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ABSTRACT

Nanoparticles have emerged as a promising class of materials with potential ap-

plications in a variety of diverse fields. Central to the study of nanoparticles is

understanding how these structures interact with their surrounding environment as

these interactions can govern both how nanoparticles form and their specific func-

tions. Computational methods show promise as a means to characterize these inter-

actions on an atomic level as well as efficiently quantify a large number of potential

nano-interactions. Still, many challenges exist in applying computational methods to

the study of nanoscale interactions including the lack of available datasets, complex

nanoscale chemistry, and heterogeneous nanoparticle environments. In this thesis, I

show how multiple computational methods can be applied together to most effectively

overcome these challenges and quantify nanoparticle interactions while maintaining

a high level of chemical interpretability. Atomistic simulation provides a physically

grounded means to produce nanoparticle interaction data, numerical descriptors pro-

vide a chemically relevant method to interpret atomistic simulations, while machine

learning offers a computationally efficient tool to relate chemical descriptors to com-

plex nanoscale interactions. I apply these methods to answer two broad questions:

First, how do nanoscale interactions drive nanoparticle growth and the resulting

properties of these nanoparticles. Second, how do the properties and chemistries

of nanoparticles contribute to their function through the interactions in which they

participate. In the first application, I focus on the chemical interactions leading to

the formation of polycyclic aromatic compounds (PACs), a key class of structures

in the creation of soot aggregates and the synthesis of gas-phase carbon nanoparti-

cles. I show how kinetic Monte Carlo simulations of these interactions can reproduce

xiv



the diverse PAC chemical space in complex flame environments, while numerical de-

scriptors and machine learning can help us better understand these processes. In

the second application, I demonstrate how computational techniques can explain the

physical interactions of these PAC nanostructures that lead to their aggregation into

larger nanoparticles. Finally, I introduce a versatile nanoscale interaction predic-

tion tool that uses machine learning to accurately predict interaction sites between

nanostructures, showing how it can help understand the interactions and functions

of liquid-phase biological nanoparticles. The wide variety of nanoparticle systems

studied in this work underscores that these computational methods are not confined

to a single class of nanostructure or type of interaction but rather provide a robust

framework that can be applied to computationally quantify nanoparticle interactions

in a diverse range of applications.
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CHAPTER I

Introduction

1.1 Motivation

Nanoparticles describe a large class of structures which exist typically on scales

between 1 nm and 100 nm. These molecules have a variety of unique chemistries

due to their size-dependent properties, layered core-shell effects, complex shapes and

morphologies, high surface areas, and diverse functionalizations1–4. These properties

drive a range of diverse interactions which give nanoparticles a number of promis-

ing applications in areas such as manufacturing, electronics, pharmaceuticals, and

energy5.

The effectiveness of nanoparticles in these applications often depend on the nanopar-

ticles’ chemical features which drive their propensity to participate in very specific

interactions. For example, nanoparticle drugs can be designed to target biological

nanostrucutres such as proteins6 while catalytic nanoparticles can exhibit selectivity

towards certain reactants7. Furthermore, reliable synthesis of nanoparticles requires

tailoring the interactions of nascent nanostructures with surrounding molecules in re-

actor systems8,9. Thus in order to properly design, synthesize, and optimize nanopar-

ticles for specific applications, it is imperative to understand how the chemical fea-

tures of nanoparticles result in desired and undesired interactions. In addition to

the useful applications of these nanomaterials, anthropogenic nanoparticles formed

1



from human activity are also an area of active study due to their significant negative

effects on human health and the environment. One of the largest sources of these

harmful nanoparticles are soot and combustion nanoparticles which form from un-

burned hydrocarbon fuels during combustion10,11. These molecules have a number of

adverse health effects12–15 and are a key contributor to climate change16. Research

has suggested that engine design17,18 and fuel chemistry19 both play a key role in the

amount and types of these nanoparticles that form. Thus understanding the interac-

tions that lead to the growth of these pollutant nanoparticles and their precursors is

also paramount to designing systems which mitigate their effects.

Computational methods offer a valuable tool to study nanoparticle interactions.

Broadly, these methods can be divided into atomistic simulations which simulate

nanoparticle interactions using models grounded in physio-chemical principles, nu-

merical descriptors which provide a quantification of both nanoparticle properties

and interactions, and machine learning which discovers patterns in known nanopar-

ticle interactions and extends these relationships to predict new interactions.

These computational methods have a number of unique advantages which make

them particularly promising for the study of these interactions. In many cases, com-

putational methods offer an efficient means to study nanoparticles. Computational

methods can scale with computational resources and be highly automated which

makes them particularly suited to analyzing large candidate nanomaterial databases

and optimizing nanoparticle features for a specific application in order to produce

highly targeted experimental studies. Furthermore, computational methods are of-

ten able to provide highly detailed atomic level information in dynamic processes

of nanoparticle interactions such as atomic positions, bonds, forces, electrons, and

thermodynamic energies. This is especially useful in highly reactive systems such as

combustion environments which are difficult to measure due to their high reactiv-

ity and propensity of some measurement techniques to potentially alter the system

2



state20,21. Finally, the development of computational models of nanoparticle inter-

actions is intrinsically linked to our understanding of nanoscale chemistry. A high

fidelity atomistic simulation must incorporate the relevant physical phenomena in

order to properly reproduce experimental measurements. Thus by assessing the ar-

eas of agreement and deviation with these measurements, we can gain quantitative

insights into the accuracy of our chemical models and our assumptions about the

process. When considering machine learning, supervised models require a represen-

tation of the nanoparticles which can be numerically related to the interaction. An

accurate machine learning model suggests that the input representation includes the

chemical features which drive the nano-interaction. Thus, this thesis looks to apply

computational methods to better understand nanoparticle growth and function by

characterizing nanoscale interactions.

A number of unique challenges exist towards applying computational methods

towards the prediction of nanoscale interactions. These challenges include a lack

of existing nanoparticle datasets, the heterogeneity of nanoparticle environments, the

difficulty in representing complex nanoparticle chemistry, and the high computational

cost of measuring nanoparticle properties. Ultimately, these challenges will influence

the direction of this thesis, as it aims to demonstrate the necessity of employing

multiple computational methods for overcoming the unique obstacles of predicting

nanoscale interactions. With this guiding concept, the thesis will apply atomistic

simulation, numerical descriptors, and machine learning to both human-engineered

and naturally occurring nanostructures in order to quantify a diverse set of interac-

tions. The wide breadth of computational methods and broad nanoparticle domains

covered this work will offer a road-map which can be applied to computational study

of nanoscale systems.

3



Figure 1.1: Comparison between different atomistic simulation techniques. Each sim-
ulation technique is plotted according to the relative number of atoms and
timescale.

1.2 Atomistic Simulations to Predict Nanoscale Interactions

Atomistic simulations are a broad class of computational techniques which have

been used to explore nano-interactions. The specific simulation methods which have

been used to simulate these nano-interactions depend on the level of detail, size of

the simulation, and length of simulation time22,23. A brief qualitative comparison be-

tween the levels of detail is given in figure 1.1. While nanomaterial studies have used

simulations ranging from density functional theory calculation methods to describe

nanoparticle reactivity23 to finite element calculations to describe material proper-

ties24, a wide variety of nanoparticle interactions occur on the scale of hundreds to

thousands of atoms and picoseconds to nanoseconds of time. As such, three methods

will be highlighted in this work which have been well suited to simulate these scales:

molecular dynamics (MD), coarse-grained MD, and Monte Carlo methods.

Molecular dynamics simulates the motion of individual atoms in time by numer-

ically solving Newton’s equations of motion. A MD simulation undergoes a large

4



number of discrete time steps where the position and velocity of individual atoms

are adjusted based on their current position, current velocity, and acceleration which

is derived from a calculated force. At the center of MD is the force field which is

a set of equations and numerical constants which describe the forces of each atom

and can consider properties such as electrostatics, bond lengths, and bond torsion25.

The force field is typically chosen for the specific system (e.g. organic or inorganic)

and represents one of the costliest parts of the MD computation. MD simulations

have revealed valuable information about nanoparticle interactions with biological

structures26,27, small molecules28, and other classes of engineered nanoparticles29,30.

Enhanced sampling MD techniques such as well-tempered Metadynamics and replica

exchange MD31–33 have also been introduced which allow sampling of rare events in

nanomaterial interactions such as energetic barrier crossings34,35.

One of the drawbacks of MD simulations is that they become computationally

prohibitive for larger sized systems. For example, particle mesh Ewald electrostatic

calculations in all-atom MD scales in complexity with the number of atoms n ac-

cording to O(n log n)36. In order to overcome this size limitation, a class of methods

known as coarse-graining decomposes a nanoparticle into clusters of atoms known

as beads. This effectively reduces the number of discrete particles which need to

be accounted for in the simulation and can significantly reduce the computational

cost. After this, a coarse-grained force field can be derived to describe the forces

on these beads and a more computationally efficient MD simulation can be run.

These coarse-grained simulations have been used extensively to study interactions

between biological nanostructures such as proteins37. In these simulations, the pro-

teins are typically coarse-grained according to their amino acids and applied to model

nano-interactions in applications of self-interaction (folding)38 and docking39. More

recently, using physical relationships such as core-shell modeling, these methods have

been extended to a broader class of nanomaterials40.
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The final class of nanoparticle interaction simulation methods discussed herein are

Monte Carlo methods. These methods are characterized by stochastic sampling of

molecular configurations. With sufficient sampling it is possible to use Monte Carlo

simulations to explore the molecular state space. Unlike the previously discussed

MD methods, Monte Carlo methods rely on discrete stochastic transitions and do

not require solving Newton’s equations of motion. As a result, these simulations can

be significantly more efficient41. A number of Monte Carlo sampling algorithms are

based around Markov chains and focus on sampling states in equilibrium42. More

applicable to the nanoparticle interactions discussed herein are kinetic Monte Carlo

methods which explore the dynamics of an interactions by considering an evolving

set of different transition rates. Using the Gillespie algorithm, a series of reactions

or transitions are stochastically selected according to their relative rate along with a

time step update inversely related to the sum of all transition probabilities43. The

result is a history of a molecule’s evolution in time. Kinetic Monte Carlo has shown

success in characterizing a number of nano-interactions such as the chemical reactions

leading to the growth of carbon nanostructures in flames44–47 and the interactions of

magnetic nanoparticles for biological applications48.

1.3 Numerical Descriptors of Nanoparticles

While atomistic simulations can produce a large amount of data, there exists a

need for methods which can post-process and characterize these atomistic simulations

to provide quantitative interpretations. As simulations often produce high dimen-

sional representations such as atomic coordinates or molecular structures evolving

in time, numerical molecular descriptors are used to distill this information both to

characterize these nano-interactions in a manner that is comprehensible to humans

and to highlight properties of interest. This requires a set of descriptors which allows

a molecule to be described by its properties. The diversity and unique properties of
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nanoparticles makes this a non-trivial task.

Significant work has focused on finding these properties for small molecules, how-

ever, many of these descriptors are either overly simplistic (e.g. binary fingerprints49)

or not universally applicable to all nanoparticle chemistries (e.g. numbers pertaining

only to covalent bonds50). Still, a large number of publications51–54 and software

packages55–57 exist on the subject of representing molecules with numerical descrip-

tors. Broadly, there are four classes of chemical descriptors based on the information

which is required to compute them (figure 1.2): 0-D Descriptors contain purely com-

positional information and can be derived solely from the molecular formula. 1-D

Descriptors pertain to subgroups within the molecule such as the presence of a func-

tional group or length of an aliphatic side chain. 2-D Descriptors are defined entirely

by the atoms and their connectivity, this includes many graph based and topologi-

cal descriptors50. Finally, 3-D Descriptors offer a 3-D definition of atoms and thus

coordinates are required to compute these descriptors. While 3-D descriptors offer

the most detailed description of nanoparticles, they require structural information

and can be sensitive to configuration changes and changes to atomic positions of

the nanoparticle in time. Higher dimensional descriptors such as those representing

multiple conformers or of multiple descriptors also exist.

In providing interpretibility to MD simulations, descriptors have been applied to

relate properties of nanoparticles to potential energies and free energies measured

through simulation outputs58–60. Furthermore, 2-D descriptors can offer a means to

detect complex interactions through graph-based descriptors based on proximity61.

A number of descriptors have also been used to validate simulations by computing

properties which can be related to experimental measurements62,63.

In addition to interpreting atomistic simulation results, numerical descriptors can

also be used as inputs into data-driven machine learning models64,65. Recently, at-

tempts have been made to create nanoparticle-specific sets of descriptors that include
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Figure 1.2: Visual representation of different descriptor types.

both structural representations and chemical features66. While these descriptors have

typically been applied to small, homogeneous datasets and are limited in their speci-

ficity, they have demonstrated good predictive capabilities and produced chemical

insights in their applications67.

1.4 Machine Learning to Predict Nanoparticle Interactions

While atomistic simulations and numerical descriptors provide a means to study

nanoparticle interactions, data-driven methods such as supervised machine learning

are also a valuable tool to characterize these interactions. In this context, supervised

machine learning, hereon referred to simply as machine learning, is a class of algo-

rithms which can take as input existing nanoparticle interaction data along with a

representation of the nanoparticles, typically a numerical vector of chemically mean-

ingful features. The algorithm is then trained on this existing data, where parameters
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are fit to relate the nanoparticle representation to the known interaction data. After

this, the model can take as input the representation of any arbitrary nanoparticle and

predict an interaction parameter of interest such as a free energy, rate constant, or

interaction site.

Machine learning is a valuable tool for a number of reasons. First, machine learn-

ing offers a means to derive data where measurement by direct experiment or atom-

istic simulation is challenging. Experimental or atomistic simulation data is often

costly to collect and machine learning allows a means to more cheaply obtain this

nano-interaction data. One class of nanostructures where this has been particularly

apparent is the development of machine learning methods for protein structure pre-

diction. Protein amino acid sequences are significantly cheaper to measure than pro-

tein structures and as such, much experimental work has focused on using machine

learning to predict self-interaction (i.e. folding) of these structures given protein se-

quences68. In other applications, machine learning has also offered a means to predict

protein-nanoparticle interactions which are costly to measure with experiments69,70.

Machine learning also fills a void where simulation is not practical due to computa-

tional cost. The binding energies of small molecules to catalytic metal nanoparticles

has been studied with a number of machine learning methods which reduces the com-

putational cost associated with density functional theory calculations71,72 Recently, a

study of silicon nanoparticle aggregation required millions of hours of MD simulations

to simulate approximately one hundred different interactions, far below what is likely

to occur in a real reactor system73. A machine learning model was able to be trained

on this data and predict the interaction parameters of any arbitrary pair with negli-

gible computational cost74. In addition to computational cost, machine learning also

has been used to predict nanoparticle interactions which are difficult to model with

simulation due to their complexity. For example, the formation of soot nanoparticles

involves multiple chemical and physical interaction mechanisms occurring at differ-
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ent length scales which would require a complex multi-scale simulation. However,

machine learning has shown success finding complex quantitative relationships and

using easily computed gas-phase chemistry to predict soot formation rates which are

otherwise difficult to simulate75,76.

Next, machine learning allows more targeted experiments of nanoparticle inter-

actions. The nanomaterial design space is intractably large, and machine learning

can identify promising areas for future study. Recently, machine learning was able

to predict the biological interactions of nanoparticles with bacteria and make specific

recommendations to design effective nanoparticle anti-microbials64. Another machine

learning method identified two anti-cancer therapeutic nanoparticles which proved

to be highly effective under experimental conditions77. A number of other machine

learning works have yielded successful experiments which optimized nanoparticle syn-

thesis78, nano-medicine activity64, and nanomaterial properties67.

Finally, machine learning can also act as a tool to improve atomistic simulations

of nanoparticle interactions. A number of works have focused on using novel atomic

representations to develop more accurate and efficient MD force fields79–81. These

works have been extended to enhance the accuracy of nanoparticle simulations82.

In addition to force fields, machine learning has been used to provide more effec-

tive initial configurations for MD studies. A number of studies have used machine

learning to predict protein interaction sites or configurations which allowed interac-

tion simulations to proceed more efficiently than simulations which are naive to the

protein structure and interacting residues83,84. Still the limited number of reliable

machine learning prediction methods for non-protein nanostructures has precluded

these methods being extended to the broader nanoparticle chemical space.
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1.5 Challenges Extending Computational Frameworks to Nanopar-

ticles

The application of computational methods for predicting nanoscale interactions

presents several unique challenges, such as the absence of adequate nanoparticle

datasets, the heterogeneity of nanoparticle environments, the complexity of represent-

ing nanoparticle chemistry, and the high computational cost associated with measur-

ing many nanoparticle properties.

The first challenge is that nanoparticles often have significantly less data available

than other domains. Molecules such as proteins and small molecules are characterized

by large databases with significant information about chemical structure and proper-

ties85,86 which has allowed for the rapid prediction these molecules’ interactions87–89.

Unlike proteins and small molecules, however, most nanoparticles do not have such

available datasets. As such, computational works looking to broadly study nanopar-

ticle interactions need to create equivalent datasets which can be used to quantify

nanoparticle interactions or act as inputs into data-driven machine learning models.

Creation of such datasets is not trivial and requires either adapting a database from

the literature90,91 or creating new data through atomistic simulation65. The former is

time-consuming and depends on appropriate data being available. The later is often

more practical as it can be generally applied to a nanoscale system but requires a

simulation methodology which can capture the underlying chemistry.

While atomistic simulation data can be an effective way to create data to study

nanoparticle interactions, it often needs to be combined with other computational

methods in order to extract meaningful insights. Nanoparticles often do not exist

in a system as a single structure but typically exist as an ensemble of molecules

with a distribution of sizes, morphologies, and chemical features92–95. When this

occurs, simulation results are often too complex to directly interpret. To remedy
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this, numerical descriptors are needed to decompose a large number of individual

molecular configurations into quantifiable values which describe the chemistry of the

nanoparticles and their interactions.

In order to properly use these descriptors, however, one must account for the

unique chemistry which occurs during nanoscale interactions. Many numerical de-

scriptors which have typically been developed for organic small molecules53,96 or ionic

crystal structures97 will often fail when applied to nanoparticles which often contain a

mixture of ionic and covalent forces. Furthermore, the assumptions these descriptors

make about molecular chemistry may not extend to nanointeractions which are gov-

erned by a unique mix of size-dependent interior contributions and surface effects98.

In addition to all this, due to the ensemble of different nanoparticles in a system,

a descriptor combination method is often needed which accounts for both the mean

properties of the nanoparticles but also tails of the nanoparticle property distribu-

tion which may disproportionately contribute to the interactions99. For example,

it has been determined that a few highly positive charged configurations of silver

nanoclusters drive the interaction of these nanoparticles with carbon monoxide100.

Finally, due to computational costs, simulations and descriptors alone are not

enough to characterize all kinds of nanoparticle interactions. The large number of

unique structures present in nanoparticle environments means that there are many

potential interactions which might occur. For example, when considering binary

interactions in a heterogeneous nanoparticle environment, the number of potential

interactions which must be accounted for is n2+n
2

where n is the number of unique

nanoparticle structures (see appendix A). Such scaling often precludes direct atom-

istic simulation as the large number of simulations would be cost-prohibitive. Thus

in many cases, in order to account for all potential interactions needed to accurately

model a nanoparticle system, more efficient techniques such as machine learning are

needed for characterizing large numbers of interactions. While techniques such as
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machine learning, when properly implemented, can quantify these nano-interactions

it still faces many of the same aforementioned challenges as it requires large amounts

of data and reliable chemical descriptors.

Overall, each computational method discussed in this work is particularly suited

to address some of these challenges but still faces significant limitations. Atomistic

simulation allows for the creation of physically meaningful datasets of nanoparticle

interactions but suffers from a high computational cost and still requires a means for

interpretation. Chemical descriptors provide a meaningful representation of nanopar-

ticles and their interactions but require additional computational techniques to create

data for these descriptors and extend these numerical values to new systems. Finally

machine learning allows for the rapid quantification of many nanoscale interactions,

however also requires data and numerical nanoparticle representations in order to

train and use the model. As a result of these limitations, nanoparticle interactions

typically can not be sufficiently quantified with a single computational technique.

Accurate characterization of nanoscale interactions requires multiple computational

techniques in concert to overcome these challenges.

1.6 Dissertation Framework

This thesis will describe my work and findings in using computational methods to

predict nanoscale interactions. I will focus on two broad scientific questions applied

to a number of different nanoscale systems. First, how can computational methods

quantify nanoparticle growth through the chemical and physical interactions in which

they participate. Specifically, I will focus on the kinds of growth and properties that

arise as a result of these interactions. Secondly, how can computational methods

relate the properties of nanoparticles to their function by predicting the interactions

which they participate in.

These overarching questions will be applied to three different systems: the chem-
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ical interactions leading to the growth of nanoparticles in the gas-phase, the physical

interactions of nanoparticles in the gas-phase, and liquid-phase interactions in bio-

logical systems.

For the first two gas-phase domains, I will focus on a class of nanostrucutres known

as polycyclic aromatic compounds (PACs). I will show how computational methods

can predict the types of nanostructures formed in combustion environments. I will use

kinetic Monte Carlo simulations to represent chemical interactions and well-tempered

Metadynamics to offer information about their physical aggregation. I will then show

how numerical descriptors can quantify the properties of large ensembles of PACs to

show the evolution of their growth in flame environments. Finally, I will demonstrate

how data derived from my simulations and represented with these descriptors can be

used as inputs into machine learning models both to predict the formation of larger

combustion nanoparticles such as soot as well as predict the thermodynamic stability

and rates of PAC physical clustering.

For the third domain, I will introduce a framework for better understanding the

function of nanoparticles by predicting general nanoscale interactions. In contrast

to the first two domains, this general prediction application looks to address a case

where computational or experimental data for a specific nanoscale system may not

be available and might be difficult to obtain. This approach will show how data can

be leveraged from multiple sources with different levels of data availability. Signif-

icant discussion will focus on a multi-scale coarse-grained representation which can

decompose any nano-structure into a set of sub-units which can then be represented

by numerical descriptors to a machine learning model to predict interaction sites. I

will then demonstrate how this method can be used to predict a number of diverse

biological nano-interactions such as protein-protein interactions, protein-nanoparticle

interactions, and nanoparticle-nanoparticle interactions.

The prediction of nano-interactions is a challenging problem due to their novel,
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unique, and diverse chemistries. Across all the aforementioned systems, I will develop

and apply multiple different kinds of computational methods together to overcome

these challenges and accurately characterize how these nanoparticles interact in a

variety of different contexts. The work in this thesis will provide a road map for

using computational methods to quantify nanoscale interactions.
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Véronique Bouvard, Lamia Benbrahim-Tallaa, Neela Guha, Robert Baan, Heidi
Mattock, and Kurt Straif. The carcinogenicity of outdoor air pollution. Lancet
Oncol., 14(13):1262, 2013.
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Kalé, and Klaus Schulten. Scalable molecular dynamics with NAMD. Journal
of Computational Chemistry, 26(16):1781–1802, 2005.

[37] Siewert J. Marrink, H. Jelger Risselada, Serge Yefimov, D. Peter Tieleman, and
Alex H. de Vries. The martini force field: Coarse grained model for biomolecular
simulations. The Journal of Physical Chemistry B, 111(27):7812–7824, 2007.

[38] Gia G. Maisuradze, Patrick Senet, Cezary Czaplewski, Adam Liwo, and
Harold A. Scheraga. Investigation of Protein Folding by Coarse-Grained Molec-
ular Dynamics with the UNRES Force Field. The Journal of Physical Chemistry
A, 114(13):4471–4485, 2010.

[39] Paulo C. T. Souza, Sebastian Thallmair, Paolo Conflitti, Carlos Ramı́rez-
Palacios, Riccardo Alessandri, Stefano Raniolo, Vittorio Limongelli, and Siew-
ert J. Marrink. Protein–ligand binding with the coarse-grained Martini model.
Nature Communications, 11(1):3714, 2020.

[40] Ankush Singhal and G. J. Agur Sevink. A Core-Shell Approach for Systemat-
ically Coarsening Nanoparticle–Membrane Interactions: Application to Silver
Nanoparticles. Nanomaterials, 12(21):3859, 2022.

[41] Herma M. Cuppen, Leendertjan J. Karssemeijer, and Thanja Lamberts. The
kinetic monte carlo method as a way to solve the master equation for interstellar
grain chemistry. Chemical Reviews, 113(12):8840–8871, 2013.

[42] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. Equation of state calculations by fast
computing machines. J. Chem. Phys., 21(6):1087–1092, 1953.

[43] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[44] Jason Y. W. Lai, Paolo Elvati, and Angela Violi. Stochastic atomistic simulation
of polycyclic aromatic hydrocarbon growth in combustion. Phys. Chem. Chem.
Phys., 16(17):7969, 2014.

[45] Angela Violi. Modeling of soot particle inception in aromatic and aliphatic
premixed flames. Combust. Flame, 139(4):279–287, 2004.

19



[46] Michael Frenklach, Zhenyuan Liu, Ravi I. Singh, Galiya R. Galimova, Valeriy N.
Azyazov, and Alexander M. Mebel. Detailed, sterically-resolved modeling of
soot oxidation: Role of O atoms, interplay with particle nanostructure, and
emergence of inner particle burning. Combust. Flame, 188:284–306, 2018.

[47] Abhijeet Raj, Matthew Celnik, Raphael Shirley, Markus Sander, Robert Pat-
terson, Richard West, and Markus Kraft. A statistical approach to develop
a detailed soot growth model using PAH characteristics. Combust. Flame,
156(4):896–913, 2009.

[48] RP Tan, Julian Carrey, and Marc Respaud. Magnetic hyperthermia properties
of nanoparticles inside lysosomes using kinetic monte carlo simulations: Influ-
ence of key parameters and dipolar interactions, and evidence for strong spatial
variation of heating power. Phys. Rev. B, 90:214421, 2014.

[49] Ling Xue, Jeffrey W Godden, Florence L Stahura, and Jurgen Bajorath. De-
sign and Evaluation of a Molecular Fingerprint Involving the Transformation
of Property Descriptor Values into a Binary Classification Scheme. J. Chem.
Inf. Comput. Sci., 43(4):1151–1157, 2003.

[50] Ovidiu Ivanciuc, Teodora Ivanciuc, and Alexandru T. Balaban. Design of Topo-
logical Indices. Part 10.s Parameters Based on Electronegativity and Covalent
Radius for the Computation of Molecular Graph Descriptors for Heteroatom-
Containing Molecules. Journal of Chemical Information and Computer Sci-
ences, 38(3):395–401, 1998.

[51] Christopher A Lipinski, Franco Lombardo, Beryl W Dominy, and Paul J Feeney.
Experimental and computational approaches to estimate solubility and perme-
ability in drug discovery and development settingsq. Advanced Drug Delivery
Reviews, pages 3–26, 2001.

[52] Lowell H. Hall and Lemont B. Kier. Electrotopological State Indices for Atom
Types: A Novel Combination of Electronic, Topological, and Valence State
Information. Journal of Chemical Information and Modeling, 35(6):1039–1045,
1995.

[53] Scott A. Wildman and Gordon M. Crippen. Prediction of Physicochemical
Parameters by Atomic Contributions. Journal of Chemical Information and
Computer Sciences, 39(5):868–873, 1999.

[54] Roberto Todeschini and Viviana Consonni. Handbook of Molecular Descriptors.
Methods and Principles in Medicinal Chemistry. Wiley, 1 edition, 2000.

[55] Greg Landrum. Rdkit: Open-source cheminformatics.

[56] Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. 2015.

20



[57] Jie Dong, Dong-Sheng Cao, Hong-Yu Miao, Shao Liu, Bai-Chuan Deng, Yong-
Huan Yun, Ning-Ning Wang, Ai-Ping Lu, Wen-Bin Zeng, and Alex F. Chen.
ChemDes: an integrated web-based platform for molecular descriptor and fin-
gerprint computation. Journal of Cheminformatics, 7(1), 2015.

[58] Paolo Elvati, Kirk Turrentine, and Angela Violi. The role of molecular proper-
ties on the dimerization of aromatic compounds. Proceedings of the Combustion
Institute, 37(1):1099–1105, 2019.

[59] Jeffrey S. Lowe, Jason Y.W. Lai, Paolo Elvati, and Angela Violi. Towards a
predictive model for polycyclic aromatic hydrocarbon dimerization propensity.
Proc. Combust. Inst., 35(2):1827–1832, 2015.

[60] Bangquan Li, Jing Li, Xiaoqiang Su, and Yimin Cui. Molecular dynamics study
on structural and atomic evolution between au and ni nanoparticles through
coalescence. Scientific Reports, 11:15432, 2021.

[61] Fabio Pietrucci and Wanda Andreoni. Graph theory meets ab initio molecular
dynamics: Atomic structures and transformations at the nanoscale. Phys. Rev.
Lett., 107:085504, 2011.

[62] Qi Wang, Paolo Elvati, Doohyun Kim, K. Olaf Johansson, Paul E. Schrader,
Hope A. Michelsen, and Anegla Violi. Spatial dependence of the growth of poly-
cyclic aromatic compounds in an ethylene counterflow flame. Carbon, 149:328–
335, 2019.

[63] Moshen Ramezanpour, Sherry S. W. Leung, Karelia H. Delgado-Magnero,
BYM. Bashe, Jenifer Thewalt, and Dirk P. Tieleman. Computational and ex-
perimental approaches for investigating nanoparticle-based drug delivery sys-
tems. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1858(7, Part
B):1688–1709, 2016.

[64] Mahsa Mirzaei, Irini Furxhi, Finbarr Murphy, and Martin Mullins. A machine
learning tool to predict the antibacterial capacity of nanoparticles. Nanomate-
rials, 11(7):1774, 2021.

[65] Alex K. Chew, Joel A. Pedersen, and Reid C. Van Lehn. Predicting the
physicochemical properties and biological activities of monolayer-protected gold
nanoparticles using simulation-derived descriptors. ACS Nano, 16(4):6282–
6292, 2022.

[66] Xiliang Yan, Alexander Sedykh, Wenyi Wang, Xiaoli Zhao, Bing Yan, and
Hao Zhu. In silico profiling nanoparticles: predictive nanomodeling using uni-
versal nanodescriptors and various machine learning approaches. Nanoscale,
11(17):8352–8362, 2019.

21



[67] Xiliang Yan, Alexander Sedykh, Wenyi Wang, Bing Yan, and Hao Zhu. Con-
struction of a web-based nanomaterial database by big data curation and mod-
eling friendly nanostructure annotations. Nature Communications, 11(1):2519,
2020.

[68] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Ž́ıdek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl,
Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav
Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas
Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W.
Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly ac-
curate protein structure prediction with AlphaFold. Nature, 596(7873):583–589,
2021.

[69] Nicholas Ouassil, Rebecca L. Pinals, Jackson Travis Del Bonis-O’Donnell, Jef-
frey W. Wang, and Markita P. Landry. Supervised learning model predicts
protein adsorption to carbon nanotubes. Science Advances, 8(1):eabm0898,
2022.

[70] Minjeong Cha, Emine S.T. Emre, Xiongye Xiao, Ji-Young Kim, Ppaul Bogdan,
J. Scott VanEpps, Angela Violi, and Nicholas A. Kotov. Unifying structural
descriptors for biological and bioinspired nanoscale complexes. Nature Compu-
tational Science, 2:243–252, 2022.

[71] Ryosuke Jinnouchi and Ryoji Asahi. Predicting Catalytic Activity of Nanopar-
ticles by a DFT-Aided Machine-Learning Algorithm. The Journal of Physical
Chemistry Letters, 8(17):4279–4283, 2017.

[72] Zachary W. Ulissi, Michael T. Tang, Jianping Xiao, Xinyan Liu, Daniel A.
Torelli, Mohammadreza Karamad, Kyle Cummins, Christopher Hahn,
Nathan S. Lewis, Thomas F. Jaramillo, Karen Chan, and Jens K. Nørskov.
Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic
Facets and Reveal Active Site Motifs for CO 2 Reduction. ACS Catalysis,
7(10):6600–6608, 2017.

[73] Xuetao Shi, Paolo Elvati, and Angela Violi. On the growth of si nanoparticles
in non-thermal plasma: physisorption to chemisorption conversion. Journal of
Physics D: Applied Physics, 54(36):365203, 2021.

[74] Paolo Elvati, Jacob C. Saldinger, Matt Raymond, Jonathan Lin, Xuetao Shi,
and Angela Violi. Machine learning models for si nanoparticle growth in non-
thermal plasma. In Preparation, 2023.

[75] Mehdi Jadidi, Stevan Kostic, Leonardo Zimmer, and Seth B Dworkin. An
artificial neural network for the low-cost prediction of soot emissions. Energies,
13(18):4787, 2020.

22



[76] Mehdi Jadidi, Luke Di Liddo, and Seth B Dworkin. A long short-term memory
neural network for the low-cost prediction of soot concentration in a time-
dependent flame. Energies, 14(5):1394, 2021.

[77] Daniel Reker, Yulia Rybakova, Ameya R. Kirtane, Ruonan Cao, Jee Won Yang,
Natsuda Navamajiti, Apolonia Gardner, Rosanna M. Zhang, Tina Esfandi-
ary, Johanna L’Heureux, Thomas von Erlach, Elena M. Smekalova, Dominique
Leboeuf, Kaitlyn Hess, Aaron Lopes, Jaimie Rogner, Joy Collins, Siddartha M.
Tamang, Keiko Ishida, Paul Chamberlain, DongSoo Yun, Abigail Lytton-Jean,
Christian K. Soule, Jaime H. Cheah, Alison M. Hayward, Robert Langer, and
Giovanni Traverso. Computationally guided high-throughput design of self-
assembling drug nanoparticles. Nature Nanotechnology, 16(6):725–733, 2021.

[78] Flore Mekki-Berrada, Zekun Ren, Tan Huang, Wai Kuan Wong, Fang Zheng,
Jiaxun Xie, Isaac Parker Siyu Tian, Senthilnath Jayavelu, Zackaria Mahfoud,
Daniil Bash, Kedar Hippalgaonkar, Saif Khan, Tonio Buonassisi, Qianxiao Li,
and Xiaonan Wang. Two-step machine learning enables optimized nanoparticle
synthesis. npj Computational Materials, 7(1):55, 2021.

[79] Jorg Behler. Atom-centered symmetry functions for constructing high-
dimensional neural network potentials. The Journal of Chemical Physics,
134(7):074106, 2011.

[80] Michael Gastegger, Ludwig Schwiedrzik, Marius Bittermann, Florian Berzsenyi,
and Philipp) Marquetanda. wacsf—weighted atom-centered symmetry functions
as descriptors in machine learning potentials. J. Chem. Phys., 148, 2018.

[81] Volker L. Deringer, Miguel A. Caro, and Gábor Csányi. A general-purpose
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CHAPTER II

Chemical Growth of Gas-Phase Nanoparticles

2.1 Summary

In this chapter, I discuss how the chemical reactions of precursor nanostructures

lead to the formation of combustion nanoparticles in flame environments. I focus on a

class of precursor molecules known as polycyclic aromatic compunds (PACs) and their

growth through chemical interactions with small molecules in the gas-phase. In this

section, I apply computational methods to describe how these nanostructures form

through chemical interactions, how different chemical interactions contribute to the

properties’ of PACs, and the implications of these properties for the broader transition

of these precursors into larger combustion nanoparticles. To address these areas, I

study a diverse set of flame systems and apply kMC simulations, descriptors, and

machine learning in a number of different contexts. After introducing the problem and

explaining the common methodology, each section in this chapter describes at least

one of my publications regarding the computational study of a specific flame system

and application1–5. Overall, I show how computational methods can validate PAC

simulations against experiment, spatially characterize the development of chemical

properties, explain observed PAC growth phenomena, and quantitatively relate PAC

properties to more difficult to measure combustion nanoparticle growth phenomena.
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2.2 Introduction

With the ubiquitous role of hydrocarbons in energy, transportation, and manu-

facturing, the formation of combustion byproducts remains a pressing concern. Un-

burned hydrocarbons react within the flame to form multi-ringed aromatic structures

known as polycyclic aromatic compounds (PACs)6. These molecules are widely ac-

cepted to be a major precursor to combustion nanoparticles7 which have negative

impacts on both humans8 and the environment9. Furthermore, as flame synthesis

and flame spray pyrolysis are some of the most effective methods for high-throughput

synthesis of nanoparticles10, there is also a desire to better understand the role these

PACs play in the growth of engineered carbon nanoparticles11,12.

Despite decades of research on PACs, however, there is a poor understanding of

the types of structures formed in flame environments and the conditions leading to

their formation. Past studies have determined that PACs grow through a variety of

competing pathways13–19. These works highlight the large number of possible PAC

growth reactions and molecules present in combustion. Still, the majority of research

neglects a diverse range of structures that have been experimentally observed20 fo-

cusing instead on a narrow range of stabilomer21 PACs made up of pericondensed,

six-membered carbon rings.

Such simplistic approaches offer insufficient insight into the PACs’ chemical space

as they fail to fully characterize PACs’ properties and effects. Numerous works have

indicated that PACs’ size and aliphatic branching along with the flame environment

determine whether PACs will nucleate into larger combustion nanoparticles22–25. Re-

cently, Elvati et al. presented a nuanced view of molecular descriptors, showing

how the complex interplay of properties such as mass, presence of rotatable bonds,

and oxygen content affect the propensity of PACs to dimerize and form clusters26,27.

Beyond nanoparticle formation, PACs’ structure is relevant in health studies where

specific properties have been linked to cellular uptake28,29, toxicity30, and bacterial
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interactions31. Thus, an accurate depiction of PACs’ diversity is paramount to prop-

erly capture the effects specific combustion environments have on health and the

environment.

There is a pressing need to link specific combustion environments (i.e. tempera-

ture and composition of gas-phase species) to the properties and growth pathways of

these molecules. A comprehensive analysis of the PACs’ chemical landscape is made

difficult by the complexity, in terms of number, variety, and reactivity, of species

within the system. Deterministic methods simulate PACs with a series of rate equa-

tions as part of a larger combustion model15,32. Not only do these methods require

a priori knowledge of all species and reactions involved, but are also only applicable

when continuous deterministic approximations are valid. As such, these methods are

strongly limited in their accuracy by the narrow validity of the approximation they

are built upon.

To remedy this, studies have found success predicting the formation of PACs’

growth in flames through stochastic modeling. Frenklach and coworkers developed

a kinetic Monte Carlo (kMC ) model33 focused on identifying growth pathways and

has since produced updated kMC models including hydrogen-abstraction-acetylene-

addition, five-membered ring migration, and ring oxidation34,35. Violi et al. created

the AMPI code36 that combines kMC and molecular dynamics to simulate polycyclic

aromatic hydrocarbons’ (PAHs’) growth and has successfully reproduced many PACs

observed experimentally. Raj et al. have developed a kMC model named kMC -

ARS37, to determine PAHs’ surface growth based on edge sites38. This model has

been applied to study the role of PAHs in a larger soot population balance39, however,

it focuses primarily on aromatic carbon rings and thus is not best suited for predicting

other compounds (e.g. oxygenated PACs) that might be seen in flame systems. Lai

et al. developed the SNapS code which has achieved excellent quantitative agreement

with experiment40. SNapS is a kMC/molecular mechanics model that simulates the
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growth of seed molecules into larger PACs through a series of general site reactions.

This code has been repeatedly modified to include new sets of reactions41 and has been

validated under different experimental conditions, correctly predicting oxygenated

PACs20 and the presence of five-membered rings42.

Recently, Wang et al. fully revised the SNapS code and created SNapS2 to im-

prove handling of time-steps and to remove the molecular mechanics calculations,

which drastically improved the computational performances. Such improvements

have allowed this software to analyze PACs’ growth along selected streamlines within

a 2-D counter-flow ethylene diffusion flame where a diverse compositional array of

PACs were identified19. Given the important implications this diversity has on PAC

growth and soot formation, it is imperative to further investigate practical fuels and

flame configurations more representative of real systems.

In this chapter, I study the chemical interactions of these PACs to provide more

information on this crucial step in the formation of combustion nanoparticles. My

work in this section seeks to address three areas. (1) How atomistic simulations

capture the chemical growth of these PACs. (2) How to use descriptors to charac-

terize the properties of PACs which are produced during simulations. (3) How the

simulations and descriptors can be combined with machine learning to quantitatively

predict the formation of combustion nanoparticles. To address the issue of simulating

these interactions, I apply kMC simulations using the SNapS2 model on a number of

different flame geometries and compositions. These flames include a coflow diffusion

Jet A-1 surrogate aviation fuel flame as well as ethylene and ethylene-ethanol pre-

mixed flames. The SNapS2 simulations provide a spatial dependence of PAC growth

through an ensemble of PACs formed in the flame. However, direct interpretation of

these results is challenging due to the diversity of species observed. Due to a com-

binatorial explosion of possible compounds it is common to see millions of unique

structures1,43. It is not feasible to manually interpret such a large quantity of PACs
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individually and as such numerical descriptors must be applied to characterize the

PAC chemical space within these flame systems. These descriptors can be applied

to validate against experiment, measure the development of certain nano-interactions

and properties, and serve as inputs to machine learning models to predict the growth

of combustion nanoparticles.

2.3 Methodology

The methodology of studying PACs can be broken down broadly into pre-processing,

SNapS2 kMC , and post-processing. Pre-processing consists of obtaining small molecule

gas-phase data to be used as input into SNapS2 . This data consists of small molecules,

typically one ring or smaller, formed in the flame with concentrations sufficient to be

accurately modelled deterministically. This data is then input into SNapS2 and

the growth of PACs are simulated. Finally, SNapS2 results are post-processed with

numerical descriptors to gain additional insights into nano-interactions and the prop-

erties of the PACs.

2.3.1 Flame Systems

Four different flame systems are considered in this work. The first is a coflow

diffusion laminar flame with a Jet A-1 surrogate fuel (69 % n-decane, 11 % n-

propylcyclohexane, and 20 % n-propylbenzene)44. For this flame, the reaction con-

ditions vary radially and axially. The remaining three systems are all 1-D pre-mixed

flames which vary axially and are radially homogeneous. For the ethylene-ethanol

study3, six different ethylene flames are considered based on the work of Gerasi-

mov et al.45 with ethanol doping mole fractions of 0, 0.2, and 0.4 and equivalence

ratios of 2.34 and 2.64. For the ethylene sooting flames used in the machine learn-

ing case study, three different pre-mixed ethylene-air flames from Xu et al.46 were

used with equivalence ratios of 2.34, 2.64, and 2.94. Finally for the comparisons
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between SNapS2 and atomic force microscopy, a pre-mixed ethylene-air flame from

Commodo et al.47 was used with an equivalence ratio of 2.03.

2.3.2 Pre-processing

In this step, the small-molecule gas-phase chemistry profile in each flame is ob-

tained either from simulations or adapted from existing literature and is used to

create inputs which can be used for kMC simulations. The specific pre-processing

requirements of each flame varies slightly based on the flame configuration and study

objectives.

For the Jet A-1 flame, the gas-phase data is adapted from an existing computa-

tional fluid dynamics (CFD) study. The details of the CFD simulations can be found

in Saffaripour et al.48 while additional experimental details used in validation can be

found in the original experimental works49,50. In order to describe the environment

to use in the SNapS2 simulations, I used the CFD data to build two dimensional

profiles (radial and axial) of species mole fractions, temperatures, and velocities for

the flame. The streamlines were determined by numerical integration of the velocities

starting at a radial distance of 0.5, 2.5, 5, 7.5, 10, and 12.5 mm from the flame central

axis (assuming cylindrical symmetry). Of note, I have defined the center-line as the

streamline originating at a radius of 0.5 mm. This small discrepancy is needed to

avoid discontinuities and numerical artifacts arising from the boundaries in the CFD

simulations and this choice does not affect the gas phase appreciably. Figure 2.1 shows

the streamlines in relation to flame temperature. For the ethylene sooting flames used

in the machine learning case study, the CFD was performed using the CoFlame pack-

age51 by others with details being given in the corresponding publication5. Given

that it was a 1-D flame, integration was performed only along the axial coordinates

to obtain a spatio-temporal relationship. The other two sets of flames were simulated

using the PREMIX code implemented in CHEMKIN52 using the KM2 mechanism32.
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Specifically for the ethylene/ethanol flames, the KM2 mechanism was merged with

an ethanol oxidation mechanism from Sarathy et al.53. Since the purpose of this

study was to assess the change in PACs due to ethanol combustion chemistry sepa-

rate from the effect of temperature, temperature related differences were minimized

between all flames by keeping temperature profiles nearly constant by solving the

energy equations in CHEMKIN and adjusting the cold gas velocity. This is similar to

an approach employed for by Golea et al. to study benzene/ethanol flames54. For the

ethylene atomic force microscopy comparison4, an experimental temperature profile

was used47.

Figure 2.1: Temperature profile of the Jet-A1 coflow diffusion flame from CFD data
published by Saffaripour and coworkers48. Streamlines created in this
work are shown as dark lines.

2.3.3 SNapS2 Simulations

After obtaining the flame temperatures and gas-phase species, chemical interac-

tions with the PAC nanostructures were stochastically simulated with the SNapS2

software with a methodology similar to the one used recently by Wang et al.19. In

these simulations, a starting seed molecule was grown through a series of kMC reac-

tion steps. At each step, one of approximately 400 general reactions19 (small molecule

addition, small molecule removal, or PAC isomerization) was stochastically selected

proportional to the reaction rate. This was performed until the end of the streamline
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was reached or the mass exceeded a mass threshold (specified for each flame below)

to match the experimentally sampled range.

For all flames, a pool of small aromatic seed molecules were periodically introduced

at intervals in the flame in approximate proportion to their concentration in the gas-

phase mechanism. Based on the chemistry, flame, and study objective, the specific

pool of seed molecules and intervals varied slightly.

For the coflow Jet A-1 flame1,2, seed molecules were selected among a pool com-

posed of cyclopentadiene, cyclopentadienyl, benzene, phenyl, toluene, napthalene,

phenol, phenolate, phenanthrene, and acenaphthylene which includes a set of small

aromatics diverse in carbon number, mass, and oxygenation and likely to be present

in high concentrations. For computational cost reasons only seed molecules which

reached, at any point in the streamline, a concentration greater than 5% compared

to the maximum concentration of any seed molecule were simulated. In order to cap-

ture early growth, I started my simulations at a height above the burner (HAB) of

0 mm and at intervals of 1 ms or 5 ms depending if the concentration of the molecules

used as a seed has already reached (or not) the 5 % concentration threshold. At

each time interval, I ran 100 simulations of the seed molecule with the highest peak

concentration (C6H6 in this flame) while the number of simulations for the remaining

seed molecules was determined relative to each molecule’s maximum concentration.

For efficiency reasons, I stopped my simulations when the PAC either reached 600 u

(where other growth phenomena become dominant26,55) or reached the end of my

flame system. For the ethylene-air flames simulated in CoFlame5,51, a similar proce-

dure was adopted with a pool of cyclopentadiene, cyclopentadienyl, benzene, phenyl,

phenol, toluene, napthalene, phenanthrene, and acenaphthylene and interval of 5 ms.

For the pre-mixed flames used in the ethylene-ethanol study43, benzene, cyclopenta-

diene, and phenol were used as seed molecules. For the pre-mixed ethlyene flame used

to compare against atomic force microscopy4, the goal was to identify specific struc-
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tural motifs from SNapS2 rather than matching overall PAC mass spectra intensities

and therefore 37000 benzene seeds were used and an upper mass limit of 1000 u was

considered. In all cases, seed contributions to final properties were normalized by the

number of simulations performed at each time step so that the number of simulations

did not affect a molecule’s relative intensity.

2.3.4 Descriptor Computation

In order to describe PAC chemistry, I compute a large set of descriptors for each

molecule. All descriptors can be derived from the molecular SMILES56 of the PAC

with negligible computational cost. These descriptors capture properties such as

mass, atomic ratios such as carbon-hydrogen ratio, and counts of specific subgroups

such as aromatic rings. In addition to these descriptors, I aggregate a large set

of chemical descriptors from multiple other sources including WHIM descriptors57,

CPSA descriptors58, VSA descriptors59, and tessellation descriptors60. Additional

details of these descriptors are provided in the methodology section of chapter III.

For descriptors which require atomic positions, I optimize the geometry using the

MMFF94 force field61 in RDKIT62.

In addition to the computation of descriptors for each individual molecule, it is

also important to extend these descriptors to an ensemble of PACs. Due to the large

number of different molecules which might be present at one time, this is important

because the properties observed in the flame are often a function of the ensemble of

PACs rather than an individual molecule. To this end, when computing a descriptor

at a certain area in the flame each molecule is assigned a weight wT according to

equation 2.1 where wc is the concentration of the trajectory’s seed molecule at the

start of the simulation, wl is the fraction of time within the area of measurement

which the molecule exists before and after reacting, and ns is a normalization term

equal to the number of replicate simulations run for that seed used. This final term is
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included such that the choice of replicate simulations influences simulation diversity

but not absolute intensity. A graphical depiction of these terms are given in figure 2.2

wT =
wcwl

ns

(2.1)

Figure 2.2: Graphical depiction of how nanoparticle property distributions are
weighted in equation 2.1. The total weight (wT ) is proportional to the
concentration of the seed molecule from which it comes (wC) and the
lifetime that molecule exists before its subsequent reaction (wl) and nor-
malized by the number of replicate simulations (ns) for that seed.

With these weights, distributional information such as mean, median, minimum,

maximum, and quartiles are then extracted to provide a comprehensive view of the

PAC properties. These descriptors can then be compared to the appropriate experi-

mental results to ensure the accuracy of the simulations. For example, average mass

can be compared to mass spectrometry data as has been done previously19. Com-

paring distributional properties, especially those promoting aggregation, between the

PACs of different flame systems will show how specific conditions and environments

promote or inhibit the interactions leading to the growth of combustion nanoparticles.

2.4 PAC Growth in a Jet A-1 Surrogate Flame

The following results are adapted from two of my publications studying the for-

mation of PACs in a Jet A-1 surrogate co-flow diffusion flame1,2. The key findings

of this work demonstrate that the chemical interactions of PACs can be modeled in

a complex fuel and flame geometry with my kMC simulations. Descriptors can be
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used to validate against experiment50 and to provide a comprehensive spatial char-

acterization of properties in order to gain spatial insights into PACs’ properties of

interest.

2.4.1 Descriptors for Polycyclic Growth Validation

I first characterize the simulation results of the Jet A-1 flame by using descriptors

to compare a number of different PAC properties from SNapS2 against experimental

measurements. Previous experimental electron ionization mass spectrometry mea-

surements of this flame identified a large range of oxygenated compounds between

150 u and 600 u50, indicating that oxygenated species are an important contributor

to the diversity of PACs.

Figure 2.3 shows the comparison in the oxygen-carbon ratio (O/C) between ex-

perimental and simulated compounds along the center streamline at different HABs.

To provide a clearer comparison, a small number of PACs with more than 10 oxygen

atoms and a larger number PACs without oxygen were omitted from the figure. This

choice reflects the experimental difficulty of detecting signals from these compounds.

On one hand, highly oxygenated species, consisting of molecules with 11-13 oxygen

atoms, contained a large number of hydroperoxides (and derived groups) that are

difficult to detect experimentally63,64. On the other hand, apolar PACs, like most of

the species with O/C of zero, were not measured in the original experiment due to

the ionization spray technique used.

With the exception of a few low mass, highly oxygenated species, the range of

oxygenated species in mass and number of oxygen atoms is generally matched be-

tween 150 u and 450 u at HABs of 40, 50, and 60 mm. There are, however, some

revealing discrepancies. The most noteworthy deviation is the under prediction of

oxygen in my simulations at lower HABs. At an HAB of 30 mm (shown in supporting

information of original work1) experiments observe a large number of diverse PACs
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Figure 2.3: Oxygen-carbon ratio plotted against mass for different points along the
center streamline. The experimental results are shown on the left and
the simulations’ results on the right. The size of the circles in each plot
is proportional to the logarithm of species relative concentration. The
figure is reproduced from Saldinger et al.1 in which experimental results
are reproduced/adapted from ref. Cain et al.50 with permission from the
PCCP Owner Societies.

up to 600 u, little growth is observed in the simulations. One possible reason for this

discrepancy could be that there exists some low-temperature PAC oxygen chemistry65
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not captured in the SNapS2 kinetic mechanism. Prior to this region, the tempera-

ture along the centerline is relatively low and as such my simulations show only a

few reactions mostly involving PACs with a single or no oxygen atoms. An alternate

explanation is that the experimental measurements of the soot precursors do not accu-

rately represent the true undisrupted gas-phase environment. The rapidly increased

mass growth and oxygenation of up to 600 u and 6 oxygens seen between 30 mm and

40 mm demonstrates that the PACs’ formation in this area is very spatially sensitive.

Minor streamline disruptions during thermopheretic sampling66 may be significant

enough to bring about this discrepancy. Furthermore, although not as pronounced

as in other flame configurations, studies of thermophoresis in coflow diffusion flames

have identified complex two dimensional migration patterns which cause larger soot

precursors to travel at a different rate and direction than the bulk gas-phase67. Thus,

PACs thermally diffusing from higher HABs68 or nearby streamlines may account for

this difference. In addition, electron-spray ionization tends to produce results that

are biased towards more oxygenated compounds when samples with lower O/C ra-

tios are present69 and as such it could be possible that these compounds are present

in very small amounts but appear at high concentrations. Finally, while my results

suggest the majority of these oxygenated compounds grow within the flame, it is not

possible to rule out, as the authors of the experimental study acknowledge50, that

some growth may occur after experimental sampling70.

Other deviations in my simulations are likely due to the fact SNapS2 is designed

to focus on PAC chemical growth. First, simulations fail to capture some low mass,

highly oxygenated compounds. Unlike other differences, this issue is persistent at all

heights in the flame. Such low masses and high O/C ratios suggest these molecules are

most likely small acyclic or highly saturated molecules, in short not PACs. Figure 2.4

further supports that these molecules are likely not products of aromatic growth as

the majority of species observed in experiment with an O/C ratio of greater than 0.5
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have less than 15 carbons and an H/C ratio between 1 and 2.25 which falls above the

PAC cata-condensed71 limit. While SNapS2 does include the addition of aliphatic

chains and non-aromatic rings in the PAC growth mechanism, these low mass, non-

aromatic molecules are not captured as my seed selection and mechanism emphasizes

polycyclic aromatic growth. Second, for HABs of 50 mm and 60 mm, the model over-

predicts high mass compounds (between 450 u and 600 u), especially with less than

5 oxygen atoms, that are not observed in experiment. This is most likely due to the

removal from the gas-phase of heavier species through physical growth72 or radical-

radical combination reactions with other PACs73. The importance of radical-radical

recombinations of PACs relative to other growth mechanisms has been observed26

to become a significant factor in predicting mass growth at higher masses although

eventually this is offset by the low concentrations of large PACs. Although the role

of these reactions in this flame may differ, stochastic modeling of other flames19 have

found good agreement with experimental results up to approximately 500 u without

including these radical-radical reactions. Physical growth is thought to significantly

contribute to mass growth in coflow diffusion flames as masses approach 600 u72.

This hypothesis is also sustained also by the observation that this discrepancy occurs

primarily for PACs with low oxygen content, which is inline with the findings by

Elvati et al.27,74 suggesting that oxygen can inhibit physical dimerization.

The same agreement and discrepancies discussed above can be seen when looking

at the degree of aromaticity, as illustrated in figure 2.4. Here, however, it is easier

to see how the simulations capture well the trends pertaining to the polycondensed

aromatic molecules. The simulations reproduce the ranges of H/C below 0.75 and

O/C up to approximately 0.5 in the bottom cluster. As H/C increases, however,

molecules become much more aliphatic in character and fall outside the scope of the

SNapS2 simulations. Also, as discussed above, at higher HABs my simulations over-

predicts heavier PACs which accounts for the over prediction of high carbon number
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Figure 2.4: Hydrogen-carbon ratio plotted against oxygen-carbon ration for different
points along the streamline. The experimental results are shown on the
left and the simulations’ results on the right. The size of the circles in
each plot is proportional to the logarithm of species relative concentration.
In the experimental plot, unfilled circles are non-aromatic hydrocarbons.
The figure is reproduced from Saldinger et al.1 in which experimental
results are reproduced/adapted from ref. Cain et al.50 with permission
from the PCCP Owner Societies.
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PACs seen at HABs of 50 mm and 60 mm.

Overall, despite the over-prediction of heavier PACs at higher HABs, the simula-

tions reproduce the diversity of the experimentally observed oxygenated polyaromatic

molecules. This, demonstrates how descriptors can be applied to characterize the PAC

products of these chemical interactions.

2.4.2 Composition and size spatial dependence

After performing validation of the SNapS2 simulations, I then applied a large

number of descriptors at multiple different streamlines to provide a comprehensive

spatial characterization of how PAC properties of interest develop in the flame. Of

the six streamlines I considered, PAC growth was only observed on the inner three

(labeled 1,2, and 3 in Fig. 2.1). This result can be explained by considering the

acetylene concentration because only the three streamlines closest to the center pass

through an acetylene rich region. Of note, the streamline number 4 goes through a

region with a high concentration of radicals (mostly H, O, OH and CH3) but I do

not observe any relevant growth, showing again that acetylene is one of the most

critical species for PAC growth75,76. Since only the three internal streamlines (1 to 3

or ro=0.5, 2.5, and 5 mm) show significant growth, in the following I will focus only

on those streamlines.

Figure 2.5: Average mass vs. HAB along the three streamlines.

Figure 2.5 reports the evolution of the average PAC mass along streamlines 1–3.

As expected based on the lack of growth in the outer streamlines, PACs experience
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their fastest growth when they pass through the high temperature, radical rich section

in the flame. After traveling through this region, the gas-phase environment is less

conducive to PAC growth as the average PAC mass remains the same or slightly

decreases. As my model does not consider the aggregation of PACs, it is likely that

at higher HABs the average mass of the PACs may be lower than the one predicted

in Figure 2.5 as heavier PACs may aggregate into larger soot particles50. While mass

provides a first characterization of PAC growth, in order to understand the diversity

of the PACs formed in distinct regions, I subsequently study the molecular chemical

characteristics, i.e. oxygen content, presence of five-membered rings, and aliphatic

chains.

Figure 2.6: Oxygen atoms in the PACs’ structures in each of the 3 inner streamlines:
mean number of oxygen atoms per PAC at different HABs (bottom) and
analysis of the distribution of oxygen containing functional groups near
the peak oxygen content of each streamline (top). Functional groups were
sampled over a range of 5 mm centered at 62 mm, 56 mm, and 30 mm for
streamlines number 1, 2, and 3, respectively.

I first analyzed how oxygen content varies between and along different streamlines

in Fig. 2.6. Streamline number 3 (r=5 mm) starts in a highly reactive region in the

flame wing and begins growing immediately, while the other two exhibit minimal

oxygenation prior to reaching a similarly reactive environment.

The most interesting aspect however, is the fact that the trend in the average

oxygen content among the streamlines matches the one observed in the mass growth.
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This is one additional proof of previous findings26,43 which observed that the oxy-

genated species feature prominently in the early growth of PACs. In contrast to

scenarios where PACs undergo oxygen addition reactions43, here I do not observe

separate regions favoring PAC growth through oxygen addition reactions and carbon

addition reactions. In this flame, the gas-phase conditions where reactions involving

the addition of carbon atoms and the addition of oxygen atoms are favorable, are the

same.

The analysis of the types of oxygenated chemical groups shows a large prevalence

of furans and hydroxyls, followed by small amounts of peroxides formed by the reac-

tions with HO2 radicals. Aldehydes make up an almost negligible percentage of the

groups, which is consistent with another work77 that suggests they play a larger role

in the post-flame region. I observe only trace amounts of ethers. The comparison

between the streamlines shows a slight increase of furan and peroxide groups when

moving away from the centerline. I attribute the latter to a 10-times higher peak con-

centration of HO2 and a lower temperature in the areas of high HO2 concentration,

which slows the peroxide decomposition rate78.

Figure 2.7: Fraction of five-membered carbocycles as a function of HAB.

Studies of many different flames79–85 show that five-membered aromatic carbon

rings are a common functional group in the PAC chemical space. Here, I study

how the fraction of five-membered carbon rings, defined as the total number of five-

membered carbon rings divided by the total number of five and six-membered carbo-

cycles in the PAC ensemble, varies along and between streamlines. The analysis of

43



these streamlines confirms that five-membered carbon rings constitute an important

structural feature of PACs in this flame as I observe a 10% to 30% fraction across

all streamlines (Fig. 2.7). While in some measure, particularly at very low heights

above the burner, the concentration of seed molecules affects the value (e.g. benzene

vs. cyclopentadiene), the evolution of this fraction provides useful insights into the

mechanisms of growth.

Early in all streamlines, the fraction of five-membered rings decreases as the PACs

begin to grow. While the number of five-membered carbocycles is still increasing

in this region (albeit slowly), the six-membered ring growth is occurring much more

rapidly. This is consistent with known chemistry as six-membered rings can grow from

a variety of pathways and active sites involving the edges of aromatic rings14. Later

in the flame however, large PACs possess more zigzag sites33 which have been shown

to be particularly amenable34 to the growth of five-membered carbon rings. Thus,

while edge growth is always favorable for six-membered rings, five-membered carbon

ring growth does not become favorable until larger PACs exist in the system and more

of these zig-zag sites are available. Examining the effect of these five-membered rings

on shape, figure 2.8 shows that compared to those with only six-membered rings,

structures with five-membered rings can exhibit significant curvature although this is

not necessarily the case.

Figure 2.8: Examples of different ring motifs. Left: A planar PAC with only six-
membered rings. Center: A planar PAC with five and six-membered
rings. Right: A curved PAC with five and six-membered rings.

Numerous studies47,86 suggest carbon chain growth occurs on PACs in flames.

Thus, I conclude my PAC structural analysis describing the aliphatic components of
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PACs (not to be confused with purely aliphatic molecules). The majority of carbons

within my simulated PACs are members of rings or sp2 hybridized, indicating there

is very little non-aromatic branching. Still, notable exceptions do exist.

Figure 2.9: Length of longest aliphatic chain along each streamline.

Figure 2.9 shows the longest observed aliphatic chain on each streamline at each

HAB. These carbon chains begin to be observed just as each streamline starts to enter

the high temperature region of the flame. In these sections of the flame, the temper-

ature is high enough for PAC growth reactions to occur, however, the streamline has

yet to reach its maximum temperature. This behavior supports past work87, which

has hypothesized that aliphatic growth is most prevalent at elevated temperatures

but not at the highest temperature section of the flame. As indicated in figure 2.9,

the maximum chain length does not appreciably change after its initial growth even as

the streamlines pass through the highest temperature, highest radical concentration

section of the flame. This suggests that these side chains have a degree of stability

and do not necessarily break down even in the most reactive environments of this

system. The presence of aliphatic chains can be also dictated by some characteristics

of the PACs’ structures that are conducive to the growth of these chains. To test

this hypothesis, I identified only those growth histories in which an aliphatic chain of

at least five carbons is formed and analyzed the structure of the first PAC molecule

in the history that had this aliphatic chain. Although I observe no unifying feature

(two examples of the variety of structures can be seen in Fig. 2.10), I most commonly

observe PACs between 30 and 35 carbons, including the aliphatic chain. Based on
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some of the observed structures (such as Fig. 2.10) it appears many of the aliphatic

chains form when a smaller carbon chain is unable to close into a ring. Thus, it

follows that more aliphatic chains grow on PACs in this size range as they require a

particular growth site which is more likely to exist on larger PACs.

Figure 2.10: Two examples of observed molecules with aliphatic chains.

While these long hydrocarbon chains are not observed in high concentrations, nu-

merous studies23,24,88 have suggested these compounds can play a role in the physical

growth of PACs into combustion nanoparticles. The early growth of these branched

PACs and their long lifetimes within the flame suggest that despite being minor

species they can still contribute to PAC aggregation, by stabilizing the formation

of PACs aggregates long enough for them to form a chemical bond for example by

radical-radical reactions26,73.

Overall, these findings show how kMC can model PAC growth in a flame with

both complex fuel and geometry to both reproduce experimental observations as well

as provide a comprehensive radial and axial characterization of a number of different

PAC descriptors including mass, oxygenation, five-membered rings, and aliphatic

chains.

2.5 Distributional Descriptors Elucidate the Effect of Ethanol

Doping on PAC Growth

The following results are adapted from my publication studying the effect of

ethanol doping on the growth of PACs3. There are many studies on how the doping

of fuels with oxygenates (e.g. methanol, ethanol, and methyl tertiary-butyl ether)
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alters the chemistry of the gas-phase45,54,89–91 and the characteristics of the resulting

soot particles92–95. Here, I investigate the the degree to which this reduction of soot

is caused by differences in the PAC chemical space by applying descriptors to distin-

guish the different contributions to PAC growth. I consider pure ethylene flames as

well as ethylene-ethanol flames with different ethanol doping percentages. Notably,

I find that insights are able to be gained not just by considering the mean values

of these descriptors, but by considering how distributions of oxygenation descriptors

evolve through the flame.

2.5.1 Differences Observed in PAC Chemical Space
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Figure 2.11: Average (upper panel) and cumulative (lower panel) chemical growth of
PACs as a function of height above the burner from SNapS2 simulations.
Solid lines represent pure flames, dashed lines 20% doped flames, dash-
dot line 40% doped flames; equivalence ratio is indicated by the color:
black for 2.34 and red for 2.64.

First, the differences in PAC growth observed in ethylene flames with different

levels of ethanol doping are considered in order to distinguish the effects of ethanol.
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To this end, I compare six ethylene pre-mixed flames with three different ethanol

doping fractions between 0-40 % and equivalence ratios of 2.34 and 2.64. PACs’

chemical growth rate for the flames were taken by averaging the molecular growth of

different traces starting at the same location, and the cumulative chemical growth,

obtained by integrating the chemical growth rate from a HAB of 0 mm. The results

for all the flames are shown in Fig. 2.11. Of note, different time intervals should

be considered when integrating to compensate for differences in the gas flow rate.

The plot shows a noticeable reduction in PACs’ chemical growth when increasing

the ethanol doping percentage and when decreasing the equivalence ratio. This is in

agreement with the results of deterministic CHEMKIN simulations of PACs which

show the same trend. However, SNapS2 simulations indicate that PAC growth starts

earlier than the deterministic gas-phase simulations due to the inclusion of reactions

for the formation of PACs with oxygenated groups, as discussed further below.

To understand the contribution of oxygenated species to the growth of PACs,

the percentage of PACs that contained at least one oxygen at different HABs was

computed. To avoid biasing the results by including a large number of unstable

species, all the PACs were weighted by their lifetime. Oxy-PACs were largely observed

between 2 mm and 4 mm, which correspond to the region with the maximum growth

rate and around the location where both O and H concentrations peak, as shown

in figure 2.12. Collectively, these results indicate that a large portion of the initial

growth is due to oxygenated PACs, and that is the reason why less early oxygen

growth was observed in the deterministic simulations.

2.5.2 Distributional Descriptors Characterize PAC Growth

Statistical analysis of the reactions happening at different flame locations helps

further elucidate the effects of oxygen on PACs’ growth phenomena. Analysis of

reactions suggests oxygen chemistry dominates around an HAB of 2 mm, while the
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Figure 2.12: Comparison of PACs and gas-phase environment between different
flames. Upper panel: percentage of oxy-PACs in different flames as
a function of HAB from SNapS2 simulations; Middle and bottom panel:
the mole fraction profile for atomic hydrogen and atomic oxygen from
gas-phase simulations correspondingly. Solid lines represent pure flames,
dashed lines 20% doped flames, dash-dot line 40% doped flames; equiv-
alence ratio is indicated by the color: black for 2.34 and red for 2.64.

major formation route for HACA is more relevant at higher heights such as 10 mm. At

the same time, the rapid decomposition of the oxy-PACs indicate that these reactions

provide only an initial increase in PAC size and that they are not responsible for the

sustained growth of PACs. This effect can be quantified by examining the evolution of

the mass distribution and its correlation with the oxygen content in PACs, particularly

in the region where oxy-PACs are common (HAB up to ∼ 8 mm) since in this region
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the PACs’ masses begin to diverge.

Figure 2.13: Evolution of PACs’ mass as function of HAB. Only flames with ϕ = 2.34
are shown for clarity although the trends are representative of both cases.
Black solid line is used for the pure flame, dashed for the 20% doped
flame, and dotted-dashed for the 40% doped flame. (Upper panel) Black
lines show average mass; blue lines show the first mass quartile and the
orange lines show the fourth mass quartile. (Lower panel) shows the
skewness of mass distribution.

As shown in Fig. 2.13, the average mass starts increasing at the same time inde-

pendently of the doping (1 mm to 2 mm) but it then plateaus differently. The mass

increase corresponds to a broadening of the mass distribution, without a substantial

change in the presence of species with lower masses, as indicated by a near constant

first mass quartile (0th to 25th percentile). The positive skew in the mass distri-

bution indicates that a few compounds create a leading tail, and interestingly these

compounds have a higher oxygen content than the average compound in the same

region as shown in Fig. 2.14.

This result suggests that as the percentage of oxy-PACs increases, early growth

is sustained by oxygenated compounds in all flames. However, carbon growth mech-

anisms also play a role during and after this region. The concentrations of C2H2
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Figure 2.14: Average oxygen content of all PACs compared with high mass (fourth
mass quartile) PACs. Values are calculated for flames with ϕ = 2.34
(ϕ = 2.64 exhibits similar behavior) and are weighted by species lifetime
and concentration up to an HAB of 8 mm.

and C2H3 in the doped flames are significantly lower as hydrogen abstraction from

C2H4 decreases due to competing H and OH radical reactions with ethanol96. These

species are all important for HACA activity and their low concentration in the doped

flames decrease C2H2 additions relative to the pure flames46,97. Thus, C2H2 additions

contribute more prominently in undoped flames. Once the percentage of oxygenated

PACs begins to decrease (2 mm to 8 mm) this disparity in C2H2 activity becomes more

visible as C2H2 activity takes a more leading role relative to oxygen growth. Overall,

these results indicate that the formation of oxy-PACs leads to a rapid increase in mass

early in the flame, followed by a slower growth rate where PACs diverge in size as

they are de-oxygenated and grow primarily through HACA. The distribution of the

types of oxygenated groups (i.e. 15% furans, small fractions of ethers, and remaining

hydoxyls) are similar among all the flames, but interestingly, the high mass PACs

in Fig. 2.14 show a slightly larger percentage of heteroaromatic rings (approximately

20%-25%) than the total group of oxy-PACs at the expense of hydoxyl groups.

This analysis of the PACs’ distributional properties highlights the contribution of

oxygenated species in PAC growth both in ethylene and ethylene-ethanol flames. It

suggests that subtle differences in these oxygenation profiles may explain the differing

51



mass trends observed at different levels of ethanol doping. Moreover, these findings

underscore how considering the distribution of descriptors across the ensemble of

PACs provides additional insights that may not necessarily be gained from an analysis

of the mean properties.

2.6 Novels Descriptors of Curvature in Ethylene Pre-mixed

Flame

The following results are adapted from my publication4 comparing SNapS2 re-

sults with experimentally observed AFM structures47 in an ethylene pre-mixed flame.

Among the features observed within both the simulated and experimental PACs are

a number of different kinds of five-membered rings. In this section, I emphasize

my contribution explaining why certain features were observed in SNapS2 simula-

tions but not experimentally. I first present a comparison between five-membered

rings observed in SNapS2 simulations and AFM results47 and discuss how the ob-

served agreement and disagreements are evidence of curved PACs being present in the

flame. Curved PACs are an important property in combustion systems79–85, however,

providing a descriptor of this property is difficult. Thus, I develop a definition of

curvature based on WHIM descriptors57 and apply it to measure curvature in this

flame.

2.6.1 Results Overview

First, comparisons are made between SNapS2 simulations and AFM measure-

ments of PACs from a previous study of an ethylene pre-mixed flame47. This previous

study used AFM to gain molecular insights into the types of PACs which grow in a

pre-mixed ethylene flame and emphasized that a wide range of nanostructures exist47.

Similar to the AFM findings, SNapS2 simulations are also able to model a large di-
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versity of PACs in this flame. Figure 2.15 shows 32 examples of molecules sampled

at an HAB of 8 mm. These molecules (which represent less then 0.005% of all the

SNapS2 -generated unique structures at this height) show the presence of oxy-PACs,

condensed aromatics, curved molecules, different types of five-membered rings, PACs

with only six-membered rings, as well as aliphatic structures. For comparison, the

set of AFM observed PACs which show similar diversity are provided in the original

experimental publication47.

Figure 2.15: Example molecules simulated by SNapS2 code at an HAB of 8 mm.

2.6.2 Ring Structures

One notable area of comparison are the ring structures which are observed in both

the simulated and experimental results, particularly the five-membered rings. While a

few example molecules containing only six-membered rings were observed (ML25 to
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ML29), most of the SNapS2 -generated molecules contain at least one five-membered

ring. For SNapS2 -generated PACs, the number of five-membered rings is markedly

lower than the number of six-membered rings, and the difference becomes larger at

a higher number of carbon atoms. At the same time, the results indicate that at

least a small number of five-membered rings are a general feature of the PACs. The

SNapS2 results show more five-membered ring structures than the AFM images, but

this difference can partially arise from the experimental difficulty to sample or analyze

curved molecules. Therefore, in the first comparison, molecules with embedded five-

membered rings were removed from the data and only the number of non-embedded

five-membered rings were evaluated from the remaining structures (Fig. 2.16).

Figure 2.16: The number of non-embedded five-membered rings with respect to the
number of six-membered rings for SNapS2 -generated molecules (blue
dots) and assigned PACs from AFM images (red circles)47.

The comparison indicates that even considering only the non-embedded five-

membered rings, SNapS2 -generated molecules may still have more five-membered

rings compared to experimental data. The most likely reason for the overestimation

is a lack of five-member ring oxidation or migration pathways in the current available

literature, which are included in SNapS2 35,98.

There are four types of five-membered rings identified by the AFM study, namely

acenaphthylene-type, acenaphthene-type, fluorene-type, and indane-type. SNapS2

simulations show examples of the first three types (ML7 to ML24) but the SNapS2
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kinetic mechanism currently does not contain pathways that will lead to the forma-

tion of indane-type five-membered rings. Notably, however, this comparison does

not explain the embedded five-membered rings observed in SNapS2 simulations but

missing from the AFM results.

2.6.3 WHIM Descriptors

Since one of the main discrepancies between the previously discussed AFM and

SNapS2 results is the presence of embedded five-membered rings, in this section I in-

troduce a descriptor of geometric curvature to assess how much of this difference can

be attributed to molecular curvature. The WHIM descriptors99 are a class of descrip-

tor that provide a measure of size, shape, and atomic distribution of the molecule.

To begin, a principal component analysis is performed on a covariance matrix based

on the atomic coordinates. This can occur either with unweighted coordinates or

coordinates weighted by an atomic property such as mass, polarizability, electronega-

tivity, or Van der Waal’s volume. For example, the mass-weighted WHIM descriptor

corresponds roughly to the principal axes of inertia.

Given atomic coordinates qi=1...N and atomic property weights wi=1...N , the covari-

ance matrix S can be derived such that each element sjk is defined by equation 2.2.

sjk =

∑N
i=1wi(qij − q̄j)(qik − q̄k)∑N

i=1wi

(2.2)

A principal component analysis of this covariance matrix provides three principal

components, λ1,2,3, corresponding to the longest, second longest, and shortest princi-

pal component respectively. Based on these three principal components, a number of

properties can be calculated such as length, area, volume, and skew. In the context

of PACs, the relative length of the third mass-weighted WHIM axis (equation 2.3)

is used as a measure of curvature. This third axis corresponds to the relative out-

of-plane displacement. Mass weighting is used because otherwise hydrogen, which
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has only minor effects on the curvature, would disproportionately contribute to the

calculation. A completely flat circular molecule would have relative lengths of the

first 2 axes equal to 0.5 and the relative length of the third axis (the aforementioned

descriptor) equal to 0. A perfectly spherical molecule would have all three relative

axis lengths equal to approximately 0.33.

curvature =
λ3∑3
i=1 λi

(2.3)

2.6.4 Curvatures of PACs

I apply this descriptor of curvature to the PACs observed in the SNapS2 simu-

latuions. As mentioned above, I observe a large number of molecules, for example,

ML8, ML9, ML10, ML12, ML19, ML20, ML21, and ML22 which contain cur-

vature. Since curved structures were difficult to sample or characterize in the cited

AFM work, here I focus my discussion on the amount and frequency of the curvature

I observe in SNapS2 simulations. I quantify curvature using the previously discussed

descriptor based around the shortest principal axis of inertia which is relatively in-

sensitive to the presence of hydrogen and size independent. The results are shown in

Fig. 2.17.

Figure 2.17: The relative plane displacement with respect to the number of carbon
atoms.

The plot shows a large number of molecules with little to no curvature, namely less
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than 0.05 (which is approximately the value caused by the presence of the aliphatic

chain in ethylbenzene). A general increase in the curvature occurs with higher carbon

numbers as more five-membered rings are added and additional growth occurs around

previously embedded five-membered rings, while the drop above approximately 70

carbons is simply related to the simulation’s upper mass limit. Interestingly, I can

observe a peak for a set of molecules between 20 and 30 carbons, which is consistent

with the number of carbons needed for a structure with embedded five-membered

rings (such as ML18).

Overall this descriptor suggests that a likely reason for the discrepancy in the

simulated five-membered rings and experimental observations is due to the curvature

and that these embedded five-membered rings are a key contributor to the curvature

of these PACs. Not only does this descriptor provide a novel and flexible means

to quantify the curvature of nanoparticles, but these findings demonstrate how de-

scriptors can be applied in tandem with experimental validation in order to explain

discrepancies and understand growth phenomena.

2.7 Machine Learning Soot Inception Rate

The following results are adapted from my publication using machine learning

(ML) and PAC chemical features to predict soot inception rates5. In previous sec-

tions, I have shown how to use chemical descriptors to characterize the development

of PAC properties and interpret the chemical growth and nano-interactions of PACs

in the flame. In this section, I discuss how numerical descriptors can quantitatively

relate these PAC properties to nanoparticle formation rate by inputting these features

into a machine learning model to predict the formation of soot and larger combustion

nanoparticles. Since PACs are a critical component of soot formation, it is logical

that predictions of soot formation can be improved by more accurately and compre-

hensively characterizing the chemical growth of PACs in flames and using chemical
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descriptors relevant to their transition into larger nanoparticles.

2.7.1 Machine Learning Details

In this work, a ML framework was developed to predict the soot inception rate

along the centerlines of premixed laminar ethylene flames in gsoot/cm
3
gas ·s. The inputs

to the model are the temporal rates of change of the SNapS2 -determined molecular

properties which are thought to be relevant to PAC growth and to PAC-PAC interac-

tions. The molecular properties considered were the molecular weight (MW), number

of 6-membered rings (N6MR), number of 5-membered rings (N5MR), number of rad-

ical sites (NR), length of aliphatic chains (LC), number of rotatable bonds (NRB),

number of OH groups (NOH), topological polar surface area (TPSA)100, minimum

partial charge (MINPC), and the maximum partial charge (MAXPC). Also, the PAC

lifetime was considered as an input. Since lifetime is already a temporal variable, it

was taken as-is (i.e. not converted into a temporal rate of change). SNapS2 -predicted

molecules were binned according to their position along the centerline, and the arith-

metic mean (henceforth “average”) and geometric mean of each molecular property

was computed across each bin. Then, the temporal rates of change of the average

and geometric mean of the properties were computed. Thus, the full list of inputs

to the ML models is d
dt

of the arithmetic and geometric mean of each of the above

properties plus the average and geometric mean of the PAC lifetime.

When testing and tuning the ML models, recursive feature elimination (RFE) was

performed by a co-author Luke Di Liddo to determine the most accurate subset of

input variables. RFE starts with all the input features, fits the data to a given ML

algorithm, and successively removes the least important features (where “important”

features are determined by importance scores that are returned by the ML algorithm)

until a specified number of features (N) is reached. RFE was performed for values

of N from the maximum down to 1 and the accuracy of each regression algorithm
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(with each value of N) was evaluated using repeated 3-fold cross validation, which is

a way to measure the robustness of the algorithm. Repeated 3-fold cross validation

randomly splits the data into 3 folds, uses each fold as the testing data once, reports

the model’s accuracy for each test fold, and then repeats the procedure for different

randomly selected folds.

A variety of ML algorithms were tested, including XGBoost regression101, ker-

nel ridge regression (with linear and polynomial kernels), support vector regression

(also with linear and polynomial kernels), ordinary least squares linear regression,

multivariate adaptive regression splines102, and random forest regression.

2.7.2 Descriptors and Relationship to Sooting Rate

When considering the rates of change of the average and geometric mean of the

molecular properties, and the average and geometric mean of PAC lifetime, there

are 22 possible input features to a ML model. However, different subsets of input

features may give different model predictions and accuracy, and not every input is

strongly related to the output. To navigate these considerations, RFE was used to

find the optimal set of input features for the different regression algorithms tested

(listed above). The model with the lowest mean squared error and absolute error

used the following four inputs: d(TPSAavg)/dt, d(LCavg)/dt, d(MWg.mean)/dt and

lifetimeg.mean. As seen in Tab. 2.1, each of these inputs have strong individual

correlations with the inception rate. Also, each property is physically distinct from

the others, implying there may be little multicollinearity among these 4 inputs.

In addition to RFE, the Pearson and Spearman correlation coefficients were com-

puted between each input feature and the output in order to discern the strength of the

individual relationships between each input and the output. The Pearson coefficient

is a measure of linear correlation between two variables, and the Spearman coefficient

describes the strength of the monotonic relationship between two variables. Table 2.1

59



shows the correlation coefficients for the most highly correlated input features (Pear-

son coefficient > 0.6). Table 2.1 shows that a number of the input variables have

strong individual correlations with the inception rate (Spearman coefficients >∼ 0.7).

In particular, the TPSA and NRB are interesting features. The TSPA is a measure

of the oxygen content related to the PAC shape (total surface over all polar atoms),

and NRB describes both the aliphatic nature of the PAC and how it may distribute

rotational energy upon collision. Both are examples of molecular properties that are

only available from detailed modelling methods like SNapS2. Furthermore, the strong

correlations show that these types of detailed SNapS2 -determined molecular proper-

ties may be relevant to various soot processes and that further exploration between

stochastic molecular modelling, CFD, and AI may be fruitful. Finally, while NOH

and NR also have high correlation coefficients, they were not part of the subset of

inputs that resulted in the best performing model, potentially due to multicollinearity.

Table 2.1: Pearson and Spearman correlation coefficients between inputs and the soot
inception rate for the most strongly correlated inputs. Bold entries repre-
sent the inputs that were used in the final model (as selected by RFE).

Input Feature Pearson Spearman

d(TPSAavg)/dt 0.82 0.78
d(NOHavg)/dt 0.72 0.73
d(LCavg)/dt 0.69 0.61
d(MWg.mean)/dt 0.68 0.69
d(N5MRavg)/dt 0.63 0.61
d(NRBavg)/dt 0.60 0.49
Lifetimeg.mean -0.70 -0.70
d(NRavg)/dt -0.78 -0.82

Kernel ridge regression with a linear kernel and an α value (regularization strength)

of 0.85 was the model that resulted in the lowest errors and is henceforth the selected

model. The accuracy metrics for that model are reported in Tab. 2.2, where RMSE

is the root mean squared error, MAE is the mean absolute error, and R2 is the coeffi-

cient of determination (the proportion of variance in the dependent variable that can

be predicted by the independent variables). Repeated 3-fold cross validation was used
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to compute these accuracy metrics. Since that technique repeatedly re-samples and

re-trains the model, there are different values for RMSE, MAE, and R2 when each

fold is used as the testing data, and as such, both the mean and standard deviation

are reported. The Supplementary Material of the corresponding publication5 show

the mean MAE and RMSE of the various other other ML algorithms tested.

Table 2.2: Error metrics for the final soot inception prediction model computed using
repeated 3-fold cross validation.

Metric Mean Standard Deviation

RMSE 6.73× 10−12 1.52× 10−12

MAE 5.77× 10−12 1.64× 10−12

R2 0.71 0.12

The final model has a MAE of 5.77 × 10−12 and a RMSE of 6.73 × 10−12. For

reference, the mean value of the targets (soot inception rate in g/cm3 · s) is 2.26 ×

10−11, signifying that the absolute error in the model predictions is approximately

one quarter of the magnitude of the target values.

Figure 2.18 shows how the final model’s predictions align with the target soot

inception rates103. The predicted values from the final ML model follow the exper-

imental trend closely and without significant deviation from the dashed line, and

almost every predicted value is within the experimental uncertainty of the target val-

ues. Future improvements to this procedure may come in the expansion of the data

set, e.g. applying Equation S1.1 originally from103 to other flames that measured

the diameter of primary particles, dp (from which np and, subsequently, the inception

rate are derived103). Additional improvements may come through the consideration

of more molecular properties or by more extensive feature engineering.

2.7.3 Comparisons to other potential methods

To assess the effectiveness of the current procedure, the predictions from the final

SNapS2 -informed ML model were compared to the predictions from existing state-
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Figure 2.18: The experimentally-derived soot inception rates103 plotted against the
final ML model’s predicted soot inception rates. The dashed line repre-
sents the line where the model’s predicted values equal the target values.

of-the-art methods. The first method was the physics inspired CoFlame inception

predictions and the second was a ML model built using CFD data (temperature,

concentrations of key stabilomer PACs) as inputs (and with the same target data

from Xu et al.103).

CoFlame simulations were performed by co-author Luke Di Liddo for each of

the three flames and validated against the experimental data for fv, dp, and np.

CoFlame’s predicted inception rates were approximately 1 order of magnitude higher

than the experimentally-derived rates. Besides being an order of magnitude too high,

CoFlame’s predicted inception rates are also more scattered compared to the final

model in the present work. Despite the inaccurate inception rate predictions, fv

was still predicted accurately due to compensation from the other soot sub-models

(e.g. surface growth, condensation, coagulation, or oxidation). While still a relatively

advanced inception model, the inaccurate inception rate predictions from CoFlame,

viewed in light of the accurate predictions from the SNapS2 -informed ML model,

suggest that a source of potential improvement may be the consideration of a more

diverse PAC landscape.
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The ML model was trained using the same approach as discussed above. How-

ever, this time, instead of using SNapS2 PAC descriptors, the method used CFD-

determined properties, namely temperature, average concentration of groups of peri-

condensed PACs (A1 to A3, A4 to A5, A6 to A7), PACs with 5-membered rings

(A2R5, A3R5, A4R5), groups of radical PACs (A1- to A3-, A4- to A5-, and A6-),

and all radical PACs (A1- to A6-). The best model (using ordinary least squares

linear regression) has an MAE and RMSE approximately 57% and 65% higher,

respectively, than the model trained on SNapS2 data, suggesting that the nuanced

molecular information may be an important aspect to modelling and understanding

soot inception.

Figure 2.19: Predictions of the soot inception rate from the ML model using CFD
(CoFlame51) and CFD-inputs compared to the experimentally-derived
soot inception rates of103. Note, parity line not shown in (a) due to
predicted values being 2 orders of magnitude higher than experimental
ones.

Overall, these findings emphasize that properly representing PAC chemical space

is important to modeling the growth of larger nanoparticles. A machine learning

approach incorporating SNapS2 molecules and a diverse set of molecular descrip-

tors significantly outperforms existing methods which oversimplify the PAC chemical

space. Moreover this work suggests that when applying the proper molecular descrip-
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tors, machine learning provides a means to quantitatively relate PAC properties to

more complex multi-scale phenomena which are difficult to directly model.
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CHAPTER III

Physical Interactions of Gas-Phase Nanoparticles

3.1 Summary

In this chapter, I discuss computational strategies to characterize the physical

interactions of PACs as they transition into larger nanoparticles. Central to this pro-

cess is physical aggregation or dimerization, where PACs form clusters, held together

by Van der Waal’s and electrostatic forces. Traditionally, this has been captured

by modeling the physical interactions of a small number of symmetrical stabilomer

PACs, however, this approach is inadequate as it neglects the complex PAC chemical

space discussed in the previous chapter. This chapter is based on two of my works1,2

where I show how computational methods can be applied to simultaneously capture

the diversity of a large number of PACs and quantify how they will physically inter-

act. Using enhanced molecular dynamics, I simulate a number of dimerization free

energy surfaces (FES) which describe the physical interactions of these PACs. Then,

using this as training data, I fit an interpretable machine learning model which si-

multaneously allows me to predict the free energies of the dimerization process and

gain insights into the chemical descriptors which control this process. This chapter is

broken up into three sections. In the first section, I apply this approach to the free en-

ergy of dimerization which governs the thermodynamic equilibrium of the aggregated

and disaggregated PACs. In the second section, I apply this approach to the free
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energy barrier which governs the kinetics of this process. In the final section, I show

how thermodynamic relationships and transition state theory can convert these free

energies into useful model values such as the equilibrium constant and rate constant.

3.2 Introduction

Central to modeling soot formation in combustion environments is understand-

ing how polycyclic aromatic compounds (PACs) transition into larger nanoparticles.

These multi-ringed aromatic structures are believed to transform into soot through

chemical and physical pathways3. Unpaired electrons on PACs have been observed to

react with other radical species to form three-dimensional structures4–8, while PACs

can stack into larger clusters held together by electrostatic and dispersion forces9–11.

This physical interaction process is believed to be an important component of soot

formation as it provides the initial nucleation step or can hold PACs in proximity

with each other, so other chemical growth mechanisms can occur6,12,13. For this rea-

son, a proper understanding of the physical interactions of the inception process is a

necessary step towards creating a comprehensive model of combustion nanoparticle

growth.

Insight into this process can be gained by considering free energies of the dimer-

ization process. Various free energy differences can be applied in models either as the

equilibrium constant between aggregated and disaggregated states, or as the kinetic

rate constant of the associated reactions (Fig. 3.1). Transition state theory relates the

free energy barrier, ∆A‡, with the reaction rate constant through equation 3.1 where

κ is the transmission coefficient and h is Planck’s constant. Meanwhile the thermo-

dynamic equilibrium constant can be obtained from equation 3.2 with ∆A being the

difference in free energies between states. A visual depiction of these relationships is

given in fig. 3.1.
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kreaction = κ
kBT

h
e
−∆A‡

kBT (3.1)

Keq = exp
−∆A

kBT
(3.2)

Figure 3.1: Free energy surface of circumcoronene illustrating the free energy differ-
ence (∆A) between stable states and free energy barrier (∆A‡) for the
dimerization process. Exact values depend on the definition of state, as
qualitatively shown for monomer and dimer using horizontal arrows, exact
extents given in main text. Relationship to equilibrium constant (Keq)
and rate constant (krate) are provided on the plot.

A number of experimental and computational studies have sought to characterize

how the process of physical aggregation occurs14,15. Miller developed a model that

showed the importance of mass in hydrocarbon aggregation and determined that

only PACs larger than 800 Da would exist long enough at 1500 K to play a signif-

icant role in physical growth9. Other studies have concluded that aggregation can

occur at lower masses16. While many of these earlier studies were based on PACs

within the Stein-Fahr stabilomer grid17, more recent studies of polycyclic aromatic

formation have suggested that PACs occupy a much more diverse chemical space with

properties such as oxygenation, aliphatic branching, and five-membered rings18–23. A

number of works have assessed the effects of these properties on the propensity of
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these molecules to form physical dimers. Molecular dynamics studies have found that

physical dimerization is promoted by aliphatic chains, and thus mass alone is not

a sufficient descriptor of the process24,25. Moreover, the presence of oxygen6,26 and

molecular curvature27 have been shown to affect how these molecules dimerize.

In addition to characterizing the properties that promote dimerization, researchers

have looked to use these properties to make quantitative relationships about the

thermodynamic tendencies of molecules to aggregate11,28. As the size of the PAC

is understood to be an important property, Herdman and Miller developed a lin-

ear relationship between the reduced mass of PAC monomers and their propensity

to dimerize10. Raj et al. showed that the collision efficiency is an important fac-

tor in representing dimerization and can be predicted from the mass and shape of

constituent PAC molecules29. A predictive model for dimer stability has also been

developed by fitting the free energy (FE) of aggregation to molecular properties, such

as size, number of carbons, and solvent accessible surface area30.

Although these studies have shown some predictive capacity, they are unable to

account for the diverse PAC feature space that has been observed both experimen-

tally21 and computationally31 in flames. Recently, Elvati et al. examined a number

of these properties including size, oxygenation, radius of gyration, and presence of ro-

tatable bonds, finding that all these features affect the aggregation FE landscape32.

This result suggests that models that do not account for these properties are incom-

plete and highlights the need for a prediction scheme that can identify the complex

relationships these molecular properties have on the physical growth process.

While much of the aforementioned work focuses on the thermodynamic free energy

differences of aggregation, kinetic studies of aggregation similarly do not account for

the complex PAC landscape. A good deal of soot formation models have used colli-

sion theory to determine a physical dimerization rate6,29,33 where the formation rate

constant of the dimer is represented, among a number of other phenomena, with
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a single semi-empirical collision efficiency parameter29. This collision efficiency can

differ by up to five orders of magnitude, and simulations using these efficiencies to

implicitly capture reversibility can significantly deviate from expected inception be-

havior11. As such, other models have found success explicitly including the kinetic

reversibility. Mao et al. found that experimental measurements34 of pyrene dimer-

ization differed significantly from theoretical values unless the reverse dissociation

rate was included35. Eaves et al. demonstrated that incorporating the reversibility

of the physical dimerization process significantly improved predictions of soot vol-

ume fraction in flames28,36 while others have achieved similar results37. Recently, a

model explicitly considering the dissociation kinetics of five condensed hydrocarbons

produced a more accurate characterization of physical dimerization than a model

using purely collision efficiencies38. These current models of the dimer dissociation

kinetics, however, do not properly account for the complexity of PACs in flame sys-

tems. State-of-the-art methods37,39 are still confined to a few stabilomer PACs and

compute the kinetic dissociation barriers of these dimers primarily using parameters

derived from the PAC mass4,10,40. Simulations have suggested that the dimerization

is heavily influenced by other properties in the PAC chemical space such as shape and

presence of functional groups26,41 and mass alone provides a poor descriptor of PAC

dimerization. Other works have shown significantly more accurate soot formation

rates can be derived when including information on these PACs’ properties42. Thus,

accurate modelling of soot inception requires a methodology to quantify the barriers

of dimerization accounting for all types of PACs observed in flames.

While molecular dynamics and chemical master equation simulations can provide

this information for specific dimer pairs15,24,34,39,43, it is not feasible to extend these

methods to all possible dimers and even less so for larger aggregates. With millions

of different PACs observed in even simple flames44 it is too costly to compute this

information for all possible PACs, especially when accounting for all the hetero-dimer
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pairs.

To overcome these challenges, in this chapter I combine molecular dynamics, nu-

merical descriptors, and machine learning to quantitatively predict the physical in-

teraction free energies of PACs. Using molecular dynamics simulations, I create a

dataset with hundreds of free energy profiles in order to have FE as a function of

molecular distance for PACs with different functional groups such as aliphatic chains,

five-membered rings, oxygenated groups, and aliphatic linkages. Then labeling each

molecular pair with a large number of chemical descriptors, I trained supervised ma-

chine learning models (Lasso method45) in order to both predict the FE difference

(∆A) related to the equilibrium constant and the FE barrier (∆A‡) related to the

rate constant. The results underscore how machine learning can be used to process a

large chemical space with millions of unique PACs with complex properties in order

to create more accurate models. As a final discussion, I show how the free energies

produced in this work can be extended to practical parameters such as the rate and

equilibrium constants which can be applied in nanoparticle growth models.

3.3 Methodology

3.3.1 Datasets

A number of different PACs are considered in this work. In all cases, attempts have

been made to sample a wide range of properties including size, shape, five-membered

rings, and oxygen groups. For the free energy of dimerization, 14 PACs are considered

given in fig. 3.2. For the free energy barrier calculations, a slightly modified set of

PACs (A-N) are considered in fig. 3.3. This modification is made since some of the

PACs have complex FE surfaces that are not able to properly represent the barrier

in a single dimension and therefore would require a different simulation procedure.

For the free energy barrier calculations, a separate set of stabilomer PACs17 is also
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considered (A4-A10).

Figure 3.2: PACs used in this work for free energy of dimerization.

Figure 3.3: PACs used in this work for free energy barriers.

3.3.2 Molecular Dynamics

To generate data for the machine learning model, I considered the FE profiles

of all the possible combinations of PACs as discussed in section 3.3.1. This class

of molecules contains a diverse set of chemical features observed in both experimen-

tal21 and computational31 studies, and is an extension of the one used in previous

works6,26,32.
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When available, I used previously computed FE profiles32; otherwise the missing

FE profiles were obtained with the same procedure of that work, briefly reported

below. FE profiles were reconstructed by using the well-tempered Metadynamics

(WTMD) technique; all simulations were carried out in the NAMD program46 using

the PLUMED plugin47. Each simulation consisted of a 1 ns minimization and equili-

bration starting from two PAC molecules spaced 1 nm apart. This step was followed

by a 100 ns simulation biased on the distance between the molecules’ center-of-mass

(COM). Specific WTMD parameters and temperatures are available in table 3.1.

Table 3.1: Parameters used in Metadynamics simulations.
Parameter Value

Gaussian Sigma 0.04 nm
Gaussian Height 0.418 kJ mol−1

Gaussian Interval 0.1 ps
Bias Factor at 750 K 20
Bias Factor at 1000 K 15
Bias Factor at 1250 K 12.5

3.3.3 Computation of Free Energy Surfaces

The curves of three independent runs were used to compute two different FE

values related to the aggregation process. The free energy of dimerization (∆A) is

computed by considering the difference in free energy between the monomer and dimer

state and is related to thermodynamic equilibrium. The free energy barrier (∆A‡) is

the FE difference between the dimer state and the transition state and is related to

the kinetic rate constant. While this latter term is related to the dissociation rate

constant of the dimer, it can be combined with the free energy of dimerization to get

the association rate constant as well. The free energy of each state was defined as

the difference between the exponential weighted average for the dimer (approximately

0.35-0.75 nm) and monomer state (3.75-4.0 nm). The transition state was defined as

the local maxima between the monomer and dimer state. For the convention of the
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free energy of dimerization, positive values indicate that the molecules are more likely

to be found not aggregated, while for negative values the aggregate state is preferred.

For computation of the free energy barrier, a geometrical correctional term in-

troduced by Bal et al.48 was applied to ensure independence from the choice of the

reaction coordinate. Briefly, the standard free energy surface F S can be related to

the collective variable of COM distance d, by considering the probability distribution

of the collective variable, p(d) through equation 3.3:

F S(d) = − 1

β
ln p(d) (3.3)

This formulation is sufficient when computing the thermodynamic free energy

difference between the monomer and dimer states, as any dependence on the collective

variable is removed during integration. However, the transition state remains highly

dependent on the choice of collective variable, which can be corrected by adding a

gauge correction ensuring that the kinetic barrier is invariant to the collective variable

selection. The resulting geometric free energy surface FG is given by equation 3.4:

FG(s) = F S(d) − 1

β
ln ⟨λ|∇d|⟩d (3.4)

where λ is a length scale unit conversion and ⟨|∇d|⟩d is the ensemble average of

gradient d with respect to center of mass distance coordinates.

Then, in order to obtain the free energy barrier ∆A‡ in a form consistent with

Eyring’s equation, equation 3.5 is applied which considers the difference between the

transition state FG(TS), the dimer state FG(D), collective variable units λ, Planck

constant h, and reduced mass m.

F ‡(s) = FG(TS) − FG(D) +
1

β
ln(

λ

h

√
2πm

β
) (3.5)

A more detailed derivation of this procedure is given in the original work48.

82



3.4 Molecular Descriptors

For each PAC, I computed 312 molecular features describing size, shape, com-

position, and chemistry with an in-house code. These features were compiled from

previous quantitative structure-property relationship studies and have shown success

predicting a wide range of organic molecule properties49–53. All features included

in this study can be easily derived from a molecule’s composition, connectivity, and

atomic positions without any requirement for atomistic simulations or electron struc-

ture calculations. A brief description of features is given as follows, with an exact

number of each descriptor given in tab. 3.2:

Basic descriptors: These descriptors are zero dimensional descriptors that can

be derived entirely from the molecular formula such as mass and C/H ratio or de-

scriptors based on substructures such as aliphatic chains, oxygen groups, and number

of aromatic rings. CPSA descriptors50: Charged partial surface area descriptors

consider the surface area weighted by charge. Examples include total positive surface

area and total negative surface area. Crippen descriptors54: These are the cal-

culated molar refractivity and logP. SASA descriptors: Solvent accessible surface

area descriptors. Includes total sasa, sasa of all carbon atoms, and average depth from

solvent accessible surface. The probe radius is based on a water solvent. Tessellation

descriptors53: A delaunay tessellation is performed with each atom represented as

a point. Tessellations find groups of four atoms within proximity of each other. Each

tessellation descriptor represents the number of times one atom combination (e.g. 4

carbons, 3 carbons and 1 hydrogen, ect.) is observed. Unlike the original publication,

only the unweighted tessellations are computed since property weighted tessellations

on this dataset will be linearly correlated. VSA descriptors52: Van der Waal’s sur-

face area descriptors consider 3 properties: atomic charge, atomic logP, and atomic

molar refractivity. Each of these properties are binned by their value. Each property-

bin combination represents a single descriptor described as the total Van der Waal’s
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surface area of all atoms whose property values fall within that bin. WHIM descrip-

tors55: These descriptors consider the 3D coordinates of the molecule and derive a

set of descriptors from the the principal axes. WHIM descriptors are weighted in this

work by five properties: equal weights, mass, electronegativity, polarizability, and Van

der Waal’s volume although we note that in this work WHIM descriptors with differ-

ent property weightings are highly correlated. 3D Descriptors: While many of the

above descriptors include 3D information, this encapsulates the remaining descriptors

derived from 3D coordinate data including the radius of gyration, asphericity, and

eccentricity.

Table 3.2: Description of feature classes used in the model and number of features
within each class.

Feature Count

Basic descriptors 45
CPSA descriptors 29
Crippen descriptors 2
SASA descriptors 3
Tesselation descriptors 126
VSA descriptors 34
WHIM descriptors 70
3D descriptors 3

Since each FE of aggregation depends on two molecules, I combined individual

molecular features by computing the harmonic average, discussed more in the Results

section.

3.4.1 Machine Learning

Before training my machine learning model, I eliminated similar features by re-

moving any feature with a variance of zero and any feature with a Pearson correlation

greater than 0.95. To build a predictive model for the FE of aggregation, I applied

the Lasso method (Scikit-learn implementation56), as it allows for high accuracy and

often interpretable predictions45. Lasso, which uses the least absolute shrinkage and

selection operator, has been applied successfully to make interpretable predictions in
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chemical problems57 as it eliminates extraneous features and only selects a smaller

subset of properties needed to make the predictions. Specifically, it is a supervised

machine learning regression model that minimizes a loss function given by:

L(β, λ) =
n∑

i=1

(Yi − βXi) + λ

p∑
j=1

βj (3.6)

In this equation, Y is the true value, X are the input features, β is a set of feature

weights learned by the model, and λ (different from the λ in equation 3.5) is a reg-

ularization parameter set manually. In other words, Lasso minimizes the sum of the

squares of the residuals with a regularization term proportional to the l1 norm, creat-

ing a penalty on feature weights, which results in a more concise model. The further

regularization of the l0 norm, which would produce the simplest model by finding the

smallest subset of features that fits the data, is the ideal next step, but it is computa-

tionally intractable. The l1 norm employed by Lasso provides an approximation that

can be efficiently solved as a convex optimization problem57.

To avoid artifacts due to the different magnitudes of features affecting my results,

training data was first scaled using a standard scaler fit56 that centers each feature

at its mean value and normalizes by the standard deviation. I then used the training

data to select the optimal hyperparameters and to train a Lasso model. The Lasso

algorithm has only one hyperparameter which needs to be tuned. This parameter is λ,

which describes the relative penalization of the l1 norm. I consider 21 possible values

of 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5,

7.5, 10.0, 25.0, 50.0, 75.0 and 100.0. For each fold of leave-one-out cross-validation,

I withhold the testing sample and perform 5-fold cross validation on my training

data and select the model using the hyperparameter value with the lowest mean

absolute error across the cross validation set. For other machine learning methods

used in comparison, I optimized hyperparameters with a similar procedure. Kernel
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ridge regression and support vector regression used the same regularization or margin

hyperparameter candidate set as Lasso λ and a radial basis function kernel with a

gamma value chosen from 0.001 and 1 equally spaced on a log scale. For random

forest, either 10, 25, 50, 100, or 250 distinct estimators were used. For the neural

network, a network was chosen with either one or two layers using either 25, 50, or

100 neurons in each layer.

I tested the model using leave-one-out cross validation (i.e. withholding one FE

for each fold and using the remaining as training data) and considered the selected

features as those with non-zero coefficients.

3.4.2 Rate Constants and Equilibrium Constants

The free energy values can be converted into model parameters describing the

physical interactions of polycyclic aromatic compounds. The equilibrium constant

can be derived using the thermodynamic relationship described in equation 3.2. The

kinetic rate constant can be derived using the transition state theory from equation 3.1

with a κ value approximated at 0.66. Note that transition state theory can be applied

to both the association or dissociation depending on which barrier is used.

One consideration for these calculations, however, is that while the dimer state

exists across a clear range of distances (as defined by the local minima of the free

energy well), the precise definition of the monomer state is more complicated and

depends on the system temperature and pressure. Due to the entropic contribution

to the free energy, as two molecules separate, the most stable monomer state will

maximize the inter-particle distance. The thermodynamic basis for this is given in

the monotonically decreasing equation 3.7. It can be seen in fig. 3.1, that the free

energy surface decreases with increasing C.O.M. distances according to this principle.

While this correction shows that the free energy of the monomer state will continu-

ally decrease with increasing C.O.M. distance, there is a practical upper limit set by

86



the partial pressure of each PAC. Given a partial pressure and temperature, above

a certain C.O.M. distance a PAC monomer will be closer to other monomers in the

system. Therefore, while free energy dictates that higher C.O.M. distances are pre-

ferred, nearby molecules place a practical constraint on the maximum distance. For

these gas systems, however, there is also a statistical distribution of distances as not

all particles will necessarily be in the most stable state but rather occupy an ensemble

of distances.

∆A(r) = −2kBT ln(r) (3.7)

Therefore to calculate the free energy of the monomer state, I numerically simu-

lated a distribution of minimum distances r between 2500 particles randomly sampled

in a box. The box was sized with the ideal gas law for a specific temperature and pres-

sure and distances were calculated with periodic boundary conditions. I then used

the free energy surface, the histogram weight of each distance w(r), and the entropic

correction from equation 3.7 to get a free energy of the monomer state A(r) as a

function of distance. For this, atomistic simulations or machine learning was used to

obtain the monomer state at 4 nm and approximated with a proportional relationship

with temperature. Then, equation 3.7 was used to adjust the free energy surface to

the requisite COM distance in order to obtain the free energy of the monomer state.

I then obtained the free energy of the monomer state S with equation 3.8. Unless

otherwise mentioned, the monomer and dimer state were considered at a standard

pressure of 1 bar.

Amonomer =

∫
S

w(r)A(r)dr (3.8)
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3.5 Free Energy of Dimerization Results

In this section, I consider the free energy of dimerization. The subsequent section

is based on one of my publications1. This free energy describes the difference between

the monomer and dimer state and is related to the thermodynamic equilibrium of the

physical interaction process. I show how simulation and machine learning can be

combined to calculate these free energy differences and discuss various aspects of the

model.

3.5.1 Machine Learning Predictions

Figure 3.4: Comparison between calculated and predicted FE of aggregation at
1000 K. The dashed line provides reference of correct predictions. Color
represents dimer component type: green is an aliphatically linked PAC,
red is an oxygenated PAC, and blue is a condensed hydrocarbon. Points
with two colors share all the corresponding characteristics. Diamonds rep-
resent dimer pairs with errors at least twice the RMSE (10.2 kJ mol−1).

After running 105 simulations at 1000 K using the structures in fig. 3.2, I consider

the accuracy to which my machine learning procedure can predict the free energy of

dimerization. My predictive model (Fig. 3.4) performs well, with a mean absolute

error (MAE) of 6.4 kJ mol−1, only slightly higher than the average uncertainty of my
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MD simulations (3.5 kJ mol−1) and the average energy for one translational degree of

freedom (4.184 kJ mol−1) at 1000 K (see ”This work” in Fig. 3.5). My training MAE is

only slightly lower at 5.8 kJ mol−1 which suggests minimal over-fitting of the model.

To test for information leakage, or in other words that the model is learning from

general molecular properties and motifs and not the presence of the same monomer in

the training set, I repeated the leave-one-out cross validation while omitting from the

training data all samples that share a monomer with the testing sample. As expected,

since I am training with fewer data (∼13% for homo-aggregation and ∼26% for hetero-

aggregation, smaller dataset), the prediction slightly worsens (”This work, restrict”

in Fig. 3.5). However, with a root mean squared error (RMSE) of 11.3 kJ mol−1

and MAE of 7.6 kJ mol−1, the model still performs better than existing models (see

Fig. 3.5).

Interestingly, the RMSE of my predictions is higher than the MAE, which suggests

that a few interactions are not predicted as well as the rest of the data. The analysis

of the data highlights that there are 5 pairs (i.e. AD, AJ, BD, CF, and DE) for which

the error in the predicted FE value is twice the RMSE value. For all of them, the

predicted aggregate is less stable than the MD simulations would indicate, and four

of them involve molecule C or D, which are the only ones in the dataset that have

both aliphatic chains and oxygenated groups. It has been observed that oxygenation

destabilizes the physical aggregations of PACs6,26 while aliphatic chains show the

opposite trend24,25, and when multiple competing features of similar magnitude affect

the FE, the outcome is not easy to predict32. Moreover, since my dataset lacks

molecules that have only aliphatic chains or more cases of similar molecules, it is

possible that the model is not able to properly learn the interplay of these particular

features.

My model outperforms existing physical dimerization models present in the liter-

ature, as shown in Fig. 3.5. I compared my results, including the test on a restricted
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Figure 3.5: Comparison between proposed predictive model and published ones ap-
plied to same dataset at 1000 K. Red shows the MAE and blue the RMSE.
For reference, the average standard error of the input data (MD simula-
tions) is ∼3.5 kJ mol−1.

dataset with no data leakage illustrated above (labeled ”This work” and ”This work,

restrict”, respectively) with three additional models. For all methods, I performed a

leave-one-out validation procedure, fitting each model’s parameters and functions to

the molecules and FE in my dataset. First, I compared my results with the widely

used model introduced by Herdman and Miller10, which assumes a linear correlation

between the reduced mass and the binding energy (labeled ”Reduced mass”). More

recently, Lowe et al.30 characterized a number of polycyclic aromatic dimers and de-

veloped a predictive model for the change in FE between the monomer and dimer

states based around the solvent accessible surface area and number of carbons. For

my second comparison, I used the linear fit from the original publication that relates

the average carbon surface area and the FE (labeled linear SASA). Next, instead

of using the published linear fit, I instead used the molecular descriptors (number

of carbons and solvent accessible surface area) as input features into a Lasso model

(labeled as SASA + numC). In addition to these, I consider the naive case in which

all values were predicted as the average free energy of the dataset. In all cases, the

predictive model presented in this work performs better than the previous models,

showing that a more comprehensive feature set, such as the one employed here, can

better capture molecular properties responsible for dimerization.
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Finally, I compared the performance of Lasso against other five machine learning

methods, namely, linear regression, support vector machine, kernel ridge regression,

random forest, and multilayer perceptron methods. The results (table 3.3), show

that all methods have a similar predictive error, except linear regression, which has

markedly lower performances. These results confirm the validity of my choice, as no

method outperforms Lasso in both MAE and RMSE, and, unlike the other methods,

Lasso creates a sparse feature space adding some interpretability by identifying the

features that are used in the predictions.

Table 3.3: A comparison of prediction errors for different machine learning methods
for free energy of dimerization. All units are in kJ mol−1.

Model MAE RMSE

Lasso 6.4 10.2
Linear Regressor 10.2 13.9

Support Vector Machine 5.7 10.5
Kernel Ridge Regression 6.8 10.5

Random Forest 6.5 10.1
MLP Neural Network 7.5 11.1

3.5.2 Molecular Feature Selection

As discussed above, one advantages of Lasso is its ability to provide a degree of

interpretability towards the aspects that control the prediction, as it sets coefficients

of unused features to zero45. Thus, by analyzing which features the Lasso model

retains, I can gain a sense of which molecular properties are important for predicting

the FE of dimer aggregation.

Overall, across all 105 folds of cross validations, the model selects a nearly identical

set of 10 features. If I exclude these top features, no other feature is selected in more

than four folds and as such I will not discuss them. Broadly, the top features can

be divided into three groups of properties that are important for PAC dimerization:

size, shape, and presence of specific chemical groups.
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3.5.2.1 Size

The first class of properties are extrinsic properties that are broadly related to

the size of the molecule. Specifically, the algorithm selected the number of aromatic

rings, the number of carbons not connected to a hydrogen, the number of tessella-

tions containing four carbons, the number of tessellations with three carbons and a

hydrogen, and the number of six-membered rings.

Figure 3.6: Relationship between the number of aromatic rings and dimerization FE.
Top: The number of aromatic rings associated with each dimer. Bottom:
Aggregation propensity compared to average number of aromatic rings in
the dimer. The five outliers discussed in the previous section are denoted
as diamonds. Colors represent the dimer’s component type: green indi-
cates an aliphatically linked PAC, red an oxygenated PAC, and blue a
condensed hydrocarbon. Points with two colors share all the correspond-
ing characteristics.

Figure 3.6 shows that the FE of dimerization is strongly related to the (harmonic)

average number of aromatic rings in the dimer (Pearson coefficient of -0.8397 and

Spearman coefficient of 0.8719). This result agrees with the general observation that

PACs will often cluster in lateral stacks, and the interaction strength between PACs
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is closely related to their number of aromatic rings58,59. Moreover, at least for soot

precursors, the number of aromatic rings is closely correlated with mass, hence the

use of the latter as a descriptor for the aggregation strength in other works10.

Among the molecular descriptors in this class, the number of aromatic rings is

the feature that has the highest correlation with the FE (more than the number

of six membered rings, for example), but it is crucial to note that, by itself, it is

not sufficient to fully capture the physical dimerization. A linear fit of the FE as a

function of the total number of aromatic rings produces a predictive model with an

RMSE of 15.6 kJ mol−1 and a MAE of 11.3 kJ mol−1, which has a significantly larger

error than the Lasso model and is (not coincidentally) comparable to using only the

mass as a descriptor (see Fig. 3.5)

Some features in this group encode size with molecular shape information. One

such example is the number of internal carbon atoms, defined as the aromatic carbon

atoms that are not bonded to H atoms. As, many of the molecules in the dataset

are highly pericondensed hydrocarbons, these PACs will have a greater percentage of

internal carbons than catacondensed PACs.

The plot of the number of internal carbons against the dimerization propensity,

presented in Fig. 3.7, shows three somewhat distinct groupings: molecules with less

than 10 internal carbons, which represent aliphatically linked hydrocarbons, pericon-

densed molecules with approximately 20 internal carbons, and larger pericondensed

molecules with 30 or more carbons. When ignoring the outliers discussed in the previ-

ous section, these groupings generally correspond to the stability of the dimer, where

aliphatically linked hydrocarbons are less stable than smaller pericondensed molecules

and larger pericondensed molecules are the most stable, inline with previous works on

the importance of shape of PACs29 and on the lower dimerization speed and shorter

lifetimes of linked PACs25.

Finally, tessellation descriptors contain similar information of size and shape as
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Figure 3.7: Relationship between the number of internal carbons and dimerization
FE. Top: The number of internal carbons associated with each monomer.
Bottom: Aggregation propensity compared to average number of internal
carbons in the dimer. The five outliers discussed in the previous sec-
tion are denoted as diamonds. Color represents PAC type: green is an
aliphatically linked PAC, red is an oxygenated PAC, and blue is a con-
densed hydrocarbon. Points with two colors share all the corresponding
characteristics.

they count the number of times four carbons are in proximity with each other (mostly

internal carbons) and the number of times three carbons are in proximity with a

hydrogen (mostly edge carbons).

3.5.2.2 Shape

The second group of properties corresponds to quantities that purely describe the

shape of the molecules, such as the relative lengths of the first and second principal

axis of inertia (WHIM49 mass axis 1 and 2), which are both size independent.

Figure 3.8 shows the ratio between the second and first principal axes of inertia

(i.e. aspect ratio), along with its relationship with the propensity of these molecules
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Figure 3.8: Relationship between aspect ratio and dimerization FE. Top: The aspect
ratio associated with each monomer. Bottom: Aggregation propensity
compared to average aspect ratio in the dimer. The five outliers discussed
in the previous section are denoted as diamonds. Color represents PAC
type: green is an aliphatically linked PAC, red is an oxygenated PAC,
and blue is a condensed hydrocarbon. Points with two colors share all
the corresponding characteristics.

to dimerize. While a clear separation exists for the less stable dimers containing an

aliphatically linked hydrocarbon, it is difficult to identify a trend for the remaining

dataset. This suggests that size independent descriptors of shape are likely being used

by the model only to identify aliphatically linked PACs and not other compounds.

This phenomenon does not imply that shape descriptors do not have a clear relation-

ship with the free energy, as they may play an important role for curved PACs31.

However, due to the complexity of the FE landscape of curved molecules and the

presence of multiple distinct configurations at short distances, I did not include any

in this work.
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3.5.2.3 Specific chemical groups

The third class of properties groups descriptors that are a metric for the presence

of specific chemical groups, like the number of tessellations with three carbons and an

oxygen atom, the total Van der Waals surface area of all atoms with a partial charge

between -0.05 and 0 (known as the vsa52 charge 7), and length of the longest aliphatic

chain. The tessellation descriptor53 considers each atom as a point in space and

computes a Delaunay triangulation, counting the number of times each combination

of each element appears in a tessellation. While the property does not necessarily

correspond directly to the number of oxygen atoms (an atom can appear in multiple

tessellations), it accounts for the presence of oxygen by counting the number of times

an oxygen is in proximity with three other carbons. The vsa charge 7 property

encodes information about surface area but also implicitly captures information about

oxygenated groups: most carbons that are located near oxygen functional groups are

slightly positively charged and thus are not included in the surface area computation.

Therefore, for equivalent sizes and geometries, the vsa charge 7 will be lower for

molecules with electrophilic groups.

The last property in this group is the length of the longest aliphatic chain, which

accounts for the presence of both rotatable bonds and side chains. In combination

with the aspect ratio, this feature can distinguish between aliphatically linked chains

and side chains, which have the ability to stabilize PAC clusters and make aggregation

more favorable24,25.

3.5.3 Hetero-aggregation

Based on existing models, to predict the aggregation propensity for the hetero-

moelcular pairs, I computed the harmonic mean of the two monomers’ molecular

features. To test if this choice is optimal, I compared the performance of the model
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Figure 3.9: Comparison of the predictive performance for different methods of com-
bining monomer features for heterodimerization. M−∞ is the minimum
value, M−1 is the harmonic mean, M0 is the geometric mean, M1 is the
arithmetic mean, and M∞ is the maximum value. For reference, the
RMSE of the input data (MD simulations) is ∼3.5 kJ mol−1.

with five different combination rules. Using the definition of generalized mean,

Mp(x1, . . . , xn) =

(
1

n

n∑
i=1

xp
i

) 1
p

(3.9)

where xi are the n averaged values, I defined the combination rules as M−∞ (minimum

value), M−1 (harmonic mean), M0 (geometric mean), M1 (arithmetic mean), and M∞

(maximum value).

The results, illustrated in Fig. 3.9, show that the harmonic mean outperforms the

other metrics, even though the minimum value and geometric mean yield relatively

similar results. This trend suggests that between two constituent molecules, the

smaller properties tend to have a greater influence on the final stability. Interestingly,

however, the error (as a function of p) has a minimum, since M−∞ ≤ M−1 ≤ M0, but

the difference is small enough for the current dataset that no further optimization

is relevant. While in some cases (e.g. charge or shape features) the magnitude of

the property does not correspond to the size of the molecule, eight of the top ten

features selected (see previous subsections) are extrinsic properties, suggesting that

the characteristics of the smaller monomer plays a disproportionately larger role in the
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stability and the lifetime of the aggregate. This conclusion provides some empirical

foundation to similar observations present in the literature10,30.

3.5.4 The Effects of Temperature

Up to this point, I considered only data at 1000 K. Here, I test the generality of the

selected features at different temperatures. I do this in two ways. First I show that

the above method can predict the free energy of dimerization at new temperatures

by altering the training set to include only data at a different temperature. Second

I show that multiple temperatures can be predicted at once by using a dataset with

multiple temperatures and adding temperature as a feature into the machine learning

model.

First, I used the previously published homodimerization FE obtained at 500 K

and 1680 K32 to train and test (at each temperature) a Lasso model using only the

10 features selected at 1000 K. While the dataset covers a quite smaller subset of

the data used at 1000 K, at very different temperatures the balance of the entropic

and enthalpic contributions differs, which can result in the aggregation giving more

weight to different molecular characteristics. The prediction results at these two

temperatures are shown in Fig. 3.10, with both temperatures, showing an RMSE and

MAE lower than the one for the model trained on FE at 1000 K, likely due to the

smaller error associated with the prediction of homodimerization.

Overall, the results show that the selected features are valid in a large temperature

range. Of note, the error for the model trained with data at 1680 K is significantly

greater than the one trained at 500 K, potentially, because physical dimerization is a

much less important process at this elevated temperature15,32 and the system tends

towards the ideal gas behavior, for which many of the descriptors become meaningless.

As a second test of the effects of temperature, I predicted the free energy of

dimerization for the union of structures in fig. 3.2 and fig. 3.3 at 750 K, 1000 K, and
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Figure 3.10: Comparison of calculated (MD) and predicted FE of aggregation at
500 K (diamonds) and 1680 K (circles) using only the 10 features se-
lected at 1000 K. Color represents PAC type: green is an aliphatically
linked PAC, red is an oxygenated PAC, and blue is a condensed hydro-
carbon. The dashed line provides reference of correct predictions. At
500 K, RMSE is 4.9 kJ mol−1 and MAE is 4.1 kJ mol−1. At 1680 K RMSE
is 8.8 kJ mol−1 and MAE is 6.1 kJ mol−1.

1250 K, 165 samples total. In contrast to the above method predicting each dataset

at discrete temperatures, this predicted the free energy of dimerizations with all three

temperatures in the dataset using temperature as an additional feature. The results

of my predictions are shown in Fig. 3.11. Across all temperatures, the Lasso model

performs well with a mean average error (MAE) of 5.5 kJ mol−1 and root mean squared

error (RMSE) of 7.0 kJ mol−1. For comparison, the average experimental uncertainty

of the simulations are only slightly lower at 3.0 kJ mol−1. Particularly notably, this

method out-performs a linear fit based on the reduced mass and temperature which

is the basis of current dimerization energetic predictions4,10 with a mean average

error (MAE) of 8.1 kJ mol−1 and root mean squared error (RMSE) of 10.2 kJ mol−1.

This is not surprising since a large body of work has shown that properties such as

oxygenation, aliphatic linkages, and shape are highly relevant to the dimerization

process30,32,60.
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Figure 3.11: Comparison between calculated and Lasso predicted dimerization FE.
The dashed line represents the correct predictions. Color represent tem-
peratures: blue is 750 K, orange is 1000 K, and red is 1250 K.

3.6 Free Energy Barriers

In the previous section, I showed how molecular dynamics and machine learning

could predict the free energy difference between states. In this section, based on one of

my works2, I consider the free energy barrier. This value is the free energy difference

between the dimer state and and transition state and is related to the kinetics of the

process. Beginning with the overall simulation results and then extending a machine

learning framework, I show that the specific findings and nuances of these barriers

are different than the free energy differences. However these barriers can also be

predicted accurately with simulation and machine learning.

3.6.1 Simulation Results

From the molecular dynamics simulations, I computed 315 unique free energy

dissociation barriers, as shown in Fig. 3.12, with an average uncertainty for the

simulations (standard error) at each temperature of 0.9 kJ mol−1, 0.7 kJ mol−1, and

0.5 kJ mol−1 at 750 K, 1000 K, and 1250 K respectively. Generally, I observe the same

qualitative relationships with size and temperature that I have identified previously
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Figure 3.12: Comparison between FE barrier (from molecular dynamics) vs. reduced
mass at 750 K (blue), 1000 K (purple), and 1250 K (red). Marker shape
represents dimer component type: circles are condensed hydrocarbons,
squares are oxygenated PACs, and diamonds are condensed hydrocarbon
and oxygenated PAC heterodimers.

for the free energy of dimerization in the previous section. All else being equal, for

these molecules and this process, the free energy barriers tend to increase with mass

as Van der Waal’s and electrostatic interactions become stronger and decrease with

temperature as entropic effects increase in importance. It is important to note, how-

ever, that these parameters are insufficient to describe all differences observed in the

energy barrier and a quantitative trend cannot accurately be derived solely from these

two values.

The COM distance of the transition state tends to increase slightly at lower tem-

peratures and is on average 1.4 nm across all simulations. Any distances closer than

the transition state could reasonably be referred to as the dimer state for physical

aggregation.

To assess the effect of the gauge-corrected free energies48, I compared the barrier

computed in this work with the standard free energy surface computed previously1,32.

By using the free energy surface from equation 3.4, I obtain a mean difference of

2.9±0.2 kJ mol−1 which is greater than three times the average uncertainty of the
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Table 3.4: A comparison of mean absolute errors for different machine learning meth-
ods for free energy barrier predictions. All quantities are expressed in
kJ mol−1 and lowest error(s) at each temperature are shown in bold.

Temperature (K)
Model 750 1000 1250

Linear Regressor 3.9 2.6 1.5
Lasso 3.2 2.0 1.3
Support Vector Machine 3.3 2.2 1.2
Kernel Ridge Regression 3.4 2.3 1.2
Random Forest 4.0 3.0 1.8
MLP Neural Network 8.6 6.8 5.3
Naive 16.7 13.1 7.7

simulations. Applying the additional gauge correction in equation 3.5 further in-

creases the barriers by a mean value of 31.1±0.4 kJ mol−1. It is worth repeating that

this gauge correction is important only for the calculation of the barrier, and there-

fore this correction does not affect previous works that use the free energy curve to

determine the stability of the states.

3.6.2 Machine Learning Predictions

Next, I tested different machine learning models to understand if the dissociation

free energy could be extrapolated from the data I computed with molecular dynam-

ics. The results, including a naive predictor, which estimates a new barrier as the

average value of the dataset, are reported in tables 3.4 and 3.5. Not only do all the

methods significantly outperform this naive predictor, suggesting they all have predic-

tive power, but they have similar performance, except for the neural network, which

likely suffers from overfitting. Therefore, due to the relatively high performance and

interpretability1,57 of Lasso, I select this method and use it for my analyses unless

otherwise mentioned.

At temperatures of 750 K, 1000 K, and 1250 K, the free energies are predicted with

a MAE of 3.2 kJ mol−1, 2.0 kJ mol−1, and 1.3 kJ mol−1 and an RMSE of 4.1 kJ mol−1,
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Table 3.5: A comparison of root mean squared error for different machine learning
methods for free energy barrier predictions. All quantities are expressed
in kJ mol−1 and lowest error(s) at each temperature are shown in bold.

Model 750 K 1000 K 1250 K
Linear Regressor 4.9 3.5 2.0
Lasso 4.1 2.7 1.8
Support Vector Machine 4.3 3.2 1.8
Kernel Ridge Regression 4.5 3.3 1.8
Random Forest 5.3 4.0 2.6
MLP Neural Network 13.8 9.8 8.1
Naive 20.3 16.3 10.0

2.7 kJ mol−1, and 1.8 kJ mol−1. The training errors at these temperatures are similar

with an MAE of 2.5 kJ mol−1, 1.4 kJ mol−1, and 0.9 kJ mol−1, respectively, suggesting

minimal over-fitting. I note that the errors tend to increase at lower temperatures, but

that largely corresponds to the greater absolute values in free energy barriers rather

than an increased difficulty in prediction of these energies. This idea is supported by

the naive predictions that follow the same trend.

Figure 3.13: Comparison between calculated and predicted FE barrier of aggregation
for leave-one-dimer-out at 750 K (blue), 1000 K (purple), 1250 K (red).
The dashed line provides reference of correct predictions. Marker shape
represents dimer component type: circles are condensed hydrocarbons,
squares are oxygenated PACs, and diamonds are condensed hydrocarbon
and oxygenated PAC heterodimers.

To demonstrate the improvement of these results over previous methods, I compare
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these prediction errors with predictions derived from a linear fit of the reduced mass in

Fig. 3.14. The correlation with reduced mass is commonly used4,10 to derive the dimer

dissociation rates in many state-of-the-art methods36,38. At all three temperatures,

the reduced mass model produces barrier predictions with errors greater than twice

my machine learning errors. The significantly higher error of these methods suggest

mass is an inadequate descriptor and is not able by itself to capture the effects different

PAC features have on the dimerization process. The correlations between mass and

dimerization barrier, such as those presented in Fig. 3.12, are not strong enough to

capture all variation in free energy with a mean Pearson correlation of 0.40. This

results in significant under-fitting, resulting in the higher errors. Machine learning,

by contrast, is able to consider a large set of features (including mass) and learn a

more complicated relationship between molecular properties and dimer free energy

barriers, which results in significantly improved performance.

Figure 3.14: Comparison between machine learning (Lasso) and reduced mass (Mass)
methods for computing FE barrier of aggregation at 750 K, 1000 K,
1250 K. Red shows the MAE and blue the RMSE. All units are in
kJ mol−1.

In addition to producing high accuracy predictions on a diverse set of PACs, I
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also demonstrate that my machine learning approach can readily be extended to

improve predictions of energy barriers for more simple pericondensed hydrocarbon

PAC structures than have traditionally been studied for this problem10. To this end,

I consider the homo-dimerization and hetero-dimerization for the seven stabilomers

between four and ten rings studied by Lowe et al.30 and predict 28 unique barriers in

fig. 3.15. At 750 K, I predict these values with an MAE of 0.5 kJ mol−1 and RMSE

of 0.7 kJ mol−1 which is approximately equal to the uncertainty in my simulations.

Even in this more simple case, machine learning still outperforms a mass-based fit

which has more than twice the error with am MAE of 1.5 kJ mol−1 and RMSE of

2.0 kJ mol−1. This suggests that even when predicting the barriers of simple, con-

densed hydrocarbon PACs, machine learning is still able to capture nuances in the

molecular representation and provide more accurate predictions than than a linear

mass fit.

Figure 3.15: Comparison between calculated and predicted FE barrier of aggrega-
tion for leave-one-dimer-out at 750 K using a stabilomer-only dataset.
Dashed line provides reference of correct predictions.
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3.6.3 Influence of Molecular Features

In this section, I consider which descriptors are most important to the prediction

of the energy barrier. As discussed above, one of the advantages of Lasso is that it

can offer interpretability towards predictions by selecting a smaller subset of features

which are used to make the prediction. In the previous section, this approach was able

to select 10 PAC features which were necessary for the prediction of thermodynamic

energy differences between the monomer and dimer state1. The selection of these

features is important on two levels. First, selected features can be related to specific

chemical properties of the PACs to further enhance our understanding of the dimer-

ization process. Secondly, these descriptors provide a quantitative way to express

important properties which can be directly related to the dimerization energetics.

First, I consider an example of how multiple numerical features can capture the

dimerization barrier in Fig. 3.16. Here, I consider the PACs’ mass and charge weighted

fraction of negative surface area, which is a feature selected at all three temperatures.

One can see that the mass can describe much of the free energy barrier, however, this

single descriptor is too simple to capture all combinations of PACs. At an average

mass between 650 u and 700 u, the possible barriers in this narrow mass range differ

by as much as 39.4 kJ mol−1 resulting in a maximum deviation from the mass fit of

22.7 kJ mol−1. With a single descriptor, the model is under-fit and unable to properly

capture all the molecular contributions to dimerization in my dataset.

A second descriptor capturing additional properties can significantly improve pre-

dictions. Here I consider the ratio of negatively charged to overall solvent accessible

surface area weighted by the absolute value of the atomic charge50. Due to the weight-

ing by charge, this value is significantly higher for oxygenated PACs whose oxygen

atoms exhibit a highly negative character. It can be seen that at higher fractions of

negative surface area, the dimer exhibits a lower barrier at equivalent masses. Thus,

this descriptor appears to validate the two hypotheses proposed elsewhere32 (1): that
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oxygenated PACs exhibit a slightly destabilizing effect on the PAC dimer and (2):

that these oxygen effects are typically secondary to the role of size on dimer sta-

bility. It is important to note that this quantitative relationship is specific to this

descriptor and is not observed to the same degree when selecting a more heuristic

feature to represent oxygenation, such as the number of oxygen atoms. Rather, Lasso

automatically selects a feature which implicitly captures the oxygenation while en-

coding information about the molecular surface area which is also important to PAC

dimerization30 and in turn results in much higher predictive performance.

Next, I consider the totality of features selected by the machine learning model.

First I note that a significantly larger number of features are needed to predict the

energetic transition state barrier compared to the 10 features needed to predict the

thermodynamic dimer stability1. There are many commonalities between features

selected in predicting the kinetic barrier and thermodynamic stability such as the

number of aromatic rings which is highly correlated to the size and mass of the

molecule, a number of features capturing aliphatic chains which have been observed to

strengthen interactions25, and features implicitly representing the oxygenation which

weaken interactions26 are also present. I also note and herein discuss a number of

features unique to predicting the barrier pertaining to presence of functional groups,

surface area, and shape.

When considering features only selected when predicting the barrier, Lasso selects

the number of five-membered rings at all three temperatures. Beyond their contribu-

tion to curvature61, which likely falls outside the scope of my dataset, five-membered

carbocycles30 and heterocycles26 have been observed to slightly destabilize the dimer

cluster. It is interesting that this particular feature is selected since the model has the

option to explicitly select the number of furans, which is does select, and the number

of five-membered carbocycles which it omits. Since the contributions between a furan

group and a carbocycle are expected to be different, this suggests that the additive
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nature of the Lasso model is able to capture the effect of the five-membered ring with

this feature then separately with additional features, such as the number of furans

and one shown in Fig. 3.16, control for the destabilizing role of oxygen.

Figure 3.16: Relationship between free energy barrier and mass, charge, and surface
area descriptors. Scatter plot shows FE barrier of aggregation vs. re-
duced mass at 750 K. Dotted line shows the best linear fit between mass
and FE barrier. Colors represent the charge weighted fraction of nega-
tive surface area.

The surface area is also an important parameter, with descriptors selected includ-

ing property-weighted measures of solvent accessible and Van der Waal’s surface area,

such as the one discussed in Fig. 3.16. These descriptors capture information about

the interacting surface area which is an essential component of collision theory rate

calculations33 and when normalized by size can numerically represent the degree to

which the PAC is catacondensed or pericondensed. Interestingly, unlike other works

which focus on number of carbons and mass to describe the size of the PACs, my

machine learning framework shows a preference for surface area descriptors. While all

these size descriptors are highly correlated, these surface area descriptors encode more

information about the actual positions of atoms in the molecule and available inter-

action area and thus may be more useful when developing quantitative dimerization
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relationships.

Another class of descriptors selected are the WHIM descriptors, which encode

information about atomic distribution of the molecule along three principal axes.

These descriptors encode shape while providing additional information about the size

of the molecule. In addition to providing a measure of effective area of the molecule

based on its principal axes of inertia, these descriptors can measure the linearity

and symmetry of a PAC62. This allows it to distinguish between catacondensed

PACs (such as dimer KK) that have a lower dissociation barrier than other PACs

with equivalent masses and pericondensed symmetric stabilomers (such as dimer FF)

which are more stable.

Overall, the model is able to automatically select a number of descriptors encap-

sulating size, surface area, shape, and presence of specific chemical groups which align

with previous studies suggesting that these properties are important1,4,6,10,29,30,32.

While these properties are helpful for understanding the dimerization chemistry, they

are not interchangable with the descriptors selected by Lasso. For example, Lasso

does not use atomic counts of carbon or oxygen and selects other descriptors in place

of the commonly used reduced mass. Despite the role these properties may play in

the dimerization process, Lasso suggests there are more suitable descriptors to implic-

itly capture these properties in the molecular representation. Thus, the descriptors

selected by Lasso are not simply a direct count of properties which have previously

been known to influence aggregation, but rather are a set of numerical descriptors

which best represent multiple properties important to the dimerization process and

can quantitatively be related to the dimer dissociation barrier.

3.6.4 Free Energy Barrier: Predicting Temperature Effects

While up until this point I have considered all barrier predictions independently

at three separate temperatures, practical application of this machine learning to soot
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inception models requires that predictions can incorporate temperature effects and

make predictions across multiple temperatures. Thus, to assess how well my model

can be extended to predicting new temperatures, I aggregate data from all three

temperatures and perform leave-one-out validation of all dimer-temperature combi-

nations, including the temperature as an additional numerical feature. Using Lasso

in Fig. 3.17 to predict these free energies across all three temperatures, I obtain a

MAE of 4.7 kJ mol−1 and RMSE of 5.9 kJ mol−1. Once again, this error is consider-

ably lower than a fit with reduced mass and temperature, which has an MAE and

RMSE of 6.4 kJ mol−1 and 8.1 kJ mol−1 respectively.

From the data, it can be observed that the relationship between temperature

and the dimer free energy barrier is often non-linear. A potential drawback of the

Lasso method, is that it is only capable of identifying linear relationships between

features and a target value. Therefore, while the method performs well at individual

temperatures and still outperforms mass-based fits across multiple temperatures, im-

provement can likely be realized in predicting temperature effects by incorporating

a non-linear machine learning method. Therefore, in Fig. 3.17 I also include predic-

tions from support vector regression (SVR) with a radial basis function kernel, which

is among the highest performing non-linear method in Tab. 3.4. This method fur-

ther improves upon the Lasso performance with an MAE and RMSE of 2.4 kJ mol−1

and 3.2, demonstrating that predictions specifically across multiple temperatures may

benefit from incorporating a non-linear relationship with temperature. It is observed

that samples at temperatures of 750 K and 1250 K have higher errors than those at

1000 K. This is to be expected since these intermediate temperature values are inter-

polated between two known free energies, while the other temperatures require some

extrapolation. Based on these results, the range of temperatures used in my simula-

tions should provide a temperature domain across which this prediction methodology

should be valid. While simulations at additional temperatures may be added in fu-
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ture works, at lower temperatures I would expect minimal PAC growth63 and higher

temperatures other phenomena such as chemical bond formation likely become much

more prevalent5,13.

Figure 3.17: Top: Comparison between machine learning models (Lasso and SVR)
and reduced mass (Mass) method for computing FE barrier of aggrega-
tion for all temperatures. Red shows the MAE and blue the RMSE. All
values are in kJ mol−1. Bottom: Comparison between calculated and
predicted (SVR) FE barrier of aggregation at all temperatures. The
dashed line provides reference of correct predictions. Colors represent
temperatures:750 K is blue, 1000 K is purple, 1250 K is red. Marker
shape represents dimer component type: circles are condensed hydro-
carbons, squares are oxygenated PACs, and diamonds are condensed
hydrocarbon and oxygenated PAC heterodimers
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3.7 Adapting Free Energies to Model Parameters

Throughout this chapter, I have discussed computational methods for obtaining

free energies which describe the physical interactions of PACs. Multi-scale simula-

tions of these physical interactions, however, require free energies to be transformed

into practical parameters such as the rate constant and equilibrium constant which

can be applied in differential equations and equations of state. Therefore, in this

final section I show how useful model parameters can be derived from the free en-

ergy. I compare with existing calculations and measurements to show that my rate

and equilibrium constants agree with known correlations and improve upon existing

calculation methods.

3.7.1 Equilibrium Constant

First, I consider how the equilibrium constant (Kp) varies with temperature. I

compute the free energy of dimerization with equation 3.2 at a pressure of 1 bar

correcting the free energy surface using the distance calculation discussed in the

methodology. While the equilibrium constant is difficult to experimentally measure

at such high temperatures due to a variety of competing reactions, I compare against

a number of existing theoretical calculations of this value. First, I compare the Kp of

pyrene (A4 in fig. 3.3) against correlations from Sabbah et al. and Totton et al.11,34

in fig. 3.18. Some deviation exists between all three correlations especially at very low

values of the equilibrium constant, however, overall my computed Kp values agree well

with existing correlations. It is worth emphasizing here, that due to the difficulty in

measuring this phenomena experimentally one cannot determine which of these cor-

relations is closest to the ground truth. Rather, the fact that this approach arrives

at similar values to two very different theoretical calculations suggests its utility.

Secondly, I compare circumcoronene (F in fig. 3.3), a much larger PAC, against

the correlation from Totton et al. in fig. 3.19. Here, excellent agreement is observed
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Figure 3.18: Equilibrium constant Kp vs. temperature for pyrene homo-dimerization.
The proposed equilibrium constant is given with a solid blue line while
two existing correlations11,34 are provided for comparison with a red and
purple dashed line. The dark dotted line is provided at a value of 1. The
dimer state is favored above the line while the monomer state is favored
below it.

between the two calculations. Interestingly, my calculations are only computed based

on simulations between 750 K and 1250 K, however, good agreement is seen up to

2500 K which suggests that some extrapolation is possible at higher temperatures.

This is likely due to the fact that at higher temperatures the entropic free energy

contributions from equation 3.7, which are linearly related to temperature, are much

greater relative to other contributions.

3.7.2 Rate Constant

Next, I show how the barrier can accurately reproduce the kinetic rate constant for

pyrene dimerization. To this end, I compare my calculated rate constants for pyrene

aggregation with experimentally measured rate constants from Sabbah et al.34 and

theoretical calculations from collision theory29. Due to experimental limitations, mea-

surements were only taken at low temperatures and pressures. The rate calculations

based on MD are simulated with a high number of collisions from the thermostat and

as such do not exactly correspond to the low pressures at which the experimental

measurements were made. Thus, I consider the rate calculated from equation 3.1
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Figure 3.19: Equilibrium constant Kp vs. temperature for circumcornene homo-
dimerization. The proposed equilibrium constant is given with a solid
blue line while an existing correlation11 is provided for comparison with
a red dashed line. The dark dotted line is provided at a value of 1. The
dimer state is favored above the line while the monomer state is favored
below it.

and collision theory as the high pressure limit and correct for low pressure effects

with Troe parameterization64 using the low pressure limits from Biennier et al. for

pyrene65.

Figure 3.20: Calculated rate constants for pyrene homo-dimerization (dashed line)
compared against experiment34 (circles) and collision theory (dotted
line).

The results are shown in figure 3.20. One can see that at all temperatures, the

rates calculated with my transition state theory approach closely conform to the
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experimental measurements. Notably when comparing to collision theory, my cal-

culations show much closer agreement with experiment at all temperatures. This

highlights some of the inadequacies of existing collision theory calculation methods

and suggests that the transition state theory approach using the free energies offers a

means to improve accuracy of even the most well-studied PAC physical interactions.
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CHAPTER IV

Interactions of Biological Nanoparticles

4.1 Summary

In this section, I focus on the task of general nanoscale interaction prediction. In

previous chapters, I have looked at characterizing the nanoscale interactions of PACs;

relying heavily on atomistic simulations to learn the physics of the interactions. How-

ever, for many types of nanoparticle interactions this is not practical because reliable

experimental or simulation data is not able to be obtained without significant re-

sources. Given that many nanoparticle interactions share common chemistries, this

section focuses on how data can be leveraged from multiple sources towards general

nanoscale interaction predictions. Biological nanoscale interactions provide a good

application for this general prediction tool as they are characterized by data-rich

regions such as protein-protein interactions and data-sparse regions such as protein-

nanoparticle and nanoparticle-nanoparticle interactions. I introduce a method called

NeCLAS1, a machine learning approach which operates agnostic to any specific kind

of molecular structure or motif. After being trained only on protein-protein interac-

tions, NeCLAS predicts a wide range of biological nanoscale interactions providing

a means to better understand the interactions and functions of different biological

nanostructures.

122



4.2 Introduction

Many technological, biological, and natural phenomena are governed by interac-

tions that occur at molecular and nanoscopic scales2–4. For example, protein-protein

interactions (PPIs) are crucial for cellular functions and biological processes in all or-

ganisms, from mediating selectivity along signaling pathways and elucidating infection

mechanisms, to influencing the development of treatments and therapies5. Similarly,

protein-nanoparticle interactions (PNIs) dictate the bio-reactivity of nanoparticles

and their applications in nanodiagnostics, nanotherapy, and nanomedicine6. How-

ever, tailoring these interactions requires comprehensive knowledge of the interplay

between nanomaterials and biological systems. In recent years, data-driven machine

learning (ML) methods have provided insight into the mechanisms of nanoscale in-

teractions, overcoming the cost and complexity of experiments7 and simulations8,

without requiring a priori knowledge of physics- and template-based methods9.

Partner-independent ML methods predict interaction sites for a target structure,

regardless of the complementary nanostructure, and can successfully predict protein-

ligand10 and protein-protein11,12 interactions. These methods identify features that

correlate with the tendency of the target protein to interact with arbitrary nanostruc-

tures, but do not consider the properties of the second molecule (partner) directly.

This approach is data-efficient, but pairwise information is often highly relevant and

results in improved predictions13,14. To address this limitation, partner-specific meth-

ods predict whether a subunit (e.g. protein residue) of one structure interacts with a

specific subunit of another complex13,15,16. Crucially, by using curated datasets13,17

that include diverse structures and account for homology, partner-specific methods

have successfully predicted the local pairwise residue interactions that control global

protein-protein aggregation.

Despite this progress, most approaches are specifically designed for proteins and

are not immediately generalizable to a wider range of nanoparticles. As these methods

123



use properties of the individual amino acids or rely on protein-specific characteristics,

they cannot be straightforwardly extended to molecules that lack these motifs, even

when they share other physical and chemical features2,18. Similarly, current ML

methods for predicting PNIs use application-specific properties and small training

datasets19,20, which limits the cross-domain validity of the resulting ML models.

To relax this specificity, here I introduce NeCLAS, Neural Coarse-graining with

Location Agnostic Sets, a flexible and generalized machine learning approach for pre-

dicting partner-specific nanoscale interactions. NeCLAS has two main features. The

first is a generalized, atomistically-derived coarse-graining method to generate a ro-

totranslational equivariant representation of nanoparticles and macromolecules. The

second is a permutation invariant deep neural network that predicts pairwise interac-

tions between the coarse-grained sites of two different molecules. This chapter show-

cases NeCLAS with three increasingly complex prediction challenges: (1) binding site

for PNIs; (2) dynamic characteristics of PNIs, and (3) nanoparticle-nanoparticle in-

teractions and their tendency to self-assemble. NeCLAS outperforms state-of-the-art

PNI prediction methods when predicting interactions between proteins and organic

nanoparticles. Furthermore, NeCLAS’s PPI prediction is competitive with the best

protein-specific methods, and shows potential in predicting nanoparticle-nanoparticle

interactions. Overall, NeCLAS demonstrates interaction predictions across multiple

domains with a reduced computational footprint. This conceptual framework finds

applications in various fields, from biologists who search for interactions between pro-

teins, to materials scientists who can design and engineer nanoparticles for targeted

applications, to a broad range of additional nanotechnologies.
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4.3 Methodology

4.3.1 Overview: NeCLAS

A common way to develop an ML model is to first create a learnable representation

of real-world data, and then use this representation to train the model (Fig. 4.1a). In

NeCLAS, the first step is accomplished by converting atomistic information to lower-

dimensional coarse-grained (CG) structures before computing properties for each CG

site, accounting for both local characteristics and chemical neighborhood. The second

step, involves training a permutation invariant deep neural network which outputs a

pairwise interaction prediction given a pair of CG sites. NeCLAS uses this network

to predict interactions for all combinations of sites between two nanostructures.

The CG representation can easily be tailored to capture structural symmetries, es-

pecially when interpretability is a primary concern. For example, p-Sclx6 (Fig. 4.1b)

is a para-sulfonate calixarene, composed of six repeating units with a positively-

charged outer region and negatively-charged inner region21. By using twelve CG

sites, the procedure consistently allocates two sets of sites that match the symmetry

of the molecule, which has a hydrophobic core and anionic rim that facilitates protein

recognition via entrapment of arginine or lysine side chains. These CG sites capture

the underlying molecular properties, as shown by the two distinct clusters of the CG

sites in the principal component analysis (Fig. 4.1c) of their local chemical features.

While useful for interpretability, the specific choice of number of sites has a minimal

impact on the accuracy of NeCLAS, as long as the extreme choices (e.g. one site per

nanoparticle) are avoided.

To evaluate my model, I specifically tailored the data and workflow to avoid com-

mon causes of artificially inflated estimates of the model performance. First, to ensure

model generalization, NeCLAS utilizes a neural network that is inherently invariant to

the ordering of input sites. This structure provides a more stable prediction than per-
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mutation variant methods do (appendix B). As per standard ML practice, NeCLAS

kept a strict separation between train, validation (used to halt network training), and

test sets (used to evaluate performance). I chose datasets to avoid redundancy, and as-

sessed NeCLAS’s performance with increasingly stricter criteria to test the possibility

of information leakage. Lastly, since proteins and nanoparticles may change confor-

mations as they interact, I trained NeCLAS only on unbound structures since the

goal is to predict interactions for species with unknown bound conformations22. For

the datasets, these structural changes were quantified as the root mean squared devi-

ations (RMSD) of the atomic positions of bound and unbound species. Figure 4.1d-f

show that conformational changes can be significant during binding.

Following these principles, for PPIs, I chose the Docking Benchmark Dataset

(DBD) version 5, a curated set of 230 experimental structures of non-redundant pro-

tein complexes (for a total of approximately 15 million residue-residue interactions),

in both bound and unbound form17. However, for PNIs no such dataset exists, so I

used a subset of the data provided by Costanzò et al.23 containing organic nanopar-

ticles. From this data, I generated bound and unbound structures. Since this dataset

is small and structural redundancy cannot be avoided, I used it only for testing,

preventing information leakage from similar substructures.

4.3.2 Coarse-Grained representation.

To obtain the CG sites (Fig. 4.1b), a predetermined number of sites is randomly

initialized and iteratively optimized to match the atomic distribution of a given molec-

ular property24. While in this work I select atomic mass as the target property (be-

cause it properly affords minimal weight to the weak interactions between hydrogen

atoms), other properties such as charge, electronegativity, or surface area may be su-

perior representations in other nanosystems such as metal nanoparticles. The number

of CG sites can similarly be manually specified for other nanoparticles based on their
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Figure 4.1: Methods and data. a, NeCLAS schematic. Reduced dimensionality
representation (CG sites) and properties are derived from atomic struc-
tures (e.g. nanoparticles, top row, and proteins, bottom row); a set of the
combined local (80) and environmental (400) features is then generated
for each pairwise interactions. A neural network is used to predict the
interaction between a given pair of CG sites (input as feature vectors).
NeCLAS uses this network to predict pairwise interactions between all
combinations of CG sites between two nanostructures. b, Schematic of
the coarse-graining procedure applied on p-sulfocalix[6]arene (p-Sclx6).
CG subunits centers are randomly placed within the coordinate space of
a starting molecule, then iteratively shifted to match a target property
spatial distribution. Pink and green color indicate the two types of CG-
sites (see panel c). c, First two principal components of the feature set
obtained for p-Sclx6. The data point colors correspond to the site of the
CG nanoparticle shown in panel b and at the center of the plot. d, Dis-
tribution of RMSD between unbound and bound proteins (n=230) in the
PPI dataset (DBD version 5). One structure (PDB: 1IRA) was omitted
for clarity (RMSD = 8.36). e-f, Distribution of RMSD between unbound
and bound proteins and nanoparticles (n=21) for the PNI dataset.

structural characteristics using between 5 and 11 heavy atoms per site, while for pro-

teins one site is assigned for every 7.5 heavy atoms which is approximately equal to

the average size of amino acids in the dataset.
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The coarse-graining method is based on the neural gas algorithm from Martinez et

al.24. Initial positions of N sites centers are assigned across the molecule with the

kmeans++ initialization algorithm25. The site’s center positions are then iteratively

updated to reach a final configuration.

For each iteration, an atom is stochastically selected with a probability according

to a target property (mass). Each site is then numerically ranked, k, according

to its proximity to the selected atom. Positions of each site are updated through

equation 4.1.

Rnew
i = Rold

i + ϵ exp [−k/λ](v −Rold
i ) (4.1)

where Ri is the site position and v is the coordinate of the selected atom. Param-

eters ϵ and λ are adjusted according to equation 4.2.

p = po(ps/po)
s
S (4.2)

where p is the parameter (either ϵ or λ), po and ps are hyperparameters, s is the

current step, and S is the total number of steps. After completion of all iterations,

atoms are assigned to the closest site (Euclidean distance). The number of iterations,

hyperparameters (table 4.1), and the target property of mass are unchanged from

previous implementations26.

4.3.3 Physicochemical Features

We used 80 features to describe the local chemistry (local descriptors) of each

CG site and 400 features to describe the chemical neighborhood (environmental de-

scriptors). The local chemistry was captured by using mass, charge, relative accessible

surface area, depth27, protrusion28, CPSA descriptors29, CPSA hydrogen bonding de-

scriptors30, pocket propensity31, and mass-weighted WHIM32. Depth and protrusion
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Table 4.1: Hyperparameters for the coarse-graining procedure. The variable in the
first column is assigned the value from the second column when performing
coarse-graining. N is assigned the number of CG sites, which is different
for each structure. For nanoparticles, the number of sites are described in
table 4.4. For proteins, I have one site for every 7.5 heavy atoms.

Variable Value

ϵo 0.3
ϵs 0.05
λo 0.2 N
λs 0.01
N Preset # of sites
S 200 N

values were computed for each atom in the residue and for depth, protrusion, charge,

and mass a feature set was generated by taking the minimum, maximum, mean, sum,

and standard deviation of the values. Charges were computed by processing proteins

with the PDB2PQR (version 2.1.0) package33 using the AMBER force field34, and

computed for nanoparticles with the Gasteiger method35. A complete list of features

are given in table 4.2.

Table 4.2: Descriptors used in model. Included are the name of the descriptor set, the
number of descriptors in each set, and details about the implementation
of these features. Details include a reference and/or a description of the
weighting scheme used to express distributional properties (e.g. charge,
which is defined for each atom in a bead).

Descriptor Number Details

CPSA 29 29

CPSA Hydrogen Bonding 16 30

WHIM 14 Mass-weighted32

Depth 5 Sum, min, max, std deviation, mean27

Protrusion 5 Sum, min, max, std deviation, mean28

Charge 5 Sum, min, max, std deviation, mean
Mass 3 Sum, std deviation, mean

Pocket Propensity 2 31

Relative Accessible Surface Area 1 -
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4.3.4 Environmental Features

To capture the effect of the surrounding atoms, which are known to play an im-

portant role13,15,36, I extended the 80 features discussed in the previous section to

compute an additional 400 properties weighted by spatial functions that provide a

description of the molecular environment that is (globally) equivariant under trans-

lations and rotations37,38.

Environmental descriptors are based on a series of radial functions that have

previously been used to describe local atomic environments38. For a residue property

P , environmental descriptors D are computed according to equation 4.3,

Di(rc, η, µ) =
N∑
j=1
j ̸=i

Pj · e−η(rij−µ)2fc(rij) (4.3)

Here, rc, η, and µ are hyperparameters and describe the distance and weighting

across which the environment is considered. The pairwise distances between the center

of masses of residue i and j are given by rij and a cutoff function fc is computed in

equation 4.4.

fc(rij) =


1
2
[cos(rijπ/rc) + 1] if rij ≤ rc

0 if rij > rc

(4.4)

In addition to equation 4.3, which represents an extrinsic summation, intrinsic

environmental properties are also computed by normalizing the summation by the

total property weights W .

Wi =
N∑
j=1
j ̸=i

e−η(rij−µ)2fc(rij) (4.5)

For each property, a total of five different environmental descriptors were com-

puted by varying hyperparameters, as detailed in table 4.3 and graphically shown in
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Table 4.3: Parameters for NeCLAS’s environmental descriptors. ”Type” refers to the
aggregation method for distributional properties

.

rc η µ Type

25 0.005 0 sum
18 0.05 0 mean
18 1 7.5 sum
18 1 10 sum
18 1 12.5 sum

figure 4.2.

Figure 4.2: Weights used for computing environmental descriptors. Each curve rep-
resents a radial function with different hyperparameters. In descending
order, pink solid, pink dashed, grey solid, grey dashed, grey dotted lines
refer to weighting functions in table 4.3

No standard method exists for hyperparameter selection, but rather it is informed

by knowledge of the system and obtaining a number of different coverage38. I chose

1.8 nm as the primary cutoff radius since it has been similarly employed with some suc-

cess as a cutoff for Voronoi based environmental descriptors in similar protein-protein

pairwise predictions15 and nanoparticle machine learning studies39. Distances consid-

ered are from the center of masses, however, environmental interactions might occur

between any atoms within two residues. Therefore, for a more complete description,

I also consider at least one longer cutoff with an additional 0.7 nm which corresponds
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approximately to the difference in position between the center of mass and the outer

heavy atoms in my datasets, for the most common CG size. Beyond that, I choose

multiple values of µ to capture a number of different positional distances between the

origin and the cutoff radius. To avoid biasing the data towards bound structures, en-

vironmental descriptors are only calculated using a single structure, not information

of the bound structure.

These descriptors are also used to smooth the NeCLAS predictions. A number of

other protein interaction prediction methods13,15 perform a basic smoothing of pre-

diction results by considering nearby predictions. This has been empirically shown to

improve results, as being surrounded by residues with a high probability of interac-

tion is itself a good indicator of interaction15. To this end, I smooth my predictions

by the weighted average prediction with weights determined by the environmental

descriptors discussed above. I used equation 4.6.

Pi = (P ′
i + Di)/(Wi + 1) (4.6)

where Pi is the smoothed prediction, Di is given in equation 4.3, and Wi is given

in figure 4.2. The unsmoothed prediction P ′
i is given a maximum weight of 1. rc, η,

and µ are 25, 0.005, and 0 respectively.

4.3.5 Protein-Protein Dataset

For pairwise PPI predictions, I used the DBD (version 5)17. Unbound proteins

were used for feature generation, and bound proteins were used to compute the

ground-truth pairwise interactions. For each complex, I consider all combinations

of residues between the two proteins. Due to the severe class imbalance (positive

sample rate of 0.136%), I downsampled the training data so that there is one positive

example for every three negative examples, providing a training dataset of approxi-
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mately 83,000 pairwise interactions between CG sites (different validation splits cause

the exact value to change). I did not alter the imbalance from the testing set to avoid

biasing the data.

4.3.6 Protein-Nanoparticle Dataset

For the PNIs, I used the recent collection of crystallographic data by Costanzò

et al.23. This collection contains approximately 40 unique structures; however, I

removed files containing duplicate interactions or incomplete information, leaving

21 unique PNI complex pairs (table 4.4). Unbound proteins structures were taken

from the RCSB database40, while unbound nanoparticle structures were generated by

relaxing the bounded configuration with the MMFF94 force field41 in the absence of

the protein. Two structures (5ET3 and 5N10) contain no equivalent solved structure,

and therefore the bound structure was used.

4.3.7 Featurization and Labeling

Given a pair of nanostructures A and B, I computed all the pairwise combinations

of one CG site from A and one from B. Each of these pairwise interactions was

considered to be a possible interaction. For each pair of CG sites, the local and

environmental residue features of both sites were concatenated to create a single

input feature vector to the model, resulting in a training or testing sample. When

assigning ground truth labels to both the training and testing data, two sites S1, S2

are considered to be interacting if and only if a heavy atom from site S1 falls within

0.6 nm of any heavy atom of site S2. When considering interface labels for PNIs,

a residue is considered to be interacting if it participates in at least one pairwise

interaction.
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Table 4.4: Protein-nanoparticle pairs used in PNI testing set. The PDB ID repre-
sents the bound complex. The unbound protein ID is the PDB ID of the
unbound protein used. The NP ID is either the chain (if a single let-
ter) or RCSB ligand ID of the nanoparticle. The number of sites used in
coarse-graining the nanoparticle is also provided.

PDB ID Unbound Prot. NP ID Num. Sites

3BCD 3BCF D 6
3CYU 1AVN 1CR 12
3EDK 3EDD C 16
3TYI 2MHM T3Y 8
3CZH 3C6G C 7
4PRQ 5WRB T3Y 8
5ET3 5ET3 60C 6
5N10 5N10 C8L 16
5LFT 2MHM 6VB 8
5LYC 2MHM 7AZ 12
5KPF 2MHM 6VJ 8
5OEH 3IQU 9SZ 6
5MKA 5MKB B 8
6HAH 2MHV FWQ 12
6HAJ 2MHV EVB 16
6HA4 2MHV T3Y 8
6EGY 2MHM B4T 9
6RGI 5T8W FWQ 12
6GL5 6F7Y T3Y 8
6GD6 2MHM EVB 16
6SUY 2MHM LVT 8

4.3.8 Machine Lerning Details

The machine learning part of NeCLAS consists of a permutation invariant neural

network inspired by the Deep Sets architecture42. The NeCLAS neural network was

implemented by co-author Matt Raymond as an alternating structure of permuta-

tion variant networks and maxpool to derive a generalized, non-linear, permutation-

invariant network. The exact architecture can be seen in figure 4.3, and was imple-

mented using Tensorflow 2.943. All neural networks (NNs) utilize variants of stochas-

tic gradient descent, which have a probabilistic component that can provide slightly

different results depending on the random seed used. The TensorFlow default of
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32-bit floats for the PPI model, and 64-bit floats for the NeCLAS PNI model was

used. To ensure accurate and unbiased performance estimates for protein-protein

interaction, leave-one-protein-out cross validation was performed over 230 protein

complexes, where I iterate over each complex Pi and remove all interactions involv-

ing Pi from the training dataset. The testing dataset is then constructed from all

the interactions that include Pi. To provide robust estimates, all preprocessing steps

are calibrated using only the training dataset, and twelve validation proteins were

selected with replacement for early stopping. To construct the validation dataset,

I partition the training dataset based on 3 complexity levels (as defined by DBD

database) and 3 “family” bins (enzyme, antibody, and other interactions), and ex-

cise 2 proteins from each difficulty and each family. This randomization reduces

human bias when selecting validation sets, while ensuring that the validation set is

diverse enough to facilitate the early stopping of NeCLAS’s permutation invariant

NNs. Since the training of machine learning methods is influenced by its training

set and initial state, for NeCLAS and NoPair the results show a distribution ob-

tained from 250 initial conditions, namely 25 different training and validation sets,

each with 10 different initial sets of model weights. However, for results to be repro-

ducible, the same random seed must be used every time the entire cross-validation

cycle is run. All protein models were trained using Adam44 with a learning rate of

10−3 and a batch size of 256. For pairwise PNI predictions, I trained on the entire

(downsampled) PPI dataset, and used the PNI dataset for testing. The same method

was used for selecting PPI and PNI validation sets. To show that my features are

truly general, my nanoparticle interaction model uses only proteins for training and

validation datasets. Therefore, to prevent overfitting, the batch size is significantly

increased to 215 and reduced the model size as seen in figure 4.3. These modifications

decrease training time, but also causes the model to occasionally get stuck in local

minima. Similar to existing methods45 (and unlike the protein-protein model), the
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same fit is rerun multiple times during training. Typically, these models are all used

during inference, with their predictions being aggregated to form a single prediction.

However, after training, NeCLAS keeps only the model with the highest (protein)

validation AUC. Since the NeCLAS model is small, this provides high AUC scores for

protein-nanoparticle interaction predictions, while incurring minimal overhead during

training and no overhead during inference.

Figure 4.3: NeCLAS architecture. Architectural diagram of permutation invari-
ant NN. Each numbered layer represents a dense layer with that many
weights, except for the first layer, which represents the input size. Trans-
parent layers indicate shared weights. a, protein network with 2 input
sites and 1 output task, b, miniaturized version of model a for nanopar-
ticle prediction.

Interface interaction predictions were obtained from pairwise predictions using a

scoring function13. All predictions were smoothed13,15. When conversion between CG

predictions and protein residues was needed, I assigned each heavy atom a prediction

score equal to that of its corresponding CG site and computed the residue prediction

as the mean of all its constituent atoms (excluding hydrogen).
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4.3.9 Molecular Dynamics

For one of the tests, NeCLAS was validated using molecular dynamics of graphene

quantum dots. To this end, NeCLAS predictions were used in order to parameterize

a coarse-grained molecular dynamics force field. The specific molecular dynamics

parameterization was performed by co-author Paolo Evlati using my predictions,

however to contextualize the results, I discuss the procedure.

In the CG simulations, 8 particles were randomly placed in a box, and after an

energy minimization, the system was run for 5 ns in a canonical ensemble at 300 K.

Snapshots were taken from the last 500 ps of each run. Molecular dynamics simu-

lations were performed with either Large-scale Atomic/Molecular Massively Parallel

Simulator (CG simulations, software version 29 Sep 2021 - Update 2)46 or Nanoscale

Molecular Dynamics Program (all-atom simulations, software version 2.13)47. For

intramolecular interactions in the CG simulations, harmonic potentials were used for

bonds, angles, dihedral, and improper, using all atom equilibrium distance/angles as

equilibrium values and constants of 150/75 kcal/mol/Å2 for bonds, 100/50 kcal/mol

for angles (in both cases the first value is for rigid aromatic atoms, the second for

everything else), and 70/35/17.5 kcal/mol for dihedral and improper, based on the

amount of atoms that were part of a rigid aromatic subgroup. For intermolecular

interactions, equation 4.7 was used.

E(r) = 4ϵ
√
p

{[
(1 − p)2

2
+
( r
σ

)6]−2

−
[

(1 − p)2

2
+
( r
σ

)6]−1
}

(4.7)

where p (∈ [0, 1]) is the prediction value from NeCLAS as a function of radius r (nm).

σ (nm) and ϵ (kcal/mol) were kept the same for all the CG sites of a given GQD.

σ was chosen to be 4 nm based on the distances observed in a previous work48. ϵ

was estimated by matching the minimum for the potential in Eq. 4.7 for benzene-

benzene interactions (NeCLAS prediction ≈ 0.2) with the energy value of the potential
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for the closest minimum for the interactions between two CG benzene molecules,

ϵbenzene = 0.5 kcal/mol (from49). The match produces a value of ϵ ≈ 1.11 kcal/mol.

These two values were used for all the intermolecular potential, while p was obtained

from NeCLAS’s predictions.

For all atom simulations, the fully solvated GQDs are run in a canonical ensemble,

starting from the final conformation produced in a previous work48. Complete details

about the protocol and force field can be found there.

4.4 Results

4.4.1 Performance

To assess NeCLAS’s ability to predict PNIs, I compared it with seven other meth-

ods: the recently published generalized method (Unified45), and six (non-partner spe-

cific) binding residue prediction methods, namely SPPIDER36 (designed for PPIs),

P2Rank11 and COACH50 (protein-ligand binding), DeepSite and DeepSurf (deep-

learning-based binding pocket identification)51,52, and Fpocket53 (geometric pocket

identification). Among these methods, only NeCLAS and Unified are explicitly de-

signed for prediction of pairwise PNI. The other methods were selected based on

their ability to produce localized PNI predictions, even if they were not originally

developed for this purpose.

To quantify the performance of the different methods, I generated the receiver

operating characteristic curve, which considers the prediction probability of all inter-

actions between CG sites and computes the fraction of true-positive to false-positive

interaction predictions at various discrimination thresholds. The area under this

curve (auc) is a binary prediction metric, and is commonly used in similar prob-

lems12,13,15,16. Typically, auc weights all pairwise samples equally (aucall). Since

nanoscale complexes can vary in size, it is necessary to reweight pairwise interactions
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at the complex level to guarantee that each complex makes an equal contribution to

the resulting metric. This produces a more realistic metric for model performance on

an untested species, as larger complexes are not disproportionately weighted16. Thus,

I also computed the auc for each test sample in an individual complex as auccomp,

and report statistics with respect to this metric as well (e.g. mean auccomp). The

procedure carefully distinguishes aucpair
comp from aucinter

comp. aucpair
comp scores pairwise

interaction predictions, while aucinter
comp scores interface membership predictions. As

NeCLAS and Unified do not predict interaction interfaces directly, I converted pair-

wise predictions to interface predictions using a scoring function13, which considers

interface membership using all possible interactions with different weights. Finally,

to test the predictive importance of pairwise information, I included a non-partner-

specific version of NeCLAS (NoPair), which comprises identical chemical features of

the protein only, but omits nanoparticle features.

Performances for PNI predictions are shown in Fig. 4.4a. NeCLAS outperforms

all competing methods in PNI prediction, and NoPair performs slight worse, suggest-

ing that there is a performance benefit in including the representation of the partner

molecules. A two-sided Mann-Whitney U test between the next highest perform-

ing method, SPPIDER, and NoPair suggests the difference is statistically significant

with a p-value of 0.017. To elucidate the contribution of the environmental descrip-

tors, I also performed predictions without environmental descriptors and observe that

the aucinter
comp decreases to 0.563 demonstrating their importance. This indicates that

the environmental descriptors significantly contribute to the more complete repre-

sentation provided by NeCLAS’s chemical features. It is important to note that the

dataset presents a challenge for all the methods, and given the limited number of

nanoparticle-protein pairs, it is not surprising that NeCLAS’s long tail is solely due

to two complexes. These results suggest that adding structural information to the

validation set from similar nanoparticles may help generalize the stopping criteria of
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the neural network and improve NeCLAS performance.

Figure 4.4: Predictive performances of NeCLAS compared to different methods.
a, Distribution of the prediction performance for protein-nanoparticle in-
terface interactions. Median is marked as a white circle and reported as
a number near the method name. The thick black bar shows the 1st-3rd
interquartile range. (n = 21 test complexes, 3,988 interface predictions
total). NeCLAS and NoPair distributions are obtained by computing the
median of each pair over 250 independent trials, providing n = 5, 250 sam-
ples (250 trials × 21 nanoparticles). Distributions are colored to increase
readability. b, Performances of different methods for leave-one-out cross
validation with n = 230 test complexes (16,579,545 pairwise predictions)
and c, the predefined DBD train-test split for protein-protein pairwise
interactions (n = 55 test complexes). For b and c, green bars indicate
the mean and black lines indicate the standard deviation of complex-wise
predictions.

The issue of structural homology between training and testing datasets is a per-

sistent problem in protein interaction predictions, leading to overly optimistic error

estimates. Garcia et al.13 addressed this issue by evaluating pairwise interactions only

for protein pairs that do not share either a single Structural Classification of Proteins

(SCOP) family or both SCOP families54. NeCLAS already meets the former criteria,

since the chosen nanoparticles are not structurally homologous to any proteins. How-

ever, I took an even stricter approach by removing all trained and validation proteins
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that share a single SCOP family with any of the proteins in the PNI test set. This

test causes a negligible change in performance (median aucinter
comp = 0.678), showing

no general effect.

Finally, despite its high degree of generality, NeCLAS achieves pairwise PPI pre-

diction performance that is competitive to state-of-the-art protein-specific methods

(Fig. 4.4b). To prove this result, I compared NeCLAS against a number of PPI meth-

ods which can provide partner specific pairwise interactions between residues. While

other methods for predicting PPIs exist9,12, most do not provide pairwise interaction

predictions between sites, making a meaningful comparison impossible. I performed

two tests using the protein dataset: leave-one-out cross-validation (LOOCV) at the

protein complex level, and a predefined train-test split based on DBD versions. In

LOOCV, I iteratively withhold a single protein complex for evaluation and use the

remaining 229 complexes for training and validation. This approach avoids overly

optimistic predictions that arise from mixing interactions in the training and testing

set between nearby residues of the same protein complex. In the specified prede-

fined split, I trained on DBD versions 1 to 4, and tested on DBD version 5. This

split is used when comparing methods with significant computational overhead, like

PIPGCN’s16, which renders LOOCV impractical. The results (Fig. 4.4b-c), show

that NeCLAS PPI predictions fall just below BIPSPI13, one of the leading methods

in protein pairwise interaction predictions, and is comparable to PIPGCN. Similar

to the PNI NeCLAS predictions, PPI prediction performance is largely independent

of structural homology. When removing SCOP family homologs and applying leave-

one-homology-out validation, the performance only decreases slightly (aucpair
all = 0.770

and median aucpair
comp = 0.812).

To further illustrate the potential of NeCLAS, below I describe in detail its ap-

plication on three systems: nanoparticle tweezer and 14-3-3σ protein, carbon-based

nanoparticle with amyloid fibrils, and organic quantum dots in water.
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4.4.2 Molecular Tweezers

Supramolecular ligands (e.g. molecular tweezers) represent a promising way to

modulate protein functions. They can be artificially synthesized with unique prop-

erties and recognition profiles towards amino acids and peptides, with the ability to

bind to specific sites. Specifically, the interaction between a 14-3-3σ protein and the

lysine-specific molecular tweezers shown in Fig. 4.5 have been characterized in detail

both experimentally and computationally55. Therefore, it is an ideal test for pairwise

interaction prediction models.

NeCLAS predictions (Fig. 4.5a,b) corroborate Bier et al., indicating the critical

role played by Lys214, as well as Leu218, Tyr213, and Thr217, which form a

hydrophobic binding pocket, and Glu210 and Gln221, which provide hydrogen bond

stabilization. Bier et al. derived some general principles characterizing the active

binding site (Lys214) leveraging the fact that the protein has four other energetically

possible, but non-binding, lysine residues, (Lys* in the following) and that several

properties differentiate Lys214 from the other residues.

First, they determined that Lys214 and Lys* are more energetically likely to bind

due to their protruding carbon side chains, which is captured by NeCLAS by the

higher protrusion index value28 and elongated structure of Lys* residues compared

to other residues (Fig. 4.5c). Additionally, Bier et al. suggested that the difference

between Lys214 and the other Lys* residues is caused by the nearby hydropho-

bic binding pocket and small number of close, positively charged functional groups,

which destabilize the nanoparticle by forming external ion pairs between the nanopar-

ticle phosphate groups and surrounding cations. These characteristics are captured

by several environmental features of Lys214 that capture the effect of neighboring

atoms. The hydrophobic pocket for Lys214, depicted by the total surface area of

surrounding hydrophobic groups29 and total surface area of surrounding hydrogen

bonding groups30, shows higher values than all other residues. Additionally, the envi-
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Figure 4.5: Interactions between molecular tweezers and the 14-3-3σ protein. a, Vi-
sual representation of the interaction location based on NeCLAS predic-
tion; cutout highlights the lysine residue (Lys214) and the surrounding
hydrophobic pocket. b, Top 10 interacting residues according to NeCLAS
predictions. Bars indicate the mean and black lines indicate standard de-
viation of the prediction across atoms in a residue. The n for each residue
is equal to the number of atoms in that residue. All unique predictions
within a residue are overlaid by black circles. All atoms in a single CG site
share the same prediction. c, Comparison of selected features for binding
lysine Lys214), probable but non-binding lysines (Lys*, as defined by
Bier et al.), and all the other residues. Protrusion and aspect ratio are
features of the individual amino acid sites (deterministic), while the last
three histograms refer to environmentally weighted features.

ronmentally weighted charge shows that Lys214 is surrounded by significantly more

negatively charged atoms than other Lys* residues.
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4.4.3 Bacterial Amyloid Fibrils

Nanoscale structural interactions exhibit complex, high-dimensional free energy

surfaces, which are the product of dynamic molecular constraints and entropic fac-

tors. Molecular dynamics (MD) simulations can model such high dynamic processes

evolving across relatively short time scales. One of such examples, are the interac-

tions between phenol-soluble modulin (PSMα1) peptides and graphene quantum dots

(GQDs)56. It has previously been shown that GQD nanoparticles dissolve biofilms

via their interactions with PSMα1, a key constituent of the Staphylococcus aureus

biofilm matrix, that assemble into amyloid fibers (Fig. 4.6a).

Characterizing these interactions via ML is challenging, and it is difficult to com-

pare the predictions of ML and MD, especially since MD generates ensemble distribu-

tions of conformations. However, while most of the current datasets do not entirely

capture the free energy landscape and the dynamics of a nanoscale system, ulti-

mately, ML and MD are both (different) representations of the same physical system,

and therefore it is ideally possible to find some correlation between the information

generated with these methods. Specifically, I compared the interaction probabilities

obtained from NeCLAS with the contact times (i.e. the time two CG sites spent

within a 1 nm-distance) during MD simulations of the system composed of GQDs

and PSMα1 as reported in Fig. 4.6b.

The figure shows that the model interaction confidence is generally correlated with

contact times (Spearman coefficient, rtots = 0.907). This trend is not simply due to

strong interactions with the hydrophilic charged groups at the edges of the GQD, but

rather a complex interplay of chemical properties. To support this idea, I chose a

twelve site representation for the GQD, as it consistently partitions the molecule in

two distinct classes of nearly identical internal and external sites. The former contains

only matrix carbon atoms, while the latter includes edge carbons and outer functional

groups. Despite the separation of two regions, the predictions for each subset still
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Figure 4.6: Interactions of PSMα1 1 and graphene quantum dot. a, All-atom and CG
representation of the GQD (circumcoronene with alternating hydroxyl
and carboxyl groups at the edges) and the PSMα1 1 peptide (5KHB).
PSMα1 1 is purple to distinguish it from the GQD beads. b, Relation
between MD contact time and predicted pairwise interactions between the
PSMα1 residues and the GQD sites. Spearman correlation (rtots ) for all,
interior only (rints ), and exterior only (rexts ) sites is reported. c, Interaction
prediction between residues from PSMα1 1 and GQD interior (pink) and
exterior (green) units, along with a snapshot of interactions observed
during simulation. Bars represent the mean value, and the black lines
indicate the standard error. n = 3 for interior beads (pink) and n = 9 for
exterior beads (green).

shows a high Spearman correlation (external: rexts = 0.925, internal: rints = 0.904) with

the contact time, despite the different properties of these subsets. Finally, I analyze

the predictions for individual amino acids (Fig. 4.6c) to confirm the importance of

the N-terminal residues (which have the highest interaction probability), likely due

to the GQD’s negative charge (dissociated carboxylic groups), in agreement with

observations by Wang et al.56. Notably, these conclusions hold even when different

definitions of contact time are used (see corresponding publication1).
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4.4.4 Organic quantum dots

As a final example, I discuss the potential of pairwise interaction predictions to

inform atomistic models (e.g. generate realistic conformation distributions or eval-

uate the aggregation of multiple nanoparticles). For this class of problems, many

factors (e.g. thermal energy, solvent effects, entropic contributions), must be ac-

counted for, requiring additional assumptions and data. Furthermore, the outputs

of binary classification models cannot be directly interpreted as interaction strength;

they are more readily conceptualized as model confidence. However, one would ex-

pect a well-informed model to assign low probabilities to weakly interacting pairs.

Thus, this approach considers the interaction probability as being proportional to

the interaction strength. Under this assumption, I use NeCLAS to tune the inten-

sity of intermolecular forces of different GQDs in water to study their aggregation

propensity.

Previously, using all-atom MD, I have reported the effect of the composition of

edge groups present on GQDs and their tendency to aggregate in water48. Here,

three types of GQDs are studied: one terminated with hydroxyl (g3oh), another

with formyl (g3cho), and one with an alternating (2:1 ratio) hydroxyl and cysteine

groups (6C-g3oh). These nanoparticles (sized between 1.5 and 2 nm) were chosen

as hydrophobic and hydrophilic forces are generally comparable, whereas for bigger

structures, hydrophobic forces and water entropic exclusion increasingly dominate

their behavior. Pairwise NeCLAS predictions (aucpair) were converted using a tun-

able repulsive-core potential with identical parameters for all GQDs sites, except

for one that was taken from NeCLAS predictions, effectively converting them into a

physically-meaningful potential (Fig. 4.7a,d).

Using these potentials, the dynamics of a few GQDs were simulated observing, for

g3oh and g3cho, the rapid formation of aggregates with similar structures to those

observed in all-atom MD48 (Fig. 4.7). Indeed, I observed close and parallel stacking
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Figure 4.7: Predicted and simulated interactions of graphene quantum dots. a, pair-
wise interaction potential from NeCLAS mean predictions (in parenthe-
ses) for g3oh CG sites. b, Snapshot of g3oh from CG simulations mod-
eled using NeCLAS predictions. c, Snapshot of all-atom g3oh simula-
tions. d, Pairwise interaction potential from NeCLAS mean predictions
(in parentheses) for g3cho CG sites. e, Snapshot of g3cho from CG
simulations modeled using NeCLAS predictions. f, Snapshot of all-atom
g3cho simulations. Inner and outer beads are colored pink and green,
respectively.

of the structures (see all-atom reference48 for definition), and a similar lateral shift

between consecutive stacking planes. 6C-g3oh, however, did not aggregate, also in

agreement with all-atoms simulations and the experimental high solubility at pH 757.

The similarity between the crude CG and all-atom simulations, albeit qualitative,

was obtained without fine-tuning of the CG potential, as these optimizations would

obscure NeCLAS’s contributions and a better agreement can be expected if additional

optimizations are performed.
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4.5 Discussion of NeCLAS

The results showed above illustrate how NeCLAS can predict pairwise PPIs and

PNIs, and can be extended to predict nanoparticle-nanoparticle systems. Unlike most

competing methods, NeCLAS forgoes protein-specific information, using descriptors

that are common to all molecules. NeCLAS performance can be ascribed to two

general design principles: structural simplification, operated through the CG repre-

sentation, and the use of environmental features to capture the chemical neighborhood

at different scales. The CG representation reduces physical (e.g. thermal vibration),

observational (e.g. experimental and numerical error), and statistical (e.g. sampling

size) uncertainties in the data, allowing efficient and robust model training. This

approach is not needed for all problems, but it is critical for the data-limited appli-

cations typical of chemistry. In addition, coarse-graining reduces the computational

requirements, which makes it possible to train on larger systems, and reconstruct

the atomistic information when necessary58. As a low-dimensional representation

results in a loss of information about local atomistic properties, which are not ad-

equately captured through averaging, I utilize distribution statistics to express the

local spatial distribution of each property. This approach provides a more nuanced

characterization of the target distribution. However, the issue of long-range nanoscale

interactions remain unresolved with this method. Such interactions typically decay

rapidly in solvents with high relative permittivity, but can still significantly con-

tribute to long-range organization. To capture these interactions, it is necessary to

capture longer scale properties. This is a goal that NeCLAS accomplishes, as it em-

ploys environmental descriptors that incorporate information on the properties and

positions of individual atoms. The choice of descriptors that are better suited to

model pairwise interactions is still an open question. For proteins, I have shown that

spatial features59 alone are sufficient to obtain excellent PPI predictions. However,

the much larger chemical and physical variety of nanoparticle properties requires
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NeCLAS’ more nuanced approach, as nanoparticles with similar structures, but dif-

ferent properties, are possible. Indeed, even if structural information is sufficient for

some classes of molecules for which the limited chemical variety results in a correlation

between atomic species and spatial organization, they become insufficient to distin-

guish wider classes of systems. One such examples, are fullerenes, which can gain

different amounts of charge while in water without a relevant change in structure60.

NeCLAS predicts a marked difference in the interactions between a fullerene organiz-

ing protein (Protein Data Bank (PDB) ID: 5ET3)61 and a neutral C60 fullerene (as

it is commonly modelled) or a negatively charged one (average experimental charge

of -2 elementary charges).

As ML-based pipelines become increasingly prominent in modeling scientific data,

it is essential to observe several good practices, as discussed above. Although some of

these practices are intuitive, others, such as the effect of data symmetries on model

performance and reliability, are more subtle but equally crucial. Many interaction-

prediction methods use ensemble-based models (e.g. XGBoost)13,15 or dense neural

networks45 to predict interaction interfaces or pairwise interactions. However, both of

these methods are permutation variant, adding artificial ordering to a problem that

is inherently unordered. In doing so, these methods violate the guiding principle that

subjective ordering has no bearing on the behavior of a physical system. Further,

these models produce unstable prediction results, as the hypothesis space of an over-

parameterized model may contain many permutation variant functions that fit the

training data (appendix B). NeCLAS avoids this problem by using a permutation

invariant neural network inspired by the Deep Sets 42 architecture.

It is important to note that NeCLAS is built on a flexible and versatile pre-

dictive framework, which may result in slightly reduced performance when focusing

on a narrow domain. Therefore, in cases where I only consider PPI with minimal

conformation changes, geometric or template-based docking methods9 may be more
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suitable. Nonetheless, none of these methods possess NeCLAS’s capability to ac-

curately extend predictions to a wider range of nanoscale interactions and leverage

datasets comprising diverse materials and conditions.

Most of the unrealized potential of NeCLAS stems from limitations in the avail-

able data. A greater variety of curated nanoparticle-nanoparticle interactions, and

a diverse sample of sizes (e.g. larger ionic and colloidal nanoparticles), atom types,

and solvents would significantly enhance the versatility of this tool. NeCLAS (and

most other methods) tacitly assume that the species of interest are largely soluble in

water. Under these conditions, many of the forces that govern protein complexes are

also present in interactions between proteins and nanoparticles23, as water solubility

strongly limits the chemical properties of exposed nanoparticle surfaces. Different

solvents (e.g. polymeric host-guest systems) not only have different ability to stabi-

lize ionic groups or form hydrogen bonds, but also a different propensity than water

to solvate species based on their size. The above limitations, can only be addressed

by increasing the availability of curated data from spectroscopic data and simulations

that go beyond PPIs. However, the inclusion of multiscale properties and strategies

to deal with data uncertainty, as I do here with environmental descriptors and CG, re-

main a necessary requirement until radically larger datasets and computational power

become available. For this reason, as more structural information and databases for

nanoscale species emerge, I expect that this approach will prove to be a valuable tech-

nique for operating across different molecular domains and nanoparticle interaction

problems.
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[18] Marco P. Monopoli, Christoffer Åberg, Anna Salvati, and Kenneth A. Dawson.
Biomolecular coronas provide the biological identity of nanosized materials. Na-
ture Nanotechnology, 7(12):779–786, 2012.

[19] Matthew R. Findlay, Daniel N. Freitas, Maryam Mobed-Miremadi, and Korin E.
Wheeler. Machine learning provides predictive analysis into silver nanoparticle
protein corona formation from physicochemical properties. Environmental Sci-
ence: Nano, 5(1):64–71, 2018.

[20] Nicholas Ouassil, Rebecca L. Pinals, Jackson Travis Del Bonis-O’Donnell, Jef-
frey W. Wang, and Markita P. Landry. Supervised learning model predicts pro-
tein adsorption to carbon nanotubes. Science Advances, 8(1):eabm0898, 2022.

[21] Jimi M. Alex, Martin L. Rennie, Sylvain Engilberge, Gábor Lehoczki, Hajdu
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CHAPTER V

Conclusion

5.1 Concluding Remarks

In this work I show how computational methods can be applied to study a variety

of nanoparticle interactions. The main products of my thesis are as follows:

• I developed a computational workflow that stochastically models the chemical

interactions leading to the growth of nanoparticles and interprets these simula-

tions with a set of numerical descriptors.

• I created a method to study the physical interactions of nanoparticles that

utilizes molecular dynamics to generate free energy surfaces. These simulations

are then coupled with a machine learning approach to efficiently encompass the

physical interactions of millions of unique structures.

• I created a general nanoscale interaction prediction tool that uses a coarse-

grained representation and neural network. This tool operates across multiple

nanoparticle domains, accurately predicting a diverse array of nanoparticle in-

teractions.

In the first application, I show how these methods can be applied to improve our

understanding about how, in flame systems, combustion nanoparticle precursors grow
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through chemical interactions with small molecules in the gas-phase. kMC simula-

tions and molecular descriptors demonstrate how computational methods can closely

match experimental observations, quantify how different PAC properties develop in

the flame, and reveal the effects of different flame environments on the PAC chemical

space. Meanwhile machine learning can be applied to relate these PAC properties

to other more complex combustion nanoparticle formation processes that would oth-

erwise be difficult to directly measure. I show through my kMC simulations, across

five different flame systems, that as a result of these chemical interactions, there exist

millions of unique PACs with properties including oxygenation, five-membered rings,

aliphatic chains, and curvature. These diverse properties suggest that stabilomer hy-

drocarbon PACs do not represent the true chemical space in these flame systems.

Models which do not account for these properties will suffer in accuracy because they

do not properly account for the chemical growth of these PACs and the downstream

interactions in which these structures participate.

Computational methods can also be applied to explain the physical interactions

which are instrumental to transition these PACs into larger combustion nanoparticles.

Enhanced molecular dynamics can offer information about the kinetics and thermody-

namics of this physical aggregation as they produce a free energy landscape. Machine

learning can be applied to these nanostructures to efficiently extend this atomistic

simulation data to the millions of unique structures which are observed in real flame

systems. The machine learning methods employed also improve our understanding

of these physical interactions as part of the prediction task they automatically select

properties which contribute to aggregation. The equilibrium constants and rates de-

rived from these free energy values are expected to remove significant challenges in

predicting combustion nanoparticle inception as they provide a means to understand

the effects of different properties on PAC aggregation and quantitatively relate these

properties to a large, complex dataset of PACs found in real flame systems.
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Finally, I demonstrate how computational methods can enable a better under-

standing of the function of nanoparticles through their interactions. I introduce

a general nanoscale interaction prediction tool called NeCLAS which uses coarse-

graining and machine learning to accurately predict interaction locations between

two nanostructures. This generalized scheme enables NeCLAS to be trained on inter-

actions where data is available and characterize nanoparticle interactions where data

would otherwise be difficult to produce. I demonstrate how in a biological context,

NeCLAS can learn from protein-protein interaction datasets to predict the interac-

tion sites and mechanisms of protein-protein, protein-nanoparticle, and nanoparticle-

nanoparticle interactions. I find that this general representation has many desirable

features in nanoscale prediction including being able to be derived only only from

atomic coordinates, reproducing natural symmetries and chemistries of nanoparti-

cles, being invariant to translation, rotation, and pairing order, being insensitive to

minor atomic fluctuations, having the ability to operate on both bound and unbound

structures, and considering chemistry at multiple length scales. This offers the po-

tential to better understand the processes in which these nanoparticles participate,

to design nanoparticles for specific biological applications, and to reduce the cost and

increase the accuracy of atomistic simulations of nanostructures.

5.2 Future Directions

Going forward, there are multiple areas where this work can be extended in the

future in order to provide novel insights into nanoparticle interactions. The first area

is to combine and extend the work in chapters II and III to provide a comprehen-

sive model for predicting the nanoscale interactions leading to the early growth of

combustion nanoparticles. The second area involves improving the machine learning

methods contained in chapters III and IV by identifying a more complete and opti-

mal set of descriptors. The final area involves extending the computational methods
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discussed in this work to new nanoparticle systems.

5.2.1 Comprehensive Model of Combustion Nanoparticle Inception

While this work has revealed insights into the chemical interactions leading to the

growth of PACs and the physical interactions where these PACs transition into larger

nanostructures, additional work is needed to create a comprehensive model of com-

bustion nanoparticle inception. While my findings have addressed two very important

mechanisms in this process, there are still mechanisms which must be properly cap-

tured and integrated into the existing findings. For example, there exists a series

of chemical reactions where radical electrons on PACs form bonds with other PACs,

stabilizing physically aggregated structures1. Atomistic simulations would need to

be applied to better understand the kinetics of this process and how it is affected by

intermolecular spacing and resonantly stable electrons2. Machine learning would also

likely be needed to extend these findings to the large number of possible PACs which

might be present in flame environments. Furthermore, the works from chapters II

and III must be combined together along with these additional growth mechanisms

to provide a unified model of how these interactions contribute to nanoparticle incep-

tion. These more accurate kinetic and thermodynamic parameters can be applied to

improve inception simulations which have previously been carried out with kMC and

deterministic kinetic simulations3–5. These improved models should be validated on

experimentally measured parameters such as precursor concentrations, soot volume

fraction, and particle size distribution.

5.2.2 Improved Chemical Descriptors

Properly selecting chemical descriptors is integral to all the studies in this work

as they provide a means to extract insights from atomistic simulations and ensure

that machine learning is based on the underlying physics and remains interpretable.
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While the descriptors used in this work are wide-ranging and align with chemical intu-

ition, they are by no means exhaustive and computational methods can be improved

by considering new descriptors and systematically selecting the optimal descriptors

for each task. One area where a number of descriptors could be added is from ex-

perimental measurements. Most of the descriptors used in this work were entirely

computationally derived, however, there has been recent findings in other domains

which suggest that experimental measurements can be used in tandem with compu-

tational descriptors to improve accuracy of machine learning models6. In addition to

adding new descriptors, automatic selection of descriptors can also greatly enhance

interpretibility. While the Lasso methods discussed in chapter III achieve some fea-

ture selection, it is limited to a linear combination of features and additional work

can be done to extend feature selection to other interactions with stronger non-linear

relationships. Furthermore, a method such as NeCLAS which is designed for general

prediction could be improved by developing a method to select an optimal set of

descriptors which can represent both unique and common chemistry across multiple

different length scales and nanoparticle domains.

5.2.3 Extending Computational Frameworks to New Systems

The final area to build upon this work to is to extend the methods discussed in

this thesis to new systems. While the gas-phase studies in this work focus on car-

bon nanoparticles in flame environments, there are a large number of other gas-phase

nanoparticles such as silicon and alumina nanoparticles which grow through a combi-

nation of physical and chemical interactions7,8. Each system presents its own unique

chemistries and challenges. However, the atomistic simulation methods in this work

provide a means to simulate both physical and chemical interactions, the descriptors

in this work can numerically represent the chemistry of a nanoparticle, and machine

learning offers a method to efficiently predict a large number of nanoscale interactions
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when there is a combinatorial complexity of possible interacting molecules. Further-

more, concerning NeCLAS, the work in this thesis focused on validating predictions

against known interactions, but future work should extend NeCLAS to new systems

by predicting unknown protein and nanoparticle interactions. This can then be used

as a tool to guide future studies by identifying promising nanostructures for specific

functions and providing initial configurations for molecular dynamics simulations.

The datasets which NeCLAS is trained on can also be updated as more data becomes

available in other nanoscale domains such as metal nanoparticles.

5.3 Final Remarks

The above findings provide significant insights into a variety of different nanoscale

systems. In these applications, difficulties related to the complexity of nanoparticle

systems, the lack of existing datasets, and unique chemistries of these nanoparti-

cles are most effectively addressed by applying multiple computational techniques

together. I hope that this thesis provides a framework to overcome these challenges

by applying atomistic simulation, numerical descriptors, and machine learning to gain

scientific insights and quantify nanoparticle interactions.
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APPENDIX A

Number of Potential Binary Interactions based on

System Size

Given a system with N unique interacting species, the number of potential unique

binary inter-molecular interactions which can occur is obtained by considering the

homo-interactions with species of the same kind and hetero-interactions with species

of a different kind.

The number of homo-interactions is N .

The number of hetero-interactions is given by:

Cr(N, 2)

Which can be re-written as:

N !
2!(N−2)!

Which simplifies to:

N2−N
2

Thus the total number of potential homo- and hetero-interactions is:

N2−N
2

+ N

Or in more concise terms:

N2+N
2
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APPENDIX B

Permutation Invariance

NeCLAS is a permutation invariant neural network inspired by the Deep Sets

architecture (see main text). Given CG sites A,B which yield descriptors a,b, we

apply a permutation variant function ϕ element-wise to the block vector [a b] to

produce a permutation-equivariant function ϕ̂([a b]) := [ϕ(a) ϕ(b)]. We then apply

a permutation invariant aggregator function ρ and a permutation variant function ψ,

resulting in a non-trivial permutation invariant function:

σ([a b]) := ψ(ρ([ϕ(a) ϕ(b)])) (B.1)

In this case, ρ is Maxpool and ϕ,ψ are Multilayer Perceptrons. NeCLAS uses

ReLU activation for all layers except for the final layer of ψ, which has sigmoid

activation to enable binary predictions.

The practical implications of permutation variance is explored by comparing the

permutation-invariant network of NeCLAS against permutation variant XGBoost

models. One XGBoost model is trained on the standard CG sites’ ordering [a b],

then evaluated it on both orderings ([a b] and [b a]). Figures B.1 and B.2 show that

XGBoost exhibits unstable predictions and a marked performance decrease when sites

are permuted. Such permutations can even change the auc of an individual complex
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by as much as 0.49. To confirm that NeCLAS is permutation invariant, the same

evaluation is performed on the permutation-invariant neural network and it is found

that the ordering has no effect on the model outputs.

Figure B.1: Permutation Variance of XGBoost Prediction. The root mean squared
deviation (RMSD) between predictions over the range [0, 1] for feature
vectors [a b] and [b a] for each protein complex (n = 230 protein-protein
complexes). Medians are by the captions in grey text. We only show
XGBoost trained on one direction and XGBoost trained on both direc-
tions, since the predictions of the permutation invariant network have a
RMSD of 0. Colors are for visual distinction.
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Figure B.2: Permutation Variance of XGBoost AUC. This figure shows the absolute
deviation between the auc of the predictions for [a b] and the auc of the
predictions for [b a] for each protein complex (n = 230 protein-protein
complexes. Medians are by the captions in grey text. The permutation-
invariant network is not included, as it achieved 0 deviation of AUC for
each complex. Colors are for visual distinction.
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