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Abstract

Bipedal robots provide a path forward for autonomous systems to operate seam-

lessly in human-designed environments. They can traverse terrains compatible with

wheeled robots and provide improved access to shelves and cabinets out of reach

for quadrupeds and other mobile robots. Though their design offers many advan-

tages over other platforms, the consequential challenge of stability remains a glaring

hindrance in realizing their true potential. To this end, our work investigates the

evolution of algorithmic strategies that enable these robots to traverse various terrains

and actively engage with their surroundings dynamically.

To mitigate the unreliability of walking in steep or slippery environments, we

first design and test a terrain-aware foot placement locomotion controller (ALIP-

MPC) on a 20 Degree-of-Freedom (DoF) Cassie robot. ALIP-MPC displays improved

results compared to foot placement methods that disregard terrain information. The

controller is validated in simulation and hardware and performs better than other

state-of-the-art foot placement methods.

Subsequently, we extend the ALIP-MPC method for a 30-DoF Digit where per-

ception data is used to provide real-time terrain information online. The proposed

method is a multi-stage receding horizon algorithm that utilizes properties of the An-

gular Momentum Linear Inverted Pendulum (ALIP) model for fast execution speeds.

Initial results of the fully integrated locomotion controller are shown in simulation

and hardware.

Lastly, we broaden the concept of terrain-aware control to encompass interaction

with the environment in diverse whole-body tasks. We develop Kinodynamic Fabrics

xv



for reactive whole-body control on a 30-DoF Digit robot. This method integrates

optimization fabrics within a whole-body nullspace control schema to achieve a range

of motions, including balancing and walking.
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Chapter 1

Introduction

1.1 Motivation

It’s widely acknowledged that robots are playing an increasingly important role

in our daily lives. Robots can boost productivity and improve our well-being by

taking on repetitive or dangerous tasks. With a plethora of robot types available,

from fixed base manipulators to wheeled, legged, aerial, aquatic, and humanoid

robots, there’s virtually no limit to how robots can be utilized to enhance our lives

[13, 14, 15, 16]. In this thesis, we will focus on bipedal robots, legged robots that

more closely resemble human morphology. We aim to develop more efficient control

algorithms for these robots, increasing their usefulness across various applications.

Compared to wheeled platforms, legged robots are more robust to deviations in

terrain. Recently, robots such as the Boston Dynamics® Spot and the ANYbotics®

ANYmal have shown many exciting improvements that are impressive [17, 18, 19,

20, 21]. The downside is that they are harder to control from a stability and

navigation perspective. This challenge becomes increasingly more complex as the

number of legs is reduced.

This begs the question, why would you not use as many legs as possible? Robots

mimicking the multi-legged designs of insects have been created and controlled to

navigate very rough terrain [22]. There are downsides to having multiple legs

for navigation. From a mechanical perspective, more legs imply more mechanical
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Figure 1.1: Chart comparison for various mobile robot platforms comparing the
number of ground end effector contacts to the amount of accessible workspace area.

components that must be designed, fabricated, and maintained. Increased appendages

lead to increased weight and volume, which ultimately leads to reduced speed and

maneuverability [23]. From a control perspective, increased appendages increase the

number of controllable degrees of freedom. Due to the indeterminate solution of the

force distribution problem, controlling and designing gaits for highly redundant and

over-actuated systems prove challenging [22].

In this thesis, we concentrate on the control of bipedal robots. Their design

resembles a human form, offering enhanced workspace manipulation and making them

particularly adept at navigating human-centric environments [24]. The height and size

of bipedal robots are also more comparable to humans. This design choice inherently

makes the control problem more challenging, which can lead to very interesting and

exciting advances in control and robotics.

Bipedal robots should be able to navigate our environments and interact with our
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world. The work presented in this thesis aims to improve these robot capabilities

by integrating multiple sensing modalities for improved performance.

1.2 Objectives

The objectives of this dissertation are to:

• Combine reduced-order models with time-varying terrain parameters to develop

a robust locomotion controller, termed ALIP-MPC, for bipedal robots,

• Propose and present initial results for a perception-integrated version of the

ALIP-MPC for real-time control of bipedal humanoid robots,

• Develop and implement Kinodynamic Fabrics: a motion feedback control frame-

work enabling reactive whole-body control for underactuated humanoid robots

and

• Provide open-source code, videos, and results for each method and algorithm

presented in this dissertation for simulations and real-world experiments.

– https://github.com/UMich-BipedLab/cassie alip mpc

– https://github.com/UMich-BipedLab/digit locomotion controller

– https://github.com/UMich-BipedLab/KinodynamicFabrics.jl

1.3 Thesis Structure

Chapter 2 provides relevant information on bipedal locomotion and terrain nav-

igation from software and hardware perspectives. In Chapter 3, we develop and

validate a terrain-aware foot placement controller on a Cassie robot, both in sim-

ulation and the real world. This work is expanded and integrated with real-time

perception data in Chapter 4 to create a locomotion controller for a Digit robot.
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Lastly, in Chapter 5, we introduce a novel motion feedback control framework that

enables reactive whole-body control for humanoid robots. This framework is also

validated on the Digit robot using simulation and hardware. Additionally, we present

preliminary results for a Nonlinear Model Predictive Control (NMPC) and Hybrid

Zero Dynamics (HZD) stair climbing method for a planar five-link bipedal robot in

Appendix A. Further details on what parameters are used in the Digit locomotion

controller are provided in Appendix B.
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Chapter 2

Background

2.1 Framework for Bipedal Robot Locomotion

All three components of the field of robotics (acting, reasoning, and sensing) are

essential for successfully implementing bipedal robot locomotion. These intricately

interconnected components form a comprehensive framework for these complex systems

(Figure 2.1).

There are two primary sensing modalities: proprioceptive and exteroceptive sensing.

Proprioceptive sensors provide information about a robot’s internal state and incor-

porate devices such as joint encoders, gyroscopes, and accelerometers. In contrast,

exteroceptive sensing involves gathering data from the robot’s external environment

and employs devices like Light Detection and Ranging (LiDAR) and RGB-D cameras.

State estimation is a crucial process for robots, enabling them to utilize sensory

data to comprehend their position and orientation. This understanding facilitates more

accurate and effective interactions with the environment, improving the robot’s overall

functionality and performance. Recent advancements in state estimation techniques

have significantly improved localization across various environments, employing a

diverse array of sensing modalities [25, 26, 27]. These advancements contribute to

more robust and reliable robot performance and enhance the capabilities of bipedal

robots in complex and dynamic environments, such as those encountered in real-world

applications.
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Figure 2.1: Bipedal/Humanoid Robot System Components.

Sensing and state estimation, as emphasized earlier, are crucial components of the

bipedal locomotion framework. While these elements are essential for a comprehensive

understanding of robot control, this dissertation’s primary contribution and focus

lie in the framework components of motion design and motion feedback control.

Consequently, these aspects, along with the integration of perception for legged

locomotion, will be the main subjects of discussion in the remaining sections of this

chapter.

2.2 Motion Design

Motion design, also called motion generation or trajectory generation, involves

creating trajectories at either the task-space or joint-space level, which a robot

must follow to accomplish a specific goal. These trajectories can be custom-designed

or computed through optimization techniques, and their dependence on the robot’s

model may vary. In this section, we discuss the different models used for locomotion

and the methods employed in their construction.
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2.2.1 Model Complexity

Many different models can be used with varying complexities to design motion

trajectories. The kinematics and dynamics of each model type provide advantages

and disadvantages that trade-off between accuracy and efficiency.

At one end of the modeling spectrum for bipedal locomotion lies the complete

nonlinear hybrid system, which provides the most accurate representation of the robot.

The hybrid system consists of various dynamical modes encompassing continuous and

discrete dynamics. Guard functions govern transitions between these modes.

In standard bipedal robots, continuous dynamics are represented by the left, right,

and double support phases. Discrete dynamics, which often occur instantaneously, are

captured by impact dynamics. Guard functions, typically expressed as configuration-

related unilateral inequalities, delineate the addition or removal of contact points

between the robot and its environment. By incorporating the full spectrum of

hybrid dynamics, this comprehensive modeling approach offers a detailed and precise

representation of bipedal locomotion, facilitating the design of more effective motion

planning and control strategies [28, 4]. The full dynamical model for a bipedal

robot can be succinctly represented as

H :=


ẋi = f(xi) + g(xi)u x−

i ∈ S

x+ = ∆(x−) x−
i ∈ S

, (2.1)

where i denotes a specific phase of the dynamics (i.e. left stance, double support,

etc.), xi is the state of system in phase i, f(xi) is the drift function of the

dynamics, g(xi) is the control distribution matrix, u is the control input vector, S

is the corresponding guard function for the phase i, ∆ is the impact/reset map that

either continuously or discontinuously modifies the system state, and +,− represent

the states before and after applying the impact/reset map. Figure 2.2 shows an
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Figure 2.2: Domains graph of 3D walking, where red circles represent foot contact
points. The model transitions instantaneously between single and double support
phases (assuming the legs are symmetric). Modified from [1].

example of what a hybrid system can look like for a simplified bipedal robot.

The full-order and nonlinear dynamics of bipedal robot models present challenges

for control, primarily due to their complexity. Firstly, offline trajectory generation

becomes more complex as optimization problems turn nonconvex, inherently making

them harder to solve. Furthermore, even with accurate models of all dynamics,

potential model inaccuracies still exist. Consequently, many researchers in the field

have embraced reduced-order models to represent robot behavior in a lower dimension.

These models effectively simplify the control problem while maintaining adequate

accuracy.

Examples of successful reduced-order models include the Linear Inverted Pendulum

(LIP) [29], the Spring-Loaded Inverted Pendulum (SLIP) [30], the Single Rigid Body

Model (SRB) [3], and Virtual Constraint (VC) Models [4, 5], which have been

employed for generating dynamic walking patterns. In specific scenarios, impact

dynamics can be simplified by making assumptions such as non-slip impacts and

inelastic collisions or by approximating the robot’s contact with the ground as an

instantaneous change in velocity and state. These simplifications help reduce the
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Figure 2.3: Illustrations of some of the most common reduced order models: (a)
Linear-Inverted Pendulum, (b) Spring-Loaded Inverted Pendulum [2], (c) Single-Rigid
Body [3], (d) Virtual Constraints and Models [4, 5].

complexity of the hybrid system model and facilitate a more manageable control

design process. Additional data-based dynamics, termed regressor dynamics, have also

been used successfully for various robots [31].

2.2.2 Model-based Design

Model-based motion design can be broadly categorized into manual (hand-designed)

and optimization-based. Manual trajectories rely on user expertise to determine the

shape and structure of each task or joint path. These hand-designed trajectories

are often parameterized by stability-related metrics, such as swing foot location and

Center of Mass (CoM) position, as well as constraints related to friction, collisions,

and velocity components.

In contrast, optimization-based motion design incorporates stability metrics as cost

and constraint functions within optimization problem formulations. Model Predictive

Control (MPC) is one widely used optimization method for designing motions. The
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complexity of the models used in optimization-based design can range from simple

single-rigid body dynamics to full 3D nonlinear models. Various adaptations of MPC

have been employed to generate trajectories for bipedal and humanoid locomotion,

demonstrating the flexibility and efficacy of this approach [32]. HZD is another

optimization technique for bipedal gait (or trajectory) design that leverages the full

hybrid dynamics of the robot. By computing stabilizing trajectories on the zero

dynamics, HZD effectively reduces the state space for control, enabling more efficient

motion planning [4, 33].

2.2.3 Data-Driven Design

Biological inspiration can play a role in the development of robot motion design,

as it provides insights into the efficient and adaptable movements found in nature.

Insect, animal, and human motions have all been utilized as sources of inspiration for

creating more effective robotic locomotion [34, 35, 5, 2]. By studying and analyzing

these biological systems, researchers can identify essential principles and mechanisms

that can be translated into robotic applications.

Data from external vision sensors and attached proprioceptive sensors are employed

to reconstruct desired motions that robots can execute, enabling them to mimic the

natural movements found in biological systems. This process often involves using

machine learning algorithms and optimization techniques to extract and model the

key features of the observed motions. By integrating these data-driven motion designs

into robotic systems, engineers can create robots with enhanced capabilities, such

as improved agility, stability, and adaptability to various environments and tasks.

However, a downside of these methods is that they can sometimes lead to overfitting

to specific scenarios or tasks, potentially limiting the generalizability and adaptability

of the robotic system when encountering novel or unforeseen situations [36, 37].
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2.3 Motion Feedback Control

Motion Feedback Control is the calculation of commanded torques sent to the

robot to track desired motions. Control can be model-based or data-driven, both

with good and bad characteristics.

2.3.1 Model-Based Feedback Control

As described earlier, the various models are often combined with a blend of

nonlinear control theory and optimal control techniques to achieve effective bipedal

robot control. Analytic nonlinear control approaches include inverse dynamics, partial

feedback linearization, and passivity-based control methods. These approaches have

been widely used for bipedal control [4, 33, 38, 39]. Furthermore, this dissertation

introduces Kinodynamic Fabrics, which leverage geometric mechanics with nonlinear

control (presented in Chapter 5).

Operational Space Control (OSC) is another standard method for computing

torques that should be applied to the robot to fulfill task requirements and con-

straints. OSC involves formulating an optimization problem that aims to minimize

the tracking error between the desired and actual task-space trajectories while consid-

ering system dynamics, joint limits, and other constraints. The optimization process

generates the necessary joint torques to achieve the desired task-space motion, en-

suring the robot’s efficient and smooth operation. By combining different models

and control techniques, researchers have been successful in achieving a variety of

behaviors in bipedal robots [40, 41, 42, 3, 43, 44, 45]. These diverse strategies

showcase the potential of combining model-based and control-based methods for more

effective and versatile locomotion solutions in bipedal and humanoid robots.
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2.3.2 Data-Driven Feedback Control

Data-driven methods for feedback control vary from highly model-dependent to

model-free approaches, each with advantages and disadvantages. Model-free, data-

driven methods typically employ reinforcement learning in physics-based simulations

to guide the command policy toward high-level goals, such as base velocity tracking

without falling over. Physics engines, such as MuJoCo [46] and PyBullet [47], are

prominent software tools used to simulate the forward dynamics of robots and collect

data for policy optimization. Numerous successful algorithms have been demonstrated

in simulation for a variety of legged robots [48, 49, 50].

Model-free methods can have poor performance (i.e., aperiodicity, lack of steady-

state convergence, and inconsistent repeatability of tasks) without expert architecture

knowledge, making it beneficial to incorporate model-based components for enhanced

hardware performance. Reduced-order, single-rigid body, and centroidal dynamics

models have been integrated into learning frameworks to improve disturbance rejection

and agile movements on Cassie robots [43, 51, 3]. HZD constraints were combined

with reinforcement learning to enhance stability convergence of data-driven methods

on both Cassie and Digit robots [52, 53].

Despite impressive results achieved by these data-driven methods, they still ne-

cessitate precise network architecture and reward policy design, and the controllers

are typically tailored to specific tasks. For instance, the stair-climbing controller by

Siekmann et al. [43] is not designed or constructed in the same manner as the

running controller by Batke et al. [3]. This dissertation concentrates on developing

model-based motion design and feedback control algorithms for greater clarity and

generality.
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Figure 2.4: Bipedal robots Cassie (left) and Digit (right) made by Agility Robotics
[6, 7].

2.4 Robots

The Cassie and Digit robots developed by Agility Robotics are described in this

section.

2.4.1 Cassie

Cassie, designed by Agility Robotics, is a 20-Degree-of-Freedom (DoF) bipedal

robot capable of dynamically walking and running over rough terrain [6]. The

robot’s unique morphology features rigid linkages that create closed chains in each

leg configuration, constraining the two passive joints highlighted in yellow in Figure

2.4. Fiberglass spring plates embedded in each closed chain provide compliance and

enable the robot to absorb impact forces during locomotion. The morphology of

Cassie’s legs resembles that of a Cassowary, with the hip and knee joints located

higher up near the pelvis. As a result, uncommon terminologies such as tarsus and

toe represent the final two joints in the kinematic branch of each leg. It is worth

13



noting that Cassie has only one DoF at the end of each leg, limiting its ability

to control roll (rotation about the body x-axis) and yaw (rotation about the body

z-axis) for each toe.

Cassie’s unique design has enabled researchers to investigate various terrain-aware

locomotion strategies, including whole-body motion planning, control, and optimization

techniques that leverage the robot’s passive compliance and dynamic capabilities.

Cassie’s dynamic abilities have been demonstrated on various terrains, including

stairs, ramps, and uneven terrain [40, 41, 42, 3, 43, 44]. These studies have paved

the way for developing robust and efficient bipedal locomotion systems that can

adapt to real-world environments.

2.4.2 Digit

Digit, designed by Agility Robotics, is a mechanical advancement from the Cassie

platform, as it is equipped with additional hardware and sensors that enhance its

capabilities (Figure 2.4) [7]. Adding a torso and arms to the existing bipedal struc-

ture allows for a greater range of motion and flexibility and increased dexterity for

object manipulation. One of Digit’s most significant advancements is its incorporation

of LiDAR and RGB-D sensors, which provide the robot with real-time, 3D environ-

mental data. This sensor suite enables Digit to perceive its surroundings and adapt

its locomotion accordingly, making it an ideal candidate for terrain-aware walking.

Incorporating terrain information into a robot’s gait planning is crucial to achiev-

ing agile and adaptable bipedal locomotion. Recent research has focused on developing

algorithms and controllers that allow robots like Digit to move across various terrains.

The exteroceptive sensors on Digit provide valuable terrain information that can be

extracted to estimate the location, height, and shape of obstacles and the slope

and roughness of the ground. This can then be used to plan more efficient and

stable walking trajectories. This terrain information is used to plan more efficient
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and stable walking trajectories, enabling Digit to adjust its steps and posture in

real-time to accommodate unexpected terrain variations.

The research version of Digit (digit-v3) has a sensor integration issue that

makes the perception data stream unreliable while in the low-level-api operation

mode. As a solution, additional sensors are mounted and integrated externally into

the native API of the robot. For a more complete discussion, refer to Section

4.5.1.

2.5 Perception in Legged Locomotion

Initially, bipedal robot systems were developed using only proprioceptive sensing,

as balance and stability were the main challenges to address. The first actuated

biped on record, the WL-1, was created at Waseda University in 1966 and relied

exclusively on joint encoder and pressure sensors [54, 55]. As hardware and algorithm

improvements progressed, the integration of additional sensors, particularly those for

perception, became more widespread. Data extracted from these sensors have been

utilized for object detection, semantic and terrain mapping, and path planning

[56, 57, 58, 59, 60, 61].

Furthermore, the integration of perception sensors in legged locomotion systems

has significantly enhanced the robot’s interaction with its environment. These cameras,

LiDAR, and other vision-based apparatus enable robots to gather valuable information

from their surroundings in real-time [61, 62]. This data is subsequently utilized to

make informed decisions, such as detecting obstacles, discerning terrain variations, and

adapting gait patterns accordingly [52, 63, 56, 57]. The synergy between perception

and legged locomotion has ushered in a new era where robots can maintain balance

and navigate complex environments with heightened agility and safety. As research

in this domain continues to evolve, the fusion of perception and legged locomotion

promises to improve bipedal robots’ capabilities in many applications.
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Chapter 3

Terrain-Aware Foot Placement Controller for Cassie

3.1 Introduction

This chapter contributes to the growing literature on terrain-adaptive locomotion

[42]. We design a gait (locomotion) controller that enables an agile bipedal robot,

such as Cassie in Fig. 3.1, to traverse terrain as close to a planned velocity as

the physical limits of the robot and terrain conditions allow.1 We assume that the

robot is (a) provided a local planar approximation of the terrain, (b) a local friction

cone, and (c) a vector field of desired velocity (speed, heading, and yaw rate) as a

function of the robot’s current pose and velocity. The integral curves of the vector

field provide a family of paths that the robot may follow to reach a goal unknown

to the local gait controller. These parameters may come from a reactive planner, as

in [64, 65], or through a human operator and a Radio Control (RC) transmitter,

as is done in this paper.

We make a key simplifying assumption on the terrain: that over robot step-

length distances, it can be piecewise approximated by planes, with allowed jumps

at the boundaries. This admittedly vague assumption will be made more precise

in Sect. 3.2, where we model the center of mass dynamics of the robot. The

MPC foot-placement controller plans N robot steps ahead with a terminal cost that

assumes the terrain slope and friction cone remain the same beyond the planning

1An open-source repository containing code, videos, and results is available at https://github.com/UMich-
BipedLab/cassie alip mpc.
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Figure 3.1: Cassie Blue using an ALIP-inspired MPC gait controller to walk sideways
up a 22o incline on wet grass. Lateral walking with Cassie is much more difficult
than longitudinal walking due to tight workspace constraints, which are accounted
for in our formulation.

horizon. The ability to include workspace constraints (e.g., avoid self-collisions) and

an approximate friction cone (e.g., avoid overconfidence on horizontal ground reaction

forces) leads to significantly enhanced agility over the original Angular Momentum

Linear Inverted Pendulum (ALIP)-based controller introduced in [8]. In addition,

including a piecewise linear approximation of the local terrain in the ALIP model

enlarges the situations where the approximate zero dynamics analysis and associated

stability guarantees in [41] are applicable.

3.1.1 Related Work

Switching Control Based on One-step Ahead Terrain Profile: Terrain-adaptive

locomotion of a simulated 3D humanoid is achieved in [66]. First, an offline library

that includes five periodic gaits and a set of transition gaits that terminate in a

periodic gait is computed. The gaits are parameterized to allow a low-level joint
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controller to move the robot in a single step from a current pose to a desired final

pose, with the desired pose planned in real-time at step initiation as a function

of a terrain height map. Similarly, reference [67] first develops a set of feedback

controllers for bipedal walking on flat ground, upstairs and downstairs, called motion

primitives. Then, a set of feedback controllers is designed that evolve the robot

from one motion primitive to another (termed motion transitions). The appropriate

controller is selected at step transition.

Terrain Robust: Previous locomotion work has also addressed gait controller design

for a specified, finite set of terrain height perturbations [68, 69, 70, 51]. During

offline optimization, which could be via parameter optimization or reinforcement

learning, a “score” is assigned based on how the closed-loop system (consisting

of the controller and robot) responds to a family of terrain profiles. The online

controller can only use proprioception (such as Inertial Measurement Unit (IMU) and

joint encoder signals) to complete a locomotion task. In particular, the controller

is not provided exteroceptive information on terrain profile, as in [66] or [67], for

example.

MPC for Foot Placement without Terrain Preview: In [71], the decoupled LIP

model dynamics, first introduced in [29], is used to solve a hybrid system-based

optimization problem by computing center of pressure trajectories for a specified

footfall pattern. These trajectories are computed at the beginning of each domain

and are used as inputs to a virtual constraint-based Quadratic Program (QP) to

realize joint torque commands. A separate hybrid system MPC approach was also

performed in [44] for computing footfalls on a bipedal robot. The footfalls were

chosen to minimize errors between the propagated LIP dynamics and a pre-specified

reference trajectory.

One Step-Ahead Prediction: This paper designs an MPC controller that blurs the

boundary between gait generation and trajectory planning. Our starting point is
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the one-step ahead gait controller in [8, 41], which bridged the gap between the

low-dimensional LIP models in [72, 29, 73, 74, 75, 76] and the method of VCs

and HZD in [77, 70, 78]. The main contribution of [8, 41] was to show that when

the CoM dynamics of a physical robot are parameterized in terms of the angular

momentum about the contact point instead of linear velocity, the resulting model is only

weakly affected by the angular momentum about the center of mass; in effect, the

angular momentum about the contact point acts as a form of “total momentum”,

accounting for both linear momentum about the contact point and the angular

momentum about the center of mass. When a 3D bipedal robot is controlled so

that its CoM height is constant, a four-dimensional linear model (referred to as the

3D-ALIP) that is weakly perturbed by angular momentum about the center of mass

is extracted. When the perturbation term is dropped, the model simplifies to a pair

of decoupled 2D models for the sagittal and frontal planes, respectively; see also

the decoupled dynamics of the LIP for comparison [29].

The 2D-ALIP models were subsequently used in [8] to predict angular momenta

at the end of the next step as a function of the robot’s current angular momenta,

position of its center of mass, and the swing-foot position at the end of the current

step. When a (dead-beat) foot-placement controller was designed to place the swing

foot to match the predicted angular momentum to the desired angular momentum

at the end of the next step, the Cassie bipedal robot was able to walk at 2.1 m/s,

complete a 90o turn in 5 steps when walking at 1.0 m/s, and traverse significant

slopes [79].

Importantly, achieving this agile performance on Cassie required a skilled operator for the

RC transmitter, namely, an operator who has an intuitive feel for how rapid changes

in commanded speed could result in workspace violations, self-collisions (especially in

lateral walking), foot slippages, and who could appropriately adjust foot clearance for

locomotion over sloped terrain. This paper transforms the one-step ahead controller
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in [8] into a multi-step horizon MPC controller. Moreover, the center of mass

is allowed to move parallel to the ground, workspace constraints on the legs are

included to avoid self-collisions, and finally, the friction cone of the local terrain

is incorporated. These contributions prepare the gait controller for integration with

perception, mapping, and motion planning components illustrated in [56].

3.1.2 Contributions

We provide the following contributions for enhancing terrain-aware locomotion:

• Provide new insights about the exact CoM dynamics of a bipedal robot using

CoM and angular momentum about the contact point as state variables. After

applying a constraint to enforce the CoM height to remain a constant dis-

tance to the ground, we derive coupled dynamics as opposed to the decoupled

dynamics generated when using CoM velocity [29]. In [29], the decoupling is

exact due to the point contact assumption. However, additional assumptions

are needed when using angular momentum. We justify why specific terms can

be treated as negligible, which allows us to recover a decoupled linear system

about the new state variables.

• Formulate an N -step receding horizon optimization problem that incorporates

the 3D-ALIP dynamics and a piecewise linear terrain approximation for com-

puting foot placements. The foot placement solutions, subject to workspace and

approximate friction cone constraints, are computed to asymptotically achieve

desired periodic trajectories at the end of the planning horizon.

• Create a novel set of virtual constraints and desired trajectories that can

be used on a bipedal robot to achieve the desired motion of the 3D-ALIP

dynamics for locomotion on piecewise linear terrain. The virtual constraints

ensure that the CoM and swing toe remain parallel to the local ground plane,
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Figure 3.2: The figure presents the Cassie robot’s kinematic tree, featuring labeled
joints and a photographic representation of Cassie in its real-world form.

extending the work in [8], which assumed a constant ground height.

• Demonstrate the enhanced agility delivered by the control algorithm when

implemented on a 20-DoF Cassie robot, in comparison to previous results[8].

3.2 3D Robot Models & Dynamics

3.2.1 Cassie Robot Model

We assume a pinned point contact dynamic model of the form

D(q)q̈ +H(q, q̇) = B(q)u, (3.1)

with no yaw motion about the stance foot (Cassie has a blade foot). The gener-

alized coordinates q ∈ Rnq , the vector of motor torques u ∈ Rnu , and the torque

distribution matrix has full column rank. D(q) is the mass inertia matrix, H(q, q̇)

is the combination of Coriolis, centrifugal, and gravity forces, and B is the torque

distribution matrix. For Cassie, nq = 15 due to the blade foot and nu = 10 if the

ankle torque on the stance foot is included. This work will set it to zero for

simplicity, leaving nu = 9.
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The generalized coordinates of the Cassie robot are defined as

q =

qbase
qbody

 , (3.2)

where

qbase =

[
qposition,x qposition,y qposition,z qEuler,yaw qEuler,pitch qEuler,roll

]T
(3.3)

are the floating base coordinates representing the pose of the base link with respect

to a fixed inertial frame and

qbody =

[
qTleft,leg qTright,leg

]T
. (3.4)

are the body coordinates for each arm and leg. The leg coordinates are defined as

qi,leg =



qi,HipRoll

qi,HipYaw

qi,HipPitch

qi,Knee

qi,KneeToShin

qi,ShinToTarsus

qi,ToePitch

qi,ToeRoll



=



qiHR

qiHY

qiHP

qiK

qiK2S

qiS2T

qiTP

qiTR



, (3.5)

where i ∈ {left, right}.
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Figure 3.3: The planar linear inverted pendulum is shown. xc(t) represents the
location of the center of mass with respect to the stance foot at time t. The
control input uxfp denotes the foot placement at the end of the current step. The
state before and after the instantaneous impact is denoted with a minus (-) and a
plus (+) sign, respectively.
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3.2.2 Center of Mass Dynamics for Full-Order and Reduced-Order Model

For a 3D robot with a point contact, the dynamics for CoM positions and

angular momenta about the contact point can be written as follows,

ẋc =
Ly

mzc
+
żc
zc
xc −

Ly
c

mzc

ẏc = − Lx

mzc
+
żc
zc
yc +

Lx
c

mzc

L̇x = −mgyc

L̇y = mgxc.

(3.6)

where m is the mass of the robot, g is the gravitational constant, xc, yc, zc denotes

the CoM position with respect to the contact point, Lx,y,z denotes the angular

momenta about the x, y, z-axes of the contact point, and Lx,y,z
c denotes the angular

momentum about the CoM. Assuming p = [xc, yc, zc]
T and Fg is the gravitational

force vector applied to the CoM, the above can be derived from the fact that

L = p×mṗ+ Lc and L̇ = p× Fg.

Motivated by the CoM height constraint from the LIP model [29], we will later

design virtual constraints to impose the following relations on the evolution of the

CoM,

zc = kxxc + kyyc + zH

żc = kxẋc + kyẏc,

(3.7)
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under which the model becomes

ẋc =
Ly

mzH
+
ky
zH

(xcẏc − ycẋc) −
Ly
c

mzH

ẏc = − Lx

mzH
− kx
zH

(xcẏc − ycẋc) +
Lx
c

mzH

L̇x = −mgyc

L̇y = mgxc.

(3.8)

The slope of the x− y ground plane is represented by kx = tanαx and ky = tanαy,

respectively. The constant ground height parameter is represented by zH (as shown

in Fig. 3.3). By the equation L = Lc + [xc, yc, zc]
T ×m [ẋc, ẏc, żc]

T , the above can be

rewritten to make Lz and Lc explicit,

ẋc =
Ly

mzH
+

ky
mzH

(Lz − Lz
c) −

Ly
c

mzH

ẏc = − Lx

mzH
− kx
mzH

(Lz − Lz
c) +

Lx
c

mzH

L̇x = −mgyc

L̇y = mgxc.

(3.9)

In [8, 41], it has been shown that both Lx
c and Ly

c are small compared to Lx

and Ly, respectively. By using Lx and Ly as state variables in place of the CoM

velocities, neglecting Lc has only a small effect on the dynamic accuracy during

normal walking, even for robots with heavy legs.

Next, we make the case that (Lz − Lz
c), which is the same as (xcẏc − ycẋc), can

be neglected. Some readers might already believe (Lz − Lz
c) is a small term. For

others, there are two ways to look at it intuitively: 1) When a robot is walking

purely longitudinally (yc = ẏc = 0) or laterally (xc = ẋc = 0) the product is zero. For

diagonal movement, we can define a new frame aligned with the walking direction,

making the yc and ẏc terms small. 2) If we project the position vector and velocity
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vector to a horizontal plane, then (xcẏc − ycẋc) is the cross product of these two

projected vectors. Throughout a walking gait, either the angle between the two

projected vectors is small, or the magnitude of the projected position vector is

small. Note: Similar approximations are not needed in [29] because the coupling

term (xcÿc−ycẍc) can be nullified by the assumption of a point contact (zero torque

applied).

As a result of these approximations, we arrive at the dynamics for the 3D-ALIP

model with CoM evolving as in (3.7),

ẋ =



ẋc

ẏc

L̇x

L̇y


=



0 0 0 1
mzH

0 0 − 1
mzH

0

0 −mg 0 0

mg 0 0 0


︸ ︷︷ ︸

A



xc

yc

Lx

Ly


︸ ︷︷ ︸

x

. (3.10)

While the model (3.10) is ultimately the same as in [8, 41], these references do

not provide a derivation of the model (3.8) and (3.9) nor do they explain the

simplifications needed to arrive at (3.10). We reiterate that the state includes the

angular momenta rather than the CoM velocities; the benefits of this selection have

been highlighted in several related publications [80, 70, 81, 8].

3.2.3 Foot Placement as a Control Variable

The dynamic model (3.10), which describes the evolution of the centroidal dy-

namics when the robot is in single support, is not affected by the motor torques2.

So how to control it? As in [82, 83, 81, 8], we use the placement of the end of

the swing leg as a step-to-step actuator. Under conservation of angular momentum

and (3.7), if x− is the solution of (3.10) just before impact, and x+ is the value

2Recall that we are leaving the stance ankle passive in this study.
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of the state just after the (instantaneous) impact, then

x+ = x− +Bufp, (3.11)

where

B =

−1 0 0 0

0 −1 0 0


T

(3.12)

and ufp is the foot placement (or resultant vector emanating from the current

stance contact point to the desired swing foot impact location), and B represents

the instantaneous change in coordinate systems to the new stance foot.

We assume that the height of the swing leg is controlled so that the duration of

each robot step is fixed at Ts. Hence, during the k-th step of the robot, the height

of the swing leg above the ground is regulated to be positive for (k−1)Ts < t < kTs

and zero at kTs. The relative (x, y) position of the swing leg end at time kTs

is selected to achieve a desired evolution of (3.10) for t > kTs. Fig. 3.3 shows a

planar schematic of the x-component of the 3D-ALIP.

Remark: Reduced-order models similar to (3.10) and (3.11) were used in [44] for a

foot placement controller based on the LIP model, which is parameterized by CoM

velocity instead of angular momentum. Moreover, the models for the impact dynamics

are based on the same conservation of angular momentum assumption. Nevertheless,

our use of angular momentum is not a “matter of taste”; it is the better state

choice for controlling a variety of bipedal robots as explained in [41]: (a) the CoM

velocity is more sensitive to motor torque transients because it is relative degree one

as opposed to angular momentum, which is relative degree three; (b) linear velocity

does not capture the natural interchange between linear momentum and angular

momentum about the center of mass; and (c), there are typically large jumps in

the velocity variables at impact for fast-moving bipedal robots. To predict this jump,
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all states of the robot and the impact model need to be known, which makes the

online prediction infeasible in practice. Therefore, an assumption of continuity is

widely adopted. This is much less of an issue for angular momentum about the

contact point because it is invariant to the impulse generated at contact. Hence,

even the impact model functions better in the angular momentum coordinates.

3.3 MPC Formulation for Foot Placement Control of 3D-ALIP

Our next goal is to compute desired footholds for the robot to execute to

converge to some desired (centroidal) state at the end of each step. In [8], a single

ufp was selected step-to-step to achieve a desired value of the angular momenta in

(3.10) at the end of the next step. The values of xc and yc were not regulated, and

constraints on self-collisions and the friction cone were ignored. The one-step-ahead

foot placement method in [8] can be viewed as MPC with a terminal linear equality

constraint on a portion of the state vector and no inequality constraints. Here, we

will develop an MPC formulation of foot placement control over a multi-step horizon,

a quadratic cost to be minimized, and appropriate linear inequality constraints to

avoid self-collisions for a solution terrain-aware solution.

We begin by defining

• Ns, the number of (robot) steps of (fixed) duration Ts in the MPC control

horizon.

• δt = Ts/Nδt is the sample period for the controller, where Nδt > 1 is an integer.

• Aδt := exp(Aδt), the state transition matrix of (3.10) for a time duration of

δt seconds.

• x0 in the MPC will always be the predicted solution x̂(kTs, t) of (3.10) just

before the impact of the current step, based on the measured value of state
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at time t, that is,

x0 := x̂(kTs, t) := exp(A(kTs − t))x(t). (3.13)

This will allow us to work with a fixed control horizon.

• Next, we define the discrete-time dynamics

xi+1 =


Aδt(xi +Bufp,i), i = jNδt,

0 ≤ j ≤ (Ns − 1)

Aδtxi, otherwise

(3.14)

for use in our MPC problem, allowing us to place constraints on the intra-step

evolution of x(t), that is, its behavior between steps.

• xdes
i is the desired evolution of the state, and the associated error term is

xe,i := xi − xdes
i . (3.15)

3.3.1 MPC Formulation

An Ns-step horizon MPC control problem with quadratic cost and linear con-

straints can now be formulated as

min
Ufp

J =

NδtNs−1∑
i=0

xT
e,iQixe,i + xT

e,NδtNs
Qfxe,NδtNs

subject to

(3.13), (3.14), and (3.15)

∀ xi ∈ X and ∀ ufp,i ∈ U ,

(3.16)
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where Ufp =
[
ufp,0,ufp,Nδt

, . . . ,ufp,Nδt(Ns−1)

]
. The solution returns the optimal foot

placement sequence. Only the sequence’s first value ufp,0 is applied. The state and

control constraint sets, X and U , respectively, are defined in the following subsection.

3.3.2 Constraint Sets

The state constraint set X is the union of the mechanical safety set Xmech and

the friction cone safety set X slip. The foot placement safety set U is also used

to prevent foot collisions, most notably in the lateral direction. The mechanical

safety and foot placement safety sets are constructed as box constraints related to

the geometrical limitations of the robot. The ground friction cone (based on the

3D-ALIP dynamics) constrains the intra-step CoM positions.

We derive the constraint for xc, assuming the ground slope is purely in the

sagittal direction. This model applies the ground reaction force collinearly through

the contact leg because the point mass moves parallel to the ground plane. Taking

advantage of the known slope of the terrain, we derive the resultant tangent and

normal forces with respect to the ground to be

FTx

FNx

 =

 cosαx sinαx

− sinαx cosαx


Fx

Fz

 . (3.17)

Given the defined motion constraints, we compute the relative force ratios

Fx/z =
Fx

Fz

=
xc

kxxc + zH
(3.18)

and combine this with a Coulomb static friction constraint (|FTx| ≤ µFNx) to compute

the slip constraint on xc,

|Fx/z + kx| ≤ −µkxFx/z + µ. (3.19)
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For known kx and µ (friction coefficient), the explicit constraint is given as

|xc| ≤ (µ− kx)zH
1 + k2x

= xslipc . (3.20)

For ground slope purely in the lateral direction and known ky, a similar constraint

on yc can be derived.

We emphasize that this is not an exact friction slip constraint due to the

simplifications of using the 3D-ALIP for ground reaction force estimation. It can,

however, be combined with an under-approximation of the friction coefficient µ to

enable safer foot placements. For example, multiplying µ by 1√
2

in (3.20) results in

a linearized under-approximation of the Coulumb cone.

3.3.3 Cost Design

The cost function is the sum of a running cost with non-zero weights at step

transitions, that is, Qi = 0,∀i /∈ {Nδt, . . . , (Ns − 1)Nδt} and a terminal cost Qf .

Given a desired longitudinal angular momentum Ly,des and step width W , we can

use the solutions of (3.10) to compute the desired state of the corresponding

2-step periodic orbit for the corresponding stance foot (by following [8]). With

the assumption of conservation of angular momentum about the contact point, we

substitute Ly,des = Ly(0) = Ly(Ts), L
x(0) = −Lx(Ts), and yc(0) = W/2 into the trajectory

solutions of (3.10) and solve the resultant linear system of equations. The resultant

desired state at each impact is

xdes
i =



1
mzHℓ

tanh(ℓTs/2)Ly,des

−1
2
σW

1
2
σmHℓW tanh(ℓTs/2) + Lx,offset

Ly,des


, (3.21)
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where ℓ =
√

g/zH, Lx,offset is an additional lateral angular momentum term, and σ is

+1 for left stance and -1 for right stance. Without Lx,offset, the controller will walk

nominally with zero lateral velocity.

The terminal cost Qf is computed as the optimal cost-to-go of a Discrete-Time

Algebraic Ricatti Equation (DARE) for a periodic 2-step trajectory including impact,

combining (3.10) and (3.11), and ignoring constraints. This selection of terminal cost

ensures recursive feasibility via Bellman’s principle of optimality [12].

3.4 Virtual Constraints and Foot Placement Implementation on Cassie

The computed foot placement solution is implemented on the 20-DoF bipedal

Cassie robot using user-defined designed virtual constraints. As documented in [8],

an important feature of the 3D-ALIP model is that the mass of the swing leg and

its corresponding momentum are accounted for in Lx and Ly.

Cassie is a 32 kg, 20-DoF biped robot actuated at ten joints. Each leg has

seven joints, five of which are actuated while the remaining two are constrained

by springs [40]. To achieve a desired foot placement, we must define the control

variables and generate their reference trajectories. The nine control variables h and
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the corresponding references hd are defined as follows:

h =



torso pitch

torso roll

stance hip yaw

swing hip yaw

pzCoMproj→CoM

pxst→sw

pyst→sw

pzst→sw

absolute swing toe pitch



(3.22)

The desired reference trajectories are parametrized by a time-based phase variable

s = (Ts−t)/Ts where t is the time since the last impact. We set the reference values

for torso pitch and torso roll to be zero. To enable turning, one-half of the total

desired turn angle ∆ψ at step end is set as the reference position for both stance

and swing yaw motor joints at the end of the current step [8]. The reference

absolute swing toe pitch angle is adjusted to align with the terrain slope. pst→sw

is the position vector of the swing leg toe relative to the stance leg toe and

pzCoMproj→CoM represents the constant height parameter zH , between the center of
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mass and an inclined ground.

hd(s) :=



0

0

(1 − s)hinit3 − s(1
2
∆ψ)

(1 − s)hinit4 + s(1
2
∆ψ)

zH

1
2
[(1 + cos(πs))hinit6 + (1 − cos(πs))px,desst→sw]

1
2
[(1 + cos(πs))hinit7 + (1 − cos(πs))py,desst→sw]

β1s
2 + β2s+ β3

kx



. (3.23)

Remark: The virtual constraints in [8] regulate the CoM to remain at a constant

height with respect to the pinned stance foot and do not account for the CoM

height constraint used in this paper. We instead derive a new kinematic relation

pzCoMproj→CoM that computes the height of the CoM relative to the projected position

on the terrain. More explicitly, pzCoMproj→CoM = pzst→CoM − kxp
x
st→CoM − kyp

y
st→CoM. The

desired swing toe angle is modified to align with the ground.

Outputs, px,yst→sw are set equal to the MPC foot placement solution ufp,0 described

in (3.16). The z component of pst→sw can be easily computed with the knowledge of

kx and ky. We use sinusoidal references for the x and y components (following [8])

and a parabola for the z component parametrized by the initial and final heights

of the swing leg determined by foot placement and the relative time and height

of a user-defined step clearance (The βi parameter derivations are omitted due to

space constraints). hiniti denotes the value of each output at the beginning of each

new step.

We implement an inverse kinematics and passivity-based control schema to track

these constraints on the physical robot (see [8, 41]).
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3.5 Simulation Results

This section demonstrates the performance of the ALIP-MPC walking controller

in simulation experiments.3 It also compares the new controller with a previous

one-step-ahead (or ALIP-1step) controller implemented on Cassie in [8].

Simulation is used to demonstrate the advantages of the proposed gait ALIP-MPC

controller with respect to the ALIP-1step controller in [8]. The 20-DoF simulation

model and the ALIP model are identical in both cases, except that the ALIP model

used in the MPC controller takes the slope into account, following general motion

constraints in [29].

Fig. 3.4 highlights the importance of the ALIP model and modified virtual

constraints accounting for slopes in the lateral plane. On terrain with a 5◦ lateral

slope (Fig. 3.4a), the MPC controller achieves an average lateral velocity close to

the desired zero velocity reference because it adapts to the slope, while in contrast

with the one-step-ahead controller, the robot drifts downhill. The drift is caused by

untimely impacts and unbalanced forces on the uphill vs. downhill contacts. The

virtual constraints of each controller are designed to zero the vertical velocity of the

CoM. With the MPC controller, vz has only a small oscillation caused by imperfect

low-level tracking on the 20-DoF model. Lateral walking at 0.5 m/s is compared in

Fig. 3.4b, with similar results. In short, the improvements over [8] allow walking

over steeper terrain.

Fig. 3.5 illustrates how changing the prediction horizon’s length affects the ALIP-

MPC controller’s ability to satisfy constraints. The friction parameter is modified

online, and we confirm the benefits of using a larger horizon for safer walking when

imposing step length restrictions umax
fp .

3Open-source code, videos, and results can be found at https://github.com/UMich-
BipedLab/cassie alip mpc.
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Figure 3.4: Comparison between proposed ALIP-MPC controller and ALIP-1step
(one-step-ahead) controller [8] on inclines. (a) The ground has a 5◦ lateral slope,
and Cassie is commanded to walk with zero velocity. The lack of slope information
in the ALIP-1step controller leads to an increase in the magnitude of the CoM
velocity and increased tracking error of the constant CoM height assumption. In
(b), a ground incline of 11◦ causes the ALIP-1step controller to fail, while the
ALIP-MPC controller allows Cassie to walk downhill laterally at approximately 0.5
m/s.
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Figure 3.5: Comparison between (a) the 2-step horizon and (b) the 8-step horizon
implementation of the proposed ALIP-MPC controller. At t = 10.1, both controllers
are informed that the friction coefficient will reduce to 0.2 at the end of their
horizons. In c), we compare the MPC foot placement solutions calculated during
each step for both planning horizon choices. The 2-step version is restricted from
extending its swing leg too far, which results in a friction violation at step k +Ns.
The 8-step version has more time to reduce the robot’s velocity to satisfy the
constraint and only uses one additional step to affect the change. The slight friction
cone violations are from the ALIP approximation, reinforcing the need for an under-
approximated friction coefficient.
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3.6 ALIP-MPC Benefits

The benefits of including slope incline within the proposed ALIP-MPC controller

are twofold. Firstly, the constant height constraint is embedded within the 3D-

ALIP model, instead of the flat ground assumption, to more accurately approximate

the tangential contact forces. We then formulate an MPC problem with constraints

imposed on these forces to compute foot placements, which prevent slipping. Secondly,

we modify the virtual constraints of [8] to include slope data. Fig. 3.4 highlights

this improvement’s benefits in reducing CoM height variation and untimely contacts,

leading to improved velocity tracking.

3.7 Experimental Results

The proposed ALIP-MPC controller was coded in C++ and run on a secondary

computer in a Linux environment.4 The planning horizon of the controller was set

to four steps (Ns = 4) with a step period of 0.3 seconds and an intra-step time

discretization of 10 ms. Foot placement updates were sent over UDP to the primary

computer on Cassie at 250 Hz. The resultant QP was code-generated using CasADi

and evaluated using a primal-dual active set algorithm [84, 85].

The MPC controller was implemented on Cassie Blue and evaluated in a variety

of situations shown in Fig. 3.6, 3.14, and 3.15.

3.7.1 Inclined walking

Cassie walked forward on a treadmill inclined at 6◦ at a maximum speed of 1.5

m/s and also walked laterally at a maximum speed of 0.5 m/s on a stationary

treadmill inclined at 13◦. When we tried lateral walking with the one-step ahead

controller of [8], which does not actively constrain the workspace of the legs, the

4Open-source code, videos, and results can be found at https://github.com/UMich-
BipedLab/cassie alip mpc.
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Figure 3.6: Images from various experiments performed with Cassie Blue using the
gait controller discussed in this paper. (a) Forward walking at 1.0 m/s with a
transition onto a stationary treadmill inclined at 13◦. (b) Lateral walking at 0.5 m/s
with a transition onto a stationary treadmill inclined at 13◦. (c) Forward walking
(max 2.1 m/s) on a moving treadmill inclined at 6◦. (d) Forward walking at 1 m/s
on a wet, grassy slope inclined at 22◦. Videos available at [9].
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robot tripped and fell. We test the limits of our control method by having Cassie

Blue walk up an uneven slope with an estimated average incline of 22◦. Cassie

successfully walked up the slope in the sagittal direction at 1.0 m/s and the lateral

direction at 0.3 m/s. Speed in the lateral direction is inherently slower due to

hardware limits on step width.

3.7.2 Transitioning from Flat Ground to an Incline

In this experiment, an operator sent the slope information to Cassie at the

transition. Performance relied heavily on the timing and accuracy to which the

operator switched the estimated ground slope with respect to the body frame of

the robot. While the transitions were not ideal due to operator error, a noticeable

improvement in maintaining a constant CoM height with respect to the ground was

seen compared to [8]. Future work will remove operator dependence and integrate

with perception and [56].

3.7.3 Rapid Changes in Lateral Velocity

To validate the ability of the MPC controller to achieve self-collision constraints,

as in Sect. 3.3, we constrain the lateral foot placement solution to remain within

the safety set U for all experiments. As shown in [9], the swing legs avoid collisions

when rapidly changing the lateral target velocities.

3.7.4 Avoid Slipping on a Snow-Ice Mixture

Via the RC transmitter, the operator adjusted the assumed friction coefficient to

prevent slipping on the snow-ice mixture shown in Fig. 3.14. With poor estimation

(or omission) of the xslipc constraint, the robot slips and falls. This is corrected by

underestimating the friction coefficient for successful walking, as shown in Fig. 3.15.
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Figure 3.7: Cassie sagittal walking uphill 22◦ incline wet-grass hill.
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Figure 3.8: Cassie sagittal walking downhill 22◦ incline wet-grass hill.
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Figure 3.9: Cassie lateral walking uphill 22◦ incline wet-grass hill.
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Figure 3.10: Cassie Indoor sagittal walking transition from flat ground to 13◦ incline.
Plot of Ly shown.
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Figure 3.11: Cassie Indoor sagittal walking transition from flat ground to 13◦ incline.
Plot of ṗzCoM shown.
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Figure 3.12: Cassie Indoor lateral walking transition from flat ground to 13◦ incline.
Plot of Lx shown.
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Figure 3.13: Cassie Indoor lateral walking transition from flat ground to 13◦ incline.
Plot of ṗzCoM shown.
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3.8 Conclusions and Future Work

This paper extended a controller based on a constant CoM height and a one-step

ahead prediction of angular momentum [8] in three ways. First, the 3D-ALIP model

was derived to allow the robot’s center of mass to exhibit piecewise planar motion.

Similar to the LIP in [29], the resulting model more closely models a physical robot.

Second, a four-step ahead MPC controller was provided, which importantly allowed

realistic workspace and terrain-centric constraints in the MPC formulation. Lastly,

a novel set of virtual constraints allowed us to experimentally realize the assumed

CoM properties on a highly agile, 20-DoF bipedal robot.

Currently, the ALIP-MPC performance depends on the operator’s ability to provide

a real-time reference of the terrain slope and friction within a local region of the

robot. Ideally, this information should be retrieved autonomously from a perception

system, as in [79]. When the slope is estimated accurately, the robot is very stable

while walking with lateral and longitudinal velocity on sloped ground. In future

work, we plan to (a) improve step-to-step smoothness by appending a rate-limiter

term to the cost function, (b) look at further relaxing the assumptions on the low-

dimensional model (e.g., zero dynamics) to allow nonlinear terms, and (c) integrate

the controller with a reactive planner.
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Chapter 4

Perception-Integrated Bipedal Locomotion Controller for

Humanoid Robots

A locomotion controller is responsible for providing a robot with actuator com-

mands to achieve the goals prescribed by high-level reference commands. These goals

encompass tasks such as balancing, manipulation, and walking. Adding exteroceptive

sensors, such as LiDAR and RGB-D, to the Digit robot compared to its predecessor,

Cassie, enhances its capacity for navigating complex environments. Leveraging these

extended capabilities, we aim to improve the stability and performance of these

robots for moving in the real world. In this chapter, we describe a novel locomotion

algorithm that combines perception-derived terrain information with the ALIP-MPC

foot placement and locomotion strategy described in Chapter 3. In addition to walk-

ing, locomotion controllers handle additional modes related to dynamic balance and

transitioning between modes. This chapter focuses solely on walking, and additional

details on balance, mode transition, and parameters can be found in Appendix B.

Open-source code and implementations of this locomotion controller are available at

https://github.com/UMich-BipedLab/digit locomotion controller.

4.1 Humanoid Locomotion System Architecture

The architecture of the humanoid locomotion system involves seamlessly integrat-

ing all requisite components—hardware and software—for humanoid robot operation.
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Figure 4.1: This block diagram illustrates the flow of information and control in a
humanoid locomotion system. It starts with sensors providing input for estimating
both the robot-centric and environmental states. References and commands drive
relevant tasks and mode transitions. The control stack combines the estimated state
and reference commands to compute motor commands for the actuators, resulting in
the realization of locomotion on the physical humanoid robot.

At a higher level, the block diagram encompassing the control structure of these

components for implementing diverse locomotion controller modes features shared

elements, as depicted in Figure 4.1. The control stack is at the heart of the system,

responsible for computing pertinent actuator commands, thus enabling precise robotic

response to desired actions.

Figure 4.2 visually represents a control stack’s internal flow. In this instance,

the interplay between reference, commands, and state variables governs the choice

between two locomotion modes: dynamic balance and walking. Upon selecting the

pertinent task space objectives, these are meticulously tracked using user-preferred

joint velocity or torque resolution methods.

Notable distinctions between balance and walking control manifest in the reference

commands and task map segments. While distinct command parameters cater to

each operational mode in the reference commands section, the task map section

delves into the tasks essential for realizing the desired locomotion behavior.
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Figure 4.2: Visualizing the Control Stack process, illustrating the progression of state
estimation, references, and commands through diverse algorithms to calculate intended
motor velocities and torques.

The subsequent sections exclusively concentrate on the walking mode and the

corresponding task maps that could materialize. For more insights into other modes

or facets of the locomotion system, please refer to Appendix B.

4.2 Digit Robot Model

The kinematic tree of the Digit robot is described in this section for reference

for the remainder of this document. The generalized coordinates of the Digit robot

are

q =

qbase
qbody

 , (4.1)

where

qbase =

[
qpos,x qpos,y qpos,z qEuler,yaw qEuler,pitch qEuler,roll

]T
(4.2)
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Figure 4.3: The Digit robot is shown from both the side (left) and the back (right).
Its kinematic tree is composed of open and closed chains with rigid and flexible
links and joints that are actuated, passive, and compliant. The base link of the
robot is located at the center of its pelvis.
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are the floating base coordinates representing the pose of the base link with respect

to a fixed inertial frame and

qbody =

[
qTL,leg qTL,arm qTR,leg qTR,arm

]T
. (4.3)

are the body coordinates for each arm and leg. The leg coordinates are defined as

qi,leg =



qi,HipRoll

qi,HipYaw

qi,HipPitch

qi,Knee

qi,KneeToShin

qi,ShinToTarsus

qi,ToePitch

qi,ToeRoll



=



qiHR

qiHY

qiHP

qiK

qiK2S

qiS2T

qiTP

qiTR



, (4.4)

where i ∈ {L, R} represent the left and right leg, and the arm coordinates are

defined as

qi,arm =



qi,ShoulderRoll

qi,ShoulderPitch

qi,ShoulderYaw

qi,Elbow


=



qiSR

qiSP

qiSY

qiE


, (4.5)

where i ∈ {left, right} represent the left and right arm.

4.3 ALIP-MPC Modifications and Improvements

The walking algorithm employed on Digit extends the method previously described

in Chapter 3. Several improvements have been made to the optimization formulation

to improve performance and efficiency. For the basic formulation of the MPC
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Figure 4.4: A visualization of variables used within the MPC formulation. In this
example, the trajectory of the sagittal CoM position of the ALIP model (xc,i) is
plotted with optimization variables and parameters for a fixed 2-robot-step horizon.
Each step period has a fixed time of Ts. The colored circles are the CoM decision
variables (xc,i), and the dashed arrows are the foot placement decision variables
(ufp,i). The green circles represent locations where a state cost is computed. The
initial condition of the optimization is represented by xc,1. It must be pre-computed
using the current estimate of the CoM position and time remaining in the current
step.

problem, refer to Section 3.3. A simplified yet helpful visualization of the MPC

problem is shown in Figure 4.4.

4.3.1 Cost Function

In the previous MPC formulation described in Eq. (3.16), the running cost is

only a function of the state. However, this is lacking consistency with respect to

the terminal cost derivation. Therefore, we add a term to the running cost such

that the magnitude of each control input (foot placement) is penalized. The penalty
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matrix is then used to derive the terminal cost. The reformulated cost function is

min
Ufp

J =

NδtNs−1∑
i=0

xT
e,iQxe,i +

Ns−1∑
j=0

uT
fp,jRufp,j + xT

e,NδtNs
Qtermxe,NδtNs (4.6)

where R is a positive definite matrix of appropriate size, ufp,j are foot placement

decision variables, and the terminal cost has been renamed as Qterm.

The terminal cost is computed as the DARE solution for a Ns periodic ALIP

system. The setup and solution for an example 2-robot-step periodic system are

described below.

First, we assume the nominal discrete dynamics of the ALIP model are

xk+1 = Axk, (4.7)

where k, k + 1 are the current and next state indices, A is the state transition

matrix, and the impact dynamics are

x+ = x− +Bufp, (4.8)

where +,− represent the states pre- and post-impact, B is the impact map, and

ufp is the foot placement control input. Next, for a 1-robot-step periodic ALIP

system, where each state x1p is the ALIP state value before impact, the discrete

dynamics can be written as

x1p,k+1 = A(x1p,k +Bufp)

= A1px1p,k +B1pufp,

(4.9)

where A1p = A is the state matrix, B1p = AB is the input matrix for the 1-robot-step

periodic system, and ufp ∈ R.
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Similarly, the 2-robot-step periodic dynamics are written as

x2p,k+1 = A2px2p,k +B2pufp, (4.10)

where A2p = A2, B2p = [A2B, AB], and ufp ∈ R2.

With this information, we can now substitute the desired state, input, and cost

matrices into the DARE,

Qterm = AT
ipQtermAip − (AT

ipQtermBip)(R +BT
ipQtermBip)−1(BT

ipQtermAip) +Q, (4.11)

where ip is the matrix identifier for the corresponding robot-step horizon. A method

for efficiently solving (4.11) can be found in [86].

4.3.2 Impact Map

The impact map matrix from (3.12) assumes that the CoM height location is

tracked perfectly at impact. With a robot like Cassie, whose mass is centrally

located at the pelvis, this assumption is fair at low speeds (< 2 m/s). However,

this assumption breaks down at faster speeds, and a more complex linear matrix

should be used for improved results as detailed in [41]. The updated impact map

still uses the conservation of angular momentum but now assumes that the vertical

CoM velocity is non-negligible. Given the current gains and torque control strategy,

Digit’s vertical CoM velocity is non-negligible at much lower speeds (< 0.4 m/s).

The improved impact map from [41] must also be updated to include locomotion

across sloped terrain. Taking these factors into consideration, the updated impact
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map is given as

B =



−1 0

0 −1

kxv
y
CoM,eos kyv

y
CoM,eos − vzCoM,eos

vzCoM,eos − kxv
x
CoM,eos −kyvxCoM,eos


, (4.12)

where kx, ky are the slope of about the sagittal and lateral components of the

robot and vxCoM,eos, v
y
CoM,eos, v

z
CoM,eos are the estimated center of mass velocities at the

end of each predicted step (including the current step). This map is used for all

implementations of the ALIP-MPC walking algorithm on Digit.

Note: If the tracking performance of the stance knee was improved, it is possible

that this updated impact model would be unnecessary for low walking speed.

4.3.3 Slack constraints and Rate Limits

ALIP-MPC feasibility issues may arise When Digit is walking at speeds near

the maximum and minimum commanded velocity targets (especially in the sagittal

direction). The main reason is the hard constraint imposed on each step’s maximum

allowable foot placement. As the robot increases speed with smaller robot-step

horizons, the predicted CoM position may accelerate such that the maximum foot

placement input cannot slow the robot down. We have found that adding additional

slack variables to the foot placement constraints, such as

uxfp ≤ uxfp,max + λfp,x, (4.13)

can eliminate this issue in practice. An additional term Sfp,xλ
2
fp,x is then added to

the cost function in (3.16) and (4.6), where Sfp,x > 0. Additional constraints and

cost penalties can be added to the MPC formulation at the user’s preference. We
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have also considered adding rate limiters to the foot placement inputs where the

change in magnitude of subsequent steps is constrained. However, this could reduce

the robot’s success of push recovery and was therefore not used. A rate limiter

constraint could be a good addition to the controller if a separate push recovery

foot placement modifier were added after the ALIP-MPC solution was retrieved.

4.3.4 Additional Considerations

Since we assume the optimization size is fixed, a separate solver must be created

for each robot-step horizon. A separate MPC formulation is also needed for different

stance leg conditions. The lateral foot placement constraints on uyfp cannot be

expressed for arbitrary initial stance leg conditions without adding discrete decision

variables. Therefore, a separate MPC formulation is created for each stance leg

for efficiency. The formulations are equivalent except with respect to the lateral

foot placement constraints. As an example, for an even robot-step horizon with the

current step in left stance, the lateral constraints would be

−uyfp,max ≤ uyfp,n ≤ −uyfp,minu
y
fp,min ≤ uyfp,n+1 ≤ uyfp,max,

where Ns is the robot-step horizon, uyfp,max is the magnitude of the largest lateral

step and uyfp,min is the magnitude of the smallest lateral step, and n is every odd

natural number less than the robot-step horizon (i.e. n = 1 : 2 : Ns). Slack variables

are omitted from Eq. (4.14) for conciseness but should be added for feasibility

robustness.

Note: Mixed integer optimization solvers could be used to remove the need for

separate solvers depending on the stance leg; however, these problems typically take

longer to evaluate than standard QPs and are therefore not considered.
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4.4 Terrain-Aware Walking sans Perception

A similar virtual constraint and inverse kinematics tracking method, as described

in Chapter 3, is utilized for the walking controller on the Digit robot. Apart from

the virtual constraints defined by Eq. (A.5), additional tasks are incorporated for

the 8 arm joints and 2 toe roll joints. A pseudo-inverse inverse kinematics scheme

is applied to compute the desired arm joint values based on the desired Cartesian

position of each end-effector knob. Each toe has two linear actuators that modify

their relative pitch and roll. A data-based quadratic nonlinear regression algorithm

maps desired orientation values to motor position values for integration into the

virtual constraints. For simplicity, A Proportional-Derivative (PD) controller is used

to track all desired joints with feedforward torque added to selected actuators.

4.4.1 Preliminary Simulation & Hardware Results

All results are achieved using the updated ALIP-MPC algorithm discussed in

Section 4.3. Figure 4.5 illustrates (in simulation) a comparison between the ALIP-

MPC strategy for including terrain information versus assuming the ground is flat.

Figures 4.6 and 4.7 showcase the ALIP-MPC performance on actual hardware for

a variety of terrain conditions.1 A table of relevant ALIP-MPC walking parameters

and gains are listed in Table 4.1, Table 4.2 and Table 4.3, respectively.

4.5 Mapping and Perception

The purpose of this section is to describe the sensors and methods used to

extract terrain information necessary for implementing the terrain-aware foot placement

method first described in Section 3.

The terrain-aware walking techniques introduced in Chapters 3 and 4 necessitate

1Open-source repository: https://github.com/UMich-BipedLab/digit locomotion controller
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Figure 4.5: Comparison of ALIP-MPC performance for a) known terrain parameters
versus b) assumption that the ground is flat. The images on the left column show
Digit walking laterally up a 5◦ inclined plane. The images in the right column show
Digit walking forward up the same plane. In both comparisons, the flat ground
assumption causes the robot to become unstable and fall due to early impact. The
ALIP-MPC (terrain-aware) method remains stable for the same commanded reference
velocities. The simulations were performed on the Agility Robotics custom simulator
that uses the Mujoco physics engine.
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Table 4.1: Nominal Walking Controller Constants and Parameters.

Walking Mode Parameters Values
Mass (m) 46.2104 kg
Step Period (Ts) 0.38 s
CoM Height (zH) 0.95 m
Step Width (W ) 0.31 m
Nominal Friction Coefficient (µ) 0.6
Foot Clearance at Mid-step 0.1 m
Maximum Magnitude of Commanded Sagittal velocity 0.5 m/s
Maximum Magnitude of Commanded Lateral Velocity 0.5 m/s
Maximum Magnitude of Commanded Turn Rate 0.5 m/s

Table 4.2: Nominal ALIP-MPC Parameter Table.

ALIP-MPC Parameters Values
Robot-step Horizon (Ns) 4
Maximum Center of Mass Sagittal Position (xmax

CoM) 0.15 m
Minimum Center of Mass Sagittal Position (xmin

CoM) -0.15 m
Maximum Sagittal Foot Placement (umax

fp,x ) 0.25 m

Minimum Sagittal Foot Placement (umin
fp,x) -0.25 m

Magnitude of Maximum Lateral Foot Placement (|umax
fp,y |) 0.5 m

Magnitude of Minimum Lateral Foot Placement (|umin
fp,y|) 0.1 m

State Penalty Matrix (Q)


1 0 0 0
0 1 0 0
0 0 10 0
0 0 0 10


Foot Placement Penalty Matrix (R)

[
1 0
0 105

]
Sagittal Center of Mass position Slack Variable Penalty (SxCoM

) 108

Slip Constraint Slack Variable Penalty (Sslip) 106

Sagittal Foot Placement Slack Variable Penalty (Sfp,x) 108

Lateral Foot Placement Slack Variable Penalty (Sfp,y) 106
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Table 4.3: Nominal Walking Controller Gains. Kp denotes position error gains and
Kd denotes damping error gains. Additional subscript notation corresponds to the
definitions found in Section 4.2. The T subscript refers to the gain of both toe
motors on a given leg. The gains for the arms are applied equally, regardless of the
stance leg. The superscripts st and sw refer to stance and swing leg, respectively.
All damping gains are equivalent for symmetric left and right joints.

Walking Mode Gains Values Walking Mode Gains Values
- - Damping Multiplier (ρ) 0.9
Ksw

p,HR 800 N-m/rad Kd,HR ρ · 66.849 N-m-s/rad

Ksw
p,HY 400 N-m/rad Kd,HY ρ · 26.1129 N-m-s/rad

Ksw
p,HP 800 N-m/rad Kd,HP ρ · 38.05 N-m-s/rad

Ksw
p,K 500 N-m/rad Kd,K ρ · 38.05 N-m-s/rad

Ksw
p,T 500 N-m/rad Kd,T ρ · 28.5532 N-m-s/rad

Kst
p,HR 800 N-m/rad - -

Kst
p,HY 400 N-m/rad - -

Kst
p,HP 400 N-m/rad - -

Kst
p,K 500 N-m/rad - -

Kst
p,T 0 N-m/rad - -

Kp,SR 100 N-m/rad Kd,SR ρ · 66.849 N-m-s/rad
Kp,SP 100 N-m/rad Kd,SP ρ · 66.849 N-m-s/rad
Kp,SY 100 N-m/rad Kd,SP ρ · 26.1129 N-m-s/rad
Kp,E 100 N-m/rad Kd,SP ρ · 66.849 N-m-s/rad
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real-time estimations of both the friction coefficient and the surface normal of

the immediate terrain surrounding the robot. A plane segmentation algorithm can

estimate the surface normal, partitioning ground areas with relatively uniform slopes.

On the other hand, the friction coefficient can be inferred through assessments of

categorized ground textures and evaluations of perceived ground roughness. These

computations mandate the constant acquisition and updating of a registered robot-

centric point cloud, from which a filtered elevation map is generated [60]. This

very need for real-time data processing underscores the rationale behind selecting a

humanoid robot equipped with integrated perception sensors for this study.

4.5.1 Sensors

The Digit robot has a Velodyne™ VLP-16 LiDAR a Tis camera and five Intel®

RealSense™ RGB-D sensors, offering a combined depth and color data stream. For

the research edition of the Digit robot (digit-v3), direct access to the perception

stream is not available. However, the robot does provide a TCP/IP communication

protocol, enabling access to perception data while allowing customization of some

settings. Regrettably, the point cloud registration process, involving the rigid-body

transformation between the point cloud and the world frame, suffers considerable

delays. Consequently, the onboard sensing is unsuitable for experimental use, as

illustrated in Figure 4.8. Collaborative efforts with Agility Robotics aimed to facilitate

performance on this platform. However, it is regrettable that as of the 2022.02.22a

release (from which all presented results were derived), the synchronization between

point clouds and the necessary transformations (between depth camera coordinate

frame and world frame) remained unresolved.

To address this challenge, we implemented a solution involving the integration of

an external Microsoft® Azure Kinect RGB-D sensor2. This sensor was attached to

2We extend our gratitude to Hao Chen and the ROAHM Lab at the University of Michigan for their
contribution to the idea and design for the mount.
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Figure 4.8: Exemplifying Subpar Point Cloud Registration with the Native LiDAR on
the Digit-v3 Robot (release 2022.02.22a). In this demonstration, the robot operates
in Stand mode while the desired torso orientation undergoes modification. As the
robot rotates, an updated point cloud and corresponding rigid-body transformation
(from LiDAR to the world frame) generate a time-lapse visualization of points within
RViz [10]. In an optimal scenario, the geometric characteristics of the environment
could be accurately inferred. However, a discernible blur in the visualization indicates
a delay in the rigid-body transformation, impacting the fidelity of the registration
process.
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Figure 4.9: Schematic depicting the various onboard perception sensors of Digit.
The native LiDAR and cameras exhibit subpar depth point registration, rendering
them unsuitable for real-time use. Consequently, an external Azure Kinect camera is
mounted and calibrated, with all mapping and estimation algorithms relying solely
on data from this sensor.

the Digit robot and connected to the payload computer. Figure 4.9 illustrates the

precise placement of all perception-related sensors.

With the ability to deliver a dense point cloud at a consistent 30 frames per

second rate, the sensor’s performance is satisfactory for experiments. We employed

the Kalibr [87] calibration package for both the intrinsic calibration parameters of

the camera and the extrinsic calibration alignment between the robot’s base frame

and the depth frame of the sensor. In Figure 4.10, we show what a good point

cloud registration looks like using the Azure Kinect camera. A one-minute bag of

depth point cloud data is visualized with respect to the inertial world frame of the

robot as it moves around in the environment.
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Figure 4.10: This figure shows a one-minute data capture of depth point cloud data
from Digit as it moved within a lab environment. The left image illustrates the
setup. On the right, Rviz visualizes the robot model of Digit alongside the depth
points. The time-synchronized registration between the depth camera and the world
inertial frame is accurate enough that geometric features, such as boxes, tables, and
shelves, are easily discernible.

4.5.2 Elevation Mapping, Plane Segmentation, & Traversability

We compute elevation map, plane segmentation, and traversability estimates at

5 Hz utilizing the ETH elevation mapping cupy package [11]. This computational

task is performed on an NVIDIA® Jetson Xavier platform. Figure 4.11 details

some hardware results. As a last step, we create a final node to post-process

the perception information and publish it to the payload computer for use in the

proposed perception-locomotion algorithm detailed in Section 4.6. Each message

contains an array of all segmented planes with surface normal and traversability

data.

4.6 Proposed Method for Terrain-Aware Walking with Perception

Overcoming the challenge of real-time computation for humanoid foot placements,

informed by environmental data, has remained a persistent hurdle in the realm of

robot locomotion [88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98]. A prevailing trend
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Figure 4.11: On the left of each test, we see the environment setup; the middle
depicts plane segmentation, and the right showcases plane boundary results from the
elevation mapping package referenced in [11]. A treadmill is employed to simulate
varied inclines for the robot to estimate. Displayed scenarios include a) 0◦ inclination,
b) 5◦ inclination, c) 10◦ inclination, d) 20◦ inclination, and e) 0◦ inclined steps.
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across a significant portion of these methods is their protracted computation times,

which can span from a few seconds to potentially longer [92], primarily attributed

to the inherent non-convex nature of the optimization problems they address. To

enable walking algorithms to seamlessly adapt to diverse terrains while remaining

synchronized with the constraints of ongoing gait cycles, the key objective is to

develop solutions characterized by rapid yet reliable computation of foot placement

trajectories.

Our proposed approach, outlined in Figure 4.12, leverages terrain information

(Section 4.5) to address the ALIP-MPC problem through a two-stage process. Initially,

a solution is generated based on desired CoM velocity target values, projecting the

estimated future footstep locations. Subsequently, this solution is overlaid onto the

terrain map, facilitating updates to the terrain parameters associated with each

footstep. Ultimately, the ALIP-MPC problem is resolved, leading to an updated

desired foot placement. Unlike alternative methods that achieve rapid foot placement

computation through stochastic processes [93], our approach offers an advantageous

alternative by avoiding potential suboptimal outcomes.

4.7 Future Steps

Ongoing evaluations of this method are underway. We plan to conduct diverse

hardware tests using the perception-locomotion approach outlined in this chapter as

the next steps. I have listed the tentative author list and title of the corresponding

article for future reference.

• Grant Gibson, Elizabeth A. Olson, Jessy W. Grizzle. Terrain-Aware Navigation

for Bipedal Humanoid Robots.
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Chapter 5

Exploring Kinodynamic Fabrics for Reactive Whole-Body Control

of Bipedal Humanoid Robots

Figure 5.1: A Digit robot executes a variety of whole-body motions using the
Kinodynamic Fabrics Framework. (Top) Digit lifts a bulky box of non-uniform,
shifting mass distribution that the framework does not model. (Middle) Digit plays
cornhole. (Bottom) Digit transports a package to a desired location. Digit is designed
by Agility Robotics.

5.1 Introduction

The bipedal humanoid morphology is beneficial for robots for two main rea-

sons. The first reason is that the humanoid morphology, though not specialized in
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traversing a particular environment, is highly agile, versatile, and generalizes across

diverse environmental structures. This feature allows humans to navigate diverse

environments through swimming when in water, running when on land, climbing

trees and mountains, and crawling under tight spaces [99]. The second reason is

that if the goal is to deploy robots in human-occupied spaces, it is only natural

that we fashion them to mimic human morphology to require the least amount of

environmental restructuring to cater to the successful operation of robots in such

spaces. Given these benefits, a bipedal humanoid robot capable of fast and reactive

whole-body control would be primed to take on diverse physical tasks, particularly

those that may be tedious or risky for humans.

Whole-body control is used for highly redundant, high degree-of-freedom floating-

base robots to simultaneously achieve multiple motion behaviors by exploiting the

redundancy of the robot’s morphology [100]. The problem of fast, reactive whole-body

control of bipedal humanoid robots is challenging and raises two main unanswered

questions.

The first question is, how should motion behaviors be expressed in a way that is robust

and expressive? Virtual model control has been used to create motion behaviors that

rely on the design of virtual forces and components [5], and feedback linearization

has been used to track human-based motion primitives on humanoid robots for

different modes of locomotion [67]. A limiting factor for using the methods is the

need for expertly designed reference motions that fit into each framework.

A popular framework for solving whole-body control problems is to express the

entire controller as a constrained optimization problem that is solved in each iteration

of the control loop to output joint-space commands [101, 102, 103, 104, 105, 89, 88].

In this framework, motion behaviors are expressed as hard or soft constraints in

the objective function depending on the importance of the motion behavior. The

drawback of this framework is that it mandates motion behaviors to have a specific
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form. For instance, if the chosen constrained optimization problem form is a QP,

motion behaviors have to strictly be linear constraints or quadratic (if appended

to the objective function). Expressing motion behaviors, such as dynamic obstacle

avoidance, can be challenging as linear constraints without making numerous simpli-

fying assumptions that make the problem brittle. Also, expressing multiple obstacle

avoidance behaviors as constraints in a single constrained optimization problem is

likely to render the problem insoluble due to potential conflicts in the constraints.

The second question is how should we formulate reactive whole-body control problems

in a manner that is fast to solve and scales well with increasing number of motion behaviors?

Constrained optimization problems for whole-body control are often quite slow to

solve and not amenable to real-time applications. As a result, most real-time whole-

body control approaches try to make approximations to the constrained optimization

problem to reduce solution time. One such approach is to formulate the constrained

optimization problem as a QP by linearizing the constraints of the constrained

optimization problem and making the objective function quadratic [88]. Besides

making the problem less expressive, QPs scale badly with increasing motion behavior

constraints, resulting in slow solution times and potentially infeasible optimization

problems.

Given these challenges, we propose Kinodynamic Fabrics for fast, reactive whole-

body control of bipedal humanoid robots. Kinodynamic Fabrics allow for the de-

scription of primitive motion behaviors as forced spectral semi-sprays (fabrics) in

their respective task spaces and employ the pullback and summation operations from

differential geometry to compose all motion behaviors into a single joint-space motion

policy. This motion policy generates joint-space acceleration commands, which can

be integrated into velocity and position commands and tracked by position- and

velocity-controlled robots or fed as input to an inverse dynamics routine alongside

desired contact forces to output joint torque commands for torque-controlled robots.
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The ability to express primitive motion behaviors as fabrics in their respective task

spaces provides the opportunity and flexibility to express the complex geometries

of smooth motion behaviors as second-order differential equations. Solving for the

composed joint-space motion policy through the pullback and summation operations is

very fast and allows for the computation of motion policies at kilohertz rates. These

qualities make Kinodynamic Fabrics a viable framework for fast, reactive whole-body

control of bipedal humanoid robots. The unique contributions of this work are as

follows:

• Firstly, we propose Kinodynamic Fabrics as a framework for prioritized, fast, and

reactive whole-body control of bipedal humanoids. We describe how to express

primitive motion behaviors as expressive second-order differential equations and

how they integrate into the Kinodynamic Fabrics framework to generate smooth

and dynamically consistent robot motions.

• Secondly, we describe how to efficiently represent complex motion behaviors like

bipedal locomotion and bimanual manipulation as components of the Kinody-

namic Fabrics framework, how to decompose these components into primitive

motion behaviors, and how to execute extended sequences of motions smoothly.

• Thirdly, we demonstrate Kinodynamic Fabrics on various bimanual manipulation,

bipedal locomotion, and mobile manipulation tasks on the physical Digit bipedal

humanoid robot.

• Finally, we provide an open-source Julia implementation of the Kinodynamic

Fabrics framework and code to reproduce all of the experiments and demon-

strations in this work.1

We evaluate Kinodynamic Fabrics in simulations and experiments on a wide

1Open-source repository with code, videos, and results: https://github.com/UMich-
BipedLab/KinodynamicFabrics.jl
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Figure 5.2: MuJoCo simulation of Digit executing motions generated by Kinodynamic
Fabrics. (Left) Digit moves its whole body to dodge an incoming orange basketball.
(Right) Digit dodges the incoming basketball while keeping the end of its right arm
in the yellow hoop.

range of whole-body control tasks such as dynamic obstacle avoidance, bimanual

whole-body manipulation, bipedal locomotion, and mobile manipulation, as shown

in Figure 5.1. Kinodynamic Fabrics generate fast, reactive motions in all these

tasks that allow the robot to accomplish its assigned goals. We also perform

extensive benchmark comparisons of Kinodynamic Fabrics with a QP-based whole-

body controller. Kinodynamic Fabrics outperforms the QP-based controller on run-time

and reactivity metrics.

5.2 Related Works

5.2.1 Whole-body Control

Whole-body control is used for high DoF floating-base robots to simultaneously

achieve multiple motion behaviors by exploiting the redundancy of the robot’s struc-

78



ture [100]. Ever since whole-body control was first applied to humanoid robots in

the form of Resolved Momentum Control, proposed by Kajita et al. [106], two main

classes of approaches for solving whole-body control problems have been proposed;

nullspace control approaches and constrained optimization-based approaches.

5.2.1.1 Nullspace Whole-Body Control

Nullspace control approaches [106, 107, 108, 109] are dominated by the use of

prioritized dynamically-consistent Jacobians and their pseudo-inverses to enforce strict

hierarchies between behaviors. Lower priority behaviors have Jacobians defined in the

nullspace of higher priority behaviors. We adopt this prioritization in Kinodynamic

Fabrics for enforcing behavior priorities. The drawback of the nullspace formulation

is the inability to express inequality constraints.

5.2.1.2 Constrained Optimization-based Whole-Body Control

Constrained optimization-based whole-body control[101, 102, 103, 89, 105, 88, 110]

formulates the whole-body control problem as a single constrained optimization

problem or cascades of constrained optimization problems. High-priority motion

behaviors are written as hard constraints, while low-priority behaviors are written

as soft constraints in the objective function with weights to express their relative

importance. Other constrained optimization-based approaches like Escande et al. [101]

build a Hierarchical Quadratic Program to enforce strict priorities between behaviors.

The main drawback of constrained optimization-based whole-body control approaches

is they require non-convex formulations, which require longer computation times by

solvers. This computation time grows with increasing motion behaviors, making the

approach unsuitable for real-time applications. As a result, there is a need for

linear approximations of behaviors (an example is the approximation as a Quadratic

Program [88]) to speed up computations. These approximations invariably reduce the
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expressiveness of behaviors and increase the difficulty involved in designing motion

behaviors. Another drawback of this class of approaches is that with an increasing

number of motion behaviors as constraints due to, for example, an increasing number

of dynamic obstacles to avoid, constrained optimization problems tend to become

insoluble due to potential conflicts between the constraints.

5.2.2 Optimization Fabrics

Optimization Fabrics, or Fabrics for short, are a class of second-order differential

equations called forced spectral semi-sprays [111]. The second-order differential equa-

tions define smooth primitive motion behaviors and are guaranteed to optimize to a

minimum when forced by a potential function. The benefit of describing primitive

motion behaviors as fabrics is that we can compose different smooth behaviors from

different task spaces into a single acceleration-based motion policy using pullback and

summation operations from differential geometry. Geometric Fabrics, which is a class

of Optimization Fabrics, have been applied to several reactive motion control tasks

with serial manipulators [112, 113]. As originally formulated, Fabrics have mainly

focused on controlling fully-actuated robots. In this work, we make several extensions

to the Optimization Fabrics framework to realize prioritized whole-body control of

underactuated bipedal humanoid robots.

5.3 Background

The Kinodynamic Fabrics framework represents primitive motion behaviors as

Optimization Fabrics. An Optimization Fabric, or Fabric for short, is a forced

spectral semi-spray of the form

Mẍ+ f = −δxψ(x), (5.1)

80



where M is a metric tensor, f is a virtual force, and −δxψ(x) is the applied

force that pushes the system to converge to a local minimum of the potential

energy function ψ(x). From (5.1), we can thus define a fabric as the second-order

differential equation

ẍ = −M−1f − M−1δxψ(x) (5.2)

and define the acceleration-based motion policy as

π(x, ẋ) = ẍ. (5.3)

Each fabric component is associated with a task map, ϕ, that maps the generalized

coordinates and velocities of the robot, q and q̇, to the fabric’s task space, x, where

x = ϕ(q, q̇). Given the fabric components, the resultant joint-space acceleration is

computed using pullback and summation differential geometry operations.

5.4 Problem Formulation

The general equations of motion of a bipedal robot can be represented as

D(q)q̈ + C(q, q̇)q̇ +G(q) = S⊤τ + J⊤
c Fc, (5.4)

where q, q̇, q̈ are the generalized positions, velocities, and accelerations respectively,

D(q) is the joint-space mass-inertia matrix, C(q, q̇) is Coriolis matrix, G(q) is the

gravity vector, S is the torque distribution matrix, and τ, Jc, Fc are the joint

torques, end-effector contact Jacobian, and end-effector contact wrench respectively.

The Kinodynamic Fabrics framework seeks to determine the desired joint acceler-

ation q̈ that simultaneously achieves a collection of motion behaviors. From q̈, we

can then determine the torque vector τ to apply to the robot’s actuators to realize

the desired motion.
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Figure 5.3: An illustration of the Kinodynamic Fabrics Tree for a mobile manipu-
lation behavior. High-level behaviors compute desired target set-points for low-level
behaviors. The resulting fabric components are resolved to output joint-space acceler-
ation commands.

5.5 Methodology

Kinodynamic Fabrics take as input the robot’s generalized position and velocity

vectors q, q̇ as well as β, the collection of K primitive motion behaviors whose target

set-points are computed by high-level behaviors. The generalized coordinates and

velocities q, q̇ are first mapped to corresponding task space coordinates xk for each

primitive motion behavior using the behavior’s task map ϕk. The prioritized Jacobian,

J∗
k of each primitive motion behavior’s task map is used to compute the derivative

of the computed task space coordinates ẋk. Given the task space coordinates and

their derivatives, x, ẋ, the task-space metric tensor Mk(x, ẋ) as well as the policy

πk(x, ẋ) are computed for each behavior. The pullback and summation operations

from differential geometry are then applied to compose all (Mk(x, ẋ), πk(x, ẋ)) of each

motion behavior into a single joint-space acceleration vector q̈ (5.9).

The remaining parts of this section describe the various components of the
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framework in detail.

5.5.1 Primitive Motion Behaviors

We describe a primitive motion behavior (functionally equivalent to “motion

primitives” in [67]) as a Kinodynamic fabric represented by the tuple (M,π, ϕ, ρ)

where M and π are as defined in Section 5.3 above, ρ is an integer that indicates

the priority level of the behavior and ϕ is the task map ϕ(q, q̇) that maps from

the robot’s configuration space position and velocity to the behavior’s task space.

This extension of task maps to transform configuration space positions and velocities

to the task space is a unique feature of Kinodynamic Fabrics.

Given β, a collection of K behaviors,

β = {(M1, π1, ϕ1, ρ1), . . . , (MK , πK , ϕK , ρK)},

as well as the robot’s generalized position and velocity vectors, q, q̇, we solve the

Kinodynamic Fabrics problem to output joint-space accelerations q̈.

The theoretical convergence and stability properties of optimization fabrics have

been proved in detail by Ratliff et al. for fully actuated systems [111]. The extension

of optimization fabrics for its use in the control of underactuated hybrid systems

requires a more detailed analysis, which we leave for future work. For example, the

stability properties of the fabrics provide no guarantees for the dynamic balance and

walking tasks of humanoid robots. As such, the present work will mainly focus on

the practical aspects of designing and implementing reactive whole-body behaviors

on underactuated bipedal humanoid robots.
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5.5.2 Behaviors, Task Maps and Fabric Components

Here, we describe the various classes of primitive motion behaviors we consider

in this work alongside their corresponding task maps and motion policies.

The task map ϕk for a primitive motion behavior k is a differentiable function

that maps coordinates from the generalized coordinates and velocities q, q̇ to the task

space xk. Each behavior has a unique task map that depends on the behavior’s

task space.

Fabric components are motion policies that express the behaviors described in

the previous sections. Each motion policy comes along with a task-space acceleration

policy π(x, ẋ) as well as a priority metric tensor M(x, ẋ). The priority metric tensor

M(x, ẋ) is derived from a Finsler energy [111, 112]. It is an invertible matrix that

encodes behavior by stretching the task space to indicate the relative priority of

dimensions of the task space. The task-space acceleration policy is homogeneous of

degree 2 and as such, has the form π(x, ẋ) = −||ẋ||2 · ∂xψ(x) −B · ẋ where ψ(x) is

a potential energy function whose local minimum satisfies task goals and −∂xψ(x),

the negative gradient of the potential energy function, is the force that minimizes

the function and B is a damping gain.

Descriptions of the classes of primitive motion behaviors for whole-body control

of bipedal humanoid robots, as well as their corresponding task maps, potential

energy functions, and priority metric tensors, are as follows:

5.5.2.1 Attractor Primitive Motion Behavior

This behavior generates motions to drive a kinematic or dynamic task-space vector

toward a desired value. This behavior can express motions like the motion of the

robot’s arms, legs, body posture, or center-of-mass to desired poses.

The task map for this behavior is defined in (5.5a), where Xg is the desired

value and σatt is a differentiable function that maps the robot’s generalized positions
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and velocities to the task-space vector. The potential energy function for this

behavior is defined in (5.5b)

ϕ(q, q̇) = Xg − σatt(q, q̇) (5.5a)

ψ(x) =
1

2
λex

⊤x (5.5b)

M(x, ẋ) = WattIn (5.5c)

where λe is a scalar gain parameter that indicates the strength of the attractive

force.

The priority metric is defined in (5.5c) where Watt is a scalar weight representing

the relative importance of the attractor behavior, In is an n × n identity matrix,

and n is the size of vector x.

5.5.2.2 Repeller Primitive Motion Behavior

This behavior generates motions to drive a kinematic or dynamic task-space vector

away from an undesired value (e.g., to express obstacle or self-collision avoidance

motions). For computational tractability when expressing obstacle avoidance behaviors,

we specify certain finite control points on the robot’s body to which this behavior

is applied.

The task map for this behavior is defined in (5.6a) where Xo is the undesired

value and σrep is a differentiable function that maps the robot’s generalized positions

and velocities to the task-space vector. The potential energy function for this

behavior is defined in (5.6b)

ϕ(q, q̇) = ||Xo − σrep(q, q̇)||2 (5.6a)

ψ(x) =
λb
2

dmax1− x

(dmaxx)⊤(dmaxx)
(5.6b)
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M(x, ẋ) = WrepIn

(
s(ẋ)

λom
x⊤x

)
(5.6c)

where 1 is a vector of ones with the same length as x, λb is a scalar gain parameter

that indicates the strength of the repulsive force, dmax is a scalar parameter that

indicates the maximum distance to the obstacle beyond which no repulsive force

should be felt.

The priority metric is defined in (5.6c) where λom is a scalar gain parameter,

Wrep is a scalar weight representing the relative importance of the repeller behavior,

and s(ẋ) is a velocity-based switching function. s(ẋ) = 1 if ẋ < 0 and s(ẋ) = 0,

otherwise. This effectively eliminates the influence of the repulsive function when

the control point moves away from the obstacle.

5.5.2.3 Limit Primitive Motion Behavior

This behavior generates motions to keep kinematic or dynamic task-space vectors

within desired limits. This is how we express inequality constraints in the Kinody-

namic Fabrics framework. For example, this behavior could generate motions to keep

joint positions within joint limits, contact forces within friction cone limits, or the

zero moment point within the support polygon for robot balance regulation when

standing.

The task maps for the upper and lower joint limit behaviors are defined in

(5.7a), where qu is a vector of generalized joint upper limits, and ql is a vector of

generalized joint lower limits. The potential energy function for these behaviors is

defined in (5.7b)

ϕu(q, q̇) = qu − q

ϕl(q, q̇) = q − ql

(5.7a)

ψ(x) =
λl
x⊤x

(5.7b)
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M(x, ẋ) = WlimIn

(
s(ẋ)

λlm
x⊤x

)
(5.7c)

where λl is a scalar gain parameter that indicates the strength of the force.

The priority metric is defined in (5.7c) where λlm is a scalar gain parameter,

Wlim is a scalar weight representing the relative importance of the limit behavior,

and s(ẋ) is a velocity based switching function. s(ẋ) = 1 if ẋ < 0 and s(ẋ) = 0,

otherwise. This effectively eliminates the influence of the limit barrier function when

the joint position is away from the joint limit.

5.5.2.4 High-Level Behaviors

Kinodynamic Fabrics also allow for the expression of high-level behaviors, which

determine the desired target set points for lower-level behaviors, with primitive

motion behaviors occupying the lowest level in the behavior hierarchy. We organize

the behaviors into levels where primitive motion behaviors occupy level 1, higher

level behaviors like locomotion and manipulation behaviors occupy level 2, and so

on. The highest level of behavior is the Mobile Manipulation behavior, which takes

as input a long-horizon plan made up of a sequence of high-level actions (e.g., pick

action, navigation action, etc.) and dictates which lower-level behaviors are activated

or deactivated in each iteration of the Kinodynamic Fabrics control loop.

Only activated behaviors are evaluated in an iteration of the control loop. Once

evaluated, their outputs serve as target set-points for lower-level behaviors that

depend on them. The Kinodynamic Fabrics Tree represents the inter-dependence

relationships between task maps of behaviors in the framework. Figure 5.3 illustrates

the Kinodynamic Fabrics Tree for the framework we use in our mobile manip-

ulation experiments. Even though the task maps for primitive motion behaviors

must be differentiable, the task maps for higher-level behaviors do not have to be

differentiable.
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5.5.3 Prioritization

A unique extension to Kinodynamic Fabrics is the use of prioritized Jacobians

[114, 115] to enforce a strict hierarchy of behaviors. Each behavior comes with a

factor ρ that indicates the priority of that behavior, with ρ = 1 being the highest

priority. Lower priority behaviors have the Jacobians of their task maps defined in

the nullspace of higher priority Jacobians. We denote the Jacobian Jϕk
of task map

ϕk as Jk for brevity. The prioritized Jacobian of behavior k with priority factor ρ

is defined as

J∗
k = Jk · Sk ·Npr(ρ)

Npr(ρ) =

ρ−1∏
j=1

Nj

Nj = I − J̄jJj

J̄j = D−1JT
j (JjD

−1JT
j )−1,

(5.8)

where pr(ρ) indicates behaviors that have a higher priority than ρ, Nj is the

nullspace of the behavior with priority j, J̄j is the dynamically-consistent pseudo-

inverse of Jj , D is the configuration space mass-inertia matrix of the robot and Sk

is a selection matrix that selects the actuated joints for behavior k.

Behaviors at the same priority are given weights W on their priority metrics

M(x, ẋ) to express their relative importance. In our experiments, to avoid disconti-

nuities when the behavior priorities are changed, only stability behaviors are priority

1. This is because stability behaviors, like the balance behavior, are invariant across

different tasks and are the most critical behaviors. All other behaviors are priority

2.
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5.5.4 Resolution

Having computed the task-space acceleration policy and priority metric of each

behavior, we apply the pullback and summation operations to compute the desired

joint-space acceleration vector,

q̈ =

(
K∑
k=1

J∗⊤
k MkJ

∗
k

)†

·

(
K∑
k=1

J∗⊤
k Mk(πk(xk, ẋk) − J̇∗

k q̇)

)
(5.9)

where (·)† denotes the Moore-Penrose pseudo-inverse, q̈ is the desired actuated joint-

space acceleration, and xk, ẋk is the task space vector and its derivative with

respect to time.

5.6 Experiments

In this section, we describe various experiments we perform to evaluate the

performance of Kinodynamic Fabrics on whole-body control tasks. Our experiments

are performed in simulations and the real world on the Agility Robotics’ Digit

bipedal humanoid robot [7]. Figure 5.1 shows Digit as a full bipedal humanoid

robot with 30-DoF and 20 actuated joints.

5.6.1 Comparison with Whole-body Quadratic Program

We compare the performance of Kinodynamic Fabrics with QPControl, a Quadratic

Program whole-body control formulation proposed by Koolen et al. [88]. We compare

Algorithm PO+BL PO+EA+BL PO+BL+RE PO+EA+BL+RE

QPControl [88] 12.60 ± 2.49 13.01 ± 2.53 13.05 ± 2.48 12.88 ± 2.55
Kinodynamic Fabrics 0.81 ± 1.18 0.95 ± 1.12 0.92 ± 1.13 1.06 ± 1.14

Table 5.1: Comparison of the run-time (average duration in milliseconds) of each
iteration of the control loop of QPControl and Kinodynamics for different combina-
tions of motion behaviors. PO - Whole-body Posture Behavior, EA - End-effector
Attractor behavior, BL - Balance Behavior, RE - Reactivity Behavior
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Figure 5.5: Plot of basketball launch forces (in Newtons) against the minimum
distance of the basketball to the robot’s head (in meters). A minimum distance of
0 meters indicates that the robot fails to dodge the basketball, which strikes the
head of the robot and causes it to fall.

the performance of both approaches on whole-body control tasks using the Digit

robot in a MuJoCo Physics simulation environment [46] as illustrated in Figure 5.2.

The metrics we evaluate for both approaches are 1) Run-time, the average duration

in milliseconds of each iteration of the control loop when generating motions for

different combinations of motion behaviors, and 2) Reactivity, the closest distance

a dynamic obstacle, in our case, a basketball, comes to the body of the robot

when the basketball is shot at the robot at different launch forces. All tasks in the

following experiments have a joint-limit motion behavior to keep joint configurations

within their nominal limits. The experiments were run on a Razer Blade 15 laptop

with an Intel Core i7 processor with 8 cores up to 5.1GHz.
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5.6.2 Run-time Simulation Experiment

In this experiment, we compare the duration of each control loop iteration for

QPControl [88] and Kinodynamic Fabrics for various motion behavior combinations.

The various behaviors are:

• Whole-body posture behavior: This behavior is an attractor behavior (Section

5.5.2.1) that keeps the robot in a nominal, upright posture.

• End-effector attractor behavior: This behavior is an attractor behavior (Section

5.5.2.1) that keeps the left and right wrists of the robot at desired positions.

• Balance behavior: This behavior is a limit behavior (Section 5.5.2.3) that keeps

the estimated zero moment point of the robot within the robot’s support

region.

• Reactivity behavior: This behavior is a repeller behavior (Section 5.5.2.2) that

moves the robot’s body away from an incoming basketball.

The experimental results in Table 5.1 indicate that Kinodynamic Fabrics is

consistently faster than QPControl for all the combinations of motion behaviors.

However, in QPControl, inequality constraints like joint limits or balance constraints

are hard constraints, while in Kinodynamic Fabrics, they are regarded as weighted

soft constraints. As such, these constraints in Kinodynamic Fabrics may be slightly

violated.

5.6.3 Reactivity Simulation Experiment

This experiment compares the reactivity capabilities of QPControl and Kinody-

namic Fabrics. Specifically, the experiment evaluates how close a basketball shot at

the robot at different launch forces comes to the head of the robot as the robot

tries to avoid it, as depicted in Figure 5.2. In each experiment, both approaches are
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tasked with a combination of the whole-body posture, end-effector attractor, balance,

and reactivity motion behaviors. The minimum distance of the basketball from the

head of the robot is recorded. In the experiments, we vary the launch force of

the basketball of mass 0.62kg and radius 0.12m (standard NBA ball mass and size)

from 1.0N to 20.0N. Figure 5.5 shows the experimental results for both approaches.

A general observation from the results in Figure 5.5 is that Kinodynamic Fabrics

can effectively generate motions to keep the robot’s body at a much larger distance

from the basketball than QPControl. For launch forces greater than 7.0N, QPControl,

due to its slower run-time, cannot generate motions fast enough to avoid collision

with the basketball. The basketball collides with the robot’s head in such situations,

causing it to topple over. Kinodynamic Fabrics have a larger collision avoidance

threshold of 14.0N launch force, beyond which it collides with the basketball.

5.6.4 Bimanual Manipulation and Mobile Manipulation on Physical Digit Robot

We demonstrate Kinodynamic Fabrics’ capability to react to dynamic uncertainty

through bimanual manipulation tasks on the physical Digit robot, as illustrated in

Figure 5.1. In these tasks, Digit is made to lift bulky boxes with shifting, non-

uniform mass distributions from the ground. The total masses of the boxes range

from 0.5kg to 4.0kg. These masses are not modeled in the Kinodynamic Fabrics

framework. From the perspective of Kinodynamic Fabrics, the shifting, non-uniform

weights of the boxes are external disturbances that need to be attenuated to ensure

the generation of smooth motions to keep the robot balanced while lifting the boxes.

To keep Digit balanced while lifting the boxes, we use the balance behavior

described in the previous experiment to regulate the zero moment point to stay

within the support polygon. This behavior is primarily actuated by the motors in

the toe joints of Digit’s legs. Figure 5.4 shows plots of the measured torques at the

toe joints of Digit’s legs as it squats and rises to lift the boxes from the ground.
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As can be observed from the plots in Figure 5.4, the largest peaks in measured

torques occur when Digit squats and begins to lift the box from the ground. We

also demonstrate Kinodynamic Fabrics on cornhole and mobile manipulation tasks

with Digit, as depicted in Figure 5.1.

For walking, we use the ALIP one-step ahead prediction method from [8] to

specify components of the foot task map. Each virtual constraint is translated

into an equivalent attractor primitive motion behavior. Similar set points for torso

orientation and center of mass height are used, and the closed-form solution for foot

placement is included as a parameter in the foot task map. Videos of all of these

tasks can be found on the project webpage.

5.7 Conclusion

We proposed Kinodynamic Fabrics as an approach for the specification, solution,

and simultaneous execution of multiple motion tasks in real-time while being reactive

to dynamism in the environment. We evaluated the performance of Kinodynamic

Fabrics on a variety of whole-body control tasks both in simulation and on a

physical Digit robot made by Agility Robotics. Future work should integrate the

Terrain-adaptive ALIP-MPC formalism of [42] from Section 3 into the Kinodynamic

Fabrics formalism. We expect it to yield more dynamic and robust robot locomotion

while preserving dynamic reactivity and bimanual manipulation capabilities.

Acknowledgements: We received partial funding for this project from the Toyota

Research Institute and the Qualcomm Innovation Fellowship. Our team thanks Prof.

Nima Fazeli for valuable discussions on Geometric Fabrics. We also thank Prof.

Odest Chadwicke Jenkins for his encouragement and insightful contributions to mobile

manipulation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Chapter 3 introduces an MPC foot-placement controller that plans ahead con-

sidering terrain and friction for better foot placements, agility, and stability. The

proposed ALIP-MPC controller is tested on Cassie Blue with successful experiments,

including inclined and lateral walking and transitioning between terrains. These

results demonstrate improvements over prior controllers and highlight the benefits of

incorporating terrain insights into the control strategy.

Chapter 4 combines the ALIP-MPC foot placement strategy with integrated per-

ception state estimation to achieve robust walking on diverse terrains. Challenges

related to real-time computation are addressed by formulating a multi-stage opti-

mization method that optimizes foot placements while considering terrain features.

Ongoing hardware experiments are being conducted to validate the effectiveness of

the perception-locomotion pipeline.

Chapter 5 introduces Kinodynamic Fabrics, a novel approach for whole-body

control in bipedal humanoid robots, allowing them to interact with and avoid

environmental objects. Kinodynamic Fabrics exhibited improved reactivity and speed

compared to a high-performance Quadratic Program-based controller in both simulated

and hardware tests on the Agility Robotics Digit robot.
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6.2 Future Steps

Bipedal and humanoid locomotion span various robotics domains, encompassing

control, perception, state estimation, planning, and more. This thesis primarily focused

on enhancing locomotion control and stability by integrating different components

within the humanoid system. Nevertheless, several challenges remain, poised for

exploration as extensions of this work.

The core ALIP-MPC algorithm that grounds the presented walking strategies offers

ample room for refinement. The ALIP model, while simplistic as a dynamical model

for foot placement, could be advanced by incorporating ankle torque considerations. A

noteworthy approach, highlighted in [116], involves leveraging the ALIP model’s linear

attributes to formulate an optimization problem that fine-tunes step frequency—crucial

for mitigating push recovery and external wrench disturbances. While arm swing

motions are tracked to predefined set points, integrating a yaw torque estimator

with recent advancements in Angular Center of Mass [117] holds the potential for

more meaningful arm trajectory movements.

The Kinodynamic Fabrics framework introduced in Chapter 5 represented an

initial stride towards bridging the gap between rigorous model-based whole-body

control methodologies and reactive task-oriented motion policies, with inspiration

drawn from optimization fabrics. A more intricate analysis of fabric convergence

properties within hybrid systems merits further investigation. Lastly, the results

presented solely showcased the ALIP-1step foot placement technique proposed by [8].

However, it’s worth noting that [42] has demonstrated the enhanced reliability of

the ALIP-MPC approach, thereby warranting its integration instead of the current

method.

Integrating high-level motion planners, such as CLF-CBF-RRT∗ [57], with lower-

level foot placement and joint control techniques, remains a persistent challenge
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in the realm of humanoid locomotion. The divergence between these models can

introduce discrepancies in reference commands, potentially leading to instability issues.

Initial results have been collected on Cassie for ALIP-MPC walking using generated

velocity commands generated by [56]. Encouraging advancements, exemplified by [118],

offer valuable progress in driving this integration toward a more refined state.

Closing Remarks

As I bring this thesis to a close, I’m filled with an undeniable excitement about

the path that humanoid locomotion is embarking upon. The journey of exploring

bipedal and humanoid systems has been a rewarding endeavor, and I’m eagerly

awaiting the moment when these advancements translate into meaningful changes in

our society. The growing interest from private industries serves as a testament to

the significance of this work, amplifying its visibility and potential influence. As we

peer into the horizon, the potential for progress over the next few decades is both

thrilling and promising. The future holds endless possibilities, and I can’t help but

feel a genuine excitement about what lies ahead!

97



Appendix A

Input-Output Nonlinear Model Predictive Control for Dynamic

Stair Climbing

The following Appendix chapter includes preliminary simulation results of a novel

trajectory tracking algorithm that I created for my research qualification exam. The

initial results were promising and may provide future inspiration to others.

A.1 Introduction

Figure A.1: Five-Link Walker (RABBIT) Schematic. The configuration is represented
with floating base coordinates. The absolute stance leg angle q̄st (shown in green)
is used for phase-based control because its value monotonically changes.
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Stair climbing (ascent or descent) is a task that most able-bodied humans com-

plete with ease regularly. While various legged robots have demonstrated walking

on flat terrain, stair climbing remains a challenge requiring a rigorous solution.

Quadrupedal and wheeled configurations have been used to navigate stairs suc-

cessfully. However, these configurations are not robust to steep steps or narrow

landing platforms [119, 120]. Bipedal leg configurations are a natural choice for

these conditions as they emulate the anatomy for which stairs have been designed.

Stair climbing solutions have already been developed for bipedal robots based

on periodic motions (infinite stairs) and static climbing solutions (so-called ZMP

walkers) [4, 121, 122]. In addition to the deficiencies already noted, most current

solutions are not based on active perception but rather assume a known, perfect

geometry and perform blind walking. Just as humans use their perception to alter

swing leg trajectories based on stair height, width, depth, and asymmetry, a Model

Predictive Control (MPC) based controller can improve real-world performance on

bipedal robots.

This work formulates and analyzes a Nonlinear MPC (NMPC) controller for a

planar five-link biped robot as a foundation for formulating environmentally aware

control policies. Periodic stair trajectories (ascent and descent) are computed offline,

and the controller performs trajectory tracking. State, output, and control constraints

evaluate the controller’s robustness to environmental and actuator disturbances within

a specified prediction horizon.

Computational inefficiency and intractability have plagued these constraint-based

methods from wide use in the past. However, improvements to nonlinear program

optimization and hardware have sparked a renewed interest in this field [123]. With

added advancements in mapping and vision, we anticipate that similar controller

methods will be very useful for navigating dynamic and diverse terrain.
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A.1.1 Background

ZMP-based controllers can generate provably safe trajectories. However, dynamic

walking controllers can outperform these methods when analyzing certain metrics.

ZMP controllers compute torques by constraining the robot’s center of pressure to lie

within its support polygon. For multi-legged configurations, the solutions are easily

calculated and non-unique; however, as the number of leg contacts decreases, greater

torque inputs and slower movements are needed to maintain stability. Dynamic

walking controllers have no such support for polygon constraints. This class of

controllers is designed to utilize impact energy to stabilize walking gaits, typically

resulting in more agile and energy-efficient motions. For this reason, we have

implemented a dynamic walking controller.

Both error-based and model-based trajectory tracking controllers have found suc-

cess in bipedal locomotion [40, 4, 124]. Error-based controllers like Proportional-

Derivative (PD) control are reactive and can handle model uncertainties. In contrast,

model-based controllers, such as feedback linearization, can achieve significantly lower

tracking error but are prone to failure as model uncertainty dominates. Model

Predictive control can give the best of both worlds as the model dynamics are

used to predict future trajectories. At the same time, the current tracking error

is computed in a cost that is minimized to generate control commands. For these

reasons, we use a predictive control method.

A.1.2 Contributions

We propose an Input-Output Nonlinear Model Predictive Control (IO-NMPC)

method for achieving stable periodic stair-climbing motions. Previous works implement

a form of input-output NMPC. However, their optimization problem is formulated

using the linear dynamics of the transformed system [125, 126]. Conversely, our

method uses the original nonlinear dynamics to predict future states. Another NMPC
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method was used to implement ZMP-based constraints for stair climbing in [127].

However, our reference trajectories are generated using the Hybrid Zero Dynamics

(HZD) framework for dynamic walking [4]. We also implement IO-NMPC on a

hybrid system to show periodic convergence instead of impacts.

A.2 Planar Five-Link Walker

A planar five-link biped robot (RABBIT) is used to analyze the NMPC controller

performance for various trajectories (schematically shown in Figure A.1). The stair-

climbing task imposes a hybrid system, so we must consider continuous and discrete

dynamics. The continuous dynamics of the robot are derived from the Euler-Lagrange

equations (A.1) and are parametrized by floating base coordinates,

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JT
c λ, (A.1)

where q = [x̄, z̄, ψ, q1R, q2R, q1L, q2L]T are the generalized coordinates. Since this is an

underactuated system, the control motor torques u ∈ R4 are only applied at the qi

joints. We assume that the robot has point feet; therefore, λ ∈ R2 is composed of

horizontal and vertical ground reaction forces (no moments).

An additional contact constraint is required for the continuous dynamics of the

floating base model. The constraint,

0 = p̈stancefoot

= Jcq̈ + J̇cq̇, (A.2)

sets the acceleration of the foot position to zero and relates generalized coordinates

and velocities to this quantity. pstancefoot is the position of the stance foot and Jc

is the foot contact jacobian.
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The impact model,

q̇+
λ+

 =

 D(q−) −JT
swingfoot(q

−)

JT
swingfoot(q) 0−1

2×2


−1 D(q−)q̇−

02×1

 , (A.3)

is applied when the swing leg makes contact with the ground. The minus (-)

and plus (+) symbols represent instantaneous quantities before and after impact,

respectively. The block matrix is always invertible for positive definite D(q) and full

rank Jswingfoot.

For this model to hold, we make the following assumptions: (i) pure elastic

collision, (ii) ground impact forces on the swing leg are treated as impulses, (iii)

there is no slipping or rebounding at impact (q− = q+), and (iv) the former stance

leg foot releases from the ground. These assumptions should be modified when

operating on slippery or uneven terrain.

Lastly, we update the states after impact with a reset map,

x+ =

Hresetq
−

q̇+

 (A.4)

where Hreset =


I3×3 03×2 03×2

02×3 02×2 I2×2

02×3 I2×2 02×2

 .

Because we are using a symmetric model, the corresponding thigh and knee joint

coordinates of opposite legs can be switched at impact.

A.3 Trajectory/Gait Generation

There are many different stair climbing tasks (i.e., stopping on a step, aperiodic

stair climbing, etc.); however, for the scope of this research, we only analyze
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periodic climbing motions. These reference trajectories are generated using the Fast

Robotics Optimization and Simulation Toolbox (FROST) [1]. This toolbox formulates

a nonlinear program with direct collocation methods based on the Hybrid Zero

Dynamics (HZD) framework [4, 124, 128].

The HZD principle guarantees low-dimensional periodic stability for prescribed

virtual constraints that satisfy a hybrid invariance condition. For the case of the

RABBIT model, the torso pitch angle ψ and the four relative joint coordinates qi

must be equivalent at the beginning of the step and after impact and reset. For

simplicity, we have chosen the virtual constraints (A.5) to equal the thigh and knee

joints (i.e., y ∈ R4). The desired trajectories hd are bezier polynomials (A.6) whose

shape is governed by the coefficients α. These polynomials exist for s ∈ [0, 1]. M

refers to the degree of the polynomial and is user-defined. The virtual constraints

are

y = h(x) − hd(α, s), (A.5)

where h(x) =

[
04×3 I4×4 04×7

]
x

and hd(α, s) =
M∑
k=0

αi
k

M !

k!(M − k)!
sk(1 − s)M−k. (A.6)

It is important to delineate between phase-based and time-based desired trajectories

when using virtual constraints. We use a phase-based implementation; thus, hd is

parametrized by the phase variable s. As previously stated, s ∈ [0, 1] must be strictly

monotonically increasing. The absolute stance leg angle q̄st has been used previously

for parametrization of s [129] and so we define s as

s =
q̄st(x) − q̄beginst

q̄endst − q̄beginst

, (A.7)

where q̄st = ψ + q1R +
1

2
q2R.
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q̄beginst and q̄endst are constants and correspond to q̄st at the beginning and end of

each step. These constants can remain unchanged throughout the trajectory or be

updated after each impact. For simplicity, we keep them constant.

A.4 Input-Output Linearization

Input-Output Linearization (IO-L) feedback control is an established control policy

to stabilize bipedal walking successfully gaits [4]. The basic principle is that a

control law, u, is chosen such that the zero dynamics of the system are linear and

exponentially stable. The continuous dynamical system described by (A.1) and (A.2)

can be written in a modified control affine form,

ẋ = f(x) + g(x)u+ j(x)λ

y = h(x) − hd(α, s), (A.8)

where x = [q, q̇]T .

By inspection, y has relative degree 2, and therefore, the virtual constraint

acceleration (ÿ) can be written as a function of the state, wrench, and phase (s).

The control u is computed (A.10) by canceling all previous dynamics of ÿ and

inserting user-defined linear dynamics, vL. The equation can be further reduced

by substituting in λ, which is uniquely found by combining (A.1) and (A.2). For

simplicity, we use a PD control law (A.11) to achieve these stabilizing dynamics

(LQR is another acceptable method and will give a similar output feedback law

for the integrator system). The following equations can mathematically describe the
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above:

ÿ = L2
fh(x) + LjLfh(x)λ+ LgLfh(x)u− ḧd(α, s), (A.9)

u = (LgLfh(x))−1(vL − L2
fh(x) − LjLfh(x)λ+ ḧd(α, s)), (A.10)

vL = −Kdẏ −Kpy. (A.11)

The Lie derivative notation is used for brevity. An important observation is that the

decoupling matrix (LgLfh(x)) is not well-conditioned for all choices of h(x), and so

the virtual constraints must be chosen carefully. The error dynamics will stabilize as

long as Kp, Kd > 0. A more structured approach computes the gains as a function

of the desired settling time and damping ratio.

A.5 Input-Output NMPC Feedback Control

The IO-NMPC optimization problem is described as

min
Z

J =
N−1∑
k=0

[(xk − x̂k)TQ(xk − x̂k) + (uk − ûk)TR(uk − ûk)]+

||ÿk − vLk ||22 + [yN ; ẏN ]TQterm[yN ; ẏN ]

subject to

xk+1 = xk + ∆Tf(xk, vk)

vk = [LgLfh(xk)]−1[uk + vLk − L2
fh(xk) − LjLfh(x)λk + ḧd(αk, sk)]

λk = [JcD
−1JT

c ]−1[JcD
−1(Cq̇k +G−Buk) − J̇cq̇k]

vLk → see Equation (A.11)

yk, ẏk, ÿk → see Equation (A.5,A.9)

ḧd(αk, sk) → see Equation (A.6,A.7)

x0, xk ∈ X, uk ∈ U, (A.12)
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where Z = {xi, uj, λj : i = 0, ..., N, j = 0, ..., N−1} is the decision variable set, and xi,

uj , and λj are the state, control input, and wrench, respectively, over the prediction

horizon, N . Q ≽ 0 is the running stage penalty, R ≻ 0 is the control input penalty,

and Qterm ≽ 0 is the terminal cost. X̂ = {x̂i, ûj, αi, si : i = 0, ..., N, j = 0, ..., N − 1}

is the reference trajectory set defined prior to optimization. The state and control

constraint sets X and U form convex polytopes via the union of box constraints.

The construction of U in the current problem formulation is not intuitive; therefore, a

new constraint set V can be added, which imposes torque saturation box constraints

on vk, while U remains large. The nonlinear dynamics are updated with a simple

forward Euler integration method.

A.5.1 Cost Function Intuition

The IO-L solution is equivalent to the unique point-wise solution of (A.13),

subject to continuous dynamics shown in (A.1) and (A.2). The minimization in

(A.12) can be viewed as an approximation of

u∗IO−L = arg min
u

||ÿ +Kdẏ +Kpy||22

subject to Equations (A.1, A.2) (A.13)

over a desired prediction horizon subject to state and control constraints.

To guarantee stability and recursive feasibility of the optimization problem, a

terminal cost is required to vanish as the reference error approaches zero when

the current states and control inputs are admissible [130]. We give no admissibility

verification, but it is a reasonable assumption that state and control values within a

local region of the reference trajectory are admissible. The terminal penalty matrix

Qterm is set as the solution to the continuous-time algebraic Riccati equation by

solving the infinite-horizon Linear Quadratic Regulator (LQR) problem for the IO-L
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Figure A.2: Shrinking Horizon Schematic. ts represents the shrinking horizon time.
All subsequent prediction horizons will be shortened to ensure that the last state in
the prediction horizon is the final reference state.

output dynamics (with pre-specified gains Kp, Kd).

A.5.2 Shrinking Prediction Horizon Modification

A shrinking prediction horizon modification can be made to simplify formulation

modifications or when there is uncertainty in the impact model. Rather than

propagate unknown dynamics, the prediction horizon can be decreased relative to

your previous knowledge of when the impact should occur. For simplicity, we

implement this shrinking horizon method (Figure A.2). A more accurate formulation

would forego the shrinking horizon to instead predict and switch dynamics based

on the estimated time to impact. A more complex formulation of the disturbance

preview problem discussed in the next problem could be used.

A.5.3 Disturbance Preview Formulation

As previously mentioned, one motivation for this work is to incorporate perception

information in formulating stable walking and climbing controllers. Therefore, we
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Figure A.3: New Reference Trajectory for Incorporating Disturbance Preview

reformulate (A.12) so that a new reference trajectory can be used mid-step without

recompiling the solver. This new task is a disturbance preview problem, with the

disturbance defined as

wtd = x̃td − x̂td , (A.14)

where x̂td and x̃td are the states of previous and new reference trajectories. It is

important to note that even though the formulation developed below is for a stair

height change, with slight modifications, it can capture other disturbances, such as

impact. In this case, an additional impact update and reset map equality constraint

must be inserted at the appropriate time step.

To simplify the problem, we assume that we know, a priori, the time at which

a new trajectory is set, allowing us to include new reference errors in the prediction

horizon. Figure A.3 depicts a simple diagram of this preview setup. As a design

choice, the new reference trajectory is continuous at the switching time td. The new

desired state at the time of reference switch is

x̃td = x̂td−1 + ∆Tf + wtd . (A.15)
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The disturbance preview optimization problem can then be reformulated by modi-

fying the forward Euler integration matrix inequality constraints, as shown below,

min
Z

JN

subject to

x0 − x̂0

x1 − (x0 + ∆Tf(x0, u0))

...

xktd − (xktd−1 + ∆Tf(xktd−1, uktd−1))

...

xN − (xN−1 + ∆Tf(xN−1, uN−1))


=



0

0

...

wtd

...

0


→ (Include previous constraints). (A.16)

A.6 Preliminary Results

A direct multi-shooting approach is used to solve (A.12) by increasing the sparsity

and, thus, the efficiency of the optimization solver. The problem is pre-processed

using the Casadi algorithmic differentiation package and is solved with IPOPT

[84, 131]. Various stair climbing trajectories are generated using FROST (0, 5, 7.5,

and 10 cm, ascent and descent, with average step velocities of 0.5 and 0.75 m/s).

An example animation is shown in Figure A.4 for a 5 cm stair ascent with an

average velocity of 0.50 m/s. The unconstrained, 0-step prediction horizon version

of the IO-NMPC controller generates comparable periodic trajectories to the IO-L

solutions. Figure A.5 shows the state position and control trajectories over a ten-step

sequence.
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Figure A.4: 2-step animation result for stair ascent with IO-NMPC control. The
first step is shown in the top row, and the second step is shown in the second
row. The stance leg (red) swaps after impact and becomes the swing leg (blue).

Figure A.5: State and control trajectories corresponding to the IO-NMPC solution
of Figure A.4. A 5 cm stair ascent, 0.50 m/s velocity reference trajectory drives
the phase-based control method.
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Figure A.6: Friction cone violation and satisfaction for the IO-L and IO-NMPC
solution trajectories. A 10 cm ascent (with velocity = 0.75 m/s) reference trajectory
was used, and an additional 10 N-m torque constraints were imposed. The static
coefficient of friction is set to 0.9, comparable with rubber and concrete surfaces.

To highlight NMPC capabilities, we add output constraints

(1)

∣∣∣∣λxkλzk
∣∣∣∣ ≤ µs and (2) |vk| ≤ umax. (A.17)

These natural constraints represent real-world restrictions that would be enforced on

the robot via surface conditions and hardware limitations. (A.17.1) represents the

friction cone at the stance foot that must be below the coefficient of friction (µs)

to avoid slipping. (A.17.2) represents motor torque saturation limits. A solution

trajectory for both IO-L and IO-NMPC with 1-step prediction is shown in Figure

A.6. As shown, the IO-NMPC controller satisfies ground reaction force constraints

while the IO-L controller greatly violates them. Swing foot height constraints are

also simulated to test obstacle avoidance. The normalized height of the swing foot

zsw is derived as a function of phase. Before each update, the bounds of zsw are
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Figure A.7: Normalized swing foot height zsw avoiding obstacle highlighted by the
red box

updated based on current and predicted values of phase, as shown below,

if 0.45 ≤ sk ≤ 0.6 (k = 0, ...N − 1)

zswk ≥ 0.08 end. (A.18)

Figure A.7 plots the results for flat-ground walking. Additional disturbance rejection

tests were also performed on both controllers by applying external forces at the

hip position of RABBIT. The number of failures (fall over) and successes were

approximately equal under the same conditions (i.e., PD gains, speed, stair height,

and varied initial conditions).

A.7 Discussion

When using unconstrained conditions, the two controllers performed equally well.

However, the IO-NMPC outperformed IO-L after adding practical (friction and torque

limits) and preferential (swing footpath) output constraints. Supplemental disturbance
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preview and perturbation rejection tests were performed; however, the two controllers

had no significant differences in performance.

As currently simulated, the IO-NMPC controller is not built for online implemen-

tation. The IPOPT nonlinear program solver is bulky for a problem of this size,

and large prediction horizons become intractable.

At first glance, the current IO-NMPC controller might seem redundant and over-

defined. However, from an optimization standpoint, the dynamics equality constraints

are highly nonlinear and make the problem non-convex. We argue that the input-

output structure of the control input improves feasibility and helps avoid undesirable

local minima since IO-L is a solution to the unconstrained minimization problem.

Future work will extend this method to more complex models to evaluate its

feasibility on real-world robots.
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Appendix B

Additional Digit Locomotion Controller Details

B.1 Balance & Manipulation Mode

Dynamic balance is the ability of a bipedal robot to maintain stability during

motion while contending with internal and external force disturbances. One standard

method for achieving balance involves computing the Center of Pressure (CoP) of

the ground reaction force, also known as the Zero Moment Point (ZMP). Ensuring

that the ZMP remains within the convex hull of all ground contact points is crucial

for maintaining stability [132].

Accurate ZMP calculation for a robot’s 3-D dynamics requires precise knowledge

of Ground Reaction Forces (GRFs) and joint accelerations. However, the complex

mechanical configuration of the Digit robot, which includes closed-chain linkages

and spring plates, can render GRF estimates unreliable and inaccurate. As a

result, we adopt an alternative approach that relies on inverse kinematics to track

desired trajectories. This method enables us to effectively maintain dynamic balance

by utilizing joint position and orientation data to generate appropriate actuator

commands, circumventing the abovementioned challenges.
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B.1.1 Task Map

The task map tracks quantities in the joint space and workspace to represent

desired posture and stability quantities. For balance control, the task map h is

h :



Torso orientation

pLT→CoM

pRT→CoM

pBase→L,Arm

pBase→L,Arm


, (B.1)

where the torso orientation is the intrinsic Euler representation ZYX for yaw, pitch,

and roll, pLT→CoM is the position vector from the left toe to the CoM, pRT→CoM is

the position vector from right toe to the CoM, pBase→L,Arm is the vector from the

base link to the left-hand end-effector, and pBase→L,Arm is the vector from the base

link to the right-hand end-effector position. This task map coordinates the desired

posture of the robot. For sagittal stability, we compute toe motor torques as PD

schema using the cart pole Zero Moment Point detailed in [121].

B.1.2 Parameters

Nominal parameters used in the balance and manipulation modes of the digit

locomotion controller are presented in Table B.1 and Table B.2.

Table B.1: Balance & Manipulation Mode Parameters for Digit Locomotion Controller.
Order of arm joint indices is LSR,LSP,LSY,LE,RSR,RSP,RSY,RE, following nota-
tion in Section 4.2

Balance Mode Parameters Values
Nominal Torso Orientation (Yaw, Pitch, Roll) [0, 0, 0]
pLT→CoM

pRT→CoM

Nominal pBase→L,Arm

Nominal pBase→R,Arm
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Table B.2: Gains for Balance & Manipulation Mode on Locomotion Controller.Kp

denotes position error gains and Kd denotes damping error gains. Additional subscript
notation corresponds to the definitions found in Section 4.2. All gains are equivalent
for symmetric left and right joints.

Walking Mode Gains Values Walking Mode Gains Values
- - Damping Multiplier (ρ) 0.9
Kp,HR 800 N-m/rad Kd,HR ρ · 66.849 N-m-s/rad
Kp,HY 500 N-m/rad Kd,HY ρ · 26.1129 N-m-s/rad
Kp,HP 500 N-m/rad Kd,HP ρ · 38.05 N-m-s/rad
Kp,K 800 N-m/rad Kd,K ρ · 38.05 N-m-s/rad
Kp,T 800 N-m/rad Kd,T ρ · 28.5532 N-m-s/rad
Kp,SR 100 N-m/rad Kd,SR ρ · 66.849 N-m-s/rad
Kp,SP 100 N-m/rad Kd,SP ρ · 66.849 N-m-s/rad
Kp,SY 100 N-m/rad Kd,SP ρ · 26.1129 N-m-s/rad
Kp,E 100 N-m/rad Kd,SP ρ · 66.849 N-m-s/rad

B.1.3 Results

An image of Figure B.1 displays some of the configurations that Digit can

maintain while using the Balance & Manipulation mode of the locomotion controller.

A longer video of dynamic balance results can be found at https://github.com/UMich-

BipedLab/digit locomotion controller.

B.2 Constrained Iterative Inverse Kinematics for Digit

The inverse kinematics problem is one defined by the following optimization

min
q̇

||ẋtask − Jq̇||

subject to

Closed Chain Kinematics Constraints (B.3),

(B.2)

where nj is the number of joint coordinates, nt is the number of tasks, ẋtask ∈ Rnt

is the vector of desired task velocities, q̇ ∈ Rnj is the joint velocities vector, and

J ∈ Rnt×nj is the jacobian of the associated tasks and the closed chain kinematics

116

https://github.com/UMich-BipedLab/digit_locomotion_controller
https://github.com/UMich-BipedLab/digit_locomotion_controller


Figure B.1: Variety of orientations and center of mass height set points using the
digit locomotion controller for dynamic balance.
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constraint is

qleft,knee + qleft,shin→tarsus = 0

qright,knee + qright,shin→tarsus = 0.

(B.3)

This constraint is valid with the assumption that the springs on each leg remain

rigid and unbent.

By inspection, many task map variables are already joint position variables.

Therefore, inverse kinematics is only needed to relate six tasks to joint variables

(CoM vector from the left and right toe, respectively). For computational efficiency,

it is better to reduce the task space to these six variables and implement a different

algorithm to solve for the six relevant joint coordinates. These coordinates are each

leg’s hip roll, hip pitch, and knee joints.

Briefly ignoring the constraint of (B.2), the solution to the least-squares opti-

mization problem is

q̇∗ = J†ẋtask, (B.4)

where J† = (JTJ)−1JT . For the inverse kinematics problem, we also seek to find the

desired joint position, not just the velocity. The solution in (B.4) can be used to

formulate an iterative algorithm. Applying finite difference and removing equivalent

terms, we arrive at

qk+1 = qk + J†(xk+1 − xk) (B.5)

where the indices k, k + 1 are values at consecutive update intervals.

Next, notice that the constraint in (B.3) can be removed by modification of

the newly altered square Jacobian matrix. Notice that the time derivative of a

function d
dt
f(qknee, qshin→tarsus) = Jkneeq̇knee+Jshin→tarsusq̇shin→tarsus can be further simplified
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by applying (B.3). The result is

d

dt
f(qknee, qshin→tarsus) = (Jknee − Jshin→tarsus)q̇knee. (B.6)

We define Algorithm B.1 using this result. A reference to the notation used in this

algorithm can be found in Chapter 4. In practice, mathematical calculations are

computed using efficient algorithms in the Eigen Library [133].

Algorithm B.1: Constrained Inverse Kinematics for Digit

1 Compute desired task map function: ffk(·);
2 Initialize desired task values: xdes, ẋdes;
3 Initialize joint solution guess with current state: qIK, q̇IK;
4 Set tolerance threshold: ε > 0;
5 Compute task error from joint guess: xerror = ffk(qIK) − xdes;
6 while xerrorfk ≤ ε do
7 Enforce Joint Constraints [Eq. (B.3)]: Update qIK ;

8 Compute Task Jacobian: J =
∂ffk
∂q

(qIK);

9 Enforce Jacobian Constraint [Eq. (B.6)]: Update J ;
10 Compute Jacobian Psuedoinverse [Eq. (B.4)]: ∆q = J†xerror;
11 Update joint guess: qIK −= ∆q;
12 Update task error: xerror = ffk(qIK) − xdes;

13 end
14 Compute desired joint velocities: q̇IK = J†ẋdes;
15 return qIK, q̇IK

A downside of this method is that it is developed to track set points. The

inverse kinematics approach calculates joint positions and velocities based on fixed

task map reference positions. This can cause non-smooth movements when desired

reference trajectories follow prescribed paths at a desired speed (e.g., crouching up

and down). Alternative approaches include constrained QP methods or Kinodynamic

Fabrics detailed in Chapter 5. This inverse kinematics method converts task space

virtual constraints to joint encoder values for all locomotion modes employed by

Digit.
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[66] Jia-chi Wu and Zoran Popović. Terrain-adaptive bipedal locomotion control.
ACM Transactions on Graphics (TOG), 29(4):1–10, 2010.

[67] Matthew J. Powell, Huihua Zhao, and Aaron D. Ames. Motion primitives for
human-inspired bipedal robotic locomotion: walking and stair climbing. In 2012
IEEE International Conference on Robotics and Automation, page 543–549, May
2012.

125



[68] Katie Byl and Russ Tedrake. Metastable walking machines. The International
Journal of Robotics Research, 28(8):1040–1064, Aug 2009.

[69] Hongkai Dai and Russ Tedrake. Planning robust walking motion on uneven
terrain via convex optimization. In 2016 IEEE-RAS 16th International Conference
on Humanoid Robots (Humanoids), page 579–586, Nov 2016.

[70] Brent Griffin and Jessy Grizzle. Nonholonomic virtual constraints and gait
optimization for robust walking control. The International Journal of Robotics
Research, 36(8):895–922, Jul 2017.

[71] Kaveh Akbari Hamed, Jeeseop Kim, and Abhishek Pandala. Quadrupedal
locomotion via event-based predictive control and qp-based virtual constraints.
IEEE Robotics and Automation Letters, 5(3):4463–4470, Jul 2020.

[72] Hirofumi Miura and Isao Shimoyama. Dynamic walk of a biped. The Interna-
tional Journal of Robotics Research, 3(2):60–74, Jun 1984.

[73] Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami. Capture
point: A step toward humanoid push recovery. In 2006 6th IEEE-RAS Interna-
tional Conference on Humanoid Robots, page 200–207, Dec 2006.

[74] Johannes Englsberger, Christian Ott, Maximo A. Roa, Alin Albu-Schäffer, and
Gerhard Hirzinger. Bipedal walking control based on capture point dynamics.
In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, page
4420–4427, Sep 2011.

[75] Ting Wang and Christine Chevallereau. Stability analysis and time-varying walk-
ing control for an under-actuated planar biped robot. Robotics and Autonomous
Systems, 59(6):444–456, Jun 2011.

[76] Xiaobin Xiong and Aaron D. Ames. Orbit characterization, stabilization and
composition on 3d underactuated bipedal walking via hybrid passive linear
inverted pendulum model. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), page 4644–4651, Nov 2019.

[77] Jacob Reher, Eric A. Cousineau, Ayonga Hereid, Christian M. Hubicki, and
Aaron D. Ames. Realizing dynamic and efficient bipedal locomotion on the
humanoid robot durus. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), page 1794–1801, May 2016.

[78] Xingye Da and Jessy Grizzle. Combining trajectory optimization, supervised
machine learning, and model structure for mitigating the curse of dimensionality
in the control of bipedal robots. The International Journal of Robotics Research,
38(9):1063–1097, Aug 2019.

[79] Jiunn-Kai Huang, Yukai Gong, Dianhao Chen, Jinze Liu, Minzhe Li, Jianyang
Tang, Lu Gan, Ray Zhan, Wami Ogunbi, and Jessy Grizzle. Fully Autonomous
on the Wave Field 2021. https://youtu.be/gE3Y-2Q3gco, 2021.

126

https://youtu.be/gE3Y-2Q3gco


[80] A. Sano and J. Furusho. Realization of natural dynamic walking using the
angular momentum information. In , IEEE International Conference on Robotics
and Automation Proceedings, page 1476–1481 vol.3, May 1990.

[81] Matthew J. Powell, Wen-Loong Ma, Eric R. Ambrose, and Aaron D. Ames.
Mechanics-based design of underactuated robotic walking gaits: Initial experimen-
tal realynamic walking with underactuated humanoid robots: A direct collocation
framework for optimizing hybrid zero dynamics,” in 2016 ieee international con-
ference on robotics and automation (icra). ieee, 2016, pp. 1447–ization. In 2016
IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), page
981–986, Nov 2016.

[82] Marc H. Raibert. Legged robots. Communications of the ACM, 29(6):499–514,
Jun 1986.

[83] J.K. Hodgins and M.N. Raibert. Adjusting step length for rough terrain
locomotion. IEEE Transactions on Robotics and Automation, 7(3):289–298, Jun
1991.

[84] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz
Diehl. Casadi: a software framework for nonlinear optimization and optimal
control. Mathematical Programming Computation, 11(1):1–36, Mar 2019.

[85] Joel A.E. Andersson and James B. Rawlings. Sensitivity analysis for nonlinear
programming in casadi*. IFAC-PapersOnLine, 51(20):331–336, 2018. 6th IFAC
Conference on Nonlinear Model Predictive Control NMPC 2018.

[86] E. K.-W. Chu, H.-Y. Fan, W.-W. Lin, and C.-S. Wang. Structure-preserving
algorithms for periodic discrete-time algebraic riccati equations. International
Journal of Control, 77(8):767–788, May 2004.

[87] Joern Rehder, Janosch Nikolic, Thomas Schneider, Timo Hinzmann, and Roland
Siegwart. Extending kalibr: Calibrating the extrinsics of multiple imus and of
individual axes. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), page 4304–4311, May 2016.

[88] Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas de Boer, Tingfan Wu,
Jesper Smith, Johannes Englsberger, and Jerry Pratt. Design of a momentum-
based control framework and application to the humanoid robot atlas. Interna-
tional Journal of Humanoid Robotics, 13(01):1650007, Mar 2016.

[89] Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher G. Atkeson. Op-
timization based full body control for the atlas robot. In 2014 IEEE-RAS
International Conference on Humanoid Robots, page 120–127, Nov 2014.

[90] Alexander Stumpf, Stefan Kohlbrecher, David C. Conner, and Oskar von Stryk.
Supervised footstep planning for humanoid robots in rough terrain tasks using
a black box walking controller. In 2014 IEEE-RAS International Conference on
Humanoid Robots, page 287–294, Nov 2014.

127



[91] Matthew Johnson, Brandon Shrewsbury, Sylvain Bertrand, Tingfan Wu, Daniel
Duran, Marshall Floyd, Peter Abeles, Douglas Stephen, Nathan Mertins, Alex
Lesman, John Carff, William Rifenburgh, Pushyami Kaveti, Wessel Straatman,
Jesper Smith, Maarten Griffioen, Brooke Layton, Tomas de Boer, Twan Koolen,
Peter Neuhaus, and Jerry Pratt. Team ihmc’s lessons learned from the darpa
robotics challenge trials. Journal of Field Robotics, 32(2):192–208, 2015.

[92] Duncan Calvert, Bhavyansh Mishra, Stephen McCrory, Sylvain Bertrand, Robert
Griffin, and Jerry Pratt. A fast, autonomous, bipedal walking behavior over
rapid regions. arXiv, Jul 2022. arXiv:2207.08312 [cs].

[93] Moonyoung Lee, Youngsun Kwon, Sebin Lee, JongHun Choe, Junyong Park,
Hyobin Jeong, Yujin Heo, Min-Su Kim, Jo Sungho, Sung-Eui Yoon, and Jun-
Ho Oh. Dynamic humanoid locomotion over rough terrain with streamlined
perception-control pipeline. In 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), page 4111–4117, Sep 2021.

[94] Robert J. Griffin, Georg Wiedebach, Stephen McCrory, Sylvain Bertrand, Inho
Lee, and Jerry Pratt. Footstep planning for autonomous walking over rough
terrain. In 2019 IEEE-RAS 19th International Conference on Humanoid Robots
(Humanoids), page 9–16, Oct 2019.

[95] Robin Deits and Russ Tedrake. Footstep planning on uneven terrain with
mixed-integer convex optimization. 2014 IEEE-RAS International Conference on
Humanoid Robots, page 279–286, Nov 2014.

[96] Philipp Karkowski, Stefan Oßwald, and Maren Bennewitz. Real-time footstep
planning in 3d environments. In 2016 IEEE-RAS 16th International Conference on
Humanoid Robots (Humanoids), page 69–74, Nov 2016.

[97] Steve Tonneau, Daeun Song, Pierre Fernbach, Nicolas Mansard, Michel Taix,
and Andrea Del Prete. Sl1m: Sparse l1-norm minimization for contact planning
on uneven terrain. arXiv, Sep 2019. arXiv:1909.09044 [cs].

[98] Sung-Joon Yoon and Baek-Kyu Cho. Strategies for generating footsteps of biped
robots in narrow sight. Sensors, 2022.

[99] Jerry Pratt. Toward humanoid avatar robots for co-exploration of hazardous
environments. https://youtu.be/HefjKANiZx0, 2018.

[100] Federico L. Moro and Luis Sentis. Whole-body control of humanoid robots.
In Ambarish Goswami and Prahlad Vadakkepat, editors, Humanoid Robotics: A
Reference, page 1161–1183. Springer Netherlands, Dordrecht, 2019.

[101] Adrien Escande, Nicolas Mansard, and Pierre-Brice Wieber. Hierarchical
quadratic programming: Fast online humanoid-robot motion generation. In-
ternational Journal of Robotics Research, 33(7):1006–1028, Jun 2014.

128

https://youtu.be/HefjKANiZx0
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