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Abstract 

Chronic obstructive pulmonary disease (COPD) is a widespread and fatal respiratory 

condition that affects millions globally. Despite its prevalence, effective interventions to halt or 

reverse disease progression remain limited due to an incomplete characterization of COPD’s 

underlying mechanisms. Recent strides in understanding the pathobiology of COPD highlight its 

heterogeneous nature, encompassing diverse respiratory and systemic manifestations that likely 

stem from pathological changes across multiple biological pathways. 

To navigate the intricate landscape of COPD pathogenesis, this thesis employs a 

network-based approach utilizing data-driven modeling techniques. These methodologies can 

help unravel complex pathological networks by facilitating the modeling of interactions among 

multiple biological factors, thus providing novel insights into the systems-level mechanisms 

underlying disease states. Furthermore, data-driven techniques permit the integration of data 

from diverse tissue compartments, offering a more holistic depiction of disease pathology. 

In this thesis, we applied data-driven techniques to high-throughput protein 

measurements from human blood and lung samples. Overall, this approach revealed proteomic 

signatures that differentiate distinct COPD subpopulations and offered novel insights into disease 

progression and its underlying molecular drivers. Our findings specifically introduce new 

perspectives into mechanisms governing rapid spirometric decline, age-dependent emphysema 

development, and immune cell communication networks within COPD. Mechanistically, our 

investigations suggest a critical role for early modifications in the complement cascade in lung 
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function decline, highlight a unique contribution of inflammatory and apoptotic pathways in 

early emphysema development, and elucidate deficiencies in the adaptive immune responses of 

individuals with COPD. 

In summary, this work provides novel insights into potential mechanisms driving COPD 

pathogenesis and progression, while also establishing a framework for exploring other 

heterogeneous diseases. Our findings underscore the importance of adopting a network-level 

approach in studying COPD and of integrating data from diverse sources to uncover new 

molecular insights. Furthermore, this thesis highlights the difficulties of studying complex 

diseases, and as a result, the methods and insights presented here carry broader significance for 

investigating other progressive and heterogeneous conditions extending beyond COPD. 

 



 1 

Chapter 1 Introduction 

Chronic obstructive pulmonary disease (COPD) is a highly prevalent respiratory 

condition with no cure and limited disease-modifying therapies1. In COPD, chronic exposure to 

inhaled oxidants (ex., cigarette smoke) causes inflammation and remodeling in the lungs, 

resulting in airflow limitation that is incompletely reversible. Although the mechanisms 

underlying COPD remain incompletely characterized, recent strides in understanding COPD 

pathobiology emphasize that it is a heterogenous condition with distinct subpopulations 

(“phenotypes”) whose variable disease courses and health outcomes are likely driven by 

alterations in multiple biological pathways or pathway constituents. Network-level approaches 

hold promise in aiding the unraveling of these complex pathological networks by enabling the 

modeling of interactions among multiple biological factors across various tissue compartments. 

This thesis seeks to utilize network-level approaches, particularly data-driven modeling, to assess 

changes in protein networks and generate insights into the systems-level mechanisms 

underpinning COPD pathogenesis and progression. This chapter introduces the thesis by first 

discussing the background and context, followed by the research problem, the thesis aims, and 

their significance. 

1.1 COPD diagnosis and treatment  

COPD is a fatal respiratory condition that is the a leading cause of death and disability 

world-wide2. In the United States (US) alone, COPD affects an estimated 15 million Americans 

and contributes to more than 150,000 deaths3 and 30 billion dollars in direct health expenditures 

each year4. Currently, the diagnosis of COPD requires patient presentation with (1) spirometric 
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airflow obstruction (FEV1/FVC < 0.7) that is not fully reversible after bronchodilator 

administration, (2) relevant respiratory symptoms (e.g., dyspnea, chronic cough, or sputum 

production) that have no alternative explanation, and (3) appropriate clinical context, such a 

history of cigarette smoking5,6. Cigarette smoking is the primary risk factor for COPD in 

industrialized nations, with an overwhelming 75% of COPD diagnoses in the US related to 

tobacco smoke7. However, in the developing world, pollution, both due to indoor use of biomass 

fuel and outdoor, is a significant cause8. Importantly, not all smokers develop COPD, and other 

risk factors include genetic predisposition, workplace or environmental exposures, and 

suboptimal lung growth9–11. Although much of the current understanding of COPD 

pathophysiology is rooted in studies examining the effects of cigarette smoke, the development 

of COPD is believed to arise from the repeated inhalation of harmful particles and gases. These 

particles, frequently present in noxious irritants, trigger persistent injury to lung tissue, ultimately 

leading to incompletely reversible airflow obstruction, which arises from a combination of 

conditions including, but not limited to, parenchymal destruction (emphysema), mucous 

hypersecretion (chronic bronchitis), and small airways disease (obstructive bronchiolitis)5.  

Progressive declines in spirometric lung function often mark the course of COPD. 

Consequently, the Global Initiative for Obstructive Lung Disease (GOLD) commonly 

characterizes disease severity into four grades based on the extent of airflow obstruction, as 

measured by post-bronchodilator forced expiratory volume in one second (FEV1): GOLD 1 

(Mild: FEV1 ≥ 80% predicted), GOLD 2 (Moderate: 50% ≤ FEV1 < 80% predicted), GOLD 3 

(Severe: 30% ≤ FEV1 < 30% predicted), and GOLD 4 (Very severe: FEV1 < 30% predicted)1. 

FEV1% predicted is a derived value that reflects the percentage of an individual’s observed FEV1 

compared to the average FEV1 in persons of similar age, sex, and body composition, especially 
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height.  

In recent years, new methodologies have emerged as complementary tools to traditional 

spirometry, providing enhanced granularity in the characterization of airflow obstruction in 

COPD. Parametric response mapping (PRM) is one such method that is gaining popularity. PRM 

is a computed tomography (CT) voxel-based imaging technique that uses dynamic image 

registration and separate density thresholds for inspiratory and expiratory voxel measurements. 

This voxel-mapping process allows regions of “normal” lung to be distinguished from 

“functional small airways disease” (PRMfSAD) or “emphysema” (PRMEmph)12. PRM metrics 

correlate with spirometry13,14 and are measurable even when spirometrically-defined airflow 

obstruction is absent15,16, emphasizing its heightening sensitivity and potential value in studies of 

early airway abnormalities.  

Although spirometry-based grading classifications continue to be the conventional 

method used for patient stratification, there is a growing appreciation for the discrepancy 

between the degree of spirometric airflow obstruction and symptom burden experienced by 

individuals with COPD. This acknowledgment comes in the wake of much work evidencing that 

symptom presentation in smokers, even in the absence of airflow obstruction, is associated with 

adverse health outcomes17–21. As a result of these findings, up-to-date pharmaceutical treatment 

regimens are guided by a combination symptom burden, as measured by the modified Medical 

Research Council (mMRC) dyspnea scale22 and COPD Assessment Test (CAT) scores23,24, and 

exacerbation history1. Exacerbations are episodes or flare-ups of worsening respiratory 

symptoms; a history of prior exacerbations is the most important risk factor for future 

exacerbations25.  

Guided by these metrics, patients are categorized into one of three treatment groups 
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(Table 1.1): Group A, Group B, or Group E. The primary pharmacotherapy options for patients 

include beta-agonists (BA) and muscarinic agnostics (MA), which contribute to airway widening 

by promoting bronchodilation or inhibiting bronchoconstriction, respectively. Single-acting 

bronchodilators (BA or MA) are used to treat Group A, whereas Groups B and E are treated with 

dual-acting (BA and MA) regimens. In cases where patients have a history of severe 

exacerbations (i.e., those requiring hospitalization) or blood eosinophil counts ≥ 300/μL, 

treatments may also incorporate the use of inhaled corticosteroids (ICS). Although these 

pharmacotherapy options effectively improve patients’ symptom burden, they cannot arrest or 

reverse disease progression. These current limitations in therapeutic efficacy stem from an 

incomplete understanding of the mechanisms that underpin COPD pathobiology26,27. 

Table 1.1. GOLD ABE assessment tool and pharmacologic treatments1 

  mMRC CAT Exacerbation History Treatment 

Group A  0-1 < 10 0-1 moderate* bronchodilator 

Group B  ≥ 2 ≥ 10 0-1 moderate dual-acting bronchodilator 

Group E  Any Any ≥ 2 moderate or 
≥ 1 severe† dual-acting bronchodilator‡ 

* Moderate exacerbation: exacerbation not leading to hospital admission 
† Severe exacerbation: exacerbation leading to hospitalization 
‡ Consider dual-acting bronchodilator + ICS if blood eosinophil counts ≥ 300/μL 

1.2 Molecular mechanisms and markers of COPD 

The mechanisms contributing to COPD pathogenesis and progression are likely a 

combination of genetic predisposition modified by oxidative stress, protease activity, and 

inflammation28,29. Given the capacity of immune cells to modulate the production of reactive 

oxygen species (ROS)30,31, proteases32, and inflammatory agents33, the immune system is 

believed to play a substantial role in the progression of COPD. The central involvement of 
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immune networks in COPD pathogenesis is evidenced by a myriad of studies implicating nearly 

all immune cell types (innate and adaptive) in COPD34–37. Specifically, macrophage, neutrophil, 

and CD8+ T-cell counts are consistently reported to increase in COPD patients’ lungs, including 

bronchoalveolar lavage (BAL) and sputum samples, and positively correlate with progression 

status38,39.  

In addition to the increased recruitment of inflammatory cells to the lungs, immune cells 

from patients with COPD often display modifications in cellular phenotype and function40–44. 

Notably, alveolar macrophages isolated from individuals with COPD demonstrate impaired 

phagocytic capabilities, resulting in deficient clearance of apoptotic airway epithelial cells20,45. 

This deficiency could suggest an inability of COPD patients to effectively resolve lung epithelial 

damage. Furthermore, conventional dendritic cells (cDCs) from individuals with COPD exhibit 

diminished expression of CCR5, a chemokine receptor that plays a crucial role in the uptake and 

processing of microbial antigens, which may impede the ability of mDCs to effectively interact 

with pathogens46.  

Alterations in receptor expression on immune cells can also influence their secretion of 

inflammatory proteins (“cytokines”). This concept is exemplified by a study that showcases how 

lung CD8+ T cells from COPD patients not only display elevated levels of toll-like receptors 

(TLRs) 2/1 but also respond to co-stimulation through TLR2/1 with amplified production of pro-

inflammatory cytokines, including TNF-α and IFN-γ47. In line with this observation, heightened 

expression of additional cytokines, including IL-1β, IL-6, IL-8, IL-17A, IL-18, IL-32, and TSLP, 

and growth factors, such as TGF-β, have been reported in the lower airways and lungs of patients 

with stable COPD35,48. Additionally, elevated levels of other immune-cell modulated secretions, 

such as proteases involved in parenchymal destruction (e.g., matrix metalloproteinases (MMPs) 
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and neutrophil elastase), have also been shown to be increased in COPD lungs34.  

A substantial portion of the cytokines observed in COPD-affected lungs are thought to 

originate from structural and inflammatory cells within the respiratory tract. This release occurs 

in response to chronic exposure to inhaled irritants and initiates a cascade of downstream 

responses. For instance, in response to cigarette smoke, airway epithelial cells and alveolar 

macrophages release pro-inflammatory factors (such as TNF-α and IL-1β) and chemokines (such 

as IL-8) that promote tissue damage and neutrophil recruitment, respectively49,50. Additionally, 

activated alveolar macrophages release various factors, including CXCL9 and CXCL10, which 

initiate chemotaxis of T cells into the lung. Following infiltration into the lung tissue, T cells 

generate further pro-inflammatory factors like IFN-γ and IL-17, thus perpetuating a cyclic 

pattern of inflammation51–53. Although initially triggered by inhaled irritants, prolonged exposure 

to harmful stimuli (ex., cigarette smoke) permanently reshapes the immune response of COPD 

patients into a pathogenic state. This shift is exemplified by the persistent inflammation observed 

in individuals with COPD even after smoking cessation34. 

Although the pulmonary microenvironment represents the immediate location of airway 

injury and repair, several inflammatory proteins have also been reportedly elevated in the 

peripheral blood of patients with COPD, many of which correlate with phenotypes of disease 

progression54. Whether the systemic inflammation observed in COPD results from pulmonary 

inflammation which has “spilled” into peripheral circulation or reflects an underlying 

predisposition to COPD or its comorbidome remains unanswered55. However, the possibility of 

local small airway remodeling having systemic implications suggests that circulating proteins 

could serve as minimally invasive biomarkers. 

To date, the most extensively studied systemic biomarkers of COPD include TNF-α, 
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fibrinogen, C-reactive protein (CRP), IL-6, IL-8, soluble receptor for advanced glycation end-

products (sRAGE), MMP-9, and club cell secretory protein 16 (CC16)48,56–61. Unfortunately, 

therapies targeting these proteins have not been widely successful48. For example, despite the 

elevated levels of TNF-α in COPD patient sputum and serum and its recognized role as a major 

instigator of the inflammatory response, a 6-month treatment course with infliximab, a TNF-α 

inhibitor, yielded no discernible clinical benefit. Instead, this approach displayed a trend towards 

a heightened risk of cancer and pneumonia62. Likewise, endeavors to target IL-8 via anti-IL-8 

antibodies and CXCR2 (IL-8 receptor) agonists failed to demonstrate efficacy in large-scale 

clinical trials, despite the consistent elevation of IL-8 levels in COPD and its established role in 

the chemotactic attraction of neutrophils and monocytes63,64. More recently, in clinical trials, 

benralizumab, a monoclonal antibody targeting the alpha chain of the IL-5 receptor expressed by 

eosinophils, demonstrated no significant reduction in the annual rate of COPD exacerbations 

compared to a placebo65, even in COPD patients with elevated eosinophil counts66. Several 

possibilities exist for why these biomarkers may not have proven robust in practice, such as the 

targets acting downstream of a key node or redundancy in the signaling network. However, on a 

broader scale, it is plausible that a single protein may not be capable of addressing the inherent 

heterogeneity among COPD patients58,67.  

1.3 The impact of disease heterogeneity on COPD outcomes and clinical investigations 

COPD is an immensely heterogeneous condition. Individuals with COPD have evidence 

of various respiratory conditions, including chronic bronchitis and emphysema (Figure 1.1)55. 

The relative contributions of each condition to overall airflow limitation vary on an individual 

basis55. This variability is reflected in diverse clinical presentations (phenotypes), which are 

further complicated by differing underlying pathologies (endotypes). The acknowledgment of 
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COPD heterogeneity has propelled the creation of extensively phenotyped cohorts aimed at 

identifying patient subgroups with shared demographic and molecular traits to enhance the 

prediction of health outcomes and therapeutic responses. One such cohort is the Subpopulations 

and Intermediate Outcomes in COPD Study (SPIROMICS)68.   

 

Figure 1.1. Venn diagram summarizing the diverse respiratory conditions that can contribute to airflow limitation in 
COPD patients55. 

SPIROMICS is a multi-center longitudinal study that enrolled nearly 3,000 participants, 

including smokers with and without COPD as well as never-smoking controls68,69. This large- 

scale project aims to comprehensively understand the underlying mechanisms, natural 

progression, and various subtypes of COPD. SPIROMICS has undertaken extensive data 

collection to support these initiatives, encompassing clinical assessments, lung function tests, 

radiographic imaging, genetic profiles, blood samples, and lung-derived specimens. This diverse 
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assortment of biospecimens permits the generation and integration of a broad spectrum of omics 

datasets (i.e., genomics, proteomics, and metabolomics), enabling comprehensive comparisons 

between COPD and control participants for both pulmonary and systemic factors. In fact, no 

COPD cohort worldwide has the detailed phenotyping and breadth of biospecimens found within 

SPIROMICS. As a result, the data derived from this cohort presents a distinct opportunity for 

researchers to explore the intricate interplay between genetic variations and molecular pathways 

that contribute to COPD susceptibility, severity, and progression. 

Collective efforts from SPIROMICS and other large multi-center cohorts have suggested 

a variety of distinct COPD subpopulations, marked by taxonomic annotations (i.e., emphysema 

predominant vs. airway predominant disease), comorbid conditions, and transcriptomic 

inflammatory profiles70–72. Although these findings represent great strides toward creating more 

targeted and effective therapeutics, they also underscore that complex biological networks 

contribute to COPD pathology. Thus, methods that allow for network-level inference could 

provide valuable new insights into the systems-level mechanisms that underly COPD 

pathobiology. 

1.4 The promise of systems-focused approaches in COPD research 

Systems-biology approaches, including data-driven modeling, offer a promising avenue 

for generating novel, network-level insights. Data-driven modeling is a subset of systems-

biology tools that use high-throughput data to model the relationships between variables without 

requiring knowledge of the underlying system behavior (ex., biological mechanisms). 

Additionally, data-driven models can accommodate the integration of datasets derived from 

multiple tissue compartments or anatomic levels and therefore hold the promise of generating 

integrative (i.e., multi-level or cross-tissue compartment) insights into disease pathobiology.  
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Data-driven tools consist of unsupervised and supervised algorithms. Unsupervised 

algorithms use clustering and dimensionality reduction approaches to identify global patterns in a 

dataset and may aid in identifying novel subgroups within a patient population73. Conversely, 

supervised approaches allow the identification of small combinations (“signatures”) of key 

molecular elements that covary with each other and are associated with clinically relevant 

outcomes. Once identified, these signatures can be linked to mechanisms using knowledge-based 

bioinformatics databases and experimental follow-up and validation. The identification of critical 

players in the network and their linkage to mechanisms provide a starting point for generating 

insight into disease-specific biology, potential diagnostic or prognostic criteria, and possible 

targets for combinatorial therapeutic intervention74.  

In COPD, unsupervised data-driven modeling approaches have successfully been 

employed across a range of omics datasets to aid in identifying distinct patient populations 

(“phenotypes”) with unique molecular fingerprints75–78. For instance, researchers have identified 

four distinct COPD subpopulations with unique peripheral blood gene expression patterns. Each 

subgroup was characterized by varying degrees of lung function impairment, emphysema, and 

respiratory symptoms. These subgroups also exhibited differences in biological pathway 

enrichments, blood cell composition, and inflammatory protein biomarker levels (CRP, 

fibrinogen, IL-6, and CC16)75. Comparable success has been achieved at the proteomic level, 

where unsupervised clustering of 57 serum protein measurements revealed distinct 

subpopulations with unique clinical characteristics and comorbidities77. In both genomic and 

proteomic analyses, the enriched pathways that differentiated the identified subgroups were 

mainly associated with wound healing and inflammatory processes. 

Several other studies took an alternative approach by directly applying clustering-based 
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methods to clinical datasets to identify COPD subgroups with unique clinical presentations79–82. 

In a notably successful study validated in a secondary cohort, Castaldi et al. employed a k-means 

clustering algorithm on quantitative chest CT, spirometric data, and clinical measurements from 

smokers participating in the COPDGene study. This effort revealed four patient clusters 

exhibiting unique radiographic patterns of airway disease and emphysema. Two of the clusters, 

one featuring individuals with mild upper zone emphysema and the other with severe 

emphysema, showed significant correlations with single nucleotide polymorphisms (SNPs) 

previously associated with COPD83.  

Although clustering-based approaches have demonstrated significant success in 

independent investigations, the reproducibility of identified subtypes across different studies is 

often modest84,85. Furthermore, despite dedicated attempts to classify subtypes based on various 

clinical features, studies have suggested that COPD heterogeneity is more accurately depicted by 

continuous traits (like airflow limitation or quantitative emphysema) that exist in different 

degrees within the same individual rather than by distinct and mutually exclusive COPD 

subtypes or phenotypes84. These inherent limitations imply that a more practical approach could 

involve defining group boundaries and COPD subpopulations based on meaningful clinical 

outcomes like exacerbation risk, mortality, or FEV1 decline. Such an alternative strategy can be 

realized by applying supervised data-driven algorithms. 

Numerous studies have highlighted the effectiveness of supervised approaches in 

identifying predictive signatures associated with predetermined clinical outcomes in COPD. 

Specifically, researchers have utilized these methods to create polygenic86, transcriptomic87, and 

metabolomic88 scores (referred to as “risk scores”), enabling assessment of an individual’s 

susceptibility to COPD development. Moreover, supervised techniques have been applied to 
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transcriptomic data from bronchial epithelial brushings to formulate signatures predicting COPD 

endotypes. These transcriptomic signatures differentiate COPD patients into T2 or T17-like 

inflammatory endotypes71,72. The importance of these endotype signatures lies in their potential 

to assist in predicting patient responsiveness to pharmacotherapeutic interventions, including 

inhaled corticosteroids (ICS). 

Despite the promise of these findings, a limitation in current approaches is that they tend 

to emphasize only the additive significance of each protein in differentiating clinical groups 

rather than co-variance, which may improve classification ability and can better assist with 

network inference89. Moreover, these studies lack the use of data integrated across multiple 

physiological compartments. Although sample availability has likely limited previous studies to 

evaluating molecular markers from a single tissue compartment, studies indicate that data 

integration across multiple compartments holds promise for improving the prediction of COPD 

outcomes58. In cross-sectional studies, integrating datasets from various molecular levels or 

anatomical locations improved the ability to classify individuals with COPD from controls90–92. 

Accordingly, we may obtain a deeper understanding of the natural history of COPD by exploring 

network connectivity at a systems level57,93.  

1.5 Structure of thesis 

Given the lack of research regarding network-level alterations in the proteome associated 

with COPD pathobiology, this thesis aims to identify and evaluate pathogenic changes in protein 

signaling pathways associated with key COPD subpopulations. We decided to focus our analysis 

on proteins because these are biologically active factors that directly reflect the current state of 

patients. When possible, we use data-driven modeling approaches to integrate data across tissue 

compartments (i.e., lung-derived samples and blood). We approached this challenge with the 
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following aims:  

Aim 1: Elucidate systems-level insights into cross-tissue compartment changes that 

predict accelerated spirometric progression.  

Aim 2: Utilize network-based approaches to identify blood signatures associated with 

unique COPD subpopulations, including: 

  Aim 2a: Individuals with accelerated spirometric progression.  

  Aim 2b: Emphysema progression in younger vs. older individuals.  

Aim 3: Identify dysregulated nodes of immune cell-cell communication networks in 

peripheral blood that are associated with COPD disease state. 

The findings generated from this work will provide novel insights into proteomic network 

alterations associated with COPD pathogenesis and progression. Results will inform the 

generation of hypotheses about important pathway dysregulations contributing to COPD 

pathology that can be further investigated in validation cohorts and follow-up murine studies.  

Completion of these aims will be presented in the following format: Chapter 2 presents 

published work in which data-driven approaches were applied to integrated blood and BAL 

proteins to identify cross-tissue compartment signatures capable of predicting COPD patients’ 

risk of accelerated spirometric progression (Aim 1). The related supplemental materials for this 

work are presented in Appendix A. Validation of the findings in Chapter 2 presented are 

presented in Chapter 3 (Aim 2a). Chapter 4 presents unpublished work that uses data-driven 

approaches to uncover differential mechanisms driving the progression of emphysema in 

younger and older individuals using plasma proteomics samples from ever-smokers (Aim 2b). 

Supplemental material for Chapter 4 is in Appendix B. Chapter 5 includes an analysis of 

secretion profiles from patient-derived immune cells to explore cytokine-chemokine network 
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alterations associated with COPD (Aim 3), with supplemental material in Appendix C.  
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Chapter 2 A Blood and Bronchoalveolar Lavage Protein Signature of Rapid FEV1 Decline 

in Smoking-Associated COPD 

2.1 Original publication information 

This chapter was originally published as a scientific article: 

DiLillo KM, Norman KC, Freeman CM, Christenson SA, Alexis NE, Anderson WH, 

Barjaktarevic IZ, Barr RG, Comellas AP, Bleecker ER, Boucher RC, Couper DJ, Criner 

GJ, Doerschuk CM, Wells JM, Han MK, Hoffman EA, Hansel NN, Hastie AT, Kaner RJ, 

Krishnan JA, Labaki WW, Martinez FJ, Meyers DA, O’Neal WK, Ortega VE, Paine R, 

Peters SP, Woodruff PG, Cooper CB, Bowler RP, Curtis JL, Arnold KD. (2023). A blood 

and bronchoalveolar lavage protein signature of rapid FEV1 decline in smoking-

associated COPD. Scientific Reports, 13(1):8228. https://doi.org/10.1038/s41598-023-

32216-0 

Changes made to the original document are mainly cosmetic to adhere to the format of this 

document. 

2.2 Abstract 

Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated 

with increased risks of hospitalization and death. Prognostic insights into mechanisms and 

markers of progression could facilitate development of disease-modifying therapies. Although 

individual biomarkers exhibit some predictive value, performance is modest, and their univariate 

nature limits network-level insights. To overcome these limitations and gain insights into early 
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pathways associated with rapid progression, we measured 1305 peripheral blood and 48 

bronchoalveolar lavage proteins in individuals with COPD [n=45, mean initial forced expiratory 

volume in one second (FEV1) 75.6±17.4% predicted]. We applied a data-driven analysis 

pipeline, which enabled identification of protein signatures that predicted individuals at-risk for 

accelerated lung function decline (FEV1 decline ≥70 mL/year) ~6 years later, with high accuracy. 

Progression signatures suggested that early dysregulation in elements of the complement cascade 

is associated with accelerated decline. Our results propose potential biomarkers and early 

aberrant signaling mechanisms driving rapid progression in COPD. 

2.3 Introduction 

Chronic obstructive pulmonary disease (COPD), a leading cause of death in the United 

States94, accounts annually for >600,000 hospitalizations95 and $30 billion in direct health 

expenditures4. The course of COPD is heterogeneous. Such heterogeneity is exemplified,  at least 

in part, by the highly variable rates of annualized decline in forced expiratory volume in one 

second (FEV1) observed in prospective observational cohort studies96–99. This variability 

between rates of lung function decline causes some individuals to experience relatively stable 

courses, while in others, accelerated loss of function leads to severe breathlessness and increased 

risk of hospitalization and death98. Because phenotypic diversity is underpinned by biological 

heterogeneity, there is growing interest in identifying molecular biomarkers to predict multiple 

aspects of COPD progression. Such molecular markers could help explain phenotypic 

heterogeneity and facilitate the early detection of individuals at risk for accelerated lung function 

decline, enabling personalized management to arrest disease progression. Additionally, 

biomarkers could direct research into underlying pathogenic mechanisms, uncovering novel 

therapeutic targets.  
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To date, accelerated FEV1 decline has been associated with individual blood proteins, 

including club cell secretory protein 16 (CC16)58,59, soluble receptor for advanced glycation end-

products (sRAGE)58, fibrinogen58, C-reactive protein (CRP)58,61, and IL-660, although 

contradictory reports exist61,100–102. The ratio of leptin to adiponectin in plasma also demonstrated 

predictive value for rapid lung function decline but showed only moderate sensitivity (63.5%) 

and specificity (65.1% )103. While valuable, univariate analyses of candidate biomarkers have 

provided limited insights into underlying mechanisms, a shortcoming that could be 

complemented by network-level analysis of large numbers of proteins. 

Previous studies have also been limited to measuring biomarkers in a single tissue 

compartment due to sample availability. However, data indicate that combinations of proteins 

appear to be better predictors of multiple COPD outcomes (including FEV1 decline) than 

individual factors8, especially when derived from multiple compartments. For example, in cross-

sectional studies, integrating datasets across multiple molecular levels, anatomical locations, or 

both, improved the ability to classify individuals with a smoking history by COPD status and to 

uncover novel disease-associated pathways90–92. Accordingly, analyses of lung function decline 

may benefit from evaluating systems-level integrated networks, as they are more likely to 

capture the diverse biology driving airflow obstruction57,93.  

Data-driven modeling is one approach that allows inference of network-level relation-

ships driving progression. By permitting data integration across multiple tissue compartments, 

data-driven modeling generates systemic networks (“signatures”) of co-varying biological 

factors associated with disease phenotypes. Identified signatures can be linked to pathogenic 

mechanisms, providing insight into potential targets for follow-up experiments or as biomarkers 

for therapeutic intervention. Previously, we successfully used these approaches to identify blood 



 18 

and bronchoalveolar (BAL) protein signatures associated with disease state and progression in 

idiopathic pulmonary fibrosis89,104. We have also used the approach to integrate blood and 

sputum proteins to define signatures that differentiated stable and exacerbated COPD states105. 

Here, to gain insights into cross-compartment mechanisms associated with a greater lung 

function decline in COPD, we applied an integrative data-driven modeling pipeline to proteins 

recovered from matched blood and BAL samples from participants in the bronchoscopy sub-

study106,107 of the SubPopulations and InteRmediate Outcome Measures In COPD Study 

(SPIROMICS)68. Our results suggest that proteomic signatures can effectively detect individuals 

at increased risk of accelerated lung function decline. They also provide insights into COPD 

progression mechanisms that can be further investigated in validation cohorts and follow-up 

murine studies. 

2.4 Results 

2.4.1 Participant characteristics 

We initially analyzed participants of the SPIROMICS bronchoscopy sub-study who had 

COPD, paired baseline (V1) and final (V5) spirometry, plus matched proteomic measurements 

from plasma samples and BAL samples (n=45) (Supplemental Figure A.1). Participants’ mean 

(±SD) age at V1 was 63±7.7 years; they had a follow-up time of 6.3±0.9 years (Table 2.1). To 

characterize rapid progression, we dichotomized participants based on their annualized FEV1 

decline (∆FEV1): greater decliners (<30th percentile) (n=14) versus lesser decliners (≥30th 

percentile) (n=31) (Figure 2.1a). This threshold equaled a ∆FEV1 of –70 mL/year. Greater 

decliners trended non-significantly to be male (85.7% vs. 54.8%) but were well-matched for 

other demographic criteria. Despite significantly higher FEV1% predicted (p=0.017) and absolute 

FEV1 (p=0.015) at V1, they experienced a 3.6-fold greater ∆FEV1 compared to their lesser 
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decliner counterparts (-104.6 ±32.0 vs. -28.8 ±21.5 mL/year). The observed association between 

faster decline and higher baseline lung function is in line with previous reports96,108. 

Table 2.1. Baseline characteristics of COPD cases 

  All 
(N=45) 

Greater Decliners‡ 
(N=14) 

Lesser Decliners 
(N=31) P-Value† 

Age*  63.4 (± 7.75) 64.2 (± 6.24) 63.1 (± 8.41) 0.65 

Currently Smoking*  15 (33.3%) 5 (35.7%) 10 (32.3%) >0.99 

BMI*  27.8 (± 4.91) 27.9 (± 3.67) 27.8 (± 5.43) 0.93 

Sex (Male)  29 (64.4%) 12 (85.7%) 17 (54.8%) 0.09 

Race (White / Other)  37/8 (82.2%) 12/2 (85.7%) 25/6 (80.7%) >0.99 

ICS use* (yes)  17 (37.8%) 3 (21.4%) 14 (45.2%) 0.18 

FEV1* (% predicted)   75.6 (± 17.4) 84.2 (± 13.1) 71.1 (± 17.7) 0.017 

FEV1/FVC*  0.58 (± 0.09) 0.60 (± 0.08) 0.57(± 0.10) 0.27 

FEV1* (L)  2.27 (± 0.68) 2.63 (± 0.60) 2.11 (± 0.66) 0.015 

Visit 5 FEV1 (L)  1.94 (± 0.67) 1.97 (± 0.67) 1.93 (± 0.68) 0.85 

Time from baseline  
to Visit 5 (yrs.) 

 
6.31 (±0.86) 6.25 (± 0.76) 6.33 (± 0.91) 0.79 

Time from baseline to  
bronchoscopy (months)  

 20.3 (±11.6) 20.4 (± 10.0) 20.3 (12.5) 0.96 

∆FEV1 (mL/yr.)  -52.4 (± 43.3) -104.6 (± 32.0) -28.8 (±21.5)  

Two-sample, two-tailed t-test or Fisher’s exact test were used to determine significant differences. Bold values 
denote significant differences between greater and lesser decliners. 

* Demographic information from baseline visit (Visit 1) 
† P-values are associated with differences between greater decliner and lesser decliner groups 
‡ Decline in FEV1 (mL/yr.) ≥70 mL/year (see pg. 34) 
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Figure 2.1. Individual blood and BAL proteins cannot discriminate between annualized greater versus lesser rates of 
FEV1 decline in COPD.  
(a) Comparison of annualized post-bronchodilator FEV1 decline from V1 to V5. Decline was calculated as (V5 
FEV1 – V1 FEV1)/ time, where time is the duration in years between V1 and V5 for each participant. (b) Volcano 
plot of blood and BAL proteins. Light and dark blue protein markers have a p-value < 0.05 and < 0.01, respectively, 
after a two-sampled two-tailed t-test. All depicted p-values are before correction for multiple comparisons. No 
proteins remained significant after applying the Benjamini-Hochberg false discovery rate (FDR) correction for 
multiple comparisons (α = 0.05). 

2.4.2 Individual blood and BAL proteins cannot discriminate between rates of longitudinal 

lung function decline. 

We first determined whether differences existed between greater decliners and lesser 

decliners in multi-compartment protein expression measured early in the study, using the 

concentrations of 1305 blood and 25 BAL proteins measured with SOMAScan and Luminex 

technology, respectively. To reduce biases associated with the unequal distribution of women 

across classes (14.3% vs. 45.2%), we first removed proteins (n=8) that exhibited significant 

associations with sex (Supplemental Figure A.2). Across the remaining 1322 proteins, 28 

(2.1%) had a mean concentration that differed significantly (p<0.05) between groups (Figure 

2.1b). Of these, 13 were increased in greater decliners [log2 fold change (FC)>0] and 15 were 

increased in lesser decliners (FC<0). The top six most significantly different proteins (p<0.01) 
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were all identified in blood: Heparin-binding EGF-like growth factor (HBEGF; FC=0.05), 

BCL2-related protein A1 (BCL2A1; FC=0.03), inactivated Complement C3b (iC3b; FC=-0.05), 

Calcium-Dependent Phospholipase A2 (PLA2G5; FC=0.03), Leptin (FC=-0.11), and Properdin 

(CFP; FC=-0.03). None of the 28 proteins remained significant after Benjamini-Hochberg 

adjustment.  

2.4.3 Data-driven modeling based on protein measurements identifies a novel multi-

compartment signature that prospectively differentiates progression phenotypes.  

We next used data-driven modeling approaches to identify a multi-compartment signature 

of co-varying proteins associated with greater FEV1 decline. Here, we combined all 1322 protein 

measurements (1297 blood and 25 BAL) into a single dataset, then applied elastic net (EN) in 

tandem with partial-least squares discriminant analysis (PLSDA). First, EN regularization was 

applied iteratively to 2000 subsets of randomly resampled data. Then, based on their selection 

frequency throughout the iterations, proteins were ranked (most to least frequent) and fed 

stepwise into the PLSDA algorithm. We evaluated PLSDA model performance at each step 

using 6-fold cross-validation (CV) and selected the model with the highest CV accuracy as the 

optimal signature.  

Using this feature selection pipeline, we identified a signature of 52 proteins (51 blood 

and 1 BAL) that distinguished greater decliners (FEV1 decline ≥70 mL/year), along the latent 

variable 1 (LV1) axis, with 98.4% calibration and CV accuracy, 100% sensitivity, and 96.7% 

specificity (Figure 2.2a-c). Permutation tests performed on participant scores across the first two 

principal components of PCA models generated with the 52-feature signature, show no 

significant influence of baseline ICS use (p = 0.35) or smoking status (p = 0.57) on participant 

classification (Supplemental Figure A.3). To confirm the accuracy of the selected features, we 
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compared its cross-validated accuracy to 1000 random signatures, generated by selecting 

iterative groups of 52 random proteins from the original dataset. None of the random signatures 

outperformed the optimal model (p<0.0001) (Supplemental Figure A.4). We also observed a 

significant, albeit moderate, Pearson correlation between LV1 scores and plasma concentrations 

of CRP (rp=0.33, p=0.03), a protein previously associated with FEV1 decline58,61. However, LV1 

scores exhibited no significant correlations with other reported blood markers of spirometric 

decline, including IL-660 (rp=0.18, p=0.29), fibrinogen58 (rp =-0.01, p=0.93), and matrix 

metalloproteinase 9 (MMP-9)61 (rp =-0.27, p=0.08).  

Lack of a formal definition of “rapid progression” in COPD has led to literature 

variability, so we explored whether the identified 52-feature signature maintained significance 

across alternative characterization approaches. Recently, using the entire SPIROMICS dataset, 

Anderson et al. proposed a threshold-based definition, classifying progression into three groups 

based on annualized FEV1 declines:  rapid decliners (>100 mL/year), decliners (20-100 

mL/year), and stable/ improvers (< 20 mL/year)109. The limited number of participants in our 

bronchoscopy sub-study exhibiting such extreme decline hindered direct exploration of this 

definition. However, an exploratory PCA using the 52-feature multi-compartment signature 

demonstrated significant signature enrichment in rapid decliners thus defined (Supplemental 

Figure A.5), suggesting our model reliably extends to this more rigorous definition. A 

regression-based analysis also found that participant scores on LV1 correlated highly with 

annualized declines in FEV1 (rp=0.758, p<0.0001), even after adjustment for age, race, height, 

sex, baseline FEV1% predicted, smoking status, pack-years, and ICS use (p<0.0001) (Figure 

2.2d). Alternative estimations of FEV1 decline using all available longitudinal spirometry (rather 

than just V1 and V5) produced similar results, as did classifications using FEV1% predicted in 
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lieu of absolute FEV1 volumes (Supplemental Figure A.6). These results suggest that our 

approach captures complex progression trends and is largely not skewed by demographic factors 

influencing lung capacity. For the remainder of our analysis, we use the -70 mL/year definition.  

 

Figure 2.2. A 52-feature Elastic Net (EN) signature identified individuals at-risk for FEV1 decline ≥70 mL/year with 
high accuracy.  
(a) PLSDA scores plot highlighting strong differentiation between greater decliners (magenta) and lesser decliners 
(yellow), separating the two groups with 98.4% cross-validation (CV) and calibration accuracy. (b) Loadings on 
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latent variable 1 (LV1) (with negatively loaded proteins being comparatively increased in greater decliners and 
positively loaded proteins being comparatively reduced) captured 11.9% of the total variance in the data. (c) ROC 
curve of 52-feature signature suggests greater decliners classification with 100% sensitivity and 96.8% specificity in 
the cross-validated model. (d) LV1 scores were associated with annualized FEV1 decline (mL/yr.). P-values and fit 
line shown for linear models adjusted for age, race, height, sex, baseline FEV1% predicted, smoking status, pack-
years, and inhaled corticosteroids (ICS) use within three months of baseline visit. (e-f) Comparison of (e) 6-fold CV 
accuracies, (f) sensitivities, and specificities between the 52-feature EN signature, a collection of the six top proteins 
identified in Figure 2.1, and literature-based models. All reported values are from cross-validated PLSDA models, 
unless otherwise noted. One-way ANOVA with Dunnett’s post hoc test; **p<0.01, ****p < 0.0001.  

2.4.4 The progression signature is enriched for proteins involved in the complement system 

Having generated a high-performing progression signature, we sought to understand the 

biological implications of its components. Unsupervised hierarchical clustering identified greater 

decliners with 88% accuracy (Figure 2.3a). A Metascape analysis found 20 significantly 

enriched ontology clusters (Figure 2.3b), with only three, related to aging and phosphorylation-

dependent signal transduction, shared between groups. Lesser decliners displayed unique 

enrichment of 16 clusters related primarily to inflammation and immune functions. Notably, the 

only uniquely enriched cluster in greater decliners was associated with the complement system 

(q=4.10e-04) (Figure 2.3c-d). Proteins in this cluster included blood albumin, bone sialoprotein 

2, intracellular adhesion molecule 1, interferon-gamma, kynureninase, and three complement 

proteins (iC3b, C3d, Properdin). These three complement proteins were involved in 10 of 20 

total clusters and represented three of the top eight loaded proteins in the PLSDA, indicating a 

potentially significant impact of complement processes in COPD progression. 

2.4.5 Patterns of dysregulation in complement-associated proteins precede accelerated FEV1 

decline 

These enrichment data, coupled with the known importance of the complement cascade 

to immunity, suggest that complement proteins may be more globally altered in greater decliners 

than was captured in the original signature. To explore this possibility, we performed PCA using 

the concentration of 22 complement proteins measured in plasma. Results suggested that our 
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groups differed significantly in complement profiles as measured by scores across PC1 (p =  

0.0045) (Supplemental Figure A.9). We selected PC1 scores as the PC of interest, as only they 

correlated significantly with annualized FEV1 decline (p < 0.001) (Supplemental Figure 

A.10a).  

 

Figure 2.3. Clustering of COPD participants by the EN-identified signature highlights distinct regulation of immune-
associated processes. 
(a) Hierarchical clustering of the 52-feature signature highlights distinct clustering of greater decliners (magenta) 
and lesser decliners (yellow). Only 5 out of the 45 participants were misclassified (Sensitivity: 85.7%, Specificity: 
90.3%). BAL proteins denoted by blue text. (b) Significantly enriched ontology clusters by Metascape analysis. (c, 
d) Pathways encompassed in the (c) complement cascade cluster and in the (d) positive regulation of cytokine 
production cluster are included pop-out table. Hatched squares indicate protein involvement in a particular pathway, 
colorations of magenta or yellow represent a relative elevation of the protein concentration in greater decliners or 
lesser decliners, respectively. 
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To explore whether the observed patterns were specific to the greater decliners rather 

than COPD more generally, we extended our analysis to include the reference group of TEPPS 

(n=38). Interestingly, the baseline profiles of TEPPS were similar to that of lesser decliners. In 

contrast, complement profiles from greater decliners differed from those of lesser decliners and 

TEPPS, both as visualized using PCA (Figure 2.4a) and via direct comparison of PC1 scores 

(Figure 2.4b). The variance in complement profiles, as captured by PC1, correlated with FEV1 

decline (p=0.004) (Supplemental Figure A.10b), a relationship that remained significant after 

adjustment for age, race, height, sex, FEV1% predicted, smoking status, pack-years, and ICS use 

(p=0.012)  (Supplemental Figure A.10c). In univariate comparisons, among the 22 complement 

proteins, only C1r, iC3b, C3d, Properdin, and C4 reached statistical significance (Supplemental 

Figure A.11). Performing permutation tests with participant scores across the first two principal 

components labeled by key clinical variables, we show no significant influence of baseline ICS 

use (p = 0.36) or current smoking status (p = 0. 70) on observed complement profiles 

(Supplemental Figure A.12). Collectively, these findings reinforce the Metascape results, 

suggesting that early patterns of complement dysregulation are specific to a more rapidly 

progressing phenotype. 

2.4.6 Alternative minimal signatures highlight a small number of proteins that maintain high 

predictive power 

Although our model’s large size proved advantageous in exploring functional 

enrichments associated with accelerated FEV1 decline, it is complex and hence costly if 

clinically implemented as a prediction tool. Therefore, we next explored whether smaller sub-

models (“minimal signatures”) maintained predictive value. Using insights from our step forward 

PLSDA pipeline, we visually analyzed the trade-off between model size and performance. Two 
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minimal signatures, with 6 and 11 features, respectively, had CV accuracies similar to our 

optimized model (CV accuracy: 6-feature, 81.6%; 11-feature, 88.4%; 52-feature, 98.4%) 

(Supplemental Figure A.13a). The 6-feature model consisted of BAL Eotaxin and blood iC3b, 

Leptin, Cadherin-2, Heparin-binding EGF-like growth factor (HBEGF), and Teratocarcinoma-

derived growth factor 1 (TDGF1). The 11-feature model comprised those six, plus blood-derived 

Low affinity immunoglobulin gamma Fc region receptor IIb (FCGR2B), Interferon gamma 

(IFN-γ), Carbonic anhydrase-related protein 10 (CA10), Apolipoprotein L1, and Lymphatic 

vessel endothelial hyaluronic acid receptor 1 (LYVE1). ROC curves created for the 11- and 6-

feature models resulted in areas under the curve (AUC) of roughly 0.982 and 0.947 for the 

calibration models and 0.935 and 0.878 for the cross-validated models, respectively (Figure 

2.5a; Supplemental Figure A.14). Intriguingly, each minimal signature included at least one 

protein from both tissue compartments.  

 

Figure 2.4. Complement profiles in COPD lesser decliners behave more similarly to TEPPS than COPD greater 
decliners. 
(a) PCA completed using all complement proteins measured in plasma (C1q, C1qBP, C1r, C2, C3d, C3b, C3, C3a, 
iC3b, C3a des Arg, C4, C4b, C5, C5a, C5-6, C6, C7, C8, C9, Factor B, Factor D, Properdin) of greater decliners 
(circles), lesser decliners (squares), and a reference group of tobacco-exposed people with preserved spirometry 
(TEPPS) (diamonds). First two principal components (PCs) capture 33.9% of the variance in the dataset. (b) 
Comparison of scores on PC1 (one-way ANOVA with Tukey’s post-hoc test; **p<0.01, ***p<0.001). 
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We tested proteins from both blood and alveolar compartments to maximize the chances 

of understanding underlying biology in COPD, specifically the link between distal airways and 

systemic events. However, due to the invasiveness of bronchoscopy, biomarkers obtained solely 

from the blood would be preferable. Accordingly, we evaluated a minimal blood signature by 

applying our step forward EN/PLSDA algorithm exclusively to the 1297 blood proteins 

measured in the same COPD participants (n=45). Analysis identified 5- and 10-feature signatures 

that maintained strong cross-validated performance (CV accuracy: 5-feature, 81.6%; 10-feature, 

86.8%) (Supplemental Figure A.13b). The 5-feature model included blood-derived iC3b, 

Cadherin-2, Leptin, HBEGF, and TDGF1; the 10-feature model comprised those five, plus 

CA10, IFN-γ, FCGR2B, LYVE1, and Apolipoprotein L1. Both minimal blood signatures 

displayed a slight drop in performance compared to their multi-compartment counterparts of 

nearest sizes (10- and 5-feature signatures, AUC 0.947, 0.901 for calibration models and 0.912, 

0.862 for CV models, respectively). However, comparisons using both AUCs and 6-fold cross-

validation found no significant difference in the performance of any of the minimal signatures 

and the optimal 52-feature model (Figure 2.5a; Supplemental Figure A.15).   

Finally, we subjected the minimal signatures to cross-validated analyses relative to 

multivariate signatures identified through our univariate analysis or published literature. 

Comparisons using 6-fold CV accuracy indicated that overall performance was largely sustained, 

with the 6- and 11-feature multi-compartment signatures and the 10-feature blood signature 

significantly outperformed literature-based models and trended towards outperforming a 

signature based on the top 6 univariate proteins (Figure 2.5b-c). The 5-feature blood signature 

did not reach statistical significance in any comparison, though its performance over literature-  

based models was substantially improved. All four signatures showed a >20% increase in  
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Figure 2.5. Select subgroup of signature proteins retain high predictive value for accelerated FEV1 decline. 
(a) Table denote AUCs for both ROC curves generated from calibration and cross-validation PLSDA models. AUCs 
of all calibration models were compared to that of the optimal (52-feature model) using the Hanley and McNeil 
method110. (b) Comparisons of 6-fold CV accuracies of multi-compartment and (c) blood-only biomarker models a 
collection of the 6 top proteins identified in Fig. 1, and literature models, as determined by ANOVA with 
Bonferroni’s post hoc test (*p<0.05, **p < 0.01, ***p<0.001).  (d) Sensitivity and specificity of signatures. All 
reported values are from cross-validated PLSDA models, unless otherwise noted. (†: multi-compartment model, #: 
blood-only model). 
CV: cross-validated; AUC: area under curve. 
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sensitivity, with lesser though considerably improved specificity versus other models (Figure 

2.5d-e). Collectively, these findings imply that small, proteomic signatures can differentiate 

individuals with tobacco smoking-associated COPD at risk for rapid lung function decline with 

high accuracy. 

2.5 Discussion 

This study used two complementary datasets from COPD participants in the SPIROMICS 

bronchoscopy sub-study to generate insights into early, aberrant signaling mechanisms 

associated with accelerated lung function decline. Using a systems analysis, we identified a 

multivariate signature of early blood and BAL proteins that predicted individuals at-risk for 

greater FEV1 decline ≥70 mL/year (“greater decliners”) with >98% accuracy. Investigation of 

this signature disclosed that differences in longitudinal FEV1 decline are associated with 

variability in host immune and defense responses, with greater decliners uniquely exhibiting 

early dysregulated patterns of complement protein expression. Finally, refinement of the 

signature identified a minimal model with 10 blood proteins that, if validated, may serve as a 

clinically feasible prognostic tool. This work complements previous predictions of COPD 

progression58–61,100–102 by starting from a data-driven approach, rather than prior knowledge, to 

obtain unbiased insights into cross-compartment proteins and pathways driving accelerated 

airflow obstruction. 

To our knowledge, this is the first longitudinal study of COPD progression to use 

integrated proteomic datasets derived from blood and BAL samples. Our tandem EN and 

PLSDA approach identified concise proteomic signatures from thousands of proteins measured 

across multiple tissue compartments. This framework accurately differentiated individuals with 

COPD who sustained declines in lung function ≥70 mL/year based on proteins measured early 
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after participant enrollment. We specifically sought to explore integrated lung and systemic 

compartment models because COPD has coupled local and peripheral manifestations54. Although 

several proteins were measured in lung and blood tissue compartments, classifying signatures did 

not select any matched BAL/blood proteins, which may be partly due to differences in 

measurement platforms. Moreover, that only one BAL protein was identified in the 52-feature 

signature is likely in part a consequence of the marked difference in numbers of analytes in blood 

and BAL (1297 vs. 25). Currently, the SOMAmer technology used in our plasma analyses has 

not been validated for use in BAL samples. However, the importance of multi-compartment 

representation is exemplified by the over 15% improvement in calibration model sensitivity on 

adding BAL Eotaxin to the 5-feature blood signature.  

Our multi-compartment 52-protein signature was enriched for inflammation and immune 

responses processes, consistent with the central role of immune dysregulation in COPD 

pathogenesis34,111,112. Chief among these processes was the complement system. By providing 

evidence that complement alterations precede accelerated FEV1 decline, we extend previous 

associations between the levels of blood-derived complement proteins (C3113,114, C4115, C4b116, 

C5a117, C9118, Factor B116) and COPD status (case vs. control), cross-sectional analyses of 

FEV1% predicted119,120, and emphysema severity121. How such aberrations might contribute to 

airflow limitation is unknown. In a murine model, C3 cleavage contributed to smoking-induced 

emphysema via an influx of conventional dendritic cells122, a cell type that can initiate both 

innate and adaptive immune responses. Our findings regarding involvement of complement 

proteins are specific to blood. Although our chosen assay system could not analyze complement 

components in BAL, complement dysregulation might extend into the lung, as suggested by 

altered levels of C5a in the sputum in COPD117,123 and airway C3 deposits in lungs in smoking-
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associated emphysema122. Airway epithelial cells have also been shown to secrete and store C3, 

suggesting the presence of a localized C3 supply that may aid host defense124. The observed 

global patterns of complement dysregulation were robustly associated with FEV1 decline, but 

SomaLogic aptamers cannot reliably distinguish between complement cleavage products and 

their parent proteins. Hence, we cannot explore the relationship between global complement 

levels and pathway activation. However, our observation of complement dysregulation before 

FEV1 decline provides compelling temporal evidence that the complement pathway contributes 

to accelerated progression. 

Focusing on eventual clinical feasibility, we identified an alternative parsimonious 10-

protein signature derived using only peripheral blood; its potential prognostic value, if validated, 

is suggested by its superior performance to reported multivariate biomarkers of FEV1 

decline58,103. To our knowledge, except for leptin103, these proteins have not been associated with 

accelerated loss of lung function. Consistent with previous studies58–61, the proteins in this 

signature are primarily related to immune and inflammation responses (leptin, iC3b, IFN-γ, 

FCGR2B, APOL1). However, we also observed notable contributions from endothelial-

mesenchymal transition (EMT) proteins (Cadherin-2 and HBEGF). EMT is active in both large 

and small airways of COPD and relates to airflow obstruction125–127. Cadherin-2 is increased in 

epithelial cells from COPD participants as compared to healthy controls128. Similarly, serum and 

sputum HBEGF levels have been positively associated with COPD severity measures, including 

FEV1% predicited129 and CAT score130. The final proteins involved in the signature (TDGF1, 

LYVE1, CA10) have not previously been associated with COPD. However, in lung cancer, 

which is thought to share overlapping etiologic features, TDGF1 (increased in greater decliners) 

predicts poor progression-free survival131, while LYVE1 (increased in lesser decliners) is 
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associated with reduced metastasis and mortality132. Even in this parsimonious signature, we 

observed diverse biological enrichment. These findings emphasize the value of multivariate 

signatures in evaluating heterogeneous conditions such as COPD, where abnormalities in several 

pathways or pathway constituents likely drive a singular clinical outcome. 

Our study has limitations. Chief among these is the lack of a validation cohort as, to our 

knowledge, none currently exists with both BAL protein measurements and longitudinal follow-

up. Missing data also limited our sample size. BAL was not collected successfully on all 

participants, chiefly due to airway collapse during the procedures, and not all participants 

completed V5. Hence, we have relatively small numbers of participants, disproportionately non-

Hispanic whites. To mitigate the influence of individual participants, we applied an iterative 

bootstrapping framework during model generation. Still, the generalizability of our findings 

remains unclear, given the issues of limited heterogeneity based on sample size and 

demographics. We recognize that we cannot definitively conclude whether the identified 

signatures precede lung function decline, as decline may have been ongoing prior to baseline 

sample acquisition. However, the modestly higher baseline FEV1 observed in greater decliners 

support this possibility. Additionally, the cross-sectional nature of our proteomic data limits any 

insight into the temporal stability of our identified signatures. Because there is no universally 

agreed-upon definition of rapid progression, we used a percentile cut-off in FEV1 decline, as 

used by others97,103; resulting in a cut-off (≥70 mL/year) similar to previous reports. However, 

other threshold-based definitions (i.e., FEV1 decline >100 mL/year) have been proposed109. Few 

participants (n=6) experienced declines >100 mL/year in our data, providing insufficient power 

to investigate this definition accurately. However, in an exploratory PCA, we show that our 52-

feature multi-compartment is enriched significantly in participants with declines >100 mL/year, 
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suggesting our signature extends to this more stringent characterization. Moreover, while we 

acknowledge that a fixed cut-off definition may favor an overrepresentation of males as greater 

decliners due to physiologic differences in lung function measurements between sexes, we are 

underpowered to explore sex-stratified. Still, alternative estimations of FEV1 decline using 

FEV1% predicted, which accounts for age, sex, and body composition, in lieu of absolute FEV1 

volumes, produced similar results, suggesting a minimal impact of sex on group affiliation in this 

study. Lastly, a longitudinal decline in FEV1 is only one parameter that can evaluate progression 

and is less sensitive to capturing changes in small airway loss than other clinical measures, like 

parametric response mapping. However, it is worth noting that elements of our signature may 

reflect potential markers of small airway damage, as our signature exhibits enrichment of several 

processes that contribute to small airway damage, such as the response to wounding and ECM 

organization133. Nonetheless, future studies are needed to explore the relevance of the identified 

signature in assessing other outcomes.  

In summary, data-driven modeling approaches identified early cross-tissue compartment 

proteomic signatures and provided insight into potential mechanisms associated with accelerated 

disease progression in COPD. This work highlights the ability of quantitative, systems-focused 

analytical techniques to accomplish both these goals. Data-driven modeling approaches could be 

applied to integrate spatiotemporal data in clinical samples from other diseases with a 

progressive or heterogeneous population. 

2.6 Methods 

2.6.1 Human participants 

SPIROMICS (ClinicalTrials.gov Identifier: NCT01969344) is an ongoing multicenter, 

prospective observational study designed to identify new COPD subgroups and intermediate 
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biomarkers of disease progression68. Briefly, we enrolled participants aged 40-80 years at entry 

with a history of cigarette smoking (≥20 pack-years), either with COPD by the fixed ratio 

definition (post-bronchodilator FEV1/FVC < 0.7), or without COPD; as controls, we recruited 

healthy individuals without smoking history.  SPIROMICS participants (n=2,974) underwent a 

baseline examination (V1) followed by yearly visits for up to three years and a final follow-up 

visit (V5) approximately 5-8 years after V1. The first participant entered on November 10, 2010, 

and we censored all data on July 31, 2021. The study was conducted according to the principles 

of the Declaration of Helsinki. The human study protocol was approved by the institutional 

review board of all participating centers and methods were carried out in accordance with the 

relevant guidelines and regulations (Columbia University, New York, NY, United States; Johns 

Hopkins University, Baltimore, MD, United States; National Jewish Health, Denver, CO, United 

States; Temple University, Philadelphia, PA, United States; University of Alabama at 

Birmingham, Birmingham, AL, United States; University of California Los Angeles, Los 

Angeles, CA, United States; University of California San Francisco, San Francisco, CA, United 

States; University of Illinois at Chicago, Chicago, IL, United States; University of Iowa, Iowa 

City, IA, United States; University of Michigan, Ann Arbor, MI, United States; University of 

North Carolina at Chapel Hill, Chapel Hill, NC, United States; University of Utah, Salt Lake 

City, UT, United States; Wake Forest University, Winston Salem, NC, United States). All 

participants were aware of the study’s intent and provided written informed consent before any 

procedures.  

Some SPIROMICS participants (n=215) from all groups except those with severe 

(GOLD 4) COPD participated in a bronchoscopic sub-study106,107, which included BAL of the 

right middle lobe and lingula. Participants (n=149) with a history of smoking who had available 
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blood and BAL samples were considered for inclusion in the initial EN-analysis (Supplemental 

Figure A.1). This analysis was restricted to participants (n=85) of that sub-study who had a 

history of smoking, available spirometry that did not improve at V5, and full biospecimens, 

which were plasma samples at V1 and BAL cytokine analysis; their baseline characteristics are 

shown in Table 2.1. They comprised two study groups: COPD cases (n=45) and a reference 

group (n=40) of TEPPS who had no airflow obstruction at both V1 and V5 (Supplemental 

Table A.1). The demographics of our study participants (n = 85) did not differ significantly from 

the entire SPIROMICS bronchoscopy cohort (Supplemental Table A.2). 

Based on the magnitude of annual change in FEV1, we dichotomized the COPD cases 

into greater decliners (<30th percentile; n=14) versus lesser decliners (≥30th percentile; n=31). 

FEV1 decline was calculated using the two-point slope equation: [V5 FEV1 - V1 FEV1]/time, 

where time is the duration, in years, from V1 to V5 for each participant. Time calculations 

assumed a fixed-length year equal to 365.2425 days. 

2.6.2 Sample preparation & datasets 

Blood dataset:  Fresh plasma samples collected at V1 were frozen in either an EDTA 

collection tube or a P100 tube with K2EDTA134,135. SOMAmer© (slow off-rate modified 

aptamer) technology136 (SomaLogic, Boulder, CO) was used to measure 1305 proteins from 

participants in the SPIROMICS bronchoscopy sub-study.    

BAL dataset: We measured the concentration of 48 proteins including cytokines, 

chemokines, and growth factors (HCYTA-60K-PX48, Milliplex, EMD Millipore Corporation) in 

BAL aliquots from a subset of participants in the SPIROMICS bronchoscopy sub-study (n=184) 

using Luminex FlexMAP 3D (Luminex Corporation, Austin, TX) technology. Any results above 

the upper limit of detection were set to the maximum detectable concentration of that analyte. 
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We set samples below the lower limit of detection to be half the lowest minimum detectable 

concentration across the standard curves of all analytes. We removed the 23 proteins in which 

≥50% of measurements were below the lower limit of detection across all samples, yielding 25 

analyzable BAL proteins. Before analysis, we normalized all BAL protein concentrations to total 

BAL protein concentration as quantified by a Pierce BCA Protein Assay Kit (Pierce Protein 

Biology, Rockford, IL).  

Multi-compartment dataset: We removed eight proteins that were associated with sex in 

standard two-tailed, two-sample t-test after correction for multiple comparisons using Benjamini-

Hochberg. The final dataset consisted of 1322 proteins (1297 blood and 25 BAL). All analytes 

were log-transformed for normality before analysis.  

2.6.3  Derivation of data-driven progression signature(s) 

Relative fold-changes in the expression levels of individual proteins from the blood and 

BAL were calculated by dividing the average concentration of each protein in COPD greater 

decliners by the average concentration in lesser decliners. 

Based on proteomic measurements from the COPD participants, we generated optimal 

progression signatures using EN in tandem with PLSDA for feature selection in the: (a) 

combined blood and BAL and (b) blood-only datasets. First, the data were randomly sampled 

without replacement to generate 2000 subsets. To correct for effects of class size imbalances 

during regularization, we completed resampling at the size of the smallest class. We then 

performed EN regularization on each of the 2000 subsets. Once regularization was complete, the 

proteins were subsequently reordered based on their selection frequency throughout the EN 

iterations and fed in a step-forward manner into the PLSDA algorithm (starting with the protein 

with the highest selection frequency).  
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Model performance was evaluated at each step using k-fold cross-validation (k = 6). The 

model with the lowest resultant cross-validated error was selected as the optimal classification 

signature. Alternative minimal signatures were identified as signatures with <15 features with 

cross-validated accuracies >80%. ROC curves were generated based on the classification ability 

of each PLSDA model. All models were orthogonalized to improve interpretability.  

2.6.4 Comparison of progression signature performance parameters 

Random variants: To explore the meaningfulness of the optimized signature, we 

compared its cross-validated performance to that of 2000 random variants. Variant signatures 

were generated by randomly selecting 52 features from the original dataset. The 6-fold  

cross-validated accuracy was calculated for each random signature. Performance across 

all variants was compared to the identified signature using a two-tailed, two-sample t-test. 

Cross-validated accuracies: For quantitative comparisons of cross-validation accuracy 

across multiple models of interest, we split the data into six groups, iteratively excluded random 

subsets of 6-7 samples during model calibration, and later used them to test model predictions. 

The percentage of excluded samples correctly classified in each of the six iterations was used to 

statistically compare alternative models to the 52-protein signature. We determined statistical 

significance using a standard one-way ANOVA.  

ROC curves: To explore the diagnostic ability of binary classifiers, ROC curves were 

generated from PLSDA models and resultant AUCs were statistically compared using the 

method outlined by Hanley and McNeil to account for correlation between curves generated 

from the same cohort110. Standard errors were calculated using the Wilcoxon statistic. All 

reported sensitivities and specificities are generated based on PLSDA model performance, except 

for the leptin/adiponectin signature, which had metrics stated in the original text103. 
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Signature enrichment in alternative definitions of progression: PCA was applied to the 

52 proteins identified in the optimal multi-compartment signature (Figure 2.2). Participants 

(n=45) were labeled using the alternative progression definitions proposed by Anderson et al.109: 

rapid decliners (>100 mL/year), decliners (20 – 100 mL/year), stable/improvers (< 20 mL/year). 

All data were mean-centered and variance-scaled prior to analysis. One-way ANOVA with 

Holm-Šídák’s post hoc test compared participant scores on the first principal component across 

the groups. Significance was defined as a p-value < 0.05 for all analyses. 

2.6.5 Bioinformatic analysis 

Clustering: Hierarchical clustering of the 52-feature signature based on blood and BAL 

proteins was generated with supervised average linkage clustering using Spearman’s correlation 

coefficient as the distance metric. Samples were colored by progression status. 

Metascape analysis: Metascape137 [https://metascape.org] was used to identify biological 

processes that were significant and differentially enriched between greater decliners and lesser 

decliners based on the identified 52-feature signature. PLSDA loadings on LV1 were used to 

dichotomize proteins between cohorts, such that proteins with positive or negative loadings were 

increased in lesser decliners or greater decliners, respectively.  

Complement profiles: PCA was applied to a subset of 22 complement proteins (C1q, 

C1qBP, C1r, C2, C3d, C3b, C3, C3a, iC3b, C3a des Arg, C4, C4b, C5, C5a, C5-6, C6, C7, C8, 

C9, Factor B, Factor D, Properdin) measured in the original plasma SOMAscan dataset (outlined 

above) from greater decliners (n=14), lesser decliners (n=31), and a TEPPS reference group 

(n=40). Participants were identified as outliers and removed from model if they had a Hotelling’s 

Reduced T2 statistic value > 2, determined via PCA (n=2). All data were mean-centered and 

variance scaled prior to analysis. One-way ANOVA with Tukey’s post hoc test compared 
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participant scores across the first principal component. Significance was defined as p < 0.05. 

2.6.6 Software summary 

Volcano plots and hierarchical clustering were completed using MATLAB (v2017b, 

MathWorks, Natick, MA). Elastic net was implemented using Glmnet package in MATLAB138. 

We generated PCA and PLSDA models and ROC curves using the PLS toolbox available in 

MATLAB (v8.2.1, Eigenvector, Mason, WA). All statistics were performed using Prism version 

9 (GraphPad Software, San Diego, CA).  
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Chapter 3 Validation of Systemic Complement Signatures in COPD Progression  

3.1 Introduction 

The rates of lung function decline experienced by individuals with chronic obstructive 

pulmonary disease (COPD) are highly variable99. Such heterogeneity yields a subgroup of 

rapidly progressing individuals who endure persistent losses of pulmonary function and poorer 

prognostic outcomes, including increased risk of hospitalization and mortality98. A better 

understanding of the mechanisms underlying progression is needed to inform new treatment 

strategies for arresting accelerated lung function decline.  

Using samples collected at enrollment from the SPIROMICS cohort, we previously 

identified a multivariate signature of 52 proteins that predicted individuals at risk for accelerated 

FEV1 decline (≥70 mL/year) with high cross-validation accuracy139. Differences in spirometric 

progression rates were uniquely associated with baseline alterations in the expression of blood-

derived complement proteins (“complement profiles”). Further refinement of the multivariate 

model identified two smaller signatures with 5- and 10-blood proteins that showed promise as 

potential prognostic biomarkers, however, a lack of external validation limited insights into their 

clinical utility. Here, we used independent plasma samples from two prospective cohorts to 

examine the reproducibility of our previously identified biomarker signatures and baseline 

complement expression profiles in predicting longitudinal FEV1 decline. 

3.2 Results 

3.2.1 Characteristics of validation cohorts 
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Figure 3.1. Schematic illustrating the participants in the discovery and validation cohorts. 

We analyzed a subset of participants from the SPIROMICS and COPDGene cohorts who 

had paired baseline and 5-year follow-up spirometry, proteomic measurements from plasma 

samples, and a history of cigarette smoking. Eligible participants were classified into three 

groups based on their annualized rate of FEV1 decline (∆FEV1) and presence of airflow 

obstruction: COPD greater decliners (∆FEV1 ≥ 70 mL/year and FEV1/FVC < 0.7), COPD lesser 

decliners (∆FEV1 < 70 mL/year and FEV1/FVC < 0.7), and ever-smoking controls without 

airflow obstruction (GOLD 0; FEV1/FVC > 0.7). This classification scheme is identical to our 

discovery cohort (Chapter 2) and all validation samples are independent of those analyzed in 

our previous work139. The final SPIROMICS and COPDGene validation groups consisted of 29 

(greater decliners, n=5; lesser decliners, n=11; GOLD 0, n=13) and 114 individuals (greater 

decliners, n=19; lesser decliners, n=42; GOLD 0, n=53), respectively (Figure 3.1). To ensure  

concordance of population demographics across studies, the COPDGene validation cohort 

reflects a subset of participants matched to the SPIROMICS participants (discovery and 
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validation; n=114) based on sex and specified ranges of age, FEV1/FVC, and FEV1. Final 

validation groups were well matched for all demographics (Table 3.1) except ICS use; however, 

we previously identified no impact of ICS use on our analyses139. The time between the baseline 

and follow-up visits in the SPIROMICS and COPDGene analysis groups was also significantly 

different (6.2 ± 0.9 years vs. 5.4 ± 0.7 years). This discrepancy is not expected to impact our 

models, as FEV1 declines were normalized to the exact follow-up time between visits for each 

patient. 

Table 3.1. Baseline participant demographics 

   SPIROMICS 
(N=114) 

COPDGene 
(N=114) P-Value* 

Age   61 (± 8.6) 62 (± 8.7) 0.79 

Currently Smoking   74 (65%) 78 (68%) 0.67 

BMI   28 (± 5.2) 29 (± 5.2) 0.61 

Sex (Male)   51 (45%) 51 (45%) 1 

Race (White / Other)   85/29 (75%) 102/12 (89%) 0.006 

ICS use (yes)   27 (24%) 4 (4%) <0.001 

FEV1 (% predicted)    86 (± 21) 83 (± 22) 0.30 

FEV1/FVC   0.67 (± 0.13) 0.67(± 0.13) 0.86 

FEV1 (L)   2.5 (± 0.78) 2.5 (± 0.89) 0.85 

Time from baseline  
to follow-up (yrs.) 

  6.2 (± 0.94) 5.4 (± 0.71) <0.001 

∆FEV1 (mL/yr.)   -40 (± 47) -39 (± 42) 0.87 

*Two-sample, two-tailed t-test or Fisher’s exact test were used to determine significant differences. Bold rows 
denote a statically significant difference between validation groups (p<0.05). 
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3.2.2 Previously identified blood biomarkers signatures do not predict COPD progression in 

an independent validation group 

We first determined whether our previously identified prognostic biomarker signatures139 

accurately distinguish individuals at risk for accelerated progression (≥ 70 mL/yr.) in 

independent samples from SPIROMICS and COPDGene. In the SPIROMICS validation group, 

the 5-protein signature (iC3b, Cadherin-2, Leptin, HBEGF, and TDGF1), measured by a partial-

least squares discriminant model (PLSDA), was not reproducible, resulting in an AUC of 0.6 

which was substantially lower than the cross-validated AUC of 0.86 observed in the discovery 

analysis (Table 3.2, Figure 3.2a). The 10-protein signature (iC3b, Cadherin-2, Leptin, HBEGF, 

TDGF1, CA10, IFN-γ, FCGR2B, Apolipoprotein L1) also performed poorly, with an AUC 

below 0.5. Outcomes were similar in the COPDGene validation group, with the 5- and 10-

protein signatures performing only modestly better than random assignment (Figure 3.2b; 5-

protein signature, AUC = 0.56; 10-protein signatures, AUC = 0.58). For thoroughness, we 

assessed our optimal signature's performance (from Chapter 2). As one of the 52 proteins in this 

model was from BAL, we tested a 51-protein blood-only model. Unfortunately, the larger 

signature did not improve performance, achieving ~56% classification accuracy in both groups. 

Table 3.2. Summary of biomarker signature(s) performance differentiating greater and lesser decliners in 
independent samples from the SPIROMICS and COPDGene validation groups 

Validation 
Group 

Protein 
Signature AUC Accuracy Sensitivity Specificity 

SPIROMICS 5-protein* 0.60 50% 0.20 0.82 
SPIROMICS 10-protein† 0.14 36% 0.00 0.73 
COPDGene 5-protein 0.56 52% 0.10 0.95 
COPDGene 10-protein 0.58 56% 0.21 0.90 

* Proteins in 5-feature signature: iC3b, Cadherin-2, Leptin, HBEGF, and TDGF1 
† Proteins in 10-feature signature: iC3b, Cadherin-2, Leptin, HBEGF, TDGF1, CA10, IFN-γ, FCGR2B, 
Apolipoprotein L1 
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3.2.3 Previously identified complement profiles are significantly associated with COPD 

progression in an independent validation group 

 In contrast to the previously identified blood biomarker signature, the previously 

established complement profiles, generated through a principal component analysis (PCA) model 

encompassing 22 baseline complement proteins139, exhibited notable differentiation between 

COPD individuals with greater and lesser rates of decline within the SPIROMICS validation 

group (p=0.045; Figure 3.2c; Figure 3.2e). The differential expression associated with COPD 

greater decliners remained after introducing a GOLD 0 reference group to the PCA model 

(p=0.039). In the COPDGene validation group, systemic complement profiles were also 

successfully validated, with COPD greater decliners exhibiting significantly different profiles 

from COPD lesser decliners (p=0.005; Figure 3.2d, Figure 3.2f) and a GOLD 0 reference group 

(p=0.029). All validation metrics were obtained by evaluating the performance of our previously 

identified models on these two independent external datasets139. 

 There is currently no formal definition of “rapid progression” in COPD, so we 

determined whether the identified complement profiles maintained significance when an 

alternative classification of “progression” was used.  Recently, Anderson et al. proposed a 

threshold-based definition, classifying progression into three groups based on annualized FEV1 

declines:  rapid decliners (>100 mL/year), decliners (20-100 mL/year), and stable/ improvers (< 

20 mL/year)109. Alternative classification of individuals from the COPDGene validation group 

demonstrated significant profile enrichment in rapid decliners thus defined (Figure 3.3), 

suggesting our model reliably extends to this more rigorous definition. This secondary analysis 

could not be applied to the SPIROMICS validation group due to its minimal sample size.
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Figure 3.2. Systemic complement profiles validate in independent samples from two independent analysis groups.  
(a-b) ROC curves from COPD patients in the (a) SPIROMICS and (b) COPDGene validations groups fit to 5-protein 
(dashed lines) and 10-protein (solid lines) PLSDA models of FEV1 decline identified in the discovery group139. 
Validation performed poorly with AUCs ≈ 0.5 for most models. (c-d) Measurements from 22 complement proteins 
(C1q, C1qBP, C1r, C2, C3d, C3b, C3, C3a, iC3b, C3a des Arg, C4, C4b, C5, C5a, C5-6, C6, C7, C8, C9, Factor B, 
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Factor D, Properdin) measured in plasma samples from (c) greater decliners (GD; n=5; red circles) and lesser 
decliners (LD; n=11; blue squares) from the SPIROMICS validation group and (d) greater decliners (GD; n=19; red 
circles) and lesser decliners (LD; n=31; blue squares) from the COPDGene validation group. Complement 
measurements from each validation group were fit to the PCA models previously generated on the SPIROMICS 
discovery analysis139. All p-values are reported from a permutation test (n = 2000 permutations) between groups’ 
mean scores across PC1 and PC2. Group means from the validation data are denoted by the labels on the plots. (e-f) 
Kernel density plots visualizing the distribution of the scores across the first principal component (PC1) from greater 
and lesser decliners in the (e) SPIROMICS and (f) COPDGene validation groups, as compared to scores from the 
original PCA model generated on the discovery group (dashed line)139. 

3.3 Discussion 

Our results suggest that the early alterations in blood complement levels we previously 

identified reliably associate with accelerated spirometric progression in two independent 

validation groups, while the minimum biomarker signatures do not. These findings suggest  

that COPD progression results from disparate pathway alterations and confirms previous studies 

highlighting the value of multivariate models in exploring COPD outcomes58. 

To our knowledge, this study is the first to provide reproducible, longitudinal evidence 

that early alterations in the complement pathway measured at baseline are associated with a risk 

for accelerated FEV1 decline ~5-6 years later. By providing evidence that complement alterations 

precede accelerated FEV1 decline, we extend previously reported associations between the levels 

of blood-derived complement proteins and cross-sectional COPD outcomes, such as FEV1% 

predicted119,120 and emphysema severity121. Although our findings reflect systemic profiles, 

alterations in the levels of various complement components have been reported in COPD lungs 

(including C3140, C4b141, C5a117, and MASP-2142), suggesting dysregulation might extend into 

the pulmonary compartment, which we could not test. How such aberrations in the blood or 

tissue might contribute to airflow limitation is unknown. However, murine studies have 

implicated a potential role for C1q143,144 and C3122 in cigarette-smoke-associated emphysema 

development through modifying APC-directed Th17 inflammation.  

Although pathway-related validation across validation analyses was successful, small 
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prognostic signatures replicated poorly. Poor biomarker replication has been reported in other 

proteomics investigations of large COPD cohorts85 and may suggest that no single or even 

combination of proteins can predict progression in a heterogenous disease such as COPD. 

Challenges in identifying succinct subsets of biomarkers may further suggest that alterations in 

several pathways or pathway constituents drive a singular phenotypic outcome in patients with 

COPD. Together, our results highlight the potential importance of shifting focus from biomarker 

identification towards pathway dysregulation in future analyses of spirometric progression and 

other complex COPD outcomes.  

 

Figure 3.3. Complement profiles from a principal component model generated with data from the SPIROMICS 
discovery group validate in a demographic matched COPDGene validation group.  
(a) Measurements from 22 complement proteins (C1q, C1qBP, C1r, C2, C3d, C3b, C3, C3a, iC3b, C3a des Arg, C4, 
C4b, C5, C5a, C5-6, C6, C7, C8, C9, Factor B, Factor D, Properdin) measured in plasma samples from the 
COPDGene validation cohort were fit to the PCA models previously generated on the SPIROMICS discovery 
analysis. Validation participant scores (n=61) were alternatively labeled by the definitions proposed by Anderson 
et.al109: rapid decliners (n=6; red circles), decliners (n=40; blue squares), and stable/ improvers (n=15; yellow 
triangles) from the COPDGene validation group. The circular labels on plot represent the centroids for each class. 
(b) Statistical comparison of COPDGene participant scores across PC1 (one-way ANOVA with Holm-Šídák's 
multiple comparisons test; *p < 0.05). 
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Our study has several limitations. Chief among these is our inability to assess the activity 

of complement components, as SomaLogic aptamers cannot reliably distinguish between 

complement cleavage products and their parent proteins. Comprehensive demographic matching 

also limited the size of the COPDGene validation group. However, without matching, key 

demographic characteristics, including all baseline lung function parameters, were significantly 

different across validation groups. Previous COPD studies with unmatched cohorts report poor 

replication of systemic plasma proteins across studies85, emphasizing the importance of 

population matching when validating prognostic models. 

In summary, our results suggest that the alterations in blood complement levels precede 

and are reliably associated with accelerated spirometric decline. These findings indicate that 

studies of COPD may benefit from targeted analyses of the complement pathway to help 

deconvolve its link to spirometric progression. 

3.4 Methods 

3.4.1 Human participants 

Validation Cohorts: SPIROMICS (ClinicalTrials.gov Identifier: NCT01969344) is an 

ongoing multicenter, prospective observational study designed to identify new COPD subgroups 

and intermediate biomarkers of disease progression68. Briefly, SPIROMICS enrolled participants 

aged 40-80 years at entry with a history of cigarette smoking (≥20 pack-years), either with 

COPD by the fixed ratio definition (post-bronchodilator FEV1/FVC < 0.7), or without COPD. 

SPIROMICS participants (n=2,974) underwent a baseline examination (V1) followed by yearly 

visits for up to three years and a final follow-up visit (V5) approximately 5-8 years after V1. This 

analysis was restricted to participants (n=114) of the bronchoscopy sub-study who had a history 

of smoking, available spirometry that did not improve at V5, and plasma samples at V1. 
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Individuals previously included in the original discovery analysis were excluded (n=85)139. 

Participants in the final validation groups comprised three study groups: COPD cases (n=16) and 

a reference group (n=13) of GOLD 0 who had no airflow obstruction at both V1 and V5 (Figure 

3.1).  

Based on the distribution of annual change in FEV1 among individuals in our previous 

analysis, we dichotomized the COPD cases into greater decliners (≥ 70 mL/yr.; n=5) versus 

lesser decliners (< 70 mL/yr.; n=11). Accordingly, we retained this definition in this analysis, 

while recognizing that it may not be an optimal cut-point for the entire SPIROMICS cohort. We 

calculated FEV1 decline using the two-point slope equation: [V5 FEV1 - V1 FEV1]/time, where 

time is the duration, in years, from V1 to V5 for each participant. Time calculations assumed a 

fixed-length year equal to 365.2425 days. Two-point slope equations were used to maximize the 

size of the final study population, as there was significant missingness in spirometry data from 

intermediate participant visits. 

COPDGene (ClinicalTrials.gov Identifier: NCT00608764) is an ongoing multicenter, 

prospective observational study designed to identify genetic factors associated with COPD145. 

Briefly, COPDGene enrolled participants aged 45-80 years at entry with a history of cigarette 

smoking (≥10 pack-years), either with COPD by the fixed ratio definition (post-bronchodilator 

FEV1/FVC < 0.7) or without COPD. Participants underwent a baseline phase 1examination (P1) 

and a follow-up phase 2 visit (P2) approximately 5 years later.  

To ensure concordance of population demographics across studies, the final COPDGene 

validation grops used in this analysis reflects a subset of participants matched to the 

SPIROMICS participants from both the discovery and validation groups, based on sex and 

specified ranges of age, FEV1/FVC, and FEV1 (n=114). The exact ranges used for matching were 
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age (± 10 years), FEV1/FVC (± 0.07), and FEV1% predicted (± 18% for COPD, ± 25) for GOLD 

0). When possible, participants were also matched on race and FEV1 decline ± 25 mL/year, but 

those criteria were not required. Using the same classification scheme outlined for SPIROMICS, 

the matched COPDGene validation cohort (n=114) contained 19 COPD greater decliners, 42 

COPD lesser decliners, and 53 GOLD 0 participants. 

Institutional review boards at participating institutions approved the study, and participants 

provided written informed consent for both studies.  

3.4.2 Plasma dataset 

Fresh plasma samples collected at baseline were frozen. SOMAmer© (slow off-rate modified 

aptamer) technology136 (SomaLogic, Boulder, CO) was used to measure 1305 proteins. 

Proteomic data were quantified at National Jewish Health.  

3.4.3 Evaluation of data-driven models 

Biomarker Signatures: We evaluated the ability of the 5-protein (iC3b, Cadherin-2, 

Leptin, HBEGF, and TDGF1) and 10-protein (iC3b, Cadherin-2, Leptin, HBEGF, TDGF1, 

CA10, IFN-γ, FCGR2B, Apolipoprotein L1) biomarker signatures to predict accelerated 

progression in the SPIROMICS and COPDGene validation groups through PLSDA model(s) 

identified in the discovery analysis (Figure 2.5)139 on the validation datasets using the PLS 

toolbox in MATLAB (v8.2.1, Eigenvector, Mason, WA). Performance metrics, including ROC 

curves, AUC, sensitivity, and specificity, were generated based on the predictions from the 

PLSDA model.  

Complement profiles: The 22 complement proteins (C1q, C1qBP, C1r, C2, C3d, C3b, C3, 

C3a, iC3b, C3a des Arg, C4, C4b, C5, C5a, C5-6, C6, C7, C8, C9, Factor B, Factor D, 
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Properdin) measured in the validation SOMAscan datasets from SPIROMICS and COPDGene 

participants were fit to the complement PCA model(s) generated on the discovery participants 

(Figure 2.4), using PLS toolbox in MATLAB. Resultant scores were plotted, and profiles were 

compared using a permutation test (2000 permutations) to evaluate whether the mean scores 

across principal component (PC) 1 and PC2 were significantly different across groups. 

Significance was defined as p < 0.05. All data were mean-centered and variance-scaled prior to 

analysis. 

Signature enrichment in alternative definitions of progression: The PC scores generated 

from evaluating COPDGene dataset on the discovery PCA model (n=61) were labeled using the 

alternative progression definitions proposed by Anderson et al.109: rapid decliners (>100 

mL/year), decliners (20 – 100 mL/year), stable/improvers (< 20 mL/year). Significance, defined 

as a p-value < 0.05, was determined by a one-way ANOVA with Holm-Šídák’s post hoc test to 

compare participant scores on the first principal component across the groups. Univariate 

statistics were performed using Prism version 9 (GraphPad Software, San Diego, CA).
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Chapter 4 Multivariate Proteomic Signatures Reveal Age-Dependent Mechanisms 

Contributing to Progression in Smoking-Associated Emphysema 

4.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is a highly prevalent respiratory disorder 

characterized by progressive airflow limitation that is often linked to a history of chronic 

cigarette smoking. Historically, COPD has been considered a disease of the elderly146. However, 

recent studies highlight a shift in this perspective, revealing that symptoms indicative of COPD 

can manifest in smokers as early as 30-50 years of age and strongly correlate with lung function 

impairment later in life17,112,147–151. This younger demographic has traditionally been 

underrepresented in large, longitudinal COPD studies, which have tended to focus on older 

individuals (≥ 60 years old) with mild disease (GOLD 0-2)112. Additional studies focused on 

early pathogenesis of COPD in younger individuals could provide new insight into COPD 

pathogenesis and progression.  

Recent work by Martinez et al. has introduced the term "early COPD" to categorize 

individuals under the age of 50 with 10 or more pack-years smoking history who present with 

airway abnormalities112. Given the early stages of obstruction expected in this population, new 

clinical biomarkers capable of measuring airway changes before significant spirometric decline 

are needed. One promising option is parametric response mapping (PRM). PRM is a CT voxel-

based imaging biomarker that employs dynamic image registration and separate density 

thresholds for inspiratory and expiratory voxel measurements. PRM distinguishes regions of 

“normal” lung from “functional small airway disease” (PRMfSAD) and “emphysema” 
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(PRMEmph)12. PRM measurements correlate with clinical and functional COPD parameters13,14, as 

well as histological evidence of airway narrowing and loss of alveolar attachments152. 

Importantly, changes in PRM are measurable in the absence of spirometrically-defined airflow 

obstruction15,16, highlighting its value for evaluating early airway and parenchymal 

abnormalities.  

Combinations of proteins provide improved predictive performance compared to 

individual biomarkers in studies of stable COPD58. Accordingly, analyses of early COPD may 

also benefit from evaluating multi-factor networks, as they are more likely to capture the diverse 

biology driving disease progression57,93. Data-driven modeling is one approach that allows 

inference of these network-level relationships. By identifying signatures of co-varying biological 

factors, data-driven approaches are valuable tools for gaining novel insights into mechanisms of 

action based on protein interaction pathways rather than individual factors. Once validated, 

signatures may be used for diagnostic or prognostic purposes or to generate new hypotheses for 

future experimental work. We have previously used these approaches to successfully identify 

prognostic protein signatures associated with progression in patients with COPD139 and 

idiopathic pulmonary fibrosis89.  

Here, to gain insights into age-dependent pathways contributing to COPD progression, 

we applied a data-driven modeling pipeline to proteins recovered from blood samples from 

participants of the COPDGene cohort145. Our results suggest that proteomic signatures can 

effectively detect individuals at increased risk of accelerated development of emphysema and 

small airway disease. They also provide insights into age-dependent mechanisms of emphysema 

progression that can be further investigated in newly enrolling early COPD cohorts. 
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4.2 Results 

4.2.1 Participant characteristics 

We analyzed a subset of participants in the COPDGene study ages > 65 or ≤ 55 years 

with a smoking history and mild (GOLD 0-2), who had paired baseline (P1) and 5-year (P2) 

parametric response mapping (PRM) measurements and baseline protein measurements from 

plasma samples (n=158). Eligible participants were dichotomized into older (> 65 years old) and 

younger groups (≤ 55 years old) based on their age at enrollment to generate subpopulations that 

reflect traditional COPD populations and early COPD populations, respectively. We then used 

patient-specific changes in PRM (∆PRM) from P1 to P2 to define subclasses (“phenotypes”) 

within each age group who experienced relatively fast or slow progression. Progression 

phenotypes were selected using percentiles, with fast and slow/stable progression defined as 

participants exhibiting ∆PRM > 75th percentile (%tile) and < 25th %tile, respectively (Figure 

4.1). Using this classification scheme, we generated two unique analyses using ∆PRMEmph and 

∆PRMfSAD to characterize the age-dependent progression of emphysema and small airways 

disease (SAD), respectively (Table 4.1, Supplemental Table B.1).  

In the ∆PRMEmph analysis (Table 4.1), participants in the older subpopulation were on average 

21 years older than their younger counterparts and had significantly worse baseline lung 

function, as measured by spirometry (p < 0.001) and PRMEmph (p < 0.001). However, the 

younger subpopulation was about 30% more likely to be current smokers. Additionally, older 

participants in the fast-progressing phenotype experienced larger declines in PRMEmph than 

younger fast- progressors (4.4% ± 3.5 vs. 2.4% ± 3.0; p = 0.007). The opposite trend was 

observed in the slow/stable groups, with older individuals exhibiting a ∆PRMEmph of -1.8% ± 1.6 

compared to the -0.57% ± 1.6 observed in the younger participants (p = 0.002). Similar trends 
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were observed in the analysis group used for the ∆PRMfSAD analysis, with older participants 

exhibiting worse baseline lung function and experiencing more severe progression than the 

younger participants, despite decreased current smoking rates (Supplemental Table B.1). 

 

Figure 4.1. Schematic illustrating the inclusion criteria and patient breakdown of GOLD 0-2 participants from 
COPDGene included in analysis. 

4.2.2 Data-driven modeling identifies baseline proteomics signatures capable of differentiating 

GOLD 0-2 participants based on age and magnitude of emphysema progression 

We first used data-driven modeling approaches to determine whether systemic signatures 

could differentiate GOLD 0-2 ever-smokers based on their age and relative magnitude of 

emphysema or SAD progression. To do this, we applied EN regularization in tandem with 

partial-least squares discriminant analysis (PLSDA) to the n=1305 plasma proteins measured  
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Table 4.1 Baseline demographics for ∆PRMEmph model 

  
Fast  Slow/Stable  Overall* 

   Older 
(N=43) 

Younger 
(N=36) 

 Older 
(N=43) 

Younger 
(N=36) 

 Older 
(N=86) 

Younger 
(N=72) 

Age   72  
(± 4) 

51  
(± 3) 

 70  
(± 4) 

49  
(± 3) 

 71  
(± 4) 

50  
(± 3) 

Currently 
Smoking 

  14  
(33%) 

26 
 (72%) 

 4 
 (9%) 

17  
(47%) 

 18  
(21%) 

43  
(60%) 

BMI   28 
 (± 5) 

28  
(± 6) 

 28  
(± 5) 

29 
 (± 8) 

 28  
(± 5) 

29  
(± 7) 

Sex  
(Male) 

  28  
(65%) 

20  
(56%) 

 21  
(49%) 

14  
(39%) 

 49 
 (57%) 

30 
(47%) 

Race  
(White / 
Other) 

  41/2  
(95%) 

30/6 
(83%) 

 43/0 
(100%) 

26/10 
(72%) 

 84/2 
(98%) 

56/16 
(79%) 

ICS use 
(yes) 

  2  
(5%) 

1  
(3%) 

 1  
(2%) 

3  
(8%) 

 3  
(3%) 

4  
(6%) 

FEV1  
(% 

predicted)  

  
77  

(±20) 
87  

(± 15) 
 86  

(±18) 
96  

(± 11) 
 82  

(±19) 
91  

(± 14) 

FEV1/FVC 
  0.6 

 (± 
0.1) 

0.7 
(± 0.1) 

 0.7 
 (± 0.1) 

0.8 
(± 0.1) 

 0.6  
(± 0.1) 

0.7 
(± 0.1) 

FEV1 (L)   2.1  
(± 0.6) 

3.0  
(± 0.8) 

 2.4  
(± 0.7) 

3.1 
 (± 0.7) 

 2.2  
(± 0.6) 

3.0 
 (± 0.8) 

PRMEmph 

(%) 
  6.1  

(± 7) 
1.8 

 (± 4) 
 4.9  

(± 6.1) 
1.1  

(± 4) 
 5.5  

(± 6) 
1.5  

(± 4) 

∆PRMEmph 
(%) 

 4.4  
(± 3) 

2.4  
(± 3)  -1.8  

(± 2) 
-0.57  
(± 2)  1.3 

 (± 4) 
0.92  
(± 3) 

*Two-sample, two-tailed t-test or Fisher’s exact test were used to determine significant differences. Individual 
statistical tests were evaluated for younger vs older comparisons in fast, slow/stable, and overall columns. Bold 
values denote a statically significant difference between younger and older groups (p<0.05). 
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using SOMAscan technology. First, EN regularization was applied iteratively to 2000 subsets of 

proteins were ranked (most to least frequent) and fed stepwise into the PLSDA algorithm. We 

evaluated PLSDA model performance at each step using 10-fold cross-validation (CV). To 

control the size of the final signature, we selected the smallest model that performed with a CV 

accuracy within 0.03 of the optimal model.  

Using this feature selection pipeline, we identified two unique signatures describing age-

related progression associated with emphysema (∆PRMEmph) and small airway disease 

(∆PRMfSAD). The ∆PRMEmph signatures contained 20 plasma proteins, performed with 83.4% 

calibration accuracy and 81.6% cross-validation accuracy, and successfully distinguished 

between the influence of age and magnitude of emphysema progression across latent variable 1 

(LV1) and LV2 axes, respectively (Figure 4.2). Supplemental investigations suggested current 

smoking status and FEV1% predicted had no influence on the final model, despite their  

significantly different distributions across groups (Supplemental Figure B.1). Receiver 

operating characteristic (ROC) curves generated for the cross-validated PLSDA model had 

associated AUCs above 0.8 for all phenotypes (Supplemental Figure B.2; older slow/stable: 

AUC = 0.9, older fast; AUC = 0.9; younger slow/stable, AUC = 0.8; younger fast, AUC = 0.86). 

The identified ∆PRMfSAD signature consisted of 35 proteins and performed with 81.7% 

calibration accuracy and 79.4% cross-validation accuracy. However, contrary to the emphysema 

signature, the ∆PRMfSAD signature lacked the ability to clearly differentiate older from younger 

individuals based on their relative magnitude of SAD progression (Supplemental Figure B.3). 

This finding is similarly reflected by the ROC curves, with AUCs from the older participants 

averaging 0.76, compared to the average AUC of 0.92 observed in the younger subclasses 

(Supplemental Figure B.4). Given the success of the ∆PRMEmph model in differentiating 
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participants based on both the parameters of age and progression, for the remainder of this 

analysis, we focused on the emphysema model. 

 

Figure 4.2. Elastic net and PLSDA identify 20 plasma proteins measured at a baseline visit that can uniquely 
discriminate ever-smokers based on their age and relative magnitude of emphysema progression after 5-years.  
(a) PLSDA scores plot highlighting 20-protein signature selected by bootstrap elastic net. Signature differentiates 
between younger (yellow) and older (pink) ever-smokers with relative fast (darker) or slow (lighter) progression 
with 83.4% calibration and 81.6% cross-validation (CV) accuracy. (b) The two latent variable (LV) model captures 
26.4% of the total variance in the dataset. LV1 separates ever-smokers based on age (with negatively loaded proteins 
being comparatively increased in older ever-smokers and positively loaded proteins being comparatively reduced), 
while LV2 separates individuals based on relative magnitudes of progression. 

4.2.3 Proteomic signatures suggest age-dependent pathways associated with emphysema 

progression in COPD 

Having generated a high-performing age-dependent emphysema signature, we sought to 

understand the biological implication of its components. Unsupervised hierarchical clustering 

differentiated younger from older ever-smokers with 88% sensitivity and 84.8% specificity 

(Figure 4.3). A subsequent Metascape analysis found six significantly enriched ontology clusters 

(Figure 4.4). Interestingly, the dendrogram associated with the hierarchal cluster suggests that 

proteins increased in the younger population most often shared pathway enrichments with the 

fast-progressing phenotype. In contrast, enrichments in the older population and slow/stable 
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phenotype were more similar. Four of the six ontology clusters were associated with immune 

responses (GO:0032103 and R-HSA-1280218) or extracellular matrix organization (R-HSA-

1474224 and M5885).  

 

Figure 4.3. Hierarchical clustering of the 20-feature signature highlights distinct age-dependent clustering of ever-
smokers.  
Unsupervised clustering allowed for identification of younger (grey) ever-smokers from older (purple) ever-smokers 
with 88.8% sensitivity and 84.8% specificity. Smaller clusters exist within each age population that begin to cluster 
individuals based on their relative magnitude of progression.  

By further examining the specific proteins increased in the fast- progressing phenotypes, 

we observed that younger, fast progressors exhibit increased levels of proteins with 

inflammatory and apoptotic functions, including killer cell immunoglobulin-like receptor 2DL3 

(KI2L4), intercellular adhesion molecule 2 (sICAM-2), prostaglandin-endoperoxide synthase 2 

(COX-2), cytochrome c, and caspase-3. Conversely, the older fast progressing phenotype was 

associated with increases in matrix remodeling proteins, such as matrix metallopeptidase 12 

(MMP-12), pleiotrophin (PTN), growth differentiation factor 15 (GDF-15), and ADAM 

metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS-5). Collectively, these findings 
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suggest that the biological processes contributing to accelerated progression in smoking-

associated emphysema may be age-dependent. 

 

 

Figure 4.4. Pathway analysis identifies unique biological process associated with age-dependent emphysema 
progression.  
(a) Significantly enriched ontology clusters by Metascape analysis. (b) Pathways encompassed in the clusters of 
interest are included table. Colored squares indicate protein involvement in a particular pathway, colorations of 
magenta or yellow represent a relative elevation of the protein concentration in older or younger populations, 
respectively. 

4.3 Discussion 

This study used plasma protein measurements from participants in the COPDGene cohort 

to generate insights into early signaling pathways associated with the age-dependent progression 

of emphysema and SAD. Using a data-driven approach, we identified two unique signatures of 

baseline plasma proteins that differentiated the age-dependent risk of accelerated ∆PRMEmph and 

∆PRMfSAD in GOLD 0-2 ever-smokers with 81% and 79% cross-validation accuracy, 

respectively. The ∆PRMEmph signature successfully differentiated participants based on age and 

magnitude of emphysema progression. In contrast, the ∆PRMfSAD signature captured only age-
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dependent differences. Investigation of the ∆PRMEmph signature suggested that age dictates 

disparate contributions of apoptosis, inflammation, and matrix remodeling pathways to 

emphysema progression. This work provides novel evidence into the age-dependent mechanisms 

driving smoking-associated emphysema development and emphasizes the importance of 

studying COPD in younger populations (“early COPD”). 

To our knowledge, this is the first longitudinal study of ever-smokers to explore age-

dependent mechanisms associated with the progression of emphysema. Our tandem EN and 

PLSDA approach identified concise proteomic signatures from thousands of plasma proteins. 

This framework accurately differentiated the 5-year progression of emphysema experienced by 

GOLD 0-2 ever-smokers using proteins measured early after participant enrollment. The 

identified emphysema signature comprised 20 plasma proteins enriched in inflammation, 

apoptotic, and matrix remodeling functions. Pathway enrichment occurred in an age-dependent 

manner, with proteins increased in younger (≤ 55 years old) and oldere (> 65 years old) fast 

progressors (∆PRMEmph > 75th %tile) enriched for inflammatory/ apoptotic and matrix 

remodeling functions, respectively.  

Younger participants who experienced higher ∆PRMEmph exhibited increased levels of 

proteins with inflammatory (KI2L4, sICAM-2, CD207, COX-2) and apoptotic functions 

(cytochrome C, and caspase-3). To our knowledge, except for COX-2153, none of these 

inflammatory proteins have been associated with COPD. However, cytochrome C and caspase-3, 

critical proteins in the apoptotic pathway, are reportedly elevated in COPD patients154, and in 

murine models, emphysema development can be induced or prevented by administering caspases 

or their inhibitors, respectively155,156. These aforementioned findings align with multiple studies 

that report close associations between the increased rates of alveolar epithelial and endothelial 
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apoptosis and emphysema in COPD lungs157–159. The causes of apoptosis in COPD are 

incompletely understood but may involve oxidative stress and reductions in endothelial cell 

survival factors (i.e., VEGF)159,160. However, inflammatory factors and immune cells may also 

play a vital role. In COPD, increased neutrophils and macrophages contribute to excess proteases 

and oxidative stress, while adaptive immune cells, such as CD8+ T cells and natural killer cells, 

mediate apoptosis of alveolar epithelial cells by releasing granzymes and perforin42,161–163. 

Although apoptosis of structural cells is often the focus of COPD literature, increased apoptosis 

of T cells has been reported in the blood and BAL of COPD patients compared to controls160,164, 

which may lead to an inadequate immune response to infective organisms, contributing to the 

high frequency of infections seen in COPD.  

In contrast, proteins involved in matrix remodeling processes (MMP-12, PTN, GDF-15, 

ADAMTS-5) were enriched in older participants with accelerated emphysema progression. 

Structural remodeling is a well-documented phenomenon in COPD, contributing to emphysema 

through lung elasticity loss. Structural changes are thought to result from enzymatic secretions 

produced by infiltrating immune cells, which destroy and remodel the ECM in the 

parenchyma165. Matrix metalloproteinases (MMPs), including MMP-12, are a central family of 

enzymes responsible for ECM remodeling166. MMP-12, released exclusively by macrophages, 

breaks down elastin167 and is elevated in the sputum of COPD patients in association with 

emphysema severity168–170. ADAMs are additional proteinases involved in ECM remodeling and 

have putative roles in airway diseases, including COPD. While ADAMTS5, the protein selected 

in our signature, has no documented association with COPD, deficiencies in ADAM17 protect 

against emphysema in mice171. PTN and GDF-15, the final proteins identified in this phenotype, 

both exhibit high affinity binding to glycosaminoglycans domains in ECM172,173. Therefore, it is 
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plausible that the increased levels observed in our signature results from their proteolytic 

cleavage during ECM remodeling. This possibility is consistent with previously reported 

associations between increased PTN and GDF-15 levels and reductions in DLCO174 and FEV1
175. 

Taken together, our results extend previous studies highlighting the importance of apoptotic, 

inflammatory, and matrix remodeling processes in emphysema, by providing evidence that they 

act age-dependently. 

Our study has limitations. Chief among these is the lack of a validation cohort and paired 

lung measurements, which limits insights into the clinical utility of our findings. However, 

alterations in the identified pathways have been extensively linked to emphysema, increasing 

confidence in the relevance of our findings. Additionally, our analysis groups disproportionately 

consist of non-Hispanic white individuals176. To mitigate the influence of individual participants, 

we applied an iterative bootstrapping framework during model generation. Still, the 

generalizability of our findings remains unclear. Because there is no universally agreed-upon 

definition of accelerated emphysema progression, we used a percentile cut-off. Although this 

classification scheme effectively captured subclasses with different magnitudes of progression, 

we acknowledge that this approach may lead to discrepancies between future studies. However, 

percentile approaches have been commonly used to define other COPD outcomes, including 

FEV1 decline97,103. Lastly, the age of participants in our analysis were limited by the inclusion 

criteria of COPDGene, which enrolled individuals ages 45-80. Because studies suggest that 

alterations in lung function as early as 30 years of age indicate later lung function impairments, 

this work requires exploration in younger cohorts, such as the newly enrolling SPIROMICS 

Study of Early COPD Progression (SOURCE)177, which are better powered to explore 

progression in a younger participants. 
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In summary, data-driven modeling approaches identified early plasma proteomic 

signatures and provided insight into potential mechanisms associated with age-dependent 

progression of emphysema in ever-smokers. This work highlights the ability of quantitative, 

systems-focused analytical techniques to deconvolve the influence of various clinical and 

demographic variables in human samples. 

4.4 Methods 

4.4.1 Human participants 

COPDGene (ClinicalTrials.gov Identifier: NCT00608764) is an ongoing multicenter, 

prospective observational study designed to identify genetic factors associated with COPD145. 

Briefly, COPDGene enrolled participants aged 45-80 years at entry with a history of cigarette 

smoking (≥10 pack-years), either with COPD by the fixed ratio definition (post-bronchodilator 

FEV1/FVC < 0.7) or without COPD; as controls, healthy individuals with no history of smoking 

were also enrolled. COPDGene participants (n=10,371) underwent a baseline examination (P1) 

and follow-up visit (P2), which occurred after approximately 5 years. The study was conducted 

according to the principles of the Declaration of Helsinki. The institutional review board 

approved the human study protocol of all participating centers, and methods were carried out in 

accordance with the relevant guidelines and regulations. All participants were aware of the 

study’s intent and provided written informed consent before any procedures.  

SOMAscan data (1.3k version) was available for a subset of COPDGene participants at 

P1 with a smoking history (n=1089). Participants with available PRM measurements at P1 and 

P2 (n=656) were considered for inclusion in this study (Figure 4.1). The final analysis was 

restricted to individuals > 65 or ≤ 55 years old with a smoking history ≥ 10 pack-years and 

GOLD 0-2 disease (n=315). Our progression metric, longitudinal change in PRM (∆PRM), was 
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calculated using the following equation for each individual: [PRM at P2 – PRM at P1]. We 

calculated ∆PRM metrics for emphysema (PRMEmph) and small airway disease (PRMfSAD). 

Participant classification was performed independently for both outcomes. Using participant age 

and magnitude of ∆PRM, we dichotomized the GOLD 0-2 participants into four groups: older 

slow/stable progressors (> 65 years old and < 25th %tile ∆PRM; n=43), older fast progressors (> 

65 years old and > 75th %tile ∆PRM; n=43), younger slow/stable progressors (≤ 55 years old and 

< 25th %tile ∆PRM; n=36), younger fast progressors (≤ 55 years old and > 75th %tile ∆PRM; 

n=36). The baseline characteristics of the participants involved in the final analyses associated 

with ∆PRMEmph and ∆PRMfSAD outcomes are summarized in Table 4.1 and Supplemental Table 

B.1, respectively.  

4.4.2 Plasma dataset 

Fresh plasma samples collected at P1 were frozen in an 8.5 mL P100 tube (Becton 

Dickinson). SOMAmer© (slow off-rate modified aptamer) technology136 (SomaLogic, Boulder, 

CO) was used to measure n=1305 proteins.  

4.4.3 Derivation of age-related progression protein signature(s) 

Based on proteomic measurements from eligible GOLD 0-2 participants (Figure 4.1), we 

used Elastic Net (EN) in tandem with PLSDA for feature selection to select optimal age-related 

signatures associated with the progression of (a) emphysema (∆PRMEmph) and (b) small airways 

disease (∆PRMfSAD). First, the data were randomly sampled without replacement to generate 

2000 subsets. To correct the effects of class size imbalances during regularization, we completed 

resampling at the smallest class size (n=36). We then performed EN regularization on each of the 

2000 subsets. Once regularization was complete, the proteins were reordered based on their 
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selection frequency throughout the EN iterations and fed in a step-forward manner into the 

PLSDA algorithm (starting with the protein with the highest selection frequency).  

Model performance was evaluated at each step using k-fold cross-validation (k = 10). The 

smallest model with a cross-validated error within 0.03 of the minimal error was selected as the 

final classification signature. ROC curves were generated based on the classification ability of 

each PLSDA model. In all models, orthogonalization was employed on the protein 

measurements (X-block) to generate orthogonal components, thereby ensuring their lack of 

correlation with the class labels (Y-block). This procedure involves modifying the X-variables to 

eliminate the portion of their variance unrelated to class discrimination. Its purpose is to enhance 

model interpretability by isolating the variation most pertinent for class differentiation. 

4.4.4 Bioinformatic analysis 

Clustering: Hierarchical clustering of the 20-feature ∆PRMEmph signature was generated 

with supervised average linkage clustering using Spearman’s correlation coefficient as the 

distance metric. Samples were colored by age and progression phenotype. 

Metascape analysis: Metascape137 [https://metascape.org] was used to identify biological 

processes that were significant and differentially enriched in association with age and 

emphysema progression, using the identified ∆PRMEmph signature (Figure 4.2). PLSDA loadings 

on LV1 and LV2 were used to segregate proteins which were increased in association with 

differences in age and magnitude of emphysema progression phenotypes, respectively.  

4.4.5 Software summary 

Hierarchical clustering was completed using MATLAB (v2017b, MathWorks, Natick, 

MA). Elastic net was implemented using Glmnet package in MATLAB138. We generated 
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PLSDA models and ROC curves using the PLS toolbox available in MATLAB (v8.2.1, 

Eigenvector, Mason, WA).  
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Chapter 5 Cytokine-Chemokine Network Changes in the Immune Responses of Individuals 

with COPD 

5.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is a common respiratory condition with 

high global morbidity and mortality178 whose pathogenesis is marked, at least in part, by a 

dysregulated immune and inflammatory response34. The central involvement of inflammation in 

COPD pathogenesis is supported by a myriad of studies that implicate nearly all immune cells 

(innate and adaptive) in COPD34–39. In addition to an increased burden of immune cell infiltrates 

in the lungs of COPD patients38,39, many immune cells from individuals with COPD also exhibit 

unique cellular phenotypes40–42, characterized by changes in proteolytic enzyme secretions43, 

phagocytic capabilities20,45, and receptor expression44,46,47. These observed alterations pair with 

modified cellular production of several inflammatory cytokines (ex., TNF-α, IFN-γ, IL-1β, IL-6, 

IL-8, IL-10) in the lungs and blood of individuals with stable COPD35,48,56,60. Yet, despite the 

significant immune alterations present in COPD, the relative importance of each of these factors 

contributing to the overall pathologic intercellular communication networks has been challenging 

to ascertain. 

To date, studies of intercellular immune communication tend to measure cytokine 

secretions at a singular timepoint from an individual cell type in isolation, therefore lacking 

valuable information about the broader network of diverse cellular interactions that collectively 

drive immune system behavior. Consequently, we may generate unique insights by instead 

examining secreted factors from a heterogeneous population of cells in response to activation 
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with well-defined immune challenges. The promise of this approach is exemplified by a 

multivariate analysis of cytokine measurements from stimulated peripheral blood mononuclear 

cells (PBMCs) of HIV+ donors, which demonstrated that stimulating a heterogeneous milieu of 

patient-derived immune cells could yield novel perspectives into altered cell-cell communication 

networks specific to disease state179. Although blood is not the tissue directly involved in COPD 

pathology, the role of peripheral circulation in trafficking immune cells to the lung, in 

conjunction with its non-invasive nature of sample acquisition, underscores the advantages of its 

use in inflammatory research. In this work we hypothesize that multivariate analysis of temporal 

cytokine secretions from stimulated peripheral immune cells may help uncover novel changes in 

paracrine signaling networks associated with COPD pathobiology. 

Using multivariate cytokine profiles as robust indicators of the overall state of the cellular 

network, we tested whether integrative analysis of multivariate proteomic signatures could 

identify critical differences in cytokine network behavior between peripheral blood mononuclear 

cells (PBMCs) from individuals with ≥20 pack-years smoking history with COPD or with 

normal spirometry (GOLD 0) after activation with an adaptive stimulus or innate stimuli. Our 

results suggest that the paracrine signaling networks generated by PBMCs from COPD donors, 

after immune challenge, significantly differ from GOLD 0 controls. Most notably, in response to 

adaptive stimulation, PBMCs from individuals with COPD exhibit deficient secretion of early 

M-CSF and IL-13 signals which drive divergent downstream responses. Together, our approach 

identified the most influential secreted cytokines that underlie complex immune cell 

communication networks and elucidated possible cellular actors responsible for these behaviors. 

5.2 Results 

5.2.1 PLSDA-identified profiles of PBMC-secreted cytokines overcome clinical variability and 
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identify unique proteomic profiles associated with innate or adaptive immune stimuli 

To investigate changes in paracrine signaling networks that are altered in COPD, we 

utilized a data-driven methodology that would allow the identification of critical relationships 

between cytokine network behavior and disease state179. Specifically, we stimulated PBMCs 

from participants in the SPIROMICS cohort with well-defined immune challenges to examine 

diverse signaling pathways that activate a variety of unique cell types and receptors: beads 

coated with anti-CD3 and anti-CD28 antibodies (anti-CD3/CD28 beads) to stimulate polyclonal 

T cells, LPS to activate TLR4 primarily on innate immune cells, and the synthetic 

imidazoquinoline compound R848 to activate TLR7 and TLR8 in innate immune cells. LPS and 

R848 mimic (Gram-negative) bacterial and viral stimulation, respectively. For each donor and 

stimulus combination, we obtained a set of 96 cytokine measurements (48 cytokines measured 6 

and 72 hours after PBMC stimulation) by Luminex assays. To help control participant-to-

participant variability, we normalized each stimulation condition to an unstimulated control from 

the same donor. Despite normalization, none of the 96 individual cytokine measurements could 

independently overcome clinical variability and differentiate all three stimulus conditions with 

statistical significance (Figure 5.1a-d). 

In contrast, a multivariate analysis using partial least squares discriminant analysis 

(PLSDA) identified distinct cytokine profiles associated with each stimulus. PLSDA is a method 

used for supervised pattern recognition and dimensionality reduction to identify weighted linear 

combinations of individual cytokine measurements (termed “latent variables”) that most 

effectively classify a dependent variable of interest (i.e., donor class or stimulus types). PLSDA  

is a useful analytical method for gaining biological insight because latent variables identified by 

the model are often biologically meaningful179–181. Variable importance in projection (VIP) 
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scores can be used in tandem with PLSDA analysis to assess the importance of each variable 

(i.e., cytokine) in discriminating between different donor classes. Here, we used VIP scores to 

eliminate variables that did not contribute to classification (see Methods).  

 

Figure 5.1. Dimensionality reduction by PLSDA of 48 cytokines measured at 6 and 72 hours after the stimulation of 
PBMCs from healthy donors.  
(a-c) Representative individual cytokine measurements from PBMCs of healthy, never-smoking donors (n=8) 6-
hours (solid) and 72-hours (dotted) after stimulation with TLR-4 (LPS; blue), TLR-7/8 (R848; yellow), or anti-
CD3/CD28 stimulus (red). One-way ANOVA with Tukey’s post-hoc test; *p<0.05, **p<0.01, ***p<0.001. (d) 
PLSDA scores and (e) loadings plots after VIP selection reveal cytokine signatures that differentiate stimulus 
profiles with 97.9% calibration accuracy and 91.7% cross-validation accuracy. A model with two latent variables 
(LVs) captured 56.4% of the total variance in the dataset. 6- and 72-hour loadings are indicated by lower and 
uppercase labels, respectively. LV1 separates cytokine secretion associated with adaptive simulation (positive 
loadings on LV1) from innate stimulation (negative loadings on LV1), and LV2 further separates bacterial innate 
stimulation (positive loadings on LV2) from viral innate stimulation (negative loadings on LV2).  
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In an analysis with healthy never-smokers (n=8), VIP selection identified 43 cytokine 

measurements that distinguished stimulus-specific secretions between anti-CD3/CD28–, R848-, 

and LPS-induced PBMC secretion profiles with 97.9% calibration accuracy and 91.7% cross-

validation accuracy across two latent variables (Figure 5.1e-f). Latent variable 1 (LV1) 

differentiated innate and adaptive stimulus responses, while LV2 further discriminated between 

innate stimuli (LPS vs. R848). The scores (Figure 5.1e) and loadings (Figure 5.1f) plots, 

indicated that the adaptive stimulus profile, summarized by cytokines with positive loadings 

across LV1, was composed of IFN-γ, IL-2, IL-9, MIG, IL-17A, and GM-CSF at both 6 and 72 

hours, as well as secretion of IL-3, IL-4, IL-5, IL-10, IL-17F, IL-17E/IL-25, IL-22, IL-27 at 72 

hours. These cytokines we similar to those previously measured in PBMCs of HIV-infected 

individuals after an adaptive stimulus179. The LPS profile (2nd quadrant) had substantial 

contributions from IL-6 (6 and 72 hours), MDC (6 and 72 hours), IL-1β (6 hours), IL-12p70 (6 

hours), MCP-1 (72 hours), G-CSF (72 hours), and MIP-1a (72 hours), whereas the R848 profile 

(3rd quadrant) contained IL-12p40 (6 and 72 hours), PDGF-AB/BB (6 hours), and GROα (72 

hours). Taken together, cytokine profiles were better capable of overcoming clinical variability 

and discriminating between immune responses than individually evaluated cytokines.  

5.2.2 Multivariate cytokine profiles reveal altered immune responses in PBMCs from donors 

with COPD compared to ever-smoking controls  

Once we established the ability of multivariate models to differentiate immune responses 

derived from in vitro stimulation of PBMC from never-smoking controls, we applied our 

analytical approach to understand critical alterations in paracrine signaling networks associated 

with COPD. A dysregulated immune response marks COPD pathology34. However, the relative 

importance of immune factors (i.e., cytokines and cells) in these intercellular communication 
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networks has been difficult to ascertain. Because immune system behavior arises from cell-cell 

interactions, unique insights may be derived from examining the overall system output of 

heterogeneous immune cell populations in response to well-defined immune challenges. To test 

this hypothesis, we compared multivariate cytokine responses from PBMCs after adaptive and 

innate immune stimulation from two patient groups: individuals with a smoking history with 

COPD (n=13) and without COPD (GOLD 0; n = 14). The presence of COPD was defined by the 

fixed ratio definition (FEV1/FVC < 0.7). GOLD 0 and COPD participants were well-matched for 

all demographic criteria (Table 5.1).  

Table 5.1. Demographics for GOLD 0 and COPD participants from SPIROMICS at visit 5 

   GOLD 0 
(N=14) 

COPD 
(N=13) P-Value* 

Age    61 (± 9.2) 67 (± 7.8) 0.06 

Currently Smoking   4 (28%) 4 (30%) > 0.99 

BMI   29 (± 5.5) 26 (± 4.8) 0.19 

Sex (Male)   9 (64%) 8 (61%) > 0.99 

Race (White / Other)   5/8 (38%) 9/4 (69%) 0.24 

FEV1 (% predicted)    100 (±22) 79 (± 19) 0.01 

FEV1/FVC   0.76 (± 0.03) 0.59(± 0.13) < 0.0001 

*Two-sample, two-tailed t-test or Fisher’s exact test were used to determine significant differences. Bold values 
denote significant differences between GOLD 0 and COPD participants. 

To determine multivariate differences in cytokine profiles between GOLD 0 and COPD 

participants, we generated three separate feature-selected PLSDA models (one for each stimulus 

type) using VIP scores. All cytokine data used in these models were normalized to a donor-
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matched unstimulated control and adjusted for batch and smoking status (see Methods). In all 

three models, the differentiation of profiles from GOLD 0 and COPD participants was captured 

by the first latent variable (LV1). The multivariate cytokine profiles produced by PBMCs from 

COPD donors stimulated with anti-CD3/CD28 beads were characterized by a notable reduction 

in early (6-hour) cytokine signals (Figure 5.2a-b). Secretions from COPD donors were enhanced 

for cytokines involved in a Type 1 (Th1) immune response, such as IL-2 and IL-12, whereas 

PBMCs from GOLD 0 donors produced factors more traditionally associated with a Type 2 

(Th2) immune response (i.e., IL-13, IL-4, and IL-5). In contrast to the adaptive stimulus 

response, after innate stimulation PBMCs from COPD donors were characterized by increases in 

the concentration of early (6-hour) cytokine secretions (Figure 5.2d-f). However, similar to the 

patterns observed in the adaptive stimulus model, late induction of Th2-associated factors, 

including IL-13, IL-5, IL-4, and IL-10, were also present and elevated in PBMC responses from 

GOLD 0 donors in both innate models (LPS and R848). Unsupervised hierarchical clustering 

with the VIP-selected cytokines profiles identified COPD patients with 100% accuracy in the 

anti-CD3/CD28 and R848 models and 60% accuracy in the LPS model (Supplemental Figure 

C.1). 

We next explored whether differences in the percentages of immune cell types between 

donor classes might have been the cause for the observed alterations in cytokines profiles. 

Specifically, we compared the percentages of pan (CD3+) T cells, CD8+ T cells, CD4+ T cells, 

B cells, NK cells, dendritic cells, and monocytes among COPD and GOLD 0 donors. COPD 

donors had significantly decreased percentages of CD8+ T cells at 6 and 72 hours and 

significantly increased proportions of CD4+ T cells at 72 hours (Figure 5.3). However, after 

adjustment for current smoking status using logistic regression models, only the differences in 
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the 72-hour CD8+ T cells percentages remained significant (p = 0.015). Because CD8+ T cells 

secrete IL-2, IFN-γ, and other T cell-derived cytokines in response to anti-CD3/CD28 

stimulation, this change could have contributed to variances in the production of cytokines 

between PBMCs from GOLD 0 and COPD donors in response to adaptive stimulation. However, 

the observed differences in cellular distribution were measured in the absence of stimulation and 

were only present 72 hours after incubation, which may instead reflect donor-specific cellular 

turnover. While some late (72-hour) cytokine secretions may result from differences in CD8+ T 

cell distributions, it was difficult to assess changes directly for all 92 cytokines that differentiated 

the GOLD 0 and COPD profiles across the three independent stimuli models (Figure 5.3). 

Therefore, we used random forest algorithms to determine the most influential cytokines for 

differentiating cytokine profiles from stimulated PBMCs from COPD and GOLD 0 donors. 

5.2.3 The altered response of PBMCs from COPD donors to adaptive immune stimuli is driven 

by reduced early M-CSF and IL-13 secretion 

Proteomic profiles identified by PLSDA suggested that PBMCs from COPD donors 

maintained the ability to secrete cytokines in response to all stimulus challenges. However, the 

composition of the responses from COPD donors were largely altered compared to those from 

GOLD 0 donors. Using a random forest (RF) algorithm we identified the most influential 

cytokines within each stimulus profile that differentiated PBMC responses across donor classes. 

RFs are a complementary ensemble learning technique that emphasizes contingent, rather than 

independent, contributions of cytokines to classification. We independently applied RF 

algorithms to the VIP-selected datasets from the three stimuli-specific models. The resulting RF 

models classified PBMC responses from COPD donors to anti-CD3/CD28, LPS, and R848  

stimulation with 85%, 54%, and 62% accuracy, respectively (Figure 5.4a).
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Figure 5.2. Comparison of multivariate cytokine profiles from PBMCs of individuals with COPD and ever-smoking 
controls without COPD (GOLD 0).  
(a-b) Analysis of the cytokine profiles of the PBMCs derived from GOLD 0 (squares) and COPD (circles) donors 
from the SPIROMICS cohort, in response to stimulation with anti-CD3/CD28 beads. A model with one latent 
variable captured 26% of variance in the cytokines dataset and performed with 89% calibration accuracy and 81% 
cross-validation (CV) accuracy. (c-f) Analysis of the cytokine profiles of the indicated sources of PBMCs in 
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response to stimulation with LPS (c-d) and R848 (e-f). The LPS model (c-d) captured 15% of the variance in the 
cytokine dataset and performed with 85% calibration accuracy and 78% CV accuracy. The LPS model (e-f) captured 
14.4% of the variance in the cytokine dataset and performed with 85% calibration and 70% CV accuracy. All 
PLSDA models underwent feature selection with VIP scores.  

The cytokine(s) with the most significant impact on differentiating the secretion profiles 

observed in response to adaptive stimulation were early (6-hour) M-CSF and IL-13 (Figure 

5.4b). Together these two cytokines accounted for ~15% of the overall classification accuracy of 

the anti-CD3/CD28 RF models. RF algorithms were not as helpful in identifying individual 

cytokine drivers of secretion profiles resulting from innate immune challenge; a result echoed by 

the modest classification accuracies associated with LPS and R848 RF models (Supplemental 

Figure C.2). Given the success in pinpointing early secretions in response to anti-CD3/CD28 

stimulus that differentiated PBMC responses from GOLD 0 and COPD donors, we next 

investigated potential mechanisms contributing to the divergent paracrine signaling events 

observed after T cell activation. 

To explore the potential cellular sources of early M-CSF and IL-13 secretion, we 

performed correlations between immune cell subsets and 6-hour M-CSF and IL-13 levels within 

each donor type (COPD or GOLD 0). In GOLD 0 donors, early IL-13 concentrations correlated 

with 6-hour CD4+ T cell percentages (r = 0.68, p = 0.006; Figure 5.4c, Supplemental Figure 

C.3). Interestingly, early M-CSF levels also trended towards correlating with the percentage of 

CD4+ T cells in the GOLD 0 donors (r = 0.41, p = 0.11). Conversely, there were no significant 

associations between cell populations and 6-hour M-CSF or IL-13 secretions in COPD donors 

(Figure 5.4d). Notably, PBMCs from COPD donors had nominally higher percentages of CD4+ 

T cells than PBMCs from GOLD 0 donors (Figure 5.3). Hence, the lessened secretion of M-CSF 

and IL-13 from COPD samples are not simply explained by reduced CD4+ T cell populations. 

Instead, the observed deficits may be linked to altered phenotypic or functional behaviors of T 
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cells in individuals with COPD. 

 

Figure 5.3. Analysis of the cellular composition of PBMCs from various donors. 
(a-b) Cellular distribution across PBMC samples from GOLD 0 (grey squares) and COPD (black circles) donors (a) 
6- and (b) 72-hours after incubation with R10 media. Significance determined by unpaired, two-tailed t-tests 
(*p<0.05, **p<0.01). After adjustment for smoking in logistic regression models, the significant comparisons were 
reduced to: CD8+ T cells at 6-hours (p = 0.1), CD8+ T cells at 72-hours (p = 0.015), and CD4+ T cells at 72-hours 
(p = 0.05). Cellular subtypes were measured by the following surface markers: Pan T cells (CD3), CD8+ T cells 
(CD8), CD4 T cells (CD4), B cells (CD20), NK cells (CD56), dendritic cells (CD11c+ HLA-DR), and monocytes 
(CD14). 
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Figure 5.4. Random forest analysis reveals the hierarchy of importance of cytokine secretion events in distinguishing 
PBMCs responses from GOLD 0 and COPD donors.  
(a) Sensitivity (solid bars) and specificity (dotted bars) of random forest (RF) classification models generated from 
VIP-selected cytokines profiles of PBMCs from GOLD 0 and COPD donors after stimulation with anti-CD3/CD28 
beads (red), LPS (blue), and R848 (yellow). (b) Plot of the top 5 most important features in the anti-CD3/CD28 RF 
model contributing to classification of cytokines profiles from GOLD0 and COPD donors. Importance is determined 
by the percent accuracy each protein contributes to the overall classification accuracy of the RF model. X-axis 
denotes the percent accuracy lost by the overall model if the cytokine in question is removed. (c-d) Pearson 
correlation coefficients between RF identified proteins, M-CSF (6hr) and IL-13 (6hr) and cellular distributions at 6 
hours in GOLD  0 (c) and COPD (d) donors. Bolded values are associated with significant p-values (p < 0.05). 

We next created correlation networks of the VIP-selected cytokine profiles in response to 

anti-CD3/CD28 stimulation to further explore how variable levels of M-CSF and IL-13 altered 

the behavior of protein-protein connectivity between donor classes. Using pairwise correlations 

between the 28 VIP-selected cytokines in the anti-CD3/CD28 model, we built independent 

networks for GOLD 0 and COPD donors. The cytokine network based on PBMC responses to 

adaptive stimulation from GOLD 0 donors contained two modules connected with 6-hour M-

CSF (Figure 5.5a). Interestingly, in the COPD network, the connections linking the two modules 
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[M-CSF (6 hours) with MCP-1 (72 hours) and M-CSF (6 hours) with MCP-3 (72 hours)], are 

lost, resulting in two independent networks (Figure 5.5b). Additionally, while M-CSF (6 hours) 

and IL-13 (6 hours) are nodes with a high degree of connectivity in both networks, in COPD, 

these cytokines lack nearly all connections with late (72-hour) cytokine signals (Figure 5.5c). 

We speculate that this behavior may lead to divergent downstream signaling events between 

donor classes.  

5.2.4 Multivariate models predict that reduced secretion of M-CSF and IL-13 by PBMCs from 

COPD donors early in response to adaptive stimuli markedly influences later cytokine profiles 

RF models indicated that a vital difference in the cytokine profiles generated by PBMCs 

from COPD donors was the reduced secretion of M-CSF and IL-13 early in the response to 

adaptive stimulation. Although it is unclear with the present data which cell type is definitively 

responsible for these secretions, we chose to continue to explore this result using the current 

dataset. Specifically, we tested whether the divergence in the 72-hour cytokine profiles of the 

differently sourced PBMCs after anti-CD3/CD28 stimulation could be related to the early loss of 

M-CSF or IL-13, suggesting that individual cellular and molecular effects propagate through the 

cell-cell communication network to achieve broader effects. 

To explore this, we generated a new PLSDA model for PBMC responses to anti-

CD3/CD28 stimulation using only the 72-hour cytokine measurements to differentiate between 

the responses of PBMCs from GOLD 0 and COPD donors. VIP scores were used to eliminate 

cytokines that did not strongly contribute to class differentiation. We found that 16 of the 72-

hour cytokine measurements (IL-12(p40), IL-2, MIG/ CXCL9, IL-9, IL-6, IL-17A, Eotaxin, 

IFNα2, PDGF-AA, MCP-3, IL-10, IL-3, MCP-1, IL-1RA, IL-1β, IL-4) distinguished the 

responses of PBMCs from COPD and GOLD 0 donors with 93% calibration accuracy and 85% 
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cross-validation accuracy (Figure 5.6a). The first two latent variables cumulatively captured 

40% of the variance in the cytokine dataset. LV1 best separated the responses from COPD and 

GOLD 0 donors (Figure 5.6b). To determine the magnitude and direction of the relationship 

between the differences in the 72-hour profiles and deficiencies in the secretion of M-CSF and 

IL-13 at 6 hours, we computed Pearson correlation coefficients for the levels of M-CSF and IL-

13 at 6 hours and the corresponding score on LV1 from the 72-hour anti-CD3/CD28 PLSDA 

model. We found a statistically significant inverse relationship between M-CSF (r = −0.42, p = 

0.03) and IL-13 (r = -0.52, p = 0.005) with LV1 scores, confirming correspondence between the 

loss of early M-CSF and IL-13 and the divergence in the cytokine profiles at 72 hours. These 

associations remained for M-CSF (p = 0.02) and IL-13 (p = 0.005) even after adjustment for sex, 

age, current smoking status, and experimental batch (Figure 5.6c-d). Except for IL-5 and IL-4, 

which are involved in Type 2 inflammation similar to IL-13, no significant correlation existed 

between any other 6-hour cytokine measurements and the scores on LV1 from the 72-hour model 

(Supplemental Figure C.4). 

We lastly aimed to better characterize which specific downstream (72-hour) signals, 

following PBMC challenge with an adaptive stimulus, were most influenced by alterations in 

early M-CSF or IL-13 secretion and how these associations varied across donor classes (COPD 

vs. GOLD 0). We performed correlations between M-CSF or IL-13 at 6 hours, and cytokines 

measurements at 72 hours for GOLD 0 and COPD donors separately (Figure 5.6e-h, 

Supplemental Figure C.5). Early M-CSF secretion from GOLD 0 donors positively correlated 

with later secretion of chemotactic factors (MCP-1: r = 0.85, p < 0.001; MCP-3: r = 0.71, p = 

0.005; M-CSF:  r = 0.62, p = 0.02), cytokines related to Type 17 (Th17) inflammation  (IL-17A: 

r = 0.64, p = 0.01; IL-17F: r = 0.68, p = 0.008) and IL-10 (r = 0.59, p = 0.03; Figure 5.6e).  
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Figure 5.5. Correlation networks of VIP-selected cytokines from anti-CD3/CD28 model highlight key differences in 
cytokine-chemokine network connectivity. 
(a-b) Protein correlation networks of the VIP-identified cytokine profiles from PBMCs of GOLD 0 (a) and COPD 
(b) donors in response to anti-CD3/CD28 stimulation. A line connecting two proteins indicates the presence of a 
significant (p < 0.05) correlation, as calculated by Pearson’s correlation coefficient. Brighter and thicker lines 
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indicate stronger, more significant correlations, respectively. The value of the correlation coefficient for both 
networks is displayed in the color bar scale on the right, with red indicating a positive relationship and blue a 
negative relationship. Light blue nodes indicate protein measurement at 6-hours while dark blue nodes indicate 72-
hour measurements. (c) Table summarizing the significant correlations between 6-hour M-CSF and IL-13 in GOLD 
0 and COPD networks. 

Conversely, early M-CSF produced by PBMCs from COPD donors lacked all those 

downstream associations and instead displayed moderate significant correlations with Eotaxin (r 

= 0.63, p = 0.02) and IL-3 (r = 0.58, p = 0.04) at 72 hours (Figure 5.6f). This lack of shared 

behavior between temporal signals across donor classes was similarly observed in IL-13 

correlations. In  

fact, except for 72-hour IL-3 (COPD: r = 0.58, p = 0.01; GOLD 0 r = 0.68; p = 0.009), early IL-

13 secretion from PBMCs of GOLD 0 and COPD donors shared no significant correlations 

(Figure 5.6g-h). Again, early IL-13 levels from PBMCs of COPD donors exhibited limited 

correlations with later signaling events, with IL-13 levels at 6 hours from COPD donors 

correlating significantly with only three cytokines (Eotaxin: r = 0.63, p = 0.01; IFNα2: r = 0.42, p 

= 0.02; IL-12p70: r = 0.36, p = 0.01; Figure 5.6h). Conversely, early IL-13 levels from anti-

CD3/CD28 stimulated PBMCs of GOLD 0 donors correlated with later increases in Th2 (IL-4: r 

= 0.61, p = 0.02, IL-5: r = 0.69, p = 0.008; IL-10: r = 0.56, p = 0.04) and Th17-related factors 

(IL-17A: : r = 0.69, p = 0.03; IL-17F: r = 0.69, p = 0.008;), as well as G-CSF (r = 0.54, p = 0.04), 

IL-7 (r = 0.61, p = 0.02) and MCP-1 (r = 0.64, p = 0.02; Figure 5.6g). These findings highlight a 

significant loss of downstream signaling diversity in immune cell networks from individuals with 

COPD due to reduced capacity to secrete M-CSF and IL-13 early in the response to adaptive 

stimulation. Together, these data suggest that early impaired M-CSF and IL-13 secretion from 

COPD participants may critically affect the shaping of the immune response to adaptive stimuli. 
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Figure 5.6. The magnitude of IL-13 and M-CSF secretion 6 hours after anti-CD3/CD28 stimulation is associated 
with the divergence of cytokine profiles at 72 hours.  
(a) Scores and (b) loadings plots from PLSDA depicting VIP-selected cytokine profiles 72 hours after the 
stimulation of PBMCs from GOLD 0 and COPD donors with anti-CD3/CD28. This analysis distinguished the 
responses of PBMCs COPD donors (n = 13; red circles) from those of GOLD 0 donors (n = 13; pink squares) with 
85% cross-validation accuracy and 93% calibration accuracy. A model with two latent variables captured 40% of the 
variance in the cytokine dataset. (c) The magnitude of M-CSF and (d) IL-13 secretion 6 hours after stimulation was 
significantly correlated with late cytokine responses (or score on LV1) after adjustment for sex, age, current 
smoking status and experimental batch by linear regression. Plots illustrate data after covariate adjustment. (e-f) 
Significant correlations between 6-hour M-CSF levels and 72-hour cytokine secretions from PBMCs (e) GOLD 0 
and (f) COPD donors in response to anti-CD3/CD28 stimulus. (g-h) Significant correlations between 6-hour IL-13 
levels and 72-hour cytokine secretions from PBMCs (g) GOLD 0 and (h) COPD donors in response to anti-
CD3/CD28 stimulus. A line connecting two proteins indicates the presence of a significant (p < 0.05) correlation, as 
calculated by Spearman’s correlation coefficient. All non-significant correlations were removed from the network 
graphic. Brighter and thicker lines indicate stronger, more significant correlations, respectively. The value of the 
correlation coefficient for both networks is displayed in the color bar scale on the right, with red indicating a 
positive relationship and blue a negative relationship. Light blue nodes indicate protein measurement at 6-hours 
while dark blue nodes indicate 72-hour measurements. 
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5.3 Discussion 

This study aimed to investigate how cytokine secretion profiles of PBMCs from COPD 

donors differed from ever-smoking control donors (GOLD 0) after exposure to diverse immune 

stimuli (both innate and adaptive). To achieve this, we employed PLSDA with VIP feature 

selection which facilitated the identification of temporal cytokine signatures that distinguished 

between stimuli-specific and donor-specific responses. These signatures provided valuable 

information into the cytokine subsets that best characterized each type of response (i.e., stimulus 

and donor combination). Subsequent RF models defined the most influential cytokine events in 

differentiating donor classes. Follow-up investigations highlighted likely cell types responsible 

for these critical events and explored the implications of early aberrant responses to adaptive 

stimuli in driving downstream signaling behavior.  

The PBMC responses from COPD donors showed significant differences compared to 

GOLD 0 controls when stimulated with adaptive (anti-CD3/CD28) and innate (LPS and R848) 

immune challenges. Notably, across all stimulus types, PBMCs from GOLD 0 donors exhibited 

higher secretion of CD4+ T cell-associated factors, such as IL-4, IL-5, and IL-13, compared to 

PBMCs from COPD donors. RF models revealed that early secretion of M-CSF and IL-13 

played a vital role in distinguishing between the adaptive immune responses of PBMCs from 

GOLD 0 and COPD donors. Correlation analyses with matched flow cytometry data indicated 

that, in GOLD 0 donors, early M-CSF and IL-13 are likely generated by CD4+ T cells upon 

activation. However, in PBMCs from COPD donors, despite nominally higher percentages of 

CD4+ T cells, this relationship appeared to be diminished. A final network analysis predicted 

that early secretion of M-CSF acts as an integral node guiding downstream cytokine profiles 

after adaptive stimulation. These findings suggest a critical deficit in the adaptive immune 
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response in individuals with COPD. 

The disparities observed between the PBMC responses from COPD and GOLD 0 donors 

could have resulted from synergistic cell-cell interactions, both direct and indirect, within the 

heterogeneous PBMC population. These findings align with previous reports of diminished 

cytokine responses in T cells from individuals with COPD182. One potential reason for the loss of 

these critical T cell signals may be partially explained by phenotypic alterations in CD4+ T cell 

populations in COPD. For example, previous studies have reported down-regulation of the 

surface receptor CD28, an essential costimulatory molecule required for T cell activation, in 

CD4+ T cells from individuals with COPD183,184. Our adaptive stimulus system activated T cells 

in vitro by providing dual signaling through CD3 and CD28. Considering the reduced CD28 

receptors previously observed in T cells from COPD donors, it is plausible that this deficiency 

may have resulted in standalone signaling through CD3, potentially promoting T cell apoptosis 

or functional alteration into an inactivated state, reducing overall cytokine secretion. Another 

potential reason for the observed disparities in cytokine profiles between donor classes could be 

a genetic or epigenetic predisposition of T cells from COPD donors to elicit an altered T-helper 

(Th) cell phenotype. Genetic or epigenetic modifications in T cells may influence their 

responsiveness to immune stimuli, leading to distinct cytokine expression patterns. Our analysis 

suggests that T cells from COPD patients may be predisposed to elicit a Type 1 (Th1) response 

(i.e., IL-2, IL-12, IFN-γ) over a Type 2 (Th2) inflammatory response (i.e., IL-4, IL-5, IL-13). 

Similar increases in this Th1:Th2 response ratio have been reported previously in COPD185,186. 

However, contrasting findings are present in other studies of epithelial brushings, which report 

enhanced expression of Th2-related genes in a subset of COPD patients72. These discrepancies 

are likely due to differing sample sources (blood immune cells vs. bronchial epithelial cells). 
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Nevertheless, the crucial interplay between T cells and other immune cell populations in shaping 

the overall immune response in COPD187 underscores the significance of our findings, which 

highlight a potential role for T cells as critical regulators in disease pathology.  

To our knowledge, this is the first study to identify critical early regulators of immune 

signaling networks in response to adaptive stimuli that influence the impaired immune responses 

observed in COPD. This work builds upon previous in vitro studies188 by providing a novel, 

multivariate analysis of temporal peripheral immune cell secretions from individuals with COPD 

after diverse immune stimulation. This approach enables the recapitulation of complex paracrine 

signaling networks similar to those present in vivo, adding valuable insights to our understanding 

of the immune responses in COPD. However, our study has limitations, with the primary 

concern being the use of frozen PBMC samples. It is conceivable that the freezing procedure 

altered the cellular processes or cell-cell interactions that led to the observed disparities between 

donor classes. However, this technical limitation is broadly applicable given the nature of cell 

sampling and the cryopreservation of PBMCs throughout the field. Additionally, groups have 

reported that cytokine profiles measured with fresh (never frozen) PBMCs isolated from healthy 

donors are similar to those measured from thawed PBMCs179. Furthermore, while our results 

suggest an essential role for M-CSF in dictating adaptive immune responses, follow-up 

intracellular flow cytometry and blocking experiments are required to confirm the cell types 

responsible for these critical secretions and validate the significance of this signaling event in 

governing later responses. Lastly, it is important to note that while peripheral circulation plays a 

vital role in trafficking immune cells to the lung, our current findings are specific to the blood. 

To fully comprehend how the observed behavior relates to local alterations in the lung, further 

investigations in murine models or lung-based specimens are warranted. Such studies will 
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provide valuable insights into the intricate interplay between systemic and local immune 

responses in COPD. 

In summary, our findings implicate early M-CSF as a critical communication node lost in 

adaptive immune responses from COPD patients, possibly due to alterations in CD4+ T cell 

function or phenotype. Because T cells can modulate the innate immune response, and adaptive 

modulation is essential in tempering early innate immune responses189,190, dysregulation of T cell 

behavior is a significant concern for immune defense, such as defense against respiratory 

infections that can exacerbate COPD symptoms. This study builds upon previous work reporting 

an impaired adaptive response in COPD191 and emphasizes the importance of considering 

adaptive immune behavior in COPD progression and treatment. Our early results propose that 

targeting M-CSF signaling via CD4+ T cells could be a pivotal intervention in COPD. However, 

further research is required to understand better the role of M-CSF and how its loss contributes to 

pathogenic behaviors. Broadly, throughout this work, we illustrate using an integrative approach 

to unravel the significance of multiple disease-related cell alterations in immune responses at the 

cellular network level. 

5.4 Methods 

5.4.1 Isolation of PBMCs from human donors and cryopreservation 

Fresh whole blood specimens were obtained from Visit 5 of SPIROMICS 

(ClinicalTrials.gov Identifier: NCT01969344), a longitudinal prospective cohort study68. 

Peripheral blood mononuclear cells (PBMCs) from 27 ever-smokers, with (n=13) and without 

(n=14) COPD, and 8 never-smokers enrolled in the bronchoscopy substudy106,107 were isolated 

from whole blood by density centrifugation. Briefly, equal volumes of whole blood and wash 

buffer (phosphate-buffered saline (PBS), 2% fetal bovine serum (FBS), and 1 mM EDTA) were 
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combined, layered on Ficoll-Paque PLUS (Cytiva), and centrifuged at 2500 rpm for 30 minutes 

at room temperature in a swinging bucket rotor. PBMCs were collected from the buffy layer, 

washed with PBS, then counted with Trypan blue before resuspension in a cryopreservation 

medium (90% FBS and 10% DMSO). Cells were stored in a -80°C freezer until downstream 

experimentation. This study was conducted according to the principles of the Declaration of 

Helsinki. The institutional review board approved the protocols of all participating centers, and 

methods were carried out in accordance with the relevant guidelines and regulations. All 

participants were aware of the study’s intent and provided written informed consent before any 

procedures. 

5.4.2 Immune cell stimulation 

PBMCs were thawed and cultured in 96-well U-bottom plates in R10 medium [RPMI 

1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS), HEPES, L-glutamine, 

and penicillin-streptomycin] at a density of 1 million cells/ well. After resting overnight at 37˚C, 

cell cultures were stimulated with R10 media alone or with anti-CD3/CD28 beads (1 bead:2 

cells, Gibco), R848 (1 μg/mL, Invivogen), or LPS (1 μg/mL, Invivogen). Supernatant was 

collected from the stimulated cultures after 6 and 72 hours; independent cells were plated at each 

timepoint. Cells from participants with and without COPD were randomized across plates to 

reduce batch effects. 

5.4.3 Luminex assays to quantify secreted cytokines 

48-plex magnetic bead assays were purchased from Millipore kit HCYTA-60K-PX48 

(included analytes: sCD40L EGF Eotaxin FGF-2 Flt-3 ligand Fractalkine G-CSF GM-CSF 

GROα IFNα2 IFNγ IL-1α IL-1β IL-1ra IL-2 IL-3 IL-4 IL-5 IL-6 IL-7 IL-8 IL-9 IL-10 IL-12 
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(p40) IL-12 (p70) IL-13 IL-15 IL-17A IL-17E/IL-25 IL-17F IL-18 IL-22 IL-27 IP-10 MCP-1 

MCP-3 M-CSF MDC (CCL22) MIG MIP-1α MIP-1β PDGF-AA PDGF-AB/BB RANTES 

TGFα TNFα TNFβ VEGF-A) and were performed using Luminex FlexMAP 3D (Luminex 

Corporation, Austin, TX) technology according to the manufacturer’s instructions.  Any 

measurements above the upper limit of detection were set to the maximum detectable 

concentration of that analyte. Samples below the lower limit of detection were set to half of the 

lowest minimum detectable concentration across the standard curves of all analytes.  

5.4.4 Flow cytometry  

Supernatants from PBMCs cultured in R10 media (as outline in section 5.4.2) or 6 and 72 

hours were harvested, then the cells were washed and stained for extracellular surface markers 

with fluorescently conjugated antibodies specific for CD45, CD3, CD4, CD8, CD56, CD20, 

CD14, CD16, HLA-DR, and CD11c (BioLegend) and a live/dead marker. Appropriate isotype-

matched controls were used in all experiments. Cells were incubated in the dark with primary 

antibodies for 25 minutes at room temperature, followed by washing and fixation in 2% 

paraformaldehyde. Cells were analyzed on a BD FACSymphony A3 flow cytometer. Data were 

then analyzed with FlowJo v10.7.2. 

5.4.5 Data-driven analyses 

Partial least squares discriminant analysis (PLSDA): PLSDA was used to determine 

multivariate cytokine profiles that best distinguished between the responses of PBMCs to anti-

CD3/CD28 beads, R848, and LPS179. PLSDA decomposes explanatory variables (i.e., cytokine 

measurements) into orthogonal linear combinations (PLS components) while simultaneously 

maximizing the covariance with the outcome variable (i.e., stimuli or cohort class). Each sample 
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is assigned a score and projected into the latent variable space (score plots). We used latent 

variable loadings (loadings plots) to identify cytokine profiles associated with different outcome 

variables of interest. All data were normalized with mean centering and variance scaling before 

analysis. K-fold cross-validation (k=5) was performed by iteratively excluding random subsets of 

data during model calibration and then using excluded data samples to test model predictions. An 

orthogonal signal correction was used to improve model interpretability (as outline in section 

4.4.3).  

We next performed feature reduction by calculating variable importance projection (VIP) 

scores for each cytokine and removing from the model cytokines with VIP scores < 1. Before the 

PLSDA analyses, we also removed any proteins with ≥ 70% of measurements below the lower 

detection limit across all samples. All remaining cytokine concentrations were normalized 

relative to their background secretion, defined by their paired negative control (R10 media) 

condition. This background-subtracted data were further adjusted for smoking status (current/ 

former) and experimental batch by fitting multiple linear regression models for each cytokine 

variable as the outcome and the two covariates (smoking status and batch) as the predictors. The 

residuals from these models were used as the adjusted dataset for the PLS analyses192,193.  

Random forest (RF) models: We used RF algorithms to determine the hierarchical 

importance of cytokine secretion events in classifying the responses of PBMCs from GOLD 0 

and COPD participants. A classification RF algorithm was used to predict each class as a 

function of the VIP-selected cytokine measurements made from the corresponding PLSDA 

model (Figure 5.2). RF algorithms generate a set of classification trees based on a continual 

sampling of the experimental units and compounds. Then each observation is classified based on 

the majority votes from all the classification trees194. Gini’s diversity index was chosen as the 
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split criterion. RF models were built with n=500 trees. Out-of-bag-evaluation errors for the 

resultant models were used to determine classification accuracy. 

5.4.6 Bioinformatic analysis 

Clustering: Hierarchical clustering of the VIP-selected signatures was generated with 

supervised complete linkage clustering using Pearson’s correlation coefficient as the distance 

metric. Samples were colored by disease state (GOLD 0 vs. COPD). 

Correlation networks: Protein correlation networks were constructed separately for 

GOLD 0 and COPD participants using pairwise Pearson’s correlation coefficients between 

protein expression in the VIP-selected signatures (Figure 5.2). Edge color and thickness 

correspond to coefficient value and statistical significance, respectively. Only significant 

correlations (p < 0.05) are shown. Node size is proportional to its degree of connectedness. 

5.4.7 Software summary 

Hierarchical clustering and correlation networks were completed using MATLAB 

(v2017b, MathWorks, Natick, MA). We generated PLSDA models and ROC curves using the 

PLS toolbox available in MATLAB (v8.2.1, Eigenvector, Mason, WA). Random forest analyses 

were completed in R using the randomForest package (v4.1.2, R Core Team, Vienna, Austria). 

All standard statistics were performed using Prism version 9 (GraphPad Software, San Diego, 

CA). 
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Chapter 6 Discussion 

In this thesis, we leveraged network-based modeling approaches to improve our 

understanding of COPD and overcome challenges associated with traditional single-target 

methodologies. Specifically, we presented novel insights into potential biological mechanisms 

contributing to rapid spirometric progression (Chapter 2 and Chapter 3), age-dependent 

emphysema development (Chapter 4), and altered immune cell communication networks 

(Chapter 5) in COPD. A discussion of the scientific contributions, broader impacts, and future 

work for these three investigations are detailed in the sections below, along with comments on 

the overall work's limitations, future directions, and conclusions. 

6.1 Early complement pathway changes predict rapid FEV1 decline in COPD; combined 

biomarker signatures lack the same predictive accuracy (Chapters 2-3) 

6.1.1 Summary of findings 

For the first time, data-driven modeling approaches were applied to integrated baseline 

proteomic datasets from the blood and lung to investigate early cross-tissue compartment 

mechanisms contributing to accelerated spirometric progression, as measured by annualized 

declines in FEV1. This work identified an integrated signature with 52 proteins capable of 

predicting the risk of a COPD patient sustaining declines in lung function ≥70 mL/year with high 

accuracy (> 90% accuracy). Further investigation of this signature identified potential prognostic 

biomarkers and biological pathways contributing to accelerated FEV1 decline. In particular, we 

found that individuals who experience losses in lung function ≥70 mL/year exhibit unique 
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alterations in elements of the complement cascade ("complement profiles") at baseline. Using an 

independent cohort, we successfully replicated the complement profiles but could not validate 

the biomarker signatures.  

6.1.2 Scientific contributions 

By providing evidence that alterations in complement cascade proteins precede 

accelerated FEV1 decline, we extend previous associations between this complex and 

evolutionarily conserved system and cross-sectional outcomes in COPD113–121. Our findings 

suggest for the first time that early complement-related alterations may be a key contributor to 

severe lung function decline. Moreover, our inability to validate prognostic biomarker signatures 

may suggest that alterations in several pathways or pathway constituents can drive a singular 

phenotypic outcome in patients with COPD. Moreover, various factors, such as mucus blockage, 

small airway problems, and emphysema, can contribute to airflow obstruction. It's improbable 

that a single pathway, like the complement pathway, is equally implicated in all these processes. 

This underscores the diverse nature of factors influencing COPD outcomes. Together, our results 

highlight the potential importance of shifting focus from biomarker identification towards 

pathway dysregulation in future analyses of spirometric progression and other complex COPD 

outcomes.  

6.1.3 The complement system and its role in COPD progression 

One key outcome of this work is the link identified between early complement alterations 

and later lung function decline. The precise role of the complement system in driving COPD 

progression remains uncertain; however, it is plausible that genetic variants mediate complement 

protein levels. Sun et al. demonstrated within the SPIROMICS and COPDGene cohorts that the 
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decreased C3 levels observed in individuals with COPD and emphysema can be attributed to 

protein quantitative trait loci (pQTL) and expression QTL (eQTL) single nucleotide 

polymorphisms (SNPs) 119. In murine models, complement proteins specifically appear to exert a 

pivotal influence on smoking-induced emphysema development by modulating both innate and 

adaptive immune responses. Mice deficient in C3, the central component of the complement 

system, exhibit protection against emphysema development122. Further investigations suggested 

that C3 contributes to emphysema by modifying dendritic cell-directed Th17 inflammation122. 

Complementary studies with C1q, a subcomponent of the C1 complex of the classical 

complement pathway, support the importance of complement proteins in directing pro-

emphysema Th17 inflammatory profiles. These studies demonstrate that cigarette smoke-

mediated loss of C1q contributes to emphysema development through simultaneous induction of 

Th17 cells and reduced differentiation of peripheral tolerance (T regulatory cells)143.  

The paradoxical responses that C3 and C1q elicit in mice help to explain the diverse 

pathogenic and protective roles which have been suggested for complement components in 

human COPD studies. For instance, increases in C4a:C4 ratios (a marker of lectin pathway 

activation)142 and reductions in complement regulator CD46195 are observed in COPD patients 

compared to controls, suggesting that overactive complement activation may be pathogenic. 

Conversely, localized C3 reserves in airway epithelial cells offer protective effects by aiding host 

defense against stress-associated death124. Some discrepancies in reported trends may be 

associated with specimen type and study demographics, as complement proteins measured from 

blood and lung specimens often have inverse associations with COPD outcomes196,197, and their 

concentrations are significantly impacted by sex and age198. However, it is also plausible that, 

like many complex biological mechanisms, the contributions of the complement pathway to 
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disease pathology are dynamic, varying over time and space.  

The complex involvement of complement pathways in COPD progression supports our 

choice of a multivariate approach to model complement profiles. Multivariate models can 

capture global trends in numerous pathway constituents and help overcome a lack of sensitivity 

or specificity afforded by an individual protein. Hence, future studies investigating the 

complement system in COPD may benefit from implementing more dynamic modeling 

approaches to help deconvolve the role of complement components in progression.  

6.1.4 The complexity of COPD patients may limit the availability of succinct prognostic 

biomarkers 

The second notable outcome of this study was our inability to validate the biomarker 

signatures we identified in our discovery cohort. Although unfortunate, this finding draws 

attention to larger challenges facing biomarker identification in COPD, including limited 

replication and clinical interpretation. Predictive biomarkers of FEV1 decline in COPD 

historically struggle with a lack of replication, even when cohorts share many common features 

(ex. SPIROMICS and COPDGene)60. Additionally, when replication is successful, individual 

proteins often only add minor prognostic value over easily obtainable clinical variables93. For 

example, of the top prognostic biomarkers studied in COPD (CC16, SP-D, sRAGE, CRP, 

fibrinogen, and IL-6) each marker explained only 1-8% of the variance in FEV1 decline, 

compared to the 34% explained by clinical variables59,60,93,199. This observation stresses the 

importance for future studies to focus more on the predictive value added by a molecular 

biomarker (R2) rather than just a statistically significant association (P value).  

Similar issues have been reported in studies of alternative COPD outcomes, including 

exacerbations. A study evaluating the potential of n=90 protein biomarkers to predict 
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exacerbation frequency in COPDGene and SPIROMICS reported successful identification of 

significant markers in each cohort but poor replication between studies85. Issues with lack of 

replication in this and other COPD studies likely have to do with the heterogenous clinical and 

pathophysiological nature of COPD as well as variability in the definitions of clinical outcomes 

across studies. To date, fibrinogen is the only proteomic marker successfully replicated and 

approved by the FDA in COPD, yet not yet the target of any specific therapeutic interventions. A 

combined analysis of five cohorts showed combining plasma fibrinogen with a clinical history of 

exacerbations increased the ability to predict the occurrence of future exacerbation events200. 

Still, fibrinogen lacks the sensitivity and specificity to be used on an individual basis93. 

The use of multiple biomarkers may improve predictive performance. A combination of 

CC16, SP-D, CRP, sRAGE, and fibrinogen increased the sensitivity of predicting cross-sectional 

FEV1 from 2-10% for an individual marker to 24%58. In analyses with FEV1 decline, however, 

improvements were less pronounced, with combinatorial biomarkers accounting for only 7% of 

variance58. This trend suggests that no single protein, or even their combination may be capable 

of predicting progression in a heterogenous disease like COPD. As such, it may be prudent for 

future studies either to focus analyses on analyzing more targeted COPD phenotypes or to shift 

investigation approaches toward uncovering dysregulated pathways as a basis for biomarker 

identification instead of focusing on individual elements. 

6.1.5 Future work 

Subsequent work requires follow-up investigations that better detail the role of the 

complement system in the lung. Because our study utilizes complement protein measurements 

from plasma samples, exploring the identified complement profiles in lung-derived specimens is 

essential. Although the complement profiles in the lung may not be identical to the systemic 
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profiles we reported, we are confident that future studies can successfully evaluate complement 

profiles in the lung, as complement proteins have been quantified in BAL, sputum, and lung 

tissue specimens from individuals with COPD122,142,196. To our knowledge, BAL samples 

collected during the SPIROMICS bronchoscopy sub-studies still exist. It could be especially 

useful to measure complement proteins from these BAL specimens to explore, in matched 

samples, how the identified blood complement profiles extrapolate into the lung compartment.  

Lung-derived complement profiles would ideally be explored on the same platform; 

however, SomaLogic assays are not validated for use in sputum or BAL samples. Hence, follow-

up studies may require alternative assays. Luminex assays have complement-specific kits 

available that allow for the measurement of a limited number of complement proteins and their 

cleavage products (kits: HCMP1MAG-19K and HCMP2MAG-19K). Although, alternative 

functional assays may be particularly advantageous to generate more granular insights into the 

patterns of complement activation, including pathway-specific responses (classical, lectin, or 

alternative). Together, these follow-up experiments would provide a clearer view of complement 

pathway dysregulations driving progression in the tissue of interest, the lung, and whether 

measurements from the blood accurately reflect the local behavior. 

6.2 Distinct age-dependent biological processes contribute to COPD progression (Chapter 

4) 

6.2.1 Summary of findings 

A data-driven investigation of the age-dependent progression of CT-indicated airway 

abnormalities uncovered unique proteomic signatures associated with the progression of 

emphysema and small airway disease in younger (≤ 55 year-old) and older (> 65 year-old) 

GOLD 0-2 ever-smokers. Investigation of the signatures suggested that age significantly impacts 
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the biological pathways contributing to smoking-associated emphysema progression. 

Specifically, our results suggested that inflammatory and apoptotic pathways primarily 

contribute to accelerated emphysema development in ever-smokers ≤ 55 years old. In contrast, 

matrix remodeling is the primary mechanism driving emphysema in older individuals (> 65).  

6.2.2 Scientific contributions 

Recent advancements in understanding COPD have hypothesized that the field may gain 

unique insights into early disease pathogenesis ("early COPD") by studying younger populations. 

In support of this hypothesis, this is the first investigation to present evidence that different 

protein signatures are associated with COPD progression depending on an individual's age. More 

importantly, these signatures implicate differential age-dependent pathologic mechanisms 

contributing to emphysema development in early (younger) vs late (older) onset disease. If 

validated, these signatures can inform novel therapeutic targets of early COPD. 

6.2.3 Investigations of younger ever-smokers can inform novel mechanisms in early COPD 

Results from our preliminary evaluations suggest that progression in GOLD 0-2 ever-

smokers results from age-dependent pathologic mechanisms. These findings have significant 

implications for justifying the study of early COPD. The importance of studying early COPD 

resulted from a collection of studies evidencing that in ever-smokers with ≥ 10 pack-year 

smoking history, respiratory symptoms originating by 30-50 years of age were associated with 

accelerated lung function decline evident as early as 43 years of age147–150. Because most COPD 

studies have focused on individuals ≥ 60 years old with mild disease (GOLD 0-1)146, current 

literature lacks robust characterizations of early COPD pathogenesis, which, as past studies 

suggest112, likely occurs much younger.  
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Early COPD patients may define a subpopulation with unique molecular alterations that 

drive disease progression toward more severe illness than older individuals with mild-slowly 

progressing disease. Though limited, studies suggest that age impacts both molecular and clinical 

profiles in COPD201,202. Moreover, individuals who fit the criteria of early COPD112 are at 

increased risk of acute respiratory hospitalizations and early death203. These findings highlight 

potentially distinct underlying mechanisms between early COPD and later-onset disease and 

expose gaps in our understanding of initial disease pathogenesis within existing cohorts. Taken 

together, these insights may offer explanations for the limited success of targeted therapies, 

including biologics targeting IL-5 and IL-33, in COPD clinical trials66,204. Our work supports this 

emerging hypothesis. 

Although it requires extensive validation, our results suggest that apoptotic pathways may 

be a key driver in early emphysema development. This finding is supported by evidence that 

alveolar matrix destruction by the combination of inflammation and excessive proteolysis has 

failed to account fully for the mechanisms behind eradicating septal structures205. Hence, 

apoptotic pathways may be a promising target to halt early emphysema development in patients 

with COPD. Pharmacological inhibitors of apoptosis exist and are used to treat Parkinson's 

disease, cancer, Rheumatoid arthritis, and Crohn's disease206. However, currently, there are no 

FDA-approved uses for pulmonary conditions.  

Looking forward, investigations of younger populations with less severe airflow 

limitation hinge on developing clinical biomarkers more sensitive to early airway abnormalities 

than traditional spirometry. In COPD, small airway abnormalities are commonly thought to 

precede emphysema development14,207. However, small airways contribute little to overall 

airflow resistance, so extensive loss of small airways may occur before the appearance of any 
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symptoms208,209. Additionally, spirometry maneuvers require participant cooperation, which can 

introduce substantial variability to measrements210,211. Promising alternative biomarkers for early 

COPD studies which afford higher reproducibility and sensitivity include parametric response 

mapping (PRM)12, as used in our analysis (detailed in Chapter 4), and impulse oscillometry 

(IOS).  

IOS is a noninvasive method that uses sound waves to measure respiratory mechanics. By 

generating small pulses of air pressure (impulses), IOS creates pressure oscillations within the 

lungs. As the impulses travel through the airways, they encounter resistance from various parts 

of the respiratory system due to narrowed or inflamed airways, mucus build-up, or other 

obstructions. An oscilloscope then measures the response of the respiratory system by recording 

changes in pressure and flow caused by the impulses and analyzing the resulting waveforms. 

From these waveforms, IOS calculates resistance (characterizes airway constriction or 

obstruction) and reactance (characterizes airway elasticity and stiffness) metrics212. One 

advantage of IOS is that testing is performed during quiet tidal breathing, which contrasts other 

measures of spirometry, which are effort dependent. Because the diagnosis of COPD relies on 

spirometric definitions, it is challenging to compare IOS. However, since IOS is better for 

detecting small airway disease in asthma and post-environmental exposures, even where 

spirometry is normal, the presumption is that IOS should be more sensitive in identifying early 

COPD211. In support of this hypothesis, in COPD, IOS has been reported to better correlate with 

small airway structures213–215 and symptoms burden216 when compared to spirometry. In the 

future, studying younger populations with more sensitive clinical metrics may aid in identifying 

early mechanisms contributing to COPD development that can inform novel preventative 

treatment strategies. 
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6.2.4 Future work 

Although the findings from this study were encouraging, we were limited to using 

available data from the previously enrolled longitudinal cohort, COPDGene. Because 

COPDGene's inclusion criteria included individuals ages 45-80, our "young" population for this 

analysis (mean age: 50 ± 3) was not optimally enriched to study early COPD as per the definition 

proposed by Martinez et al.112 (ages 30-50). As such, exploring similar trends in newly enrolling 

cohorts such as SOURCE177, which enrolls individuals ages 30-55, is essential.  

Additionally, our approach was more successful in identifying age-dependent processes 

related to emphysema progression than for fSAD. This might be because emphysema represents 

a final pathway characterized by irreversible lung damage, while fSAD can develop de novo but 

also progress into emphysema. This dual nature makes it more challenging to model definitively. 

Therefore, future work may have more success by employing more sophisticated voxel-based 

calculations of progression, as proposed by Labaki et al.207, rather than the simple delta used 

throughout this study.  

Looking forward, it will also be imperative to explore proteomic signatures in the lung, as 

the current profiles are from plasma samples. Finally, universal definitions for early COPD and 

rapid progression are needed to ensure consistency across future investigations.  

6.3 Analyzing cytokine-chemokine networks from stimulated PBMCs reveals novel 

immune network changes in COPD (Chapter 5) 

6.3.1 Summary of findings 

To better recapitulate the diverse cell-cell interactions that collectively drive immune 

system behavior, we stimulated peripheral blood mononuclear cells (PBMCs) from COPD and 
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ever-smoking control (GOLD 0) donors with three well-defined adaptive and innate immune 

challenges: anti-CD3/CD28 to stimulate T cells polyclonally, and to activate innate immune cells 

via TLR4 and TLR7/TLR8 using LPS and R848, respectively. Multivariate explorations of 

temporal cytokine production following PBMC stimulation highlighted a critical deficiency in 

the adaptive immune response in PBMCs from individuals with COPD. Using data-driven tools, 

including random forest algorithms and correlation networks, we identified that a loss of early 

M-CSF and IL-13 production, likely by CD4+ T cells, led to a significant loss of downstream 

signaling diversity in immune cell networks from PBMCs of COPD donors. Additionally, 

PBMCs from individuals with COPD displayed a diminished production of Type 2 (T2) related 

cytokines in response to both innate and adaptive stimuli. Collectively, our findings indicate a 

modified adaptive immune response in individuals with COPD, which may be the result of 

altered T cell phenotypes in these patients. 

6.3.2 Scientific contributions 

By proposing critical early regulators of immune signaling networks in response to 

adaptive stimuli that influence the impaired immune responses observed in COPD, this study 

builds upon previous work reporting functional alterations in immune cells and their cytokine 

production in patients with COPD20,43–47. We specifically highlight a novel role for CD4+ T cells 

as critical regulators in COPD pathology through their loss of production of M-CSF and IL-13. 

Our results emphasize the importance of considering adaptive immune behavior in COPD 

progression and treatment and, if validated, propose that targeting CD4+ T cell signaling via M-

CSF or IL-13 could be a possible intervention in COPD. 

6.3.3 The adaptive immune response is modified in individuals with COPD 
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Significant disparities in PBMC secretion profiles between COPD and GOLD 0 donors 

following immune stimulation underscore the broad-reaching impact of COPD and its associated 

airway obstruction on the immune system. This impact is evidenced by discernible alterations 

occurring in various immune components, including cells and cytokines, even in peripheral areas 

beyond the lungs. Notably, our findings indicate that an early deficiency of M-CSF secretion 

from PBMCs following T cell activation plays a significant role in shaping an overall modified 

adaptive immune response in COPD. Biologically, M-CSF facilitates the differentiation and 

activation of monocytes and macrophages. A network analysis of our in vitro system revealed 

critical connections (i.e., correlations) between early M-CSF signaling and later induction of 

MCP-1 and MCP-3 within GOLD 0 participants. These connections were entirely lost in 

networks modeled from secretions of PBMCs from COPD donors. Because MCP-1 and MCP-3 

play pivotal roles in driving the migration of monocytes and other immune cells to sites of 

inflammation and injury, the breakdown of this connectivity observed in COPD may collectively 

suggest the potential for impaired pathogen clearance due to altered migration or activation of 

peripheral monocytes. 

Endothelial and stromal cells are the primary sources of M-CSF during homeostasis, but 

under inflammatory conditions, M-CSF is also produced by activated monocytes and 

macrophages217,218. Intriguingly, our exploration hints at M-CSF production by CD4+ T-cells. 

Although previous studies have reported M-CSF expression in CD4+ T cells cultured in vitro219–

221, T cells are generally not considered to be a biologically relevant source of M-CSF218. Given 

the uncertainty of T cells as reliable producers of M-CSF upon anti-CD3/C28 stimulation, it may 

instead be plausible that other known T cell derivatives, like IL-13, are responsible for driving 

distinct cellular secretions in monocytes and other innate immune cells within the PBMC culture 
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system. For instance, monocyte exposure to T1 (e.g., IFN-γ) signals can incite M1 polarization 

characterized by proinflammatory secretions, including IL-1β, IL-6, TNF-α, and IL-12 

production. In contrast, exposure to other immune factors, such as IL-13 (a second critical 

cytokine identified in our analysis, decreased in COPD participants), favors an alternative 

activation profile222. Collectively, these variations in the function and phenotype of adaptive and 

innate immune cells shape the immune response. 

Our findings suggest an inclination of the adaptive immune response in COPD patients 

toward a Th1-dominant phenotype. This finding is consistent with earlier studies noting an 

elevated proportion of CD4+ IFN-γ+ T cells in the circulation of COPD patients compared to 

controls188. Along with enhanced production of Th1-related factors, our results suggest that 

COPD patients experience notable reduction (though not complete elimination) of cytokines 

associated with a Th2 response. This phenomenon has been documented previously, wherein 

CD4+ T cells from individuals with COPD show an increased production of Th1-related 

cytokine IFN-γ and a decreased generation of Th2-related cytokine IL-4185,223. Beyond CD4+ T 

cells, CD8+ T cells from individuals with COPD exhibit altered cytokine production188,224–232, 

which, consistent with our findings, predominantly aligns with a Type 1 immune response, 

marked by increased IFN-γ and TNF-α production188,223,225–227. However, it is worth noting that 

other inflammatory profiles, including Th2 and Th17 responses, have also been reported in 

COPD and are often characteristic of patients with distinct disease endotypes71,72.  

The origins of the observed differences in inflammatory profiles, whether stemming from 

altered activation due to changes in receptor expression or genetic/ epigenetic modifications in 

immune cells from COPD patients, remain uncertain. However, given that homeostasis hinges on 

finely balanced immune responses, skewed Th1/Th2 responses, as delineated in our study, can 
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lead to less effective or potentially harmful T cell responses233,234. Consequently, it is important 

to work towards understanding the specific alterations that drive imbalanced responses in COPD. 

Our research, while necessitating further investigation, represents a significant stride toward this 

goal by identifying early signaling events that propel pathogenic immune behaviors in COPD.  

6.3.4 Future work 

The outcomes of this study underscore the value of adopting a multivariate approach to 

biological research to help overcome clinical variability and uncover disruptive cell-cell 

signaling patterns in diseases involving chronic inflammation, such as COPD. Results from this 

investigation implicate M-CSF and IL-13 as pivotal communication hubs in the adaptive immune 

response that are compromised in COPD. To formulate hypotheses regarding the cell types 

responsible for these secretions we employed straightforward correlations between cell subsets 

and cytokine concentrations. Although these assessments implicate CD4+ T cells as the potential 

cellular source of both M-CSF and IL-13, follow-up experiments utilizing intracellular flow 

cytometry are required to conclusively identify the cell types responsible for these critical 

secretion events. Regrettably, the original experiment did not entail the preservation of cell 

aliquots, necessitating new, unmatched PBMC samples for subsequent studies. While not ideal, 

we believe that the randomized sample generation and strong class representation used in our in 

the original workflow should have allowed for the identification of robust signatures which are 

applicable in new patient populations. 

Once the cellular source has been pinpointed, further experiments aimed at validating the 

proposed protein networks should be conducted in vitro. One possible option to explore this 

question could involve implementing combinatorial antibody treatments or media 

supplementation to modulate the concentration of key cytokines in PBMC culture system to 
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specified ranges identified our original study. After target factor alteration, subsequent cytokine 

measurements and flow cytometry can be used to characterize the ensuing phenotype. For 

example, based on the findings in our original work, PBMC cultures from COPD donors can be 

individually supplemented with M-CSF or IL-13 to explore whether adaptive immune signaling 

profiles can be restored closer to those of the control group (GOLD 0). 

In the event that supplementation alone fails to reinstate cytokine secretion profiles from 

COPD participants, alternative investigations could be explored. Specifically, given the 

skewedness observed in inflammatory profiles across COPD and GOLD 0 donors (Th1 vs. Th2), 

it could prove insightful to delve into potential epigenetic modifications within immune cells 

from COPD patients that may be favoring this Th1 response. Alterations in chromatin 

accessibility can reflect epigenetic modifications that influence patterns of gene regulation. 

Techniques such as assay for transposase-accessible chromatin with sequencing (ATAC-Seq) 

can be employed to examine how these epigenetic modifications impact the expression patterns 

of genes, helping to draw conclusions about the sources of the proteomic modifications observed 

in our system. 

6.4 Limitations 

The limitations of the work presented in this thesis primarily relate to data availability 

and constraints inherent to our data-driven modeling framework. The cohorts used throughout 

this analysis were comprised of predominantly non-Hispanic white (NHW) participants 

(SPIROMICS: 80% NHW, COPDGene: 70% NHW)235,236. Given the substantial racial-specific 

differences in COPD susceptibility237, our lack of participant diversity limits our insights into the 

utility of our findings in other populations, particularly African-Americans, who compared to 

NHWs have worse outcomes238,239. NHW populations are often overrepresented in COPD 
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research, underscoring the necessity for more diverse cohorts and analyses that recognize race as 

a determinant of pharmacological benefit240,241. 

Our sample sizes and ability for model validation were often restricted due to the 

availability of matched molecular datasets and longitudinal clinical variables. For instance, in the 

SPIROMICS cohort, 40% of participants with available protein measurements lacked 

longitudinal spirometry metrics required for classification. Additionally, in several instances, no 

external cohort was available for validation; however, we took steps to improve the 

generalizability of our models through resampling and cross-validation. Validating machine-

learning models with an independent cohort is essential to evaluating model reproducibility, 

especially for biomarker signatures. Hence, in our analyses that lack proper validation, the 

protein signatures presented are likely better suited for pathway insights than indications of 

clinical biomarkers.  

Percentiles determined the outcomes for our progression models (in Chapter 2 - 

Chapter 4); while this approach has been used previously, it is susceptible to variability 

depending on the demographics of the base cohort. Past studies of spirometric progression using 

percentile cut-offs to define patterns FEV1 decline have reported wide ranges of mean FEV1 

declines in "rapid progressors" varying from annualized rates of -50 to -100 mL97,103. 

Consistency across future studies requires establishing definitions for high-priority outcomes, 

including rapid progression (as measured by spirometry and other CT-based outcomes) and early 

COPD. Definitions for rapid FEV1 decline109 and early COPD112 have been proposed but are not 

yet universally implemented. 

Lastly, while our data-driven approaches allow for insights into co-varying factors 

associated with disease phenotypes, our models, like many other statistical techniques, are 
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limited to providing insights into factors that are correlated with outcomes of interest. Because 

correlation does not always reflect causation, there is no guarantee that the identified associations 

are biologically meaningful or directly contribute to progression. However, our models still offer 

valuable insights and novel integration of multi-compartment data. 

6.5 Future directions for systems-focused research in COPD 

Improving on three key elements can help to improve future systems-level investigations 

into COPD pathobiology: data integration, population selection, and biological interpretation. 

Integration of datasets generated from different molecular levels and tissue compartments is the 

first step in improving network analyses in COPD. These global alterations spanning multiple 

biological regions can improve predictive performance57,93 and uncover intricate mechanistic 

insights into the lung's disease-related biology. Network findings may also improve our 

understanding of how local pathologic changes affect systemic behavior and inform biomarkers 

or pathways measurable in the blood that can reliably reflect pulmonary alterations.  

The selection of the model population is pivotal in establishing robust models that yield 

diverse clinical insights. Notably, future analyses should strive to model distinct subpopulations 

("phenotypes") within COPD, incorporating individuals with demographic diversity. As 

discussed, the heterogeneous nature of COPD patients has posed challenges to achieving 

consistent clinical insights, particularly in terms of reproducibility. However, within this thesis, 

significant success was achieved in generating high-performing models when exploring protein 

associations within well-defined subgroups (e.g., age-dependent emphysema progression). 

Consequently, in future models, insights can likely be improved by focusing evaluations on 

participants exhibiting specific COPD phenotypes or endotypes. However, definitions for 

phenotypes are first needed to ensure consistency and reproducibility across studies. In addition, 
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because data-driven models, like most mathematical or statistical approaches, are only capable of 

identifying trends in the datasets from which they learn, future studies need to make efforts to 

model populations with diverse ethnic and sex representations or create independent analyses 

based on these important demographic factors. Overall, eliminating disparities in medicine and 

research require enrolling more diverse COPD cohorts (based on race, ethnicity, sex, gender, 

etc.) and explicitly discussing the demographic limitations of insights generated from analyses of 

skewed populations. 

Lastly, our current data-driven modeling approach identifies correlations without 

considering underlying biological connectivity between molecular elements (i.e., functional 

networks). In future work, integrating information about network connectivity can help ensure 

that model insights have a basis for biological interpretation that can better inform therapeutic 

targets. Methodologies with these capabilities, such as Elastic-Net based Prognosis Prediction 

(ENCAPP)242, have been developed but have yet to be used in COPD. ENCAPP provides 

insights beyond the correlation of co-varying proteins by mapping protein measurements to 

known protein-protein interaction networks from prior knowledge databases (ex., STRING). The 

weighted contributions of individual proteins to small protein networks are reflected as "module 

scores," which are then used as input to predictive models. This mapping process creates an 

inherent functional basis for the model input, thereby improving interpretability. This approach 

has been used in predicting outcomes in other complex immunological conditions, including 

organ rejection and cancer242,243, and as such, may hold great promise for helping to deconvolve 

COPD pathobiology. 

6.6 Conclusions 

In summary, our study has successfully revealed proteomic signatures capable of 
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distinguishing various subpopulations within COPD. These identified signatures hold biological 

significance and serve as initial reference points for generating novel hypotheses concerning 

disease mechanisms. They also serve as catalysts for exploring novel scientific directions in 

follow-up experiments. Our data-driven methods for signature identification hold potential for 

identifying disrupted signaling pathways linked to COPD outcomes. If robustly validated across 

distinct cohorts, these findings could offer significant clinical value. Moving forward, we aim to 

further validate our data-driven findings in human or murine COPD models, and ultimately 

construct mechanistic models of critical pathogenic pathways and binding events. This would 

enable quantitative investigations of system perturbations and mechanistic theories in silico, thus 

enhancing our understanding of COPD pathology. 
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Appendix A: Supplement to: A Blood and Bronchoalveolar Lavage Protein Signature of 

FEV1 Decline in Smoking-Associated COPD 

 

This data provided in Appendix A was originally published as a supplementary data file 

accompanying scientific article: 

DiLillo KM, Norman KC, Freeman CM, Christenson SA, Alexis NE, Anderson WH, 

Barjaktarevic IZ, Barr RG, Comellas AP, Bleecker ER, Boucher RC, Couper DJ, Criner 

GJ, Doerschuk CM, Wells JM, Han MK, Hoffman EA, Hansel NN, Hastie AT, Kaner RJ, 

Krishnan JA, Labaki WW, Martinez FJ, Meyers DA, O’Neal WK, Ortega VE, Paine R, 

Peters SP, Woodruff PG, Cooper CB, Bowler RP, Curtis JL, Arnold KD. (2023). A blood 

and bronchoalveolar lavage protein signature of rapid FEV1 decline in smoking-

associated COPD. Scientific Reports, 13(1):8228. https://doi.org/10.1038/s41598-023-

32216-0 

Changes made to the original document are mainly cosmetic to adhere to the format of this 

document. 
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Supplemental Table A.1. Baseline demographics of COPD cases and TEPPS reference group 

 
 TEPPS§ 

(N=40) 

Greater 
Decliners** 

(N=14) 

Lesser 
Decliners 
(N=31) 

P-Value 

Age*  59.3 (± 8.67) 64.2 (± 6.24) 63.1 (± 8.41) 0.068 

Currently Smoking*  13 (32.5%) 5 (35.7%) 10 (32.3%) 0.97 

BMI*  29.3 (± 5.01) 27.9 (± 3.67) 27.8 (± 5.43) 0.41 

Sex (Male)  17 (42.5%) 12 (85.7%) 17 (54.8%) 0.02† 

Race (White/Other)  29/11 (72.5%) 12/2 (85.7%) 25/6 (80.6%) 0.52 

ICS use* (yes)  2 (5.0%) 3 (21.4%) 14 (45.2%) 0.0003‡ 

FEV1* (% predicted)  100.4 (± 13.1) 84.2 (± 13.1) 71.1 (± 17.7) < 0.0001†‡ 

FEV1/FVC*  0.78 (± 0.04) 0.60 (± 0.08) 0.57(± 0.10) < 0.0001†‡ 

FEV1* (L)  2.89 (± 0.69) 2.63 (± 0.60) 2.11 (± 0.66) < 0.0001‡ 

Visit 5 FEV1 (L)  2.74 (± 0.77) 1.97 (± 0.67) 1.93 (± 0.68) < 0.0001†‡ 

Time from baseline 
to Visit 5 (yrs.) 

 6.18 (± 0.93) 6.25 (± 0.76) 6.33 (± 0.91) 0.77 

Time from baseline to 
bronchoscopy (months) 

 12.5 (±11.1) 20.4 (± 10.0) 20.3 (± 12.5) 0.0107‡ 

∆FEV1 (mL/yr.)  -25.7 (± 47.5) -104.6 (± 32.0) -28.8 (±21.5) < 0.0001† 
One-way ANOVA with Tukey’s post hoc test or chi-squared test were used to determine significance. Bold values 
denote significant differences between groups (p < 0.05). 

* Demographic information from baseline visit (Visit 1) 
† Significant difference between TEPPS and greater decliners 
‡ Significant difference between TEPPS and lesser decliners 
§ Tobacco-exposed people with preserved spirometry (TEPPS); n=2 removed prior to analysis due to 
identification as outliers (see pg. 34) 
** Defined as annualized decline in FEV1 ≥ 70 mL/year (see pg. 34) 
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Supplemental Table A.2. Demographics of study group compared to full SPIROMICS bronchoscopy sub-study 
cohort 

 Study Group 
(N=85) 

Full Bronchoscopy Cohort  
(N=188) P-Value 

Age* 61.5 (± 8.41) 60.1 (± 8.89) 0.24 

Currently Smoking* 28 (32.9%) 81 (43.1%) 0.11 

BMI* 28.5 (± 5.01) 28.5 (± 4.97) 0.99 

Sex (Male) 46 (54.1%) 104 (55.3%) 0.85 

Race  
(White/Other) 66/19 (77.6%) 131/57 (69.7%) 0.17 

ICS use* (yes) 19 (22.4%) 37 (19.7%) 0.61 

FEV1* (% predicted)  87.0 (± 19.9) 88.1 (± 19.1) 0.67 

FEV1/FVC* 0.67 (± 0.12) 0.68 (± 0.12) 0.75 

FEV1* (L) 2.56 (± 0.75) 2.59 (± 0.76)  0.75 

Visit 5 FEV1 (L) 2.32 (± 0.82) 2.33 (± 0.80) 0.87 

Time from baseline  
to Visit 5 (yrs.) 6.25 (± 0.89) 6.28 (± 0.97) 0.81 

Time from baseline to  
bronchoscopy (months)  16.6 (± 12.0) 15.2 (± 12.4) 0.37 

∆FEV1 (mL/yr.) -39.8 (± 47.0) -34.4 (± 51.7) 0.46 
Unpaired two-tailed t-test or chi-squared test were used to determine significance. 
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Supplemental Figure A.1. CONSORT diagram 
Schematic illustrating the inclusion criteria and patient breakdown of participants with a history of smoking from 
SPIROMICS I bronchoscopy sub-study (n=215) included in analysis. 



 118 

 

Supplemental Figure A.2. Differential expression of cross-compartment proteins between sexes.  
Volcano plot of blood and BAL proteins (two-sampled, two tailed t-test). Yellow markers represent proteins which 
have p-value < 0.05 after correction for multiple comparison using Benjamini-Hochberg false discovery rate (FDR) 
(α = 0.05). 

 

 

Supplemental Figure A.3. 52-ft cross-compartment signature is not influenced by participants’ smoking status or 
ICS use.  
PCA was completed with the 52 (blood and BAL) proteins identified in the multi-compartment progression 
signature (Figure 2.2; n=45). Participants (n=45) are classified into two groups using self-reported (a) baseline 
smoking status (current/ former) or (b) ICS use within three months of the baseline visit (yes/no). P-values reported 
from a permutation test (n = 2000 permutations) between groups’ mean scores across PC1 and PC2. 
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Supplemental Figure A.4. The 52-feature elastic net-identified signature outperforms random variants of equal size. 
Comparison of optimal model CV accuracy (98.4%) to average performance of 1000 random variant signatures, 
generated by selecting randomized feature sets (proteins) from the original dataset (1322 proteins) at a size equal to 
our optimal signature (52 features; two-tailed two-sample t-test; ****p < 0.0001).
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Supplemental Figure A.5. Multi-compartment progression signature is significantly enriched in an alternative, more 
stringent definition of rapid lung function decline. 
(a) PCA completed with the 52 (blood and BAL) proteins identified in the multi-compartment progression signature 
(Figure 2.2). Participants (n=45) are classified into 3 groups using the alternative progression definitions proposed 
by Anderson et al.109: rapid decliners (circles; >100 mL/year), decliners (squares; 20 – 100 mL/year), 
stable/improvers (triangles; < 20 mL/year). (b) Comparisons of participant scores across PC1 show significant 
enrichment of signature in rapid decliners by this definition, compared to decliners and stable/improvers (one-way 
ANOVA with Holm-Šídák's multiple comparisons test; *p < 0.05, ** p < 0.01, *** p < 0.001).
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Supplemental Figure A.6. Classifications are not largely affected by alternative calculations of spirometric decline.  
(a) Visualization of the impact of calculating FEV1 decline using 2 data points (Visit 1 and Visit 5) versus all 
available longitudinal spirometry. FEV1 declines using 2 data points (left) were calculated using the 2-point slope 
equation: 𝑉𝑉5 𝐹𝐹𝐹𝐹𝑉𝑉1−𝑉𝑉1 𝐹𝐹𝐹𝐹𝑉𝑉1

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓𝑇𝑇 𝑉𝑉5 𝑡𝑡𝑓𝑓 𝑉𝑉1
 .  The multiple point estimate (right) was defined as the slope (𝛽𝛽1) of the linear regression 

equation 𝐹𝐹𝐹𝐹𝑉𝑉1 = 𝛽𝛽0 + 𝛽𝛽1(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑇𝑇 𝑉𝑉1) for each participant. (b) Plot of FEV1 (mL/yr.) values generated from 
the linear regression approach, grouped into greater or lesser decliners based on their 2-point slope evaluations 
scheme. A two-sample t-test suggests that using only Visit 1 and 5 data is sufficient to capture more complex 
progression trends. (c) Plot of lung function decline calculated using FEV1 % predicted at Visit 1 and 5 exhibit 
similar distributions as the original calculations, which use absolute FEV1 (two-sample t-test; ****p < 0.0001). Red 
points denote participants classified as greater decliners in all plots as per the 2-point evaluation calculations 
completed with absolute FEV1. For all estimates, the change in time was calculated using the visit dates for each 
participant; calculations assumed a fixed-length year equal to 365.2425 days. 

 

 

Supplemental Figure A.7. The 52-feature signature significantly outperforms analyses based on individual proteins. 
(a) Comparison of 6-fold cross-validation (CV) accuracies, (b) sensitivities, and (c) specificities between optimized 
data-driven signature and the top six individually identified proteins in Fig. 1b. One-way ANOVA with Dunnett’s 
post hoc test; *p<0.05, **p<0.01.
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Supplemental Figure A.8. 52-feature cross-compartment signature can differentiate TEPPS from greater decliners 
but not lesser decliners.  
(a) PCA scores plot generated with the 52 signature-identified cross-compartment proteins of greater decliners 
(circles), lesser decliners (squares), and a reference group of tobacco-exposed people with preserved spirometry 
(TEPPS) (diamonds). First two principal components (PCs) capture 17% of the variance in the dataset. P-values 
reported from a permutation test (n = 2000 permutations) between groups’ mean scores across PC1 and PC2. (b) 
Protein loadings across PC1 and PC2. 
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Supplemental Figure A.9. Complement profiles from greater decliners significantly differ from lesser decliners.  
PCA of all complement proteins measured in plasma (including C1q, C1qBP, C1r, C2, C3d, C3b, C3, C3a, iC3b, 
C3a des Arg, C4, C4b, C5, C5a, C5-6, C6, C7, C8, C9, Factor B, Factor D, Properdin). The first two principal 
components collectively capture 34.8% of total variance. P-value shown for two sample, two-tailed t-test of PC1 
scores across groups. 
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Supplemental Figure A.10. PC1 scores from the complement-specific PCA highly correlate with decline in FEV1 
(mL/yr.).  
This analysis uses the PC1 scores from Supplemental Figure A.6. (a) Pearson correlation of PC1 scores and FEV1 
mL/ year in a model with greater decliners and lesser decliners alone and (b) with the addition of a reference group 
of tobacco smoke-exposed persons with preserved spirometry (TEPPS). (c) Observed relationship between 
complement protein profiles on PC1 and FEV1 decline remains significant after adjusting for clinical covariates (p-
value shown for linear regression adjusted for age, race, height, sex, baseline FEV1% predicted, smoking status, ICS 
use within three months of baseline visit, and pack-years). 

 

 

Supplemental Figure A.11. Univariate comparison of complement cascade proteins in blood.  
Participant groups are as in the legend to Supplementary Figure 7. Individual levels of complement-associated 
proteins in greater decliners, lesser decliners, and TEPPS reference group (one-way ANOVA with Tukey’s post hoc 
test; *p<0.05, **p<0.01, ***p < 0.001). 
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Supplemental Figure A.12. Complement profiles are not influenced by participants’ smoking status or ICS use.  
Complement PCA profile (Figure 2.4; n=83) classified into two groups using self-reported (a) baseline smoking 
status (current/ former) or (b) ICS use within three months of the baseline visit (yes/no). P-values reported from a 
permutation test (n = 2000 permutations) between groups’ mean scores across PC1 and PC2. 
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Supplemental Figure A.13. Stepwise PLSDA identified minimal signatures with strong cross-validated performance.  
Plot of calibration and CV errors from stepwise PLSDA models for (a) cross-compartment and (b) blood-only 
datasets. Smaller models that separated groups with statistically comparable CV accuracies to the 52-feature models 
are highlighted with call out boxes (11-feature signature: 88.4%; 6-feature signature: 81.6%; 10-feature signature: 
86.8%; 5-feature signature: 81.6%). Accompanying lists on the right depict the order of proteins added in models 
based on Elastic Net resampling selection frequency of proteins (1 = most frequently selected). Highlighted proteins 
denote those in the identified minimal signatures displayed in the plots.
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Supplemental Figure A.14. ROC curves from PLSDA models generated from minimal signatures.  
ROC curves from cross-compartment and blood minimal signatures generated from (a) calibration and (b) CV 
PLSDA models. 

 

 

Supplemental Figure A.15. Cross-validation accuracies do not significantly vary between optimal model and smaller 
variants.  
Comparisons of 6-fold CV accuracies between models (one-way ANOVA with Dunnett’s post hoc test).
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Appendix B: Supplement to: Multivariate Proteomic Signatures Reveal Age-Dependent 

Mechanisms Contributing to Progression in Smoking-Associated Emphysema 

Supplemental Table B.1 Baseline demographics for ∆PRMfSAD models 

  
Fast  Slow/Stable  Overall 

   Older 
(N=43) 

Younger 
(N=36) 

 Older 
(N=43) 

Younger 
(N=36) 

 Older 
(N=86) 

Younger 
(N=72) 

Age   71  
(± 4) 

52 
 (± 3) 

 70 
 (± 3) 

50  
(± 3) 

 71  
(± 4) 

62 
 (± 9) 

Currently 
Smoking 

  16 
(37%) 

25 
(69%) 

 4 (9%) 17 
(47%) 

 20 (23%) 42 
(58%) 

BMI   28 
 (± 5) 

28 
 (± 6) 

 29 
 (± 5) 

29 
 (± 9) 

 29 
 (± 5) 

29 
 (± 7) 

Sex  
(Male) 

  19 
(44%) 

18 
(50%) 

 23 
(53%) 

12 
(33%) 

 42 (49%) 30 
(42%) 

Race  
(White / Other) 

  41/2 
(95%) 

29/7 
(81%) 

 43/0 
(100%) 

28/8 
(78%) 

 84/2 
(98%) 

57/1 
(79%) 

ICS use (yes)   1 (2%) 0 (0%)  0 (0%) 2 (6%)  1 (1%) 2 (3%) 

FEV1  
(% predicted)  

  85  
(±21) 

92 
 (± 19) 

 85  
(±18) 

94  
(± 11) 

 85 
 (±20) 

93 
 (± 22) 

FEV1/FVC   0.66 
 (± 0.1) 

0.71 
(± 0.1) 

 0.68  
(± 0.1) 

0.79  
(± 0.1) 

 0.67  
(± 0.1) 

0.75 
(± 0.1) 

FEV1 (L) 
  2.1  

(± 0.55) 
2.9  

(± 0.61) 
 

2.4 
 (± 

0.64) 

3.0 
(± 0.75) 

 2.2  
(± 0.6) 

3.0  
(± 0.7) 

PRM
fSAD 

(%) 
  14  

(± 8.5) 
8.0 

(± 6.0) 
 21 

 (± 8.9) 
7.5  

(± 5.1) 
 18 

 (± 9) 
7.7 

 (± 5) 

∆PRM
fSAD

 (%) 
 11  

(± 12) 
9. 7 
(± 9)  -6.6  

(± 6) 
-2.4 

 (± 4)  2.2 
 (± 13) 

3.6  
(± 9) 

Two-sample, two-tailed t-test or Fisher’s exact test were used to determine significant differences. Individual 
statistical tests were evaluated for younger vs older comparisons in fast, slow/stable, and overall columns. Bold 
values denote a statically significant difference between younger and older groups (p<0.05). 
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Supplemental Figure B.1. ∆PRMEmph signatures is not influenced by participants’ smoking status or baseline FEV1% 
predicted.  
PLSDA profiles (Figure 4.2; n=158) alternatively colored by self-reported (a) baseline smoking status (current/ 
former) or (b) baseline FEV1% predicted after bronchodilator administration. Color bar denotes FEV1% predicted at 
baseline.  
 

 

 

 

Supplemental Figure B.2. ROC curves for ∆PRMEmph signature.  
Receiver operating characteristic curves for ∆PRMEmph PLSDA model (Figure 4.2). Blue lines and green lines 
represent ROC curves for the calibration and cross-validation models, respectively. The red circles denote the 
decision thresholds for PLSDA classification. Each plot summarizes the classification ability of one class used in the 
model: (a) older slow/stable (b) older fast (c) younger slow/stable (d) younger fast. 
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Supplemental Figure B.3. Elastic net and PLSDA identify 35 plasma proteins that can moderately differentiate ever-
smokers based on their age and relative magnitudes of functional small airways disease progression after 5-years.  
(a) PLSDA scores plot highlighting 35-protein signature selected by bootstrap elastic net. Signature differentiates 
between younger (orange) and older (blue) ever-smokers with relative fast (darker) or slow (lighter) with 81.7% 
calibration and 79.4% cross-validation (CV) accuracy. (b) The two latent variable (LV) model captures 20.4% of the 
total variance in the dataset. LV1 separates ever-smokers based on age (with negatively loaded proteins being 
comparatively increased in older ever-smokers and positively loaded proteins being comparatively reduced). LV2 
only successfully separates individuals based on their relative rates of progression in the younger population. 

 

 

 

Supplemental Figure B.4. ROC curves for ∆PRMfSAD signature.  
Receiver operating characteristic curves for ∆PRMfSAD PLSDA model (Supplemental Figure B.3). Blue lines and 
green lines represent ROC curves for the calibration and cross-validation models, respectively. The red circles 
denote the decision thresholds for PLSDA classification. Each plot summarizes the classification ability of one class 
used in the model: (a) older slow/stable (b) older fast (c) younger slow/stable (d) younger fast.
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Appendix C: Supplement to: Cytokine-Chemokine Network Changes in the Immune 

Responses of Individuals with COPD 

 

Supplemental Figure C.1. Hierarchal clusters generated from VIP-selected protein signatures differentiating GOLD 
0 and COPD paracrine secretions.  
Clustering of PBMCs stimulated with (a) anti-CD3/CD28 (b) LPS/ TLR-4, and (c) R848/ TLR7/8 stimuli for 6- and 
72-hours. Clusters were performed with complete linkage and Pearson correlations. Clustering identified COPD 
participants with (a) 100% sensitivity and 71% specificity (b) 69% sensitivity and 35% specificity, and (c) 100% 
sensitivity and 64% specificity. Color bars denote participant identity (GOLD 0 or COPD). In each cluster the darker 
and lighter shades denote COPD and GOLD 0, respectively. Time of cytokine collection is indicated in paratheses to 
the right of the protein name. 
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Supplemental Figure C.2. Plot of the top 5 most important features in LPS and R848 random forest models. 
Most important features in the (a) LPS and (b) R848 random forest models contributing to differentiation of GOLD 
0 and COPD cytokine profiles. Importance was determined by the percent accuracy each protein contributes to the 
overall classification accuracy of the model. X-axis denotes the percent accuracy lost by the overall model if the 
cytokine in question is removed. Measurements obtained at 6 hours are labels as such, all other protein 
measurements were collected at 72 hours. 
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Supplemental Figure C.3. Correlations between CD4+ T cell percentages and IL-13 and M-CSF concentrations at 6 
hours from PBMCs 
PBMCs from (a-b) GOLD 0 and (c-d) COPD donors after stimulation with anti-CD3/CD28. M-CSF and IL-13 
concentrations are background-adjusted. P-values are reported from Pearson correlations between cytokine 
concentrations and 6-hour CD4+ T cells percentages.  
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Supplemental Figure C.4. Pearson correlations between LV1 scores and early proteins in the longitudinal anti-
CD3/CD28 model.  
LV1 scores used in this analysis were generated from the VIP-selected PLSDA model built with 72-hour cytokine 
secretions after anti-CD3/CD28 stimulation (Figure 5.6a). Bolded correlation coefficient denote correlation with 
significant p-values (p < 0.05).  

 

 

Supplemental Figure C.5. Spearman correlation coefficients between early M-CSF and IL-13 and late cytokines. 
Correlation coefficients between early (a) M-CSF and (b) IL-13 secretions (at 6 hours) with 72-hour protein 
measurements. Only 72-hour proteins which were significant in either the GOLD 0 or COPD classes were included 
in the figure. Bolded values are associated with significant p-values (p<0.05). Color bar indicates correlation 
coefficient.  Color bar represents the value of the correlation coefficient. 
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