment indicator

(antibiotics, lactate measurement, fluids, blood culture) to better understand which treat-

ment indicators drove changes in performance. In addition, we evaluated with respect to

diagnostic orders (lactate and blood culture collection) and treatment orders (antibiotic and

fluid administration) separately.

Secondary Analyses: Adjusting for the Amount of Data Available. Evaluat-

ing sepsis prediction models based on the timing of indicators for treatment could exclude

significant portions of a patient’s hospitalization, thereby reducing the amount of available

data for making predictions. In many cases, clinicians may order treatments well in advance

of sepsis criteria being met. To measure the amount of data available at different points of

evaluation, we quantify the number of laboratory and medication orders for admissions in

64



which the individual met the sepsis criteria at each time-point of evaluation. To control for

the amount of data available to the algorithm, we stratify the number of orders available

at treatment initiation into quintiles, and we evaluate the ESM within each stratum. We

compare ESM performance when evaluating with respect to the time of the first indicator

for treatment and the time of the sepsis criteria being met. Across all quintiles, we keep all

individuals without sepsis as negative examples to calculate the AUROC.

6.2.2 Experiments and Results

Through our experiments, we aim to answer the following questions:

1. Do clinicians recognize and treat sepsis prior to sepsis criteria being met?

2. How does the performance of models differ when evaluating with respect to varying

levels of clinical recognition?

3. Are differences in performance among different evaluation schemes solely due to the

amount of data available to the model?

Population Characteristics. We identified 77,582 hospitalizations that met our inclu-

sion/exclusion criteria for the study cohort. Of these hospitalizations, sepsis occurred in

3,766 (4.9%). A total of 3,538 (93.9%) hospitalizations with sepsis had some indicator of

sepsis treatment. Over 70% of the hospitalizations with sepsis received orders for antibiotics

(76.4%), blood culture (72.4%), or lactate measurement (77.6%) as part of a treatment plan

for sepsis, while only 29% were ordered some level of fluids for sepsis. Over 45% of sepsis

hospitalizations had antibiotics, blood culture, or lactate measurements ordered before the

time of sepsis, with median lead times of 55 minutes, 46 minutes, and 43 minutes before

sepsis criteria were met respectively (Figure 6.2). Treatment indicators preceded the time

of meeting the sepsis criteria in 3,193 (84.8%) of hospitalizations. Lactate was the first

treatment indicator ordered in 47.1% of hospitalizations, followed by antibiotics (23.7%) and

blood cultures (20.0%).

Primary Analysis Evaluation With Respect to Varying Degrees of Clinical

Recognition. Using all predictions up until discharge during a hospitalization, the model

achieved an AUROC of 0.87 (95% CI: 0.86-0.87), a PPV of 16% (95% CI: 16%-17%), and

a sensitivity of 79% (95% CI: 78%-80%). Using only predictions before meeting the sepsis

criteria, the ESM model had an AUROC of 0.62 (95% CI: 0.61- 0.63), a PPV of 8% (95%

CI: 8%-9%), and a sensitivity of 38% (95% CI: 36%-39%). Further restricting to predictions

made before treatment indicators, performance decreased, with an AUROC of 0.47 (95%
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Figure 6.2: Temporal distribution of indicators of treatment with respect to sepsis criteria
time. The dashed vertical bars represent the median time for each treatment. Antibiotics,
blood culture collections, and lactate measurements are ordered substantially before the time
of sepsis. Nearly half of the population has orders for lactate measurement, antibiotics, or
blood cultures before the onset of sepsis.

CI: 0.46-0.48), a PPV of 5% (95% CI: 4%-5%), and a sensitivity of 20% (95% CI: 19%-

22%). Performance dropped most when predictions were restricted to before the time of

blood culture orders (AUROC: 0.53, 95% CI: 0.52-0.54, PPV: 5.9%), and dropped the least

when predictions were restricted to before the time of fluid orders (AUROC: 0.61, 95% CI:

0.60-0.620, PPV: 8.0%) (Figure 6.3). When evaluating at the first diagnostic order (i.e.,

lactate and blood culture collection), the ESM achieved an AUROC of 0.9 (95% CI: 0.48,

0.50). Meanwhile, when evaluating at the first treatment order (i.e., antibiotic and fluid

administration), the ESM achieved an AUROC of 0.55 (95% CI: 0.54, 0.56).

Secondary Analyses: Adjusting for the Amount of Data. For a majority of cases,

treatment indicators preceded when sepsis criteria was met (84.8%). At treatment indicator

time, individuals had on average significantly fewer orders compared to when sepsis criteria

is met (median count 22 [IQR: 9-92] vs. 79 [IQR: 28-187]). Adjusting for the amount of data

available to the algorithm, the ESM model consistently performed worse when evaluating

before treatment indicator time rather than before sepsis criteria meeting time across all

levels of available data (Figure 6.4). However, the gap decreased as more data become

available to the ESM model, as measured by the number of orders.

Overall, clinicians tended to order treatments for sepsis before sepsis criteria were met.

Moreover, the performance of the ESM dropped significantly when evaluating prior to clinical

recognition of sepsis compared to the standard evaluation using data prior to sepsis criteria

being met. This trend remained true even when adjusting for the amount of data given to

the model. Our analysis points to an important mismatch between how the utility of sepsis

risk stratification tools is currently measured and how these tools are used downstream to

augment clinical decision-making.
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Figure 6.3: Evaluating the ESM with respect to different treatments. Evaluating the ESM
with respect to different treatments. We visualize the performance with 95% confidence
intervals for each evaluation. The blue dashed line denotes the ESM performance with
respect to sepsis criteria time. The model performance drops the most when evaluating using
predictions before the time of blood culture orders, achieving nearly random performance.
Meanwhile, model performance only drops slightly when using predictions before orders for
fluids.
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Figure 6.4: Evaluating the ESM with respect to different treatments. We visualize the
performance with 95% confidence intervals for each evaluation. The blue dashed line denotes
the ESM performance with respect to sepsis criteria time. The model performance drops the
most when evaluating using predictions before the time of blood culture orders, achieving
close to random performance. Meanwhile, the model performance only drops slightly when
using predictions before fluid ordering.

6.3 Mismatch Between Estimating Risk of Sepsis and

Improving Patient Outcomes

In the previous section, we studied the mismatch between how current sepsis risk stratifica-

tion tools are evaluated and how they may best augment clinical intuition in practice. Our

new evaluation procedure helped highlight the limitations of existing risk stratification tools

when the goal is to predict sepsis. In this section, we take a step back to model development

and study the mismatch between the objective of current risk stratification approaches and

the goal of improving patient outcomes.

To date, the majority of work in patient risk stratification has focused on approaches

that identify individuals at risk of developing a disease and often overlook the heterogeneous

effects of the disease on patient outcomes [44, 77, 106, 136, 207, 208]. Interventions can then

be allocated to those most likely to develop sepsis as identified by the model. When the goal

is to improve patient outcomes, this approach assumes that those at risk of developing sepsis

are also most likely to experience severe disease. However, the validity of this assumption

has not been well-studied. Concretely, there may be patients who are likely to develop a

disease but who are unlikely to suffer complications or die from it. Interventions targeting
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these individuals, at the cost of delaying treatment to those who may be less likely to con-

tract a disease but more likely to suffer complications or die, may be detrimental to the goal

of improving patient outcomes. In this study, we probe the potential shortcomings of the

objective of existing sepsis risk stratification tools and study the importance of considering

disease severity in the context of risk stratification tools for sepsis. We focus on estimating

the effect of sepsis on mortality within two large clinical cohorts and compare this with the

estimated risk of developing sepsis at the level of the individual. Our analyses uncover signif-

icant heterogeneity in disease severity that only weakly correlates with the risk of developing

sepsis. Beyond sepsis, this highlights the importance of accounting for downstream hetero-

geneity when building patient risk stratification models to guide interventions and further

highlights the mismatch between existing risk stratification tools focused on predicting the

likelihood of sepsis and the ultimate goal of improving patient outcomes.

6.3.1 Methods

6.3.1.1 Problem Set-Up and Cohort Definition

Study Cohorts. We use two retrospective cohorts. The first includes adult patients ad-

mitted to Michigan Medicine the hospital affiliated with the University of Michigan (U-M)

between 2016 and 2020. In our primary analysis, we focus on only admissions to the ICU. The

second cohort includes adult patients admitted to the ICU at Beth Israel Deaconess Medical

Center between 2008 and 2012 (BIDMC) [94]. For both cohorts, we excluded admissions in

which a suspected sepsis infection occurred prior to ICU admission, after ICU discharge, or

within 1 hour of the model data collection, and admissions with missing data as defined by

missing chart events or missing admission or discharge times [93, 136, 31]. In a secondary

analysis involving the U-M dataset, we do not limit ourselves to ICU-only admissions and

include in-patients across the entire hospital for evaluation (see Appendix D.1.6). The

use of the U-M dataset for this study was approved by the institutional review board at the

University of Michigan (HUM: 00176141). The BIDMC cohort is publicly available through

Physionet [94].

Outcome Definitions. In the U-M cohort, we define sepsis similarly as before and use

a composite of meeting either 1) the clinical surveillance definition created by the Center for

Disease Control and Prevention (CDC), or 2) the Centers for Medicare and Medicaid Services

(CMS) definition, with onset defined similarly as in the previous section [95, 157, 198].

Within the BIDMC cohort, we could not obtain accurate information relevant to the CDC

surveillance definition. Thus, in line with past work, we used a pragmatic definition based

on the Sepsis-3 criteria, defining onset time by identifying the acquisition of a body fluid
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Figure 6.5: The assumed causal graph for our work. The dashed lines represent causal rela-
tionships for the treatment that is not currently captured in the data Patient characteristics
affect the likelihood of sepsis and mortality, all of which are fully observed in our data. Sepsis
also affects the likelihood of mortality. Finally, there exists a potentially novel intervention
currently not observed in the data. Our goal is to understand how to allocate interventions
to patients to reduce the overall mortality rate.

culture temporally contiguous to the administration of antibiotics [93, 136]. For both cohorts,

in-hospital mortality was identified by utilizing discharge information.

Feature Extraction. For all patient admissions, we collect demographics, vital sign

measurements, laboratory test results, and nursing score information, such as Glasgow coma

scores and sedation information, throughout the hospitalization (see details in Appendix

D.1.2). We include features that could be potential confounders between the development

of sepsis and the likelihood of mortality to ensure the identifiability of causal effects. We do

not include features that are treatments after sepsis has been recognized, such as the use of

antibiotics or infrequently collected laboratory tests (i.e., laboratory tests collected in less

than 40% of encounters in the U-M cohort). Despite best efforts to utilize similar features

in the U-M and BIDMC cohorts, feature categories differed slightly. The full list of features

considered can be found in Appendix D.1.2. All EHR data was preprocessed separately

for each cohort using FIDDLE with the default settings [192].

6.3.1.2 Model Development and Evaluation: Estimating Sepsis Risk and Sepsis

Severity

Overview. We study a scenario in which a patient’s characteristics affect both their likeli-

hood of developing sepsis as well as their likelihood of death during the current hospitaliza-

tion. Developing sepsis has a direct effect on mortality, but this effect may be heterogeneous
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among patients. While past work has focused on estimating treatment benefits [85, 49, 129],

we assume a setting in which we aim to target some novel intervention not present in the

available data (e.g., additional monitoring) (Figure 6.5). Given this causal model, we aim

to estimate an individual’s risk of developing sepsis and an individual’s risk of severe sepsis

as measured by the increase in the likelihood of in-hospital mortality. To estimate sepsis

risk, we build a machine-learning model that maps an individual’s characteristics throughout

their admission to a probability estimate of the likelihood of developing sepsis. To estimate

sepsis severity, we use causal inference techniques to map an individual’s characteristics to

an estimate of the effect of developing sepsis on their risk of mortality. This effect estimate

is between -1 (i.e., developing sepsis decreased the likelihood of mortality from 100% to 0%)

and 1 (i.e., developing sepsis increased the likelihood of mortality from 0% to 100%).

Model Development: Estimating the Risk of Developing Sepsis (Sepsis Risk).

To estimate an individual’s risk of sepsis, we train an ensemble of XGBoost models for each

cohort to predict the likelihood of sepsis at every hour in an admission in line with past work

[100, 144]. We use the XGBoost model as it has achieved strong performance in past work

for predicting sepsis as it flexibly captures non-linear relationships between the patient’s

features and the development of sepsis [218, 213]. XGBoost models are preferred over other

techniques due to their simplicity and ability to be combined with existing interpretability

and explainability techniques, while maintaining strong performance [81, 221]. We split the

data for each cohort into development and evaluation cohorts. In the U-M cohort, for model

development, we use all inpatients from January 2016 to October 2018. In our evaluation

cohort, we focus on only admissions to the ICU from October 2018 to December 2020. For

BIDMC, we randomly split the data such that 70% of the admissions are used to develop

models in this dataset, and the remaining 30% are used for evaluation. During training, we

use a single window of one hour of data randomly sampled for each hospitalization, only

including windows prior to the first of death, discharge, or sepsis onset. We repeat this

process 50 times, leading to 50 different XGBoost models. We choose an ensemble in this

manner to ensure we can learn from multiple windows during a patient’s admission while

reducing variance and increasing the accuracy of the model [152]. At inference time, the

outputs of each model are averaged to create a final prediction for each window. We select

hyperparameters for each model using 5-fold cross-validation, maximizing the AUROC for

each of the 50 randomly sampled training cohorts (see Appendix D.1.3 for detail).

Applied to the held-out evaluation cohort, we separately evaluate the sepsis risk model

for each cohort in terms of the AUROC for predicting sepsis at the hospital admission level.

Here, AUROC was calculated at the hospital admission level, taking the maximum of each

score among the hourly windows [100, 208, 144]. We estimate the 95% confidence interval
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with 500 bootstrap samples.

Model Development: Estimating Effect of Sepsis on Mortality (Sepsis Sever-

ity). We continue with making the assumptions from Section 2.2.2 necessary for causal

effect estimation. Given these assumptions, to estimate the effect of sepsis on mortality,

based on best practices, we use a multitude of causal inference techniques. We apply these

techniques independently to both cohorts, splitting the data into development and held-out

evaluation cohorts as above. We train each model to map patient features from each one-hour

data window to the effect of developing sepsis on the likelihood of mortality. We use three

popular causal inference algorithms. First, we train an S-Learner, which predicts in-hospital

mortality using both the covariates and the observed sepsis label as an extra covariate [112].

We use this model to estimate the effect of sepsis on mortality for a particular hospitaliza-

tion by taking the difference between the model outputs when using the covariates with the

sepsis label set to 1 and 0 respectively. Next, we also use the X-Learner and the DR-Learner

due to their strong performance in Chapter 5. Here, we split the training data in half and

used separate data for the first and second stages of these models to prevent overfitting. All

models are an ensemble of XGBoost models, and hyperparameter selection was based on

5-fold cross-validation to maximize performance (see Appendix D.1.3 for details).

Due to the lack of ground truth, we use an approximate metric to evaluate the causal

estimates on the held-out evaluation cohorts. We perform a global null analysis, separately

training causal inference techniques using random treatments in both the treatment and

control groups [211, 210]. In such a situation, the ground-truth treatment effect should be

0 as the treatment is random. We evaluate each model by calculating the mean squared

error between each estimated treatment effect and 0 across all estimates for all admissions

and hourly windows in each evaluation set [211, 210]. We estimate the 95% confidence

interval with 500 bootstrap samples. As this metric is simply approximate, it does not

perfectly evaluate the accuracy of different causal inference models. For completeness, we

run our remaining analyses using all causal effect estimation models and ensure that our

main findings consistently hold regardless of the model used, as suggested by past work

[210, 112]. Finally, we also evaluate the S-Learner’s ability to accurately estimate mortality

within both the septic and non-septic populations in terms of the AUROC on the evaluation

set. Note that, by construction, this is impossible to measure for the X-Learner and the

DR-Learner.

6.3.1.3 Statistical Analysis

Heterogeneity in Sepsis Severity. To examine the effect of sepsis on mortality, we first

visualize all estimated treatment effects for each hospital admission and report the median
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on each evaluation set. To measure heterogeneity, we calculate entropy by creating a discrete

probability distribution by binning the learned estimated effects into 20 equal-sized intervals

between -1 to 1. By binning the estimated effects in this manner, we can understand the

variability of sepsis severity across 10% thresholds. In this setup, the maximum entropy

possible is 3 (i.e., the entropy when there is an equal proportion of examples within each

interval), while the minimum entropy is 0. As we make effect predictions at an hourly level,

we aggregate all predictions by calculating the mean estimate for each admission across all

windows.

Correlation Between Sepsis Risk and Sepsis Severity. To understand the rela-

tionship between the likelihood of developing sepsis and the effect of sepsis on mortality,

we calculate the Spearman’s correlation between the two estimated values. To estimate the

relationship between these variables at a per-admission level, we again aggregate all predic-

tions by calculating the mean estimate for each admission across all windows. We estimate

the 95% confidence interval with 500 bootstrap samples of this aggregated dataset. To fur-

ther visualize the relationship between sepsis risk and sepsis severity, we plot the mean and

95% confidence interval of the estimated effect of sepsis on mortality for each quintile of the

estimated risk of sepsis separately across all windows for each cohort. We also visualize the

empirical distributions of estimated effects for high-risk and low-risk windows respectively,

where high-risk is defined as the top 20% of estimated risk of sepsis among all windows for

each dataset, where 20% is chosen to match the alert rate of existing sepsis risk stratification

models

As we can validate the performance of the S-Learner using the observed outcomes, and

due to its strong performance compared to the other methods in early experiments, we

report the statistical analysis results of the S-Learner in this section and leave results for the

X-Learner and the DR-Learner in Appendix D.1.5.

6.3.2 Experiments and Results

To study the mismatch between the objectives of current sepsis risk stratification approaches

and the ultimate goal of allocating treatments to improve patient outcomes, we are interested

in answering the following questions through our experiments:

• Is there heterogeneity in the effect of sepsis on mortality?

• How does the risk of developing sepsis correlate with the effect of sepsis on mortality?

Our final study population used for evaluation consisted of 7,282 ICU stays in the U-

M cohort and 5,942 ICU stays in the BIDMC cohort. Information about the development
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cohorts for each dataset in Appendix D.1.4. In the U-M evaluation cohort, 576 (7.9%)

of ICU stays developed sepsis, and 574 (7.9%) admissions experienced in-hospital mortality.

Within septic ICU stays, 126 (21.9%) experienced in-hospital mortality, while for non-septic

ICU stays, 448 (6.7%) experienced in-hospital mortality. In the BIDMC evaluation cohort,

483 (8.1%) ICU stays developed sepsis, while 512 (8.6%) experienced in-hospital mortality.

Within the septic group, 127 (26.3%) experienced in-hospital mortality, while 385 (7.1%)

non-septic ICU stays experienced in-hospital mortality.

For the task of predicting the risk of developing sepsis, our learned models achieved an

AUROC of an AUROC of 0.69 (95% CI: 0.67-0.71) in the U-M cohort and 0.74 (95% CI:

0.72-0.77) in the BIDMC cohort. For the task of predicting the risk of in-hospital mortality

without sepsis and with sepsis, the S-Learner achieved AUROCs of 0.89 (95% CI: 0.87-0.90)

and 0.79 (95% CI: 0.74-0.83) respectively in the U-M cohort and AUROCs of 0.87 (95% CI:

0.85-0.88) and 0.77 (95% CI: 0.73-0.82) respectively in the BIDMC cohort. The global null

test shows that all models can accurately predict null treatment effects if they exist in the

data, with the S-Learner performing the best (Table 6.1).

U-M: Sepsis U-M: No Sepsis BIDMC: Sepsis BIDMC: No Sepsis

S-Learner 0.00 (0.00-0.00 0.00 (0.00-0.00) 0.00 (0.00-0.00) 0.00 (0.00-0.00)

X-Learner 0.00 (0.00-0.00) 0.00 (0.00-0.00) 0.01 (0.01-0.01) 0.00 (0.00-0.00)

DR-Learner 0.01 (0.01-0.01) 0.00 (0.00-0.00) 0.02 (0.02-0.02) 0.00 (0.00-0.00)

Table 6.1: Global null results for all causal inference techniques across
both datasets and when the model is trained on the septic admissions with
random treatments and the non-septic admissions with random treatments.

To answer the first research question, we visualize the estimated effect of sepsis on mor-

tality across all models and datasets (Figure 6.6). The S-Learner estimated a median effect

of sepsis on mortality of 6.19 percentage points and 8.82 percentage points in the U-M co-

hort and the BIDMC cohort respectively. The entropy of the estimated effect of sepsis on

mortality was 0.92 in the U-M cohort, and 0.87 in the BIDMC cohort. The X-Learner and

DR-Learner showed similar heterogeneity (see Appendix D.1.5).

The Spearman’s correlation between the estimated risk of sepsis and the estimated effect

of sepsis on mortality showed a weakly positive relationship in both datasets (0.35 [95%

CI: 0.33-0.37] and 0.31 [95% CI: 0.28-0.34]). Within quintiles of sepsis risk, there is large

variability in the effect of sepsis on mortality within patient windows (Figure 6.7(a), Fig-

ure 6.7(b)). Many data points with a heightened sepsis risk might not experience severe

consequences upon developing sepsis, while many at low sepsis risk could face significantly

increased mortality risk if they were to develop sepsis. Among windows in the highest 20%

risk of developing sepsis, sepsis was not estimated to substantially increase the risk of mor-
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Figure 6.6: Estimated effect of sepsis on mortality across hospital admissions as estimated
by the S-Learner. The average estimated effect is positive in both datasets. Moreover, there
is substantial heterogeneity in the estimated effect of sepsis on mortality.

tality (i.e., < 5 percentage points) for 34.8% and 17.9% of windows in the U-M and BIDMC

cohorts respectively (Figure 6.7(c), Figure 6.7(d)). Meanwhile, for the remaining 80% of

windows, developing sepsis was estimated to have a substantial increase in mortality risk

(i.e., > 20 percentage points) in over 7% of windows within each cohort. These overall

findings hold for all other causal inference techniques, with most models showing a weak

correlation between the risk of developing sepsis and the effect of sepsis on mortality (see

Appendix D.1.5).

Overall, through our analysis, we found that: 1) there is substantial heterogeneity in

the effect of sepsis on mortality and 2) those at a higher risk of sepsis are not necessarily

more likely to experience mortality due to the development of sepsis. Our results bring into

question the objective of current sepsis risk stratification tools and highlight the mismatch

between how tools are currently built and the ultimate goal of augmenting decision-making

towards improving downstream patient outcomes.
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Figure 6.7: Relationship between the effect of sepsis on mortality, as estimated by the S-
Learner, and the risk of developing sepsis. The estimated effect of sepsis on mortality is
larger for windows within higher quintiles of risk of sepsis (top). Meanwhile, there are many
high-risk sepsis windows that are still estimated to have a low effect of sepsis on mortality, yet
many low-risk windows would be severely adversely affected by developing sepsis (bottom).
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6.4 Discussion and Conclusion

Recent work has emphasized the need to accurately frame the development and evaluation of

machine learning models to understand their potential for clinical impact [114]. In line with

this idea, we perform a deep dive into existing risk stratification tools for sepsis. We focus on

studying the mismatch between how current tools are built and evaluated and what is needed

to augment clinical care and improve patient outcomes. First, we evaluated a commonly used

sepsis risk prediction model, the ESM, with respect to when a clinician places an order for

an indicator of treatment. We found that a majority of individuals who developed sepsis

received some order for an indicator of sepsis treatment before they met the criteria for sepsis.

Excluding predictions after treatment indicators, the model’s performance was no better than

random and performed significantly worse compared to using predictions up to meeting the

sepsis criteria. This suggests that the ESM, a popular existing risk stratification tool, cannot

help in identifying cases before clinical recognition. Next, we focused on understanding the

limitations of the overall objective of existing risk stratification tools. Standard sepsis risk

stratification approaches often focus on identifying patients at greatest risk of developing the

disease. These approaches assume that prioritizing those most at risk of acquiring disease

is optimal for reducing downstream mortality. We explored this assumption in the context

of patient risk stratification for sepsis. Across both cohorts, the effect of developing sepsis

on mortality was heterogeneous. Moreover, we consistently found that the risk of sepsis

was only weakly correlated with the effect of sepsis on mortality. These findings held across

both datasets and across causal inference techniques with only slight variability, pointing

to an important limitation in standard sepsis risk stratification approaches. Overall, our

findings highlight the importance of considering how risk stratification models will be used

downstream when developing and evaluating ML models.

We began by focusing on an evaluation of existing risk stratification tools. We focused

on the ESM due to its prevalence in healthcare systems across the US. The clinical utility

and performance of the ESM has been a topic of recent interest across intuitions [20, 29,

125, 126]. In our study, we focus on measuring the performance of the ESM with respect

to when a clinician places an order for a treatment indicator. In line with the type of

evaluation proposed by Beaulieu-Jones et al., this helps to shed light on whether the ESM is

simply relying on clinical intuition (i.e., looking over the shoulders of clinicians) or actually

augmenting clinical knowledge in predicting the likelihood of sepsis [208, 19]. Building on

this work, we present a new evaluation scheme for sepsis risk stratification that accounts

for clinical intuition and evaluate a widely implemented sepsis risk model using this new

evaluation scheme. Through our analysis, we found that clinicians ordered treatment before
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sepsis criteria were met in a large majority of the sepsis population. Moreover, we found

that the discriminative ability of the ESM during standard evaluation is attributable to

predictions made after sepsis was clinically recognized and treatments were initiated, even

when adjusting for the amount of clinical data available to the model. The poor performance

of the ESM within this context helps to explain other recent work focused on evaluating the

ESM, which have found that the ESM scores often do not cross the alert threshold for positive

patients until after antibiotics are given or after lactate is measured [208, 20]. Moreover, the

poor performance when evaluating using predictions before antibiotics helps explain findings

in recent work by Burgin et al., who reported no improvement in the time to antibiotics for

patients with sepsis when using the ESM [29]. These findings suggest that the ESM may not

provide utility in guiding the timing of treatment before clinicians have already made that

decision. Overall, this work shows the gap between existing evaluation schemes of sepsis risk

stratification approaches and the goal of understanding the utility of a model for augmenting

clinical decision-making.

We then studied the limitations of the objectives used to build existing sepsis risk strati-

fication tools. When understanding how to allocate treatments in real clinical applications,

recent work has considered estimating heterogeneous treatment effects [129, 85]. However,

when understanding how to allocate a novel treatment that does not yet exist in the data,

past work defaults to stratifying individuals by their likelihood of developing disease. These

approaches assume that prioritizing those most at risk of developing the disease is optimal

for reducing downstream mortality. We probed the validity of this assumption, finding that

this assumption does not hold across two large clinical cohorts. The effect of sepsis on mor-

tality was estimated to be heterogeneous. Moreover, the risk of sepsis was estimated to

have a slight positive relationship with the effect of sepsis on mortality, indicating that those

most likely to develop sepsis are more likely to experience mortality due to it. However, we

found that this relationship was not strong, with correlations less than 0.5 across all causal

inference methods and datasets. There are many windows of data with a high estimated

risk of developing sepsis whose effect of sepsis on their mortality is quite low, and vice versa,

there are many individuals who would not be classified as high risk of sepsis, whose mortality

rate would greatly increase if they were to develop sepsis. Allocating interventions to the

former rather than the latter could delay interventions to those who would most benefit,

displaying the importance of considering downstream heterogeneous effects of disease when

allocating new treatments and resources. These findings highlight the importance of consid-

ering the downstream effects of diseases on patient outcomes, towards the goal of improving

the allocation and prioritization of treatments to improve individual health outcomes.

Though our analyses are focused on sepsis, our findings provide important implications
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when developing and evaluating predictive models for other clinically relevant diseases. Pre-

dictive models are often built to estimate the likelihood of certain diseases in the hospital,

such as Clostridium difficile and COVID-19 [144, 28]. These models follow the same principle

of allocating treatments to those most at risk of developing the disease and evaluating with

respect to the time of disease onset. However, the effect of these diseases on downstream

complications, such as mortality, may be heterogeneous. Moreover, clinicians may recognize

and treat signs of disease well before their deemed onset time. Our work complements past

attempts to identify severe cases of disease and evaluate a model’s ability to augment clinical

intuition by performing an in-depth case study of existing sepsis risk stratification method-

ologies [24, 19]. The framework we consider throughout our studies can hence be used to

study patient risk stratification in a multitude of different clinically relevant diseases.

Our study is not without limitations. First, we identified sepsis based on specific defi-

nitions and identified the ordering time of indicators for sepsis treatment according to this

definition. However, sepsis definitions are still debated [172, 69, 95]. Next, we only assessed

the ESM under the new evaluation scheme. Importantly, our goal was not to find the best

sepsis risk model but rather to understand the limitations of current evaluation procedures

for existing risk stratification tools. Moreover, when estimating the effect of sepsis on mor-

tality, we assume a particular graphical model of the world. We stress that this model of

the world is an oversimplification of the truly complex nature of sepsis and most diseases.

However, we consider this a proof of concept for understanding the importance of modeling

downstream heterogeneity in patient outcomes due to disease. Next, as we are estimating

causal effects from observational data, our causal inference techniques rely on stringent as-

sumptions that are untestable in the data. We cannot accurately measure whether we have

sufficient overlap between the sepsis and no sepsis populations and whether we have mea-

sured all relevant confounders that may affect the likelihood of developing sepsis and the

effect of sepsis on mortality. Violations of these assumptions may result in biased treatment

effect estimates. Finally, due to the lack of ground-truth treatment effects, we are unable

to accurately validate the learned effect of sepsis on mortality, despite the use of a proxy

evaluation. To overcome this, we follow past work and ensure that our key takeaways hold

across a multitude of different causal inference techniques [210, 112].

Overall, our findings have significant implications for the development and evaluation of

clinically useful models for sepsis prediction. When building predictive models for identi-

fying individuals for whom to prioritize treatment, researchers often ignore the potentially

heterogeneous effects that the acquisition of the disease may have on downstream patient

outcomes. Moreover, researchers often evaluate these models with respect to disease on-

set, rather than with respect to clinical intuition. Our findings emphasize the limitations
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of these approaches and highlight the importance of considering the mismatches between

existing tools and how they may be used in clinical settings.
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CHAPTER 7

Conclusion

This dissertation focused on the mismatch between what ML models are optimized and

evaluated for and what is needed in certain clinical contexts for risk prediction and resource

allocation. The lack of adoption of existing techniques is likely due to a variety of contributing

factors, including a gap between ML objectives and clinical needs. ML models are often

optimized and evaluated according to common benchmark tasks. However, the specific needs

of a healthcare worker in certain contexts might differ from what an ML model is optimized

for. For example, past work often focuses on accurate treatment effect estimation. However,

in many scenarios, clinicians simply need an accurate ranking of individuals ordered by

their benefit from treatment. This mismatch can result in sub-optimal ML models and slow

adoption of these models. Our primary thesis centers around the idea that specific clinical

needs can and should inform training and evaluation of ML models for greater clinical impact.

In this dissertation, we explored issues slowing the adoption of ML algorithms in clini-

cal practice and presented new approaches towards bridging the gap between research and

practice. We focused on the problems of risk prediction and resource allocation due to their

potential for improving decision-making and impacting clinical care and provided evidence

that such mismatches persist in existing tools and research. Our work shows that researchers

should continue studying the mismatch between models and clinical needs across other tasks

at the intersection of machine learning and healthcare towards more adoption of meaning-

ful ML models to augment clinical workflows and improve patient outcomes. Overall, our

work builds on research spanning several fields, including survival analysis and causal effect

estimation. We summarize our contributions and place them in the context of the broader

literature below.

First, when building survival analysis models, good calibration is an essential aspect for

personalized and individualized decision-making. In particular, calibration can be vital to

help patients and healthcare professionals make life decisions in anticipation of some health

event. However, as discussed inChapter 3, past work has focused on training and evaluating

for discriminative performance, achieving state-of-the-art results by utilizing deep learning
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models without the use of distributional assumptions [116, 156]. However, discriminative

performance alone does not ensure good calibration. To address this gap, we presented

a framework for training and evaluating deep survival models that focuses on

both calibration and discriminative performance. We provided a theoretically sound

approach for training deep survival models that, when applied in the context of a state-of-the-

art neural network architecture, led to significant gains in the trade-off between calibration

and discriminative performance across two publicly available clinical datasets. This work

cautions against overfitting to one particular metric when training deep survival models and

encourages model developers to adopt a more comprehensive evaluation that better aligns

with potential clinical utility. Overall, this work represents a step towards the use of survival

analysis models to augment clinical decision-making for risk prediction.

Next, we move from risk prediction to intervention allocation and study the mismatch

between techniques in causal inference and the needs of practitioners. When considering in-

tervention allocation in resource-constrained settings, practitioners often wish to understand

who would benefit most from a particular treatment. Hence, past work focuses on accurately

estimating CATEs from observational data to help rank individuals. However, in many sce-

narios, practitioners simply require a ranking of individuals by most benefit. In Chapter

4, we studied the objective mismatch between accurate CATE estimates and an

accurate ranking of individuals when the goal is maximizing benefit across all treatment

thresholds. We showed that accurate CATE estimates are a sufficient but not necessary

condition for optimal expected benefit and that better CATE accuracy does not necessar-

ily correspond to a better ranking. We presented a novel approach for directly optimizing

for ranking and, through an empirical case-study, we showed the efficacy of optimizing for

expected benefit for treatment allocation at low sample sizes across two synthetic datasets.

This work is an important step for bridging the theory and practice of resource allocation

techniques and highlights the potential for sub-optimality of current ML approaches when

not considering clinical context.

Third, in situations where accurate CATEs are necessary for decision-making, there ex-

ists a multitude of approaches for estimating accurate causal effects. All methods aim to

overcome issues due to confounding, which if left unaddressed, can lead to biased and inac-

curate CATE estimates. As shown in Chapter 5, popular techniques can often be classified

into three different categories, each with its theoretical strengths and guarantees. Theoret-

ical results often assume infinite data, and hence, how this theory translates into a variety

of different settings in practice has been under-explored. In Chapter 5, we presented

an extensive empirical exploration of popular CATE techniques in the context of

deep learning to better understand the mismatch between theoretical results and empiri-

82



cal performance in practical settings. We found that popular approaches that adjust for

the propensity score, including those that incorporate estimates of the potential outcomes as

well, were unable to consistently outperform techniques that simply rely on only estimates of

the outcomes. This work shows the importance of extensive validation of theoretical results

in realistic settings to understand how theory may translate to practice.

Finally, to close the gap between our contributions in the field of ML and the ultimate goal

of improving clinical practice, we carefully studied the problem of sepsis risk stratification,

exploring real-world mismatches between existing risk stratification tools and clinical care

needs. Sepsis risk stratification is a well-studied problem in the field of ML [208, 77, 44,

207, 106]; however, there exist important gaps that preclude impact in clinical settings. In

Chapter 6, we studied these gaps in both model development and evaluation for

sepsis risk stratification. We first found that when evaluating sepsis risk stratification

models with respect to clinical recognition rather than the time of meeting sepsis criteria, a

widely used technique fails to perform significantly better than random. Second, we found

that sepsis risk stratification models that only focus on the likelihood of getting sepsis may

be sub-optimal, as there exists heterogeneity in the effect of sepsis on mortality and this

heterogeneity is not strongly correlated with the likelihood of developing sepsis. Our work

highlights how the needs of clinicians can and should inform ML model development in

healthcare settings.

There are several areas discussed throughout this dissertation that could be interesting

for future work. Here, we outline four possibilities.

First, the fundamental problem in causal inference eliminates the ability to use ground

truth treatment effects during training and evaluation. In many fields such as estimating

the individualized effects of antibiotics, there exist techniques to accurately estimate the

counterfactual of what would have happened if an individual was given a different treatment

[23, 102]. However, obtaining counterfactual annotations may be time-consuming and ex-

pensive, and annotations may only be available for a potentially biased sub-population of

the data. Hence, there exists an opportunity to: 1) learn how to collect missing counter-

factuals while balancing cost and potential increase in accuracy, and 2) learn how to best

leverage both a cohort of individuals with ground-truth treatment effects and those with

only observed outcomes. The former can build upon ideas from research in active learning

for CATE estimation, which focuses on learning to defer and labeling observed outcomes

[88, 89]. The latter could build upon ideas from both semi-supervised learning and research

focused on learning causal effects leveraging both randomized controlled trials and observa-

tional data [97, 36, 76]. Combined, such a pipeline could dramatically improve the ability to

learn CATEs in many clinical settings where ground-truth treatment effects can be collected.
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Second, a limitation of much work in causal effect estimation is the need for assuming

no hidden confounders, overlap, and consistency. As these assumptions remain untestable,

it is impossible to understand whether these assumptions hold when utilizing causal infer-

ence techniques in downstream applications. Though there has been some work in building

theory and models to overcome violations of these assumptions, they often require stringent

assumptions of their own [123, 161, 98, 132]. While identifiable CATEs imply identifiable

rankings, violations of these assumptions may not always render learning optimal rankings

from the data impossible, even if CATEs are unidentifiable. Past work has studied relaxing

unconfoundedness and developed the rank-preserving assumption (RPA), showing that esti-

mates of CATES from data with unobserved confounding can still ensure optimal rankings if

they are rank-preserving [51]. Under these conditions, ranking remains identifiable, and such

biases may even simplify the ranking problem [51]. We can extend this idea to violations

of consistency, where noise in observed outcomes may result in unidentifiable CATEs, but

under rank-preserving assumptions, may still result in accurate rankings. This approach is

similar to the boundary-consistent noise models used in traditional classification problems

and opens an interesting new area for research [131].

Third, another important limitation of our work in causal effect estimation is the inability

to validate models using real-world data. Though some work exists towards overcoming this

issue, they often require the use of proxy variables or data that must be estimated from the

data and may be inaccurate [211, 148]. Errors in the problem set-up and evaluation may

easily result in inaccurate takeaways, with the potential to lead to harm when applied to

real data. As the goal of these models is to impact clinical care, there exists an opportu-

nity to incorporate clinical experts into the validation scheme of causal inference techniques.

This may be through manual inspection or through understanding how decision-making is

impacted when augmented using different techniques. Such a validation can also help un-

derstand whether differences between model performance in synthetic settings, as measured

by mean squared error, result in meaningful differences when augmenting clinical decision-

making. Hence, there exists an opportunity to formalize such a pipeline towards a more

standardized evaluation of causal inference techniques in real medical data.

Finally, our work in survival analysis is limited to working with retrospective data. Ac-

cordingly, we were unable to validate whether the proposed survival models resulted in a

meaningful impact for improved clinical care. Though focusing on calibration is an im-

portant step towards this goal, future work should consider how survival models should be

integrated into the clinical workflow and what other aspects of learned survival models could

be improved for use by clinical experts.

The main contributions of this dissertation are 1) a holistic framework for training and
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evaluation of deep survival models for both calibration and discriminative performance, 2)

a theoretical and empirical case study of the efficacy of optimizing directly for maximizing

benefit for treatment allocation, 3) an extensive comparison of popular CATE estimation

techniques across a variety of practical settings, and 4) a demonstration of the gap between

the development and validation of sepsis risk stratification models and the goal of augmenting

clinical users and improving patient outcomes. Going forward, we expect problems studied

in this dissertation to help take an important step towards ML having real clinical impact

when augmenting decision-makers for risk prediction and intervention allocation.
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APPENDIX A

Appendix for Calibrated Deep Survival

Analysis

A.1 Deep Survival Analysis Architectures

Recently, many have applied neural networks to data with censored individuals for survival

analysis [124, 104, 155, 5]. However, many of these models rely on assumptions about the

distributional form of the time-to-event data, such as the proportional hazards assumption

[41, 201]. These assumptions may not generalize to new data. Accordingly, we focus our

analysis on deep survival analysis architectures that achieve state-of-the-art discriminative

results without explicitly relying on any distributional assumptions. Despite reported gains

in discriminative performance, to date, these models have not been evaluated in terms of

calibration.

DeepHit was one of the first fully distribution-free methods for survival analysis [116].

DeepHit corresponds to a feed-forward neural network architecture that takes as input an

individual’s covariates xi, and outputs a probability distribution ŷi ∈ [0, 1]τ , where ŷi,t

corresponds to the estimated P̂ (Z = t|xi). The CIF at time t can then be estimated

as F̂ (t|xi) =
∑t

j=1 ŷi,j. The final layer of DeepHit is a softmax output layer requiring

F̂ (τ |xi) = 1. This formulation assumes that by the end of the time horizon τ , every individual

will have had the event. Hence, this formulation will incorrectly estimate the true underlying

survival process for individuals who survive beyond time τ . Moreover, as DeepHit outputs

a fixed-sized vector, it can not be used to forecast survival curves past the specified time

horizon τ .

DRSA, or deep recurrent survival analysis, alleviates this structural issue of Deep-

Hit while taking advantage of the sequential patterns present in survival analysis [156].

DRSA uses a long short-term memory (LSTM) network that takes as input at timestep

t, a concatenation of an individual’s covariates xi and t [80]. The output of the LSTM

at time t is passed into a fully connected layer with a sigmoid activation function that
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outputs λ̂(t|xi). Accordingly, we can estimate the survival probability at timestep t as

Ŝ(t|xi) =
∏

j:j≤t(1 − λ̂(j|xi)), and the probability of the event occurring at timestep t as

P̂ (Z = t|xi) = λ̂(t|xi)
∏

j<t(1 − λ̂(j|xi)). Since DRSA does not make assumptions about

the probability of survival at the end of the horizon while still allowing for variable-length

forecasting of survival curves, we build on this architecture in our proposed approach.

A.2 Full Proof that LRPS Elicits Calibrated Survival

Curves

Claim. Training deep survival models using LRPS will result in well-calibrated estimates of

survival.

Proof. Consider n individuals with identical or near-identical covariates with observed

event times {zi}ni=1. Define the counting-based Kaplain-Meier estimate for these individuals

at time t as KMn
t = 1

n

∑n
i=1 1t<zi , where limn→∞KMn

t is the underlying survival probability

at time t for these n individuals.

A survival model will estimate one survival probability for these n individuals at time

t. Define this value as p̂t. A well-calibrated survival model will output a p̂t that closely

aligns with the underlying survival probability limn→∞KMn
t . Consider the optimization

problem of finding p̂t which will minimize LRPS. This problem can formally be set-up as

argminp̂t

∑n
i=1(p̂t − 1t<zi)

2.

First, this optimization problem is strictly convex and has a unique minimum, as the

second derivative is positive everywhere. such that any minimizer must be the unique min-

imizer to this loss function. In order to do so, consider taking the second derivative of the

objective function with respect to p̂t.

∂2

∂p̂2t

(
n∑

i=1

(p̂t − 1t<zi)
2

)
=

∂

∂p̂t

(
2p̂t −

2

n

n∑
i=1

1t<zi

)
=

2 ≥ 0

To find the value of p̂t that minimizes this objective function (p̂∗t ), we set the derivative equal

to zero.
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∂

∂p̂∗t

(
n∑

i=1

(p̂∗t − 1t<zi)
2

)
= 0

2p̂∗t −
2

n

n∑
i=1

1t<zi = 0

p̂∗t =
1

n

n∑
i=1

1t<zi

The unique estimated survival probability that minimizes the objective function is equiv-

alent to the average survival status for all n individuals at time t. This unique minimum is

equal to KMn
t which, as n gets large, is equal to the true underlying survival probability for

these individuals at time t. Hence, training a survival model to minimize LRPS will result

in estimated survival probabilities that align well with the true survival probabilities. □

A.3 Censored DDC

In the case of censored individuals, we only know that prior to censoring the event did

not occur. Following the probability integral transform argument used to justify DDC, for

a well-calibrated model, we would expect half of the individuals to have the event after

reaching an estimated survival probability of 50%. If more than half the individuals are

censored after reaching an estimated survival probability of 50%, then we can conclude that

the model is not well-calibrated. However, if less than half of the individuals are censored

after reaching an estimated survival probability of 50%, we cannot conclude anything with

respect to model calibration (the event may take place at any time after censoring). Given

these limitations, without strong assumptions on the event time distribution for censored

individuals, one cannot make meaningful conclusions regarding the calibration of a model for

censored individuals. To this end, while we measure discriminative performance across both

uncensored and censored individuals, we focus our evaluation of calibration on uncensored

individuals.

A.4 Trade-Off Between Discriminative Performance

and Calibration

To display the trade-off between discriminative performance and calibration, we simulate

1,000 covariates and corresponding sampled event times through the following scheme:
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X = (Xa,Xb)T ∈ R1,000×20

Xa = (Xa
1,X

a
2) ∈ R500×20

Xb = (Xb
1,X

b
2) ∈ R500×20

Xa
1,X

b
1 ∼ U(0, 10)10

Xa
2 ∼ U(10, 20)10

Xb
2 ∼ U(5, 15)10

zi ∼ LN(.5(1Tx1:10
i )2 + 2(1Tx11:20

i )2, 0.5)

Note that U and LN denote a uniform and a log-normal distribution respectively. We

consider τ (the time horizon) to be the 50th percentile of sampled event times, in order

to right-censor half of the individuals. Finally, we place all time to events into one of 100

equally spaced time bins.

Given this simulation, we calculate the C-index value for the ground-truth log-normal

survival curves. The average C-index of the ground-truth survival curves in these finite

samples across 1000 replications of the simulation is .760 (95% Confidence Interval: (.742,

.778)). This is due to examples such as the one displayed in the Figure A.1. Though an

individual can experience an event early, it is not necessarily true that their true survival

probability is low. These situations result in incorrect rankings among different individuals,

which contributes negatively towards the C-index value.

Importantly, we note that this is due to the single sample definition of discrimination.

For example, for a particular observed outcome distribution, it is possible to achieve perfect

discrimination (as measured by the C-index) by estimating Heaviside distributions that drop

to 0 at the observed event times. However, these distributions do not take into account the

stochasticity that likely exists in the survival process. Due to this stochasticity, it is unlikely

for the underlying survival curves to provide perfect discriminative performance (i.e. a C-

index of 1) with respect to the observed outcomes, showing an important trade-off that is

necessary to consider when evaluating survival models.

A.5 Additional Experimental Set-Up Details

Dataset Details We consider two public clinical datasets: the Northern Alberta Can-

cer Dataset and the CLINIC dataset. For each dataset, we use the same 60/20/20%

train/validation/test split across model initializations in order to train and evaluate our

models. We stratify our random splits in order to ensure a roughly equal proportion of

censored individuals in each split. We normalize all covariates by the mean and standard
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Figure A.1: An example pair of ground-truth survival curves for 2 individuals from a simu-
lated stochastic process. Triangles denote the observed event times. As the blue individual
experienced the event at a high survival probability, they will consistently be ranked in-
correctly when compared to other individuals who have a lower survival probability but
experience the event later (e.g., the orange individual). These examples will contribute neg-
atively to the C-index evaluation, despite good calibration.

deviation of each feature in the training set.

Additional Baselines. For completeness, we report the results for two additional base-

line methods. Namely, we train two variants of the feed-forward DeepHit model. First, we

train the DeepHit architecture with the loss as it was originally proposed (Llog + λLkernel).

To examine the importance of Lkernel in DeepHit and examine the performance of Llog alone,

we also consider evaluating the performance of DeepHit without the kernel loss (λ = 0).

Additional Training and Hyperparamter Details. All DRSA models had the same

architecture: a one-layer LSTM with hidden size 100 and a single feed-forward layer with a

sigmoid activation on the output for each time-step. For DeepHit, we followed the same ar-

chitecture proposed in the original paper. We considered learning rates of 1e-3 and 1e-4, but

preliminary results found no comparable difference in performance on the held-out validation

set, so we continued using a learning rate of 1e-3. In order to tune the σ hyperparameter

for the Lkernel loss function, we considered σ values from 0.1 to 10. σ was then chosen based

on performance on the held-out validation set on the NACD dataset. This optimal σ value

(σ = .8) was used for both the NACD dataset and the CLINIC dataset in order to test the

generalizability of the relationship between LRPS and Lkernel in the composite loss. Other

hyperparameters, were chosen based on performance on the held-out validation set as well.

Due to the right-skewed time-to-event distribution which can cause LRPS to ignore earlier
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Table A.1: Discriminative (C-index) and calibration performance (DDC, D-Calibration, Av-
eraged Brier Score), as well as the trade-off between the two (total score) for the NACD and
CLINIC datasets (mean ± standard deviation across random initializations, number of times
passing the statistical test for D-Calibration). Lower DDC and Brier score values indicate
better performance, while higher values of C-index, D-Calibration, and total score indicate
better performance. The proposed training approach consistently leads to improvements in
calibration, without sacrificing discriminative performance or Brier score. An * indicates
results that are statistically significant over all baselines using a paired t-test (p < .05).

Model
NACD

C-index ↑ DDC ↓ D-Calibration ↑ Brier ↓ Total Score ↑

Ren et al. 2019 .748± .002 .025± .012 1 .101± .002 .846± .004
MTLR .750± .000 .062± .000 0 .101± .000 .834± .000

DeepHit (Llog) .751± .002 .083± .005 0 .102± .000 .826± .003
DeepHit (Llog + λLkernel) .748± .004 .020± .005 0 .107± .001 .849± .003

Proposed - LRPS .741± .008 .305± .089 0 .207± .034 .715± .050
Proposed - Lkernel .742± .003 .012± .002 3 .101± .003 .847± .001
Proposed Method .742± .006 .007± .003∗ 5 .104± .002 .850± .003

Model
CLINIC

C-index ↑ DDC ↓ D-Calibration ↑ Brier ↓ Total Score ↑

Ren et al. 2019 .616± .003 .138± .002 0 .107± .000 .719± .003
MTLR .608± .000 .168± .000 0 .106± .000 .702± .000

DeepHit (Llog) .616± .003 .133± .004 0 .103± .000 .720± .002
DeepHit (Llog + λLkernel) .624± .001 .063± .007 0 .106± .001 .749± .002

Proposed - LRPS .628± .003 .241± .022 0 .153± .002 .687± .011
Proposed - Lkernel .615± .005 .097± .006 0 .110± .001 .731± .005
Proposed Method .627± .001 .056± .011 0 .106± .001 .753± .004

time-points before time-to-events, we up-weighted these earlier time-points to provide equal

supervision across the horizon. In order to tune the regularization constants of MTLR, which

control the amount of smoothing for the model, we used the cross-validation scheme built

into the MTLR R package.

A.6 Additional Results

The proposed method continues to consistently outperform all baselines with respect to DDC

and D-calibration while maintaining comparable C-index and average Brier score values

(Table A.1). Compared to DRSA and DeepHit with λ = 0, the proposed method results

in a statistically significant improvement in calibration across both tasks (NACD DDC: .025

and .083 vs. .007, CLINIC DDC: .138 and .133 vs .056). This improvement, however, is

accompanied by a small decrease in C-index in the NACD dataset. Moreover, training using

LRPS alone results in better calibration than both DRSA and DeepHit trained using only
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Llog (NACD DDC: .025 and .083 vs .012, CLINIC DDC: .138 and .133 vs .097), with minimal

drops in discriminative performance. These empirical results support the original hypothesis

that training using LRPS should result in survival models that better balance discriminative

performance and calibration.

DeepHit that includes training with Lkernel consistently results in better calibration com-

pared to DeepHit without this loss function (DeepHit (λ = 0)). This supports the hypothesis

that Lkernel can act as a scaling mechanism to calibrate survival estimates without sacrific-

ing discriminative performance. Despite this increased performance, our proposed approach

still achieves better calibration performance (NACD DDC: .020 vs .007, CLINIC DDC: .063

vs .057), while also maintaining a better trade-off between calibration and discriminative

performance, as shown through the total score.

Overall, these results continue to support our original hypothesis regarding the efficacy

of the training scheme. We show that training using LRPS outperforms models that solely

train using Llog, while including the kernel loss function can consistently improve calibra-

tion performance with respect to DDC and D-Calibration. Finally, the best performance

consistently comes from our proposed method, the combination of LRPS and Lkernel.

92



APPENDIX B

Appendix for Learning to Rank for

Treatment Allocation

B.1 Related Work

CATE Estimation. In recent years, there has been increased interest in estimating the

heterogeneous effects of treatments from confounded observational data [214]. A majority of

past works have proposed solutions for overcoming the issue of confounding. Past work has

considered learning balanced representations [182, 91, 92, 75], reweighting using propensity

scores [74, 75, 12, 118], and using doubly robust proxies [105] across a wide variety of machine

learning architectures, namely neural networks [182] and random forests [200]. However,

these works tend to optimize for and evaluate the performance of techniques for their ability

to accurately estimate CATEs. However, in finite samples when these models are not perfect,

how performance, as measured by accuracy, translates to maximizing benefit has not been

well-explored. Finally, past work has considered evaluating treatment effects under different

resource constraints [173]. However, this work has focused on estimating the ATE under

different potential treatment strategies, while we focus on the goal of understanding who to

treat across different potential treatment thresholds.

Causal Decision Making. There has been recent interest in how causal inference

techniques may translate to downstream decision-making. Recent work has studied when

causal effect estimation may be insufficient when the goal is to identify whom to treat and

framed a new problem of causal classification for identifying treatment responders [52, 14, 96].

This path represents a step towards bridging the gap between theory and practice for causal

inference. In our work, we extend this idea even further beyond a binary classification

problem and study the problem of optimal ranking policies without the need for an a priori

threshold to label individuals as responders or non-responders [212]. As these thresholds for

defining responders vs. non-responders may vary depending on the application, and may

change many times for the same application, it remains essential to build models agnostic to
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a particular threshold. Recent work has studied how confounded data may affect the task

of ranking causal effects [51]. In our work, we continued with the no hidden confounders

assumption and focused on building a technique for optimal ranking for maximizing benefit.

Uplift Modeling. Uplift modeling is the field of work closely related to our setting.

Uplift modeling focuses on directly targeting interventions and measuring incremental gain

as individuals become intervened upon [171, 21]. Uplift modeling is a common method used

particularly in business and marketing problems [171, 212]. One approach towards uplift

modeling is to estimate pointwise effects of interventions on an individual basis, similar

to CATE estimation [70, 139]. A secondary approach is to optimize for cumulative gain

across intervention thresholds, similar to our goal [222, 46]. However, uplift modeling uses

data obtained from a randomized controlled trial, and hence, methods for optimizing for

cumulative gain are not built to handle confounded data. For example, contextual treatment

selection is built under the assumption of randomness, and build approximations to optimize

for under this assumption [222]. In our work, we extend ideas from uplift modeling to

directly optimize for optimal rankings for maximum benefit when learning from observational

data. Moreover, we study optimizing for optimal rankings for maximum benefit across

all potential treatment thresholds as defined by the AUTOC in the context of resource

constraints where treatment may benefit everyone, a problem not studied in past work.

Perhaps most similar to our work is recent work by Zhou et al [223]. Though they also

consider the problem of ranking, their work differs in several ways. First, Zhou et al. focus on

a setting in which randomized controlled trials are available. However, we focus on expanding

the idea of ranking for accurate treatment allocation based on maximizing expected benefit

to settings with only observational data (e.g., much of healthcare). Though techniques like

inverse weighting using the propensity score can be used in observational data settings, it

is not immediately obvious how one should adapt the approach proposed by Zhou et al.

to the observational setting. Second, we demonstrate the benefit of directly optimizing for

treatment allocation as defined by maximizing expected benefit compared to accurate CATE

estimates. We focus on a theoretical and empirical exploration of the disconnect between

these two problem set-ups. Meanwhile, the loss function in Zhou et al. relies on converging

to an unbiased CATE estimate to correctly order individuals, and hence, does not directly

optimize for treatment allocation. We present a case study to show how and when direct

optimization may be of most benefit through our empirical results.

Learning to Rank (LtR). LtR methods focus on learning optimal rankings, particularly

for search relevancy problems [32]. Pointwise methods, which estimate the exact relevancy

of a document for a query, remain analogous to a majority of past work in CATE estimation.

However, past literature in the field of LtR has also focused on pairwise techniques, which
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focus on learning optimal ordering for pairs of inputs, and listwise techniques, which aim to

directly optimize a list of inputs towards a measure of downstream measure of performance,

either through direct optimization of using proxy loss functions [82, 32, 209, 186]. A common

measure of performance studied thoroughly is the normalized discounted cumulative gain

(NDCG), focused on recommending the most relevant items to a query first [87, 203]. The

NDCG is a commonly accepted metric in the LtR field but does not have a meaningful

interpretation for our setting in measuring the expected benefit from treatment across all

thresholds u. Meanwhile, AUTOC measures both the ranking of examples as well as the

cumulative treatment effect across any policy. Listwise learning to rank techniques have

recently been studied for the related field of uplift modeling. However, these methods often

assume binary outcomes from randomized controlled trials, two limitations unsuitable for

our general application [46, 21]. In our work, we take inspiration from the field of listwise

techniques built for optimizing NDCG and study how to extend these methods towards

the problem of maximizing benefit for resource allocation, as measured by AUTOC, when

learning from observational data.

B.2 Additional Proofs

(Restated) Proposition 1. There exists a function f ∈ F such that AUTOCS(f) =

AUTOCS(f
∗), yet LM

S (f) > 0.

Proof. Define f(xi) = f ∗(xi) +
γi
3
. Note that for this f , we have that AUTOCS(f) =

AUTOCS(f
∗), yet:

LM
S (f) =

1

n

∑
i

(f(xi)− τi)
2

=
1

n

∑
i

(f ∗(xi)−
γi
3
− τi)

2

=
1

n

∑
i

(
γi
3
)2 > 0

(Restated) Proposition 2. For any model f such that LM
S (f) > 0, there exists a model

g such that LM
S (f) < LM

S (g) and AUTOCS(g) > AUTOCS(f)

Proof. We may build a model g that achieves perfect ranking, but arbitrarily poor LM
S (g) =

C as follows: 1) Define α such that
∑n

i=1 α
2 = C, and 2) ∀xi, g(xi) = f ∗(xi) + α. Note that
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AUTOC(g) = AUTOC(g∗), yet:

LM
S (g) =

1

n

∑
i

(f(xi)− τi)
2

=
1

n

∑
i

(f ∗(xi)− α− τi)
2

=
1

n

∑
i

(α)2 = C

Setting C to be larger than LM
S (f) leads to the desired result.

B.3 Methods

In Algorithm 1, we describe the proposed splitting procedure at any decision node M . We

choose features and corresponding values to split on that result in trees that maximize the

proxy of the AUTOC when considering all samples in the data.

Algorithm 1 Calculating Split Value to Maximize AUTOC

Input: S: Complete dataset; SM , T
M : Current dataset and tree at decision node M

Output: Feature k and value v to split data for maximizing AUTOC

Calculate best value as ˜AUTOCS(T
M) by traversing sample S through current tree TM

for k,v in SM that result in valid partitions do
Build TM

k,v by splitting current node M by feature k and value v

Calculate proposed value as ˜AUTOCS(T
M
k,v) by traversing sample S through TM

k,v

if proposed value improves over best value then
Update best value to proposed value
Update best k,v to be proposed k,v

return best k and v if they exist

Table B.1: Hyperparameters and their corresponding search ranges.

Hyperparameter Hyperparameter Search Range

Number of Trees 100, 200, 500, 1000
Data Subsample Proportion 0.1, 0.2, 0.45, 1

Maximum Depth 3, 5, 10, 20, ∞
Minimum Examples in Node to Split 2, 5, 10, 20, 40

Minimum Examples in Leaf 1, 2, 5, 10, 20
Improvement Threshold 0, None
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B.4 Experimental Set-Up

Model Training. Our proposed and baseline methodologies consist of two steps: 1) Build

doubly robust proxies for training, and 2) Train a random forest algorithm using a cer-

tain split procedure using the doubly robust proxies as imputed CATEs. The doubly robust

proxies are shared between both methods, ensuring that any difference between the two tech-

niques is not due to the accuracy of these proxies. To give all methods the best opportunity

to learn, we use cross-fitting with decision trees to estimate the potential outcomes and use

accurate propensity scores to build the doubly robust proxy. For the second step, we train all

methods using the same underlying random forest architecture, while only varying the split

procedure. When building each decision tree within the random forest pipeline, we consider

each feature and split value when creating splits at each decision node. We consider tuning

the hyperparameters in Table B.1 within their corresponding search ranges. We consider

the same search grid for both methods, as well as the same budget of hyperparameters. All

experiments were performed on a virtual machine with 256 CPUs.

Model Selection. When training models for treatment effect estimation, we cannot

observe the ground-truth performance on some held-out validation set to facilitate model

selection. Thus, past work has considered approximate model selection techniques [182, 176,

74]. Such techniques choose hyperparameters by calculating a proxy metric on the validation

dataset that may correlate with CATE estimation performance. However, the approximate

nature of such techniques means that reported differences between approaches may be due

more so to model selection than to the estimation approach. Throughout our experiments,

we assume access to the ground-truth CATEs for choosing hyperparameters based on the

maximum AUTOC in a held-out set. This setup controls for potential differences due to

hyperparameter selection and allows for accurate comparisons of the proposed and baseline

methods. As ground-truth performance estimates are not available in real applications, it

remains imperative to improve the model selection challenge faced by all CATE estimation

methods going forward. Random seeds and settings used will be available in the source code

to enhance reproducibility.

B.5 Additional Results

Local AUTOC Maximization Splits: We compare our proposed method and baseline

approach to building a decision tree that at any decision nodeM , maximizes the AUTOC in

the sample SM , rather than the full sample S. Note that this approach is not theoretically

grounded towards the ultimate goal of maximizing AUTOC across the whole sample S, as
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N = 100 N = 250 N = 500 N = 1000

Proposed Performance 0.183 (0.100, 0.221) 0.253 (0.197, 0.289) 0.292 (0.260, 0.316) 0.326 (0.304, 0.338)
Local Split Performance 0.195 (0.116, 0.221) 0.236 (0.178, 0.280) 0.291 (0.240, 0.329) 0.329 (0.301, 0.344)
Baseline Performance 0.154 (0.075, 0.199) 0.223 (0.192, 0.242) 0.266 (0.221, 0.318) 0.323 (0.298, 0.347)

Table B.2: AUTOC performance on Dataset 1, comparing the proposed global splitting
procedure, the local splitting procedure, and the baseline model. Splitting by maximizing
AUTOC consistently outperforms the baseline model focused on accurate CATE estima-
tion. Splitting based on local examples and global examples, however, results in similar
performance.
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Figure B.1: The percentage of replications in which the proposed method outperforms the
baseline in terms of ATEu across different treatment thresholds u and training data size.
The proposed method outperforms the baseline in up to 80−90% of replications at different
thresholds at low training data size, but the efficacy is only shown at higher treatment
thresholds when enough training data is incorporated into the model.
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a larger AUTOC for the subset SM does not guarantee a larger AUTOC for the full sample

S. However, this procedure provides a slightly faster proxy that may be considered for

training. Results on Dataset 1 can be found in Table B.2. Both techniques which split

towards maximizing AUTOC result in better performance than the baseline method focused

on accurate CATE estimation. However, the local and global splits tend to perform similarly.

We hypothesize that this is due to the simplicity of our synthetic dataset. Empirically, local

splits diverge from global splits at deeper levels of the decision trees, resulting in different

estimators that achieve similar performance. As maximizing AUTOC in a local decision node

does not guarantee the maximization of AUTOC across a whole sample, our proposed global

splitting technique still provides a guarantee of maximizing our end goal. However, local

splits may be used as a proxy for quicker training, despite the lack of theoretical guarantees.

Honest Decision Trees: We next show that our approach is amenable to the honest

framework. We adapt both methods to the honest setting by using half of the training

examples to create splits, and the other half to impute values. Decision trees with empty

leaves for inference are ignored when aggregating results across the forest. We first report

results on Dataset 1 when using N = 250 training samples to train each method and eval-

uating on a held-out test set. The proposed method still outperforms the baseline method,

achieving a median AUTOC of 0.259 (IQR: 0.206, 0.289) compared to 0.228 (IQR: 0.171,

0.256), and outperforming the baseline model on 28/30 replications. On Dataset 2, the

proposed method continues to outperform the baseline technique at N = 250 training ex-

amples, achieving a median AUTOC of 0.735 (IQR: 0.511, 0.776) compared to a median

AUTOC of 0.587 (0.397, 0.711) for the baseline method. The proposed method outperforms

the baseline on a majority (29/30) of replications as well. Overall, these results show the

ability of our method to be adapted to the honest setting, which may be preferred in settings

where over-fitting is of great concern.

Comparison to Zhou et al. For completeness, we compare our proposed method

with the loss function proposed by Zhou et al. implemented using a neural network [223].

We consider a small-sample regime with n = 250 training samples. To optimize the Zhou

et al. loss function, we sweep over relevant hyperparameters such as the learning rate,

the size of the neural network, and regularization strength. We find that in both synthetic

datasets, our proposed method significantly outperforms this baseline technique as measured

by the median AUTOC [IQR] on the test set (dataset 1: 0.088 [0.053-0.107] vs. 0.255

[0.185-0.279], dataset 2: 0.293 [0.216-0.378] vs. 0.750 [0.505-0.879]. Reweighting the loss

function from past work using ground-truth propensity scores resulted in no improvement.

We hypothesize that the poor performance is for two reasons. First, the loss function does

not immediately transfer to the observational data setting due to confounding between the
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treatment assignment and the outcomes. Second, our method directly optimizes for the

value of the treatment policy at every threshold as measured by the AUTOC. Meanwhile,

the method proposed by Zhou et al. relies on obtaining an unbiased estimate of the CATE

to accurately rank scores. When CATEs cannot be estimated accurately, such as in low-data

settings, methods to obtain unbiased CATEs may not lead to better AUTOC, as shown in

Proposition 2.

Results at Specific Treatment Thresholds: To complement the ATEu results in the

main section, we first report the percentage of replications in which the proposed method

outperforms the baseline in terms of ATEu for different thresholds u (Figure B.1. At

low training data sizes, the proposed method outperforms the baseline in over 80 − 90% of

replications across many thresholds, showing the efficacy of the proposed method. However,

as more training data is incorporated, the baseline has the potential to slightly outperform

the proposed method at low treatment thresholds, but the proposed method still performs

well across a majority of settings. Next, report the TOCu values for all u ∈ [0, 1]. These

results can be found in Figure B.2 forDataset 1, and Figure B.3 forDataset 2. For both

datasets, the efficacy of our proposed approach is better highlighted at lower data regimes.

Across a majority of thresholds, our model consistently improves over random more than the

baseline model does, as measured by TOCu. At higher training data regimes, the efficacy of

our model is more shown at treatment thresholds between u = 30 and u = 50. Moreover, our

proposed method remains competitive with the baseline technique at higher data regimes,

with only small drops in performance.

A Realistic Interpretation for Larger Data Regimes: We report the percentage of

potential lives saved in our realistic set-up for higher training data regimes (N = 500, N =

1000) in Figure B.4. With N = 500 training data, the proposed method is still able to

consistently improve upon the baseline technique. However, with N = 1000 examples used

for training, our model begins to perform similarly, with only slight gains or losses compared

to the baseline. This helps support our hypothesis that optimizing for AUTOC may improve

upon the baseline in low training data regimes.
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Dataset 1: TOC Curves

Figure B.2: TOC Curves for Dataset 1. In low-data settings, our method consistently
results in a larger improvement in the ATE of the top percentage of individuals. As more
data is included in our model, the improvements of our model are reduced, but our model
still results in a larger TOC value across a majority of replications. When all individuals are
treated, our method and the proposed method result in no improvement over random.
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Figure B.3: TOC Curves for Dataset 2. In low data settings, our method results in a
larger improvement in the ATE of the top percentage of individuals, particularly when the
treatment threshold is above 10%. When N = 1000 data points are used to train the
model, the baseline begins to slightly outperform the proposed method, especially at earlier
treatment thresholds.
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Figure B.4: Percentage of potential lives saved compared to the oracle across different
treatment settings for high data settings for Dataset 1 (top) and Dataset 2 (bottom).
Comparisons with asterisks represent scenarios in which the proposed method significantly
outperforms the baseline technique as measured using a Wilcoxon signed rank test with a
significance level of 0.05. At N = 500, the proposed method continues to perform well. How-
ever, as we add more training data, the models begin to perform similarly, with our model
only performing slightly worse in some scenarios.
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APPENDIX C

Appendix for Challenging Implicit

Assumptions of Theory Through Empirical

Evidence in CATE Estimation

C.1 Training Details

Training Setup. We implemented all neural network approaches in PyTorch. During train-

ing, we used the Adam optimizer [107]. Each model was given access to the same resources

and was trained in a similar pipeline. We conducted this work on a server running Ubuntu

20.04.4 with 128 CPUs and 256 GB of RAM. We trained each model on a GeForce GTX

1080 Ti GPU for a large number of epochs. We performed early stopping during training for

each model based on the training loss, with a patience level of 200 epochs. We performed

a random search over all hyperparameters with a budget of 40 (Table C.1). We tuned

the learning rate, weight decay, number of hidden layers, batch size, α, and other variables

that weigh different components of a loss function (i.e., for matching and DragonNet), and

whether to normalize the outputs during training. For all models, we kept the base archi-

tecture the same [182]. In line with past work a hidden size of 200 for the representation

building layers, and a hidden size of 100 for the outcome layers. Moreover, we used elu as the

non-linear activation function in the hidden layers. We follow past work and use all train-

ing examples to build nuisance estimates [43, 145]. In Section C.3, we confirm that this

procedure outperforms a more traditional cross-fitting approach. For every hyperparameter

configuration of a model, we use either a traditional feed-forward network (for conditional

outcomes) or TARNet (for potential outcomes) with the same set of hyperparameters to

learn these estimates. For all methods that require the use of the propensity score, unless

otherwise noted, we estimated the propensity score using a regularized logistic regression

model [15, 182, 128]. When using the propensity score, we clipped extremely low or high

values to reduce variance and to ensure all values are between 0 and 1 when using noisy
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propensity scores [12].

Model Selection. In traditional supervised learning, model selection or hyperparame-

ter tuning (critical to training neural networks) often relies on measuring performance on a

validation set. However, when training neural networks for treatment effect estimation, we

cannot observe the ground-truth performance on some held-out validation set to facilitate

model selection. Similar to Chapter 4, we assume access to ground-truth performance met-

rics for choosing hyperparameters to allow for an accurate comparison of different techniques

away from issues due to model selection.

Table C.1: Hyperparameters and their corresponding search ranges.

Hyperparameter Hyperparameter Search Range

Learning Rate 10−3, 10−4

Weight Decay 10−2, 10−3, 10−4

Output Normalization True, False
Number of Hidden Layers 4,5

Batch Size 50, 100, 200

α
.1, .5, 1.0, 2.0, 5.0, 10.0,

15.0, 20.0, 100.0

C.2 X-Learner Modification

We compare the X-Learner as proposed by [112], which uses two models to learn the direct

CATE functions on the treatment and control group, to our proposed modification which

uses a single multi-task model. On the synthetic dataset, the two models perform similarly,

where the two-model version achieves a PEHE of 0.714 (SD: 0.222), and the single-model

version achieves a PEHE of 0.711 (SD: 0.220). However, on the ACIC dataset, the single

model version substantially outperforms the two model version, outperforming the baseline

in 72 out of 77 DGPs (Figure C.1). By using a multi-task framework, all individuals can

help learn a shared representation that is used by both CATE estimators. Throughout the

main section, we thus considered the single-model version of the X-Learner.

C.3 Comparing Sample-Splitting to Using All Data

For models that require nuisance estimates (such as the R-Learner, DR-Learner, and X-

Learner), we followed recent work and used all data for estimating these nuisance estimates

[43, 145]. Cross-fitting and sample-splitting are necessary to ensure theoretical guarantees.
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Figure C.1: CATE performance of different X-Learner models. The X-Learner using the
TARNet architecture outperforms the traditional X-Learner proposed in [112] in 72 out of
the 77 replications.

However, past work has found better empirical performance when using all data in finite and

limited sample settings [43, 145]. To test this decision, we compare this approach to using

cross-fitting to estimate the nuisance parameters, with K = 2 folds.

We compare the R-Learner, DR-Learner, and X-Learner to counterparts that use cross-

fitting on the ACIC dataset. We consider the setting with ground-truth propensity scores

and the potential outcomes need to be estimated. In Figure C.2, we find that models using

all data outperform those that use cross-fitting to estimate the nuisance parameters, in line

with recent work. Moreover, the general trends of the X-Learner outperforming all methods

hold. Hence, due to the superior empirical performance, we continue with using all data to

estimate the nuisance models.

C.4 Results for Omitted Techniques

Along with the methods considered in the main section, we implement and evaluate three

more popular techniques.

First, we consider techniques that use the propensity score for adjustment during train-

ing. Weighting Plug-In is a popular direct learner that inversely weights the observed out-

come using the propensity score [43, 99]. The CATE proxy learned in stage 1 is defined as

τ̂i = yi(
ti
êi
− 1−ti

1−êi
), with E[τ̂i|xi] = τi. In stage 2, a neural network model is optimized to

accurately estimate this proxy on the training set. DragonNet can also be trained such that

it only uses the propensity score implicitly for adjustment during training [185]. By remov-
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Figure C.2: CATE performance of different techniques with and without cross-fitting to
estimate nuisance parameters. Techniques without cross-fitting outperform those that use
cross-fitting to estimate the potential outcomes.

ing the targeted regularization term, the network is encouraged to learn a representation

that is predictive of the treatment assignment and use this representation to learn potential

outcomes. Throughout, we denote this method as DragonNet, and the method in the main

section that includes the targeted regularization term as DragonNet + tr.

Finally, we consider a direct method that uses both propensity scores and outcome esti-

mates during training. The U-Learner uses the same CATE proxy as the R-Learner built

in stage 1 defined as τ̃i =
yi−m̂i

ti−êi
, where E[τ̃i|xi] = τi [142, 112]. Unlike the R-Learner, in

stage 2, we regress the proxy outcome on the covariates without any weighting scheme. As

studied in past work, the theoretical strengths of the R-Learner lie in the combination of the

proxy outcome and the weighting scheme [55]. However, for completeness, we consider the

performance of the U-Learner across all datasets.

We evaluate the performance of all techniques with access to ground-truth propensity

scores. In the synthetic dataset, The weighting plug-in and the U-Learner perform poorly,

despite access to ground-truth propensity scores (Table C.2). We hypothesize that this

is likely due to the high variance induced by the inverse weighting of the propensity score

in the proxy outcome, providing a poor estimate of the CATE to train with. Moreover,

DragonNet without targeted regularization does not improve upon the full DragonNet, with

both methods performing similarly.

Similar trends hold on the ACIC dataset (Table C.3). The U-Learner and the Weighting
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Table C.2: Synthetic dataset results when using ground-truth propensity scores across all
methods. The weighting plug-in and the U-Learner perform poorly, with the DR-Learner
and the X-Learner still outperform all methods. Results in bold are statistically significant
compared to TARNet.

Model PEHE (SD) ↓ Improvements
in PEHE ↑

TARNet 1.113 (0.201) —
X-Learner 0.711 (0.220) 29

Weighting 1.015 (0.161) 20
Matching 0.894 (0.163) 24

Weighting Plug-In 1.606 (0.333) 3

U-Learner 2.224 (0.628) 0
R-Learner 0.881 (0.139) 26
DR-Learner 0.714 (0.199) 29

DragonNet + tr 1.011 (0.255) 20
DragonNet 1.137 (0.275) 15

Plug-In achieve the worst average ranks across all methods. However, DragonNet without

targeted regularization performs better than with targeted regularization. Moreover, Drag-

onNet without targeted regularization is able to provide improvements over TARNet. We

hypothesize that this is because the combination of all loss functions can make training

unstable, whereas training with only the outcome loss and the propensity score loss can

provide more stable results while partially addressing confounding. However, the X-Learner

still outperforms all techniques, such that the conclusions in the main section hold.

Table C.3: Top performing models and average rankings on ACIC 2016 across all methods
with ground-truth propensity scores. DragonNet improves upon TARNet and DragonNet +
tr, while the weighting plug-in and the U-Learner perform poorly.

Model
# Top-Performing

PEHE ↑
Average Ranking

PEHE ↓

TARNet 0/77 5.42/10
X-Learner 26/77 2.23/10

Weighting 1/77 4.17/10
Matching 35/77 3.30/10

Weighting Plug-In 0/77 8.74/10

U-Learner 0/77 9.92/10
R-Learner 0/77 7.09/10
DR-Learner 9/77 3.52/10

DragonNet + tr 0/77 6.09/10
DragonNet 6/77 4.52/10
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APPENDIX D

Appendix for Mismatch in Sepsis Risk

Stratification and Clinical Needs

D.1 Appendix for Mismatch Between Estimating Risk

of Sepsis and Improving Patient Outcomes

D.1.1 Additional Cohort Details

We consider ICU admissions as evaluation cohorts in the main paper. In both evaluation

sets, individuals may visit the ICU multiple times during the same stay, but in-hospital

mortality is only defined once for an individual. For individuals with sepsis, we use the ICU

stay in which they developed sepsis. For individuals without sepsis, we use their first ICU

stay.

D.1.2 Features Extracted

For all patient admissions, we collect demographics, vital sign measurements, laboratory

test results, and nursing score information, such as Glasgow coma scores and sedation infor-

mation, throughout the hospitalization. In the U-M cohort, we also considered vital signs

and comorbidities in encounters within the past year for making predictions. In the BIMDC

cohort, we collect the same comorbidities for each admission using ICD-9 codes, filtering out

conditions that are not present prior to the current hospitalization by using diagnosis-related

groups [94].

We next describe the features extracted and used as input for all models. From demo-

graphic features, we collected age, race, ethnicity, marital status, and the source of admis-

sion. For vital signs, we included recorded heart rate, temperature, respiratory rate, systolic

blood pressure, diastolic blood pressure, mean blood pressure, and oxygen saturation. We
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also included the following comorbidity information from past visits: cancer, chronic kid-

ney disease, chronic liver disease, congestive heart failure, chronic obstructive pulmonary

disease (COPD), diabetes, hypertension, obesity, dementia, drug abuse, and alcohol abuse.

We included the following lab results as well: aspartate aminotransferase, bilirubin, crea-

tinine, glucose, hematocrit, hemoglobin, international normalized ratio (INR), lymphocyte

(absolute count and percentage), monocyte count, neutrophil level, platelet count, red blood

cell count, segmented neutrophil count, urea nitrogen, white blood cell count, and albumin.

Finally, we included nursing score information related to Glasgow coma score, pain scores,

and sedation scores throughout a hospitalization. To the best of our abilities, we collected

features in a similar way across the BIDMC and Michigan Medicine datasets. However, In-

formation pertaining to red blood cell distribution width and advanced sedation information

were unavailable in the BIDMC cohort. Moreover, comorbidities could not be captured in

the same way across the datasets, as past visit information is not available in the BIDMC

cohort.

D.1.3 Additional Model Training Details

When training XGBoost models, we tune the learning rate, the maximum depth of the trees,

and the number of estimators used for the model. We select hyperparameters separately for

each XGBoost model by maximizing performance using 5-fold cross-validation for each cohort

consisting of a single window from a patient’s admission, as described in the main section.

When training two-stage models such as the X-Learner and the DR-Learner, we use the

S-Learner in the first stage to get estimates of mortality required for creating the proxy

outcomes of the second stage. To obtain estimates of the propensity score, we follow our

approach in the main section for building a model to estimate the risk of sepsis using an

ensemble of XGBoost models. All models are built using the same training pipeline, selecting

hyperparameters as described above.

D.1.4 Development Cohort

To train our machine learning models, we utilize held-out training sets that are distinct from

the evaluation cohorts in the main section. We used 106,064 patient admissions for the U-M

cohort and 13,864 ICU admissions for the BIDMC cohort. Of these admissions, 5,391 (5.1%)

developed sepsis and 2,014 (1.9%) experienced in-hospital mortality in the U-M development

cohort, while 1,108 (8.0%) developed sepsis during their stay and 1,231 (8.9%) experienced

in-hospital mortality in the BIDMC development cohort.
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Estimated Effect of Sepsis on Mortality Across Hospitalizations

Figure D.1: Estimated effect of sepsis on mortality across hospital admissions and across
different causal inference techniques. The estimated effect is once again on average positive
in both datasets. Moreover, there is substantial heterogeneity in the estimated effect of sepsis
on mortality regardless of the causal inference technique used to estimate these effects.

D.1.5 Statistical Analysis Results for All Models

Due to the strong performance of S-Learner, we reported results using this model in the

main section. For completeness, we next report results using all methods.

The histogram of the estimated effect of sepsis on mortality confirms that the down-

stream effect is both positive and heterogeneous regardless of the causal inference technique

employed (Figure D.1). In the U-M cohort, the S-Learner, X-Learner, and DR-Learner

estimated a median effect of sepsis on mortality of 6.19 percentage points (entropy: 0.92),

11.34 percentage points (entropy: 1.08), and 10.00 percentage points (entropy: 1.17) respec-

tively. In the BIDMC cohort, the three models estimated median effects of 8.82 percentage

points (entropy: 0.87), 16.79 percentage points (entropy: 0.96), and 19.71 percentage points

(entropy: 1.16).

The Spearman’s correlation between the estimated risk of sepsis and the estimated effect

of sepsis on mortality as measured by the S-Learner, X-Learner, and DR-Learner is 0.35

(95% CI: 0.33-0.37), 0.05 (95% CI: 0.02-0.07) and 0.30 (95% CI: 0.28-0.32) in the U-M

cohort, and 0.31 (95% CI: 0.28-0.34), -0.24 (95% CI: -0.26- -0.21), and 0.04 (95% CI: 0.01-

0.07) in the BIDMC cohort. Hence, almost all methods show a small positive relationship
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Figure D.2: The relationship between the effect of sepsis on mortality and the risk of de-
veloping sepsis across all causal inference techniques. Almost all methods estimate a slight
positive relationship between the risk of sepsis and the severity of sepsis. There is large
variance in the estimated effect of sepsis on mortality within windows with similar risks of
sepsis.

between the risk of sepsis and the effect of sepsis on mortality, with the X-Learner applied

to the BIDMC cohort being the only cohort that estimates a stronger negative relationship.

Consistently, there is large variability in the effect of sepsis on mortality within patient

windows with similar risks of sepsis across both datasets and across all causal inference

techniques (Figure D.2). Meanwhile, as in the main analysis, there is a large group of

windows that have a high estimated effect of sepsis on mortality but are at a low risk of

sepsis and a large group of windows that are at a high risk of sepsis but with a low risk of

mortality given the development of sepsis (Figure D.3).

D.1.6 Results for All Inpatients at U-M

For a fair comparison with BIDMC, we only focus our evaluation on ICU admissions at

U-M in the main section. For completeness, we also report evaluation metrics on the full

population of inpatients during the evaluation timeframe. For completeness, we also report

evaluation metrics on the full population of inpatients during the timeframe of October

2018 to December 2020. In this analysis, we only remove patients from certain hospital
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Figure D.3: The distribution of the severity of sepsis, as estimated by the effect of sepsis on
mortality, is variable across both windows with high risk and low risk of sepsis. In all cohorts,
as estimated by all models, there are windows with a high risk of sepsis whose development
of sepsis would not adversely affect their likelihood of mortality. Meanwhile, there are also
many low-risk windows whose risk of mortality would increase substantially if they were to
develop sepsis.
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Figure D.4: Estimated effect of sepsis on mortality averaged over hospital admissions for the
full set of inpatients at U-M. Similar to when focusing only on ICU patients, the estimated
effect is on average positive and heterogeneous.

wards where sepsis is not a primary concern, such as patients admitted to the hospital

for psychiatric or rehabilitation visits. This cohort consisted of 78,223 inpatient admissions,

with 4,069 (5.2%) individuals developing sepsis, and 1,605 (2.1%) individuals experiencing in-

hospital mortality. Of the septic individuals, 658 (16.2%) experienced in-hospital mortality.

Meanwhile, 947 (1.3%) of the non-septic individuals experienced in-hospital mortality.

The machine learning model for estimating the risk of sepsis achieved an AUROC of

0.73 (95% CI: 0.73-0.74). The S-Learner achieved AUROCs of 0.94 (95% CI: 0.94-0.95)

and 0.72 (95% CI: 0.71-0.75) for predicting in-hospital mortality for the no sepsis and sepsis

populations. All causal inference techniques accurately estimated null treatment effects when

performing the global null test, with the DR-Learner trained on septic individuals the only

model achieving a non-zero mean-squared error (0.01 [95% CI: 0.01-0.01]).

The histogram of the averaged estimated effect of mortality on sepsis across patient ad-

missions shows similar trends to when only focusing on ICU admissions as in the main paper

(Figure D.4). The S-Learner, X-Learner, and DR-Learner estimated a median effect of sep-

sis on mortality of 5.93 percentage points (entropy: 0.77), 11.40 percentage points (entropy:

0.97), and 11.00 percentage points (entropy: 1.03) respectively in this cohort of admissions.

The effect is positive and heterogeneous across all causal inference methods.
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Figure D.5: Relationship between the effect of sepsis on mortality and the risk of developing
sepsis (top) and the estimated effect of sepsis on mortality across different risk groups of
developing sepsis (bottom) in all U-M inpatients. All methods show large variability in the
effect of sepsis on mortality within individuals with similar risk of sepsis.

Finally, we visualize the relationship between the estimated effect of sepsis on mortality

and the risk of sepsis (Figure D.5). Similar to the cohorts in the main paper, the trend

is similar across all causal inference techniques, showing windows with a high risk of sepsis

but a low estimated effect of sepsis on their mortality, and vice-versa. To view this further,

we report the Spearman’s correlation between the estimated risk of sepsis and the estimated

effect of sepsis on mortality. As measured by the S-Learner, X-Learner, and DR-Learner, the

correlations are 0.55 (95% CI: 0.55-0.56), 0.27 (95% CI: 0.27-0.28), and 0.44 (95% CI: 0.43-

0.44). These moderate correlations show that the relationship between these two variables

across all patient admissions and windows within an admission is not strong.
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[112] Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for
estimating heterogeneous treatment effects using machine learning. Proceedings of the
National Academy of Sciences of the United States of America, 116(10):4156, 2019.

[113] H̊avard Kvamme, Ørnulf Borgan, and Ida Scheel. Time-to-event prediction with neural
networks and cox regression. Journal of Machine Learning Research, 20(129):1–30,
2019.

[114] Simon Meyer Lauritsen, Bo Thiesson, Marianne Johansson Jørgensen, Anders Ham-
merich Riis, Ulrick Skipper Espelund, Jesper Bo Weile, and Jeppe Lange. The framing
of machine learning risk prediction models illustrated by evaluation of sepsis in general
wards. npj Digital Medicine 2021 4:1, 4(1):1–12, November 2021.

[115] Changhee Lee, William Zame, Ahmed Alaa, and Mihaela Schaar. Temporal quilting
for survival analysis. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 596–605, 2019.

[116] Changhee Lee, William R Zame, Jinsung Yoon, and Mihaela van der Schaar. Deephit:
A deep learning approach to survival analysis with competing risks. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[117] Mitchell M Levy, Laura E Evans, and Andrew Rhodes. The surviving sepsis campaign
bundle: 2018 update. Intensive Care Med., 44(6):925–928, June 2018.

[118] Fan Li, Kari Lock Morgan, and Alan M Zaslavsky. Balancing covariates via propensity
score weighting. Journal of the American Statistical Association, 113(521):390–400,
2018.

[119] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions
on Information theory, 37(1):145–151, 1991.

[120] Yaobin Ling, Pulakesh Upadhyaya, Luyao Chen, Xiaoqian Jiang, and Yejin Kim. Het-
erogeneous treatment effect estimation using machine learning for healthcare applica-
tion: tutorial and benchmark. arXiv preprint arXiv:2109.12769, 2021.

[121] Vincent Liu, Gabriel J Escobar, John D Greene, Jay Soule, Alan Whippy, Derek C
Angus, and Theodore J Iwashyna. Hospital deaths in patients with sepsis from 2
independent cohorts. JAMA, 312(1):90–92, July 2014.

[122] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bern-
hard Schölkopf, and Olivier Bachem. Challenging common assumptions in the un-
supervised learning of disentangled representations. In international conference on
machine learning, pages 4114–4124. PMLR, 2019.

125



[123] Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max
Welling. Causal effect inference with deep latent-variable models. In Advances in
Neural Information Processing Systems, pages 6446–6456, 2017.

[124] Margaux Luck, Tristan Sylvain, Hélöıse Cardinal, Andrea Lodi, and Yoshua Ben-
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