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Abstract 

Advancements in DNA sequencing over the past decade have transformed our ability to 

characterize genetic variation in large populations and study the genetics of many complex traits. 

For population geneticists, information on the genetic variation (i.e., which sites in the genome 

are mutated and at what frequency) alone is interesting as it allows for studying aspects of a 

population (e.g., demographic history, natural selection, and mutation rates). For statistical 

geneticists and genetic epidemiologists, the availability of phenotypic information in the same 

set of genetically sequenced individuals allow for studying the genetic basis of a complex trait. 

In this dissertation, I present three separate projects that leverage genetic information originating 

from DNA sequencing. 

In the first project I focused on analyzing genetic variation without consideration of a 

phenotype, as is often done in the field of population genetics to make inferences on 

demographic history or natural selection. A commonly used summary statistic of genetic 

variation for population genetics inference is the allele frequency spectrum. However, methods 

based on the allele frequency spectrum make a simplifying assumption: all sites are 

interchangeable (i.e., an A->T mutation is the same as a C->T) mutation. In this project, I first 

extended previous literature to show heterogeneity in the allele frequency spectrum exists across 

mutation types at finer levels of resolution. I then illustrated how inferences of demographic 

history and natural selection are impacted by the violation of this assumption.  
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In the second project I focused on combining phenotypic information with genetic data 

through genome wide association studies (GWAS) and polygenic risk scores (PRS). GWAS 

estimate per-variant genetic effects on a complex trait, which can be used to summarize the 

genetic risk of that trait for an individual in PRS (constructed as the GWAS-weighted sum of 

their risk variants). However, PRS have a portability issue where phenotype predictions worsen 

as the ancestry of the target sample diverges from that of the GWAS sample. In admixed 

individuals, genome can be traced back to multiple ancestral populations and ancestry lies on a 

continuum. Such a continuum causes an ancestry dependence of PRS performance, as the PRS 

for samples whose ancestry better matches the external GWAS perform better. To help resolve 

this issue, I developed slaPRS, a stacking-based framework to integrate GWAS from multiple 

ancestral populations to construct polygenic risk scores (PRS) in admixed individuals. In 

simulations and real data, slaPRS performed well and reduced the ancestry dependence 

compared to existing approaches. 

In the third project I focused on how genetic-phenotypic associations are shared across 

two more phenotypes through pleiotropy. Pleiotropy can be characterized at resolutions 

including genome wide, regionally, or at the SNP/gene-level. One approach to studying 

pleiotropy is local genetic correlation (LGC), which quantifies the extent of genetic sharing in a 

local region through the similarity in GWAS effect sizes. However, one problem of LGC is that 

it remains unable to identify SNP or gene-level pleiotropy, making it impossible to identify 

which variants or genes in a region drive a signal of LGC. To resolve this issue, I developed 

LDSC-MIX, a Bayesian mixture of regression method to infer latent groups of likely shared 

causal variants across two traits. In simulations and real data, LDSC-MIX identified SNP sets 

recovering the true LGC and tested whether genes in a region are enriched for such SNPs. 
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Chapter 1 Introduction 

Since the introduction of next-generation DNA sequencing in 2005, advancements in the 

field of DNA-sequencing have allowed for genetic variation across the genome to be catalogued 

at resolutions and sample sizes previously not possible1,2. Large consortiums such as the 1000 

Genomes Project3, Trans-Omics for Precision Medicine (TOPMed)4, and the Haplotype 

Reference Consortium5 have performed short-read deep whole genome sequencing for thousands 

of samples across multiple ancestral populations to accurately call multiple types of genetic 

variation (e.g. single nucleotide polymorphisms, structural variation: indels/deletions, and more) 

down to the rarest frequencies. Genomic studies often further complement DNA-sequencing data 

with phenotype information on the same set of sampled individuals to identify genetic variants 

that contribute to disease risk. Large medical system-based cohort studies such as the UK 

Biobank project6, Michigan Genomics Initiative7, and All of Us8 now routinely pair genetic 

information with a patient’s medical profile, resulting in the pairing of genetic information with 

hundreds of phenotypic measurements collected through lab testing and provider diagnosis. The 

popularity of Biobanks globally for conducting genetic research has resulted in the Global 

Biobank Meta-analysis Initiative9, which combines 23 biobanks across four continents to 

combine genotype-phenotype studies from more than 2.2 million consented individuals across 

diverse ancestries.  

While we are now in an era of genomic research blessed with large sample sizes, current 

genomic studies now routinely have terabytes of genetic and phenotypic data which have spurred 

development of methods and strategies to summarize, manage, and analyze large data. 
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Summaries of data allow for efficient computation and alleviate privacy concerns for sharing 

individual-level genetic information across studies10. In the field of population genetics, which 

uses genetic information absent phenotype information to perform analysis such as inferring 

mutation rates, demographic history, and natural selection, one example of summarizing data is 

the allele frequency spectrum (AFS). The AFS is defined as the distribution of allele frequencies 

in a sample and serves as a summary statistic of the genetic variation in a population to 

effectively reduce terabytes of genetic data into a single distribution11,12. When phenotypic 

information is considered alongside genetic data, statistical geneticists and genetic 

epidemiologists frequently study genotype-phenotype associations using genome wide 

association studies (GWAS). GWAS identify risk variants for a phenotype through marginally 

testing and estimating the effect of each variant across the genome. The collection of GWAS 

estimated effect sizes, known as GWAS summary statistics, summarize genotype-phenotype 

associations without requiring individual-level genotype or phenotype information.  

Over the past 15 years, GWAS have successfully implicated thousands of risk variants 

across hundreds of traits to usher in the post-GWAS era13 where genetic associations are now 

used for functions such as genomic risk prediction14, studying genetic architecture of traits15, and 

integration with other omics data16 to reveal biological function. Two uses of GWAS summary 

statistics that are of particular interest in the post-GWAS era are constructing polygenic risk 

scores (PRS) and studying pleiotropy. While a single GWAS risk variant may only explain a 

small percent of a trait’s heritability, a sizable proportion of phenotypic variation can be 

explained by summarizing an individual’s genetic risk for a given disease or trait in polygenic 

risk scores17 (PRS). PRS are constructed as the weighted sum of risk variants with weights 

derived from GWAS summary statistics computed in an external GWAS sample. These PRS 
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have successfully been used18,19 to identify individuals at high risk of disease, improve diagnostic 

accuracy, and allow for tailored personalized treatment for disease risk prediction in complex 

traits including coronary artery disease20,21, type 1 and 2 diabetes22,23, breast cancer24,25, and 

more26. On the other hand, GWAS summary statistics can also be used to study pleiotropy27,28 -  

the phenomenon in which genetic signals are shared across two or more phenotypes. 

Understanding of pleiotropy is important to reveal insights into the shared biological mechanism 

and pathways across traits and diseases. More importantly, as we enter the age of personalized 

medicine and genome editing, understanding of cross-trait genetics is imperative to avoid 

unexpected phenotypic effects29.  

While statistics summarizing genetic or genetic-phenotypic associations allow for 

convenient sharing and componential efficiency of methods, summary statistics present unique 

challenges as they often make simplifying assumptions or fail to capture all aspects of the 

original data. For example, the AFS (as well as most population genetics methods) makes a 

simplifying assumption that sites are interchangeable. In other words, an A->T mutation is 

equivalent to a C->G mutation. However, previous work has shown this assumption to be 

violated as there exists substantial heterogeneity in the AFS across sites due to unique 

evolutionary forces such as mutation rate heterogeneity and biased gene conversion. In the 

context of genotype-phenotype summaries, GWAS summary statistics report marginal 

associations that are affected by the correlation structure of the genome (i.e., linkage 

disequilibrium (LD)). In other words, SNPs across the genome are not independent causing 

SNPs to tag nearby variants, resulting in per-variant GWAS estimated effects sizes to be a 

function of nearby variant effects. Careful handling of LD in a sample/population thus becomes 

critical for genomic studies using GWAS summary statistics. An additional complication arises 
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when studying genetics across populations, as unique demographic histories have resulted in 

population differences in LD patterns and even genetic architecture which present further 

challenges. Nevertheless, GWAS summary statistics have become a common data input of 

methods development as they include a wealth of information on the genetic architecture of a 

trait and facilitate efficient computation without the need for individual level data.  

In this dissertation, we propose novel analysis and statistical/machine learning methods 

utilizing summary statistics of genetic datasets. As the scale of genomic studies increases and the 

cost of generating genetic data decreases, the need for such studies increases. In Chapter 2, we 

begin by examining potential issues in current uses of the allele frequency spectrum to conduct 

population genetics inference using deep whole genome sequencing data. Current uses of the 

AFS assume interchangeability of sites and implicitly homogeneity in the AFS across different 

sites. However, previous work has shown heterogeneity in the allele frequency spectrum at the 

single base mutation level (A->T, C->G, etc), driven by evolutionary forces such as mutation 

rate heterogeneity and biased gene conversion. This finding raises the question of whether 

heterogeneity in the AFS persists at a finer resolution (i.e., 1-mers vs 3-mers) and the effect of 

this assumption violation on downstream inference.  

In this work we address this question by first showing the effects of evolutionary forces 

on the AFS persist when considering 3-mer mutation subtypes (e.g., A[T->G]C). We recognize 

evolutionary forces act on the AFS concurrently and further propose a novel 𝐷−2 statistic that 

removed the contribution of singletons and doubletons from the AFS. We present theoretical 

justification that our statistic is a difference in unbiased estimators of the population genetics 

parameter 𝜃 and derive the analytical variance. We then analyze the effect of AFS heterogeneity 

across mutation subtypes on downstream demographic inference and shaping the local AFS in a 
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region. We find AFS heterogeneity at the genome wide level is substantial enough to infer 

drastically different parameters across mutation subtypes under an exponential growth and 

bottleneck growth demographic model. In local patterns of variation, we find a combination of 

regional subtype composition and local genomic factors shape the regional AFS across regions 

and discuss implications on local tests of selection using the AFS. 

In Chapter 3, we consider GWAS summary statistics in the context of constructing PRS 

(weighted sum of risk variants) for genomic risk prediction in admixed individuals. Admixed 

individuals (e.g African Americans and Hispanics) are people who have segments of their 

genome tracing back to multiple ancestries due to interbreeding between previously isolated 

populations. Constructing well-performing PRS in admixed individuals is problematic due to a 

known portability problem of PRS, in which PRS perform worse as the ancestry of the target 

sample deviates from the external GWAS used. Because the ancestry of admixed individuals lies 

on a continuum, this portability issue results in an equitability problem as admixed individuals 

whose ancestry better matches the external GWAS will unequally benefit from the PRS30.  

Recent approaches have proposed using multiple ancestry GWAS in the context of admixed 

PRS, though the best way to integrate ancestry specific GWAS while considering local ancestry 

is still unclear. 

Here, we introduce a novel stacking-based method, stacking local ancestry PRS (slaPRS), 

that integrates information from multiple ancestry GWAS in a local framework while explicitly 

modeling local ancestry to construct PRS in admixed individuals. We assess the performance of 

slaPRS using simulated population-specific GWAS and admixed African American genotypes, 

derived from population genetics models that contain realistic population-specific patterns of 

genetic variation. We consider disease architectures across a range of heritability, number of 



 6 

causal variants, transethnic genetic architecture, and underrepresented GWAS sample sizes. 

Across all settings, slaPRS improves PRS performance and reduces the PRS ancestry 

dependence when stratifying admixed African Americans by quantiles of European ancestry. In 

real data applications, we apply slaPRS to admixed African British from the UK Biobank6 to 

predict lipid traits (total cholesterol, HDL, LDL) using population-specific European and African 

American GWAS of the respective traits from the Global Lipids Genetics Consortium31. In our 

analysis, we find that slaPRS performs best or second best across methods in all quantiles of 

European ancestry. However, we find in the studied lipid traits that slaPRS performs comparably 

to an approach that combines multiple population GWAS globally, potentially driven by the 

genetic architecture of the lipid traits. 

In Chapter 4, we consider GWAS summary statistics across complex traits to study 

pleiotropy (association of a genetic signal with multiple phenotypes). Pleiotropy can be studied 

at differing resolutions including the genome, region, or SNP/gene-level32,33. For example, PRS 

discussed in Chapter 3 can be used to assess genome-level pleiotropy through associating 

estimated PRS across different traits34. Another common approach to studying pleiotropy is via 

genetic correlation, which aims to directly quantify the strength of similarity between genetic 

variant GWAS effects across two traits35. Genetic correlation can be estimated using both 

individual level data and summary statistics, with summary statistic based methods such as LD 

score regression being more popular due to computational efficiency and preventing the need for 

individual-level genotype/phenotype data access36. Originally genetic correlation was studied 

using all variants genome wide to study pleiotropy at the genome resolution, though methods 

have recently been proposed for local genetic correlation (LGC) which can now estimate genetic 

correlation in a genomic region to identify pleiotropy at the region level37–39. However, current 
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genetic correlation approaches are limited in their ability to identify SNPs and genes driving a 

signal of LGC, making biological interpretability difficult and limiting clinical use.  

In this work, we propose LDSC-MIX, a novel mixture of cross trait LD score regressions 

framework to identify latent sets of variants or genes that drive signals of local genetic 

correlation. While methods such as colocalization40 already exist for studying pleiotropy at the 

SNP-level through providing information on the set of likely shared causal variants in a region, 

such methods typically rely on the presence of GWAS hits and perform poorly in scenarios of 

weaker genetic effects. In simulations, we divide the genome into approximately independent LD 

blocks where in each local region we simulate effect sizes (GWAS) across two traits varying the 

local SNP-based heritability, genetic correlation, and number of causal variants. We find that 

LDSC-MIX typically outperforms colocalization in local regions of multiple weaker shared 

causal variant genetic signals that have few or no GWAS significant hits. However, in single 

shared causal variant or strong multiple shared causal variant scenarios colocalization was the 

preferred approach. In trait pairs for immune, cancer, and cholesterol phenotypes from the UK 

Biobank, LDSC-MIX identifies sets of potentially shared causal variants that recover the 

estimated LGC, as well as potential genes enriched for inferred genetically correlated SNPs. 

The projects in this dissertation are a step towards understanding and presenting novel 

approaches for how summary statistics of genetic variation and genotype-phenotype associations 

can be used to study population genetics, perform genomic risk prediction, and interrogate 

pleiotropic effects. Our analysis of the AFS summary statistic reveals to the field how current 

uses of the AFS to conduct inference may be biased by failing to consider AFS-heterogeneity 

across subtypes. Our method slaPRS constructs PRS in admixed individuals across a range of 

ancestry quantiles to facilitate genomic risk prediction through integrating GWAS summary 
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statistics across multiple populations. Finally, our method LDSC-MIX identifies SNP and gene 

level pleiotropy in regions of local genetic correlation to provide biological interpretability on 

cross trait genetics and can potentially identify shared causal risk variants undetected by existing 

approaches.  
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Chapter 2 The Effect of Mutation Subtypes on the Allele Frequency Spectrum and 

Population Genetics Inference  

2.1 Introduction  

The advent of whole genome sequencing in the past decade has transformed the field of 

population genetics and allowed for a host of new analyses on genetic variation both within and 

between populations3,4,41–43. As a result, this abundance of information has allowed for a host of 

methods to infer population genetic parameters such as mutation rates, demographic history, 

natural selection, and more44–48. One class of methods, that in recent years have regained 

popularity for population genetics inference due to their computational tractability, are based on 

the allele frequency spectrum (AFS)49–53. The AFS is defined as the distribution of allele 

frequencies at segregating sites in a sample and serves as a summary statistic of the genetic 

variation within that population11,12. As the AFS ignores information on linkage between sites by 

simply capturing the frequency of derived alleles in a sample, it effectively reduces genome-wide 

data for large samples into a single distribution. As a result, population genetics methods based 

on the AFS allow for analyzing millions of variable sites in thousands of individuals49,50. 

Current AFS-based methods to test for selection (using the local AFS in a genomic 

region) and infer demographic history (using the genome-wide AFS) use a frequency spectrum 

constructed from all segregating sites in a sample. These AFS-based methods can generally be 

grouped into two categories 1) Methods which reduce the high-dimensional AFS to a one-

dimensional summary statistic such as Tajima’s D, Fu and Li’s D and F, and Fay and Wu’s H54–
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57 and 2) Methods that model the full AFS such as 𝛿𝑎𝛿𝑖, momi, and SFselect49,50,58. Each of these 

methods leverage that selection and demographic history affect the shape of the frequency 

spectrum. Thus, comparing the observed AFS to the expected AFS under a neutral population or 

a particular demographic model can be used to test for selection or estimate demographic model 

parameters. 

Typical construction of the AFS to summarize data and conduct inference treats all sites 

equally. However, the AFS can differ between sites due to heterogeneity in evolutionary forces. 

Across sites, mutation rates vary driven primarily by immediate surrounding sequence context 

and local genomic factors47,48,59 (e.g. CpG TpG sites have orders of magnitude higher rates due 

to methylation). For fast mutating sites, recurrent mutations (i.e., multiple independent mutation 

events) violate the infinite sites model (assumes each site is equally likely to mutate and will 

only mutate once) and lead to multiple carriers of the same allele. Thus, in large samples, fast 

mutating sites 60–63 have a general shift away from rarer frequencies as two or more lower count 

mutations occurring at the same position are evaluated as a single higher count mutation (e.g. 

two singletons treated as one doubleton). While it is possible for the opposite scenario where an 

additional mutation reverses the original, such backwards mutations occur at a much lower rate. 

Moreover, empirical findings61 suggest the scenario of shifting to higher allele counts is more 

prevalent in shaping the AFS.  Another factor non-uniformly shaping the AFS across sites is 

biased gene conversion (gBGC), which occurs during recombination and is the process in which 

A/T – G/C heterozygotes have preferential transmission of the G/C allele. In highly recombining 

regions, gBGC leads to increases in the allele frequencies of A/T -> G/C mutation types64–66 and 

is known to mimic selection. Due to these evolutionary forces uniquely shaping the AFS across 

different sites, combining all sites into a single overall AFS (as is typically done) may bias 
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inference as signals of selection or demographic history in the overall AFS are confounded by its 

composition of sites. This confounding will likely increase as genetic sample sizes grow larger 

and any AFS-heterogeneity across sites is exacerbated. However, the impact of this potential 

confounding on population genetics inference is currently unknown.  

In this work we combined and extended these known drivers to study how the AFS varies 

across mutation subtypes and the downstream implications on population genetics inference. We 

used a collection of 53,133,922 SNPs from 3556 sequenced individuals from the Bipolar 

Research in Deep Genome and Epigenome Sequencing (BRIDGES) study47. Each variant was 

classified into one of 96 mutation subtype 3-mers defined by the specific point mutation and its 

immediate adjacent bases. For each subtype, we constructed an AFS to effectively partitioning 

the overall AFS into 96 distinct frequency spectra. Under the infinite sites model, these 96 AFSs 

should differ only due to sampling variation. We showed that the AFS differs widely between 

subtypes, even outside CpG TpG sites, with much of these differences being driven by mutation 

rate heterogeneity and biased gene conversion, two factors previously implicated to shape the 

AFS at the single base level. Signals of gene conversion on the AFS may be confounded by 

mutation rates (that primarily affect the extremely rare variant counts). To disentangle the two 

factors, we further further derived a novel Tajima’s D type statistic 𝐷−2 that removes the 

singleton and doubleton contribution while retaining the same functional form for 

interpretability. As a result of AFS heterogeneity across subtypes, theoretical inference of 

demographic history using the full genome wide AFS for a single subtype under a growth and 

three-epoch model varied drastically among the subtypes. Similarly, in local genomic regions we 

found both the local composition of subtypes and genomic factors, such as recombination rate, to 

be significant predictors of the regional AFS across the genome. 
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2.2 Materials and Methods  

2.2.1 Comparison of the AFS across Mutation Subtypes to Identify Signals of Evolutionary 

Forces Driving AFS Heterogeneity 

We analyzed whole genome sequencing data from the Bipolar Research in Deep Genome and 

Epigenome Sequencing (BRIDGES) study of unrelated individuals of European ancestry. The 

samples were aggregated from a variety of studies that each collected cases and controls of 

individuals with Bipolar Disorder47. Sequencing was performed, per the Illumina protocol on 

Build GRCh37, to generate our final dataset with a mean coverage of 9.6x across individuals. 

After filtering out samples with high contamination, case misspecification, ancestry outliers, and 

relatedness our final sample included 3556 unrelated European individuals with a total of 

56,482,865 variants.  

Each of the single nucleotide polymorphisms (SNPs) observed in our dataset was 

classified as one of six mutation types, determined by the ancestral allele and the derived allele: 

A->C, A->G, A->T, C->A, C->G, C->T. We determined the ancestral allele using the 1000 

Genomes ancestral alleles for Build 37 and annotated via bcftools3,67.  Note that each mutation 

type is defined to account for the complementary nature of DNA, and thus we ignored which 

strand the mutation occurs on (e.g., a SNP with ancestral allele T and derived allele G 

corresponds to an A->C SNP on the opposite strand and vice versa, so for brevity, we classify 

both as A->C mutations).  Each mutation type was further refined into 3-mer mutation subtypes 

by considering the surrounding immediate nucleotides using the GRCh37 human reference 

sequence. This resulted in 96 distinct mutation subtypes for our analysis (4 possible bases 

downstream * 6 mutation types * 4 possible bases upstream = 96 mutation subtypes). In previous 
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work47 we estimated relative mutation rates for each 3-mer using singletons from the same 

BRIDGES dataset. 

 

Comparison of the AFS across Mutation Subtypes to Identify Signals of Evolutionary Forces 

Driving AFS Heterogeneity 

We first constructed a distinct unfolded AFS for each of the 96 mutation subtypes. For a 

given haploid sample of size n, let 𝜂𝑖 be the number of segregating sites in the sample in which 

exactly 𝑖 individuals have the derived allele. The AFS is then defined by the vector 

(𝜂1, 𝜂2, … , 𝜂𝑛−1).  

We summarized and compared the 96 subtype AFSs using the ratio of singletons to 

doubletons and Tajima’s D54. The ratio of singletons to doubletons (
𝜂1

𝜂2
) was used to identify 

signals of recurrent mutations lowering the singleton count61 for sites with higher mutation rates, 

where the ratio reflected any reduction in singletons and increase in doubletons. While recurrent 

mutations work to shift the frequency for many of the rarest frequency variants in high mutation 

rate sites, their effect is most prevalent in shifting two singletons to a single doubleton count61–63. 

Tajima’s D was used to identify signals of biased gene conversion, where Tajima’s D is a 

summary statistic of the high-dimensional AFS computed by comparing two unbiased estimates 

of 𝜃 = 4𝑁𝜇 (N is effective diploid population size and 𝜇 is mutation rate) under a neutral 

population model: Watterson’s estimator 𝜃𝑊 and Mean Pairwise Difference 𝜃𝜋: 

𝐷 =
𝜃𝜋 − 𝜃𝑊

√𝑣𝑎𝑟(𝜃𝜋 − 𝜃𝑆)
 

𝜃𝜋 = (
𝑛
2
)
−1
[∑ 𝜂𝑖𝑖(𝑛 − 𝑖)

𝑛−1

𝑖=1

] 
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           𝜃𝑊 =
𝑆

ℎ𝑛
                        

Here 𝑆 is the number of segregating sites, 𝑛 is the haploid sample size, and  ℎ𝑛 = ∑
1

𝑖

𝑛−1
𝑖=1 .  𝜃𝜋 

assigns more weight to alleles segregating at intermediate counts compared to 𝜃𝑊, which weights 

all allele counts equally68. As a result, an excess of rare or intermediate frequency alleles in the 

AFS can be observed in the sign of Tajima’s D. As gBGC skews allele frequencies towards 

intermediate frequency variants for weak to strong mutation types (A/T -> C/G) and towards rare 

variants for strong to weak mutation types64, we expect weak to strong mutation types to have a 

more positive Tajima’s D and vice versa for strong to weak types.  

As Tajima’s D is strongly influenced by the singleton and doubleton count, we derived a 

novel D statistic, which we call 𝐷−2, that removes the singleton 𝜂1 and doubleton 𝜂2 contribution 

to Tajima’s D: 

𝐷−2 =
𝜃𝜋−2 − 𝜃𝑊−2

√𝑣𝑎𝑟(𝜃𝜋−2 − 𝜃𝑤−2)
 

               𝜃𝜋−2 =
𝑛(𝑛 − 1)

(𝑛 − 2)(𝑛 − 3)
∗ (
𝑛
2
)
−1
{[∑ 𝜂𝑖𝑖(𝑛 − 𝑖)

𝑛−1

𝑖=1

] − 𝜂1(𝑛 − 1) − 2𝜂2(𝑛 − 2)} 

 𝜃𝑊−2 =
𝑆 − 𝜂1 − 𝜂2

ℎ𝑛 −
3
2

 

In the numerator, 𝜃𝜋−2 and 𝜃𝑊−2 are the Mean Pairwise Difference and Watterson’s estimators 

with 𝜂1 and 𝜂2 removed and then reweighted to ensure both estimators stay unbiased for 𝜃 under 

a neutral population. Thus, the 𝐷−2 statistic allowed us to summarize the AFS for all other allele 

counts in a familiar form to investigate the effects of gene conversion on the AFS without 

potential confounding of the singleton/doubleton count driven by recurrent mutations in sites 

with higher mutation rates. We derived the analytical form for the variance of the difference in 
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𝜃𝜋−2 and 𝜃𝑊−2 using covariance derivations for linear combinations of the AFS69,70 

(Supplementary). To check the behavior of our statistic under the null, we simulated neutral 

frequency spectra for two separate subtype’s estimate of 𝜃 using fastsimcoal271 (Supplementary). 

Similar to Tajima’s D, comparisons of our 𝐷−2 statistic across subtypes were used to interrogate 

potential signals of gBGC.    

2.2.2 Effect of Heterogeneity in the Genome Wide AFS Across Subtypes on Demographic 

Inference 

To assess the effect of AFS heterogeneity across mutation subtypes on demographic 

inference we used the method 𝛿𝑎𝛿𝑖49, which takes a diffusion approach to simulate the AFS for a 

predefined demographic model. Once simulated, comparisons to the observed genome-wide AFS 

allow 𝛿𝑎𝛿𝑖 to infer parameters for the given demographic model49. Here, we inferred 

demographic model parameters separately for each of the 96 genome-wide AFS across mutation 

subtypes to assess systematic differences. For each 𝛿𝑎𝛿𝑖 run, we considered two models of 

population history. In the first model, we modeled a population undergoing exponential growth 

(Figure 2.1), with a constant ancestral effective population size 𝑁𝑒  that started exponentially 

growing at some time 𝑇0 in the past to a present population size 𝜆𝑁𝑒 while mutations accumulate 

with rate 𝜇. In the second model, we considered a modified three-epoch model (Figure 1), a more 

natural model for the human population that allows for two changes of population size. We 

model a population with an ancestral population size 𝑁𝑒 that at time 𝑇0 contracts in a bottleneck 

of length 𝑇1 to size 𝑁𝑒𝜆1 and recovers to relative size 𝑁𝑒𝜆2 during time 𝑇2. Under both models, 

we inferred 1) the compound parameter 𝜃 = 4𝑁𝑒𝜇, 2) times 𝑇0 (both models) and 𝑇1, 𝑇2(three 

epoch model) in generations, and 3) the ratios between the ancestral and post-change population 

sizes 𝜆 (growth), 𝜆1, 𝜆2 (three-epoch).  
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Figure 2.1 Diagram of growth and three-epoch demographic models fit in 𝛿𝑎𝛿𝑖 Parameters of growth model include 

time since ancestral constant size population started growing and growth factor. Parameters of three-epoch model 

include length of bottleneck, time since bottleneck recovery as well as bottleneck depth and recovery. Each model fit 

separately using the 96 distinct subtype AFS.    

  

We computed the ancestral effective population size solving 𝑁𝑒 =
𝜃

4𝜇
 where the absolute 

mutation rate 𝜇 was derived from extremely rare variants in the same BRIDGES dataset47. To 

derive an absolute per-site, per-generation mutation rate from the relative mutation rate, we 

assume 60 de novo mutations per generation (a value typically observed in trio studies)72,73:  

𝜇𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑅𝑒𝑙 𝑀𝑢𝑡 𝑅𝑎𝑡𝑒𝑠𝑢𝑏𝑡𝑦𝑝𝑒 ∗
60

∑ # 𝑀𝑜𝑡𝑖𝑓𝑠𝑠𝑢𝑏𝑡𝑦𝑝𝑒 ∗ 𝑅𝑒𝑙 𝑀𝑢𝑡 𝑅𝑎𝑡𝑒𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑠
 

 

2.2.3 Effect of Heterogeneity in the Local Composition of Mutation Subtypes on the Regional 

AFS 

Practical applications of AFS-based statistics (such as Tajima’s D) often use the 

combined local allele frequency spectrum (i.e., derived from all segregating sites, regardless of 

subtype) as it varies over non-overlapping windows across the genome. We evaluated how the 

local AFS could be shaped by heterogeneity in its composition of mutation subtypes. To reduce 
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the potential confounding of selection when assessing the relationship between local region 

subtype composition and the AFS, we subset sites to only intergenic sites (assuming limited 

selection on intergenic regions74,75) annotated using EPACTs76. We partitioned the remaining 

genome in 100kb windows and computed in each window from the local AFS 1) Tajima’s D, 2) 

the proportion of overall singletons, doubletons, and tripletons and 3) the counts/proportion of 

each of the 96 subtypes comprising the local AFS. For each subtype, we then ranked windows 

according to proportion constituting the local AFS and classified a window as being “abundant” 

in that subtype if its proportion fell in the top 10% of windows (Figure 2.2).  

 

Figure 2.2 Diagram of analysis to assess local mutation subtype composition and regional AFS. In 100kb windows 

we compute 1) local AFS statistics (Tajima’s D, % singletons, etc), 2) the counts and proportions comprising the 

local AFS for each of 96 mutation subtypes. Windows in the top 10% of subtype proportion across the genome are 

classified as “abundant” for that subtype and we count the number of abundant subtypes in each window. 
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We first evaluated whether the distribution of Tajima’s D across these windows was 

independent of the distribution of variants by stratifying windows into 10 quantiles by Tajima’s 

D and finding the mean number of abundant subtypes out of 96 in each quantile. Under the null 

expectation that the composition of mutation subtypes in a local AFS is independent of the 

Tajima’s D in a window, we would expect the number of abundant subtypes to be constant 

across quantiles. We further stratified abundant subtypes by whether these subtypes were 1) low 

vs high mutation rate using the median mutation rate across subtypes as the separator and 2) 

direction of gene conversion by WS, SW, and Neutral to interrogate whether mutation rate 

heterogeneity or biased gene conversion drove the dependence in the distribution of local 

Tajima’s D and variants.  

We quantified the overall contribution of local subtype heterogeneity on the observed 

local AFS statistics (Tajima’s D, % singletons, etc.) by computing the expected value of each 

statistic. Using the count of each subtype as a weight, we computed the expected local AFS 

statistic in a window as a weighted mean of the 96 subtype’s genome wide observed value. For 

example, the expected Tajima’s D in a window is:  

𝐷𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =
∑ 𝐷𝐺𝑊

𝑖96
𝑖=1 ∗ 𝑤𝑖
∑ 𝑤𝑖
96
𝑖=1

 

Where 𝐷𝐺𝑊
𝑖  is Tajima’s D using the genome wide AFS for subtype 𝑖 and the weights 𝑤𝑖  are the # 

of subtypes 𝑖 in the window. If local heterogeneity in mutation subtypes fully explained regional 

differences in a statistic, we would expect observed and expected statistic values to be equal. We 

fit a multivariate generalized estimating equation (GEE) linear model with a working 

exchangeable correlation structure for each chromosome:  

𝐷𝑜𝑏𝑠,𝑖 = 𝛽0 + 𝛽𝑒𝑥𝑝𝐷𝑒𝑥𝑝,𝑖 + 𝛽𝑅𝑅𝑅𝑅𝑖 + 𝛽𝐺𝐶𝐺𝐶𝑖 
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𝑅(𝜌): (
1 ⋯ 𝜌
⋮ 1 ⋮
𝜌 ⋯ 1

) 

Where 𝛽𝑒𝑥𝑝, 𝛽𝑅𝑅 , 𝛽𝐺𝐶 are effects of the expected statistic, recombination rate, and GC content in 

a window. We adjust for recombination rate and GC content in a window because recombination 

rate is known to confound selection77,78, and GC content affects germline mutation rates79. The 

GEE framework was used to produce robust 𝛽 standard errors because neighboring genomic 

regions have correlated statistics (i.e Tajima’s D) and thus would affect the standard error 

estimates of an ordinary linear regression. 

2.3 Results 

We leveraged large sample whole genome sequencing to first evaluate patterns in the 

overall AFS and assess potential heterogeneity in the AFS across mutation subtypes. In the 

overall genome wide AFS, among the 56,482,865 total SNPs across N = 3556 samples, we 

observed an excess of rare variation shown through the proportion of singletons (60.3%), 

doubletons (9.91%), and tripletons (4.01%) (Table 2.1). This excess of rare variation is 

consistent with exponential and accelerating faster than exponential population growth in recent 

human demographic history80–82. When partitioning the overall AFS by the six mutation types, 

the proportion of singletons varied greatly with C->A mutation types having the highest 

singleton proportion (63.7%) and C->T mutation types having the lowest (58.7%) (Table 2.1). 

We observed additional variation in the AFS when considering mutation types on a more 

granular scale through stratifying by flanking nucleotides. For example, we found the A[C->T]G 

mutation subtype, a CpG TpG site with an outlier mutation rate, had considerably lower 

singleton and higher doubleton proportions (53.82%, 13.68%) when compared to A[C->T]A 

(61.93%, 9.67%), A[C->T]C (59.29%, 9.53%), and A[C->T]T (60.86%, 9.51%). Notably, even 
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outside the CpG TpG subtype, some singleton proportions of the same mutation type differ by 

>2% across subtypes when altering the +1 base (C vs A). Due to our large sample sizes, 

differences in the listed singleton and proportions across the four A[C->T]X subtypes were 

highly significant after adjusting for multiple comparisons (p < 0.001). Counts and proportions 

for the other 92 3-mer subtypes can be found in the appendix.  

Tajima’s D, a summary statistic of the entire high-dimensional genome-wide AFS, 

ranged from -2.19 to -1.50 across the 96 subtypes (Figure 2.7). Uniformly negative values 

reflected the excess of rare variation observed. Even within a single mutation type there was 

variation in Tajima’s D when further considering adjacent nucleotides. For example, among C-

>G mutation types, Tajima’s D ranged from -2.19 to -1.50, with three CpG subtypes G[C->G]G 

(-1.50), A[C->G]G (-1.52), and T[C->G]G (-1.74) having clear lower outlier Tajima’s D values. 

Similar to comparisons in the singleton proportions, even outside CpG subtypes there existed 

variation in Tajima’s D (e.g., A->G mutation types ranged from -2.09 to -1.83). Substantial 

differences in both the proportions of singleton-tripleton proportions and Tajima’s D across the 

96 3-mer subtypes summarizes heterogeneity in the AFS across sites. 
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Table 2.1 Genome-wide counts and proportion of singletons, doubletons, and tripletons. a) Counts and proportions 

for the six main mutation types and b) Counts and proportions for A[C->T]X mutation subtypes varying the base 

downstream. 

 

2.3.1 A Comparison of the AFS across Mutation Subtypes to Identify Evolutionary Forces 

Driving AFS Heterogeneity 

When assessing the relationship between mutation rates and the singleton to doubleton 

ratio, we found the ratio of singletons to doubletons was highly negatively correlated with the 

estimated singleton-derived mutation rates3 across the 96 mutation subtypes (𝜌 = −0.84, 𝑝 =

2.2𝑒−16 ) (Figure 2.3). As previously mentioned, sites with higher mutation rates are more 

susceptible to recurrent mutations. To assess whether the signal was driven by the CpG TpG sites 

with their order of magnitude higher mutation rates, we repeated the analysis after removing the 

4 CpG TpG subtypes and found the ratio of singletons to doubletons was still negatively 

correlated with the estimated singleton-derived mutation rates47 across the 96 mutation subtypes 
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(𝜌 = −0.35, 𝑝 = 6.1𝑒−4 ). We further stratified subtypes by the six mutation types, observing 

consistently negative correlations between 𝜌 = −0.21 and 𝜌 =  −0.97 (Table 2.3). Four of the 

six correlations (A->G, C-> A, C->G and C->T) were statistically significant even though each 

correlation is based on only 16 observations.    

 

Figure 2.3 Correlation between the ratio of singletons to doubletons by the estimated mutation rate from extremely 

rare variants. Black points represent a mutation subtype, red points represent the four CpG TpG sites, and the blue 

line is the least squares regression line. a) Correlation of all 96 mutation subtypes b) Correlation by six mutation 

types. 
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When comparing Tajima’s D and our 𝐷−2 statistic across subtypes to identify signals of 

gene conversion on the AFS, Tajima’s D ranged from [-2.19, -1.84] while our 𝐷−2 statistic 

ranged from [-0.44, 0.10], with a strong correlation between the two statistics across subtypes 

(𝜌 =  0.76, 𝑝 = 2.2𝑒 − 16).  Under the null, we observed that D-2 was asymmetric with a heavier 

positive tail suggesting that utility of this statistic beyond summarizing the AFS shape without 

singletons and doubletons may be limited (Figure 2.8). We grouped non-CpG mutation subtypes 

into weak to strong (WS), strong to weak (SW), and indifferent variants with each category 

having 32 subtypes and compared the mean Tajima’s D between groups (Table 2.2). We 

observed the smallest average Tajima’s D in SW (-2.071), followed by indifferent (-2.048) and 

WS (-2.004). Comparing each category against the mean of the other two categories, we found a 

statistically significant difference in means for WS vs SW and indifferent (p = 2.2e-4, t-test) and 

SW vs WS and indifferent (p=2.2e-3, t-test). The “more positive” mean Tajima’s D for WS 

subtypes compared to non-WS indicated an excess of intermediate frequency variants, which is 

consistent with a model of gBGC where low-frequency S alleles get transmitted more often than 

expected and thus reach intermediate allele frequency more frequently. Similarly consistent with 

expectations under gBGC, the mean Tajima’s D was “more negative” for SW subtypes compared 

to non-SW.  

As Tajima’s D is strongly dependent on the number of singletons and doubletons, the 

effect of gBGC may be confounded by mutation rate heterogeneity distorting primarily the 

singleton and doubleton counts. To limit the effect of mutation rate heterogeneity, we repeated 

the analysis using our 𝐷−2 statistic that ignores all singletons and doubletons in its calculation. 

We again observed the smallest Tajima’s D in SW followed by indifferent and WS (though 

indifferent and WS had very similar values), which was consistent with the hypothesized effect 
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of gBGC on the AFS. When comparing each category against the mean of the other two 

categories, we observed a weaker signal of gBGC as only the SW comparison had a borderline 

statistically significant difference in mean Tajima’s D (p=0.080, t-test) compared with WS and 

indifferent. 

 

 

Table 2.2 Mean Tajima’s D (left) and D-2 estimator (right) for subtypes in each mutation group against subtypes not 

in group. P-values computed from two-sample t-test. CpG subtypes were excluded from analysis. 

  

2.3.2  Effect of Heterogeneity in the Genome Wide AFS Across Subtypes on Demographic 

Inference 

Inferred demographic parameters varied drastically when running 𝛿𝑎𝛿𝑖 separately across 

the 96 distinct mutation subtype-specific genome-wide AFS. Under the simple exponential 

growth model (Figure 2.1), estimates of the ancestral effective population size derived from the 

inferred population genetics parameter 𝜃 varied two-fold from 5062.99 to 10518.87 across the 96 

subtype’s genome wide AFS. Similarly, estimates of the time at which the ancestral constant 

population size started growing varied from 96.53 to 206.02 generations across subtypes (see 

Appendix). There was a strong correlation (𝜌 = 0.70, p = 2.06e-15) between the genome-wide 
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proportion of singletons for a given subtype and its inferred relative growth (Figure 2.4). This is 

expected since the singleton count should be highly informative of growth rate and time since 

growth under an exponential growth model of human populations81,83. CpG TpG sites have an 

overall lower proportion of singletons due to their higher mutation rate causing recurrent 

mutations, and thus had smaller inferred relative growth. However, two non-CpG subtype A[A-

>G]G and T[A->T]A had a similarly low proportion of singletons (< 57%) and smaller inferred 

relative growth (114.07 and 76.44). In addition, the subtype G[A->G]G had an outlying higher 

inferred relative growth (211.71) given its proportion of singletons (0.60) as compared to the 

trend of other subtypes. 

 

Figure 2.4 Scatterplot of inferred relative growth by the proportion of singletons for each of the 96 mutation 

subtype’s AFS. Points in blue are non CpG TpG sites and points in red are CpG TpG sites with outlier higher 

mutation rates driving lower proportion of singletons. 
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For the constrained three-epoch model, inferred parameters across subtypes similarly 

varied drastically with the total time since the ancestral population first changed ranging from 

7,530 to 824,292 generations, relative bottleneck depth ranging from 0.07 to 0.99, and relative 

recovery ranging from 3.77 to 90.43. Conclusions about the existence of a historical bottleneck 

varied across subtype inference, with four subtypes suggesting a nonexistent or very small 

bottleneck (less than a 15% decrease in effective population size). The remaining subtypes 

suggested a moderate to severe bottleneck with population contractions widely ranging from 

40% to 93%. Excessively large times and recovery post bottleneck were likely driven by model 

constraints which forced a bottleneck to occur. 

 

2.3.3 Effect of Heterogeneity in the Local Composition of Mutation Subtypes on the Regional 

AFS 

In our regional analysis to assess whether local heterogeneity in subtype composition in a 

100kb windows shaped the regional AFS, we observed a general non-independence in the 

distribution of variants and Tajima’s D. Windows were first characterized as “abundant” in a 

given subtype for each of the 96 subtypes subtype if their proportion comprising the local AFS 

fell in the top 10% of windows genome wide (Figure 2.2). After separating windows into 5% 

quantiles based off Tajima’s D, windows in the lowest and highest 5% of Tajima’s D quantile 

had on average more subtypes out of 96 with extreme abundances (12.35 and 9.79 respectively 

vs 7.95) compared to the median D quantile average (Figure 2.5), suggesting a more extreme 

composition of mutation subtypes in windows falling in the tails of the genome wide Tajima’s D 

distribution. When stratifying abundant subtypes by direction of gene conversion and low/high 
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mutation rate, we found no observable trends in proportions of each category across D quantiles 

(Figure 2.10).  

 

Figure 2.5 Average number of abundant subtypes in windows stratified by 5% Tajima’s D quantiles. Number of 

abundant subtypes further broken down into direction of gene conversion (strong to weak vs weak to strong) and 

mutation rate (low vs high). 

 

We compared four observed local AFS statistics (Tajima’s D, % singletons, % 

doubletons, and % tripletons) to their expected value (see methods) to quantify the non-

independence of local subtype composition and Tajima’s D in shaping the regional AFS. The 

mean (standard deviation) for observed AFS statistic across windows for Tajima’s D, % 

singletons, % doubletons, and % tripletons was -1.883 (0.335), 0.584 (0.037), 0.096 (0.015), and 

0.039 (0.009). Similarly, expected local AFS statistics had means (standard deviation) of -2.036 
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(0.004), 0.603 (0.004), 0.099 (0.002), and 0.040 (0.001), with small standard deviations 

suggesting low variability in local subtype composition across 100Kb windows. When 

compared, the mean (standard deviation) of the difference between observed AFS statistic and 

expected AFS Statistic across windows for Tajima’s D, % singletons, % doubletons, and % 

tripletons was 0.153 (0.335), -0.019 (0.038), -0.003 (0.015), and -0.001 (0.009) respectively 

(Figure 2.6). Comparable standard deviations in the differences to the observed values alone 

were consistent with small variability in the expected values, with mean differences half a 

standard deviation or less from zero suggesting a role of local subtype composition shaping the 

regional AFS. Fewer observed variants at the rarest frequencies than expected may be driven by 

local genomic factors such as late replicating regions that elevate mutation rates outside subtype 

composition84,85.  
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Figure 2.6 Difference in observed AFS statistics vs expected (MST genome wide statistic weighted by counts of 

sites in local window), standardized for comparison across statistics. Dotted blue line denotes zero, the difference if 

the local subtype composition perfectly determined the observed statistic. 

From the GEE model directly regressing the expected local AFS statistic and local 

genomic factors on the observed local AFS statistic, we found each expected local AFS statistic 

was a significant predictor despite low variability in their values. A 0.10 increase in expected 

Tajima’s D corresponded to a 0.285 (p=4.47e-03) increase in the observed Tajima’s D. 

Similarly, a 0.10 increase in expected % singletons, % doubletons, and % tripletons 

corresponded to a -0.085 (p=1.85e-05), 0.105 (p=1.54e-15), and 0.100 (p=4.96e-04) change in 

the corresponding observed AFS statistic on average (Table 2.4). A negative coefficient for the 

expected % singletons was inconsistent, though could be explained by low variability in the 

expected values or negative correlations between CpG substitution rate and GC content (see 

supplementary for discussion). Furthermore, recombination rate was highly associated with the 
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observed Tajima’s D (𝛽=0.045, p=5.48e-49), % singletons (𝛽=-0.006, p=1.24e-57), and % 

doubletons (𝛽=0.000, p=1.92e-08), while GC percent was only associated in the observed 

Tajima’s D model (𝛽=-0.394, p=2.81e-04). Overall, significant associations for all expected 

local AFS statistics, recombination rate, and GC content on the observed local AFS statistic 

values suggest that local mutation subtype composition shapes the regional AFS in conjunction 

with local genomic factors. 

 

2.4 Discussion 

Our work uses large sample whole genome sequencing to assess how the AFS differs 

across variant subtypes and identify biological factors driving AFS heterogeneity. While 

previous work has studied AFS heterogeneity mainly among the six single base mutation types 

(A->C, A->G, etc), our results indicate increased heterogeneity when considering immediate 

flanking markers (especially for the rarest frequency singleton and doubleton variants). We 

further extend the effect of biological factors (hypermutability of certain motifs and biased gene 

conversion) on the AFS from 1-mer variants to 3-mers considering adjacent nucleotides. In 

particular, 3-mer motifs with higher mutation rates exhibited a lower ratio of singletons to 

doubletons while motifs, depending on direction of gene conversion, had an increase in either 

low or intermediate frequency variants as quantified by Tajima’s D and our proposed 𝐷−2 

statistic removing singletons and doubletons. While conclusions of signals for gene conversion 

were consistent with our 𝐷−2 statistic, we note attenuated differences across groups are likely 

explained by a loss of power as the singleton and doubleton counts are very informative in D-

type statistics.  
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We first demonstrated the effect of AFS heterogeneity across subtypes on demographic 

inference through considering the case of a single subtype comprising the entire genome wide 

AFS. Under this scenario, inferred parameters differed drastically across subtypes and resulted in 

differing conclusions. Under the three-epoch population model, certain subtype specific AFS 

inferred a strong bottleneck or no bottleneck at all. Similarly, for an exponential growth model, 

growth rates varied drastically with a strong correlation between the singleton proportion and 

relative growth. CpG TpG sites inferred a lower relative growth due to having proportionally 

fewer singletons (driven by their higher mutation rates causing recurrent mutations). However, 

the subtypes A[A->G]G and T[A->T]A  had a similarly smaller singleton proportion and also 

inferred lower growth. While CpG TpG sites are sometimes excluded from analysis as expected 

outliers86, these are subtypes that would normally not be considered for exclusion.  

Similarly, we found that regional AFS were also affected by AFS heterogeneity across 

mutation subtypes. Regions in the tails of the empirical distribution of Tajima’s D tend to have 

more extreme composition of mutation subtypes than windows near the median, though we saw 

no evidence that this local composition of mutation subtypes across Tajima’s D quantiles is 

driven by specific biological processes influencing the genome wide AFS (gBGC and mutation 

rate heterogeneity). Mean differences between expected and observed local AFS statistics within 

half a standard deviation or less of zero suggest local heterogeneity in subtype composition plays 

a role in shaping the regional AFS. Larger mean differences (relative to standard deviations) for 

Tajima’s D and singleton proportion suggest the local subtype composition plays a relatively 

smaller role in shaping these statistics as compared to the doubleton and tripleton proportion. 

Furthermore, significant associations for expected statistics, recombination rate, and GC content 
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in our GEE model suggest a combination of local subtype composition and genomic factors 

jointly shape the regional AFS.   

Several potential limitations need to be considered when interpreting these results. First, 

AFS heterogeneity is driven by multiple factors acting concurrently, causing the identification of 

mutation rate heterogeneity and biased gene conversion to potentially confound one another. 

While we aimed to mitigate this issue using our newly derived 𝐷−2 statistic that removed 

singletons and doubletons when assessing signals of gene conversion, the effect of recurrent 

mutations driven by higher mutation rates detectably extends to higher allele frequencies. 

Second, correlations between estimated relative mutation rates and statistics/estimates across 

subtypes may be confounded by the fact that mutation rates used were estimated from singletons 

even though estimated relative mutation rates are similar to rates estimated elsewhere. Lastly, 

our dataset used had a relatively lower average coverage (9.6x) given today’s deep standards 

(>30x). While many extremely rare variants likely went undetected during variant calling, our 

stringent quality control procedure (see Carlson et al47) ensured analyzed variants across the 

distribution of allele frequencies were of high quality. 

Despite potential confounding and sample limitations, our results thus demonstrate the 

challenges introduced by treating polymorphic sites as exchangeable in population genetic 

inference. From our genome-wide analysis, we can clearly see how model parameter estimates 

for demographic inference are sensitive to the subtype-specific AFS and suggest removing 

certain subtypes prior to analysis. While CpG TpG sites are sometimes already excluded due to 

their outlying nature86, demographic models dependent on the singleton count should further 

consider excluding other subtypes with lower singleton proportions. A sensitivity analysis with 

and without subtypes removed can then reveal how much inference is being driven by said 
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subtypes. From our regional analysis, we can see that a combination of the local composition of 

subtypes and genomic factors play a role in shaping the regional AFS. Thus, we recommend 

approaches to identify regions under selection by identifying outlier local AFS statistics (i.e., 

Tajima’s D) to perform a post hoc analysis and consider whether a local region with an outlier 

Tajima’s D has a distribution of sites in the region comparable to the rest of the genome. 

Furthermore, we recommend considering whether the outlier D region is in a late replicating 

region (known to alter both the mutation rate and subtype composition 87) or has an outlier 

recombination rate(as been suggested by 88. If the region has a unique distribution of sites or is 

subject to one of the above specified local genomic factors, care may be needed in interpreting 

results of the analysis. Future work could potentially investigate adjusting either the overall AFS 

or the inference method itself to account for the composition of mutation subtypes in the sample 

prior to analysis.  

Our findings about allele frequency heterogeneity imply that even non-AFS inference 

frameworks could bias inference by failing to differentiate between sites. For example, the 

coalescent-based methods PSMC45 and the Singleton Density Score89 treat sites as 

interchangeable. PSMC assumes a constant mutation rate in a window while the Singleton 

Density Score is reliant on distances to the nearest singleton, and thus both methods may be 

vulnerable to local regions being abundant in sites with outlying mutation rates or singleton 

proportions. As a result, we believe population genetics methods across multiple frameworks 

could benefit by carefully considering the unique evolution of mutation subtypes over time90. 

One benefit of the present era of population genetics is the availability of very large 

samples with deep genotyping. However, the same large sample sizes also amplify subtle 

population genetic effects that can mislead attempts at inference.  As large samples provide an 
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abundance of variants available for population genetic inference, it is both feasible and advisable 

to assess the robustness of inference results to these effects and to adjust the inference 

accordingly. 
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2.5 Chapter 2 Appendix 

2.5.1 Derivation of New D-2 Estimator 

We sought to derive a Tajima’s D type statistic that removed the contribution of 

singletons and doubletons. The traditional Tajima’s D is formulated as the difference of two 

unbiased estimates of 𝜃: Mean pairwise difference (𝜃𝜋) and Watterson’s estimator (𝜃𝑊) based on 

the total number of segregating sites: 

𝐷 =
𝜃𝜋 − 𝜃𝑊

√𝑣𝑎𝑟(𝜃𝜋 − 𝜃𝑊)
 

Where:  

𝜃𝜋 = (
𝑛

2
)
−1

∑𝜂𝑖𝑖(𝑛 − 𝑖)

𝑛−1

𝑖=1

 

𝜃𝑊 =
𝑆

ℎ𝑛
 

Here S is the number of segregating sites, n is the haploid sample size, and ℎ𝑛 = ∑
1

𝑖

𝑛−1
𝑖=1 . 

For our novel D-2 statistic, the numerator takes the form of the traditional D estimator with the 

singleton and doubleton contributions subtracted from Mean Pairwise Difference and 

Watterson’s Estimator. We then reweight the resulting estimators to both be unbiased estimators 

of 𝜃.  

1) MPD without singletons and doubletons: 

Let 𝜋∗ = (
𝑛
2
)
−1
{[∑ 𝜂𝑖𝑖(𝑛 − 𝑖)

𝑛−1
𝑖=1 ] − 𝜂1(𝑛 − 1) − 𝜂2 ∗ 2(𝑛 − 2)} 

𝐸[𝜋∗] = 𝐸[(
𝑛
2
)
−1
{[∑ 𝜂𝑖𝑖(𝑛 − 𝑖)

𝑛−1

𝑖=1

] − 𝜂1(𝑛 − 1) − 𝜂2 ∗ 2(𝑛 − 2)}] 
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= 𝐸 [𝜋 − (
𝑛

2
)
−1
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2
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2
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𝑛(𝑛 − 1)
] 
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𝑛(𝑛 − 1)

𝑛(𝑛 − 1)
−
2(𝑛 − 1)

𝑛(𝑛 − 1)
−
2(𝑛 − 2)

𝑛(𝑛 − 1)
] 

= 𝜃 [
𝑛2 − 5𝑛 + 6

𝑛(𝑛 − 1)
] 

= 𝜃 [
(𝑛 − 3)(𝑛 − 2)

𝑛(𝑛 − 1)
] 

 

Thus 

𝜃𝜋−2 = [
𝑛(𝑛 − 1)

(𝑛 − 2)(𝑛 − 3)
] ∗ (

𝑛
2
)
−1
{[∑ 𝜂𝑖𝑖(𝑛 − 𝑖)

𝑛−1

𝑖=1

] − 𝜂1(𝑛 − 1) − 𝜂2 ∗ 2(𝑛 − 2)} 

Is an unbiased estimator of 𝜃. 

2) Watterson’s estimator without singletons 𝜂1 and doubletons 𝜂2: 

We know from coalescent theory that under a neutral population 𝐸[𝜂1] = 𝜃, 𝐸[𝜂2] =
𝜃

2
. 

Further 𝐸[𝑆] = ℎ𝑛𝜃 = ∑
1

𝑖

𝑛−1
𝑖=1 . 

Let 𝑆∗ = 𝑆 − 𝜂1 − 𝜂2 

𝐸[𝑆∗] = 𝐸[𝑆 − 𝜂1 − 𝜂2] 
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= ℎ𝑛𝜃 − 𝜃 −
𝜃

2
 

= 𝜃(𝑎𝑛 −
3

2
) 

Thus 

𝜃𝑊−2 =
𝑆 − 𝜂1 − 𝜂2

ℎ𝑛 −
3
2

 

Is an unbiased estimator of 𝜃. 

Our novel D-2 statistic then takes the form: 

𝐷 =
𝜃𝜋−2 − 𝜃𝑊−2

√𝑣𝑎𝑟(𝜃𝜋−2 − 𝜃𝑊−2)
 

For the denominator, we use results from Fu and Durett69,70 to derive an analytical form. Let 𝑐𝑛
𝑘 

be a weight vector of length n for estimator 𝑋𝑘. Test of neutrality statistics can be expressed in 

the general form as a weighted sum of the AFS: 

𝑋𝑘 =∑𝑐𝑛,𝑖
𝑘 𝜂𝑖

𝑛−1

𝑖

 

Our modified Watterson’s and MPD estimators retain the same functional form subtracting off 

singletons and doubletons. Thus, they can be expressed as a weighted sum where the first two 

weights are set to zero and the remaining are reweighted: 

1. MPD expressed as weighted sum: 

𝜃𝜋−2 = [
𝑛(𝑛 − 1)

(𝑛 − 2)(𝑛 − 3)
] ∗ (

𝑛
2
)
−1
{[∑ 𝜂𝑖𝑖(𝑛 − 𝑖)

𝑛−1

𝑖=1

] − 𝜂1(𝑛 − 1) − 𝜂2 ∗ 2(𝑛 − 2)} 

𝜃𝜋−2 =∑𝑐𝑛,𝑖
1

𝑛−1

𝑖

𝜂𝑖 
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𝑤ℎ𝑒𝑟𝑒 𝑐𝑛
1 = [0, 0,

2𝑖(𝑛 − 𝑖)

(𝑛 − 2)(𝑛 − 3)
, … . , ] 

 

2. Watterson’s expressed as weighted sum : 

𝜃𝑊−2 =
𝑆 − 𝜂1 − 𝜂2

ℎ𝑛 −
3
2

 

𝜃𝑊−2 = ∑𝑐𝑛,𝑖
2

𝑛−1

𝑖

𝜂𝑖 

𝑤ℎ𝑒𝑟𝑒 𝑐𝑛
2 = [0, 0,

1

ℎ𝑛 −
3
2

 , … . , ] 

 

Fu derived the covariance for weighted sums of the AFS as: 

𝑐𝑜𝑣(𝑋1, 𝑋2) = 𝑎𝑛𝜃 + 𝑏𝑛𝜃
2 

𝑎𝑛 =∑
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𝑖
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2  
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−
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              𝑖 + 𝑗 = 𝑛
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−

1

𝑖𝑗
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𝑤ℎ𝑒𝑟𝑒 𝐵𝑛 =
2𝑛

(𝑛 − 𝑖 + 1)(𝑛 − 𝑖)
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𝑖

𝑛−1

𝑖

 

Thus, we can derive the analytical form for the variance of our estimator: 

𝑣𝑎𝑟(𝜃𝜋−2 − 𝜃𝑤−2) = 𝑣𝑎𝑟(𝜃𝜋−2) + 𝑣𝑎𝑟(𝜃𝑤−2) − 2𝑐𝑜𝑣(𝜃𝜋−2, 𝜃𝑊−2) 
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= 𝑐𝑜𝑣(𝜃𝜋−2, 𝜃𝜋−2) + 𝑐𝑜𝑣(𝜃𝑊−2, 𝜃𝑊−2) − 2𝑐𝑜𝑣(𝜃𝜋−2, 𝜃𝑊−2) 

Where each term can be expressed using Fu’s closed form of the covariance described above and 

the corresponding weight vector 𝑐𝑛
𝑘: 

a. 𝑐𝑜𝑣(𝜃𝜋−2, 𝜃𝜋−2) = 𝑎𝑛𝜃 + 𝑏𝑛𝜃
2  with 𝑐𝑛

1 = 𝑐𝑛
2 = [0, 0,

2𝑖(𝑛−𝑖)

(𝑛−2)(𝑛−3)
, … . , ] 

b. 𝑐𝑜𝑣(𝜃𝑊−2, 𝜃𝑊−2) = 𝑎𝑛𝜃 + 𝑏𝑛𝜃
2 with 𝑐𝑛

1 = 𝑐𝑛
2 = [0, 0,

1

ℎ𝑛−
3

2

 , … . , ] 

c. 𝑐𝑜𝑣(𝜃𝜋−2, 𝜃𝑊−2) = 𝑎𝑛𝜃 + 𝑏𝑛𝜃
2 with 𝑐𝑛

1 = [0, 0,
2𝑖(𝑛−𝑖)

(𝑛−2)(𝑛−3)
, … . , ], 𝑐𝑛

2 =

[0, 0,
1

ℎ𝑛−
3

2

 , … . , ] 

Each of the above covariances requires knowledge of 𝜃 and 𝜃2 which are not known. Instead, we 

use estimates derived from Watterson’s estimator, similar to the original Tajima’s D statistic70:  

�̂� =
𝑆

ℎ𝑛
 

�̂�2 =
𝑆2 − 𝑆

ℎ𝑛2 − 𝑔𝑛

𝑤ℎ𝑒𝑟𝑒 𝑔𝑛 = ∑
1
𝑖2

𝑛−1
𝑖

  

To assess the null distribution and type 1 error, we used fastsimcoal2 to simulate 2,000 

neutral frequency spectra for two subtypes: A[A->C]A and A[C->T]G assuming no 

recombination. For each run, we simulated a 1Mb sequence passing as parameters the subtype’s 

absolute mutation rates and effective population size (23,785 and 23,066 respectively, derived 

using Watterson’s estimate of 𝜃 and 𝜃 = 4𝑁𝑒𝜇𝐿 where L is the number of subtype motifs across 

the genome). (Figure S2). Across simulations for both subtypes, the mean  𝐷−2 value was 

roughly zero (-0.103 and -0.048) with T1E rates of 0.031 and 0.0375 (roughly assuming a 
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standard normal under the null). We note the null distribution exhibited longer tail behavior as 

compared to the roughly standard normal that Tajima’s D follows.  

 

2.5.2 Negative Relationship Between Expected and Observed Singleton Proportions Across 

100Kb Windows 

In our 100Kb window analysis to determine whether the local subtype composition plays 

a role in shaping the regional AFS, we surprisingly observed a negative coefficient in our GEE 

regression model for the singleton proportion (Table S2). Plotting the expected singleton 

proportion vs observed singleton proportion confirms a negative trend (Figure S4). This may be 

caused by low variability in the expected singleton proportions [0.58, 0.61], which may obscure 

an actual positive relationship between values. Another possible explanation is GC content is 

known to be negatively correlated with CpG substitution rate correlations91,92. Regions of high 

GC content would have lower mutation rates than expected (based on local mutation subtype 

composition) and could counteract the effect of recurrent mutation and thus increase the 

singleton proportions. While GC content was included in our model, we may not have 

sufficiently captured the complexity between substitution rates, methylation, and GC content. 

 

2.5.3 Code Availability 

A GitHub repository containing all data and necessary code to reproduce results is available at:   

https://github.com/kliao12/AFS_subtype_analysis
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2.5.4 Supplementary Tables and Figures  

 

Figure 2.7 Bar plot showing Tajima’s D computed for each of the 96 mutation subtypes’ genome-wide allele 

frequency spectrum. Negative values across subtypes are consistent with recent explosive human population growth.  
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Figure 2.8 Null distribution for D-2 statistic across two subtypes: A[A->C]A and A[C->T]G. For each subtype, we 

simulated 2,000 neutral AFS using Fastsimcoal2 (see supplementary for details).  



 43 

 

Figure 2.9 Line graph showing proportion of abundant subtypes in each Tajima’s D quantile broken down by biased 

gene conversion x mutation rate heterogeneity category.  
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Figure 2.10 Scatter plot of negative relationship between expected and observed singleton proportion across 100Kb 

windows.  
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Table 2.3 Correlation and p-value between single-derived mutation rates and singleton to doubleton ratio. Each 

mutation type has 16 distinct 3-mer subtypes in which correlation was computed.  
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Table 2.4 Regression output (β estimates and p values) from GEE analysis modeling observed local AFS statistics 

with expected statistics (defined as weighted mean of genome wide values, using counts of subtypes as weights) and 

adjusting for recombination rate and 
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Chapter 3 A Stacking Framework for Polygenic Risk Prediction in Admixed Individuals 

3.1 Introduction 

Since the first genome wide association study (GWAS) published in 2005, GWAS have 

successfully implicated thousands of risk variants across a variety of traits93. While a single risk 

variant may only explain a small percent of a trait’s heritability, a sizable proportion of 

phenotypic variation can be explained by summarizing an individual’s genetic risk for a given 

disease or trait in polygenic risk scores17 (PRS). PRS are typically computed as a weighted sum 

of risk alleles using estimated effects from an external GWAS as weights. These PRS have been 

used18,19 to identify individuals at high risk of disease, improve diagnostic accuracy, and allow 

for tailored personalized treatment for disease risk prediction in complex traits including 

coronary artery disease20,21, type 1 and 2 diabetes22,23, breast cancer24,25, and more26. However, 

PRS fail to capture the full variability expected from heritability estimates while also being 

susceptible to environmental confounding and indirect genetic effects such as assortative 

mating94–96. 

Furthermore, performance of a PRS in predicting a phenotype for a target sample can be 

ancestry dependent. In particular, PRS prediction performance decays as genetic divergence 

increases between the target sample of interest and external GWAS.97,98. This performance decay 

can mainly be attributable to 1) differences in allele frequencies and 2) differences in both 

marginal and causal effect sizes of variants across populations30. Causal effect sizes themselves 

can differ across populations due to unique environments and demography, though recent work
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in admixed individuals has suggested causal effect sizes are shared across populations99. 

However, even when causal effects are shared, marginal estimated GWAS effect sizes can still 

differ due to differences in linkage disequilibrium (LD) tagging the true causal variant. The 

extent in how LD differs across populations varies along the genome100, prompting work in the 

transferability of PRS across diverse populations to often consider a local approach in combining 

genetic evidence101,102. Specifically, approaches often model local population-specific LD 

patterns in regions to better identify true local risk variants and increase effective sample size102.     

The ancestry dependence of PRS is further exacerbated in the context of admixed 

individuals. Historically, genetic studies group admixed individuals of varying ancestry 

proportions into a single ancestral label such as “African American” or “Hispanic”. However, the 

genetic ancestry in an admixed sample varies across both individuals and regions prompting a 

recent push to consider ancestry on a continuum rather than as discrete ancestral groups103. In 

admixed individuals, Bitarello and Mathieson showed predictive accuracy of a PRS for height 

using European summary statistics increased linearly with global European ancestry proportion 

across various datasets104. Similarly, Cavazos and Witte showed in simulations a similar linear 

relationship with both European and African summary statistics performing better as the 

proportion of European and African ancestry respectively increased across admixed samples105. 

Such ancestry dependence of PRS in admixed individuals is problematic even if all ancestral 

groups have predictive PRS, as admixed individuals that have most of their genetic ancestry 

from one parental group will benefit more from potential downstream clinical utility of PRS than 

groups with equal contribution from both ancestries. Even developing PRS specifically    
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for the admixed group will not ameliorate this problem as such a PRS will only work well for 

admixed individuals with admixture proportions similar to the group mean. While the field of 

genetics has acknowledged and begun making strides in addressing inequity in genomic 

research8,106, development of methods to construct well-performing PRS free of ancestry 

dependence in admixed samples is needed. 

To overcome the ancestry dependence of PRS performance using a single population 

GWAS in admixed samples, recent work has proposed methods that leverage GWAS summary 

statistics from the multiple ancestral populations of an admixed sample. Incorporating GWAS 

effect sizes from multiple populations provides many benefits, including identifying population 

specific risk variants and boosting sample size if risk variants are shared. In admixed African 

Americans, methods have been proposed that 1) consider local ancestry by matching chosen risk 

variants with an individual’s local ancestry at that position104,107 and 2) ignore local ancestry and 

construct a joint PRS as a linear combination of global European and African PRS108. In 

simulations, Cavazos and Witte conducted a comprehensive review of both approaches105. While 

the first approach, deconvoluting ancestry and matching risk variants on population-specific 

GWAS effect sizes, was initially suggested to perform well107, this result failed to consistently 

replicate as shown in Cavazos’ simulations and Bitarello’s real data application105,107,108. 

Surprisingly, the second approach using a linear combination of global European and African 

PRS was found to improve prediction across a range of European ancestry quantiles in admixed 

African American individuals. However, use of global population specific PRS ignores the 

unique local admixture present in any given region within a sample of admixed individuals, 

missing potential population specific risk variants in a region or local GxG interactions on a 

specific ancestral background. Thus, it is possible that performance of local population specific 
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PRS (i.e., a PRS using only risk variants in a genomic region and a specific population GWAS 

effect sizes) will vary across admixed individuals.  

In this work we propose slaPRS (stacking local ancestry PRS), a novel stacking 

framework to construct admixed PRS for quantitative traits that combines local population 

specific PRS constructed using population specific effect sizes in local genomic regions. 

Stacking is an ensemble machine learning method that aims to optimize prediction accuracy by 

combining separate prediction models109,110. In target samples of a single ancestry, Prive et al 

successfully used stacking to optimize the commonly used clumping and thresholding (C+T) 

PRS method by deriving a linear combination of PRS across all possible parameters, rather than 

learning a single set of optimal parameters111. Outside of PRS construction, stacking has been 

used in other genetic methods such as the recent REGENIE method for GWAS that improved 

computational efficiency by orders of magnitude through conditioning on the predicted 

individual trait values constructed from combining local polygenic risk predictors112. In our 

approach, we first divide the genome into windows of a predetermined size and in each local 

window compute population specific local PRS using the respective population specific GWAS 

effect sizes via C+T. In training data, we then fit a penalized regression model to combine local 

population specific PRS across the genome to determine unique weights that are used to predict 

the phenotype in testing data. We show in extensive simulations and analysis of admixed African 

Americans and African British that slaPRS removes the ancestry dependence of PRS 

performance present in traditional single-population GWAS PRS and outperforms or compares 

similarly to existing methods in an efficient data-driven process.  
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3.2 Methods 

Consider a sample of N admixed individuals with ancestral contributions from population 

A and B (slaPRS is not restricted to two-way genetic admixture but is assumed here for 

notational simplicity). Let X be the 𝑁𝑥𝑀 admixed genotype matrix (M is the total number of 

variants genome wide) and Y the 𝑁𝑥1 phenotype vector. Let 𝐿𝑖𝑗 be an 𝑁𝑥𝑀 matrix denoting the 

haplotype-level local ancestry (𝑙𝑖𝑗1, 𝑙𝑖𝑗2.) of individual 𝑖 at marker 𝑗. We assume the phenotype 

can be expressed as: 

𝑌𝑖 =∑𝑋𝑖𝑗𝑓(𝛽𝐴𝑗 , 𝛽𝐵𝑗 , 𝐿𝑖𝑗)

𝒎

𝒋=𝟏

+ 𝝐𝑖 

Where 𝑋𝑖𝑗 is the genotype dosage for individual 𝑖 at marker 𝑗, and 𝛽𝐴𝑗 , 𝛽𝐵𝑗 are effects for marker 

𝑗 on the phenotype in populations A and B respectively. Here, 𝑓(𝛽𝐴𝑗 , 𝛽𝐵𝑗 , 𝐿𝑖𝑗) is a weighted 

average of population specific GWAS effect sizes and local ancestry (see supplementary for 

derivation):  

𝑓 (𝛽𝐴𝑗 , 𝛽𝐵𝑗 , 𝐿𝑖𝑗) = 𝛽𝐴𝑗 (𝑤𝑘,𝛽𝐴𝑗
+ 𝑤𝑘,𝐿𝑖𝑗

(𝐴)
𝐿𝑖𝑗) + 𝛽𝐵𝑗 (𝑤𝑘,𝛽𝐵𝑗 + 𝑤𝑘,𝐿𝑖𝑗

(𝐵)
𝐿𝑖𝑗) 

Where 𝑤𝑘,𝛽𝐴𝑗
and 𝑤𝑘,𝐿𝑖𝑗

(𝐴)
 (and similarly for population B) are weights for population A effect sizes 

𝛽𝐴𝑗 and local ancestry interaction in each genomic region 𝑘 that are learned via ensemble 

learning (stacking) in the slaPRS framework (see details below). 

 

3.2.1 slaPRS Framework 

We developed slaPRS for constructing admixed PRS using three main features: 1) a local 

window approach 2) local population specific PRS and 3) an ensemble stacking framework to 

combine local population specific PRS. For slaPRS, we assume existence of GWAS effect size 
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estimates for each ancestral population in an admixed population and the admixed genotype 

matrix. We first partition the admixed genotype matrix into K non-overlapping genotype blocks 

𝐺 = {𝐺1, 𝐺2, … , 𝐺𝐾} with blocks predefined by physical distance. In our analysis we considered 

blocks spanning 1Mb and 5Mb of physical distance, each with 𝑚𝑘 SNPs such that ∑ 𝑚𝐾
𝑗=1 𝑘

=

𝑀. 

 

Level 0 Local Population-Specific PRS and Ancestry 

In the training set of admixed individuals, in each block 𝐺𝑘 across the genome (using the 

𝑚𝑘 SNPs in the block) we first separately computed vectors of local population A PRS (𝐴𝑘) and 

local population B PRS (𝐵𝑘) using clumping and thresholding (C+T). While C+T was used in 

slaPRS, any PRS construction method could be used in our framework. In this step, each block’s 

C+T optimized ancestry PRS can be viewed as a level 0 model prediction to be stacked in our 

stacking framework (Figure 3.1). Clumping first removes variants in strong LD with others using 

in-sample LD for that region, while greedily retaining the most significant variants14. Varying p-

value thresholds 𝑝 = {5𝑒 − 2,5𝑒 − 4,5𝑒 − 6, 5𝑒 − 8} were considered (cross validation in Level 

1 stacking model used to select optimal 𝑝 to use in testing set) to construct ancestry-specific 

local PRS in each block using the respective population’s estimated effect sizes. In this step, we 

make no assumption on whether risk variants are shared across ancestral populations, and thus 

local PRS 𝐴𝑘 and 𝐵𝑘 can have varying risk variants.  
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Figure 3.1 Diagram of local window and level 0 population specific PRS model predictions. Admixed genomes split 

into 5Mb windows and in each window a local population A and B PRS are computed using population-specific 

effect sizes. Local ancestry further computed to form covariate vector for level 1 stacking model. 

 

For each sample, we computed the 𝑁𝑥1 vector of local ancestries 𝐴𝑛𝑐𝑘  in block 𝐵𝑘 as the 

% of population A ancestry: 𝐴𝑛𝑐𝑘 =
∑ 𝐿𝑖𝑗
𝑚𝑘
𝑗=1

𝑚𝑘
 . We constructed interaction terms 𝐴𝑘 ∗ 𝐴𝑛𝑐𝑘 and 

𝐵𝑘 ∗ 𝐴𝑛𝑐𝑘 to allow for the effect of the local population PRS 𝐴𝑘 and 𝐵𝑘 to vary by a given 

ancestry. Following completion of level 0 in our framework, block 𝑘 has the covariates (Figure 

3.1):  

𝐶𝐵𝑘 = [𝐴𝑘 , 𝐵𝑘 , 𝐴𝑛𝑐𝑘 , 𝐴𝑘 ∗ 𝐴𝑛𝑐𝑘 , 𝐵𝑘 ∗ 𝐴𝑛𝑐𝑘] 

After aggregating the B total local block covariates across the genome, let C be the N 𝑥 (𝑘 𝑥 5) 

matrix: 

𝐶 = [𝐶𝐵1 , 𝐶𝐵2 , … , 𝐶𝐵𝑘] 

 

Level 1 Elastic Net Stacking Model 

We then trained an elastic net113 penalized regression model to stack the local level 0 

predictions (local population-specific PRS and ancestry) across the genome. The population’s 

GWAS that optimizes the local PRS can vary across the genome (see introduction) in an 
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admixed sample, and stacking provides a data driven approach to inform which population’s 

local PRS should be upweighted or shrunk. We used elastic net, which combines ridge 

regression114 and LASSO115, because the genetic architecture of a trait is unknown a priori 

(unknown which local blocks harbor causal risk variants and the distribution of local block 

heritability). When most local windows are weakly informative, ridge tends to have higher 

prediction accuracy while LASSO would likely outperform when only a small number of local 

windows are highly informative. Elastic net allows a data-adaptive approach to inform the 

amount of shrinkage and whether shrinkage patterns should favor ridge or LASSO to best 

accommodate a trait’s genetic architecture.  

To determine which aspects of our stacking framework drives increases in PRS performance, 

we considered three level 1 elastic net stacking models that vary in the covariates included from 

block 𝐵𝑘:  

1) Local population A PRS only 

𝐶𝐵𝑘 = {𝐴𝑘} 

2) Local population A and B PRS only 

𝐶𝐵𝑘 = {𝐴𝑘 , 𝐵𝑘} 

3) Local population A and B PRS, Ancestry and Interactions 

𝐶𝐵𝑘 = {𝐴𝑘 , 𝐵𝑘 , 𝐴𝑛𝑐𝑘 , 𝐴𝑘  × 𝐴𝑛𝑐𝑘 , 𝐵𝑘 × 𝐴𝑛𝑐𝑘} 

Model 1 considered only local population A PRS 𝐴𝑘 to investigate how stacking local PRS alone 

improves compared to a global population A PRS. Model 2 added local population B PRS 𝐵𝑘 to 

assess the benefit of adding population B GWAS information, while Model 3 further included 

ancestry and interaction terms to allow for the effect of a local population specific PRS to vary 
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based on ancestral background. Total covariates in each proposed level 1 model aggregate 

covariates 𝐶𝐵𝑘 across all blocks genome wide.  

For each considered model, we fit a level 1 elastic net model113 to combine the level 0 

ancestry-specific PRS and additional covariates across the genome.  

𝑌 = 𝑤0 +𝒘𝟏𝐶𝐵1 + 𝒘𝟐𝐶𝐵2 +⋯+𝒘𝒌𝐶𝐵𝑘  

Where 𝒘𝟏, 𝒘𝟐, … , 𝒘𝒌 are vectors of regression coefficients from the covariates in 𝐶𝐵𝑘. Estimates 

of  𝒘�̂� in the above model given the genome wide covariate matrix are obtained by minimizing 

the penalized objective function with respect to 𝛽: 

𝑤(𝜆)̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤([∑ (𝑦𝑖 − 𝐶𝑖𝑤)
2] + [𝜆(𝛼 ∑ |𝑤𝑗| + (1 − 𝛼)∑ 𝑤𝑗

2𝑘
𝑗=1 ])𝑘

𝑗=1
𝑛
𝑖=1   

The parameter 𝜆 determines the amount of shrinkage in model coefficients while 𝛼 ∈ [0,1] 

balances the L1 and L2 penalty from ridge regression (𝛼 = 0) and LASSO (𝛼 = 1). To optimize 

all parameters including the p-value threshold 𝑝 = {5𝑒 − 4,5𝑒 − 6, 5𝑒 − 8} used in constructing 

level 0 local ancestry PRS via C+T, 𝛼 = {0, 0.1, 0.2,… , 1}, and 𝜆 = {10−3, … , 103}, we 

employed K-fold cross validation with 10 folds and selected the set of 𝑝, 𝛼, and 𝜆 that produced 

the lowest adjusted 𝑅2.  

 Estimates of 𝒘𝒌 for each block across the genome can be used (see supplementary for 

derivation) to express the weight for each variant in PRS construction as a linear combination of 

population A (𝛽𝐴𝑗) and B (𝛽𝐵𝑗) GWAS effect sizes and learned block weights: 

𝑌𝑖 =∑𝑋𝑖𝑗𝑓(𝛽𝐴𝑗 , 𝛽𝐵𝑗 , 𝐿𝑖𝑗)

𝒎

𝒋=𝟏

+ 𝝐𝑖 

𝑓 (𝛽𝐴𝑗 , 𝛽𝐵𝑗 , 𝐿𝑖𝑗) = 𝛽𝐴𝑗 (𝑤𝑘,𝛽𝐴𝑗
+ 𝑤𝑘,𝐿𝑖𝑗

(𝐴)
𝐿𝑖𝑗) + 𝛽𝐵𝑗 (𝑤𝑘,𝛽𝐵𝑗 + 𝑤𝑘,𝐿𝑖𝑗

(𝐵)
𝐿𝑖𝑗) 
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Where 𝑤𝑘,𝛽𝐴𝑗
 and 𝑤𝑘,𝐿𝑖𝑗

(𝐴)
 (and similarly for population B) are weights for population A specific 

local PRS 𝐴𝑘 and its local ancestry interaction term.  

Once weights from the level 1 elastic net stacking models have been estimated from the 

training data, in testing data we then computed the same level 0 model predictions and covariates 

in each block and aggregated genome wide:  

𝐶 = [𝐶𝐵1 , 𝐶𝐵2 , … , 𝐶𝐵𝑘] 

Where 𝐶𝐵𝑖 is defined as one of the three considered level 1 models. We then predicted trait 

values using estimated weights from the elastic net model: 

𝑃𝑅�̂� = 𝐶�̂� 

The estimated PRS is then tested against simulated phenotypes or trait values in real data.  

 

Genotype, Phenotype, and Population-Specific GWAS Simulation  

For our simulations and real data applications we focused on admixed African 

Americans/British with European and African ancestral backgrounds. To simulate genotype and 

phenotype data for an African and European population with realistic allele frequencies and 

linkage disequilibrium patterns, we used the coalescent-based pipeline as described by Martin et 

al98 and Cavazos et al98,105. Using msprime116 with an out-of-Africa demographic mode modeling 

HapMap117 chromosome 20 haplotypes, we simulated n=10,000 European samples and varying 

African sample sizes n={2000, 5000, 10,000}. Simulated population specific genotypes were 

then used to estimate marginal variant effect sizes.  

We then simulated quantitative trait phenotypes using the simulated genotypes. We first 

assumed complete transethnic sharing of genetic architecture across African and European 

populations, in which true causal variants, causal effect sizes, and overall heritability are 
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consistent across populations. Under this scenario, performance of estimated PRS should vary 

only because of differences in allele frequency and LD across population. We subset variants 

with minor allele frequency > 5% in both populations and randomly sampled m={100, 500} 

shared causal variants. True causal effect sizes were drawn from a normal distribution 

𝛽~𝑁(0,
ℎ2

𝑚
) where ℎ2 = {0.10,0.30} is the SNP-based heritability. In results, we focused on the 

most realistic simulation scenario consisting of ℎ2 = 0.10 and 𝑚 = 100. We then considered the 

simulation scenario in which genetic architecture differs across ancestral populations by 

assuming true causal variant locations and overall heritability are shared, but now simulating 

causal effects 𝜷~𝑀𝑉𝑁(𝟎, (

ℎ2

𝑚

𝜌ℎ2

𝑚

𝜌ℎ2

𝑚

𝜌ℎ2

𝑚

) varying transethnic genetic correlation 𝜌 =

{0.20, 0.50,0.80}.  

In both simulation scenarios, the true genetic score 𝐺 was then defined as the product of 

sampled causal genotypes and their respective simulated effect sizes (𝑔 = ∑ 𝑋𝑗 𝛽𝑗
𝑚
𝑗=1 ), 

standardized to ensure total heritability of ℎ2: 𝐺 =
𝑔−𝜇𝑔 

𝜎𝑔
∗ ℎ2 . We then simulated the 

environmental effect from a normal distribution with variance comprising the remaining 

phenotype variance 𝜖~𝑁(0,1 − ℎ2) and similarly standardized: 𝐸 =
𝜖−𝜇𝜖

𝜎 𝜖
∗ (1 − ℎ2). We 

defined phenotype data Y for both populations as the sum of the standardized true genetic score 

and environmental effect 𝑌 = 𝐺 + 𝐸. We then estimated effect sizes �̂� for each variant genome 

wide using a linear model 𝑌 = 𝑋𝐵 + 𝜖, using each population’s respective simulated phenotype 

and genotype data.  

We additionally simulated n=1,000 European and n=1,000 African founder samples to 

simulate n=10,000 admixed African Americans genotypes via RFMix118 with s=12 generations 
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of admixture for training and testing slaPRS. Simulated admixed genotypes had known phase 

and known local ancestry. We followed the same pipeline described above to generate the 

phenotype given the simulated genotypes. In the scenario where causal effects differed across 

populations, we considered haploid chromosomes 𝐻𝑖𝑗1 and 𝐻𝑖𝑗2(corresponding haplotype 1 and 2 

for individual 𝑖 at variant 𝑗) and matched the population specific effect sizes on the local 

ancestry of a variant’s haplotype background to derive the true genetic component: 𝑋𝑖 =

∑ 𝛽𝑗,𝐴𝐹𝑅 [𝐻𝑖𝑗1𝐼(𝑙𝑖𝑗1 = 𝐴𝐹𝑅) + 𝐻𝑖𝑗2𝐼(𝑙𝑖𝑗2 = 𝐴𝐹𝑅)] + 𝛽𝑗,𝐸𝑈𝑅[𝐻𝑖𝑗2𝐼(𝑙𝑖𝑗2 = 𝐸𝑈𝑅) +
𝑚
𝑗=1

𝐻𝑖𝑗2(𝑙𝑖𝑗2 = 𝐸𝑈𝑅)]. To prevent issues of overfitting, we split our sample into testing and training 

data using a 70:30 split, resulting in n=7000 and n=3000 admixed samples in the training and 

testing data splits. The outlined simulation procedure was repeated 150 times to evaluate slaPRS 

and perform method comparisons. 

 

3.2.2 Comparison of Methods: 

Clumping and Thresholding (C+T) 

We first compared the proposed slaPRS method against global single population PRS, 

𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅, constructed using clumping and thresholding (C+T) with GWAS effect 

sizes from the respective population separately. In the C+T algorithm, we first clumped SNPs 

using each population’s GWAS effect sizes with a window size of 250Kb and linkage threshold 

𝑟2 =0.10 and then optimized the threshold parameter in the 70% training set with − log10(𝑝) p 

value thresholds including {1, 2, … , 8}. The threshold that optimized PRS performance was 

then used in the 30% testing set to retain clumped risk variants to include in the PRS 

construction.  

 



 59 

Linear Combination of Global Population Specific PRS 

The second approach compared against was the method proposed by Marquez et al108 

which constructed a PRS as a linear combination of two global population-specific PRS: 

𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧 = 𝛼𝐸𝑈𝑅𝑃𝑅𝑆𝐸𝑈𝑅 + 𝛼𝐴𝐹𝑅𝑃𝑅𝑆𝐴𝐹𝑅 

Here, 𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅 are the same global PRS constructed using C+T and the respective 

population GWAS as described above. To estimate the mixing weights (𝛼𝐸𝑈𝑅, 𝛼𝐴𝐹𝑅) and global 

polygenic risk scores (𝑃𝑅𝑆𝐸𝑈𝑅, 𝑃𝑅𝑆𝐴𝐹𝑅), we followed proposed guidelines and used cross 

validation. The 70% training set of admixed samples was first split in half, where the first half 

was used to estimate the thresholding parameter in the C+T algorithm. In the second half we 

constructed 𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅 using the optimal p-value threshold from the European GWAS 

(as is typically larger), as done by Marquez et al. In this same second half of the training set, we 

then estimated 𝛼𝐸𝑈𝑅 and 𝛼𝐴𝐹𝑅 by finding the least squares estimates to: 

𝑌 = 𝛼𝐸𝑈𝑅𝑃𝑅𝑆𝐸𝑈𝑅 + 𝛼𝐴𝐹𝑅𝑃𝑅𝑆𝐴𝐹𝑅  

With the optimal p-value threshold and mixing weights 𝛼𝐸𝑈𝑅 and 𝛼𝐴𝐹𝑅 derived from training 

data, we then constructed 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧  as the weighted sum of 𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅.   

 

3.2.3 Quantifying Performance of Estimated PRS 

To quantify and compare performance of each PRS across methods, we computed the 

proportion of variance explained (i.e. adjusted 𝑅2) of the simulated quantitative phenotype with 

the estimated PRS adjusting for % European ancestry. Because one of our main objectives is to 

create a PRS with performance independent of the global ancestry of an admixed individual, we 

further stratified our adjusted  𝑅2 performance metric by European ancestry quantiles [0-20%, 

20-40%, 40-60% and 60-80%, 80-100%]. We also compared the mean simulated phenotype 



 60 

value in the top 10% PRS quantile with the bottom 10% PRS quantile to assess the PRS’ ability 

to identify high-risk and low-risk individuals.   

 

3.2.4 Real Data Application 

We evaluated slaPRS in real data applications using n=20,262 admixed African British 

individuals in the UK Biobank6. To choose samples, we selected admixed samples falling on the 

diagonal between the European and African corners of the PC plot (Figure 3.6). We used 

autosomal imputed genotypes in constructing polygenic risk scores. Phenotype data included the 

lipid biomarkers LDL, HDL, and total cholesterol. Lipid biomarker phenotypes were chosen 

because the Global Lipids Genetic Consortium31 has collected large sample (excluding UK 

Biobank samples) ancestry specific GWAS data in Europeans (n=1.32 million) and Admixed 

African or Africans (N=99.4k). For all 20,262 samples we inferred local ancestry with genotypes 

first phased using BEAGLE 5.0119. We used RFMix118 to infer local ancestry using phased 

haplotypes from European and African subpopulations from 1000 Genomes3 individuals as 

references. From inferred local ancestry, we further computed global ancestry using tract lengths 

for sample stratification. We split the admixed dataset into 70% training and 30% testing for 

model training and method comparison. 

Because the true PRS is unknown in real data, to quantify PRS performance across 

methods we computed the proportion of variance explained (adjusted 𝑅2) between the estimated 

PRS and phenotypic value (instead of true genetic score) from the model including the first 4 

principal components:  

𝑌 = 𝛽0 + 𝛽𝑃𝑅𝑆𝑃𝑅𝑆 + 𝛽𝑃𝐶1𝑃𝐶1 +⋯+ 𝛽𝑃𝐶4𝑃𝐶4 
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Similar to simulations, we computed adjusted 𝑅2 across the entire testing sample and then also 

stratified by European ancestry quantiles. We also compared the mean simulated phenotype 

value in the top 10% PRS quantile with the bottom 10% PRS quantile. Performance metrics were 

computed with the median reported over 50 folds.  

 

3.3 Results 

3.3.1 Comparison of PRS Performance Assuming Shared Genetic Architecture across 

Ancestral Populations 

To evaluate the performance of slaPRS, we first conducted simulations with complete 

sharing of genetic architecture across ancestral populations (i.e., true effect sizes and risk 

variants are shared across European and African populations) for various disease architectures 

(see methods). Under this setup, differences in GWAS estimated effect sizes across ancestral 

populations are a function of solely LD. We constructed our stacked PRS using simulated 

European and African GWAS effect sizes for simulated admixed African Americans of varying 

ancestry proportions. The distribution of overall European ancestry in our simulated admixed 

African Americans was approximately normally distributed with a mean of around 50% (Figure 

3.7).  

We focus first on the full level 1 model with 5Mb windows using the local African and 

European PRS and local ancestry information in each block (𝐶𝐵𝑖 = {𝐴𝑖 , 𝐸𝑖 , 𝐴𝑛𝑐𝑖 , 𝐴𝑖 × 𝐴𝑛𝑐𝑖 , 𝐸𝑖 ×

𝐴𝑛𝑐𝑖}) with heritability ℎ2 = 0.10, number of causal variants 𝑚 = 100, and equal size European 

and African GWAS sample size 𝑛 = 10,000. Across simulations, our stacked PRS generally had 

an increased adjusted 𝑅2 with the simulated phenotype compared to the existing approaches. 
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slaPRS had a 5.93% median adjusted 𝑅2 for the true PRS across all admixed individuals in the 

testing set compared to C+T 𝑃𝑅𝑆𝐸𝑈𝑅 (3.17%) and 𝑃𝑅𝑆𝐴𝐹𝑅 (3.18) and 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧 (3.39%) that 

globally combines 𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅. Comparing individuals in the top vs bottom 10% of the 

PRS distribution, slaPRS had higher trait stratification ability with larger mean differences (0.84 

vs 0.62, 0.64, 0.64 for 𝑃𝑅𝑆𝐸𝑈𝑅 , 𝑃𝑅𝑆𝐴𝐹𝑅, and 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧  respectively). We further stratified 

testing samples by quantiles of European ancestry and found our stacking approach using the full 

model explained more variance of the phenotype compared to both 𝑃𝑅𝑆𝐸𝑈𝑅, 𝑃𝑅𝑆𝐴𝐹𝑅 and 

𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧 . Across all ancestry quantiles the percent increase in median adjusted 𝑅2for slaPRS 

compared to the other methods ranged from 38.46% to 120.61% (Figure 2). Most notably, 

slaPRS strongly reduced the ancestry dependence of PRS performance as compared to 𝑃𝑅𝑆𝐸𝑈𝑅 

and 𝑃𝑅𝑆𝐴𝐹𝑅. When quantified through a simple linear model, the adjusted 𝑅2 for slaPRS 

increased by 0.0009 for every European ancestry quantile increase ranging from 5.69% (0-20% 

European ancestry) to 5.91% (80-100% European ancestry). On the other hand, single population 

𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅 had larger changes in 𝑅2 of 0.004 (2.60% to 4.22 %) and -0.001 (4.11%-

3.60%) respectively for every quantile increase. 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧 compared similarly to slaPRS with 

an 𝑅2 increase of 0.0008 for every quantile increase, ranging from 3.46% to 3.91%. 
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Figure 3.2 Boxplots comparing performance of slaPRS (differing in choice of level 0 predictors from each block), 

𝑃𝑅𝑆-Marquez, and single population PRS: 𝑃𝑅𝑆-EUR & 𝑃𝑅𝑆-AFR (see methods) quantified through adjusted r-

squared. Testing samples stratified by overall % of European ancestry. 

 

While thus far we only considered the full slaPRS model (𝐶𝐵𝑘 = {𝐸𝑘 , 𝐴𝑘 , 𝐴𝑛𝑐𝑘 , 𝐴𝑘 ×

𝐴𝑛𝑐𝑘 , 𝐸𝑘 × 𝐴𝑛𝑐𝑘}, we then evaluated slaPRS under our alternative level 1 models that vary 

predictors from each local window. For the simplest case 𝐶𝐵𝑘 = {𝐸𝑘} (i.e. only European GWAS 

considered and stacking local European PRS across blocks), slaPRS had adjusted 𝑅2 ranging 

from 3.28% for 0-20% European ancestry to 5.45% for 80-100% European Ancestry and 

noticeably outperformed 𝑃𝑅𝑆𝐸𝑈𝑅. However, slaPRS under 𝐶𝐵𝑘 = {𝐸𝑘} exhibited the strongest 

ancestry dependence (0.005 increase in adjusted 𝑅2 across ancestry quantiles) across all 

methods. For 𝐶𝐵𝑘 = {𝐸𝑖 , 𝐴𝑖} (i.e. integrating European and African GWAS and stacking local 

European and African PRS across blocks), slaPRS further increased performance (compared to 

the single population case 𝐶𝐵𝑘 = {𝐸𝑘}) with adjusted 𝑅2 ranging from 5.77% to 6.27% and had 

noticeably reduced ancestry dependence (0.001 increase in adjusted 𝑅2 across ancestry 
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quantiles). The full level 1 model (𝐶𝐵𝑘 = {𝐸𝑘 , 𝐴𝑘 , 𝐴𝑛𝑐𝑘 , 𝐴𝑘 × 𝐴𝑛𝑐𝑘 , 𝐸𝑘 × 𝐴𝑛𝑐𝑘} further added 

local ancestry with interaction terms and performed comparably to the previous model ignoring 

ancestry 𝐶𝐵𝑖 = {𝐸𝑘 , 𝐴𝑘}. Negligible differences in the full model and the model excluding local 

ancestry were present only in simulations of complete sharing of transethnic genetic effects. 

 

Effect of Overall Heritability, Number of Causal Variants, Window Size, and African GWAS 

Sample Size 

We quantified how slaPRS fared against other approaches across different simulation 

settings including: overall heritability ℎ2 ∈ {0.10, 0.30}, number of causal variants 𝑚 =

{5, 100, 500, 1000}, African GWAS sample size 𝑛 ∈ {2000, 5000,10000}, window sizes ∈

{1𝑀𝑏, 5𝑀𝑏} (see Supplementary), and training data size ∈ {3000, 7000} (see Supplementary) . 

Across all settings, slaPRS generally improved performance as compared to single ancestry PRS: 

𝑃𝑅𝑆𝐴𝐹𝑅 and 𝑃𝑅𝑆𝐸𝑈𝑅 (Figure 3.8).  Two factors had a sizable impact on the performance of 

slaPRS generally and its comparison to 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧 . The first major factor impacting PRS 

performance was the African GWAS sample size. As the African GWAS sample size decreased 

(while fixing ℎ2 = 0.30, 𝑚 = 100) the C+T 𝑃𝑅𝑆𝐴𝐹𝑅 performed increasingly worse compared to 

other methods (Figure 3.3). The performance of the full slaPRS model similarly decreased as the 

African GWAS sample size decreased, reflecting less informative contributions about the true 

risk variants from the African cohort. Furthermore, slaPRS exhibited a stronger ancestry 

dependence (converging towards the European only slaPRS model) as the African GWAS 

sample size decreased: For every increase in European ancestry quantile, slaPRS under the full 

model had an average change in average adjusted 𝑅2 of 0.0009, 0.001 and 0.003 for African 

GWAS sample sizes of n=10000, n=5000, and n=2000 respectively. However, even for the 
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smallest African GWAS sample size scenario, slaPRS had the highest adjusted 𝑅2 across 

ancestry quantiles.    

 

Figure 3.3 Line graph comparing PRS performance across methods (quantified by median adjusted r-squared 

between estimated PRS and phenotype value) as the African GWAS sample size changes (n=2000, 5000, 10,000). 

Testing admixed samples stratified by European ancestry quantile.  

 

The second factor impacting slaPRS, especially compared to 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧 , was polygenicity and 

distribution of per variant effect sizes (Figures 3.8, 3.9). slaPRS generally had the greatest 

improvement in polygenic (𝑚 = 100, 500) simulations with moderate to large per variant effect 

sizes (ℎ2 = 0.30,𝑚 = 100, 500 and ℎ2 = 0.10,𝑚 = 100) driving clear genetic signals. Under 

these simulation parameters, the median adjusted 𝑅2 of the full slaPRS model was 58.1% to 

96.7% larger than the median adjusted 𝑅2 of  𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧 ,. In such settings, a majority of 

window’s local ancestry PRS contributing genetic signal to the stacking model. On the opposite 
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end, when polygenicity was lower (𝑚 = 5 causal variants, ℎ2 = 0.10) the median adjusted 𝑅2 

for slaPRS was more similar to 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧  (23.4% increase), as a few large per variant effect 

sizes drive a small number of windows to dominate the genetic signal with remaining windows 

adding noise to the model. slaPRS similarly performed more similar to 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧 (21.1% and 

27.3% increase in adjusted 𝑅2) in simulations of high polygenicity with low per variant effect 

sizes (𝑚 = 500,1000 and  ℎ2 = 0.10), as most windows are uninformative and those with very 

small genetic signal are likely overly penalized and shrunk.  

 

3.3.2 Comparison of PRS Performance Assuming Differences in Genetic Architecture across 

Ancestral Populations 

We also considered simulations in which the genetic architecture differed across ancestral 

populations (i.e., unique population-specific effect sizes), causing population-specific GWAS to 

vary from both differences in LD and true underlying effects across populations. We computed 

slaPRS using GWAS effect sizes varying the transethnic genetic correlation across risk variants 

𝜌 = {0.2, 0.5,0.8}. We again focused on our base simulation parameters (heritability ℎ2 = 0.10, 

number of causal variants 𝑚 = 100, and equal size European and African GWAS sample size 

𝑛 = 10,000). For the single population 𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅, which do not consider a risk 

variant’s local background, the adjusted 𝑅2 from the PRS model was stable in their 

corresponding admixed groups (80-100% European and 0-20% European) across changing 

transethnic genetic correlation. However, when transethnic genetic correlation was low (𝜌 =

0.2), 𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅 notably had an increased decay in PRS performance as the admixed 

ancestry group diverged from the population GWAS (Figure 3.4): Comparing the shared 

transethnic genetic architecture case vs when 𝜌 = 0.20, the change in adjusted 𝑅2 was 0.005 vs 
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0.004 and -0.006 vs -0.001 across ancestry quantiles for 𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅 respectively. For 

slaPRS, notably the full level 1 stacking model (𝐶𝐵𝑖 = {𝐸𝑖 , 𝐴𝑖 , 𝐴𝑛𝑐𝑖 , 𝐴𝑖 × 𝐴𝑛𝑐𝑖 , 𝐸𝑖 × 𝐴𝑛𝑐𝑖} 

modeling local ancestry and interactions outperformed the model using only the local ancestry 

PRS (𝐶𝐵𝑖 = {𝐸𝑖 , 𝐴𝑖} as the transethnic genetic correlation decreased. When genetic effects across 

ancestral populations were similar (𝜌 = 0.8), the percent increase in adjusted 𝑅2 between the full 

model and model ignoring local ancestry ranged from 10.9% to 14.3% across ancestry quantiles, 

as compared to 23.4% to 50.5% when transethnic genetic effects are vastly different (𝜌 = 0.2) 

(Figure 3.4). Notably, the overall adjusted R-squared of the full level 1 model modeling ancestry 

specific effects dependent on a variant’s ancestral background was stable across values of 𝜌 =

{0.2,0.5, 0.8}: (𝑅2 = 5.27%,5.18%, 5.67%) as compared to the model ignoring local ancestry 

(𝑅2 = 3.65%,4.09%,5.18%). 
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Figure 3.4 Line graph comparing PRS performance as quantified through median adjusted r-squared between the 

estimated PRS and phenotype value. Transethnic genetic correlation varies from 𝜌 = {0.2, 0.5, 0.8} and testing 

admixed samples stratified by European ancestry quantile. 

 

3.3.3 Real Data Application 

We conducted a real data application of our stacking method slaPRS using genotype and 

phenotype data from the UK Biobank. We considered three quantitative lipid traits: high-density 

lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), and total cholesterol 

using estimated European and African American GWAS effect sizes from the Global Lipids 

Genetic Consortium (see methods for details). We first compared our approach to 𝑃𝑅𝑆𝐸𝑈𝑅 , 

𝑃𝑅𝑆𝐴𝐹𝑅 (C+T using European and African GWAS effect sizes separately), and 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧  

(combining 𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅 globally) across all samples. For all three traits, slaPRS 
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improved the median adjusted 𝑅2 values compared to 𝑃𝑅𝑆𝐸𝑈𝑅  and 𝑃𝑅𝑆𝐴𝐹𝑅  (Table 1). Similarly, 

slaPRS improved stratification ability as shown in larger mean phenotype values comparing 

individuals in the top and bottom 10% of the PRS distribution: HDL (0.373 vs 0.365, 0.324), 

LDL (1.019 vs 0.858, 0.905), TC (1.317 vs 1.028, 1.203). However, slaPRS performed similarly 

to 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧  across all three traits with respect to both metrics, a pattern observed in 

simulation scenarios of lower polygenicity causing fewer windows to contribute to trait 

heritability (Table 3.1). Across the three traits, only 1.6% (HDL), 6.6% (LDL), and 2.1% (TC) of 

all level 0 local population PRS across the genome had an 𝑅2 > 0.10 with the overall trait PRS. 

For LDL, which had the highest signal to noise ratio, we saw a minor improvement in both 𝑅2 

and top vs bottom 10% stratification ability for slaPRS. Furthermore, we found limited 

improvement in slaPRS using the full level 1 stacking model (𝐶𝐵𝑖 =

{𝐸𝑖 , 𝐴𝑖 , 𝐴𝑛𝑐𝑖 , 𝐴𝑖𝑥𝐴𝑛𝑐𝑖 , 𝐸𝑖𝑥𝐴𝑛𝑐𝑖} compared to the reduced model (𝐶𝐵𝑖 = {𝐸𝑖 , 𝐴𝑖})  

 

a) 

 

b)  
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Table 3.1 Performance metrics for lipid phenotypes in UKB. a) Median adjusted r-squared from model PHENO ~ 

PRS + PC1 + PC2 + PC3 + PC4. b) Difference in mean phenotype for individuals in top 10% of PRS distribution vs 

bottom 10%. 

We then stratified our testing samples by European ancestry quantile to 1) reassess 

overall PRS performance on admixed individuals in quantiles of 20%-80% European ancestry 

(removing primarily European or African admixed African British) and 2) quantify ancestry 

dependence of PRS performance across all five ancestry quantiles. In the bottom and top 

quantiles of predominantly homogenous African or European admixed African British, using 

single ancestry 𝑃𝑅𝑆𝐸𝑈𝑅  and 𝑃𝑅𝑆𝐴𝐹𝑅  tended to outperform. However, in the more heterogeneous 

admixed samples (20-80% European ancestry), slaPRS and 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧  had the best median 

adjusted 𝑅2 across all methods with comparable results for the three traits: HDL (0.066 and 

0.070), LDL (0.103 and 0.098), TC (0.079 and 0.081) (Figure 3.5). Regarding ancestry 

dependence of PRS method, across traits 𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅 exhibited the strongest ancestry 

dependence, performing better as the proportion of European or African ancestry increased. On 

the other hand, methods using multiple ancestry GWAS had reduced ancestry dependence, with 

slaPRS having the smallest dependence followed by 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧. For HDL, the average change 

in adjusted 𝑅2 for each European quantile increase for slaPRS, 𝑃𝑅𝑆𝐸𝑈𝑅, 𝑃𝑅𝑆𝐴𝐹𝑅, and 
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𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧was 0.004, 0.019, -0.006, and 0.011 respectively. LDL (-0.003, 0.014, -0.016, and 

0.003) and TC (-0.002, 0.012, -0.014, -0.005) had similar patterns across methods.   

 

Figure 3.5 Line graph comparing PRS Performance for UKB lipid phenotypes. Performance quantified through 

median adjusted r-squared from model PHENO ~ PRS + PC1 + PC2 + PC3 + PC4. Testing admixed samples are 

stratified by European ancestry quantile. 
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3.4 Discussion 

In this work we proposed a novel stacking framework to locally incorporate GWAS from 

multiple populations into construction of PRS for admixed individuals. Our method, slaPRS, 

segments admixed genomes into local regions of varying ancestry and optimizes a linear 

combination of local population specific PRS, local ancestry, and potential interactions to 

construct a PRS. In simulations, we first recapitulated previous findings that traditional PRS 

constructed using a single population GWAS in admixed samples are ancestry dependent. We 

then showed across a range of genetic architectures (varying heritability, number of causal 

variants, underrepresented GWAS sample size, and transethnic genetic correlation across 

ancestral populations) that slaPRS can outperform existing approaches (𝑃𝑅𝑆𝐸𝑈𝑅 , 𝑃𝑅𝑆𝐴𝐹𝑅 and 

𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧) and reduce the ancestry dependence compared to 𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅.  In 

admixed African British from the UK Biobank, we leveraged ancestry specific GWAS for lipid 

traits from the Global Lipids Genetic Consortium to compare slaPRS to existing PRS methods. 

We found in these lipid traits that incorporating multiple ancestry GWAS similarly improved 

performance and strongly reduced the ancestry dependence of PRS performance. However, for 

these data, there was inconclusive evidence combining information locally in slaPRS as opposed 

to globally (𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧) was optimal across all traits.  

From our simulations and UK Biobank applications, we conclude that slaPRS for PRS in 

admixed individuals is likely optimal (compared to existing approaches) for traits with high 

heritability and polygenicity. slaPRS extends 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧  to combine information locally as 

opposed to globally and comparisons had interesting findings. In simulations, we found the 

smallest improvements were in trait architectures with low polygenicity (few windows 

meaningfully contribute to trait heritability with others add noise to the model) or in highly 
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polygenic settings where per-variant effect sizes are small (hard to distinguish signal from noise 

and genetic signals may be over shrunk). In real data applications, we found slaPRS and 

𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧  performed similarly across the three lipid traits, likely driven by their trait genetic 

architecture. For the lipid traits studied, the former simulation scenario may be most prevalent as 

only 2-6% of all local PRS across windows contributed to the estimated PRS causing most 

regions to solely add noise to the model. As a result, noticeable improvements in slaPRS over 

𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧  may be observed in more heritable and polygenic traits, such as height, in which 

more local windows across the genome will contribute genetic signal. 

We surprisingly found explicitly modeling local ancestry in the slaPRS model (vs the 

model excluding local ancestry) provides the most improvement when there is at least moderate 

heterogeneity in true causal variant effect sizes across ancestral backgrounds. In simulations, the 

largest increase in PRS performance between slaPRS models occurs when transethnic genetic 

correlation is low (𝜌 = 0.20), with no improvements under scenarios of shared transethnic 

genetic architecture. In lipid traits from the UK Biobank, we observed similar findings regarding 

modeling local ancestry. In such traits, modeling local ancestry in the slaPRS model only 

provided marginal improvements, consistent with high estimated transethnic genetic correlations 

from Million Veteran Program participants for HDL (𝜌 =0.84) and moderate correlation for the 

other traits (𝜌 ∈ [0.47, 0.69])31. High transethnic genetic correlations for the considered lipid 

traits are consistent with recent findings from Hou et al, that suggest a majority of common traits 

likely have similar causal effects across populations99. Such findings have immediate 

implications, as slaPRS and other approaches considering local ancestry background may find 

the most improvement in traits with significant differences in transethnic genetic architecture. 
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Historically in genetic studies, individuals are often discretized into ancestral populations 

and treated as homogenous within the group. Ding et al have recently challenged the historical 

paradigm by showing PRS accuracy varies between individuals even within a “homogenous” 

genetic ancestry cluster to ultimately push for treating genetic ancestry on a continuum103. Our 

method slaPRS is tailored to treat genetic ancestry on a continuum by taking a local approach to 

PRS prediction in admixed samples. As mentioned, 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧  previously combined global 

population specific PRS successfully in admixed individuals, though in doing so uses a single 

weight for population specific effects. Potential heterogeneity in true population specific risk 

variants, estimated population specific GWAS effect sizes, and admixture proportions across loci 

and individuals would cause use of a single weight to be suboptimal. slaPRS extends 

𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧  by combining population specific PRS at the local level instead to 1) allow for 

varying effects of local population specific PRS across the genome and 2) increase overall 

external GWAS sample sizes to improve effect size estimation and identify the true causal 

variants. The first benefit is accomplished through our level 1 elastic net stacking model that 

learns a linear combination of local population specific PRS (and local ancestry with interaction 

effects) to inform which population’s local PRS should be upweighted or shrunk. In the case that 

the true causal effect differs due to ancestral background, slaPRS handles this scenario by 

modeling the local ancestry and interactions with the local population specific PRS, allowing for 

the effect of a local population specific PRS to differ based on its ancestral background. The 

second benefit is accomplished by increasing the overall effective GWAS sample size through 

incorporating information from each population’s GWAS. In the case that the genetic 

architecture is shared across ancestral backgrounds, using information from both GWAS will 

boost power and improve effect size estimation of the shared risk variants and their locations. 
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However, when the genetic architecture differs across populations it is unclear whether using 

multiple population GWAS can be viewed in a similar manner.   

slaPRS has desirable statistical and computational properties as well. First, similar to 

other machine learning-based PRS methods such as TL-PRS120 in the context of cross population 

prediction incorporating multiple ancestry GWAS, slaPRS avoids the needs for any distributional 

assumptions on transethnic effect sizes as compared to the cross population PRS methods PRS-

CSx102 and PolyPred121 (Utilizes BOLT-LMM122 and PRS-CS123 which treat SNP effects as 

random). As a result, our approach makes no assumption on whether a risk variant is shared 

across population, where each local population PRS in a genomic region can include its own set 

of risk variants. Second, slaPRS does not require an external LD reference panel or genotypes 

outside of the admixed genotypes. Third, slaPRS can accommodate any PRS algorithm to 

construct local population PRS (here we use the C+T algorithm for simplicity). For example, 

REGENIE112 uses a ridge regression based approach to construct level 0 local PRS before 

stacking. Lastly, our approach is computationally very efficient, as discretizing the genome into 

local windows facilitates efficient parallel processing of level 0 predictions, with a final level 1 

elastic net model that can be fit very fast with standard statistical packages.  

While slaPRS provides a novel stacking approach to combine population specific GWAS 

information locally, it has a few limitations to consider. We assume existence of GWAS from 

each ancestry contributing to a genetic admixture, though high powered GWAS in understudied 

homogenous populations such as Africans are currently limited or non-existent. As a result, our 

real data application was limited to using African American GWAS as proxies for African 

GWAS, with only a handful of lipid traits from the Global Lipids Genetic Consortium having 

sufficiently large GWAS sample sizes. Recent efforts for genomic research in diverse 



 76 

populations such as the African biobank124 should help to resolve this issue. Furthermore, we 

describe our framework for continuous value phenotypes, owing to currently limited access to 

large sample GWAS for binary case/control traits in each ancestral population. Extending this 

framework to case/control traits using a logistic regression elastic net and liability threshold 

model should be straightforward. Lastly, while we push to treat admixed individuals on a genetic 

ancestry continuum, our approach assumes the super population groups such as “European” and 

“African” have homogenous genetic architecture with respect to a complex trait across their 

subpopulations. However, studies have shown a high degree of genetic diversity across the 

African continent125,126 with unique demographic histories driving substantial cultural and ethnic 

differences that may cause treating all African subpopulations as homogenous to be 

problematic103,127. 

   Despite the limitations, slaPRS provides an efficient data driven framework to 

constructing polygenic risk scores in admixed samples that leverage multiple population GWAS. 

In providing a method that not only performs well in admixed samples, but equally well across 

varying ancestry proportions we strive to improve on the current inequity in genetics research 

that is fast resolving in our community. Furthermore, as sample sizes increase in 

underrepresented populations for more traits, we expect slaPRS to have additional applications. 

Lastly, while our work thus far only considered two-way admixture, our approach can easily 

accommodate three or more ancestral populations and respective external GWAS. In coming 

years admixture will likely extend beyond the historically predominant African American and 

Latino admixed groups as people and cultures from various ancestral backgrounds are brought 

together geographically. As a result, we believe our method’s flexibility to accommodate 
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increasingly complex admixture types using information from multiple GWAS will become even 

more relevant. 
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3.5 Chapter 3 Appendix 

3.5.1 Derivation of Weighted Function Learned from slaPRS 

We restate our model setup consisting of a sample of N admixed individuals with 

ancestral contributions from population A and B. Let X be the 𝑁𝑥𝑀 admixed genotype matrix 

(M is the total number of variants genome wide) and Y the 𝑁𝑥1 phenotype vector. Let 𝐿𝑖𝑗 be an 

𝑁𝑥𝑀 matrix denoting the haplotype-level local ancestry (𝑙𝑖𝑗1, 𝑙𝑖𝑗2.) of individual 𝑖 at marker 𝑗. 

We assume the phenotype can be expressed as: 

𝑌𝑖 =∑𝑋𝑖𝑗𝑓(𝛽𝐴𝑗 , 𝛽𝐵𝑗 , 𝐿𝑖𝑗)

𝒎

𝒋=𝟏

+ 𝝐𝑖 

Where 𝑋𝑖𝑗 is the genotype dosage for individual 𝑖 at marker 𝑗, and 𝛽𝐴𝑗 , 𝛽𝐵𝑗 are effects for marker 

𝑗 on the phenotype in populations A and B respectively. Here, 𝑓(𝛽𝐴𝑗 , 𝛽𝐵𝑗 , 𝐿𝑖𝑗) is a weighted 

average of population specific GWAS effect sizes and local ancestry learned via our stacking 

approach.  

Following construction of level 0 model predictions in each window 𝐶𝐵𝑘across the 

genome (includes local population A PRS 𝐴𝑘 and local population B PRS 𝐵𝑘, local ancestry, and 

interaction terms) we fit the following stacking model:  

𝑌 = 𝑤0 +𝒘𝟏𝐶𝐵1 + 𝒘𝟐𝐶𝐵2 +⋯+𝒘𝒌𝐶𝐵𝑘  

Expanding out terms for the k-th window: 

= 𝑤0 + [𝑤𝑘,𝐴𝑘𝐴𝑘 + 𝑤𝑘,𝐵𝑘𝐵𝑘 + 𝑤𝑘,𝑎𝑛𝑐𝐴𝑛𝑐 + 𝑤𝑘,𝑎𝑛𝑐:𝐴𝑘𝐴𝑛𝑐 𝑥 𝐴𝑘 +𝑤𝑘,𝑎𝑛𝑐:𝐵𝑘𝐴𝑛𝑐 𝑥 𝐵𝑘] + ⋯ 

= 𝑤0 + [𝑤𝑘,𝑎𝑛𝑐𝐴𝑛𝑐 + 𝐴𝑘(𝑤𝑘,𝐴𝑘 +𝑤𝑘,𝑎𝑛𝑐:𝐴𝑘) + 𝐵𝑘(𝑤𝑘,𝐵𝑘 +𝑤𝑘,𝑎𝑛𝑐:𝐵𝑘𝐴𝑛𝑐)] + ⋯  
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The stacking procedure learns a linear combination of level 0 model prediction in each window 

𝐶𝐵𝑘 across the genome through estimating the weights 𝑤𝑘. 𝐴𝑘 and 𝐵𝑘 are themselves weighted 

sum of risk variants using population specific GWAS reducing the form to:  

= 𝑤0 + [𝑤𝑘,𝑎𝑛𝑐𝐴𝑛𝑐 + (∑𝑋𝑖𝑗𝛽𝐴𝑗

𝑚𝑘

𝑗=1

) (𝑤𝑘,𝐴𝑘 + 𝑤𝑘,𝑎𝑛𝑐:𝐴𝑘) + (∑𝑋𝑖𝑗𝛽𝐵𝑗

𝑚𝑘

𝑗=1

) (𝑤𝑘,𝐵𝑘 + 𝑤𝑘,𝑎𝑛𝑐:𝐵𝑘)]

+⋯  

= 𝑤0 + [𝑤𝑘,𝑎𝑛𝑐𝐴𝑛𝑐 +∑𝑋𝑖𝑗

𝑚𝑘

𝑗=1

[𝛽𝐴𝑗(𝑤𝑘,𝐴𝑘 + 𝑤𝑘,𝑎𝑛𝑐:𝐴𝑘) + 𝛽𝐵𝑗(𝑤𝑘,𝐵𝑘 + 𝑤𝑘,𝑎𝑛𝑐:𝐵𝑘)]] +⋯ 

Where 𝑤𝑘,𝐴𝑘 and 𝑤𝑘,𝑎𝑛𝑐:𝐴𝑘  are weights for population A specific local PRS 𝐴𝑘 and its local 

ancestry interaction term. Because 𝐴𝑘 (and likewise for 𝐵𝑘) is a function of population A GWAS 

effect sizes that is shared across all variants in the window 𝑘, we replace the notation 𝑤𝑘,𝐴𝑘 with 

𝑤𝑘,𝛽𝐴𝑗
and similarly 𝑎𝑛𝑐𝑘  is a function of 𝐿𝑖𝑗 so we replace 𝑤𝑘,𝑎𝑛𝑐:𝐴𝑘 with 𝑤𝑘,𝐿𝑖𝑗

(𝐴)
. 

𝑓 (𝛽𝐴𝑗 , 𝛽𝐵𝑗 , 𝐿𝑖𝑗) = 𝛽𝐴𝑗 (𝑤𝑘,𝛽𝐴𝑗
+ 𝑤𝑘,𝐿𝑖𝑗

(𝐴)
𝐿𝑖𝑗) + 𝛽𝐵𝑗 (𝑤𝑘,𝛽𝐵𝑗 + 𝑤𝑘,𝐿𝑖𝑗

(𝐵)
𝐿𝑖𝑗) 

 

3.5.2 Effect of window size and training dataset size 

slaPRS takes a sliding local window approach to construct local population-specific 

polygenic risk scores and thus may be sensitive to the size of the window. In simulations under 

our base scenario (ℎ2 = 0.10,𝑚 = 100) we considered both 1Mb and 5Mb windows. PRS 

performance quantified by adjusted 𝑅2 with the phenotype were highly consistent across window 

sizes suggesting slaPRS is robust to window size (Figure 3.10). We further quantified the effect 

of varying the training dataset size of admixed individuals (n = 3000, n = 7000). As compared to 
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𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅, slaPRS uses the training data to weight local population specific PRS (and 

the variants effects themselves) and increased performance should be dependent on the training 

dataset size. In general, slaPRS for training sizes n=3000 and n=7000 generally had increased 

adjusted 𝑅2 when the training size was larger compared to 𝑃𝑅𝑆𝐸𝑈𝑅 (77.3%, 84.9%), 

𝑃𝑅𝑆𝐴𝐹𝑅(35.3%, 66.1%) and 𝑃𝑅𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧 (64.4%, 66.4%).  

 

3.5.3 Code Availability 

An R package for slaPRS has been developed with code and example workflow available at: 

https://github.com/kliao12/slaPRS    
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3.5.4 Supplementary Tables and Figures 

 

 

Figure 3.6 Scatterplot of n=20,262 UKB samples containing African ancestry along diagonal of PC1. 
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Figure 3.7 Histogram of the distribution of overall European ancestry across n=10,000 simulated admixed African 

Americans (for a single simulation). 
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Figure 3.8 Line graph comparing PRS performance across PRS methods for different simulation settings using 

adjusted r-squared between estimated PRS and simulated phenotype. Simulation parameters: heritability (0.1,0.3) 

and number of causal variants (100,500). 
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Figure 3.9 Line graph comparing PRS performance across PRS methods for different simulation settings using 

adjusted r-squared between estimated PRS and simulated phenotype. Simulation parameters: heritability (0.1) and 

number of causal variants (5,100,500,1000). 
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Figure 3.10 Comparison of PRS performance across methods (quantified by adjusted r-squared between estimated 

PRS and phenotype value) as the window size in slaPRS varies (1Mb, 5Mb). 
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Chapter 4 Mixture of Cross Trait LD Score Regressions Identifies Variant Sets and Genes 

Driving Signals of Local Genetic Correlation  

4.1 Introduction 

Genetic association testing over the past decade has successfully implicated numerous 

risk variants and genes across thousands of traits93,128. In doing so, studies have gleaned insight 

into the genetic architecture of traits, defined as the characterization of the genetic variation 

responsible for broad-sense phenotypic heritability129. As the number of GWAS studies has 

increased, widespread pleiotropy across traits has further been revealed in which a variant or 

gene is associated with more than one phenotype28,130. A well-known example is phenylketonuria 

(PKU), in which a single gene that codes for the enzyme phenylalanine hydroxylase effects 

phenotypes including eczema, intellectual disability, and skin pigmentation131.  

Using GWAS summary statistics across traits, pleiotropy can be studied at three broad 

levels: SNP-level, region level, or genome wide. Two popular approaches for identifying 

pleiotropy at the SNP-level are colocalization40 and pheWAS132,133. pheWAS identifies SNP-

level pleiotropy through performing hypothesis-free GWAS across multiple traits (typically in 

biobanks collecting phenotype data on hundreds of traits) and discovering shared GWAS hits. 

On the other hand, colocalization utilizes GWAS summary statistics across traits in a Bayesian 

probabilistic approach to consider scenarios of whether a region shares a causal variant and the 

most likely specific variant among many SNPs40,134,135. Extensions of colocalization have further 

allowed for the presence of multiple shared causal variants in a region and consideration of more 

than two traits134,136,137.   
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Genetic correlation is another technique to characterize pleiotropy, done through 

quantifying the correlation of genetic effects across two phenotypes138,139. In quantifying a 

correlation, genetic correlation identifies a stronger version of pleiotropy as it requires genetic 

signals to not only have similar magnitude of effects, but now also the same direction of effects. 

Methods for computing genetic correlation can be categorized into those using individual level 

data36,140 (estimated from variance component of linear mixed models) or summary 

statistics141,142, with summary statistic-based approaches being more popular due to computation 

and limitations in individual level data sharing. Genetic correlation was initially considered 

genome wide and thus considered pleiotropy at the genome wide scale. However, methods for 

estimating local genetic correlation have recently been proposed37–39 and become popular to 

study pleiotropy at the region-level, as there can exist heterogeneity in magnitude and direction 

of genetic correlations across regions of the genome38.  

Local genetic correlation (LGC) and colocalization have become two popular methods in 

the field to study cross-trait genetic architectures and conceptually answer a similar question in 

“how does a local region share genetics across two traits (or more)?”. However, as contrasted by 

Werme et al37, the underlying model and specific aims differ drastically. Colocalization aims to 

identify a shared causal variant (or multiple) across two traits in a region, while LGC aims to 

quantify the overall strength of the local genetic sharing in a region. Thus, colocalization is the 

preferred approach when SNP-level pleiotropy is of interest, as it allows for identifying specific 

shared variants. However, colocalization typically relies on having GWAS hits and thus a 

regional colocalization analysis could fail in the presence of shared genetics if studies are 

underpowered or a region has weaker effect shared causal variants. In such settings LGC may 

still be able to quantify the extent of the sharing of weaker genetic effects and reveal insights into 
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the pleiotropic effects for a genomic region. Thus, LGC and colocalization provide 

complementary approaches to interrogating local patterns of shared genetic signal. 

While LGC provides insights into the magnitude and presence of shared genetic signals 

in a region, existing frameworks are not capable of identifying pleiotropy at the variant or gene 

level. One major reason is LGC analysis in local regions is often complicated by pervasive LD 

causing marginally estimated GWAS z scores to be highly correlated. To account for this 

extensive LD and potentially noisy LD estimates from external reference panels, methods such 

as Rho-hess38, SUPERGNOVA39, and LAVA37 all project GWAS effect sizes or z scores onto 

eigenvectors of the regional LD matrix. Furthermore, only the top eigenvalues are retained in the 

analysis, as eigenvalues explaining a low proportion of variability are pruned away. While 

projecting z scores onto the LD matrix is an effective approach to handle the extensive LD in 

local regions, in doing so these frameworks lose the ability to efficiently draw conclusions at the 

original SNP-level as observations are now represented as linear combinations of the original 

SNPs in a reduced dimensionality. Thus, LGC frameworks can identify regions sharing genetic 

signals but are unable to identify which specific SNP sets or genes drive that signal of LGC. 

While approaches such as colocalization can be applied in LGC regions to identify shared causal 

SNPs, as mentioned such methods implicitly rely on GWAS hits and would likely fail if the LGC 

signal is driven by weaker shared causal variants. 

In this work we propose LDSC-MIX, a novel mixture of regressions method to identify 

SNP and gene-level pleiotropy in a region using the framework of genetic correlations (while not 

losing SNP-level interpretability through projecting z scores onto LD matrices as done in 

existing LGC methods). LDSC-MIX extends the cross trait bivariate LD score regression 

(LDSC) framework used to estimate genome level genetic correlation, and thus takes as input 
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GWAS summary statistics across two traits and LD scores using a matched-ancestry reference 

panel. Our method LDSC-MIX similarly regresses the product of GWAS z scores across two 

traits on variant LD scores, but uniquely assumes two latent groups of SNPs in a local region: 1) 

SNPs with correlated genetic effects 2) SNPs with uncorrelated genetic effects. Using an 

empirical Bayes mixture of regressions model, LDSC-MIX infers group membership for each 

SNP to identify SNP-level pleiotropy (where inferred group labels can then be used to test for 

enrichment in SNPs at the gene level). In simulations of varying shared genetic architecture, we 

compared LDSC-MIX to colocalization in their ability to identify a candidate set of shared 

causal variants containing true shared risk variants and recover the true LGC. With respect to 

these criteria, we found LDSC-MIX is generally preferable in the presence of multiple shared 

weak causal genetic variants. In such settings, colocalization with a multiple variant extension 

(coloc-SuSiE) often failed (or performed poorly) while LDSC-MIX was still able to leverage the 

linear relationship between LD scores and products of z scores. On the other hand, in the 

presence of a single shared causal variant or multiple strong genetic signals, colocalization was 

the preferred approach. Using GWAS summary statistics for two trait pairs from the UK 

Biobank: asthma-basal cell carcinoma and asthma-HDL, we applied LDSC-MIX on LGC 

regions and identified candidate sets of shared causal variants that recaptured the estimated LGC 

and highlighted specific genes in the region that may drive the LGC signal.  

4.2 Methods 

4.2.1 Original Cross-trait LD Score Regression Framework  

We follow the framework established in cross trait LD score regression defined by Bulik-

Sullivan et al141. For a given pair of traits assume there are two studies of size 𝑁1 and 𝑁2 with 

standardized phenotype vectors 𝑌1, 𝑌2 of size 𝑁1 𝑥 1 and 𝑁2 𝑥 1. Each study has the standardized 
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(mean zero and variance 1) genotype matrix 𝑋1, 𝑋2 of size 𝑁1𝑥 𝑀 , 𝑁2 𝑥 𝑀 where 𝑀 is the 

number of shared SNPs genome wide. Consider the following linear models  

𝑌1 = 𝛽1𝑋1 + 𝜖 

𝑌2 = 𝛽2𝑋2 + 𝛿 

Where 𝛽1 and 𝛽2 are vectors of genetic effects and 𝛿 and 𝜖 are residual vectors capturing 

environmental effects. 𝛽1, 𝛽2, 𝑋1, 𝑋2, 𝜖, 𝛿 are treated as random. Suppose the genetic effects 

(𝛽1, 𝛽2) has mean 0 and covariance matrix 

𝑣𝑎𝑟(𝛽1, 𝛽2) =
1

𝑀
(
ℎ1
2𝐼 𝜌𝑔𝐼

𝜌𝑔𝐼 ℎ2
2𝐼
) 

And similarly, the environmental effects (𝜖, 𝛿) have mean 0 and covariance matrix 

𝑣𝑎𝑟(𝜖, 𝛿) =
1

𝑀
(
(1 − ℎ1

2)𝐼 𝜌𝑒𝐼

𝜌𝑒𝐼 (1 − ℎ2
2)𝐼
) 

Where 𝜌𝑔, 𝜌𝑒 are genetic and environmental correlations. Let 𝑧1𝑖 , 𝑧2𝑖 be the corresponding z-

scores for snp 𝑖 in each study. From this model, Bulik-Sullivan et al propose the cross-trait LD 

Score regression equation: 

𝐸[𝑧1𝑖𝑧2𝑖] =
√𝑁1𝑁2𝜌𝑔

𝑀
𝐿𝑖 +

𝜌𝑁𝑠

√𝑁1𝑁2
 

Where 𝑧1𝑖 , 𝑧2𝑖 are per-variant z-scores, 𝐿𝑖 = ∑𝑟𝑖𝑗
2  is the LD score143 of variant 𝑖 measuring the 

tagging of genetic variation in a predefined window, 𝑁𝑠 is the number of overlapping samples 

between the two studies and 𝜌 is the phenotypic correlation among the 𝑁𝑠 samples. Estimates of 

the slope from this regression can be used to estimate the genetic correlation 𝜌𝑔.  

 

Unweighted regression estimates from this model are suboptimal due to violations in regression 

assumptions including 1) correlated outcomes: SNP z-scores in a region can be highly correlated 
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due to LD and 2) heteroskedasticity (unequal variance): SNPs with high LD scores typically 

have higher variance in z-scores. Thus, the LD score regression adopts a weighted least squares 

approach with the following weights: 

𝑊1,𝑖 =
1

𝐿𝐷𝑖
 

𝑊2,𝑖 = 𝑣𝑎𝑟(𝑧1𝑖𝑧2𝑖|𝐿𝐷𝑖)
−1 = [(

𝑁1𝐿𝐷𝑖
𝑀

+ 1)(
𝑁2𝐿𝐷𝑖
𝑀

+ 1) + (
√𝑁1𝑁2𝜌𝑔

𝑀
𝐿𝐷𝑖 +

𝜌𝑁𝑠

√𝑁1𝑁2
)

2

]

−1

 

𝑊1𝑖 handles correlation among SNPs by downweighing SNPs with high LD to avoid over 

counting. 𝑊2𝑖 handles heteroskedasticity by weighting by the inverse of the conditional variance 

where parameters are defined as above.  

   

4.2.2 Mixture of Cross-Trait LD Score Regression Framework  

LDSC-MIX extends the original cross-trait LD score regression framework to be applied 

in local regions to identify SNPs and genes driving local genetic correlation. We note the original 

cross-trait LDSC was originally proposed to estimate genetic correlation at the genome level. 

Previous work38,39 has suggested their method of moments estimation to be suboptimal in 

estimating genetic correlation locally due to an insufficient number of SNPs and pervasive LD. 

While estimates of LGC from cross-trait LDSC are less precise compared to explicit LGC 

methods38, they were shown to remain accurate and unbiased. Thus, while suboptimal, we 

adopted the cross-trait LDSC framework for LDSC-MIX to allow for a latent mixture model-

based approach while retaining information at the SNP-level, rather than projecting SNP z scores 

onto the local LD matrix.  
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Mixture of Regressions Model: LDSC-MIX 

For LDSC-MIX, we subset the genotype matrices 𝑋1, 𝑋2 to a local region with 𝑄 variants 

with z-scores 𝑧1𝑖 , 𝑧2𝑖 (𝑖 = 1, … . , 𝑄). For each variant 𝑖, we compute LD scores 𝐿𝑖 = ∑ 𝑟𝑗𝑘
2

𝑘  using 

all SNPs in the local region.  

Let 𝐶 be a latent class indicator variable with 𝑃(𝐶𝑖 = 𝑗) = 𝜋𝑖 for 𝑗 = 1,2. Here, 

𝐶 corresponds to two possible groups: 1) a set of genetically correlated SNPs contributing to 

shared genetic architecture across two traits in a region and 2) a set of uncorrelated SNPs in a 

region. Given the latent group 𝐶 we assume a linear relationship between product of z-scores and 

the LD score as per cross trait LD score regression:  

(𝑧1𝑖𝑧2𝑖|𝐿𝐷𝑖 , 𝐶𝑖 = 𝑗) = 𝛾0𝑗 + 𝐿𝐷𝑖𝛾1𝑗 + 𝜖𝑗  

𝜖𝑗~𝑁(0, 𝜎
2) 

Following linear regression theory and assumed normally distributed residuals: 

(𝑧1𝑖𝑧2𝑖|𝐿𝐷𝑖 , 𝐶𝑖 = 𝑗) ~ 𝑁(𝛾0𝑗 + 𝐿𝐷𝑖 ∗ 𝛾1𝑗 , 𝜎𝑗
2) 

Thus, the joint probability distribution for a given SNP 𝑖’s pair of z scores and latent class 

variable C can be expressed as: 

𝑝(𝑧1𝑖𝑧2𝑖 , 𝐶𝑖|𝐿𝐷𝑖𝐶𝑖 , 𝜽)

= {
𝜋

√2𝜋𝜎1
exp (

[𝑧1𝑖𝑧2𝑖 − (𝛾01 + 𝐿𝐷𝑖𝛾11)]
2

2𝜎1
2 )}

𝐶𝑖

∗ {
1 − 𝜋

√2𝜋𝜎2
exp (

[𝑧1𝑖𝑧2𝑖 − (𝛾02 + 𝐿𝐷𝑖𝛾12)]
2

2𝜎2
2 )}

1−𝐶𝑖

 

Where the vector of model parameters 𝜽 = {𝜋1, 𝜋2, 𝜎1
2, 𝜎2

2, 𝛾01, 𝛾11, 𝛾02, 𝛾12}. 𝜋𝑗 is the group 

membership probabilities that a variant belongs to the j-th latent group (𝜋1 + 𝜋2 = 1), 𝛾0𝑗 and 
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𝛾1𝑗 are linear model intercept and slopes for the j-th latent group, and 𝜎𝑗
2 are group specific 

variances.  

Similar to the original LD score regression and its cross-trait extension framework, our 

mixture of regressions approach is made inefficient due to the violations in regression 

assumptions 1) correlation among SNPs and 2) heteroskedasticity. Thus, we adopt a weighted 

least squares framework for our mixture of regressions model. To accommodate 

heteroskedasticity and correlation among SNPs, we similarly introduce weighting by the inverse 

of the conditional variance and inverse of the LD score:  

𝑊1𝑖 = 𝑣𝑎𝑟(𝑧1𝑖𝑧2𝑖|𝐿𝐷𝑖)
−1 = [(

𝑁1𝐿𝐷𝑖
𝑀

+ 1)(
𝑁2𝐿𝐷𝑖
𝑀

+ 1) + (
√𝑁1𝑁2𝜌𝑔

𝑀
𝐿𝐷𝑖 +

𝜌𝑁𝑠

√𝑁1𝑁2
)

2

]

−1

 

𝑊2𝑖 =
1

𝐿𝐷𝑖
 

𝑊𝑖 = 𝑊1𝑖 ∗ 𝑊2𝑖 

 

The weight in the weighted least squares probability density given group C is incorporated in the 

variance and can be expressed as: 

(𝑧1𝑖𝑧2𝑖|𝐿𝐷𝑖 ,𝑊𝑖 ,  𝐶𝑖 = 𝑗) ~ 𝑁(𝛾0𝑗 + 𝐿𝐷𝑖 ∗ 𝛾1𝑗 ,  𝜎𝑗
2 ∗ 𝑊𝑖) 

The total weighted least squares likelihood across the j latent groups is then defined as 

𝐿(𝜽|𝑧1𝑧2,  𝐿𝐷,  𝐶,𝑊)

=∏{
𝜋

√2𝜋𝜎
exp (

[𝑧1𝑖𝑧2𝑖 − (𝛾01 + 𝐿𝐷𝑖𝛾11)]
2

2𝑊𝑖𝜎1
2 )}

𝐶𝑖
𝑄

𝑖=1

∗ {
1 − 𝜋

√2𝜋𝜎
exp (

[𝑧1𝑖𝑧2𝑖 − (𝛾02 + 𝐿𝐷𝑖𝛾12)]
2

2𝑊𝑖𝜎2
2 )}

1−𝐶𝑖
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Priors: 

LDSC-MIX takes a Bayesian approach and thus incorporates the following prior 

information. We start by assuming a Dirichlet prior for the group membership probability 

𝜋 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼) 

Where 𝛼 = {1,9} is a vector of length two (corresponding to the two groups) that down weights 

the correlated group (group 1), reflecting belief that the minority of variants share genetic signal. 

For the group 𝑗 means (parameterized by the regression intercepts and slopes) we assume 

conjugate normal priors and take an empirical bayes approach to define the mean and variance:  

𝐺𝑟𝑜𝑢𝑝 𝑗 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡: 𝛾01, 𝛾02 ~ 𝑁(𝛾0,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ ,√𝑁1𝑁2𝑆𝐸(𝛾0,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ )) 

𝐺𝑟𝑜𝑢𝑝 1 (𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑) 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑙𝑜𝑝𝑒: 𝛾11 ~ 𝑁(𝛾1,𝐹𝑖𝑛𝑎𝑙̂ ,√𝑁1𝑁2𝑆𝐸(𝛾1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ )) 

𝐺𝑟𝑜𝑢𝑝 2 (𝑁𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑) 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑙𝑜𝑝𝑒: 𝛾12 ~ 𝑁(0, 0.001) 

For group 1 (correlated group), the prior mean for the slope 𝛾11 is defined running the original 

cross trait LDSC twice using 1) all variants in the region and 2) clumped “hits” in the region. In 

the first run using all variants in the region, we estimate the slope and intercept 𝛾1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂  and 

𝑆𝐸(𝛾1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ ). However, the estimated slope 𝛾1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂   is likely an underestimate for the 

correlated group of causal variants we are interested in identifying. We again run cross trait 

LDSC using clumped variants (clumped at 𝑟2 = 0.10) to estimate 𝛾1,𝑐𝑙𝑢𝑚𝑝𝑒𝑑̂ , which is likely an 

overestimate of the slope as we use top hits in each proximal group of SNPs. The final prior 

mean for the correlated group is defined as the average: 

𝛾1,𝐹𝑖𝑛𝑎𝑙̂ =
𝛾1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ +𝛾1,𝑐𝑙𝑢𝑚𝑝𝑒𝑑̂

2
 

To define the prior variance for group 1 (correlated group), we use the corresponding standard 

error of the original slope estimate scaled by the sample sizes 𝑁1 and 𝑁2: √𝑁1𝑁2 𝑆𝐸(𝛾1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙) ̂ ,. 
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For group 2 (uncorrelated group), the prior mean is set to 0 (as would be expected if there is no 

shared genetic signal) and the prior variance set to 0.0001 to enforce strong prior knowledge of 

“no correlation” on the model. For each group’s intercept 𝛾01, 𝛾02, we follow a similar approach 

using point estimates of the intercept and standard error running the original cross trait LD score 

regression using all variants in the region.    

For group j variances, we use the non-informative Jeffrey’s prior for a normal distribution 

with known mean: 

𝜎1
2 =

1

𝜎1
2 

𝜎2
2 =

1

𝜎2
2 

Lastly, Bayesian mixture models commonly suffer from label-switching144, causing model 

parameters to become unidentifiable. We alleviate this issue by ordering group specific slopes 

𝛾11 > 𝛾12 (if the original LDSC estimated slope using all variants 𝛾1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ >0) and vice versa 

if 𝛾1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ <0, forcing group 1 to be the SNP set of genetically correlated effect sizes. The full 

joint prior of 𝜃 = {𝜋, 𝜎1
2, 𝜎2

2, 𝛾01, 𝛾11, 𝛾02, 𝛾12}. is then:  

𝑝(𝜃) =  𝑝(𝜋) ∗ 𝑝(𝜎1
2) ∗ 𝑝(𝜎2

2) ∗ 𝑝(𝛾01) ∗ 𝑝(𝛾02) ∗ 𝑝(𝛾11) ∗ 𝑝(𝛾12) 

 

4.2.3 Model Estimation 

Parameters to be estimated from the model include 𝜽 = {𝜋1, 𝜋2, 𝜎1
2, 𝜎2

2, 𝛾01, 𝛾11, 𝛾02, 𝛾12}. To 

estimate model parameters, we use Gibbs Sampling145 to perform MCMC simulations to 

estimate posterior distributions. The full conditionals (see supplementary for derivations) are 

defined as:  
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𝜋|𝜽−𝜋, 𝑧1𝑧2, 𝐿𝐷 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼 + 𝑄𝑘) 

Where 𝑄𝑘 = ∑ 𝐼(𝐶𝑖 = 𝑘)
𝑄
𝑖=1  

𝐶𝑖|𝜽−𝐶 , 𝑧1𝑧2, 𝐿𝐷 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑤𝑖) 

Where 𝑤𝑖 =
𝜋𝑁(𝑧1𝑧2|… )

∑𝜋𝑗𝑁(𝑧1𝑧2|… )
 

𝛾01|𝜽−𝛾01 , 𝑧1𝑧2, 𝐿𝐷 ~ 𝑁(
1

1
𝑠2
+
𝑄1
𝜎1
2 
(
𝑚

𝑠2
+
∑  𝑧1𝑖𝑧2𝑖𝐼:𝐶𝑖=1

𝜎1
2 ) , (

1

𝑠2
+
𝑄1
𝜎1
2)

−1 

) 

Where 𝑚=𝛾0,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ , 𝑠 = √𝑁1𝑁2𝑆𝐸(𝛾0,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ ) 

𝛾02|𝜽−𝛾02 , 𝑧1𝑧2, 𝐿𝐷 ~ 𝑁(
1

1
𝑠2
+
𝑄1
𝜎2
2 
(
𝑚

𝑠2
+
∑  𝑧1𝑖𝑧2𝑖𝐼:𝐶𝑖=2

𝜎2
2 ) , (

1

𝑠2
+
𝑄1
𝜎2
2)

−1 

) 

Where 𝑚=𝛾0,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ , 𝑠 = √𝑁1𝑁2𝑆𝐸(𝛾0,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ ) 

𝛾11|𝜽−𝛾11 , 𝑧1𝑧2, 𝐿𝐷 ~ 𝑁(
1

1
𝑠2
+
𝑄1
𝜎1
2 
(
𝑚

𝑠2
+
∑  𝑧1𝑖𝑧2𝑖𝐼:𝐶𝑖=1

𝜎1
2 ) , (

1

𝑠2
+
𝑄1
𝜎1
2)

−1 

) 

Where 𝑚=𝛾1,𝐹𝑖𝑛𝑎𝑙̂ , 𝑠 = √𝑁1𝑁2𝑆𝐸(𝛾1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ ) 

𝛾12|𝜽−𝛾12 , 𝑧1𝑧2, 𝐿𝐷 ~ 𝑁(
1

1
𝑠2
+
𝑄1
𝜎2
2 
(
𝑚

𝑠2
+
∑  𝑧1𝑖𝑧2𝑖𝐼:𝐶𝑖=2

𝜎2
2 ) , (

1

𝑠2
+
𝑄1
𝜎2
2)

−1 

) 

Where 𝑚=0, 𝑠 = 100 

𝜎1
2|𝜽−𝜎12 , 𝑧1𝑧2, 𝐿𝐷 ~𝐼𝐺(

𝑄1

2
, ∑

[𝑧1𝑖𝑧2𝑖−(𝛾01+𝛾11𝐿𝐷𝑖)]
2

2𝑖∈𝐶𝑖=1 ) 

𝜎2
2|𝜽−𝜎22 , 𝑧1𝑧2, 𝐿𝐷 ~𝐼𝐺(

𝑄1

2
, ∑

[𝑧1𝑖𝑧2𝑖−(𝛾01+𝛾11𝐿𝐷𝑖)]
2

2𝑖∈𝐶𝑖=2 ) 
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The stationary distribution obtained for Gibbs Sampling algorithm uses the following steps to 

approximate the joint posterior distribution: 

 𝑝(𝜋, 𝐶, 𝜎1
2, 𝜎2

2, 𝛾01, 𝛾11, 𝛾02, 𝛾12|𝑧1𝑧2, 𝐿𝐷) ∝

𝑝(𝑧1𝑧2| 𝜋, 𝐶, 𝜎1
2, 𝜎2

2, 𝛾01, 𝛾11, 𝛾02, 𝛾12) 𝑝(𝐶|𝜋)𝑝(𝜋) ∗ 

𝑝(𝛾01)𝑝(𝛾02)𝑝(𝛾11)𝑝(𝛾12)𝑝(𝛾12) ∗ 

𝑝(𝜎1
2) 𝑝(𝜎2

2) 

 

1. Initialize values: 𝜋(0), 𝛾01
(0)
, 𝛾02
(0)
, 𝛾11
(0)
, 𝛾12
(0)

, 𝜎21
(0)

, 𝜎22
(0)

. 

2. For each SNP 𝑖, update sampling 𝐶𝑖 from its full conditional: 𝐶(𝑚+1) ~ 𝐶|𝜽−𝐶
(𝑚)
, 𝑧1𝑧2, 𝐿𝐷  

3. Update sampling 𝜋(𝑚+1)~  𝜋(𝑚)|𝜽−𝜋, 𝑧1𝑧2, 𝐿𝐷 

4. Update sampling 𝜎1
2 and 𝜎2

2  

5. Update sampling 𝛾01
(𝑚+1)

, 𝛾02
(𝑚+1)

 ~ 𝛾01
(𝑚)
|𝜽−𝛾01
(𝑚)

, 𝑧1𝑧2, 𝐿𝐷, 𝛾02
(𝑚)
|𝜽−𝛾01
(𝑚)

, 𝑧1𝑧2, 𝐿𝐷 

6. Update sampling 𝛾11
(𝑚+1)

, 𝛾12
(𝑚+1)

 ~ 𝛾11
(𝑚)
|𝜽−𝛾11
(𝑚)

, 𝑧1𝑧2, 𝐿𝐷, 𝛾12
(𝑚)
|𝜽−𝛾12
(𝑚)

, 𝑧1𝑧2, 𝐿𝐷 

7. Order 𝛾11
(𝑚+1)

, 𝛾12
(𝑚+1)

 and arrange each parameter with that order  

8. Repeat  

 

In the Gibbs sampling algorithm, the first 1000 iterations are discarded as burn-in and the chain 

is repeated for 10,000 iterations. 

4.2.4 Parameters of Interest 

The primary parameter of interest is the probability of correlated group membership 

which is approximated from directly sampling from the stationary distribution: 
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𝑃(𝐶𝑖 = 𝑗 | 𝑧1𝑖𝑧2𝑖 , 𝐿𝐷𝑖 , 𝜽 ) =
𝜋 ∗ 𝜙(𝑧1𝑖𝑧2𝑖|𝐿𝐷𝑖 , 𝜃1) 

𝜋 ∗ 𝜙(𝑧1𝑖𝑧2𝑖|𝐿𝐷𝑖 , 𝜃1) + (1 − 𝜋) ∗ 𝜙(𝑧1𝑖𝑧2𝑖|𝐿𝐷𝑖 , 𝜃2)
 

≈∑𝐼(𝐶𝑖
(𝑚) = 𝑗)

𝑀

𝑚

  

We label a SNP as being in the genetically correlated group if 𝑃(𝐶𝑖 = 1 | 𝑧1𝑖𝑧2𝑖 , 𝐿𝐷𝑖 , 𝜽) = 1. 

The high probability required was chosen to avoid false positives (at the risk of missing potential 

correlated SNPs). In real data applications, to identify pleiotropy at the gene level in a region we 

first annotate each SNP to a gene in the region using the snpsettest R package with human gene 

locations extracted from GENCODE release 19 (build GRCh37). Using a frequentist post-

analysis step, with inferred group labels we fit a GEE logistic regression model to test for an 

enrichment of correlated SNPs in each gene: 

𝐶 = 𝛽0 + 𝛽1𝐺𝑒𝑛𝑒1 +⋯+ 𝛽𝑘𝐺𝑒𝑛𝑒𝑘 

Where C is the inferred group label and 𝐺𝑒𝑛𝑒𝑘 are the k genes in the region. We use the GEE 

framework with an exchangeable correlation structure to produce robust standard errors 

accounting for correlation among SNPs.  

4.2.5 Simulation Settings 

We followed similar simulation settings first defined by Shi et al38. We first simulated 

50,000 European genotypes using HAPGEN2146 with chromosome 1 haplotypes from n=503 

phased Europeans from the 1000 Genomes Project3. Variants with minor allele frequency < 1% 

were removed. The sample of simulated genotypes was divided in half, such that 25,000 

genotypes were used to simulate trait effect sizes and 25,000 were used as an external LD 

reference panel. Chromosome 1 genotypes were then partitioned into 133 approximately 

independent LD blocks defined in European populations147.  
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For each LD block, we simulated GWAS effect sizes across two quantitative traits. To 

simulate phenotype data, we assumed the linear model 𝑌 = 𝑋𝐵 + 𝜖. True causal effect sizes 

were drawn from a multivariate normal 𝜷~𝑀𝑉𝑁2(𝟎,(

ℎ1
2

𝑚

𝜌ℎ2

𝑚

𝜌ℎ2

𝑚

𝜌ℎ2
2

𝑚

)) where ℎ1
2 = ℎ2

2 =

{0.001, 0.005, 0.01} was the local SNP-based heritability, 𝑚 = {1, 5} is the set of causal SNPs, 

and 𝜌 = {0.5, 0.8} is the genetic correlation (only moderate to large values considered because 

LDSC-MIX is a follow-up method for regions of LGC). All other SNP effect sizes were set to 

zero. The true genetic score 𝐺 for each trait was then defined as the product of sampled causal 

genotypes and their respective simulated effect sizes (𝑋 = ∑ 𝐺𝑖 𝛽𝑖 
𝑚
𝑖=1 ), standardized to ensure 

total heritability of ℎ2: 𝐺 =
𝑋−𝜇𝑥 

𝜎𝑥
∗ ℎ2. Environmental noise was separately generated for each 

trait 𝑖 from a normal distribution 𝜖~𝑁(0,1 − ℎ𝑖
2), ), standardized to ensure variance 1 − ℎ2: 𝐸 =

𝜖−𝜇𝜖

𝜎 𝜖
∗ (1 − ℎ2). We then estimated effect sizes �̂� for each variant genome wide using a linear 

model 𝑌 = 𝑋𝐵 + 𝜖, using each population’s respective simulated phenotype and genotype data.  

4.2.6 Running Colocalization 

We compared the performance of LDSC-MIX to colocalization of GWAS summary 

statistics across two simulated traits. To run colocalization, we used the R package coloc136 with 

the extension to allow for multiple shared causal variants using the fine mapping SuSiE148 

framework. Under this multiple causal variant framework, SuSiE is first used to form credible 

sets of causal variants for each trait separately, with each pair of credible sets across traits then 

tested for colocalization under the single shared causal variant hypothesis. The default coverage 

probability for SuSiE is 0.95, though we considered values of {0.10, 0.50, 0.95) to allow for 

detection of weaker effect colocalizing variants (at the cost of introducing more false positives).  
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4.2.7 Method Evaluation and Comparison  

The objective of LDSC-MIX is to identify the set of SNPs or genes in a locus that drive a 

signal of local genetic correlation. The first metric we used to assess the performance of LDSC-

MIX was the number of simulations LDSC-MIX can successfully identify a candidate set. A 

candidate set is defined as a set of SNPs that contain potentially true shared causal variants. 

LDSC-MIX will fail to identify a candidate set when no SNPs have a posterior probability of one 

for correlated group membership, while coloc-SuSiE will fail when SuSiE fine-mapping fails to 

identify credible sets for either trait or colocalization fails to run. The second metric was the 

number of true shared causal variants in the candidate set of SNPs, 𝑋𝑐,LDSC−MIX, with SNP-level 

posterior probability of genetically correlated group membership equal to 1. To compare against 

colocalization, we rank SNPs by their colocalization posterior probability and define 𝑋𝑐,𝑐𝑜𝑙𝑜𝑐  as 

the top 𝑅 SNPs (where 𝑅 is defined to be the cardinality of set 𝑋𝑐,LDSC−MIX to allow equal 

comparison). Using 𝑋𝑐,𝑐𝑜𝑙𝑜𝑐  we then assess the number of true shared causal variants contained. 

The last metric used to assess the performance of LDSC-MIX was the similarity in 

estimated genetic correlation using SNPS in 𝑋𝑐,LDSC−MIX to the true genetic correlation. Because 

the candidate set of potential shared causal variants 𝑋𝑐,LDSC−MIX contains variants in LD, we first 

LD clumped variants at a pairwise threshold 𝑅2 = 0.10 to produce a set of approximately 

independent SNPs 𝑋𝑐,LDSC−MIX
∗ . Using the final set of proposed shared causal variant set 

𝑋𝑐,LDSC−MIX
∗ , we computed the genetic correlation as 𝑐𝑜𝑟(𝑋𝑐,LDSC−MIX

∗ 𝛽1̂, 𝑋𝑐,LDSC−MIX
∗ 𝛽2̂) and 

defined our performance metric as the ratio of genetic correlations:  

𝑅𝐺𝐶 =
𝑐𝑜𝑟(𝑋𝑐,𝐿𝐷𝑆𝐶−𝑀𝐼𝑋

∗ 𝛽1̂, 𝑋𝑐,𝐿𝐷𝑆𝐶−𝑀𝐼𝑋
∗ 𝛽2̂) 

𝑐𝑜𝑟(𝑋𝑐𝛽1, 𝑋𝑐𝛽2) 
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RGC is defined as the ratio of the estimated genetic correlation vs the true correlation (using true 

causal variants 𝑋𝑐 and respective effect sizes 𝛽). To compare against colocalization, we similarly 

define 𝑅∗ as the cardinality of LDSC-MIX pruned set 𝑋𝑐,𝐿𝐷𝑆𝐶−𝑀𝐼𝑋
∗  and subset 𝑋𝑐,𝑐𝑜𝑙𝑜𝑐  to 𝑋𝑐,𝑐𝑜𝑙𝑜𝑐

∗ , 

the 𝑅∗ top ranked SNPs by colocalization posterior probability. With  𝑋𝑐,𝑐𝑜𝑙𝑜𝑐
∗  we then similarly 

compute RGC. 

4.2.8 Real Data Application 

We evaluated LDSC-MIX using European GWAS summary statistics of varying sample 

sizes for autoimmune, cancer, and lipid phenotypes from the UK Biobank6. Phenotypes trait 

pairs included asthma-basal cell carcinoma and asthma-HDL. Trait pairs were chosen to consider 

trait pairs with (asthma-bcc) and without (asthma-HDL) likely signals of shared genetics. We 

first partitioned the genome into 2045 roughly independent regions using previously estimated 

LD blocks based on data from the 1000 Genomes Project147. For a given trait pairing, to identify 

candidate regions for follow up analysis with LDSC-MIX, we ran LAVA37 to estimate local 

SNP-based heritability for each trait and bivariate local genetic correlation. The top genomic 

regions with significant heritability for both traits (𝑝 <
0.05

2045
) and bivariate genetic correlation 

(𝑝 <
0.05

# 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 ℎ𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝑡𝑟𝑎𝑖𝑡𝑠 
) were included for follow up analysis. 

For each top genomic region, we used genotype data from 503 European individuals from the 

1000 Genomes Project to derive LD scores. LD scores were computed using the bigsnpr package 

from defined PLINK149 files. LDSC-MIX was used to first infer correlated group membership 

for each SNP. Correlated group membership labels were then used to test the effect of each gene 

in the region for an enrichment of correlated group SNPs (see above).  
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4.3 Results 

4.3.1 Comparison of LDSC-MIX and coloc-SuSiE Across Various Disease Architectures 

We evaluated the performance of LDSC-MIX using simulated GWAS effect sizes in 

approximately independent LD blocks under a variety of genetic architectures, varying values of 

local SNP-based heritability ℎ2 = {0.001,0.005,0.01}, number of causal variants 𝑚 = {1,5}, 

and true genetic correlation 𝜌 = {0.5, 0.8}. For comparison, we included colocalization allowing 

for multiple shared causal variants using the SuSiE framework. We broadly dichotomized 

simulations into two scenarios 1) strong shared genetic effects corresponding to high local-SNP 

based heritability (ℎ2 = 0.005, 0.01,𝑚 = 1,5,𝜌 = 0.5,0.8) and 2) moderate or weak shared 

genetic effects (ℎ2 = 0.001 𝑜𝑟 𝑚 =  1,5, 𝜌 = 0.5, 0.8). In simulations of strong shared genetic 

effects, 91.4% of simulations had a GWAS hit (𝑝 < 5𝑒-8) in both traits as compared to 28.6% in 

simulations of weaker shared genetic effects.  

Our first performance metric comparing LDSC-MIX and colocalization was the number 

of instances each method could be run out of n=100 simulated LD blocks across a variety of 

disease architectures. In scenarios of strong shared genetic effects, LDSC-MIX can be used to 

estimate a candidate set of shared causal SNPs set in more scenarios (85.6%) when compared to 

coloc-SuSiE (50.1%). For LDSC-MIX, identified candidate sets were generally large (average 

338.8 SNPs) as our framework does not fine-map the signal among a set of correlated variants. 

On the other hand, coloc-SuSiE performs SuSiE fine-mapping prior to colocalization analysis to 

remove correlated SNPs (though we use equal number of SNPs for method comparison metrics 

(see methods)). In simulations of weaker shared genetic effects corresponding to fewer shared 

GWAS hits across both traits, both LDSC-MIX and coloc-SuSie succeeded in fewer cases 

(64.4% and 28.7%). As failure of coloc-SuSiE to run is dependent on successful fine-mapping, 
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we considered three values of coverage probability (0.10, 0.50, and 0.95) for formation of a 

credible set in SuSiE (Figure 4.1). In simulations of weak genetic effects, at the default 0.95 

coverage probability coloc-SuSiE ran successfully for only 20.6% of cases. As the coverage 

probability was lowered, coloc-SuSiE successfully identified a candidate set more often and ran 

in 20.6%, 32.5%, and 32.8% of simulations for coverage probabilities of 0.95 (default SuSiE 

value), 0.50, and 0.10.  

 

Figure 4.1 Barchart comparing proportion of simulations (strong vs weak genetic effects) each method (Coloc-Susie 

vs LDSC-MIX) can successfully identify a candidate set. Columns correspond to coverage probability for SuSiE 

fine mapping in Coloc-SuSiE. 

 

We quantified how well the candidate set of potential shared causal SNPs identified by 

both methods recovered the true genetic correlation and contained the true number of shared 
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causal variants. Here, simulations were filtered to scenarios where both methods could be run 

successfully for direct method comparison. Furthermore, we did not dichotomize simulation 

scenarios into “weak” and “strong” to interrogate specific disease architectures (number of 

shared causal variants, local genetic correlation, and local SNP-based heritability) for method 

comparison. For the ratio of genetic correlations (RGC, see methods), when only a single causal 

variant was present LDSC-MIX performed poorly compared to coloc-SuSiE (Figure 4.2). In such 

single causal variant settings, the mean RGC (with a RGC = 1 indicating perfect capturing of 

shared causal SNPs) for LDSC-MIX and coloc-SuSiE was 0.83 and 0.99 across varying local 

SNP-based heritability and genetic correlations. LDSC-MIX had the worst mean RGC (0.55) 

when the single shared genetic signal was weakest (ℎ2 = 0.001, 𝜌=0.50), but comparable to the 

mean RGC of coloc-SuSie (0.90 vs 0.99) when the single shared genetic signal was strong (ℎ2 =

0.01). On the other hand, when multiple causal variants were present in a region estimated RGC 

were closer to 1 for LDSC-MIX (1.10) compared to coloc-SuSiE (1.14) across both weak and 

strong scenarios of shared signals. Improvement was most notable in scenarios of weaker genetic 

effects (ℎ2 = 0.001 or ℎ2 = 0.005 & 𝜌=0.50), in which mean RGC for coloc-SuSiE (1.31) were 

larger than LDSC-MIX (1.07) indicating coloc-SuSiE tended to overestimate the true genetic 

correlation. However, when multiple shared strong genetic effect variants were present coloc-

SuSiE and LDSC-MIX both performed well.   
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Figure 4.2 Bar chart comparing ratio of genetic correlations by method (Coloc-Susie vs LDSC-MIX). Columns 

correspond to local genetic correlation in region and rows correspond to local SNP-based heritability. 

 

When comparing the number of true causal variants contained in candidate sets, across 

simulations LDSC-MIX (following pruning of candidate sets) tended to contain more true shared 

risk variants compared to coloc-SuSiE, though both tended to under contain the true number of 

causal variants (Figure 4.3). When there was a single shared causal variant, on average LDSC-

MIX contained 0.75 variants compared to 0.51 for coloc-SuSiE. When there were multiple 

shared causal variants (five), LDSC-MIX similarly contained more true causal variants (2.09) 

compared to coloc-SuSiE (1.53). However, our metric included scenarios where either of the 
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methods could not be run (resulting in zero true risk variants contained) and thus coloc-SuSiE 

had more density of zero contained variants due to more simulation scenarios failing (Figure 

4.3). When we consider only cases in which both LDSC-MIX and coloc-SuSiE could be run (i.e., 

scenarios of clear shared genetic signals), coloc-SuSiE tended to contain more true shared causal 

variants. In such restricted successful settings, for both the single and multiple shared causal risk 

variant scenarios, the average number of contained true variants for coloc-SuSiE (0.99 and 3.76) 

compared to LDSC-MIX (0.94, 2.61) was closer to the true number (one and five). When 

assessing the effect of disease architecture parameters across all simulations (both successful and 

unsuccessful), increasing local SNP-based heritability generally had the largest improvement on 

containment for both LDSC-MIX and coloc-SuSiE. For a single shared causal variant, increasing 

values of local SNP-based heritability ℎ2 = {0.001, 0.005, 0.01} had increasing containment for 

LDSC-MIX (0.54, 0.85, 0.88) and coloc-SuSiE (0.33, 0.57, 0.64) as shared genetic signals were 

larger and easier to identify. A similar pattern was observed for multiple shared causal variants 

(five) across both methods LDSC-MIX (1.28, 2.29, 2.71) and coloc-SuSiE (0.39, 2.23, 1.97).  
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Figure 4.3 Bar chart comparing true # of causal shared SNPs contained by Coloc-SuSiE and LDSC-MIX by local 

genetic correlation and local SNP-based heritability. Red horizontal dotted lines correspond to true number of risk 

variants simulated (1, 5). 

 

4.3.2 Applications of LDSC-MIX in Traits from the UK Biobank  

We demonstrated the application of LDSC-MIX in empirical data using GWAS summary 

statistics from the UK Biobank for two trait pairings across three traits: asthma-basal cell 

carcinoma and asthma-HDL. Meta-data for each GWAS study are presented in Table 4.1. We 

first estimated bivariate genetic correlations using LAVA across 2045 independent LD blocks, 

with loci having significant SNP-based heritability and local genetic correlation identified as 

candidate regions for LDSC-MIX. For each trait pairing, we focus on the most significant LGC 
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regions with significant local SNP-based heritability (see methods). Because in real data we do 

not know the true causal shared risk variants and local genetic correlation, we evaluated LDSC-

MIX’s ability to recover the LAVA estimated local genetic correlation and identify genes 

enriched in SNPs with high posterior probability of correlated group membership. 

 

 

Table 4.1 Phenotypes analyzed from the UK Biobank with sample size denoted. # of significant LGC regions for 

phenotype pairs correspond to regions with significant individual local trait SNP-based heritability and bivariate 

correlation. 

 

For the asthma-basal cell carcinoma pairing, the top LAVA region (excluding the MHC 

region due to complex LD patterns) was chr14:24906057-25585041 containing 2852 SNPs with 

local SNP-based heritability ℎ𝑎𝑠𝑡ℎ𝑚𝑎
2 = 0.002, ℎ𝑏𝑐𝑐

2 = 0.002, estimated LGC �̂� = −1.0, and 

LGC p-value 𝑝 = 1.60 × 10−6. The top GWAS hits for both traits had p values of 1.9 ∗ 10−3 

and 2.1 ∗ 10−4 for asthma and BCC respectively. Estimated local heritability and lack of GWAS 

hits in the region correspond to the “weak shared genetic effect” scenario for our simulations. 

We fit LDSC-MIX in the region and identified 39 variants with high posterior probability of 

belonging to the correlated SNP set, producing an estimated LGC of -1.0 recovering the LAVA 

estimated value. In this region, coloc-SuSiE was unable to be run owing to lack of GWAS hits in 

the region preventing formation of credible sets for asthma and bcc respectively. Relaxing to the 

single shared causal variant assumption, colocalization suggested only a 0.016% posterior 
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probability of a shared variant. The region contained nine, potentially overlapping, genes which 

we annotated each SNP with if it fell in a gene region and tested the annotation matrix on 

inferred correlated vs uncorrelated group. SNPs belonging to the CBLN3 gene were significantly 

associated with belonging in the inferred correlated group (p = 0.0096). CBLN3 is a protein 

coding gene that is known to be associated with certain types of breast cancer and 

Ganglioneuroblastoma, though its effect on asthma and basal cell carcinoma is unknown.   

We repeated the analysis for the asthma-HDL trait pairing and found the top LAVA 

region (again excluding the MHC regions) was chr2:29627933-30575619 containing 3549 SNPs 

with local ℎ𝑎𝑠𝑡ℎ𝑚𝑎
2 = 0.0005, ℎ𝐻𝐷𝐿

2 = 0.0004, and 𝜌 = −0.89, 𝑝 = 9.5 ∗ 10−4. The top GWAS 

hits for both traits in the region correspond to p-values of 8.47 ∗ 10−5 and 6.51 ∗ 10−6, while 

the product of GWAS z scores for the top shared SNP chr2:30478185 was -8.58. From LDSC-

MIX, we identified 1,226 variants with high posterior probability of correlated group 

membership, producing an estimated LGC of -0.59. Coloc-SuSiE under the single variant 

assumption had a colocalization posterior probability of 0.83%. Allowing for multiple causal 

shared variants at a SuSiE coverage of 0.50 was unable to run. The region contained three 

potentially overlapping genes: ALK, YPEL5, LBH. SNPs belonging to the ALK (𝑂𝑅 =

2.37,𝑝 = 4.23 ∗ 10−17) and YPEL5 (𝑂𝑅 = 1.81, 𝑝 = 5.42 ∗ 10−3)  had a significant 

association with belonging in the inferred correlated group.  

 

4.4 Discussion 

In this work we proposed a novel genetic correlation-based framework to identify SNP-

level pleiotropy at a locus using GWAS summary statistics from two phenotypes. Our method, 

LDSC-MIX, extends the bivariate LD score regression by assuming two underlying latent groups 
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in a region: a set of genetically correlated variants and a set of uncorrelated variants. LDSC-MIX 

then fits an empirical Bayesian mixture of regressions to estimate posterior probabilities of group 

membership. Inferred group labels can then be used to test for enrichment of correlated SNPs in 

annotated genes to test for gene-level pleiotropy driving signals of LGC. In extensive 

simulations, we compared LDSC-MIX to a SNP-level colocalization method, coloc-SuSiE, with 

respect to number of simulations each method could be run successfully, true number of shared 

risk variants contained by identified candidate sets, and how well the true LGC could be 

recovered by identified candidate sets. We found LDSC-MIX generally outperformed coloc-

SuSiE in cross-trait genetic architectures with multiple shared weak genetic effects, though 

colocalization was the preferred approach in single shared causal variant scenarios or multiple 

strong genetic effect variants. In real data applications from two trait pairings from the UKBB: 

asthma-basal cell carcinoma and asthma-HDL we found regions of significant bivariate genetic 

correlation using LAVA. In the top LGC regions, LDSC-MIX was able to identify SNP sets that 

recover LAVA estimated LGC and implicated potential shared genes while coloc-SuSiE failed to 

run.  

LDSC-MIX uses the framework of local genetic correlations to identify SNP-level 

pleiotropy as compared to colocalization, which does the same through identifying shared 

GWAS hits after accounting for LD (when multiple shared causal variants are assumed). 

However, their implementation differs as colocalization relies on GWAS hits (and LD 

information) to identify shared causal variants while LDSC-MIX uses the linear relationship 

between the product of z scores with LD scores. Local genetic correlation can be quantified even 

in the absence of GWAS hits and thus LDSC-MIX was preferable in the presence of multiple 

weak genetic signals. In such situations without strong GWAS hits, coloc-SuSiE was hampered 
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due to frequent failed fine-mapping via SuSiE across a variety of coverage probabilities. Variant 

sets identified by LDSC-MIX tended to contain more true shared risk variants across simulations 

(as coloc-SuSiE had a heavy density of zero contain variants due to failed scenarios) though 

estimated LGC were similar. Conversely, when a single shared causal variant was present 

colocalization was the better approach compared to LDSC-MIX. In such cases, LDSC-MIX 

likely struggles as either the single shared causal variant does not tag enough variants (low LD 

score) or its genetic signal is too weak to inflate tagged variant effect sizes and fails to 

distinguish separate latent correlated and uncorrelated groups. The SNP set identified by LDSC-

MIX, especially when the single shared causal variant had weak genetic effects, often 

underestimated the true local genetic correlation. In such cases, the two latent groups are likely 

not separated well and thus LDSC-MIX incorrectly contains non-causal variants. Lastly, when 

underlying shared genetic effects are strong, as expected colocalization (when able to run) 

outperformed LDSC-MIX with respect to containing true shared risk variants and capturing the 

true LGC due to strong distinguishable GWAS hits.  

In our real data applications, for the asthma-bcc trait pairing we identified CBLN3 as a 

potential shared gene in the top significantly correlated region chr14:24906057-25585041. For 

asthma, CBLN3 was found to be differentially expressed in a study150 of BAL cells from horses 

with and without evidence of respiratory disease. While no direct evidence for CBLN3 exists for 

bcc specifically, CBLN3 has been suggested to play a role in cancer proliferation through 

involvement in synaptic functions151,152. For the asthma-HDL trait pairing we found genes ALK 

and YPEL5 to be potential shared genes in the top region chr2:29627933-30575619. ALK is a 

protein coding gene involved in cell growth, with known implications in cancers including non-

small cell lung cancer153, though its effect on asthma and HDL are unknown. YPEL5 is a gene in 
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the YPEL family, a highly conserved protein coding genes involved in zinc-finger-like metal-

binding domains154. The family has been suggested to play a role in both immune/pulmonary 

response and HDL154,155. We note that while such highlighted genes may play a role in the shared 

etiology of the considered trait pairings, future studies are needed to validate a shared biological 

mechanism. 

LDSC-MIX is the first approach to bridge the gap between local genetic correlation, 

which quantifies the strength of genetic sharing, and methods to identify SNP and gene-level 

pleiotropy such as colocalization. In doing so, LDSC-MIX provides interpretability of which 

specific set of SNPs or genes is driving a signal of local genetic correlation. LDSC-MIX is 

unique in that no assumptions on the existence of GWAS hits or the number of causal variants is 

made, and we show in our simulations that LDSC-MIX is preferable in situations of multiple 

weaker genetic signals. This specific weaker genetic signal scenario where local genetic 

correlations have improved benefits colocalization has been suggested by Werme et al37. We 

reaffirm their findings and provide a statistical framework to leverage this specific scenario. We 

suggest that future studies investigating pleiotropy across two traits in highly polygenic regions 

with weaker genetic effects to use our approach. Thus, an overall analysis of pleiotropic effects 

in a local region with identified local genetic correlation may consist of 1) A first pass using 

colocalization if strong genetic signals are present and driving LGC and 2) A second pass using 

LDSC-MIX if colocalization failed in the absence of strong shared signals. Overall, our proposed 

approach and findings prompt consideration of identifying pleiotropy across traits at increasingly 

polygenic architectures. If we consider the omnigenic156 model in the context of pleiotropy, 

approaches such as colocalization may be well suited for identifying strong shared core genes 
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while LDSC-MIX may be beneficial to interrogate peripheral genes with weaker effects (i.e. 

genes effect tissues that contribute to both disease’s risk).  

Our method LDSC-MIX has limitations to consider in applications. The first is while 

LDSC-MIX identifies variant sets contributing to shared genetic signal, suggestive variants can 

be in high LD making identification of the true shared genetic variants difficult (though 

identification of shared genes is less problematic). While we performed post-group identification 

pruning, it’s entirely possible the top hit among SNPs in proximity is not the true causal variant. 

A secondary post fine mapping analysis carefully modeling the LD patterns in the region could 

be done to further narrow down the signal. Second, LDSC-MIX does not distinguish scenarios 

where a high productive of z-scores is observed due to both trait z-scores being large vs a single 

trait z-score is large while the other is small (not true pleiotropy). We restrict LDSC-MIX use to 

regions with significant LGC making this scenario likely less common. An additional correlated 

group membership criteria of z-scores > minimum cutoff could be implemented, though in doing 

so may miss weaker effects. Third, to aid in computational efficiency, LDSC-MIX uses 

conjugate priors to efficiently derive full conditionals which allow for Gibbs Sampling. More 

informative priors such as a skewed prior placing higher weight on larger values for the slope of 

the correlated group (reflecting belief that the empirical bayes approach using all variants to get a 

starting slope is underestimated) could be used instead of our averaging approach. Lastly, in 

simulations variant effects were drawn from a polygenic model that by chance can result in 

scenarios of null effects. Given parameter settings, this scenario is likely to be infrequent though 

an additional LGC estimation step (e.g., LAVA) could be used to focus on simulations with 

detectable true shared genetic effects.   
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LDSC-MIX provides a novel framework to bridge the gap between local genetic 

correlation analysis and SNP-level pleiotropy analysis. While colocalization can be used to 

highlight specific single or multiple strong shared genetic in LGC regions, LDSC-MIX provides 

improved shared causal variant detection in the presence of multiple weak genetic effects. 

Through identifying potentially weaker shared genetic signals, LDSC-MIX allows for the 

biology across (polygenic) traits to be studied at a resolution previously inaccessible. 

Furthermore, as sample sizes continue to increase for GWAS studies, more weakly pleiotropic 

local regions should become identifiable resulting in additional scenarios where LDSC-MIX is 

the preferred approach. 
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4.5 Chapter 4 Appendix 

4.5.1 Derivation of Full Conditionals 

For derivations of full conditionals, we generally express the joint posterior distribution 

as the product of the likelihood times the joint prior. Assumed independence of priors allows us 

to easily remove terms not involving the parameter of interest. Furthermore, in general our 

choice of prior distributions allows easy recognition of the form for many posterior parameters. 

 

Recall the likelihood can be expressed as: 

𝑝(𝑧1𝑖𝑧2𝑖|𝜽) =∏{
𝜋

√2𝜋𝜎
exp (

[𝑧1𝑖𝑧2𝑖 − (𝛾01 + 𝐿𝐷𝑖𝛾11)]
2

2𝑊𝑖𝜎1
2 )}

𝐶𝑖
𝑄

𝑖=1

∗ {
1 − 𝜋

√2𝜋𝜎
exp (

[𝑧1𝑖𝑧2𝑖 − (𝛾02 + 𝐿𝐷𝑖𝛾12)]
2

2𝑊𝑖𝜎2
2 )}

1−𝐶𝑖

 

 

1. Full conditional for 𝐶𝑖 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋) 

𝑝(𝐶𝑖| … ) ∝ 𝑝(𝜋, 𝐶𝑖 , 𝜎1
2, 𝜎2

2, 𝛾01, 𝛾11, 𝛾02, 𝛾12, 𝑧1𝑧2, 𝐿𝐷) 

∝𝐶𝑖 𝑝(𝑧1𝑧2| … )𝑝(𝐶𝑖| … ) 

= 𝑁(𝑧1𝑖𝑧2𝑖| … )𝜋 

∝𝐶𝑖 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑤𝑖) 

Where 𝑤𝑖 =
𝜋𝑁(𝑧1𝑧2|… )

∑𝜋𝑗𝑁(𝑧1𝑧2|… )
 

2. Full conditional for 𝜋 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼)  : 

𝑝(𝜋|… ) ∝𝜋  𝑝(𝜋, 𝐶𝑖 , 𝜎1
2, 𝜎2

2, 𝛾01, 𝛾11, 𝛾02, 𝛾12, 𝑧1𝑧2, 𝐿𝐷) 

∝𝜋 𝑝(𝐶|𝜋, … )𝑝(𝜋) 
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∝𝜋 (∏𝜋)(∏𝜋𝑘
𝛼

𝐾

𝑘=1

)

𝑛

𝑖=1

  

∝ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼 + 𝑛𝑘) 

Where 𝑛𝑘 = ∑ 𝐼(𝐶𝑖 = 𝑘)
𝑛
𝑖=1  

3. Full conditionals for 𝛾01, 𝛾02~ 𝑁(𝛾0,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ ,√𝑁1𝑁2𝑆𝐸(𝛾0,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ )) 

Let prior hyperparameters for the prior mean and variance be denoted: 𝑚=𝛾0,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ , 𝑠 =

√𝑁1𝑁2𝑆𝐸(𝛾0,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ ) 

𝑝(𝛾01| … ) ∝ 𝑝(𝑧1𝑧2| … )𝑝(𝛾11) 

∝ exp [− ∑
[𝑧1𝑖𝑧2𝑖 − (𝛾01 + 𝛾11𝐿𝐷𝑖)]

2

2𝜎1
2

𝑖∈𝐶𝑖=1

] ∗ exp [−
(𝛾01 −𝑚)

2

2𝑠2
] 

Using conjugacy of normal prior for the normal distribution we know this has a normal 

distribution with the form:  

∝ 𝑁(
1

1
𝑠2
+
𝑛1
𝜎1
2 
(
𝑚

𝑠2
+
∑  𝑧1𝑖𝑧2𝑖𝐼:𝐶𝑖=1

𝜎1
2 ) , (

1

𝑠2
+
𝑛1
𝜎1
2)

−1 

) 

 

4. Full conditionals for 𝛾11~ 𝑁(𝛾1,𝐹𝑖𝑛𝑎𝑙̂ ,√𝑁1𝑁2𝑆𝐸(𝛾1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ )) and 𝛾12~𝑁(0,100) 

Let prior hyperparameters for the prior mean and variance be denoted: 𝑚=𝛾1,𝐹𝑖𝑛𝑎𝑙̂ , 𝑠 =

√𝑁1𝑁2𝑆𝐸(𝛾1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙̂ ) 

𝑝(𝛾11| … ) ∝ 𝑝(𝑧1𝑧2| … )𝑝(𝛾11) 

∝ exp [− ∑
[𝑧1𝑖𝑧2𝑖 − (𝛾01 + 𝛾11𝐿𝐷𝑖)]

2

2𝜎1
2

𝑖∈𝐶𝑖=1

] ∗ exp [−
(𝛾11 −𝑚)

2

2𝑠2
] 
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Using conjugacy of normal prior for the normal distribution we know this has a normal 

distribution with the form:  

∝ 𝑁(
1

1
𝑠2
+
𝑛1
𝜎1
2 
(
𝑚

𝑠2
+
∑  𝑧1𝑖𝑧2𝑖𝐼:𝐶𝑖=1

𝜎1
2 ) , (

1

𝑠2
+
𝑛1
𝜎1
2)

−1 

) 

 

The derivation for 𝛾12 follows the same procedure but instead let prior hyperparameters be 

denoted: 𝑚=0,  𝑠 = 100 

𝑝(𝛾11| … ) ∝ 𝑝(𝑧1𝑧2| … )𝑝(𝛾11) 

∝ exp [− ∑
[𝑧1𝑖𝑧2𝑖 − (𝛾02 + 𝛾12𝐿𝐷𝑖)]

2

2𝜎2
2

𝑖∈𝐶𝑖=2

] ∗ exp [−
(𝛾11 −𝑚)

2

2𝑠2
] 

Using conjugacy of normal prior for the normal distribution we know this has a normal 

distribution with the form:  

∝ 𝑁(
1

1
𝑠2
+
𝑛1
𝜎2
2 
(
∑  𝑧1𝑖𝑧2𝑖𝐼:𝐶𝑖=1

𝜎2
2 ) , (

1

𝑠2
+
𝑛1
𝜎2
2)

−1 

) 

5. Full conditionals for Jeffrey’s priors 𝜎1
2, 𝜎2

2 

𝑝(𝜎1
2| … ) ∝ 𝑝(𝑧1𝑧2| … )𝑝(𝜎1

2) 

∝ (
1

√2𝜋𝜎1
2
)

𝑛1

exp [−∑
[𝑧1𝑖𝑧2𝑖−(𝛾01+𝛾11𝐿𝐷𝑖)]

2

2𝜎1
2𝑖∈𝐶𝑖=1 ] ∗

1

𝜎1
2  

(𝜎1
2)−(

𝑛1
2 +1) ∗ exp [− ∑

[𝑧1𝑖𝑧2𝑖 − (𝛾01 + 𝛾11𝐿𝐷𝑖)]
2

2𝜎1
2

𝑖∈𝐶𝑖=1

]  

~𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(
𝑛1

2
, ∑

[𝑧1𝑖𝑧2𝑖−(𝛾01+𝛾11𝐿𝐷𝑖)]
2

2𝑖∈𝐶𝑖=1
) 
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And similarly, for 𝜎2
2: 

𝑝(𝜎2
2| … ) ∝ 𝑝(𝑧1𝑧2| … )𝑝(𝜎2

2) 

∝ (
1

√2𝜋𝜎2
2
)

𝑛1

exp [−∑
[𝑧1𝑖𝑧2𝑖−(𝛾01+𝛾11𝐿𝐷𝑖)]

2

2𝜎2
2𝑖∈𝐶𝑖=1 ] ∗

1

𝜎2
2  

(𝜎2
2)−(

𝑛1
2 +1) ∗ exp [− ∑

[𝑧1𝑖𝑧2𝑖 − (𝛾01 + 𝛾11𝐿𝐷𝑖)]
2

2𝜎2
2

𝑖∈𝐶𝑖=1

]  

~𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(
𝑛1

2
, ∑

[𝑧1𝑖𝑧2𝑖−(𝛾01+𝛾11𝐿𝐷𝑖)]
2

2𝑖∈𝐶𝑖=2 ) 

 

4.5.2 Code Availability 

An R package for LDSC-MIX has been developed with code and example workflow available at: 

https://github.com/kliao12/LDSC-MIX  
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Chapter 5 Discussion 

This dissertation has tackled several current problems in the field of population and 

statistical genetics. While the three chapters presented were diverse, they had the unifying theme 

of analyzing commonly used summary statistics of genetic variation or genetic-phenotypic 

associations. Summary statistic-based approaches for population and statistical genetics are 

attractive due to their computational tractability and ease of data sharing, though require careful 

analysis. In this section, we review the key findings of each of the three projects and discuss the 

broader implications and questions raised to the field.  

  The first project dealt with investigating allele frequency spectrum (AFS) heterogeneity 

across 3-mer mutation subtypes and potential biases in AFS-based methods for population 

genetics inference that assume an interchangeability of sites. While previous studies have 

researched AFS heterogeneity across sites at a broader resolution, this study presented the first 

detailed investigation on how violations in the assumed interchangeability of sites can impact 

population genetics inference. We found AFS-heterogeneity across 3-mer subtypes driven by 

forces such as mutation rate heterogeneity and biased gene conversion was sufficient to impact 

demographic inference and shape the local AFS in a region. Our findings have immediate 

relevance on the broader field of population genetics regarding whether consideration of 

mutation subtypes can improve inference for both AFS-based and non-AFS based frameworks. 

For AFS-based frameworks, a natural question is whether an expected AFS can be estimated, 

devoid of confounding due to parallel mutations or biased gene conversion, based on the 
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observed composition of subtypes. For example, as we highlighted in the study, parallel 

mutations are a function of mutation rate. If the expected number of parallel mutations could be 

estimated conditional on the observed site-specific mutation rate, distortions in the extremely 

rare variant counts could be adjusted. For non-AFS based frameworks, popular methods such as 

PSMC assume a constant mutation rate and the singleton density score is reliant on distance 

between singletons. Such frameworks could be adapted to use region-specific mutation rates 

estimated using local sequence context and genomic factors47, as well as consider post-hoc 

whether there exists an increased density of high singleton mutation subtypes.   

Of methodological note, we introduced a novel D-type test of neutrality statistic 𝐷−2 that 

removes the contribution of singletons and doubletons. 𝐷−2 derives unbiased estimators of the 

population genetics parameter 𝜃 (Watterson’s estimator and mean pairwise difference) to 

summarize the high dimensional AFS without distortions in the extremely rare variant counts 

due to parallel mutations. Our derived framework is important because the issue of parallel 

mutations is becoming increasingly prevalent as genetic datasets become increasingly large. 

While we focused on the singleton and doubleton counts being distorted, ever increasing sample 

sizes can cause distortions in higher allele counts such as tripletons and onwards. Lastly, while in 

our analysis we used 𝐷−2 primarily for summarizing the high dimensional AFS for comparison 

across subtypes, 𝐷−2 could potentially be used for AFS-based tests of neutrality without 

confounding in the singleton and doubleton counts. Though we warn most of the genetic 

variation is contained in the count of extremely rare variants causing our statistic to likely be 

underpowered.  
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In the second project we introduced a method slaPRS (stacking local ancestry PRS), a 

stacking-based framework to construct polygenic risk scores in admixed individuals. 

Construction in polygenic risk scores for admixed individuals is a challenging problem due to 

uncertainty in what population GWAS to use, how risk variants are selected and weighted, how 

to accommodate differing ancestral backgrounds for a risk variant, and how to handle an existing 

ancestry dependence of PRS performance. An existing approach by Marquez et al integrated 

multiple population GWAS to construct PRS in admixed individuals through stacking global 

ancestry specific PRS. slaPRS extends their approach by providing a more flexible model that 

stacks ancestry specific PRS locally rather than globally and models local ancestry. Using 

population-specific GWAS for variants in a region, local ancestry-specific PRS are constructed 

and then stacked across the genome in a penalized regression model. We found in simulations for 

admixed African Americans, slaPRS outperformed single ancestry PRS and the global stacked 

approach while also reducing the ancestry dependence across ancestry quantiles, though 

improvements were most noticeable in simulated highly polygenic and heritable traits. When 

predicting lipid traits for African British in the UK biobank, slaPRS similarly performed well 

though was equitable compared to the global stacking approach. Similar performance across 

methods was likely driven by the genetic architecture of the lipid traits, as only a small 

proportion of windows genome wide across traits contributed meaningfully to their heritability.   

The development of slaPRS has immediate broader implications on the field of genetic 

epidemiology and polygenic risk scores in admixed individuals. Methods for polygenic risk 

prediction in admixed individuals are lacking and traditional single population can be ancestry 

dependent. Recently proposed methods for admixed PRS differ in approach, but all share 

incorporation of ancestry specific GWAS and local ancestry at a given variant107,157. Our results 
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confirm that use of multiple ancestry GWAS is effective in improving PRS performance while 

also reducing ancestry dependence of constructed PRS in admixed samples. However, an 

important finding from our study is the degree of PRS improvement from explicitly modeling 

local ancestry in admixed genomes may ultimately depend on the trait’s transethnic genetic 

architecture. Specifically, for the slaPRS framework we found explicit consideration of local 

ancestry may be less important when transethnic genetic correlation is high for a trait across 

ancestral populations. However, more research and method development are needed to validate 

such a claim. Notably, recent work using admixed genomes has actually suggested that most 

traits do have high transethnic genetic correlation99. Considering such findings, this raises the 

question of whether explicit PRS method development for admixed genomes should focus and 

be tailored towards traits with low transethnic genetic architecture.  

Well-performing PRS across a range of admixture is important for equitable benefits of 

genomic research both across diverse populations and within an admixed population. As 

mentioned, admixed populations categorized by discrete groups are already historically 

understudied in genomic studies. However, further inequities exist even within a discrete 

admixture group for individuals who deviate from the group’s mean ancestry composition. 

Recent work has acknowledged heterogeneity within single ancestral groups and pushed to 

consider all populations on an ancestry continuum rather than a discrete group103. Our proposed 

method slaPRS is an important step to consider admixture on a continuum, as our local approach 

considers individual genomes at a finer resolution to integrate multiple population GWAS and 

consider local ancestry for PRS construction. As PRS are increasingly incorporated into 

prediction models (with other health factors), precision medicine, and even clinical trial 
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requirement, it is imperative that an admixed PRS can benefit all individuals within a discrete 

admixture “group”.   

Lastly, increasing globalization and immigration of human populations has and will 

continue to result in gene flow between historically diverged groups. As a result, genetic 

admixture will likely become increasingly complex and expand upon currently defined 

populations. For example, the 1000 Genomes Project admixed American super populations 

currently include African Americans, African-Carribean, Mexican-American, Puerto-Rican, 

among others. However, admixture is rapidly increasing between other defined 1000 Genomes 

super populations (e.g. East Asian and Europeans, South Asian and African) outside of 

traditionally defined admixture groups. As genetic data for such individuals become increasingly 

available, methods such as slaPRS are needed to provide a flexible framework to incorporate 

increasingly complex scenarios of admixture and provide a tool for inclusion of such individuals 

in genomic research. 

In the third project, we introduced a novel method LDSC-MIX to identify SNP sets and 

genes driving signals of local genetic correlation (LGC) through a Bayesian mixture of cross trait 

LD score regressions model. As the genetic basis for many complex traits and diseases have now 

been elucidated, such data has allowed for researchers to better study how the genetic basis is 

shared across two or more traits. LGC is an increasingly popular approach for both quantifying 

and identifying pleiotropic regions with shared genetic signals across two (or more) complex 

traits. In just the past year, LGC studies have been conducted on a number of trait pairs 

including: mental disorders158, obesity and PCOS159, and thyroid and psychiatric disorders160 to 

identify regions harboring shared genetic signals. While useful to pinpoint regions with shared 
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genetics, current LGC current frameworks are limited in being unable to identify the specific 

SNP sets or genes driving the signal of LGC in such regions.  

Current approaches such as pheWAS (variant is associated with both traits) and 

colocalization (Bayesian modeling across scenarios of shared association signals) can be used in 

LGC regions to identify shared genetic signals, though they typically rely on the existence of 

GWAS hits. Our approach differs in that we use the linear relationship of LD scores and product 

of z scores to identify shared signals, and thus does not explicitly require GWAS hits. As 

expected, in simulations we generally found that LDSC-MIX outperforms in scenarios of 

multiple weaker shared causal variants with respect to number of applicable instances a 

candidate set could be formed, identifying true shared causal variants, and recovering the true 

LGC. On the other hand, when there are clear single shared genetic signals colocalization was 

the preferred approach. In real data applications we applied LDSC-MIX to summary statistics 

from the UK Biobank for trait pairs asthma-basal cell carcinoma and asthma-HDL. We focus on 

the most significant LGC regions, where LDSC-MIX highlighted specific genes that are enriched 

for SNPs identified to belong in the genetically corelated group. While circumstantial evidence 

existence for potential cross-trait functionality for identified genes, further follow up studies are 

necessary to make definitive conclusions. 

Our approach provides a method to identify gene-level pleiotropy through allowing for 

the presence of multiple weaker shared genetic effects, which has implications on how the field 

studies pleiotropic effects. While current genetic studies for many complex traits are ever 

increasing in sample sizes, rare disease or complex traits with low prevalence are still difficult to 

collect adequately powered sample sizes. In such cases, detection of pleiotropic signals remains 

difficult, as genetic signals are typically not statistically significant. LDSC-MIX and other 
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approaches are necessary to allow researchers to study such trait pairings with absences of strong 

shared genetic signals. The issue of underpowered studies is further exacerbated in understudied 

populations (non-European), as large consortiums and meta-analysis are similarly difficult to 

collect large enough studies. On the other hand, even for adequately powered studies LDSC-

MIX may have immediate impacts. For a single phenotype the genetic architecture of a complex 

trait can range from fully mendelian (single gene affects trait) to the omnigenic model (core 

genes with peripheral genes having effects on core genes through interconnected regulatory 

networks). Under the omnigenic model156, core genes which play a direct role on the trait 

typically have large effect sizes. Such genes are suggested to be common if not ubiquitous161, 

and their large effects lend to easier studying of pleiotropic effects across traits using traditional 

approaches, with the occurrence. On the other hand, even in genetic studies with large sample 

sizes, peripheral genes under the omnigenic model are inherently pleiotropic from potentially all 

genes having an effect through various networks. However, the effect size of such peripheral 

genes effects may become undetectably small causing pleiotropic detection to be difficult162. 

Thus, methods such as our proposed LDSC-MIX are important to study and validate the 

existence of proposed weakly pleiotropic peripheral genes across networks.  

The work in this dissertation has highlighted how the current wealth of genetic data has 

resulted in broad opportunities for studying population histories, predicting phenotypes using 

genetic data, and studying how genetics vary across diverse populations and complex traits. In 

particular, the latter two projects proposing methods for polygenic risk prediction in admixed 

individuals and interpreting local genetic correlation are especially active areas of research that 

are becoming increasingly possible as sample sizes of genetic studies routinely grow. Our novel 
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contributions in these areas are just a small step that we anticipate will be further actively 

developed by others in the field. 
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