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ABSTRACT

Precision medicine has the potential to improve early health diagnostics and support individual-
ized treatment plans. The study and identification of repeatedly measured biomarkers for diseases
and health risks is essential to advance this field. Existing joint models developed for modeling
longitudinal biomarkers have usually focused on estimating the means of the trajectories. However,
the variabilities and covariabilities of these trajectories may be informative for health outcomes.
This dissertation develops a family of Bayesian hierarchical models that model the individual-level
variances and covariances of the trajectories and correlate them to outcomes of interest. The meth-
ods presented in this dissertation are designed to handle varying levels of data complexity such
as multiple marker trajectories, repeatedly measured and cross-sectional outcomes, and individ-
ual time-varying (co-)variances. This body of work supports advances in personalized healthcare
by modeling the complex interplay between biomarker means and variances, and corresponding
health outcomes. In Chapter 2, I develop a joint model that links estimates of the individual means,
variances and covariances of multiple biomarker trajectories to a cross-sectional outcome of in-
terest. This framework can accommodate multiple individual markers by specifying individual
variance-covariance matrices in the longitudinal submodel. I propose hierarchical priors on the in-
dividual variance-covariance matrices, which allow the model to flexibly capture between-subject
differences and similarities in the residual variances and covariances. Simulations demonstrate
that this joint model outperforms alternative two-stage approaches. In an application to women’s
health, I find that higher individual variability of estradiol (E2) is associated with increased fat
mass gain across the menopausal transition. This finding indicates that E2 variability may be pro-
tective against large increases in waist circumference in midlife women and raises new questions
regarding the role ofE2 variability in predicting fat distribution changes during menopause. In
Chapter 3, I examine the setting of simultaneously estimating multiple longitudinal trajectories,
in order to understand associations between variables over time. I explore a linear parameteriza-
tion of time-varying individual variances in the predictor model so that the individual variances,
as well as the means, are used to predict the outcome at the same point in time. I demonstrate
via simulation studies that this model is able to recover the true data generating parameters while
maintaining low bias and proper coverage. I apply this method to women’s hormone markers and
bone density measurements during the midlife and find that higher follicle-stimulating hormone
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(FSH) variability is associated with slower declines in bone density. Our findings suggest that
FSH variability, but not E2 variability, is a more predictive measurement of bone health in midlife
women. Chapter 4 introduces a joint model of individual-level mean and covariances trajectories
of multiple markers for estimating a repeatedly measured health outcome. In the predictor sub-
model, the individual variance-covariance matrices comprised a shared residual covariance matrix
and individual-specific regression coefficients that characterize the evolution of the variances and
covariances over time. This method is applied to estimate the associations between FSH and testos-
terone variabilities and bone mineral content declines in women undergoing menopause. We find
for the first time, high variability of testosterone is associated with faster declines in bone min-
eral content (BMC) for post-menopausal women. Conversely, higher covariability between FSH
and testosterone post-FMP was also associated with slower declines in BMC. A simulation study
validates that the model can recover the parameters of interest with low bias and high coverage.
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CHAPTER 1

Introduction

Laird and Ware (1982) discussed a family of models for analyzing longitudinal data that included
specifying individual level random effect parameters. Since then, there have been extensive ad-
vances in statistical methods for analyzing longitudinal data. Over the past two decades, there has
been a broad body of literature that uses longitudinal data from biomarkers or questionnaires to
predict health outcomes: an early example is given by Henderson et al. (2000), who tied psychi-
atric disorder measures over time to prediction dropout in schizophrenia trials via a subject level
random effect in the disorder trajectory that is also present as a frailty in the time-to-event model.
More recent work by Wang et al. (2017) considers multiple longitudinal predictors - in their case,
measures of daily functioning - to predict onset of Parkinson’s disorder.

A joint model is particularly useful for linking information from longitudinal markers to health
outcomes. A standard joint model usually has the following specification that involves a trajectory
model and an outcome model:

Xij ∼ N (µ ( bi, tij) S), bi ∼ N ( β,Ψ) (1.1)

Yi ∼ N (η(bi), σ
2) (1.2)

where Xij is the value of the biomarker for individual i at time tij , Yi is the outcome of interest for
each individual, and the two are linked by the mean and variance parameters (bi, S respectively)
governing the individual trajectories. Typically, a prior is also set on the bi parameters. S is
usually also either specified in advance or estimated from the data with an appropriate prior (e.g.
inverse-Gamma or half-Cauchy). The advantage of joint models is that they fully account for the
uncertainty in the longitudinal parameter estimates, by estimating both sub-models simultaneously
(Sayers et al., 2016).

Recently, there has been some exploration of modeling individual-level variabilities rather than
defining a single common population variance for all individuals (Elliott et al., 2012; Huang et al.,
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2014). A joint model that allows for intra-individual variability could look something like:

Xij ∼ N (µ ( bi, tij) Si), (1.3)

Yi ∼ N (η(bi, Si), σ
2), (1.4)

where Si, like bi, can then be estimated with a hierarchical prior. Additionally, in this model, the
residual variances, Si, can be used to predict the outcome Yi along with the predictor means bi.
Joint models that use individual-level variances as predictors have been applied to health outcomes
such as cardiovascular disease risk (Parker et al., 2021) and kidney transplant risk complications
(Campbell et al., 2021).

The models in this dissertation add substantial contributions to the current literature on variance
as a predictor for health outcomes. In this dissertation, I develop and implement new statistical
methods for modeling these individual level variances with the goal of using these variances to
predict health outcomes. I present methods for utilizing individual variances as predictors within
a joint model framework, modeling the variances and covariances of multiple marker trajectories,
and modeling time-varying variances, as shown in Table 1.1.

Dissertation Project Multiple biomarkers Longitudinal outcome Time-varying variance
Chapter 2
Chapter 3
Chapter 4

Table 1.1: Overview of joint modeling methods for individual variances developed in each
dissertation chapter.

In Chapter 2, I propose a model for estimating the individual means, variances, and covari-
ances of multiple biomarkers. These estimates are then used in the outcome submodel to link
the trajectories to a cross-sectional outcome of interest. I describe a flexible method for mod-
eling the individual variance-covariance matrices Si by using the decompositon approach from
Barnard et al. (2000) and placing weakly informative priors on the components. I demonstrate
via simulations that this joint model is able to recover the true data generating values and also
outperforms comparative two-stage approaches to the same estimation setting. I also apply this
model to women’s health data to evaluate the associations between longitudinal Estradiol (E2) and
Follicle-Stimulating Hormone (FSH) measurements and changes in fat mass and waist circumfer-
ence across the menopausal transition.

In Chapter 3, I turn to the setting of repeatedly measured health outcomes. I extend the joint
modeling framework from Chapter 2 to capture the associations between a longitudinal predictor
and a longitudinal outcome of interest. The model simultaneously estimates the longitudinal pre-
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dictor and outcome, where the two trajectories are linked via shared random effects. I also explore
a linear parameterization of individual time-varying variance and incorporate this into the overall
joint model. Simulation studies indicate that the model can recover the data-generating param-
eters with low bias and high coverage in the setting with constant variances and heteroskedastic
variances. Simulation studies demonstrate 1) the advantage of the joint model over comparative
two-stage approaches and 2) the relative performance of the time-varying variance specification
over the time-invariant model under different variance scenarios. Finally, I apply this model to
analyze the associations between certain hormone markers (E2 and FSH) and Bone Mineral Den-
sity (BMD) declines in middle-aged women.

In Chapter 4, I introduce a joint model for modeling individual time-varying variabilities and
covariabilities of multiple markers. This chapter extends the application of covariance regression
to a joint modeling setting. The individual variance-covariance matrix is parameterized by a resid-
ual time-invariant covariance matrix that is shared across individuals and a set of individual-level
regression coefficients that describe the evolution of the variances over time. We apply this model
to women’s hormone and bone data to evaluate the associations between certain hormone marker
varabilities and correlations and declines in bone mineral content. This model is also able to esti-
mate the evolution of FSH and testosterone variances and covariances over time, providing novel
insights into the individual-level variance trajectories of these hormones.

Finally, in Chapter 5, I summarize the major contributions developed in this dissertation, and
suggest future areas of research. The following sections provide an overview of the existing liter-
ature and areas of research on models of individual variability.

1.1 Individual Variances as Predictors

The potential importance of individual variance as a predictor or measurement of health outcomes
has been recognized in many fields. Intra-individual variability of reaction times is known to be
significantly associated with outcomes such as cognitive performance (Jensen, 1992; MacDonald
et al., 2006) and individual variability in memory speed tasks is considered to be an index for cen-
tral nervous system function (Ram et al., 2005; Dykiert et al., 2012). High short term variability in
blood pressure measurements is associated with increased mortality risk for patients with untreated
hypertension (Hsu et al., 2016). Harlow et al. (2000) found that women who had increased men-
strual cycle variability at a younger age were more likely to experience abnormal uterine bleeding.
The variability of menstrual cycle length was also an important predictor of menopausal onset
(Huang et al., 2014).

Sammel et al. (2001) designed a two-stage model that linked individual means and variances
of longitudinal profiles to a corresponding health outcome and applied this to peri-menopausal
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womens’ health data. In the first stage, they estimated the individual mean profiles and residual
variances of a reproductive hormone (estradiol), and then used these estimates in the second stage
to predict prevalence of hot flashes. They found that high variability in these hormone levels was
associated with experiencing more severe hot flashes.

Elliott et al. (2012) extended this idea of using individual variances from longitudinal data to a
joint model setting. The individual mean trends, residual variances, and outcome of interest were
estimated simultaneously:

Xij | βi, σ2
i ∼ N (µ(βi, tij), σ

2
i )

Yi | βi, σ2
i ∼ BER(πi), log(

πi
1− πi

) = η(βi, σ
2
i )

where prior distributions were assigned to βi, σ
2
i and the posterior distributions were estimated

using MCMC methods. Jiang et al. (2015) also used a Bayesian joint model framework to link
estimates of individual variances to an outcome of interest. In this model, the means and vari-
ances of longitudinal profiles are connected to the outcome either as shared random effects or by
latent classes. We note that a common feature lacking in these models is the handling of multiple
markers in the longitudinal submodel. Additionally, these methods mostly focus on cross-sectional
or summary outcomes of interest, rather than a longitudinal outcome, and also assume a constant
individual variance σi across all timepoints.

This dissertation adds to the current research on individual variability by addressing these gaps
in the literature. Chapter 2 focuses on two main objectives: 1) modeling individual-level variances
and co-variances of multiple longitudinal trajectories by proposing flexible hierarchical priors for
residual variance-covariance matrices and 2) incorporating these subject-level means and variance-
covariance matrices for longitudinal data and a cross-sectional outcome in a joint modeling frame-
work. Chapter 3 develops a joint model framework that incorporates individual time-varying vari-
ability as a predictor for longitudinal outcome. Chapter 4 presents a method for estimating time-
varying covariance matrices, so that these heteroskedastic variances and covariances can also be
used as predictors in the outcome model. I design several simulation studies for these models to
evaluate their behavior under various scenarios and compare their performance against alternative
two-stage methods. I also apply these models to women’s health applications in order to under-
stand how the variability and co-variability of certain biomarkers affects health outcomes such as
body mass changes and bone loss trajectories during the women’s midlife.
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1.2 Individual variances of multiple markers

A standard formulation for joint models with multiple longitudinal predictors is as follows:

Xij | Bi,Ψ ∼ NQ (µ(Bi, tij),Ψ)

Yi | Bi,β, σ
2 ∼ N (η(Bi,β), σ

2),

where Q is the number of predictors, Bi = [bi1, ..., biQ]
T and biq = (biq1, . . . , biqP )

T are vectors
of P regression coefficients for the q-th marker and Ψ is the population-level variance covariance
matrix for the multiple markers. Estimation of Ψ can either be done via banding methods (Wu and
Pourahmadi, 2009; Bickel and Gel, 2011), or penalized regression for precision matrix components
(Meinshausen and Bühlmann, 2006). Alternatively, in a Bayesian framework, a standard prior such
as the Inverse-Wishart can be specified for Ψ.

Long et al. (2016) presented a Bayesian framework for modeling the correlation between mul-
tiple longitudinal markers. If Zip are the measurements for biomarker p for individual i and subject
to some measurement error, then the observed values zipk can be written as:

zipk = Zip(tik) + ϵ̃ipk, i = 1, . . . , n, p = 1, . . . , P, k = 1, . . . ,mi

ϵ̃ipk = bi + ϵipk

where bi is the subject level random effect that captures the additional correlation between the
measurements of different biomarkers from subject i. They placed a Normal N (0, σ2

b ) prior on
this correlation parameter and applied this model to a study on biomarkers of colorectal adenoma
data and risk of colorectal cancer. Li et al. (2021) modeled the correlation between multiple longi-
tudinal biomarkers as a function of an individual specific stochastic trend over time, µi(t), which
“characterizes the overall underlying trend shared by the biomarkers”, and used this as a regres-
sor in the time-to-event outcome submodel. The marker correlations µi(t) are related to the j-th
biomarker with an factor loading coefficient βj , common across all individuals. In this specifica-
tion, it is the latent process µi(t) and not the individual residual correlations between biomarkers
themselves, that is used in the outcome submodel.

In these models of multiple marker variability, the individual residual variances and covariances
are not treated as predictors of interest for the corresponding outcome, which is one of the main
contributions in Chapter 2. Additionally, these approaches have focused on modeling the correla-
tion between markers as a population-level parameter, rather than on modeling individual-specific
residual variance-covariance matrices. This is also addressed in Chapter 2, where I formulate a
method for estimating individual variance-covariance matrices for multiple biomarkers. In this
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model, the observed marker values Xij are defined as:

Xij | Bi,Si ∼ NQ(µ (Bi, tij) ,Si)

Yi | Bi,Si, σ
2 ∼ NQ(η(Bi,Si), σ

2),

where Si is estimated for each individual. In the application, I evaluate two hormone markers of
interest and use the estimated residual variances and covariances to predict changes in body fat
mass composition. I also apply this method to 3 markers via a simulation study and find that it
estimates the variance-covariance matrices with reasonable runtime.

1.3 Joint models with longitudinal outcomes

There is a voluminous body of literature regarding random effects in longitudinal models (Diez-
Roux, 2000; Greene, 2005; Diggle et al., 2013). These models are typically specified as:

Yij = Xijβ +Zijbi + ϵij,

ϵij ∼ N (0, σ2)

Where Yij is the longitudinal outcome of interest, Xij,Zij are the covariates for the population
(fixed) effects β and individual (random) effects bi. To extend this to a joint modeling frame-
work, we would model the longitudinal predictor Xij as a function of time and individual-specific
regression coefficients, e.g. Xij | βi, tij, ω,∼ N (η(βi, tij), ω) where βi are the individual-level
mean parameters. This allows us to estimate individual level mean and variances from the predic-
tor and relate these to the health outcome of interest.

In Chapter 3, I present a joint model for a longitudinal predictor and longitudinal outcome that
estimates the individual-level variability in the predictor. The individual variances are used as
predictors in the outcome model so that the effect of individual variance on the outcome of interest
is explicitly captured. The proposed model borrows from the framework of the mixed effects
model:

Xij | bi, si ∼ N
(
µ(tij; bi), s

2
i

)
, j = 1, . . . , ni, i = 1, . . . , N,

Yij | bi,ai, tij, si ∼N
(
η(bi,ai, tij, si), σ

2
)
, j = 1, . . . , ni, i = 1, . . . , N,

This specification directly links the predictor Xij to the outcome Yij via the means bi and the vari-
ances si. This model links the two trajectories via the random effects from the predictor variable
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and modeling the random effects as regression coefficients. Additionally, this model treats the
individual variances si’s as being predictive of the outcome and includes these estimates in the
outcome model.

1.4 Time-varying variances and covariances

The methods reviewed in the previous sections 1.1,1.2 and 1.3 generally do not consider the setting
of time-varying variability, where the individual residual variances (and covariances) could change
over time. In many applications, the assumption of a homoskedastic variance-covariance matrix
is often unreasonable. For financial time series analyses, a well known model for time-varying
variability in the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model.
Proposed by Bollerslev (1986), the GARCH model parameterizes the variance of the current time
period as a function of previous time periods’ variances. The stochastic volatility model, a common
alternative to GARCH models, parameterizes the variance of a time series with a latent stochastic
process (Chan and Grant, 2015).

Within the setting of multivariate regression, there are many applications where the covariance
matrix, as well as the mean, may depend on external covariates and/or change over time. Li
et al. (2014) descrbie how the variability of questionnaire responses from hospital nurses may be
dependent on covariates such as hospital location and years of work experience. Fox and Dunson
(2015) studied the evolution of weekly flu activity trends across the United States, where the means
and variances of the estimated disease trajectories may be changing over time and space. The
outcome of interest is described as follows:

Xi | Zi ∼ N (µ ( Zi) ,Σ ( Zi))

,

so that the mean µ ( Zi) and covariance matrix Σ ( Zi) of Xi are both functions of covariates Zi,
which can include time. This model can be extended to the longitudinal data setting to estimate
individual or group-specific means and covariance matrices (Niu and Hoff, 2019; Li et al., 2014).

There are several approaches for estimating these covariances matrices in the multivariate re-
gression setting. Chiu et al. (1996) modeled the logarithm of the covariance matrix, which allows
the elements of the log-transformed covariance matrix to vary freely, but also still ensures that
the corresponding covariance matrix is postive-definite. Other methods utilize the covariance ma-
trix’s Cholesky factor (Pourahmadi, 1999; Pan, 2003), or a regression function (Hoff and Niu,
2012; Li et al., 2014; Fox and Dunson, 2015). Although these model the covariance matrices as
a function of covariates, they do not utilize these variance estimates for inference or prediction
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of another outcome of interest, in either a two-stage or joint model framework. In Chapter 4, I
extend the covariance regression method proposed by Hoff and Niu (2012) to the joint modeling
setting. We return to the setting of multiple biomarkers and develop a joint model that allows
for the individual-level marker variances and correlations to vary over time. Our model uses the
covariance regression model in the predictor submodel:

Xij | Bi,Si ∼ NQ (µij(Bi, tij),Sij(Θi, tij))

Yij | µij,Sij,β, σ
2 ∼ N (η(µij,Sij,β), σ

2),

where µij,Sij are now both functions of time. Using this model, we are able to estimate
how these variances and covariances may change over time. As in the previous chapters, these
estimated variances (and covariances) are used in the outcome submodel to predict individual
health trajectories.

1.5 Applications to women’s heath

The applications presented in this dissertation have important implications for women’s health
research. As mentioned before, variability of biological mechanisms can indicate disregulations or
the breakdown of certain systems within the body. E2 and FSH are two hormones are known to be
important regulators of the female reproductive system, as well as other tissues (e.g. fat or bone)
(Ryan, 1982; Colleluori et al., 2018; Zaidi et al., 2018). As women approach their Final Menstrual
Period (FMP), mean E2 tends to decline while mean FSH tends to rise in response. Additionally,
both of these hormones are known to have extreme fluctuations during the Menopausal Transition
(MT). In particular, high variability of E2 may be predictive of depressive events during the MT
(Gordon et al., 2016) and high variability of FSH is associated with increased risk of hot flash
(Jiang et al., 2015). Chapter 2 focuses on evaluating the associations between individual level E2
and FSH variances and covariances and body mass rate of change across the MT.

Chapter 3’s model is motivated by observations of women’s bone health as they transition
through menopause. Early detection and intervention for declining BMD is critical for reduc-
ing the risk of poor outcomes (e.g. fractures) post-menopause. E2, and more recently FSH, have
both been studied as important biomarker predictors for BMD in midlife women (Ebeling et al.,
1996; Chin, 2018). By characterizing the longitudinal relationship between E2 (FSH) and physical
function during the midlife, this research can support the design of effective interventions to pre-
clude substantial bone loss as women transition through the midlife into their later years. Chapter
2 and Chapter 3 used data from the Study of Women’s Health Across the Nation (SWAN) study, a
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multi-site, multi-ethnic cohort spanning almost three decades of data collection.
Chapter 4 focuses on modeling time-varying variances and covariances of certain hormone

markers as women transition through menopause and relate these variance estimates to declines
in Bone Mineral Content (BMC). Here, we examine women’s testosterone levels as a potential
marker of BMC decline, something that few existing studies have examined previously. We jointly
model the time-varying means, variances, and covariance of FSH and testosterone and their asso-
ciations with BMC trajectories in midlife women. We use data from the Michigan Bone Health
Study (MBHS), a 33-year cohort study that investigates bone strength declines during the MT. By
estimating the time-varying variances and covariances of FSH and testosterone as women enter
menopause, we can evaluate how these hormone variabilities at different stages of menopause may
impact BMC decline.
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CHAPTER 2

Chapter 2: Variance as a Predictor of Health
Outcomes: Subject-level Trajectories and Variability

of Sex Hormones to Predict Body Fat Changes in
Peri- and Post-menopausal Women

2.1 Introduction

The menopausal transition is a critical lifestage that can shape women’s midlife and long-term
health. The US census bureau estimates that by 2050, approximately 47 million women will be
aged 45 to 64 years (U.S. Census Bureau, 2017), and women are projected to spend more than
one-third of their life post-menopause (Mohammadalizadeh Charandabi et al., 2015). Therefore,
understanding how the midlife can affect health outcomes is vital for supporting a healthy aging
population.

Reproductive aging and the menopausal transition are characterized by well-established pat-
terns of falling levels of estradiol (E2) and rising levels of follicle-stimulation hormone (FSH)
(Randolph et al., 2004). In addition to regulating reproductive functionality, E2 and FSH have also
been found to be highly associated with risk of adverse health outcomes (Karvonen-Gutierrez and
Harlow, 2017; Zaidi et al., 2018). Since E2 regulates adipose tissue, women tend to gain fat mass
post-menopause (Colleluori et al., 2018). Fat mass distribution also changes, with body fat shift-
ing to the intraabdominal region during the menopausal transition (Carr, 2003). Excess abdominal
fat is one of the symptoms of metabolic syndrome, which can place individuals at higher risk of
health conditions such as heart disease, diabetes, and stroke. Waist circumference is a commonly
used measure of abdominal fat and previous research suggests that waist circumference may be an
important indicator of health risks (Ross et al., 2020; Darsini et al., 2020).

Higher increases in FSH levels are also associated with higher fat mass increases in women
undergoing menopause (Sowers et al., 2007). Additionally, FSH appears to be an important pre-
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dictor of increased adiposity, reduced energy expenditure (Sponton and Kajimura, 2017; Kohrt
and Wierman, 2017) and lower lean mass during the postmenopause (Gourlay et al., 2012). This
motivates further investigation into how E2 and FSH can jointly predict body mass composition in
women. Identifying these associations is important since excess body weight can increase the risk
of adverse health outcomes and mortality in midlife women (Stevens et al., 2002)

Growing evidence also suggests that the variability of these hormones may be critical for pre-
dicting adverse health outcomes. Gordon et al. (2016) found that higher E2 variability in women
over a period of 14 months was predictive of greater depressive symptoms at month 14. Lower
levels of FSH variability in perimenopausal and postmenopausal women was strongly associated
with reduced risk of hot flash, while changes in individual mean FSH trajectories were not sim-
ilarly predictive of hot flash risk (Jiang et al., 2015). By understanding how the variability of
these biomarkers relate to changes in body mass, we can improve health diagnostics for women
and support individualized treatment plans. Despite this emerging work, the majority of current
research has still focused on using mean hormone measurements or group based trajectories to
predict health outcomes. The existing literature does not account for how individual variabilities
or co-variability of E2 and FSH may be related to changes in body mass and waist circumference
across the menopausal transition. Thus, there is a dearth of statistical models that properly extract
and use these individual hormone trends and variabilities when predicting an outcome.

2.1.1 SWAN Dataset

Our motivating dataset comes from the Study of Women’s Health Across the Nation (SWAN), a
multi-site US-based longitudinal cohort study that followed women over the menopausal transition
(Sowers et al., 2000a). The SWAN dataset has made it possible to establish longitudinal associa-
tions between hormone trajectories and health outcomes (Park et al., 2017; Sowers et al., 2007),
rather than relying on baseline hormone measurements to predict health risks. The comprehensive
and longitudinal aspect of this dataset makes it ideal for understanding how individual hormone
trends can predict changes in body mass composition.

To be eligible for the SWAN cohort, women had to be between 42-52 years old, had to have had
at least one menstrual period and not used reproductive hormones (e.g. hormonal contraceptives
or other exogenous hormones) in the past three months prior to enrollment in the study, had to
reside in the geographic area of the clinical site, and had to self-identify as White, Black, Chinese,
Japanese or Hispanic. Serum E2 and FSH biomarker measurements were collected at baseline and
during 13 of the 15 approximately annual follow-up visits, along with other health measurements.
Figure 2.1 shows E2 and FSH measurements collected from SWAN participants, along with a
loess curve to estimate the overall population trend. Body composition was measured via dual-
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Figure 2.1: Plots of the observed E2 and FSH measurements. In our analysis, we log-
transformed these measurements and then detrended them by subtracting the individual
observations from a population loess fit.

energy X-ray absorptiometry (DXA) at five of the seven clinical site visits. Women also completed
questionnaires regarding lifestyle and socio-demographic characteristics.

For the fat mass dataset, we initially started with women who were enrolled at one of the five
sites with body composition measures. If a woman was on hormone replacement therapy during
a clinical visit, we removed that observation from the dataset. Additionally, we removed women
who did not have an observed FMP. Although the SWAN study enrolled five racial/ethnic groups,
the site with Hispanic women did not have body composition data; hence, Hispanic women are not
included in the fat mass analysis. After computing the fat mass composition window (see below),
an additional 47 women were excluded from the analysis, due to either not having both pre and post
FMP observations or not having observations that fell within the desired time range before and after
FMP (i.e. observations outside of the 3-7 year range before and after FMP). The 3-7 year range was
chosen in order to ensure that the changes in fat mass distribution was captured sufficiently before
the start (and end) of the menopausal transition, and the number of women who had measurements
beyond the 7 year cutpoint before and after FMP was scarce. The final analytical fat mass dataset
was completed on 841 individuals, with a total number of 9,902 hormone measurements.

For waist circumference analysis, since all seven sites collected waist circumference measure-
ments, we were able to have a larger sample size for this analysis. As in the fat mass analysis, we
removed women who did not have an observed FMP and we also removed observations where the
woman was on hormone replacement therapy. Our final analytical dataset for waist circumference
was completed on 1,029 individuals and 12,059 hormone measurements.

For the individual trajectory model, we use the log values of FSH (mIU/mL) and E2 (pg/mL)
measured at each visit. We removed the E2 and FSH population trends by fitting a lowess curve
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to each (log) hormone. The lowess curve was fit by using time to FMP at each visit as the nu-
meric predictor for the corresponding hormone measurement and using weighted least squares to
obtain the predicted fit at each timepoint. We then subtracted the individual measurements from
the lowess estimates. By removing the common population trends in the data, our model can bet-
ter approximate the individual trajectories and individual level variances using a simpler (lower
dimensional) subject-level trajectory model. Figure 2.3 summarizes the subject-level longitudinal
data model fit results for two randomly-selected women.

For the outcomes of interest, we selected fat mass rate of change and waist circumference rate
of change over a selected time window. We define this window to be from the visit closest to 5
years before the FMP to the visit closest to 5 years after the FMP, with the requirement that the
closest visit be at least 3 or more years before/after the FMP. By doing this, we aimed to capture
the most accurate trend in body composition change that was not fully dependent on a measure-
ment right before menopause. The fat mass (waist circumference) rate of change is the difference
between the ‘last visit’ (post FMP) and the ‘first visit’ (pre FMP) divided by the amount of time
(in years) within each individual window. Figure 2.2 shows the individual observations of these
rates. We normalized the fat mass measurements by using the proportion (i.e. ratio) of fat mass to
body weight (grams) rather than using the unadjusted fat mass measurements (also in grams), thus
creating a measure of percent fat mass for each woman. Raw fat mass values are highly correlated
with body weight, and previous work has demonstrated that there is no menopausal effect of body
weight change beyond normal aging. The proportion of fat mass, however, has a strong curvilinear
relationship across the menopausal transition. For this reason, we have used fat mass proportion in
our analyses to reflect the impact of the MT on this measure. (Greendale et al., 2019). Figure 2.2
displays the histograms of these outcomes, after performing the normalization (for fat mass) and
rate adjustments (for both models).

2.1.2 Methods for longitudinal markers and health outcomes

A large and well-developed body of literature over the past two decades uses longitudinal
biomarker or questionnaire data to predict health outcomes: an early example is given by Hender-
son et al. (2000), who tied psychiatric disorder measures over time to predict dropout in schizophre-
nia trials; they used a subject-level random effect in the disorder trajectory that is also present as a
frailty in the time-to-event model. Proust-Lima et al. (2014) link latent classes of prostate specific
antigen to survival models. More recent work by Wang et al. (2017) considers multiple longi-
tudinal predictors - in their case, measures of daily functioning - to predict onset of Parkinson’s
disorder.

However, methods that assess the utility of residual variability in predicting health outcomes
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Variable Statistic Value n
Longitudinal Predictors Mean/SD
E2 Residuals -0.04 (0.81) 9,902
FSH Residuals 0.02 (0.61) 9,902
Health Outcome Mean/SD
Fat Mass Rate of Change 0.001 (0.004) 841
Baseline Body Mass Mean/SD
Fat Mass Prop. at Visit 1 0.36 (0.07) 841
Race/Ethnicity Percent
White (Reference) 47.2% 397
Black 24.9% 209
Japanese 15.3% 129
Chinese 12.6% 106
Physical Activity Percent
Lowest Activity (Reference) 23.6% 199
Increasing Activity 12.7% 107
Decreasing Activity 22.7% 191
Middle Activity 25.6% 215
Highest Activity 15.3% 129

Table 2.1: Descriptive statistics of the fat mass dataset based on 841 individuals.

Variable Statistic Value n
Longitudinal Predictors Mean/SD
E2 Residuals -0.003 (0.80) 12,059
FSH Residuals -0.008 (0.62) 12,059
Health Outcome Mean/SD
Waist Circumference Rate of Change 0.41 (0.82) 1,029
Baseline Waist Circumference Mean/SD
Waist Circumference at Visit 1 86.03 (15.90) 1,029
Race/Ethnicity Percent
White (Reference) 47.0% 484
Black 26.2 % 270
Japanese 15.3% 128
Chinese 11.5% 119
Hispanic 2.7% 28
Physical Activity Percent
Lowest Activity (Reference) 23.6% 267
Increasing Activity 12.7% 131
Decreasing Activity 22.6% 233
Middle Activity 24.0% 247
Highest Activity 14.6% 151

Table 2.2: Descriptive statistics of waist circumference dataset based on 1,029 individuals.
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Figure 2.2: Histograms of the observed rate of change in fat mass composition (left) and the
observed rate of change in waist circumference (right). The observed values for the fat mass
outcome are in fat mass proportional to body weight (both in grams) per year and waist
circumference (cm) per year.

are largely lacking in the literature, despite calls for increased focus on developing methods for
variance structures. Such methods may elucidate whether variability as predictors could yield both
better prediction and improved inference (Carroll, 2003). This oversight appears to be a substantial
gap in the statistical methods literature given that increased variance can be an early predictor of
instability in biological systems; for example, heart rate variability may be a marker of autonomic
dysregulation given its predictive nature with poor health outcomes (Young and Benton, 2018).
Our proposed method addresses this gap by explicitly parameterizing individual variances (and
co-variances) and uses these estimates as predictors in the outcome model.

Early literature used simple two-stage approaches with a squared-error estimate of variance
obtained from the observed data to predict a single outcome (Sammel et al., 2001), ignoring the
inherent uncertainty in the constructed variance estimates. More recent methods have focused on a
joint model for the predictors and outcomes (Elliott et al., 2012; Jiang et al., 2015, e.g.,). The joint
modeling approach is critical given that statistical uncertainty of the constructed predictors, e.g.,
mean and residual variance estimates, if unaccounted for, can lead to extremely biased estimates of
the effects of these individual-level mean trajectories and the residual variances on the outcomes
(e.g., Ogburn et al., 2021; Wang et al., 2020). Finally, prediction approaches based on multiple
trajectories - which allow for consideration of residual covariances as well as residual variances as
predictors – appears to be completely absent from the biostatistics toolkit. In a Bayesian frame-
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work, our joint model properly accounts for the uncertainty in estimating the residual variances and
covariances of multiple biomarkers, thereby propagating the uncertainty into outcome prediction.

This paper is organized as follows. Section 2.3 describes our joint model framework linking the
mean trajectory and residual variance model for the longitudinal predictors with the model for the
outcome. Section 2.4 conducts extensive simulation studies to show that our proposed approach
produces less biased estimates of the outcome regression coefficients with valid statistical uncer-
tainty assumptions relative to a variety of increasingly complex two-stage competitors that fail to
account for the statistical uncertainty in the subject-level means and in the variances. Section 2.5
applies our method to assess the associations between the mean trajectories, variance, and covari-
ance of E2 and FSH and the changes in fat body mass and fat distribution during the menopausal
transition using women’s health data from the SWAN study. Section 2.6 discusses the implications
of our work along with limitations and directions for future research.

2.2 Previous Work on Variances as a Predictor of Outcomes

Joint modeling of longitudinal trajectories and cross-sectional outcomes is a rich area of statistical
research (Chi and Ibrahim, 2006; Ibrahim et al., 2010; Lawrence Gould et al., 2015). For example,
including longitudinal measurements in joint longitudinal - survival models can provide better
estimates of the survival outcome by accounting for the individual trajectories over time, as shown
by Long and Mills (2018), who used a joint model to predict motor diagnosis using longitudinal
characterizations of Huntington’s disease progression taken at annual visits; also see Papageorgiou
et al. (2019) for a comprehensive review. Until recently, most of the focus in the area of modeling
individual trajectories has been on modeling the mean trends. The variability associated with
individual biomarkers has traditionally been treated as a nuisance parameter. In mathematical
notation, these joint models typically take the form:

Xij | Bi,Ψ ∼ N (µ(Bi, tij),Ψ),

Yi | Bi, β, σ
2 ∼ N (η(β,Bi), σ

2),

where X are the observed markers/predictors, Y is the observed outcome of interest, the main
predictors of interest are the mean parameters Bi and the variance-covariance matrix Ψ is assumed
to be a population level parameter, rather than allowing each individual to have their own variance-
covariance matrix (e.g. Si).

However, interest in both modeling the residual variability of individual trajectories and using
these estimates as predictive variables has been growing. Elliott et al. (2012) studied the relation-
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ship between individual variability in short-term memory tests and long term onset of senility. They
found that increased variability in the memory tests were associated with increased risk of senility.
Furthermore, this variability was a stronger predictor of senility than the mean trajectories. With
regards to women’s health, some previous research has considered variance as a predictor of health
outcomes. Harlow et al. (2000) found that women who had increased menstrual cycle variability at
a younger age were more likely to experience abnormal uterine bleeding. The variability of men-
strual cycle length was also found to be an important predictor of menopausal onset (Huang et al.,
2014). Sammel et al. (2001) used a two-stage model to that linked individual means and variances
of longitudinal profiles to a corresponding health outcome. They found that E2 variability during
the menopausal transition was highly predictive of experiencing hot flashes. Jiang et al. (2015)
proposed a joint model of individual means and variances of FSH hormone trajectories and risk
of hot flash as the health outcome. Low FSH variability was predictive of substantial reduction in
risk of hot flash. We note that a common feature of these models is the lack of multiple predictors
in the longitudinal sub-model.

Our work’s most important contribution over the previous work is to consider the individual-
level means and variances of multiple predictor trajectories, rather than a single biomarker tra-
jectory, in a joint modeling framework. This allows for investigation into how these trajectories
may both independently and interactively associate with outcomes, and in turn requires substantial
methodological development, particularly to decompose an individual-level variance-covariance
matrix for use in a joint modeling setting. This work also adds to the still small set of literature
showing the use of variability as a predictor of health outcomes, and more generally emphasizes
the need for a joint modeling framework over the less efficient two-stage approach, as we show in
Section 2.4. Also, to the best of our knowledge this is the first rigorous assessment of the role of
individual trends and variability of E2 and FSH hormones in jointly predicting body mass changes.

2.3 Proposed Model

2.3.1 Notation

Let D = (Yi,Xij, tij,Wi) be the observed data for subject i = 1, . . . , N , where Yi ∈ R1 is a
continuous outcome, Xij = (Xij1, . . . , XijQ)

T is a vector of Q time-varying marker values at
observation time points tij, j = 1, . . . , ni, that may differ by subjects, and Wi = (Wi1, . . . ,Wid)

T

is a vector of d time-invariant covariates, e.g., race/ethnicity, activity class.
The proposed model has two connected components. We first specify the regression model

for irregularly and longitudinally observed multiple markers (tij,Xij), j = 1, . . . , nij; the second
component links the outcome Yi to time invariant covariates Wi and unobserved individual-specific
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vectors of regression coefficients and residual variance-covariance matrices in the model for lon-
gitudinal markers, enabling inference about how the mean trajectories and residual variations are
associated with the outcome Yi.

2.3.2 Likelihood

2.3.2.1 Component 1: Longitudinal Markers

We specify the model for the longitudinal marker data as follows:

Xij | Bi,Si ∼ NQ (µ(tij;Bi),Si) , j = 1, . . . , ni, independently for i = 1, . . . , N, (2.1)

biq
indep.∼ NP (βq,Σq), q = 1, . . . , Q, (2.2)

where NQ(µ,S) is a generic notation that represents a Q-dimensional multivariate Gaussian dis-
tribution with mean vector µ and variance-covariance matrix S; µ(t;Bi) is a Q-dimensional func-
tion of time given by Bi = [bi1, ..., biQ]

T and biq = (biq1, . . . , biqP )
T is a vector of P regression

coefficients for the q-th marker. Here P is the number of basis functions of time; to simplify pre-
sentation in this paper, we assume the same number of coefficients for each marker, e.g., intercept
and slope. In our simulation and data application, we specify these basis functions in advance
to be linear functions of time. In addition, βq = (βq1, . . . , βqP )

T is a vector of population mean
regression coefficients that are specific to the q-th marker. In addition, Equation (2.2) has assumed
individual-specific regression coefficients for any two markers are conditionally independent. Note
that in this model, we have given each individual a variance covariance matrix Si.

2.3.2.2 Component 2: Outcome Regression (OR) Model

The outcome variable Yi is assumed to be related to individual-specific mean and variance-
covariance parameters Bi and Si in the longitudinal marker model (2.1) as follows:

Yi | Bi,Si,Wi ∼N
(
ηi, σ

2
)
, i = 1, . . . , N, (2.3)

where Wi = (Wi1, . . . ,Wid)
T is a vector of d time-invariant covariates; ηi =

η(Bi,Si,Wi;α,γ,γ
W ) and η(·;α,γ,γW ) is a generic mean outcome regression parameterized

by α (for Bi), γ (for Si), and γW (for Wi); α, γ, and γW are of dimension PQ, Q(Q + 1)/2, d,
respectively. In this paper, we will illustrate the statistical performance of such a formulation by
focusing on simple specifications of η(·), e.g., linear models. The framework readily generalizes
to general outcome models; in Section 2.5.3, we illustrate a model with a Gaussian scale-mixture
outcome regression model for waist circumference rate-of-change outcome.
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2.3.3 Priors

In this section, we specify the prior and hyperprior distributions for the unknown parameters in the
two likelihood components.

Prior for Si

We rewrite Si = DiRiDi, where Di = diag(di1, ..., diQ) is a diagonal matrix of residual variances
and Ri is the associated subject-level correlation matrix. We assume

log(diq) ∼ N (νq, ψ
2
q ), (2.4)

independently for marker q = 1, . . . , Q, and subject i = 1, . . . , N . Because Ri is a correlation
matrix, we only need to specify the prior distribution for the off-diagonal elements. We consider
the special case of Q = 2, where r12i is unconstrained, and separately the general case of Q > 2,
where the components of Ri must meet the positive definite criterion.

Special Case: Q = 2.

For a 2× 2 correlation matrix, we place the following prior on the off-diagonal value r12:

(ri12 + 1)/2 ∼ Beta(a′12, b
′
12), independently for i = 1, . . . , N. (2.5)

Finally, we specify hyperpriors for νq, ψq and (a′12, b
′
12) by

νq ∼ N (m, ξ2q ), ψq ∼ half-Cauchy(0, τ), independently for q ≤ Q, (2.6)

a′12 ∼ Exp(κ), b′12 ∼ Exp(κ′). (2.7)

In our application, we set m = 0 and ξq = 10. In addition, we use a half-Cauchy hyperprior on
ψq instead of the inverse-Gamma distribution as this prior is recommended for datasets where the
signal of the variance ψq may be weak (Gelman, 2006). In this setting, inferences using the inverse-
Gamma distribution are extremely sensitive to the choice of hyperparameter values (Gelman, 2006,
p. 524), which makes the inverse-Gamma prior “not at all uninformative”. The half-Cauchy distri-
bution avoids this potential issue due to its heavier tail, which still allows for higher estimates of
the variance, but constrains the posterior distribution “to an extent allowed by the data”.

Remark 1. The defining feature of our framework is the individual-specific variance-covariance

matrices, {Si, i = 1, . . . , N}, over which we must specify a hierarchical prior distribution. Such

priors must not be restrictive in capturing between-subject differences and similarities in the
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variance-covariance matrices. Focusing on the prior specification for individual-specific corre-

lation matrices {Ri, i = 1, . . . , N}, standard priors designed for a single unknown population

correlation matrix, e.g., Lewandowski-Kurowicka-Joe (LKJ) prior (Lewandowski et al., 2009a),

have severe drawbacks. In particular, the LKJ distribution is governed by a single positive scale

parameter, ζ , that tunes the strengths of the correlations. The off-diagonal elements of aK×K cor-

relation matrix are marginally distributed as: (rilk+1)/2 ∼ Beta(a, b), where a = b = ζ−1+K/2.

This implies that the correlations will a priori be concentrated around 0. However, in our mo-

tivating application, {rilk, i = 1, . . . , N} represent the individual-specific residual correlations

between the l- and the k-th hormone, which 1) by domain knowledge are a priori unlikely to have

a strong prior of being near zero, and 2) may vary between subjects in a way far from the implied

distribution of 2 · Beta(a, b) − 1. In Equation (2.7), we have removed this identity restriction and

specified hyperpriors on a and b, which provides greater flexibility in allowing the data to estimate

the true a and b. The same argument can be applied to using Inverse-Wishart distribution as a

prior for variance-covariance matrices, which is also governed by a single scale parameter and

suffers from the same drawbacks as the LKJ distribution.

There is little existing literature on hyperprior recommendations for the parameters of the Beta
distribution. Robert and Casella (2010) note that “there exists a family of conjugate priors on a,
b”, however, they also note that these prior distributions are often intractable, due to the “difficulty
of dealing with the Gamma function”. Instead, we opt for a simpler approach by allowing the a, b
parameters to be independently drawn from an Exponential prior. We argue that the Exponential
distribution in Equation (2.7) is a reasonable choice for a hyperprior as follows: Let x1, . . . , xn be
data from a Beta(a, b) distribution. Assume that a ∼ Exp(λa), b ∼ Exp(λb). We can also assume
a and b are independent a priori. Then the posterior distribution, p(a, b|x) ∝ L(a, b)p(a)p(b) ∝∏n

i=1 exp(− lnB(a, b) + (a − 1) lnxi + (b − 1) ln(1 − xi)) × exp(lnλa − λaa + lnλb − λbb) ∝
exp(−n lnB(a, b) + a[

∑n
i=1 lnxi − λa] + b[

∑n
i=1 ln(1 − xi) − λb]), which suggests that the

posterior distribution of a, b would be updated from a flat prior by subtracting (λa, λb) from
the sufficient statistics

∑n
i=1 lnxi and

∑n
i=1 ln(1 − xi). The reason for this is that the Max-

imum Likelihood Estimators (MLEs) for a, b respectively can be approximated by: âMLE =

1

2
+

Ĝx

1− Ĝx − Ĝ(1−x)

, b̂MLE =
1

2
+

Ĝ(1−x)

1− Ĝx − Ĝ(1−x)

where Ĝx = exp(n−1
∑n

i=1 ln(xi)), Ĝ1−x =

exp(n−1
∑n

i=1 ln(1 − xi)), where (a, b) > 1. The posterior modes using the Exponential pri-

ors become
1

2
+

Ĝx exp(λa)

1− Ĝx exp(λa)− Ĝ(1−x) exp(λa)
,
1

2
+

Ĝ(1−x) exp(λb)

1− Ĝx exp(λb)− Ĝ(1−x) exp(λb)
. When

λa, λb −→ ∞, the posterior modes of a, b shrink towards
1

2
, which is the Jeffrey’s prior. When

λa, λb −→ 0, we recover the likelihood. Overall, these results suggest that the choice of the Expo-
nential distribution is a flexible hyperprior on a, b and thus is a reasonable choice.
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General Case: Q ≥ 3.

For the general case of a Q × Q correlation matrix where Q ≥ 3, the off-diagonal values of
the individual correlation matrices are now more complicated to estimate since the space of valid
correlation matrices is a proper subset of the space of all possible Q × Q matrices. We address
this constraint by following the approach of Ghosh et al. (2021) where the off-diagonal values are
parameterized in terms of hyperspherical coordinates. The angles are allowed to vary freely over
[0, π] before being back-transformed into valid correlation values. To illustrate, we specify the
prior for Ri for when Q = 3 as follows (similarly for Q > 3):

r12 = cos(θ12), r13 = cos(θ13), r23 = sin(θ12) · sin(θ13) · cos(θ23) + cos(θ12) · cos(θ13),

where θ12 = arccos(c12), θ13 = arccos(c13), θ23 = arccos(c23), and

(ci12 + 1)/2 ∼ Beta(a′12, b
′
12), (ci13 + 1)/2 ∼ Beta(a′13, b

′
13), (ci23 + 1)/2 ∼ Beta(a′23, b

′
23).

As in the case where Q = 2, we specify hyper-priors for a′kl, b
′
kl, k < l, e.g., the Exponential

prior.

2.3.3.1 Priors for population longitudinal marker regression coefficients:

βq ∼ NP (0, ξ
2
qIP×P ), independently for q = 1, . . . , Q, (2.8)

Σq = KqLqKq, Kq = diag{kq1, . . . , kqP}, q = 1, . . . , Q, (2.9)

kqp ∼ half-Cauchy(0, τ0), p = 1, . . . , P, and Lq ∼ LKJ(ζ), (2.10)

independently for q = 1, . . . , Q where Kq = diag{kq1, . . . , kqP} is a diagonal matrix and Lq is a
correlation matrix. The τ0, ζ parameters are set in practice as 2.5 and 1 respectively. It is fine to use
the half-Cauchy and the LKJ priors in Equation (2.10) since, for each marker q, they are standard
hyperpriors for a single population variance matrix Kq and a single population-level correlation
matrix Lq, which is different from Equations (2.4 - 2.5) that specifies the prior for multiple and
individual-specific variance-covariance matrices.

2.3.3.2 Prior for parameters in the outcome regression model

For the outcome model, we place diffuse independent Gaussian priors for each element of the
outcome regression parameters (α, γ, γW ). Finally, to complete the prior specification, we place a
diffuse prior on the outcome residual standard deviation parameter σ ∼ half-Cauchy(0, τ1). In our
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simulation studies and data analysis, we set the priors on the regression parameters as N (0, 102)

(a weakly informative prior in order to allow the data to estimate the parameters) and τ1 = 2.5 (the
default suggested by Carpenter et al. (2017)).

Let Z = (Bi,Si) and let Θ = (βq,Σq, ξ, νq, ψq, a
′
kl, b

′
kl,α,γ,γ

W , σ), where these sets denote
the unknown parameters of interest in the proposed model. Let π(Θ) denote the prior distribution
where we have assumed that all parameters in Θ have independent components:
π(Θ) = ΠQ

q=1[π(βq)π(Σq)π(ξq)π(νq, ψq)]Πk<l[π(a
′
kl, b

′
kl)]π(α,γ,γ

W ))π(σ).

Joint Distribution The joint distribution of the data and unknown parameters is then

P (Θ, Z,D) ∝
n∏

i=1

Q∏
q=1

{ 1√
(2π)q|Σ|

exp(−1

2
(biq − βq)

TΣ−1(biq − βq))

× 1√
2πξ2q

exp

[
(log(diq)− νq)

2

2ξ2q

](
[(rikl + 1)/2]a

′
kl−1{1− ([(rikl + 1)/2]}b′kl−1

Beta(a′kl, b
′
kl)

)
×

ni∏
j=1

1√
(2π)|Si|

exp

(
−1

2
{Xij − µ(tij;Bi)}TS−1

i {Xij − µ(tij;Bi)}
)}

× 1√
2πσ2

exp

[
(Yi − η(Bi,Si,Wi;α,γ,γ

W ))2

2σ2

]
× π(Θ). (2.11)

Figure S1 in the Supplementary Materials uses a directed acyclic graph to visualize and summa-
rize the hierarchical relationships between the different components of our modeling framework.

2.3.4 Posterior Inference

In a Bayesian framework, the inference is conducted based on the posterior distribution P (Θ | D).
However, it is not feasible to derive the closed-form posterior distribution owing to the lack of
prior-likelihood conjugacy in our proposed model. We therefore used Hamiltonian Monte Carlo
to draw sequential samples and approximate the posterior distribution. We implement the model
using Stan and the rstan package (Stan Development Team, 2020) as the interface for running the
model and obtaining the posterior estimates. Code to run the joint model and generate the data used
in our simulation studies are provided in attached supplementary files. For our simulations studies
in Section 2.4.1, 2.4.2 and in B.5, we run two chains per independent replicate data set, with 2, 000

iterations and 1, 000 burn-in. For the data application in Section 2.5, we ran 4 chains each for 2,000
iterations with 1,000 burn-in. Visual inspection of the traceplots for all model parameters indicated
non-divergent chains (see Figures B.4 and B.5 in Appendix B.2.1). All chains were combined for
calculating posterior summaries.

We also examined Stan’s R-hat convergence diagnostic (Vehtari et al., 2021) and the Effective
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Sample Sizes (ESS) to determine if the chains had mixed well. The R-hat value for all model
parameters was less than 1.05. In the fat mass rate of change model, the ESS for all of the model
parameters was at least 100 times the number of chains used, except for the model parameter cor-
responding to individual-level E2 variance and the parameter corresponding to fat mass proportion
at the first visit. The R-hat values of these two parameters was also effectively 1.00 in both models.
Based on these diagnostics, we concluded that our models had converged. The posterior predictive
checks we conducted (see Appendix B.2) suggest that our model generates reasonable estimates
for the observed outcomes and trajectories.

2.4 Simulation Study

We conducted simulation studies to 1) evaluate our model’s operating characteristics and 2) com-
pare against common alternatives that could also be used in modeling individual means and vari-
ances as predictors of outcomes. We evaluated our model performance across independent simula-
tion replicates using three criteria: for each method and each parameter θ, we assess the 1) bias (de-

fined as
1

R

∑R
r=1(θ̂

(r)−θ0) where θ̂(r) is the posterior mean of θ obtained from the r-th replication),

2) the coverage rate of the nominal 95% credible intervals (CrI; defined as
1

R

∑R
r=1 1{θ0 ∈ Ir}

where Ir is the 95% CrI for parameter θ obtained by computing the 2.5% and 97.5% percentiles of
the draws from the posterior distribution for the r-th replication, and 3) average length of the 95%

CrIs obtained across simulation replicates, defined as
1

R

∑R
r=1 Tr, where Tr is the length of Ir, i.e.,

the range of the estimated 2.5% and 97.5% posterior quantiles for θ in replicate r.

2.4.1 Simulation 1: Two Biomarkers.

In this simulation, we assume the mean trajectories can be expressed linearly with individual in-
tercepts and slopes. We generated ni = 6 to 15 time points for N = 1, 000 individuals, which
mimics the data used in Section 2.5. We then simulated two trajectories for each individual using
the following parameters.

Component 1: Longitudinal Markers

Xitq = biq1 + biq2t+ ϵiq, q = 1, 2;Bi1 ∼ N2 (β1,Σ1) ,Bi2 ∼ N2 (β2,Σ2)

β1 = (0, 2)T,β2 = (2, 1)T,Σ1 =

(
1 −0.05

−0.05 1

)
,Σ2 =

(
1 −0.1

−0.1 0.5

)
,

log(di1) ∼ N (0, 0.75)/2, log(di2) ∼ N (0.5, 0.5)/2, (ri12 + 1)/2 ∼ Beta(1, 5).
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Component 2: Outcome Regression Model To generate the outcome for each individual, we
assume Yi ∼ N (η(Bi,Si), σ

2) and set

η(Bi,Si) = α11bi11 + α12bi12 + α21bi21 + α22bi22 + γ11si11 + γ21si21 + γ22si22,

where the true values of α,γ are α = (−3,−3,−3, 3),γ = (2,−1, 2); we did not include other
time-invariant covariates Wi. These particular truth values were chosen so that the distribution of
the outcome Yi would be similar to the distribution of the SWAN body mass outcomes (our data
analysis application). Lastly, we set σ2 = 1. We present the results for R = 200 replicates in Table
2.3 for the outcome submodel parameters α, γ. See Table B.3 in Appendix B for the results for
the other model parameters.

2.4.1.1 Alternative Methods

We briefly introduce three common alternatives in our comparative simulation study: two-stage
simple linear model (TSLM), two-stage linear mixed model (TSLMM), and two-stage individual-
variance (TSIV) model. We refer to our joint model as the “Joint Model with Individual Variances”,
or JMIV.

Two-Stage Simple Linear Regression (TSLM) One of the most simple alternative models we
could use is the linear regression model in two stages. We used the lm() function in R and first fit
the following model:

Xitq = βiq0 + βiq1t+ ϵiq, q = 1, 2.

Here, we will obtain β̂iq0, β̂iq1 via ordinary least squares estimates for the mean parameters
biq0, biq1. To estimate si11, si22, we collected the residuals from each regression, e.g., rij1 =

(xit1 − (β̂i10 + β̂i11tij)), j = 1, . . . , ni, and computed the sample variance of these residu-
als, which we term “estimated residual variance” for each individual, i.e., ŝi11; similarly, we
obtain rij2 and ŝi22. The residual covariance, ŝi12, was estimated by sample covariance of
(rij1, rij2). We then used linear regression to model the outcome based on the estimated co-
efficients and residual variances and covariances from the first-stage model: E(Yi | others) =∑

q=1,2

{
αq1β̂iq0 + αq2β̂iq1 + γqqŝqq

}
+
∑

q′<q γq′qŝq′q. For each replicate, we saved the point esti-
mates and 95% confidence intervals to compute the bias, coverage, and average interval length.

Two-Stage Linear Mixed Model and Linear Regression (TSLMM) This alternative is a
slightly more sophisticated approach than TSLM. In the first stage, we fit a Bayesian bivariate
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response linear mixed model with the brms package (Bürkner, 2017)

Xiq(t) = βq0 + biq0 + βq1t+ biq1t+ ϵitq, q = 1, 2.

We chose to use a Bayesian framework for this model since fitting linear mixed models
with multivariate outcomes is more complicated to implement in a frequentist setting. Standard
Bayesian software such as the brms package allows for easier implementation of multivariate out-
come linear mixed models. We place independent N (0, 102) priors on the intercept and slope
parameters. We use the preset prior distribution for the random-effects correlation matrix, an LKJ
prior with scale parameter 1, as suggested by Bürkner (2017). For all other prior specifications, we
used the default prior settings in the brms package.

We approximated the “Bi” coefficients for each individual trajectory with the “overall” coef-
ficient estimates: B̂iq0 = β̂q0 + b̂iq0 and B̂iq1 = β̂q1 + b̂iq1, where β̂qp and b̂iqp, p = 0, 1 are the
estimated posterior means of the fixed and random effects respectively. As in the previous model,
we estimated Si by computing the model residuals (e.g. Xitq − (B̂i0q + B̂i1qt)) and then computed
the variance across all residuals. We also computed the residual covariance to estimate of ŝ12. We
then fit the same second-stage model as in the TSLM setup to get the estimated posterior means
and corresponding 95% confidence intervals for α and γ.

Two-Stage Individual Variances (TSIV) Model Here, we fit the longitudinal outcome model
using Equations (2.1) and (2.2) only (together with their prior specifications in Equation (2.5),
(2.7) to (2.8)) and use the estimates of the posterior means, B̂i and Ŝi in the model 2.3 (together
with prior specifications in Section 2.3.3.2). Note that we do not consider this to be a practical
alternative to our first two models, since if one goes to the effort of using a non-standard multilevel
model for subject-specific variance-covariance matrices, one might as well go the extra step of
bringing them together within a joint model. However, we do this to investigate the effect of not
propagating the statistical uncertainty across the two components of the model.

2.4.1.2 Simulation I: Results

Table 2.3 presents the results of Simulation I. For the two-stage linear regression model, we can
see that the point estimates of the outcome model parameters are attenuated towards the null.
This result makes sense given what we know about bias resulting from measurement error (see
Appendix A. Furthermore, the actual coverage rate is quite poor, especially for the regression
coefficients of the variances and covariances (γ).

For the TSLMM approach, the coverage and bias of the α parameters have significantly im-
proved compared to the TSLM approach, likely due to the linear mixed model appropriately cap-

25



Truth Model Bias Coverage (%) Average Interval Length
α11 = -3 JMIV 0.01 98.0 0.29

TSLM 0.33 2.5 0.30
TSLMM −0.01 93.5 0.38
TSIV −0.02 97.5 0.35

α12 = -3 JMIV 0.01 95.0 0.27
TSLM 0.13 67.5 0.34
TSLMM 0.00 94.0 0.34
TSIV −0.01 93.0 0.29

α21 = -3 JMIV 0.00 97.0 0.25
TSLM 0.46 0.0 0.29
TSLMM −0.01 92.5 0.40
TSIV −0.01 89.0 0.32

α22 = 3 JMIV −0.02 93.5 0.37
TSLM −0.17 71.5 0.36
TSLMM −0.01 97.0 0.49
TSIV 0.01 95.0 0.43

γ11 = 2 JMIV 0.01 94.0 0.52
TSLM −0.38 17.0 0.36
TSLMM −0.38 15.0 0.35
TSIV 0.03 76.0 0.41

γ12 = -1 JMIV 0.00 95.5 0.86
TSLM 0.41 35.0 0.65
TSLMM −0.41 31.0 0.62
TSIV 0.04 88.5 0.86

γ22 = 2 JMIV 0.00 98.0 0.43
TSLM 0.62 0.0 0.33
TSLMM 0.62 0.0 0.32
TSIV −0.01 88.5 0.40

Table 2.3: Simulation I: bias, coverage, and 95% credible interval (or confidence interval)
length across 200 simulation replicates. We compare JMIV to the 1) simple two-stage linear
regression (TSLM) 2) the two-stage linear mixed model-linear regression (TSLMM) and 3)
the two-stage individual variances (TSIV) model. See Section 2.4.1.1 for details about the
alternative methods.

turing the dependence between individuals’ data points (i.e., appropriately capturing the measure-
ment error in the mean parameters). However, TSLMM still has difficulty in recovering the co-
efficients of the variances and covariances, as can be seen by the poor coverage and high bias of
these parameters. This also makes sense since this framework assumes that individual random
effects variability can be drawn from a population level variance-covariance matrix (not capturing
measurement error in the variance parameters). This result suggests that if the individual variances
and covariances do have an influential role in estimating the outcome, neither TSLMM nor TSLM
will be able to recover the true values of these parameters. Interestingly, the TSLMM results also
show an attenuation towards the null for the γ parameters, but not for the α parameters (although
the bias is negligible). This indicates that the TSLMM alternative is able to better estimate the
individual intercepts and slopes, but not the residual variability.
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Compared to the TSLM and the TSLMM approaches, the TSIV approach has noticeably better
coverage and lower bias of the γ parameters. However, compared to our proposed JMIV, TSIV
is still uniformly ‘worse‘ across the three metrics. The bias of the three γ parameters is higher
when compared to the bias produced by JMIV. Also, none of the γ parameters have higher than
90% coverage across the 200 replicates and the average length of the 95% credible intervals is
higher than the 95% credible intervals from the JMIV approach. Across all of the simulation
replicates, JMIV achieved greater than 90% coverage of the true parameters. JMIV also achieved
low bias across the simulation replicates. We do note that the average 95% CrI interval lengths
are larger for the Ri parameters than for the Di parameters (see Table B.3 in Appendix B.4). This
is likely due to the higher uncertainty in estimating these correlation parameters, which has been
captured appropriately. This higher uncertainty is also likely the same mechanism behind the larger
average 95% CrI interval length of the γ12 parameter (corresponding to the covariance of the two
trajectories). Overall, these results demonstrate that our model is able to successfully recover the
data generating parameters while maintaining good coverage and low bias.

2.4.2 Simulation 2: Three Biomarkers

Here we again simulate ni = 6 to 15 timepoints each for N = 1, 000 individuals. The sim-
ulated longitudinal data is generated by Xitq = biq1 + biq2t + ϵiq, q = 1, 2, where Bi1 ∼
N2 (β1,Σ1) ,Bi2 ∼ N2 (β2,Σ2) ,Bi3 ∼ N2 (β3,Σ3), and β1 = (0, 2)T, β2 = (2, 1)T, β3 =

(1, 1)T,

Σ1 =

(
1 −0.05

−0.05 1

)
,Σ2 =

(
1 −0.1

−0.1 0.5

)
,Σ3 =

(
1 −0.25

−0.25 1

)
,

log(di1) ∼ N (0, 0.75)/2, log(di2) ∼ N (0.5, 0.5)/2, log(di3) ∼ N (0, 1)/2.

We first generate the following values (c12 + 1)/2 ∼ Beta(1, 5), (c13 + 1)/2 ∼ Beta(1, 5),
(c23+1)/2 ∼ Beta(2, 2) and use the approach presented in Equations (2.3.3) and (2.8) to generate
the individual correlation matrices, Ri.

For the outcome submodel, we set the true values of the regression coefficients as: α =

(−3,−3, 3,−3, 3, 3),γ = (2,−1, 2,−2, 2, 1), where these values were again chosen so that the
distribution of the outcome yi would be similar to the distribution of the SWAN body mass out-
comes. Lastly, we set σ2 = 1 (the variance parameter for the outcome).

We present the results of this simulation study in Tables 2.4 and 2.5. We note that the proposed
JMIV achieves above 90% coverage for both the mean (α) and variance-covariance (γ) parameters,
which the other models fail to do. With respect to the α parameters, TSLMM and TSIV both
perform well in terms of both coverage and bias. However, substantial differences in performance
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Truth Model Bias Coverage (%) Average Interval Length
α11 = -3 JMIV 0.01 96.5 0.49

TSLM 0.61 2.0 0.56
TSLMM 0.00 93.5 0.69
TSIV −0.01 96.0 0.64

α12 = -3 JMIV −0.01 93.0 0.45
TSLM 0.18 77.5 0.62
TSLMM −0.01 94.0 0.62
TSIV 0.00 94.5 0.55

α13 = 3 JMIV −0.01 96.5 0.50
TSLM −0.98 0.0 0.55
TSLMM 0.03 93.0 0.74
TSIV −0.01 92.0 0.59

α21 = -3 JMIV −0.01 95.0 0.43
TSLM 0.28 47.0 0.53
TSLMM 0.003 95.0 0.73
TSIV −0.01 96.0 0.81

α22 = 3 JMIV −0.01 92.5 0.63
TSLM −0.17 71.5 0.36
TSLMM 0.02 93.5 0.90
TSIV 0.01 93.5 0.65

α23 = 3 JMIV −0.01 97.5 0.47
TSLM −0.44 20.5 0.63
TSLMM −0.02 91.5 0.65
TSIV 0.01 96.0 0.59

Table 2.4: Simulation II: bias, coverage, and 95% credible interval (or confidence interval)
length across 200 simulation replicates for the α parameters. We compare our JMIV to
the 1) simple two stage linear regression (TSLM) 2) the two stage linear mixed model-linear
regression (TSLMM) and 3) the Bayesian two stage model (TSIV).

are present in the γ parameters. We see that that our model, JMIV, consistently has lower bias
except in the case of γ23 where TSIV achieves lower bias and γ33 where TSLMM achieves lower
bias. However, in both cases, JMIV outperforms the other models in terms of higher coverage
(substantially higher coverage in the case of γ33), indicating that JMIV is still a better model
choice.

2.5 Hormone Trajectories and Changes in Body Mass Across
the Menopausal Transition

2.5.1 Study of Women’s Health Across the Nation

We examine the joint association of E2 and FSH on rate of change in fat mass and waist circum-
ference as women transition from the premenopause to the postmenopause using data from the
Study of Women’s Health Across the Nation (SWAN). Previous research with SWAN data has
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Truth Model Bias Coverage (%) Average Interval Length
γ11 = 2 JMIV −0.01 93.5 1.08

TSLM −0.43 47.5 0.82
TSLMM −0.44 43.0 0.80
TSIV −0.02 83.0 0.97

γ12 = -1 JMIV −0.04 92.0 1.66
TSLM 1.22 8.5 1.32
TSLMM 1.22 8.0 1.28
TSIV −0.08 91.5 1.77

γ22 = 2 JMIV 0.03 96.5 0.79
TSLM −1.23 0.0 0.61
TSLMM −1.24 0.0 0.59
TSIV −0.03 87.5 0.76

γ13 = -2 JMIV 0.03 94.5 1.91
TSLM 1.63 2.5 1.33
TSLMM 1.62 2.5 1.29
TSIV −0.06 82.0 1.78

γ23 = 2 JMIV 0.04 94.5 1.50
TSLM −0.90 17.5 1.07
TSLMM −0.92 14.5 1.03
TSIV −0.01 90.5 1.52

γ33 = 1 JMIV 0.01 94.0 0.54
TSLM 0.01 68.5 0.38
TSLMM −0.002 69.0 0.37
TSIV −0.02 64.4 0.42

Table 2.5: Simulation II: bias, coverage, and 95% credible interval (or confidence interval)
length across 200 simulation replicates for the γ parameters. We compare our JMIV to the
1) simple two stage linear regression (TSLM) 2) the two stage linear mixed model-linear
regression (TSLMM) and 3) the Bayesian two stage model (TSIV).

demonstrated that fat mass increases and lean mass decreases in a non-linear fashion across the
menopausal transition (Greendale et al., 2019). The rate of change in body fat mass and lean mass
accelerates approximately two years prior to the FMP and persists until approximately 2 years
after the FMP (Greendale 2013). Body weight and BMI, however, have a consistent positive lin-
ear relationship throughout the menopause transition, suggesting no unique menopausal effect on
body weight or BMI despite the changes to a more adverse body composition profile (i.e., more
fat mass and less lean mass). Given that increases in weight and fat mass in midlife contribute
to women’s risk of chronic disease, improving understanding of the physiologic mechanisms that
underlie these increases is important. Yet, the association of mean body size parameters with both
mean E2 and mean FSH is complex, especially late in the menopausal transition and into the post-
menopause, because fat is a significant source of estrogen and a known negative feedback regulator
of FSH in the hypothalamus and pituitary. The role of fat in moderating a woman’s endocrine pro-
file may help explain why, in women who are obese, E2 is lower prior to menopause and higher
postmenopause while mean FSH is much lower, compared to women who are not obese (Ran-
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dolph et al., 2011). Since not all fat is metabolically equal and functionally varies by anatomic
distribution, a model that can evaluate the contribution of individual variability in hormones would
advance understanding of the complex relationship between body composition and reproductive
hormones.

In the predictor submodels, we specified a linear mean trend consisting of an individual intercept
and slope. We explored a higher order quadratic form for the mean trend, but found that the
quadratic terms (e.g. E2 Intercept2) did not significantly predict either outcome of interest, likely
due to the sample size of our datasets, as well as the limited individual-level information that
remained after detrending the hormone population trends. For this reason, we focused on a linear
specification for the hormone markers mean trajectories. In the outcome submodels, we used the
correlation between E2 and FSH rather than the covariance as a variable of interest, since the
correlation measure has a more straightforward interpretation and is normalized to the E2, FSH
variances.

In the outcome regression model, we adjusted for the following covariates: fat mass body
weight proportion (or waist circumference) at the ‘first’ visit, race/ethnicity (White, Black, Chinese
and Japanese) and sports activity category. We included race/ethnicity in the models given previ-
ous research using SWAN data that found differences in body mass composition changes among
ethnic groups during the menopausal transition (Greendale et al., 2019, 2021). The physical ac-
tivity category is a measure of the individual level physical activity trajectories for each subject in
the SWAN study, grouped into categories reflecting: (1) lowest, (2) increasing, (3) decreasing, (4)
middle, and (5) highest physical activity during follow up. For a more detailed description, please
refer to Pettee Gabriel et al. (2017). Tables 2.1 and 2.2 display the descriptive statistics for the
individuals in our two analyses, including demographic and physical activity information.

2.5.2 Fat Mass Rate of Change

Table 2.6 displays the results of the fat mass model. For ease of interpretation, the coefficients
relating to the individual means (E2, FSH intercepts and E2, FSH slopes) and the individual vari-
ances (E2, FSH variances and E2, FSH correlation) have been multiplied by their respective sample
standard deviation estimates. Table S3 in the Supplementary Material displays these SD estimates.

We found that the E2 intercept and the E2 and FSH slopes were all significantly associated
with fat mass rate of change. A one standard deviation higher E2 intercept (compared to the
population mean) was was associated with an average 0.11% increase in fat mass proportion per
year. Since E2 tends to decline over the menopausal transition, we can interpret the E2 coefficient
as follows: one standard deviation lower E2 slope than the population average was associated with
a mean decrease of 0.09% in fat mass proportion per year. Conversely, higher increases in FSH

30



Variable Post. Mean 2.5% CrI 97.5% CrI
E2 Intercept 0.11 0.05 0.17

FSH Intercept 0.02 -0.01 0.06
E2 Slope 0.09 0.02 0.17

FSH Slope -0.06 -0.11 -0.02
E2 Var. -0.03 -0.08 0.02

E2, FSH Cor. 0.01 -0.05 0.07
FSH Var. -0.03 -0.08 0.01

Fat Mass Prop. (First Visit) -2.97 -3.44 -3.51
Black -0.08 -0.16 -0.01

Chinese 0.01 -0.08 0.11
Japanese -0.32 -0.41 -0.24

Increasing Activity (Cat. 2) 0.02 -0.07 0.11
Decreasing Activity (Cat. 3) 0.07 -0.01 0.15

Middle Activity (Cat. 4) 0.01 -0.06 0.09
Highest Activity (Cat. 5) -0.09 -0.17 0.00

Table 2.6: Estimated posterior means and 95% credible intervals for the fat mass rate
of change model. The variables related to E2 and FSH (intercepts, slopes, and vari-
ances/correlation) have been standardized by the sample standard deviation of their pos-
terior estimates. The presented values have been multiplied by 102.

were negatively associated with fat mass rate of change, with a one standard deviation increase
in FSH (compared to the population average) being associated with −0.06% increase in fat mass
proportion per year.

We adjusted for other covariates in the outcome model. Fat mass proportion at first visit was
negatively associated with fat mass rate of change (−2.97% average decline per year). Black and
Japanese women also had slower fat mass gains compared to white women on average (−0.08%

increase per year and −0.32% per year, respectively).

2.5.3 Waist Circumference Rate of Change

Initially the Gaussian outcome assumption did not appear to be a good fit for the observed out-
come. In particular, the residuals suggested overdispersed variances with a common mean, so we
allowed the outcome to be modeled as a mixture of two Gaussian distributions with equal means
but different variances:

Yi|zi, η(Bi,Si,Wi), σ
2
1, σ

2
2 ∼ N (ηi, σ

2
zi
),

zi|π ∼ Bernoulli(π),

π ∼ Beta(1/2, 1/2), σ1 ∼ half − Cauchy(0, 2.5), σ2 ∼ half − Cauchy(0, 5),

where zi is an unobserved indicator variable indicating membership in the first mixture component;
zi = 1 for the first component. Because the mean is equal across the mixture components, the
interpretation of the regression parameters will be the same as for the fat mass models despite the
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Figure 2.3: Plots of estimated hormone trajectories for two individuals from the waist circum-
ference rate of change model. The solid lines are the estimated individual mean trajectories,
based on the posterior means of Bi, i.e. b̂i0 + b̂i1t. The darker inner intervals around the
solid lines are +/− 1.64× var(̂bi0 + b̂i1t) and the lighter band is +/− 1.64× σ̂iq, where σ̂iq is
the square root of the estimated posterior mean of the individual level variance of hormone q.
The dotted lines represent +/−1.64×σiq5 and +/−1.64×σiq95 where σiq5, σiq95 are the values
of the 5th and 95th percentiles of the posterior samples of the individual variances for each
hormone q. The triangles and squares are the observed E2 and FSH residuals, respectively.
The observed individual waist circumference rates of change are shown in bordered boxes.
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Variable Post. Mean 2.5% CrI 97.5% CrI
E2 Intercept 0.19 0.11 0.29

FSH Intercept -0.07 -0.13 -0.19
E2 Slope 0.26 0.16 0.37

FSH Slope -0.17 -0.11 -4.35
E2 Var. -0.11 -0.13 -0.03

E2, FSH Cor. -0.03 -0.12 0.06
FSH Var. -0.05 -0.82 0.11

Waist Circum. (First visit) -0.02 -0.02 -0.01
Black -0.08 -0.20 0.03

Chinese -0.30 -0.45 -0.16
Japanese -0.24 -0.38 -0.10
Hispanic -0.06 -0.33 0.21

Increasing Activity (Cat. 2) 0.00 -0.14 0.15
Decreasing Activity (Cat. 3) -0.04 -0.16 0.08

Middle Activity (Cat. 4) -0.09 -0.21 0.04
Highest Activity (Cat. 5) -0.13 -0.27 0.02

Table 2.7: Estimated posterior means and 95% credible intervals for the waist circumfer-
ence rate of change model. The variables related to E2 and FSH (intercepts, slopes, and
variances/correlation) have been standardized by the sample standard deviation of their pos-
terior estimates.

additional variance parameter.
Table 2.7 displays the estimated coefficients for the waist circumference model. As in the fat

mass model, the coefficients related to the individual means and variances have been adjusted by
their respective sample standard deviations (also found in Table S3 in the Supplementary Material).
A one-unit higher E2 intercept (above the population mean) was associated with an average 0.19
faster increase in waist circumference (cm/year). A one standard deviation lower E2 slope was also
associated with slower declines in waist circumference per year (-0.26 cm/year). A higher individ-
ual FSH intercept was negatively associated with waist circumference rate of change; a one-unit
higher starting FSH was associated with an average -0.07 cm/year decrease in waist circumference.

E2 variability was negatively associated with the outcome, meaning that women with a one stan-
dard deviation higher E2 variability had, on average, -0.11 cm/year decrease in waist circumfer-
ence. Neither FSH variability nor E2, FSH correlation were significantly associated with changes
in waist circumference.

Unsurprisingly, waist circumference at first visit was negatively associated with waist circum-
ference change, meaning that women with a higher starting waist circumference tended to have
slower increases in waist circumference (-0.02 cm/year increase). Chinese and Japanese women
also had slower increases compared to white women on average (-0.30 cm/year increase and -0.24
cm/year increase, respectively).
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2.6 Discussion

We have presented a joint modeling approach for estimating individual-level mean and variance-
covariance matrices based on longitudinal marker trajectories, which are then linked to a cross-
sectional outcome. Simulations show that our model outperforms alternative approaches to this re-
search problem. Our analysis of hormone trajectories data revealed E2 variability had a statistically
significant association with waist circumference change, but not overall body mass composition,
across the menopausal transition.

Our work is important for both methodological development of joint models and for women’s
health research. Our model estimates both mean longitudinal trends and the residual variability of
these individual trajectories, and propagates the estimation uncertainty into the second submodel.
This joint modeling is important for obtaining accurate estimates (in terms of low bias, higher
coverage and shorter interval lengths) of how the individual-level parameters are linked to the out-
come. Simulation results demonstrate that our model outperforms common two-stage approaches.

Substantively, our analyses are in line with the established literature on the associations between
average hormone levels and fat mass and distribution changes during menopause. As noted above,
the association of mean body mass with both mean E2 and mean FSH is complex, especially
as women transition into the postmenopause, because adipose tissue is a significant source of
estrogen and a known negative feedback regulator of FSH in the hypothalamus and pituitary. The
known E2 results are echoed by our analyses, which showed a 1) positive relationship between
increasing E2 and fat mass gains and 2) a positive relationship between increasing E2 and waist
circumference gains and 3) a negative relationship between increasing FSH and both outcomes of
interest. However, evidence suggests that increased FSH itself may directly influence adiposity
by reductions in energy expenditure after menopause (Sponton and Kajimura, 2017; Kohrt and
Wierman, 2017; Liu et al., 2017). Thus, our findings of a negative relationship between increasing
FSH and both outcomes of interest do not support this recent work. This may be due to the complex
and complicated relationship of concurrent E2 changes during the menopausal transition.

However, the associations between individual-level variability and co-variability of two hor-
mones (E2 and FSH) and changes in fat mass and waist circumference, a surrogate for fat distribu-
tion, had not been well explored. Previous analyses have either only evaluated mean associations
of E2 and FSH on health outcomes, or separately analyzed the hormone’s variability. Early models
of hormone mean trajectories were far too crude to assess individual variability or associations
with fat distribution. Our analyses revealed that individual E2 variability was highly predictive of
waist circumference changes, but not overall fat mass changes. Since not all fat is metabolically
equal and functionally varies by anatomic distribution, this finding could indicate that changes in
fat distribution, in particular waist adiposity, are more driven by E2 hormonal variability during
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menopause, while other factors could be driving overall fat mass increases. Future analyses would
be required to more fully investigate that hypothesis. Additionally, this joint analysis of E2 and
FSH can serve as a basis for further investigation of how hormone variability and co-variability
may affect other health outcomes. As mentioned above, joint estimation of longitudinal variables
and scalar outcomes can be useful for investigating scientific questions in many areas. With lon-
gitudinal biomarker data becoming more readily available (e.g. from wearable devices), we need
statistical methods for analyzing these types of data. Our proposed method addresses the gap in
methods by 1) providing a framework for jointly modeling longitudinal and cross-sectional data
and 2) explicitly modeling individual-level variability in the longitudinal trajectories, which can
improve understanding of the relationship between longitudinal predictors and health outcomes.

2.6.1 Remark

In our simulation studies and SWAN data analysis, we made the simplifying assumption to exclude
covariates Wi in modeling the longitudinal markers (Equation 2.1). In mathematical terms, this
means that the likelihood functions of Xit,Bi,Si,Wi are:

f(Xit | Bi,Si,Wi) = f(Xit | Bi,Si),

f(Bi,Si | Wi) = f(Bi,Si),

where f is a generic notation for the probability density function. For the scientific application,
our main focus was to evaluate the overall marginal effects of the biomarker hormone means and
variances on the body mass outcomes of interest. In particular, the effects of the variance and
correlation parameters were of key interest, since the associations between individual E2 and FSH
variabilities (and co-variability) and body mass changes had not been previously explored. The
estimated coefficients for the Bi,Si described in Section 2.5 should be interpreted as marginal
effects, rather than conditional on the other adjusted covariates. For this particular scientific ap-
plication, we believed that this assumption resulted in a more straightforward interpretation of the
mean, variance, and correlation parameters. The decision to include or exclude Wi in the longitu-
dinal submodel should be made with the specific research application in mind and whether or not
the simplifying assumption makes sense for the particular context.
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2.6.2 Future Work

One extension of this work could be to model the individual variances as being functions of time,
i.e. Sit. E2 and FSH are known to be highly variable as women approach their final menstrual
cycle, so estimating Sit may better capture such changes in the biomarker variances. To obtain
these estimates, we would likely need a larger dataset (with both more individuals and timepoints)
than is currently available with the SWAN study. Another methodological extension could be to
extend this model to account for missingness in both the trajectory data and the outcome data. For
this analysis, we removed the missing values in the hormone data and only analyzed individuals
with observed body mass outcomes. Although less than 5% of the values in our dataset were
missing, analyzing complete case data only could still result in slightly biased inference. In the
SWAN dataset, individuals can be subject to intermittent missingness as well as dropout; these
types of missing data patterns could be addressed in future work.

It may be of interest in future applications to simultaneously model multiple cross-section in-
dividual outcomes, as our outcome submodel specification only considered univariate outcomes.
Exploring Bayesian semi-parametric approaches to modeling the subject specific parameters, e.g.
with a Dirichlet process prior on the unknown parameters, would be another methodological ex-
tension. In addition to the increased model flexibility, this could also allow for clustering of indi-
viduals with similar mean trajectories and/or residual variances and covariances.

Finally, we note that increasing the number of longitudinal trajectories may result in a form of
η(·) in the OR model that is complicated to estimate, since the number of variance-covariance pa-
rameters increases quadratically with the number of trajectories. Some type of dimension reduction
procedure may be useful in these settings, although retaining interpretability may be challenging.
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CHAPTER 3

Chapter 3: A Joint Modeling Approach to Study the
Association between Subject-level Longitudinal
Marker Variabilities and Repeated Putcomes

3.1 Introduction

Bone mass starts to decline in adults during the midlife (Hunter and Sambrook, 2000). Bone
mineral density (BMD) is an essential component of bone mass and a key indicator for risk of
osteoporosis. People with significantly lower BMD beyond the expected age-related decline are at
higher risk for bone fracture. The prevalance of osteoporosis in women over 50 tends to rapidly
increase at around 60 years of age, and by age 70, this prevalence has tripled (Alswat, 2017).
Bone mineral loss in women is known to accelerate during the menopausal transition (Riggs and
Melton, 1992; Ji and Yu, 2015). High rates of BMD declines are associated with adverse health
outcomes, such as increased risk of bone fractures (Marshall et al., 1996). Population-level patterns
of BMD during the midlife and older age are well-established; however, it is equally vital to model
and predict individual bone trajectories of in order to support advances in precision medicine and
tailored individualized treatments.

Women undergoing menopause are particularly vulnerable to more rapid declines in BMD,
likely due in part to hormones such as estradiol (E2) and follicle-stimulating hormone (FSH) un-
dergoing large changes in overall levels (Sirola et al., 2003; Recker et al., 2000; Finkelstein et al.,
2008). Previous studies have examined associations between E2, one of the most potent naturally-
occuring estrogens, and BMD during the menopausal transition (Ebeling et al., 1996; Sowers et al.,
2006). These studies have established a general positive association between mean E2 levels and
BMD. However, most of these studies have either been cross-sectional or over a relatively short
time period. Importantly, these studies have focused on mean associations between hormones and
bone outcomes, mostly at the population level. The association between individual E2 trajectories,
and in particular, individual level E2 variability and BMD changes in peri- and post-menopausal

37



women over a longer time period has not yet been studied.
Researchers have also studied the relationship between levels of FSH, another key reproduc-

tive hormone, and their corresponding associations with bone health outcomes. Park et al. (2021)
showed that bone loss during menopause was significantly associated with higher FSH levels in
a cross-sectional analysis of midlife women. Chin (2018) examined the longitudinal relationship
between FSH and BMD in peri-menopausal women and revealed that “rate of bone loss was in-
versely associated with FSH level in all subjects, regardless of BMD value”. However, Gourlay
et al. (2011) did not find a statistically significant relationship between high baseline FSH and de-
creases in BMD in postmenopausal younger women. These findings suggest that FSH levels may
have the strongest association with bone loss during the midlife before the menopausal transition.

These previous research findings estimated the associations between mean levels of E2 and
FSH on BMD trajectories. However, these hormones can fluctuate substantially within individ-
ual women (Bjørnerem et al., 2006), and these within-individual variabilities have been shown to
be significantly associated with health outcomes such as abnormal uterine bleeding and ovarian
response to in vitro fertilisation treatments (Harlow et al., 2000; Uhler et al., 2005). Since bone
health is an important aspect of overall wellbeing as women enter the midlife, it is important to
understand how these intra-individual variabilities, as well as overall mean hormone levels, affect
women’s bone outcomes as they age.

3.1.1 Study of Women’s Health Across the Nation Dataset

The Study of Women’s Health Across the Nation (SWAN) is an ongoing multi-site longitudinal
cohort study. E2 (pg/mL) and FSH (mIU/m) measurements were collected at baseline and during
annual follow-up visits. Five of the seven SWAN sites also collected annual femoral neck BMD
(g/cm2) measurements. Additional socio-demographic covariates, such as age and BMI, were
collected at baseline and at each additional visit. For detailed descriptions of the measurement
timings and cohort characteristics, we refer the reader to Sowers et al. (2000b).

Since E2 and FSH follow a well-established population trend during the menopausal transition
(Randolph et al., 2004), we fit a loess curve to each hormone using the loess function in R and
subtracted each women’s measurements from this loess fit. We performed all of the following
analyses in Section 3.4 using these hormone residuals. Figure 3.1 displays the E2 residuals and
the FSH residuals. In our analysis, we also lagged these residuals by 1 visit, since the associations
between increases or decreases in individual hormones and BMD outcomes may manifest later in
time, rather that at the concurrent visit. The corresponding interpretation of the coefficients takes
this into account. We also excluded women who had received hormone replacement therapy (HRT)
at any point during their clinical visits, since these medications can suppress BMD decline even
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Figure 3.1: Plot of E2 observations (top figure) and FSH observations (bottom figure) for all
individuals in our dataset, plotted over time to FMP. A loess curve has been added to each plot
to show the average population trend. Both E2 and FSH observations (before detrending) had
been log2 transformed.

after stopping HRT (Gambacciani and Levancini, 2014).
All of these longitudinal measurements are measured relative to time to FMP, which are

recorded in year. Our aim is to estimate the association between hormone variability and bone
measurement outcomes in a longitudinal setting. Additionally, we want to understand if these
relationships may change over time, which we can evaluate via interaction terms in the outcome
submodel. Thus, our objective is to develop a modeling framework that can estimate the individual
level mean and variance of a longitudinal marker, and also relate these estimates to the longitu-
dinal outcome of interest using a regression model while properly propagating the uncertainty in
studying these associations.

We also used a base 2 log transformation on the outcome of interest (BMD), both to improve
the normality assumption and for interpretability reasons, as a unit change in log2 BMD can be
interpreted as a doubling or halving of BMD. We used the same approach of detrending the BMD
measurements as we did in the hormone trajectories by fitting a loess curve to all measurements and
then subtracting the individual measurements from the fitted loess values. Figure 3.2 displays the
residual BMD values after our detrending, in order to simplify subject level trends as lower-level
polynomial functions; in practice a linear approximation appeared sufficient after population-level
detrending.

We adjusted for baseline BMI and baseline age in the outcome model. We standardized baseline
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Figure 3.2: Plot of BMD residuals for all individuals in our dataset, plotted over time to FMP.
A loess curve has been added to show the average population trend of the residuals. Prior to
detrending, the BMD observations had been log2 transformed.

Variable Statistic Value n
Longitudinal Predictor Mean/SD
E2 Residuals -0.01 (1.15) 9,858
FSH Residuals 0.02 (0.90) 9,858
Health Outcome Mean/SD
BMD Residuals 0.00 (0.23) 9,858
Adjusted Covariates Mean/SD
Starting BMI 27.28 (6.83) 9,858
Starting Age 46.29 (2.60) 9,858

Table 3.1: Descriptive statistics of the SWAN dataset with BMD measurements, based on 986
individuals.

BMI measurements to be relative to the population mean (baseline) BMI. We also centered the
baseline age measurements relative to the population mean (baseline) age. Our final BMD outcome
dataset comprised 986 women with 9,858 measurements. See Table 3.1 for summary statistics of
all variables used in our data analyses.

3.1.2 Statistical Models for Longitudinal Outcomes

Models with longitudinal outcomes allow researchers to understand relationships between vari-
ables across time, and potentially how these associations change across time. These methods tend
to fall into two broad classes: generalized estimating equations (Liang and Zeger, 1986) meth-
ods and mixed-effects models or structural equation modeling (SEM)-type growth curve models.
While the GEE approach has several advantages, such as robustness in the case of misspecified
marginal correlations, it is not designed for studying individual-level random effects. In our par-
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ticular setting, we are primarily interested in relating the individual-level means and variances to
the health outcome, and so our modeling approach needs to explicitly estimate the individual ran-
dom effects. Mixed-effects models have been studied extensively (Laird and Ware, 1982; Greene,
2005; Diggle et al., 2013) and are well-suited for estimating multilevel or hierarchical data. These
models can also easily handle interactions with time, which can be specified as an additional co-
variate. A drawback of the mixed effects model is that the predictor variable is treated as fixed
data, rather than being estimated as part of the model. Latent growth curve (LGC) models on the
other hand provide a framework for estimating two or more trajectories simultaneously. In the
latent growth curve specification, the random effects are modeled as latent variables, which can be
shown to be mathematically equivalent to the random effects specification in mixed effects models
(Zhang et al., 2022). Generally, LGC models are not well-suited for datasets with moderate to
large number of observations per individuals, since the LGC framework requires each visit or time
point to be a unique predictor. Mixed-effects models, on the other hand, allow the time variable to
be univariate and can more easily handle many observations per individual (McNeish and Matta,
2018).

One noticeable gap in both frameworks is that the individual residual variances in the predictors
are usually treated as nuisance parameters, rather than as potentially important entities for predict-
ing the outcome. There has been a growing collection of research (Elliott et al., 2012; Jiang et al.,
2015; Gao et al., 2022) on joint models that evaluate the associations between within subject vari-
ability and outcomes of interest; however, these models have focused on cross-sectional outcomes.
Methods for estimating individual variances from longitudinal markers to predict longitudinal out-
comes are currently lacking in the literature. Our proposed model contributes to this research by
providing a general method for estimating individual-level variability from a longitudinal marker
and using this variability to predict a longitudinal time-varying outcome. Our specification can
easily extend to incorporating a time-varying variance parameterization, as demonstrated by sim-
ulation studies.

The rest of this paper is organized as follows. We describe our Bayesian joint model framework
in Section 3.2. Section 3.3 introduces simulation studies that demonstrate that our model produces
less biased estimates of the outcome regression coefficients than alternative two-stage models that
do not account for the statistical uncertainty in the individual means and variances. We apply our
model in Section 3.4 to the SWAN dataset, where we focus on the study of the associations between
E2 and FSH mean trajectories and variances and BMD outcomes for women in the midlife. To the
best of our knowledge, this is the first scientific assessment of using individual level variances of
E2 and FSH to predict declines in longitudinal bone measures. Finally, in Section 3.5, we discuss
the implications of our findings along with future directions. Appendix B contains further details
about the model validation for the data analysis (e.g. posterior predictive checks).
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3.2 Statistical Model

In this section, we describe our proposed model, which specifies our longitudinal predictor Xij ,
which is measured at each timepoint tij, j = 1, . . . , ni, for each subject i = 1, . . . , N where ni is
the total number of observations for individual i. Our model links the individual-specific vectors
of regression coefficients and residual variance estimates of Xij to the longitudinal outcome Yij .

3.2.1 Likelihood

3.2.1.1 Longitudinal Marker Model

The model for the longitudinal predictor is given by:

Xij | bi, si ∼ N
(
µ(tij; bi), s

2
i

)
, j = 1, . . . , ni, independently for i = 1, . . . , N, (3.1)

bi
indep.∼ NP (α,Σ), independently for i = 1, . . . , N, (3.2)

where N (µ, s) represents a Gaussian distribution with mean µ and variance parameter s and
NP (α,Σ) is the P -dimensional generalization the Gaussian distribution with mean vector α and
variance-covariance matrix Σ. µ(t; bi) is function of time and a vector of P regression coefficients,
bi = (bi1, . . . , biP )

T. α = (α1, . . . , αP )
T is a vector of population mean regression coefficients.

Prior for s2i We assume that the individual residual variances, s2i ’s are drawn from a log-Normal
distribution, i.e.:

log(s2i ) ∼ N (ν, ψ2), (3.3)

ν ∼ N (m, ξ2), ψ ∼ half-Cauchy(0, τ), (3.4)

where the values of hyperprior paramters m, ξ, τ are set a priori. In our application, we set
m = 0, ξ = 10, τ = 2.5, so that the priors are weakly informative. Following the recommen-
dations made in Gelman (2006), we use the half-Cauchy hyperprior on ψ, the square root of the
variance parameter. Although the inverse-Gamma distribution is the conjugate prior for the vari-
ance parameter of a Gaussian distribution, inferences using the inverse-Gamma distribution can
be extremely sensitive to the choice of hyperparameter values (Gelman, 2006, p. 524). The half-
Cauchy distribution avoids this potential issue due to its heavier tail, which still allows for higher
variance values.
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Priors for α: We assume that α = (α1, . . . , αP )
T, are drawn from a P dimensional Normal

distribution:

α ∼ NP (0, ξ
2
0IP×P ), (3.5)

Σ = KLK, K = diag{k1, . . . , kP}, (3.6)

kp ∼ half-Cauchy(0, τ0), p = 1, . . . , P, L ∼ LKJ(ζ), (3.7)

where K = diag{k1, . . . , kP} is a diagonal matrix and L is a correlation matrix, with a
Lewandowski-Kurowicka-Joe (LKJ) diffuse prior (Lewandowski et al., 2009b). As in the case
of the hyperpriors for the individual variance parameters, the values of ξ0, τ0, ζ parameters are set
a priori, here as ξ = 1, τ0 = 2.5, ζ = 1.

3.2.1.2 Longitudinal Outcome Model

The outcome variable, Yij , is related to individual-specific mean and variance parameters bi and si
(Equation 3.1) via the following specification:

Yij | bi,ai, tij, si ∼N
(
ηij, σ

2
)
, i = 1, . . . , N, (3.8)

where Wi = (Wi1, . . . ,Wid)
T ia vector of d covariates that can either be baseline covariates (e.g.,

race/ethnicity, age at the first visit) or also time-varying (e.g. body weight measured at each time-
point), and ηij = ηij(bi, si, tij,Wi;ai,β,β

W ) is a regression predictor parameterized by β (for
bi and si), and βW (for Wi). We let ai be a vector of random effects to capture the correlation
between the longitudinal outcome measurements. The dimensions of β in general will depend on
the number of individual mean regression coefficients, bi and the number of desired interaction
variables. For example, if P = 2 in the longitudinal marker model and we have a random intercept
in the outcome model, then ηij can be written as:

ηij(bi,ai, tij, si) = β0 + β1bi0 + β2bi1 + β3s
2
i + β4tijβ5bi0tij + β6bi1tij + β7s

2
i tij + ai. (3.9)

Alternative Specification In Equation (3.9), we used the mean coefficients bi directly in the
mean function for the outcome variable. An alternative specification of the mean that a) eases
interpretation and b) avoids contamination from the time-invariant parameters bi, can be written
as:

Yij | bi,ai, tij, si,Wi ∼N
(
ηij(µij, tij, si,Wi), σ

2
)
, i = 1, . . . , N, (3.10)
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where µij is the mean from the marker model. This specification allows us to evaluate the direct
relationship between the estimate µij and the outcome Yij , rather than linking Xij and Yij via the
mean coefficients bi. This ease of interpretation may be preferred in scientific applications. The
individual residual marker variances, s2i , could also be specified similarly if we allow these to vary
over time (see Simulation study 3.3.2).

In our application, we focus on simple specifications of ηij(·), e.g., linear models with two-
way interactions in order to maintain interpretability of the coefficients. However, extensions with
more complex interactions or non-linear mean structures are also possible, with the caveat that
the interpretability of the coefficients may be challenging (or near impossible) with higher-order
terms.

Priors for β, ai, σ For the outcome model, we use independent N (0, 102) priors for each el-
ement of the outcome regression parameters (β, βW ), and a diffuse prior on the outcome resid-
ual standard deviation parameter σ ∼ half-Cauchy(0, 2.5), as recommended by Carpenter et al.
(2017). For ai, the random effects, we place a multivariate Gaussian prior with mean zero and
precision τa, i.e., ai ∼ MVN(0, τa). In the case of a random intercept ai, τa can be drawn from
a half-Cauchy distribution or, in the case of a vector-valued ai, τa is a covariance matrix, whose
values can be drawn from the prior described in Equation 3.7.

Joint Distribution Let D = (Yij, Xij, tij,Wi) denote the observed data, Z = (bi, si, ai) de-
note the subject-level latent variables, and Θ = (α,Σ, ξ, νq, ψ,β,β

W , τa, σ) denote the model
parameters. We also let π(Θ) denote the prior distribution of the parameters in Θ:

π(Θ) = π(α)π(Σ)π(ξ)π(ν, ψ)π(β,βW )π(σ).
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We can then write the joint distribution of D, Z, and Θ as

P (Θ, D, Z) ∝
N∏
i=1

{ 1√
(2π)|Σ|

exp(−1

2
(bi −α)TΣ−1(bi −α))

× 1√
2πξ2

exp

[
(log(s2i )− ν)2

2ξ2

]
(3.11)

× 1√
2π|τa|

exp(−1

2
aT
i τ

−1
a ai)

}
×

N∏
i=1

ni∏
j=1

{ 1√
2πs2i

exp

(
−1

2

{
Xij − µij(tij; bi)

si

}2
)

× 1√
2πσ2

exp

(
−1

2

(yij − ηij(bi, si,Wi;ai,β,β
W )2

σ2

)}
× π(Θ). (3.12)

3.2.2 Posterior Inference

We implemented our joint model using Stan and the rstan package (Stan Development Team,
2020) and obtained posterior estimates via the Hamiltonian Monte Carlo sampler. For our two
simulations studies in Section 3.3, we ran two chains per independent replicate data set, with 2, 000

iterations with 1, 000 burn-in. For the E2 predictor model in Section 3.4, we ran 2 chains each with
4,000 iterations and 2,000 burn in. For the FSH model, we found that running 2 chains with 2,000
iterations with 1,000 burn in was sufficient for the model to achieve convergence. We conducted
visual inspection of the traceplots for all model parameters which indicated non-divergent chains.
All of the chains in each model were combined for computing posterior summaries.

We also used Stan’s R-hat convergence diagnostic (Vehtari et al., 2021) to evaluate model con-
vergence. The outcome parameters in both of our models had R-hat values < 1.02. Additionally,
model checks of the posterior predictive distribution in Appendix C.1 indicated that our models
generated reasonable predictions for our datasets.

3.3 Simulation Studies

The goal of our simulation studies was to 1) evaluate our model’s operating characteristics and 2)
compare against common alternatives that could also be used in modeling individual means and
variances as predictors of longitudinal outcomes. For each proposed method and each parameter
θ, we assessed the 1) bias (defined as 1/R

∑R
r=1(θ̂

(r) − θ0) where θ̂(r) is the posterior mean of
θ obtained from the r-th replication), 2) the coverage rate of the nominal 95% credible intervals
(CrI; defined as 1/R

∑R
r=1 1{θ0 ∈ Ir} where Ir is the 95% CrI for parameter θ obtained by com-

puting the 2.5% and 97.5% percentiles of the draws from the posterior distribution for the r-th
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Figure 3.3: Histogram of individual variances (left plot) and individual mean and marker tra-
jectories (line plots) for 10 individuals, along with the generated individual variance labelled
in each plot.

replication, and 3) average length of the 95% CrIs obtained across simulation replicates, defined
as 1/R

∑R
r=1 Tr, where Tr is the length of Ir, i.e., the range of the estimated 2.5% and 97.5%

posterior quantiles for θ in replicate r.

3.3.1 Simulation Study 1: Comparisons to two-stage approaches

For this simulation study, we generated data for N = 300 individuals. We simulate for each individ-
ual between 2 to 15 timepoints, which mimics the our application dataset from the SWAN study.
Based on these individual timepoints, we simulate the marker values for each individual using the
following data generating parameters:

Xij ∼ N (µij, s
2
i ),µij = bi1 + bi2tij,

bi ∼ N2 (α,Σ) ,α = (0, 2)T,

Σ =

(
1 −0.05

−0.05 1

)
, log(s2i ) ∼ N (0, 0.375).

Figure 3.3 displays the simulated marker means, marker trajectories, and constant variances that
are generated by these specified parameters.

For the longitudinal outcome, we assumed the following model: Yij ∼ N (ηij(bi, si, ai, tij), σ
2)
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and set

ηij(bi, si) = β0 + β1µij + β2s
2
i + (β3 + β4µij + β5s

2
i )tij + ai,

where the true values of β are shown in Table 3.2. We specified the random intercept ai as follows:

ai ∼ N (0, 0.5).

Lastly, we set σ2 = 0.1. In this simulation, we did not adjust for other covariates Wi in either sub-
model. We present the results for 200 replicates in Table 3.2 for the outcome submodel parameters
β.

3.3.1.1 Alternative Methods

We compared our approach to two alternative two-stage methods: a two-stage linear mixed model
(TSLMM), and a two-stage Bayesian model with longitudinal outcome (TSLO). The TSLO ap-
proach is essentially the two-stage version of our joint model, using the posterior mean estimates
from the means and variances of the longitudinal marker to predict the outcome in the second stage.
We refer to our joint model as the Joint Estimation of Longitudinal Outcomes (JELO). In the ab-
sence of a joint model, these approaches would be reasonable methods for scientific researchers
who wish to analyze the associations between a longitudinal predictor and longitudinal outcome.
However, as shown in previous literature, two-stage methods often do not correctly preserve the
uncertainty associated with estimating the individual random effects from the predictor marker
variable (Hickey et al., 2016).

Two-Stage Linear Mixed Models (TSLMM) In the first stage, we fit a linear mixed model with
the nlme package (Pinheiro et al., 2022)

Xij = β0 + bi0 + β1tij + bi1tij + ϵij.

We used an unstructured variance-covariance structure for the random effects, which is the
default specification for this package.

We obtained the predicted values of xij using the predict() function. We estimated si by
computing the model residuals (e.g. Xij−(B̂i0+B̂i1tij)), where these “Bi” coefficients are defined
as B̂i0 = β̂0 + b̂i1 and B̂i1 = β̂1 + b̂iq, where β̂pi and b̂pi, p = 0, 1, and then computed the variance
across all residuals.

In the second stage model, again using the nlme package in R, we fit another linear mixed
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Table 3.2: Simulation I: bias, coverage, and 95% credible interval (or confidence interval)
length across 200 simulation replicates.

Truth Model Bias Coverage (%) Average Interval Length
β0 = 2 JELO 0.00 95.5 0.28

TSLMM -1.63 53.5 0.44
TSLO 0.05 0.0 0.43

β1 = -0.1 JELO 0.00 95.5 0.06
TSLMM -0.09 2.0 0.09
TSLO 0.00 44.0 0.07

β2 = -1 JELO 0.00 95.0 0.22
TSLMM 0.43 57.0 0.20
TSLO -0.02 43.5 0.21

β3 = -0.75 JELO 0.00 94.5 0.26
TSLMM 0.58 0.0 0.06
TSLO 0.00 72.5 0.38

β4 = -0.5 JELO 0.00 96.5 0.04
TSLMM -0.04 0.0 0.08
TSLO -0.003 43.5 0.03

β5 = 0.2 JELO 0.00 94.0 0.26
TSLMM 0.01 0.0 0.07
TSLO 0.00 52.5 0.15

model with the following specification:

Yij = β0 + β1x̂ij + β2tij + β3Ŝi + β4x̂ijtij + β5Ŝitij + ϵij.

Two-Stage Individual Variances (TSLO) Model We used Equations (3.1) and (3.2), and the
prior specifications in Equation (3.4) to (3.7) to fit the longitudinal predictor model. We then col-
lected the posterior mean estimates of X̂ij and ŝi, and used these in the outcome model (Equation
3.8), along with the prior specifications in 3.2.1.2).

3.3.1.2 Simulation I: Results

Table 3.2 presents the results of Simulation I. We see that for β3 and β7, the coefficients of the
variance parameters in the outcome submodel, the biases from the TSLMM approach and the
TSLO approach are higher than the bias from our proposed model. Additionally, the coverage
of the true parameters is extremely low, with neither alternative being able to achieve > 50%

coverage. This indicates that if the variability of the longitudinal predictor is indeed important for
estimating the outcome, neither two-stage alternative would be able to consistently estimate this
association.

In particular, we see that our model outperforms the two competitors with the regards to esti-
mating the variance coefficients (β3, β5). The TSLMM has extremely low coverage, which makes
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sense because this model framework does not account for individual variability. The two stage
approach, TSLO, performs somewhat better, but fails to achieve > 50% coverage for either pa-
rameter. Our joint modeling framework explicitly models the individual level variances and thus
appropriately carries over the uncertainty from the variances into the second submodel, which
improves estimation of the parameters in the outcome regression.

3.3.2 Simulation Study 2: Comparison of constant variance and time vary-
ing variance

There were two main objectives of this study. The first was to understand how well our model could
recover the data generating parameters with a time-varying individual variance component. The
second objective was to compare this approach to the approach with the time-invariant individual
variance. This comparison gave us more insight into the situations where not specifying the time-
varying component could result in large biases or high undercoverage of the true parameters.

We evaluated two scenarios with time-varying individual variances. For each simulation repli-
cate, we generated data for N = 500 individuals and gave each individual between 4 to 12 time-
points.

In the first scenario, we simulated the marker values for each individual using the following
parameters:

Xij ∼ N (µij, σ
2
ij),µij = bi1 + bi2tij,

bi ∼ N2 (α,Σ) ,α = (0,−2)T,Σ =

(
1 −0.25

−0.25 0.5

)
,

log(σ2
ij) = s0i + s1itij, si ∼ N2(αs,Σs),

αs = (−1, 0.5)T,Σs =

(
1 0.1

0.1 0.5

)
,

so that the individual intercepts and slopes for the variance trends are larger in magnitude. Figure
3.4 displays histograms of individual intercepts and slopes of the variances for one simulation
replicate and also 10 individual marker trajectories, based on these simulated variances and means.
We will refer to this scenario as the “high-variability” (HV) case.

In the second scenario, we keep the same α,Σ values, but change αs,Σs to be:

αs = (0, 0)T,Σs =

(
0.5 −0.01

−0.01 0.05

)
,

so that the intercepts and slopes for the individual variances are smaller in magnitude. Figure 3.5
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Figure 3.4: Individual variance intercepts (left, flatter histogram) and slopes (right, peaked
histogram) and individual mean, variance and marker trajectories (line plots). When the
individual variability trajectory is increasing, we see that the marker trajectory has higher
variability between measurements.

displays histograms of the generated individual intercepts and slopes from one simulation replicate.
We will refer to this scenario as the “low-variability” (LV) case.

To generate the longitudinal outcome in each scenario, we used the following mean specifica-
tion:

ηij(bi, si) = β0 + β1µij + β2σ
2
ij + (β3 + β4µij + β5σ

2
ij)tij + ai,

where the true values of β are shown in Table 3.3.

3.3.2.1 Model Comparisons

Since standard methods for longitudinal outcomes (e.g. linear mixed models) do not have func-
tionality to model a time-varying residual error variance, we compared our model JELO with a
time-varying variance performance against our model with a constant variance parameterization
(JELO CV). For the JELO CV simulation replicates, we used the same simulated datasets gen-
erated by the time-varying variance setup described above, but we fit the model for individual
variances described in Equations (3) and (4).

From Table 3.3, it is clear that when there are large individual time-varying variances, incor-
rectly assuming constant individual variances lead to undercoverage of all of the outcome param-
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Figure 3.5: Histograms (left plot) of individual intercepts (flatter histogram) and slopes
(peaked histogram) and individual mean, variance and predictor trajectories (line plots).

eters. Coverage of the coefficient for the individual variance β2 and the time-variance interaction
coefficient β5 are essentially non-existent. However, if the individual variances are smaller, then
the assumption of constant variances does not appear to result in undercoverage or substantially
biased estimates of the true parameters. We can be reasonably confident that the constant variance
assumption may suffice in scenarios where the the individual variances are time-varying, but not
substantially different across time. However, if the time-varying variances are substantially chang-
ing across time within an individual, then this assumption would likely result in higher bias and
substantial undercoverage of the true parameters.

3.4 Application

We now apply our proposed model to analyze the hormone and bone trajectory data described in
Section 3.1.1. Our outcome model formulation was specified as follows:

E(log2(BMDij)) = β0 + β1µij + β2s
2
i + (β3 + β4µij + β5s

2
i )tij + β6BMI∗i + β7Age

∗
i + a0i,

where µij is the mean E2 (FSH) residual at time tij from the longitudinal submodel, s2i is the
individual-level variance, tij is the time to FMP for each individual woman, BMI∗i , Age

∗
i are the

standardized BMI and baseline age values for each individual, and a0i is a random intercept for
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Truth Scenario Model Bias Coverage (%) Average Interval Length
β0 = 2 HV JELO 0.00 96.5 0.12

HV JELO (CV) 0.05 68.5 0.12
LV JELO 0.00 95.0 0.24
LV JELO (CV) 0.00 93.0 0.24

β1 = -1.5 HV JELO 0.00 91.0 0.08
HV JELO (CV) 0.00 93.5 0.08
LV JELO 0.00 92.5 0.10
LV JELO (CV) 0.00 91.0 0.10

β2 = 0.25 HV JELO 0.00 94.5 0.15
HV JELO (CV) -0.20 0.5 0.11
LV JELO 0.00 95.0 0.19
LV JELO (CV) 0.00 95.4 0.19

β3 = 1 HV JELO 0.00 98.5 0.18
HV JELO (CV) -0.05 82.5 0.18
LV JELO -0.01 97.5 0.06
LV JELO (CV) 0.00 97.0 0.06

β4 =0.75 HV JELO 0.00 95.5 0.05
HV JELO (CV) 0.01 82.5 0.05
LV JELO 0.00 95.0 0.27
LV JELO (CV) -0.01 96.4 0.26

β5 = -0.10 HV JELO 0.00 96.0 0.12
HV JELO (CV) 0.29 0.0 0.10
LV JELO 0.00 99.0 0.06
LV JELO (CV) 0.01 96.4 0.13

Table 3.3: Simulation II: bias, coverage, and 95% credible interval length across 200 simula-
tion replicates for each data scenario.
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Table 3.4: Estimated posterior means and 95% credible intervals for the E2-BMD model with
time interactions. All estimated posterior means and 95% CrI values have been multiplied
by 102.

Variable Post. Mean 95% CrI
Predicted E2 29.46 (25.25,35.00)

E2 Var. -2.38 (-6.76, 2.05)
Time to FMP -0.79 (-1.12, -0.49)

Time to FMP x Predicted E2 0.31 (0.12, 0.58)
Time to FMP x E2 Var. 0.21 (-0.01,0.46 )

BMI 12.21 (11.00, 13.41)
Age 0.11 (-0.36, 0.57)

each woman. We also explored models with a linear random slope and quadratic random slope,
but found that the estimates of the linear random slopes and the quadratic random slopes were
essentially 0. Furthermore, the E2-BMD model with a quadratic random slope failed to converge.
We thus concluded that a random intercept was sufficient to capture the within-individual BMD
measurement correlations. The estimated variances of the random intercept in both models can be
found in Tables C.1 and C.2 in Appendix C.

We ran two separate models, one with E2 measurements as the main biomarker measurement
of interest and one with FSH measurements as the main predictor of interest. For the longitudinal
predictor, we used the E2 (FSH) measurement obtained at the previous visit to predict BMD at the
following visit. This is to better capture how differences in E2 at an earlier time may be associated
with BMD declines later, rather than analyzing E2 and BMD values at the same timepoint.

The models in the following sections used a time-invariant individual variance for the predictor
hormone. We also attempted to fit a time-varying individual variance component (see Simulation
3.3.2) on the SWAN dataset, but encountered severe model convergence issues. We suspected that
the number of timepoints in the dataset was not large enough to capture a linear variance trend.

3.4.1 E2 Predictor Model

In this model, we included interaction between the (lagged) estimated E2 residual and time to FMP
when the BMD measurement was collected, and the interaction between E2 variability and time to
FMP. Table 3.4 displays the estimated posterior means and 95% credible intervals for the outcome
coefficients.

The predicted E2 residual at the visit before FMP was significantly associated with BMD at
FMP (i.e., when tij = 0). The interpretation of the coefficient is that for women with a 1 unit (mg/l)
higher predicted E2 residual at the visit before FMP, there was an average corresponding (20.3474−
1) × 100% = 22.8%(19.1%, 27.5%) higher BMD at FMP. This effect was slightly moderated by
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Figure 3.6: Plots of predicted E2 residuals and time interaction for the BMD outcome model.
The solid lines represent the 25th, 50th, and 75th quantile values of the E2 variable, along
with the prediction band for this value.

time, since the coefficient for the interaction of predicted E2 and time is negative. However, the
credible interval for the estimated interaction effect of time and E2 contains 0, meaning that the
estimated effect of E2 on BMD does not significantly change over time. This is also evident from
Figure 3.6, where the estimated slopes of the BMD trajectories do not change over the MT.

When predicted E2 is at the population average, an additional one year was associated with
a (1 − 2−0.0079) × 100% = −0.54%(−0.77%,−0.34%) change in BMD. If we hold predicted
E2 constant, then each additional year is associated with a (1 − 2−0.0079 × 20.0031) × 100% =

−0.33%(−0.70%, 0.06%) decrease in predicted BMD.
Higher E2 variability at FMP was negatively associated with BMD; a one unit increase in E2

variance was associated with a (1−2−0.0238)×100% = −1.6%(−4.74%, 1.43%) change in BMD.
However, since the 95% CrIs contained 0, we cannot say that this relationship was statistically
significant. The interaction term for E2 variance and time to FMP was also not significant.

Finally, baseline BMI was positively associated with BMD, indicating that women with higher
BMI tended, on average, to have higher 8.8% BMD (8.0%, 9.74%), holding all else constant.
Baseline age, however, was not significantly associated with BMD.

3.4.2 FSH Predictor Model

Table 3.5 displays the estimated posterior means and 95% credible intervals for the FSH model
outcome coefficients. Predicted FSH residual at the visit before FMP was significantly associ-
ated with BMD at FMP (when tij = 0). For women with a 1 unit (pg/mL) higher predicted
FSH residual at the visit before FMP, there was an average corresponding (1−2−0.2700)×100% =

−17.1%(−18.7%,−15.4%) lower BMD at FMP. When predicted FSH is at the population average,
an additional one year was associated with a (1− 2−0.0028)× 100% = −0.19%(−0.33%,−0.06%)

change in BMD. The FSH and time interaction was also significant and indicated that the asso-
ciation between mean FSH and BMD becomes amplified over time. If we hold predicted FSH

54



Variable Post. Mean 95% CrI
Predicted FSH -27.00 (-29.83, -24.25)

FSH Var. 0.80 (-4.29, 5.95)
Time to FMP -0.28 (-0.48, -0.09)

Time to FMP x Predicted FSH -0.97 (-1.20, -0.74)
Time to FMP x FSH Var. 0.38 (0.12, 0.64)

BMI 9.86 (8.58, 11.24)
Age -0.22 (-0.70, 0.29)

Table 3.5: Estimated posterior means and 95% credible intervals for the FSH-BMD model
with time interactions. All estimated posterior means and 95% CrI values have been multi-
plied by 102.

constant, then each additional year was associated with a (1 − (2−0.0028 × 2−0.0097) × 100% =

−0.86%(−1.15%,−0.57%) change in predicted BMD residual. This can also be seen in Figure
3.7, where the estimated BMD trajectories tend to diverge sharply after FMP.

FSH variability at FMP was not significantly associated with BMD. The interaction term, how-
ever, between variability and time to FMP was significant. Holding FSH variability constant, a one
year increase in time to FMP is associated with a (1−2−0.0028×20.0038) = 0.07%(−0.25%, 0.38%)

change in BMD. Since this interaction term has a positive sign, this indicates that the association
of FSH variability with BMD is moderated over time. The bottom plot in Figure 3.7 shows this
moderating effect where the estimated difference in BMD trajectories converge around 2 years
before FMP. After FMP, higher FSH variability is associated with slower decreases in BMD.

Finally, as in the E2 predictor model, BMI was significantly associated with BMD. Women with
higher BMI values tended to have higher BMD values, holding all else constant. Baseline age was
not significantly associated with BMD.

3.5 Discussion

Maintaining bone health in women is particularly important during the midlife, when BMD natu-
rally tends to decline (Finkelstein et al., 2008). Although much research has been conducted on the
associations between mean hormone levels and BMD outcomes, there was a gap in understanding
the associations between hormone variabilities and BMD loss in women undergoing menopause.
To expand our knowledge base of the relationships between hormone variabilities and BMD trajec-
tories, we developed a joint model that estimates individual means and variances of a longitudinal
predictor and longitudinal outcome.

Our analyses found that higher mean E2 was associated with higher average predicted BMD,
which supports the hypothesis that higher levels of E2 are protective against BMD loss, and support
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Figure 3.7: Plots of predicted FSH and time interaction (top figure) and FSH variance and
time interaction (bottom figure) for the BMD outcome model. The solid lines represent the
25th, 50th, and 75th quantile values of the FSH variable, along with the prediction band for
this value. We can see the moderating effect of the variance-time interaction term as the
BMD residual trajectories converge at about 2 years before FMP.

bone health during the midlife. Conversely, higher FSH was associated with lower average BMD,
which suggests that higher levels of FSH may negatively affect bone health in women during the
midlife. These findings are consistent with the literature on the relationship between E2 and FSH
levels and BMD outcomes in midlife women (Zaidi et al., 2018; Park et al., 2021).

Furthermore, we found that FSH variability was significantly associated with higher predicted
BMD loss across the menopausal transition, with a one-unit higher FSH variability at FMP being
associated with a 0.55% higher BMD. This relationship persisted past the MT, where higher indi-
vidual FSH variability was associated with slower declines in BMD. We hypothesize that higher
individual-level FSH variability could indicate a deviation beyond the expected reproductive sys-
tem cessations during the menopauseal transition. In this case, the rapid period of bone loss during
the MT may be also lower for these women if they are not experiencing the expected FSH tra-
jectory. We did not find a similar relationship between BMD and E2 variability. This suggests
that FSH variability is more strongly predictive of BMD trajectories in menopausal women than
E2 variability. These findings should motivate further research into the role of FSH variability on
BMD declines to more fully understand the relationship between individual variances of hormones
and women’s BMD trajectories.

Our analysis had a few limitations. As noted in the introduction, BMD has a nonlinear rapid
decrease as women approach the menopausal transition, and then stabilizes around 2-5 years after
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FMP. Originally, we attempted to fit an outcome model with a linear spline on time to FMP, with
knots at 2 years before and after FMP, the model had trouble converging. In particular, the coef-
ficients that represented the mean and variance interacted with the spline on time to FMP failed
to converge. To address this, we decided to remove the nonlinear BMD trend by using the in-
dividual BMD residuals as the main outcome of interest; this left subject-level trends that could
be modeled linearly. Additionally, as mentioned in Section 3.4, when we attempted to fit a linear
time-varying variance on the SWAN dataset, the model had convergence problems, most likely due
to the insufficient number of timepoints necessary to capture a time-varying variance trend.

3.5.0.1 Future Work

Although BMD has historically been the standard metric of choice used to evaluate bone health,
some experts have cautioned against solely relying on BMD to measure bone health. Prentice
et al. (1994) argued that since the formula for BMD assumes a constant proportional relationship
between bone area and bone mineral content (BMC), this can lead to spurious correlations between
BMD and health outcomes when the relationship between BMC and bone area is not directly
proportional. “If BMD is used when the relationship between BMC and BA [bone area] is not one
of simple direct proportion, part of its variation within a population will be due to differences in
bone size between individuals.” After having analyzed the association between hormone variability
and BMD, the next question of interest would be to understand if these associations are also present
with women’s BMC trajectories and bone area trajectories.

The SWAN study has collected women’s femoral neck BMC (g) measurements and femoral
neck area (cm2) measurements visits, but due to changes in the dual-energy x-ray absorptiometry
(DEXA) collection machines over the course of the study, these measurements were not appropri-
ately calibrated for longitudinal analyses. When the calibrated measurements become available,
we plan to apply our model to BMC trajectories and bone area trajectories to better understand
how E2 and FSH variabilities can predict BMC or bone area. Another possible extension of the
model would be to simultaneously model both BMC and bone area trajectories as a multivariate
outcome, rather than separately analyzing each variable.

An interesting future area of research could be to model complex formulation of the individual
variances. In particular, decomposing individual time-varying variances into short-term and long-
term trends may be of scientific interest for epidemiologists and physicians. To explore these
higher-order trends and obtain sufficiently stable estimates of the variance trends, we will likely
need a larger dataset than the currently available one from SWAN.

Finally, our joint model is specified for one longitudinal marker, but this could be extended
to multiple longitudinal markers by specifying Bi = [bi1, ..., biQ]

T, where Q is the number of
markers, and a Q × Q variance-covariance matrix Si for each individual. This extension would
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have several considerations. The computation cost of estimating Si would grow non-linearly as Q
increases. Additionally, if we wanted to model both a mean regression and covariance regression
(e.g. time-varying covariance matrices) in the predictor model, then this would further increase the
computational burden of estimating the model.
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CHAPTER 4

Chapter 4: A Joint Model with Covariance
Regression of Longitudinal Hormone Biomarkers to

Estimate Bone Health Outcomes Across the
Menopausal Transition

4.1 Introduction

4.1.1 Motivation: bone health outcomes for midlife women

As longevity increases and the aging population continues to grow, programs and interventions that
promote healthy aging are vital. Bone health is particularly important for older adults as fractures
due to osteoporosis are a significant cause of mortality and lowered life expectancy (Sullivan et al.,
2017; Bliuc et al., 2009). In women, bone mineral density declines sharply during the menopausal
transition (MT), with women losing an average of 10% of bone in the 5-6 years surrounding the
final menstrual period (FMP) (Ji and Yu, 2015). However, some women lose bone much faster,
thus identifying women most at risk of clinically significant bone loss is key for establishing early
interventions and treatment.

The menopausal transition is hallmarked by important endocrinologic changes including in-
creases in follicle-stimulating hormone (FSH) and declines in estradiol (E2). Changes in E2 are
associated with bone loss (Sowers et al., 2006; Crandall et al., 2013), and more recent work sug-
gests that FSH may also be an important biomarker for bone loss. In a cross-sectional study of
adult Chinese women, Wu et al. (2013) found that early declines in BMD were significantly corre-
lated with FSH levels, but not with E2. Similarly, Shieh et al. (2019) found that FSH was a stronger
predictor of “imminent bone loss” than E2. In animal models, ”sharp rises” in FSH levels were
associated with more rapid bone loss (Zaidi et al., 2018).

While testosterone levels do not change as dramatically during the menopause transition as
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do E2 and FSH, it is an important biomarker associated with health outcomes such as depressive
symptoms and sexual dysfunction, in midlife women (Maharjan et al., 2021; Janssen et al., 2010).
R). In terms of bone health, testosterone has an important role in maintaining bone in men, but less
is known about the importance of testosterone levels during the menopause and bone outcomes.
In a recent paper, Zhang et al. (2022) found that higher mean testosterone predicted higher BMD
in women aged 40-60. This relationship was also present in older post-menopausal women (Rariy
et al., 2011), thus suggesting that female testosterone levels during the menopausal transition could
be predictive of bone health.

To date, most studies evaluating sex steroid hormones (i.e., E2, FSH, testosterone) and bone
outcomes have used approaches that associate population mean levels of the hormones with pop-
ulation mean level or change in BMD. However, other aspects of hormone trajectories including
individual-level variability, may be informative biologically.

Bone mineral density (BMD) is the standard clinical metric of measuring bone health for many
fields. Recently, Jepsen et al. (2023) found that BMD alone did not uniquely predict bone strength
and suggested that other clinical measures in addition to BMD may be needed in order to accurately
assess bone health. Because BMD is a ratio of bone mineral content (BMC) and bone area, it is
of great interest to understand independent predictors of increases or decreases in BMC and bone
area. To date, the bone loss literature on has focused mainly on BMD as an outcome, rather
than on the components that make up this metric. Our previous work in Chapter 3 examined the
relationships between sex steroid hormones and BMD and found that higher variability of FSH
independently predicted slower declines in BMD across the menopausal transition. Scientifically,
we extend the research questions from Chapter 3 by examining relationships between FSH and
testosterone mean levels, variabilities, and their covariance and BMC across the MT.

4.1.2 Joint Models for Multiple Biomarkers

Multivariate analysis of biomarkers is a growing area of interest in disease prediction and diag-
nostics, since one singular biomarker is usually not completely predictive for a disease outcome.
There is a large established work on joint models of longitudinal correlated biomarkers (Brown
et al., 2005; Long et al., 2016; Li et al., 2021). These methods generally assume a constant co-
variance matrix for the residual variances and covariances. Recently, Zhao et al. (2021) presented
a method that allows for time-varying correlations between longitudinal markers. The majority of
these methods use only the estimates from the individual mean marker trajectories to predict the
outcome, ignoring the variances and covariances from the trajectories.

In the setting with one biomarker of interest, research suggests that these residual marker vari-
abilities may also predict individual health outcomes (Elliott et al., 2012; Jiang et al., 2015; Parker
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et al., 2021). A well-established example of variability as a predictor is heart-rate variability
(HRV), which has been shown to be significantly predictive of cardiovascular outcomes (Fang
et al., 2020; Goldenberg et al., 2019). Higher variability of estradiol and higher variability of
follicle-stimulating hormone were found to be predictive of increased depression risk in women
transitioning through menopause (Freeman et al., 2006). Martins (2022) found that higher esti-
mated CD4 count variability was associated with a higher hazard of death in HIV positive patients.
These established associations suggests that biomarker variability may be a powerful tool for pre-
dicting and diagnosing disease progression. To date, however, the literature is lacking in methods
that utilize the variances and covariances of multiple markers to predict health outcomes. Our first
two chapters also focused on modeling 1) individual variances and covariances of multiple mark-
ers and 2) modeling individual (possibly time-varying) variances to predict time-varying outcomes.
This motivates our development of a joint model to extend the existing work to the multivariate
joint modeling setting to infer repeatedly measured outcomes. We develop a model that estimates
the variances and covariances of multiple biomarkers to predict health outcomes. Our model al-
lows individuals’ variances and correlations, in addition to their means, to change over time by
specifying mean and covariance regressions. This chapter extends the setting from Chapter 3 to
the multivariate biomarker setting.

4.1.2.1 Covariance Regression Models

One major challenge of modeling a covariance matrix is ensuring that it remains positive definite
when modeled as a function of time or other overrates. In Chapter 3, we proposed a model for
the time-varying variance where the variance at each timepoint is a function of time-invariant co-
efficients and the corresponding timepoint. Extending this to the covariance matrix setting, Chiu
et al. (1996) modelled the logarithm of the variance-covariance matrix as linear functions of covari-
ates. Another approach, proposed by (Pourahmadi, 1999), is to model the elements of the matrix’s
Cholesky decomposition as functions of covariates. These two approaches are straightforward to
implement, but the number of parameters to be estimated in both approaches can grow quite large,
since each of the unique elements of the logarithm (or decomposition) is a function of coefficients.
This would be especially computationally intensive in the case of estimating individual-specific co-
variance matrices. For this reason, we choose to explore a different parameterization for estimating
our covariance matrices.

An alternative to estimating non-constant covariance matrices is with covariance regression
models, as introduced by Hoff and Niu (2012). They specified a method for covariance regres-
sion as part of the standard multivariate regression model. They specify a covariance matrix as:
S(x) = Σ0+Θx(Θx)T, where Σ0 is a positive-definite matrix and Θ is a vector of coefficients for
predictors x. Fox and Dunson (2015) used a Bayesian nonparameteric approach to this covariance
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regression model that could further reduce the number of unknown covariance regression parame-
ters to be estimated, by modeling a high-dimensional response as a function of lower-order latent
factors. Li et al. (2014) extended the covariance regression model from Hoff and Niu (2012) to
allow for the covariance matrices to also be a function of individual random effects, in addition to
covariates.

Although these methods model the mean trajectories and the covariance trajectories of the re-
sponse variable, the main focus of these models is to obtain estimates of the variance and covari-
ance regression parameters within a linear mixed model setting, and not to relate these estimates
to other outcomes of interest, i.e. within a joint model. In our motivating application, we are not
only interested in modeling multiple biomarkers, but also using the subject-level random effects
and residual variance-covariance estimates to predict a health outcome.

In this paper, we extend this work on covariance regression and joint models for correlated
markers by introducing a joint model in Section 4.2 that uses both mean and variance-covariance
regressions to model the multiple markers. We estimate the longitudinal markers by modeling
time-varying individual mean trajectories and time varying variance-covariance trajectories for sex
steroid hormones across the menopausal transition. These estimates are then used in to predict a
longitudinal outcome (BMC). Given the high dimensionality and hierarchical nature of the model,
we use a Bayesian approach that allows uncertainty at the multiple model levels to be properly
accounted for when estimating variances of the parameters of interest. In Section 4.3, we apply our
method to data from the Michigan Bone Health Study (MBHS). Section 4.4 provides a simulation
study to assess the repeated sampling properties of our proposed model. We conclude with a
summary of our findings and thoughts for next steps in Section 4.5.

4.2 Proposed Model

In this section, we outline the proposed joint model with mean and variance-covariance regressions.
In the first submodel, we estimate individual-specific regression coefficients for a time-varying
mean and covariance trajectories, and then link these individual random effects to an repeated
outcome of interest in the second submodel.

4.2.1 Biomarker Submodel:

Let Xij represent a vector Q predictor markers, measured at time j = 1, . . . , ni, where ni is the
total number of observations for individual i where i = 1, . . . N . We model Xij as:
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Xij | Bi,Θi, tij ∼ NQ(µ(Bi, f(tij)),S(Θi, g(tij))), j = 1, . . . , ni, independently for i = 1, . . . , N,

(4.1)

where Bi,Θi are matrices containing the individual-specific coefficients for the mean and covari-
ance regression functions, respectively, and f(tij), g(tij) are basis expansions on tij , which may
differ for the mean and variance trajectories.

4.2.1.1 Mean regression

The regression model for the mean trajectories is expressed as:

µ(Bi, f(tij)) = f(tij)Bi (4.2)

where µ(f(tij);Bi) is a Q-dimensional function of time given by Bi = [bi1, ..., biQ]
T and biq =

(biq1, . . . , biqP )
T is a vector of P regression coefficients for the q-th marker. f(tij) is the design

matrix resulting from a P dimensional basis-expansion function of time, where P is determined
in advance by the degree of the basis expansion on time as well as the number of knots. For
simplicity, we let P be the same for each marker in the modeling notation, although this can be
relaxed in practice to allow each marker to be modeled with different basis expansion functions.

4.2.1.2 Covariance regression

Specifying a covariance regression model allows us to independently model the variability not
already captured by the model for µij . We have a Q × Q variance covariance matrix, Sij , whose
regression model is specified with the following equation:

S(Θi, tij)) = Θig(tij)g(tij)
TΘT

i + Σ0, (4.3)

where Θi = [θi1, ...,θiQ]
T is a Q×PS matrix of coefficients and g(tij) is the design matrix from a

PS dimensional-basis expansion on time. PS can be, but is not necessarily, equal to P , the number
of individual mean regression coefficients. In practice, we choose PS < P to provide a more
parsimonious covariance regression, in order to minimize the computational burden of estimating
large Θi. We discuss the choices of P and PS in our application (Section 4.3) and simulation study
(Section 4.4).

This regression equation ensures that Sij is positive semi-definite for each timepoints tij . Σ0

is set to be a valid covariance matrix and the set of valid Q × Q variance-covariance matrices is
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convex and closed under addition. Σ0 can be thought of as the ’baseline’ covariance matrix that is
common across all individuals. To relax this assumption, we can include an intercept term in g(tij),
so that at baseline, each individual’s variance-covariance matrix is comprised of the population
variance-covariance matrix and their own starting deviations. Σ0 in this case, can be thought of as
a ‘residual’ covariance matrix that is shared across all individuals when time is 0.

Hoff and Niu (2012) proved that Θi is identifiable up to a sign change. In a Bayesian frame-
work, this can be troublesome for the sampler, since the chains could move between Θi and −Θi

without achieving convergence. We follow the suggestion from Li et al. (2014) and pass Θig(tij)

through an exponential link function. This function is applied element-wise to the q × 1 vector,
Θiqg(tij). We note that this assumes that the random effects from the covariance regression have
a multiplicative effect on the variance trajectories, similar to the assumption made by Parker et al.
(2021) in the case of a single time-varying variance trajectory.

4.2.2 Outcome Submodel

In this model, our outcome of interest, Yij , is a one-dimensional vector of responses. We write the
model for Yij as:

Yij | µij,Sij,∼N
(
ηij(α,γ,γ

W ,µij,Sij,Wij, tij,ai), γ
2
)
, i = 1, . . . , N, j = 1, . . . , ni (4.4)

where ηij(·) = µij is the mean regression function, Sij are the estimated means, variances, and
covariances from the predictor submodel, Wij are observed covariates that can be time-invariant
or time-varying, α,γ,γW are the population coefficients associated with the marker means, vari-
ances/covariances, and adjusted covariates respectively, and ai is a vector of random effects. The
specification of η(·) is flexible; for ease of interpretation in our data analysis, we explored linear
basis expansion functions of ηij for our outcome in order to maintain interpretability. An example
of ηij as a linear function of µij,Sij and with time-interactions is presented in the simulation study
(Section 4.4).

Prior Specification

Prior for Σ0 Following the approach of (Barnard et al., 2000), we let Σ0 = DRD, where
D = diag(d1, ..., dQ) is a diagonal matrix of standard deviations and R is a correlation matrix. We
assume that the standard deviations can be drawn from a half-Cauchy distribution and R can be
drawn from a Lewandowski-Kurowicka-Joe (LKJ) prior (Lewandowski et al., 2009b):
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dq ∼half-Cauchy(0, τ), independently forq = 1, . . . , Q, (4.5)

R ∼ LKJ(ϕ). (4.6)

The parameters τ, ϕ can be specified in practice; we followed the suggested weakly informative
values of τ = 2.5, ϕ = 1 in our simulation studies and application.

Prior for Θi For each marker q, we draw each set of individual coefficients θiq from a multivari-
ate Gaussian with mean zero:

θiq
indep.∼ NPS

(0,Ψq), q = 1, . . . , Q, (4.7)

where Ψq is estimated with the same decomposition and priors specified in Equations 4.5-4.6, i.e.,
half-Cauchy and LKJ priors.

Prior for biq We can draw each biq, the subject-specific mean regression coefficients for marker
q from a multivariate Gaussian distribution:

biq
indep.∼ NP (βq,Ωq), q = 1, . . . , Q, (4.8)

The priors on βq,Ωq are specified as follows:

βq ∼ NP (0, ξ
2
qIP×P ), independently for q = 1, . . . , Q (4.9)

Ωq = KqLqKq, Kq = diag{kq1, . . . , kqP}, q = 1, . . . , Q, (4.10)

kqp ∼ half-Cauchy(0, τ0), p = 1, . . . , P, and Lq ∼ LKJ(ϕ0), (4.11)

independently for q = 1, . . . , Q where Kq = diag{kq1, . . . , kqP} is a diagonal matrix and Lq is a
correlation matrix. τ0 and phi0 are specified in advance; in our analysis, we use the values of 2.5
and 1 (respectively) so that these priors are weakly informative.

Priors for β, ai, σ For the outcome model, we use independent N (0, 102) priors for each element
of the outcome regression parameters (α, γ, γW ), and a diffuse prior on the outcome residual stan-
dard deviation parameter σ ∼ half-Cauchy(0, 2.5), as recommended by Carpenter et al. (2017).
For ai, the random effects, we place a multivariate Gaussian prior with mean zero and precision τa,
i.e., ai ∼ MVN (0, τa). In the case of a random intercept ai, τa can be drawn from a half-Cauchy
distribution or, in the case of a vector-valued ai, τa is a covariance matrix, whose values can be
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drawn from the prior described in Equations 4.5-4.6 (i.e., half-Cauchy and LKJ prior).

Joint Distribution Let D = (Yij, Xij, tij,Wi) denote the observed data, Z = (Bi, Θi, ai) de-
note the subject-level latent variables, and ζ = (α,Σ0, ξ,Ω,Ψ,a,γ,γ

W , τa, σ) denote the model
parameters. We also let π(ζ) denote the prior distribution of the parameters in ζ:

π(ζ) = π(β)π(Ω)π(Ψ)π(Σ0)π(α)π(γ)π(γW )π(σ).

If we let C be the normalizing constant for the LKJ prior Lewandowski et al. (2009b), we can
then write the joint distribution of D, Z, and ζ as

P (ζ, D, Z) ∝
N∏
i=1

Q∏
q=1

{ 1√
(2π)|Ψq|

exp

(
−1

2
(bi − β)TΨ−1

q (bi − β)

)

×

 1√
2π|Ψq|

exp

(
−1

2
Θi|Ψq|−1Θi

)
+

2

πτ

1

1 +
(d2q)

τ 2

× C[det (R)]ϕ−1

}

× 1√
2π|τa|

exp(−1

2
aT
i τ

−1
a ai)

×
N∏
i=1

ni∏
j=1

{ 1√
(2π)|Sij|

exp

(
−1

2
{Xij − µ(tij;Bi)}TS−1

ij {Xij − µ(tij;Bi)}
)

× 1√
2πσ2

exp

(
−1

2

(yij − ηij(µij,Sij,Wij,ai;α,γ,γ
W ))2

σ2

)}
× π(ζ). (4.12)

4.2.3 Model Estimation

We developed a Hamiltonian Monte Carlo program for our proposed model, using the STAN prob-
abilistic programming language and rstan R package. For our simulations, we ran 2 chains each
for 2,000 iterations and 1,000 burnin. For the analysis, we found that 2 chains with 4,000 iterations
and 2,000 burnin was sufficient for achieving convergence. We evaluated model convergence from
visual examinations of traceplots and from Stan’s R-hat convergence diagnostic (Vehtari et al.,
2021). The outcome parameters our models reported R-hat values < 1.05. Additional model
checking is discussed in Section 4.3.4.
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Figure 4.1: Individual FSH residuals and testosterone measurements over time, plotted with
a loess curve to visualize the overall trend over time.

4.3 Application: Michigan Bone Health Study

4.3.1 Dataset

The Michigan Bone Health and Metabolism Study (MBHS) is a population-based longitudinal
study of women’s sex steroid hormones and their relation to the initiation and development of
musculoskeletal conditions, metabolic diseases, and functional limitations as women transition
through the menopause Sowers et al. (1998). A total of 664 white women were initially enrolled in
the study in 1992. After excluding women who did not have a non-surgical and observable FMP
(i.e., not using hormones that obscured FMP, n=326) or who did not have pre- and/or post-FMP
DEXA scans (n=127), our final analytic dataset included 211 women representing 1,662 unique
observations.

BMC was measured using dual-energy X-ray absorptiometry (DEXA) machines at baseline
and each of the subsequent annual follow-up visits (up to 14 in total). At each visit, a fasted blood
sample was obtained during days 2-7 of the follicular phase of the menstrual cycle and assayed for
FSH and testosterone. Information about the biospecimen collection protocol and hormone assays
has been previously published (Sowers et al., 1998). At each annual exam, women completed
questionnaires related to their medical history and other socio-demographic variables (e.g. physical
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Table 4.1: Descriptive statistics of the BMC dataset, based on 210 individuals in the MBHS
cohort.

Variable Statistic Value n

Longitudinal Predictor Mean/SD
FSH Residuals -0.01 (0.99) 1,662
Testosterone (log2 transformed) 4.63 (0.82) 1,662

Health Outcome Mean/SD
BMC Residuals 0.00 (0.24) 1,662

Adjusted Covariates Mean/SD
Baseline BMI 27.28 (6.83) 1,662
Baseline Age 46.29 (2.60) 1,662

Figure 4.2: Individual BMC residuals over time, plotted with a loess curve to visualize the
overall trend over time.

activity levels and smoking status). Table 4.1 contains the dataset’s descriptive statistics.
Previous research using data from the Study of Women’s Health Across the Nation has indicated

that higher FSH is associated with lower BMD values (Shieh et al., 2019). Since BMD is computed
as a ratio of BMC divided by bone area, we would expect mean FSH to be negatively associated
with BMC. Testosterone has also been positively associated with higher BMD in adult women
(Zhang et al., 2022).

In Chapter 3, we also found that time-invariant FSH variability was positively associated with
BMD. We would expect to find similar results with our covariance regression joint model (i.e.,
higher variability of FSH predicts higher BMC). Since our model in Chapter 3 specified a single
predictive marker, we were not able to investigate associations between hormone covariances and
bone outcomes.
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4.3.2 Implementing the Proposed Model

We now apply our proposed model to analyze the hormone and bone trajectory data described in
the previous section. Based on previous research on the approximate timeframes where mean FSH
has noticeable changes (Randolph et al., 2011), we placed knots at (-7, -2, 2, 7) years to FMP
in the individual marker mean regression. For the variances and covariances, we placed knots at
(-2, 2) years before and after the FMP, allowing for the possibility that the individual variances
and covariances could change across the menopausal transition. We conducted some sensitivity
analyses on these knot placements in Appendix D.1.3.

Our outcome model formulation was specified as follows:

E(log2(BMCij)) = β0 + β1µij1 + β2µij2 + β3Sij11 + β4Sij12 + β5Sij22

+(β6 + β7µij1 + β8µij2 + β9Sij11 + β10Sij12 + β11Sij22)tij + β12BMI∗i + β13Age
∗
i + a0i,

where ourQ = 2 markers of interest were FSH residuals and testosterone measurements. Figure
4.1 shows the observed FSH and testosterone measurements used in the predictor submodel. We
adjusted for baseline BMI (BMI∗) and baseline age (Age∗), and included a random intercept
for each woman to account for the residual correlations between bone measurements. For the
longitudinal predictors, we used the hormone measurement obtained at the previous visit to predict
BMC at the following visit. This is to better capture how differences in hormone measurements
at an earlier time may be associated with BMC declines later, rather than analyzing hormone and
bone values at the same timepoint.

4.3.3 Results

4.3.3.1 Individual variance trajectories

A defining feature of this covariance regression joint model is that we are able to examine the
individual-level variance trajectories. As an example, Figure 4.3 displays the estimated posterior
mean values of individual FSH variances over time. The dashed lines indicate the pre-specified
knots used in the model. During the [-2, 2] years to FMP window, we see that the average estimated
FSH variance increases, compared to the average trend before -2 years to FMP.

Additionally, we can see that the overall estimated mean FSH variability tends to decline after
FMP. This may suggest that mean FSH levels tend to stabilize after the menopausal transition.
However, the individual estimates of the variance also become more variable after FMP. This
could be due to the smaller number of post-FMP observations in the dataset, but could also indicate
that post-FMP, there may be larger individual level variability of FSH observations. We obtained
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Figure 4.3: Plots of the posterior means of estimated individual FSH variances. A loess curve
has been added to the plot to show the overall trend of FSH variability over time.

posterior estimates of the individual mean coefficients and plotted these histograms for each time
period defined by the prespecified knots.

Figure 4.4 displays the estimated posterior mean values of individual testosterone variance tra-
jectories. Compared to the FSH variance trajectory estimates, there is more estimated variation
in the estimated testosterone trajectories before and during FMP. Average estimated testosterone
variability tends to remain constant before and during the [-2, 2] FMP window. After FMP, we
see that the average trend for testosterone variability tends to slightly increase. Compared to the
FSH variability trend, however, the average change in slope is much smaller post-FMP. Unlike
FSH, testosterone levels in women do not experience a rapid change during the MT. It follows that
estimated testosterone variability also does not display sudden changes around FMP.

The estimated correlation trajectories (Figure 4.5), in contrast, tend to be more stable. The
estimated population correlation from the MBHS data was 0.012 and the majority of the individual
estimates appear to be centered around 0, although there is still noticeable variability in theses
estimates. After FMP, there appears to be a slight upward trend in correlation, indicating that
average correlation between FSH and testosterone may increase post-menopause.

4.3.3.2 Associations between hormone variabilities and BMC

Table 4.2 displays the estimated coefficients produced by the model. Mean FSH at the visit before
FMP was significantly associated with BMC at FMP. At FMP, a one unit higher predicted FSH at
the previous visit was associated with a 1−2−0.036×100% = −2.5%(−3.7%,−1.3%) lower BMC.
This relationship is not estimated to change over time, since the interaction between predicted FSH
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Figure 4.4: Plots of the posterior means of estimated individual testosterone variances. A
loess curve has been added to the plot to show the overall trend of over time.

Figure 4.5: Plots of the posterior means of estimated individual FSH, testosterone correla-
tions. A loess curve has been added to the plot to show the overall trend of over time.
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Variable Post. Mean 95% CrI
Predicted FSH -3.68 (-5.62, -1.96)
Predicted Test. 1.97 (-0.19, 4.22)

FSH Var. -4.50 (-11.44, 0.94)
FSH, Test. Cov. -3.64 (-28.05, 15.92)

Test. Var. -11.38 (-24.79, -2.29)
Time to FMP 0.96 (-0.67, 2.73)

Time to FMP x Predicted FSH 0.23 (-0.85, 0.03)
Time to FMP x Predicted Test. 0.12 (-0.15, 0.39)

Time to FMP x FSH Var. -0.53 (-1.13, 0.04)
Time to FMP x FSH, Test. Cov. 5.63 (4.13, 7.53)

Time to FMP x Test. Var -2.96 (-4.77, -1.29)
BMI 11.44 (8.42, 13.87)
Age -0.61 (-1.33, 0.22)

Table 4.2: Estimated posterior means and 95% credible intervals for the BMC model with
FSH and Testosterone markers. All estimated posterior means and 95% CrI values have
been multiplied by 102.

and time is not significant. Mean testosterone, on the other hand, was not significantly associated
with BMC.

Testosterone variability was estimated to be significantly predictive of BMC. At FMP, testos-
terone variability at the previous visit had a negative relationship with BMC. This effect becomes
amplified over time. Holding testosterone variability constant, each additional year is associated
with a 1 − 20.0096 × 2−0.0296 × 100% = −1.37%(−3.7%, 1.0%) change in BMC. This effect over
different stages of the midlife can be seen in 4.6. The largest difference in estimated BMC is 5
years post FMP, where higher testosterone variability is associated with lower BMC residuals (i.e.
lower than average BMC than the population average).

FSH and testosterone covariance was also significantly associated with BMC. At FMP, the pre-
dicted relationship between covariance and BMC is negative (although not significant). After FMP,
however, this relationship changes to become positive over time. Holding covariance constant,
each additional year is associated with a 20.0096 × 20.0563 − 1× 100% = 4.3%(2.4%, 7.3%) change
in BMC residual. Figure 4.7 shows the estimated associations between covariance and BMC resid-
uals for different timepoints. Before FMP, a positive covariance between FSH and testosterone is
associated with lower values of BMC residual (lower than average BMC). After FMP, however, a
positive covariance is associated with higher than average BMC.

Finally, higher BMI was positively associated with BMC, holding all else equal. This is con-
sistent with the literature on the associations between BMI and bone. Age, however, was not
significantly associated with BMC.
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Figure 4.6: Plots of predicted testosterone variance and time interaction for the BMC outcome
model. Different values of estimated testosterone variance quantiles are shown on the x-
axis, with corresponding estimated BMC differences on the y-axis.The solid lines represent
different years to FMP (-5, 0, 5).

Figure 4.7: Plots of predicted covariances and time interaction. Different values of estimated
covariance quantiles are shown on the x-axis, with corresponding estimated BMC differences
on the y-axis.The solid lines represent different years to FMP (-5, 0, 5).
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Figure 4.8: Posterior predictive check of the BMC residuals, with the solid dark line indi-
cating the observed data values and the thinner, lighter bands representing kernel density
estimates of the posterior predictive distributions.

4.3.4 Model Checking

We conducted several model checking procedures to understand if the modeling assumptions are
validated in the MBHS data. For the outcome of interest, we performed a posterior predictive check
where we visually plotted the observed distribution of the BMC residuals against model-generated
BMC residuals. Figure 4.8 displays this graph. We can see that the model-generated kernel density
estimates of the outcome overlap onto the the observed distribution of BMC residuals. Figure D.1
in Appendix D.1 display the graphs for the FSH and testosterone predictors.

Another approach for model checking is to compute the posterior predictive distribution p-
values. We use the following statistic: T (xij; bip, tij) =

∑
t(xij − µ(bipq, tij))

2 where µ(bipq, tij))
is the estimated individual i’s mean trajectory for marker q. By doing this, we can compare
Ti(x

obs
ij ; bipq, tij) (which is a function of the observed data and the estimated parameters) with

Ti(x
rep
ij ; bipq, tij), a function of the model generated data using the model estimated parameters).

To compare these two T (xij) statistics, we compute the ‘posterior predictive p-value’, which is
P (Ti(x

obs
ij ; bipq, tij, σ

2
iq)q < Ti(x

sim
ijq ; bipq, tij, σ

2
iq)q|(xobsijq )). For the q − th marker, we keep (xobsij )

fixed at the observed values and compute 1,000 values of Ti(xsimij ; bipq, tij) from the posterior of
bipq. We then compared these values with 1,000 draws from Ti(x

sim
ij ; bipq and computed the corre-

sponding p-values.
Figure 4.9 shows the histograms of computed p-values for FSH and testeosterone. The mean

FSH p-value and mean testosterone p-value were both 0.6. For both markers, the majority of p-
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Figure 4.9: Posterior predictive check of the FSH residuals and testosterone measurements.

values are between 0.4 and 0.75. Ideally, the mean p-value would be at 0.5, which suggests that
our model may be over-estimating the observed data.

To further investigate our model, we randomly select individuals based on the quantiles of the
p-values for each marker. For each individual, we computed the 50th and 95th quantiles of their
estimated trajectories (µij) from 500 randomly selected draws of the posterior samples. We then
plotted these against their observed measurements in Figure 4.10.

The model estimated individual trajectories appear to capture the individual level mean trajecto-
ries for both markers. The majority of observations are also covered by the 95th quantile estimates
of the trajectories. Further model checks can be found in Appendix D.1.

4.4 Simulation Study

To confirm the repeated sampling properties of our model, we also performed a simulation study,
where the goal was to evaluate the performance of our joint model in recovering the true data-
generating parameters. We evaluated our model in terms of three metrics: 1) bias 2) the coverage
rate of the nominal 95% credible intervals and 3) average length of the 95% CrIs obtained across
simulation replicates. We focus on evaluation of the proposed model because there is not a clear
simple competitor for our approach.
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Figure 4.10: Individual level model-estimated and observed marker trajectories of FSH resid-
uals (top figure) and testosterone (bottom figure). The observed values are shown as points
and and the 50th quantile estimated trajectories are shown as lines. The plotted ribbons rep-
resent the 95th quantile estimates.
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4.4.1 Data Generation

For this simulation study, we generated data for N = 200 individuals and Q = 2 markers. Mim-
icking our application dataset, we simulate timepoints based on years pre- and post-FMP, with
each individual having between 1-24 timepoints. For the marker means, we apply a linear B-spline
expansion to each individual’s timepoints, placing knots at timepoints (-7, -2, 2, 7). We also add a
global intercept term to the marker means.

Xij | µij, Sij ∼ NQ(µij, Sij), µijq = b0q +Bif(tij), biq ∼ NP(βq,Ωq),

β1 = (−0.57, 0.18,−0.06, 0.36, 0.34)T, β2 = (0.26,−0.32, 0.00,−0.40,−0.21)T,

Ω1 =


0.21 0.02 0.07 0.04 0.02

0.02 0.36 0.13 −0.04 −0.04

0.07 0.14 0.41 0.05 0.29

0.04 0.11 0.10 0.02 −0.04

0.023 −0.04 0.29 0.10 0.56

 ,Ω2 =


0.09 0.11 0.02 0.01 0.01

0.11 0.44 0.15 0.11 0.08

0.02 0.15 0.37 0.28 0.25

0.01 0.11 0.28 0.35 0.29

0.01 0.08 0.25 0.29 0.33

 .

We obtained these values of βq,Ωq by fitting this model on a subset of individuals in our dataset
and collected the posterior mean estimates of βq,Ωq. These were then used to generate Xij .

For the covariance regression, we also apply a linear B-spline expansion with knots at (-2, 2).
We generate the individual variance-covariance matrices for each individual using the following
data generating parameters:

Sij | Θi,Σ0 = ρ(Θig(tij))ρ(Θig(tij))
T + Σ0,

Θiq ∼ N (0,Ψq),

Ψ1 =

 0.09 −0.02 −0.001

−0.02 0.075 −0.001

−0.001 −0.001 0.001

 ,Ψ2 =

 0.21 −0.02 −0.01

−0.02 0.17 −0.01

−0.01 −0.01 0.002

 , Σ0 =

(
0.81 −0.3

−0.3 0.21

)
.

For the outcome submodel, we specify the outcome, Yij as:

Yij ∼ N (ηij, 0.01
2), ηij = η(µij, Sij)

η(µij, Sij) = α0 + α1µij1 + α2µij2 + γ1sij11 + γ2sij21 + γ3sij22

+ (α3 + α4µij1 + α5µij2 + γ4sij11 + γ5sij21 + γ6sij22)tij + a0i,

a0i ∼ N (0, 0.12),

where the pre-set values of α,γ, can be found in the first column of Tables 4.3 and 4.4.
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Figure 4.11: Simulated marker trajectories for 10 individuals, based on the pre-specified data
generating parameters and simulated timepoints.

Table 4.3: Simulation I: bias, coverage, and mean 95% credible interval length for the mean
parameters across 55 simulation replicates.

Truth Bias Coverage (%) Ave. Interval Length

α1 = -0.5 (Mean Biomarker 1) 0.01 90.74 0.16

α2 = 0.3 (Mean Biomarker 2) -0.01 90.74 0.21

α4 = 0.1 (Mean 1 × time) 0.00 98.15 0.16

α5 = -0.03 (Mean 2 × time) -0.01 98.15 0.20

4.4.2 Results

Tables 4.3 and 4.4 display the estimated average bias, coverage rates, and average interval lengths
for 55 simulation replicates. The joint model is able to recover the parameters with high coverage
and low bias. This assures us that the model is indeed able to estimate the data-generating param-
eters with consistency and accuracy, when the modeling assumptions are valid. Tables D.3, D.4,
and D.5 in Appendix D.3 contain the results for the other model parameters.
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Table 4.4: Simulation I: bias, coverage, and mean 95% credible interval length for the vari-
ance parameters across 55 simulation replicates.

Truth Bias Coverage (%) Ave. Interval Length

γ1 = 0.1 (Var Biomarker 1) 0.00 96.30 0.24

γ2 = 0.3 (Cov Biomarker 1,2) -0.01 98.15 0.42

γ3 = 0.2 (Var Biomarker 2) 0.01 98.15 0.20

γ4 = -0.05 (Var 1 × time) -0.02 96.30 0.23

γ5 = 0.1 (Cov 1,2 × time) -0.01 100.0 0.35

γ6 = -0.08 (Var 2 × time) -0.02 98.15 0.17

4.5 Discussion

Women are at increased risk of bone fractures after the menopausal transition (Ahlborg et al.,
2003; Sowers et al., 2010; Sullivan et al., 2017). In order to support diagnostics for such health
risks, it is important to identify biomarkers that can predict bone health. Previous research has
shown that higher overall FSH predicts lower bone density. However, the literature has not yet
examined associations between time-varying variability of FSH on bone outcomes such as BMC.
Furthermore, the role of testosterone in maintaining women’s bone health, particularly during the
menopausal transition, is unknown.

We have proposed a method that jointly models individual mean, variance, and covariance
trajectories over time using mean and covariance regression strategies. This model allows us to
estimate the changes over time in biomarker variances and covariances, and relates these estimates
to a health outcome of interest. To the best of our knowledge, this is also the first time that time-

varying variance and correlation estimates of FSH, and testosterone have been used to predict
BMC outcomes in midlife women.

As expected, we found that higher average FSH at FMP was found to be significantly associated
with faster BMC declines. It is hypothesized that FSH may intensify bone resorption by stimu-
latinge osteoclasts, the cells that break down and repair bone structure. (Chin, 2018; Zaidi et al.,
2018), which could explain this estimated negative relationship with BMC. This relationship did
not appear to change over the menopausal transition. Mean testosterone, on the other hand, was
not significantly associated with BMC. The direction of the relationship (positive), was, however,
consistent with the literature on testosterone and bone health in women (Rariy et al., 2011).

We also estimated relationships between hormone variances/covariances and bone outcomes.
Time varying FSH, testosterone covariance was significantly associated with BMC. After FMP,
higher covariance (correlation) between testosterone and FSH was associated with slower declines
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in BMC. Scientifically, a higher correlation between FSH and testostone could mean that these
two hormones are behaving more synchronously with each other. This may in turn be a poten-
tial indicator that the individual hormone trajectories have settled post-menopause. We also found
that higher variability of testosterone, but not FSH, was associated with faster declines in BMC.
Additionally, testosterone variance over time was also significantly associated with BMC. Higher
testosterone variance post-FMP tended to predict lower BMC values than high testosterone vari-
ances pre-FMP. To the best of our knowledge, this is the first time that testosterone variability in
midlife women has been linked to BMC declines. Highly variable testosterone continuing post-
FMP could point to disruptions in the reproductive system beyond the expected fluctuations during
the MT, which could result in additional bone loss. This finding suggests that for post-menopausal
women, testosterone variability may be a useful marker for bone loss risk, although we recommend
additional research to validate these findings.

Remark In our proposed model, the mean and covariance structures are inextricably related. Al-
lowing for a highly flexible mean structure for the individual trajectories increases the difficulty of
estimating patterns in the variances and covariances. Similarly, specifying a highly flexible struc-
ture for the covariance regression impacts the estimation of the individual mean trajectories, which
are assumed to be not overly complex. Thus, a limitation to the model is that the mean structure
and covariance structure cannot not both be exceedingly flexible. Generally, the previous literature
on covariance regression (Hoff and Niu, 2012; Li et al., 2014) also specify a more flexible mean
structure (e.g. larger number of knots or larger number of covariates) and a more parsimonious
covariance structure in their applications. We recommend that the decision regarding mean and
covariance specifications should be discussed with scientific collaborators who can provide insight
into the suitability of different characterizations for the specific application context.

4.5.1 Future Work

Our work has some limitations. After deriving our analytic dataset, only 211 women remained.
This meant that our sample size was relatively small. Since the MBHS only enrolled white women,
our results may not generalize to other ethnic groups of women. Future analysis could use datasets
such as the Study of Women’s Health Across the Nation, which is a multi-ethnic, multi-site study
that collects hormone and bone measurements.

Methodologically, our model assumes that the individual covariance regression coefficients are
independent for each marker. For our application, this means that the individual FSH variance trend
at a given point in time is modeled independently of the individual testosterone variance trend at
the same point in time. For highly correlated markers, this assumption of independence may be too
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strong. We do note that in the Bayesian framework, correlations between the individual coefficients
will be induced during the posterior sampling, even if a priori we have assumed independence.
Nontheless, a future extension to this could be to relax the independence assumption and allow the
individual coefficients to be correlated between markers. In the case of highly correlated markers,
this assumption of independent regression coefficients may be too strong. A future extension to this
proposed method could be to allow for dependency between the individual variance coefficients.
This would likely increase the computational time necessary for estimating the full likelihood.

In Chapter 3, we evaluated the univariate associations between E2 and FSH and BMD. In this
chapter, we have examined the association between FSH and testosterone. A logical next step could
be to model E2, FSH, and testosterone together in the predictor model. This would mean estimating
a 3 × 3 variance covariance matrix at each timepoint and the computational power needed to
estimate the time-varying covariance matrices would also increases nonlinearly. Specifying latent
classes of individuals (Jiang et al., 2015) may ease computational burden, since individuals within
the same latent class could share the same mean and variance regression coefficients (i.e. a manifest
model), rather than needing to estimate each individual’s coefficients for the mean and covariance
regressions. This could also provide insight into different subgroups of, characterized by different
evolutions of their means and variance trajectories, e.g. women with unchanging variabilities after
FMP or women who have increasing variabilities after FMP.

In our application, the dimension of the individual covariance matrices is small because we fo-
cused on two biomarkers. However, if the number of available biomarkers becomes larger, main-
taining interpretability of the covariances in the outcome model may become extremely difficult,
if not impossible. In this case, an interesting extension to the joint model presented here could be
to explore tensor regression or other methods for high dimensional matrix regression in the out-
come model. Incorporating shrinkage priors in the tensor regression, such as those proposed by
(Guhaniyogi et al., 2017), might reduce the overall burden of estimating the outcome model in this
setting.
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CHAPTER 5

Discussion and Future Work

5.1 Discussion

Emerging technologies have made it easier for biomedical and epidemiological to collect
biomarker data at the individual level. Advances in precision medicine rely on the study of such
biomarkers that can predict disease prognoses and risks (Coffman and Richmond-Bryant, 2015;
Talukdar et al., 2023). Researchers are recognizing that intra-individual variability of repeatedly
measured biomarkers is a potentially powerful predictor for health risks (Goldenberg et al., 2019;
Barrett et al., 2019; Parker et al., 2021; Martins, 2022). In order to explore these associations be-
tween individual variances and health outcomes, we need to develop models that can capture these
individual variances and utilize them as predictors. In the multivariate biomarker setting, statistical
methods that capture the individual covariance structures between the predictor markers would be
particularly useful, since these correlations could also be predictive of disease outcomes.

The joint models presented in this dissertation contribute to this by explicitly modeling the
marker heterogeneity at the individual level, and then using these estimates to predict of health
outcomes. We have demonstrated in simulation studies that these models can recover the param-
eters of interest with low bias and high coverage, and that these models outperform two-stage
competitor approaches. Although this dissertation focused on applications in women’s health,
these models can serve as general tools for researchers who want to better understand the complex
associations between longitudinal biomarker predictors and corresponding health outcomes.

Multivariate analysis of biomedical markers is important for understanding their complex in-
teractions, and how these interactions can predict health outcomes. We are particularly motivated
by questions regarding how the variabilities and covariabilities of certain reproductive hormone
markers can predict health outcomes for women during the midlife. We used data from the SWAN
and MBHS studies to examine the associations between E2, FSH, and testosterone variances (and
covariances) and body mass and bone health outcomes in peri- and post-menopausal women. Al-
though the applications in this dissertation focused on women’s midlife health outcomes, the joint
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models presented here are designed to be broadly applicable to open research questions where
individual-level variabilities could be used as predictors.

In Chapter 2, we proposed a method for estimating the individual variances and covariances
of multiple markers in order to predict a cross-sectional health outcome. Each individual is given
their own variance-covariance matrix, rather than assuming a common population-level covariance
matrix across all individuals. Estimation of the individual covariance matrices is efficiently carried
out by using a decomposition method that separately estimates the standard deviations and residual
correlations. As expected, our joint model outperformed two-stage competitors by achieving lower
bias, higher coverage, while maintaining appropriate estimation uncertainty of the pre-specified
data generating parameters. Surprisingly, we found that larger individual E2 variances on average,
were associated with slower increases in waist circumference, suggesting that E2 may drive waist
adiposity changes more than overall fat mass changes. We believe that this finding can serve
as a starting point for further investigations into the role of E2 variability in predicting fat mass
composition changes as women grow older.

In Chapter 3, we are motivated by the setting of repeatedly measured health outcomes. Our main
application of interest is to relate individual trajectories and variances of a hormone biomarker to
predict declines in BMD as women transition through menopause. The joint model further allows
for the individual residual variances to change over time, by modeling these variances with a re-
gression function. Simulation studies compared our joint model to other two-stage methods, and
also highlighted different scenarios to evaluate the relative performances of of the time-varying
variance parameterization over a time-invariant one. We found that the time-invariant variance
model had similar coverage to the time-varying model when the individual variance trends were
smaller in magnitude, but that it had noticeably poorer coverage when there were larger individ-
ual variance trends. In our application, we found that higher time-invariant FSH variability was
strongly associated with slower declines in BMD. This suggested that women with higher variabil-
ity in their FSH measurements were more likely to have higher BMD values, holding all else equal.
These associations were strongest after FMP; pre-FMP, the predicted BMD trajectories at different
quantile estimates of FSH variability were predicted to converge. This suggested that higher FSH
variability may be more strongly associated with higher rates of bone loss after the FMP. These
results support the hypothesis that FSH, rather than E2, is more closely associated with bone loss
in midlife women, and, for the first time, quantify a relationship between FSH variability and bone
outcomes in women during the MT.

Chapter 4 extended Chapter 3’s univariate marker setting to the multivariate marker setting by
studying the evolution over time of variances and covariances from multiple markers. Our motivat-
ing scientific question was to understand if the variabilities of women’s hormones also varied over
time across the MT, and also if these changing variabilities could predict declines in BMC. We
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drew upon established work in the area of covariance regression by extending this idea to the joint
modeling setting. The proposed method jointly modeled time-varying variances and covariances
of multiple markers, by estimating individual-level regression coefficients for these trajectories.
Our analysis provided new insights into the associations between FSH and testosterone variances
and covariances and women’s BMC trajectories. We found that higher testosterone variability af-
ter FMP was associated with faster declines in BMC, a result that had not yet been established in
the current bone literature regarding midlife women. Furthermore, we found that when FSH and
testosterone were more highly correlated after FMP, there were slower declines in women’s BMC.
A simulation study provided a sanity check for our model by establishing that our model was able
to consistently recover the model parameters with low bias.

5.2 Future Work

There are several areas of future work that can be done. One natural extension of the presented
models would be to explicitly model the missing data mechanism (e.g. Missing at Random). Lon-
gitudinal data frequently suffers from missing data problems that are caused by a variety of factors,
such as patient refusal for measurements or medical equipment malfunction. The SWAN study, and
to a lesser extent the MBHS study, are not exempt from missing data issues. However, since the
relative number of missing data in these two datasets were small (< 5% in both datasets), our anal-
ysis was performed on complete cases. Since our models use a Bayesian approach to estimating
the parameters of interest, we could utilize methods like multiple imputation to account for miss-
ingness in the biomarker predictors. Previous work on joint modeling with missing longitudinal
data (Chen et al., 2014; Takeda et al., 2022) can serve as guidance for integrating missing data
estimation methods within our model frameworks.

A fundamental and active research area in multivariate analysis is the efficient estimation of
covariance matrices, particularly as the number of variables increases. In Chapter 2, we found that
Barnard et al. (2000)’s decomposition method was sufficiently fast for two and three biomarkers;
however, we would expect the computational cost of estimating the covariance matrices to increase
non-linearly with each additional marker. Additionally, the time-varying covariance regression
method in Chapter 4 further increases the potential runtime needed to fit the joint model. Bringing
in methods for efficient covariance matrix estimation into the joint modeling setting would be
particularly useful for handling higher-dimensional biomarker datasets.

Latent class models could alleviate the computational costs of estimating individual level co-
variance matrices. Extending our models to the latent class setting would also allow us to study
trajectories of means and variances across latent subgroups of individuals. For example, we could
assign women to different mean and variance trajectory classes. Within each class, women could
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share the same mean and variance coefficients. This would mean that we only need to estimate
coefficients for each class rather than coefficients for each individual. For larger datasets, this
would greatly reduce the computational burden and also provide insight into different subgroups
of patients, based on their means and variances.

With regards to women’s health, our findings have significant implications for advancing
women’s health both on the individual level and on a broader scientific level. Our findings on
hormone variabilities and co-variabilities as markers for health outcomes should motivate new re-
search questions about the underlying scientific mechanisms that may drive these patterns. Since
the predictive power of women’s intra-individual hormone variabilities have not been widely mod-
eled yet, we do not yet have a comprehensive understanding of what may be driving these asso-
ciations. Future research that delves deeper into the biological mechanisms that may drive these
variances, and their associations with fat mass and bone loss changes during the MT, would give
us a better understanding of these complex dynamics. This would be a meaningful opportunity
to further establish the literature on variances as predictors of women’s health outcomes. These
investigations would also enhance our ability to deliver effective individualized treatments and
interventions for midlife women.
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APPENDIX A

Appendix 01

A.1 Measurement Error in Multivariate Linear Models

An advantage of joint models relative to two-stage models is that the uncertainty associated with
the parameters estimated in the first stage is carried over to the second stage. Consider a simple
linear relationship of the form:

Y = Xβ + ϵ, (A.1)

where X is a n × K matrix of K predictors and ϵ is an n × 1 vector of independent normal
error terms with mean 0 and variance σ2. Suppose that the true relationship between Y and X
is described by (A.1), but instead, we observe X̃ , where X̃ = X + U , where U is the matrix of
normally-distributed independent measurement errors with mean 0 and variance-covariance ΣU .

If U ⊥⊥ X , then in the K = 1 scenario, we know that the estimate of β will be attenuated
towards the null (Carroll et al., 2006, p.42-43). For K > 1, with multiple predictors measured
with error, the estimates of the β are still biased, but the direction of the bias now depends on the
correlation between the measurement errors (Carroll et al., 2006, p.53-55). Consider the following
equation for K = 2 predictors:

Y = α + β1X1 + β2X2 + ϵ, (A.2)

and suppose we measure X1, X2 with some error:

X̃1 = X1 + U1, X̃1 = X2 + U2, (A.3)

Griliches and Intriligator (1987, p.1477–1479) derive the bias of estimating β1 as:

plim(̂b1 − β1) = − β1λ1
(1− ρ2)

+
β2λ2ρ

(1− ρ2)
, (A.4)

where b̂1 is the coefficient obtained from regressing Y on X̃1 in the multiple regression model,
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λ1 = Var(U1)/σ
2
1 is the relative amount of measurement error in X1, and ρ is the (true) correlation

between X1, X2; plim refers to convergence in probability. A similar equation can be derived for
the bias of estimating β2 in the presence of such measurement errors. We can see, then, that the

bias is increased by a factor of
1

(1− ρ2)
. The overall effect of the additional variable X̃2 is a bias

towards the null (Griliches and Intriligator, 1987, p.1479). For K > 2 variables, the expressions
for the bias of each predictor become more complicated to derive. We show via simulations in
Chapters 2.4 and 3.3.1 that the bias in the mean parameters is clear in the two-stage model linear
regression alternatives to the joint model. Furthermore, we see that that bias in the estimates of
the variance-covariance parameters persists in the two-stage model alternatives. This would be
an issue if we believe that individual variability (and/or covariability) is actually predictive of an
outcome of interest.
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APPENDIX B

Appendix 02

B.1 Visualization of the Joint Model
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Figure B.1: A visualization of the relationships between the model parameters and data.
This directed graph shows the hierarchical form of our model framework. The quantities in
squares are either data or hyperparameters; the unknown quantities are displayed in circles.
The arrows connecting variables indicate that the parent parameterizes the distribution of
the child node. The rectangular ”plates” that enclose variables indicate that a similar graphi-
cal structure is repeated over the index. The index in a plate indicates nodes, hyperparameter
levels and subjects.

B.2 Posterior Predictive Model Checking

To assess our model’s validity on the SWAN data, we conduct posterior predictive checks for both
the trajectories submodel and the outcome submodel.

For the outcome submodel, we generated simulated data from the posterior predictive distribu-
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Figure B.2: Visualizations of the posterior predictive checks performed for the fat mass rate
of change (top) and lean mass rate of change (bottom). The observed outcomes (y) are rep-
resented by the solid lines and the model-generated outcomes (yrep) are represented by the
thin semi-opaque lines. We see that the model-generated outcomes cover the observed out-
comes for both models, indicating that our model is generating reasonable estimates of the
outcomes.

tion. The posterior predictive distribution for the predicted outcome, Ỹ can be written as:

p(Ỹ |Y ) =

∫
p(Ỹ |θ,X)p(θ,X|Y )dθdX

where θ are the unknown model parameters and X are the predictor variables used in the outcome
regression. For each draw of the model parameters from the posterior distribution, p(θ|Y,X), we
can draw a vector Ỹ from the posterior predictive distribution by conditioning on the draw of the
model parameters and then simulating from the data model (Gabry et al., 2019).
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Figure B.3: Posterior predictive check of E2, FSH trajectories across all individuals for both
the fat mass and lean mass models. The median p-value for each 1,000 draws of posterior
samples was 0.5.

We then plotted 1,000 draws of this model-generated data against the observed outcome, which
is shown in Figure B.2. For both the fat mass rate of change and the lean mass rate of change mod-
els, we see that the simulated replicated data from the model overlap the observed data, indicating
that our model is producing reasonable predictions.

For the trajectories submodel, we define the following statistic: T (xitq; biqp, t)q =
∑

t(xitq −
µ(biqp, t))

2/(σ2
iq)) where µ(biqp, t)) is the estimated individual i’s mean trajectory for hormone q

and σ2
iq is the estimated variance of individual i’s trajectory for hormone q. By doing this, we can

compare Ti(xobsitq ; biqp, t)q (which is a function of the observed data and the estimated parameters)
with Ti(xsimitq ; bipq, t)q (which is a function of the model generated data using the model estimated
parameters). If there are large discrepancies between Ti(xobsitq ; biqp, t, σ

2
iq)q and Ti(xsimitq ; biqp, t, σ

2
iq)q,

this could indicate poor model fit (Gelman et al., 2013).
One way to compare these two T (xitq) statistics is to compute the ‘posterior predictive p-value’,
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which is P (Ti(xobsitq ; biqp, t, σ
2
iq)q < Ti(x

sim
itq ; biqp, t, σ

2
iq)q|(xobsitq )). For E2 and FSH, we keep (xobsit )

fixed at the observed values and compute 1,000 values of Ti(xsimitq ; biqp, t) from the posterior of
biqp, t, σ

2
iq. We then compare these values with 1,000 draws from Ti(x

sim
itq ; biqp, t, σ

2
iq)q. Figure B.3

displays the histograms of the resulting p-values for each individual’s hormone trajectory for the
two models. Across all of the hormones, most of the the computed p-values were between 0.25
and 0.75. Further analysis of the p-values across the quantiles of the distribution shows that the
generated data from the model reasonably captures the individual trends. This provides justification
that both the trajectories submodel and the outcome submodel are good fits for the data.

B.2.1 Traceplots

We present traceplots of the predictor variables for both the fat mass (Figure B.4) and waist cir-
cumference models (Figure B.5). Traceplots of the other model parameters are available upon
request.
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Figure B.4: Traceplots for the mean parameters (top figure), variance parameters (middle
figure) and adjusted covariates (bottom figure) in the fat mass rate of change model.

B.3 Data Analysis: Posterior Means and 95% CrIs for Addi-
tional Model Parameters

In this section, we present the estimated posterior means and 95% credible intervals for the other
parameters from the data application from Section 5 in the main text.
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Parameter Post. Mean 2.5% CrI 97.5% CrI
β11 -35.82 -56.39 -14.80
β12 3.46 0.34 6.63
β21 26.29 4.36 48.12
β22 -6.44 -8.82 -3.99
Σ1[1, 1] 47.31 38.47 56.86
Σ1[1, 2] -1.49 -2.38 0.61
Σ1[2, 2] -0.51 0.34 0.70
Σ2[1, 1] 80.44 70.60 91.12
Σ2[1, 2] 0.96 -0.68 0.84
Σ2[2, 2] 0.56 0.45 0.68
ν1 -286 -304 268
ν2 -286 -724 -677
ξ1 111 81.74 140
ξ2 245 223 266
α1∗ 8.55 6.47 11.53
β1∗ 32.14 24.05 43.60
σ 3.71 3.35 4.03

Table B.1: Evaluation of the posterior means and 95% CrI estimates for the other parameters
in the fat mass rate of change model. All values except for α1, β1 (indicated with asterisk) have
been multiplied by 103. α1, β1 have been presented in their original values.

Parameter Post. Mean 2.5% CrI 97.5% CrI
β11 -35.84 -57.46 -14.93
β12 3.80 0.71 6.89
β21 26.07 4.23 48.50
β22 -6.53 -4.23 -4.01
Σ1[1, 1] 47.22 38.36 56.93
Σ1[1, 2] -1.51 -2.45 -0.62
Σ1[2, 2] -0.51 -0.36 0.70
Σ2[1, 1] 80.46 70.93 90.73
Σ2[1, 2] -0.10 -0.67 -0.87
Σ2[2, 2] 0.56 0.45 0.68
ν1 -0.29 -0.31 -0.27
ν2 -0.70 -0.73 -0.68
ξ1 0.14 0.11 0.16
ξ2 0.25 0.22 0.27
α1* 8.70 6.57 11.70
β1* 32.66 24.41 44.61
σ1 2.53 1.95 3.02
σ2 5.87 4.70 7.63
Π1* 0.73 0.52 0.90

Table B.2: Evaluation of of the posterior means and 95% CrI estimates for the other model
parameters in the lean mass rate of change model. All values except for α1, β1,Π1 (indicated
with asterisk) have been multiplied by 103. α1, β1,Π1 have been presented in their original
values.
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Figure B.5: Traceplots for the mean parameters (top figure), variance parameters (middle
figure) and adjusted covariates (bottom figure) in the waist circumference rate of change
model.

B.4 Other Simulation Replicates for Two Biomarker Simula-
tion Study and Three Biomarker Simulation Study

In this section, we present the bias, coverage and average interval length for the other JMIV model
parameters from running 200 simulation replicates. For each simulation replicate, we ran two
chains with 2,000 steps and 1,000 burn in. The data generation parameters are detailed in Section
4.1 and 4.2 of the main text.
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Parameter Truth Average Post. Mean Bias Coverage % Average Interval Length
β11 0 0.00 0.00 95.5 0.14
β12 2 2.00 0.00 95.0 0.13
β21 2 2.00 0.01 95.5 0.15
β22 1 1.00 0.00 95.5 0.09
Σ1[1, 1] 1 1.00 0.00 95.0 0.22
Σ1[1, 2] -0.05 -0.05 0.00 96.0 0.14
Σ1[2, 2] 1.01 1.00 0.01 94.0 0.19
Σ2[1, 1] 1 1.00 0.00 96.0 0.24
Σ2[1, 2] -0.1 -0.10 0.00 97.5 0.10
Σ2[2, 2] 0.5 0.50 0.00 95.0 0.10
ν1 0 0.00 0.00 95.5 0.06
ν2 0.25 0.25 0.00 97.0 0.04
ξ1 0.38 0.37 0.00 95.0 0.05
ξ2 0.25 0.25 0.00 97.0 0.04
a1 1 1.01 0.01 96.0 0.01
b1 5 5.06 0.06 96.0 1.32

Table B.3: Two Trajectory Simulation Setting: Evaluation of bias, coverage, and 95% cred-
ible interval length across 200 simulation replicates for the Bi and Si parameters for the
JMIV model. Our model achieves > 90% coverage across all parameters and maintains low
bias.

B.5 Simulation 3: Linear Approximation of Nonlinearity

In this simulation study, we study how well our model performs when the true relationship between
some of the longitudinal means and variances terms and the cross-sectional outcome is nonlinear,
but we approximate this relationship with a linear form.

Step 1: Estimate Linear Approximation Coefficients

We use the same data generation parameters for the longitudinal markers as in Section 4.1 of the
main text. For the outcome model, we generate the mean η(Bi,Si) as:

η(Bi,Si) = 2bi11 + bi12 − bi21 + 0.5bi22 + 2si11 − si21 + 2si22 + 0.5b2i21 + 0.75s2i11

so that the individual slope of the first biomarker (bi12) and the variance of the first biomarker (si11)
are quadratically related to the outcome.

To estimate the “linear approximation” coefficients, we simulate data for 1 million individuals
and generate the outcome data as:

Yi ∼ N (η(Bi,Si), 0.01)
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Parameter Truth Average Post. Mean Bias Coverage % Average Interval Length
β11 0 0.00 0.00 95.0 0.14
β12 2 1.99 0.00 93.5 0.35
β21 2 1.99 0.00 96.0 0.14
β22 1 0.99 0.00 95.5 0.09
β31 1 1.99 0.00 93.0 0.14
β32 1 1.00 0.00 95.5 0.13
Σ1[1, 1] 1 1.00 0.00 94.0 0.21
Σ1[1, 2] -0.05 -0.05 0.00 97.0 0.14
Σ1[2, 2] 1.00 0.99 0.01 96.0 0.18
Σ2[1, 1] 1 1.00 0.00 96.5 0.22
Σ2[1, 2] -0.1 -0.10 0.00 93.5 0.10
Σ2[2, 2] 0.5 0.50 0.00 97.5 0.09
Σ3[1, 1] 1 1.00 0.00 96.0 0.21
Σ3[1, 2] -0.25 -0.25 0.00 94.5 0.14
Σ3[2, 2] 1 1.00 0.00 92.0 0.18
ν1 0.00 0.00 0.00 94.0 0.06
ν2 0.25 0.25 0.00 95.5 0.04
ν3 0.25 0.25 0.00 94.5 0.07
ξ1 0.375 0.38 0.00 97.0 0.06
ξ2 0.25 0.25 0.00 94.5 0.04
ξ3 0.25 0.25 0.00 94.5 0.07
a12 1 1.01 0.01 96.0 0.19
a13 1 1.01 0.01 94.5 0.19
a23 2 2.04 0.04 93.5 0.50
b12 5 5.09 0.09 96.5 1.29
b13 5 5.07 0.07 92.5 1.29
b23 2 2.05 0.05 94.0 0.50

Table B.4: Three Trajectory Simulation Setting: Evaluation of bias, coverage, and 95% cred-
ible interval length across 200 simulation replicates for the Bi and Si parameters for the
JMIV model. Our model achieves > 90% coverage across all parameters and maintains low
bias.
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We then fit a linear approximation using the lm() function in R and the following model:

Yi = α11 ∗ bi11 + α12 ∗ bi12 + α21 ∗ bi21 + α22 ∗ bi22 + γ11 ∗ si11 + γ21 ∗ si21 + γ22 ∗ si22

and collect the estimated coefficients. These coefficients are the “target” coefficients that we want
to approximate. These targets are shown in Table B.5 as the “truth” values.

Step 2: Joint Model Simulation Replicates

We follow the same data generation in Step 1 for the longitudinal markers. For the outcome model,
we generate the data as:

Yi ∼ N (η(α,γ,Bi,Si), 0.5)

After generating this data, we apply our joint model, but modeled with the same linear mean
function, η(Bi,Si), as in Section 4 of main text and collect the estimated coefficients. We do
this for 200 independent replicates and evaluate model performance using the same criteria (bias,
coverage, and average 95% CrI length) as in the previous simulation studies. Table B.5 displays
the results for the outcome mean and variance parameters. We find that the model maintains low
bias and high coverage of the truth (¿ 90% coverage). This indicates that our model can recover the
estimated parameters from a linear approximation of the model, when the true form of the outcome
mean may be nonlinear.

Truth Bias Coverage (%) Average Interval Length
α11 = 1.99 0.02 93.50 0.41
α12 = 1.44 0.03 93.00 0.34
α21 = -1.06 0.00 94.58 0.38
α22 = 0.56 -0.03 94.50 0.51
γ11 = 1.97 -0.01 96.00 0.69
γ12 = -0.99 0.03 94.50 1.17
γ22 = -2.06 -0.03 92.50 0.58

Table B.5: Simulation III: bias, coverage, and 95% credible interval (or confidence interval)
length across 200 simulation replicates. With the linear approximation, our model maintains
low bias and high coverage of the true (linear approximating) parameters.

98



APPENDIX C

Appendix 03

C.1 Posterior Predictive Model Checking

To assess our model’s validity on the SWAN data, we conduct posterior predictive checks, using
the same procedures described in Appendix B.2. For both models (Figure C.1.), we see that the
simulated replicated data from the model overlap the observed data, indicating that our model is
producing reasonable predictions.

For the longitudinal biomarker predictor submodel, we use T (x) statistic described in Appendix
B.2.

Figure C.2 displays the histograms of the resulting p-values for each individual’s E2 trajec-
tory. The majority of the computed p-values were between 0.25 and 0.75. Further analysis of the
p-values across the quantiles of the distribution shows that the generated data from the model rea-
sonably captures the individual trends. This provides justification that both the predictor submodel
and the outcome submodel are good fits for the data.

C.2 Data Analysis: Posterior Means and 95% CrIs for Addi-
tional Model Parameters

In this section, we present the estimated posterior means and 95% credible intervals for the other
parameters from the BMD outcome models in Section 4 of the main text. All R-hat values for
these parameters were < 1.01, indicating the models had converged.
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Figure C.1: Visualization of the posterior predictive checks performed for the E2 predictor
model (left) and the FSH predictor model (right). The observed outcomes (y) are plotted
with the solid lines and the model-generated outcomes (yrep) are plotted with the thin semi-
opaque lines. These plots show that the model-generated outcomes cover the observed BMD
residuals, indicating that our model is generating reasonable estimates of the outcomes.

Figure C.2: Visualization of the computed p-values performed for the BMD outcome model.
The distributions of the p-values indicate that our model was able to fit the hormone residual
data reasonably well.
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Parameter Post. Mean 2.5% CrI 97.5% CrI
α1 -0.03 -0.06 0.00
α2 0.02 0.01 0.02
Σ[1, 1] 0.09 0.07 0.11
Σ[1, 2] 0.00 0.00 0.00
Σ[2, 2] 0.00 0.00 0.00
ν 0.16 0.11 0.20
ξ 0.38 0.34 0.43
σ 0.04 0.04 0.04
τ 0.19 0.18 0.19
β0 0.04 -0.02 0.09

Table C.1: Evaluation of the posterior means and 95% CrI estimates for the other parameters
in the E2-BMD outcome model. All posterior means and 95% CrIs are presented in their
original values.

Parameter Post. Mean 2.5% CrI 97.5% CrI
α1 0.02 -0.01 0.06
α2 0.00 0.00 0.00
Σ[1, 1] 0.16 0.13 0.19
Σ[1, 2] 0.00 0.00 0.00
Σ[2, 2] 0.00 0.00 0.00
ν -0.55 -0.61 -0.50
ξ 0.56 0.51 0.61
σ 0.04 0.04 0.04
τ 0.19 0.18 0.20
β0 0.11 -3.54 3.77

Table C.2: Evaluation of the posterior means and 95% CrI estimates for the other parameters
in the FSH-BMD outcome model. All posterior means and 95% CrIs are presented in their
original values.
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Figure C.3: Histograms of estimated E2 individual variances and estimated FSH individual
variances. The estimated mean E2 variance was 1.21 and the estimated mean FSH variance
was 0.67.
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Parameter Truth Average Post. Mean Bias Coverage % Average Interval Length
α1 0 0.00 0.00 95.5 0.14
α2 2 2.00 0.00 95.0 0.13
= Σ[1, 1] 1 1.00 0.00 95.0 0.22
Σ[1, 2] -0.05 -0.05 0.00 96.0 0.14
Σ[2, 2] 1.01 1.00 0.01 94.0 0.19
ν 0 0.00 0.00 95.5 0.06
ξ 0.38 0.37 0.00 95.0 0.05
τ 1 1.01 0.01 96.0 0.01
σ 5 5.06 0.06 96.0 1.32

Table C.3: Simulation Study 1: Evaluation of the JELO model bias, coverage, and 95%
credible interval length across 200 simulation replicates.

Parameter Truth Bias Coverage % Average Interval Length
α1 0 0.00 91.0 0.19
α2 -2 0.00 95.0 0.17
αs1 0 0.00 95.5 0.14
αs2 2 0.00 95.0 0.13
Σ[1, 1] 1 0.00 96.0 0.26
Σ[1, 2] -0.25 0.00 93.0 0.14
Σ[2, 2] 0.5 0.00 93.5 0.14
ΣS[1, 1] 1 0.00 93.0 0.47
ΣS[1, 2] 0.1 -0.01 93.0 0.37
ΣS[2, 2] 0.5 0.00 95.0 0.52
τ 0.25 0.00 96.0 0.07
σ 0.1 0.00 92.0 0.01

Table C.4: Simulation Study 2 (High Variance Setting): Evaluation of the JELO (with time-
varying variance) model bias, coverage, and 95% credible interval length across 200 simula-
tion replicates.

C.3 Simulation Studies: Additional Parameters

This section contains the bias, coverage, and average interval length statistics for the other JELO
model parameters. For each simulation replicate, we ran two chains with 2,000 steps and 1,000
burn in. The data generation parameters are detailed in Section of the main text. Table C.3 con-
tains the estimates for the constant variance simulation study and Tables C.4 and C.5 contains the
estimates for our time-varying variance simulation study.
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Parameter Truth Bias Coverage % Average Interval Length
α1 0 0.00 91.0 0.20
α2 -2 0.00 93.0 0.20
αs1 0 0.00 95.5 0.14
αs2 0 0.00 95.0 0.13
Σ[1, 1] 1 0.00 95.5 0.28
Σ[1, 2] -0.25 0.00 92.0 0.15
Σ[2, 2] 0.5 0.00 93.5 0.15
ΣS[1, 1] 0.5 0.01 96.0 0.28
ΣS[1, 2] -0.01 0.02 93.0 0.22
ΣS[2, 2] 0.05 -0.03 79.5 0.20
τ 0.25 0.00 93.0 0.10
σ 0.1 0.00 92.5 0.01

Table C.5: Simulation Study 2 (Low Variance Setting): Evaluation of the JELO (with time-
varying variance) model bias, coverage, and 95% credible interval length across 200 simula-
tion replicates.
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APPENDIX D

Appendix 04

D.1 Additional Model Checking

D.1.1 Posterior Predictive Plots

Figure D.1 display the posterior predictive checks for the FSH residuals and testosterone measure-
ments. The solid, dark lines indicate the observed hormone measurements, while the thinner lines
are kernel density estimates of the posterior distributions. We can see that while most of the data
is covered by the model-generated estimates, there is still some skewness for both markers that is
not fully captured. However, further model checks conducted in 4.3.4 show that our model does a
reasonable job in capturing the hormone trajectories.

D.1.2 Bayesian ”Residuals”

As an alternative to Figure D.1, we can also compute Bayesian ”residuals” by using the following
equation:

r
(
ijs) = xij − E(xij|θ(s))

where θs is the estimated value of the model parameters at the s-th iteration. These residuals
should generally be centered at 0, with large deviations representing outliers. Systemic deviations
from this can indicate poor model fit. We do this for the predictor submodel to check the model fits
of FSH and testosterone. Figure D.2 shows histograms of residuals across all marker observations
estimated at 20 different iterations of the model. In general, these residuals should be centered
around 0, with large deviations on either side indicating outliers. In general, the distributions looks
reasonable, with some of the testosterone residual histograms having a left skew. This indicates
that the predictor submodel may be over-estimating small values of testosterone.
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Figure D.1: Posterior predictive check of the FSH residuals and the testosterone measure-
ments. The darker lines indicate the observed data and the thinner bands are kernel density
estimates of the posterior distributions.
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Figure D.2: Histogram of model ‘residuals’ for the FSH predictor, computed at 20 different
iterations.

107



Figure D.3: Estimated mean FSH (top figure) and estimated mean testosterone (bottom fig-
ure), based on the estimated β coefficients.

D.1.3 Model-Estimated Mean Coefficients

As discussed in 4.3, the choice of knots used for the individual mean hormone trajectories was
made based on previous scientific evidence for FSH mean levels Randolph et al. (2011). Testos-
terone, on the other hand, is generally linear over time and does not have the “S-shape” that we
expect to see from FSH. To validate this choice on our data, Figure D.3 plots the estimated pos-
terior means (solid lines) and 95% CrI estimates (ribbons) of the β coefficients (population mean
parameters for the individual b-spline coefficients) for FSH and testosterone, based on different
values for FMP. (See Table REF for the estimated posterior means and 95% CrIs for the β param-
eters.) The solid lines are the model-estimated posterior means of β for each hormone marker, and
the ribbons represent the 95% credible interval values for each hormone.

For FSH, the model estimated mean trajectory does follow the expected pattern of FSH, with
FSH rising around -2 years to FMP. FSH is predicted to continue to rise after the MT as well,
before tapering at 7 years post FMP. We do see that testosterone appears to decline between -7 and
-2 years to FMP, before rising again in the [-2, 2] FMP window. After 2 years past FMP, mean
testosterone stablizes and the change in slopes between [2,7] and > 7 years past FMP appears to
be very minimal.
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Parameter Post. Mean 95% CrI
λ1,1 0.21 (0.11, 0.38)
λ1,2 0.21 (0.11, 0.38)
λ1,3 0.21 (0.11, 0.38)
λ2,1 0.21 (0.11, 0.38)
λ2,2 0.21 (0.11, 0.38)
λ2,3 0.21 (0.11, 0.38)
Ψ1[1, 1] 0.21 (0.11, 0.38)
Ψ1[1, 2] 0.01 (-0.03, 0.06)
Ψ1[1, 3] -0.07 (-0.22, 0.02)
Ψ1[1, 4] 0.01 (-0.16, 0.19)
Ψ1[2, 2] 0.02 (0.00, 0.11)
Ψ1[2, 3] -0.01 (-0.07, 0.02)
Ψ1[2, 4] 0.00 (-0.08, 0.07)
Ψ1[3, 3] 0.22 (0.04, 0.56)
Ψ1[3, 4] 0.13 (-0.03, 0.39)
Ψ1[4, 4] 0.69 (0.20, 1.53)
Ψ2[1, 1] 5.31 (2.25, 10.12)
Ψ2[1, 2] -0.04 (-0.45, 0.32)
Ψ2[1, 3] 0.18 (-0.50, 1.10)
Ψ2[1, 4] 0.13 (-0.74, 1.25)
Ψ2[2, 2] 0.04 (0.00, 0.16)
Ψ2[2, 3] 0.00 (-0.07, 0.06)
Ψ2[2, 4] 0.00 (-0.07, 0.09)
Ψ2[3, 3] 0.19 (0.03, 0.62)
Ψ2[3, 4] 0.10 (-0.02, 0.33)
Ψ2[4, 4] 0.27 (0.03, 0.79)
b01 -0.05 (-0.18, 0.07)
b02 4.74 (4.65, 4.84)
τa 0.18 (0.16, 0.21)
σ 0.05 (0.05, 0.06)

Table D.1: Evaluation of the posterior means and 95% CrI estimates for the covariance re-
gression parameters and the outcome regression parameters in the FSH and Testosterone
BMC outcome model.

D.2 Data Analysis: Posterior Means and 95% CrIs for Addi-
tional Model Parameters

In this section, we present the estimated posterior means and 95% credible intervals for the other
parameters from Chapter 4’s data application (Section 4.3.3.2) in the main text. Table D.1 contains
the estimates for the other outcome submodel parameters. Table D.2 contains the estimates for the
biomarker submodel parameters.
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Parameter Post. Mean 95% CrI
β11 0.08 (-0.12, 0.15)
β12 0.05 (-0.12, 0.22)
β13 0.15 (-0.07, 0.36)
β14 0.27 (0.09, 0.44)
β15 0.17 (-0.1, 0.42)
β21 0.00 (-0.15, 0.16)
β22 -0.51 (-0.66, -0.37)
β23 0.16 (0.02, 0.30)
β24 0.09 (-0.04,0.24)
β25 0.09 (-0.14, 0.3)
Ω1[1, 1] 0.43 (0.21, 0.69)
Ω1[1, 2] 0.04 (-0.02, 0.13)
Ω1[1, 3] 0.09 ( -0.07, 0.26)
Ω1[1, 4] 0.03 (0.07, 0.16)
Ω1[1, 5] 0.00 (-0.18, 0.19)
Ω1[2, 2] 0.03 (0.00, 0.01)
Ω1[2, 3] 0.01 (-0.05, 0.09)
Ω1[2, 4] 0.01 (-0.04, 0.07)
Ω1[2, 5] 0.00 (-0.05, 0.07)
Ω1[3, 3] 0.75 (0.47, 1.10)
Ω1[3, 4] 0.33 (0.18, 0.52)
Ω1[3, 5] 0.27 (0.06, 0.52)
Ω1[4, 4] 0.34 (0.17, 0.58)
Ω1[4, 5] 0.19 (0.04, 0.37)
Ω1[5, 5] 0.29 (0.08, 0.59)
Ω2[1, 1] 0.31 (0.19, 0.47)
Ω2[1, 2] 0.21 (0.12, 0.32)
Ω2[1, 3] 0.13 (0.06, 0.21)
Ω2[1, 4] 0.19 (0.12, 0.29)
Ω2[1, 5] 0.08 (0.00, 0.20)
Ω2[2, 2] 0.43 (0.29, 0.60)
Ω2[2, 3] 0.10 (0.02, 0.17)
Ω2[2, 4] 0.17 (0.09, 0.27)
Ω2[2, 5] 0.05 (-0.05, 0.18)
Ω2[3, 3] 0.12 (0.05, 0.22)
Ω2[3, 4] 0.11 (0.05, 0.18)
Ω2[3, 5] 0.07 (0.00, 0.16)
Ω2[4, 4] 0.21 (0.11, 0.38)
Ω2[4, 5] 0.09 (0.00, 0.02)
Ω2[5, 5] 0.13 (0.01, 0.35)

Table D.2: Evaluation of the posterior means and 95% CrI estimates for the mean marker
parameters in the MBHS applications. Estimates have been rounded to 2 decimal places.
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Parameter Truth Bias Coverage % Average Interval Length
b0 0.07 -0.01 87.0 0.24
b1 -0.02 -0.01 90.7 0.24
τa 0.1 -0.01 87.3 0.08
σ 0.05 0.00 98.1 0.01

Table D.3: Simulation Study I: Evaluation of bias, coverage, and 95% credible interval length
across 55 simulation replicates for the b0, τa, σ parameters.

D.3 Simulation Study- Results

In this section, we present the coverage, bias, and mean 95% CrI length for the other parameters
in our Simulation Study (Section 4).

111



Parameter Truth Bias Coverage % Average Interval Length
β11 -0.57 0.01 96.3 0.31
β12 0.17 -0.01 96.3 0.32
β13 -0.06 -0.01 96.3 0.33
β14 0.36 0.02 94.4 0.30
β15 0.34 0.01 90.7 0.38
β21 0.26 0.02 90.7 0.34
β22 -0.33 0.01 96.3 0.35
β23 0.00 -0.01 92.6 0.36
β24 -0.40 -0.02 92.6 0.35
β25 -0.21 0.00 92.6 0.35
Ω1[1, 1] 0.22 0.02 94.4 0.15
Ω1[1, 2] 0.02 0.01 92.6 0.14
Ω1[1, 3] 0.07 -0.03 100.0 0.16
Ω1[1, 4] 0.04 -0.01 96.3 0.09
Ω1[1, 5] 0.02 0.00 98.2 0.14
Ω1[2, 2] 0.36 0.28 98.2 0.77
Ω1[2, 3] 0.14 -0.19 100.0 0.55
Ω1[2, 4] -0.04 -0.06 96.3 0.21
Ω1[2, 5] -0.04 -0.01 96.3 0.17
Ω1[3, 3] 0.41 0.22 94.4 0.69
Ω1[3, 4] 0.05 0.06 94.4 0.24
Ω1[3, 5] 0.29 -0.07 92.6 0.33
Ω1[4, 4] 0.10 0.03 92.6 0.16
Ω1[4, 5] 0.10 -0.04 90.74 0.18
Ω1[5, 5] 0.57 0.06 92.6 0.45
Ω2[1, 1] 0.10 0.00 92.6 0.14
Ω2[1, 2] 0.11 -0.02 88.2 0.14
Ω2[1, 3] 0.02 -0.01 96.3 0.12
Ω2[1, 4] 0.01 0.00 98.1 0.12
Ω2[1, 5] 0.01 0.01 100.0 0.15
Ω2[2, 2] 0.45 0.00 90.74 0.31
Ω2[2, 3] 0.16 -0.02 100.0 0.26
Ω2[2, 4] 0.11 -0.01 96.3 0.26
Ω2[2, 5] 0.08 0.04 94.4 0.18
Ω2[3, 3] 0.36 0.01 92.6 0.26
Ω2[3, 4] 0.27 -0.01 94.4 0.18
Ω2[3, 5] 0.25 -0.01 94.4 0.21
Ω2[4, 4] 0.35 -0.01 98.1 0.24
Ω2[4, 5] 0.29 0.03 96.3 0.31
Ω2[5, 5] 0.33 0.5 94.4 1.26
b01 -0.02 0.00 87.04 0.24
b02 -0.02 0.00 90.74 0.24

Table D.4: Simulation Study I: Evaluation of bias, coverage, and 95% credible interval length
across 55 simulation replicates for the Bi parameters.
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Parameter Truth Bias Coverage % Average Interval Length
Σ0[1, 1] 0.82 0.00 90.7 0.19
Σ0[1, 2] -0.30 0.01 94.4 0.13
Σ0[2, 2] 0.21 0.01 92.6 0.14
Ψ1[1, 1] 0.01 0.01 94.4 0.10
Ψ1[1, 2] -0.02 0.01 94.4 0.17
Ψ1[1, 3] -0.02 0.00 100.0 0.04
Ψ1[2, 2] 0.07 0.31 90.7 0.80
Ψ1[2, 3] -0.001 -0.01 100.0 0.06
Ψ1[3, 3] 0.001 0.00 100.0 0.02
Ψ2[1, 1] 0.21 0.00 94.4 0.12
Ψ2[1, 2] -0.02 0.00 96.2 0.08
Ψ2[1, 3] -0.02 0.02 94.4 0.07
Ψ2[2, 2] 0.17 0.02 94.4 0.12
Ψ2[2, 3] -0.009 -0.01 94.4 0.05
Ψ2[3, 3] 0.001 0.31 98.2 0.67

Table D.5: Simulation Study I: Evaluation of bias, coverage, and 95% credible interval length
across 55 simulation replicates for the Θi parameters.
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