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ABSTRACT

Modeling the ocean is critical for understanding both present and future risks

posed by climate change on coastal communities. Ocean tides in these regions will

continue to change over the following decades, yet tides are seldom resolved in climate

models; historically, tides have been modeled separately from the oceanic general cir-

culation. This work seeks to improve barotropic tidal modeling in the Department of

Energy’s Model for Prediction Across Scales, or MPAS-Ocean, and to use the result-

ing tide capabilities to examine potential future changes to tides. We first describe

the implementation of an inline self-attraction and loading Self-Attraction and Load-

ing (SAL) calculation into MPAS-Ocean. When the sea-surface height over a column

of ocean moves up and down, this change in mass loading causes small deformations

of the Earth’s crust. This deformation, along with changes in the gravitational po-

tential of the deformed Earth and ocean, are known as “self-attraction and loading.”

We implement an inline SAL calculation using the fast spherical-harmonic transform

package SHTns and compare the resulting tidal errors to the more common (and

computationally cheaper) scalar approximation. We also compare the model’s per-

formance on quasi-uniform meshes and a variable-resolution mesh. We examine the

root-mean-square error of our modeled tides when compared to a benchmark tidal

dataset called TPXO8 and show that the variable resolution mesh and inline SAL

xiii



calculations reduce the errors. We also find that the computational cost of SAL can

be reduced by updating the term as infrequently as 10-15 minutes without sacrificing

tidal error. The next improvement to the tidal model is carefully selecting a pa-

rameterized topographic wave drag Topographic Wave Drag (TWD). TWD occurs

as tides flow over the ocean floor, leading to energy dissipation into the baroclinic

tide. This process cannot be resolved directly in our single-layer barotropic model

and must be parameterized. We compare three methods of parameterization. Two

are scalar methods, based upon papers by Jayne and St. Laurent Jayne and St.

Laurent (topographic wave drag scheme) (JSL) and Zaron and Egbert Zaron and

Egbert (topographic wave drag scheme) (ZAE); one is a tensor method: Local Gen-

eration Formula Local Generation Formula (topographic wave drag scheme) (LGF).

The main difference between the first two schemes lies in how the floor roughness is

incorporated: JSL uses the standard deviation of topography, while ZAE uses the

gradients. The tensor scheme is a simplification of the Nycandar formulation, which

has the most thorough physical justification of the three schemes. We find that the

most significant improvements in tides came from the ZAE scheme, leading to an

improvement of 1.6 cm over the JSL scheme, with LGF landing in the middle. Fi-

nally, using the results of this model development, we examine how tides might look

in a future climate by running simulations in MPAS-Ocean with sea-level change,

ice-shelf cavity geometry, and landfast ice. We adopt regionally varying sea-level and

ice shelves from moderate and extreme future scenarios. The sea-level changes exert

the most influence in near-shore regions, while the ice shelves have more impact on

the global ocean. However, some near-shore areas see more or comparable impact

from ice shelves than sea-level rise, indicating the importance of accounting for cavity

geometry in future tide simulations.

xiv



CHAPTER I

Introduction

The Earth has experienced 1.1oC warming since the pre-industrial age (Lee et al.,

2024) with future warming expected to rise above 2.0oC by 2100 (Raftery et al., 2017).

The continuing impacts of increased temperatures are felt in many regions, partic-

ularly coastal and tropical areas with vulnerable populations. Modern-day climate

simulations involve the statistical analysis of results from dozens of climate models

run on massive supercomputers. Building models to predict global changes requires

combining numerous processes occurring within the Earth System. To this end, cli-

mate models typically couple together atmosphere, land, sea ice, and ocean models

into what are known as Earth System Models. The results of these models help guide

policymakers and the public to implement various adaptations and mitigations to

reduce the impact on society and the environment.

The study of how greenhouse gases impact global temperatures can be traced back

to Jean-Baptiste Joseph Fourier, well known for his development of the heat equation

and Fourier analysis. At the start of his 1827 paper, he asserts that understanding the

Earth’s temperature distribution is one of the most important subjects in the natural

sciences (Fourier , 1827). Fourier went on to describe qualitatively how temperatures

at the surface of the Earth depend on the energy balance between incoming solar

radiation and outgoing infrared radiation. At the time, there was little understanding
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of the nature of infrared light, referred to as “dark heat” by Fourier, but it was known

that the atmosphere was relatively opaque to this form of energy, thus trapping the

heat near the surface of the Earth.

The 1800s saw experiments to better understand the absorption of heat by gases,

including carbon dioxide. The first known experimental demonstration of the dif-

ference in heating of gases containing different amounts of water vapor and carbon

dioxide was performed by Eunice Foote (Foote, 1856). In her paper, she placed

gas and a thermometer inside a container and measured the different temperatures,

discovering three primary results. First, warming increases with increased density.

Second, warming increases with increased humidity. Finally, warming increases with

increased carbonic acid, or CO2. She further connected this work to climate impacts

by suggesting that based on these results, increased carbon dioxide levels could ex-

plain warmer climates of past eras of the earth (Ortiz and Jackson, 2022). Three years

after her discoveries, Tyndall (likely unaware of Foote’s work) found similar results

(Tyndall , 1861). His experimental setup used a heated cube to measure the impact of

specifically longwave infrared radiation on gases. It is this longwave radiation which

is primarily responsible for the greenhouse effect in the atmosphere.

Svante Arrhenius was the first in 1896 to attempt to calculate, from a simple

quantitative model, the temperature change resulting from differing concentrations

of CO2 in the atmosphere (Arrhenius , 1896). In his model, he set up an energy bud-

get for a column of the Earth, accounting for incoming light from the sun, outgoing

infrared radiation from the Earth, and the absorption and emission of light by gases

in the atmosphere. Using best estimates for the time of the absorption coefficients of

atmospheric gases, Arrhenius calculated that doubling CO2 would result in a temper-

ature change of 6oC. Despite issues in his calculations stemming from the poor data

available at the time and the use of a simplified, globally averaged model, he managed

to arrive at a value similar to modern estimates of 2.5-4oC (Masson-Delmotte et al.,
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2021).

The general viewpoint at the time was that doubling CO2 would likely take cen-

turies and that some warming would be a pleasant welcome. Thus, the next few

decades saw more focus on forecasting weather (short-term fluctations over a few

days) than climate (long-term, averaged conditions). Vilhelm Bjerknes was one of

the first to suggest that, with enough observational data, the weather could be pre-

dicted by numerically integrating the correct equations. His paper laid out a potential

atmospheric model comprised of seven equations based on fluid dynamics and ther-

modynamics (Bjerknes , 1904). To circumvent the difficulties of numerically solving

these equations, which would have been done by hand at the time, he suggested a

graphical method of determining the solutions. Bjerknes continued work on develop-

ing graphical calculus methods so that maps of current atmospheric conditions could

be used to generate maps of future conditions. While his method was somewhat less

accurate, it was still a more appealing forecasting method than tediously solving the

equations numerically by hand.

Lewis Fry Richardson, inspired by Bjerknes, decided to pursue the daunting task

of numerically integrating the atmospheric equations forward in time to produce a

forecast of the weather. In his 1922 book “Weather Prediction by Numerical Process,”

he detailed the exact method required to predict atmospheric conditions 6 hours into

the future on a global grid with 200 km resolution (Richardson, 1922). His sample

calculation on just a couple of grid cells took six weeks to complete, resulting in

a predicted pressure change that was wrong by a factor of roughly one hundred.

Despite this failure, he believed better observational data would improve results and

imagined a scenario in which real-time forecasts could be done by employing a factory

of 64,000 (human) computers. While an incredibly ambitious suggestion for the pre-

digital era, the practical result of his book was to convince meteorologists of the time

that numerical weather prediction was utterly infeasible (Nebeker , 1995).
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While meteorological work continued to develop over the following decades, the

topic of numerically solving the atmospheric equations didn’t return until after World

War II. Efforts during the war led to improvements in technology and the develop-

ment of computers while cementing the importance of meteorological forecasting and

observational data for military interests. The result was a period of rapid progress in

the field, helped by John von Neumann, one of the pioneers of modern computing,

who identified weather forecasting as a problem particularly suited to solution with

computers. He assembled a team to work on this problem, resulting in a successful

numerical integration, in 1948, of the simplified quasigeostrophic vorticity equation

using the early ENIAC computer (Charney , 1948). The door was open now for nu-

merical integration to be practically implemented. The years following saw improve-

ments in computational power, methods, and data collection, leading to increased

model complexity, resolution, and accuracy. Additionally, interest began building to

study not just the short-term weather but also longer-term climate trends.

While the fundamental equations for weather and climate simulations are the

same, there are practical differences in the needs and limitations of the models.

Weather simulations are incredibly sensitive to initial conditions, requiring excel-

lent data to predict the exact conditions that will be seen over the course of days.

Meanwhile, climate models are not expected to replicate exact future states at spe-

cific locations and times. Their accuracy depends more heavily on having the correct

statistics about weather and are thus more sensitive to boundary conditions than

initial conditions. To better predict long-term outcomes, climate models couple at-

mospheric models with ocean, land, and sea ice models. This improves the boundary

forcing while allowing the other components to simultaneously evolve in time with

the atmosphere. For example, the ocean stores and transports both heat and car-

bon, the land surface contains vegetation, ice, and other elements that impact albedo

and carbon, and sea ice impacts albedo and the heat fluxes between the ocean and
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atmosphere.

A return to the question of climate sensitivity in the atmosphere was made by

Syukuro Manabe’s energy balance model in 1967 (Manabe and Wetherald , 1967),

which estimated warming of 2oC with doubled CO2. The revolution in computa-

tional technology, combined with much more complete data on the absorption spectra

of gases, meant it was now possible to fix several issues found in the energy budget

analysis of Arrhenius, thus marking the first realistic and sound estimate of climate

sensitivity. The model used up-to-date data on the absorption spectra of atmospheric

gases but was still a globally averaged model that did not show how these tempera-

ture changes would vary spatially across the globe. The need to understand regional

variations in climate, along with the help of computational improvements made in

the domain of weather forecasting, resulted in the first fully three-dimensional atmo-

spheric general circulation model (Smagorinsky et al., 1965). Alongside this devel-

opment, Kirk Bryan worked on an ocean general circulation model that could run

alongside the atmospheric model, providing the necessary boundary forcing (Bryan,

1969b; Manabe and Bryan, 1969).

Recent decades have seen continued increases in the quality of observational data,

model resolution, and computational power, resulting in more accurate and complex

models. To account for model biases, simulations are performed using many different

models following pre-determined emission scenarios. However, limitations in com-

putational abilities, as well as historical precedent, still lead to many simplifications

in the ocean component of climate models. For instance, ocean general circulation

models used in climate studies generally do not explicitly represent tides. Instead,

when they pay attention to tides at all, they often rely on pre-calculated maps of tidal

amplitudes and phases. Part of the difficulty in representing tides is the difference

in time scales between tides and climate. Most climate models perform decade-to-

century simulations, while tides occur on daily time scales. However, tides can change
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along with climate. Many recent studies show how and why tides are changing, with

near-term causes mainly due to changes in geometry around coastlines and ice shelf

cavities (Haigh et al., 2020). The largest changes in tides tend to occur around coast-

lines, where tides themselves are the largest. Already, there is observational data of

statistically significant trends in tidal levels, sometimes of a similar order in magni-

tude to sea-level rise itself (Mawdsley et al., 2015). Near the shore, changes in high

tides can compound with storm surges and sea level rise to exacerbate coastal flood-

ing. Understanding these interactions can help in predicting future tidal changes and

the resulting implications for coastal communities. Tides also interact with other

components of the Earth System, such as sea ice, ice shelves, and estuaries. For

these reasons, there has been a recent push to find ways to include or improve tidal

representation in global climate models.

The following work discusses efforts to implement and improve tides within the De-

partment of Energy’s Model for Prediction Across Scales Model for Prediction Across

Scales (MPAS) ocean model. Chapter 2 will describe the equations necessary for

ocean and tide modeling and some of the assumptions and simplifications commonly

used in modern ocean models. Chapter 3 consists of a published paper on adding “in-

line” self-attraction and loading to the tidal calculations in the MPAS-Ocean model,

where the terms “inline” and “self-attraction and loading” will be explained in that

chapter. Chapter 3 includes an evaluation of the improvement in tidal errors with

inline self-attraction and loading and contains an analysis of the computational costs

involved. Chapter 4 presents a test of multiple parametrizations of topographic wave

drag, and the further reductions in tidal errors accomplished with these parameteri-

zations. With tides now adequately included in the model, Chapter 5 examines how

those tides may change with future climate, through simulations of tides under dif-

ferent states of sea-level rise and ice melt. The work concludes with a summary in

Chapter 6.
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CHAPTER II

Ocean and Tide Modeling

2.1 Ocean Primitive Equations

The governing equations for ocean models are typically variations of the primi-

tive equations, first described by Vilhelm Bjerknes (Bjerknes , 1904). These consist

of two-dimensional horizontal momentum equations, a mass conservation equation, a

thermodynamical equation of state, a hydrostatic equation, and advection-diffusion

equations describing the evolution of tracers in the ocean (e.g., salinity and tempera-

ture). In the work presented here, the model is run in barotropic mode, which assumes

that the ocean has a single layer of homogeneous density. In planned future work, our

collaborators will build upon our work here with simulations of tides in the stratified

ocean environment.

2.1.1 The Lagrangian Derivative

The Lagrangian (or material) derivative is a critical tool for continuum dynamics

and can be explained in terms of its contrast with the more traditional Eulerian

derivative. For the Eulerian time derivative d/dt, the focus is on how a given field

changes in time at a fixed position in space. The Lagrangian derivative, D/Dt instead

focuses on how the field changes from the perspective of a mass parcel that travels

through the field. We can write out the definition for the Lagrangian derivative as
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follows. For some field, θ, we can express the changes in both space and time of the

field.

δθ =
∂θ

∂t
δt+

∂θ

∂x
δx+

∂θ

∂y
δy +

∂θ

∂z
δz (2.1)

For velocity field ~v = (∂x
∂t
, ∂y
∂t
, ∂z
∂t

) the total Lagrangian derivative can be expressed as

follows.

Dφ

Dt
=
∂θ

∂t
+
∂θ

∂x

∂x

∂t
+
∂θ

∂y

∂y

∂t
+
∂θ

∂z

∂x

∂t
=
∂θ

∂t
+ ~v · ∇θ (2.2)

2.1.2 Momentum Equation in a Rotating Frame

A force acting on a fluid parcel will cause it to advect. For a parcel of density ρ

and volume V , a force per unit volume F , then

∫
V

FdV =
D

Dt

∫
V

ρ~udV. (2.3)

Since the Lagrangian derivative on a volume can be expressed as Dt

∫
ρ~udV =∫

ρDt~udV (e.g., Vallis (2017)), then we can rewrite the advection term as the follow-

ing.

1

ρ
~F =

D~u

Dt
(2.4)

Fluids experience pressure, p as a force acting inwardly on the surface, S, of the

parcel. Expressing this as a force due to pressure and using the divergence theorem,

we can find the following equation.

~Fp =

∫
v

~fpdV = −
∫
S

pdV = −
∫
V

∇pdV (2.5)

Next, we can consider the impact of the Earth’s rotation on the form of the mo-

mentum equation. Acceleration in a rotating frame (R) can be related to acceleration

in an inertial frame (I) in terms of position (~r) and the angular velocity of the rotating
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frame (~Ω)

d

dt

∣∣∣∣∣
R

uR =
d

dt

∣∣∣∣∣
I

uI − 2~Ω× ~vR − ~Ω× (~Ω× ~r) (2.6)

The centrifugal term, −~Ω× (~Ω×~r), is incorporated into an “effective gravity” and is

often not discussed further; see Durran (1993) for a notable exception. However, the

Coriolis term, −~Ω× ~vR, must be included in the momentum equation.

Additional forces can be included as needed, such as diffusive and friction terms.

We can express these as ~F , resulting in the following momentum equation.

D~u

Dt
+ 2~Ω× ~u = −1

ρ
∇p+ ~F (2.7)

2.1.3 Hydrostatic Balance

The hydrostatic balance is a simplification often made to reduce the number of

variables in the model by reducing the momentum equation from a 3-dimensional

equation to a horizontal 2-dimensional equation within a single layer. A typical

ocean model can feature multiple vertical layers described by the 2D equations to

account for stratified layers within the ocean. The approximation assumes that in

the vertical direction, the gravity is exactly balanced by the pressure gradient:

∂p

∂z
= −ρg (2.8)

Here, p is the pressure, g is gravitational acceleration, ρ is density, and z is the vertical

coordinate. The assumption behind this approximation is that accelerations in the

vertical component, Dw/Dt, are negligible compared to gravity and pressure.

2.1.4 Mass Continuity

To derive the mass conservation equation, we can consider a volume V in which

fluid can flow in and out. The amount of fluid passing through the surface S must
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balance the rate of mass change of the volume.

∫
V

∂ρ

∂t
dV =

∫
S

(ρ~u) · d~S =

∫
V

∇ · (ρ~u)dV (2.9)

With the help of the divergence theorem in the last step, we can equate the terms

inside the first and last integrals to get the continuity equation. Often, we can assume

that the fluid is incompressible. This further simplifies the equation since the density

will not change, thus Dρ/Dt = 0, and only the divergence of velocity remains.

~∇ · ~u = 0 (2.10)

This change turns the mass conserving term into a volume conserving term. While

this is a decent approximation for most ocean modeling, it does have two important

implications. First, an incompressible fluid does not transmit sound waves, which

could be important for ocean applications such as sonar waves. Second, it does not

allow for “steric” sea-level rise which occurs as ocean density changes with tempera-

ture.

2.1.5 Tracers and Thermodynamic Equation

Tracer equations describe the transport of tracers, which consist of either ther-

modynamic properties or substances that are conserved during advection and can be

used to trace the flow of fluid. For ocean climate modeling, the two main tracers

are potential temperature and salinity. Since these are also conservation equations,

they are similar to the mass continuity equation, but with the addition that tracers

can experience diffusion (D) and external forcing (F). The governing equation for a

tracer ϕ is:

∂ϕ

∂t
+∇(ϕ~v) = D + F (2.11)
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Along with the tracer equations we must have an equation of state relating the

density, pressure, potential temperature (Θ), and salinity (S):

ρ = ρ(Θ, S, p), (2.12)

where potential temperature is a variable that has removed the effects of compressible

heating. There are a number of versions of this equation of state which are generally

determined through empirical data. A very simple example of an equation of state is

the following linear equation:

ρ(Θ, S, p) = ρ0
(
1− α(Θ−Θ0) + β(S − S0) + γ(p− p0)

)
. (2.13)

In this example, we can see how density will increase with increasing salinity and

pressure while decreasing with increased potential temperature.

2.2 Tidal Equations

2.2.1 Tidal Forcing

Tidal forcing results from the action of gravity from the Moon (and Sun) across

the finite size of the Earth. To derive the tidal equations used in simulating tides, we

can start with the gravitational potential, Φ, at a point P relative to the Moon.

Φ = −Gmm

Rp

. (2.14)

Here, G is the gravitational constant, mm is the mass of the moon, and Rp is the

distance from the center of the moon to a location P on the surface of the Earth. For

a lunar angle ϕ, distance from center of moon to the center of the Earth Rm, and

11



Earth radius Re, then we can rewrite the distance to point P :

Φ = − Gmm√
R2
e +R2

m − 2ReRm cosϕ
(2.15)

Since Re � Rm, this can be expressed in terms of Legendre polynomials.

Φ = −Gmm

Rm

∞∑
n=0

(
Re

Rm

)n
Pn(cosϕ) (2.16)

Consider the first few Legendre polynomials.

P0(cosϕ) = 1 (2.17)

P1(cosϕ) = cosϕ (2.18)

P2(cosϕ) =
1

2

(
3 cos2 ϕ− 1

)
(2.19)

The tidal forces can be found as the gradient of the polynomials. For n = 0, the

value is constant and so there is no force. The force from the n = 1 term is uniform

along the direction pointing from the center of the Earth to the center of the moon.

The tidal forcing is produced by the n = 3 term, with higher-level terms typically

neglected due to their small value. The tidal potential can be written as the following.

Φt = −GmmR
2
e

2R3
m

(
3 cos2 ϕ− 1

)
(2.20)

2.2.2 Equilibrium Tide

We can express the tidal potential in terms of the equilibrium tide, or the height

the sea-surface would attain if it were able to reach equilibrium. First, we can express

the lunar angle in terms of the latitude at the point P , φ, the declination of the moon,

d, and the difference in longitudes between P and the point directly underneath the
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moon, λ. The relationship between these values is

cosϕ = sinφ sin d+ cosφ cos d cosλ. (2.21)

Using the new variables along with the substitution g = Gme

R2
e

for a mass on Earth, we

can rewrite the tidal potential.

Φt = −mmgR4
e

meR3
m

[
3
4

cos2 d cos2 φ cos 2λ+ 3
4

sin 2d sin 2φ cosλ (2.22)

+
(
3
2

sin2 d− 1
2

)(
3
2

sin2 φ− 1
2

)]
. (2.23)

Both the declination of the moon (d), and the longitude difference between the

moon and the point P (λ) change over time, while the latitude of the point is fixed.

We can express the potential in terms of these time-dependent components:

Φt = A2 cos2 d cos 2λ+ A1 sin 2d cosλ+ A0

(3

2
sin2 d− 1

2

)
. (2.24)

The first term corresponds to semi-diurnal, or twice-daily tides; the second term is

the diurnal, or once-daily tides; the final term represents long-period tides that vary

slowly with the moon’s declination (Pugh and Woodworth, 2014).

2.2.3 Tidal Details

To use the equations above in a tidal or ocean model, each constituent, or harmonic

component, of the tides must be included explicitly. For each of the species described

(semi-diurnal, diurnal, long-period), there are multiple constituents (of both lunar

and solar origin) with different amplitudes and slightly different periods. The largest

of these is the M2, or twice-daily lunar tide. The amplitude of the solar tide, S2

is about half that of the lunar tide. There are also once daily tides (K1, O1), and

long-term constituents (Mm, Mf ).
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The solar and lunar tides work together to create month-long cycles in tides known

as the spring-neap cycle. When the Moon, Sun and Earth are aligned (spring tide), the

lunar and solar tides add constructively to create the larger spring tidal ranges, where

tidal range denotes the difference between high and low tidal elevations. When the

Moon, Sun, and Earth are not aligned (neap tide), the tidal range is at a minimum.
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CHAPTER III

Global Barotropic Tide Modeling Using Inline

Self-Attraction and Loading in MPAS-Ocean

This chapter is published in its entirety as:

Barton, K. N., Pal, N., Brus, S. R., Petersen, M. P., Arbic, B. K., Engwirda,

D., Roberts, A. F., Westerink, J., Wirasaet, D., Schindelegger, M., (2022), Global

barotropic tide modeling using inline self- attraction and loading in MPAS-ocean,

Journal of Advances in Modeling Earth Systems, 14 (11), e2022MS003,207.

3.1 Introduction

Tides are an integral and dynamic component of the Earth system. According to

the IPCC Special Report for Oceans and Cryosphere in a Changing Climate, “it is

very likely that the majority of coastal regions will experience statistically significant

changes in tidal amplitudes over the course of the 21st century“ (Bindoff et al., 2019).

Additionally, the report concluded with “high confidence” that tides are one of several

local processes essential to predicting future extreme sea level events (Oppenheimer

et al., 2019a). Coastal tide gauge records point to changes in tidal amplitudes by

as much as 1–2% per decade (Flick et al., 2003; Ray , 2006; Müller et al., 2011). In

some locations, the secular changes in tidal amplitudes are of comparable magnitude
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to changes in mean sea level (Jay , 2009). There are a number of processes that affect

observed tides in a particular region, from long-term Earth system processes (such as

tectonic motion) to shorter-term processes which could have impacts over the next

century (Haigh et al., 2020). For example, mean sea-level rise, shoreline position,

or the depth of estuaries can influence the geometry of the local region such that

tidal resonance is altered and amphidromic points shift spatially. Meanwhile, seabed

roughness, river flow, sea ice coverage, or ocean stratification, can lead to changes in

the frictional dissipation and energy exchange of the tides (Haigh et al., 2020). These

non-astronomical effects are the reason for efforts now to include changes in tides as

a factor in assessing flood risks in a changing climate (Jay , 2009; Haigh et al., 2020).

In order to model and predict tidal changes and their impacts in a changing climate,

it is desirable to simulate tides within an Earth system model.

Historically, tide modeling and climate modeling have been performed separately.

In relatively recent efforts, the two types of modeling have been performed concur-

rently (Arbic et al., 2018). Tide gauges have been used for centuries to determine

tidal amplitudes and phases at specific locations, but as computational methods be-

came more feasible, work began on developing tide models that would allow tidal

amplitude and phases to be estimated at any point in the ocean (Pekeris and Accad ,

1969). The resolution and accuracy of these early barotropic tide models increased

throughout the late 20th century with the help of increased computational power

and assimilation from satellite altimeter data (Hendershott , 1972; Schwiderski , 1979;

Parke and Hendershott , 1980; Ray , 1993; Le Provost et al., 1994; Shum et al., 1997;

Dushaw et al., 1997). Conversely, baroclinic climate models have historically excluded

explicit tide calculations due to computational constraints and the use of large time

steps for long-term simulations. Early 3-D ocean models used a “rigid-lid” assumption

to remove barotropic gravity waves, thus not permitting tides at all (Bryan, 1969a;

Griffies et al., 2000). The first studies to include tides in a baroclinic model were
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performed at regional scales (Cummins and Oey , 1997; Kang et al., 2000; Merrifield

et al., 2001). The first global simulations of baroclinic tides (Arbic et al., 2004; Sim-

mons et al., 2004) included only tidal forcing. Over the past decade, several ocean

general circulation models have begun incorporating tides (Arbic et al., 2010; Müller

et al., 2012; Waterhouse et al., 2014; Rocha et al., 2016; Arbic et al., 2018), allowing

for investigations into interactions of barotropic and internal tides with mesoscale

eddies and other components of the Earth system.

Several factors must be examined and accounted for in global tide models, includ-

ing self-attraction and loading SAL, model resolution, the underlying bathymetric

dataset, and parameterized topographic wave drag. SAL accounts for a combina-

tion of effects: the deformation of the Earth’s crust due to mass loading and the

self-gravitation of the load-deformed Earth as well as of the ocean tide itself (Hender-

shott , 1972). Self-attraction and loading can change tidal amplitudes to first-order, up

to 20% in some regions, and also significantly impacts tidal phases and amphidromic

points (Gordeev et al., 1977). Full calculation of SAL calls for convolution of tidal

elevation with a proper Green’s function or a multiplication with load Love num-

bers in the spectral—i.e., spherical harmonic—domain (Ray , 1998). Early attempts

to calculate SAL using spherical harmonics proved expensive (Stepanov and Hughes ,

2004), so ocean tide models have often employed cheaper methods, such as a scalar

approximation (in which the SAL is approximated locally by a constant factor multi-

plied by the tidal elevation), an iterative method, or the use of SAL fields drawn from

other sources. The scalar approximation fails to preserve the scale-dependent, spa-

tially smoothing behavior of the SAL and can be particularly unreliable in shelf areas

where tidal length scales are much smaller than in the open ocean (Ray , 1998). The

iterative method is tedious to employ and relies on intermediate harmonic analysis,

meaning that non-periodic self-attraction and loading effects, such as those associated

with storm surges, cannot be easily accounted for. Reading in a dataset for SAL can
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improve the accuracy of modeled tides in the present-day, but is not appropriate for

the prediction of tides in a future world where tides and other climate system compo-

nents will be different. Motivated by these points and by recent works incorporating

SAL in various hydrodynamic frameworks (Schindelegger et al., 2018; Shihora et al.,

2022; Vinogradova et al., 2015), we choose to implement a full inline calculation of

SAL for tides. The model we use is the oceanic component of the Department of

Energy Department of Energy (DOE) Energy Exascale Earth System Model Energy

Exascale Earth System Model (E3SM) — namely, the ocean Model for Prediction

Across Scales (MPAS-Ocean).

This paper represents a first step toward embedding tides within MPAS-Ocean.

We evaluate MPAS-Ocean as a barotropic tide model in preparation for including

tides in full baroclinic simulations. We demonstrate the feasibility of implementing

a full inline calculation of SAL using the barotropic configuration. Furthermore, we

compare tidal sensitivity to different bathymetric products, different resolutions, and

parameterized topographic wave drag. Sensitivity to bathymetry in tidal simulations

has been demonstrated previously and can be improved with high-quality regional

patching (Lyard et al., 2021; Blakely et al., 2022). Convergence of tidal errors with

increasing model grid resolution has been explored in, e.g., Egbert et al. (2004), Arbic

et al. (2008) and Pringle et al. (2021a). A parameterized topographic wave drag

accounts for the energy dissipation that occurs when internal tides are generated

from the tidal flow over rough topography in the presence of stratification. The

importance of including this term in barotropic tidal simulations has been discussed

in many papers (Jayne and St. Laurent , 2001; Arbic et al., 2004, 2008; Egbert et al.,

2004; Blakely et al., 2022). Finally, we expect the inclusion of a full SAL calculation

to increase the computational time of the simulations, as has been shown in previous

implementations Schindelegger et al. (2018), Shihora et al. (2022). We end with an

examination of the computational cost incurred by our SAL calculation and compare
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performance on the various resolution meshes used in the study.

3.2 Methods and Implementation

3.2.1 Model Description

The Model for Prediction Across Scales, or MPAS, integrates a variety of geophys-

ical fluid dynamics models on unstructured meshes (Ringler et al., 2013; Petersen

et al., 2019; Golaz et al., 2019). MPAS contains various dynamical cores, each of

which contains a specific implementation of a physical system (e.g. atmosphere, sea

ice, etc.). We implement tides in the ocean core, MPAS-Ocean. The model is based

on unstructured, Voronoi-type tessellations supporting variable resolution, allowing

for a range of spatial length scales to be captured in a single simulation. A variable

resolution unstructured mesh allows for a detailed representation of some regions

(e.g., coastlines) while reducing overall computational cost through the use of lower

resolutions in regions with larger length scales.

For the purpose of evaluating tides in MPAS-Ocean, we have modified the model

to run in a two-dimensional (2-D) barotropic mode. The governing equations include

a momentum equation in a vector-invariant form and a layer thickness equation,

∂u

∂t
+ (∇× u + fk)× u = −∇K − g∇ (η − ηEQ − ηSAL) (3.1)

−χCu
H
− CD|u|u

H
,

∂h

∂t
+∇ · (hu) = 0, (3.2)

where u represents the depth-averaged horizontal velocity, t is the time coordinate, f

is the Coriolis parameter, k is the vertical unit vector, K = |u|2/2 is the kinetic energy,

g is the gravitational acceleration constant, η is the sea-surface height Sea Surface

Height (SSH) relative to the moving bed, ηEQ is the equilibrium tide, ηSAL is the
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perturbation of tidal elevations due to SAL, χ is a tunable scalar dimensionless wave

drag coefficient, C
h

is a topographic wave drag time scale, H is the resting depth of the

ocean, and h is the total ocean thickness such that H + η = h. The full form of the

drag terms in (3.2) would use the total thickness h, but our implementation uses the

linearized version with the resting depth H. In addition, HC is read in from the variable

rinv from the HyCOM file jsl lim24 inv hrs.nc, where the original calculation is

described in Buijsman et al. (2016). CD is a log-law based drag model, evaluated

according to eq. 3.3 where κ = 0.4 is the von Karman constant (Von Kármán, 1931),

z0 = 0.001 is the roughness parameter and H is the ocean resting thickness. The

minimum and maximum functions constrain CD to the range [0.0025, 0.1].

CD = max

[
0.0025,min

[
0.1,

 κ

ln
(
H
2z0

)
2 ]]

(3.3)

MPAS-Ocean retains the capability to be run with multiple layers with tides

and SAL for future investigations, but only the single-layer barotropic model is used

in this study. The multi-layer baroclinic model would additionally include three-

dimensional tracer equations for temperature and salinity, vertical advection and

diffusion terms on all equations, and the computation of density from the equation

of state for seawater and pressure at each layer from the hydrostatic equation.

Tidal forcing is implemented by adding a SSH perturbation, ηEQ, into the pressure

gradient operator.

ηEQsd,c = Acfc(tref )L cos2(φ) cos [ωc(t− tref ) + χc(tref ) + νc(tref ) + 2λ] (3.4)

ηEQd,c = Acfc(tref )L sin(2φ) cos [ωc(t− tref ) + χc(tref ) + νc(tref ) + λ] , (3.5)

These terms are valid for semidiurnal (sd) and diurnal (d) tidal constituents (Arbic

et al., 2018). The total forcing comes from summing over each of the constituents,
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c. Here A and ω are the forcing amplitude and frequency, respectively, dependent on

the tidal constituent, tref is a specified reference time, t is time, φ is latitude, λ is

longitude, χ(tref ) is an astronomical argument accounting for the constituent’s phase

due to astronomical positions of the Moon and/or Sun, and f(tref ) and ν(tref ) are

amplitude and phase nodal factors accounting for small known astronomical modula-

tions in the tidal forcing. L = 1+k2−h2 is a combination of body tide Love numbers

that account for changes in the gravitational potential (k2) due to deformation of the

Earth’s crust and mantle from tidal forcing (h2).

3.2.2 Self-Attraction and Loading

SAL is implemented as additional body force via the SSH gradient term in Eq.

(3.2). We express the inline SAL for tides in terms of the spherical harmonic decom-

position of the SSH (Hendershott , 1972)

ηSAL =
∑
n

3ρ0
ρearth(2n+ 1)

(1 + k′n − h′n)ηn. (3.6)

where each spherical harmonic SSH term ηn is multiplied by a scalar coefficient.

Here ρ0 = 1035 kg
m3 is the average density of seawater, ρearth = 5517 kg

m3 is the average

density of the solid Earth, and the multiplicative term (1 + k′n − h′n) represents load

Love numbers (obtained from Wang et al. (2012) ) corresponding to physical effects

of SAL. The “1”, k′n, and h′n terms account for gravitational self-attraction of the

ocean, gravitational self-attraction of the deformed solid Earth, and deformation due

to loading of the solid Earth respectively. However, the usage of SSH for calculating

SAL is only appropriate for tides and wind-driven barotropic motions. For other

motions one must use bottom pressure anomalies.

Before this work, SAL was implemented in MPAS-Ocean via the scalar approxi-
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Figure 3.1: Example of spatially-smoothed output (right) of the SAL operator (eqn.
3.6) applied to an input field (left). The SAL output has amplitude roughly 1/10
that of the original. For the barotropic runs used in this model, we evaluate SAL
using the SSH signal, shown here. However, for a full baroclinic model it is necessary
to use the bottom pressure as input.

mation (Accad and Pekeris , 1978; Ray , 1998)

ηSAL = βη, (3.7)

where η is the SSH prior to alterations, and β = 0.09 is a scalar parameter used to

approximate the influence of SAL. This approximation is a computationally inexpen-

sive method that is sufficiently accurate for many cases. However, it does not capture

the spatial dependence and large-scale smoothing of the full calculation (Fig. 3.1).

We evaluate Eq. (3.6) using the fast spherical harmonics transform package,

SHTns (Schaeffer , 2013). This package can only be run on a single node with shared

memory, not across nodes with a message passing interface (MPI). In contrast, MPAS-

Ocean typically runs on hundreds of nodes using MPI. Further, the input data must

be arranged on a Gaussian grid, because SHTns takes advantage of the geometry of

this grid (i.e., the latitudes are arranged at zeros of Legendre polynomials) to perform

faster transforms. To use SHTns within MPAS-Ocean, we first gather the distributed
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SSH field to a single head node before remapping the data onto the Gaussian grid.

The remapped data can then be transformed into spherical harmonics, where ηSAL

is easily calculated by multiplying the harmonic coefficients by the known load Love

numbers. Finally, the process is performed in reverse as ηSAL is transformed into a

spatial field on the Gaussian grid, remapped onto the MPAS mesh, and sent back

out to the nodes (Fig. 3.2). For each of the quasi-uniform meshes, the Gaussian grid

resolution was chosen to match the mesh resolution at the equator. For the variable

resolution mesh, the Gaussian grid resolution is equal to the minimum resolution

of the mesh, or 5 km. The spherical harmonic order cutoff is determined by the

number of latitudes in the Gaussian grid according to Eqs. 3.8, where lmax is the

maximum degree, mmax is the maximum order, and nlat is the number of latitudes

in the Gaussian grid.

lmax = integer
(
nlat
2

)
− 1

mmax = lmax (3.8)

Prior to our global tidal simulations, we validated the above approach by initializing

the SSH to a single spherical harmonic function on the MPAS mesh, allowing us to

easily confirm that the results matched the theoretical expectation.

3.2.3 Meshes

Several studies have demonstrated the effect of resolution on the accuracy of tidal

models (Egbert et al., 2004; Arbic et al., 2008; Pringle et al., 2021a). Here, we compare

two types of meshes: icosahedral and variable resolution. Icosahedral meshes are

spatially quasi-uniform, and have the smallest variations of cell area, vertex angles,

and edge lengths across the sphere among any global meshes, so are the perfect

choice for comparisons between resolutions. Table 3.1 shows the resolutions of the
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Figure 3.2: Overview of the procedure used to calculate SAL. The SSH field is sent to
process 0, remapped onto a Gaussian grid, then decomposed into spherical harmonics.
The perturbation in SSH due to SAL is calculated and then transformed into spatial
data, remapped onto the MPAS-Ocean mesh, and sent back to the nodes.

icosahedral meshes used in our simulations. The numbers 7–10 refer to the number

of refinement iterations in the mesh generation process, where each iteration divides

every triangle on the primal (triangular) mesh into four triangles, so that the mesh at

step n contains 2+10·4n cells on the dual mesh (12 pentagons and the rest hexagons).

The variable resolution 45 to 5-km mesh (Fig. 3.3 and 3.4) is an ADCIRC (Ad-

vanced CIRCulation)-style mesh (Pringle et al., 2021a). Tides are particularly sen-

sitive to shallow coastal areas and steep topographic gradients, where significant

tidal energy dissipation takes place. In fact, about 2/3 of tidal dissipation occurs in

coastal regions (Egbert and Ray , 2000, 2003). In our variable-resolution configuration,

we adapt the length scale of the mesh in critical areas to better capture dynamics

in shallow tidal flats and in regions of sharp bathymetric variation; employing the

following mesh spacing heuristics to design a global mesh that captures local tidal
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processes:

lwav(x) = βwavTM2

√
gH̃ , (3.9)

lslp(x) = βslp
2πH̃

∇̃H
, (3.10)

l∗(x) = max (min (lwav(x), lslp(x), lmax) , lmin) , (3.11)

l∗ → |∇l| ≤ γ . (3.12)

Here, lwav(x) and lslp(x) are barotropic tidal length-scale heuristics, with lwav increas-

ing mesh resolution in shallow regions to resolve the wavelength of shallow-water

dynamics, and lslp increasing mesh resolution in areas of large relative bathymet-

ric gradients to capture topographically-induced flow. βwav and βslp are tunable

‘resolution-selection’ parameters, set to βwav = 1
80

and βslp = 1
4

in this study. To

produce smooth distributions suitable for mesh generation, H̃ and ∇̃H represent

Gaussian-filtered (σ = 1
2
) depths and gradients obtained from the raw GEBCO2021

bathymetry. l∗(x) is an initial combined estimate of mesh spacing throughout the

domain, taking limiting values of lwav, lslp at each spatial point and clipping to

lmin = 5km and lmax = 45km. To control the gradation of the mesh overall, this

initial estimate is ‘gradient-limited’ to ensure the relative increase in mesh spacing

is bounded below a user-defined threshold, here set to γ = 1
8
. See Figure 3.3 for a

detailed view of the resulting mesh spacing pattern l(x) in the North Atlantic region.

Meshes in this study are generated using the JIGSAW unstructured meshing library

(Engwirda, 2017), with pre-processing completed using the scikit-image package

(Van der Walt et al., 2014).
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Figure 3.3: Comparison of the Icosahedron 10 mesh (top) and the variable resolution
mesh (bottom) in the North Atlantic near Delaware Bay. The Icosahedron 10 mesh
is a quasi-uniform 8-km mesh while the variable resolution mesh ranges from 45 km
to 5 km.

Mesh Type Average Wave Drag Number of Time Step
Cell Width Coefficient Cells (s)

Icosahedron 7 62.9 km 1.80 163,842 60
Icosahedron 8 31.5 km 1.08 655,362 60
Icosahedron 9 15.7 km 0.72 2,621,442 30
Icosahedron 10 7.87 km 0.36 10,485,762 15
VR 45 to 5 45 to 5 km 0.72 2,359,578 20

Table 3.1: Details for each mesh used in the simulations. Cell width of a polygon is
computed as the diameter of a circle with the same area.
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Figure 3.4: View of the variable resolution mesh around the Atlantic Ocean. The
colors indicate the size of each cell in the mesh, with blue indicating smaller cell size
and red indicating larger cell size. There is more refinement around 1) shallow depths,
and 2) regions of steep topographic gradients.

3.2.4 Topographic Wave Drag

Tidal dissipation occurs as a stratified fluid flows over rough topography, causing

energy to transfer from barotropic to baroclinic tides (Munk , 1966; Munk and Wun-

sch, 1998). Including this topographic wave drag has been shown to decrease the

tidal elevation errors in tidal models (Egbert et al., 2004; Arbic et al., 2004; Green

and Nycander , 2013a; Lyard et al., 2006). Different parameterization methods exist,

and several studies include comparisons of various methods (Egbert et al., 2004; Green

and Nycander , 2013a; Buijsman et al., 2015). Here, we have implemented the scheme

proposed by Jayne and St. Laurent (2001) which uses a simple tunable scalar,

C =
π

L
Ĥ2Nb. (3.13)

Here C is the same as that in Eq. (3.2), Ĥ represents the bottom roughness and

Nb is the buoyancy frequency at the bottom. L is a wave length representing the

topography, which we set to 10 km, as in Jayne and St. Laurent (2001) and Buijsman

et al. (2015). MPAS-Ocean reads in the Hycom variable rinv, which is H/C. The
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value of the parameter χ depends on the resolution (Arbic et al., 2008; Buijsman

et al., 2020), and required a tuning of the wave drag for each mesh in this study (Fig.

3.5).

3.2.5 Bathymetry

The quality of bathymetric datasets can impact the errors found in tidal models.

In particular, it has been found that Hudson Bay and other areas can significantly

change tides in regions around the globe (Arbic et al., 2009; Pringle et al., 2018a). It

was demonstrated by Arbic et al. (2009) and Arbic and Garrett (2010) that regions

of large resonant coastal tides, such as Hudson Bay, have a substantial“back effect”

on the global ocean tidal system. Blakely et al. (2022) showed that tidal errors can

be improved by combining GEBCO bathymetry with various high-quality regional

bathymetric datasets. Motivated by this, we include a comparison of two different

global bathymetric datasets: GEBCO2021 (GEBCO Compilation Group, 2021) and

SRTM15+ (Tozer et al., 2019), each with regional patching around Canada (Canadian

Hydrographic Service, 2018), northern Australia (Beaman, 2016) and the great barrier

reef (Beaman, 2010).

3.3 Simulation Details

3.3.1 Tidal Evaluation

It is common to evaluate tidal models by comparing the root-mean squared com-

plex error (RMSE) vs. a benchmark, such as TPXO8 (Egbert and Erofeeva, 2002).

Here, as in Arbic et al. (2004), we separate the errors into three regions: deep (depths

>1000m and between 66◦N and 66◦S), shallow (<1000m) and global (no restriction).

The pointwise RMSE for the tidal constituent, which we also denote by D (for dis-

crepancy) can be computed as
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D2 =
1

2
(A2

TPXO + A2
MPAS)− ATPXOAMPAS cos(φTPXO − φMPAS), (3.14)

RMSEareaweighted =

√∫ ∫
D2dA∫ ∫
dA

(3.15)

In Eq. 3.15, ATPXO and AMPAS are the M2 amplitudes and φTPXO and φMPAS are

the phases of TPXO and MPAS-Ocean, respectively. The quantity RMSEareaweighted

is weighted by the area dA of each cell.

We also evaluate the model against tide gauge observations as

D2 =
1

2
(A2

tg + A2
MPAS)− AtgAMPAS cos(φtg − φMPAS), (3.16)

RMSEtg =

√∑ D2

Ntg

(3.17)

where tg denotes tide gauge data and Ntg is the number of tide gauge stations. For

these comparisons we divide the errors into a different set of categories than we

use for the TPXO comparison. These are: deep (depths <1000m), shallow (depths

between 100m and 1000m), and coastal (depths <100m). Note that for the tide gauge

comparisons, we do not restrict latitude as we do for the TPXO comparisons.

The complete list of simulations is given in Table 3.2. We compare results from

different Icosahedral meshes (7, 8, 9, and 10) to results from a variable resolution

mesh. We also compare the results of simulations with inline SAL versus scalar SAL

for the highest resolutions: Icosahedral 10 and the variable resolution. Furthermore,

we tested two different bathymetric datasets: GEBCO 2021 and SRTM15+, each with

and without refinement in critical areas. We ran all simulations for 120 days using a

fourth-order Runge-Kutta time-stepping method. The tidal phases and amplitudes

are calculated from harmonic analysis of the final 90 days of the simulation, allowing

for a 30-day spin-up.
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Mesh Bathymetry SAL type Global Deep Shallow
Icosahedron 7 GEBCO2021 Inline 14.1 12.0 30.0

Scalar 14.8 12.9 28.8

Icosahedron 8 GEBCO2021 Inline 10.7 8.8 22.5
Scalar 12.9 11.3 22.7

Icosahedron 9 GEBCO2021 Inline 8.0 6.4 16.3
Scalar 12.2 10.5 20.5

Icosahedron 10 GEBCO2021 Inline 7.4 5.8 14.0
Scalar 14.3 12.2 23.8

VR 45 to 5 km GEBCO2021 Inline 6.8 5.4 13.3
Scalar 10.4 8.9 17.2

SRTM15+ Inline 7.0 5.7 12.6

Table 3.2: Complex M2 error (cm) for all simulations, where columns show error
calculations for global (all cells), deep, and shallow water.

3.3.2 Tuning

Two parameters required tuning in order to perform these tests: a wave drag

parameter and the interval at which SAL is updated.

3.3.2.1 Topographic Wave Drag

The MPAS-Ocean model follows the Jayne and St. Laurent drag scheme in that

it has a single tunable wave drag parameter, χ, as seen in Eq. (3.2). It is necessary to

tune the wave drag parameter for each resolution to ensure optimally modeled tides

and tidal energy dissipation. Table 3.1 shows the values chosen for each resolution

with the sampled wave drag parameters for each resolution shown in Fig. 3.5. We

can also see in this figure that as χ approaches 0 (at which point wave drag would be

turned off), the errors begin to increase by up to several centimeters.
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Figure 3.5: Wave drag (χ) tuning for each mesh. These were evaluated with full inline
SAL. The optimal wave drag coefficient for each mesh was used to perform all other
simulations using that mesh.

Calculation Interval 30 min. 10 min. 1 min.
Icosahedron 8 RMSE (cm) 8.8 8.4 8.4
Icosahedron 9 RMSE (cm) 6.4 6.4 6.5
VR 45 to 5 km RMSE (cm) 6.1 6.1 6.4

Table 3.3: RMSE error for M2 constituent at different SAL update intervals.

3.3.2.2 SAL Calculation Interval

The full inline SAL calculation can be costly, particularly at high resolution. To

help reduce this computational burden, we experimented with updating the value of

the SSH perturbation due to SAL at various intervals of 1 minute, 10 minutes, and 30

minutes. We continue to apply SAL at every time step between the update intervals.

Table 3.3 shows the resulting M2 errors on the Icosahedral 8 and 9 meshes for each

of these cases. Decreasing the intervals of calculation does not necessarily lead to

decreased tidal errors, likely due to other sources of error dominating. Ultimately,

we decided that the 30-minute intervals best optimized the benefits of the inline

calculation relative to the computational cost. We include further results of the

computational cost in Section 3.4.3.
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3.4 Results

3.4.1 TPXO8 Comparison

The RMSE for the M2 tidal constituent as compared to TPXO8 are shown in

Table 3.2. Figures 3.6 and 3.7 show the distribution of the M2 RMS error D in the

solution as compared to TPXO8. The decreasing error at finer resolutions demon-

strates approximate numerical convergence. The largest errors, particularly in the

variable resolution mesh, lie in the region around Antarctica. The E3SM water cycle

configurations do not include ice shelf cavities. As such, we are planing a follow-up

study focused on the accuracy of tides under those circumstances. For now, the sim-

ulations in this paper do not include an explicit representation of ice shelf cavities,

which have been shown to impact tidal accuracy, particularly in this region (Stammer

et al., 2014; Blakely et al., 2022).

Comparing the results for inline SAL and the scalar approximation (Fig. 3.8), we

can see that at every resolution, the deep (>1000m) RMS error improves with the

inline SAL. Finer resolution meshes see a larger benefit to inclusion of inline SAL

than the coarser resolutions. As the quasi-uniform meshes increase resolution, inline

SAL reduces the error by as much as 50%. For the scalar SAL case, the Icosohedron

10 mesh has unusually larger errors. This could be due to keeping the β constant

for all cases, rather than tuning it for specific resolutions. Additionally, the wave

drag parameter χ was tuned for the inline SAL cases, so further tuning may lead to

more typical results for the scalar case on the Icosohedron 10 mesh. For the variable

resolution mesh, the improvement is not as large but inline SAL still reduces the

error by 39% as compared to the scalar SAL. The lowest error achieved is on the

45-km to 5-km variable resolutions mesh, with a deep M2 RMS error of 5.4 cm. As

a point of comparison, Schindelegger et al. (2018) and Shihora et al. (2022) both

included full inline SAL calculations into a barotropic tide model and found deep
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Figure 3.6: Pointwise complex RMS differences (D) between MPAS and TPXO8,
showing simulated M2 tidal amplitudes (colors) and phases (lines) from MPAS-O at
various resolutions (left); M2 RMS errors calculated with respect to TPXO8 data
(right). These represent the errors on each mesh obtained from using inline SAL and
GEBCO2021 bathymetry.
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Figure 3.7: RMS error (m) of the variable-resolution simulation versus TPXO8 in the
Arctic Ocean (left) and Southern Ocean (right).

ocean M2 RMS errors of 4.4 cm and 3.4 cm, respectively. Both studies used global

1/12o resolution regular latitude-longitude grids with ice shelf cavities included. The

Schindelegger et al. (2018) model domain ranged from 86oS to 84oN. M2 RMS errors

with ADCIRC were found to be 2.9 cm by Pringle et al. (2021a) and were further

lowered to 1.9 cm by Blakely et al. (2022). All of the previous studies used more

sophisticated wave drag schemes, such as a full tensor calculation or optimization

of a spatially-dependent coefficient and evaluated RMSE at depths > 1000 m and

latitudes ≤ | ± 66o|. The two ADCIRC studies implemented SAL by reading in

values from a data-assimilated model and featured a global 2 km to 25 km variable

resolution mesh. Stammer et al. (2014) includes a comparison of errors for various

purely hydrodynamical, non-data assimilative models ranging from 5.3-7.8 cm. While

the tidal errors in MPAS-Ocean are not as competitive as some state-of-the art models

that focus exclusively on tidal modeling, they are low enough to represent tides in an

Earth system model, thus paving the way for studies of tidal interactions with storm

surges, rivers, or components of the cryosphere in the future (see Section 3.5). In at

least one other run using settings not directly tested here, we have achieved an even
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Figure 3.8: M2 RMS errors relative to TPXO8 for different simulations. The plots
show a) deep regions, b) shallow regions, and c) global errors (see Section 3.3.1).
Errors reduce with higher resolution, and inline SAL is better than scalar SAL.

35



lower RMS error of 5.1 cm, indicating there is still room for improvement.

Aside from inclusion of explicit ice-shelf cavities, the errors in our model could

be improved by using a more sophisticated wave-drag scheme or a better-optimized

variable resolution mesh. Optimization for improved tidal errors on the VR mesh

include adjusting the maximum and minimum cell size as well as the limiting gradient

that determines the relative increase in cell size. As discussed in the tuning section,

the wave drag coefficient is highly dependent on the resolution of the mesh. For the

variable resolution mesh, the “best” wave-drag coefficient may be different depending

on the resolution of a particular region of cells. Furthermore, we may find that the

scalar parameterization of wave drag is not as accurate as a full implementation.

The generation of the variable mesh itself also requires decisions about minimum

/ maximum cell width, and the gradient of cell width (i.e., how rapidly the cell

sizes change throughout the mesh). Refining these parameters could lead to further

improvement in the results found on the VR mesh.

3.4.2 Tide Gauge Comparison

We compare the results of MPAS-Ocean to tide gauge datasets including the

“ground truth” stations (pelagic, shallow, and coastal) from Stammer et al. (2014),

as well as stations from NOAA, KHOA, JMA, and GESLA. These stations were

consolidated by Pringle (2019), including directly provided tidal harmonics or using

UTIDE (Codiga, 2011) on time level histories. Fig. 3.9, shows the model versus tide

gauge amplitudes and phases. The tide gauge datasets have been filtered to exclude

gauges generally outside of the domain of the simulation. For the phase data, we

shifted the values so that the phase differences were all within 180 degrees. The

RMS error when comparing against the 151 pelagic stations is 5.8 cm for the variable

resolution mesh and 5.9 cm for the 8 km quasi-uniform mesh (Table 3.4), which is

consistent with the results seen from the TPXO8 comparison of 5.4 cm and 5.8 cm,
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Mesh SAL type RMSE R2

(pelagic) Deep Shallow Coastal
Icosahedron 10 Inline 5.9 Amplitude 0.986 0.950 0.933

Scalar 13.1 0.982 0.952 0.928
VR 45 to 5 km Inline 5.8 0.983 0.974 0.950

Scalar 9.3 0.986 0.982 0.959
Icosahedron 10 Inline Phase 0.993 0.975 0.974

Scalar 0.991 0.933 0.965
VR 45 to 5 km Inline 0.994 0.969 0.985

Scalar 0.993 0.930 0.979

Table 3.4: R2 values for the M2 tide gauge amplitude (top) and phase (bottom) com-
parisons in deep (>1000m), shallow (between 1000m and 100m, and coastal (<100m)
regions. The complex RMS error (cm) for the 151 “ground truth” pelagic stations is
also included.

respectively, for the deep ocean. For reference, in the previous studies about full

inline SAL, Schindelegger et al. (2018) had an RMS error of 5.9 cm and Shihora et al.

(2022) had an error of 4.8 cm when comparing to the pelagic stations.

A large majority of the tide gauges sampled are near the coasts, and we can see

from the figures that the MPAS-O has more accurate tides near the deep-ocean gauges

(Fig. 3.9). The R2 value for M2 amplitudes increases for increasing depths. In the

zoomed-in plot showing only tidal amplitudes between 0-1 m, we can see that most of

the spread is due to errors in the shallower locations (mainly regions less than 100m

deep). Comparing the two different meshes, we can see that while they both give

similar results, the variable resolution mesh does outperform the quasi-uniform mesh

slightly in the shallower regions. For depths less than 100m, the variable resolution

mesh amplitude has a value of R2 = 0.950 compared to the quasi-uniform mesh value

of R2 = 0.933. Similarly, for depths between 100m and 1000m, they have values of

R2 = 0.974 and R2 = 0.950 respectively. For depths greater than 1000m, we can see

a slight advantage in the quasi-uniform mesh, with a value of R2 = 0.986 compared

to the variable resolution mesh value of R2 = 0.983. The quasi-uniform mesh has

an 8-km resolution over the entire ocean, while the variable resolution mesh has cells
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as large as 45-km in this region. Despite the slight advantage this gives the quasi-

uniform mesh for amplitudes, the variable resolution mesh also has similar or better

phase results, leading to reduced RMSE (Fig. 3.4) for this mesh. When comparing

the scalar results to the inline SAL, we can see that the inline calculation performs

better overall for the Icosahedron 10 mesh, but the variable resolution mesh sees

most benefit in the phase errors. Even though the RMSE is higher for both meshes,

the amplitude R2 values are actually higher for the scalar while the phase values are

lower. We can also consider the physical spread of errors by separating the tide gauges

based on whether their errors are larger or smaller than the RMS error (Fig. 3.10).

MPAS-O tidal errors are generally greater than the total RMS error in regions near

coastlines, whereas tidal errors in the deep-ocean are generally less than the RMS

error. While we expect the shorelines to have larger overall tides and therefore larger

errors in the model, the figure also demonstrates that many shallow regions also have

lower errors. We expect that once further improvements to the variable resolution

mesh allow us to resolve the coastline in better detail, these errors might reduce even

further. Additionally, allowing for different wave drag coefficients for different regions

may help optimize drag specifically along shelves and coastlines, e.g. as in Blakely

et al. (2022).

3.4.3 Computational Scaling

We show differences between performance for the inline SAL updated at various

intervals and performance on the variable resolution mesh compared to the Icosahe-

dron mesh. All runs were performed on NERSC Cori compute nodes with 2.3 GHz

Haswell processors (Intel Xeon Processor E5-2698 v3). For the mesh comparisons, the

variable resolution performance is better than the Icosahedron 10 mesh (Fig. 3.11),

with comparable RMS errors (Fig. 3.2). Table 3.1 shows the number of cells and the

time step needed to run the model on each mesh. The variable resolution mesh allows
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Figure 3.9: M2 tidal results from inline SAL Icosahedron 10 run compared to tide
gauge data for the deep, shallow, and coastal tide gauges (see Section 3.3.1). The R2

values are given in the legend.
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Figure 3.10: Global distribution of tide gauges, colored by model error from the
variable resolution mesh simulation. The top plot shows locations with errors greater
than the RMS value of all stations, and the bottom plot shows gauges with errors
less than the RMS value. The majority of points have a small error, while the small
number of stations with large error are near coastlines. This analysis is restricted to
gauges at depths ≥ 100m
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Figure 3.11: Performance comparisons of MPAS-Ocean including: scalar versus inline
on Icosahedron 10; SAL update intervals at 1 minute, 10 minutes, and 30 minutes;
and performance with inline SAL on all of the meshes used in this study. The com-
putational throughput is measured in units of simulated days per day (SDPD).
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for significantly fewer cells, leading to improved computational performance. For all

meshes, the explicit time step is restricted by the advective CFL condition, defined

as the ratio of the cell width to the wave propagation speed,

dt <
cell width

wave speed
, wave speed =

√
gh (3.18)

where dt is the time step, h is the water depth, and g is the gravitational constant. In

ocean flows, the surface gravity wave speeds produces the fastest velocities. For the

variable resolution mesh, this condition means that the time step is not necessarily

limited by the minimum cell size alone, but by the relationship between cell sizes and

wave speeds throughout the domain. Noting that our variable resolution heuristics

(see Section 3.2.3) place fine resolution in shallower, and hence lower wave-speed

regions, the overall CFL restriction is found to be significantly less onerous than

quasi-uniform configurations that employ higher resolution in the deep ocean. In our

simulations, not only does the 45-km to 5-km mesh have fewer cells than the 8-km

mesh and higher resolution around the coasts, it also runs with a larger time step as

can be seen in Table 3.1.

While the inline SAL calculations do increase the computational cost, Table 3.3

shows that there is only a small difference in the RMS error when updating the SAL

term at larger intervals than the model time step. In fact, at higher resolutions we

see that the more frequent updates may lead to higher errors. Fig. 3.11, which plots

simulation run time performance, demonstrates that updating the SAL perturbation

every 30 minutes can improve the computational performance as compared to evalua-

tion at more frequent time steps. When using a 30 minute interval, the computational

performance of the full SAL calculation is marginally but not marginally larger than

the scalar implementation. Based on the scaling and the RMS errors, either 30 min-

utes or 10 minutes may actually be the ideal update interval for the SAL, providing
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computational benefit over the 1 minute or more frequent intervals with little decrease

in tidal accuracy.

3.5 Conclusions

In this paper, we demonstrated the feasibility of calculating tides within the

MPAS-Ocean model employing a full inline SAL calculation in high-resolution barotropic

simulations. We also examined sensitivities of the modeled tide to the SAL calculation

method, careful selection of bathymetric datasets, model resolution, and a tuned wave

drag coefficient. The full SAL calculations showed decreases in tidal RMS elevation

errors of several centimeters across all meshes tested, relative to results computed us-

ing the scalar approximation for SAL. The variable resolution mesh had tidal errors

similar to that of the Icosahedron 10 mesh, but with better computational perfor-

mance, lying closer to results computed on the Icosahedron 9 mesh. Comparison of

simulations using the different bathymetric datasets show that GEBCO2021 slightly

outperforms SRTM15+ on the variable resolution mesh. The computational perfor-

mance of the full SAL can incur large costs when evaluated at every time step. It

appears that this cost can be mitigated by updating SAL at 10 or 30 minute inter-

vals, rather than at every time step, with little effect on tidal errors. Another avenue

for increasing the computational efficiency is evaluation of the spherical harmonics

in parallel, rather than the serial routines implemented by the SHTns package used

in this study. This can be done by evaluating the integrals directly on the MPAS

mesh so that the interpolation step is not needed, as pursued in a related study by

our group. Comparison to tide gauge data shows that this first attempt at including

tides results in slightly larger errors than tides in some other models (Pringle et al.,

2021a; Schindelegger et al., 2018; Stammer et al., 2014; Blakely et al., 2022). However,

we expect that the RMS errors for the M2 tide could be improved with a) variable

resolution meshes with smaller minimum cell size, b) optimization of parameters in
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the variable resolution mesh generation, c) the addition of a spatially-dependent wave

drag coefficient or a more sophisticated wave drag scheme (e.g., Green and Nycander

(2013a)), and d) the inclusion of ice-shelf cavities.

It is becoming clear that inclusion of tides is important for predictions of future

climate and extreme sea level events (Bindoff et al., 2019; Oppenheimer et al., 2019a).

Our results show that MPAS-Ocean has relatively low tidal errors that are small

enough to merit inclusion within a full climate system model. An important difference

between the setup described for the barotropic case in this paper, and the setup

needed for use in a full baroclinic framework, is the variable which is used in the SAL

calculations. As mentioned in the discussion on SAL, tidal elevations can be used

for spherical harmonic decomposition in the barotropic case because it is a direct

measure of the mass of the water column. By contrast, baroclinic simulations require

bottom pressure anomalies for this purpose. Furthermore, implementation of tides in

a baroclinic model calls for some modifications to the topographic wave drag, such

as by applying wave drag to the flow averaged over the bottom 500 m (e.g., Arbic

et al. (2018)) or using different parameter optimizations. The addition of tides in

an Earth system model will allow us to examine a number of advanced aspects in

the physical Earth system. For example, there is a need for inclusion of tides when

considering the Arctic ocean and sea ice (Holloway and Proshutinsky , 2007) as tides

can have a substantial effect on sea ice volume and salinity (Luneva et al., 2015).

A review of tidal influences on ice sheets by Padman et al. (2018) suggests that

feedback between ice shelf geometry and tidal currents could imply a need for explicit

tides in Earth system models; see also Williams et al. (1985) and Dinniman et al.

(2016). Tides also have important effects on estuaries. Ruault et al. (2020) found

that baroclinic tides can influence the Amazon plume, which itself can impact the

Atlantic climate (Jahfer et al., 2017). High-frequency interactions of tides with storm

surges and fluvial processes in estuaries Orton et al. (2012), Spicer et al. (2019) are
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important for predicting coastal flooding during extreme weather events. In future

studies, we plan to use MPAS-Ocean to explore these interactions between tides and

other components of the Earth system (e.g., ice shelves and basal melt rates, sea ice,

estuaries) and their potential impacts on future climate.
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CHAPTER IV

Further Improvements to MPAS-Ocean Tide

Modeling with Topographic Wave Drag

Parameterization

4.1 Introduction

We can accurately model most large-scale sea-level fluctuations due to tidal forc-

ing on the ocean with a single-layer ocean model in which the horizontal velocities

are uniform (“barotropic”) throughout the entire water column. The actual ocean,

however, features stratified layers. Tidal forcing in these stratified conditions yield

waves within the layers known as baroclinic tides, or internal tides. While tidal models

traditionally focused on energy dissipation due to friction with the seabed in shallow

regions, Egbert and Ray (2000) showed that 25-30% of tidal dissipation occurs in the

deep ocean due to energy flow from the barotropic tide into internal tides as flow over

rough topography leads to vertical motion between the density layers of the strat-

ified ocean. Several methods of parameterizing this flow of energy from large-scale

barotropic tides to shorter-scale internal tides have been developed over the years,

leading to varying improvements in the accuracy of tidal models.

One early method to parameterize this topographic wave drag, developed by Jayne

and St. Laurent (2001), was implemented into the Model for Prediction Across Scales
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(MPAS-Ocean) due to its simplicity of incorporating a scalar term (i.e., by multiplying

the drag term in the momentum equation by a scalar field) that is dependent on the

mean-squared bottom roughness of the ocean, averaged over grid cells. This method

was used in Barton et al. (2022) and Pal et al. (2023) to incorporate bottom roughness

and buoyancy data from a separate ocean model called the Hybrid Coordinate Ocean

Model, or HyCOM, based on calculations described in Buijsman et al. (2016), rather

than calculated internally in MPAS-Ocean. However, due to limitations from different

grids and bathymetry datasets, we were interested in exploring whether improving

the current formula, through calculation of variables on the native grid, or changing

the parameterization scheme altogether could lead to significant improvements in the

tides.

Some work has already been done to compare the use of topographic wave drag

schemes within a barotropic tide model. Green and Nycander (2013b) compared three

popular methods: first, the previously mentioned Jayne and St. Laurent; second, an-

other scalar parameterization by Zaron and Egbert (2006), which incorporates the

horizontal gradients of topography instead of their mean variations; lastly, a more

physically-based tensor scheme developed by Nycander (2005a) where the momun-

tum drag term is multiplied by a second-order tensor field instead of a scalar field.

Another study by Buijsman et al. (2015) compared Jayne and St. Laurent to the

original Nycander and two modified versions. Both studies found that the tides’ total

root-mean-square error Root-Mean-Squared Error (RMSE) decreased when using the

Nycander formula.

In this study, we test the two scalar topographic wave drag TWD parameteriza-

tions: Jayne and St. Laurent (JSL) and Zaron and Egbert ZAE. We also include a

modified version of the Nycander scheme used in the Advanced Circulation, or AD-

CIRC, model Pringle et al. (2021b). This version, known as the Local Generation

Formula LGF, has the benefit of remaining a physically-based tensor scheme but is
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simpler to implement (Pringle et al., 2018c). In the following sections, we discuss the

details of each method, followed by results on improvements in the tides.

4.2 Topographic Wave Drag Schemes

Topographic wave drag (TWD) is included as a dissipative term within the mo-

mentum equation for the barotropic ocean model,

∂u

∂t
+ (∇× u + fk)× u = −∇K − g∇ (η − ηEQ − ηSAL) (4.1)

−χCu
H
− CD|u|u

H
,

where u represents the depth-averaged horizontal velocity, t is the time coordinate,

f is the Coriolis parameter, k is the vertical unit vector, K = |u|2/2 is the kinetic

energy, g is the gravitational acceleration constant, η is the sea-surface height relative

to the moving bed, henceforth called SSH, ηEQ is the equilibrium tide, ηSAL is the

perturbation of tidal elevations due to SAL, C
h

is a topographic wave drag time scale,

H is the resting depth of the ocean, and h is the total ocean thickness such that

H + η = h. C can be either a scalar value (CJSL, CZAE) or a tensor (CLGF ), with

descriptions of each parameter in the following sections. The tuning parameter, χ

is tuned independently for each parameterization based on the RMS error in the M2

tides after a 30-day simulation with a 7-day spin-up period.

4.2.1 Jayne and St. Laurent

The scheme proposed by Jayne and St. Laurent (2001) uses a simple tunable

scalar combined with the average roughness of the topography within a grid cell.

This method is more empirically-based than the other two schemes, based on the

statistics of bathymetric roughness and dimensional analysis Green and Nycander
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(2013b).

CJSL =
π

L
Ĥ2Nb. (4.2)

Here, Ĥ represents the bottom roughness and Nb is the observed buoyancy frequency

at the bottom. L is a wave length representing the topography, set to 10 km as in

Jayne and St. Laurent (2001) and Buijsman et al. (2015). The roughness of topog-

raphy, Ĥ is determined by calculating the standard deviation of the residual heights

after fitting the topography within each cell to a planar fit,

Ĥ = std(∆H) = std(ht − (a+ bx+ cy + dxy)), (4.3)

where std is the standard deviation calculation, ht is the topography heights within

a grid cell, a, b, c, and d are best-fit coefficients between the polynomial and the

topographic data, and x, y are the latitude and longitude values of the topographic

data points within a cell, respectively.

4.2.2 Zaron and Egbert

The scheme described in Zaron and Egbert (2006) is another scalar parameteriza-

tion that is easy to implement and has been used successfully in global tide models,

such as by Schindelegger et al. (2018). ZAE is more analytically-based than the previ-

ously described JSL scheme, and uses a simplification of the Wentzel–Kramers–Brillouin

approximation, which expresses the baroclinic energy conversion based on linear wave

theory.

CZAE = ΓH(∇H)2
NbN̄

8π2ω
(4.4)

N(z) = ez/1300 (4.5)

N̄ = 1300N0

(
1− e−H/1300

)
/H (4.6)
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where H is the bottom depth, Nb is buoyancy frequency evaluated at the ocean bed

(N(−H)), ω is the frequency of tidal motions which we take to be the M2 frequency

(1.405×10−4), N̄ is the vertical average of the buoyancy frequency, and the constants

N0 = 5.24× 10−3 and Γ = 50 are taken from Green and Nycander (2013b). (∇H)2 is

calculated as the square-magnitude of the horizontal gradients of the topography.

4.2.3 Local Generation Formula

The Local Generation Formula is a tensor-based scheme used in the ADCIRC

model (Pringle et al., 2018b,c, 2021b). This scheme is distinct from the nonlocal

Nycander scheme from which it is derived. The Nycander formulation is a semi-

analytical scheme derived from linear wave theory (Nycander , 2005b). It has the

benefit of including nonlocal effects of topography. LGF is a localized version of

the Nycander scheme with two primary benefits. First, it is much simpler and is

computationally efficient to calculate. Second, unlike the Nycander scheme, the LGF

scheme contains a positive-definite tensor, which ensures the term always dissipates

energy.

CLGF =

[
(N2

b − ω2)(N2
m − ω2)

]1/2
4πω

 (∇λH)2 ∇λH∇φH

∇λH∇φH (∇φH)2

 , (4.7)

where Nb is the observed buoyancy frequency, Nm is the depth-averaged buoyancy

frequency, ω = 1.405×10−4 is the tidal frequency, and∇λH, ∇φH are the longitudinal

and latitudinal gradients, respectively.

To implement LGF as described above, the tensor would be multiplied by a veloc-

ity vector, u = (uλ, vφ) where uλ and vφ are the longitudinal and latitudinal velocities.

However, MPAS-Ocean uses a different coordinate system from ADCIRC where the

velocities are u = (u‖, v⊥), i.e. the coordinates are normal and perpendicular to the
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cell edge. To account for this, we can rotate the gradients to fit the new coordinate

system (4.8), which leads to a relation between the momentum update and the LGF

tensor in 4.9.

∇‖H
∇⊥H

 =

cos(θe) − sin(θe)

sin(θe) cos(θe)


∇λH

∇φH

 (4.8)

∂

∂t

u‖
u⊥

 ∼
 (∇‖H)2 ∇‖H∇⊥H

∇‖H∇⊥H (∇⊥H)2


u‖
u⊥

 (4.9)

When running simulations in MPAS-Ocean, only the velocity perpendicular to

the cell edge is updated. The velocity parallel to the edge is calculated, but not used

to update the state of the model. Therefore, we only need to use the bottom row

in the LGF tensor. In practice, the topographic gradients are evaluated in latitude-

longitude coordinates and then rotated using Eq. 4.8. Then, the term in the model

becomes

CLGF =

[
(N2

b − ω2)(N2
m − ω2)

]1/2
4πω

[(
∇‖H∇⊥H

)
u‖(∇⊥H)2v⊥

]
. (4.10)

4.3 Results

We found that ZAE was associated with the lowest RMS errors in our tide model.

Fig. 4.1 shows the results of tuning for each scheme. The deep RMS complex M2

error when compared to TPXO8 is 3.5 cm (χ = 0.3) for ZAE, 4.0 cm (χ = 3000)

for LGF, and 5.1 cm (χ = 11.0) for JSL. We expected LGF to perform well due to

using a more physically-based tensor formulation, but for our model ZAE seems to
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work the best. Fig. 4.2 shows a comparison of the RMS values for the tuned wave

drags at different regions. For both shallow and deep regions, ZAE still performs

better than either of the other schemes. The map of RMS errors for the tuned ZAE

scheme is in Fig. 4.3. We can see that there are still larger errors in regions of larger

tides near coastlines. However, overall the ZAE scheme improves tidal results in the

MPAS-Ocean model.

Figure 4.1: The figures above show the impact of tuning the value of χ for each
constituent. LGF had the largest tuning parameter overall. JSL did not improve
very much with tuning, having overall large RMS errors.
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Figure 4.2: Plot of best tuning case for each TWD scheme, and comparing the global,
shallow, and deep regions. The ZAE scheme performs best in every region.

Figure 4.3: Global map of RMS errors using the best TWD scheme, ZAE with χ = 0.3.
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CHAPTER V

Impacts on Future Tides from Changes in

Sea-Level, Ice Shelf Cavity Geometry, and

Landfast Ice Extent

This chapter is a draft of a manuscript currently being prepared for publication.

5.1 Introduction

Climate change continues to impact the earth as the environmental policies of

nations around the world will likely result in warming of over 2.0oC by 2100 (Raftery

et al., 2017). Many European cities are expected to experience increases in both

drought and flood risks (Guerreiro et al., 2018), and ice sheet melt could contribute

up to 25 cm in sea-level rise and slow the Atlantic overturning circulation (Golledge

et al., 2019), which can influence flood risks along the southeast United States coast

(Volkov et al., 2023). Tropical communities are facing losses to fisheries and agricul-

ture (Cinner et al., 2022), and regional studies show that tides in some areas, such as

the Pearl River Delta, could become amplified by up to 2.1 m (De Dominicis et al.,

2020).

Understanding how tides will change globally over the next century is essential

for predicting local changes to tides and flood risks. Many studies have worked
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to understand how sea-level changes may influence tides in the near future. For

example, Pickering et al. (2012) and Idier et al. (2017) both look at how sea-level rise

may impact tides along the European shelf; Hall et al. (2013) focuses on changes in

paleotides in the Delaware Bay, with some discussion of future tides showing that sea-

level rise can lead to sizeable spatial variability even within the bay as tides increase

in some areas and decrease in others; Luz Clara et al. (2015) observed nonlinear,

spatially-varying changes in M2 tidal amplitudes in simulations of the Patagonian

shelf with sea-level rise, Kuang et al. (2017) found potential tidal amplitude changes

of up to 2 m in the China Sea; Thompson et al. (2021) shows that the US coast

will experience higher frequency of high-tide flooding with sea-level change, while

Schindelegger et al. (2018) and Pelling et al. (2013) both examine global tidal changes

with sea-level rise. Some studies also explore the importance of the cryosphere on

tides. For example, Wilmes et al. (2017) focuses on tides in the case of large-scale ice

sheet collapse; Murty (1985) is a regional study examining the influence of ice cover

on tides and other hydrographic characteristics in Tuktoyaktuk Harbor; Bij de Vaate

et al. (2021) shows seasonal modulation of the M2 tides up to 25 cm in the Arctic

due to changes in landfast ice coverage; Hayden et al. (2020) explores ocean tides in

Hudson Bay and the impacts ice sheet retreat will have over the next few centuries;

Wilmes et al. (2019) looks at the impact of ice sheets on tidal mixing. However,

the near-term effects of ice-sheet changes and their relative impact on global tidal

amplitudes compared to sea-level changes are still poorly understood.

In this paper, we look at the impacts of sea-level change, ice shelf cavity geometry,

and reduction of landfast ice in influencing tides over the near term, focusing on time

slices at 2015, 2060, and 2100. We also examine the nonlinearity of the three factors

by comparing individual influence to a combined simulation that includes all changes.
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5.2 Methods

5.2.1 Model Details

To study the influence of various changes to the Earth system on tides, we use a

barotropic (depth-averaged) tidal configuration of the Department of Energy’s Model

for Prediction Across Scales (MPAS-Ocean) (Golaz et al., 2019; Petersen et al., 2019).

One of the benefits of using MPAS-Ocean is its use of variable resolution meshes,

allowing for global ocean simulations that can focus high resolution on areas of interest

while reducing computational cost. These meshes are based on Spherical Centroidal

Voronoi Tesselations in which cells are placed based on a specified density function and

then regularized using an iterative calculation (Ringler et al., 2008). The governing

equations of MPAS-Ocean consist of the 2-D shallow water equations written in the

following vector-invariant form:

∂u

∂t
+ (∇× u + fk)× u = −∇K − g∇ (η − ηEQ − ηSAL) (5.1)

−∇p
s

ρ0
− χCu

H
− CD|u|u

H
,

∂h

∂t
+∇ · (hu) = 0, (5.2)

p(x, y, z) = ps(x, y) + ρ0gh, (5.3)

where u is the depth-averaged horizontal velocity, t is the time coordinate, f is the

Coriolis parameter, ~k is the vertical unit vector, K is the kinetic energy, g is the

gravitational acceleration constant, η is the sea-surface height (measured relative to

the unperturbed ocean surface height), ηEQ is the height of the equilibrium tide, ηSAL

is the height of the sea-surface perturbation due to self-attraction and loading (SAL),

ps is the surface pressure on the ocean due to ice shelf cavities, ρ0 = 1035km
m3 is the

average density of seawater, χ is a tunable dimensionless scalar, C
H

is a topographic
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wave drag time scale where H is the resting depth of the ocean and h is total ocean

thickness such that H = η + h, and CD is the bottom friction coefficient. These

equations, in vector-invariant form, separate the advection term into a curl term and

a kinetic energy term using the identity (u ·∇)u = (∇×u)×u+∇|u|2/2, which can

help in conserving kinetic energy (Ringler et al., 2010).

The present setup of the barotropic configuration includes the bottom friction and

ice shelf cavity improvements detailed in Pal et al. (2023). The ice shelf cavity forcing

does not include dynamic coupling between the ice sheets and the ocean. Instead,

the pressure, ps, is added to the governing equations and is calculated as ps = ρgD

where D is the ice shelf draft beneath the ocean and ρ is the density of the displaced

water. The model also includes the parallel implementation of inline self-attraction

and loading introduced by Brus et al. (2023), with the SAL term updated in 15-minute

intervals to both decrease computational cost and improve tidal errors.

Topographic wave drag occurs when a stratified fluid flows over rough topographic

features. It is important for calculating tides due to its role in transferring energy

from barotropic to baroclinic tides. This process cannot be explicitly calculated

in barotropic tide models, and several methods exist to parameterize the process.

Previous studies using MPAS-Ocean as a barotropic tide model (Barton et al., 2022;

Pal et al., 2023) parameterized the topographic wave drag using the Jayne and St.

Laurent formulation (Jayne and St. Laurent , 2001). In this study, we have instead

implemented the Zaron and Egbert formulation (Zaron and Egbert , 2006; Green and

Nycander , 2013b):

C = ΓH(∇H)2
NbN

8π2ω
, (5.4)

N(z) = N0e
z/1300, (5.5)
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where C is the same as in eqn. 5.2, Γ is an independent tunable scalar, H is the

resting depth of the ocean, N(z) is the buoyancy frequency at depth z, Nb is the

buoyancy frequency evaluated at the ocean floor (z = −H), and N is the depth-

averaged buoyancy frequency, and ω is the frequency of the M2 tide. We use the

same values of Γ = 50 and N0 = 5.24 × 10−3 as described in Green and Nycander

(2013b).

5.2.2 Simulation Details

The current capability of the tidal model has improved the M2 root-mean-square

error (RMSE) to 3.3 cm in the deep ocean (H < 1000m) for latitudes of absolute

value less than 66o when compared to TPXO8. We evaluate the tides based on 184-

day simulations including eight tidal constituents: M2, S2, N2, K2, K1, O1, Q1, P1

on a global 45-to-5km variable resolution mesh. The model allows for wetting and

drying in shallow regions. We exclude cells that are dry during simulations from the

evaluation of final results. Table 5.1 shows the simulations performed for the study.

The landfast ice includes seasonality, accounting for the difference between March and

Spring extent in the northern and southern hemispheres. There are independent and

combined simulations for 2015, 2060, and 2100. The independent cases use present-

day March conditions for all control components.

5.3 Data Sources

5.3.1 Ice Shelf Cavities

We adopt 21st-Century projections of Antarctic ice shelf cavities Ice Shelf Cav-

ities (ISC) using estimates based on the Representative Concentration Pathways

(RCP) and Shared Socioeconomic Pathways (SSP). These pathways represent po-

tential future carbon dioxide scenarios and are commonly used as inputs into climate
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Simulation Name Ice-Shelves Sea-Level Landfast Ice
ctrl2015M 2015 CTRL 2015 CTRL CTRL March
ctrl2015S 2015 CTRL 2015 CTRL CTRL Sept.
isc2060ae05 2060 AE05 2015 CTRL CTRL March
isc2060ae03 2060 AE03 2015 CTRL CTRL March
isc2100ae05 2100 AE05 2015 CTRL CTRL March
isc2100ae03 2100 AE03 2015 CTRL CTRL March
lfi2100M 2015 CTRL 2015 CTRL future March
lfi2100S 2015 CTRL 2015 CTRL future Sept.
slc2060ae05 2060 CTRL 2015 AE05 CTRL March
slc2060ae03 2060 CTRL 2015 AE03 CTRL March
slc2100ae05 2100 CTRL 2015 AE05 CTRL March
slc2100ae03 2100 CTRL 2015 AE03 CTRL March
comb2060M 2060 AE03 2060 AE03 future March
comb2060S 2060 AE03 2060 AE03 future Sept.
comb2100M 2100 AE03 2100 AE03 future March
comb2100S 2100 AE03 2100 AE03 future Sept

Table 5.1: Array of simulations performed in this study. The cells indicate the year
and type of the data used for each simulation. For the ice sheets and sea-level datasets,
AE03 refers to the more extreme case, and AE05 refers to the more moderate case.
CTRL indicates that it is the present-day “control” dataset. For the landfast ice,
there are no robust future predictions at specific years, so we have only a “present”
and “future” case, whereas the “future” case contains no landfast ice in the summer
hemisphere.
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models. We select both a moderate and an extreme cases of the RCP5-8.5 scenario

(Seroussi et al., 2020). The ice sheets were simulated in MALI (Hoffman et al., 2018)

following the experimental protocol outlined in ISMIP (2022). For the extreme case,

we use exp03 (HadGEM2 RCP8.5), which has the most ice-sheet mass change, and

for the moderate case, we use expAE05 (UKESM SSP5-8.5), which has the least mass

change. We add the projected changes to the present-day ice-shelf cavities from Bed-

Machine Version 2 (Morlighem et al., 2020; Morlighem, 2020). For the purpose of

ice-shelf cavities, we include only shelves in the Antarctic region due to their large

area extent. Ice sheets in Greenland are important for melt and sea-level (discussed

below), but do not have a significant cavity area as in the Antarctic region.

5.3.2 Sea-Level Projections

Sea-level projections consist of a steric and dynamic component and fingerprints

associated with mass fluxes from future ice sheets and glacier projections. Steric

sea-level changes Sea Level Change (SLC) are due to increasing water volume as

temperatures rise. Dynamic sea-level changes occur due to the dynamic response of

the ocean to atmospheric wind and buoyancy forces. The data for these (steric and

dynamic) changes are calculated in Jackson and Jevrejeva (2016) from CMIP5 vari-

ables with appropriate corrections (e.g., inverted barometer, model drift). Changes

in glacier mass from Huss and Hock (2015) are used to determine glacial SL fin-

gerprints by solving the sea-level equation accounting for gravitational, rotational,

and deformational effects (Rietbroek et al., 2012). We compute SLC fingerprints for

the Antarctic and Greenland ice sheets using the gravitationally self-consistent sea

level theory and pseudo-spectral algorithm outlined in Kendall et al. (2005), adopt-

ing the code from Han et al. (2022), with truncation at spherical harmonic degree

and order 512. We use a depth-varying elastically compressible visco-elastic Earth

model in which the seismically inferred Preliminary Reference Earth Model (PREM)
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(Dziewonski and Anderson, 1981) provides depth-varying elastic and density profiles

through Earth’s crust and mantle. We use the ice-sheet melt described in 5.3.1 for the

Antarctic region. For Greenland, we use AWI ISSM1 for experiment 5 from Goelzer

et al. (2020) as a representative result for a high emissions scenario. The glacial

fingerprints, ice sheet fingerprints, steric, and dynamic components of the SLC are

incorporated into the model by subtracting them from the bathymetry.

5.3.3 Landfast Ice

Ocean ice, such as sea ice (free-floating ocean ice) and landfast ice (floating ice

held fast against coastlines or ice sheets), can interact with the ocean through friction,

pressure, and ice-ocean stress. However, for a single-layer barotropic model, a simple

representation of sea ice is unrealistic. As shown in Hibler et al. (2006), a correct

representation requires a dynamically embedded sea-ice layer with an ocean boundary

layer. Because this is not possible in our barotropic model, we focus instead on only

landfast ice, which can interact with the ocean through friction and pressure. Future

simulations building upon this work but performed in a stratified ocean will be better

able to incorporate sea ice.

Several studies indicate that the Arctic will be free of sea-ice by 2030-2050 (Over-

land and Wang , 2013; Wang and Overland , 2012; Årthun et al., 2021; Jahn et al.,

2016). Here, we estimate future landfast ice using the most recent complete datasets of

present-day extent and removing all landfast ice in the “summer” hemisphere (i.e., the

northern hemisphere in September and the southern hemisphere in March). “Present”

day Arctic landfast ice extent comes from Konig Beatty (2012) and Antarctic landfast

ice extent comes from Fraser and Massom (2020). Landfast ice is incorporated into

the model using the same equations as the ice shelf forcing, which includes the pres-

sure term in eqn. 5.3 and a friction term between the fast ice and the ocean beneath

it, using a friction coefficient of Clfi = 5.36× 10−3.
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5.4 Tidal Amplitude Changes

5.4.1 Changes in Tidal Constituent Amplitudes

Figure 5.1: The plots show the change in M2 amplitude (cm) at 2100 using AE03 ice
sheet data due to a) combination of SLC, ISC changes, and LFI reduction; b) ISC
changes only; c) SLC only; d) LFI reduction only. SLC impacts the coastal areas, but
the ice-shelf cavity changes have much larger amplitude changes in the open-ocean.

Global tidal amplitude changes are generally in the range of several centimeters

for both the ISC and SLC cases at 2100 for the AE03 (i.e., extreme) scenario. The

LFI case, however, does not show much impact, even in the polar regions, with tidal

changes in the range of 0.1 to 0.01 cm. These results contrast studies such as Bij de

Vaate et al. (2021), which show the impact on tides from seasonal LFI changes when

using a model that correctly accounts for the ice-water stress term by including an

ice layer. For SLC, the largest impacts are on coastlines, particularly around China,

the Patagonian Shelf, and the Amazon River.

In Fig. 5.1, we can see the influence of ISC on tidal changes in the range of sev-
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Figure 5.2: The plots show the change in M2 amplitude (cm) in the North Atlantic
region at 2100 using AE03 ice sheet data due to a) combination of SLC, ISC changes,
and LFI reduction; b) ISC changes only; c) SLC only; d) LFI reduction only. The
ISC changes generally lead to negative changes in amplitude in the open ocean, while
SLC leads to some positive amplitude changes near the US east coast.

eral centimeters in the global oceans. The regional maps of the North Atlantic (5.2),

Southeast Asia (5.3), and the South Atlantic (5.4) more clearly show the influence of

relative influence of SLC and ISC near continental coastlines. In the North Atlantic,

the tides in the open ocean have a general negative trend, and there are larger impacts,

particularly near the English Channel and the Hudson Strait. On the eastern coast

of Canada and the United States, there is more small-scale change dominated by sea

level, such as increasing tides along Maine and Florida. Similarly, some near-shore

influences from ISC change around Southeast Asia include increasing tidal amplitudes

around north-east Australia and Papua New Guinea, while tides in the Bay of Bengal

decrease. The tide changes due to SLC are especially large along the coast of China.

The Patagonian Shelf is somewhat unique, showing much larger changes in the ISC
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Figure 5.3: The plots show the change in M2 amplitude (cm) around Southeast Asia
at 2100 using AE03 ice sheet data due to a) the combination of SLC, ISC changes,
and LFI reduction; b) ISC changes only; c) SLC only; d) LFI reduction only. There
are some larger-scale near-shore impacts from ISC around the Bay of Bengal and
Papua New Guinea, while SLC leads to smaller-scale changes, particularly the large
increases in amplitude along the coast of China.

case, likely due to its proximity to Antarctica and the Filchner-Ronne ice sheets.

These changes dominate the region, although SLC has some influence, particularly

near the Amazon River, where tides increase in magnitude. In general, SLC has mini-

mal impact on global tides, whereas ISC impacts are focused on the global ocean with

some influence on near-shore tides. These results from the ISC imply the importance

of resonant feedback between the cavities and the global ocean. Meanwhile, coastal

tides are dominated by the local changes in geometry from changing sea level and

shorelines.

The largest tidal amplitudes and changes in tidal amplitudes are in the M2 con-

stituent. Fig. 5.5 shows how the differences compare to all other constituents resolved
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Figure 5.4: The plots show the change in M2 amplitude (cm) around the South
Atlantic at 2100 using AE03 ice sheet data due to a) the combination of SLC, ISC
changes, and LFI reduction; b) ISC changes only; c) SLC only; d) LFI reduction
only. Changes in the Antarctic ISC lead to large changes in amplitudes in this region,
particularly around the Patagonian Shelf.

in the simulations. To contextualize these changes, we also show the total amplitudes

for each constituent in Fig. 5.6 Outside the Antarctic region, the most considerable

changes in global tides tend to occur in the semi-diurnal constituents, with the con-

tribution from changes in S2 being closest in magnitude to those from M2. However,

some significant impacts remain in the diurnal constituents K1 and O1 near shorelines

in Southeast Asia.
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Figure 5.5: The plots show the global changes in all eight constituents included in
the tidal runs for the com2100M simulation. The most significant changes outside
the Antarctic region are in the M2 and S2 semidiurnal constituents.
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Figure 5.6: The plots show the total amplitudes for all eight constituents included
in the tidal runs for the ctrl2015M simulation. Each plot has a unique scale based
on the size of the constituent. M2, S2, and K1 generally have the largest amplitudes
while Q1 has the smallest.
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Figure 5.7: Total water level over 28 days for the com2100M run at a given virtual
tide gauge location, showing a) 12-hour high-water marks, b) time series of water
level at 30-minute intervals, c) histogram of amplitude frequencies over the 28-day
period, and d) virtual tide gauge location.

5.4.2 Output at Virtual Tide Gauges

The previous sections detailed changes in individual tidal constituents, but the

actual observed water levels are due to superpositions of all constituents. To see how

the total water levels are impacted in the experimental future runs, we show time

series plots of the model sea level output sampled at the location of several virtual

tide gauges. Due to the limited resolution of the model (5 km at the coast), we

chose locations that are not directly adjacent to the shoreline but are nearby regions

of interest. The time series shows 30 minute intervals of total water level, along

with 12-hour high water level spanning 28-days, allowing us to see changes in the

spring-neap cycles as well. The histograms show the frequency of amplitude changes,
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Figure 5.8: Total water level over 28 days for the com2100M run at a given virtual
tide gauge location, showing a) 12-hour high-water marks, b) time series of water
level at 30-minute intervals, c) histogram of amplitude frequencies over the 28-day
period, and d) virtual tide gauge location.

indicating whether high- or low-amplitude tides are becoming more or less frequent,

along with the general direction (increasing or decreasing) of the amplitude change.

In Fig. 5.7, the spring tide reaches a magnitude of around 0.5 m in the 2015 control

run, while the 2100 case has lower tides closer to 0.3-0.4 cm, representing a difference

of about 20-40%. From the change in amplitude histogram, we can see that most of

the changes are in the positive range. In Fig. 5.8, the magnitude of the change is

much smaller than in the previous gauge location, but there is a slight increase in the

high water mark, with a decrease in the frequency of the lowest amplitude changes.

Fig. 5.9 shows similar changes to the previous gauge. There are slight increases in

the total range of water level, with the 2100 case increasing the max water level and
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Figure 5.9: Total water level over 28 days for the com2100M run at a given virtual
tide gauge location, showing a) 12-hour high-water marks, b) time series of water
level at 30-minute intervals, c) histogram of amplitude frequencies over the 28-day
period, and d) virtual tide gauge location.

decreasing the low water level as compared to the 2015 control case. Note that these

demonstrate how tides could change in future scenarios. At any location in the real

ocean, the local geometry, tidal prevention measures, and the amount of SLC and

ice-sheet melt could have varying impacts, either increasing or decreasing the tidal

ranges.

Table 5.2 shows the root-mean-square (RMS) difference, weighted by cell area,

between the future simulation and the 2015 control simulation to quantify the amount

between them.

RMS =

√∑
i(Ampi)

2Areai∑
iAreai

, (5.6)

where Areai is the area and Ampi is the amplitude at the ith cell. We can see from
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Constituent RMS Difference (cm) RMS Difference (cm)
Global Latitude > −70o

M2 1.41 0.65
S2 0.95 0.38
K1 0.32 0.18
N2 0.29 0.12
K2 0.27 0.11
O1 0.24 0.11
P1 0.12 0.07
Q1 0.10 0.07

Table 5.2: Root-mean-square differences calculated for each constituent based on the
difference between the com2100M simulation and the ctrl2015M simulation. The last
column limits the analysis to regions outside of the Antarctic, in order to compare
global impacts of changes to the ice shelves.

the table that the M2 and S2 constituents have the largest impact both globally and

north of −70o latitude. However, the difference outside the Antarctic region is about

half that of the global differences.

5.4.3 Changes along Coastlines

We show changes in amplitude (both magnitude and relative percentage) near

coastlines and compare all of the simulations performed (Table 3.2). Fig. 5.10 follows

the North Australian coast, demonstrating the regional difference in changing tides,

with part having typically negative changes in tidal amplitudes and other sections

having positive changes. We can also see the importance of the ice shelf cavities

in determining tides, as depending on the scenario, tidal changes can have a large

positive change (isc2100ae5) or a large negative change (2100ae03). In all cases, we

can see that at 2100, where changes to sea level and ice sheets are more significant,

the differences in tidal amplitude are greater. Fig. 5.11 shows similar results along

the east coast of the United States.

Interestingly, the AE05 (moderate) case of ice cavity changes shows decreasing

tidal amplitudes along the entire transect. Positive tidal amplitude changes are only
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Figure 5.10: Changes in M2 amplitude along northern Australia. For distances less
than 4000 km along the transect, we can see that the direction of change in the
amplitude of tides is very sensitive to the ISC geometry. The combined cases show
the influence of both the SLC and ISC.
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Figure 5.11: Changes in M2 amplitude along the United States East Coast. The
changes in amplitude alternate from positive to negative at around 500 km along
the transect. The direction of change in amplitude from ISC can be either positive
or negative depending on the case, but the influence from SLC is much larger and
dominates in the combined case.

seen in the AE03 (extreme) case. Finally, along the coast of China in Fig. 5.12, we

see a similar pattern, but the changes due to cavity geometry are generally always

negative and of much smaller magnitude (about 1 cm) than the changes due to sea-

level (up to 8 cm). In fact, only in the North Australia transect are the changes from

SLC and ISC of about similar magnitude. In the US and China coast transects, the

ISC contributes about 25% of the amplitude change. As a result, the combination

case tends to follow most closely with the SLC case. These results make sense since
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Figure 5.12: Changes in M2 amplitude along the coast of China. Changes due to SLC
are generally positive along the transect, and reach up to 8 cm at around 300 km.
The ISC changes are negative, leading to a moderating effect on the combined case
which generally follows the SLC, but with lower amplitude changes.

these transects follow near continental coastlines where amplitude changes tend to be

dominated by SLC. However, as we can see from the North Australia transect, there

is a regional variation to this influence. ISC can have as much influence as SLC, even

when approaching coastlines.
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Figure 5.13: Differences between the com2100M run and the sum of the water level
changes from the individual contributions.

5.5 Nonlinearity in the Impact on Tidal Change

To understand how nonlinearity impacts how different components affect tides, we

first calculated the difference in amplitudes from the combination simulation. Then,

we subtracted the difference in amplitudes from the sum of the individual simulations.

∆Anl = (Acombo − Actrl)−
(
(ASLC − Actrl) + (AISC − Actrl) + (ALFI − Actrl)

)
(5.7)

The difference in tidal amplitude due to nonlinearity (∆Anl) is evaluated from the

amplitudes for the simulated cases. Figure 5.13 shows the global map of Anl for the

M2 amplitude for March 2100 simulations.

We can see that the difference between the changes due to the individual simu-

lations compared to the combination case is small, generally less than 1 cm globally.
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Constituent RMS Difference (cm) RMS Difference (cm)
Global Latitude > −70o

M2 0.065 0.022
S2 0.040 0.019
K1 0.031 0.006
O1 0.027 0.006
N2 0.022 0.008
K2 0.016 0.007
P1 0.011 0.005
Q1 0.009 0.006

Table 5.3: Root-mean-square differences calculated for each constituent based on the
difference between the combined simulation and the sum of the individual component
simulations.

Some areas are clearly impacted, such as the Patagonian Shelf and north-east Aus-

tralia. In the Australian region the magnitude of the nonlinearity reaches up to

around 0.2 cm, while the overall changes in tidal amplitudes are around 1.5 to 3 cm

(Fig. 5.10). This means the nonlinearity here is roughly 10% of the total change.

Table 5.3 shows the RMS differences due to nonlinearity from all constituents in-

cluded in the simulation. The constituents with the greatest amplitude changes also

tend to have the greatest RMS difference for nonlinearity, with M2 and S2 at the top.

The second table column only calculates the values for latitudes greater than −70o

to exclude the impacts directly under the ice shelf cavities. Doing this decreases the

nonlinearity values further, with global RMS differences generally on the order of 10−2

to 10−3 cm. Outside of a few locations, the nonlinearity directly near coastlines seems

to be fairly small. However, several coastal sea-level studies have found that these

regions tend to have seen significant nonlinearity for tides and storm surges (Thomas

et al., 2019; Rego and Li , 2010; Tang et al., 1996; Marsooli and Lin, 2018) and tides

with sea-level rise (Bilskie et al., 2016). These studies are generally regional with

very high resolution (less than 1 km and down as low as 20 m in some cases). The

finest resolution of our model is 5 km in this study, which is likely not fine enough to

resolve the importance of nonlinearity in coastal regions.
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5.6 Conclusions

It is clear that tides are changing and continue to change based on various climatic

forcings. The IPCC reports an expected global mean rise in sea-level of 43 cm to 84 cm

by 2100 as compared to 1986-2005 levels (Oppenheimer et al., 2019b). Changes in

tides near the coast of China reached as high as 8 cm, roughly 10-20% of the sea-

level rise estimates. Compounding events of storm surge, sea-level rise, and high-tide

could lead to even greater flood risks. Better prediction of regional variations in future

tides can help inform policies to mitigate these risks. However, most studies looking

at future tides, particularly regionally, account only for changes due to sea-level rise.

In this study, we demonstrate that ice-shelf cavity geometry can also have significant

impact on tides in both the global ocean and some near-shore regions. While this

study looks at how ISC changes influence tides, it does not include interactions of

tides on ice shelf cavities which are known to be significant (Anandakrishnan et al.,

2003; Boeira Dias et al., 2023; Fromm et al., 2023). Future predictions of both tides

and ice-shelf cavities could be improved by allowing both to interact with the other.

The calculation of landfast ice interactions could be resolved better by incorporating

a sea-ice layer that allows for the ice-ocean stress to be calculated. In addition,

follow-on studies could examine future tidal changes in full Earth System Models,

which include baroclinic (stratified) ocean model components, rather than tides in

the simplified barotropic tide models employed here. In addition, in regional studies,

the changes from SLC and cryosphere changes could be calculated and then imposed

at the boundaries to improve local tide modeling results.
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CHAPTER VI

Conclusions

This work presents contributions to implementing tides within the Department of

Energy’s ocean model MPAS-Ocean and examines changes in simulated tides with

various realistic climatic changes to sea-level rise and the cryosphere. The improved

tides are important for predicting potential ocean sea-level changes, particularly re-

garding flood risks in coastal regions.

After a brief history and introduction to the basic ocean and tide modeling equa-

tions, Chapter III shows the initial results of tides within MPAS-Ocean and the im-

provement from incorporating an inline self-attraction and loading (SAL) calculation.

This new calculation requires decomposing the sea-surface height into spherical har-

monic components and is, therefore, more computationally costly than the alternative

scalar approximation. We show that the improvements from an inline SAL method

reduce the error by several centimeters. Using a variable resolution grid and less

frequent updates of the SAL term can reduce computational cost without sacrificing

tidal accuracy.

We continue in Chapter IV with further improvements to the tides through careful

selection of the topographic wave drag implementation. We compare the results of

three parameterization schemes – two scalar and one tensor – which are well-tested

in other tide models. We find that the RMS tidal error can vary by over a centimeter
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depending on the scheme implemented, thus illustrating the importance of picking a

suitable method for the tidal model. From this work, we further reduced tidal errors

in MPAS-Ocean down to 3.4 cm, which is now comparable with other tidal models

such as Schindelegger et al. (2018).

The model development of the previous two chapters paves the wave for Chapter

V, in which we use the barotropic tide modeling capabilities of MPAS-Ocean to

examine how tides interact with other components of the earth system. Specifically,

this chapter discusses the significance of changes in the cryosphere and sea-level rise

on tides based on SSP5-8.5 emission pathways out to the year 2100. While there are

regional variations in the impacts, generally, the changes due to sea level are largest in

near-shore regions, and the effects of ice-shelf geometry are largest in the open ocean.

However, even in these near-shore regions, there are areas where the changes from

ice-shelf cavities are comparable to or even larger than those from sea level. These

results indicate the importance of accounting for ice-shelf cavity geometry in future

tide studies.

The results thus far point to several directions for future work. One is to further

examine the role of ice cavity geometry on tides through diagnosing which ice sheets

are most responsible for the tidal changes observed in simulations. Further improve-

ments to the mesh could also allow for higher resolution around coastlines, leading

to better prediction of regional variation in changes. Another direction for model

development is the inclusion of tides within the full baroclinic (multi-layer) version

of MPAS-Ocean. A baroclinic treatment would have several benefits, particularly

by allowing for a stress term between the ocean and ice layers, thus allowing better

modeling of the impacts on tides from landfast ice and sea ice. Unfortunately, it is

challenging to implement due to the cost of running a multi-layer model at the spatial

resolution needed to also resolve tides in coastal regions. An alternate possibility is

to use the current single-layer tide model alongside regional models with updated
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future tides evaluated separately and then applied to the boundaries of the model.

These changes would allow for high-resolution studies of flooding in coastal regions

that account for tidal changes due to both sea-level rise and cryosphere changes. The

improvements to MPAS-Ocean described in this work help progress our understand-

ing of how climate change might impact tides and coastal communities in the near

future.
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