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Abstract 

 

Osteoarthritis is the most common degenerative joint disease, affecting 15% of the global popu-

lation. Osteoarthritis in temporomandibular joint (TMJ OA) can cause chronic pain, facial de-

formity, joint dysfunction, impacting the quality of life. Unlike weight-bearing joints, TMJ OA 

primarily affects individuals between the ages of 20 and 40 and can also appear in adolescents. 

Current standards for diagnosing TMJ OA rely on clinical and imaging criteria. However, these 

criteria have limited efficacy in detecting early-stage TMJ OA, posing challenges to timely inter-

vention and mitigation of irreversible tissue damage. Hence, it becomes imperative to identify 

additional objective diagnostic criteria. In addition, determining which patients are at increased 

risk of disease progression is critical for making informed clinical decisions and designing more 

effective and individualized treatments. 

Radiomics is a newly established field propelled by advancements in computational power. It 

extracts quantitative imaging features from radiological images, aiming to identify subtle tissue 

variations and reduce subjectivity in image interpretation. Beyond radiomics, metabolic abnor-

malities in joint tissues serve as early indicators of osteoarthritis. Although there has been pro-

gress in studying osteoarthritis biomarkers, they have not yet been clinically established. Evalu-

ating multiple markers may reveal their intricate interrelations and fully harness their potential. 

With the advent of powerful machine learning (ML) methods, analysis of complex multisource 

data became feasible. Nevertheless, applying feature selection methods is crucial to eliminate 
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redundant and irrelevant data, improving the output accuracy. Unlike knee osteoarthritis, which 

has been extensively studied using ML models, TMJ OA remains an underexplored area. There-

fore, we aimed to 1) Develop a reliable prediction tool for TMJ OA progression and identify the 

contributing factors during a 2–3-year follow-up period, 2) Develop a comprehensive prediction 

tool tailored for TMJ OA diagnosis and use explainable methods to identify key factors driving 

diagnosis, and 3) Investigate the feasibility of privileged learning in addressing missing data 

when diagnosing TMJ OA. 

We successfully developed an open-source tool which combined 18 feature selection and ML 

methods. This allowed for the prediction of disease progression with an accuracy=0.87, area un-

der the ROC curve (AUC)=0.72, and an F1 score=0.82. Using the interpretable SHAP analysis 

method, we identified the strongest predictors for TMJ OA progression. These included: clinical 

(headache, lower back pain, restless sleep), quantitative imaging (condyle high-grey-level-run-

emphasis (HGLRE), articular fossa GL-non-uniformity, and long-run-low-GLRE, joint space), 

and biological markers in saliva (Osteoprotegerin, Angiogenin, VEGF, and MMP-7) and serum 

samples (ENA-78). 

Utilizing clinical, CBCT imaging, and biological data from 162 prospectively recruited subjects, 

we evaluated 77 ML methods. Random forest demonstrated the best diagnostic performance, 

achieving AUC=0.90, accuracy=0.79, precision=0.80, and F1=0.80. The integration of clinical, 

imaging, and biological markers enhanced TMJ OA diagnosis. The top contributing features 

were clinical (headache, restless sleep, mouth opening, muscle soreness), objective quantitative 

imaging (condyle Cluster-Prominence, HGLRE, SRHGLRE, Trabecular Thickness), and biolog-

ical markers in saliva (TGFB-1, TRANCE, TIMP-1, PAI-1, VECadherin, CXCL-16) and serum 

(Angiogenin, PAI-1, VEGF, TRANCE, TIMP-1, BDNF, VECadherin). Lastly, we developed the 
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KRVFL+ diagnostic tool, which can be used when only clinical and imaging data are available. 

It achieved an AUC, specificity, and precision of 0.81, 0.79, and 0.77, respectively. 

Collectively, these efforts emphasize the immense potential of multi-source data and ML appli-

cations in presenting solutions for predicting TMJ OA progression and diagnosis, with potential 

implications for timely interventions and a transformative impact on TMJ OA healthcare deliv-

ery. 
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Chapter 1 Review of Literature 

1.1 Temporomandibular Joint Structure and Development 

The temporomandibular joint (TMJ) is a synovial joint that is characterized by the presence of a 

joint cavity, synovial membrane, synovial fluid, and articular cartilage. It is also classified as a 

ginglymoarthrodial joint, as it can perform both hinge (ginglymus) and gliding (arthrodial) 

movements. Its complex anatomical structure consists of the temporal bone of the skull, the con-

dyle of the mandible, and a fibrocartilaginous articular disc (Bender et al., 2018).  

The condyle of the mandible articulates with the temporal bone in the glenoid fossa, which is 

bounded posteriorly by the articular ridge and anteriorly by the articular eminence (Bender et al., 

2018). Separating the condyle and glenoid bones is an articular disc, which divides the joint into 

two compartments. The inferior compartment allows for rotation of the condylar head around an 

instantaneous axis of rotation, corresponding to the first 20 millimeter (mm) of mouth opening. 

Beyond this extent, the superior compartment of the TMJ becomes active, allowing for the trans-

latory movement of the entire apparatus, condylar head and articular disc (Figure 1.1). The fibro-

cartilaginous articular disc plays a crucial role in shock absorption, distribution of joint loads, 

and providing resilience against high-pressure occlusal forces. It also allows for the range of mo-

tion necessary for jaw movements involved in speech, mastication, respiration, and swallowing 

(Bender et al., 2018; Yildirim et al., 2011). 
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Figure 1.1: Gross anatomy of the Tem-

poromandibular joint. The TMJ’s skele-

tal components, surrounded by the syno-

vial capsule (SC), includes: the articular 

eminence (AE) and the glenoid fossa 

(GF) of the temporal bone (TB), the 

mandibular condyle (MC), and the inter-

vening articular disc (AD). Adapted 

from “TMJ Disorders: Future Innova-

tions in Diagnostics and Therapeutics,” 

by S. Wadhwa and S. Kapila, 2008, 

Journal of Dental Education, 72(8), pp. 

930-947.  

 

The unique nature of TMJ development is intriguing, especially when compared to other similar 

joints, even though it shares some common characteristics among mammals. This process pro-

ceeds through three distinct phases: the blastemic, cavitation, and maturation stages. In contrast 

to the formation of long bone joints via a single skeletal condensation, TMJ originates from two 

separate mesenchymal condensations—glenoid fossa and condylar blastema. While the former 

undergoes membranous ossification as it emerges from the otic capsule, the latter forms bone via 

endochondral ossification from the mandible's secondary condyle cartilage. During the cavitation 

stage, the dense mesenchyme between the blastemas differentiates into fibrous tissue layers, 

leading to the development of the upper and lower joint spaces of the future disc. The maturation 

stage, extending from the 12th week of gestation to birth, involves the development of the gle-

noid fossa and the condyle. The influence of mechanical forces from the vasculature and sur-

rounding muscles shapes the anatomy of the glenoid fossa and condyle. At birth, the TMJ is not 

yet fully developed. In newborns, the glenoid fossa shows less density, and cartilage develop-

ment is yet to occur; only fibrous connective tissue is found. During the age span of five to ten 

years, the condyles undergo growth in posterior, lateral, and upward directions. The form of the 
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joint is further molded by the mechanical forces exerted by the teeth and masticatory muscles 

(Bender et al., 2018; Bordoni & Varacallo, 2023; Liang et al., 2016). 

Contrary to other synovial joints that are coated by hyaline cartilage, the TMJ has a thin fibrous 

tissue layer populated with mesenchymal cells that differentiate into chondrocyte, earing its clas-

sification as fibrocartilage (Artuzi et al., 2020; Purcell et al., 2009). This cartilage, which primar-

ily consists of type I and II Collagens, gives the TMJ the ability to withstand significant occlusal 

load and shear forces directed at the joint. Additionally, it has densely packed fibers which in-

creases its capacity for self-repair (Figure 1.2). Nevertheless, several factors can impact the fi-

brocartilage in the TMJ, rendering it vulnerable to degenerative alterations (Wadhwa & Kapila, 

2008).  

 

Figure 1.2: Representation of rat TMJ,  showing the position of the condylar head of the mandi-

ble (CHM) with respect to the TMJ disc and eminence–glenoid fossa of the temporal bone 

(GFTB). Box on the right showing fiber organization and cellular composition of these condylar 

articular fibrocartilage. FZ: fibrous zone, HZ: hypertrophic zone, and PZ: proliferative zone. 

Adapted from “Biomechanical properties of the mandibular condylar cartilage and their rele-

vance to the TMJ disc” by Singh, M. and Detamore, M.S., 2009, Journal of Biomechanics, 42(4), 

pp. 405–417. 
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1.2 Temporomandibular Disorders (TMD) 

1.2.1 TMD Terminology Evolution and Prevalence 

Temporomandibular disorders serve as an umbrella term for more than 30 health disorders mus-

culoskeletal conditions characterized by pain and/or dysfunction in the masticatory muscles, 

temporomandibular joints, and associated structures (Kapos et al. 2020; Yost et al. 2020). The 

evolution of this term traces back to 1887, when a British surgeon published the first report on 

the surgical management of disc displacements in the temporomandibular joint. James Costen 

further contributed by identifying a constellation of symptoms concentrated around the ear and 

TMJ, giving rise to the term 'Costen's syndrome’ (Costen, 1934). The timeline progressed to 

1947, when Nogaard applied arthrographic techniques to visualize anterior displacement of the 

articular disc in a clicking temporomandibular joint (Riesner, 1947). In the 1950s, the term 'tem-

poromandibular joint pain dysfunction syndrome' was introduced, followed by 'functional tem-

poromandibular joint disturbances'. Later, Bell suggested the term 'temporomandibular disor-

ders,' which was widely accepted and has been officially adopted by the American Dental Asso-

ciation (List & Jensen, 2017; Sharma et al., 2011). 

Temporomandibular disorders constitute the most common non-dental pain complaint in the 

maxillofacial region and rank as the second most common musculoskeletal disorder, surpassed 

only by chronic low-back pain (Kapos et al., 2020; Khan et al., 2019; List & Jensen, 2017). Ac-

cording to the OPPERA study, a comprehensive multisite prospective cohort study conducted in 

the United States, around 4% of previously TMD-free adults aged 18 to 44 experience their first 

clinically confirmed TMD each year. Interestingly, the study also observed that the annual inci-

dence rate increases with age: 2.5% for ages 18–25, 3.7% for ages 25–34, and 4.5% for ages 35–
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44 (Kapos et al., 2020). Generally, it is estimated that TMD affects 5 to 15% of the adult popula-

tion. However, it's noteworthy that signs associated with TMD have been detected in up to 50% 

of adults. In fact, recent data points towards a rising trend in TMD prevalence (Li and Leung 

2021). Echoing this observation, a comprehensive systematic review and meta-analysis reported 

that TMD symptoms were present in 31% of adults and 11% of children and adolescents 

(Valesan et al., 2021).  

1.2.2 Classification of Temporomandibular Disorders 

Clinical researchers frequently used the term TMD as a descriptor for most encountered condi-

tions in practice. Nonetheless, it's imperative to also differentiate other disorders that may initial-

ly present symptoms similar to typical TMDs but require distinct management strategies. As a 

result, there has been an ongoing efforts to classify TMD under different categories (Li and 

Leung 2021). 

The categorization of temporomandibular disorders was initially divided into two types: ar-

throgenous and myogenous. This bifurcation served as a beneficial tool, guiding clinicians to-

wards the suitable treatment course during the early management stages. However, as these clas-

ses did not always offer clear distinction and substantial overlap or progression could occur from 

one syndrome to another, a demand for more specific classification emerge (Li & Leung, 2021; 

Marjaana Kuttila et al., 1998). In 1990, the American Academy of Orofacial Pain introduced the 

diagnostic classification for TMD. This system subdivided the myogenous category, mainly dis-

tinguishing between muscular hyperactivity due to stress, and muscular abnormalities related to 

parafunctional oral habits. Simultaneously, the arthrogenous category was further differentiated 

based on specific structural abnormalities, such as internal derangement of the temporomandibu-

lar joint or degenerative disease (Klasser et al., 2018). In 1992, Truelove and his team developed 
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the clinical diagnostic criteria for temporomandibular disorders. This classification presented 

explicit diagnostic criteria for each clinical category for the first time. This system also accom-

modated multiple diagnoses and identified three main categories: muscle alterations (such as 

myalgia and myofascial pain), internal joint changes (including disc displacement with or with-

out reduction, capsulitis/synovitis, and disc perforation), and degenerative disorders (Truelove et 

al., 1992). Building on this classification, Dworkin and LeResche established a pivotal milestone 

in TMD classification, known as the research diagnostic criteria for temporomandibular disor-

ders (RDC/TMD). This groundbreaking system, that is based on the biopsychosocial model of 

pain, introduced a dual-diagnosis approach acknowledging both physical conditions and psycho-

social factors. The physical conditions, referred to as Axis I, encompassed muscle disorders, disc 

displacements, and other joint conditions that contribute to the pain disorder. In addition, Axis II 

addressed psychosocial factors, encompassing elements that contribute to suffering and disabil-

ity. The objective behind this classification was to maximize reliability and minimize variability 

of examination methods and clinical judgment (Li and Leung 2021; Schiffman, Ohrbach, et al. 

2014; Schiffman et al. 2010). The RDC/TMD also improved the understanding of TMD epide-

miology. Earlier, the reported prevalence of TMD was remarkably inconsistent, with estimates 

suggesting that between 1% and 75% of the general population exhibited at least one objective 

sign of TMD. However, the application of the RDC/TMD brought a considerable improvement 

in these estimates. A systematic review of peer-reviewed literature on the prevalence of various 

RDC/TMD Axis I diagnoses showed that muscle disorders were the most common diagnosis in 

patient populations. Nearly half of the patients (45.3%) met the criteria for myofascial pain, with 

or without limited mouth opening. Group II disorders diagnosis was allocated to 41.1% of pa-

tients, the vast majority of which were identified as having disc displacement with reduction 
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(41.5%). Degenerative disorders, categorized as Group III, were diagnosed in roughly a third of 

the patients (30.1%) (Manfredini et al., 2011).  

Although the RDC/TMD provided significant advantages and made substantial contributions to 

the field, numerous publications have proposed potential improvements. These suggestions 

aimed to enhance the accuracy and comprehensiveness of TMD diagnosis, improve differentia-

tion between TMD cases and control groups, and refine the distinction between various diagnos-

tic subgroups (Manfredini et al. 2011; Schmitter et al. 2008; Limchaichana et al. 2007; Emshoff 

et al. 2002; Ohlmann et al. 2006; Huddleston Slater, Lobbezoo, and Naeije 2002; Shaefer et al. 

2001). Responding to this need, the national institutes of health/ national institute of dental and 

craniofacial research (NIH/NIDCR) has sponsored a series of multisite studies to comprehen-

sively assess the reliability and validity of the RDC/TMD classification (Schiffman and Ohrbach 

2016; Schiffman, Ohrbach, et al. 2014; Anderson et al. 2010; Manfredini et al. 2011; Look et al. 

2010; Schiffman et al. 2010; Ahmad et al. 2009; Truelove et al. 1992). 

These series of studies, referred to as the validation project, were conducted over a span of four 

years. The population participating in these studies was comparable to those involved in previous 

research using the RDC/TMD. Notably, the NIDCR took an active role in conducting these stud-

ies by establishing an advisory panel to oversee the project. This panel consisted of twelve ex-

perts and represented all relevant clinical and basic science areas. As a result of their collective 

efforts, the panel revised the criteria and developed the diagnostic criteria/temporomandibular 

disorders (DC/TMD). These revised criteria demonstrated an improvement in various areas, in-

cluding the reliability, validity, sensitivity, and specificity of the examination algorithms, com-

pared to the original research diagnostic criteria for temporomandibular disorders. It is also 

deemed appropriate for use in clinical and research settings. These advancements in understand-
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ing TMDs have established a foundation for in-depth exploration of specific conditions within 

this category. Among these, one of the most debilitating is temporomandibular joint osteoarthri-

tis (Al-Ghurabi & Al-Hawa, 2023; Schiffman et al., 2014). 

1.3. Pathogenesis of Temporomandibular Joint Osteoarthritis 

Osteoarthritis is the most common degenerative joint disease, affecting around 15 % of the popu-

lation globally (Feng et al., 2022; Kalladka et al., 2014). Temporomandibular joint osteoarthritis 

(TMJ OA) is a chronic degenerative disease characterized by synovitis, cartilage destruction, 

deterioration of articular tissues and subchondral bone remodeling. These changes can lead to 

pain, facial deformity, joint dysfunction and progressive disability (Mélou et al. 2023; 

Manfredini et al. 2016; Wang et al. 2015). Distinct from weight-bearing joints, TMJ OA predom-

inantly affects individuals aged between 20 and 40 years. Furthermore, its prevalence has seen a 

drastic increase among adolescents and young adults, particularly peaking between the ages of 

15 and 19. Since the TMJ is still developing during these years, osteoarthritic changes can dis-

rupt normal condylar formation, resulting in complications such as hyperdivergent facial profile, 

mandibular deviation, and mandibular retrusion (Mélou et al., 2023; Donovan et al., 2018). Fur-

thermore, TMJ OA shows a higher prevalence in females, with a female-to-male ratio exceeding 

2:1. This disparity could be attributed to an interplay of various factors, including differences in 

sex hormone levels, stress management, pain sensitivity, and healthcare seeking habits (Mélou et 

al., 2023; Kalladka et al., 2014; Reneker et al., 2011). 

The etiology of most TMJ OA cases is multifaceted and complex, or even unknown. While oste-

oarthritis has been thoroughly investigated in larger joints, such as those in the hip and knee, re-

search specifically pertaining to TMJ OA remains relatively scarce. Nonetheless, the existing 

literature identifies several factors that may influence the development and progression of TMJ 
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OA, including inflammation, mechanical overload, estrogen, cartilage destruction, and irregular 

subchondral bone remodeling (Figure 1.3) (Delpachitra and Dimitroulis 2022; Wang et al. 2015). 

Temporomandibular joint osteoarthritis is typically classified as a "low-inflammatory arthritic 

condition" and is not considered a systemic inflammatory condition. However, evidence indi-

cates the significant involvement of various pro-inflammatory cytokines in its pathology, affect-

ing both the articular cartilage and subchondral bone. These cytokines create an inflammatory 

environment within the synovial fluid, marked by increased secretion of molecules such as inter-

leukin-1beta (IL-1β), tumor necrosis factor alpha (TNF-α), and interferon (IFN)-γ (Deng et al., 

2022; Lu et al., 2021; Goldring & Otero, 2011; Vernal et al., 2008). They also manipulate osteo-

clast production and bone resorption by amplifying the secretion of the receptor activator of nu-

clear factor (NF)–κB ligand (RANKL) in osteoblasts and synovial membrane fibroblasts (Lu et 

al., 2022). 

Figure 1.3: Illustration of 

mechanisms involved in 

temporomandibular joint 

osteoarthritis development. 

Adapted from “Current un-

derstanding of pathogenesis 

and treatment of TMJ oste-

oarthritis” by Wang, X.D. 

et al., 2015, Journal of Den-

tal Research, 94(5), pp. 

666–673. 
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Studies on rodent models indicate that chronic inflammation impacts the biomechanical proper-

ties of the TMJ disc, compromising its adaptive capacity and initiating degenerative changes 

(Cardoneanu et al., 2022; Wang et al., 2015). IL-1β also stimulates the TMJ synoviocytes and 

augments their production of monocyte chemoattractant protein-1 (MCP-1). Recent studies sug-

gest that MCP-1 may initiate and sustain inflammation, even in the absence of IL-1β. In conjunc-

tion with this, the secretion of these cytokines appears to be inversely related to the synthesis of 

the articular cartilage matrix, suggesting a regulatory role in cartilage health (Ibi et al. 2018; 

Ogura et al. 2010; Wang et al. 2015). Moreover, inflammation significantly influences joint pain 

development, a common symptom among these patients. Specifically, pro-inflammatory cyto-

kines like TNF-α or IL-1β can directly stimulate nociceptive receptors, increasing sensory neu-

ron excitability. Other molecules, such as growth factors, proteoglycans, or proteases, are also 

implicated in arthritic pain development. In particular, matrix metalloproteinases-1, 3, and 9 

(MMP-1, MMP-3, MMP-9) are identified as indicators  of TMJ pain (Cardoneanu et al. 2022; Ita 

et al. 2022; Shrivastava, Battaglino, and Ye 2021; Schaible 2014). Interestingly, persistent mouth 

opening in mice lead to the development of chronic temporomandibular disorder and orofacial 

mechanical allodynia. This was accompanied by an increase in macrophages, which are indica-

tors of inflammation, and activation of microglia in the trigeminal subnucleus caudalis, an essen-

tial component of the pain processing pathway. The utilization of a colony-stimulating factor-1 

receptor inhibitor led to the deactivation of microglia and a decrease in pain sensitivity. These 

findings emphasize the involvement of inflammation in the emergence of temporomandibular 

disorder and indicate potential hazards associated with prolonged mouth opening during clinical 

procedures (Wang et al. 2018). 
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Along with the inflammation, mechanical overload also contributes to the development of TMJ 

OA. The distribution of mechanical loading on the joint's surface is pivotal for maintaining its 

integrity and functionality (Frost, 2001). The avascular TMJ cartilage relies on mechanical load-

ing to facilitate the diffusion of synovial fluid within the cartilage matrix and deliver essential 

nutrients. Moreover, it enhances the diffusion of molecules such as growth factors, hormones, 

enzymes, and cytokines, while aiding in the removal of waste materials like lactate and carbon 

dioxide. Mechanical loading is also essential for mandibular growth and the maintenance of joint 

homeostasis (Betti et al., 2018; Kaul et al., 2016). As a biological system, the TMJ possesses the 

ability to adapt to changes in functional demands. For instance, when there is an increase in the 

load exerted on the TMJ, it triggers adaptive responses aimed at developing tissue structures ca-

pable of withstanding the imposed load. This adaptive process manifests as bone deposition or 

thickening of the articular cartilage, known as progressive remodeling. However, if the TMJ is 

consistently subjected to excessive loading, it can exceed its adaptive capacity, leading to regres-

sive remodeling and the initiation of degenerative changes within the joint (Tran et al., 2023).  

The anatomical and positional changes in the fibrocartilaginous disc between the condyles and 

the joint fossa may also contribute to TMJ OA (Cardoneanu et al. 2022; Wang et al. 2015). Stud-

ies have shown that approximately 60% of adolescents and young adults diagnosed with internal 

derangement of the joints, specifically disc displacement without reduction, also presented signs 

of condylar osteoarthritis. In these cases, there was a notable loss of continuity in the articular 

surfaces. This occurrence can be attributed to the interference caused by the displaced disc, 

which affected condylar mobility and subsequently increased the load on the articular surface. 

(Lei et al., 2017; Dias et al., 2016). Moreover, mechanical overloading of the TMJ has been as-

sociated with a decrease in the concentration of lubricin in the synovial fluid. This decrease 
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compromises the lubrication between articulating surfaces, alters the frictional properties of the 

condylar cartilage, and triggers the release of proinflammatory and matrix degradation media-

tors. Consequently, it results in a degeneration that resembles TMJ osteoarthritis (Asakawa-

Tanne et al., 2015; Hill et al., 2014). Furthermore, in an experimental model of TMJ osteoarthri-

tis induced by mechanical overload, Hif-1α activation in mature chondrocytes has been ob-

served. This activation leads to the repression of osteoprotegrin (OPG) expression, which, in 

turn, promotes osteoclastogenesis (Shirakura et al., 2010).  

Interestingly, studies indicate that during the developmental stages in rats, a soft diet also detri-

mentally affects the quality and quantity of collagen and chondrocytes in the cartilage of the 

TMJ, as well as the density of the mandibular condyle's subchondral bone (Uekita et al., 2015; 

Chen et al., 2009). In cases of TMJ OA, the reduction of mechanical loading achieved through a 

soft diet results in a significant increase in the frequency of irregularities on articular surfaces, 

compared to a group maintained on a normal diet. Furthermore, rats with TMJ OA on a normal 

diet exhibited a greater increase in their bone volume fraction compared to those on a soft diet at 

a later stage. Based on these findings, it is crucial to transition TMJ OA patients back to a normal 

diet after implementing a soft diet during the acute stage of the disease (Tran et al., 2023). 

The higher prevalence of TMJ OA among females, particularly during their reproductive years, 

has led researchers to investigate the potential contribution of estrogen to the degenerative 

changes observed in bone and cartilage in cases of TMJ OA (Sannajust et al. 2019; Lee et al. 

2012). Estrogen exerts its regulatory influence on TMJ OA through estrogen-related receptors. 

Since these receptors have been identified in human articular chondrocytes, it is plausible that 

the combination of estrogen and estrogen receptors plays a role in estrogen's regulation of target 

organs (Zhao et al. 2019; Ahmad et al. 2009). Ovariectomized female rats, the standard animal 
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model for determining the effects of estrogen on tissues, were used in a recent in vivo study. One 

of the study groups was injected with 17β-estradiol estrogen daily until the end of the experi-

ment, which resulted in elevated estrogen plasma concentrations. This increase was associated 

with significant degradation of the mandibular condyle's cartilage in TMJ OA cases, which had 

been induced by a unilateral anterior cross bite. The degradation was characterized by a further 

decrease in cartilage thickness, an increased loss of extracellular matrix components such as col-

lagen II and proteoglycan, and a heightened expression of pro-inflammatory (TNF-α), catabolic 

(MMP-13 and VEGF), and hypertrophic (Collagen X) factors. Conversely, a lack of estrogen 

significantly mitigated these effects (Ye et al., 2020). Notably, DNA samples from 42 patients 

with degenerative joint disease had a higher prevalence of ERRα genotypes compared to 36 con-

trol samples. This finding suggests that the presence of polymorphism could potentially influ-

ence ERRα activity in bone, thereby contributing to the degenerative changes in the TMJ 

(Stemig et al., 2015).  

Despite some studies showing the negative effects of estrogen, there are other reports indicating 

its protective influence on TMJ health. For instance, estrogen deficiency in ovariectomized mice 

resulted in decreased cartilage thickness, increased expression of pro-inflammatory cytokines, 

heightened osteoclastic activity, and TMJ degeneration (Wu et al., 2019). Given the inconclusive 

nature of the effects of estrogen on TMJ, researchers are still investigating the specific mecha-

nisms behind these effects (Tian et al., 2022; Wu et al., 2019). 

The female predominance of TMJ OA has also been linked to variations in TMJ anatomy and 

structure. On average, male condyles are larger and elliptical in shape, whereas female condyles 

tend to be smaller and more rounded. These differences may lead to altered biomechanics, ren-

dering the female joint more prone to mechanical fatigue induced by  joint loading (Coogan et 
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al., 2018). Comprehensive mechanical analyses of fibrocartilage-subchondral bone units in sam-

ples from human mandibular condyles have shown gender differences in energy dissipation and 

tissue loading. The articular fibrocartilage played an important role in dissipating energy and 

protecting the underlying subchondral bone against damage caused by high-energy occlusal 

loading. When the cartilage layer was removed to mimic osteoarthritis, the subchondral bone 

significantly contributed to energy dissipation in males. Conversely, the mechanical behavior of 

the cartilage-subchondral bone construct in females did not correlate with the properties of the 

subchondral bone. These findings suggest that the female mandibular condyle might have a me-

chanically disadvantageous structure when subjected to static occlusal and dynamic masticatory 

loading at the macro-level, increasing their risk to develop temporomandibular disorders (Kim et 

al., 2017). Assessments of joint-specific contact mechanics, employing,  dynamic stereometry, 

have also shown a gender difference in the energy densities of TMJs. Specifically, women 

demonstrated significantly higher average energy densities compared to men. This discrepancy 

might accelerate the rate of mechanical fatigue on the articulating surfaces in females, contrib-

uting to their  higher incidence of TMJ degenerative diseases (Robinson et al. 2020; Iwasaki et 

al. 2017). 

Numerous studies have been conducted to investigate the involvement of cartilage in the pathol-

ogy of TMJ osteoarthritis (Wang et al. 2015). The initial deterioration of cartilage can be driven 

by either metabolic or mechanical factors and involves a series of biomechanical changes in the 

joint's hard and soft tissues. This subsequently stimulates the immune response, culminating in 

the release of inflammatory substances like cytokines and chemokines. Alongside this, there is 

activation of the complement system and production of molecules that degrade cartilage, leading 

to the eventual wearing of joint cartilage and changes in the underlying bone (Cardoneanu et al., 
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2022). Furthermore, disruptions in chondrocyte-matrix interactions, impairments in chondrocyte 

function and viability, and an imbalance in the formation and degradation of the cartilage matrix 

can contribute to TMJ OA pathology (Wang et al. 2015). 

Over the past few years, a significant amount of research has focused on examining the impact of 

subchondral bone on the development of TMJ osteoarthritis (Ma et al. 2022; Zhang et al. 2022; 

Li et al. 2021; Embree et al. 2011). Irregular subchondral bone remodeling is suggested to be a 

key pathogenic process in TMJ OA. Specifically, an initial reduction in bone mass occurs, which 

acts as a catalyst for TMJ OA development and contributes to articular cartilage degradation. As 

the disease progresses, a gradual bone repair ensues, increasing bone density and resulting in 

higher stiffness at the condylar osteochondral interface (Hong & Kang, 2021; Chang et al., 

2018).  

At the cellular level, irregular bone remodeling in TMJ OA is associated with a decrease in the 

quantity and activity of osteoblasts (Cui et al., 2020). This shift in cellular dynamics includes an 

increase in metabolic processes favoring angiogenesis and osteoclastogenesis (Cardoneanu et al., 

2022). The nuanced role of osteoblasts extends to the progression of subchondral sclerosis. 

These cells exhibit a distinct phenotype, producing higher levels of IL-6, IL-8, prostaglandin E2, 

VEGF and MMP-9, in comparison to osteoblasts from non-sclerotic areas (Sanchez et al., 2018; 

Jiao et al., 2014). Although sclerotic bone shows an increase in bone density and volume, it en-

counters a deficit in mineralization. The major molecular mechanism underlying this impaired 

matrix mineralization is the excessive production of type I collagen, the primary organic compo-

nent of the bone matrix. This abnormal collagen synthesis is primarily attributed to altered sig-

naling pathways, such as transforming growth factor-β (TGF-β) and WNT/β-catenin (Bianco et 

al. 2018; Zuo et al. 2016; Li et al. 2013). In addition to the observed hypomineralization in the 
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sclerotic subchondral bone, there is an elevated intra-fibrillar mineral density, which reduces the 

ductility of the fibrils and exposes them to higher compressive stresses. Moreover, the sclerotic 

bone contains a larger number of chemically stable crystals, resulting in heightened bone stiff-

ness and lower rates of bone turnover (Zuo et al., 2016). 

Changes in osteoclasts activity were also observed in mouse models of TMJ OA. A TMJ differ-

ential gene analysis showed an increase in the expression of genes involved in osteoclast activity. 

There was also an increase in the migration and differentiation of osteoclast precursors, the num-

ber of TRAP-positive cells, and the ratio of RANKL to OPG within the TMJ subchondral bone. 

These results suggest an increase in osteoclast activity, which may have contributed to the initial 

increase in subchondral bone turnover (Wang et al. 2015; Yang et al. 2015; Embree et al. 2011). 

Adding to the intricate cellular dynamics involved in TMJ OA, osteocytes, the most abundant 

type of bone cell, also play an essential role in its pathogenesis. Their sensitivity to mechanical 

joint loading and production of RANKL contribute to osteoclastogenesis. Furthermore, osteo-

cytes respond to various mechanical forces by resorbing the bone matrix, resulting in perilacu-

nar/canaliclar remodeling. The impairment of osteocyte-mediated bone remodeling can hasten 

the development of OA, eventually leading to subchondral bone sclerosis (Cardoneanu et al., 

2022; Mazur et al., 2019). 

1.4. Treatment Strategies for Temporomandibular Joint Osteoarthritis 

The primary objectives in treating TMJ OA are pain relief, restoration of normal mandibular 

movements, and improvement in patients' quality of life (Al-Moraissi et al., 2020). In recent 

years, stem cell-based therapy has garnered considerable interest as a potential method for tissue 

repair and regeneration. Mesenchymal stem cells (MSCs) have the capacity for multilineage dif-

ferentiation, including chondrogenic and osteogenic differentiation. When combined with suita-
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ble scaffolds, MSCs can form cartilaginous or even osseous compartments to repair damaged 

tissue and restore TMJ function (Minervini et al., 2022). In a rabbit model of TMJ OA, intra-

articular injection of MSCs was found to alleviate cartilage degeneration, disruption of the oste-

ochondral junction, and loss of condylar bony surfaces in the subchondral bone compared to the 

untreated group (Kim, Yang, et al. 2019). Despite the promising preclinical evidence of stem 

cells' potential, the evaluation of this approach as a therapeutic measure for treating joint diseases 

in humans is limited due to FDA restrictions, particularly regarding drug-device combinations or 

biologic-device combinations, which require laboratory manipulation. Furthermore, for future 

studies, the standardization of animal models and quantitative outcome evaluations, including 

biomechanical, biochemical, histomorphometric, and radiographic assessments, would enable 

more reliable comparisons of the efficacy and safety of these approaches. Ultimately, this would 

increase the validity of the results, providing a solid foundation for clinical application (Matheus, 

Özdemir, and Guastaldi 2022; Almarza et al. 2018; Helgeland et al. 2018). 

Currently, treatment strategies for TMJ OA fall into three categories. Firstly, conservative ap-

proaches encompass patient education and counseling, occlusal splints, physiotherapy (including 

manual therapy and home muscle exercises), and medications. Secondly, minimally invasive 

options involve intraarticular injections of pharmacological agents such as hyaluronic acid, corti-

costeroid , and growth factors found in platelet-rich plasma, as well as arthrocentesis. Lastly, 

surgical interventions ranging from arthroscopic procedures to open joint surgeries such as disc 

plication, discectomy, and arthroplasty (Murakami 2022; Derwich, Mitus-Kenig, and Pawlowska 

2020; Schiffman, Velly, et al. 2014). 

Patient education and counseling are essential aspects of managing TMD, involving the provi-

sion of information on the underlying causes, treatment options, and prognosis of the condition, 
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along with recommendations for behavioral changes. Patient education has been shown to influ-

ence patients' behaviors related to TMD, such as habits of "putting pressure on the jaw", "chew-

ing food on one side" "pressing, touching, or holding teeth together at times other than eating", 

"eating between meals", and "yawning". However, it is important to note that education should 

be conducted at different intervals to ensure the continuity of desired behavioral changes. (Xu et 

al., 2021). 

Occlusal splint is an important 

element in non-surgical therapy 

(Figure 1.4). It prevents patients 

from achieving maximum inter-

cuspation and promotes proper 

jaw positioning with equal intensi-

ty stops on all teeth. Occlusal 

splint also facilitates positioning 

the condyles in centric relation, leading to the development of new muscle and articular balance 

(Albagieh et al., 2023; Yadav & Karani, 2011). Consequently, the detrimental effects of trauma-

tizing factors and overloading on the joint are reduced, resulting in decreased inflammation and 

pain (Al-Ani, 2021; Machon et al., 2011). The duration of wearing occlusal splints varies accord-

ing to the type of therapy and rate of recovery. Notably, a splint that does not cover all teeth or 

achieve balanced occlusion with the opposing teeth should not be worn continuously to prevent 

irreversible occlusion changes (Albagieh et al., 2023). In follow-up trials ranging from one 

month to a year, the use of occlusal splints has consistently demonstrated positive treatment out-

Figure 1.4: Utilization of Michigan splint for treatment of TMD. Adapted 

from “Occlusal splints-types and effectiveness in temporomandibular 

disorder management” by Albageieh et al. 2023, Saudi Dent J. 2023 Jan; 

35(1): 70–79. 
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comes, including reduced TMJ pain and improved mouth opening capacity (Albagieh et al., 

2023; Fouda, 2020).  

Physiotherapy is another therapeutic option for TMJ OA. It improves strength, mobility, and co-

ordination , along with reducing joint and muscle discomfort (Rashid et al., 2013). A recent me-

ta-analysis showed that occlusal splint therapy and exercise therapy had comparable effective-

ness in alleviating pain and enhancing mandibular movement during the treatment (Zhang, Xu, et 

al. 2021). 

Nonsteroidal anti-inflammatory drugs (NSAIDs) are advantageous in the treatment of TMJ OA 

as they can reduce pain and inflammation simultaneously. To maximize their anti-inflammatory 

effect, it is important to take NSAIDs not only when necessary but also on a regular basis (Al-

Ani, 2021). The average duration of NSAID use is two to four weeks. To reduce the risk of gas-

trointestinal and cardiovascular complications associated with their use, it is critical to use the 

lowest effective dose for the shortest possible duration. Combining splint therapy with NSAIDs 

administration has shown to provide earlier pain relief, especially for patients experiencing se-

vere pain in the TMJ area in the course of TMJ (Derwich, Mitus-Kenig, and Pawlowska 2021). 

In symptomatic patients unresponsive to conservative treatment, intra-articular injections of hya-

luronic acid (HA), corticosteroid (CS), and growth factors found in platelet-rich plasma (PRP) 

can be utilized either independently or as a post-operative measure following procedures such as 

arthrocentesis or arthroscopy (Bergstrand et al., 2019; Bouloux et al., 2017; Hegab et al., 2015; 

Fernández Sanromán et al., 2016). HA is a polysaccharide produced by chondrocytes and syno-

viocytes in the joints. The introduction of HA into the TMJ may be beneficial due to its lubricat-

ing and anti-inflammatory properties. Additionally, HA possesses analgesic properties due to its 

ability to reduce ion channel sensitivity in mechanoreceptors and nociceptors (Bouloux et al., 
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2017). Corticosteroids are frequently used for their potent anti-inflammatory effect, which aids in 

relieving joint pain and improving functionality (Al-Ani, 2021). PRP is an autologous solution of 

platelets containing multiple growth factors, with concentrations 3 to 8 times higher than that of 

whole blood. It can stimulate chondrocytes to produce cartilage matrix and increase the produc-

tion of hyaluronic acid by synoviocytes (Zotti et al., 2019). In the treatment of TMJ OA, intra-

articular injections of HA have been found to be more effective at reducing pain compared to 

injections of CS or physiological saline solution (Derwich, Mitus-Kenig, and Pawlowska 2021). 

Interestingly, in long-term follow-up studies extending up to one year, PRP intra-articular injec-

tions have consistently shown superior results to HA in terms of pain reduction and increasing 

interincisal distance (Zotti et al., 2019; Hegab et al., 2015). 

 Another minimally invasive procedure, recommended for patients experiencing pain unrespon-

sive to conservative treatment, is arthrocentesis. 

This technique involves the insertion of a cannula 

into the joint space to flush the TMJ using sterile 

needles and irrigation solutions (Figure 1.5). The 

procedure does not require direct visualization of 

the joint space. Its principal advantage is the di-

rect removal of inflammatory substances, degra-

dation products, and adhesions from within the 

joint. This process effectively alleviates pain and 

enhances jaw mobility, ultimately leading to an 

increase in maximal interincisal opening (Al-Ani, 

2021; Bergstrand et al., 2019; Soni, 2019; Leibur et al., 2015). Compared to arthrocentesis alone, 

Figure 1.5: Schematic representation of TMJ 

arthrocentesis procedure with two needles in-

sertion into the joint space. Adapted from 

“What is TMJ arthrocentesis?” Available at: 

https://dentagama.com/news/what-is-tmj-

arthrocentesis (Accessed: 12 July 2023). 
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the combination of arthrocentesis with hyaluronic acid injection results in a significant improve-

ment in mouth opening, as well as lateral and protrusive movements (Gurung et al., 2017). 

Arthroscopy is a surgical technique that lies on the spectrum between arthrocentesis, a less inva-

sive procedure, and open surgery, a more invasive approach (Fernández Sanromán et al., 2016). 

This procedure involves the insertion of an arthroscope into the joint space, providing a visual 

examination of internal joint structures, including articular disc perforations, synovitis, and adhe-

sions (Fernández Sanromán et al., 2016). It also allows removal of osteophytes, expansion of the 

joint space through the inflation of balloon stents, joint lavage, and the precise delivery of thera-

peutic agents to specific areas within the joint, minimizing the impact on unaffected regions (Al-

Ani, 2021). Patients with TMJ OA who undergo arthroscopic surgery experience statistically 

significant reductions in pain and enhancements in maximum interincisal opening distance. 

However, candidates who received earlier intervention have better outcomes than those who re-

ceived intervention later, suggesting that early arthroscopic surgery intervention is beneficial 

(Israel et al., 2010). 

Open TMJ surgery is typically advised when minimally invasive procedures are unable to effec-

tively treat the condition or in cases of advanced disease accompanied by severe joint degenera-

tion, functional impairment, and/or dentofacial deformity. Arthroplasty is often the prevailing 

surgical technique for patients with TMJ OA. It entails reshaping the bone through a range of 

procedures, starting with a high condylar shave and extending to a condylectomy (Renapurkar, 

2018). A total joint replacement becomes the treatment of choice when all other modalities, in-

cluding conservative measures, minimally invasive procedures, and surgical interventions, have 

failed to restore normal mouth function and alleviate pain (Balon et al., 2019). 
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The literature that compares various invasive, minimally invasive, and non-invasive treatments 

for temporomandibular joint osteoarthritis presents diverse, and at times, conflicting views. As 

such, providing definitive therapeutic guidelines has been a significant challenge. Interestingly, a 

recent network meta-analysis has demonstrated that minimally invasive procedures significantly 

outperform non-invasive procedures in both short-term (up to 5 months) and intermediate-term 

(6 months–4 years) durations, particularly in alleviating pain and enhancing maximum mouth 

opening in TMJ OA patients. Intriguingly, intra-articular injections with hyaluronic acid appear 

to be the most effective among minimally invasive procedures for short-term pain relief. For in-

termediate-term pain reduction, however, there was no discernible difference among intra-

articular HA injections, arthrocentesis, and arthroscopy. When it comes to improving mouth 

opening, arthroscopy—whether used with or without drug instillations—clearly dominates, as it 

is significantly more effective than intra-articular injections and arthrocentesis, including those 

utilizing drug instillations. Both arthroscopy and arthrocentesis benefit greatly from the addition 

of pharmacological instillations, such as platelet-rich plasma and hyaluronic acid. Contrary to 

traditional beliefs that advocate for the full exploration of conservative treatments before resort-

ing to minimally invasive procedures, these findings propose that techniques such as intra-

articular injections and arthrocentesis should be initiated earlier, particularly when patients do 

not show noticeable benefits from the initial conservative treatments (Al-Moraissi et al., 2020). 

Notably, prolonged delays not only contribute to increased time and expenses but may also exac-

erbate the ongoing TMJ pathophysiology and potentially compromise the patient's capacity to 

manage symptoms, thereby diminishing the prospects for optimal outcomes that are typically 

associated with earlier treatment initiation (Murakami, 2022; Vos et al., 2014).  
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Given the rising prevalence of temporomandibular joint osteoarthritis and the multifaceted nature 

of its causes, as well as the limited efficacy of current therapeutic approaches in arresting or re-

versing cartilage and subchondral bone deterioration, and the challenge in determining when to 

switch to other treatment measures, the scientific importance of predicting the disease response 

to conservative interventions and early diagnosis becomes paramount (Murakami 2022; Yuan et 

al. 2022; Lee, Park, et al. 2020). 

1.5. Diagnosis of Temporomandibular Joint Osteoarthritis 

1.5.1 Crepitus, Pain and Co-morbidities in TMJ OA 

According to the DC/TMD, the physical diagnosis of TMJ OA (axis I) is considered positive 

when either the patient reports any TMJ noise in the last 30 days (during mastication or any jaw 

movement) or the clinician detects any noise with jaw movements during the clinical examina-

tion. TMJ OA diagnosis also requires the detection of crepitus (eg, crunching, grinding, or grat-

ing noises) during the examination (Schiffman and Ohrbach 2016; Schiffman, Ohrbach, et al. 

2014). 

Crepitus can arise from the heightened friction between the articulating surfaces in the joint, as 

well as from direct bony contacts in cases of TMJ OA cases that are associated with disc dis-

placement or perforation of the posterior disc attachments (Cardoneanu et al. 2022; Mehndiratta 

et al. 2019; Vrbanović and Alajbeg 2017). 

In conjunction with validated clinical examination criteria for diagnosing TMJ OA, the DC/TMD 

provides a questionnaire to assess the patient's pain history and evaluate the psychosocial and 

behavioral factors (axis II) that might influence their response to treatment (Schiffman and 

Ohrbach 2016). 
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Patients with TMJ OA frequently experience debilitating joint pain, with females being more 

prone to chronic and persistent pain than males (Sannajust et al. 2019). The primary source of 

pain in OA is commonly attributed to the activation of an inflammatory process which affects 

different components of the joint, such as the bone, periosteum, synovium, capsule, and peri-

articular structures (Al-Ani 2021). In fact, individuals with higher levels of inflammatory media-

tors exhibit higher levels of pain intensity during maximum mouth opening and increased dis-

comfort with mandibular movements compared to those with lower inflammatory activity 

(Chung et al. 2023). Importantly, elevated levels of pain may indicate presence of a clinically 

significant disease as well as the patient's experience of symptom amplification due to emotional 

distress or central sensitization (Ferrillo et al. 2022). Individuals with TMJ OA also show in-

creased mechanical hyperalgesia when blunt pressure is applied to the skin overlying the affected 

joint, compared to patients with TMJ pain without degeneration (arthralgia). This heightened 

pain sensitivity can result from sensitization in the central and peripheral nervous systems, where 

pain processing by nociceptive pathways is altered, as well as changes in membrane channels 

and neurotransmitters. These alterations ultimately lead to a decrease in neuronal threshold acti-

vation, an increase in firing rate, expansion of receptor fields, and a change in the sensory re-

sponse to normal input (Ferrillo et al. 2022; La Touche et al. 2018; Kothari et al. 2016). In cases 

of widespread pain, it is crucial to assess the patient’s systemic condition as it might have a clini-

cally significant impact on localized joint pain (Shim et al. 2020). Furthermore, parafunctional 

behaviors should be thoroughly examined as they may place undue strain on masticatory struc-

tures, triggering or exacerbating the patients’ pain (Abouelhuda et al. 2017; Schiffman and 

Ohrbach 2016; Cairns 2010). 
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Interestingly, individuals with painful temporomandibular disorders (TMD) exhibit a high preva-

lence of comorbidities, including headaches, lower back pain, and sleeping disorders (Shrivasta-

va, Battaglino, and Ye 2021; Bair et al. 2016; Slade et al. 2016). Subjects with TMD pain are 

approximately twice as likely to report headaches compared to subjects without TMD pain. Fur-

thermore, the presence of headaches has been linked to an increased risk of developing TMD 

(Yakkaphan et al. 2022; Nixdorf, Velly, and Alonso 2008). The association between headaches 

and TMD can be attributed to genetic, anatomical and neurological connections (Byun et al. 

2020). Certain genes, such as ESR1 and COMT, have been identified as potential factors predis-

posing individuals to the concurrent development of TMD and headaches (Cruz et al. 2022). 

Both conditions are also intricately connected to the nociceptive system. The initial neurons in-

volved in headaches are connected to the first branch of the trigeminal nerve, while in cases of 

TMD, they are associated with the third branches of the trigeminal nerve (Mello et al. 2012; 

Pedullà et al. 2009). This nociceptive information converges at the caudal nucleus of the trigemi-

nal nerve, where headaches and TMD share specific ascending pain pathways, thus playing a 

role in pain modulation (Yakkaphan et al. 2022). Aside from their shared neurophysiological 

connections, headaches and TMD may share a hormonal basis as both conditions are more com-

mon in females. Sex hormones may also influence trigeminal nerve sensitization by modulating 

nociceptive mediators like calcitonin gene-related peptide. Additionally, they affect the synthesis 

of serotonin neurotransmitters in the brain, which is known to participate in pain signaling and 

modulation within the central nervous system (Byun et al. 2020; Plesh et al. 2012; Gupta et al. 

2011). Importantly, the presence of headaches intensifies joint pain, which can influence the effi-

cacy of the disease management (Byun et al., 2020; Di Paolo et al., 2017; Proporattti et al., 2015; 

Christidis et al., 2014).  
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Chronic low-back pain (LBP) is the most common musculoskeletal disorder in adults, with 

chronic TMD pain being the second most common (Wieckiewicz, Shiau, and Boening 2018). A 

longitudinal study conducted on a nationwide-matched cohort population showed a 1.5-fold in-

creased risk of first onset TMD in patients with LBP. This was particularly noticeable when the 

duration of LBP exceeded six years, during which TMD symptoms became more pronounced 

(Lee, Wu, et al. 2020). Interestingly, individuals with TMD are 5.5 times more likely to endure 

pain in other joints, with the lower back being one of the most frequently affected areas (Wie-

singer et al. 2007). The high prevalence of back pain in TMD patients may be linked to the 

broader impact of TMD on overall body posture. Factors such as the center of foot pressure, 

body sway, and spinal  

curvature are all likely to be influenced by TMD  (Kim, Ko, et al. 2019). In patients with TMD, 

the position of the head is often 

depressed due to alterations in 

the masticatory muscles that in-

fluence the position of the jaw. 

Hence, changes in proprioceptive 

afferents related to mandibular 

position may occur, potentially 

affecting gait stability and the 

center of pressure on the foot  

(Minervini et al. 2023; Kang 2020; Chung et al. 2016). Changes in foot function, as measured by 

center of pressure, have been linked to low back pain in women (Menz et al. 2013). Therefore, 

Figure 1.6: The relationship between head posture and lower back pain 

in patients with temporomandibular disorders. Adapted from “Connec-

tion between TMJ and body posture” Available at: 

https://www.tonguetieindia.com/connection-between-tmj-and-body-

posture.html (Accessed: 12 July 2023). 
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alterations in the masticatory muscles and mandibular position in TMD patients may ultimately 

lead to low back pain (Figure 1.6)  (Garstka et al. 2022).  

To maintain balance, the axial muscles of the human body, including the head and vertebral col-

umn, contract simultaneously. The contraction of each muscle is often interconnected with the 

contraction of other muscles. Continuous muscle contraction can restrict blood flow and trigger 

the activation of pain receptors. As a result, when the muscles in the face are consistently con-

tracted, motor centers in the face and spinal cord may be activated, resulting in muscle contrac-

tions in these areas. This process can reduce blood supply over time, resulting in muscle spasms 

and pain. This lends credence to the clinical link between lower back pain and TMD (Agha-

Hosseini et al. 2023). Furthermore, those with LBP experience greater difficulty in recruiting 

neck muscles to assist with jaw-related tasks. Consequently, increased stress is placed on the 

masticatory system and jaw muscles, promoting the development of TMD over time (Lee, Wu, et 

al. 2020). An additional factor that may influence this complex interplay is the presence of a 

common central dysregulation in the modulatory pathways of pain processing in both TMD and 

lower back pain (Minervini et al. 2023; Kim, Ko, et al. 2019; Prim et al. 2019; Monaco et al. 

2017).  

Sleep disturbances are frequently observed in individuals with painful temporomandibular joint 

disorder, with 82% of TMJ OA patients experiencing them when compared to healthy controls. 

Despite the reduction in pain symptoms, approximately 71% of the TMJ OA group continues to 

experience poor sleep quality during the follow-up period. This suggests that there may be other 

contributing factors to their sleep problems, such as chronic lower back pain (Rener-Sitar et al. 

2016). Interestingly, the quality of sleep among individuals with painful TMD can vary depend-

ing on the origin of the pain. Specifically, those experiencing mixed pain tend to have signifi-
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cantly higher Pittsburgh Sleep Quality Index scores, indicating poorer quality of sleep, compared 

to individuals with arthralgia only. Furthermore, the mixed pain group often reports experiencing 

headaches along with the sleep problems (Lee and Auh 2022; Roithmann et al. 2021). Important-

ly, research has shown that sleep disturbances are not merely a consequence of TMD pain, but 

they can also be a predictor of TMD onset. Individuals with primary sleeping disorders are at a 

44% higher risk of developing TMD compared to those without such disorders. The interrela-

tionship between sleep problems and TMD may involve several pathological processes. Howev-

er, the exact mechanism underlying this interplay has yet to be elucidated (Kim et al. 2021). 

Sleep disturbances are linked to increased levels of circulating cytokines, which may contribute 

to the development of TMD. These cytokines can cause pain either directly by activating specific 

receptors on nociceptive sensory neurons or indirectly through other mediators such as pros-

tanoids and amines (Park and Chung 2016). Sleep disturbances can worsen people's psychologi-

cal conditions, which contribute to the exacerbation of TMD symptoms (Roithmann et al. 2021). 

During normal sleep in healthy individuals, nociceptive transmission is partially attenuated to 

preserve sleep continuity, resulting in a higher threshold or lower response rate to noxious stimu-

li (Lavigne and Sessle 2016). On the other hand, individuals with temporomandibular disorder 

experience heightened pain sensitivity and central sensitization, which may influence nociceptive 

transmission, disrupt their sleep, and significantly increase their pain reactivity (Reid et al. 2022; 

Krause et al. 2019).  

1.5.2 Imaging Signs of TMJ OA, Prevalence, and Modalities 

Considering the suboptimal sensitivity and specificity of TMJ OA clinical criteria (55% and 

61%, respectively), imaging emerges as the gold standard for its diagnosis (Hilgenberg-Sydney 

et al. 2018; Schiffman and Ohrbach 2016; Schiffman, Ohrbach, et al. 2014). The significance of 
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integrating imaging techniques with history and clinical examination in assisting physicians' clin-

ical decision-making is further emphasized, as it has been shown to alter 58% of the primary di-

agnosis and planned management in patients with temporomandibular disorders. This is particu-

larly noteworthy for individuals experiencing restricted mandibular movement, functional  

limitations, and joint pain upon palpation (Talmaceanu et al., 2018; de Boer et al., 2014).  The 

RDC/TMD criteria briefly described the tomography-based image analysis criteria for TMJ OA 

(Dworkin and LeResche 1992). However, as the utilization of orthopantomogram, magnetic res-

onance imaging, and computed tomography increased, the RDC/TMD validation initiative rec-

ognized the need for comprehensive criteria that would accommodate these advanced imaging 

techniques (Ahmad et al. 2009). Consequently, radiologists and TMD clinicians collaborated to 

develop diagnostic criteria for image analysis by leveraging a thorough review of existing litera-

ture, recommendations from an external advisory panel appointed by the NIDCR, and input from 

the TMD and radiology communities. Osteophytes, surface erosions, subchondral cysts, and 

generalized sclerosis were identified as the cardinal diagnostic imaging features for TMJ OA  

(Figure 1.7) (Schiffman and Ohrbach 2016; Schiffman, Ohrbach, et al. 2014; Ahmad et al. 2009). 

Figure 1.7: Representations of a 

healthy TMJ and degenerative bone 

changes in sagittal (1) and coronal (2) 

CBCT orientations. Each letter corre-

sponds to an image of the same indi-

vidual. (A) A healthy TMJ with 

smooth, rounded, and well-defined 

condylar cortical margins. (B,C) Flat-

tening and localized subcortical scle-

rosis of the condylar head, respective-

ly, suggestive of joint remodeling. (G-

I) Degenerative bone changes in TMJ 

OA (G1) An osteophyte on the anteri-

or aspect of the condyle. (G2) Flatten-

ing of the superior and lateral slopes of the condyle. (H) The presence of osteophytes and multi-

ple subchondral cysts. (I) The presence of osteophytes and multiple areas of erosion. Adapted 
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from “Temporomandibular joint disorders and orofacial pain” by Ahmad, M. and Schiffman, 

E.L, 2016, Dental Clinics of North America, 60(1), pp. 105–124.  

 

Osteophytes refer to the development of angular osseous tissues with sclerotic borders projecting 

from the surface (Ahmad and Schiffman 2016; Sadaksharam and Khobre 2016; Ahmad et al. 

2009). They can emerge from distinct locations within the joints including periarticular sites ad-

jacent to hyperplastic synovial membrane and the articulating surfaces, with skeletal progenitor 

cells of distinct origins involved in the initiation of these skeletal defects (Bechtold et al. 2016). 

Instability of the joint serves as a biomechanical trigger for the formation of osteophytes. This 

occurs when mechanical stresses exceed the body's capacity for adaptation, resulting in the for-

mation of osteophytes. The purpose of these growths is to increase the joint's surface area in or-

der to improve its resistance to loaded forces (Lan et al. 2022; Sadaksharam and Khobre 2016). 

However, the presence of osteophytes on the condylar surface can also contribute to irregulari-

ties, leading to a more damaging distribution of forces within the joint. This effect is particularly 

prominent in specific regions where the contact area is diminished. When concentrated force 

vectors develop on a particular area of the condylar surface, the disparity in force generation be-

tween the superior and inferior joint compartments becomes significant. This imbalance in load-

ing forces and torque ultimately results in an advanced disease state (Kirk and Kirk 2006). Oste-

ophytes can also lead to pain, reduced jaw mobility, and limited joint function (Sadaksharam & 

Khobre, 2016; Kraan & Berg, 2007). 

Surface erosions refer to discontinuities in the articular cortex of the condyle or the fossa. While 

the presence of osteophytes suggests that the condyle has adapted to degenerative changes, the 

radiographic evidence of erosions indicates a potentially active destructive process (Bae et al. 

2017). Several mechanical factors can contribute to erosion formation, including disc displace-
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ment, overloading, increased friction during mandibular movement, and trauma (Emshoff et al. 

2021; Ahmad et al. 2009).  The presence of erosions increases the risk of osteoarthritis develop-

ment by a factor of 1.6 to 27.4 (Al-Ghurabi and Al-Hawa 2023). Their frequency is also directly 

proportional to pain intensity in patients with degenerative joint diseases (Chung et al. 2023; Bae 

et al. 2017; Emshoff et al. 2016). 

Subchondral cysts are commonly observed in individuals with temporomandibular joint osteoar-

thritis. They are characterized as cavities that deviate from the normal marrow pattern and are 

typically located adjacent to the joint surface where the initial load bearing takes place during 

activities (Jeon et al. 2022; Ahmad and Schiffman 2016; Ferrazzo, Osório, and Ferrazzo 2013; 

Ahmad et al. 2009). Based on the histological characteristics of subchondral cysts, it could be 

argued that the term 'cyst' is not wholly accurate, as these cavities are not lined by epithelial cells 

and do not contain evenly distributed liquid components (Kaspiris et al. 2023). The subchondral 

cysts are usually spherical or ellipsoidal in shape, occur in multiple numbers, vary in size, and 

emerge as the result of the bone's attempt to adapt to increased loads (Crema et al. 2010; Ban-

croft, Peterson, and Kransdorf 2004). Currently, there are two hypotheses that could explain the 

origin of subchondral cysts in OA: the bone contusion theory and the synovial fluid invasion 

theory. According to the bone contusion theory, subchondral bone cysts develop as a result of 

traumatic impact or repetitive microtrauma, which cause localized damage and disruption of the 

trabecular bone architecture. Following the contusion, the affected area undergoes a reparative 

process involving the recruitment of osteoclasts and osteoblasts. However, an increase in bone 

resorption and inadequate bone formation occur, resulting in the formation of a cavity that grad-

ually enlarges into a cyst (Jeon et al. 2022; Pouders et al. 2008). On the other hand, the synovial 

fluid invasion theory proposes that subchondral bone cysts develop when synovial fluid infil-
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trates the subchondral bone. Under normal circumstances, a thin layer of cartilage separates the 

subchondral bone from the synovial fluid. However, in certain conditions such as joint trauma, 

repetitive joint loading, or increased friction between the opposing surfaces, the integrity of the 

articular cartilage may be compromised. This can lead to the formation of fissures, clefts, or de-

fects that allow the synovial fluid to invade the subchondral bone. The synovial fluid contains 

enzymes and inflammatory mediators, eventually resulting in a net loss of bone and the for-

mation of a subchondral bone cyst (Jeon et al. 2022; Bessa et al. 2020; Chiba et al. 2014; Li et al. 

2013). Notably, the frequency of subchondral cysts could increase with the severity of the dis-

ease. The heightened expression of MMP-1 in the osteoblast-like cells lining the subchondral 

cyst may account for the degradation of non-mineralized collagen type I, leading to the exposure 

of binding sites on the bone surface and the subsequent stimulation of osteoclasts, ultimately 

contributing to the progression of the disease (Kaspiris et al. 2013). 

Additional radiographic findings that can be observed in TMJ OA are the flattening of the articu-

lar surface and the presence of subcortical sclerosis. Articular surface flattening refers to the loss 

of the normal rounded shape of either the condyle or the articular eminence surface. However, if 

there is no evidence of osteophyte, sclerosis, subchondral cyst, or erosion, and if the thickness of 

the cortical plate appears relatively even, then surface flattening alone is not a reliable indicator 

of OA. In such cases, it should be interpreted as a remodeled or deformed joint, particularly in 

young patients who often have joint deformities resulting from previous traumas (Larheim et al. 

2015; Ahmad et al. 2009). Subcortical sclerosis is characterized by an increased thickness of the 

cortical plate in areas subjected to load bearing, compared to adjacent non-load-bearing areas. 

When this thickening is localized, it is considered indeterminate for osteoarthritis and is believed 

to be a result of elevated or normal loading when the disc in the TMJ is displaced. However, 
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when the orientation of trabecular bone and the differentiation between the cortical layer and 

trabecular bone on the condylar head become unclear, which is known as generalized sclerosis, it 

is considered a feature of the late stage of temporomandibular joint osteoarthritis (Larheim et al. 

2015; Li et al. 2013; Ahmad and Schiffman 2016; Ahmad et al. 2009).  

Although imaging features such as osteophytes, erosions, cysts, and generalized sclerosis are 

commonly observed in temporomandibular joint osteoarthritis, their distribution varies among 

different studies (Bae et al. 2017). According to the Otterson group (2019), the most prevalent 

imaging signs of TMJ OA include articular surface flattening (79%), osteophytes (72%), and 

subcortical sclerosis (70%), followed by surface erosion (40%) and subcortical cysts (15%) (Ot-

tersen et al. 2019). Conversely, Dumbuya and colleagues (2020) reported that subchondral cysts 

(63.3%) and osteophytes (60%) were the most frequently observed degenerative bone changes in 

the condyles. In a study by Maleki et al. (2018), the most common bony changes in the tem-

poromandibular joint were found to be flattening (82.5%), erosion (41.25%), sclerosis (28.12%), 

and osteophytes (25.62%), in descending order. 

The inconsistencies in the findings may stem from varying sample sizes, differences in study 

population, and diverse study design. For instance, retrospective studies often suffer from in-

complete and heterogeneous data, as well as data collection performed by different clinicians 

using different protocols (Arayasantiparb et al. 2020; Ottersen et al. 2019).  

Interestingly, disparities in imaging techniques and interpretation appear to have an impact on 

the identification of bone changes associated with osteoarthritis (Bae et al. 2017). In fact, a study 

investigating the reliability of radiologists in diagnosing the status of osseous tissue for osteoar-

thritis using orthopantomogram (OPG) reported poor inter-examiner reliability, with a kappa (κ) 

value of only 0.16. However, when magnetic resonance imaging (MRI) was used, the reliability 
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improved to a fair level (κ = 0.47). The highest reliability was observed when diagnosing hard 

tissue status using computed tomography (CT) images, reaching good levels (κ = 0.71), almost 

reaching the threshold for excellent reliability (κ > 0.75). The agreement rate among the examin-

ers for diagnosing OA using panoramic radiography images was found to be 19%. However, 

when MRI was employed, the agreement rate increased to 59%. Furthermore, the highest agree-

ment rate was achieved when CT images were used, reaching 84%. Using CT as the reference 

standard, panoramic radiography had low sensitivity in detecting osteoarthritis, yet the specifici-

ty was high. Conversely, MRI had marginal sensitivity, while the specificity remained high. 

When osteoarthritis was detected on CT, 26% of panoramic radiographs and 59% of MRI scans 

displayed positive findings. When osteoarthritis was not detected on CT, 99% of panoramic ra-

diographs and 98% of MRI scans were also negative for osteoarthritis. These findings indicate 

that panoramic radiography and MRI have their respective strengths and limitations in terms of 

sensitivity and specificity in detecting temporomandibular joint osteoarthritis. Hence, the 

DC/TMD recommends utilizing CT to confirm the diagnosis of TMJ OA (Hilgenberg-Sydney et 

al. 2018; Schiffman and Ohrbach 2016; Larheim et al. 2015; Schiffman, Ohrbach, et al. 2014; 

Ahmad et al. 2009). 

The low sensitivity of OPG in detecting signs of TMJ OA may be attributed to the ability to as-

sess only the lateral portion of the condyle. This limitation hampers the detection of osteophytes 

that are frequently present on the anterior surface of the condyle. Furthermore, the erosion of the 

condyle's articular margin remains concealed due to overlapping with the zygomatic arch and the 

base of the skull (Kaimal et al., 2018; Talmaceanu et al., 2018; Ferrazzo et al., 2013; Ahmad et 

al., 2009). MRI offers several benefits, including the absence of ionizing radiation exposure, en-

hanced visualization of soft tissue details, bone marrow alterations, and assessment of disc posi-
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tion, shape, and integrity. However, the moderate sensitivity of MRI in detecting bone changes is 

likely attributed to challenges in detecting minor osteophytes or erosive changes in the cortical 

plate (Kaimal et al. 2018; Ahmad et al. 2009). Although CT demonstrated superiority over pano-

ramic radiography and MRI in displaying TMJ OA features, cone-beam CT (CBCT) is recom-

mended for evaluating TMJ OA due to its superior cost-benefit ratio and lower radiation dose 

(Arayasantiparb et al. 2020; Dumbuya et al. 2020; Abrahamsson et al. 2017). The effective radia-

tion exposure of CBCT scanners can vary between 7.3 and 288.9 μSv, whereas conventional CT 

scans typically range from 1320 to 1400 μSv, depending on the utilized protocol (Larheim et al. 

2015; Hussain et al. 2008). CBCT also has the capability to capture all essential images in a sin-

gle rotation, resulting in a scanning time ranging from 10 to 70 seconds (Larheim et al. 2015; 

Krishnamoorthy, Mamatha, and Kumar 2013). Moreover, the diagnostic accuracy of CBCT in 

detecting condylar osseous abnormalities (0.9) is comparable to that of CT (0.86)  (Figure 1.7) 

(de Boer et al. 2014). This can be attributed to the isotropic voxel resolution in CBCT as well as 

its spatial resolution that ranges from 0.4 mm to 0.09 mm, achieving sub-millimeter accuracy 

(Venkatesh and Elluru 2017). In terms of sensitivity, CBCT exhibits a value of 0.8 in detecting 

degenerative bone changes in TMJ, while CT has a value of 0.7. Therefore, the diagnostic quali-

ties of CBCT are comparable to or even superior to those of the current imaging modalities (Lar-

heim et al. 2015; de Boer et al. 2014; Spin-Neto, Gotfredsen, and Wenzel 2013). Interestingly, as 

the extent of bone defects reduces, the sensitivity of CBCT in detecting decreases. Specifically, 

when employing CBCT images with a voxel size of 0.4 mm, one-third of the simulated bone de-

fects with a diameter and depth less than 2 mm can be missed during diagnosis. However, by 

employing a greater scan resolution (0.2-mm voxel size), all defects can be detected, regardless 

of their size, with an accuracy exceeding 80% (A. Patel et al. 2014). 
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The diagnostic accuracy of CBCT scans for condyle defects is also influenced by the size of the 

field of view (FOV), with smaller FOV achieving higher accuracy (Salemi et al. 2016). There-

fore, it is essential for the clinician to adjust the parameters appropriately during CBCT imaging 

in order to achieve optimal images tailored to the specific diagnostic requirements. For instance, 

when utilizing a limited CBCT unit, the FOV can be reduced to 4 cm x 4 cm x 4 cm, and images 

can be captured with a voxel size as low as 78 μm. Such limited FOV scans facilitate adequate 

assessment of the anatomical structures within a single temporomandibular joint, including the 

condylar head, glenoid fossa, and articular eminence (Figure 1.8) (Venkatesh and Elluru 2017; 

Barghan, Tetradis, and Mallya 2012). 

 

Figure 1.8: The ability of CBCT machines to customize the collimation of the X-ray beam (select 

the FOV), minimizing patient exposure, reducing scattered radiation that can affect image quality, 

and accommodating specific clinical requirements. Adapted from “Cone beam computed tomogra-

phy: basics and applications in dentistry” by Venkatesh et al., 2017, J Istanb Univ Fac Dent, 51(3 

Suppl 1):S102-S121. 
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1.6 DC/TMD Limitations in Diagnosing and Predicting TMJ OA Progression 

The current standards for diagnosing TMJ OA rely on both clinical and imaging criteria due to 

the suboptimal sensitivity and specificity demonstrated by clinical features alone in detecting 

diseased cases (Hilgenberg-Sydney et al., 2018; Schiffman & Ohrbach, 2016; Schiffman et al., 

2014). By incorporating imaging criteria, the sensitivity and specificity of TMJOA diagnosis are 

enhanced, and insights into various disease stages can be obtained. For example, erosive lesions 

may suggest acute or active changes, while sclerosis, flattening, and osteophytes may indicate 

advanced stages of the disease (Zhao et al. 2011). However, the efficacy of these criteria in de-

tecting early-stage TMJ OA is limited, creating challenges in timely intervention, prevention of 

chronicity, and mitigation of irreversible bone damage associated with the disease (Almășan et 

al. 2023). Hence, it becomes imperative to identify additional objective criteria that can assist in 

achieving accurate diagnosis. Such criteria may also enable earlier detection of the disease, thus 

advancing the preventive strategies for osteoarthritis (Derwich et al. 2023; Hawker and 

Lohmander 2021). These new criteria should be evaluated in conjunction with the present clini-

cal criteria in the diagnosis process, as the latter include pain and limited mouth opening, which 

are the key motivations for seeking medical attention and determining the efficacy of treatment 

measures (Derwich et al. 2023; Suenaga et al. 2016). 

In addition to early disease identification, determining which TMJ OA patients are at a higher 

risk of disease progression is critical for making informed clinical decisions and designing more 

effective and tailored therapeutic strategies (Delpachitra and Dimitroulis 2022). This is particu-

larly important given the absence of disease-modifying drugs that can effectively delay or re-

verse the degenerative changes associated with osteoarthritis (Liu et al. 2022; Thomas et al. 

2019). The use of DC/TMD to predict disease prognosis is hampered by the fact that clinical 
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symptoms observed in patients do not always correspond with the imaging features of the disease 

(Chung et al. 2023; Bakke et al. 2014; Lamot, Strojan, and Šurlan Popovič 2013; Larheim 2005). 

For instance, severe condylar alteration, characterized by condylar defects accompanied by ero-

sion, has been associated with a higher prevalence of TMJ pain (Takahara et al. 2017). However, 

no correlation has been found between the overall severity of radiographic changes of the con-

dyles and the symptoms in patients with TMJ OA (Arayasantiparb et al. 2020; Kim, 

Wojczyńska, and Lee 2016; Lee et al. 2012). Predicting disease progression using the DC/TMD 

criteria is further complicated by the difficulty of quantifying degenerative bone changes and the 

variability of their response to treatment. Several studies, for instance, have reported an increase 

in flattening and sclerosis and gradual resolution of erosions with conservative treatment (Jung, 

Lee, and Suh 2022; Lee et al. 2012). While others mentioned that bone degenerative changes 

remained mostly unchanged following conservative treatments (Song et al. 2020; Zhao et al. 

2011). Therefore, relying solely on the current imaging criteria to predict disease response to 

conservative treatments is unreliable, and alternative markers are required. Nonetheless, identify-

ing factors that contribute to joint degeneration and pain remains essential as they can serve as 

markers of disease onset and progression, facilitating timely diagnosis and treatment (Toshima 

and Ogura 2020). 

1.7 Quantitative Imaging Markers: Pioneering Future Frontiers 

1.7.1 Subchondral Bone Involvement in Early Stages of OA 

TMJ OA is characterized by progressive degeneration of the articular cartilage and alterations of 

the subchondral bone (Yang et al. 2020). The subchondral bone is composed of two anatomical 

components: the subchondral plate and the subchondral trabecular bone. The subchondral bone 

plate (SBP) is a thin cortical lamella directly beneath the calcified cartilage. It contains channels 
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that connect the articular cartilage to the subchondral trabecular bone, hence, microenvironmen-

tal changes in subchondral bone may influence the overlaying cartilage (Figure 1.9)  (Hu, Chen, 

Dou, et al. 2021).  

Figure 1.9: Normal human joint articular cartilage and subchondral bone structure. NCC, non-

calcified cartilage; CC, calcified cartilage; SBP, subchondral bone plate; STB, subchondral tra-

becular bone. Adapted from “Subchondral bone in osteoarthritis: insight into risk factors and 

microstructural changes” by Li G et al., 2013, Arthritis Res Ther. 15(6):223. doi: 

10.1186/ar4405. PMID: 24321104; PMCID: PMC4061721. 

 

The subchondral trabecular bone lies beneath the SBP and exhibits increased porosity and meta-

bolic activity. Moreover, it responds to different stressors by adjusting its bone remodeling, tra-

becular orientation, and scale parameters (Zhu et al. 2021; Finnilä et al. 2017; Li et al. 2013). 

Importantly, a notable increase in remodeling of the subchondral bone in the mandibular condyle 

is often evident during the early stages of TMJ OA (Jiao et al. 2014; Embree et al. 2011; Jiao et 

al. 2011). A study used the CED mouse, an osteoblast-specific mutant TGF-1 transgenic mouse 

in which excessive quantities of active TGF-1 appear in bone marrow, resulting in aberrant bone 

remodeling. In 1- and 4-month CED mouse groups, notable microstructural alterations such as 

changes in bone volume/bone surface (BV/BS), trabecular number, and separation were found 

using micro-computed tomography (μCT). Surprisingly, cartilage deterioration was seen in 4-



 

 

 40 

month CED mice but not in 1-month CED mice. This shows that aberrant remodeling within the 

mandibular condyle's subchondral bone precedes and may potentially induce increasing cartilage 

degradation during TMJ OA (Jiao et al., 2014). Comparable results have been observed in vari-

ous animal models, such as guinea pigs, rats, and mice (Chen et al., 2018). Consequently, there 

has been a growing interest in investigating the subchondral bone involvement in the initiation 

and advancement of osteoarthritis (Hirvasniemi et al. 2021). Importantly, the subchondral bone 

trabecular volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) 

were all found to be positively connected with the severity of osteoarthritis, which was based on 

imaging as well as histological score of the defects (Zhang et al., 2023). Furthermore, the seg-

mentation of individual trabeculae in μCT images of human knees with osteoarthritis revealed a 

significant decrease in rod-like trabeculae and an increase in plate-like trabeculae, both beneath 

severely damaged and still intact cartilage (Figure 1.10). This suggests that microstructural alter-

ations in the subchondral trabecular bone might contribute to the development of OA in humans. 

Accordingly, there is a need for advanced microstructural analysis techniques to accurately de-

tect these early yet subtle changes. Such changes could potentially serve as markers for clinical 

diagnosis or for evaluating the progression of OA (Chen et al., 2018). 
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Figure 1.10: A model for OA pathogenesis: (A) In healthy individuals, subchondral bone has an 

optimized microstructure with a balanced distribution of trabecular rods and plates, providing 

even support for cartilage. (B-D) During early OA stages, cartilage mostly remains intact, but 

abnormal bone resorption, triggered by trauma or abnormal mechanical stress (overloading), be-

gins to target trabecular rods. Rods are more vulnerable due to their higher surface-to-volume 

ratio and relative thinness compared to plates. This leads to fewer load-supporting trabeculae, 

resulting in increased mechanical demand on the remaining trabeculae and short-term thickening. 

(E) Ultimately, these microstructural changes disrupt the normal support for cartilage, causing an 

uneven distribution of rod-and-plate microstructure and localized subchondral bone stiffening. 

These events can severely impact the overlying cartilage, with unfavorable mechanical condi-

tions and local stress concentrations contributing to advanced OA-related degradation.  Adapted 

from “Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis” 

by Chen, Y. et al., 2017, Journal of Bone and Mineral Research, 33(2), pp. 316–327. 

doi:10.1002/jbmr.3313. 
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1.7.2 Radiomics: Revealing Hidden Insights within Medical Imaging 

Recent advances in computing power have spawned a new research discipline known as radi-

omics. This field entails retrieving quantitative imaging features from radiological images in a 

high-throughput manner with the goal of analyzing tissue pathology and improving the existing 

data available to clinicians through sophisticated mathematical analysis (Avery et al. 2022; Bera, 

Velcheti, and Madabhushi 2018). Radiomics is based on the premise that biomedical images 

contain concealed information about disease-specific processes that are undetectable to the eyes 

of humans and therefore inaccessible via conventional visual inspection of the generated images. 

This hidden data can be extracted and quantified utilizing advanced texture and shape analysis, 

providing greater insight into subtle changes in tissues and overcoming the subjectivity inherent 

in image interpretation (Avanzo et al. 2020; Neisius et al. 2019; Bera, Velcheti, and Madabhushi 

2018). 

The application of radiomics in clinical settings follows a structured framework (Figure 1.11), 

which involves several phases. Initially, radiographic images are obtained. Subsequently, regions 

of interests (ROIs) are determined in two-dimensional (2D) approaches or the volume of inter-

ests (VOIs) in three-dimensional (3D) approaches. Accurate delineation of these ROIs/VOIs is 

crucial as it dictates the locations where radiomic characteristics will be computed (van Timme-

ren et al. 2020; Mayerhoefer et al. 2020). The identification and segmentation of the target tis-

sue's ROI/VOI can be achieved manually, semi-automatically (using standard image segmenta-

tion algorithms like region-growing or thresholding), or automatically (Avery et al. 2022; Zhang 

et al. 2013). Various software, both open-source and commercial, such as 3D Slicer (Fedorov et 

al. 2012), Free Surfer (Fischl 2012), ITK-SNAP (Yushkevich, Yang Gao, and Gerig 2016), and 

ImageJ (Girish and Vijayalakshmi 2004), can be utilized for these tasks. 
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Image processing is a significant step that 

occurs between image segmentation and the 

extraction of radiomics features. Its primary 

objective is to standardize the images from 

which radiomic characteristics will be 

extracted. This standardization addresses a 

variety of factors, including pixel spacing, 

grey-level intensities, and grey-level histogram 

divisions. The consistency and reliability of 

extracted radiomic features are highly 

dependent on the image processing 

parameters. For research to be reproducible, it 

is important to meticulously document the 

steps of the image processing process (Elmah-

dy and Sebro 2023; Wichtmann et al. 2023; 

Zhao 2021; van Timmeren et al. 2020; 

Zwanenburg et al. 2019). 

The third stage revolves around extracting radi-

omic features from the identified ROIs/VOIs 

where feature descriptors are used to quantify characteristics of the grey levels within the 

ROI/VOI. This step involves performing texture, filtering, and morphological analyses, leading 

Figure 1.11: Workflow of Radiomics. Adapted 

from “Radiomics in medical imaging—“how-

to” guide and critical reflection” by Timmeren 

et al., 2020, Insights Imaging 11, 91. 

https://doi.org/10.1186/s13244-020-00887-2. 
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to the generation of a large number of radiomic features (Scapicchio et al. 2021; Parekh and Ja-

cobs 2016).  

Image texture analysis plays a crucial role in radiomics. In material science, texture is defined as 

a measurement of surface variation, where a rough-textured material exhibits a greater rate of 

change in the high and low points of its surface compared to a smooth-textured material. Similar-

ly, in medical imaging, texture refers to the variations in grayscale that represent a specific re-

gion (van Timmeren et al. 2020; Varghese et al. 2019; Castellano et al. 2004).  

In an effort to comprehend the information contained in image texture, image texture features 

have evolved into a vast class of metrics capable of quantifying complex image attributes and 

textural patterns Currently, two statistical methods commonly employed to describe the spatial 

distribution of gray levels within an image: first and second order statistics (Figure 1.12) (Santos 

et al. 2023; Nisbett, Kavuri, and Das 2020). 

Figure 1.12: Comparison of first- and second-order statistics features. Two different images exhibit 

identical histograms, representing the same number of black, light gray, gray, and dark gray pixels 

(first-order statistics). However, when considering second-order statistics that account for pixel 

interactions, distinct matrices are obtained. This demonstrates that second-order statistics reveal 

valuable insights into the relationships between pixels, making them better suited for demonstrating 

intra-lesion heterogeneity. Adapted from “Radiomics in bone pathology of the jaws” by Santos et al., 2022, Den-

tomaxillofacial RadiologyVol. 52,1.https://doi-org.proxy.lib.umich.edu/10.1259/dmfr.20220225.  
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First-order texture statistics are derived from the image's pixel/voxel intensity distribution, repre-

sented by its histogram. Several features can be derived from a histogram, which provide infor-

mation about the magnitude (mean), spread (standard deviation), asymmetry (skewness), 

peakedness or flatness (kurtosis), randomness (entropy), uniformity (energy and uniformity), and 

the variation relative to the magnitude (coefficient of variation) of gray-level pixel values. These 

histogram features describe how gray-level pixel/voxel values are distributed within a ROI/VOI 

as a whole. However, they do not account for the spatial arrangement of the textural pattern 

(Scapicchio et al. 2021; Park, Park, and Lee 2020; van Timmeren et al. 2020; Parekh and Jacobs 

2016). In contrast, the inter-pixel/voxel relationships in an image can be measured using second-

order statistics, such as the gray-level co-occurrence matrix (GLCM) and gray-level run length 

matrix (GLRLM) (Santos et al. 2023; Parekh and Jacobs 2016). 

The GLCM contains statistical information regarding the frequency of two neighboring pix-

els/voxels in an image with specific gray level values at a defined distance and a fixed direction 

(horizontal, diagonal, or vertical for a 2D analysis or 13 directions for a 3D analysis). The 

GLCM count relies on identifying pixel pairs that share a similar distribution of gray-level val-

ues. On the other hand, the GLRLM assesses the length of consecutive pixels/voxels with partic-

ular grey level values in a predetermined direction in the image. The GLRLM Counts are made 

for specific gray-level runs in a chosen direction. For instance, if three consecutive pixels have 

the same gray-level value along the horizontal direction, it is considered a run of length three. 

Short runs are indicative of fine textures, while longer runs are characteristic of coarse textures. 

Since the GLCM and GLRLM depend on direction, enhancing directional invariance is recom-

mended by computing textural features from various directional matrices (Figure 1.13) (Santos et 
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al. 2023; Scapicchio et al. 2021; Mayerhoefer et al. 2020; Park, Park, and Lee 2020; Larroza et 

al. 2016).  

 

 

Figure 1.13: Schematic illustration of the extraction of textural features from a 3x3 pixel image 

with three distinct grayscale levels. Adapted from “Radiomics and Deep Learning: Hepatic Ap-

plications”, by Park et al., 2020, Korean J Radiol. 21(4): 387–401,doi: 10.3348/kjr.2019.0752. 

Following radiomics’ extraction, the features are subjected to a selection process based on user-

defined criteria. This selection aims to exclude non-reproducible, redundant, and non-relevant 

features from the dataset and retain the most informative features for the respective task. These 

"highly" informative features are then chosen for further analysis and processing. The final stage 

involves the classification of the user-defined features. This classification can be employed for 

https://doi.org/10.3348%2Fkjr.2019.0752
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various purposes, such as distinguishing between malignant and benign tumors or predicting sur-

vival outcomes, providing valuable insights into the decision-making in clinical applications 

(Park, Park, and Lee 2020; van Timmeren et al. 2020). 

Interestingly, GLCM and GLRLM features were first developed in the 1970s (Nisbett et al., 

2020). Haralick was the first to recognize the GLCM features' capability to identify the texture of 

image blocks. These images were created using high-resolution photomicrographs of five distinct 

types of sandstones, aerial photographs of eight different land-use categories, and low-resolution 

satellite imagery of seven various land-use categories. The results indicated that GLCM’s quanti-

tative textural analysis could be useful for a wide range of picture classification applications 

(Haralick, Shanmugam, and Dinstein 1973). Galloway reported similar findings, where the 

GLRLM characteristics were shown to be capable of classifying 54 photos belonging to 9 cate-

gories, including those studied by Haralick, based on their textures. The findings suggested that 

more research with diverse data sets should be conducted (Galloway, 1975). Consequently, more 

research was conducted utilizing these quantitative texture analyses. However, it was not until 

2012 that Lambin et al. coined the term "radiomics. Moreover, texture features have only been 

integrated into other sectors, including medical imaging, recently, in line with advancements in 

machine learning and computational power (Alderson and Summers 2020; Nisbett, Kavuri, and 

Das 2020). 

The majority of radiomics research is primarily involved in the oncology field. This can be at-

tributed to the abundance of available imaging and non-imaging data, extensive clinical trials, 

and the influence of social and economic factors that drive oncology research (Scapicchio et al. 

2021; Neri et al. 2018). Examples of radiomics application in oncological research include dis-

tinguishing between different neoplasms, differentiating malignant and benign lesions, predicting 
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tumor stage, evaluating treatment response, foreseeing survival rates, discerning treatment-

related changes from post-radiotherapy metastases, and predicting the origin of metastases 

(Lohmann et al. 2020; Kocher et al. 2020; Park, Kim, et al. 2020). Aside from its applications in 

oncology, radiomics has demonstrated considerable promise in neuroimaging, enabling the iden-

tification of disease features related to neurodegenerative disorders or mental illnesses (Zhao et 

al. 2020; Park, Choi, et al. 2020). Texture quantitative analysis is also anticipated to enhance the 

significance of musculoskeletal imaging by enabling the development of diagnostic and prognos-

tic predictive models (Cuadra, Favre, and Omoumi 2020). 

1.7.3 Radiomics: Advancing the Diagnosis and Progression Assessment of Osteoarthritis 

Recent studies have been investigating the application of radiomics for the detection of knee os-

teoarthritis and estimation of disease progression (Teoh et al. 2022). In a study conducted by 

Harrar et al., GLCM quantitative textural analysis was performed on regions of interest extracted 

from the subchondral bone of 200 knee radiographs. The study's results demonstrated the effec-

tiveness of radiomics in distinguishing between knee X-ray images without osteoarthritis and 

those with mild osteoarthritis, achieving an accuracy of 77% (Harrar, Messaoudene, and Ammar 

2018). Similar findings were reported by the Hirvasti group, who extracted radiomic features, 

including texture analysis (e.g., GLCM and GLRLM), from 655 knee images. A model employ-

ing these radiomics distinguished between knees with and without osteoarthritis, obtaining a re-

ceiver operating characteristic area under the curve (ROC AUC) score of 0.80. In contrast, a 

model that incorporated covariates such as age and body mass index, in addition to the qualita-

tive imaging indicators of the disease, yielded a lower AUC of 0.68. These findings indicate the 

potential use of radiomic features as effective imaging biomarkers for the diagnosis of subchon-

dral osteoarthritis (Hirvasniemi et al. 2021). Importantly, when extracting textural features from 
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X-rays of 25 patients with distinct degrees of knee osteoarthritis (grades I-III) and 25 healthy 

individuals, the OA cases were recognized with an AUC value of 0.77, including grades that ra-

diologists consider challenging to identify. This demonstrates that textural features are useful 

indicators for the early detection of knee osteoarthritis. Increasing the sample size may reduce 

the inherent heterogeneity among individuals and further improve the detection rate (Madrid et 

al. 2022). Indeed, combinations of various textural feature sets in a dataset comprising 620 radi-

ographs (310 images of healthy subjects and 310 images from patients with mild knee osteoar-

thritis) yielded the highest detection rate for knee osteoarthritis, achieving an accuracy of 91% 

(Messaoudene and Harrar 2022). 

Notably, a model based on radiomics, which assesses quantitative textural features in subchon-

dral bone, demonstrated superior performance compared to a traditional structural model that 

evaluates microstructural properties in bone when differentiating between healthy and osteoar-

thritic knees. Additionally, strong associations were found between the radiomics features and 

trabecular bone parameters, as indicated by Pearson's correlation coefficients (r > 0.60, P < 0.05). 

This suggests that multidimensional radiomics features may reflect changes in the microstructure 

of subchondral bone. Furthermore, cases with advanced OA exhibited higher bone volume-to-

total volume (BV/TV) and trabecular bone thickness, and lower trabecular separation (Tb.Sp) 

compared to normal cases. Similarly, an increase in certain texture features was strongly corre-

lated with an increase in BV/TV and Tb.Th, as well as a decrease in Tb.Sp. This indicates that 

changes in texture may also mirror structural alterations in trabecular tissue, and thus, can poten-

tially provide insights into the progression of OA (Xue et al. 2022). 

Several longitudinal studies have been conducted to trace knee OA disease progression over time 

(Collins, Neogi, and Losina 2021). In one such study, trabecular bone texture features were uti-
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lized to predict the advancement of knee osteoarthritis over six years in 683 patients with early 

knee OA (Kellgren and Lawrence grades II and III). The results demonstrated its superior per-

formance compared to KL-based models, achieving an AUC of 0.81 (Almhdie-Imjabbar et al. 

2022). Moreover, the application of trabecular bone texture analysis in different locations of the 

knee joints, using 1124 radiographs, exhibited the capability of these features to predict OA pro-

gression over 48 months (Janvier et al. 2017). An analysis was conducted on data from 122 pa-

tient records. Out of these, 61 patients were classified as progressors based on a decrease in the 

minimum joint space width of at least 0.7 mm over the three years following their initial baseline 

measurements. Non-progressors were matched by age and gender to individuals who did not 

meet the radiographic progression criterion. The texture analysis of the subchondral bone suc-

ceeded in predicting disease progression over three years, achieving a sensitivity of 86% and a 

specificity of 64% (Kaggie et al. 2018). Another retrospective study examined the potential of 

the initial state or changes in subchondral bone texture within the first 12 to 18 months to predict 

the progression of knee osteoarthritis over a 36-month period. Individuals with knee osteoarthri-

tis who showed progression at the 36-month mark, and controls with comparable age, gender, 

body mass index, and initial joint space width were included. The analysis of texture features and 

their association with radiographic progression revealed that the initial subchondral bone texture 

and the changes observed between 12 and 18 months were linked to radiographic progression at 

the 36-month follow-up. This suggests that texture analysis could serve as a valuable biomarker 

for monitoring subchondral bone alterations throughout the progression of knee osteoarthritis 

(MacKay et al. 2018).  

In contrast to osteoarthritis of the knee, the role of radiomics in TMJ OA is still evolving (Bian-

chi, de Oliveira Ruellas, et al. 2020). A retrospective study evaluated TMJ-MRI radiographs 
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from 107 patients with temporomandibular disorders. The TMJs were classified as either normal 

(showing no osseous changes) or with osseous changes, such as flattening, erosions, anterior os-

teophytes, and/or subchondral cysts. A radiomics platform was employed to extract imaging fea-

tures including GLCM and GLRLM. Among various learning models tested, the k-nearest 

neighbors and random forest classifiers were demonstrated the most optimal performance for 

predicting TMJ pathologies, achieving an AUC of 0.77 (Orhan et al. 2021). Promising results 

have been reported for the application of local binary patterns and histogram-oriented gradients 

of CBCT images as a diagnostic tool for assessing temporomandibular disorders. A collection of 

CBCT images for the head of the mandibular condyle from 66 TMD patients and 66 normal cas-

es was evaluated. The K-nearest neighbor model showed high accuracy (0.92), sensitivity (0.95), 

and specificity (0.90) in detecting patients with TMD based on texture changes (Haghnegahdar et 

al. 2018). These studies have shown the potential of texture analysis in detecting subchondral 

trabecular bone changes. However, the application of radiomics in diagnosing TMJ OA and as-

sessing the disease progression is still largely unexplored. To address this gap, our group aimed 

to develop and validate a tool for the extraction of quantitative bone markers, including GLCM, 

GLRLM, as well as bone morphometry features such as BV/TV, BS/BV, Tb.Th, Tb.Sp, and tra-

becular number (Bianchi et al. 2021; 2019; Vimort et al. 2018). 

Several open-source programs, such as Ibex and BoneJ, are frequently used to compute bone 

texture features in medical imaging. However, these software applications have complex user 

interfaces and are not tailored specifically to CBCT images, limiting their user-friendliness and 

suitability for this purpose (Bianchi et al. 2019; Zhang et al. 2015; Doube et al. 2010). Hence, 

our group developed a new software in 3D-Slicer called BoneTexture. The tool was validated by 

comparing it with μCT imaging of ex vivo  bone samples. Briefly, 16 condylar bone specimens 
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were obtained from patients diagnosed with TMJ OA and underwent surgical resection. A total 

of 35 images were acquired using CBCT and μCT, with a focus on areas of subchondral trabecu-

lar bone that remained unaffected, as well as areas that experienced bone loss. The presence of 

osteoclastic lacunae in histological sections stained with hematoxylin and eosin confirmed the 

identification of bone defect regions (Figure 1.14). In both μCT and CBCT images, the computed 

texture and bone morphometry features demonstrated a very high separability value (AUC=0.85) 

between unaffected and affected trabeculae, suggesting their sensitivity to subtle bone changes 

(Vimort et al. 2018). Interestingly, the GLRLM and GLCM features computed from CBCT im-

ages did not demonstrate a strong correlation with the number of osteoclasts in the histological 

analysis of corresponding bone samples. This suggests that these biomarkers may be associated 

predominantly with other bone characteristics, such as 3D morphology and grayscale organiza-

tion (Ebrahim et al. 2017). 

 

 

Figure 1.14: Schematic illustration of a) The condyle bony sample, b) the obtained hr-CBCT and 

μCT images, and c) Histology analysis depicting osteoclasts’ presence adjacent to areas of tra-

becular bone loss. Adapted from “Detection of Bone Loss via Subchondral Bone Analysis”, by 

Vimort et al., 2018, Proc SPIE Int Soc Opt Eng. 2018 Feb;10578:105780Q. doi: 

10.1117/12.2293654. Epub 2018 Mar 12. PMID: 29769754; PMCID: PMC5950720. 

 

In order to assess the compatibility between the Bone texture tool with Ibex and BoneJ software 

for computing bone textural features, a dataset comprising 66 high-resolution cone-beam com-
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puted tomography (hr-CBCT) images of mandibular condyles was employed. These images, ob-

tained from both healthy individuals and those with temporomandibular joint osteoarthritis, had 

an isotropic voxel size of 0.08 mm³. The results indicated a strong Spearman correlation (ranging 

from 0.7 to 1) among the software applications, with statistical significance observed for all vari-

ables, except for Grey Level Non-Uniformity (p = 0.627) and Short Run Emphasis (p = 0.06). 

The Bland–Altman plots displayed favorable agreement between the software applications along 

the vertical axis, while the horizontal axis demonstrated a narrow average distribution for Corre-

lation, Long Run Emphasis, and Long Run High Grey Level Emphasis. Overall, the data indicat-

ed consistency among the three applications for analyzing bone radiomics in hr-CBCT. Never-

theless, further studies are warranted to assess the suitability of these variables as novel bone 

imaging biomarkers for diagnosing TMJ-related bone diseases (Bianchi et al. 2019). 

Despite the promising potential of quantitative imaging markers in detecting subtle tissue chang-

es, the complex and multifaceted nature of osteoarthritis disease, coupled with the limited under-

standing of the interactions between joint structures and factors involved in OA, necessitates the 

integration of imaging with patient-derived clinical features as well as other sensitive markers of 

the disease (Xuan et al. 2023; Teoh et al. 2022; Cuadra, Favre, and Omoumi 2020).  

In the initial phases of osteoarthritis, changes in the metabolism of joint tissues occur before any 

evident structural alterations. By examining specific biological markers released into bodily flu-

ids as a result of this tissue turnover, valuable data could be obtained for diagnosing the condi-

tion, predicting its progression, and developing innovative treatment approaches (Liem et al. 

2022; Rousseau, Chapurlat, and Garnero 2021). 
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1.8 Quantitative Biological Markers in OA: Exploring Disease Development & Progression 

A biomarker is a trait that can be objectively evaluated and used as an indication of regular bio-

logical processes, disease-causing actions, or responses to treatments (Puntmann 2009). An op-

timal biomarker should be present in all individuals diagnosed with a particular condition, be 

specific to that disease, and be detectable before apparent clinical symptoms arise. Additionally, 

it should be reversible with proper treatment and allow for a cut-off value that minimizes overlap 

between normal health and the disease state (Zwiri et al. 2020; Califf 2018). 

A working group funded by the NIH introduced a goal-oriented classification system symbolized 

by the acronym BIPED, denoting the five categories of markers: burden of disease, investigative, 

prognostic, efficacy of intervention, and diagnostic. This classification scheme aimed to promote 

the development of a shared language and structure, allowing for clearer communication of 

knowledge and progress concerning OA biomarkers within both clinical and research contexts 

(Henrotin 2022; Rousseau, Chapurlat, and Garnero 2021). 

To date, no direct disease markers panel for temporomandibular disorders is used in routine clin-

ical practice. However, there has been significant progress in exploring biological markers, re-

flecting ongoing efforts to conduct an in-depth evaluation of this field, and paving the way for 

future research directions based on the accumulated evidence previously discussed (Zwiri et al. 

2020).  

Many studies on temporomandibular disorders have mainly focused on the local effects of in-

flammatory cytokine concentrations, and their role in communication between various temporo-

mandibular tissues during both health and disease. This is particularly pertinent because synovial 

fluid surrounds the entire joint and can provide a direct indication of tissue turnover or disease-
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related changes (Kalogera et al. 2023; Ali et al. 2022; Kellesarian et al. 2016). However, serum 

biomarkers, which offer a nonlocalized assessment of the joint biochemical changes, are often 

more practical and less invasive in a clinical setting compared to acquiring intra-articular synovi-

al fluid samples. Moreover, despite their systemic nature, serum markers frequently align with 

local joint changes (Burland, Hunt, and Lattermann 2023; Keemu et al. 2021). Similarly, saliva 

offers a noninvasive, convenient, and cost-effective method for collecting biomarkers compared 

to synovial fluid. Due to the proximity of the salivary glands to blood vessels, many proteins 

found in human serum can also be detected in saliva. Moreover, disease-discriminating bi-

omarkers can be found solely in saliva (Aoun et al. 2023; Dawes and Wong 2019; Jasim et al. 

2018). As a result, researchers have been motivated to investigate the association between serum 

and saliva biomarkers and disease processes, as well as their potential for early detection and 

prediction of disease progression (Doshi et al. 2020; Ishibashi et al. 2020; Jasim et al. 2020; 

Dawes and Wong 2019). 

Persuasive evidence indicates that systemic processes may have a significant impact on TMD. 

Indeed, the levels of pro-inflammatory proteins circulating throughout the body have been rec-

ognized as contributing factors to the underlying mechanisms of TMJ disorders (Watanabe et al. 

2023; Ali et al. 2022; Kellesarian et al. 2016; Kristensen et al. 2014). 

One of the pioneering studies that revealed a connection between localized and systemic changes 

in painful temporomandibular disorders was conducted by Slade et al. In this research, blood was 

drawn from 344 participants, and the plasma samples were processed using a standard multiplex 

platform, allowing the simultaneous measurement of 22 specific cytokines. These cytokines en-

compassed monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1α, β , 

epithelial-derived neutrophil-activating peptide-78 (ENA-78), fibroblast growth factor basic 
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(FGF basic), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-

stimulating factor (GM-CSF), thrombopoietin (Tpo), IFN-γ, IL-1α, IL-1β, IL-1 receptor antago-

nist (IL-1ra), IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-17, TNF-α, , and VEGF. The analytical out-

comes revealed statistically significant variations in the cytokine profiles between different TMD 

subgroups compared to the controls. This suggested that serum levels of cytokines could be em-

ployed as valuable diagnostic indicators to differentiate between various etiologically-distinct 

forms of TMD (Slade et al. 2011). Building on these findings, another study investigated for the 

first time the correlation between local and systemic biomarker profiles and 3D condylar mor-

phology changes in TMJ OA patients compared to healthy controls. A total of 24 participants, 

including 12 with TMJ OA and 12 healthy individuals, underwent TMJ arthrocentesis and veni-

puncture. Biomarker expression was assessed locally (in synovial fluid) and systemically (in se-

rum samples) using a custom quantibody protein microarray. Out of the 50 evaluated biomarkers 

associated with arthritis onset and progression, 32 biomarkers consistently fell within the stand-

ard curve of detection in either blood or synovial fluid. These biomarkers showed statistical cor-

relation with variations in the condylar surfaces at specific anatomical regions (p < 0.05) using 

Pearson correlation color maps in the MANCOVA shape analysis tool (Figure 1.15). Further-

more, synovial fluid levels of angiogenin (ANG), growth differentiation factor 15 (GDF15), tis-

sue inhibitor of metalloproteinase-1(TIMP-1), Chemokine (C-X-C motif) ligand 16 (CXCL-16), 

MMP-3, and MMP-7 were significantly correlated with bone apposition of the condylar anterior 

surface. On the other hand, serum levels of ENA-78, MMP-3, Plasminogen activator inhibitor-1 

(PAI-1), vascular endothelial (VE)-Cadherin, VEGF, GM-CSF, TGF-β1, IFN-γ , TNF-α, IL-1, 
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and IL-6 were significantly correlated with flattening of the lateral pole (Cevidanes et al. 2014). 

 

Figure 1.15: Outcome of Shape Analysis MANCOVA for Proteins in the synovial fluid and se-

rum, showing statistically significant Pearson correlations between biomarker levels and condy-

lar morphology. Adapted from “3D osteoarthritic changes in TMJ condylar morphology corre-

lates with specific systemic and local biomarkers of disease” by Cevidanes et al., 2014, Osteoar-

thritis Cartilage;22(10):1657-67. doi: 10.1016/j.joca.2014.06.014.  
 

Markers associated with alterations in the surface morphology of the mandibular condyle in TMJ 

OA patients are briefly described below. The existing literature presents a growing body of evi-

dence demonstrating the significance of these markers, but primarily based on studies conducted 

in the context of knee osteoarthritis. 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that contribute 

to the degradation and remodeling of extracellular matrix (ECM) proteins. They are involved in 

several physiological and biological activities, such as blood vessel formation, structural devel-
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opment, and repair of tissue (Cabral-Pacheco et al. 2020; Tokuhara et al. 2019; Cui, Hu, and 

Khalil 2017). Metalloproteinases are also essential regulators of  physiological and pathological 

osteoclastogenesis, as their capacity to shed RANKL grants stromal cells and osteoblasts with 

another level of control over osteoclast maturation and activation (Aiken and Khokha 2010).  

Matrix Metalloproteinase-3 (MMP-3) is a member of the MMPs family. It is produced by fibro-

blasts, chondrocytes, synoviocytes, and macrophages (Jarecki et al. 2022; Guo et al. 2017). Im-

munohistochemical analysis of 90 patients with different stages of OA showed MMP-3 protein 

presence in the synovial tissue of all knees, even in the early stages of the disease. The OA group 

exhibited significantly higher MMP-3 protein expression compared to the normal synovium 

(P<0.05). Additionally, there was a direct correlation between MMP-3 protein expression and 

OA severity (P<0.05) (Chen, Huang, et al. 2014). Likewise, in a study of 56 patients with prima-

ry knee OA, the serum levels of MMP-3 were noticeably higher than those in 31 healthy individ-

uals (Georgiev et al. 2018). ELISA analysis of synovial fluid and peripheral blood samples from 

39 females with knee osteoarthritis disclosed significantly higher MMP-3 levels in both serum (p 

= 0.006) and synovial fluid (p = 0.03) in patients with more advanced disease stage (Jarecki et al. 

2022). A notable connection was observed between four polymorphisms (rs639752, rs520540, 

rs602128, and rs679620) in the MMP-3 gene and a heightened risk of OA, implying that single 

nucleotide polymorphisms might play a role in the onset of OA (Guo et al. 2017). MMP-3 

knockout (MMP-3 KO) in mice negated the negative effects of ovariectomy on bone mineral 

density. This protective effect was correlated with a decreased DPD/creatinine ratio in MMP-3 

KO mice relative to wild-type mice, implying a reduction in osteoclast activity (Jehan et al. 

2022). Furthermore, MMP-3 plays a pivotal role in the onset and progression of osteoarthritis, 

influencing nearly every phase of OA's advancement. (Figure 1.16) (Wan et al. 2021). 
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Figure1.16: The involvement of MMP-3 in osteoarthritis progression. MMP-3 facilitates osteoar-

thritis progression in the preclinical and clinical stages. It promotes inflammatory cell accumula-

tion, vascular invasion, cartilage matrix degradation, osteoclast differentiation, while inhibiting 

the differentiation of mesenchymal stem cells. Adapted from “Matrix metalloproteinase 3: a 

promoting and destabilizing factor in the pathogenesis of disease and cell differentiation” by 

Wan et al., 2021, Front. Physiol;12. https://doi.org/10.3389/fphys.2021.663978.  

MMP-7, also known as matrilysin, is the smallest member of the MMP family, consisting solely 

of the common catalytic domain and the zinc-binding region. MMP-7 can degrade both non-

ECM substrates and ECM molecules (Liu, Tan, and Liu 2020; Tao et al. 2015). The onset of 

knee and/or hand osteoarthritis was investigated by evaluating serum proteins several years prior 

to radiographic evidence of the disease. Using microarray platforms, 169 proteins were assessed 

in a case-control study. The cohort consisted of 22 incident OA cases and 66 age-and-sex-

matched controls. Serum samples were analyzed at the time of radiographic classification of par-

ticipants into diseased and control cases, as well as 10 years prior, during which all participants 

lacked radiographic signs of OA. Proteins exhibiting mean signal intensities fourfold greater than 

https://doi.org/10.3389/fphys.2021.663978
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the background were compared statistically. Notably, MMP-7 and PAI-1 presented differential 

levels prior and at the time of radiographic diagnosis of OA. These results suggest that altera-

tions in serum proteins, particularly those involved in matrix degradation, cellular activation, 

inflammation , and bone collagen degradation may be indicative of early OA pathogenesis (Ling 

et al. 2009). Other studies also highlighted the potential involvement of MMP-7 in osteoarthritis. 

In a rat model of knee OA, MMP-7 levels were significantly elevated in OA synoviocytes com-

pared to controls. This elevation suggests a link between MMP-7 and the pathogenic mecha-

nisms underlying OA (Pérez-García et al. 2019). Furthermore, a study involving 60 participants, 

which included 30 individuals with knee OA and 30 healthy counterparts, found that MMP-7 

protein expression in the articular cartilage and serum was substantially higher in the OA cohort. 

This further indicates that MMP-7 might play a role in the development of OA (Tao et al. 2015).  

Effective bone remodeling is achieved through a balance between bone resorption and bone for-

mation.  RANKL is a protein that binds to its receptor, RANK, on the surface of osteoclast pre-

cursors and mature osteoclasts. This binding promotes the differentiation, activation, and surviv-

al of osteoclasts. Hence, RANKL ensures normal breakdown of bone tissue. RANKL operates in 

conjunction with osteoprotegerin, which acts as a decoy receptor for RANKL. OPG prevents 

RANKL from binding to RANK, thus regulating bone resorption. The equilibrium between 

RANKL and OPG is crucial for bone homeostasis (Kitaura et al. 2020; Kohli and Kohli 2011).  

In pathological settings, the activity of soluble RANKL and the MMP responsible for its shed-

ding changes. While normal shedding of RANKL inhibits osteoclast activation, increased levels 

of soluble RANKL can activate osteoclasts. Within a mouse model of bone metastasis, the re-

lease of RANKL by MMP-7 led to osteoclast activation and osteolysis (Figure 1.17) (Aiken and 

Khokha 2010; Thiolloy et al. 2009). 
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Figure 1.17: Metalloproteinases facilitate interactions among bone cells. (A) At normal levels, 

the shedding of RANKL from stromal cells or osteoblasts reduces the active RANKL quantity, 

leading to diminished osteoclastogenesis. (B) In disease conditions, heightened RANKL shed-

ding produces a localized concentration of soluble RANKL, which stimulates osteoclast precur-

sors and enhances osteoclastogenesis. Adapted from “Unraveling metalloproteinase function in 

skeletal biology and disease using genetically altered mice” by Aiken A., and Khokha, R, 2010, 

Biochimica et Biophysica Acta (BBA) - Molecular Cell Research;1803(1):P121-132. 

https://doi.org/10.1016/j.bbamcr.2009.07.002. 

 

The activity and expression of MMPs are controlled at various phases, from gene transcription 

and the production and secretion of proenzymes to their activation and inactivation. This regula-

tion is influenced by factors such as cytokines, growth factors, integrins, and ECM proteins. Ex-

amples of MMPs activators include TNF-α, TGF-β, as well as certain interleukins, whereas 

TIMPs, brief for tissue inhibitors of MMPs, are the primary MMP inhibitors (Liang et al. 2016). 

IL-1, IL-6, and TNF-α are key inflammatory mediators driving OA's pathogenesis. These cyto-

kines trigger a self-perpetuating cycle culminating in damage to cartilage and intra-articular 

structures that arises primarily from the activation of catabolic enzymes such as MMPs (Molnar 

et al. 2021).  

Chondrocytes, synoviocytes, osteoblasts, osteoclasts, and macrophages in knee joints express a 

receptor called type I IL-1 receptor I (IL-1RI) to which IL-1β binds (Fields, Günther, and 

Sundberg 2019). IL-1β induces catabolic events that result in cartilage degradation via mitogen-
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activated protein kinase (MAPK) signaling. IL-1β also stimulates the secretion of IL-6, which 

both amplifies IL-1β 's catabolic effects and functions as a catabolic mediator in its own right. 

IL-1β induces other inflammatory mediators via the extracellular signal-regulated kinase (ERK) 

pathway, contributing to synovial inflammation, which further enhances the secretion of IL-1β 

and other cytokines and accelerates the progression of OA (Chow and Chin 2020; Jenei-Lanzl, 

Meurer, and Zaucke 2019). As a potential therapeutic strategy for treating OA and halting its 

progression, the inhibition of IL-1β action has been investigated. IL-1β inhibition did not pro-

duce the desired effects of preventing OA progression, demonstrating that OA pathogenesis is 

not dependent on a single cytokine; rather, the same signaling pathways can be activated through 

various cytokines, and the interaction of multiple factors is essential for the onset and progres-

sion of the disease (Molnar et al. 2021; Theeuwes et al. 2021; Chevalier and Eymard 2019; 

Chevalier, Eymard, and Richette 2013).  

 

IL-6 belongs to the IL-6 family of cytokines that utilize the common signal-transducing protein 

gp130, signaling through pathways like Janus kinase/signal transducers and activators of tran-

scription (JAK/STAT), MAPK, and phosphoinositide 3-kinases (PI3K) (Baran et al. 2018; Rose-

John 2018). Various cells, such as chondrocytes, osteoblasts, and synoviocytes, produce IL-6  

(Wiegertjes et al. 2019). 

When IL-6 binds to soluble IL-6 receptor (sIL-6R), it activates trans-signaling, leading to its pro-

inflammatory actions. In contrast, IL-6's binding to membrane-bound IL-6 receptor (mbIL-6R) 

triggers classic-signaling, which has anti-inflammatory and regenerative effects (Scheller et al. 

2011). The dominance between trans- and classic signaling is often determined by the sIL-6R 

concentration (Reeh et al. 2019). The primary source of sIL-6R in OA is the proteolytic cleavage 
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of mbIL-6R, a process amplified by proteases such as metalloproteinases (Akeson and Malemud 

2017). 

IL-6 treatment of chondrocytes and cartilage explants results in reduced proteoglycan content 

and an increased production of matrix metalloproteinase such as MMP-3. Systemic anti-IL-6 

treatment alleviated cartilage damage, osteophyte development, and synovitis in experimental 

knee mouset models (Latourte et al. 2017). When compared to healthy controls, the concentra-

tion of IL-6 in synovial fluid is substantially higher in patients with end-stage OA (Li et al. 2020; 

Beekhuizen et al. 2013). In addition, IL-6 appears to have a predictive value in OA. In a prospec-

tive cohort study involving 163 participants with knee OA, a higher baseline concentration of IL-

6 and TNF-α was associated with a greater cartilage volume loss after 3 years (Stannus et al. 

2010).  

TNF-α is a member of the tumor necrosis factor superfamily, which includes soluble and mem-

brane-bound type II transmembrane proteins. The membrane-bound variant is biologically more 

active than its soluble counterpart  (Z. Su, Dhusia, and Wu 2022). TNF-α interacts with two 

types of membrane receptors present on almost all cell types, each of which initiates a distinct 

signaling pathway (Jang et al. 2021). Complex 2 induces apoptosis and cell death, whereas 

Complex 1 promotes cell survival and upregulates pro-inflammatory genes. Important transcrip-

tional pathways include NF-κB, AP-1, and MAPK (Wojdasiewicz, Poniatowski, and Szukiewicz 

2014; Zelová and Hošek 2013). TNF-α plays a significant role in bone remodeling. It directly 

influences the levels of osteoclast precursors in the bone marrow by increasing the expression of 

c-fms. Additionally, it stimulates osteoclast activation by enhancing the signaling pathways of 

the receptor activator of NF-κB (Atzeni and Sarzi-Puttini 2013). Furthermore, TNF-α hinders the 

formation of proteoglycan components in chondrocytes and contributes to the degradation of the 
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ECM by prompting the release of collagenases and aggrecanases, such as MMP-3, mirroring the 

impacts of IL-1β (Molnar et al. 2021). Considering its potent pro-inflammatory actions, the neu-

tralization of TNF-α might be a potential therapeutic strategy for OA. However, in a network 

meta-analysis that compared the efficacy and safety of biologics neutralizing TNF-α in knee OA 

patients, it was found that while pain relief was achieved, no significant differences were ob-

served between biologics and placebo in terms of physical function and stiffness (Li, Mai, et al. 

2022).  

 

TGF-β constitutes a large family of growth factors that play an essential role in early embryonic 

development, postnatal growth, regulation of cell proliferation, differentiation, apoptosis, migra-

tion in various tissues. In mammals, TGF-β is synthesized and secreted with a latency-associated 

peptide domain. Activation of TGF-β necessitates the cleavage of this latency-associated peptide 

domain, which subsequently leads to the release of the mature functional domain (van der Kraan 

2022; Shen, Li, and Chen 2014; Pm et al. 2009; Gordon and Blobe 2008). 

TGF-β has been shown to activate both canonical (SMAD-dependent) and non-canonical 

(MAPK, PI3K, Rho-like GTPases, and Janus kinases (JAK)-signal transducer and activator of 

transcription proteins (STAT) signaling pathways (Thielen et al. 2021; Matsuzaki 2013). Macro-

phages, fibroblasts, and osteoblast cells are capable of producing and activating TGF-β within 

joints (Thielen et al. 2021; Zheng et al. 2018). Activation of TGF-β inhibits chondrocyte hyper-

trophy and stimulates the expression of Prg4, the gene that encodes lubricin, an essential mole-

cule that reduces joint friction (Miyatake et al. 2016). In addition, TGF-β inhibits inflammatory 

pathways, including IL-6 signaling (Wiegertjes et al. 2019). 
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While the absence of TGF-β signaling is detrimental to healthy joints, inhibiting TGF-β limits 

osteoarthritis progression in experimental animal models (van der Kraan 2022). The analysis of 

subchondral bone in a mouse model of knee osteoarthritis, induced by changes in mechanical 

loading, revealed disruptions in the subchondral bone microstructure. Additionally, there was an 

increase in the number of osteoclasts, evidenced by a rise in tartrate-resistant acid phosphatase 

(TRAP)-positive staining. These changes resembled patterns seen in a mouse model of Camura-

ti-Engelmann disease (CED) that is characterized by TGF-β activation in the subchondral bone. 

Administering the TβRI inhibitor SB-505124 (1 mg/kg) to knee-OA mice prevented osteoarthri-

tis changes in both the subchondral bone and articular cartilage. However, high concentrations of 

the TβRI inhibitor (2.5 and 5 mg/kg) resulted in the loss of proteoglycan in the articular cartilage, 

suggesting that TGF-β has distinct roles in the subchondral bone and articular cartilage. Conse-

quently, inhibiting TGF-β activity in the subchondral bone could potentially prevent articular 

cartilage degeneration during osteoarthritis development (Zhen et al. 2013). Similar findings, as 

observed in knee osteoarthritis, were also reported in a recent study investigating the role of 

TGF-β signaling in the cartilage and subchondral bone of the TMJ in TMD rat model induced by 

occlusal changes. When compared to controls, the TMJ's subchondral bone in the TMD rat mod-

els was notably altered, as shown by µCT analysis. The TMD group exhibited a significant de-

crease in BV/TV and a marked increase in Tb.Sp. Additionally, TMD rats presented a considera-

ble rise in the number of TRAP-positive cells in the subchondral bone compared to controls. 

When using CED mouse models that possess mutations to release active TGF-β1 by osteoblasts, 

it was also evident that an increase in TGF-β1 triggers OA in the TMJ. This was confirmed 

through histological changes in the articular cartilage and µCT images of the subchondral bone. 

Importantly, inhibiting the TGF-β receptor I mitigated the progression of TMJ OA in the TMD 
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models, implying that the activation of TGF-β signaling might be instrumental in TMJ OA de-

velopment (Zheng et al. 2018).  

While the impact of inhibiting TGF-β activity in clinical studies remains unreported, an associa-

tion between TGF-β concentrations and the severity of Knee OA has been observed (van der 

Kraan 2022). In one study involving 160 patients with knee OA and 80 healthy controls, TGF-β1 

serum levels were found to be significantly higher in the knee OA group (p=0.01). Moreover, the 

average TGF-β1 serum levels directly correlated with the Kellgren-Lawrence (KL) knee OA se-

verity grading system. Serum levels of TGF-β1 were significantly lower in KL grade 1 compared 

to those in KL grades 2, 3, and 4 (p=0.002). Logistic regression analysis showed a positive corre-

lation between TGF-β1 levels and the onset of knee OA (He et al. 2017). Another study investi-

gated the subchondral bone regions beneath cartilage that was visibly present (CA+) and carti-

lage that was denuded (CA-) in 35 OA arthroplasty patients, consisting of 15 men and 20 wom-

en. The researchers measured the concentration of active TGF-β1 using ELISA and evaluated its 

correlation with bone quality (via synchrotron micro-CT), cellularity, and vascularization (using 

histology). Bone samples from CA- regions exhibited significantly higher concentrations of ac-

tive TGF-β1 protein than those from CA+ regions. Furthermore, trabecular bone in CA- areas 

had increased bone volume, greater trabecular number, and reduced trabecular separation com-

pared to CA+ regions (Figure 1.18). Additionally, CA- bone areas revealed a higher osteocyte 

density with larger, less spherical osteocyte lacunae and enhanced bone matrix vascularity com-

pared to CA+ regions (Figure 1.19). A statistically significant relationship was found between an 

increase in levels of active TGF-β1 and an increase in bone volume. Additionally, more severe 

OA was associated with a decrease in osteoclast density and lacunar volume. Overall, the results 

of this study indicate that an augmented concentration of active TGF-β1 in the subchondral bone 
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of human knee OA is spatially linked to compromised bone quality and heightened disease se-

verity. Furthermore, it suggests TGF-β1's potential as a therapeutic target in curbing or mitigat-

ing the progression of human OA (Muratovic et al. 2022).  

Figure 1.18: 3D Reconstructions of Subchondral Bone Microstructures Using Synchrotron Ra-

diation µCT: (A) CA+ Regions and (B) CA- Regions. Subchondral bone beneath extensively 

degraded cartilage shows a marked increase in bone volume and trabecular number, with reduced 

trabecular spacing. Adapted from “Elevated levels of active Transforming Growth Factor β1 in 

the subchondral bone relate spatially to cartilage loss and impaired bone quality in human knee 

osteoarthritis” by Muratovic et al., 2022, Osteoarthritis and Cartilage; 30 (6): 896-907. 
https://doi.org/10.1016/j.joca.2022.03.004 

 

Figure 1.19: 3D Reconstructions of Subchondral Bone (light grey) and Vascular Canals (red) Using 

Synchrotron Radiation µCT in  (A)CA+ and (B) CA- Regions. (C) Quantitative findings highlight 

a notable increase in the density of vascular canals within the bone matrix. Adapted from “Elevated 

levels of active Transforming Growth Factor β1 in the subchondral bone relate spatially to cartilage 

loss and impaired bone quality in human knee osteoarthritis” by Muratovic et al., 2022, Osteoar-

thritis and Cartilage; 30 (6): 896-907. https://doi.org/10.1016/j.joca.2022.03.004. 

 

https://doi-org.proxy.lib.umich.edu/10.1016/j.joca.2022.03.004
https://doi-org.proxy.lib.umich.edu/10.1016/j.joca.2022.03.004
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Tissue inhibitors of metalloproteinases (TIMPs) represent intrinsic proteins that control MMP 

activity. Variations in the levels of TIMPs or MMPs can induce changes to the MMP/TIMP ra-

tio, consequently impacting MMP function. Apart from their MMP inhibitory role, TIMPs regu-

late extracellular matrix turnover, tissue remodeling, and cellular conduct. In vitro studies have 

demonstrated the presence of TIMP-1 in chondrocytes, osteoblasts, osteocytes, and osteoclasts, 

suggesting its potential influence on bone maintenance and remodeling (Cabral-Pacheco et al. 

2020; Xi et al. 2020; Cui, Hu, and Khalil 2017; Brew and Nagase 2010; Haeusler et al. 2005). 

Overexpression of TIMP-1 in osteoblasts led to an increase in trabecular bone volume and a re-

duction in trabecular separation in female mice. Furthermore, an assessment of the bone's dy-

namic histomorphometric parameters indicated declines in both the mineralizing surfaces and the 

bone formation rate (Geoffroy et al. 2004). Interestingly, although higher concentrations of 

TIMP-1 result in decreased bone resorption, physiological concentrations of TIMP-1 enhance the 

bone-resorbing activity of osteoclasts in vitro, a function that appears distinct from its MMP in-

hibiting activity (Liang et al. 2016; Sobue et al. 2001). 

In a prospective clinical study, a cohort of 29 patients was recruited to investigate the association 

between TIMP-1 serum levels and the rapid progression of hip osteoarthritis, which was defined 

by the rate of joint space narrowing. Among these 29 individuals, ten displayed joint space nar-

rowing exceeding 0.6 mm per year, a categorization referred to as accelerated progression. With-

in this subgroup of patients, both the initial TIMP-1 concentration and the delta value represent-

ing the change in TIMP-1 serum levels (measured as the difference between the initial and final 

TIMP-1 concentrations) exhibited correlations with the progression of joint space narrowing. 

The reduction in TIMP-1 serum levels could potentially be ascribed to a decrease in localized 
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production (and/or an increase in consumption), thus contributing to degradation of the carti-

lage’s extracellular matrix (Chevalier et al. 2001). Employing a multiplex immunoassay tech-

nique, an in-depth analysis was conducted on synovial fluid collected from 25 patients diagnosed 

with knee osteoarthritis. The relationship between knee osteoarthritis symptoms and radiographic 

severity and 47 cytokines, chemokines, and growth factors was investigated using multivariate 

regression analysis with adjustments for false discovery rate. The severity of radiographic knee 

osteoarthritis was determined by parameters like Kellgren-Lawrence grade, joint space narrow-

ing, and osteophyte scores. TIMP-1 and VEGF were found to be significantly correlated to radi-

ographic osteoarthritis severity. Additionally, VEGF, MMP-3, TIMP-1, and MCP-1 were associ-

ated with knee osteoarthritis symptoms. These findings suggest that these specific biomarkers 

might hold promise as potential therapeutic targets, particularly for individuals at elevated risk of 

progressive knee osteoarthritis (Haraden et al. 2019).  

In a recent study, synovial fluid samples were collected from the knees of 65 patients diagnosed 

with osteoarthritis, comprising 46 individuals in the early knee OA category (KL grade ≤2) and 

19 individuals in the advanced knee OA category (KL grade ≥3). An assessment of interleukin 

levels, matrix metalloproteinase concentrations, and tissue inhibitor of metalloproteinase levels 

was conducted using a multiplex ELISA-based method. The results revealed significantly lower 

concentrations of MMP-3 and TIMP-1 in the early OA patient group compared to the end-stage 

OA patient group (P<0.01). These findings imply the potential utility of these markers in provid-

ing comprehensive insights into the pathological progression of OA (Plsikova Matejova et al. 

2021).  

Plasminogen activator inhibitor-1 (PAI-1) belongs to the family of serine protease inhibitors 

(Serpin). It mainly inhibits tissue-type and urokinase-type plasminogen activators, preventing 
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fibrinolysis. Recent studies have shed light on expanding function of serine proteinases in carti-

lage degradation such as activation of inactive matrix metalloproteinases, interaction with cell-

surface receptors, cytokine regulation, and the direct breakdown of the extracellular matrix. Ad-

ditionally, research has demonstrated that the levels of their inhibitors influence the progression 

of osteoarthritis (Wilkinson 2021; Ajekigbe et al. 2019; Moritake et al. 2017; Kaji 2016; Czekay 

et al. 2011). One study involved isolating human articular chondrocytes from osteochondral 

specimens taken from ten patients with advanced knee osteoarthritis undergoing arthroplasty. 

There was a marked decline in PAI-1 expression in chondrocytes located in lesioned areas com-

pared to non-lesioned areas. Moreover, the chondrocytes from both lesional and non-lesional 

areas of human cartilage showed varied reactions to shear stress in terms of PAI-1 gene expres-

sion. Under moderate shear stress, chondrocytes from non-lesional areas displayed an increase in 

PAI-1 expression. Whereas chondrocytes from lesioned areas not only had significantly reduced 

PAI-1 expression at rest but also lacked the capacity to enhance PAI-1 expression in response to 

moderate shear stresses. This atypical chondrocyte response to excessive loading might disrupt 

the balance between catabolic and anabolic activities during cartilage ECM remodeling, leading 

to an increase in MMPs and potentially accelerating the progression of OA (Yeh et al. 2009). 

Another study examined the roles of PAI-1 in the subchondral bone of OA knees utilizing PAI-

1-knock out (KO) and wild type (WT) mice. The researchers’ findings indicated that OA led to a 

reduction in trabecular bone mineral density of the subchondral bone in PAI-1 KO mice, as de-

termined by quantitative computed tomography. Moreover, the deficiency of PAI-1 appeared to 

exacerbate subchondral osteopenia after OA's induction in mice. This compounded effect seemed 

to further deteriorate cartilage, although the observed statistical differences were not significant. 

In addition, the absence of PAI-1 was associated with an elevated RANKL expression, triggered 
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by IL-1β, in mouse osteoblasts. There was also an increased osteoclast formation from mouse 

bone marrow cells in the presence of RANKL and M-CSF. Remarkably, the lack of PAI-1 sig-

nificantly enhanced the RANKL expression and the RANKL/OPG mRNA ratio in mouse prima-

ry osteoblasts. Based on these observations, the researchers suggested that PAI-1 could offer pro-

tection against bone resorption in the subchondral bone associated with osteoarthritis (Moritake 

et al. 2017).   

Interferons (IFNs) were first identified as agents that inhibit viral replication. They are divided 

into type I, type II, and type III, based on receptor specificity and sequence homology. IFN-γ is a 

type II interferon produced by CD4+ T helper cell type 1 (Th1) lymphocytes, CD8+ cytotoxic 

lymphocytes, natural killer (NK) cells, and professional antigen-presenting cells (APCs). The 

role of IFN-γ varies depending on its cellular source: production by APCs is essential for their 

self-activation and for activating adjacent cells; when secreted by NK cells, it plays a crucial role 

in early host defense against infections, and T lymphocytes become the primary source of IFN-γ 

during the adaptive immune response (Shan et al. 2017; Lin and Young 2014; Schroder et al. 

2004).  

While osteoarthritis has traditionally been categorized as a non-inflammatory condition when 

compared to rheumatoid arthritis (RA), recent research suggests that for specific patient subsets, 

OA exhibits characteristics of inflammation. In such cases, patients frequently display instances 

of inflammatory infiltration in their synovial membranes (Hügle and Geurts 2017; Withrow et al. 

2016; Ponchel et al. 2015; de Lange-Brokaar et al. 2012; Sakkas and Platsoucas 2007). Investi-

gations have indicated that the number of inflammatory cells within synovial tissue tends to be 

lower in OA patients compared to those with RA, but still higher than healthy individuals (Li et 
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al. 2017; Pessler et al. 2008; Rollín et al. 2008; Ishii et al. 2002). Among the inflammatory cells 

identified within the synovial membranes of OA patients, T cells were notably abundant. A study 

involving 25 OA patients and 13 healthy controls revealed that circulating Th1 cells (IFN-

γ+CD4+CD8− T cells) and serum IFN-γ levels were notably higher in OA patients compared to 

healthy controls (Qi et al. 2016; Pessler et al. 2008). Despite early experiments suggesting that 

IFN-γ concentrations in OA patients' synovial fluid fell below the limit of detection through 

ELISA analysis, reverse transcription polymerase chain reaction (RT-PCR) analysis demonstrat-

ed IFN-γ expression in cells from OA patients' synovial fluid when stimulated with PHA and 

ionomycin (Li et al. 2017; Haynes, Hume, and Smith 2002). Using knee OA mouse models, the 

expression of IFN-γ was observed to increase at the onset of OA (30 days after induction) and 

subsequently decrease in later stages (90 days after induction) (Shen et al. 2011). Meanwhile, a 

study analyzing the synovial fluid from 34 OA patients undergoing knee arthroplasty found a 

significant correlation between OA severity and knee pain levels with IFN-γ concentrations, 

suggesting that IFN-γ might be involved in osteoarthritis progression (Nees et al., 2019). In 

chondrocytes isolated from undamaged femoral head cartilage of patients with hip osteoarthritis, 

the capacity of IFN-γ to suppress IL-1-induced MMP expression was reduced. This reduction 

was attributed to decreased levels, activity, and signal transduction of IFN-γR1. Thus, the modu-

lation of IFN-γR1 and the diminished response to endogenous IFN-γ may be key mechanisms in 

the pathogenesis of osteoarthritis and cartilage degradation (Ahmad, El Mabrouk, et al. 2009).  

Chemokines constitute a family of small cytokines (8–14 kDa) that hold a pivotal role in orches-

trating the movement of inflammatory cells from the vascular system to tissues at the site of in-

flammation. Specifically, they exhibit the ability to induce chemotaxis in neutrophils, macro-

phages, and T lymphocytes. This, in turn, triggers the production of inflammatory cytokines, fur-
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ther prompting the upregulation of matrix-degrading enzymes, leading to degradation of the ex-

tracellular matrix. Additionally, the inflammatory cytokines possess the capacity to stimulate 

both synovium and other tissues to generate additional chemokines (Qiao et al. 2023; Tipton, 

Christian, and Blumer 2016; Raman, Sobolik-Delmaire, and Richmond 2011).  

CXCL-16 represents a membrane-bound protein chemokine characterized by a glycosylated mu-

cin-like stalk and a cytoplasmic domain. Following cleavage, soluble CXCL-16 functions as a 

chemoattractant for cells that express the CXCR6 receptor, including CD8 T cells, NK T cells, 

and Th-1 polarized T cells. The interaction between CXCL-16 and CXCR6 initiates the activa-

tion of various pathways such as calcium mobilization, Akt/mTOR, and ERK/MAPK, along with 

their downstream effectors like NF-κB which potentially underlies the heightened secretion of 

cytokines such as TNF-α and IFN-γ (Li, Pan, et al. 2022; Nakase et al. 2012).  

Significant expression of CXCL-16 has been observed in the serum of knee osteoarthritis pa-

tients (n=32) compared to healthy subjects (n=40), as determined through ELISA assay (Ali-

moradi et al. 2023; Li et al. 2016). Interestingly, investigation into osteoclast-derived factors, 

such as TGF-β1, as contributors to bone remodeling, has revealed that TGF-β1 enhances the ex-

pression of CXCL-16 in osteoclasts. This enhancement subsequently facilitates the migration of 

osteoblasts, potentially serving to restore lost bone during the resorptive phase of bone turnover 

(Ibáñez et al. 2022; Ota et al. 2013). Moreover, the 3D chemotaxis assay demonstrated that 

CXCL-16 at a concentration of 50 ng/mL, unlike at 10 ng/mL, triggers chemotaxis in 

C3H10T1/2 cells. These cells share functional similarities with mesenchymal stem cells, sug-

gesting a potential role in aiding the recovery of damaged bones (Redding et al. 2020).  
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CC represents another subfamily within the chemokines. The interplay between chemokine lig-

ands (CCLs) and receptors (CCRs) is crucial, as it facilitates the recruitment of various immune 

cells and activates several signaling pathways, both of  which are implicated in the onset and 

progression of osteoarthritis. Moreover, CCLs can augment the expression of matrix metallopro-

teinases, leading to cartilage degradation (Mehana, Khafaga, and El-Blehi 2019; Miller et al. 

2016; Xu et al. 2015; Vergunst et al. 2005). A study sought to identify molecules that may play 

roles in communication among different structures within the knee joint, potentially contributing 

to osteoarthritis development. In this study, synovium and meniscus samples were collected from 

both early and end-stage OA patients; each group included five individuals. Researchers assessed 

genes and proteins of several cytokines, chemokines, metalloproteases, and their inhibitors. In-

triguingly, the gene expression of CCL21/6ckine was detected in both individually cultured syn-

ovial biopsies and those in coculture settings. The 6ckine protein was more abundant in meniscus 

cultures, both on their own and in combination, compared to the synovium-only cultures. Most 

notably, the protein levels of CCL21 were higher in cultures derived from end-stage OA sam-

ples. Specifically, cocultures showed significantly elevated levels when compared to individual 

cultures (p = 0.0264). These findings indicate that 6ckine might play a role in triggering inflam-

matory changes in early OA and exacerbate the loss of extracellular matrix during the progres-

sive and late stages of OA pathology (Favero et al. 2019). 

In addition to the aforementioned roles, CC chemokines are known to influence the differentia-

tion of osteoblasts and osteoclasts within OA joints and can also trigger pain responses (Brylka 

and Schinke 2019; Glyn-Jones et al. 2015). Interestingly, the CCR7/Rho signaling axis enhances 

the migration and resorption activities of osteoclasts in response to CCL21. This, in turn, modi-

fies the remodeling of the subchondral bone. Furthermore, CCL21 stimulates the migration and 
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differentiation of osteoclast precursor cells. This observation points to the potential therapeutic 

benefits of selectively inhibiting CCL21 to address the disturbed subchondral bone remodeling 

associated with OA (Zhang, Liu, et al. 2023; Lee et al. 2017). 

 

Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of growth factors 

and plays an essential role in neuronal growth, survival, and the modulation of pain sensitivity in 

the central nervous system (Miranda et al. 2019; Bathina and Das 2015). Changes in its levels 

have been observed in certain chronic pain conditions and during inflammation  (Chen, Walwyn, 

et al. 2014; Simão et al. 2014; Sarchielli et al. 2007). Multiple studies have highlighted the sig-

nificance of neurotrophins, including BDNF, in arthritis (Zhang et al. 2022; Orhurhu et al. 2020; 

Forsgren 2009; Asami et al. 2006). Elevated BDNF staining has been noted in fibroblasts and 

macrophages of osteoarthritic synovial tissue compared to healthy counterparts, with increased 

BDNF mRNA levels also identified in OA synovial fluid cells (Bratus-Neuenschwander et al. 

2018; Blaschke et al. 2003). In a study involving 27 knee OA patients and 19 healthy partici-

pants, knee OA patients demonstrated significantly higher mean plasma BDNF levels compared 

to the healthy group (p < 0.05). Further, a significant correlation emerged between plasma BDNF 

levels and self-reported pain. These results imply that BDNF levels might be linked to the joint 

pain mechanism during the early inflammatory phase of knee OA (Gowler et al. 2020). Utilizing 

clinical knee synovial samples from OA patients and animal models with induced knee OA were 

analyzed to investigate the impact of BDNF/TrkB signaling on chronic OA pain. Both BDNF 

and TrkB mRNA and proteins were detected in the knee synovia of OA patients. In experiments 

involving rats with induced knee OA, the effects of peripheral BDNF injections and the neutrali-

zation of endogenous BDNF using the TrkB-Fc chimera on established pain behaviors were as-
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sessed. Direct administration of BDNF into the joint intensified OA pain behavior in rats, where-

as the injection of the TrkB-Fc chimera mitigated these behaviors. These findings indicate a pos-

sible role of peripheral knee joint BDNF/TrkB signaling in chronic OA joint pain and suggest a 

potential therapeutic approach for addressing OA pain (Sorkpor et al., 2021). 

While many studies primarily explore the relationship between BDNF and pain, it's important to 

highlight that BDNF can also influence bone health. Research demonstrates that neurotrophins 

are prevalent in skeletal tissues and play roles in chondrogenesis, osteoblastogenesis, and osteo-

clastogenesis (Raheem1 et al. 2020; Skaper 2008; Mogi et al. 2000). Specifically, BDNF pro-

motes the differentiation of osteoblast-lineage cells in vitro and enhances the formation of new 

bone in vivo. The expression of TrkB by osteoblasts and osteocytes on the bone surface of 

mouse mandibles up to 28 days post-osteotomy indicates that bone cells continue to receive ex-

ogenous BDNF signals. This interaction subsequently results in persistent active bone remodel-

ing, which correlates with the narrowing of the bone marrow space and bone lacunae. These 

findings suggest that BDNF, produced due to peripheral nerve damage, may contribute to scle-

rotic changes in the surrounding alveolar bone (Ida-Yonemochi et al. 2017).  

Epithelial Neutrophil-Activating Peptide 78 (ENA-78), also known as CXC Chemokine Ligand 5 

(CXCL5), is a potent chemotactic agent that directs neutrophils to sites of infection or inflamma-

tion. Furthermore, its angiogenic properties, attributed to the presence of the ELR motif, also 

contribute to inflammation and disease progression (Cheng et al. 2019; Yoshida et al. 2014; Sze-

kanecz et al. 2010; Koch et al. 2001). Using Spearman correlation analysis, it was found that the 

concentrations of ENA-78/CXCL5 in the synovial fluid samples from 41 patients with knee OA 

were positively associated with increased T1rho relaxation times, which suggest decreased pro-

teoglycan content in the cartilage and potential cartilage matrix loss. This correlation suggests 
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that ENA-78/CXCL5 might be involved in the development of knee osteoarthritis. Among vari-

ous cytokines, it was demonstrated that the ENA-78 protein played a role in the onset of adjuvant 

induced arthritis in rats (Szekanecz et al. 2000). Interestingly, when anti-human ENA-78 was 

administered prior to the onset of arthritis, it impacted the disease's severity. However, adminis-

tering it after the clinical manifestation had no discernible effect on the disease's progression 

(Haringman, Ludikhuize, and Tak 2004). 

 

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor and an essential regula-

tor of angiogenesis during bone development and remodeling. During osteogenesis, VEGF secre-

tion not only plays a crucial role in stimulating endothelial cells to proliferate, migrate, differen-

tiate, and form tubes but also promotes bone formation and healing by directly influencing oste-

oblast survival, chemotactic migration, and activity (Hamilton et al. 2016; Yuan et al. 2014; 

Neve et al. 2013). In OA, VEGF expression increases in the articular cartilage, synovium, syno-

vial fluid, subchondral bone, and serum (Sohn et al. 2012; Fransès et al. 2010; Walsh et al. 2010; 

Ray, Shakya, and Ray 2007; Giatromanolaki et al. 2003; Smith et al. 2003; Pfander et al. 2001). 

Local intra-articular injections of VEGF into the knee joints of mice led to OA-like changes, 

characterized by proteoglycan loss, calcification of the articular cartilage, cartilage degradation, 

subchondral bone sclerosis, osteophyte formation, and synovial hyperplasia. Notably, changes in 

the subchondral bone appeared before cartilage degeneration, and the severity of these changes 

intensified with the number of VEGF injections. Meanwhile, the control group that received sa-

line injections displayed no signs of OA-like alterations (Ludin et al. 2013). Interestingly, in a 

meta-analysis evaluating genes associated with osteoarthritis, 199 genes were initially identified 

using the Human Genome Epidemiology Navigator. An ensuing analysis of 9 genome-wide as-
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sociation studies, encompassing thousands of patients with knee OA, hip OA, and control sub-

jects, revealed that VEGF was significantly associated with OA (Rodriguez-Fontenla et al. 

2014). A concurrent meta-analysis of 11 case-control studies, involving 302 osteoarthritis pa-

tients and 195 healthy individuals, demonstrated that VEGF expression levels were significantly 

elevated in osteoarthritis patients compared to healthy controls (Yuan et al. 2014). Notably, the 

analysis of 20 patients with knee osteoarthritis further demonstrated that synovial VEGF levels 

had a significant correlation not only with the radiographic severity of the disease but also with 

the intensity of OA pain (Gaballah et al. 2016). In a study with Sprague-Dawley mice, the impact 

of weekly intraarticular injections of VEGF on the temporomandibular joint was assessed. The 

mice exhibited significant cartilage degradation, accompanied by elevated levels of RANKL and 

an increase in VEGFR2-positive chondrocytes. Micro-CT scans revealed subchondral bone loss, 

and histological analyses highlighted an upsurge in TRAP+ osteoclasts within this bone. Addi-

tionally, in vitro evaluations demonstrated VEGF's capacity to amplify osteoclast differentiation. 

These findings suggest that VEGF may induce TMJ OA by detrimentally affecting both the carti-

lage and subchondral bone (Shen et al. 2015).  

Vascular Endothelial (VE)-cadherin is a specific adhesion protein found in the adherens junction 

of the vascular endothelium (Grimsley-Myers et al. 2020; Sauteur et al. 2014; Lenard et al. 

2013). Utilizing a microarray platform, VE-cadherin emerged as one of the proteins with mark-

edly different expression levels in the serum of patients with knee OA, exhibiting an increase of 

20–35% compared to control individuals (Ling et al. 2009). VE-cadherin serves an important 

role in  endothelial barrier maintenance and is pivotal in the maturation, extension, and remodel-

ing of blood vessels, which are defining features of angiogenesis. VE-cadherin is composed of 

extracellular cadherin motifs, a transmembrane domain and an intracellular domain that mediates 
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interactions with β-catenin, p120-catenin, and γ-catenin. β-catenin and γ-catenin in turn connect 

to actin-binding α-catenin and other proteins. The intracellular complex of VE-cadherin and 

catenins is essential for junctional stability. Several soluble factors, such as VEGF and TNF-α, 

elicit tyrosine phosphorylation of VE-cadherin, which corresponds with an increase in vascular 

permeability and impacts the stability of endothelial cell-cell junctions (Claesson-Welsh, Dejana, 

and McDonald 2021; Aragon-Sanabria et al. 2017; Barry, Wang, and Leckband 2015; Niessen, 

Leckband, and Yap 2011; Harris and Nelson 2010). VE-cadherin has also been found to enhance 

the TGF-β response in endothelial cells, suggesting its role in effectively activating this signaling 

pathway (Rudini et al., 2008). A recent study has demonstrated that the CDH5 gene, responsible 

for encoding VE-cadherin, is prominently related with the dysregulation of TGF-β signaling. 

This finding suggests that CDH5 may play a significant role in the pathogenesis and advance-

ment of osteoarthritis. (Wang, Jiang, and Zhang 2019). 

Angiogenin (ANG) is a ribonuclease known for its growth-stimulating properties. Specifically, it 

stimulates the growth and proliferation of endothelial cells and promotes neovascularization. 

Moreover, ANG plays pivotal roles in various physiological and pathological processes, govern-

ing cell proliferation, viability, migration, infiltration, and differentiation. It achieves these ef-

fects by activating specific signaling transduction pathways in different target cells (Liu et al. 

2021; Sheng and Xu 2016; Kishimoto et al. 2005). Within the metaphyseal region, ANG+ cells 

are predominantly expressed in RANK+TRAP+ osteoclasts located just below the growth plate. 

This suggests that ANG produced by these osteoclasts is crucial for sustaining the adjacent blood 

vessels in developing long bones (Liu et al. 2021). An analysis of synovial fluid showed signifi-

cantly heightened concentrations of angiogenin in patients with acute and chronic synovitis. The 

angiogenin protein was found to be secreted by synovial fibroblasts cultured from patients with 
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OA. Such findings suggest the potential role of angiogenin in mediating local inflammation in 

arthritis, possibly through its influence on angiogenesis and leucocyte activity (Liote et al., 

2003). Moreover, proteomic analysis of articular cartilage samples from patients with knee OA 

showed that ANG expression levels were significantly higher in cases of early-stage cartilage 

destruction than in more advanced stages  (Chae et al. 2021).  

Over the past three decades, the diverse nature of osteoarthritis has been described as a "mixed 

bag of disorders." While there has been significant interest in using emerging and traditional OA-

related molecules as biomarkers for disease assessment, their integration into clinical diagnosis 

remains limited due to the low sensitivity of existing markers and pronounced phenotypic heter-

ogeneity among patients. Given this complexity, there is a prevailing argument that osteoarthritis 

may be more accurately described as a syndrome rather than a singular disease. To harness the 

full potential of these biomarkers in optimizing patient care, and to advance more precise diag-

nostic and disease progression prediction and methodologies, there is a need to assess a set of 

biological markers in tandem with comprehensive, longitudinal multicenter studies. Such in-

depth investigations are pivotal to validate existing biomarkers, decipher their intricate interrela-

tionships, and ascertain their distribution across different biofluids (Sandhu et al. 2023; Ber-

notiene et al. 2020; Deveza and Loeser 2018; Arden et al. 2015; Henrotin, Pesesse, and Lambert 

2014; Blagojevic et al. 2010; Felson 1993; Bjelle 1983).  

1.9 From Algorithms to Illness: Machine Learning in Medicine 

Worldwide, a significant gap in the effective diagnosis of diverse diseases exists. The intricate 

nature of disease pathways and the inherent symptomatology in patient cohorts pose profound 

obstacles in the creation of tools for early detection and efficacious treatment (Ahsan, Luna, and 
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Siddique 2022a). Progressions in artificial intelligence methodologies, however, have ushered in 

pivotal transformations within the healthcare sector. Utilizing advanced algorithms allows for the 

efficient analysis of extensive datasets, yielding precision-targeted information for medical prac-

titioners. This enhances their capacity for evidence-based diagnostic and therapeutic decisions, 

which can lead to optimized patient outcomes, decreased healthcare expenditure, and heightened 

patient satisfaction (Sanchez-Martinez et al., 2022).  

The Merriam–Webster lexicon defines artificial intelligence “AI” as ‘the capacity of a machine 

to replicate cognitive human actions.’ At its core, AI represents the emulation of human cogni-

tive functions via computational frameworks. Typically, AI architectures are honed through ex-

tensive data sets, discerning patterns therein, which subsequently facilitate prediction for novel 

data instances (Ozsari et al. 2023; Jha, Lee, and Kim 2022). 

Machine learning (ML) represents a fundamental technique for developing AI  systems. In 1959, 

Arthur Samuel, for the first time, introduced the concept of ML by employing it in games and 

pattern recognition algorithms to assimilate knowledge through experience (Esteva et al. 2017; 

Awad and Khanna 2015a). Despite this groundbreaking advancement, ML, akin to AI, under-

went extended phases characterized by diminished interest and funding, commonly termed as 

"AI winters”. However, the landscape of ML has undergone a significant transformation in the 

current era. This change is primarily driven by a combination of recent technological advance-

ments and the introduction of innovative ML frameworks. For instance, the advent of cost-

effective parallel computing now enables us to implement sophisticated deep learning models, 

such as recurrent neural networks. At the same time, algorithms like support vector machines and 

random forests, when enhanced with techniques like kernelization, bagging, and boosting, allow 

for ML applications even on smaller datasets. Furthermore, the widespread availability of open-
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source tools has made machine learning more popular and accessible. Alongside these changes, 

the integration of computational tools in healthcare, particularly through electronic health record 

systems and structured administrative datasets, has enhanced the accessibility of vast health da-

tabases for scientific research (Kokol, Kokol, and Zagoranski 2022; Gogas and Papadimitriou 

2021; Uddin et al. 2019). 

1.9.1 Machine Learning Categorization & Algorithms 

Machine learning is typically categorized into three main types: supervised learning, unsuper-

vised learning, and reinforcement learning (Figure 1.20). 

 

 

Supervised learning algorithms analyze labeled training data sets, where each input is paired with 

its respective output. Consequently, the inferred ML model can predict the outputs of new data. 

Common tasks of supervised learning algorithms include classification and regression. The clas-

sification task aims to detect a function (discrete value) that aids in splitting the data set into 

classes based on various parameters. In the regression task, the correlation between dependent 

Figure 1.20: Primary Categories of Machine Learning. Adapted from What is reinforce-

ment learning?- MATLAB &amp; Simulink. Available at: 

https://www.mathworks.com/discovery/reinforcement-learning.html (Accessed: 23 August 

2023).  
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and independent variables is detected during the machine training, and the developed model can 

predict continuous variables. In unsupervised learning, algorithms detect hidden patterns within 

an unlabeled data set. That means all variables within the training data set are utilized as inputs, 

and the machine will automatically discover structures/patterns within that data set without re-

ceiving instructions about the desired outcomes. Based on the problem at hand, unsupervised 

learning algorithms will split the data set into groups (clustering) or find rules representing the 

relationship between variables within a data set (association) (Figure 1.21). Reinforcement learn-

ing, on the other hand, directs an agent to interact with its environment and learn by receiving 

feedback in the form of rewards or penalties. It is a commonly used for training AI systems in 

complex domains like robotics, autonomous driving, and logistics (Ghaffar Nia, Kaplanoglu, and 

Nasab 2023; Ozsari et al. 2023; Ahsan, Luna, and Siddique 2022b; Sarker 2021; Alloghani et al. 

2020; Stafford et al. 2020).  

Some of the popular ML algorithms include logistic regression, Linear discriminant analysis, 

support vector machines, decision tree, random forest, naïve Bayes, K-nearest neighbour, and 

artificial neural network (Ghaffar Nia, Kaplanoglu, and Nasab 2023; Ozsari et al. 2023; Ahsan, 

Luna, and Siddique 2022b; Sarker 2021).  
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Figure 1.21: Schematic Representation of Supervised and Unsupervised Learning Methods. 

Adapted from “Data Annotation for Machine Learning: A to Z guide: Lotusqa2021, Lotus QA - 

Leading IT Outsourcing Company In Vietnam. Available at: https://www.lotus-

qa.com/blog/data-annotation-guide/ (Accessed: 23 August 2023).  

Logistic regression (LR) is a potent method in supervised classification. Viewed as an advanced 

form of standard regression, it's tailored to predict binary outcomes, commonly denoting the 

event's presence or absence. Through LR, one can reduce the likelihood of a data point belonging 

to a specific category, with outcomes varying between 0 and 1. To use LR effectively for binary 

categorization, a defining threshold is required. For instance, if the probability of an input ex-

ceeds 0.50, it can be categorized under 'class A', otherwise it falls into 'class B'. Furthermore, LR 

can be adapted to predict variables with multiple categories, a variant called multinomial logistic 

regression. The applications of logistic regression (LR) in the field of machine learning encom-
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pass a wide range of tasks, including but not limited to the identification of spam emails, the de-

tection of fraudulent online transactions, and the identification of malignant tumors (Ahsan, Lu-

na, and Siddique 2022a; Uddin et al. 2019; Ranganathan, Pramesh, and Aggarwal 2017). 

 

Linear discriminant analysis (LDA) is a method that establishes a linear decision boundary by 

modeling class conditional densities and implementing Bayes' rule. It can also be viewed as an 

extension of Fisher's linear discriminant, aiming to project data into a space with fewer dimen-

sions, thus simplifying the model and decreasing computational demands. Typically, LDA as-

sumes each class is fit with a Gaussian density and that all classes have a common covariance 

matrix. LDA is akin to ANOVA and regression analysis, both of which try to represent a de-

pendent variable through a linear mix of other variables or metrics (Sarker 2021; Pedregosa et al. 

2011). 

 

The Support vector machine (SVM) is a widely recognized machine learning technique. That 

was introduced by Vapnik in the latter part of the 20th century. It is versatile and capable of clas-

sifying both linear and non-linear data sets. In its workings, SVM initially projects every data 

piece into an n-dimensional feature realm, where 'n' represents the count of features. The primary 

objective is to pinpoint a hyperplane that distinguishes data into two classes. This is done by op-

timizing the margin distance for each class while simultaneously reducing classification inaccu-

racies. The margin for a given class is defined as the distance from the decision-making hyper-

plane to the closest data point of that particular class. To put it more technically, each data piece 

is represented as a dot in n-dimensional space (with 'n' being the feature count) and each feature 

value signifies a distinct coordinate's value. The classification task is achieved by determining a 
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hyperplane that best divides the two classes with the greatest possible margin (Figure 1.22). In 

addition to medical diagnosis, SVMs have found utility in a myriad of fields such as facial ex-

pression analysis, protein folding predictions, and several others (Alkinani, Al-Hameedi, and 

Dunn-Norman 2020; Uddin et al. 2019; Gholami and Fakhari 2017; Awad and Khanna 2015b). 

 

Figure 1.22: A Graphic Demonstration of the Support Vector Machine's Process. The SVM dis-

cerns a hyperplane that optimally differentiates the 'star' and 'circle' categories. Adapted from 

“Comparing different supervised machine learning algorithms for disease prediction” by Uddin 

et al, 2019, BMC Medical Informatics and Decision Making ,19:281. 

https://doi.org/10.1186/s12911-019-1004-8  

 

A decision tree (DT) serves as one of the earliest and most distinguished machine learning algo-

rithms. It models decision-making logic by mapping tests and their corresponding outcomes in a 

tree-like framework. In a DT, there are several layers of nodes, with the topmost being the root 

node. Internal nodes, which have at least one child, symbolize tests on input attributes or varia-

https://doi.org/10.1186/s12911-019-1004-8
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1004-8/figures/2
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bles. Based on the result of these tests, the classification mechanism moves to the appropriate 

child node. This testing and branching continue until a leaf node is reached, which represents the 

final decision outcome (Figure 1.23). Decision trees are valued for their ease of interpretation 

and fast learning capability. They are frequently integrated into many medical diagnostic proce-

dures. When classifying a sample by navigating through the tree, the cumulative results from 

tests at every node offer ample information to predict its class. Decision tree algorithms are ver-

satile, serving as the foundation for models like random forest, light gradient boosting machine 

(LightGBM), and the extreme gradient boosting (XGBoost) (Lai et al. 2023; Sarker 2021; 

Banerjee et al. 2019; Uddin et al. 2019; Podgorelec and Zorman 2014). 

Figure 1.23: A Graphical Representation of a Decision Tree. Circles denote each variable (C1, 

C2, and C3), while the resultant decisions (Class A and Class B) are displayed using rectangles. 

To accurately assign a sample to a specific class, each branch is marked as 'True' or 'False', de-

pending on the result derived from its preceding node's test. Adapted from “Comparing different 

supervised machine learning algorithms for disease prediction” by Uddin et al, 2019, BMC Med-

ical Informatics and Decision Making ,19:281.  

  

https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1004-8/figures/3
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A random forest (RF) is an ensemble classifier composed of numerous decision trees (DTs), 

much like a forest consists of multiple trees. When DTs grow too deep, they tend to overfit the 

training data, leading to significant classification variations from minor changes in input. These 

trees can be highly sensitive to their training data, which makes them susceptible to errors on test 

datasets. In an RF, different DTs are trained on various portions of the training dataset. To classi-

fy a new sample, its input vector is passed through each DT in the forest. Each tree examines a 

distinct segment of the input vector and produces a classification. The forest then selects the 

classification with the most 'votes' (for discrete outcomes) or averages the results from all trees 

(for numeric outcomes) (Figure 1.24). Since the RF approach aggregates results from multiple 

DTs, it mitigates the variance that could arise from using just one DT on the same dataset 

(Jalloul, Chethan, and Alkhatib 2023; Ali and Ahmed 2022; Sairam Mishra et al. 2021; Uddin et 

al. 2019). 

 

 

Figure 1.24: A Visual Depiction of a Random Forest Model. Every decision tree within it was 

trained on a distinct random segment of the training dataset. Adapted from “Comparing different 

supervised machine learning algorithms for disease prediction” by Uddin et al, 2019, BMC Med-

ical Informatics and Decision Making ,19:281. https://doi.org/10.1186/s12911-019-1004-8  

  

https://doi.org/10.1186/s12911-019-1004-8
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1004-8/figures/4
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Gradient boosted trees (GBT), sometimes referred to as Gradient Descent, is a method that lever-

ages the synergies of multiple models to predict or determine a response. In the boosting ap-

proach, models are sequentially constructed. This means that with each new model, weights get 

refined based on insights from the preceding one. The essence of GBT lies in its step-by-step 

error reduction; if one model makes mistakes, the subsequent one aims to correct them. This pro-

cess of combining multiple simple trees significantly improves detection accuracy compared to 

relying on a single tree, leading to quicker and more efficient performance. Within the GBT 

framework, every model tree addresses all data points to minimize errors. One key distinction 

between random forest and gradient boosted trees is the manner of their construction: RF models 

are developed concurrently, whereas GBTs are formed one after the other (Ali and Ahmed 2022; 

Wassan et al. 2022; Shailendra Mishra 2022). 

Naïve Bayes is a classification method based on Bayes' theorem, which calculates the probability 

of an event using prior knowledge associated with that event. This method operates on the as-

sumption that a specific attribute within a category is independent of any other attribute, even if 

they belong to the same category and might be interdependent. Figure 1.25 provides a visual rep-

resentation of this method. When classifying a new object, represented as a white circle, into the 

'green' or 'red' category, an example indicates a higher number of 'green' objects than 'red'. This 

observation establishes the prior probability regarding the likely categorization of the new object. 

To classify the 'white' object, a circle encompasses it, capturing various points irrespective of 

their labels. In the given example, multiple 'red' and a single 'green' point are included. Based on 

these points, there are specific probabilities associated with the 'white' object being 'green' or 

'red'. While the prior probability might suggest a 'green' classification for the 'white' object, the 

current evidence indicates a 'red' category. The Bayesian approach combines both the prior prob-
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ability and the likelihood. Through a multiplication function, the 'posterior' probability is de-

rived. Using both these probabilities, the Naïve Bayes method determines that the 'white' object 

belongs to the 'red' category (Gohari et al. 2023; de Souza et al. 2022; Uddin et al. 2019) 

 

Figure 1.25: An Illustration of the Naïve Bayes Method. The 'white' circle represents a new data 

point that needs to be categorized as either the 'red' or 'green' class. Adapted from “Comparing 

different supervised machine learning algorithms for disease prediction” by Uddin et al, 2019, 

BMC Medical Informatics and Decision Making ,19:281. https://doi.org/10.1186/s12911-019-

1004-8  

 

The K-Nearest Neighbor (KNN) algorithm, developed in 1951 by Evelyn Fix and Joseph Hodg-

es, is among the most straightforward and earliest classification techniques. It is not only apt for 

classification but also for regression analysis. KNN can be viewed as a simplified version of the 

Naïve Bayes classifier. However, unlike NB, KNN doesn't rely on probability values. In KNN, 

the 'K' denotes the number of nearest neighbors that are consulted for their 'votes' during classifi-

 

https://doi.org/10.1186/s12911-019-1004-8
https://doi.org/10.1186/s12911-019-1004-8
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1004-8/figures/5
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cation. Adjusting the value of 'K' can yield different classification outcomes for the same data 

point. Figure 1.26 demonstrates how KNN operates: with K=3, the new data point (represented 

as a star) is classified as 'black', but with K=5, it's classified as 'red'. The KNN classification re-

sult indicates class membership, and the algorithm employs a voting mechanism for this purpose 

(Abu Alfeilat et al. 2019; Uddin et al. 2022; 2019) 

 

Figure 1.26: A basic depiction of the K-nearest neighbor method. With K=3, the data point (rep-

resented by a 'star') is identified as 'black' due to receiving a majority of 'votes' from the 'black' 

category. Conversely, when K=5, it's labeled as 'red' because it garners more 'votes' from the 'red' 

category. Adapted from “Comparing different supervised machine learning algorithms for dis-

ease prediction” by Uddin et al, 2019, BMC Medical Informatics and Decision Making ,19:281. 

https://doi.org/10.1186/s12911-019-1004-8  

  

https://doi.org/10.1186/s12911-019-1004-8
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1004-8/figures/6
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Artificial Neural Networks (ANNs) are machine learning models inspired by the neural networks 

of the human brain. First introduced by McCulloch and Pitts, their prominence grew due to the 

work of Rumelhart et al. in the 1980s. In the human brain, neurons create a web of connections 

through axon junctions. This intricate web can be reorganized, as seen with neuropllasticity, al-

lowing for adaptation and the processing and storage of information. Similarly, ANNs are com-

posed of interconnected nodes. The output from one node feeds into another based on the con-

nections established. These nodes are organized into layers, often categorized by their functions. 

Beyond the primary input and output layers, ANNs can include several hidden layers. Each node 

and its connections carry specific weights, which can adjust the strength of signals, either intensi-

fying or attenuating them through continuous training. As these weights are refined during train-

ing, the ANN becomes more adept at making accurate predictions on test data (Figure 1.27) 

(Abiodun et al. 2019; Uddin et al. 2019; Kriegeskorte 2015). 

 

Figure 1.27: A Visual Representation Of An Artificial Neural Network With Two Hidden Lay-

ers. The arrows indicate the flow from the output nodes of one layer to the input nodes of the 

subsequent layer. Adapted from “Comparing different supervised machine learning algorithms 

for disease prediction” by Uddin et al, 2019, BMC Medical Informatics and Decision Making 

,19:281. https://doi.org/10.1186/s12911-019-1004-8  

  

https://doi.org/10.1186/s12911-019-1004-8
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1004-8/figures/7
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Recently, the concept of knowledge transfer has gained increased attention in machine learning 

research. This is attributed to its potential in mirroring human proficiency in applying learned 

models to unfamiliar scenarios. Particularly in contexts where training data is sparse, knowledge 

transfer can enhance the speed of learning and its ability to generalize to analogous tasks. The 

"learning using privileged information" (LUPI) paradigm has introduced an innovative dimen-

sion to this domain. Within LUPI, knowledge transfer is visualized as an active interplay be-

tween a teaching entity and a learner. The teacher exploits exclusive information, known as 

privileged information (PI), during the training period. The inclusion of PI augments the com-

plexity of the training samples and directs the student model towards a comprehensive under-

standing of the inherent data trends. However, during the evaluation phase, the student functions 

autonomously without the guidance of the teacher. This methodology is beneficial in medical 

domains where integrating diverse data sources can enhance the predictive accuracy of machine 

learning models; yet, some of these data may be challenging to acquire or unavailable during the 

evaluation phase. It's imperative to note that the efficacy of this approach heavily relies on the 

caliber of data offered by the teaching entity. To ensure the integrity of the learning process, the 

data should be pertinent and devoid of redundant features, thereby mitigating noise and optimiz-

ing the dimensionality of the resultant (Sabeti et al. 2021; Zhang, Bianchi, et al. 2021; Tang et al. 

2019; Vapnik and Vashist 2009). 

1.9.2 Development, Evaluation and Explainability of ML models 

 

The process of developing machine learning models commences with a clearly articulated re-

search question. This query forms the groundwork for subsequent tasks, including data collection 

and preparation, choosing a suitable machine learning approach, evaluating results, and decipher-

ing outcomes (Arbet et al. 2020). 
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Acquiring a robust, accurate, and reliable dataset that is both comprehensive and sizable has a 

significant impact on the development and utilization of machine learning in clinical decision-

making, even when advanced technologies are present. Three distinct datasets are utilized for 

constructing a machine learning model: one for training, another for validation, and a third for 

testing. The training dataset is used to create the machine learning model, followed by tuning 

model parameters using the validation dataset. The final stage involves assessing model perfor-

mance on new and unseen data, i.e., the test dataset. In machine learning, raw data is often un-

suitable for learning purposes; therefore, features or variables must be derived from the raw data 

via data mining. Additionally, raw data needs to be cleaned and prepared for data mining, as 

noise and errors within the raw data can hinder the detection of patterns and lead to inaccurate 

outcomes. The objectives of data cleaning and enhancement include data normalization, elimi-

nating redundant features, standardizing data, removing duplicates, resolving inconsistent data, 

managing missing data, and harmonizing data across multiple sources. As an example of data 

preparation, the normalization of images is necessary before applying statistical or machine 

learning algorithms. Aligning images to a common statistical distribution based on size and pixel 

values (spatial normalization) facilitates accurate detection of differences between individuals or 

within the same individual across various time points. Moreover, when creating a model for dis-

ease classification or image synthesis (e.g., segmentation and transformation), normalization of 

image intensity is crucial to prevent bias and ensure model accuracy. Studies have shown that 

standardizing intensity features across training input images significantly impacts the accuracy of 

image synthesis models (Bianchi, Paniagua, et al. 2020; Ioshida et al. 2019; Reinhold et al. 2019; 

Tallón-Ballesteros and Riquelme 2014). 
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Data mining involves analyzing extensive datasets to uncover previously unknown patterns and 

comprehensible insights. Various functionalities or tasks, such as regression, clustering, and 

classification, can reveal knowledge within data mining. These findings can provide summaries 

of input data or be employed in supplementary analyses, such as machine learning and predictive 

analytics. While algorithms are pivotal in both data mining and machine learning, the outputs 

from data mining are particularly valuable for optimizing decisions. Detecting pertinent clinical 

information, for instance, aids practitioners in making informed decisions and enhancing the 

quality of care. However, training a machine with the acquired knowledge empowers the predic-

tion of diagnoses or prognoses for new patients (Asiri et al. 2020; Al-Jabery et al. 2019; Liu 

2010). 

Dimensionality reduction is an important preprocessing step in machine learning, as it serves to 

reduce irrelevant and redundant input. Consequently, it enhances the accuracy of the learning 

process and improves the clarity of the model's output. The primary methods employed in di-

mensionality reduction include feature selection and feature extraction. The process of feature 

selection involves the identification and preservation of data that contains the most relevant in-

formation for effectively resolving a particular problem. This results in the creation of a reduced 

subset of the original data, which is then utilized for training machine learning models. In con-

trast, feature extraction involves the conversion of the initial features into a reduced and more 

meaningful set of characteristics, exemplified as the extraction of radiomics from CBCT images 

(Rahman et al. 2020; Zebari et al. 2020). 

After the completion of data preparation, the utilization of artificial intelligence in clinical appli-

cations necessitates the careful selection of an appropriate machine-learning approach. The effi-
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cacy of machine learning algorithms is contingent upon a comprehensive understanding of their 

capabilities, constraints, and their potential integration and alignment with clinical care. There-

fore, effective communication among data analysts, data scientists, and clinicians’ is crucial 

across all stages of the creation of machine learning models (Bastian, Baker, and Limon 2022; 

Allareddy et al. 2019b). 

After careful consideration of appropriate methodologies, the model-building step can be initiat-

ed. After successfully constructing a model using the training dataset, it is necessary to evaluate 

its performance on the testing dataset. It is imperative to provide the evaluation metrics for all 

dataset and integrate them into the analytic findings (Arbet et al. 2020). 

Performance indicators of machine learning models, such as accuracy, precision, recall, and F1 

score, are extensively utilized in the field of disease diagnosis. Accuracy (Acc) refers to the 

overall number of accurately identified occurrences out of all the instances. Precision is quanti-

fied by calculating the ratio of accurately predicted positive observations to the total number of 

expected positive observations. Recall, in the context of information retrieval, pertains to the 

fraction of relevant results that are accurately identified by the algorithm. The concept of sensi-

tivity refers to a measure that exclusively considers true positive cases in relation to the overall 

number of instances. The concept of specificity refers to the degree of detail or precision in a 

given context or situation The metric determines the accurate identification of real negatives 

(Figure 1.28). The F-score is calculated as the harmonic mean of accuracy and recall. The maxi-

mum F score attainable is 1, which signifies an ideal balance between precision and memory 

scores   (Ahsan, Luna, and Siddique 2022a; Hicks et al. 2021; 2022). 
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Figure 1.28: The Probability Density Curves of a Hypothetical Diagnostic Test. The density of 

the diagnostic test is graphed for two populations: the nondiseased population (Non-D) and the 

sick population (D). These populations are assumed to conform to the binormal model, with a 

mixture of N(0,1) and N(1.87,1.52) distributions, respectively. The representation of the diagnos-

tic test's specificity is denoted by the shaded region beneath the distribution of individuals with-

out the disease (A), when considering the arbitrary threshold of t=1. The measure of sensitivity is 

quantified by the region of shading that is beneath the distribution of the diseased population (B) 

when subjected to a common threshold value of 1. As an illustration, when the threshold value t 

is set to 1, the corresponding values for sensitivity and specificity are 0.72 and 0.84, respectively. 

When the test is dichotomized by considering a positive result if the test value exceeds a certain 

threshold, both the sensitivity and specificity exhibit changes in response. As the threshold in-

creases, the sensitivity decreases while the specificity increases. Adatpted from 

https://www.ahajournals.org/doi/10.1161/circulationaha.105.594929  

 

 

The Receiver Operating Characteristic (ROC) curve is another tool for evaluation of diagnostic 

tests. It is constructed by graphing the true positive rate (i.e., sensitivity or recall)  versus the 

false positive rate (1- specificity) at different threshold levels. The area under the ROC curve 

(AUC) is a prevalent method for assessing the predictive performance of a classifier. A classifier 

is considered superior when it has a higher AUC value, and conversely, it is considered inferior 

https://www.ahajournals.org/doi/10.1161/circulationaha.105.594929
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when it has a lower AUC value. Figure 1.29 depicts the graphical representation of three ROC 

curves, which are derived from a hypothetical dataset. The region bounded by the blue ROC 

curve is equivalent to half of the size of the shaded rectangle. Therefore, its AUC  value is con-

sidered 0.5. The AUC value for the red ROC curve is higher than that of the black ROC curve 

due to its coverage of a larger area. Therefore, the classifier that generated the red ROC curve 

demonstrates superior prediction accuracy in comparison to the other two classifiers that pro-

duced the blue and red ROC curves (Uddin et al. 2022; Kamarudin, Cox, and Kolamunnage-

Dona 2017; Hajian-Tilaki 2013). 

 

Figure 1.29: An illustration of the ROC curve . Adapted from “Comparing different supervised 

machine learning algorithms for disease prediction” by Uddin et al, 2019, BMC Med Inform 

Decis Mak 19, 281.  https://doi.org/10.1186/s12911-019-1004-8. 
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While ML algorithms approved by regulatory agencies such as the Food and Drug Administra-

tion and Health Canada have seen proliferation in various medical applications like brain, lung, 

breast, and cardiology, a number of cutting-edge ML models, including deep learning and en-

semble models, still maintain their "black box" nature. This particular aspect poses a significant 

obstacle to the widespread adoption of ML in medical settings, as the inability to assess the con-

nection between variables and predictions not only hinders the potential to uncover biases and 

inaccuracies but also undermines the confidence and reliability of these models for informed 

medical choices. For instance, the lack of transparency and rationale behind predictions made by 

ML models for clinical deterioration could conceivably result in delayed treatments or unneces-

sary expenditure of clinician time, primarily due to false positives (Petch, Di, and Nelson 2022; 

Stiglic et al. 2020; Vellido 2020; Umscheid et al. 2015). 

In response to the significant challenges presented by black-box models, the field of explainable 

ML has witnessed a surge in research over recent years. Much of this research focuses on ad-

dressing the need for intelligible explanations regarding how these models operate and the ra-

tionale behind specific individual predictions. These explanations can identify the variables that 

drive model predictions as well as translate the model's mechanisms into a transparent design 

that aligns more closely with evidence-based clinical reasoning. Both of these approaches have 

demonstrated their significance in boosting clinician confidence in utilizing ML models (Petch, 

Di, and Nelson 2022; Coussement and Benoit 2021). 

One category of techniques, known as variable importance methods (referred to as "feature im-

portance" in the ML domain), aims to generate explanations by quantifying the statistical contri-

bution of each variable to a model's performance. During the model development phase, these 

methods are routinely employed to assess the model's learning accuracy and the clinical plausi-
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bility of the variables that influence predictions. Examples of techniques for variable importance 

methods include permutation Importance, mean decrease in impurity and conditional variable 

importance (Hapfelmeier, Hornung, and Haller 2023; Petch, Di, and Nelson 2022; Li, Wang, et 

al. 2019). 

An additional approach to explainability techniques revolves around surrogate methods. These 

methods elucidate the functioning of black-box models by constructing new interpretable models 

based on the predictions of the black-box model itself. Surrogate methods encompass both global 

and local perspectives. On a global scale, techniques like decision trees and logistic-linear re-

gression are used to provide an overarching explanation of the black-box model's behavior. Con-

versely, local surrogate methods are customized to explain specific predictions made by the 

black-box model. Commonly utilized techniques in this category include local interpretable 

model-agnostic explanations (LIME) and shapley additive explanations (SHAP) (Hassija et al. 

2023; Petch, Di, and Nelson 2022). 

LIME was originally introduced in 2006 and has since emerged as one of the most widely used 

techniques for interpreting black-box models. The core concept involves generating simulated 

data points around a given instance and its corresponding prediction. These simulated instances 

are created in the vicinity of the input instance that led to the prediction. Subsequently, these 

simulated instances are used with the original model to obtain new predictions, which are then 

weighted based on their proximity to the original input. In the final step, a simple and easy-to-

understand model, such as a decision tree, is trained using this new dataset of perturbed instanc-

es. This locally trained model provides an interpretation for the initial complex black-box model. 

While LIME is effective and conceptually clear, it does have limitations. For instance, poor pa-

rameter choices could cause LIME to overlook crucial features. On the other hand, SHAP has 
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gained recognition for providing a solution that satisfies the criteria of strong representativeness, 

fidelity, and considerable expressive capability. Moreover, this approach has undergone empiri-

cal validation  and has been employed across diverse domains such as medicine 

,cheminformatics, and ecology  (Bifarin 2023; Linardatos, Papastefanopoulos, and Kotsiantis 

2021; Barredo Arrieta et al. 2020; Ribeiro, Singh, and Guestrin 2016). 

The SHAP framework facilitates the interpretation of individual predictions by quantifying the 

significance of each feature's score for a given sample prediction. Moreover, SHAP has the ca-

pability to generate a precise and comprehensive global interpretation of the model, hence exhib-

iting its notable level of representativeness. The SHAP framework is essentially grounded in the 

utilization of Shapley values, which are derived from cooperative game theory principles. The 

way of attributing prizes from a cooperative game, known as the Shapley value, was developed 

by Lloyd Shapley. This system is both fair and axiomatically unique. In the context where a 

game is represented as a machine learning model, the individuals participating in the game can 

be seen as the values of each feature, and the projected class membership of a given sample can 

be considered as the outcome of the game. The Shapley value, in this scenario, provides a dis-

tinct and equitable solution for attributing the contributions made by each player to the overall 

outcome of the game (Bifarin 2023; Ning et al. 2022; Bloch, Friedrich, and for the Alzheimer’s 

Disease Neuroimaging Initiative 2021). 

The uniqueness of the Shapley value arises from its adherence to the axioms of symmetry (also 

known as consistency), dummy (or null effect), and additivity (or local accuracy). The concept of 

symmetry suggests that when the marginal contributions of two feature values, xz and xk, are 

equal, the corresponding Shapley values assigned to each feature value will likewise be equal. 

The term "dummy" is used to indicate that when a feature value, denoted as xz, has no effect on a 
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model, the corresponding Shapley value will be zero. The concept of local accuracy refers to the 

condition where the total of the Shapley values assigned to each individual feature value within a 

model is equal to the output of the model. Therefore, the cumulative sum of all feature values 

will be equivalent to the overall effect of all feature values on the model's output, except the ef-

fect when no feature value is present (Bifarin 2023). 

Figure 1.30 illustrates an example of the SHAP summary plot, commonly known as the 

beeswarm summary plot. This plot offers a thorough visual representation of the contribution of 

various features to the decision-making process of a machine learning model.  

Figure 1.30: SHAP Summary Plot. The 

metabolic features are organized in a de-

creasing order according to their relative 

significance within the plot. Each data 

point in the summary plot represents a 

sample that has been plotted according to 

its influence on the model's output. The 

relative quantity of metabolites is visually 

represented by the hue of each sample, 

with lower abundance shown by blue and 

higher abundance indicated by red (A). 

Figure 4B exhibits the predominant me-

tabolite inside the panel, namely testos-

terone glucuronide. Metabolites with high 

feature values generally exhibit positive 

SHAP values, leading the model to make 

predictions favoring males. Conversely, 

metabolites with low feature values, such 

as testosterone glucuronide, tend to have 

negative SHAP values, influencing the 

model to forecast the female sex. P-anisic 

acid displays a contrasting trend (B). 

Adapted from “Interpretable machine 

learning with tree-based shapley additive 

explanations: Application to metabolom-

ics datasets for binary classification” by 

Bifarin et al, 2023,  Application to metab-

olomics datasets for binary classification. 

PLOS ONE 18(5): e0284315.  
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1.9.3 Machine Learning in Osteoarthritis: Insights and Considerations 
 

The applications and advantages of machine learning techniques are evident across various do-

mains, especially in scenarios involving limited observations and a multitude of predictors. It 

also effectively addresses the complexities of interactions, a challenge often faced by traditional 

statistical methods, which tend to focus on interactions between primary determinants and indi-

vidual confounding factors. Furthermore, machine learning demonstrates the ability to assess a 

diverse range of data types, including imaging data, demographic information, and laboratory 

results. By effectively integrating diverse data types, machine learning enhances the ability to 

predict disease risks, enable accurate diagnoses, offer valuable prognostic insights, and propose 

effective treatment approaches. As a result, this enhancement has the potential to improve deci-

sion-making at the individual patient level, thereby promoting the adoption of precision medicine 

particularly with the availability of longitudinal data platforms related to individuals' health con-

ditions (Kline et al. 2022; Johnson et al. 2021; Xu et al. 2021; Ahmed et al. 2020; Ghassemi et al. 

2020; Hassaine et al. 2020). 

The application of machine learning models in the field of knee osteoarthritis is clearly evi-

dent in the existing literature. A variety of machine learning models have been developed with 

the objective of automating various tasks, including radiological diagnosis and the evaluation of 

knee osteoarthritis severity. Furthermore, ML models have been utilized to predict the need for 

surgical interventions, improvement subsequent to surgical procedures, and the probability of 

postoperative complications for individuals with knee osteoarthritis. Additional research demon-

strated the capabilities of utilizing machine learning to address hurdles in the realm of osteoar-

thritis. These challenges encompass the early-stage diagnosis of OA, predicting OA emergence 

within populations, and distinguishing between patients with gradual and rapid disease progres-

sion. Furthermore, studies have integrated strategies for interpretability into their ML models, 
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allowing them to identify the contributions of different features to the model's predictions (Xuan 

et al. 2023; Binvignat et al. 2022; Kokkotis et al. 2022; Harris et al. 2021; Heisinger et al. 2020; 

Leung et al. 2020; Harris et al. 2019; Huber, Kurz, and Leidl 2019; Norman et al. 2019; Richard-

son 2020; Tiulpin et al. 2018). 

In contrast to knee osteoarthritis, which has received considerable attention in the context of ma-

chine learning models for disease diagnosis and progression prediction, TMJ OA remains an un-

derexplored area. This disparity is alarming given the rising prevalence of TMJ OA, inability of 

existing treatments in mitigating degenerative bone and cartilage changes, the adverse impact on 

patients' quality of life, and the limited efficiency of  the current clinical and imaging criteria in 

detecting early stages of the disease and predicting patients’ response to conservative treatments. 

To bridge this knowledge deficit and address the multifactorial intricate nature of the disease, our 

pilot study showed the potential of advanced statistical and machine learning techniques in diag-

nosing TMJ OA. However, several critical factors need to be addressed. One of these is the ne-

cessity for a larger sample size to capture the varied phenotypic presentations of TMJ OA, ensur-

ing the diagnostic tool's reliability, validity, and robustness. Alongside this, the persistent chal-

lenge of amassing diverse clinical datasets underscores the importance of exploring privileged 

information learning strategies for diagnosing TMJ OA. Beyond the diagnosis, it is crucial to 

pinpoint the complex factors driving the disease and to predict its progression accurately. Fur-

thermore, understanding machine learning model predictions and demystifying their 'black-box' 

nature is essential for their successful implementation and future integration into routine clinical 

practice (Derwich et al. 2023; Murakami 2022; Yang, Ye, and Xia 2022; Yuan et al. 2022; 

Hawker and Lohmander 2021).  
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Chapter 2 Clinical Decision Support Systems in Orthodontics: A Narra-

tive Review of Data Science Approaches 

Al Turkestani N, Bianchi J, … Cevidanes LHS. Orthod Craniofac Res. 2021 Dec;24 Suppl 

2(Suppl 2):26-36. doi: 10.1111/ocr.12492. Epub 2021 May 24. PMID: 33973362; PMCID: 

PMC8988880. 

Abstract 

Advancements in technology and data collection generated immense amounts of information 

from various sources such as health records, clinical examination, imaging, medical devices, as 

well as experimental and biological data. Proper management and analysis of these data via high-

end computing solutions, artificial intelligence and machine learning approaches can assist in 

extracting meaningful information that enhances population health and well-being. Furthermore, 

the extracted knowledge can provide new avenues for modern healthcare delivery via clinical 

decision support systems. This manuscript presents a narrative review of data science approaches 

for clinical decision support systems in orthodontics. We describe the fundamental components 

of data science approaches including (a) Data collection, storage and management; (b) Data pro-

cessing; (c) In-depth data analysis; and (d) Data communication. Then, we introduce a web-

based data management platform, the Data Storage for Computation and Integration, for tem-

poromandibular joint and dental clinical decision support systems. 

 

Keywords: artificial intelligence, decision support systems, machine learning, orthodontics 
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2.1 Introduction  

Over the past decades, the digital revolution has transformed every facet of our world, including 

dental practice. Adopting modern technology in orthodontics has not only provided us with ad-

vanced diagnostic and treatment tools, but also given us the chance to shift clinical practice from 

a ‘disease-centered’ to a ‘patient-centered’ model (Mascitti and Campisi 2020).   Establishing 

optimum and personalized orthodontic care requires (a) analysis of large and complex data sets 

derived from different sources, such as clinical examination, diagnostic images, biological and 

genetic data, and (b) identification of patterns/associations that turn the individual’s big data into 

knowledge for precise decisions and outcomes prediction (Finkelstein et al. 2020; Frank, Dri-

kakis, and Charissis 2020; Dash et al. 2019). Big data analysis is associated with numerous chal-

lenges that necessitate the use of high-end computing solutions, advanced analytical methods 

(e.g. artificial intelligence and machine-learning algorithms) and data science approaches before 

communicating the acquired knowledge to healthcare providers via decision support systems 

(Frank, Drikakis, and Charissis 2020; Panahiazar et al. 2014). 

 

Clinical Decision Support Systems (CDSSs) are computer programs developed to provide expert 

support for healthcare providers in making decisions regarding prevention, diagnosis and treat-

ment of health diseases (Vikram and Karjodkar 2009). Lusted and Ledley were pioneers in ex-

plaining how the reasoning behind the foundation of diagnosis and treatment in medicine can be 

investigated and solved accurately using mathematical tools. Since then, researchers have been 

using different methods to supply clinical applications with knowledge. In orthodontics, CDSSs 

are being developed to reduce subjectivity, decrease errors, save time and increase the efficiency 

of diagnosis and treatment planning among clinicians (Bichu et al. 2021). Examples of CDSSs 
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include systems that aid in detecting cephalometric landmarks, determining the need for extrac-

tions, identifying the maturation stage of cervical vertebrae and predicting facial soft tissue 

changes following treatment (Khanagar et al. 2021). Over the last 5 years, our clinical research 

team, the Dental and Craniofacial Bionetwork for Image Analysis (DCBIA), has addressed 

knowledge gaps in dentistry that require CDSSs (Figure 2.1). In this manuscript, we present a 

narrative review of the data science approaches that are required to develop clinical decision 

support systems in orthodontics. We also describe a web-based data management platform for 

the temporomandibular joint and the dental clinical decision support systems. 

 

Figure 2.1: Gaps of knowledge in (A) TMJ and (B) Dental diagnosis and prognosis assess-

ment tools 
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2.2 Development of Clinical Decision Support Systems (CDSSs) 

2.2.1 Types of CDSSs 

Clinical decision support systems have been categorized according to (a) function of the support: 

provision of alerts (active) or reaction to patients’ information/providers’ inputs (passive); (b) 

time of support delivery: before, during or following decision-making and (c) method of devel-

opment: knowledge or non-knowledge-based. 

Knowledge-based CDSSs contain compiled data entered directly by users or extracted from pa-

tients’ electronic records, phone apps and data about medications or clinical protocols and guide-

lines based on the intent of using a clinical decision system (Dash et al. 2019; Helmons et al. 

2015). Such systems will deliver support to users, usually following the IF-THEN rule. For in-

stance, in a system for detection of medication interactions, the rule will be IF drug X and IF 

drug Y are used, THEN alert the clinician. Non-knowledge-based CDSSs also require a data 

source; however, decisions are made with statistical pattern recognition or machine-learning 

(ML) approaches. Consequently, computers learn from previous experiences, discover patterns 

within the data and eliminate the need for expert inputs or rules. Artificial neural networks and 

genetic algorithms compose the main types of non-knowledge-based CDSSs (Zikos and DeLellis 

2018; Helmons et al. 2015). 
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2.2.2 Data Science Approaches for the Development of CDSSs 

Clinical decision support systems development is a highly challenging and multidisciplinary task 

that integrates clinical knowledge with decision science to adapt clinical practice and workflow 

with the decision system (Joda et al. 2019). Here, we provide a simplified overview of steps in-

volved in creating a clinical decision support system (Figure 2.2A). 

 

Figure 2.2: Overview of steps involved in developing clinical decision support systems 

(CDSSs). A, General spectrum of data science approaches in the CDSSs. B, Implementation of 

robust data management, Dental Storage for Computation and Integration, in the CDSSs. 

https://www-ncbi-nlm-nih-gov.proxy.lib.umich.edu/pmc/articles/PMC8988880/figure/F2/
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Data collection, storage and management  

The advancement of information technology promoted exponential growth of health data and 

generation of big data; that is, large-volume data that are produced at high speed and inte-

grates different types of data, such as: (a) clinical data (e.g. orthodontic diagnosis and treat-

ment progress notes, imaging, health records), (b) omics data (e.g. genomics, proteomics, 

metabolomics), (c) patient-generated data (e.g. wearable devices and scanners, social media) 

and (d) normative data sets (e.g. data collected in clinical trials or nationwide surveys) (Joda 

et al. 2019; Nanayakkara, Zhou, and Spallek 2019; Raghupathi and Raghupathi 2014). Cur-

rent evolution of data capturing, storage and analytical methods will allow us to transform 

the wealth of knowledge in big data into actionable plans to overcome challenges in clinical 

decision, deliver personalized care and improve the population’s health (Lu et al. 2020; Joda 

et al. 2018). 

Collection of patient diagnosis and treatment progress data is considered valuable when it is 

done in a systematic way following interlinkable and coherent data standards that produce 

high-quality information (Lu et al. 2020; Nanayakkara, Zhou, and Spallek 2019; Joda et al. 

2018). Clinical data constitutes an essential resource for medical and health research—

electronic health records (EHR) are one of the major types of clinical data. The use of EHR is 

highly encouraged to improve clinicians’ compliance with documentation and enable data 

sharing among different members of the healthcare team (Raghupathi and Raghupathi 2014). 

In 2009, the Health Information Technology for Economic and Clinical Health (HITECH) 

Act was created to support the adoption and meaningful use of health information technolo-

gy, including a provision of financial incentives for using EHR systems. By 2015, the adop-

tion of certified EHR programs by hospitals and office-based physicians reached 96% and 
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78%, respectively (D’Amore et al. 2020). Nevertheless, the quality of data within EHR was 

affected by duplication, missing information, fragmentation and inconsistent organization. 

The accuracy and reliability of data can influence the development and use of CDSSs, even 

in the presence of sophisticated advanced technologies. Thus, there is a need to standardize 

the terminology within the dental and orthodontic fields using well-structured forms and 

templates to assist in ensuring consistency of the collected data. There have been several 

governmental efforts to standardize the data within different EHR systems; however, at this 

time no federal or professional association program has been able to produce universally ac-

cepted high-quality data. Indeed, data governance requires policies for care providers and 

auxiliary staff, hands-on training, a culture of responsibility and the right tools to improve 

and monitor data quality   (Wynants et al. 2019; Raghupathi and Raghupathi 2014). 

Multicentre data collection is commonly performed to construct clinical prediction models. 

Although such data structures create additional challenges for data analysis, they cover a 

broader population and can improve the generalizability of the artificial intelligence models 

(Perazzo et al. 2019). Digital data repositories provide web-based platforms that enable re-

searchers from multiple institutions to access and manage their data securely. Data reposito-

ries are designed to store large amounts of data, ranging from thousands of data set reposito-

ries, supported by funding and government agencies, to small data sets, supported by a re-

search team for a certain study (Favaretto et al. 2020). 

‘BigMouth’ is an example of an oral health data repository that contains EHR from 11 dental 

schools across the United States. It provides access to the demographic, dental and medical 

data of over 3 million patients to facilitate the advancement of research and patient care out-

comes (Tucker et al. 2016). Defining and establishing a code of conduct is important for big 
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data collaborations to guide the ethical and meaningful use of shared data. When preparing 

data for sharing, it is essential to strike a balance between privacy protection (e.g. de-

identification & anonymization of patients’ data, security measures, controlled data sharing) 

and maintenance of data utility (de Dumast et al. 2018; Raghupathi and Raghupathi 2014). 

Data processing 

 After defining the proper source for data collection, it is essential to verify the quality of data 

and prepare a final data set for analysis or machine training (Brosset et al. 2021). 

In 1955, a mathematician named John McCarthy coined the term artificial intelligence (AI) 

to describe the ability of machines to conduct tasks that lie within the range of intelligent ac-

tivities. Afterwards, Richard Bellman defined AI as the ability to automate activities with 

human thinking capabilities; for example, problem-solving, learning and decision-making 

(Schwendicke, Samek, and Krois 2020). Machine learning (ML) is a subfield of AI, whereby 

algorithms are utilized to find structures and patterns within data. Consequently, machines 

will learn to predict similar patterns on unseen data, and their actions will improve each time 

new data are introduced without human inputs (Asiri et al. 2020; Gudivada, Apon, and Ding 

2017). 

High-quality data sets are essential for developing effective machine learning models. To 

build an ML model, three non-overlapping data sets are utilized for training, validation and 

testing. The training data set is used to develop the ML model. Then, model parameters are 

adjusted with the validation data set. The last step involves testing the model performance on 

unseen data, that is, test data set (Tallón-Ballesteros and Riquelme 2014). In ML, raw data is 

not usually suitable for learning; features/variables should be identified and extracted from 
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the raw data via data mining. However, raw data should be cleaned and prepared for data 

mining; noise and errors within raw data might confuse the data mining process and thus re-

sult in faulty detection of patterns.36 The aims of cleaning and enriching data are primarily 

data normalization, elimination of redundant features, data standardization, removal of dupli-

cates, resolution of inconsistent data, management of missing data and data matching across 

multiple sources (Tallón-Ballesteros and Riquelme 2014). Images normalization is an exam-

ple of a data preparation procedure required before applying statistical or ML algorithms. 

Putting several images in a common statistical distribution based on the size and pixel values 

(spatial normalization) will enable reliable detection of changes between several individuals 

or within the same individual at different time points (Ioshida et al. 2019; Ashburner and 

Friston 1999). Additionally, normalization of images’ intensity should be performed when 

planning to develop a model that classifies a disease, to avoid biasing the results, or building 

a model for image synthesis, for example, segmentation and transformation. Evidence 

demonstrated the accuracy of the image synthesis model is greatly affected by standardizing 

the intensity features across the training’s input image (“Data Mining” 2023; Bianchi, 

Paniagua, et al. 2020). 

Data mining involves analysing large data sets to extract unknown patterns and comprehen-

sible information from large data sets. Several functionalities or tasks can specify the 

knowledge found in data mining, such as regression, clustering and classification (Al-Jabery 

et al. 2019). These findings can summarize the input data or be utilized in additional analyses 

such as machine learning and predictive analytics. Although algorithms are used in data min-

ing and ML, outputs from data mining help optimize decisions, for example, detecting valua-

ble clinical information will help the practitioner make better decisions and increase the qual-
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ity of care. However, training a machine with the extracted knowledge will enable predicting 

the diagnosis or prognosis of a new patient (Asiri et al. 2020). 

Dimensionality reduction is performed before machine training to eliminate irrelevant and 

redundant data, improve learning accuracy, and enhance output comprehensibility. The main 

types of dimensionality reduction are feature selection and feature extraction. Feature selec-

tion involves selecting data that contains the most relevant information for solving a particu-

lar problem; a subset of the original data is maintained and used for machine training (Bian-

chi et al. 2020). For instance, Bianchi et al, conducted a study aiming to detect temporoman-

dibular joint osteoarthritis (TMJ OA). Only the most robust features were selected for ma-

chine training out of the collected 52 clinical, biological and radiomic markers and 1326 in-

teractions. Similarly, in AI systems for two-dimensional cephalometric analyses, the rates of 

success of landmark detection and classification of skeletal and dental problems depend on 

the proper selection of the diagnostic variables. On the other hand, feature extraction trans-

forms the original features into a new, smaller set of more significant features (Hwang et al. 

2021). In the study of Bianchi et al, twenty three-dimensional imaging features of bone tex-

ture and bone morphometry, that quantify the initial morphological changes in the condylar 

trabecular bone, were extracted and used for machine training instead of analyzing the whole 

Cone-Beam Computed Tomography (CBCT) scan grey level voxels. 

After implementing and tailoring the previous steps according to the aim of the ML model, 

the data are considered ready for advanced analysis and machine learning. 

In-Depth Data Analysis  
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Following data preparation, each clinical application of artificial intelligence in orthodontics 

requires the selection of the proper machine-learning methodology, training the ML model 

and evaluation of the developed model’s performance. 

The success of the ML algorithms depends on the thorough comprehension of what algo-

rithms can provide, the limitations of algorithms, and how that will support and fit into clini-

cal care. Hence, communication between data analysts, data scientists and clinicians is im-

portant during all phases of CDSSs development (Allareddy et al. 2019b). Within dentistry, 

different ML algorithms have been utilized based on the size of the data, variables/features to 

analyze, and the objective of the model. ML can involve unsupervised or supervised learning 

(Alloghani et al. 2020). 

In unsupervised learning, algorithms detect hidden patterns within an unlabeled data set. That 

means all variables within the training data set are utilized as inputs, and the machine will au-

tomatically discover structures/patterns within that data set without receiving instructions 

about the desired outcomes. Based on the problem at hand, unsupervised learning algorithms 

will split the data set into groups (clustering) or find rules representing the relationship be-

tween variables within a data set (association) (Alloghani et al. 2020; Auconi et al. 2015). 

For example, in a study conducted by Auconi et al combinations of variables (inputs) were 

provided to the fuzzy cluster, which detected the best phenotypic factors to group a sample of 

Class-III patients into subjects with increased mandibular dimensions, subjects with in-

creased maxillomandibular divergence, and subjects with intermediate characteristics be-

tween the two groups.  
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Supervised learning algorithms, on the other hand, analyze training data sets with predeter-

mined inputs and outputs. Consequently, the inferred ML model can predict the outputs of 

new data. Common tasks of supervised learning algorithms include classification and regres-

sion (Auconi et al. 2015).The classification task aims to detect a function (discrete value) that 

aids in splitting the data set into classes based on various parameters (Jung and Kim 2016). 

For example, using a classification algorithm and a training data set consisting of patients’ 

intra-oral and cephalometric findings, the supervised ML model can determine (i.e. classify) 

the cases that need or do not need a tooth extraction for orthodontic reason  In the regression 

task, the correlation between dependent and independent variables is detected during the ma-

chine training, and the developed model can predict continuous variables (Farhadian et al. 

2019). For instance, an ML model trained with a regression algorithm can predict dental age 

(continuous variable) from the pulp-to-tooth ratio of the canines (Sidey-Gibbons and Sidey-

Gibbons 2019). When training with supervised ML algorithms, it is possible to generate an 

overfit model that performs well only on the training data set. Thus, it is essential to evaluate 

the developed model’s generalizability and tune the model parameters through validation 

methods, for example, cross-validation (Jiang, Gradus, and Rosellini 2020). Last, the perfor-

mance of the model should be evaluated using the test data set. For that, various methods ex-

ist and should be selected based on the task of the ML algorithms (classification or regres-

sion) and the type of outcomes (Park et al. 2019). 

Interestingly, a review conducted by Asiri et al. revealed that most of the ML applications in 

orthodontics have utilized supervised machine learning algorithms to automate clinical pro-

cedures that execute or assist in diagnosis and treatment planning. Radiographs were com-

monly targeted in developing those ML models as they are considered essential tools for or-
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thodontic diagnosis, treatment planning and evaluation of treatment outcomes. Discrepancies 

in landmarks identification have been recognized as a critical source of error in cephalo-

metric analyses. Since the analysis’ diagnostic value relies on the reproducibility and preci-

sion of landmarks identification, interests to develop an automated approach have increased 

to reduce the laboriousness of the task and subjectivity of the analysts (Asiri et al. 2020). 

Park et al. reported that training the machine with the YOLOv3 algorithm for automatic la-

belling of 80 landmarks resulted in small error plots and 5% improvements in the accuracy 

compared to top benchmarks reported in the literature. Additionally, the mean computational 

time consumed per image was only 0.05 seconds (Park et al. 2019). Similarly, Kunz et al57 

reported promising results obtained with an AI algorithm that can analyze new cephalometric 

X-rays with precision comparable to the gold standard, that is, experienced human examin-

ers. Furthermore, Lee et al. presented an automated framework for cephalometric landmarks 

detection with the implementation of confidence regions (95%) around the estimated posi-

tions of the landmarks. This will allow clinicians to gauge the accuracy of the size and loca-

tion of the calculated landmarks  (Lee, Yu, et al. 2020). 

Besides using the two-dimensional radiographs for the cephalometric analysis, accurate 

measurements can be attained with CBCT imaging modality; CBCT provides an accurate 

three-dimensional spatial representation of the oral and craniofacial structures. However, the 

accuracy of manual landmarks plotting on the CBCT requires substantial effort, experience, 

and time. Gupta et al reported an automatic knowledge-based landmark detection algorithm 

able to produce accurate cephalometric measurements comparable to those computed from 

manual identification (Gupta et al. 2016). Automation of the radio-graphic analysis has also 

involved attempts to estimate the skeletal maturation that provides the best estimate of the 
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individual’s biological age and aid treatment planning. Kashif et al used a classifier algorithm 

and developed a tool that can help predict the bone age from hand radiographs with a mean 

error of 0.6 years compared to the average reading of two experienced radiologists (Kashif et 

al. 2016). Kok et al, on the other hand, reported different algorithms that predict the skeletal 

maturation from the cervical vertebrae on lateral cephalograms (Kök, Acilar, and İzgi 2019). 

ML algorithms have also been utilized to develop an automated imaging system that provides 

objective morphological facial assessment during the orthodontic diagnosis process (Bayirli, 

Kim-Berman, and Puntillo 2020). Furthermore, various methods for automatic volumetric 

segmentation of CBCT images were developed using ML algorithms. This will allow objec-

tive generation of three-dimensional models for advanced diagnosis and treatment planning 

whilst saving the time and efforts required for manual segmentation (Varma et al. 2019). 

Growth and development of orofacial complex are influenced by the interaction of the genet-

ic and environmental factors. Orthodontists are mainly using phenotype-driven diagnostic 

tools like cephalometric analyses to predict the growth in individuals with Class-II or class-

III skeletal malocclusions. However, future studies of genetics, epigenetics and metabolic 

pathways that utilize advanced machine learning tools will transform the process of ortho-

dontic diagnosis and treatment planning (Wiens et al. 2019; Allareddy et al. 2019). 

Data Communication  

The next step after developing the ML-based model is to communicate the ML findings with 

the clinicians. Production of predictive models in a real-world healthcare setting is more 

challenging than developing models in an experimental environment. Therefore, it is im-

portant for clinical experts who were not involved in tools development to test and validate 
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the system’s performance. Following the deployment of the ML model, it should be moni-

tored for reliability and correction of errors since clinical protocols and populations are 

changing over time (Li, Kong, et al. 2019). 

The CDSSs, reviewed in this manuscript, will improve Orthodontic care only if clinicians 

utilize ML and AI tools to analyze the inter-relationships among the dentition, craniofacial 

skeleton and soft tissues. Then, translate the acquired knowledge towards the advancement of 

orthodontic diagnosis, treatment planning, evaluation of growth and development, assess-

ment of treatment progression, outcomes and stability. 

Data Storage for Computation and Integration  

Our clinical research team, the DBCIA, has developed a web-based system called Data Stor-

age Computation and Integration (DSCI) for the management of data science approaches in 

TMJ and dental CDSSs. The DSCI allows clinicians and researchers to store and share de-

identified data between multiple clinical centers. In addition, it allows data processing, in-

depth data analysis with several machine learning algorithms and outcomes communication 

with the users (Figure 2.2B) (Heinrichs and Lim 2003)The security and privacy of the access 

to the DSCI are handled using Jason Web Tokens, with encryption of each user who requests 

to log in. The DSCI uses Amazon Web Services which enable distributed computing across 

multi-site clinical centres. Furthermore, the web data management server architecture facili-

tates scalability and inclusion of plugins or processing pipelines to exploit data sets stored in 

the web system resources. 
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TMJ clinical decision support system 

Rationale Osteoarthritis of the TMJ (TMJ OA) is a chronic debilitating disease that affects 

millions of people and poses a burden on public health globally (Bianchi et al. 2020) It is a 

multifactorial disease that results from biological and mechanical events that destabilize 

normal coupling of synthesis and degradation of the subchondral bone and the articular carti-

lage (Su et al. 2016). Diagnosis of the TMJ OA is currently based on pre-existent clinical 

signs and symptoms/imaging markers following the recommendations of the Diagnostic Cri-

teria for Temporomandibular Disorders (DC/TMD) (Schiffman, Ohrbach, et al. 2014). How-

ever, several studies showed that clinical diagnosis is poorly correlated with the bony chang-

es in CBCT images. Therefore, new assessment tools are needed for the precision of the di-

agnoses (Su et al. 2016). 

TMJ decision optimization  

The CDSS for the TMJ, deployed in the DSCI, enables reliable detection of the TMJ OA and 

visualization of surface changes of the affected condyles (Figure 2.3). The TMJ CDSS has 

components for data storage of biological, clinical and imaging data (e.g. magnetic resonance 

images, panoramic images, CT and CBCT scans). Furthermore, it possesses a tool for data 

processing (TMJseg) that allows automatic segmentation of the condyles from the CBCT 

scans (Brosset et al. 2020). Regarding the in-depth analytics component of the CDSS, the 

DSCI’s statistical analysis, cross-validation and machine learning (Light GBM and 

XGBoost) tools permit users to integrate patient-specific multi-source data and to obtain a 

diagnosis of the TMJ condition, that is, healthy or diseased. A recent study by Bianchi et al. 

showed that the use of the DSCI tools facilitated the diagnosis of TMJ OA in its initial stages 
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with an accuracy of 0.823. Moreover, they demonstrated that the interaction of the biomolec-

ular features has a large contribution to the prediction of the TMJ OA status (Bianchi et al. 

2020). Furthermore, the DSCI has a machine-learning model that detects changes of the con-

dyles’ surfaces (Shape Variation Analyzer) which aids in classifying the TMJ OA disease in-

to different categories based on the degree of the condylar degeneration (Ribera et al. 2019). 

Dental Clinical Decision Support System 

Rationale Currently, the commercial companies that fabricate clear aligners are utilizing data 

from digital dental models and applying AI algorithms to predict and plan teeth movement, 

as well as to undertake teeth segmentation. However, such AI algorithms have not been vali-

dated and require caution by clinicians in terms of utilizing the provided predictions as well 

as monitoring treatments’ results (Faber, Faber, and Faber 2019). Moreover, these technolog-

ical advancements also require the integration of multi-source data capture, including clinical 

information and three-dimensional imaging exams such as CBCT, digital dental models 

(DDMs), photographs, lateral cephalogram and panoramic X-rays (Li et al. 2019). 

Dental decision optimization The CDSS for dental applications deployed in the DSCI inte-

grates dental crowns’ and root canals’ relevant clinical information from the DDMs and 

CBCT scans, respectively (Figure 2.4). In addition, it provides tools for automatic segmenta-

tion of root canals (RootCanalSeg), teeth and gums (DentalModelSeg) (Dumont et al. 2020). 

Overcoming the registration challenges created by merging the information from different 

imaging modalities and DDM, a work in progress, will enable reliable quantitative assess-

ments of teeth movement (Figure 2.4).  
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       Figure 2.3: Data Science Approaches in the TMJ Clinical Decision Support System. 
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Figure 2.4: Sequence of Data Science Approaches in the Dental Decision Support Sys-

tem 

2.3 Conclusion 

Clinical Decision Support Systems incorporate knowledge with patient-specific data to serve 

clinicians with tools that enhance their clinical decision-making process. Thorough under-

standing of the steps involved in developing DSS and communication between clinicians, da-

ta scientists and analysts are keys to creating successful tools that fit into the clinical work-

flow. 
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Chapter 3 A Comprehensive Patient-Specific Prediction Model for Tem-

poromandibular Joint Osteoarthritis Progression 

 

Abstract 

Temporomandibular joint osteoarthritis (TMJ OA) is a multifactorial degenerative disease that 

affects 8-16 % of the global population. It leads to chronic pain, jaw dysfunction and in advanced 

stages may require joint replacement. To date, no prognostic tool or single biomarker can accu-

rately predict the course of this intricate disease. Identification of patients at risk for severe prog-

nosis is crucial for timely intervention and reducing the need for surgical management. Hence, 

we prospectively acquired clinical, imaging and biological data from 106 subjects, with 74 fol-

lowed over 2-3 years. We proposed an open-source predictive modeling framework, called En-

semble via Hierarchical Predictions through Nested cross-validation tool, which combines 18 

feature selection, statistical and machine learning methods, allowing prediction of disease pro-

gression with  accuracy of 0.87, area under ROC curve of 0.72, and F1 score of 0.82. Important-

ly, using the interpretable SHAP analysis method, we identified the strongest predictors for TMJ 

OA progression. Lower values of headache, lower back pain, restless sleep, condyle high grey 

level-GL- run emphasis, articular fossa GL non uniformity and long run low GL emphasis, saliva 

levels of Osteoprotegerin and Angiogenin, and higher values of the superior joint space, mouth 

opening, saliva Vascular-endothelium-growth-factor and Matrix-metalloproteinase-7, serum Epi-

thelial-neutrophil-activating-peptide and age indicate increased the probability of recovery for a 
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specific subject. Our multidimensional and multisource analytics tool can enhance clinicians’ 

decision-making and pinpoint risk predictors for TMJ OA progression. The EHPN integrates 

biological and clinical sciences to solve TMJ OA prognosis in a translational infrastructure that 

will transform temporomandibular disorders practice.  

Significance Statement 

This study identified a comprehensive set of clinical, quantitative imaging and biological bi-

omarkers for precise prediction of TMJ OA disease progression. We developed an open-source 

tool based on a robust method called Ensemble via Hierarchical Predictions through Nested 

cross-validation (EHPN), which surpassed the performance of the 48 models tested. Importantly, 

the model demonstrated F1 score of 0.82, suggesting its high level of generalizability. The use of 

the EHPN model may revolutionize the standards of care, providing clinicians with an accurate 

tool for anticipating the future status of TMJ OA patients, thereby enhancing their decision-

making process. 
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3.1 Introduction 

Temporomandibular Joint Osteoarthritis (TMJ OA) is a progressive degenerative joint disease 

that affects 8-16 percent of the population worldwide, impacting the quality of life, and imposing 

a large economic burden on society. It is characterized by synovitis, destruction of the articular 

tissues, and abnormal remodeling of the subchondral bone (Wang et al. 2023; Lee et al. 2019). 

This can lead to chronic joint pain, noises, jaw dysfunction, and in advanced stages may necessi-

tate joint replacement (Wang et al. 2023; Yoda et al. 2020). Although TMJ OA is considered an 

age-related disease, it peaks between the age of 20-40 years, and the associated degenerative 

changes can appear in adolescents (Song et al. 2020; Lee, Hong, and Chun 2019), 

 Current understanding of the TMJ OA pathogenesis has shifted from a simple mechanical wear-

tear model to a complex and multifactorial condition; biological, behavioral, psychosocial factors 

as well as comorbidities can contribute to disease onset (Wang et al. 2023; Jha, Lee, and Kim 

2022; Lee et al. 2019). Despite the availability of different treatment options for TMJ OA, to 

date no clinically approved treatment is available to reverse the damage within the TMJ structure 

(Zhao et al. 2022). Thus, early identification of patients at risk for disease progression is crucial 

for timely intervention, enhancing the prognosis and reducing the need for surgical management.  

 Since 2014, the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) have become 

the international standard for TMJ OA diagnosis. These criteria improved the reliable detection 

of the clinical and radiographic features of TMJ OA (Jha, Lee, and Kim 2022; Schiffman, 

Ohrbach, et al. 2014). However, identifying individuals at risk for disease progression has re-

mained challenging, as the severity of patients’ reported symptoms is often not well correlated 

with the TMJ degenerative bone changes (Song et al. 2020). Therefore, there has been a growing 

need to identify other prognostic biomarkers.  
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The subchondral trabecular bone is characterized by a dynamic structure that uniquely adapts to 

the mechanical loads applied to the joint, altering bone density, shape and/or the spatial orienta-

tion and scale parameters of the trabeculae (Li et al. 2013). Mounting evidence indicated that the 

subchondral bone, in animal models, had an essential role in the initiation and progression of 

OA. Specifically, OA associated microstructural bone changes reduced the ability to absorb and 

dissipate energy and increased the transmission of forces through the joint and subsequent de-

formation of the articular surfaces (Neogi 2012). Recent advances in imaging techniques, e.g. 

high-resolution cone beam computed tomography (hr-CBCT) scans, enabled three-dimensional 

(3D) quantification of humans’ trabecular bone microstructure with less radiation, reduced cost 

and improved accuracy, comparable to micro-CT (Liang, Zhang, et al. 2017). Importantly, im-

provement of the processing/analysis methods allowed extracting quantitative features (radi-

omics) of the images’ textures, which reduced the subjectivity in radiographic interpretation  

Along with condylar bone changes, TMJ OA is characterized by joint space (JS) narrowing 

(Massilla Mani and Sivasubramanian 2016). Disturbance of normal JS might affect the con-

dyle/articular disc movements, increase the friction among articulating bones and result in pain 

and functional degradation (Alqhtani et al. 2022). To the best of our knowledge, radiomics bi-

omarkers and JS narrowing have contributed in predicting knee OA disease progression; howev-

er, their value in predicting TMJ OA progression remains unexplored (Halilaj et al. 2018; Mac-

Kay et al. 2018). 

Biological markers have also demonstrated a pivotal role in reflecting changes within joint tis-

sues. Over 100 protein mediators have been identified in integrated processes that contribute to 

arthritis initiation and progression (Shrivastava, Battaglino, and Ye 2021; Cevidanes et al. 2014). 

Interestingly, the work of Slade et al. (2011) and Shirvastava et al (2021) suggested that synovial 
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fluid proteins, which play a role in the cross-talk among different joint tissues and contribute to 

osteoarthritic degenerative changes, can be reflected in serum biomarkers. To date, no single bio-

logical marker has been well-established for the prognosis of OA. As multiple tissues are affect-

ed in TMJ OA, a set of biomarkers would provide comprehensive insight into this intricate dis-

ease and may improve the prediction of disease progression at an individual level (Rousseau, 

Chapurlat, and Garnero 2021; Cevidanes et al. 2014). 

Osteoarthritis has traditionally been considered a slowly progressing disease, however, recent 

research suggests that the disease progression varies widely among affected individuals (Halilaj 

et al. 2018).  Hence, combining different biomarker modalities seems essential for comprehen-

sive forecasting of OA progression (Ntakolia et al. 2021). With the advent of powerful multivari-

ate data analysis and machine learning (ML) approaches, analysis of complex datasets derived 

from various sources became feasible (Jha, Lee, and Kim 2022). Nevertheless, before machine 

training, it is crucial to apply feature selection methods to select the most relevant data for a spe-

cific task. This process eliminates irrelevant data, resulting in improved earning accuracy and 

output comprehensibility (Al Turkestani et al. 2021). A prospective comparison of ML methods 

in predicting TMJ OA progression is currently lacking, and the few existing longitudinal studies 

have primarily focused on reporting the clinical and the qualitative imaging features of the dis-

ease observed in CT scans (Song et al. 2020). Therefore, the objectives of the present study 

were: 1) to develop a reliable prediction tool for TMJ OA progression, and 2) to identify the con-

tributing factors in OA progression during a 2–3-year follow-up period. We hypothesized that 

the combination of specific clinical symptoms, protein markers and quantitative imaging features 

at baseline would result in a robust ML model for predicting the risk of TMJ OA disease pro-

gression over a period of 2-3 years. 
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To test the hypothesis, we acquired clinical, imaging (trabecular bone texture and morphometry) 

and biological (serum and saliva proteins) data features at baseline from a prospective cohort of 

TMJ OA and control participants. We characterized TMJ OA progression at 2-3 years of follow-

up using clinical and imaging. We evaluated the contribution of baseline features and compared 

ML techniques to identify the most robust predictive model. We then developed the Ensemble 

via Hierarchical Predictions through the Nested cross validation (EHPN) learning tool, which 

efficiently managed the heterogeneity of the method and effectively integrated the heterogeneous 

features in this study. The rank of the contributing features in terms of their impact on the final 

ML output was tested using shapely and additive explanations. Our work provides an open-

source tool for comprehensive patient specific prediction of TMJ OA progression. 
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3.2 Materials & Methods 

Study Design, Setting and Participants 

The data collection for this prospective longitudinal study baseline sample was conducted from 

February 2016 to December 2018 and the follow-up was conducted from February 2019 to June 

2021, as approved by the Institutional Review Board at the University of Michigan 

(HUM00113199). All data collection was performed after obtaining written informed consents 

from participants and in accordance with STROBE guidelines.  

At baseline, we recruited 106 participants, 53 TMJ OA and 53 age and sex-matched control sub-

jects, based on rigorous inclusion criteria: participants had no systemic diseases, no congenital 

bone/ cartilage disease, no history of cancer/trauma/surgery in the TMJ, no previous treatments 

for the TMJ OA, and their age ranged between 21–70 years. A single temporomandibular disor-

ders specialist diagnosed subjects with TMJ OA following the Diagnostic Criteria for Temporo-

mandibular Disorders (DC/TMD) (Schiffman, Ohrbach, et al. 2014). The TMJ OA diagnosis was 

confirmed with the radiographic signs of the disease, described in the DC/TMD, and the side 

with initial osseous alterations was included in the study. The control subjects were all asymp-

tomatic, and the side without radiographic determinants for TMJ OA was included in the study. 

The retention rate  for the follow-up data collection was 70%, which consisted of 74 recalled 

participants, 34 TMJ OA and 40 control subjects.  

Multi-Source Data Strategies and Processing 

Our study acquired 3 main sources of data at baseline (T1): clinical features, imaging features 

(composed of trabecular bone texture and morphometry) and biological features (composed of 

serum and saliva proteins).  At follow-up (T2), we acquired clinical and imaging data to evaluate 
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disease progression (Figure 3.5). Data processing was performed by a single examiner (N.A), 

unless stated otherwise. 

Clinical Data 

The DC/TMD clinical exam and survey variables selected for statistical analyses were age, gen-

der, last month distressed by headaches, muscle soreness or lower back pain, vertical range of 

unassisted mouth opening without pain (mm), and pain characteristics (current pain intensity, 

worst pain, average pain and pain interference with daily activities in the past 6 months). Partici-

pants rated their headaches, muscle soreness, and lower back pain on a scale ranging from 0-4: 

0=not at all and 4= extremely. The TMJ OA participants rated their pain using a numeric rating 

scale that ranged from 0-10: 0= no pain and 10= the worst possible pain. All control subjects 

presented no orofacial pain at T1 and T2. 

Imaging Data  

Acquisition Protocol: High resolution cone-beam computed tomography (hr-CBCT) scans were 

acquired for all participants using the 3D Accuitomo 170 machine. All patients were positioned 

with the Camper’s horizontal plane parallel to the ground and were instructed to keep their jaws 

in the maximum intercuspal  position. The acquisition protocol included 40 × 40 mm field of 

view; 90 kVp, 5 mAs, 30.8 sec scanning time and a voxel size of 0.08 mm. All images were cod-

ed and de-identified to prevent investigator bias in subsequent analyses. 

Imaging Criteria for the TMJ OA Diagnosis: An American Board of Oral and Maxillofacial Ra-

diology certified radiologist and an oral and maxillofacial radiologist evaluated the hr-CBCT 

scans of the recalled participants blindly. The radiological changes of the mandibular condylar 

head were scored based on the DC/TMD. Cases with different scores were discussed and con-
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sensus data was used to assess progression or improvement of the radiographic changes at fol-

low-up. 

Image Pre-Processing: To allow reliable detection and comparison of changes between several 

individuals or within the same individual at different time points (Figure 3.2A), before extracting 

the quantitative bone texture/morphometry features, all hr-CBCT scans were pre-processed using 

validated protocols.  

Extraction of Trabecular Bone Texture-based and Morphometry Imaging Features: Using the 

“crop-volume” tool in 3D Slicer, a rectangular shaped volume of interest (VOI) was cropped 

from the trabecular bone in the mandibular condyles and the articular fossa. Then, using the av-

erage minimum and maximum intensity values of all VOIs, we standardized the grey level inten-

sities of the VOIs to eliminate inaccuracies of textural features calculation and possible depend-

ency on the global characteristics of the images. Lastly, imaging markers were extracted from the 

standardized VOIs using “BoneTexture” module in 3D-slicer.  

Measurement of the 3D Articular Joint Space: To assess the progression/improvement of osteo-

arthritic changes in the affected individuals, we measured the 3D superior joint space. We pre-

labelled two landmarks in the sagittal view of the oriented CBCT scans: on the most superior 

point of the condyle and on the opposing surface of the articular fossa. To avoid biasing the 

landmarks’ placements, pre-labelling was performed simultaneously on T1 and T2 scans, using 

two independent windows in ITK-SNAP. After the volumetric reconstruction of the identified 

landmarks, linear measurements were obtained in millimeters using the Q3DC tool in 3D Slicer. 

Three-dimensional Shape Analyses and Quantification of Remodeling in the Condyles: 

SPHARM-PDM software was used to compute the correspondence across 4002 surface points 

among all condyles. The output point-based models displayed color-coded maps that enabled 
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visual evaluation of consistent parametrization of all condyles. An average condyle shape for the 

TMJ OA and control groups was calculated through propagation of original surface point corre-

spondences across all stages of deformations and averaging the condyle surface meshes. For vis-

ualization of the 3D qualitative changes of the average models within the same group at different 

time points or among different groups, semi-transparent overlays were created using 3D Slicer 

software. The vector differences were presented on the condyle surfaces, scaled according to the 

magnitude of difference, and pointing towards the direction of bone change. For quantification of 

remodeling in the condyles, calculation of signed distances across condyles  surface meshes re-

flected the quantitative bone changes in the TMJ OA and control samples (Figure 3.3). To quan-

tify regional bone changes across the lateral and anterior surfaces of the condyles, we used the 

Pick ‘n Paint tool in 3D Slicer to propagate regional surface points to the corresponding regions 

of shapes across all subjects and time points (Figure 3.4A) (Cevidanes et al. 2014). 

Statistical Analysis and Machine Learning Approaches 

We used SPSS version 27.0 (IBM Corp., Armonk, NY) for descriptive analyses, non-parametric 

tests and computing kappa statistics. To test the differences of the variables between control and 

TMJ OA subjects, we utilized Chi-square test, Independent Sample T test, and Mann–Whitney U 

test. To test the differences of variables between T1 and T2 in one group, we utilized Wilcoxon 

Signed Rank Test. Differences were considered significant when p<l0.05. Kappa statistics were 

employed to assess the agreement among two radiologists in grading the morphological changes 

of the condyles. Pearson’s correlation and p-values based on the two-sided t-test between each 

pair of the imaging, biological and clinical features were calculated. P-values were adjusted 

based on false discovery rate (FDR) correction for multiple testing. 
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The health status of all participants at follow-up was scored by two clinicians’ experts based on 

changes in levels of pain-related symptoms, the two radiologists’ consensus on the radiographic 

signs of the disease (subchondral cyst, erosion, osteophyte), and the 3D morphological changes 

of the condyles compared to the baseline findings. The consensus resulted in four categories: 

0=asymptomatic, 1=improved, 2=same, or 3=worsened. This resulted in a small and unbalanced 

sample size (eight asymptomatic, nine improved, thirteen remained the same, four worsened) 

that was inadequate for cross-validation and modeling. Thus, we binarized the follow-up evalua-

tion scores and combined healthy and improved categories into one group (recovery) and same 

and worsened groups into another (no recovery). To build a robust prediction model for TMJ OA 

prognosis, we followed the steps below,  

Nested 10-fold CV: To avoid overfitting, we employed the nested 10-fold CV method to build 

and evaluate the performance of various predictive models. Our method consisted of two nested 

CV loops, each implementing a 10-fold CV. The outer loop aimed to provide an unbiased evalu-

ation of model performance, while the inner loop determined the hyperparameters for the final 

model. Specifically, all subjects were split into 10 folds: 𝐴1, 𝐴2, … , 𝐴10. One fold 𝐴𝑖 was kept as 

an independent test set, and the remaining folds {𝐴𝑗|𝑗 ≠ 𝑖} } were further split into 10 subfolds: 

𝐴𝑖,1, 𝐴𝑖,2, … , 𝐴𝑖,10; the subfold 𝐴𝑖,𝑗 was considered an validation set and the remaining subfolds 

{𝐴𝑖,𝑘|𝑘 ≠ 𝑗} made up the training set. We trained various statistical and machine learning models 

using the training dataset. The validation dataset was utilized to adjust the hyperparameters and 

determine the number of top features. In the inner loop of the nested CV, the validation dataset 

𝐴𝑖,𝑗 looped over{𝐴𝑖,1, 𝐴𝑖,2, … 𝐴𝑖,10}, and the model trained on the training data {𝐴𝑖,𝑘|𝑘 ≠ 𝑗} was 

applied to predict the outcome of the validation set𝐴𝑖,𝑗. In the outer loop of the nested CV, 𝐴𝑖 

looped over 𝐴1, 𝐴2, … , 𝐴10, with 𝐴𝑗 , 𝑗 ≠ 𝑖being the training and validation datasets, respectively, 
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and each subject was predicted once as an independent test subject. The 34 OA patients under-

went the nested 10-fold CV process, while the 40 normal controls were added as additional train-

ing resources to the training data during each loop of the cross-validation. 

Feature Selection and Machine Learning (ML) Approaches: We tested six feature selection (FS) 

methods including:FS1) selection frequency of LASSO (Glmnet), FS2) permutation importance 

for Random Forest (RF), FS3) gain for XGboost (XGboost), FS4) combinations of the absolute 

values of weights for neural network (NNET), FS5) absolute value of coefficients in Glmboost 

(Glmboost), FS6) AUC between each feature and the response (AUC). We evaluated eight pre-

dictive modeling (PM) methods including:PM1) elastic net (Glmnet), PM2) Glmboost, PM3) 

High-Dimensional Discriminant Analysis (HDDA), PM4) single-hidden-layer neural networks 

(NNET), PM5) RF, PM6) XGBoost, PM7) Kernel-based Support Vector Machine (SVM), and 

PM8) Linear Discriminant Analysis (LDA). In total there are 6 FS * 8 PM = 48 machine learning 

methods.  

For each model, we employed three major steps on the training dataset: 1) calculation of feature 

importance scores based on FS1-FS6 methods, respectively, in the inner loop, 2) ranking of fea-

ture importance scores and selection of top features to train the ML models, 3) using the selected 

number of top features to train the model with the training and validation datasets together. Then, 

we evaluated the trained models’ performances on the test set (outer loop of the nested CV). All 

feature selection, machine learning predictive modeling based on nested CV were carried out 

using the package “caret” of R/4.1.0 software, and the six feature importance scores were calcu-

lated by the intrinsic metrics of the corresponding ML methods in the package “caret”, respec-

tively. 
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We proposed a method called Ensemble via Hierarchical Predictions through the Nested CV 

(EHPN) to improve predictive performance. This method combines 18 models with optimal pre-

dictive performance based on the validation dataset, six FS models with PM2, six FS models 

with PM3, and six FS models with PM8, as PM2, PM3 and PM8 were the top three performing 

ML methods. We carried out the model ensemble on the validation dataset; specifically, a Glm-

boost model was trained to assign different weights to the 18 models during the validation step. 

We evaluated the performance of the combined model using the test dataset. Since the test set 

loops over the 10 folds, the Glmboost model was trained with different and fold-specific set each 

time. 

Interpretability of the ML Models’ Prediction: We used the SHapley Additive exPlanations 

(SHAP) method, we interpreted our EHPN prognosis predictions on the independent test set. 

Shapley values reflect the magnitude and direction (sign) of the methods’/features’ contribution 

to the model outcome. We calculated the Shapley values to A) identify the top contributing FS 

and ML methods in the EHPN model and B) determine features’ contribution to the model pre-

dictions in the top six methods. The Shapley values were calculated following Strumbelj et al. 

based on Monte-Carlo sampling. A higher Shapley value indicates a higher predicted probability 

for a patient to improve, compared to removing the method or feature. 
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3.3 Results 

3.3.1 Improvement of the Clinical Symptoms in Participants with TMJ OA  

Seventy-four individuals participated at recall visits (63 females and 11 males, with a mean age 

of 41.3 ± 12.7 years at baseline (Figure 3.1A). The mean follow-up period was 2.4 ± 0.9 years. 

The majority of the TMJ OA group sustained the habits of teeth grinding at night (82%) and jaw 

clenching while awake (∼65%). The TMJ OA participants received non-invasive, conservative 

treatments, such as occlusal splints, physical therapy, jaw exercises and NonSteroidal Anti-

Inflammatory Drugs. As a result, they presented significant reduction in their pain intensity, av-

erage pain, worst pain levels and pain interferences with their daily activities in the past 6 

months compared to baseline levels (p≤0.0001, Figure 3.1B). In comparison to the control group, 

the TMJ OA group continued demonstrating significantly reduced vertical range of unassisted 

mouth opening without pain (mouth opening) and higher levels of headaches, lower back pain, 

muscle soreness, and restless sleep at follow-up (p≤0.0004, Figure 3.1C-D).  

3.3.2 Evidence of Persistence of Radiographic Signs of TMJ OA 

Degenerative bone changes observed in the condyles of the TMJ OA group are illustrated in Fig-

ure 3.1E, with their corresponding frequencies of occurrence presented in Figure 3.1F. The most 

frequent bone changes observed at baseline were flattening (97%) and sclerosis (82%), followed 

by erosions/osteophytes (79%), and subchondral cysts (76%). While the distribution of flatten-

ing, sclerosis and osteophytes did not change among the majority of the TMJ OA participants 

(82-88%), five surface erosions (∼15%) and six subchondral cysts (∼18%) were newly detected 

at follow-up visits. Interestingly, the study subjects presented several osteoarthritic changes con-

currently, e.g., osteophytes, erosions and subchondral cysts occurred simultaneously in 19 indi-
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viduals. Together, these findings illustrate that participants did not recover from the osteoarthritic 

changes of the condyles in a mean follow-up duration of 876.58 ±  273.75 days.  

The Kappa value of the two oral and maxillofacial radiologists’ experts for scoring the condyles’ 

degenerative bone changes was 0.61, indicating a substantial inter-observer agreement, and the 

overall similarity value agreement was 81%.  

3.3.3 Quantitative Imaging Features Vary Among Control and TMJ OA Participants  

Using a previously validated protocol (Figure 3.2A), we extracted imaging features from the tra-

becular bone at the lateral surface of the condyles and the anterolateral (AL) surface of the ar-

ticular fossae, sites where greater OA bone remodeling develops.(Cevidanes et al. 2014) Defini-

tions and values of the imaging features are provided in Supplementary Tables 3.1-3.2. Ten con-

dylar imaging features were significantly different between the control and the TMJ OA groups 

at baseline (p<0.05). Surprisingly, the differences in these markers were not statistically signifi-

cant following treatment, suggesting that they are sensitive indicators of improvements in pa-

tients' conditions (Figure 3.2B). The TMJ OA group had higher levels of entropy, short run em-

phasis (SRE), low grey level run emphasis (LGLRE), and short run low grey level run emphasis 

(SRLGLRE) than the control. These findings specified the characteristics of the condyles’ tra-

becular bone texture in the hr-CBCT images at pixels’ levels, i.e., the extracted images’ volumes 

presented an increase in the randomness of the grey level intensities distribution, a decrease in 

texture roughness, and a texture dominated by many short runs of low grey levels. The TMJ OA 

participants also presented a significant decrease in the trabecular thickness as well as bone sur-

face/bone volume ratio. Intriguingly, five condylar and seven articular fossa imaging features 

varied significantly between the baseline and the follow-up visits of the control group (Supple-
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mentary Tables 3.2-3.3). Together, this suggests that radiomics have the potential to reflect 

pathological as well as physiological changes within the trabecular bone structure. 

Along with the computation of the trabecular bones’ radiomics and the structural parameters, we 

measured the three-dimensional joint spaces extending from the most superior point on the con-

dyles to the opposing point on the articular fossae (Figure 3.2C); our preliminary findings 

demonstrated, at baseline, insignificant differences of other joint distances between the groups 

(Mackie et al. 2022). The TMJ OA group continued to display narrowing in their joint spaces at 

follow up visits, which was significantly different from the control group (P≤0.0001); the aver-

age joint spaces were 2.8 ± 0.8 and 2.3 ± 0.8 mm in the control and the TMJ OA participants, 

successively. Alterations of the joint spaces’ median values, interquartile ranges, minimum, and 

maximum values are illustrated in Figure 3.2D.  

3.3.4 Osteoarthritis Alters the Morphology of the Mandibular Condyles 

To visualize changes of the mandibular condyles’ morphology across both groups and between 

different time points of the same group, we constructed 3D surface models from the 2D CBCT 

images and created an average mesh model for each group (Figure 3.3A-B). The semi-

transparent overlays between the baseline and follow-up visits demonstrated minor changes at 

the superior and lateral surfaces of the controls’ composite condyle and greater alterations at the 

superior, medial and lateral surfaces of the TMJ OA average group condyle. In general, the TMJ 

OA group presented smaller condyles compared to the control’s. The semi-transparent overlays, 

signed distances color-coded magnitude maps and the vector maps of the superimposed models 

showed that flattening of the articular surface, resorption of the lateral pole and apposition of the 

anterior surface were characteristics for the TMJ OA group’s condyles; a similar pattern was ev-

ident at follow-up but to a lesser extent.  
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Along with the qualitative assessments, we measured regional bone changes in the lateral and 

anterior surfaces of the groups’ composite condyles (Figure 3.4A). Although the control group 

showed a similar amount of bone changes across the examined regions (∼0.3 mm, Figure 3.4B), 

the frequency of apposition and resorption were higher in the anterior and lateral surfaces of the 

condyles, successively (Figure 3.4C). Consistent with this finding, we observed a similar pattern 

of bone changes in the TMJ OA group, yet they exhibited almost double the amount of bone re-

modeling detected in that of the control group (∼0.6 mm,). Collectively, these observations indi-

cate that osteoarthritis affected condyles’ shape, as well as the amount of bone formation and 

resorption. 

3.3.5 Individual Features Contribute Differently to the Prediction of TMJ OA Prognosis 

To determine the value of each  clinical, imaging, and biological feature in differentiating the 

follow-up health status of the TMJ OA cases (0: asymptomatic/improved, 1: remained the 

same/worsened) from the whole sample (n=74), we computed the Area Under the roc Curve 

(AUC). Supplementary Figure 3.1 shows a circle plot that consists of: the AUC values between 

each feature and the follow-up health status of the TMJ OA group, the negative logarithm of the 

p-values to base 10 for each feature between the two clinical groups using the two-sided two-

sample t-test, and the negative logarithm of adjusted p-values to base 10 after the correction of 

all features. The clinical features had the highest AUC values followed by the structural parame-

ters of the articular fossa, and the condyle’s radiomics. Headache, lower back pain, and restless 

sleep features demonstrated significant correlations (Significance level: –Log10(0.05)=1.3) with 

the clinical diagnosis, while the remaining features did not. This implies that simple linear mod-

els may be inadequate in accurately predicting the participants’ health status. Consequently, 
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more sophisticated statistical and machine learning techniques were suggested and subsequently 

examined. 

3.3.6 The EHPN Method Achieves the Highest Accuracy in Predicting TMJ OA Prognosis 

We developed our prediction mode using the baseline dataset which included: 6 clinical features, 

40 trabecular bone texture-based and morphometry features, the 3D superior joint space, and 23 

biological markers (Figure 3.5, Supplementary Table 3.4). To determine the participants’ TMJ 

OA health status overtime, we utilized clinical and imaging features, as well as the 3D morpho-

logical assessments of the condyles at follow-up visits. The TMJ OA cases were labeled as 

asymptomatic/improved or stayed the same/worsened, as detailed in the methodology section 

and illustrated in Supplementary Figure 3.2.  

To minimize overfitting, we performed nested 10-fold cross-validation (CV) and evaluated the 

prediction performance of 48 advanced statistical, feature selection, and machine-learning meth-

ods. The accuracy (ACC), Area Under the receiver operating characteristic Curve (AUC), and F1 

score of all methods are provided in Supplementary Tables 3.5-3.6. The combination of Linear 

Discriminant Analysis (LDA) model with the absolute values of weights for the neural network 

(denoted by NNET), or the selection frequency of least absolute shrinkage and selection operator 

(denoted by Glmnet), or the eXtreme Gradient Boosting (denoted by XGBoost) feature selection 

methods yielded the highest ACC, AUC and F1 scores on the validation dataset, by average. 

However, these methods presented a decrease in their F1 scores on the test dataset (Figure 3.6A), 

suggesting that the top performing methods on the validation data may suffer from overfitting on 

the test set.  
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Consequently, we proposed the Ensemble via Hierarchical Predictions through Nested 

CV (EHPN) method, which combined the top 3 performing models on the validation dataset with 

the six feature selection methods (Figure 3.6B). The combined model showed improved perfor-

mance on the test set, with accuracy= 0.87, AUC= 0.95, and F1=0.87 scores, outperforming 

those of the individual models by 8-12%, 3-14%, and 9-14%, respectively. Notably, the EHPN 

model’s F1 score on the test dataset differed from that on the validation set by only 5%, com-

pared to 9-13% of F1 scores’ fluctuations in the top performing models. These findings indicate 

that the combined model achieved more accurate prediction results and potentially addressed the 

issue of overfitting in the individual models (Figure 3.6C).  

3.3.7 Features’ Integration Enhances the EHPN Model’s Prediction of TMJ OA Prognosis  

Since TMJ OA is a multifactorial disease and there is a need to identify quantitative features that 

enable the prediction of the disease prognosis, we carried out the above experiments using clini-

cal, imaging and biological features. We next investigated if a particular subset of these features 

could predict the TMJ OA prognosis while attaining a comparable performance to using all fea-

tures. 

Figure 3.6C shows the prediction performances of the EHPN model utilizing distinct feature in-

tegration strategies. Using clinical, imaging, and biological features individually lead to a predic-

tion accuracy of 62%, 59% and 44%, respectively, on the test set. The addition of the imaging 

features to the clinical dataset enhanced the models’ accuracy and F1 score by 12% leading to 

the best model currently clinically feasible. In contrast, the combination of biological and clini-

cal features alone did not improve the model's performance, suggesting that imaging features 

may play a more important role. Nevertheless, the inclusion of all features’ sets further improved 

the model’s performance (ACC = 0.87 ±.06, AUC = 0.72 ±.10 and F1 score = 0.82 ±.05). Col-
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lectively, these findings indicate that the combination of all feature categories is essential for an 

accurate prediction of the TMJ OA prognosis. 

3.3.8 The SHAP Method Determines the Top Contributing Features for TMJ OA Prognosis 

Although the best learning strategy for our ensemble model was to incorporate all feature sets, 

this does not indicate that they all had the same impact on the model’s predictions. Thus, we uti-

lized the SHapley Additive exPlanations (SHAP) method to identify the top contributing features 

in the EHPN model’s predictions using the independent test set.  

We first computed the Shapley values to identify the top contributing methods in the EHPN 

model. Supplementary Figure 3.3 shows that the top six methods had a 76% global impact on the 

combined model predictions, with the NNET feature selection method and the LDA machine 

learning approach being the top contributors. We next calculated the Shapley values to determine 

the features with highest contribution to the model predictions, in the top six methods. Figure 

3.7A shows that the top 21 features had a 90.79% impact on the model’s predictions, along with 

a detailed description of each feature’s predictive contribution. Among the top features, clinical 

features accounted for 32.35%, imaging for 36.39%, and biological features for 20.87%, with 

age contributing for 1.18%. Interestingly, these features demonstrated weak Pearson's correlation 

between them, which did not meet the threshold for false discovery rate (FDR) correction at a 

significance level of 0.05 due to limitations in the sample size (Figure 3.7B, Supplementary Ta-

ble 3.7). This suggests that both imaging and biological features made independent contributions 

to predicting the disease prognosis. At the same time, part of the imaging's indirect effect on the 

TMJ OA status may be explained by the biological features. 

The boxplots in Supplementary Figure 3.4 illustrate that the feature distinctions between the 

asymptomatic/improved and remained the same/worsened groups, for the top 21 features, respec-
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tively. For instance, individuals in the OA worsened group manifest significantly elevated levels 

of headaches, lower back pains, and restless sleep. 

3.4 Discussion  

This study demonstrates the significance of combining clinical, quantitative imaging, and biolog-

ical features in addressing the complex, multifactorial nature of TMJ OA and forecasting its state 

over 2-3 years. By utilizing advanced statistical and machine learning approaches, we were able 

to disentangle the complex relationship between these features and integrate them towards a sin-

gle outcome (predicting disease prognosis). Analysis of the experimental results yielded im-

portant insights into the relationship between the top 21 identified risk factors, that contribute to 

90.79% of the  model prediction, and disease progression (Figure 3.7A): headaches, lower back 

pain, restless sleep, limited mouth opening, condylar (high grey level-GL- run emphasis, short 

run high GL emphasis, bone /total volume) and articular fossa imaging features (bone sur-

face/volume, GL non uniformity, long run low GL emphasis, correlation, bone/total volume, 

short run emphasis), superior joint space, age, saliva concentration of OPG, VEGF, MMP7, An-

giogenin, and serum concentration levels of BDNF and ENA78. Our results add quantitative im-

aging to the DC/TMD clinical and subjective imaging criteria in the best clinically feasible mod-

el up to date. Our study demonstrated that incorporating specific biological markers enhanced the 

accuracy of the EHPN model in predicting TMJ OA prognosis, thereby highlighting its potential 

to indicate future changes in clinical care standards. Utilizing the EHPN model may serve as a 

valuable solution for clinicians to anticipate the future status of TMJ OA patients, enhancing 

their informed decision-making, promote personalized care, and ultimately improve patient out-

comes. 
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The age and gender distribution of symptomatic TMJ OA patients in this study was consistent 

with previous research, facilitating the generalization of our results (Song et al. 2020; Alexiou, 

Stamatakis, and Tsiklakis 2009). Our clinical data analyses added to existing literature with re-

spect to the efficiency of conservative treatments and the prevalence of comorbidities in painful 

TMJ OA cases. Recent evidence demonstrated that non-invasive treatments relieve TMJ OA as-

sociated symptoms, reduce muscles’ contracture, decrease forces applied on the TMJ and bal-

ance stress distribution across the entire masticatory system (Wu et al. 2022; Al-Ani 2021). De-

spite the significant reduction of TMJ pain-related symptoms, only 24% of our TMJ OA partici-

pants presented no pain at the follow-up visit, supporting the notion that TMJ pain is not only 

elicited by local factors, e.g., joint inflammation, but might also involve central sensitization 

(Sperry et al. 2019). We also found that mouth opening increased in 41% of the TMJ OA group; 

the heterogeneity of structures involved in restricting mouth opening (arthrogenous with/without 

myogenous structures) might have contributed to differences in treatment responses (Nicolakis et 

al. 2001). Furthermore, our study confirmed the existence of frequently reported TMD comor-

bidities (headaches, lower back pain, and sleeping disturbances) in the majority of our TMJ OA 

participants, which may be implicated in the development of TMJ OA and worsening of 

joint/muscular pain (Shrivastava, Battaglino, and Ye 2021; Slade et al. 2016). 

Radiographic image changes over time support the observation of other cross-sectional studies 

that identified flattening and sclerosis as the most common changes in TMJ OA patients (Jung, 

Lee, and Suh 2022; Koç 2020). Erosions, osteophytes and subchondral bone cysts co-occurred in 

over half of our TMJ OA group, indicating that OA affected several regions of the condyles at 

different times, with some areas displaying degenerative and others adaptive changes. Erosions 

represent an initial stage of TMJ degenerative changes, while osteophytes develop when the 
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body adjusts to repair the joint, broadening the surface and reducing stress overload. Subchon-

dral cysts were postulated to form when the impact between opposing bone surfaces causes mi-

crofractures and necrosis, and the synovial fluid intrudes into these areas as the body repairs 

them and resorbs the necrotic bones (Dumbuya et al. 2020). Interestingly, the frequency of OA 

imaging characteristics in the current study differed from the literature (Dumbuya et al. 2020; 

Alexiou, Stamatakis, and Tsiklakis 2009). Furthermore, in the follow-up visits, erosions and sub-

chondral cysts did not disappear nor transform into sclerosis, flattening or osteophytes. Previous 

retrospective studies reported that following a year of conservative treatments, the number of 

degenerative bone changes in CT and CBCT sections decreased, and the osteoarthritic joints 

healed through regaining of cortical lining and transformation of erosions and/or bone cysts into 

sclerosis or flattening (Kim et al., n.d.; Song et al. 2020). Our results corroborate prior findings 

that subjects' characteristics, diagnostic criteria for OA, and  CBCT machine settings influence 

the accuracy of the detection of degenerative bone change (Cömert Kiliç, Kiliç, and Sümbüllü 

2015). Specifically, recruiting our TMJ OA patients at their initial visit to the TMJ clinics might 

result in earlier diagnosis of TMJ OA and, hence, require longer time for healing/remodeling of 

bone change (Lee et al. 2012). Additionally, we utilized high resolution CBCT images (40 × 

40 mm FOV, 0.08 mm voxel size), as CBCT is superior to CT in visualizing TMJ bone changes 

and detecting subtle alterations in the condyles’ trabecular pattern, and high scan resolution can 

detect bone defects regardless of their size (Lee et al. 2012). Thus, standardizing imaging proto-

cols and adapting them to specific equipment, as well as providing detailed guidelines for TMJ 

OA bone imaging characteristics, appear crucial for combining diverse findings, undertaking 

cross-domain analyses and improving our understanding of the disease (Basu et al. 2019). 



 

 

 147 

The EHPN model’s prediction was interpreted using Shapley analysis, identifying 21 risk factors 

that greatly contributed to the prognosis of TMJ OA disease. A specific subject's probability of 

recovery increases with lower values of headache, back pain, restless sleep, condyle HGLRE, 

articular fossa GLN and LRHGLRE, saliva levels of OPG and Angiogenin, and higher values of 

superior joint space, mouth opening, saliva concentrations of VEGF and MMP7, serum level of 

ENA78 and age. The imaging markers made the highest contribution to the model’s predictions 

followed by clinical comorbidities. At follow-up, the health status of the participants was as-

sessed using clinical and imaging features since it was not possible, prior to this longitudinal 

study, to determine the effect of biological features on TMJ OA disease progression. The biolog-

ical data was collected only at baseline to test its contribution to the disease prognosis and mini-

mize costs. Interestingly, even though follow-up levels of biological markers were not acquired, 

the baseline levels contributed to 20.87% of the EHPN predictive model.  

Our findings indicate that clinical comorbidities contributed to 32.35% of the EHPN predictive 

model, which adds to the growing body of evidence linking temporomandibular disorders and 

clinical comorbidities (Conceição et al. 2022). Aside from the fact that comorbidities were high-

ly prevalent in the TMJ OA group, having greater baseline levels of headache, sleeping disturb-

ance, and lower back pain (LBP) negatively influenced their responsiveness to conservative 

treatments,  (i.e., headache may increase the intensity and frequency of joint and muscle 

pain(39); individuals with painful TMD have poor sleeping quality; sleeping disorders can con-

tribute to headache persistence(40); and LBP can complicate recruitment of neck muscles to as-

sist with jaw-related tasks, placing greater stresses on the masticatory system and jaw muscle 

(Lee, Wu, et al. 2020). 
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Ten quantitative imaging markers had the strongest contribution to disease progression, includ-

ing superior articular space, 3 condylar and 6 articular fossa markers. Although erosions and os-

teophytes are more frequently observed in the condyles, where the bone is from endochondral 

origin, interestingly, the intermembranous bone in the articular fossa, that does not present such 

marked surface changes, showed that its bone texture and morphometry were predictors of TMJ 

OA progression. Our findings showed that condylar HGLRE had the highest Shapley value 

among the ten quantitative imaging markers with significant contribution to TMJ OA progres-

sion prediction. Notably, patients with lower HGLRE baseline values presented a favorable 

prognosis. The distribution of high grey level intensity voxels was shown to increase in resorp-

tive as well as sclerotic regions compared to normal bone, suggesting the marker’s sensitivity to 

osteoarthritic bone alterations. Furthermore, when quantified using other applications, such as 

Ibex and BoneJ, the HGLRE value is highly consistent, indicating it’s high reliability (Bianchi et 

al. 2019). Although joint space narrowing was reported to occur in TMJ OA patients (Massilla 

Mani and Sivasubramanian 2016), in our study we found that the decrease in the superior joint 

space can serve as risk predictor of severe prognosis. 

 

Considering the biological markers, OPG in saliva had the highest contribution to the EHPN 

model. Osteoprotegerin normally prevents excessive bone resorption through impeding osteo-

clasts’ differentiation/activation, and inducing their apoptosis (Wang et al. 2015). Intriguingly, 

we detected a greater risk of disease worsening in TMJ OA patients with increased OPG protein 

levels (Figure 3.7A). This may pertain to the concurrent increase in RANKL levels, resulting in a 

decreased OPG/RANKL ratio, and an increased osteoclasts’ activity that promote greater sub-

chondral bone resorption (Cafferata et al. 2021). Moreover, we noted that TMJ OA patients with 
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higher MMP7 baseline protein levels in saliva presented favorable prognosis (Figure 3.7A). 

MMP7 was found to be involved in the breakdown of various components of the extracellular 

matrix in knee OA cases (Tao et al. 2015). Our results, on the other hand, suggest the involve-

ment of MMP7 in bone tissues’ repair, corroborating previous observation of a statistical asso-

ciation between MMP7 protein level in TMJ OA patients and bone apposition on the anterior 

surface of their condyles (Cevidanes et al. 2014). 

Furthermore, we found that VEGF and angiogenin in saliva, and ENA78 and BDNF proteins in 

serum were strong predictors of TMJ OA progression. Patients with TMJ OA frequently com-

plain of joint pain related to synovitis and neuronal sensitization. In this context, VEGF, ENA78 

and BDNF, can cause pain by stimulating inflammation, nociceptors and perivascular neuronal 

growth/survival (Cafferata et al. 2021; Lu et al. 2021). Notably, TMJ OA patients with increased 

VEGF and ENA78 protein levels demonstrated greater probability for disease improvement, 

which contradicts a number of findings contending the destructive role of these markers in OA 

(Dygas, Szarmach, and Radej 2022; Scanzello 2017). It has been reported, however, that VEGF 

stimulates angiogenesis, influences the activity of osteoblasts promoting bone formation, and 

maintains normal bone remodeling through the regulation of osteoclasts’ differentiation and 

maturation (Hu and Olsen 2016). Also, ENA78 involvement in bone remodeling was recognized 

through the induction of osteoblasts proliferation and the upregulation of collagen type I expres-

sion (Lisignoli et al. 2006). In line with these observations, our results suggest that the identified 

biological markers have differential effects (degenerative as well as reparative) in the course of 

TMJ OA disease. 

Several future directions could further improve the EHPN model’s predictive performance and 

generalizability. First, increasing the sample size, while adhering to data collection and pro-
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cessing quality requirements, will improve score features’ weighting, enhance the marginal ef-

fect estimates, and the predictive values. It will also allow additional subdividing of the diseased 

group’s treatment response, promoting greater accuracy in patient-specific treatment planning. 

Second, the majority of our sample was white and Caucasian. Increasing the sample’s diversity is 

essential as OA-related pain differs between races/ethnicities. Lastly, it remains a question if in-

tegrating genetic data can result in a more transferable model for diverse populations.  

 

While most previous studies modeled the progression of TMJ OA using clinical symptoms and 

qualitative imaging markers, here we incorporated biological and quantitative imaging variables 

to prospectively assess disease progression. We also used the 10-fold nested cross-validation 

method to make our EHPN prediction model generalizable. Additionally, we have made our 

open-source tool accessible on GitHub to enable the improvement of this model as additional 

sensitive biomarkers for TMJ OA become available. Ultimately, early prediction of TMJ OA 

progression trajectories may support efforts for the discovery of new therapies, e.g., including 

participants who are likely to undergo disease progression during the trial period is conducive to 

proper assessment of drugs’ efficacy. Furthermore, exploration of the underlying mechanisms 

behind the identified top contributing factors and TMJ OA progression may facilitate future de-

velopment of preventive and treatment strategies that stop or lessen disease advancement. 
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Figure 3.1: Descriptive Values of the Participants’ Clinical Characteristics and the Radiographic Determi-

nants of Temporomandibular Joint Osteoarthritis. A) The box plots depict gender distribution and mean age 

(±SD) of the participants at follow-up visit. B) The mean (x), median, interquartile range, and the range of TMJ pain 

related characteristics (0-10 scale:0= no pain and 10= the worst possible pain) are shown in the TMJ OA group. The 

control subjects did not present TMJ pain at baseline (an inclusion criteria) and follow-up visits. C,D) Values of the 

clinical co-morbidities rated using Likert scale that ranged from 0-4: 0=not at all and 4= extremely. As clinical vari-

ables were not statistically significant within each group, only group comparisons were reported. P-values were 

computed using AChi-square test, AIndependent samples t test, CWilcoxon signed rank test, and DMann-Whitney U 

tests, values<0.05 were considered statistically significant. E) Examples of the degenerative bone changes observed 

in the mandibular condyles of the study participants are indicated by arrowheads pointing towards the affected areas 

of the bone. B) The frequency of osteoarthritic condylar bone changes identified in the high resolution-CBCT scans 

of the TMJ OA subjects at baseline and follow-up visits.  
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Figure 3.2: Measurement of Trabecular Bone Textural and Structural Parameters, and the Three-

dimensional Superior TMJ Space. A) A workflow for the pre-processing steps of the hr-CBCT scans prior to 

quantification of the imaging markers in mandibular condyles and articular fossae. B) The median values for the 

radiomics and bone morphometry features that significantly varied between control and TMJ OA subjects at base-

line visits. C) Left panel shows the placement of two landmarks in the sagittal view of the oriented CBCT scans in 

ITK-SNAP. After the volumetric reconstruction of the identified landmarks, linear measurements of the superior 

joint space were obtained in millimeters (mm), using the Quantification of 3D Components tool in 3D Slicer. The 

box plots demonstrate the median, interquartile, and the range of the SJS in the control and the TMJ OA participants 

at baseline and follow-up visits. P<0.05 were considered statistically significant.  
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Figure 3.3: The Three-Dimensional Analyses of Condyles’ Morphology. A) The average group morphology of 

condyles at baseline (BL) and follow-up (FU) visits. B) The semi-transparent overlays, in the top panel, are depict-

ing morphological differences of the composite condyles within/between the control and TMJ OA groups- the or-

ange and blue arrow heads are pointing, successively, at the resorptive and appositional changes along the condyles’ 

surfaces. The color distance maps are showing the quantitative bone changes across the condyles’ surface meshes- 

negative values denote areas of bone resorption (blue) and positive values indicate sites of bone proliferation 

(red).The vectors, in the lower panel, are representing the magnitude and direction of bone changes across the con-

dyles- vectors are pointing inward and outward, successively, indicative of bone resorption and proliferation. 
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Figure 3.4: Quantitative Assessment of Bone Remodeling in the Composite Condyles of the Control and the 

TMJ OA Groups. A) The workflow for the steps of measuring regional bone changes in the average group con-

dyles. B) The mean (x), median, interquartile, and range of appositional and resorptive bone changes observed in the 

anterior and lateral surfaces of the condyles, compared to baseline levels. P<0.05 were considered statistically sig-

nificant. n.s., non-significant. C) The frequency of bone resorption and formation among the study participants. 
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Figure 3.5: Schematic Representation for the Steps of the TMJ OA Prognosis Prediction Model’s Develop-

ment. A) Clinical, imaging and biological data were collected from the study subjects, at baseline, and utilized to 

create the OA Prognosis Prediction model. B) Clinical and imaging data were collected, at follow-up visits, to label 

the training dataset with the changes of the participants’ health status following a 2-3 years of conservative man-

agement. 
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Figure 3.6: Comparison of the Models’ Performances in Predicting the TMJ OA Prognosis. A) The perfor-

mance of the top feature selection and machine learning approaches on the validation and test datasets. B) Schematic 

representation of the EHPN method that combines 18 models with optimal predictive performance on the validation 

dataset. Our data was split into 10 folds: a test set and the remaining were subdivided into training and test sets, ten-

fold cross validation was applied in both loops. We carried out the model ensemble on the validation dataset and 

evaluated its performance using the test dataset. C) The performance of the EHPN method on the validation and test 

datasets using different feature sets.  
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Figure 3.7: The Top Contributing Features in Predicting TMJ OA Prognosis. A) SHAP values for the features’ 

impact on the EHPN model’s prediction. The ranking numbers in the first column are the SHAP importance by av-

eraging the absolute Shapley values per feature across the data. Each feature contribution is calculated by the SHAP 

importance of each feature/the sum of all SHAP importance. The SHAP value for each dot indicates the change of 

log-odds (increased probability) of no recovery for a specific subject if you exclude the specific feature. The loca-

tion of the purple and yellow dots indicates the SHAP value for each subject. For example, if the purple dot for 

headache was on the left, it means higher occurrence of headache may negatively contribute to recovery from TMJ 

OA. B) Correlation matrix between the top contributing clinical, imaging and biological features in TMJ OA prog-

nosis. The color-coding scale denotes the degree of positive and negative Pearson correlation between the features. 

*Raw p<0.05, ** raw p <0.01, and *** raw p<0.001. 
 



 

 

 158 

 

Supplementary Table 3.1: Description for the Trabecular Bone Texture-Based and Mor-

phometry Features. 

Features Variables Definitions 

 
 

Grey-Level 

Co-
occurrence 

Matrix 

(GLCM) 

Energy 
Entropy 

Correlation 

Inverse difference moment 
Inertia 

Cluster shade 

Cluster prominence 
Haralick correlation 

Uniformity of the grey-level textural organization. 
Randomization of the grey-level distribution. 

Grey-level linear dependence among the pixels. 

Local homogeneity of the grey-level distribution. 
Contrast  between a pixel and its neighbor. 

Skewness and uniformity of the grey-level distribution. 

Skewness and asymmetry of the grey-level distribution. 
Linear dependence between the pixels. 

 

 

 

 

Grey-Level 
Run Length 

Matrix 

(GLRLM) 

Short run emphasis (SRE) 

Long run emphasis (LRE) 

Grey level non-uniformity (GLN) 

Run length non-uniformity (RLN) 

Low grey level run emphasis (LGLRE) 
High grey level run emphasis (HGLRE) 

Short run low grey level run emphasis (SRLGLRE) 

 
Short run high grey level run emphasis (SRHGLRE) 

 

Long run low grey level run emphasis (LRLGLRE) 
 

Long run high grey level run emphasis (LRHGLRE) 

Distribution of short run lengths. 

Distribution of long run lengths. 

Variability of the grey-level intensity. 

Similarity of run lengths in the image. 

Distribution of the lower grey-level values. 
Distribution of the higher grey-level values. 

Joint distribution of shorter run lengths with lower grey-level 

values. 
Joint distribution of shorter run lengths with higher grey-level 

values. 

Joint distribution of long run lengths with lower grey-level 
values. 

Joint distribution of long run lengths with higher grey-level 

values. 

 
Bone Mor-

phom- 

etry 

BV/TV 
Tb.Th 

Tb.Sp 

Tb.N 
BS/BV 

Ratio between bone volume and total volume. 
Trabecular thickness. 

Trabecular separation. 

Trabecular number. 
Ratio between bone surface and bone volume. 
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Supplementary Table 3.2: Descriptive Values for the Imaging Features in the Condyle and 

the Articular Fossa of the control group (n=40) at Baseline and Follow-up Visits. 

Site Variables 

Baseline (T1) Follow-up (T2) 

P-Value 
Median 

IQ 
Median 

IQ 

25 75 25 75 

L
at

er
al

 S
u

rf
ac

e 
o

f 
th

e 
C

o
n
d

y
le

 

Energy 0.26 0.22 0.28 0.23 0.21 0.28 0.03* 

Entropy 2.48 2.32 2.68 2.57 2.33 2.73 0.08 

Correlation 1.46 1.25 1.68 1.33 1.21 1.68 0.09 

Inverse Difference Moment 0.89 0.88 0.9 0.88 0.87 0.9 0.03* 

Inertia 0.23 0.2 0.25 0.23 0.21 0.26 0.03* 

Short Run Emphasis 0.35 0.32 0.37 0.36 0.34 0.38 0.10 

Long Run Emphasis 14.78 13.53 16.31 14.42 13.21 15.98 0.04* 

Grey Level Non-Uniformity 2754.92 2612.3 2917.3 2851.06 2665.33 2940.01 0.15 

Run Length Non-Uniformity 1579.13 1338.86 1814.89 1629.38 1377.82 1918.58 0.02* 

Low Grey Level Run Emphasis 0.07 0.06 0.08 0.07 0.06 0.08 0.13 

High Grey Level Run Emphasis 16.99 14.88 19.5 16.59 14.74 18.7 0.30 

Short Run Low Grey Level Emphasis 0.02 0.02 0.03 0.03 0.02 0.03 0.03* 

Short Run High Grey Level Emphasis 5.99 5.29 7.17 5.95 5.07 7.33 0.63 

Long Run Low Grey Level Emphasis 1.06 0.85 1.22 1.06 0.86 1.23 0.98 

Long Run High Grey Level Emphasis 242.27 206.29 293.1 235.29 194.54 264.56 0.21 

Bone Volume/Total Volume (%) 0.51 0.32 0.67 0.47 0.33 0.59 0.16 

Trabecular Thickness (mm) 0.32 0.25 0.42 0.32 0.25 0.38 0.45 

Trabecular Separation (mm) 0.32 0.22 0.5 0.37 0.26 0.51 0.08 

Trabecular Number (mm-1) 1.47 1.26 1.58 1.41 1.25 1.52 0.13 

Bone Surface/Bone Volume Ratio (mm-1) 6.22 4.71 8.01 6.33 5.28 8.11 0.39 

A
n

te
ro

-L
at

er
al

 (
A

L
) 

S
u

rf
ac

e 
o

f 
th

e 
A
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ic

u
la

r 
F

o
ss
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Energy 0.18 0.14 0.23 0.18 0.14 0.23 0.26 

Entropy 2.94 2.66 3.25 2.99 2.66 3.25 0.42 

Correlation 0.85 0.57 1.14 0.86 0.57 1.14 0.95 

Inverse Difference Moment 0.88 0.87 0.89 0.88 0.87 0.89 0.03* 

Inertia 0.23 0.22 0.26 0.24 0.22 0.26 0.03* 

Short Run Emphasis 0.36 -0.64 3.45 0.37 0.35 0.39 0.01* 

Long Run Emphasis 14.81 24.19 82.36 14.39 13.08 15.37 0.04 

Grey Level Non-Uniformity 1796.14 805.57 1738.27 1869.56 1681.81 2067.67 0.04 

Run Length Non-Uniformity 1421.83 0.35 0.39 1452.78 1331.43 1657.37 0.006* 

Low Grey Level Run Emphasis 0.03 13.08 15.37 0.04 0.03 0.04 0.05 

High Grey Level Run Emphasis 35.03 1681.81 2067.67 34.27 28.04 38.84 0.04* 

Short Run Low Grey Level Emphasis 0.01 1331.43 1657.37 .01 0.01 0.02 0.04* 

Short Run High Grey Level Emphasis 13.14 0.03 0.04 12.93 10.75 15.31 0.40 

Long Run Low Grey Level Emphasis 0.50 28.04 38.84 0.53 0.41 0.68 0.28 

Long Run High Grey Level Emphasis 496.49 0.01 0.02 450.26 358.55 553.83 0.01* 

Bone Volume/Total Volume (%) 0.74 10.75 15.31 0.71 0.48 0.87 0.11 

Trabecular Thickness (mm) 0.54 0.41 0.68 0.53 0.39 0.69 0.15 

Trabecular Separation (mm) 0.18 358.55 553.83 0.19 0.1 0.37 0.06 

Trabecular Number (mm-1) 1.28 0.48 0.87 1.18 0.98 1.36 0.60 

Bone Surface/Bone Volume Ratio (mm-1) 3.69 0.39 0.69 3.78 2.9 5.16 0.11 

 * Wilcoxon signed rank test was used to compute P-value for the imaging variables within the 

same group at different time points, P< 0.05 were considered statistically significant. 
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Supplementary Table 3.3: Descriptive Values for the Imaging Features in the Condyle and 

the Articular Fossa of the TMJ OA group (n=34) at Baseline and Follow-up Visits. 

Site Variables 

Baseline (T1) Follow-up (T2) 

3 P-Value 
Median 

IQ 
Median 

IQ 

25 75 25 75 

L
at

er
al

 S
u

rf
ac

e 
o

f 
th

e 
C

o
n
d

y
le

 

Energy 0.22 0.16 0.28 0.23 0.19 0.29 0.36 

Entropy 2.66 2.3 3.15 2.64 2.3 2.9 0.45 

Correlation 1.27 0.83 1.68 1.28 1.01 1.68 0.52 

Inverse Difference Moment 0.88 0.86 0.9 0.88 0.86 0.9 0.61 

Inertia 0.25 0.2 0.29 0.24 0.21 0.28 0.66 

Short Run Emphasis 0.37 0.33 0.42 0.39 0.33 0.4 0.62 

Long Run Emphasis 13.70 11.69 16.43 16.82 12.21 16.07 0.46 

Grey Level Non-Uniformity 2709.53 2503.04 2836.8 2663.71 2452.64 2855.49 0.96 

Run Length Non-Uniformity 1785.16 1322.05 2243.09 1853.33 1391.14 2118.1 0.78 

Low Grey Level Run Emphasis 0.06 0.05 0.07 0.06 0.06 0.08 0.14 

High Grey Level Run Emphasis 19.30 16.94 24.21 20.70 15.07 21.8 0.16 

Short Run Low Grey Level Emphasis 0.02 0.02 0.03 0.02 0.02 0.03 0.33 

Short Run High Grey Level Emphasis 7.54 5.72 9.24 8.16 5.14 8.95 0.27 

Long Run Low Grey Level Emphasis 0.85 0.68 1.11 0.91 0.75 1.28 0.11 

Long Run High Grey Level Emphasis 266.78 222.5 299.3 268.47 217.65 272.75 0.23 

Bone Volume/Total Volume (%) 0.60 0.43 0.75 0.59 0.34 0.66 0.14 

Trabecular Thickness (mm) 0.39 0.32 0.53 0.43 0.24 0.46 0.18 

Trabecular Separation (mm) 0.28 0.17 0.4 0.35 0.23 0.5 0.24 

Trabecular Number (mm-1) 1.42 1.32 1.47 1.37 1.17 1.56 0.85 

Bone Surface/Bone Volume Ratio (mm-1) 5.09 3.81 6.22 5.46 4.32 8.29 0.22 

A
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Energy 0.19 0.16 0.24 0.22 0.16 0.23 0.44 

Entropy 2.91 2.66 3.09 2.81 2.66 3.11 044 

Correlation 0.78 0.65 1.03 0.87 0.67 1.01 0.75 

Inverse Difference Moment 0.89 0.88 0.9 0.89 0.88 0.9 0.30 

Inertia 0.22 0.2 0.24 0.23 0.2 0.25 0.56 

Short Run Emphasis 0.36 0.33 0.37 0.36 0.33 0.38 0.60 

Long Run Emphasis 15.29 14.09 16.66 15.45 13.78 16.6 0.18 

Grey Level Non-Uniformity 1741.66 1570.53 1883.24 1717.30 1581.22 1918.1 0.95 

Run Length Non-Uniformity 1280.12 1138.13 1506.12 1307.12 1140.36 1545.72 0.18 

Low Grey Level Run Emphasis 0.03 0.03 0.04 0.05 0.03 0.05 0.27 

High Grey Level Run Emphasis 34.96 29.95 42.85 35.28 27.34 41.31 0.21 

Short Run Low Grey Level Emphasis 0.01 0.01 0.01 0.02 0.01 0.02 0.24 

Short Run High Grey Level Emphasis 12.96 10.8 15.23 12.74 10.64 15.02 0.66 

Long Run Low Grey Level Emphasis 0.51 0.41 0.7 0.67 0.41 0.69 0.73 

Long Run High Grey Level Emphasis 506.31 382.8 661.42 533.00 378.78 600.31 0.08 

Bone Volume/Total Volume (%) 0.73 0.44 0.91 0.66 0.42 0.87 0.35 

Trabecular Thickness (mm) 0.61 0.36 0.91 0.60 0.37 0.77 0.14 

Trabecular Separation (mm) 0.20 0.08 0.49 2.70 0.11 0.5 0.72 

Trabecular Number (mm-1) 1.17 0.95 1.38 1.12 0.95 1.36 0.61 

Bone Surface/Bone Volume Ratio (mm-1) 3.29 2.19 5.51 4.78 2.58 5.34 0.27 

 * Wilcoxon signed rank test was used to compute P-value for the imaging variables within the 

same group at different time points, P< 0.05 were considered statistically significant. 
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Supplementary Table 3.4: Descriptive Values for the Biological Features Evaluated at 

Baseline. 

Variables (pg/ml) 

Control Group TMJ OA Group 

Median 
IQ Range 

Median 
IQ Range 

25 75 25 75 

Angiogenin Serum 1494.7 1303.01 1648.1 1459.05 1254.91 1625.09 

BDNF Serum 251.5 100.99 550.39 350.76 141.78 1767.69 

CXCL16 Serum 3585.1 3194.03 4217.57 3835.92 3418.28 4473.33 

ENA-78 Serum 215.56 115.95 845.82 432.06 141.41 1222.28 

MMP3 Serum 2513.6 1625.41 3038.46 2144.63 1489.03 2587.58 

MMP7 Serum 532.16 350.98 732.69 453.77 338.15 725.9 

OPG Serum 2539.16 1769.43 3264.09 2428.1 1800.75 3391.33 

PAI-1 Serum 6735.86 4599.14 10756.23 6409.6 3962.96 9810.5 

TGF-B1 Serum 77.55 26.69 174.19 99.13 37.16 204.99 

TIMP-1 Serum 7447.5 6480.76 7947.06 7182.32 6687.84 7703.51 

TRANCE Serum 2097.48 1336.39 2891.12 2496.35 1561.06 3543.89 

VE-Cadherin Serum 6576.79 3242.09 9484.99 5105.12 2985.4 8912.61 

VEGF Serum 80.86 24.75 163.02 85.75 41.64 160.37 

Angiogenin Saliva 752.37 557.57 885.15 754.31 602.78 850.87 

CXCL16 Saliva 4.41 1.35 13.52 3.15 0.17 10.28 

ENA-78 Saliva 112.86 7.2 328.49 207.43 16.43 429.65 

MMP7 Saliva 2387.77 1274.03 3008.14 2489.59 1426.22 3085.95 

OPG Saliva 3710.54 2146.87 4859.81 3784.27 1926.76 5029.19 

TGF-B1 Saliva 602.68 153.02 1265.04 693.66 276.69 1365.21 

TIMP-1 Saliva 22.24 0.33 85.33 40.27 2.91 119.46 

TRANCE Saliva 16.95 0 67.76 47.43 12.96 81.73 

VE-Cadherin Saliva 4073.46 3184.25 4793.18 3959.61 3519.16 4285.56 

VEGF Serum Saliva 627.6 0 1547.15 723.08 19.17 1278.86 

*BDNF, brain derived neurotrophic factor; CXCL16, chemokine ligand 16; ENA78, epithelial 

neutrophil-activating peptide; MMP, matrix metalloproteinases; OPG, osteoprotegerin, PAI-1, 

plasminogen activator inhibitor-1; TGF-B1, transforming growth factor-beta, TRANCE, TNF-

related activation-induced cytokine; VE-Cadherin, vascular endothelial (VE)-cadherin; VEGF, 

vascular endothelium growth factor. 

 

  

https://www.sciencedirect.com/topics/medicine-and-dentistry/vascular-endothelium
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Supplementary Table 3.5: Performance of the Feature Selection Methods and Machine 

Learning Approaches on the Validation Dataset. 

Methods Accuracy AUC F1score 

NNET_LDA 0.787± 0.07 0.928±0.04 0.780±0.06 

Glmnet_LDA 0.752± 0.08 0.807±0.08 0.741±0.06 

XGBoost_LDA 0.748± 0.08 0.813±0.08 0.733±0.07 

Glmboost_LDA 0.739±0.08 0.834±0.07 0.728±0.06 

Glmboost_HDDA 0.735±0.08 0.813±0.08 0.725±0.06 

NNET_SVM 0.748±0.07 0.893±0.05 0.725±0.06 

NNET_HDDA 0.732±0.08 0.852±0.07 0.719±0.07 

AUC_LDA 0.728±0.08 0.771±0.09 0.716±0.07 

Glmboost_Glmboost 0.736±0.08 0.777±0.08 0.715±0.07 

Glmboost_NNET 0.726±0.08 0.790±0.08 0.715±0.06 

RF_LDA 0.729±0.08 0.763±0.09 0.714±0.07 

RF_HDDA 0.719±0.08 0.797±0.08 0.712±0.06 

RF_Glmboost 0.726±0.08 0.767±0.09 0.705±0.07 

NNET_Glmboost 0.726±0.08 0.801±0.08 0.705±0.07 

Glmnet_Glmboost 0.726±0.08 0.796±0.08 0.704±0.07 

NNET_NNET 0.716±0.08 0.768±0.09 0.703±0.06 

AUC_HDDA 0.706±0.08 0.765±0.09 0.696±0.06 

XGBoost_HDDA 0.710±0.08 0.771±0.09 0.695±0.07 

AUC_Glmboost 0.716±0.08 0.784±0.08 0.692±0.07 

XGBoost_Glmboost 0.716±0.08 0.788±0.09 0.691±0.07 

Glmnet_Glmnet 0.713±0.08 0.786±0.08 0.690±0.07 

Glmnet_NNET 0.706±0.08 0.792±0.08 0.689±0.07 

Glmnet_HDDA 0.696±0.08 0.753±0.09 0.688±0.06 

AUC_NNET 0.702±0.08 0.760±0.09 0.688±0.07 

Glmboost_Glmnet 0.710±0.08 0.802±0.08 0.684±0.07 

NNET_Glmnet 0.706±0.08 0.791±0.08 0.682±0.07 

XGBoost_NNET 0.691±0.08 0.777±0.08 0.676±0.07 

XGBoost_Glmnet 0.696±0.08 0.784±0.08 0.665±0.07 

RF_Glmnet 0.683±0.08 0.760±0.09 0.651±0.08 

RF_NNET 0.660±0.09 0.740±0.09 0.641±0.07 

Glmboost_SVM 0.673±0.08 0.813±0.08 0.634±0.08 

Glmboost_XGBoost 0.664±0.08 0.739±0.09 0.629±0.08 

Glmnet_SVM 0.667±0.08 0.801±0.08 0.626±0.08 

AUC_Glmnet 0.670±0.08 0.765±0.09 0.625±0.08 

Glmnet_XGBoost 0.654±0.09 0.721±0.09 0.618±0.08 

XGBoost_XGBoost 0.648±0.08 0.788±0.08 0.614±0.08 

AUC_XGBoost 0.647±0.09 0.689±0.10 0.613±0.07 

AUC_RF 0.640±0.09 0.725±0.09 0.599±0.08 

NNET_XGBoost 0.641±0.09 0.768±0.09 0.597±0.08 

Glmboost_RF 0.628±0.09 0.779±0.08 0.573±0.08 

Glmnet_RF 0.614±0.09 0.778±0.08 0.567±0.08 

XGBoost_RF 0.624±0.09 0.785±0.08 0.564±0.08 

RF_RF 0.615±0.09 0.791±0.08 0.562±0.08 

XGBoost_SVM 0.624±0.09 0.786±0.08 0.559±0.08 

RF_XGBoost 0.598±0.09 0.696±0.10 0.554±0.08 

AUC_SVM 0.608±0.09 0.762±0.09 0.533±0.08 

NNET_RF 0.592±0.09 0.751±0.09 0.527±0.09 

RF_SVM 0.588±0.09 0.749±0.09 0.504±0.08 
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Supplementary Table 3.6: Performance of the Feature Selection Methods and Machine 

Learning Approaches on the Test Dataset. 

Methods Accuracy AUC F1score 

XGBoost_Glmboost 0.706±0.08 0.737±0.09 0.689±0.06 

Glmboost_Glmboost 0.706±0.08 0.668±0.10 0.678±0.07 

Glmnet_Glmboost 0.706±0.08 0.716±0.09 0.678±0.07 

NNET_NNET 0.676±0.08 0.644±0.10 0.662±0.06 

Glmnet_Glmnet 0.676±0.08 0.616±0.10 0.652±0.07 

Glmnet_LDA  0.676±0.08 0.625±0.10 0.652±0.07 

AUC_Glmnet 0.676±0.08 0.683±0.10 0.652±0.07 

NNET_Glmboost 0.676±0.08 0.661±0.10 0.652±0.07 

NNET_LDA 0.676±0.08 0.744±0.09 0.652±0.07 

RF_LDA 0.676±0.08 0.689±0.09 0.652±0.07 

XGBoost_HDDA  0.676±0.08 0.716±0.09 0.652±0.07 

RF_Glmboost 0.676±0.08 0.682±0.09 0.639±0.07 

Glmboost_HDDA  0.647±0.08 0.656±0.09 0.626±0.07 

Glmnet_HDDA  0.647±0.08 0.439±0.11 0.626±0.07 

AUC_Glmboost  0.647±0.08 0.689±0.09 0.626±0.07 

AUC_LDA  0.647±0.08 0.649±0.10 0.626±0.07 

AUC_NNET  0.647±0.08 0.637±0.10 0.626±0.07 

NNET_HDDA 0.647±0.08 0.692±0.09 0.614±0.07 

XGBoost_Glmnet 0.647±0.08 0.666±0.10 0.614±0.07 

RF_HDDA  0.618±0.08 0.588±0.10 0.601±0.07 

XGBoost_LDA 0.618±0.08 0.619±0.10 0.601±0.07 

Glmboost_Glmnet  0.618±0.08 0.647±0.10 0.589±0.07 

NNET_Glmnet  0.618±0.08 0.706±0.09 0.589±0.07 

XGBoost_NNET  0.618±0.08 0.671±0.09 0.589±0.07 

AUC_RF 0.618±0.08 0.676±0.09 0.573±0.07 

NNET_SVM 0.618±0.08 0.599±0.10 0.573±0.07 

RF_Glmnet 0.618±0.08 0.602±0.10 0.573±0.08 

Glmboost_SVM  0.588±0.08 0.580±0.10 0.549±0.07 

Glmboost_XGBoost  0.588±0.08 0.642±0.10 0.549±0.07 

AUC_SVM 0.588±0.08 0.633±0.10 0.549±0.07 

Glmboost_LDA 0.559±0.09 0.408±0.10 0.539±0.07 

Glmnet_RF 0.588±0.08 0.599±0.10 0.530±0.07 

RF_NNET 0.588±0.08 0.640±0.10 0.530±0.07 

RF_RF 0.588±0.08 0.600±0.10 0.530±0.07 

AUC_HDDA 0.529±0.09 0.573±0.10 0.523±0.07 

Glmboost_NNET 0.529±0.09 0.606±0.10 0.514±0.07 

Glmnet_NNET 0.529±0.09 0.581±0.10 0.514±0.08 

AUC_XGBoost 0.559±0.09 0.519±0.10 0.507±0.07 

XGBoost_RF 0.559±0.09 0.675±0.10 0.507±0.07 

XGBoost_XGBoost 0.559±0.09 0.491±0.10 0.507±0.08 

Glmnet_SVM 0.559±0.09 0.471±0.10 0.483±0.07 

NNET_RF 0.559±0.09 0.704±0.09 0.483±0.07 

Glmboost_RF 0.529±0.09 0.668±0.10 0.462±0.08 

RF_XGBoost 0.529±0.09 0.531±0.11 0.462±0.08 

RF_SVM 0.559±0.09 0.621±0.10 0.452±0.08 

XGBoost_SVM 0.559±0.09 0.671±0.10 0.452±0.08 

Glmnet_XGBoost 0.500±0.09 0.540±0.10 0.442±0.07 

NNET_XGBoost 0.500±0.09 0.567±0.10 0.442±0.07 
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Supplementary Table 3.7: FDR Corrected P Values Between the Top Identified Clinical, 

Imaging, and Biological Features.  

  Features 
Sal. 
OPG 

Sal. 
VEGF 

Sal. 
MMP7 

Ser. 
BDNF 

Sal. 
Angiogenin 

Ser. 
ENA78 Headache 

Lower 
Back Pain 

Restless 
Sleep 

Mouth 
Opening Age 

C.HGLRE 0.95 0.78 0.95 0.50 0.79 0.63 0.60 0.44 0.14 0.19 0.77 

C.SRHGLRE 0.78 0.89 0.95 0.34 0.97 0.50 0.44 0.37 0.14 0.14 0.74 

AF.BS/BV 0.50 0.75 0.50 0.87 0.79 0.54 0.19 0.49 0.94 0.44 0.19 

3D-Sup-JS 0.75 0.51 0.95 0.50 0.95 0.70 0.93 0.44 0.74 0.73 0.97 

C.BV/TV 0.95 0.67 0.88 0.51 0.70 0.75 0.94 0.94 0.42 0.44 0.94 

AF.GLN 0.50 0.37 0.50 0.95 0.34 0.50 0.19 0.21 0.74 0.42 0.48 

AF.LRHGLRE 0.50 0.34 0.50 0.75 0.50 0.95 0.74 0.74 0.96 0.49 0.74 

AF.Correlation 0.50 0.67 0.50 0.75 0.97 0.95 0.93 0.41 0.48 0.97 0.74 

AF.BV/TV 0.50 0.50 0.50 0.95 0.95 0.75 0.23 0.74 0.94 0.23 0.23 

AF.SRE 0.75 0.75 0.91 0.50 0.75 0.50 0.60 0.44 0.71 0.94 0.94 
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Supplementary Figure 3.1: Logistic Regression Analysis for the Association between the 

Individual Features and the Presence of TMJ OA. The AUC values, the –Log10 [P-values], 

and –Log10 [FDR adjusted p-values] are shown, successively, in the outer, middle and inner cir-

cles. Af, Articular fossa; C, Condyle; Sal, Saliva; JS, Joint Space; Ser, Serum. 
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Supplemental Figure 3.2: Assessment of the Participants’ Health Status at Follow-up. (A) 

An example of a case that was labeled as worsened based on the overall changes of the clinical 

signs and symptoms, as well as the three-dimensional semi-transparent overlays that displayed 

significant bone degenerative changes at follow-up visit. (B) An example of a case that was la-

beled as stayed the same. Note that cases had to demonstrate pain levels less than 5 and a mouth 

opening equals to 40 to be considered as improved. 
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Supplementary Figure 3.3: The Top Performing Methods in Predicting TMJ OA Progno-

sis. A summary plot of the SHAP values for the methods’ global impact on the EHPN model’s 

prediction.  
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Supplementary Figure 3.4: Graphical Display of the Top Contributing Features in TMJ 

OA Prognosis. The box plots display the median, interquartile, and range of the top contributing 

features' values in the model prediction for the asymptomatic/improved (0) and remained the 

same/worsened (1) TMJ OA groups. 
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Supplementary Text. The Pseudo code for the Ensemble via Hierarchical Predictions through Nest-

ed cross-validation (EHPN) learning tool. 

Step 1. Initialize p machine learning methods. Split the dataset D = {(X1, y1), (X2, y2), ..., (XN, yN)} into 

10 folds: D1, D2, ..., D10 randomly. 

Step 2. For i in {1, 2, ..., 10}: 

a. Initialize an empty list for storing Yk(-i) predictions for each method k. 

b. For j in {1, 2, ..., 10} \ {i}: 

i. Set the training set = D \ {Di, Dj} and the validation set = Dj. 

ii. For each method k in {1, 2, ..., p}: 

Train method k on the training set with optimized tuning parameters obtained by an internal 10-fold 

cross-validation of  the training set D \ {Di, Dj}. 

2) Predict y in Dj using the corresponding Xs and the trained method k. 

3) Store the predicted ys in the list Yk(-i). 

c. Create the new feature set X*(-i) = (Y1(-i), Y2(-i), ..., Yp(-i)) and the true response vector Y(-i) for subjects in 

D \ Di. 

d. Train the hierarchical predictive model M (e.g., Glmboost) using X*(-i) to predict Y(-i). 

e. Predict the true response vector Y(i) for subjects in Di using the model M and store the predicted values 

as pY(i). 

Step 3. Compute the test set performance of the hierarchical predictive model M by comparing the pre-

dicted pY = Union(pY(1), pY(2), ..., pY(10)) with the true Y = Union(Y(1), Y(2), ..., Y(10)) using Accuracy, 

AUC, and F1-scores. 
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Chapter 4 Unleashing the Power of Machine Learning: Advancing TMJ 

Osteoarthritis Diagnosis  

Abstract 

Osteoarthritis (OA) is the most common degenerative disease affecting the temporomandibular 

joint (TMJ). It results in chronic pain, joint dysfunction, and adversely affects the quality of life. 

Unlike age-related osteoarthritis in weight-bearing joints, TMJ OA predominantly affects indi-

viduals aged 20-40 years and can al-so affect adolescents and young adults. The current diagnos-

tic standards for TMJ OA are based on clinical and imaging criteria. However, the effectiveness 

of these criteria in detecting early-stage TMJ OA is limited, hindering timely intervention and 

mitigation of bone damage. Therefore, we prospectively obtained clinical, CBCT imaging, and 

biological data from 162 subjects: 81 with TMJ OA and 81 age and sex-matched controls. We 

evaluated 77 feature selection and machine learning methods and employed nested 10-fold cross-

validation to develop a TMJ OA diagnostic tool. Among the methods tested, random forest 

demonstrated the best diagnostic performance, achieving AUC= 0.90, accuracy= 0.79, preci-

sion= 0.80, and F1=0.80. Integrating clinical, imaging, and biological markers enhanced TMJ 

OA diagnosis. The top contributing features were clinical variables (headache, restless sleep, 

mouth opening, muscle soreness), objective quantitative imaging markers (condyle Cluster 

Prominence, High Grey Level Run Emphasis (HGLRE), ShortRunHGLRE, Trabecular Thick-

ness), and biological markers in saliva (TGFB-1, TRANCE, TIMP-1, PAI-1, VECadherin, 

CXCL-16) and serum (Angiogenin, PAI-1, VEGF, TRANCE, TIMP-1, BDNF, VECadherin). 

Our diagnostic tool synergizes diverse data dimensions, establishing new benchmarks in diag-
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nostic precision with potential implications for timely interventions and a transformative impact 

on TMJ OA healthcare delivery. 

 

Keywords: Degenerative joint disease, Temporomandibular joint osteoarthritis, Machine learn-

ing, Diagnosis, Interpretability. 
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4.1 Introduction 

 

Osteoarthritis (OA) is the most common degenerative disease affecting the temporomandibular 

joint (TMJ). It is characterized by synovitis, articular tissue deterioration, cartilage destruction, 

and alterations in subchondral bone remodeling. These changes lead to pain, joint dysfunction, 

and negatively impact the quality of life (Mélou et al. 2023; X. D. Wang et al. 2015). Unlike age-

related osteoarthritis in weight-bearing joints, TMJ OA primarily affects individuals aged 20-40 

years and can impact adolescents and young adults (Mélou et al. 2023; Song et al. 2020). Fur-

thermore, 18.01% to 84.74% of temporomandibular disorder (TMD) patients have TMJ OA 

(Pantoja et al. 2019). 

Current TMJ OA diagnostic standards rely on clinical and imaging criteria, given the suboptimal 

sensitivity/specificity of clinical features alone (Hilgenberg-Sydney et al. 2018). Imaging criteria 

can provide insights into various disease stages, e.g., erosion indicates acute changes and sclero-

sis suggests advanced stages (Zhao et al. 2011). However, these criteria often overlook early-

stage TMJ OA, hampering timely intervention and bone damage mitigation (Almășan et al. 

2023). Therefore, integrating objective criteria might be instrumental in enhancing the rigor of 

diagnostic methodologies, facilitating early disease identification and advancing preventive strat-

egies (Derwich et al. 2023; Hawker and Lohmander 2021). Nonetheless, retaining clinical crite-

ria is crucial, as pain and limited mouth opening drive medical consultations and gauge treatment 

efficacy (Derwich et al. 2023; Suenaga et al. 2016). 

In vitro studies have demonstrated the occurrence of aberrant subchondral bone remodeling in 

the mandibular condyles of various animal models during early stages of TMJ OA, preceding 

cartilage degeneration (Chen et al. 2018). Changes in the subchondral bone microstructure also 

positively correlate with OA severity histologically (Zhang et al. 2023). Consequently, its role in 
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osteoarthritis onset and the methods to detect these changes are of considerable interest (Hirvas-

niemi et al. 2021; Chen et al. 2018).  

With technological advances in the horizon, the emerging field of radiomics provides a promis-

ing avenue. This discipline entails retrieving quantitative imaging features from radiological im-

ages, that are undetectable to humans’ eyes, to analyze tissue pathology and improve data availa-

ble to clinicians (Avery et al. 2022). Quantitative textural analysis of the subchondral bone in 

knee radiographs has shown radiomics' potential to differentiate not only between normal knee 

x-ray images and those with mild osteoarthritis but also among various grades of knee OA, in-

cluding those challenging for clinicians to discern (Hirvasniemi et al. 2021; Avanzo et al. 2020). 

However, radiomics’ potential in TMJ OA remains largely unexplored (Orhan et al. 2021; Bian-

chi et al. 2020). While radiomics offers promise in detecting subtle tissue changes, osteoarthritis’ 

intricate pathology requires an integrative approach that combines imaging with clinical and oth-

er sensitive markers (Teoh et al. 2022). 

Beyond radiomics, metabolic abnormalities in joint tissues are early indicators of osteoarthritis 

(Liem et al. 2022). Despite progress in studying osteoarthritis biomarkers, they aren't yet clini-

cally established (Zwiri et al. 2020). Given the heterogeneous nature of osteoarthritis, assessing 

multiple biological markers in different biofluids may elucidate their complex interrelationships, 

harnessing their full potential (Bernotiene et al. 2020; Deveza and Loeser 2018). 

Artificial intelligence and machine learning (ML) are emerging transformative elements of clini-

cal practices (Soenksen et al. 2022). Their ability to rigorously analyze diverse datasets and ad-

dress their interactions surpasses the limitations of traditional statistical methods, ultimately sup-

porting precision medicine by tailoring decision-making to individual patient profiles (Johnson et 

al. 2021). 
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Despite its advances in diagnosing knee osteoarthritis, ML approaches for TMJ OA remains lim-

ited. Our previous studies showcased ML’s potential for TMJ OA diagnosis. However, a larger 

sample size is essential for capturing diverse disease phenotypes and validating the tool's reliabil-

ity (Xuan et al. 2023; Bianchi et al. 2020). A holistic approach to feature selection is also needed 

to heighten the results’ accuracy (Liu et al. 2023). The inherent complexities of ML models, es-

pecially their 'black-box' nature, pose challenges Integrating explainability methods that clarify 

features’ influence on model predictions can bolster clinicians' trust, paving the way for wider 

adoption (Petch, Di, and Nelson 2022). Therefore, the present work aimed to 1) Develop a com-

prehensive prediction tool tailored for TMJ OA diagnosis and 2) Employ explainable methods to 

identify key factors driving TMJ OA diagnosis. 

  



 

 

 175 

 

4.2 Materials & Methods 

 

 Study Design and Participants’ Characteristics 

This observational study was conducted with the University of Michigan Institutional Review 

Board permission (HUM00113199), adhering to STROBE standards. We included 162 partici-

pants, 81 with TMJ OA and 81 age and sex-matched controls. Inclusion criteria required partici-

pants to be aged 21-70 years, free from systemic diseases, congenital bone or cartilage disorders, 

cancer history, TMJ-related trauma or surgery, and prior treatments for TMJ OA. TMJ OA diag-

noses were confirmed by a TMD specialist and radiographic osseous change evidence. Only the 

side of the TMJ displaying initial osseous changes was considered for the study. Control subjects 

were selected based on the absence of symptoms and the radiographic signs of TMJ OA on the 

included side. Figure 4.1 illustrates the overall study design. 

Integrated Data Approaches and Processing Methods 

The data was collected from three primary sources: clinical, imaging, and biological markers.  

 

Clinical Data 

In our statistical analyses, we considered multiple variables from the diagnostic criteria for tem-

poromandibular disorders (DC/TMD) clinical exam and survey, including age, gender, and dis-

tress level in the past month due to headaches, muscle soreness, or lower back pain, vertical 

mouth opening range, and pain characteristics (current pain intensity, worst experienced pain, 

average pain, and pain interference with daily activities). Controls reported no orofacial pain. 

Imaging Data  

 

Acquisition Protocol and TMJ OA Imaging Diagnosis 

High-resolution cone-beam computed tomography (hr-CBCT) scans of all participants were ob-

tained using a 3D Accuitomo 170 machine. The scanning protocol involved a 40 × 40 mm field 

of view, 90 kVp, 5 mAs, 30.8-second scanning time, and a 0.08 mm voxel size. All images were 
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coded and de-identified prior to analysis to reduce potential investigator bias. Two oral and max-

illofacial radiologists independently and blindly assessed radiological changes in the mandibular 

condyle based  on the DC/TMD. Evaluations were guided by consensus data. 

Image Pre-Processing and Quantification of Imaging Markers 

To ensure accurate detection and comparison of radiographic changes, hr-CBCT scans were pre-

processed before measuring quantitative bone features. Using the "crop-volume" tool in 3D Slic-

er, a volume of interest (VOI) was extracted from the trabecular bone in the mandibular condyles 

and articular fossa. The VOIs' grey level intensities were standardized using the average mini-

mum and maximum intensity values. Imaging markers were extracted from the standardized 

VOIs using the "BoneTexture" module in 3D Slicer, including 8 GLCM features, 10 GLRLM, 

and 5 bone morphometry features (Supplementary Table 4.1). Clustershade, Clusterprominence, 

and Haralickcorrelation measurements exhibited significant variability among participants and 

were excluded from further analysis. 

For the 3D superior joint space measurement, two landmarks were pre-labelled in the sagittal 

view of the CBCT scans: the condyle's most superior point and the opposing surface of the artic-

ular fossa. Volumetric reconstruction of these landmarks was performed, and linear measure-

ments were obtained using the Q3DC tool in 3D Slicer. 

Biological Data  

We assessed 13 arthritis-related proteins in participants’ serum and saliva samples including An-

giogenin, BDNF, CXCL-16, ENA-78, MMP-3, MMP-7, OPG, PAI-1, TGF-β1, TIMP-1, 

TRANCE, VE-Cadherin, and VEGF. To assess protein expression, we utilized RayBiotech's cus-

tom human quantibody microarrays, employing duplicates for each measurement. Saliva BDNF 

and MMP3 were below the detection level and were therefore excluded from subsequent analy-

sis. 

Statistical and Machine Learning (ML) Approaches 

We utilized SPSS version 27.0 (IBM Corp., Armonk, NY) for statistical analysis. Differences 

between control and TMJ OA subjects were examined using independent samples t-test. Statisti-

cal significance was determined at p<0.05. The agreement between the two radiologists was as-

sessed using Kappa statistics. Due to the non-normal distribution of biological marker levels 



 

 

 177 

within the groups, we applied a natural logarithm transformation to these variables prior to statis-

tical analyses. 

To develop the prediction model for TMJ OA diagnosis, we followed the steps outlined below. 

 

Nested 10-fold Cross Validation 

To mitigate overfitting and ensure robustness, we employed the nested 10-fold cross-validation 

(CV) method to build and evaluate predictive models. Initially, all subjects were divided into 10 

folds denoted as 𝐴1, 𝐴2, … , 𝐴10. Within each iteration, one fold, 𝐴𝑖, was kept as an independent 

test set, while the remaining folds {𝐴𝑗|𝑗 ≠ 𝑖} were further subdivided into 10 subfolds: 

𝐴𝑖,1, 𝐴𝑖,2, … , 𝐴𝑖,10. Each subfold, 𝐴𝑖,𝑗, served as a validation set, and the remaining subfolds, 

{𝐴𝑗|𝑗 ≠ 𝑖} }, formed the training set. 

We trained various statistical and ML models on the training dataset, adjusted the parameters 

with the validation dataset, and employed the "caret" package in the R/4.1.0 software. In the in-

ner loop of the nested CV, the validation dataset, 𝐴𝑖,𝑗, iterated over {𝐴𝑖,1, 𝐴𝑖,2, … 𝐴𝑖,10}, and the 

model trained on the training data {𝐴𝑖,𝑘|𝑘 ≠ 𝑗} was utilized to predict the outcome of the valida-

tion set, 𝐴𝑖,𝑗. In the outer loop of the nested CV, 𝐴𝑖 iterated over 𝐴1, 𝐴2, … , 𝐴10, with 𝐴𝑗 , 𝑗 ≠ 𝑖 

representing the training and validation datasets, respectively. Each subject was predicted once 

as an independent test subject, ensuring an unbiased assessment of model performance. 

 

Feature Selection and ML Approaches 

We evaluated seven feature selection methods, including 1-selection frequency of LASSO (Glm-

net), 2-permutation importance for Random Forest (RF), 3-gain for XGboost (XGBTree), 4-

combinations of the absolute values of weights for neural network (NNET), 5-absolute value of 

coefficients in Glmboost (Glmboost), 6-A Area Under the receiver operating characteristic Curve 

(AUC) between each feature and the response, and 7-gain importance or Light Gradient-

Boosting Machine (LightGBM). We also assessed 11 predictive modeling methods, namely 1-

elastic net (Glmnet), 2-Glmboost, 3-High-Dimensional Discriminant Analysis (HDDA), 4-

single-hidden-layer neural networks (NNET), 5-RF, 6-XGBTree, 7-Linear Support Vector Ma-

chine (SVM), 8-Linear Discriminant Analysis (LDA), 9-Naïve Bayes, 10-Bayesian Generalized 



 

 

 178 

Linear Models (BayesGLM), and 11-LightGBM. Overall, we considered 77 machine learning 

methods. The reported model's performance relied on the test dataset across all repetitions. 

 

Interpretability of LUPI Model’s Prediction 

Due to the "black box" nature of ML models hindering their adoption in medical settings, we 

employed the SHapley Additive exPlanations (SHAP) method. SHAP values interpret model 

predictions, highlighting the significance and direction of feature contributions to its decisions 

(Petch, Di, and Nelson 2022). 
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Figure 4.1: Framework for the Development of TMJ OA Diagnosis Prediction Models. A) Data Synthesis and 

Machine Learning Testing: Comprehensive integration of clinical, imaging, and biological data from study partici-

pants, followed by features’ selection and exploration of the efficiency of ensemble learning and privileged infor-

mation in model crafting. B) Insightful Interpretation: Application of shapley additive explanations (SHAP) analysis 

to discern the key features contributing to the models’ predictions for TMJ OA cases. DC/TMD, diagnostic criteria 

for temporomandibular disorders; AI, artificial intelligence.    
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4.3 Results 

4.3.1 Clinical Characteristics of the Study Population 

A total of 162 individuals participated in the study, 142 females and 20 males, with an average 

age of 39.9 ± 14.8 years. Participants diagnosed with TMJ OA exhibited significantly higher lev-

els of pain intensity, average pain, worst pain, and pain interference with daily activities over the 

past 6 months, compared to the controls (p< 0.0001, Figure 4.2A). Moreover, the TMJ OA group 

demonstrated a reduction in the vertical range of unassisted mouth opening without pain (mouth 

opening), as well as higher levels of headaches, lower back pain, muscle soreness, and restless 

sleep, when compared to controls (p< 0.001, Figure 4.2B-C). Approximately 78% of the TMJ 

OA group reported teeth grinding at night, while 59% reported jaw clenching during the day. 

 

4.3.2 Destructive Bone Changes Detected in TMJ OA Participants  

Figure 4.2D-F demonstrates radiographic signs of OA evident in the condyles of the TMJ OA 

group. Around 75% demonstrated mild osseous changes. Grade 2&3 osseous alterations oc-

curred in patients of different ages and pain levels, highlighting the need for additional quantita-

tive disease indicators. Flattening emerged as the most prevalent change, affecting ~84% of cas-

es, followed by sclerosis (69%), osteophyte (59%), erosion (51%), and cysts (~42%). Remarka-

bly, over 60% of patients showed three or more concurrent signs, including osteophytes, cysts, 

and erosions, indicating dynamic changes in various TMJ regions. The weighted Kappa value for 

radiologists’ scoring was 0.72, indicating substantial inter-observer agreement, with ~84% over-

all agreement rate. 

 

5.3.3 Quantitative Bone Imaging Features Distinctively Characterize TMJ OA from 

Controls 

Subchondral bone remodeling alterations are hallmark of osteoarthritis (Chen et al. 2018). We 

examined the trabecular bone characteristics on the lateral surface of the condyles and the anter-

olateral surface of articular fossae (Figure 4.3A, Supplementary Table 4.2), sites recognized for 

enhanced remodeling (Cevidanes et al. 2014). Our analysis demonstrated that ten condylar imag-

ing features were significantly different between the groups (p<0.05) (Figure 4.3B, Supplemen-
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tary Table 4.2). The TMJ OA group exhibited elevated levels of entropy, inertia, short run em-

phasis (SRE), high grey level run emphasis (HGLRE), and SRHGLRE compared to the controls. 

These observations highlight the nuances of the condylar trabecular bone texture in hr-CBCT 

images at pixels’ level. Specifically, the extracted image volumes in OA cases displayed height-

ened randomness and heterogeneity, pronounced contrast between adjacent pixels, and  numer-

ous short runs of elevated grey level intensities.  

In addition to variations in the trabecular bone texture features, the TMJ OA group showed a 

significant increase in trabecular thickness (TB.Th) and decrease in joint spaces compared to 

controls (P≤0.0001). The average joint spaces measured 2.3 ± 0.7 mm and 2.5 ± 0.7 mm in TMJ 

OA participants and controls, respectively (Figure 4.3C). 

 

4.3.4 Comparable Expression Levels of Serum and Saliva Protein Biomarkers in Con-

trol and TMJ OA Participants 

Supplementary Table 4.3 and supplementary Figure 4.1 summarize the findings from the micro-

array analysis. Most biological markers were detected with high confidence (≥83%) and exhibit-

ed consistent standard curves for detection. Interestingly, noticeable variability in expression 

levels was observed among individuals, even within the same group. Nevertheless, no statistical-

ly significant differences between the groups were identified, Supplementary Table 4.4 These 

observations suggest that a panel of multiple biomarkers could offer enhanced diagnostic accura-

cy compared to a single biomarker. 

 

4.3.5 Features' Integration Amplifies the Robustness of TMJ OA Diagnosis 

Figure 4.4A provides an overview of the development process for the TMJ OA diagnostic tool. 

Supplementary Tables 4.5-4.12 present the evaluation metrics for the 77 tested methods. Nota-

bly, SVM excelled in analyses based solely on clinical data, as well as in those integrating clini-

cal and imaging data. Conversely, RF demonstrated superior performance when biological data 

was combined with clinical data or when integrated with both clinical and imaging data (Figure 

4.4B). This highlights the importance of tailoring machine learning models selection to the in-

herent characteristics of the data. 
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Coupling biological and clinical features produced an AUC of 88%, while combining imaging 

with clinical features resulted in an AUC of 80%. Remarkably, integrating clinical, quantitative 

imaging, and biological features yielded the highest predictive performance, with an AUC of 

90%. These results emphasize the necessity of incorporating all feature categories for accurate 

diagnosis. 

While incorporating all feature sets proved to be essential for the disease diagnosis, it is essential 

to emphasize that not all features wielded equal influence over the model's predictive perfor-

mance. Applying SHAP analysis on the independent test set demonstrated the foremost contrib-

uting features. As depicted in Figure 4.4C, the top 24 features collectively commanded approxi-

mately 90% of the model's prediction. We further provide an in-depth exposition delineating the 

precise contribution of each feature to the predictive outcomes. Notably, among these top fea-

tures, clinical attributes accounted for 17.41%, imaging markers for 7.71%, and biological attrib-

utes for the predominant 64.47% of the predictive influence. 



 

 

 183 

 
Figure 4.2: Participants' Clinical Characteristics and Radiographic Determinants of Temporomandibular 

Joint Osteoarthritis. A) Box plots illustrate the mean (x), median, and interquartile range for TMJ pain-related 

characteristics on a 0-10 scale, where 0 signifies no pain and 10 corresponds to the highest level of pain; control 

subjects reported no TMJ pain. B, C) Measurements of unassisted vertical mouth opening (mm) and the rates of 

clinical co-morbidities, evaluated using a Likert scale ranging from 0-4; 0 implies "not at all," and 4 signifies "ex-

tremely." A p-value below 0.05 was deemed statistically significant. D) Grading of radiographic signs of TMJ OA 

following the diagnostic criteria for temporomandibular disorder (DC/TMD). E) Examples of degenerative bone 

changes in the mandibular condyles of the TMJ OA participants, with arrowheads pointing to the affected areas. F) 

Percentage of osteoarthritic alterations in the condylar bone, identified in the high-resolution CBCT scans of the 

TMJ OA participants. 
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Figure 4.3: Evaluation of Trabecular Bone Texture, Structural Parameters, and Three-Dimensional Superior 

TMJ Space. A) Workflow outlining the pre-processing of high-resolution Cone Beam Computed Tomography (hr-

CBCT) scans for the subsequent quantification of imaging markers in the mandibular condyles and articular fossae. 

B) Analysis highlighting significant differences in mean radiomics and bone morphometry features between control 

subjects and individuals with TMJ OA. C) Box plots presenting the mean, interquartile range, and variability of the 

superior TMJ space across control and TMJ OA participants. A threshold of P<0.05 was set for statistical signifi-

cance. 
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Figure 4.4: Comparison of Models’ Performances in Predicting the TMJ OA Diagnosis. A) Schematic repre-

sentation of the steps for developing the TMJOA model. Our dataset was divided into 10 folds, with one serving as a 

test set, while the rest were subdivided into training and validation sets. We applied ten-fold cross-validation in both 

loops and assessed model performance by averaging results across the 10-fold cross-validation on the test dataset. 

Additionally, we utilized Shapley values to identify contributing factors to the model's predictions. B) Performance 

evaluations of top feature selection and machine learning methods across various feature sets emphasize the key role 

of feature integration in optimizing TMJ OA diagnostic prediction models. Lightgbm, Light gradient boosting ma-

chine; SVM, Support vector machine; ; AUC, Area under the curve; NNET, Neural network. C) SHAP values inter-

pret machine learning predictions for TMJ OA cases. On the y-axis, features are ranked based on their global im-

portance, which is determined by averaging all SHAP values for a specific feature. Each dot on the plot represents 

the SHAP value of an individual prediction, corresponding to a specific subject from the testing dataset. The color of 

the dot reflects the value of the respective feature, while its position along the x-axis indicates its influence on the 

model's prediction. For instance, if a purple dot representing 'headache' is positioned to the left, it suggests that a 

higher occurrence of headaches decreases the probability of the individual not having TMJ OA. 
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4.4 Discussion & Conclusion 

In the realm of TMJ OA diagnostics, there is an evident need for tools that encapsulate the multi-

faceted nature of the disorder. In our present research, we ventured beyond conventional meth-

odologies to craft a machine learning-powered diagnostic instrument that uniquely integrates 

clinical, quantitative imaging, and biological features. This integrative technique surpassed our 

expectations by not only heightening diagnostic precision but also enabling a granular under-

standing of the pivotal features that drive diagnostic outcomes. The SHAP analysis, in particular, 

illuminated key features that could pave the way for proactive detection and interventions, there-

by potentially revolutionizing the current landscape of TMJ OA diagnostics. 

 

Our clinical data analysis showed that the TMJ OA participants’ demographics align with exist-

ing literature, confirming our findings' relevance (Song et al. 2020). While pain was the predom-

inant reason for clinical consultations, many participants concurrently experienced headaches, 

lower back pain, and sleep disturbances. Such findings not only echo previous research but also 

accentuate that painful TMD doesn’t exist in isolation and should be addressed using a multidis-

ciplinary treatment approach. The interconnectedness could stem from genetic, anatomical, and 

neurological factors related to TMD, as well as its implications on posture and pain sensitivity 

(Shrivastava, Battaglino, and Ye 2021; Bond et al. 2020; Braido et al. 2020; Byun et al. 2020). 

 

In evaluating the imaging characteristics inherent to TMJ OA, we observed distribution diver-

gent from other studies. Such disparities maybe attributed to differences in sample size, study 

design, or retrospective analysis of data sourced from varied protocols (Arayasantiparb et al. 

2020). Interestingly, TMJ OA patients often exhibited multiple degenerative bone changes, indi-

cating heterogeneity of subchondral bone remodeling events in the joint. This variability could 

arise from differences in load-bearing conditions, disease stages, biomechanics, and the sur-

rounding biological milieu (Lijun Wang et al. 2022; Zhu et al. 2021; Adebayo et al. 2017).  

 

The SHAP analysis of our diagnostic tool revealed that the primary determinants for TMJ OA 

included: clinical (headache, restless sleep, vertical range of mouth opening, muscle soreness), 

objective quantitative imaging (condyle ClusterProminence, HGLRE, SRHGLRE, Trabecu-

larThickness, joint space) and bio-logical markers in saliva (TGFB1, TRANCE, TIMP-1, PAI-1, 
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VECadherin, CXCL-16) and serum (Angiogen-in, PAI-1, VEGF, TRANCE, TIMP-1, BDNF, 

VECadherin).  

 

Consistent with our results, headaches are notably common in TMJ OA patients, suggesting they 

might elevate TMJ OA risk (Yakkaphan et al. 2022). Sleep disturbances are related to TMD pain 

as well as its onset; those with primary sleep disorders are 44% more likely to develop TMD 

(Kim et al. 2021). Thus, clinicians should be attentive to these potential early indicators of TMJ 

OA.  

 

The identified biological markers in our study are predominantly related to inflammation, angio-

genesis, and the regulation of extracellular matrix degradation and bone remodeling, all of which 

are fundamental in OA pathogenesis (Ibáñez et al. 2022; van der Kraan 2022; Wilkinson 2021; 

Kitaura et al. 2020; Liu, Tan, and Liu 2020; Haraden et al. 2019; Pérez-García et al. 2019; Wang 

et al. 2015). Significantly, serum levels of MMP-7 and PAI-1 emerged as top contributors. Con-

sistent with our findings, these markers had differential serum levels in patients with incident 

knee and/or hand osteoarthritis compared to controls, prior to the appearance of ra-diographic 

signs, suggesting they might be potential indicators of early OA pathogenesis (Ling et al. 2009). 

Similarly, angiogenin levels were significantly higher in early-stage cartilage destruction com-

pared to more advanced knee-OA stages (Chae et al. 2021).  

 

Changes in biological markers’ levels may also have contributed to the observed changes in the 

subchondral bone’s texture and morphometry. For instance, overexpression of TIMP-1 in osteo-

blasts enhances trabecular bone volume and reduces trabecular separation (Geoffroy et al. 2004). 

Elevated TIMP-1 levels in serum correlate with the rate of joint space narrowing in hip osteoar-

thritis and might have contributed to the reduced joint space observed in our TMJOA participants 

(Chevalier et al. 2001). Lack of PAI-1 significantly elevates RANKL (AKA TRANCE) expres-

sion and the RANKL/OPG mRNA ratio in mouse osteoblasts. This could increase osteoclasto-

genic activity, resulting in subchondral bone resorption (Moritake et al. 2017). TMJ OA partici-

pants had heightened BDNF levels corroborating with the observation of knee OA patients hav-

ing significantly higher BDNF serum levels compared to the healthy group (Gowler et al. 2020). 

BDNF produced due to peripheral nerve damage was found to contribute to sclerotic changes in 
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the sur-rounding alveolar bone (Ida-Yonemochi et al. 2017). BDNF levels have also been linked 

to the joint pain mechanism during the early inflammatory phase of knee OA (Gowler et al. 

2020). Concerning TGFβ-1, a study reported notable changes in the TMJ's sub-chondral bone in 

the TMD rat models, including a marked increase in trabecular-separation, compared to controls. 

Importantly, inhibiting the TGF-β-receptor I miti-gated the progression of TMJ OA in the TMD 

models, implying that the activation of TGF-β signaling might be instrumental in TMJ OA de-

velopment (Zheng et al. 2018).  

 

In the past three decades, osteoarthritis has increasingly been recognized not as a singular disease 

but as a complex constellation of disorders. This complexity, compounded by the pronounced 

phenotypic hetero-geneity among patients, has posed challenges in harnessing OA-related mole-

cules as reliable biomarkers for clinical diagnosis (Sandhu et al. 2023; Bernotiene et al. 2020; 

Deveza and Loeser 2018; Arden et al. 2015; Henrotin, Pesesse, and Lambert 2014; Blagojevic et 

al. 2010; Felson 1993; Bjelle 1983) Here, we developed a diagnostic tool integrating various data 

sources and identified a set of markers that may aid in developing effective preventive therapies 

and optimizing patient care. Assessing these markers, in tandem with comprehensive multicenter 

studies, is imperative for firmly establishment of their role in clinical settings.  
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Supplementary Table 4.1: Definitions of Trabecular Bone Texture and Morphometry Features Computed in 

the Study 

 
Features Variables Definitions 

GLCM 
 

 

Energy 
Entropy 

Correlation 

Inverse difference moment 
Inertia 

Cluster shade 

Cluster prominence 
Haralick correlation 

Uniformity of the grey-level textural organization. 
Randomization of the grey-level distribution. 

Grey-level linear dependence among the pixels. 

Local homogeneity of the grey-level distribution. 
Contrast  between a pixel and its neighbor. 

Skewness and uniformity of the grey-level distribution. 

Skewness and asymmetry of the grey-level distribution. 
Linear dependence between the pixels. 

GLRLM 

 

 

Short run emphasis (SRE) 

Long run emphasis (LRE) 
Grey level non-uniformity (GLN) 

Run length non-uniformity (RLN) 

Low grey level run emphasis (LGLRE) 
High grey level run emphasis (HGLRE) 

Short run low grey level run emphasis (SRLGLRE) 

 
Short run high grey level run emphasis (SRHGLRE) 

 

Long run low grey level run emphasis (LRLGLRE) 
 

Long run high grey level run emphasis (LRHGLRE) 

Distribution of short run lengths. 

Distribution of long run lengths. 
Variability of the grey-level intensity. 

Similarity of run lengths in the image. 

Distribution of the lower grey-level values. 
Distribution of the higher grey-level values. 

Joint distribution of shorter run lengths with lower grey-level 

values. 
Joint distribution of shorter run lengths with higher grey-level 

values. 

Joint distribution of long run lengths with lower grey-level 
values. 

Joint distribution of long run lengths with higher grey-level 

values. 

 
Bone Mor-

phometry 

BV/TV 
Tb.Th 

Tb.Sp 

Tb.N 
BS/BV 

Ratio between bone volume and total volume. 
Trabecular thickness. 

Trabecular separation. 

Trabecular number. 
Ratio between bone surface and bone volume. 

* GLCM, Grey level co-occurrence matrix; GLRLM, Grey level run length matrix. 
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Supplementary Table 4.2: Quantitative Textural Imaging Features of the Condyle and Articular Fossa in 

Control and TMJ OA Groups. 

Site Variables 
Control group TMJ OA group 

P-value 
Mean SD Mean SD 

L
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e 
C

o
n
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Energy 0.25 0.06 0.22 0.06 0.013* 

Entropy 2.54 0.33 2.71 0.43 0.006* 

Correlation 1.44 0.42 1.26 0.45 0.007* 

Inverse Difference Moment 0.89 0.02 0.88 0.02 0.074* 

Inertia 0.23 0.04 0.24 0.04 0.059* 

Short Run Emphasis 0.36 0.04 0.37 0.04 0.030* 

Long Run Emphasis 14.72 2.32 14.16 2.21 0.120 

Grey Level Non-Uniformity 2726.79 249.41 2642.94 259.63 0.038* 

Run Length Non-Uniformity 1641.89 397.74 1772.40 471.91 0.059 

Low Grey Level Run Emphasis 0.07 0.02 0.07 0.02 0.106 

High Grey Level Run Emphasis 18.08 3.85 20.52 6.25 0.003* 

Short Run Low Grey Level Emphasis 0.02 0.01 0.02 0.01 0.294 

Short Run High Grey Level Emphasis 6.76 1.98 8.06 3.13 0.002* 

Long Run Low Grey Level Emphasis 1.05 0.32 0.96 0.38 0.105 

Long Run High Grey Level Emphasis 250.40 56.11 268.74 68.84 0.065 

Bone Volume/Total Volume (%) 0.51 0.21 0.57 0.24 0.084 

Trabecular Thickness (mm) 0.36 0.15 0.43 0.20 0.008* 

Trabecular Separation (mm) 0.40 0.35 0.38 0.39 0.723 

Trabecular Number (mm-1) 1.40 0.27 1.31 0.27 0.058 

Bone Surface/Bone Volume Ratio (mm-1) 6.39 2.36 5.63 2.61 0.054 
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Energy 0.20 0.07 0.21 0.09 0.591 

Entropy 2.88 0.42 2.86 0.44 0.716 

Correlation 0.97 0.43 0.92 0.38 0.443 

Inverse Difference Moment 0.89 0.02 0.89 0.02 0.586 

Inertia 0.23 0.04 0.23 0.04 0.978 

Short Run Emphasis 0.36 0.04 0.36 0.04 0.795 

Long Run Emphasis 15.01 2.16 15.16 1.78 0.649 

Grey Level Non-Uniformity 1817.16 285.30 1800.83 287.33 0.718 

Run Length Non-Uniformity 1387.21 336.63 1363.03 313.48 0.638 

Low Grey Level Run Emphasis 0.04 0.02 0.04 0.05 0.626 

High Grey Level Run Emphasis 35.47 10.16 35.96 9.05 0.743 

Short Run Low Grey Level Emphasis 0.01 0.01 0.02 0.04 0.524 

Short Run High Grey Level Emphasis 13.00 3.51 13.09 3.09 0.868 

Long Run Low Grey Level Emphasis 0.59 0.37 0.61 0.50 0.837 

Long Run High Grey Level Emphasis 522.15 203.65 534.66 173.91 0.676 

Bone Volume/Total Volume (%) 0.69 0.25 0.71 0.25 0.500 

Trabecular Thickness (mm) 0.60 0.28 0.62 0.27 0.579 

Trabecular Separation (mm) 0.31 0.42 1.28 8.81 0.325 

Trabecular Number (mm-1) 1.18 0.27 1.17 0.28 0.828 

Bone Surface/Bone Volume Ratio (mm-1) 4.24 2.27 4.22 3.13 0.961 

* An independent samples t-test was used to compute the p-value for the imaging variables between the groups, P< 

0.05 was considered statistically significant. 
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Supplementary Table 4.3: Descriptive Values of Biological Features in Control and TMJ OA Groups. 

 

Variables 

Control group TMJ OA group 

Mean SD Mean SD 

Angiogenin Serum 1456.86 215.63 1489.67 289.04 

BDNF Serum 1017.65 1182.48 1214.25 1594.31 

CXCL16 Serum 3258.74 1423.01 3683.30 2083.87 

ENA-78 Serum 666.34 571.43 605.83 525.22 

MMP3 Serum 4109.40 4319.59 3612.02 2699.62 

MMP7 Serum 671.65 353.17 672.29 413.75 

OPG Serum 5485.61 9106.16 6765.43 11596.90 

PAI-1 Serum 8283.14 4019.92 7834.17 3574.73 

shaTGF-B1 Serum 51576.77 127099.17 58606.49 133705.55 

TIMP-1 Serum 4772.12 2971.32 4849.75 3010.91 

TRANCE Serum 2002.93 1721.86 2176.02 1457.09 

VE-Cadherin Serum 7006.40 8828.89 5739.20 5493.81 

VEGF Serum 167.11 163.58 157.69 170.26 

Angiogenin Saliva 914.70 409.73 995.89 447.96 

CXCL16 Saliva 273.01 376.89 287.92 421.23 

ENA-78 Saliva 1729.35 994.31 1872.39 1088.52 

MMP7 Saliva 3253.07 2044.64 3189.01 1830.85 

OPG Saliva 1327.39 2383.25 1315.95 1842.69 

TGF-B1 Saliva 742.38 1593.07 765.47 2120.83 

PAI-1 Saliva 12658.84 44860.31 16302.80 103331.65 

TIMP-1 Saliva 3001.69 1392.01 2970.33 1216.38 

TRANCE Saliva 1008.79 1743.27 837.63 1321.05 

VE-Cadherin Saliva 3538.19 13269.55 2381.34 6445.33 

VEGF Saliva 2085.77 1375.63 2266.99 1333.05 

*BDNF, brain derived neurotrophic factor; CXCL16, chemokine ligand 16; ENA78, epithelial neutrophil-activating 

peptide; MMP, matrix metalloproteinases; OPG, osteoprotegerin, PAI-1, plasminogen activator inhibitor-1; TGF-

B1, transforming growth factor-beta, TRANCE, TNF-related activation-induced cytokine; VE-Cadherin, vascular 

endothelial (VE)-cadherin; VEGF, vascular endothelium growth factor. 

  

https://www.sciencedirect.com/topics/medicine-and-dentistry/vascular-endothelium
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Supplementary Figure 4.1: Analysis of Biological Features in Control and TMJ OA Groups. A) Summary re-

port displaying protein levels in serum and saliva. B) Standard curves from microarray analysis for individual pro-

teins. LOD, Limit of detection. 
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Supplementary Table 4.4: Descriptive Statistics of Log-transformed Biological Features in Control 
and TMJ OA Groups. Data presented as Mean ± SD and p-values from independent t-test. 

 

Variables 

Control group TMJ OA group P value 

Mean SD Mean SD 0.59 

Angiogenin Serum 7.27 0.15 7.29 0.19 0.58 

BDNF Serum 6.25 1.30 6.36 1.33 0.19 

CXCL16 Serum 8.01 0.41 8.10 0.47 0.58 

ENA-78 Serum 6.08 1.08 5.99 1.03 0.52 

MMP3 Serum 8.05 0.69 7.98 0.63 0.92 

MMP7 Serum 6.32 0.78 6.33 0.73 0.29 

OPG Serum 7.97 0.99 8.14 1.04 0.44 

PAI-1 Serum 8.90 0.54 8.83 0.61 0.35 

shaTGF-B1 Serum 6.99 3.26 7.50 3.44 0.85 

TIMP-1 Serum 8.19 0.81 8.22 0.80 0.16 

TRANCE Serum 7.10 1.18 7.34 0.98 0.99 

VE-Cadherin Serum 8.14 1.37 8.14 1.18 0.52 

VEGF Serum 4.66 1.14 4.76 0.82 0.17 

Angiogenin Saliva 6.71 0.49 6.81 0.43 0.75 

CXCL16 Saliva 4.82 1.43 4.90 1.60 0.42 

ENA-78 Saliva 7.23 0.77 7.32 0.74 0.84 

MMP7 Saliva 7.87 0.73 7.89 0.67 0.49 

OPG Saliva 6.36 1.28 6.51 1.34 0.49 

TGF-B1 Saliva 5.18 2.12 5.41 1.90 0.49 

PAI-1 Saliva 6.19 2.70 5.88 2.59 0.78 

TIMP-1 Saliva 7.88 0.53 7.90 0.46 0.59 

TRANCE Saliva 5.99 1.54 6.12 1.44 0.67 

VE-Cadherin Saliva 6.84 1.36 6.73 1.48 0.12 

VEGF Saliva 7.40 0.74 7.57 0.57 0.59 

*BDNF, brain derived neurotrophic factor; CXCL16, chemokine ligand 16; ENA78, epithelial neutrophil-
activating peptide; MMP, matrix metalloproteinases; OPG, osteoprotegerin, PAI-1, plasminogen activator 
inhibitor-1; TGF-B1, transforming growth factor-beta, TRANCE, TNF-related activation-induced cytokine; 
VE-Cadherin, vascular endothelial (VE)-cadherin; VEGF, vascular endothelium growth factor. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/vascular-endothelium
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Supplementary Table 4.5: Performance of the Feature Selection Methods and Machine Learning Approaches on 

the Validation Dataset Utilizing Clinical, Imaging, and Biological Features. 

Model Accuracy 
Precision_ 

TMJ OA 

Precision_ 

Control 

Recall_ 

TMJ OA 

Recall_ 

Control 
F1score AUC 

Lightgbm_RF 0.828 ± 0.01 0.841 ± 0.01 0.818 ± 0.01 0.811 ± 0.01 0.843 ± 0.02 0.827 ± 0.01 0.915 ± 0.00 

XgbTree_RF 0.826 ± 0.01 0.836 ± 0.01 0.817 ± 0.00 0.811 ± 0.00 0.838 ± 0.01 0.825 ± 0.01 0.910 ± 0.00 

Glmnet_RF 0.822 ± 0.01 0.839 ± 0.01 0.808 ± 0.01 0.799 ± 0.01 0.843 ± 0.01 0.821 ± 0.01 0.893 ± 0.01 

Lightgbm_XgbTree 0.818 ± 0.01 0.822 ± 0.00 0.816 ± 0.01 0.814 ± 0.01 0.822 ± 0.00 0.818 ± 0.01 0.900 ± 0.00 

RF_RF 0.815 ± 0.01 0.828 ± 0.01 0.804 ± 0.00 0.796 ± 0.00 0.831 ± 0.01 0.814 ± 0.01 0.908 ± 0.00 

Lightgbm_Lightgbm 0.811 ± 0.01 0.813 ± 0.01 0.810 ± 0.01 0.809 ± 0.01 0.813 ± 0.01 0.811 ± 0.01 0.895 ± 0.00 

XgbTree_XgbTree 0.810 ± 0.01 0.816 ± 0.02 0.806 ± 0.01 0.803 ± 0.01 0.818 ± 0.02 0.810 ± 0.01 0.895 ± 0.00 

RF_XgbTree 0.809 ± 0.01 0.816 ± 0.01 0.804 ± 0.01 0.800 ± 0.01 0.818 ± 0.02 0.809 ± 0.01 0.893 ± 0.00 

AUC_RF 0.809 ± 0.01 0.816 ± 0.02 0.803 ± 0.01 0.798 ± 0.01 0.817 ± 0.02 0.808 ± 0.01 0.892 ± 0.01 

Glmboost_RF 0.807 ± 0.01 0.811 ± 0.01 0.805 ± 0.00 0.803 ± 0.01 0.810 ± 0.01 0.807 ± 0.01 0.879 ± 0.00 

Glmboost_XgbTree 0.806 ± 0.01 0.811 ± 0.01 0.802 ± 0.01 0.799 ± 0.01 0.813 ± 0.01 0.806 ± 0.01 0.880 ± 0.01 

AUC_XgbTree 0.806 ± 0.01 0.812 ± 0.01 0.801 ± 0.01 0.797 ± 0.01 0.815 ± 0.01 0.806 ± 0.01 0.881 ± 0.01 

Glmnet_XgbTree 0.805 ± 0.01 0.812 ± 0.01 0.799 ± 0.01 0.794 ± 0.01 0.815 ± 0.01 0.804 ± 0.01 0.878 ± 0.01 

NNET_RF 0.798 ± 0.01 0.800 ± 0.01 0.796 ± 0.01 0.795 ± 0.01 0.799 ± 0.01 0.797 ± 0.01 0.880 ± 0.00 

RF_Lightgbm 0.793 ± 0.01 0.793 ± 0.01 0.793 ± 0.00 0.793 ± 0.00 0.792 ± 0.01 0.792 ± 0.01 0.876 ± 0.00 

XgbTree_Lightgbm 0.792 ± 0.01 0.792 ± 0.01 0.794 ± 0.01 0.794 ± 0.02 0.791 ± 0.01 0.792 ± 0.01 0.877 ± 0.00 

Glmnet_Lightgbm 0.788 ± 0.01 0.789 ± 0.01 0.787 ± 0.01 0.787 ± 0.01 0.789 ± 0.01 0.788 ± 0.01 0.865 ± 0.01 

Glmboost_Lightgbm 0.784 ± 0.01 0.788 ± 0.01 0.782 ± 0.01 0.780 ± 0.01 0.789 ± 0.01 0.784 ± 0.01 0.858 ± 0.00 

NNET_XgbTree 0.778 ± 0.01 0.779 ± 0.01 0.779 ± 0.01 0.778 ± 0.01 0.778 ± 0.01 0.778 ± 0.01 0.861 ± 0.01 

AUC_Lightgbm 0.777 ± 0.01 0.782 ± 0.01 0.773 ± 0.01 0.770 ± 0.01 0.785 ± 0.01 0.777 ± 0.01 0.858 ± 0.01 

NNET_Lightgbm 0.772 ± 0.01 0.770 ± 0.01 0.776 ± 0.01 0.778 ± 0.01 0.767 ± 0.02 0.772 ± 0.01 0.853 ± 0.01 

Glmnet_Baysglm 0.772 ± 0.00 0.781 ± 0.01 0.765 ± 0.00 0.758 ± 0.00 0.787 ± 0.01 0.772 ± 0.00 0.860 ± 0.00 

Glmboost_Baysglm 0.772 ± 0.00 0.781 ± 0.00 0.764 ± 0.01 0.756 ± 0.01 0.788 ± 0.01 0.772 ± 0.00 0.862 ± 0.00 

Lightgbm_SVMlinear 0.771 ± 0.01 0.783 ± 0.01 0.762 ± 0.01 0.753 ± 0.01 0.790 ± 0.01 0.771 ± 0.01 0.837 ± 0.00 

Glmboost_SVMlinear 0.771 ± 0.01 0.788 ± 0.01 0.757 ± 0.01 0.742 ± 0.01 0.800 ± 0.01 0.771 ± 0.01 0.853 ± 0.00 

Glmnet_SVMlinear 0.770 ± 0.01 0.785 ± 0.01 0.757 ± 0.01 0.744 ± 0.01 0.795 ± 0.01 0.769 ± 0.01 0.852 ± 0.01 

Glmboost_LDA 0.767 ± 0.01 0.793 ± 0.01 0.747 ± 0.01 0.724 ± 0.01 0.810 ± 0.01 0.767 ± 0.01 0.855 ± 0.00 

Glmnet_LDA 0.767 ± 0.01 0.796 ± 0.01 0.744 ± 0.01 0.719 ± 0.01 0.815 ± 0.01 0.766 ± 0.01 0.854 ± 0.00 

RF_SVMlinear 0.766 ± 0.00 0.775 ± 0.01 0.758 ± 0.01 0.750 ± 0.01 0.781 ± 0.01 0.765 ± 0.00 0.824 ± 0.01 

Lightgbm_Baysglm 0.764 ± 0.00 0.772 ± 0.01 0.758 ± 0.01 0.751 ± 0.01 0.777 ± 0.01 0.764 ± 0.00 0.840 ± 0.00 

Glmnet_Glmnet 0.763 ± 0.01 0.777 ± 0.01 0.752 ± 0.01 0.740 ± 0.01 0.787 ± 0.01 0.763 ± 0.01 0.850 ± 0.00 

Glmboost_Glmboost 0.764 ± 0.01 0.788 ± 0.01 0.743 ± 0.01 0.722 ± 0.01 0.806 ± 0.01 0.763 ± 0.01 0.846 ± 0.00 

RF_Baysglm 0.761 ± 0.01 0.765 ± 0.01 0.758 ± 0.01 0.754 ± 0.01 0.768 ± 0.01 0.761 ± 0.01 0.828 ± 0.01 

Glmboost_Glmnet 0.761 ± 0.01 0.777 ± 0.00 0.748 ± 0.01 0.733 ± 0.01 0.790 ± 0.01 0.761 ± 0.01 0.849 ± 0.01 

Glmnet_Glmboost 0.760 ± 0.01 0.786 ± 0.01 0.739 ± 0.01 0.716 ± 0.01 0.805 ± 0.01 0.760 ± 0.01 0.846 ± 0.00 

NNET_SVMlinear 0.760 ± 0.00 0.775 ± 0.01 0.748 ± 0.01 0.734 ± 0.01 0.786 ± 0.01 0.760 ± 0.00 0.827 ± 0.00 

XgbTree_SVMlinear 0.760 ± 0.01 0.774 ± 0.02 0.748 ± 0.01 0.736 ± 0.01 0.783 ± 0.02 0.760 ± 0.01 0.824 ± 0.01 

NNET_Baysglm 0.758 ± 0.00 0.762 ± 0.01 0.756 ± 0.00 0.752 ± 0.00 0.764 ± 0.01 0.758 ± 0.00 0.834 ± 0.01 

Glmnet_HDDA 0.759 ± 0.00 0.783 ± 0.00 0.740 ± 0.01 0.718 ± 0.01 0.799 ± 0.01 0.758 ± 0.00 0.841 ± 0.01 

Lightgbm_Glmboost 0.758 ± 0.01 0.781 ± 0.01 0.740 ± 0.01 0.719 ± 0.01 0.798 ± 0.01 0.758 ± 0.01 0.838 ± 0.00 

Lightgbm_Glmnet 0.757 ± 0.01 0.771 ± 0.01 0.746 ± 0.01 0.732 ± 0.01 0.782 ± 0.01 0.757 ± 0.01 0.835 ± 0.01 

Glmboost_NNET 0.757 ± 0.01 0.755 ± 0.01 0.759 ± 0.00 0.759 ± 0.01 0.754 ± 0.01 0.756 ± 0.00 0.828 ± 0.00 

Glmboost_HDDA 0.756 ± 0.01 0.783 ± 0.01 0.735 ± 0.01 0.710 ± 0.01 0.802 ± 0.01 0.755 ± 0.01 0.839 ± 0.01 

RF_Glmboost 0.756 ± 0.01 0.775 ± 0.01 0.740 ± 0.01 0.722 ± 0.01 0.789 ± 0.01 0.755 ± 0.01 0.828 ± 0.01 

Glmboost_Naivebayes 0.754 ± 0.01 0.783 ± 0.01 0.734 ± 0.00 0.706 ± 0.01 0.803 ± 0.01 0.753 ± 0.01 0.831 ± 0.01 

Glmnet_Naivebayes 0.755 ± 0.00 0.798 ± 0.01 0.724 ± 0.00 0.683 ± 0.01 0.826 ± 0.02 0.753 ± 0.00 0.830 ± 0.01 

Lightgbm_NNET 0.752 ± 0.01 0.751 ± 0.01 0.754 ± 0.01 0.756 ± 0.01 0.749 ± 0.01 0.752 ± 0.01 0.806 ± 0.00 

XgbTree_Baysglm 0.751 ± 0.01 0.758 ± 0.01 0.745 ± 0.01 0.738 ± 0.00 0.764 ± 0.01 0.751 ± 0.01 0.831 ± 0.00 
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Supplementary Table 4.5: Performance of the Feature Selection Methods and Machine 

Learning Approaches on the Validation Dataset Utilizing Clinical, Imaging, and Biological 

Features. (Cont.) 
 

Model 
Accuracy 

Precision_ 

TMJ OA 

Precision_ 

Control 

Recall_ 

TMJ OA 

Recall_ 

Control 
F1score AUC 

Glmnet_NNET 0.751 ± 0.01 0.758 ± 0.01 0.746 ± 0.01 0.738 ± 0.02 0.764 ± 0.01 0.751 ± 0.01 0.822 ± 0.01 

AUC_Glmboost 0.750 ± 0.01 0.770 ± 0.01 0.734 ± 0.01 0.715 ± 0.01 0.786 ± 0.02 0.750 ± 0.01 0.827 ± 0.01 

AUC_Glmnet 0.750 ± 0.01 0.764 ± 0.01 0.738 ± 0.01 0.723 ± 0.01 0.776 ± 0.02 0.749 ± 0.01 0.826 ± 0.01 

AUC_Baysglm 0.749 ± 0.01 0.754 ± 0.01 0.745 ± 0.01 0.741 ± 0.01 0.758 ± 0.01 0.749 ± 0.01 0.829 ± 0.01 

Lightgbm_Naivebayes 0.749 ± 0.01 0.752 ± 0.01 0.750 ± 0.01 0.747 ± 0.01 0.750 ± 0.02 0.748 ± 0.01 0.812 ± 0.01 

RF_Glmnet 0.748 ± 0.01 0.762 ± 0.01 0.737 ± 0.01 0.722 ± 0.01 0.774 ± 0.01 0.748 ± 0.01 0.825 ± 0.00 

NNET_Glmnet 0.748 ± 0.00 0.760 ± 0.00 0.739 ± 0.01 0.726 ± 0.01 0.770 ± 0.01 0.748 ± 0.00 0.823 ± 0.00 

AUC_SVMlinear 0.747 ± 0.01 0.760 ± 0.01 0.737 ± 0.01 0.724 ± 0.01 0.770 ± 0.02 0.747 ± 0.01 0.822 ± 0.01 

AUC_NNET 0.746 ± 0.01 0.743 ± 0.01 0.750 ± 0.01 0.753 ± 0.01 0.739 ± 0.02 0.746 ± 0.01 0.791 ± 0.01 

NNET_Glmboost 0.746 ± 0.01 0.775 ± 0.01 0.724 ± 0.01 0.695 ± 0.01 0.797 ± 0.01 0.745 ± 0.01 0.822 ± 0.01 

XgbTree_Glmnet 0.745 ± 0.01 0.760 ± 0.01 0.732 ± 0.01 0.716 ± 0.01 0.773 ± 0.01 0.744 ± 0.01 0.821 ± 0.01 

AUC_LDA 0.745 ± 0.01 0.767 ± 0.01 0.727 ± 0.01 0.705 ± 0.01 0.785 ± 0.02 0.744 ± 0.01 0.818 ± 0.01 

XgbTree_Glmboost 0.745 ± 0.01 0.766 ± 0.01 0.727 ± 0.01 0.705 ± 0.02 0.784 ± 0.01 0.744 ± 0.01 0.827 ± 0.00 

Lightgbm_LDA 0.744 ± 0.01 0.766 ± 0.01 0.727 ± 0.01 0.705 ± 0.01 0.784 ± 0.01 0.744 ± 0.01 0.827 ± 0.00 

NNET_LDA 0.742 ± 0.01 0.766 ± 0.00 0.724 ± 0.01 0.699 ± 0.01 0.785 ± 0.00 0.742 ± 0.01 0.819 ± 0.01 

RF_LDA 0.741 ± 0.01 0.759 ± 0.01 0.727 ± 0.01 0.708 ± 0.01 0.775 ± 0.01 0.741 ± 0.01 0.814 ± 0.01 

XgbTree_LDA 0.741 ± 0.01 0.765 ± 0.01 0.722 ± 0.01 0.697 ± 0.01 0.785 ± 0.01 0.741 ± 0.01 0.822 ± 0.01 

XgbTree_NNET 0.739 ± 0.01 0.737 ± 0.01 0.742 ± 0.01 0.743 ± 0.01 0.735 ± 0.02 0.739 ± 0.01 0.798 ± 0.01 

NNET_Naivebayes 0.739 ± 0.01 0.752 ± 0.01 0.732 ± 0.01 0.719 ± 0.02 0.760 ± 0.02 0.738 ± 0.01 0.798 ± 0.01 

NNET_NNET 0.736 ± 0.01 0.743 ± 0.01 0.733 ± 0.02 0.723 ± 0.02 0.748 ± 0.01 0.735 ± 0.02 0.777 ± 0.02 

NNET_HDDA 0.735 ± 0.01 0.756 ± 0.01 0.719 ± 0.01 0.696 ± 0.01 0.774 ± 0.01 0.734 ± 0.01 0.808 ± 0.01 

XgbTree_Naivebayes 0.729 ± 0.01 0.718 ± 0.01 0.747 ± 0.02 0.764 ± 0.03 0.694 ± 0.02 0.728 ± 0.01 0.795 ± 0.01 

AUC_HDDA 0.729 ± 0.01 0.733 ± 0.01 0.730 ± 0.01 0.727 ± 0.01 0.730 ± 0.02 0.727 ± 0.01 0.790 ± 0.01 

AUC_Naivebayes 0.728 ± 0.01 0.748 ± 0.01 0.715 ± 0.01 0.694 ± 0.01 0.762 ± 0.01 0.727 ± 0.01 0.787 ± 0.01 

XgbTree_HDDA 0.723 ± 0.01 0.729 ± 0.02 0.729 ± 0.00 0.725 ± 0.01 0.720 ± 0.03 0.720 ± 0.01 0.796 ± 0.01 

Lightgbm_HDDA 0.720 ± 0.02 0.723 ± 0.02 0.724 ± 0.02 0.721 ± 0.03 0.720 ± 0.02 0.719 ± 0.02 0.795 ± 0.01 

RF_NNET 0.719 ± 0.01 0.716 ± 0.01 0.725 ± 0.01 0.731 ± 0.01 0.707 ± 0.02 0.719 ± 0.01 0.772 ± 0.01 

RF_HDDA 0.712 ± 0.01 0.700 ± 0.01 0.739 ± 0.02 0.759 ± 0.02 0.665 ± 0.03 0.709 ± 0.01 0.786 ± 0.01 

RF_Naivebayes 0.706 ± 0.02 0.689 ± 0.02 0.737 ± 0.02 0.770 ± 0.02 0.643 ± 0.02 0.703 ± 0.02 0.783 ± 0.01 

*RF, Random forest; XGBoost, Extreme gradient boosting; Lightgbm, Light gradient boosting machine; Glmnet, General-

ized linear model with lasso and elastic net regularization; AUC, Area under the curve; Glmboost, Generalized linear 

model boosting; NNET, Neural network; Baysglm, Bayesian generalized linear model; SVM, Support vector machine; 

LDA, Linear discriminant analysis; HDDA, High-dimensional discriminant analysis. 

 

 

 

 

 

 

 

  

Evaluation 

         Metrics 

 



 

 

 196 

Supplementary Table 4.6: Performance of the Feature Selection Methods and Machine Learning Approaches on 

the Test Dataset Utilizing Clinical, Imaging, and Biological Features. 
 

Model 
Accuracy 

Precision_ 

TMJ OA 

Precision_ 

Control 

Recall_ 

TMJ OA 

Recall_ 

Control 
F1score AUC 

RF_RF 0.798 ± 0.01 0.820 ± 0.02 0.779 ± 0.02 0.763 ± 0.03 0.830 ± 0.02 0.797 ± 0.01 0.895 ± 0.01 

Glmnet_RF 0.798 ± 0.02 0.799 ± 0.02 0.796 ± 0.02 0.795 ± 0.02 0.795 ± 0.03 0.796 ± 0.02 0.864 ± 0.02 

Lightgbm_RF 0.794 ± 0.02 0.806 ± 0.03 0.784 ± 0.03 0.775 ± 0.03 0.812 ± 0.03 0.794 ± 0.02 0.878 ± 0.01 

XgbTree_RF 0.791 ± 0.01 0.813 ± 0.02 0.773 ± 0.01 0.758 ± 0.02 0.820 ± 0.03 0.790 ± 0.02 0.874 ± 0.01 

AUC_RF 0.783 ± 0.02 0.789 ± 0.03 0.777 ± 0.01 0.773 ± 0.01 0.793 ± 0.03 0.783 ± 0.02 0.869 ± 0.02 

Glmboost_RF 0.783 ± 0.02 0.788 ± 0.02 0.777 ± 0.02 0.773 ± 0.03 0.790 ± 0.02 0.782 ± 0.02 0.857 ± 0.02 

Lightgbm_XgbTree 0.780 ± 0.03 0.792 ± 0.05 0.771 ± 0.03 0.763 ± 0.03 0.798 ± 0.06 0.780 ± 0.03 0.859 ± 0.02 

Glmboost_XgbTree 0.779 ± 0.02 0.785 ± 0.02 0.776 ± 0.03 0.770 ± 0.05 0.788 ± 0.03 0.779 ± 0.02 0.856 ± 0.01 

NNET_RF 0.779 ± 0.03 0.781 ± 0.02 0.778 ± 0.04 0.775 ± 0.05 0.780 ± 0.02 0.778 ± 0.03 0.852 ± 0.02 

Lightgbm_Lightgbm 0.777 ± 0.03 0.772 ± 0.02 0.782 ± 0.03 0.785 ± 0.04 0.768 ± 0.02 0.776 ± 0.03 0.857 ± 0.02 

RF_XgbTree 0.769 ± 0.02 0.773 ± 0.02 0.766 ± 0.02 0.763 ± 0.02 0.775 ± 0.02 0.769 ± 0.02 0.860 ± 0.02 

XgbTree_XgbTree 0.769 ± 0.03 0.766 ± 0.03 0.773 ± 0.03 0.775 ± 0.04 0.763 ± 0.04 0.769 ± 0.03 0.861 ± 0.02 

RF_Lightgbm 0.769 ± 0.01 0.777 ± 0.02 0.763 ± 0.02 0.756 ± 0.03 0.783 ± 0.03 0.769 ± 0.01 0.853 ± 0.01 

AUC_XgbTree 0.765 ± 0.02 0.773 ± 0.03 0.760 ± 0.03 0.753 ± 0.04 0.778 ± 0.04 0.765 ± 0.02 0.846 ± 0.01 

Glmnet_XgbTree 0.764 ± 0.01 0.772 ± 0.02 0.758 ± 0.02 0.751 ± 0.04 0.778 ± 0.03 0.764 ± 0.01 0.843 ± 0.01 

Glmboost_Lightgbm 0.760 ± 0.01 0.768 ± 0.03 0.754 ± 0.01 0.748 ± 0.01 0.773 ± 0.04 0.760 ± 0.01 0.834 ± 0.02 

Glmnet_Lightgbm 0.759 ± 0.03 0.760 ± 0.04 0.760 ± 0.02 0.760 ± 0.02 0.758 ± 0.05 0.759 ± 0.03 0.838 ± 0.02 

XgbTree_Lightgbm 0.758 ± 0.02 0.766 ± 0.02 0.751 ± 0.02 0.743 ± 0.03 0.773 ± 0.02 0.758 ± 0.02 0.845 ± 0.01 

RF_SVMlinear 0.757 ± 0.03 0.769 ± 0.03 0.747 ± 0.03 0.736 ± 0.04 0.778 ± 0.04 0.757 ± 0.03 0.815 ± 0.02 

AUC_Lightgbm 0.756 ± 0.01 0.767 ± 0.03 0.747 ± 0.01 0.738 ± 0.03 0.773 ± 0.05 0.755 ± 0.01 0.835 ± 0.01 

NNET_XgbTree 0.754 ± 0.03 0.755 ± 0.02 0.756 ± 0.04 0.753 ± 0.06 0.756 ± 0.03 0.754 ± 0.03 0.837 ± 0.03 

NNET_Lightgbm 0.742 ± 0.01 0.742 ± 0.02 0.743 ± 0.01 0.743 ± 0.02 0.741 ± 0.03 0.742 ± 0.01 0.828 ± 0.01 

AUC_NNET 0.741 ± 0.02 0.732 ± 0.02 0.751 ± 0.03 0.760 ± 0.03 0.721 ± 0.03 0.741 ± 0.02 0.783 ± 0.01 

Lightgbm_SVMlinear 0.741 ± 0.01 0.751 ± 0.01 0.732 ± 0.02 0.721 ± 0.04 0.760 ± 0.02 0.741 ± 0.01 0.810 ± 0.01 

Lightgbm_Glmboost 0.741 ± 0.02 0.763 ± 0.02 0.722 ± 0.01 0.699 ± 0.02 0.783 ± 0.03 0.740 ± 0.02 0.818 ± 0.00 

AUC_SVMlinear 0.736 ± 0.03 0.745 ± 0.03 0.727 ± 0.03 0.716 ± 0.03 0.756 ± 0.03 0.736 ± 0.03 0.798 ± 0.01 

Lightgbm_NNET 0.735 ± 0.01 0.731 ± 0.02 0.739 ± 0.02 0.743 ± 0.03 0.726 ± 0.04 0.734 ± 0.01 0.783 ± 0.01 

RF_Glmboost 0.735 ± 0.01 0.750 ± 0.01 0.721 ± 0.02 0.704 ± 0.02 0.765 ± 0.02 0.734 ± 0.01 0.801 ± 0.01 

Lightgbm_Baysglm 0.733 ± 0.01 0.739 ± 0.01 0.728 ± 0.02 0.721 ± 0.03 0.746 ± 0.02 0.733 ± 0.01 0.812 ± 0.01 

XgbTree_Glmnet 0.733 ± 0.02 0.748 ± 0.02 0.720 ± 0.02 0.704 ± 0.02 0.763 ± 0.02 0.733 ± 0.02 0.797 ± 0.01 

Glmboost_Glmboost 0.735 ± 0.03 0.753 ± 0.02 0.720 ± 0.03 0.699 ± 0.04 0.765 ± 0.02 0.733 ± 0.02 0.797 ± 0.02 

XgbTree_Glmboost 0.732 ± 0.03 0.753 ± 0.03 0.715 ± 0.02 0.691 ± 0.02 0.773 ± 0.04 0.732 ± 0.03 0.806 ± 0.02 

Lightgbm_Glmnet 0.731 ± 0.01 0.744 ± 0.01 0.719 ± 0.01 0.704 ± 0.01 0.758 ± 0.02 0.731 ± 0.01 0.811 ± 0.01 

AUC_LDA 0.731 ± 0.02 0.748 ± 0.02 0.716 ± 0.01 0.696 ± 0.02 0.765 ± 0.02 0.731 ± 0.02 0.796 ± 0.01 

Glmnet_NNET 0.728 ± 0.02 0.734 ± 0.02 0.723 ± 0.02 0.716 ± 0.03 0.741 ± 0.02 0.728 ± 0.02 0.794 ± 0.01 

XgbTree_SVMlinear 0.728 ± 0.02 0.736 ± 0.02 0.723 ± 0.03 0.714 ± 0.04 0.743 ± 0.03 0.728 ± 0.02 0.794 ± 0.02 

AUC_Glmboost 0.728 ± 0.02 0.754 ± 0.02 0.708 ± 0.01 0.679 ± 0.01 0.778 ± 0.03 0.728 ± 0.02 0.803 ± 0.01 

NNET_NNET 0.727 ± 0.02 0.729 ± 0.02 0.726 ± 0.03 0.723 ± 0.04 0.731 ± 0.03 0.727 ± 0.02 0.769 ± 0.03 

NNET_SVMlinear 0.725 ± 0.02 0.733 ± 0.02 0.717 ± 0.02 0.706 ± 0.02 0.743 ± 0.02 0.725 ± 0.02 0.789 ± 0.02 

AUC_Glmnet 0.725 ± 0.02 0.733 ± 0.02 0.717 ± 0.02 0.706 ± 0.03 0.743 ± 0.02 0.725 ± 0.02 0.805 ± 0.01 

Glmnet_Glmboost 0.725 ± 0.02 0.740 ± 0.02 0.712 ± 0.02 0.694 ± 0.03 0.756 ± 0.02 0.724 ± 0.02 0.804 ± 0.01 

Lightgbm_HDDA 0.725 ± 0.03 0.725 ± 0.04 0.727 ± 0.01 0.731 ± 0.02 0.719 ± 0.07 0.724 ± 0.03 0.776 ± 0.02 

NNET_LDA 0.725 ± 0.02 0.744 ± 0.03 0.709 ± 0.02 0.686 ± 0.03 0.763 ± 0.03 0.724 ± 0.02 0.781 ± 0.03 

RF_Baysglm 0.723 ± 0.01 0.726 ± 0.01 0.721 ± 0.02 0.719 ± 0.02 0.728 ± 0.02 0.723 ± 0.01 0.807 ± 0.00 

NNET_Glmnet 0.723 ± 0.02 0.734 ± 0.02 0.714 ± 0.02 0.701 ± 0.02 0.746 ± 0.02 0.723 ± 0.02 0.797 ± 0.01 

NNET_Glmboost 0.723 ± 0.01 0.745 ± 0.01 0.706 ± 0.02 0.679 ± 0.03 0.768 ± 0.02 0.723 ± 0.01 0.799 ± 0.02 

Glmboost_Naivebayes 0.723 ± 0.01 0.752 ± 0.02 0.702 ± 0.02 0.669 ± 0.03 0.778 ± 0.03 0.722 ± 0.01 0.774 ± 0.02 

NNET_Baysglm 0.721 ± 0.02 0.723 ± 0.03 0.720 ± 0.02 0.719 ± 0.02 0.721 ± 0.04 0.720 ± 0.02 0.793 ± 0.02 
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Supplementary Table 4.6: Performance of the Feature Selection Methods and Machine Learning Ap-

proaches on the Test Dataset Utilizing Clinical, Imaging, and Biological Features. (Cont.) 

Model Accuracy 
Precision_ 

TMJ OA 

Precision_ 

Control 

Recall_ 

TMJ OA 

Recall_ 

Control 
F1score AUC 

Glmboost_NNET 0.720 ± 0.01 0.719 ± 0.01 0.721 ± 0.02 0.721 ± 0.04 0.719 ± 0.02 0.720 ± 0.01 0.780 ± 0.03 

Lightgbm_Naivebayes 0.720 ± 0.02 0.714 ± 0.03 0.728 ± 0.02 0.736 ± 0.03 0.704 ± 0.04 0.719 ± 0.02 0.773 ± 0.01 

Glmnet_LDA 0.720 ± 0.02 0.741 ± 0.02 0.702 ± 0.02 0.677 ± 0.02 0.760 ± 0.02 0.719 ± 0.02 0.771 ± 0.02 

Glmboost_Glmnet 0.719 ± 0.01 0.729 ± 0.01 0.710 ± 0.02 0.696 ± 0.03 0.741 ± 0.02 0.718 ± 0.01 0.788 ± 0.01 

AUC_Baysglm 0.717 ± 0.02 0.721 ± 0.02 0.714 ± 0.02 0.709 ± 0.02 0.726 ± 0.02 0.717 ± 0.02 0.800 ± 0.02 

RF_Glmnet 0.717 ± 0.02 0.723 ± 0.02 0.712 ± 0.02 0.704 ± 0.03 0.731 ± 0.02 0.717 ± 0.02 0.794 ± 0.02 

XgbTree_NNET 0.717 ± 0.02 0.712 ± 0.04 0.726 ± 0.01 0.736 ± 0.02 0.699 ± 0.06 0.717 ± 0.02 0.782 ± 0.02 

XgbTree_LDA 0.716 ± 0.03 0.741 ± 0.04 0.696 ± 0.03 0.667 ± 0.03 0.765 ± 0.05 0.715 ± 0.03 0.792 ± 0.02 

Glmnet_Glmnet 0.712 ± 0.02 0.719 ± 0.02 0.706 ± 0.02 0.696 ± 0.03 0.728 ± 0.02 0.712 ± 0.02 0.787 ± 0.01 

Glmnet_Naivebayes 0.715 ± 0.03 0.764 ± 0.04 0.682 ± 0.03 0.622 ± 0.05 0.807 ± 0.03 0.712 ± 0.03 0.787 ± 0.03 

NNET_Naivebayes 0.712 ± 0.02 0.723 ± 0.03 0.705 ± 0.03 0.691 ± 0.05 0.733 ± 0.05 0.712 ± 0.02 0.782 ± 0.02 

Lightgbm_LDA 0.712 ± 0.03 0.741 ± 0.04 0.690 ± 0.02 0.654 ± 0.02 0.770 ± 0.05 0.711 ± 0.03 0.791 ± 0.02 

XgbTree_Baysglm 0.710 ± 0.03 0.713 ± 0.03 0.707 ± 0.03 0.704 ± 0.03 0.716 ± 0.04 0.710 ± 0.03 0.793 ± 0.02 

RF_LDA 0.709 ± 0.01 0.722 ± 0.01 0.698 ± 0.02 0.679 ± 0.03 0.738 ± 0.02 0.708 ± 0.01 0.776 ± 0.02 

Glmnet_Baysglm 0.709 ± 0.02 0.711 ± 0.02 0.707 ± 0.01 0.704 ± 0.02 0.711 ± 0.02 0.708 ± 0.02 0.786 ± 0.02 

NNET_HDDA 0.707 ± 0.02 0.717 ± 0.02 0.699 ± 0.02 0.686 ± 0.03 0.728 ± 0.02 0.707 ± 0.02 0.769 ± 0.03 

Glmnet_SVMlinear 0.707 ± 0.01 0.720 ± 0.01 0.696 ± 0.01 0.679 ± 0.02 0.736 ± 0.02 0.707 ± 0.01 0.771 ± 0.01 

Glmboost_LDA 0.707 ± 0.02 0.731 ± 0.02 0.688 ± 0.01 0.657 ± 0.02 0.756 ± 0.02 0.706 ± 0.02 0.773 ± 0.03 

Glmnet_HDDA 0.704 ± 0.00 0.723 ± 0.01 0.688 ± 0.01 0.662 ± 0.01 0.743 ± 0.02 0.703 ± 0.00 0.764 ± 0.02 

Glmboost_SVMlinear 0.701 ± 0.03 0.711 ± 0.04 0.693 ± 0.03 0.681 ± 0.03 0.721 ± 0.05 0.701 ± 0.03 0.771 ± 0.03 

RF_NNET 0.696 ± 0.04 0.699 ± 0.04 0.694 ± 0.05 0.689 ± 0.05 0.704 ± 0.04 0.696 ± 0.04 0.744 ± 0.02 

Glmboost_HDDA 0.695 ± 0.03 0.711 ± 0.04 0.682 ± 0.03 0.659 ± 0.02 0.731 ± 0.04 0.695 ± 0.03 0.761 ± 0.03 

Glmboost_Baysglm 0.694 ± 0.02 0.696 ± 0.03 0.692 ± 0.02 0.689 ± 0.03 0.699 ± 0.04 0.694 ± 0.02 0.775 ± 0.02 

AUC_Naivebayes 0.694 ± 0.03 0.706 ± 0.03 0.684 ± 0.02 0.667 ± 0.02 0.721 ± 0.04 0.694 ± 0.03 0.736 ± 0.02 

XgbTree_Naivebayes 0.693 ± 0.02 0.684 ± 0.01 0.704 ± 0.03 0.716 ± 0.05 0.669 ± 0.02 0.692 ± 0.02 0.750 ± 0.02 

XgbTree_HDDA 0.686 ± 0.02 0.687 ± 0.02 0.687 ± 0.02 0.686 ± 0.03 0.686 ± 0.02 0.686 ± 0.02 0.756 ± 0.02 

AUC_HDDA 0.686 ± 0.01 0.687 ± 0.01 0.687 ± 0.01 0.686 ± 0.03 0.686 ± 0.03 0.686 ± 0.01 0.760 ± 0.02 

RF_HDDA 0.669 ± 0.02 0.652 ± 0.02 0.691 ± 0.03 0.723 ± 0.04 0.615 ± 0.02 0.668 ± 0.02 0.736 ± 0.02 

RF_Naivebayes 0.664 ± 0.02 0.640 ± 0.02 0.699 ± 0.02 0.751 ± 0.02 0.578 ± 0.03 0.662 ± 0.02 0.734 ± 0.02 

*RF, Random forest; XGBoost, Extreme gradient boosting; Lightgbm, Light gradient boosting machine; Glmnet, General-

ized linear model with lasso and elastic net regularization; AUC, Area under the curve; Glmboost, Generalized linear 

model boosting; NNET, Neural network; Baysglm, Bayesian generalized linear model; SVM, Support vector machine; 

LDA, Linear discriminant analysis; HDDA, High-dimensional discriminant analysis. 
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Supplementary Table 4.7: Performance of the Feature Selection Methods and Machine Learning Approaches on 

the Validation Dataset Utilizing Clinical and Imaging Features. 
 

Model 
Accuracy 

Precision_ 

TMJ OA 

Precision_ 

Control 

Recall_ 

TMJ OA 

Recall_ 

Control 
F1score AUC 

Lightgbm_SVMlinear 0.750 ± 0.00 0.782 ± 0.00 0.725 ± 0.00 0.693 ± 0.01 0.807 ± 0.00 0.749 ± 0.00 0.813 ± 0.00 

Glmboost_Bayesglm 0.749 ± 0.00 0.771 ± 0.00 0.731 ± 0.01 0.710 ± 0.01 0.789 ± 0.01 0.749 ± 0.00 0.818 ± 0.01 

Glmnet_SVMlinear 0.749 ± 0.01 0.776 ± 0.01 0.727 ± 0.01 0.701 ± 0.01 0.797 ± 0.01 0.748 ± 0.01 0.812 ± 0.01 

Glmboost_SVMlinear 0.749 ± 0.00 0.778 ± 0.00 0.727 ± 0.00 0.698 ± 0.01 0.800 ± 0.00 0.748 ± 0.00 0.815 ± 0.01 

Glmnet_Glmboost 0.749 ± 0.00 0.788 ± 0.01 0.720 ± 0.00 0.683 ± 0.01 0.816 ± 0.01 0.748 ± 0.00 0.811 ± 0.00 

AUC_SVMlinear 0.748 ± 0.01 0.777 ± 0.02 0.726 ± 0.00 0.698 ± 0.00 0.799 ± 0.02 0.747 ± 0.01 0.807 ± 0.01 

RF_Bayesglm 0.748 ± 0.01 0.774 ± 0.01 0.727 ± 0.01 0.700 ± 0.01 0.795 ± 0.01 0.747 ± 0.01 0.809 ± 0.00 

Glmboost_Glmboost 0.748 ± 0.00 0.785 ± 0.01 0.720 ± 0.01 0.684 ± 0.01 0.812 ± 0.01 0.747 ± 0.01 0.807 ± 0.01 

Glmnet_Bayesglm 0.747 ± 0.01 0.769 ± 0.01 0.729 ± 0.01 0.707 ± 0.01 0.787 ± 0.01 0.747 ± 0.01 0.817 ± 0.00 

Lightgbm_LDA 0.748 ± 0.01 0.791 ± 0.00 0.716 ± 0.01 0.673 ± 0.01 0.822 ± 0.00 0.746 ± 0.01 0.814 ± 0.00 

Lightgbm_Bayesglm 0.747 ± 0.01 0.775 ± 0.01 0.724 ± 0.01 0.695 ± 0.01 0.798 ± 0.01 0.746 ± 0.01 0.816 ± 0.01 

AUC_Bayesglm 0.746 ± 0.01 0.765 ± 0.01 0.730 ± 0.01 0.711 ± 0.01 0.781 ± 0.01 0.746 ± 0.01 0.807 ± 0.01 

Lightgbm_Glmnet 0.747 ± 0.01 0.777 ± 0.01 0.722 ± 0.01 0.692 ± 0.01 0.801 ± 0.01 0.746 ± 0.01 0.813 ± 0.01 

Glmboost_LDA 0.747 ± 0.01 0.784 ± 0.01 0.719 ± 0.01 0.682 ± 0.01 0.812 ± 0.01 0.746 ± 0.01 0.814 ± 0.01 

Glmnet_LDA 0.747 ± 0.00 0.785 ± 0.01 0.718 ± 0.00 0.681 ± 0.01 0.812 ± 0.01 0.745 ± 0.00 0.813 ± 0.00 

RF_SVMlinear 0.746 ± 0.00 0.779 ± 0.00 0.720 ± 0.00 0.687 ± 0.01 0.805 ± 0.01 0.745 ± 0.00 0.805 ± 0.00 

Glmnet_Glmnet 0.745 ± 0.00 0.771 ± 0.01 0.724 ± 0.01 0.698 ± 0.01 0.792 ± 0.01 0.745 ± 0.00 0.812 ± 0.00 

RF_Glmboost 0.745 ± 0.01 0.789 ± 0.01 0.714 ± 0.01 0.671 ± 0.01 0.820 ± 0.01 0.744 ± 0.01 0.804 ± 0.00 

RF_Glmnet 0.744 ± 0.00 0.775 ± 0.01 0.720 ± 0.01 0.689 ± 0.01 0.800 ± 0.01 0.744 ± 0.00 0.807 ± 0.01 

Lightgbm_Glmboost 0.745 ± 0.00 0.790 ± 0.00 0.712 ± 0.01 0.668 ± 0.01 0.822 ± 0.00 0.743 ± 0.00 0.812 ± 0.00 

AUC_Glmnet 0.744 ± 0.01 0.771 ± 0.01 0.722 ± 0.01 0.694 ± 0.01 0.794 ± 0.01 0.743 ± 0.01 0.800 ± 0.00 

Glmboost_Glmnet 0.744 ± 0.01 0.771 ± 0.02 0.722 ± 0.01 0.695 ± 0.01 0.793 ± 0.02 0.743 ± 0.01 0.808 ± 0.01 

AUC_Glmboost 0.743 ± 0.01 0.780 ± 0.01 0.715 ± 0.01 0.678 ± 0.01 0.808 ± 0.01 0.742 ± 0.01 0.799 ± 0.01 

RF_LDA 0.742 ± 0.01 0.784 ± 0.01 0.711 ± 0.00 0.667 ± 0.01 0.816 ± 0.01 0.740 ± 0.01 0.806 ± 0.00 

XgbTree_Glmnet 0.740 ± 0.00 0.777 ± 0.00 0.713 ± 0.00 0.675 ± 0.00 0.806 ± 0.00 0.739 ± 0.00 0.794 ± 0.01 

Glmboost_NNET 0.739 ± 0.01 0.764 ± 0.01 0.720 ± 0.00 0.694 ± 0.01 0.784 ± 0.02 0.738 ± 0.01 0.791 ± 0.00 

XgbTree_Glmboost 0.738 ± 0.00 0.783 ± 0.00 0.706 ± 0.00 0.659 ± 0.01 0.817 ± 0.01 0.736 ± 0.00 0.797 ± 0.01 

XgbTree_SVMlinear 0.737 ± 0.01 0.773 ± 0.00 0.710 ± 0.01 0.672 ± 0.01 0.802 ± 0.00 0.736 ± 0.01 0.794 ± 0.01 

Glmnet_NNET 0.736 ± 0.01 0.760 ± 0.01 0.717 ± 0.01 0.691 ± 0.02 0.781 ± 0.01 0.735 ± 0.01 0.778 ± 0.01 

AUC_LDA 0.736 ± 0.01 0.773 ± 0.01 0.708 ± 0.01 0.669 ± 0.01 0.803 ± 0.01 0.735 ± 0.01 0.799 ± 0.01 

Lightgbm_NNET 0.734 ± 0.01 0.754 ± 0.01 0.719 ± 0.00 0.698 ± 0.00 0.771 ± 0.01 0.734 ± 0.01 0.790 ± 0.01 

XgbTree_Bayesglm 0.735 ± 0.01 0.761 ± 0.01 0.714 ± 0.00 0.685 ± 0.00 0.784 ± 0.01 0.734 ± 0.01 0.798 ± 0.01 

XgbTree_LDA 0.735 ± 0.00 0.776 ± 0.00 0.704 ± 0.00 0.660 ± 0.00 0.810 ± 0.00 0.733 ± 0.00 0.797 ± 0.00 

Lightgbm_Lightgbm 0.733 ± 0.01 0.747 ± 0.01 0.721 ± 0.01 0.705 ± 0.01 0.761 ± 0.01 0.733 ± 0.01 0.811 ± 0.01 

Lightgbm_Naivebayes 0.734 ± 0.01 0.787 ± 0.01 0.698 ± 0.01 0.640 ± 0.03 0.827 ± 0.01 0.731 ± 0.01 0.816 ± 0.01 

Glmnet_Naivebayes 0.733 ± 0.01 0.800 ± 0.01 0.692 ± 0.01 0.623 ± 0.02 0.844 ± 0.01 0.730 ± 0.01 0.800 ± 0.00 

RF_NNET 0.730 ± 0.00 0.744 ± 0.01 0.719 ± 0.01 0.703 ± 0.01 0.757 ± 0.01 0.729 ± 0.00 0.777 ± 0.01 

AUC_HDDA 0.731 ± 0.01 0.767 ± 0.01 0.704 ± 0.01 0.665 ± 0.01 0.797 ± 0.01 0.729 ± 0.01 0.776 ± 0.01 

Glmboost_HDDA 0.728 ± 0.01 0.770 ± 0.02 0.699 ± 0.01 0.653 ± 0.01 0.803 ± 0.02 0.726 ± 0.01 0.799 ± 0.02 

Lightgbm_XgbTree 0.725 ± 0.01 0.734 ± 0.01 0.718 ± 0.01 0.708 ± 0.01 0.743 ± 0.01 0.725 ± 0.01 0.799 ± 0.01 

NNET_Bayesglm 0.725 ± 0.01 0.748 ± 0.01 0.706 ± 0.01 0.677 ± 0.02 0.772 ± 0.01 0.724 ± 0.01 0.786 ± 0.01 

Glmboost_Naivebayes 0.727 ± 0.01 0.787 ± 0.01 0.690 ± 0.01 0.624 ± 0.02 0.830 ± 0.01 0.724 ± 0.01 0.798 ± 0.01 

Glmnet_HDDA 0.726 ± 0.01 0.772 ± 0.01 0.695 ± 0.01 0.643 ± 0.01 0.809 ± 0.01 0.724 ± 0.01 0.800 ± 0.01 

RF_Naivebayes 0.726 ± 0.01 0.775 ± 0.01 0.693 ± 0.01 0.637 ± 0.02 0.815 ± 0.00 0.723 ± 0.01 0.803 ± 0.00 

NNET_Glmboost 0.725 ± 0.02 0.769 ± 0.02 0.693 ± 0.02 0.638 ± 0.03 0.810 ± 0.01 0.722 ± 0.02 0.781 ± 0.02 

AUC_NNET 0.722 ± 0.00 0.735 ± 0.01 0.712 ± 0.00 0.695 ± 0.01 0.748 ± 0.01 0.721 ± 0.00 0.748 ± 0.00 

Glmnet_Lightgbm 0.720 ± 0.01 0.733 ± 0.01 0.710 ± 0.01 0.695 ± 0.01 0.745 ± 0.01 0.720 ± 0.01 0.793 ± 0.01 

XgbTree_Naivebayes 0.722 ± 0.02 0.767 ± 0.02 0.691 ± 0.01 0.639 ± 0.02 0.805 ± 0.02 0.720 ± 0.02 0.792 ± 0.01 
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Supplementary Table 4.7: Performance of the Feature Selection Methods and Machine Learning Approaches on 

the Validation Dataset Utilizing Clinical and Imaging Features. (Cont.) 

Model Accuracy 
Precision_ 

TMJ OA 

Precision_ 

Control 

Recall_ 

TMJ OA 

Recall_ 

Control 
F1score AUC 

Glmboost_Lightgbm 0.719 ± 0.01 0.732 ± 0.01 0.709 ± 0.01 0.693 ± 0.01 0.744 ± 0.01 0.718 ± 0.00 0.789 ± 0.01 

RF_Lightgbm 0.718 ± 0.01 0.726 ± 0.01 0.713 ± 0.01 0.704 ± 0.01 0.732 ± 0.02 0.718 ± 0.01 0.794 ± 0.01 

XgbTree_XgbTree 0.717 ± 0.01 0.725 ± 0.01 0.711 ± 0.01 0.702 ± 0.01 0.733 ± 0.01 0.717 ± 0.01 0.784 ± 0.01 

Glmboost_XgbTree 0.717 ± 0.01 0.727 ± 0.01 0.709 ± 0.01 0.697 ± 0.01 0.737 ± 0.01 0.717 ± 0.01 0.779 ± 0.01 

NNET_LDA 0.718 ± 0.01 0.751 ± 0.01 0.694 ± 0.01 0.655 ± 0.01 0.782 ± 0.01 0.717 ± 0.01 0.777 ± 0.01 

XgbTree_NNET 0.717 ± 0.00 0.731 ± 0.01 0.706 ± 0.00 0.689 ± 0.01 0.745 ± 0.01 0.716 ± 0.00 0.763 ± 0.01 

NNET_Glmnet 0.718 ± 0.00 0.750 ± 0.00 0.694 ± 0.00 0.649 ± 0.01 0.787 ± 0.01 0.716 ± 0.00 0.765 ± 0.01 

AUC_Lightgbm 0.716 ± 0.01 0.726 ± 0.01 0.708 ± 0.01 0.695 ± 0.02 0.737 ± 0.01 0.716 ± 0.01 0.783 ± 0.01 

XgbTree_HDDA 0.718 ± 0.01 0.768 ± 0.01 0.685 ± 0.01 0.626 ± 0.01 0.809 ± 0.01 0.715 ± 0.01 0.777 ± 0.01 

RF_XgbTree 0.714 ± 0.01 0.722 ± 0.01 0.708 ± 0.01 0.698 ± 0.02 0.731 ± 0.02 0.714 ± 0.01 0.780 ± 0.01 

NNET_SVMlinear 0.715 ± 0.02 0.743 ± 0.02 0.694 ± 0.02 0.654 ± 0.03 0.776 ± 0.01 0.713 ± 0.02 0.766 ± 0.03 

XgbTree_Lightgbm 0.713 ± 0.01 0.721 ± 0.01 0.706 ± 0.01 0.696 ± 0.01 0.729 ± 0.01 0.713 ± 0.01 0.783 ± 0.01 

AUC_XgbTree 0.708 ± 0.01 0.715 ± 0.01 0.701 ± 0.01 0.692 ± 0.01 0.723 ± 0.01 0.707 ± 0.01 0.768 ± 0.01 

AUC_Naivebayes 0.712 ± 0.00 0.776 ± 0.00 0.673 ± 0.01 0.595 ± 0.01 0.829 ± 0.00 0.707 ± 0.00 0.789 ± 0.00 

RF_RF 0.707 ± 0.01 0.706 ± 0.02 0.708 ± 0.01 0.710 ± 0.01 0.701 ± 0.02 0.706 ± 0.01 0.782 ± 0.01 

Glmnet_XgbTree 0.705 ± 0.01 0.715 ± 0.01 0.696 ± 0.01 0.682 ± 0.01 0.728 ± 0.01 0.705 ± 0.01 0.776 ± 0.01 

RF_HDDA 0.708 ± 0.01 0.768 ± 0.01 0.672 ± 0.01 0.598 ± 0.01 0.819 ± 0.01 0.704 ± 0.01 0.786 ± 0.01 

NNET_Lightgbm 0.704 ± 0.02 0.710 ± 0.02 0.702 ± 0.01 0.695 ± 0.02 0.714 ± 0.03 0.704 ± 0.02 0.775 ± 0.01 

Glmboost_RF 0.704 ± 0.00 0.704 ± 0.01 0.704 ± 0.00 0.704 ± 0.01 0.700 ± 0.01 0.703 ± 0.00 0.780 ± 0.01 

Lightgbm_HDDA 0.708 ± 0.01 0.787 ± 0.01 0.665 ± 0.01 0.571 ± 0.02 0.845 ± 0.01 0.702 ± 0.01 0.802 ± 0.01 

Lightgbm_RF 0.702 ± 0.01 0.702 ± 0.01 0.703 ± 0.01 0.704 ± 0.01 0.698 ± 0.02 0.701 ± 0.01 0.783 ± 0.01 

Glmnet_RF 0.702 ± 0.01 0.703 ± 0.01 0.702 ± 0.00 0.701 ± 0.01 0.700 ± 0.01 0.701 ± 0.01 0.775 ± 0.01 

XgbTree_RF 0.701 ± 0.00 0.705 ± 0.01 0.699 ± 0.00 0.694 ± 0.01 0.707 ± 0.01 0.701 ± 0.01 0.773 ± 0.01 

NNET_HDDA 0.704 ± 0.01 0.748 ± 0.02 0.676 ± 0.01 0.616 ± 0.02 0.792 ± 0.02 0.700 ± 0.01 0.748 ± 0.01 

AUC_RF 0.697 ± 0.01 0.698 ± 0.01 0.697 ± 0.01 0.695 ± 0.01 0.696 ± 0.02 0.696 ± 0.01 0.765 ± 0.00 

NNET_XgbTree 0.675 ± 0.02 0.682 ± 0.02 0.670 ± 0.02 0.657 ± 0.02 0.694 ± 0.02 0.675 ± 0.02 0.732 ± 0.02 

NNET_RF 0.675 ± 0.02 0.678 ± 0.02 0.673 ± 0.02 0.664 ± 0.03 0.681 ± 0.02 0.673 ± 0.02 0.731 ± 0.02 

NNET_Naivebayes 0.672 ± 0.03 0.735 ± 0.03 0.637 ± 0.02 0.534 ± 0.04 0.810 ± 0.02 0.665 ± 0.03 0.718 ± 0.03 

NNET_NNET 0.669 ± 0.03 0.691 ± 0.02 0.657 ± 0.04 0.601 ± 0.07 0.736 ± 0.01 0.664 ± 0.03 0.694 ± 0.04 

*RF, Random forest; XGBoost, Extreme gradient boosting; Lightgbm, Light gradient boosting machine; Glmnet, General-

ized linear model with lasso and elastic net regularization; AUC, Area under the curve; Glmboost, Generalized linear 

model boosting; NNET, Neural network; Baysglm, Bayesian generalized linear model; SVM, Support vector machine; 

LDA, Linear discriminant analysis; HDDA, High-dimensional discriminant analysis. 
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Supplementary Table 4.8: Performance of the Feature Selection Methods and Machine Learning Approaches on 

the Test Dataset Utilizing Clinical and Imaging Features. 
 

Models 
Accuracy 

Precision_ 

TMJ OA 

Precision_ 

Control 

Recall_ 

TMJ OA 

Recall_ 

Control 
F1score AUC 

AUC_SVMlinear 0.756 ± 0.00 0.779 ± 0.01 0.736 ± 0.01 0.714 ± 0.02 0.798 ± 0.02 0.755 ± 0.00 0.799 ± 0.02 

AUC_Glmnet 0.749 ± 0.02 0.779 ± 0.02 0.725 ± 0.02 0.696 ± 0.02 0.802 ± 0.02 0.749 ± 0.02 0.792 ± 0.01 

AUC_Bayesglm 0.748 ± 0.01 0.767 ± 0.02 0.732 ± 0.01 0.714 ± 0.01 0.783 ± 0.02 0.748 ± 0.01 0.795 ± 0.01 

RF_Glmboost 0.742 ± 0.01 0.785 ± 0.01 0.710 ± 0.01 0.667 ± 0.02 0.817 ± 0.02 0.740 ± 0.01 0.790 ± 0.01 

RF_Glmnet 0.740 ± 0.02 0.773 ± 0.03 0.714 ± 0.02 0.679 ± 0.02 0.800 ± 0.03 0.739 ± 0.02 0.779 ± 0.01 

AUC_Glmboost 0.740 ± 0.01 0.776 ± 0.00 0.712 ± 0.01 0.674 ± 0.01 0.805 ± 0.01 0.738 ± 0.01 0.786 ± 0.02 

Lightgbm_SVMlinear 0.738 ± 0.01 0.763 ± 0.01 0.718 ± 0.01 0.691 ± 0.02 0.785 ± 0.02 0.738 ± 0.01 0.799 ± 0.01 

Lightgbm_Glmboost 0.738 ± 0.01 0.784 ± 0.02 0.706 ± 0.00 0.659 ± 0.01 0.817 ± 0.02 0.737 ± 0.01 0.796 ± 0.02 

Lightgbm_Bayesglm 0.736 ± 0.01 0.762 ± 0.02 0.715 ± 0.02 0.686 ± 0.02 0.785 ± 0.02 0.735 ± 0.01 0.797 ± 0.01 

Lightgbm_NNET 0.733 ± 0.02 0.753 ± 0.02 0.717 ± 0.01 0.696 ± 0.02 0.770 ± 0.03 0.733 ± 0.02 0.769 ± 0.02 

Lightgbm_Glmnet 0.733 ± 0.01 0.762 ± 0.02 0.710 ± 0.01 0.679 ± 0.01 0.788 ± 0.02 0.733 ± 0.01 0.802 ± 0.02 

AUC_LDA 0.733 ± 0.02 0.767 ± 0.03 0.708 ± 0.02 0.672 ± 0.02 0.795 ± 0.03 0.732 ± 0.02 0.787 ± 0.01 

RF_Bayesglm 0.732 ± 0.01 0.757 ± 0.01 0.712 ± 0.01 0.684 ± 0.01 0.780 ± 0.02 0.731 ± 0.01 0.788 ± 0.02 

XgbTree_Glmboost 0.731 ± 0.01 0.766 ± 0.03 0.705 ± 0.01 0.667 ± 0.02 0.795 ± 0.03 0.730 ± 0.01 0.779 ± 0.01 

Glmnet_Glmnet 0.730 ± 0.01 0.758 ± 0.01 0.707 ± 0.02 0.674 ± 0.03 0.785 ± 0.01 0.729 ± 0.01 0.778 ± 0.02 

Lightgbm_LDA 0.728 ± 0.01 0.773 ± 0.01 0.697 ± 0.01 0.647 ± 0.02 0.810 ± 0.01 0.727 ± 0.01 0.797 ± 0.01 

AUC_Lightgbm 0.726 ± 0.02 0.738 ± 0.04 0.716 ± 0.01 0.704 ± 0.01 0.746 ± 0.05 0.725 ± 0.02 0.788 ± 0.02 

RF_SVMlinear 0.723 ± 0.01 0.753 ± 0.02 0.701 ± 0.01 0.667 ± 0.01 0.780 ± 0.03 0.723 ± 0.01 0.785 ± 0.01 

XgbTree_Glmnet 0.721 ± 0.01 0.751 ± 0.01 0.698 ± 0.01 0.662 ± 0.01 0.780 ± 0.02 0.720 ± 0.01 0.783 ± 0.01 

Glmboost_Glmboost 0.721 ± 0.01 0.757 ± 0.01 0.694 ± 0.01 0.652 ± 0.01 0.790 ± 0.02 0.720 ± 0.01 0.768 ± 0.02 

Glmnet_Glmboost 0.721 ± 0.02 0.758 ± 0.02 0.694 ± 0.02 0.649 ± 0.03 0.793 ± 0.02 0.719 ± 0.02 0.778 ± 0.01 

RF_LDA 0.721 ± 0.01 0.761 ± 0.02 0.692 ± 0.01 0.644 ± 0.02 0.798 ± 0.02 0.719 ± 0.01 0.784 ± 0.01 

Lightgbm_Naivebayes 0.721 ± 0.03 0.761 ± 0.02 0.692 ± 0.03 0.644 ± 0.04 0.798 ± 0.02 0.719 ± 0.03 0.787 ± 0.02 

NNET_Glmboost 0.721 ± 0.03 0.763 ± 0.03 0.691 ± 0.04 0.640 ± 0.06 0.802 ± 0.02 0.719 ± 0.04 0.773 ± 0.03 

XgbTree_SVMlinear 0.720 ± 0.02 0.755 ± 0.03 0.694 ± 0.02 0.652 ± 0.03 0.788 ± 0.03 0.718 ± 0.02 0.761 ± 0.02 

Glmnet_NNET 0.719 ± 0.02 0.736 ± 0.02 0.704 ± 0.02 0.681 ± 0.02 0.756 ± 0.02 0.718 ± 0.02 0.754 ± 0.01 

Glmboost_Glmnet 0.719 ± 0.02 0.744 ± 0.02 0.698 ± 0.02 0.667 ± 0.02 0.770 ± 0.03 0.718 ± 0.02 0.762 ± 0.01 

XgbTree_LDA 0.719 ± 0.01 0.756 ± 0.03 0.691 ± 0.00 0.647 ± 0.01 0.790 ± 0.03 0.717 ± 0.01 0.766 ± 0.01 

Glmnet_Bayesglm 0.717 ± 0.02 0.738 ± 0.02 0.700 ± 0.02 0.674 ± 0.03 0.760 ± 0.02 0.717 ± 0.02 0.774 ± 0.02 

AUC_HDDA 0.717 ± 0.02 0.752 ± 0.02 0.691 ± 0.02 0.649 ± 0.03 0.785 ± 0.02 0.716 ± 0.02 0.746 ± 0.01 

RF_NNET 0.716 ± 0.01 0.729 ± 0.01 0.705 ± 0.02 0.689 ± 0.03 0.743 ± 0.02 0.716 ± 0.01 0.761 ± 0.01 

Glmnet_SVMlinear 0.716 ± 0.02 0.737 ± 0.02 0.699 ± 0.02 0.672 ± 0.03 0.760 ± 0.01 0.715 ± 0.02 0.763 ± 0.01 

Glmboost_LDA 0.716 ± 0.01 0.746 ± 0.02 0.693 ± 0.01 0.657 ± 0.02 0.775 ± 0.03 0.715 ± 0.01 0.762 ± 0.01 

Glmnet_Lightgbm 0.715 ± 0.03 0.727 ± 0.03 0.704 ± 0.03 0.689 ± 0.03 0.741 ± 0.04 0.715 ± 0.03 0.789 ± 0.01 

NNET_Bayesglm 0.715 ± 0.03 0.732 ± 0.03 0.701 ± 0.04 0.677 ± 0.05 0.753 ± 0.03 0.714 ± 0.03 0.767 ± 0.03 

XgbTree_Bayesglm 0.715 ± 0.02 0.742 ± 0.04 0.694 ± 0.02 0.662 ± 0.03 0.768 ± 0.05 0.714 ± 0.02 0.764 ± 0.01 

AUC_NNET 0.714 ± 0.01 0.733 ± 0.02 0.697 ± 0.01 0.672 ± 0.01 0.756 ± 0.02 0.713 ± 0.01 0.741 ± 0.01 

Glmnet_Naivebayes 0.716 ± 0.02 0.779 ± 0.03 0.677 ± 0.01 0.605 ± 0.01 0.827 ± 0.03 0.713 ± 0.02 0.773 ± 0.01 

RF_Lightgbm 0.712 ± 0.02 0.725 ± 0.03 0.702 ± 0.02 0.686 ± 0.01 0.738 ± 0.04 0.712 ± 0.02 0.781 ± 0.02 

NNET_Lightgbm 0.711 ± 0.03 0.707 ± 0.03 0.715 ± 0.03 0.721 ± 0.03 0.701 ± 0.03 0.711 ± 0.03 0.772 ± 0.02 

XgbTree_Lightgbm 0.711 ± 0.02 0.723 ± 0.02 0.701 ± 0.01 0.686 ± 0.01 0.736 ± 0.03 0.711 ± 0.02 0.775 ± 0.02 

Lightgbm_Lightgbm 0.711 ± 0.03 0.724 ± 0.04 0.701 ± 0.02 0.686 ± 0.02 0.736 ± 0.05 0.711 ± 0.03 0.796 ± 0.03 

NNET_Glmnet 0.711 ± 0.02 0.741 ± 0.02 0.688 ± 0.02 0.649 ± 0.04 0.773 ± 0.02 0.710 ± 0.02 0.751 ± 0.03 

XgbTree_NNET 0.707 ± 0.01 0.722 ± 0.02 0.695 ± 0.01 0.677 ± 0.02 0.738 ± 0.03 0.707 ± 0.01 0.752 ± 0.03 

RF_HDDA 0.711 ± 0.01 0.778 ± 0.03 0.671 ± 0.01 0.593 ± 0.02 0.830 ± 0.03 0.707 ± 0.01 0.748 ± 0.02 

Glmnet_LDA 0.707 ± 0.02 0.739 ± 0.03 0.683 ± 0.02 0.642 ± 0.02 0.773 ± 0.03 0.706 ± 0.02 0.767 ± 0.01 

AUC_XgbTree 0.706 ± 0.01 0.714 ± 0.02 0.700 ± 0.01 0.691 ± 0.02 0.721 ± 0.04 0.706 ± 0.01 0.772 ± 0.01 

XgbTree_HDDA 0.707 ± 0.02 0.742 ± 0.02 0.682 ± 0.02 0.635 ± 0.04 0.780 ± 0.01 0.706 ± 0.02 0.738 ± 0.02 
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Supplementary Table 4.8: Performance of the Feature Selection Methods and Machine Learning Ap-

proaches on the Test Dataset Utilizing Clinical and Imaging Features. (Cont.) 

Model Accuracy 
Precision_ 
TMJ OA 

Precision_ 
Control 

Recall_ 
TMJ OA 

Recall_ 
Control 

F1score AUC 

Glmboost_Bayesglm 0.706 ± 0.02 0.725 ± 0.02 0.691 ± 0.02 0.664 ± 0.03 0.748 ± 0.02 0.706 ± 0.02 0.765 ± 0.01 

Glmboost_Lightgbm 0.705 ± 0.02 0.715 ± 0.03 0.697 ± 0.02 0.684 ± 0.02 0.726 ± 0.04 0.705 ± 0.02 0.777 ± 0.02 

Lightgbm_XgbTree 0.704 ± 0.01 0.717 ± 0.01 0.692 ± 0.01 0.674 ± 0.01 0.733 ± 0.01 0.703 ± 0.01 0.761 ± 0.02 

Glmboost_NNET 0.702 ± 0.01 0.722 ± 0.01 0.687 ± 0.02 0.659 ± 0.03 0.746 ± 0.01 0.702 ± 0.01 0.751 ± 0.03 

AUC_Naivebayes 0.706 ± 0.02 0.772 ± 0.02 0.666 ± 0.01 0.585 ± 0.02 0.827 ± 0.02 0.702 ± 0.02 0.765 ± 0.02 

Glmnet_HDDA 0.705 ± 0.02 0.758 ± 0.03 0.671 ± 0.02 0.605 ± 0.03 0.805 ± 0.04 0.702 ± 0.02 0.754 ± 0.02 

Glmboost_SVMlinear 0.700 ± 0.03 0.722 ± 0.02 0.682 ± 0.03 0.649 ± 0.04 0.751 ± 0.02 0.699 ± 0.03 0.749 ± 0.02 

Glmboost_Naivebayes 0.696 ± 0.02 0.752 ± 0.04 0.661 ± 0.02 0.588 ± 0.03 0.805 ± 0.04 0.692 ± 0.02 0.761 ± 0.02 

NNET_LDA 0.694 ± 0.02 0.725 ± 0.02 0.671 ± 0.02 0.625 ± 0.03 0.763 ± 0.01 0.692 ± 0.02 0.745 ± 0.02 

RF_Naivebayes 0.693 ± 0.01 0.737 ± 0.03 0.663 ± 0.01 0.600 ± 0.03 0.785 ± 0.03 0.690 ± 0.01 0.736 ± 0.02 

AUC_RF 0.689 ± 0.02 0.688 ± 0.02 0.690 ± 0.02 0.691 ± 0.02 0.684 ± 0.03 0.688 ± 0.02 0.748 ± 0.01 

Glmnet_XgbTree 0.688 ± 0.02 0.701 ± 0.02 0.677 ± 0.03 0.654 ± 0.04 0.721 ± 0.02 0.687 ± 0.03 0.760 ± 0.01 

XgbTree_Naivebayes 0.686 ± 0.02 0.724 ± 0.02 0.660 ± 0.02 0.602 ± 0.04 0.770 ± 0.02 0.684 ± 0.02 0.744 ± 0.02 

Lightgbm_HDDA 0.690 ± 0.02 0.773 ± 0.03 0.646 ± 0.02 0.538 ± 0.03 0.842 ± 0.02 0.683 ± 0.02 0.773 ± 0.02 

Glmboost_RF 0.684 ± 0.02 0.688 ± 0.02 0.681 ± 0.02 0.674 ± 0.03 0.689 ± 0.03 0.683 ± 0.02 0.747 ± 0.02 

Glmboost_XgbTree 0.683 ± 0.01 0.693 ± 0.02 0.674 ± 0.02 0.657 ± 0.03 0.709 ± 0.03 0.682 ± 0.01 0.760 ± 0.02 

NNET_SVMlinear 0.684 ± 0.04 0.713 ± 0.04 0.662 ± 0.04 0.615 ± 0.05 0.751 ± 0.03 0.682 ± 0.04 0.733 ± 0.03 

Glmboost_HDDA 0.684 ± 0.02 0.723 ± 0.02 0.657 ± 0.01 0.598 ± 0.03 0.770 ± 0.03 0.681 ± 0.02 0.730 ± 0.02 

Lightgbm_RF 0.683 ± 0.03 0.681 ± 0.03 0.685 ± 0.03 0.689 ± 0.04 0.672 ± 0.04 0.681 ± 0.03 0.754 ± 0.02 

XgbTree_RF 0.680 ± 0.02 0.688 ± 0.02 0.673 ± 0.02 0.659 ± 0.02 0.701 ± 0.03 0.680 ± 0.02 0.734 ± 0.03 

NNET_HDDA 0.680 ± 0.04 0.720 ± 0.04 0.653 ± 0.04 0.588 ± 0.07 0.773 ± 0.03 0.677 ± 0.04 0.717 ± 0.04 

RF_XgbTree 0.677 ± 0.02 0.686 ± 0.02 0.668 ± 0.01 0.652 ± 0.02 0.701 ± 0.02 0.676 ± 0.02 0.741 ± 0.02 

Glmnet_RF 0.675 ± 0.01 0.671 ± 0.01 0.680 ± 0.02 0.686 ± 0.04 0.657 ± 0.01 0.673 ± 0.01 0.739 ± 0.01 

XgbTree_XgbTree 0.667 ± 0.02 0.668 ± 0.02 0.666 ± 0.02 0.664 ± 0.03 0.669 ± 0.03 0.666 ± 0.02 0.734 ± 0.03 

RF_RF 0.663 ± 0.02 0.667 ± 0.02 0.660 ± 0.02 0.652 ± 0.03 0.672 ± 0.02 0.662 ± 0.02 0.726 ± 0.02 

NNET_XgbTree 0.653 ± 0.04 0.652 ± 0.04 0.654 ± 0.04 0.657 ± 0.04 0.649 ± 0.05 0.653 ± 0.04 0.712 ± 0.05 

NNET_RF 0.647 ± 0.03 0.649 ± 0.03 0.645 ± 0.03 0.640 ± 0.03 0.652 ± 0.03 0.646 ± 0.03 0.717 ± 0.04 

NNET_Naivebayes 0.649 ± 0.02 0.695 ± 0.03 0.621 ± 0.02 0.533 ± 0.02 0.765 ± 0.03 0.645 ± 0.02 0.706 ± 0.04 

NNET_NNET 0.646 ± 0.02 0.679 ± 0.02 0.624 ± 0.03 0.553 ± 0.07 0.738 ± 0.03 0.642 ± 0.03 0.710 ± 0.02 

*RF, Random forest; XGBoost, Extreme gradient boosting; Lightgbm, Light gradient boosting machine; Glmnet, General-

ized linear model with lasso and elastic net regularization; AUC, Area under the curve; Glmboost, Generalized linear 

model boosting; NNET, Neural network; Baysglm, Bayesian generalized linear model; SVM, Support vector machine; 

LDA, Linear discriminant analysis; HDDA, High-dimensional discriminant analysis. 
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Supplementary Table 4.9: Performance of the Feature Selection Methods and Machine Learning Approaches on 

the Validation Dataset Utilizing Clinical and Biological Features. 

Model Accuracy 
Precision_ 

TMJ OA 

Precision_ 

Control 

Recall_ 

TMJ OA 

Recall_ 

Control 
F1score AUC 

XgbTree_XgbTree 0.813 ± 0.00 0.818 ± 0.01 0.810 ± 0.00 0.807 ± 0.00 0.819 ± 0.01 0.813 ± 0.00 0.898 ± 0.01 

Lightgbm_XgbTree 0.812 ± 0.01 0.817 ± 0.01 0.809 ± 0.01 0.806 ± 0.01 0.818 ± 0.02 0.812 ± 0.01 0.900 ± 0.01 

XgbTree_RF 0.805 ± 0.00 0.821 ± 0.01 0.791 ± 0.01 0.780 ± 0.01 0.827 ± 0.01 0.804 ± 0.00 0.899 ± 0.00 

Lightgbm_RF 0.802 ± 0.01 0.814 ± 0.01 0.793 ± 0.01 0.785 ± 0.01 0.818 ± 0.01 0.802 ± 0.01 0.901 ± 0.00 

RF_RF 0.802 ± 0.00 0.815 ± 0.00 0.791 ± 0.00 0.782 ± 0.00 0.818 ± 0.01 0.801 ± 0.00 0.900 ± 0.01 

Glmboost_XgbTree 0.798 ± 0.01 0.807 ± 0.01 0.791 ± 0.01 0.785 ± 0.01 0.811 ± 0.01 0.798 ± 0.01 0.879 ± 0.01 

AUC_XgbTree 0.797 ± 0.01 0.804 ± 0.01 0.792 ± 0.01 0.788 ± 0.01 0.807 ± 0.01 0.797 ± 0.01 0.881 ± 0.00 

Glmnet_XgbTree 0.797 ± 0.01 0.806 ± 0.01 0.790 ± 0.01 0.785 ± 0.01 0.810 ± 0.01 0.797 ± 0.01 0.878 ± 0.01 

AUC_RF 0.798 ± 0.01 0.810 ± 0.01 0.787 ± 0.01 0.778 ± 0.01 0.814 ± 0.01 0.797 ± 0.01 0.890 ± 0.00 

Glmnet_RF 0.796 ± 0.01 0.814 ± 0.00 0.781 ± 0.01 0.768 ± 0.01 0.822 ± 0.00 0.795 ± 0.01 0.882 ± 0.00 

Lightgbm_Lightgbm 0.795 ± 0.00 0.794 ± 0.01 0.796 ± 0.00 0.796 ± 0.01 0.793 ± 0.01 0.794 ± 0.00 0.883 ± 0.00 

RF_XgbTree 0.792 ± 0.01 0.799 ± 0.02 0.787 ± 0.01 0.782 ± 0.01 0.802 ± 0.02 0.792 ± 0.01 0.882 ± 0.00 

Glmboost_RF 0.788 ± 0.01 0.804 ± 0.01 0.775 ± 0.00 0.763 ± 0.01 0.811 ± 0.01 0.787 ± 0.01 0.877 ± 0.00 

XgbTree_Lightgbm 0.785 ± 0.01 0.787 ± 0.02 0.785 ± 0.01 0.784 ± 0.02 0.787 ± 0.02 0.785 ± 0.01 0.873 ± 0.01 

NNET_XgbTree 0.783 ± 0.01 0.789 ± 0.01 0.777 ± 0.01 0.772 ± 0.01 0.793 ± 0.01 0.782 ± 0.01 0.863 ± 0.01 

NNET_RF 0.781 ± 0.01 0.790 ± 0.00 0.773 ± 0.01 0.765 ± 0.01 0.793 ± 0.01 0.780 ± 0.01 0.873 ± 0.00 

Glmboost_Lightgbm 0.775 ± 0.00 0.778 ± 0.01 0.772 ± 0.01 0.769 ± 0.01 0.780 ± 0.01 0.775 ± 0.00 0.858 ± 0.01 

RF_Lightgbm 0.774 ± 0.01 0.773 ± 0.01 0.776 ± 0.01 0.778 ± 0.01 0.770 ± 0.02 0.774 ± 0.01 0.863 ± 0.01 

AUC_Lightgbm 0.773 ± 0.01 0.776 ± 0.01 0.770 ± 0.01 0.768 ± 0.01 0.778 ± 0.01 0.773 ± 0.01 0.859 ± 0.01 

Glmnet_Lightgbm 0.771 ± 0.01 0.773 ± 0.01 0.771 ± 0.01 0.769 ± 0.01 0.774 ± 0.02 0.771 ± 0.01 0.856 ± 0.01 

Glmnet_SVMlinear 0.764 ± 0.00 0.765 ± 0.01 0.764 ± 0.01 0.763 ± 0.01 0.765 ± 0.01 0.763 ± 0.00 0.836 ± 0.00 

NNET_Lightgbm 0.763 ± 0.01 0.766 ± 0.01 0.762 ± 0.02 0.759 ± 0.02 0.767 ± 0.02 0.763 ± 0.01 0.845 ± 0.01 

Glmboost_SVMlinear 0.762 ± 0.01 0.765 ± 0.01 0.760 ± 0.01 0.756 ± 0.01 0.767 ± 0.01 0.762 ± 0.01 0.835 ± 0.00 

Glmboost_Bayesglm 0.757 ± 0.01 0.762 ± 0.01 0.753 ± 0.01 0.748 ± 0.01 0.767 ± 0.01 0.757 ± 0.01 0.838 ± 0.00 

Glmnet_Bayesglm 0.756 ± 0.01 0.757 ± 0.01 0.755 ± 0.01 0.755 ± 0.01 0.757 ± 0.01 0.756 ± 0.01 0.840 ± 0.00 

Glmnet_LDA 0.753 ± 0.00 0.764 ± 0.00 0.744 ± 0.01 0.734 ± 0.01 0.773 ± 0.01 0.753 ± 0.00 0.833 ± 0.01 

NNET_SVMlinear 0.752 ± 0.01 0.759 ± 0.00 0.747 ± 0.01 0.740 ± 0.02 0.765 ± 0.01 0.752 ± 0.01 0.820 ± 0.01 

Glmboost_LDA 0.752 ± 0.00 0.768 ± 0.00 0.739 ± 0.01 0.723 ± 0.01 0.781 ± 0.01 0.752 ± 0.00 0.831 ± 0.00 

Glmnet_Naivebayes 0.752 ± 0.01 0.771 ± 0.01 0.738 ± 0.01 0.719 ± 0.02 0.785 ± 0.01 0.751 ± 0.01 0.815 ± 0.01 

Glmboost_Naivebayes 0.751 ± 0.01 0.762 ± 0.01 0.745 ± 0.01 0.735 ± 0.02 0.767 ± 0.02 0.750 ± 0.01 0.814 ± 0.01 

NNET_Bayesglm 0.750 ± 0.01 0.752 ± 0.01 0.749 ± 0.01 0.747 ± 0.01 0.753 ± 0.01 0.750 ± 0.01 0.823 ± 0.01 

Glmboost_Glmnet 0.746 ± 0.00 0.752 ± 0.00 0.740 ± 0.00 0.733 ± 0.01 0.759 ± 0.01 0.746 ± 0.00 0.825 ± 0.00 

Glmnet_Glmnet 0.745 ± 0.01 0.751 ± 0.01 0.740 ± 0.01 0.734 ± 0.01 0.756 ± 0.01 0.745 ± 0.01 0.829 ± 0.00 

Glmboost_NNET 0.745 ± 0.01 0.741 ± 0.01 0.751 ± 0.01 0.754 ± 0.01 0.735 ± 0.02 0.744 ± 0.01 0.805 ± 0.01 

AUC_LDA 0.745 ± 0.01 0.764 ± 0.01 0.728 ± 0.01 0.709 ± 0.01 0.781 ± 0.01 0.744 ± 0.01 0.813 ± 0.01 

Glmnet_Glmboost 0.744 ± 0.01 0.755 ± 0.01 0.736 ± 0.01 0.725 ± 0.01 0.764 ± 0.01 0.744 ± 0.01 0.820 ± 0.00 

AUC_SVMlinear 0.744 ± 0.01 0.755 ± 0.01 0.735 ± 0.01 0.724 ± 0.01 0.765 ± 0.01 0.744 ± 0.01 0.817 ± 0.01 

NNET_LDA 0.744 ± 0.00 0.756 ± 0.01 0.734 ± 0.01 0.723 ± 0.01 0.765 ± 0.01 0.744 ± 0.00 0.816 ± 0.01 

Lightgbm_Naivebayes 0.744 ± 0.02 0.734 ± 0.02 0.761 ± 0.01 0.776 ± 0.01 0.713 ± 0.03 0.743 ± 0.02 0.820 ± 0.01 

AUC_Bayesglm 0.742 ± 0.01 0.745 ± 0.01 0.740 ± 0.01 0.737 ± 0.01 0.747 ± 0.01 0.742 ± 0.01 0.812 ± 0.01 

Glmboost_Glmboost 0.743 ± 0.00 0.753 ± 0.01 0.734 ± 0.01 0.722 ± 0.01 0.763 ± 0.01 0.742 ± 0.00 0.821 ± 0.00 

AUC_Glmboost 0.741 ± 0.01 0.752 ± 0.01 0.731 ± 0.01 0.719 ± 0.01 0.763 ± 0.02 0.741 ± 0.01 0.812 ± 0.01 

Lightgbm_SVMlinear 0.741 ± 0.01 0.753 ± 0.01 0.731 ± 0.01 0.718 ± 0.01 0.764 ± 0.01 0.741 ± 0.01 0.806 ± 0.01 

XgbTree_NNET 0.740 ± 0.01 0.736 ± 0.01 0.747 ± 0.01 0.752 ± 0.01 0.729 ± 0.01 0.740 ± 0.01 0.797 ± 0.01 

Lightgbm_NNET 0.740 ± 0.01 0.736 ± 0.01 0.745 ± 0.01 0.749 ± 0.01 0.731 ± 0.01 0.740 ± 0.01 0.795 ± 0.01 

Glmnet_HDDA 0.740 ± 0.00 0.746 ± 0.01 0.736 ± 0.01 0.729 ± 0.02 0.750 ± 0.02 0.739 ± 0.00 0.814 ± 0.01 

Glmnet_NNET 0.739 ± 0.00 0.738 ± 0.01 0.742 ± 0.01 0.744 ± 0.01 0.735 ± 0.01 0.739 ± 0.00 0.794 ± 0.00 

NNET_NNET 0.740 ± 0.01 0.735 ± 0.01 0.747 ± 0.02 0.755 ± 0.02 0.725 ± 0.02 0.739 ± 0.01 0.772 ± 0.01 
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Supplementary Table 4.9: Performance of the Feature Selection Methods and Machine Learning Ap-

proaches on the Validation Dataset Utilizing Clinical and Biological Features. (Cont.) 

Model Accuracy 
Precision_ 
TMJ OA 

Precision_ 
Control 

Recall_ 
TMJ OA 

Recall_ 
Control 

F1score AUC 

NNET_Glmnet 0.739 ± 0.00 0.748 ± 0.01 0.731 ± 0.01 0.721 ± 0.01 0.756 ± 0.01 0.738 ± 0.00 0.810 ± 0.01 

RF_Bayesglm 0.739 ± 0.01 0.744 ± 0.01 0.734 ± 0.01 0.728 ± 0.01 0.749 ± 0.01 0.738 ± 0.01 0.805 ± 0.01 

AUC_Glmnet 0.739 ± 0.01 0.748 ± 0.01 0.730 ± 0.01 0.720 ± 0.01 0.757 ± 0.01 0.738 ± 0.01 0.807 ± 0.00 

AUC_NNET 0.738 ± 0.01 0.734 ± 0.01 0.744 ± 0.01 0.748 ± 0.01 0.728 ± 0.02 0.738 ± 0.01 0.788 ± 0.01 

Lightgbm_Bayesglm 0.737 ± 0.01 0.743 ± 0.01 0.733 ± 0.01 0.726 ± 0.01 0.747 ± 0.01 0.737 ± 0.01 0.812 ± 0.00 

XgbTree_Bayesglm 0.736 ± 0.01 0.744 ± 0.01 0.730 ± 0.01 0.720 ± 0.01 0.752 ± 0.01 0.736 ± 0.01 0.813 ± 0.00 

RF_SVMlinear 0.736 ± 0.01 0.747 ± 0.01 0.726 ± 0.01 0.714 ± 0.01 0.757 ± 0.01 0.735 ± 0.01 0.793 ± 0.01 

NNET_Glmboost 0.734 ± 0.01 0.748 ± 0.01 0.722 ± 0.01 0.706 ± 0.01 0.762 ± 0.01 0.733 ± 0.01 0.808 ± 0.01 

Lightgbm_Glmboost 0.733 ± 0.00 0.743 ± 0.01 0.726 ± 0.00 0.715 ± 0.01 0.752 ± 0.01 0.733 ± 0.00 0.809 ± 0.00 

AUC_Naivebayes 0.734 ± 0.01 0.761 ± 0.02 0.716 ± 0.00 0.689 ± 0.01 0.779 ± 0.02 0.733 ± 0.01 0.796 ± 0.00 

Lightgbm_Glmnet 0.733 ± 0.00 0.744 ± 0.01 0.725 ± 0.01 0.713 ± 0.01 0.753 ± 0.01 0.733 ± 0.00 0.806 ± 0.00 

XgbTree_SVMlinear 0.733 ± 0.00 0.746 ± 0.01 0.724 ± 0.01 0.710 ± 0.01 0.756 ± 0.01 0.733 ± 0.00 0.801 ± 0.00 

RF_Glmboost 0.732 ± 0.01 0.741 ± 0.01 0.723 ± 0.01 0.712 ± 0.01 0.751 ± 0.01 0.731 ± 0.01 0.807 ± 0.00 

XgbTree_LDA 0.731 ± 0.00 0.752 ± 0.00 0.714 ± 0.00 0.690 ± 0.01 0.772 ± 0.01 0.730 ± 0.00 0.809 ± 0.00 

Lightgbm_LDA 0.731 ± 0.01 0.752 ± 0.01 0.714 ± 0.01 0.691 ± 0.01 0.771 ± 0.01 0.730 ± 0.01 0.806 ± 0.00 

Glmboost_HDDA 0.730 ± 0.01 0.739 ± 0.01 0.724 ± 0.00 0.714 ± 0.01 0.747 ± 0.01 0.730 ± 0.01 0.799 ± 0.01 

XgbTree_Glmboost 0.729 ± 0.01 0.742 ± 0.01 0.718 ± 0.01 0.703 ± 0.01 0.754 ± 0.01 0.728 ± 0.01 0.810 ± 0.00 

RF_LDA 0.729 ± 0.01 0.745 ± 0.01 0.715 ± 0.01 0.697 ± 0.01 0.761 ± 0.00 0.728 ± 0.01 0.796 ± 0.01 

XgbTree_Glmnet 0.727 ± 0.01 0.738 ± 0.01 0.717 ± 0.01 0.704 ± 0.01 0.750 ± 0.01 0.727 ± 0.01 0.803 ± 0.00 

RF_Glmnet 0.725 ± 0.01 0.736 ± 0.01 0.716 ± 0.01 0.702 ± 0.01 0.748 ± 0.01 0.725 ± 0.01 0.799 ± 0.01 

NNET_HDDA 0.726 ± 0.00 0.734 ± 0.01 0.726 ± 0.01 0.718 ± 0.01 0.734 ± 0.01 0.725 ± 0.00 0.792 ± 0.01 

XgbTree_Naivebayes 0.722 ± 0.01 0.707 ± 0.01 0.745 ± 0.01 0.768 ± 0.01 0.676 ± 0.01 0.721 ± 0.01 0.796 ± 0.01 

AUC_HDDA 0.715 ± 0.01 0.710 ± 0.02 0.725 ± 0.00 0.734 ± 0.01 0.696 ± 0.03 0.714 ± 0.01 0.772 ± 0.01 

NNET_Naivebayes 0.714 ± 0.02 0.706 ± 0.03 0.734 ± 0.01 0.756 ± 0.03 0.672 ± 0.06 0.710 ± 0.02 0.784 ± 0.01 

RF_NNET 0.709 ± 0.00 0.707 ± 0.01 0.713 ± 0.01 0.717 ± 0.01 0.702 ± 0.02 0.709 ± 0.00 0.769 ± 0.00 

Lightgbm_HDDA 0.703 ± 0.01 0.691 ± 0.01 0.733 ± 0.01 0.755 ± 0.02 0.652 ± 0.03 0.700 ± 0.01 0.780 ± 0.00 

RF_HDDA 0.699 ± 0.01 0.688 ± 0.00 0.722 ± 0.02 0.744 ± 0.03 0.655 ± 0.02 0.697 ± 0.01 0.766 ± 0.01 

XgbTree_HDDA 0.698 ± 0.01 0.682 ± 0.02 0.733 ± 0.00 0.759 ± 0.02 0.638 ± 0.04 0.695 ± 0.01 0.773 ± 0.00 

RF_Naivebayes 0.686 ± 0.01 0.664 ± 0.00 0.726 ± 0.01 0.777 ± 0.01 0.595 ± 0.01 0.681 ± 0.01 0.769 ± 0.01 

*RF, Random forest; XGBoost, Extreme gradient boosting; Lightgbm, Light gradient boosting machine; Glmnet, General-

ized linear model with lasso and elastic net regularization; AUC, Area under the curve; Glmboost, Generalized linear 

model boosting; NNET, Neural network; Baysglm, Bayesian generalized linear model; SVM, Support vector machine; 

LDA, Linear discriminant analysis; HDDA, High-dimensional discriminant analysis. 

  

Evaluation 

         Metrics 

 



 

 

 204 

Supplementary Table 4.10: Performance of the Feature Selection Methods and Machine Learning Approaches on 

the Test Dataset Utilizing Clinical and Biological Features. 

 

Model Accuracy 
Precision_ 

TMJ OA 

Precision_ 

Control 

Recall_ 

TMJ OA 

Recall_ 

Control 
F1score AUC 

NNET_RF 0.788 ± 0.01 0.795 ± 0.02 0.781 ± 0.01 0.775 ± 0.02 0.795 ± 0.02 0.786 ± 0.01 0.875 ± 0.01 

XgbTree_RF 0.786 ± 0.02 0.795 ± 0.02 0.779 ± 0.02 0.773 ± 0.02 0.798 ± 0.02 0.786 ± 0.02 0.881 ± 0.01 

AUC_RF 0.784 ± 0.02 0.800 ± 0.03 0.770 ± 0.02 0.758 ± 0.02 0.810 ± 0.03 0.784 ± 0.02 0.889 ± 0.01 

RF_RF 0.784 ± 0.01 0.792 ± 0.01 0.777 ± 0.02 0.770 ± 0.03 0.795 ± 0.01 0.783 ± 0.01 0.883 ± 0.01 

Lightgbm_Lightgbm 0.783 ± 0.02 0.779 ± 0.02 0.788 ± 0.03 0.790 ± 0.03 0.775 ± 0.02 0.783 ± 0.02 0.850 ± 0.01 

AUC_XgbTree 0.783 ± 0.02 0.793 ± 0.04 0.775 ± 0.02 0.768 ± 0.02 0.798 ± 0.05 0.783 ± 0.02 0.862 ± 0.02 

XgbTree_XgbTree 0.781 ± 0.03 0.795 ± 0.04 0.771 ± 0.03 0.760 ± 0.04 0.802 ± 0.04 0.781 ± 0.03 0.866 ± 0.01 

RF_XgbTree 0.779 ± 0.01 0.784 ± 0.02 0.775 ± 0.03 0.770 ± 0.04 0.788 ± 0.03 0.779 ± 0.01 0.869 ± 0.02 

Lightgbm_RF 0.777 ± 0.01 0.787 ± 0.01 0.767 ± 0.01 0.758 ± 0.02 0.795 ± 0.01 0.776 ± 0.01 0.872 ± 0.01 

Lightgbm_XgbTree 0.777 ± 0.03 0.780 ± 0.04 0.774 ± 0.02 0.773 ± 0.02 0.780 ± 0.05 0.776 ± 0.03 0.866 ± 0.02 

Glmboost_XgbTree 0.773 ± 0.03 0.789 ± 0.04 0.760 ± 0.01 0.748 ± 0.01 0.798 ± 0.05 0.773 ± 0.03 0.856 ± 0.02 

Glmnet_RF 0.772 ± 0.01 0.788 ± 0.01 0.757 ± 0.01 0.743 ± 0.02 0.793 ± 0.01 0.770 ± 0.01 0.860 ± 0.01 

Glmnet_XgbTree 0.767 ± 0.03 0.767 ± 0.03 0.767 ± 0.02 0.768 ± 0.02 0.763 ± 0.05 0.766 ± 0.03 0.847 ± 0.01 

AUC_Lightgbm 0.765 ± 0.03 0.767 ± 0.03 0.764 ± 0.03 0.763 ± 0.03 0.768 ± 0.03 0.765 ± 0.03 0.856 ± 0.02 

Glmboost_RF 0.765 ± 0.00 0.779 ± 0.02 0.755 ± 0.01 0.743 ± 0.02 0.785 ± 0.03 0.765 ± 0.00 0.855 ± 0.01 

RF_Lightgbm 0.759 ± 0.01 0.756 ± 0.02 0.764 ± 0.02 0.768 ± 0.03 0.751 ± 0.03 0.759 ± 0.01 0.844 ± 0.01 

XgbTree_Lightgbm 0.753 ± 0.03 0.765 ± 0.04 0.743 ± 0.03 0.733 ± 0.03 0.773 ± 0.05 0.753 ± 0.03 0.851 ± 0.01 

NNET_XgbTree 0.746 ± 0.02 0.759 ± 0.03 0.735 ± 0.03 0.721 ± 0.04 0.770 ± 0.04 0.745 ± 0.02 0.846 ± 0.03 

Glmboost_Lightgbm 0.742 ± 0.03 0.756 ± 0.04 0.730 ± 0.03 0.716 ± 0.03 0.768 ± 0.04 0.742 ± 0.03 0.830 ± 0.02 

AUC_SVMlinear 0.741 ± 0.02 0.756 ± 0.03 0.727 ± 0.02 0.711 ± 0.03 0.770 ± 0.03 0.740 ± 0.02 0.811 ± 0.01 

AUC_LDA 0.740 ± 0.01 0.761 ± 0.02 0.721 ± 0.01 0.699 ± 0.01 0.780 ± 0.02 0.739 ± 0.01 0.806 ± 0.01 

Glmnet_Lightgbm 0.737 ± 0.03 0.734 ± 0.03 0.741 ± 0.04 0.743 ± 0.05 0.731 ± 0.03 0.737 ± 0.03 0.832 ± 0.01 

AUC_Glmboost 0.737 ± 0.02 0.745 ± 0.01 0.731 ± 0.03 0.721 ± 0.04 0.753 ± 0.01 0.737 ± 0.02 0.808 ± 0.01 

AUC_Glmnet 0.736 ± 0.02 0.746 ± 0.02 0.726 ± 0.03 0.714 ± 0.04 0.758 ± 0.01 0.736 ± 0.02 0.798 ± 0.01 

XgbTree_Glmboost 0.733 ± 0.01 0.738 ± 0.01 0.729 ± 0.01 0.723 ± 0.02 0.743 ± 0.02 0.733 ± 0.01 0.800 ± 0.00 

AUC_Bayesglm 0.733 ± 0.01 0.736 ± 0.01 0.731 ± 0.01 0.728 ± 0.02 0.738 ± 0.02 0.733 ± 0.01 0.802 ± 0.01 

RF_Bayesglm 0.728 ± 0.01 0.729 ± 0.01 0.728 ± 0.01 0.728 ± 0.02 0.728 ± 0.02 0.728 ± 0.01 0.787 ± 0.01 

RF_SVMlinear 0.728 ± 0.03 0.731 ± 0.03 0.727 ± 0.03 0.723 ± 0.04 0.733 ± 0.04 0.728 ± 0.03 0.776 ± 0.01 

NNET_Bayesglm 0.728 ± 0.02 0.740 ± 0.01 0.718 ± 0.03 0.704 ± 0.04 0.753 ± 0.01 0.728 ± 0.02 0.786 ± 0.02 

NNET_Lightgbm 0.727 ± 0.01 0.732 ± 0.02 0.723 ± 0.01 0.719 ± 0.02 0.736 ± 0.03 0.727 ± 0.01 0.823 ± 0.02 

RF_Glmboost 0.725 ± 0.01 0.731 ± 0.02 0.719 ± 0.02 0.711 ± 0.03 0.738 ± 0.02 0.725 ± 0.01 0.789 ± 0.01 

NNET_Glmnet 0.725 ± 0.02 0.733 ± 0.02 0.717 ± 0.03 0.706 ± 0.03 0.743 ± 0.02 0.725 ± 0.02 0.790 ± 0.02 

AUC_NNET 0.725 ± 0.02 0.719 ± 0.03 0.731 ± 0.02 0.738 ± 0.02 0.711 ± 0.04 0.724 ± 0.02 0.786 ± 0.01 

Glmnet_Bayesglm 0.723 ± 0.03 0.724 ± 0.03 0.723 ± 0.04 0.721 ± 0.04 0.726 ± 0.02 0.723 ± 0.03 0.784 ± 0.01 

Lightgbm_NNET 0.723 ± 0.02 0.720 ± 0.02 0.727 ± 0.02 0.731 ± 0.02 0.716 ± 0.02 0.723 ± 0.02 0.774 ± 0.03 

NNET_NNET 0.723 ± 0.02 0.713 ± 0.02 0.736 ± 0.03 0.748 ± 0.03 0.699 ± 0.03 0.723 ± 0.02 0.753 ± 0.02 

Lightgbm_Bayesglm 0.721 ± 0.02 0.726 ± 0.03 0.717 ± 0.02 0.711 ± 0.02 0.731 ± 0.03 0.721 ± 0.02 0.792 ± 0.01 

RF_Glmnet 0.721 ± 0.01 0.730 ± 0.01 0.713 ± 0.01 0.701 ± 0.01 0.741 ± 0.01 0.721 ± 0.01 0.791 ± 0.00 

XgbTree_LDA 0.721 ± 0.02 0.740 ± 0.03 0.705 ± 0.02 0.681 ± 0.02 0.758 ± 0.03 0.720 ± 0.02 0.782 ± 0.01 

Lightgbm_Glmboost 0.720 ± 0.03 0.728 ± 0.03 0.712 ± 0.03 0.701 ± 0.03 0.738 ± 0.03 0.720 ± 0.03 0.793 ± 0.01 

Glmnet_Glmboost 0.720 ± 0.03 0.727 ± 0.03 0.714 ± 0.03 0.704 ± 0.04 0.736 ± 0.02 0.720 ± 0.03 0.792 ± 0.01 

RF_LDA 0.719 ± 0.02 0.718 ± 0.02 0.719 ± 0.02 0.721 ± 0.01 0.716 ± 0.03 0.718 ± 0.02 0.772 ± 0.02 

Lightgbm_Glmnet 0.719 ± 0.02 0.717 ± 0.01 0.720 ± 0.03 0.721 ± 0.04 0.716 ± 0.01 0.718 ± 0.02 0.790 ± 0.01 

NNET_LDA 0.719 ± 0.03 0.736 ± 0.03 0.704 ± 0.04 0.681 ± 0.05 0.756 ± 0.03 0.718 ± 0.03 0.787 ± 0.02 

XgbTree_Bayesglm 0.717 ± 0.02 0.720 ± 0.02 0.715 ± 0.02 0.711 ± 0.02 0.723 ± 0.03 0.717 ± 0.02 0.789 ± 0.01 

Glmnet_Glmnet 0.716 ± 0.03 0.726 ± 0.03 0.707 ± 0.03 0.694 ± 0.03 0.738 ± 0.03 0.716 ± 0.03 0.785 ± 0.01 

XgbTree_Glmnet 0.715 ± 0.01 0.721 ± 0.01 0.709 ± 0.00 0.701 ± 0.01 0.728 ± 0.02 0.715 ± 0.01 0.795 ± 0.00 

Lightgbm_SVMlinear 0.714 ± 0.03 0.718 ± 0.03 0.709 ± 0.02 0.704 ± 0.03 0.723 ± 0.04 0.713 ± 0.03 0.785 ± 0.02 
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         Metrics 
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Supplementary Table 4.10: Performance of the Feature Selection Methods and Machine Learning Ap-

proaches on the Test Dataset Utilizing Clinical and Biological Features. (Cont.) 

Model Accuracy 
Precision_ 
TMJ OA 

Precision_ 
Control 

Recall_ 
TMJ OA 

Recall_ 
Control 

F1score AUC 

XgbTree_NNET 0.714 ± 0.02 0.709 ± 0.02 0.719 ± 0.02 0.726 ± 0.02 0.701 ± 0.03 0.713 ± 0.02 0.771 ± 0.02 

NNET_HDDA 0.714 ± 0.03 0.704 ± 0.03 0.725 ± 0.03 0.738 ± 0.03 0.689 ± 0.03 0.713 ± 0.03 0.767 ± 0.03 

Glmnet_Naivebayes 0.714 ± 0.01 0.725 ± 0.02 0.704 ± 0.02 0.689 ± 0.03 0.738 ± 0.03 0.713 ± 0.01 0.772 ± 0.02 

NNET_SVMlinear 0.714 ± 0.02 0.727 ± 0.03 0.702 ± 0.02 0.686 ± 0.02 0.741 ± 0.04 0.713 ± 0.02 0.783 ± 0.02 

Glmnet_NNET 0.712 ± 0.02 0.712 ± 0.02 0.713 ± 0.02 0.714 ± 0.03 0.711 ± 0.02 0.712 ± 0.02 0.776 ± 0.01 

Glmboost_Glmboost 0.712 ± 0.02 0.721 ± 0.02 0.705 ± 0.02 0.694 ± 0.02 0.731 ± 0.02 0.712 ± 0.02 0.793 ± 0.02 

AUC_Naivebayes 0.712 ± 0.02 0.728 ± 0.03 0.699 ± 0.02 0.679 ± 0.02 0.746 ± 0.03 0.712 ± 0.02 0.776 ± 0.02 

Glmboost_NNET 0.711 ± 0.02 0.706 ± 0.02 0.717 ± 0.03 0.723 ± 0.04 0.699 ± 0.02 0.711 ± 0.02 0.752 ± 0.02 

Lightgbm_LDA 0.711 ± 0.03 0.731 ± 0.04 0.695 ± 0.02 0.669 ± 0.03 0.753 ± 0.04 0.710 ± 0.03 0.781 ± 0.03 

Lightgbm_Naivebayes 0.710 ± 0.02 0.700 ± 0.02 0.722 ± 0.03 0.736 ± 0.04 0.684 ± 0.03 0.710 ± 0.02 0.768 ± 0.02 

Glmboost_Naivebayes 0.709 ± 0.01 0.723 ± 0.01 0.697 ± 0.02 0.677 ± 0.03 0.741 ± 0.02 0.708 ± 0.01 0.762 ± 0.02 

XgbTree_SVMlinear 0.707 ± 0.01 0.715 ± 0.01 0.700 ± 0.02 0.689 ± 0.02 0.726 ± 0.02 0.707 ± 0.01 0.776 ± 0.02 

NNET_Glmboost 0.706 ± 0.01 0.723 ± 0.01 0.692 ± 0.02 0.669 ± 0.03 0.743 ± 0.02 0.706 ± 0.01 0.788 ± 0.02 

Glmboost_Glmnet 0.705 ± 0.02 0.710 ± 0.02 0.701 ± 0.02 0.694 ± 0.03 0.716 ± 0.02 0.705 ± 0.02 0.781 ± 0.01 

Glmboost_Bayesglm 0.705 ± 0.02 0.707 ± 0.02 0.704 ± 0.03 0.701 ± 0.04 0.709 ± 0.03 0.705 ± 0.02 0.781 ± 0.01 

Glmnet_SVMlinear 0.700 ± 0.03 0.708 ± 0.03 0.692 ± 0.03 0.679 ± 0.04 0.721 ± 0.02 0.700 ± 0.03 0.772 ± 0.02 

Glmboost_LDA 0.700 ± 0.02 0.710 ± 0.02 0.693 ± 0.02 0.679 ± 0.04 0.721 ± 0.04 0.700 ± 0.02 0.772 ± 0.02 

Glmboost_SVMlinear 0.699 ± 0.03 0.701 ± 0.03 0.697 ± 0.03 0.694 ± 0.04 0.704 ± 0.03 0.699 ± 0.03 0.771 ± 0.02 

Glmnet_LDA 0.699 ± 0.03 0.710 ± 0.03 0.689 ± 0.04 0.672 ± 0.05 0.726 ± 0.02 0.698 ± 0.03 0.771 ± 0.02 

Glmboost_HDDA 0.696 ± 0.01 0.699 ± 0.01 0.695 ± 0.02 0.691 ± 0.03 0.701 ± 0.02 0.696 ± 0.01 0.753 ± 0.02 

NNET_Naivebayes 0.698 ± 0.03 0.693 ± 0.06 0.712 ± 0.02 0.728 ± 0.06 0.667 ± 0.10 0.696 ± 0.03 0.766 ± 0.02 

Glmnet_HDDA 0.693 ± 0.02 0.695 ± 0.03 0.692 ± 0.03 0.689 ± 0.05 0.696 ± 0.05 0.692 ± 0.02 0.743 ± 0.02 

XgbTree_Naivebayes 0.693 ± 0.03 0.675 ± 0.03 0.715 ± 0.03 0.743 ± 0.04 0.642 ± 0.04 0.692 ± 0.03 0.752 ± 0.02 

AUC_HDDA 0.681 ± 0.02 0.675 ± 0.02 0.689 ± 0.01 0.701 ± 0.01 0.662 ± 0.03 0.681 ± 0.02 0.732 ± 0.02 

RF_HDDA 0.681 ± 0.04 0.672 ± 0.06 0.699 ± 0.03 0.726 ± 0.05 0.637 ± 0.10 0.679 ± 0.04 0.733 ± 0.03 

XgbTree_HDDA 0.678 ± 0.02 0.654 ± 0.02 0.712 ± 0.02 0.758 ± 0.03 0.598 ± 0.04 0.675 ± 0.02 0.741 ± 0.04 

Lightgbm_HDDA 0.669 ± 0.02 0.651 ± 0.03 0.696 ± 0.03 0.733 ± 0.05 0.605 ± 0.07 0.667 ± 0.03 0.734 ± 0.04 

RF_NNET 0.658 ± 0.02 0.656 ± 0.01 0.662 ± 0.03 0.664 ± 0.06 0.652 ± 0.03 0.658 ± 0.02 0.723 ± 0.02 

RF_Naivebayes 0.643 ± 0.02 0.621 ± 0.02 0.675 ± 0.03 0.733 ± 0.03 0.553 ± 0.03 0.640 ± 0.02 0.707 ± 0.01 

*RF, Random forest; XGBoost, Extreme gradient boosting; Lightgbm, Light gradient boosting machine; Glmnet, General-

ized linear model with lasso and elastic net regularization; AUC, Area under the curve; Glmboost, Generalized linear 

model boosting; NNET, Neural network; Baysglm, Bayesian generalized linear model; SVM, Support vector machine; 

LDA, Linear discriminant analysis; HDDA, High-dimensional discriminant analysis. 
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Supplementary Table 4.11: Performance of the Feature Selection Methods and Machine Learning Approaches on 

the Validation Dataset Utilizing Clinical Features. 

 

Model Accuracy 
Precision_ 

TMJ OA 

Precision_ 

Control 

Recall_ 

TMJ OA 

Recall_ 

Control 
F1score AUC 

Lightgbm_SVMlinear 0.743 ± 0.00 0.769 ± 0.01 0.722 ± 0.00 0.696 ± 0.01 0.790 ± 0.01 0.743 ± 0.00 0.796 ± 0.00 

Lightgbm_HDDA 0.740 ± 0.01 0.773 ± 0.02 0.715 ± 0.01 0.680 ± 0.01 0.800 ± 0.02 0.739 ± 0.01 0.784 ± 0.01 

Lightgbm_LDA 0.740 ± 0.01 0.773 ± 0.01 0.714 ± 0.00 0.679 ± 0.01 0.801 ± 0.01 0.739 ± 0.01 0.793 ± 0.00 

Lightgbm_Glmnet 0.736 ± 0.01 0.759 ± 0.01 0.717 ± 0.01 0.692 ± 0.01 0.780 ± 0.01 0.735 ± 0.01 0.792 ± 0.00 

Lightgbm_Glmboost 0.736 ± 0.01 0.764 ± 0.01 0.713 ± 0.00 0.682 ± 0.01 0.789 ± 0.01 0.735 ± 0.01 0.792 ± 0.00 

Lightgbm_Bayesglm 0.734 ± 0.00 0.755 ± 0.01 0.717 ± 0.00 0.694 ± 0.01 0.774 ± 0.01 0.734 ± 0.00 0.793 ± 0.00 

Glmboost_Glmnet 0.733 ± 0.01 0.758 ± 0.01 0.713 ± 0.01 0.684 ± 0.01 0.782 ± 0.01 0.732 ± 0.01 0.783 ± 0.01 

AUC_Glmnet 0.733 ± 0.01 0.758 ± 0.01 0.713 ± 0.01 0.684 ± 0.01 0.782 ± 0.01 0.732 ± 0.01 0.783 ± 0.01 

NNET_Glmnet 0.733 ± 0.01 0.758 ± 0.01 0.713 ± 0.00 0.686 ± 0.00 0.780 ± 0.01 0.732 ± 0.01 0.783 ± 0.01 

RF_Glmnet 0.733 ± 0.01 0.758 ± 0.01 0.712 ± 0.00 0.684 ± 0.01 0.782 ± 0.01 0.732 ± 0.01 0.783 ± 0.01 

XgbTree_Glmnet 0.732 ± 0.01 0.758 ± 0.01 0.712 ± 0.00 0.684 ± 0.00 0.781 ± 0.01 0.732 ± 0.01 0.783 ± 0.01 

RF_SVMlinear 0.732 ± 0.01 0.760 ± 0.01 0.709 ± 0.01 0.677 ± 0.01 0.786 ± 0.01 0.731 ± 0.01 0.779 ± 0.01 

Glmnet_Glmnet 0.732 ± 0.01 0.757 ± 0.01 0.712 ± 0.00 0.684 ± 0.00 0.779 ± 0.01 0.731 ± 0.01 0.783 ± 0.01 

Glmnet_SVMlinear 0.731 ± 0.00 0.758 ± 0.00 0.710 ± 0.00 0.680 ± 0.01 0.782 ± 0.01 0.730 ± 0.00 0.779 ± 0.01 

NNET_SVMlinear 0.731 ± 0.00 0.760 ± 0.01 0.708 ± 0.00 0.676 ± 0.01 0.786 ± 0.01 0.730 ± 0.00 0.778 ± 0.01 

Glmboost_SVMlinear 0.730 ± 0.01 0.759 ± 0.01 0.708 ± 0.00 0.676 ± 0.01 0.785 ± 0.01 0.730 ± 0.01 0.780 ± 0.01 

AUC_SVMlinear 0.730 ± 0.01 0.759 ± 0.01 0.708 ± 0.00 0.676 ± 0.01 0.785 ± 0.01 0.730 ± 0.01 0.780 ± 0.01 

XgbTree_SVMlinear 0.730 ± 0.00 0.757 ± 0.01 0.708 ± 0.00 0.677 ± 0.00 0.783 ± 0.01 0.729 ± 0.00 0.779 ± 0.01 

RF_Glmboost 0.729 ± 0.01 0.758 ± 0.01 0.706 ± 0.00 0.674 ± 0.01 0.785 ± 0.01 0.728 ± 0.01 0.781 ± 0.01 

XgbTree_Glmboost 0.729 ± 0.01 0.758 ± 0.01 0.706 ± 0.00 0.674 ± 0.00 0.785 ± 0.01 0.728 ± 0.01 0.781 ± 0.01 

Glmboost_Naivebayes 0.731 ± 0.02 0.785 ± 0.02 0.694 ± 0.01 0.636 ± 0.02 0.825 ± 0.01 0.728 ± 0.02 0.769 ± 0.01 

AUC_Naivebayes 0.731 ± 0.02 0.785 ± 0.02 0.694 ± 0.01 0.636 ± 0.02 0.825 ± 0.01 0.728 ± 0.02 0.769 ± 0.01 

RF_Naivebayes 0.730 ± 0.02 0.785 ± 0.02 0.693 ± 0.01 0.634 ± 0.02 0.826 ± 0.01 0.728 ± 0.02 0.768 ± 0.01 

Glmboost_Glmboost 0.729 ± 0.01 0.758 ± 0.01 0.706 ± 0.00 0.673 ± 0.00 0.784 ± 0.01 0.728 ± 0.01 0.781 ± 0.01 

AUC_Glmboost 0.729 ± 0.01 0.758 ± 0.01 0.706 ± 0.00 0.673 ± 0.00 0.784 ± 0.01 0.728 ± 0.01 0.781 ± 0.01 

Glmnet_Naivebayes 0.730 ± 0.02 0.783 ± 0.02 0.694 ± 0.01 0.637 ± 0.02 0.823 ± 0.01 0.727 ± 0.02 0.768 ± 0.01 

XgbTree_Naivebayes 0.730 ± 0.01 0.786 ± 0.01 0.693 ± 0.01 0.633 ± 0.02 0.827 ± 0.01 0.727 ± 0.01 0.769 ± 0.01 

Glmnet_Glmboost 0.728 ± 0.01 0.759 ± 0.01 0.704 ± 0.00 0.670 ± 0.00 0.787 ± 0.01 0.727 ± 0.01 0.780 ± 0.01 

NNET_Glmboost 0.728 ± 0.01 0.758 ± 0.01 0.705 ± 0.00 0.671 ± 0.00 0.785 ± 0.01 0.727 ± 0.01 0.780 ± 0.01 

NNET_Naivebayes 0.730 ± 0.01 0.785 ± 0.01 0.693 ± 0.01 0.633 ± 0.02 0.826 ± 0.01 0.727 ± 0.01 0.769 ± 0.01 

Lightgbm_NNET 0.726 ± 0.00 0.737 ± 0.01 0.718 ± 0.01 0.705 ± 0.01 0.747 ± 0.01 0.726 ± 0.00 0.753 ± 0.01 

Glmboost_Bayesglm 0.724 ± 0.01 0.746 ± 0.01 0.706 ± 0.00 0.679 ± 0.00 0.769 ± 0.01 0.723 ± 0.01 0.775 ± 0.01 

Glmnet_Bayesglm 0.724 ± 0.01 0.746 ± 0.01 0.706 ± 0.00 0.679 ± 0.00 0.769 ± 0.01 0.723 ± 0.01 0.775 ± 0.01 

AUC_Bayesglm 0.724 ± 0.01 0.746 ± 0.01 0.706 ± 0.00 0.679 ± 0.00 0.769 ± 0.01 0.723 ± 0.01 0.775 ± 0.01 

NNET_Bayesglm 0.724 ± 0.01 0.746 ± 0.01 0.706 ± 0.00 0.679 ± 0.00 0.769 ± 0.01 0.723 ± 0.01 0.775 ± 0.01 

RF_Bayesglm 0.724 ± 0.01 0.746 ± 0.01 0.706 ± 0.00 0.679 ± 0.00 0.769 ± 0.01 0.723 ± 0.01 0.775 ± 0.01 

XgbTree_Bayesglm 0.724 ± 0.01 0.746 ± 0.01 0.706 ± 0.00 0.679 ± 0.00 0.769 ± 0.01 0.723 ± 0.01 0.775 ± 0.01 

Glmboost_LDA 0.724 ± 0.01 0.755 ± 0.01 0.699 ± 0.01 0.663 ± 0.01 0.784 ± 0.01 0.722 ± 0.01 0.772 ± 0.01 

Glmnet_LDA 0.724 ± 0.01 0.755 ± 0.01 0.699 ± 0.01 0.663 ± 0.01 0.784 ± 0.01 0.722 ± 0.01 0.772 ± 0.01 

AUC_LDA 0.724 ± 0.01 0.755 ± 0.01 0.699 ± 0.01 0.663 ± 0.01 0.784 ± 0.01 0.722 ± 0.01 0.772 ± 0.01 

NNET_LDA 0.724 ± 0.01 0.755 ± 0.01 0.699 ± 0.01 0.663 ± 0.01 0.784 ± 0.01 0.722 ± 0.01 0.772 ± 0.01 

RF_LDA 0.724 ± 0.01 0.755 ± 0.01 0.699 ± 0.01 0.663 ± 0.01 0.784 ± 0.01 0.722 ± 0.01 0.772 ± 0.01 

XgbTree_LDA 0.724 ± 0.01 0.755 ± 0.01 0.699 ± 0.01 0.663 ± 0.01 0.784 ± 0.01 0.722 ± 0.01 0.772 ± 0.01 

Glmboost_HDDA 0.722 ± 0.01 0.753 ± 0.01 0.698 ± 0.01 0.662 ± 0.01 0.782 ± 0.01 0.721 ± 0.01 0.770 ± 0.01 

AUC_HDDA 0.722 ± 0.01 0.753 ± 0.01 0.698 ± 0.01 0.662 ± 0.01 0.782 ± 0.01 0.721 ± 0.01 0.770 ± 0.01 

RF_HDDA 0.722 ± 0.01 0.753 ± 0.01 0.698 ± 0.01 0.661 ± 0.01 0.782 ± 0.01 0.721 ± 0.01 0.770 ± 0.01 

XgbTree_HDDA 0.722 ± 0.01 0.752 ± 0.01 0.698 ± 0.01 0.662 ± 0.01 0.782 ± 0.01 0.721 ± 0.01 0.770 ± 0.01 

NNET_HDDA 0.721 ± 0.01 0.751 ± 0.01 0.698 ± 0.01 0.663 ± 0.01 0.780 ± 0.01 0.720 ± 0.01 0.768 ± 0.01 

  

Evaluation 

         Metrics 
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Supplementary Table 4.11: Performance of the Feature Selection Methods and Machine Learning Ap-

proaches on the Validation Dataset Utilizing Clinical Features. (Cont.) 

Model Accuracy 
Precision_ 
TMJ OA 

Precision_ 
Control 

Recall_ 
TMJ OA 

Recall_ 
Control 

F1score AUC 

Glmnet_HDDA 0.721 ± 0.01 0.752 ± 0.01 0.697 ± 0.01 0.661 ± 0.01 0.781 ± 0.01 0.720 ± 0.01 0.770 ± 0.01 

Lightgbm_Naivebayes 0.722 ± 0.01 0.779 ± 0.01 0.685 ± 0.00 0.620 ± 0.01 0.823 ± 0.01 0.719 ± 0.01 0.789 ± 0.00 

Lightgbm_Lightgbm 0.714 ± 0.01 0.723 ± 0.01 0.708 ± 0.01 0.697 ± 0.02 0.731 ± 0.01 0.714 ± 0.01 0.770 ± 0.01 

Glmnet_Lightgbm 0.710 ± 0.01 0.715 ± 0.01 0.709 ± 0.01 0.703 ± 0.02 0.718 ± 0.02 0.710 ± 0.01 0.763 ± 0.01 

AUC_Lightgbm 0.710 ± 0.01 0.713 ± 0.01 0.710 ± 0.02 0.706 ± 0.02 0.713 ± 0.02 0.709 ± 0.01 0.763 ± 0.01 

NNET_Lightgbm 0.709 ± 0.01 0.712 ± 0.01 0.709 ± 0.01 0.705 ± 0.02 0.713 ± 0.02 0.708 ± 0.01 0.763 ± 0.00 

RF_Lightgbm 0.709 ± 0.01 0.713 ± 0.01 0.707 ± 0.01 0.702 ± 0.02 0.715 ± 0.01 0.708 ± 0.01 0.763 ± 0.01 

AUC_NNET 0.708 ± 0.01 0.712 ± 0.01 0.705 ± 0.01 0.698 ± 0.02 0.717 ± 0.01 0.707 ± 0.01 0.728 ± 0.01 

Glmboost_Lightgbm 0.708 ± 0.01 0.712 ± 0.01 0.706 ± 0.02 0.700 ± 0.02 0.715 ± 0.01 0.707 ± 0.01 0.761 ± 0.01 

XgbTree_Lightgbm 0.707 ± 0.01 0.710 ± 0.01 0.706 ± 0.02 0.701 ± 0.02 0.712 ± 0.02 0.706 ± 0.01 0.763 ± 0.01 

Glmboost_NNET 0.706 ± 0.01 0.708 ± 0.01 0.705 ± 0.01 0.701 ± 0.02 0.710 ± 0.01 0.705 ± 0.01 0.726 ± 0.01 

RF_NNET 0.705 ± 0.01 0.709 ± 0.01 0.704 ± 0.01 0.698 ± 0.02 0.713 ± 0.01 0.705 ± 0.01 0.723 ± 0.01 

NNET_NNET 0.704 ± 0.01 0.708 ± 0.01 0.702 ± 0.01 0.697 ± 0.02 0.711 ± 0.02 0.704 ± 0.01 0.729 ± 0.01 

XgbTree_NNET 0.704 ± 0.01 0.708 ± 0.00 0.701 ± 0.01 0.695 ± 0.01 0.712 ± 0.01 0.703 ± 0.01 0.725 ± 0.01 

Glmnet_NNET 0.702 ± 0.01 0.710 ± 0.01 0.697 ± 0.01 0.685 ± 0.02 0.720 ± 0.01 0.702 ± 0.01 0.721 ± 0.01 

Lightgbm_XgbTree 0.698 ± 0.01 0.704 ± 0.01 0.693 ± 0.01 0.685 ± 0.02 0.711 ± 0.01 0.698 ± 0.01 0.754 ± 0.00 

Lightgbm_RF 0.688 ± 0.01 0.695 ± 0.01 0.681 ± 0.01 0.669 ± 0.02 0.705 ± 0.01 0.687 ± 0.01 0.745 ± 0.01 

RF_RF 0.684 ± 0.01 0.688 ± 0.01 0.682 ± 0.01 0.677 ± 0.02 0.691 ± 0.01 0.684 ± 0.01 0.741 ± 0.01 

NNET_XgbTree 0.684 ± 0.01 0.693 ± 0.01 0.676 ± 0.01 0.661 ± 0.01 0.707 ± 0.01 0.684 ± 0.01 0.734 ± 0.01 

Glmnet_RF 0.683 ± 0.01 0.685 ± 0.01 0.681 ± 0.01 0.678 ± 0.02 0.686 ± 0.01 0.682 ± 0.01 0.741 ± 0.01 

Glmnet_XgbTree 0.682 ± 0.02 0.692 ± 0.02 0.673 ± 0.02 0.656 ± 0.02 0.708 ± 0.01 0.682 ± 0.02 0.736 ± 0.02 

NNET_RF 0.682 ± 0.01 0.684 ± 0.01 0.680 ± 0.01 0.677 ± 0.02 0.685 ± 0.02 0.681 ± 0.01 0.741 ± 0.01 

Glmboost_RF 0.682 ± 0.01 0.684 ± 0.01 0.680 ± 0.01 0.677 ± 0.02 0.685 ± 0.01 0.681 ± 0.01 0.741 ± 0.01 

AUC_XgbTree 0.681 ± 0.01 0.689 ± 0.01 0.673 ± 0.01 0.658 ± 0.02 0.703 ± 0.01 0.680 ± 0.01 0.731 ± 0.01 

XgbTree_RF 0.681 ± 0.01 0.683 ± 0.00 0.680 ± 0.01 0.677 ± 0.02 0.683 ± 0.01 0.680 ± 0.01 0.741 ± 0.01 

AUC_RF 0.681 ± 0.01 0.684 ± 0.01 0.679 ± 0.01 0.674 ± 0.02 0.684 ± 0.02 0.680 ± 0.01 0.740 ± 0.01 

RF_XgbTree 0.678 ± 0.01 0.687 ± 0.01 0.669 ± 0.01 0.652 ± 0.02 0.703 ± 0.01 0.677 ± 0.01 0.731 ± 0.01 

Glmboost_XgbTree 0.677 ± 0.01 0.684 ± 0.01 0.670 ± 0.01 0.655 ± 0.02 0.698 ± 0.01 0.676 ± 0.01 0.732 ± 0.01 

XgbTree_XgbTree 0.675 ± 0.02 0.686 ± 0.02 0.667 ± 0.02 0.647 ± 0.02 0.703 ± 0.01 0.675 ± 0.02 0.727 ± 0.02 

*RF, Random forest; XGBoost, Extreme gradient boosting; Lightgbm, Light gradient boosting machine; Glmnet, General-

ized linear model with lasso and elastic net regularization; AUC, Area under the curve; Glmboost, Generalized linear 

model boosting; NNET, Neural network; Baysglm, Bayesian generalized linear model; SVM, Support vector machine; 

LDA, Linear discriminant analysis; HDDA, High-dimensional discriminant analysis. 
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Supplementary Table 4.12: Performance of the Feature Selection Methods and Machine Learning Approaches on 

the Test Dataset Utilizing Clinical Features. 

 

Model Accuracy 
Precision_ 

TMJ OA 

Precision_ 

Control 

Recall_ 

TMJ OA 

Recall_ 

Control 
F1score AUC 

Lightgbm_SVMlinear 0.743 ± 0.02 0.766 ± 0.02 0.724 ± 0.01 0.701 ± 0.02 0.785 ± 0.02 0.743 ± 0.02 0.792 ± 0.00 

Glmboost_Naivebayes 0.742 ± 0.01 0.797 ± 0.01 0.704 ± 0.01 0.649 ± 0.01 0.835 ± 0.01 0.740 ± 0.01 0.771 ± 0.01 

Glmnet_Naivebayes 0.742 ± 0.01 0.797 ± 0.01 0.704 ± 0.01 0.649 ± 0.01 0.835 ± 0.01 0.740 ± 0.01 0.771 ± 0.01 

AUC_Naivebayes 0.742 ± 0.01 0.797 ± 0.01 0.704 ± 0.01 0.649 ± 0.01 0.835 ± 0.01 0.740 ± 0.01 0.771 ± 0.01 

RF_Naivebayes 0.742 ± 0.01 0.797 ± 0.01 0.704 ± 0.01 0.649 ± 0.01 0.835 ± 0.01 0.740 ± 0.01 0.772 ± 0.01 

Lightgbm_HDDA 0.740 ± 0.02 0.774 ± 0.02 0.713 ± 0.01 0.677 ± 0.02 0.802 ± 0.03 0.738 ± 0.02 0.787 ± 0.01 

XgbTree_Naivebayes 0.740 ± 0.01 0.796 ± 0.01 0.701 ± 0.01 0.644 ± 0.01 0.835 ± 0.01 0.737 ± 0.01 0.772 ± 0.01 

NNET_Glmnet 0.736 ± 0.01 0.762 ± 0.01 0.715 ± 0.01 0.686 ± 0.01 0.785 ± 0.02 0.735 ± 0.01 0.787 ± 0.01 

NNET_Glmboost 0.736 ± 0.01 0.765 ± 0.01 0.713 ± 0.01 0.681 ± 0.01 0.790 ± 0.02 0.735 ± 0.01 0.785 ± 0.01 

XgbTree_Glmboost 0.736 ± 0.01 0.765 ± 0.01 0.713 ± 0.00 0.681 ± 0.01 0.790 ± 0.01 0.735 ± 0.01 0.783 ± 0.01 

Lightgbm_LDA 0.736 ± 0.01 0.765 ± 0.02 0.713 ± 0.00 0.681 ± 0.01 0.790 ± 0.02 0.735 ± 0.01 0.791 ± 0.01 

Lightgbm_Glmnet 0.735 ± 0.01 0.757 ± 0.01 0.716 ± 0.01 0.691 ± 0.01 0.778 ± 0.01 0.734 ± 0.01 0.792 ± 0.01 

Glmnet_Glmnet 0.735 ± 0.01 0.758 ± 0.01 0.715 ± 0.01 0.689 ± 0.01 0.780 ± 0.02 0.734 ± 0.01 0.788 ± 0.01 

Glmboost_Glmnet 0.735 ± 0.01 0.760 ± 0.01 0.714 ± 0.01 0.686 ± 0.01 0.783 ± 0.01 0.734 ± 0.01 0.787 ± 0.01 

AUC_Glmnet 0.735 ± 0.01 0.760 ± 0.01 0.714 ± 0.01 0.686 ± 0.01 0.783 ± 0.01 0.734 ± 0.01 0.787 ± 0.01 

Glmnet_Glmboost 0.735 ± 0.00 0.763 ± 0.01 0.712 ± 0.00 0.681 ± 0.01 0.788 ± 0.01 0.734 ± 0.00 0.781 ± 0.01 

XgbTree_SVMlinear 0.733 ± 0.01 0.759 ± 0.01 0.712 ± 0.01 0.684 ± 0.01 0.783 ± 0.01 0.733 ± 0.01 0.780 ± 0.01 

Glmnet_SVMlinear 0.733 ± 0.00 0.759 ± 0.01 0.712 ± 0.00 0.684 ± 0.01 0.783 ± 0.01 0.733 ± 0.00 0.781 ± 0.01 

RF_Glmboost 0.733 ± 0.01 0.760 ± 0.01 0.711 ± 0.00 0.681 ± 0.01 0.785 ± 0.01 0.733 ± 0.01 0.784 ± 0.01 

Lightgbm_Glmboost 0.733 ± 0.01 0.761 ± 0.01 0.711 ± 0.01 0.681 ± 0.01 0.785 ± 0.02 0.733 ± 0.01 0.791 ± 0.00 

Glmboost_SVMlinear 0.733 ± 0.01 0.761 ± 0.01 0.712 ± 0.01 0.681 ± 0.02 0.785 ± 0.02 0.733 ± 0.01 0.778 ± 0.01 

AUC_SVMlinear 0.733 ± 0.01 0.761 ± 0.01 0.712 ± 0.01 0.681 ± 0.02 0.785 ± 0.02 0.733 ± 0.01 0.778 ± 0.01 

Glmboost_Glmboost 0.733 ± 0.01 0.762 ± 0.01 0.710 ± 0.00 0.679 ± 0.00 0.788 ± 0.01 0.733 ± 0.01 0.782 ± 0.01 

AUC_Glmboost 0.733 ± 0.01 0.762 ± 0.01 0.710 ± 0.00 0.679 ± 0.00 0.788 ± 0.01 0.733 ± 0.01 0.782 ± 0.01 

RF_SVMlinear 0.733 ± 0.01 0.762 ± 0.01 0.711 ± 0.01 0.679 ± 0.02 0.788 ± 0.01 0.733 ± 0.01 0.778 ± 0.01 

XgbTree_Glmnet 0.733 ± 0.01 0.758 ± 0.01 0.713 ± 0.01 0.686 ± 0.01 0.778 ± 0.02 0.732 ± 0.01 0.786 ± 0.01 

RF_Glmnet 0.732 ± 0.01 0.756 ± 0.01 0.713 ± 0.01 0.686 ± 0.01 0.775 ± 0.02 0.731 ± 0.01 0.789 ± 0.01 

NNET_Naivebayes 0.733 ± 0.02 0.792 ± 0.01 0.694 ± 0.02 0.632 ± 0.03 0.835 ± 0.01 0.730 ± 0.02 0.771 ± 0.01 

NNET_SVMlinear 0.731 ± 0.01 0.756 ± 0.01 0.710 ± 0.01 0.681 ± 0.01 0.780 ± 0.01 0.730 ± 0.01 0.783 ± 0.01 

Lightgbm_Lightgbm 0.730 ± 0.01 0.735 ± 0.01 0.725 ± 0.01 0.719 ± 0.01 0.741 ± 0.02 0.730 ± 0.01 0.772 ± 0.01 

Lightgbm_Bayesglm 0.730 ± 0.01 0.749 ± 0.01 0.713 ± 0.01 0.691 ± 0.01 0.768 ± 0.01 0.729 ± 0.01 0.792 ± 0.01 

XgbTree_Lightgbm 0.727 ± 0.02 0.725 ± 0.03 0.730 ± 0.02 0.733 ± 0.03 0.721 ± 0.04 0.727 ± 0.02 0.771 ± 0.00 

Glmboost_Bayesglm 0.726 ± 0.00 0.747 ± 0.00 0.708 ± 0.00 0.684 ± 0.01 0.768 ± 0.01 0.725 ± 0.00 0.778 ± 0.01 

Glmnet_Bayesglm 0.726 ± 0.00 0.747 ± 0.00 0.708 ± 0.00 0.684 ± 0.01 0.768 ± 0.01 0.725 ± 0.00 0.778 ± 0.01 

AUC_Bayesglm 0.726 ± 0.00 0.747 ± 0.00 0.708 ± 0.00 0.684 ± 0.01 0.768 ± 0.01 0.725 ± 0.00 0.778 ± 0.01 

NNET_Bayesglm 0.726 ± 0.00 0.747 ± 0.00 0.708 ± 0.00 0.684 ± 0.01 0.768 ± 0.01 0.725 ± 0.00 0.778 ± 0.01 

RF_Bayesglm 0.726 ± 0.00 0.747 ± 0.00 0.708 ± 0.00 0.684 ± 0.01 0.768 ± 0.01 0.725 ± 0.00 0.778 ± 0.01 

XgbTree_Bayesglm 0.726 ± 0.00 0.747 ± 0.00 0.708 ± 0.00 0.684 ± 0.01 0.768 ± 0.01 0.725 ± 0.00 0.778 ± 0.01 

NNET_HDDA 0.725 ± 0.01 0.749 ± 0.01 0.705 ± 0.01 0.677 ± 0.01 0.773 ± 0.01 0.724 ± 0.01 0.776 ± 0.01 

RF_HDDA 0.725 ± 0.01 0.752 ± 0.01 0.703 ± 0.01 0.672 ± 0.01 0.775 ± 0.01 0.723 ± 0.01 0.777 ± 0.02 

Glmboost_LDA 0.723 ± 0.01 0.748 ± 0.01 0.703 ± 0.00 0.674 ± 0.01 0.773 ± 0.01 0.723 ± 0.01 0.776 ± 0.01 

Glmnet_LDA 0.723 ± 0.01 0.748 ± 0.01 0.703 ± 0.00 0.674 ± 0.01 0.773 ± 0.01 0.723 ± 0.01 0.776 ± 0.01 

AUC_LDA 0.723 ± 0.01 0.748 ± 0.01 0.703 ± 0.00 0.674 ± 0.01 0.773 ± 0.01 0.723 ± 0.01 0.776 ± 0.01 

NNET_LDA 0.723 ± 0.01 0.748 ± 0.01 0.703 ± 0.00 0.674 ± 0.01 0.773 ± 0.01 0.723 ± 0.01 0.776 ± 0.01 

RF_LDA 0.723 ± 0.01 0.748 ± 0.01 0.703 ± 0.00 0.674 ± 0.01 0.773 ± 0.01 0.723 ± 0.01 0.776 ± 0.01 

XgbTree_HDDA 0.723 ± 0.01 0.748 ± 0.01 0.703 ± 0.00 0.674 ± 0.01 0.773 ± 0.01 0.723 ± 0.01 0.775 ± 0.02 

XgbTree_LDA 0.723 ± 0.01 0.748 ± 0.01 0.703 ± 0.00 0.674 ± 0.01 0.773 ± 0.01 0.723 ± 0.01 0.776 ± 0.01 

Glmnet_Lightgbm 0.722 ± 0.02 0.723 ± 0.03 0.723 ± 0.01 0.723 ± 0.02 0.721 ± 0.04 0.722 ± 0.02 0.772 ± 0.00 
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Supplementary Table 4.12: Performance of the Feature Selection Methods and Machine Learning Ap-

proaches on the Test Dataset Utilizing Clinical Features. (Cont.) 

Model Accuracy 
Precision_ 
TMJ OA 

Precision_ 
Control 

Recall_ 
TMJ OA 

Recall_ 
Control 

F1score AUC 

RF_Lightgbm 0.722 ± 0.02 0.721 ± 0.02 0.724 ± 0.02 0.726 ± 0.04 0.719 ± 0.04 0.722 ± 0.02 0.770 ± 0.01 

Glmnet_HDDA 0.722 ± 0.01 0.747 ± 0.01 0.702 ± 0.01 0.672 ± 0.01 0.770 ± 0.01 0.721 ± 0.01 0.775 ± 0.01 

Glmboost_Lightgbm 0.721 ± 0.02 0.727 ± 0.03 0.717 ± 0.01 0.711 ± 0.02 0.731 ± 0.05 0.721 ± 0.02 0.776 ± 0.01 

Glmboost_HDDA 0.720 ± 0.01 0.745 ± 0.01 0.700 ± 0.01 0.669 ± 0.01 0.770 ± 0.01 0.719 ± 0.01 0.775 ± 0.01 

AUC_HDDA 0.720 ± 0.01 0.745 ± 0.01 0.700 ± 0.01 0.669 ± 0.01 0.770 ± 0.01 0.719 ± 0.01 0.775 ± 0.01 

NNET_Lightgbm 0.719 ± 0.02 0.721 ± 0.02 0.717 ± 0.02 0.714 ± 0.03 0.723 ± 0.03 0.718 ± 0.02 0.770 ± 0.01 

Lightgbm_Naivebayes 0.721 ± 0.01 0.777 ± 0.01 0.684 ± 0.02 0.620 ± 0.03 0.822 ± 0.01 0.718 ± 0.01 0.790 ± 0.01 

AUC_Lightgbm 0.717 ± 0.02 0.720 ± 0.03 0.716 ± 0.02 0.714 ± 0.03 0.721 ± 0.04 0.717 ± 0.02 0.774 ± 0.01 

XgbTree_NNET 0.716 ± 0.01 0.719 ± 0.01 0.713 ± 0.01 0.709 ± 0.02 0.723 ± 0.02 0.716 ± 0.01 0.736 ± 0.01 

RF_NNET 0.712 ± 0.01 0.711 ± 0.01 0.714 ± 0.02 0.716 ± 0.03 0.709 ± 0.02 0.712 ± 0.01 0.734 ± 0.01 

Lightgbm_NNET 0.710 ± 0.00 0.725 ± 0.01 0.697 ± 0.00 0.677 ± 0.01 0.743 ± 0.02 0.710 ± 0.00 0.745 ± 0.01 

Lightgbm_XgbTree 0.709 ± 0.03 0.719 ± 0.03 0.699 ± 0.03 0.684 ± 0.04 0.733 ± 0.03 0.708 ± 0.03 0.756 ± 0.02 

Glmboost_NNET 0.707 ± 0.01 0.714 ± 0.02 0.703 ± 0.02 0.694 ± 0.04 0.721 ± 0.03 0.707 ± 0.02 0.731 ± 0.02 

Glmnet_NNET 0.705 ± 0.02 0.707 ± 0.01 0.703 ± 0.03 0.699 ± 0.04 0.711 ± 0.01 0.705 ± 0.02 0.723 ± 0.02 

AUC_NNET 0.705 ± 0.01 0.710 ± 0.02 0.701 ± 0.02 0.694 ± 0.03 0.716 ± 0.03 0.705 ± 0.01 0.735 ± 0.02 

NNET_NNET 0.698 ± 0.01 0.695 ± 0.02 0.702 ± 0.02 0.706 ± 0.04 0.689 ± 0.04 0.697 ± 0.01 0.727 ± 0.02 

XgbTree_XgbTree 0.694 ± 0.02 0.705 ± 0.02 0.684 ± 0.02 0.667 ± 0.03 0.721 ± 0.01 0.694 ± 0.02 0.744 ± 0.02 

Glmnet_RF 0.686 ± 0.01 0.687 ± 0.01 0.686 ± 0.02 0.684 ± 0.02 0.686 ± 0.01 0.686 ± 0.01 0.747 ± 0.01 

Lightgbm_RF 0.684 ± 0.02 0.695 ± 0.03 0.674 ± 0.02 0.657 ± 0.02 0.711 ± 0.03 0.684 ± 0.02 0.746 ± 0.02 

AUC_XgbTree 0.684 ± 0.01 0.698 ± 0.01 0.672 ± 0.01 0.649 ± 0.02 0.719 ± 0.02 0.684 ± 0.01 0.745 ± 0.01 

Glmboost_RF 0.684 ± 0.01 0.685 ± 0.02 0.683 ± 0.01 0.681 ± 0.02 0.684 ± 0.03 0.683 ± 0.01 0.744 ± 0.01 

AUC_RF 0.683 ± 0.01 0.682 ± 0.00 0.683 ± 0.01 0.684 ± 0.02 0.681 ± 0.01 0.683 ± 0.01 0.744 ± 0.01 

XgbTree_RF 0.681 ± 0.01 0.681 ± 0.01 0.682 ± 0.01 0.684 ± 0.01 0.677 ± 0.03 0.681 ± 0.01 0.746 ± 0.01 

NNET_RF 0.683 ± 0.01 0.683 ± 0.01 0.683 ± 0.01 0.681 ± 0.02 0.677 ± 0.02 0.681 ± 0.01 0.746 ± 0.01 

Glmboost_XgbTree 0.675 ± 0.02 0.688 ± 0.02 0.665 ± 0.02 0.642 ± 0.04 0.709 ± 0.02 0.675 ± 0.02 0.739 ± 0.01 

RF_RF 0.674 ± 0.02 0.673 ± 0.02 0.676 ± 0.01 0.679 ± 0.02 0.667 ± 0.02 0.673 ± 0.02 0.739 ± 0.01 

RF_XgbTree 0.672 ± 0.02 0.682 ± 0.01 0.663 ± 0.02 0.642 ± 0.03 0.701 ± 0.02 0.671 ± 0.02 0.739 ± 0.03 

Glmnet_XgbTree 0.668 ± 0.01 0.678 ± 0.01 0.660 ± 0.01 0.642 ± 0.03 0.694 ± 0.03 0.667 ± 0.01 0.738 ± 0.01 

NNET_XgbTree 0.665 ± 0.02 0.676 ± 0.02 0.657 ± 0.02 0.637 ± 0.02 0.694 ± 0.03 0.665 ± 0.02 0.733 ± 0.02 

*RF, Random forest; XGBoost, Extreme gradient boosting; Lightgbm, Light gradient boosting machine; Glmnet, General-

ized linear model with lasso and elastic net regularization; AUC, Area under the curve; Glmboost, Generalized linear 

model boosting; NNET, Neural network; Baysglm, Bayesian generalized linear model; SVM, Support vector machine; 

LDA, Linear discriminant analysis; HDDA, High-dimensional discriminant analysis. 
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Chapter 5 Osteoarthritis Diagnosis Integrating Whole Joint Radiomics 

and Clinical Features for Ro-bust Learning Models using Biological Priv-

ileged Information 

Najla Al Turkestani*, Lingrui Cai*, … Reza Soroushmehr 
*These authors contributed equally to this work. 

 

Abstract 

 

This paper proposes a machine learning model using privileged information (LUPI) and normal-

ized mutual information feature selection method (NMIFS) to build a robust and accurate 

framework to diagnose patients with Temporomandibular Joint Osteoarthritis (TMJ OA). To 

build such a model, we employ clinical, quantitative imaging and additional biological markers 

as privileged infor-mation. We show that clinical features play a leading role in the TMJ OA di-

agno-sis and quantitative imaging features, extracted from cone-beam computerized tomography 

(CBCT) scans, improve the model performance. As the proposed LUPI model employs biologi-

cal data in the training phase (which boosted the model performance), this data is unnecessary 

for the testing stage, indicating the model can be widely used even when only clinical and imag-

ing data are col-lected. The model was validated using 5-fold stratified cross-validation with hy-

perparameter tuning to avoid the bias of data splitting. Our method achieved an AUC, specificity 

and precision of 0.81, 0.79 and 0.77, respectively. 

 

Keywords: Temporomandibular joint, Osteoarthritis, Machine learning, Feature selection, Learn-

ing using privileged information 
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5.1 Introduction 

 

Osteoarthritis (OA) of the temporomandibular joint (TMJ) is a chronic, degenerative disease that 

affects articular cartilage, synovial tissue and osseous struc-tures of the condyle, articular emi-

nence and articular fossa (Abrahamsson et al. 2017). It causes chronic pain, jaw dysfunction, 

deterioration of the quality of life and, in advanced stages, necessitates joint replacement 

(Tanaka, Detamore, and Mercuri 2008). Current diagnosis of TMJ OA occurs primarily at mod-

erate-severe stage of the disease, following the protocols of the diagnostic criteria for temporo-

mandibular disorders (DC/TMD). Although various therapeutic measures can relieve disease 

symptoms at these stages, to date, no treatment modality can cure or reverse degenerative chang-

es within the joint tissues (Shi et al. 2017). Hence, identification of diagnostic biomarkers that 

reflect early pathological changes of the joint is crucial for prevention of the irreversible sequelae 

of the disease. 

Animal studies indicated that microstructural change of the subchondral bone was essential for 

the initiation and progression of OA (Hu, Chen, Wang, et al. 2021). However, no robust tools 

were available to assess these changes, in humans, at early stages of the disease. More recently, 

advancement of image processing/analysis and high-performance computing techniques allowed 

extracting quantitative imaging features, i.e., radiomics, which reflect subtle changes within the 

examined tissues (Marias 2021). Along with radiomics, the level of biochemical markers in sali-

va or blood samples could reflect incipient pathological changes and improve diagnosis, severity 

assessment and risk of progression of osteoarthritis (Munjal et al. 2019). The potential of radi-

omics and biochemical markers has been elucidated in early detection of various diseases, in-

cluding knee OA; nevertheless, their value in TMJ OA diagnosis has been scarcely investigated 

(Hu, Chen, Wang, et al. 2021). Our preliminary studies (Cevidanes et al. 2010), showed a signif-
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icant difference in radiomics at the condyles’ subchondral bone in TMJ OA and control subjects. 

We also found a correlation between the resorptive/anabolic changes of the condyles and the lev-

el of several biological markers in TMJ OA subjects (Cevidanes et al. 2014). As it is unlikely 

that a single biomarker would drive or identify a complex disease such as osteoarthritis (Al Tur-

kestani et al. 2021), we hypothesize that clinical symptoms, subchondral bone radiomics and bio-

logical markers are optimal integrative indicators of TMJ health status. 

Analysis of large and complex datasets derived from different sources yields better understand-

ing of the disease. However, detection of unknown patterns in big data requires the use of high-

end computing solutions and advanced analytical approaches such as machine-learning algo-

rithms. Although prediction models can analyze a large amount of data, incorporating less varia-

bles into the model reduces computing resources’ consumption and prevents model overfitting 

(Aas, Jullum, and Løland 2021). Therefore, using a dimensionality reduction technique to identi-

fy the optimal subset of the original features is crucial for accurate construction of prediction 

models. Another challenge for developing a predictive model for TMJ OA diagnosis is inclusion 

of the biochemical markers. This is due to the restricted specimens’ collection, cost and limita-

tions of protein expression measurement systems (Shoukri et al. 2019). 

In this study, we address the need for comprehensive quantitative phenotyping of OA in the 

whole jaw joint. We employ a machine learning paradigm called learning using privileged in-

formation (LUPI) and train it with clinical, quantitative imaging and additional biological fea-

tures as privileged information to classify TMJ OA patients. We also adopt feature selection 

method to remove redundant and irrelevant features from the feature space. Furthermore, we uti-

lize features occurrence and Shapely additive explanations method to interpret the model predic-

tions. 
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5.2 Materials & Methods 

 

Our dataset consisted of 46 early-stage TMJ OA patients and 46 age and gender-matched healthy 

controls recruited at the University of Michigan School of Dentistry. All the diagnoses were con-

firmed by a TMD and orofacial pain specialist based on the DC/TMD. The clinical, biological 

and radiographic data described below were collected from TMJ OA and control subjects with 

informed consent and following the guidelines of the Institutional Review Board 

HUM00113199. 

Clinical Data 

Clinical dataset entailed three features obtained from diagnostic tests assessed by the same inves-

tigator: 1) headaches in the last month, 2) muscle soreness in the last month, 3) vertical range of 

unassisted jaw opening without pain (mouth opening). 

Biological Data 

Association of proteins expression with arthritis initiation and progression was investigated in a 

previous study [12]. In this project, using customized protein microarrays (RayBiotech, Inc. Nor-

cross, GA), the expression level of 13 proteins was measured in the participants’ saliva and se-

rum samples. The analyzed pro-teins included: Angiogenin, BDNF, CXCL16, ENA-78, MMP-3, 

MMP-7, OPG, PAI-1, TGFb1, TIMP-1, TRANCE, VE-Cadherin and VEGF. As the protein ex-

pression of MMP3 was not detected in the saliva, it was excluded from subsequent analysis. 

Radiological Data 

Using the 3D Accuitomo machine (J. Morita MFG. CORP Tokyo, Japan), cone-beam computed 

tomography (CBCT) scans were performed for each subject. Radiomics analysis was centered on 

the lateral region of the articular fossa, ar-ticular eminence and condyle, a site where greater OA 

bone degeneration oc-curs. Radiomic features were extracted using BoneTexture module in 3D-
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slicer software v.4.11(www.3Dslicer.org). We measured 23 texture features: 5 bone morphome-

try features, 8 Gray Level Co-occurrence Matrix(GLCM) and 10 Grey-Level Run Length Matrix 

(GLRLM) features. ClusterShade and HaralickCorrelation measurements were highly variable 

among all participants, therefore, they were not included in the following analysis. 

Joint space measurement was evaluated using 3D condylar-to-fossa distances at the anterior, an-

terolateral, medial, superior and posterior regions. 

Statistical and Machine Learning Approaches 

In this section, we describe methods utilized for building a robust TMJOA diagnosis model (Fig-

ure 5.1). These methods include: 1) cross-validation and grid search, 2) feature selection and 3) 

learning using privileged information. 

Cross-Validation and Grid Search 

Cross-validation is an effective approach to model hyperparameter optimization and model se-

lection that attempts to overcome the overfitting issue. The dataset was split into 80% for train-

ing and 20% holdout for testing. The 5fold cross-validation with the same portion of data split 

was nested inside the 80% train dataset, and grid search was performed in each fold of data for 

hyperparameters tuning. The best combination of hyperparameters was picked based on the 

mean and standard deviation of F1 scores over the 5-fold cross-validation. The overall procedure 

was repeated 10 times with 10 random seeds to avoid sampling bias from data partitioning. The 

final evaluation scores reported in this study are the mean±standard deviation of the holdout test 

set performance across all 10 repetitions. 

Feature Selection 

Feature selection is a common dimensional reduction technique for building a machine learning 

model. Increasing the number of features often results in decreasing the prediction error. Howev-
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er, it increases the risk of model overfitting particularly with small datasets. Here, we customized 

a feature selection method that takes the advantages of privileged variables and mutual infor-

mation to improve the performance of the classifier. 

Normalized mutual information feature selection (NMIFS) method and its modified version 

called NMIFS+ was used to measure the relevance and redundancy of features with the primary 

objective of high accuracy with the least possible time complexity. NMIFS+ extends the NMIFS 

algorithm with the LUPI framework, which could take full account of the privilege features 

along with standard features and make feature selection from those two sets separately. The 

NMIFS+ was applied to all the LUPI models in this study and, correspondingly, the NMIFS on 

non-LUPI models. 

 

Figure 5.1: Diagram of Training and Testing Process 

LUPI Framework 

The idea of learning using privileged information (LUPI) was first proposed as capturing the es-

sence of teacher-student-based learning by Vapnik and Vashist. In contrast to the existing ma-
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chine learning paradigm, where the model learns and makes predictions with fixed information, 

the LUPI paradigm considers sev-eral specific forms of privileged information, just like a teacher 

who provides additional information, which can include comments, explanations, and logic to 

students and thus increases the learning efficiency. 

In the classical binary classification model, we were given training pairs (x1,y1),...,(xl,yl), where 

xi ∈ X, yi ∈ {−1,1}, i = 1,...,l, and each pair is independently generated by some underlying dis-

tribution PXY , which is unknown. The model is trained to find among a given set of functions 

f(x,α), α ∈ ∧, the function y = f(x,α) that minimizes the probability of incorrect classifications 

over the unknown distribution PXY . 

In the LUPI framework, we were given training triplets (x1,x∗1,y1),...,(xl,x∗l,yl), xi ∈ X, x∗i ∈ 

X∗, yi ∈{−1,1}, i = 1,...,l , which is slightly different from the classical one. Each triplet is inde-

pendently generated by some underlying distribution PXX∗Y , which is still unknown. The addi-

tional privileged information is available only for the training examples, not for the test phase. In 

this scenario, we can utilize X∗ to improve learning performance. 

There are a few implementations of LUPI models. One of them is based on random vector func-

tional link network (RVFL) that is a randomized version of the functional link neural network. A 

kernel-based RVFL, called KRVFL+, has been proposed based on the LUPI paradigm. It incor-

porates efficient ways to use kernel tricks for highly complicated nonlinear feature training and 

train RVFL networks with privileged information (Figure 5.2). The parameters, including 

weights and biases, from the input layer to the hidden layers are generated randomly from a fixed 

domain, and only the output weights need to be computed. 
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Figure 5.2: The Architecture of KRVFL+ Network. Solid lines are output weights and dash 

lines stand for random weights and biases. 

 

5.3 Results 

5.3.1 LUPI and non-LUPI models 

Figure 5.3 shows the comparison of the classification performance between LUPI and non-LUPI 

models. We evaluated the diagnostic potential of imaging features extracted from the articular 

eminence, articular fossa, condyle, and joint space measurement, as well as clinical features. On-

ly the clinical feature sets provided discriminative models (AUC=0.723) for TMJ OA diagnosis. 

By introducing LUPI-based models with additional biological features, LUPI paradigm signifi-

cantly enhanced the model performance on clinical (AUC=0.794), joint space measurement 

(AUC=0.625), and condyle (AUC=0.641) datasets. 

  

 

 



 

 

 218 

 
Figure 5.3: Comparison of LUPI and non-LUPI Models. The non-LUPI models only trained 

with normal features and RVFL model. The LUPI model trained with KRVFL+ and biological 

data as privilege information. 

 

5.3.2 Feature Integration Comparison 

Table 5.1 shows the classification performances with different feature integration strategies. 

Given that clinical features had strong discriminative power for TMJ OA diagnosis, two groups 

of experiments were conducted to investigate the effect of an enlarged candidate pool for feature 

selection. Adding more features into the clinical dataset and selecting from combined set im-

proved the model performance markedly, i.e., the models had higher AUC scores. With an 

AUC=0.794, the clinical feature model achieved fairly well performance. Selecting features from 

a pool of condyle radiomic features together with the clinical features increased the AUC score 

to 0.804. The performance was even higher when feature selection was conducted on all condyle, 
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3D measurements and clinical datasets, AUC=0.807. Keeping all clinical criteria and applying 

feature selection on the remaining dataset resulted in slightly higher AUC values. The AUC 

scores became 0.808 and 0.809 for the condyle and condyle with additional 3D measurement 

features models, respectively. 

Table 5.1: Comparison of Different Feature Integration Methods (in Percentage %) 

 

Cl: Clinical; Cd: Condyle; Cd  JS: Condyle and 3D Joint Space measurements.* indicates feature 

selection by NMIFS+ method.The feature sets in parentheses have been pooled together for fea-

ture selection, otherwise it proceeded on feature set with * separately. All the models have been 

trained with KRVFL+ with biological data as privilege information. 

 

5.3.3 Feature Occurrence and Importance 

To interpret the prediction of our proposed model, we utilized feature occurrence and Shapley 

values. The NMIFS+ method is a measure of redundancy among features. The calculation of mu-

tual information and redundancy highly depends on the training samples which varied from split 

to split. Feature occurrence means how many times a feature was selected by NMIFS+ method 

among the total 50 models. The more times a feature occurs, the more reliable its importance is 

(Figure 5.4A). Shapley values were used to interpret the contribution of individual features into 

the prediction of the trained model. Contributing features are shown in Figure 5.4B according to 

the order of the mean absolute of Shapley values across all the data, which indicate the average 

impact of feature on model output magnitude. Figure 5.4C provides further indication of Shapley 

values and shows the complexity of feature contribution in models. Each circle represents a fea-

Table 1 Comparison of different feature integration methods (in percentage %) 

Feature Set AUC F1 score Accuracy Sensitivity Specificity Precision 

Cl 79.4±3.4 65.7±12.7 69.9±7.2 62.2.0±19.8 77.6±12.0 76.8±7.8 
(Cl+Cd)* 80.4±3.8 67.5±9.4 70.4±5.6 64.4±18.6 76.4±16.0 76.1±9.2 
Cl+Cd* 80.8±4.1 64.8±11.6 69.4±6.4 60.2±19.4 78.7±13.5 76.0±9.3 
(Cl+Cd JS)* 80.7±3.8 64.2±15.0 69.8±6.9 61.3±22.9 78.2±15.3 75.1±12.2 
Cl+Cd JS* 80.9±3.6 66.1±12.2 70.9±6.0 62.7±19.7 79.1±13.6 77.4±9.8 
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ture value of one patient/control, either increases or decreases the prediction(positive value and 

negative value). Figure 5.4D combines feature importance with feature effects. Here we picked 

one model for visualization instead of pulling all 50 models together. Each point in the summary 

plot is a Shapley value for a feature and a patient/control. The order of the features on the y-axis 

is based on their importance. The color represents the Shapley value of the features from low to 

high. We divided the instances into TMJ OA diseased group and Control group, displayed in 

different markers. Higher values of headache, LongRunHighGreyLevelRunEmphasis and muscle 

soreness increased the probability of assigning TMJ OA diagnosis. 

Figure 5.4: A. Feature 

occurrence in 50 trained 

models using NMIFS 

method. B. Feature im-

portance measured as the 

mean absolute Shapley 

values in 50 models. C. 

Distribution of Shapley 

values in each query 

point in the 50 models. 

The order of the features 

shown in the x-axis is 

based on the feature oc-

currence. D. Shapley 

summary plot for one 

model. The boxplots rep-

resent the distribution of 

TMJOA and control 

groups (each TMJOA 

patient is shown as a cir-

cle and control as a dia-

mond). The Heatmap 

color bar shows the val-

ue of the feature itself from high to low (yellow to blue). Low number of Shapley value of fea-

tures reduce the predicted TMJOA diseased probability, a large num-ber of Shapley value in-

crease the probability. 
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5.5 Discussion 

 

This study developed an enhanced model for TMJ OA diagnosis, utilizing state-of the art ma-

chine learning technology and considering clinical, quantitative imaging markers, and additional 

biological features used only for training. This is the first study to utilize quantitative imaging 

markers of the whole joint: condyle, articular space, articular fossa and articular eminence. We 

employed feature selection to minimize feature sets and improve the model robustness. Further-

more, feature occurrence and Shapley value were assessed to reduce the black-box nature of the 

machine learning model, as well as improve the domain experts’ confidence in the model’s pre-

diction. This study findings demonstrate excellent performance of the feature integration meth-

ods and LUPI paradigm in predicting TMJ OA status. 

The Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) have been the most uti-

lized protocol for TMJ OA diagnosis. However, these criteria are de-pendent on subjective clini-

cal signs/symptoms and subjective radiological interpretation of imaging features associated with 

irreversible bone changes (Hu, Chen, Wang, et al. 2021; Marias 2021). Early treatment and mod-

ification of the disease course requires precise diagnosis of TMJ OA at initial stages. In this 

study, we utilized multi-source data collected from subjects at early stages of TMJ OA. We em-

ployed the LUPI paradigm and used biological features of inflammation, neuroception, bone re-

sorption and angiogenesis as privileged information. The LUPI algorithm allowed benefiting 

from diagnostic information within the existing biological data and eliminated future need for 

biological samples’ collection and analysis. Inclusion of biological data with the LUPI frame-

work boosted our model performance, confirming the need for biological data only for model 

training. We developed a robust model for TMJ OA diagnosis and validated its performance us-

ing extensive evaluation metrics (Figure 5.1). Our model demonstrated sensitivity and specificity 
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of 63% and 79%, respectively. These values exceeded the sensitivity and specificity, 58% and 

72%, of TMJ OA diagnosis following DC/TMD protocol without imaging. Honda and col-

leagues reported that the CBCT scan’s use improved the sensitivity and specificity for detecting 

condylar osseous defects to 80% and 90%, sequentially (Zhang and Yang 2019). Nevertheless, 

CBCT sensitivity is dependent on the defects’ size, it is challenging to detect early alterations 

that are <2mm. Hence, we extracted objective, quantitative imaging features from the subchon-

dral bones of the condyle, articular fossa and articular eminence. Using the LUPI-based model, 

we found that only condyle’s radiomics could differentiate between healthy and diseased sub-

jects (Table 4.1). In line with this observation, it was reported that patients with early TMJ OA 

had osteoarthritic bone alterations in their condyles (69.93%) more than articular fossa (10%) 

and articular eminence (6.6%) (Massilla Mani and Sivasubramanian 2016). Interestingly, we 

noted that the superior 3D joint space distinguished TMJ OA subjects using LUPI-based models 

(AUC=.63), denoting the importance of this feature in detecting osteoarthritic changes. Along 

with radiomics and joint space measurements, we supplemented the model with clinical signs 

that were measurable in both groups.  

Machine learning models are leveraged for clinical predictive modeling, where clinical values 

are used to predict clinical diagnosis. However, these models do not explain the basis for their 

prediction. This raise concerns in medical domains and challenge researchers to identify reasons 

behind the model outcomes (Petch, Di, and Nelson 2022). Here, we facilitated the interpretability 

of our model by reducing the number of candidate features. In general, for a fixed sample size, 

the error of designed classifier decreases and then increases as the number of features grows. 

Finding an optimal number of features is crucial in terms of reducing the time to build the learn-

ing model and increasing the accuracy in the learning process. For uncorrelated features, the op-
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timal feature size is N-1, where the N is the sample size. As the feature correlation increases, the 

optimal feature√size becomes proportional to N for highly correlated features. Furthermore, tex-

ture features turned out to be highly correlated in Cho’s work. Those further proof of the necessi-

ty of feature selection. 

Using the NMIFS method, we calculated feature occurrence to identify the discriminative fea-

tures of TMJ OA. Moreover, we calculated Shapley values to demonstrate how each clinical and 

imaging feature is contributing to the outcome/disease diagnosis in individual patients. Head-

ache, muscle soreness and limited range of vertical mouth opening without pain were among the 

top features that contributed to the model prediction for TMJ OA. TrabecularNumber, superior 

3D joint space and LongRunHighGreyLevelRunEmphasis were the top imaging features selected 

in the majority of the trained models. Importantly, the amalgamation of different data-sources in 

this study is essential for comprehensive assessment of individuals’ health. In line with our re-

sults, Liang and colleagues found significant differences of the TrabecularNumber in subjects 

with TMJ OA compared to healthy individuals (Liang, Liu, et al. 2017). Our findings corroborate 

those that indicate radiomics provide an objective assessment of the pathological changes and 

may overcome the subjectivity of patients-reported symptoms (Patel et al. 2013). Zhang et al. 

validated the importance of detecting TMJ morphological changes using 3D measurements, 

showing that 2D and 3D TMJ space measure-ments varied significantly in CBCT scans of 

healthy individuals (Zhang, Xu, and Liu 2017). The present study is the first to test whole joint 

(condylar, articular eminence and articular fossa) radiomics and incorporate 3D joint space 

measurements into a comprehensive diagnostic tool for TMJ OA. 
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5.5 Conclusion 

 

Normalized mutual information feature selection method and LUPI paradigm established a ro-

bust model for TMJ OA diagnosis. The identified clinical and quantitative imaging markers can 

be considered a foundation for reliable detection of TMJ OA pathological alterations and are po-

tential markers for prediction of disease progression in future longitudinal studies. 

 

 



 

 

 225 

Bibliography 

Aas, Kjersti, Martin Jullum, and Anders Løland. 2021. “Explaining Individual Predictions When 

Features Are Dependent: More Accurate Approximations to Shapley Values.” Artificial 

Intelligence 298 (September): 103502. https://doi.org/10.1016/j.artint.2021.103502. 

Abiodun, Oludare Isaac, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada, Abubakar 

Malah Umar, Okafor Uchenwa Linus, Humaira Arshad, Abdullahi Aminu Kazaure, Us-

man Gana, and Muhammad Ubale Kiru. 2019. “Comprehensive Review of Artificial 

Neural Network Applications to Pattern Recognition.” IEEE Access 7: 158820–46. 

https://doi.org/10.1109/ACCESS.2019.2945545. 

Abouelhuda, Amira Mokhtar, Hyun-Seok Kim, Sang-Yun Kim, and Young-Kyun Kim. 2017. 

“Association between Headache and Temporomandibular Disorder.” Journal of the Ko-

rean Association of Oral and Maxillofacial Surgeons 43 (6): 363–67. 

https://doi.org/10.5125/jkaoms.2017.43.6.363. 

Abrahamsson, AK., M. Kristensen, L. Z. Arvidsson, T. K. Kvien, T. A. Larheim, and I. K. 

Haugen. 2017. “Frequency of Temporomandibular Joint Osteoarthritis and Related 

Symptoms in a Hand Osteoarthritis Cohort.” Osteoarthritis and Cartilage 25 (5): 654–57. 

https://doi.org/10.1016/j.joca.2016.12.028. 

Abu Alfeilat, Haneen Arafat, Ahmad B. A. Hassanat, Omar Lasassmeh, Ahmad S. Tarawneh, 

Mahmoud Bashir Alhasanat, Hamzeh S. Eyal Salman, and V. B. Surya Prasath. 2019. 

“Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A 

Review.” Big Data 7 (4): 221–48. https://doi.org/10.1089/big.2018.0175. 

Agha-Hosseini, Farzaneh, Iraj Mirzaii-Dizgah, Shiva Shirazian, and Maryam Javaheri-Mahd. 

2023. “Treating Parafunctional Habits for Alleviating Temporomandibular Disorder and 

Lower Back Pain: A Phase II Clinical Trial.” Frontiers in Dentistry 20 (May): 11. 

https://doi.org/10.18502/fid.v20i11.12657. 

Ahmad, El Mabrouk, Sylvester, and Zafarullah. 2009. “Human Osteoarthritic Chondrocytes Are 

Impaired in Matrix Metalloproteinase-13 Inhibition by IFN-Gamma Due to Reduced 

IFN-Gamma Receptor Levels.” Osteoarthritis and Cartilage 17 (8): 1049–55. 

https://doi.org/10.1016/j.joca.2009.02.008. 

Ahmad, Mansur, Lars, Odont, Quentin Anderson, Krishnan Kartha, Richard K. Ohrbach, Ed-

mond L. Truelove, Mike T. John, and Eric L. Schiffman. 2009. “Research Diagnostic 

Criteria for Temporomandibular Disorders (RDC/TMD): Development of Image Analy-

sis Criteria and Examiner Reliability for Image Analysis.” Oral Surgery, Oral Medicine, 

Oral Pathology, Oral Radiology, and Endodontics 107 (6): 844–60. 

https://doi.org/10.1016/j.tripleo.2009.02.023. 

Ahmad, Mansur, and Eric L. Schiffman. 2016. “Temporomandibular Joint Disorders and Orofa-

cial Pain.” Dental Clinics of North America 60 (1): 105–24. 

https://doi.org/10.1016/j.cden.2015.08.004. 



 

 

 226 

Ahmed, Zeeshan, Khalid Mohamed, Saman Zeeshan, and XinQi Dong. 2020. “Artificial Intelli-

gence with Multi-Functional Machine Learning Platform Development for Better 

Healthcare and Precision Medicine.” Database: The Journal of Biological Databases and 

Curation 2020 (March): baaa010. https://doi.org/10.1093/database/baaa010. 

Ahsan, Md Manjurul, Shahana Akter Luna, and Zahed Siddique. 2022a. “Machine-Learning-

Based Disease Diagnosis: A Comprehensive Review.” Healthcare 10 (3). 

https://doi.org/10.3390/healthcare10030541. 

———. 2022b. “Machine-Learning-Based Disease Diagnosis: A Comprehensive Review.” 

Healthcare 10 (3): 541. https://doi.org/10.3390/healthcare10030541. 

Aiken, Alison, and Rama Khokha. 2010. “Unraveling Metalloproteinase Function in Skeletal 

Biology and Disease Using Genetically Altered Mice.” Biochimica et Biophysica Acta 

(BBA) - Molecular Cell Research, Matrix Metalloproteinases, 1803 (1): 121–32. 

https://doi.org/10.1016/j.bbamcr.2009.07.002. 

Ajekigbe, B., K. Cheung, Y. Xu, A.J. Skelton, A. Panagiotopoulos, J. Soul, T.E. Hardingham, 

D.J. Deehan, M.J. Barter, and D.A. Young. 2019. “Identification of Long Non-Coding 

RNAs Expressed in Knee and Hip Osteoarthritic Cartilage.” Osteoarthritis and Cartilage 

27 (4): 694–702. https://doi.org/10.1016/j.joca.2018.12.015. 

Akeson, Graham, and Charles J. Malemud. 2017. “A Role for Soluble IL-6 Receptor in Osteoar-

thritis.” Journal of Functional Morphology and Kinesiology 2 (3): 27. 

https://doi.org/10.3390/jfmk2030027. 

Al Turkestani, Najla, Jonas Bianchi, Romain Deleat-Besson, Celia Le, Li Tengfei, Juan Carlos 

Prieto, Marcela Gurgel, et al. 2021. “Clinical Decision Support Systems in Orthodontics: 

A Narrative Review of Data Science Approaches.” Orthodontics & Craniofacial Re-

search 24 (Suppl 2): 26–36. https://doi.org/10.1111/ocr.12492. 

Al-Ani, Ziad. 2021. “Temporomandibular Joint Osteoarthrosis: A Review of Clinical Aspects 

and Management.” Primary Dental Journal 10 (1): 132–40. 

https://doi.org/10.1177/2050168420980977. 

Alderson, Philip O, and Ronald M Summers. 2020. “The Evolving Status of Radiomics.” JNCI 

Journal of the National Cancer Institute 112 (9): 869–70. 

https://doi.org/10.1093/jnci/djaa018. 

Alexiou, Ke, Hc Stamatakis, and K. Tsiklakis. 2009. “Evaluation of the Severity of Temporo-

mandibular Joint Osteoarthritic Changes Related to Age Using Cone Beam Computed 

Tomography.” Dento Maxillo Facial Radiology 38 (3): 141–47. 

https://doi.org/10.1259/dmfr/59263880. 

Ali, and Ahmed. 2022. “Employment of Instrumented Vehicles to Identify Real-Time Snowy 

Weather Conditions on Freeways Using Supervised Machine Learning Techniques – A 

Naturalistic Driving Study.” IATSS Research 46 (4): 525–36. 

https://doi.org/10.1016/j.iatssr.2022.09.001. 

Ali, Aleksandra Turkiewicz, Velocity Hughes, Elin Folkesson, Jon Tjörnstand, Paul Neuman, 

Patrik Önnerfjord, and Martin Englund. 2022. “Proteomics Profiling of Human Synovial 

Fluid Suggests Increased Protein Interplay in Early-Osteoarthritis (OA) That Is Lost in 

Late-Stage OA.” Molecular & Cellular Proteomics: MCP 21 (3): 100200. 

https://doi.org/10.1016/j.mcpro.2022.100200. 

Alimoradi, Nahid, Mohammad Tahami, Negar Firouzabadi, Elham Haem, and Amin Ramezani. 

2023. “Metformin Attenuates Symptoms of Osteoarthritis: Role of Genetic Diversity of 



 

 

 227 

Bcl2 and CXCL16 in OA.” Arthritis Research & Therapy 25 (1): 35. 

https://doi.org/10.1186/s13075-023-03025-7. 

Al-Jabery, Khalid, Tayo Obafemi-Ajayi, Gayla Olbricht, and Donald Wunsch. 2019. Computa-

tional Learning Approaches to Data Analytics in Biomedical Applications. Academic 

Press. 

Alkinani, Husam H., Abo Taleb T. Al-Hameedi, and Shari Dunn-Norman. 2020. “Artificial Neu-

ral Network Models to Predict Lost Circulation in Natural and Induced Fractures.” SN 

Applied Sciences 2 (12): 1980. https://doi.org/10.1007/s42452-020-03827-3. 

Allareddy, Shankar Rengasamy Venugopalan, Romesh P. Nalliah, Jennifer L. Caplin, Min 

Kyeong Lee, and Veeratrishul Allareddy. 2019a. “Orthodontics in the Era of Big Data 

Analytics.” Orthodontics & Craniofacial Research 22 Suppl 1 (May): 8–13. 

https://doi.org/10.1111/ocr.12279. 

Allareddy, Veerasathpurush, Shankar Rengasamy Venugopalan, Romesh P. Nalliah, Jennifer L. 

Caplin, Min Kyeong Lee, and Veeratrishul Allareddy. 2019b. “Orthodontics in the Era of 

Big Data Analytics.” Orthodontics & Craniofacial Research 22 (May): 8–13. 

https://doi.org/10.1111/ocr.12279. 

Alloghani, Mohamed, Dhiya Al-Jumeily, Jamila Mustafina, Abir Hussain, and Ahmed J. Aljaaf. 

2020. “A Systematic Review on Supervised and Unsupervised Machine Learning Algo-

rithms for Data Science.” In Supervised and Unsupervised Learning for Data Science, 

edited by Michael W. Berry, Azlinah Mohamed, and Bee Wah Yap, 3–21. Unsupervised 

and Semi-Supervised Learning. Cham: Springer International Publishing. 

https://doi.org/10.1007/978-3-030-22475-2_1. 

Almarza, Alejandro J., Bryan N. Brown, Boaz Arzi, David Faustino Ângelo, William Chung, 

Stephen F. Badylak, and Michael Detamore. 2018. “Preclinical Animal Models for Tem-

poromandibular Joint Tissue Engineering.” Tissue Engineering Part B: Reviews 24 (3): 

171–78. https://doi.org/10.1089/ten.teb.2017.0341. 

Almășan, Oana, Daniel-Corneliu Leucuța, Mihaela Hedeșiu, Sorana Mureșanu, and Ștefan Luci-

an Popa. 2023. “Temporomandibular Joint Osteoarthritis Diagnosis Employing Artificial 

Intelligence: Systematic Review and Meta-Analysis.” Journal of Clinical Medicine 12 

(3): 942. https://doi.org/10.3390/jcm12030942. 

Almhdie-Imjabbar, Ahmad, Khac-Lan Nguyen, Hechmi Toumi, Rachid Jennane, and Eric 

Lespessailles. 2022. “Prediction of Knee Osteoarthritis Progression Using Radiological 

Descriptors Obtained from Bone Texture Analysis and Siamese Neural Networks: Data 

from OAI and MOST Cohorts.” Arthritis Research & Therapy 24 (1): 66. 

https://doi.org/10.1186/s13075-022-02743-8. 

Alqhtani, Nasser Raqe, Malak Sultan Alkhaldi, Alhanoof Falah Alanazi, Abdullatif Saad 

Alabdulsalam, Adel Alenazi, Mahmud Uz Zaman, Adel Alzahrani, Ahmad Alshadwi, Ali 

Al Rafedah, and Mohammed AlOtaibi. 2022. “Temporomandibular Joint Space Dimen-

sions among Saudi Patients with Temporomandibular Disorders: MRI-Based Retrospec-

tive Study.” International Journal of Clinical Practice 2022 (August): 5846255. 

https://doi.org/10.1155/2022/5846255. 

Anderson, Gary C., Yoly M. Gonzalez, Richard Ohrbach, Edmond L. Truelove, Earl Sommers, 

John O. Look, and Eric L. Schiffman. 2010. “Research Diagnostic Criteria for Temporo-

mandibular Disorders: Future Directions.” Journal of Orofacial Pain 24 (1): 79–88. 



 

 

 228 

Aoun, Yasmina, Rita Ejbeh, Abboud Youssef, and Joseph Hobeiche. 2023. “Salivary Biomarkers 

as Potential Diagnostic Tool for Temporomandibular Disorders: A Comprehensive Re-

view.” CRANIO®, July, 1–10. https://doi.org/10.1080/08869634.2023.2229607. 

Aragon-Sanabria, Virginia, Steven E. Pohler, Vikram J. Eswar, Matthew Bierowski, Esther W. 

Gomez, and Cheng Dong. 2017. “VE-Cadherin Disassembly and Cell Contractility in the 

Endothelium Are Necessary for Barrier Disruption Induced by Tumor Cells.” Scientific 

Reports 7 (1): 45835. https://doi.org/10.1038/srep45835. 

Arayasantiparb, Raweewan, Somsak Mitrirattanakul, Panupol Kunasarapun, Harakun Chutima-

taewin, Pawares Netnoparat, and Worapol Sae-Heng. 2020. “Association of Radiographic 

and Clinical Findings in Patients with Temporomandibular Joints Osseous Alteration.” 

Clinical Oral Investigations 24 (1): 221–27. https://doi.org/10.1007/s00784-019-02945-6. 

Arbet, Jaron, Cole Brokamp, Jareen Meinzen-Derr, Katy E. Trinkley, and Heidi M. Spratt. 2020. 

“Lessons and Tips for Designing a Machine Learning Study Using EHR Data.” Journal 

of Clinical and Translational Science 5 (1): e21. https://doi.org/10.1017/cts.2020.513. 

Arden, Nigel, Pascal Richette, Cyrus Cooper, Olivier Bruyère, Eric Abadie, Jaime Branco, Maria 

Luisa Brandi, et al. 2015. “Can We Identify Patients with High Risk of Osteoarthritis 

Progression Who Will Respond to Treatment? A Focus on Biomarkers and Frailty.” 

Drugs & Aging 32 (7): 525–35. https://doi.org/10.1007/s40266-015-0276-7. 

Asami, Toshio, Takuya Ito, Hidefumi Fukumitsu, Hiroshi Nomoto, Yoshiko Furukawa, and 

Shoei Furukawa. 2006. “Autocrine Activation of Cultured Macrophages by Brain-

Derived Neurotrophic Factor.” Biochemical and Biophysical Research Communications 

344 (3): 941–47. https://doi.org/10.1016/j.bbrc.2006.03.228. 

Ashburner, J., and K. J. Friston. 1999. “Nonlinear Spatial Normalization Using Basis Functions.” 

Human Brain Mapping 7 (4): 254–66. https://doi.org/10.1002/(SICI)1097-

0193(1999)7:4&#x0003c;254::AID-HBM4&#x0003e;3.0.CO;2-G. 

Asiri, Saeed N., Larry P. Tadlock, Emet Schneiderman, and Peter H. Buschang. 2020. “Applica-

tions of Artificial Intelligence and Machine Learning in Orthodontics.” APOS Trends in 

Orthodontics 10 (March): 17–24. https://doi.org/10.25259/APOS_117_2019. 

Atzeni, F., and P. Sarzi-Puttini. 2013. “Tumor Necrosis Factor.” In Brenner’s Encyclopedia of 

Genetics (Second Edition), edited by Stanley Maloy and Kelly Hughes, 229–31. San Die-

go: Academic Press. https://doi.org/10.1016/B978-0-12-374984-0.01594-1. 

Auconi, Pietro, Marco Scazzocchio, Paola Cozza, James A. McNamara, and Lorenzo Franchi. 

2015. “Prediction of Class III Treatment Outcomes through Orthodontic Data Mining.” 

European Journal of Orthodontics 37 (3): 257–67. https://doi.org/10.1093/ejo/cju038. 

Avanzo, Michele, Lise Wei, Joseph Stancanello, Martin Vallières, Arvind Rao, Olivier Morin, 

Sarah A. Mattonen, and Issam El Naqa. 2020. “Machine and Deep Learning Methods for 

Radiomics.” Medical Physics 47 (5): e185–202. https://doi.org/10.1002/mp.13678. 

Avery, Emily, Pina C. Sanelli, Mariam Aboian, and Seyedmehdi Payabvash. 2022. “Radiomics: 

A Primer on Processing Workflow and Analysis.” Seminars in Ultrasound, CT, and MR 

43 (2): 142–46. https://doi.org/10.1053/j.sult.2022.02.003. 

Awad, Mariette, and Rahul Khanna. 2015a. “Machine Learning.” In Efficient Learning Ma-

chines: Theories, Concepts, and Applications for Engineers and System Designers, edited 

by Mariette Awad and Rahul Khanna, 1–18. Berkeley, CA: Apress. 

https://doi.org/10.1007/978-1-4302-5990-9_1. 

———. 2015b. “Support Vector Machines for Classification.” In Efficient Learning Machines: 

Theories, Concepts, and Applications for Engineers and System Designers, edited by 



 

 

 229 

Mariette Awad and Rahul Khanna, 39–66. Berkeley, CA: Apress. 

https://doi.org/10.1007/978-1-4302-5990-9_3. 

Bae, SunMee, Moon-Soo Park, Jin-Woo Han, and Young-Jun Kim. 2017. “Correlation between 

Pain and Degenerative Bony Changes on Cone-Beam Computed Tomography Images of 

Temporomandibular Joints.” Maxillofacial Plastic and Reconstructive Surgery 39 (1): 19. 

https://doi.org/10.1186/s40902-017-0117-1. 

Bair, Eric, Sheila Gaynor, Gary D. Slade, Richard Ohrbach, Roger B. Fillingim, Joel D. Green-

span, Ronald Dubner, Shad B. Smith, Luda Diatchenko, and William Maixner. 2016. 

“Identification of Clusters of Individuals Relevant to Temporomandibular Disorders and 

Other Chronic Pain Conditions: The OPPERA Study.” Pain 157 (6): 1266–78. 

https://doi.org/10.1097/j.pain.0000000000000518. 

Bakke, Merete, Arne Petersson, Mie Wiesel, Palle Svanholt, and Liselotte Sonnesen. 2014. 

“Bony Deviations Revealed by Cone Beam Computed Tomography of the Temporoman-

dibular Joint in Subjects without Ongoing Pain.” Journal of Oral & Facial Pain and 

Headache 28 (4): 331–37. https://doi.org/10.11607/ofph.1255. 

Bancroft, Laura W, Jeffrey J Peterson, and Mark J Kransdorf. 2004. “Cysts, Geodes, and Ero-

sions.” Radiologic Clinics of North America, Arthritis Imaging, 42 (1): 73–87. 

https://doi.org/10.1016/S0033-8389(03)00165-9. 

Banerjee, Mousumi, Evan Reynolds, Hedvig B Andersson, and Brahmajee Nallamothu. 2019. 

“Tree-Based Analysis: A Practical Approach to Create Clinical Decision Making Tools.” 

Circulation. Cardiovascular Quality and Outcomes 12 (5): e004879. 

https://doi.org/10.1161/CIRCOUTCOMES.118.004879. 

Baran, Paul, Selina Hansen, Georg H. Waetzig, Mohammad Akbarzadeh, Larissa Lamertz, Hein-

rich J. Huber, M. Reza Ahmadian, Jens M. Moll, and Jürgen Scheller. 2018. “The Bal-

ance of Interleukin (IL)-6, IL-6·soluble IL-6 Receptor (SIL-6R), and IL-6·sIL-6R·sgp130 

Complexes Allows Simultaneous Classic and Trans-Signaling.” The Journal of Biologi-

cal Chemistry 293 (18): 6762–75. https://doi.org/10.1074/jbc.RA117.001163. 

Barghan, S, S Tetradis, and Sm Mallya. 2012. “Application of Cone Beam Computed Tomogra-

phy for Assessment of the Temporomandibular Joints.” Australian Dental Journal 57 

(s1): 109–18. https://doi.org/10.1111/j.1834-7819.2011.01663.x. 

Barredo Arrieta, Alejandro, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham 

Tabik, Alberto Barbado, Salvador Garcia, et al. 2020. “Explainable Artificial Intelligence 

(XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI.” 

Information Fusion 58 (June): 82–115. https://doi.org/10.1016/j.inffus.2019.12.012. 

Barry, Adrienne K., Ning Wang, and Deborah E. Leckband. 2015. “Local VE-Cadherin Mecha-

notransduction Triggers Long-Ranged Remodeling of Endothelial Monolayers.” Journal 

of Cell Science 128 (7): 1341–51. https://doi.org/10.1242/jcs.159954. 

Bastian, Grace, George Hamilton Baker, and Alfonso Limon. 2022. “Bridging the Divide be-

tween Data Scientists and Clinicians.” Intelligence-Based Medicine 6 (January): 100066. 

https://doi.org/10.1016/j.ibmed.2022.100066. 

Basu, Amrita, Denise Warzel, Aras Eftekhari, Justin S. Kirby, John Freymann, Janice Knable, 

Ashish Sharma, and Paula Jacobs. 2019. “Call for Data Standardization: Lessons Learned 

and Recommendations in an Imaging Study.” JCO Clinical Cancer Informatics 3 (De-

cember): CCI.19.00056. https://doi.org/10.1200/CCI.19.00056. 



 

 

 230 

Bathina, Siresha, and Undurti N. Das. 2015. “Brain-Derived Neurotrophic Factor and Its Clinical 

Implications.” Archives of Medical Science : AMS 11 (6): 1164–78. 

https://doi.org/10.5114/aoms.2015.56342. 

Bayirli, B., Hera Kim-Berman, and A. Puntillo. 2020. “Embracing Novel Technologies in Den-

tistry and Orthodontics.” In . https://www.semanticscholar.org/paper/Embracing-Novel-

Technologies-in-Dentistry-and-Bayirli-Kim-

Berman/f0fc3f0c8a5f068dedcdbad2a6b8164e1170255f. 

Bechtold, Till E., Cheri Saunders, Rebekah S. Decker, Hyo-Bin Um, Naiga Cottingham, Imad 

Salhab, Naito Kurio, et al. 2016. “Osteophyte Formation and Matrix Mineralization in a 

TMJ Osteoarthritis Mouse Model Are Associated with Ectopic Hedgehog Signaling.” 

Matrix Biology : Journal of the International Society for Matrix Biology 52–54: 339–54. 

https://doi.org/10.1016/j.matbio.2016.03.001. 

Beekhuizen, M., L. M. Gierman, W. E. van Spil, G. J. V. M. Van Osch, T. W. J. Huizinga, D. B. 

F. Saris, L. B. Creemers, and A. -M. Zuurmond. 2013. “An Explorative Study Comparing 

Levels of Soluble Mediators in Control and Osteoarthritic Synovial Fluid.” Osteoarthritis 

and Cartilage 21 (7): 918–22. https://doi.org/10.1016/j.joca.2013.04.002. 

Bera, Kaustav, Vamsidhar Velcheti, and Anant Madabhushi. 2018. “Novel Quantitative Imaging 

for Predicting Response to Therapy: Techniques and Clinical Applications.” American 

Society of Clinical Oncology Educational Book. American Society of Clinical Oncology. 

Annual Meeting, no. 38 (May): 1008–18. https://doi.org/10.1200/EDBK_199747. 

Bernotiene, Eiva, Edvardas Bagdonas, Gailute Kirdaite, Paulius Bernotas, Ursule Kalvaityte, 

Ilona Uzieliene, Christian S. Thudium, et al. 2020. “Emerging Technologies and Plat-

forms for the Immunodetection of Multiple Biochemical Markers in Osteoarthritis Re-

search and Therapy.” Frontiers in Medicine 7: 622. 

https://doi.org/10.3389/fmed.2020.572977. 

Bessa, Felipe, Jonathan Rasio, Alexander Newhouse, Benedict U. Nwachukwu, and Shane Nho. 

2020. “Surgical Treatment of Subchondral Bone Cysts of the Acetabulum With Calcium 

Phosphate Bone Substitute Material in Patients Without Advanced Arthritic Hips.” Ar-

throscopy Techniques 9 (9): e1375–79. https://doi.org/10.1016/j.eats.2020.05.018. 

Bianchi, J. R. Gonçalves, A. C. de Oliveira Ruellas, L. M. Ashman, J.-B. Vimort, M. Yatabe, B. 

Paniagua, et al. 2021. “Quantitative Bone Imaging Biomarkers to Diagnose Temporo-

mandibular Joint Osteoarthritis.” International Journal of Oral and Maxillofacial Surgery 

50 (2): 227–35. https://doi.org/10.1016/j.ijom.2020.04.018. 

Bianchi, João Roberto Gonçalves, Antonio Carlos de Oliveira Ruellas, Jean-Baptiste Vimort, 

Marília Yatabe, Beatriz Paniagua, Pablo Hernandez, Erika Benavides, Fabiana Naomi 

Soki, and Lucia Helena Soares Cevidanes. 2019. “Software Comparison to Analyze Bone 

Radiomics from High Resolution CBCT Scans of Mandibular Condyles.” Dentomaxillo-

facial Radiology 48 (6): 20190049. https://doi.org/10.1259/dmfr.20190049. 

Bianchi, Antônio Carlos de Oliveira Ruellas, João Roberto Gonçalves, Beatriz Paniagua, Juan 

Carlos Prieto, Martin Styner, Tengfei Li, et al. 2020. “Osteoarthritis of the Temporoman-

dibular Joint Can Be Diagnosed Earlier Using Biomarkers and Machine Learning.” Sci-

entific Reports 10 (1): 8012. https://doi.org/10.1038/s41598-020-64942-0. 

Bianchi, Beatriz Paniagua, Antonio Carlos De Oliveira Ruellas, Jean-Christophe Fillion-Robin, 

Juan C. Prietro, João Roberto Gonçalves, James Hoctor, et al. 2020. “3D Slicer Cranio-

maxillofacial Modules Support Patient-Specific Decision-Making for Personalized 

Healthcare in Dental Research.” Multimodal Learning for Clinical Decision Support and 



 

 

 231 

Clinical Image-Based Procedures: 10th International Workshop, ML-CDS 2020, and 9th 

International Workshop, CLIP 2020, Held in Conjunction with MICCAI 2020, Lima, Pe-

ru, October 4-8, ... 12445 (October): 44–53. https://doi.org/10.1007/978-3-030-60946-

7_5. 

Bianco, Daniel, Atanas Todorov, Tomislav Čengić, Geert Pagenstert, Stefan Schären, Cordula 

Netzer, Thomas Hügle, and Jeroen Geurts. 2018. “Alterations of Subchondral Bone Pro-

genitor Cells in Human Knee and Hip Osteoarthritis Lead to a Bone Sclerosis Pheno-

type.” International Journal of Molecular Sciences 19 (2): 475. 

https://doi.org/10.3390/ijms19020475. 

Bichu, Yashodhan M., Ismaeel Hansa, Aditi Y. Bichu, Pratik Premjani, Carlos Flores-Mir, and 

Nikhilesh R. Vaid. 2021. “Applications of Artificial Intelligence and Machine Learning 

in Orthodontics: A Scoping Review.” Progress in Orthodontics 22 (1): 18. 

https://doi.org/10.1186/s40510-021-00361-9. 

Bifarin, Olatomiwa O. 2023. “Interpretable Machine Learning with Tree-Based Shapley Addi-

tive Explanations: Application to Metabolomics Datasets for Binary Classification.” 

PLOS ONE 18 (5): e0284315. https://doi.org/10.1371/journal.pone.0284315. 

Binvignat, Marie, Valentina Pedoia, Atul J Butte, Karine Louati, David Klatzmann, Francis Ber-

enbaum, Encarnita Mariotti-Ferrandiz, and Jérémie Sellam. 2022. “Use of Machine 

Learning in Osteoarthritis Research: A Systematic Literature Review.” RMD Open 8 (1): 

e001998. https://doi.org/10.1136/rmdopen-2021-001998. 

Bjelle, A. 1983. “On the Heterogeneity of Osteoarthritis.” Clinical Rheumatology 2 (2): 111–13. 

https://doi.org/10.1007/BF02032165. 

Blagojevic, M., C. Jinks, A. Jeffery, and K. P. Jordan. 2010. “Risk Factors for Onset of Osteoar-

thritis of the Knee in Older Adults: A Systematic Review and Meta-Analysis.” Osteoar-

thritis and Cartilage 18 (1): 24–33. https://doi.org/10.1016/j.joca.2009.08.010. 

Blaschke, Sabine, Michael Koziolek, Andreas Schwarz, Peter Benöhr, Peter Middel, Gerhard 

Schwarz, Klaus-M. Hummel, and Gerhard A. Müller. 2003. “Proinflammatory Role of 

Fractalkine (CX3CL1) in Rheumatoid Arthritis.” The Journal of Rheumatology 30 (9): 

1918–27. 

Bloch, Louise, Christoph M. Friedrich, and for the Alzheimer’s Disease Neuroimaging Initiative. 

2021. “Data Analysis with Shapley Values for Automatic Subject Selection in Alz-

heimer’s Disease Data Sets Using Interpretable Machine Learning.” Alzheimer’s Re-

search & Therapy 13 (1): 155. https://doi.org/10.1186/s13195-021-00879-4. 

Boer, E. W. J. de, P. U. Dijkstra, B. Stegenga, L. G. M. de Bont, and F. K. L. Spijkervet. 2014. 

“Value of Cone-Beam Computed Tomography in the Process of Diagnosis and Manage-

ment of Disorders of the Temporomandibular Joint.” British Journal of Oral and Maxil-

lofacial Surgery 52 (3): 241–46. https://doi.org/10.1016/j.bjoms.2013.12.007. 

Bratus-Neuenschwander, Anna, Francesc Castro-Giner, Mojca Frank-Bertoncelj, Sirisha Aluri, 

Sandro F. Fucentese, Ralph Schlapbach, and Haiko Sprott. 2018. “Pain-Associated Tran-

scriptome Changes in Synovium of Knee Osteoarthritis Patients.” Genes 9 (7): 338. 

https://doi.org/10.3390/genes9070338. 

Brew, Keith, and Hideaki Nagase. 2010. “The Tissue Inhibitors of Metalloproteinases (TIMPs): 

An Ancient Family with Structural and Functional Diversity.” Biochimica et Biophysica 

Acta 1803 (1): 55–71. https://doi.org/10.1016/j.bbamcr.2010.01.003. 

Brosset, Serge, Maxime Dumont, Jonas Bianchi, Antonio Ruellas, Lucia Cevidanes, Marilia 

Yatabe, Joao Goncalves, et al. 2020. “3D Auto-Segmentation of Mandibular Condyles.” 



 

 

 232 

Annual International Conference of the IEEE Engineering in Medicine and Biology Soci-

ety. IEEE Engineering in Medicine and Biology Society. Annual International Confer-

ence 2020 (July): 1270–73. https://doi.org/10.1109/EMBC44109.2020.9175692. 

Brosset, Serge, Maxime Dumont, Lucia Cevidanes, Reza Soroushmehr, Jonas Bianchi, Marcela 

Gurgel, Romain Deleat-Besson, et al. 2021. “Web Infrastructure for Data Management, 

Storage and Computation.” Proceedings of SPIE--the International Society for Optical 

Engineering 11600 (February): 116001N. https://doi.org/10.1117/12.2582283. 

Brylka, Laura J., and Thorsten Schinke. 2019. “Chemokines in Physiological and Pathological 

Bone Remodeling.” Frontiers in Immunology 10: 2182. 

https://doi.org/10.3389/fimmu.2019.02182. 

Burland, Julie P., Emily R. Hunt, and Christian Lattermann. 2023. “Serum Biomarkers in 

Healthy, Injured, and Osteoarthritic Knees: A Critical Review.” Journal of Cartilage & 

Joint Preservation 3 (2): 100091. https://doi.org/10.1016/j.jcjp.2022.100091. 

Byun, Soo-Hwan, Chanyang Min, Dae-Myoung Yoo, Byoung-Eun Yang, and Hyo-Geun Choi. 

2020. “Increased Risk of Migraine in Patients with Temporomandibular Disorder: A 

Longitudinal Follow-Up Study Using a National Health Screening Cohort.” Diagnostics 

10 (9): 724. https://doi.org/10.3390/diagnostics10090724. 

Cabral-Pacheco, Griselda A, Idalia Garza-Veloz, Claudia Castruita-De la Rosa, Jesús M 

Ramirez-Acuña, Braulio A Perez-Romero, Jesús F Guerrero-Rodriguez, Nadia Martinez-

Avila, and Margarita L Martinez-Fierro. 2020. “The Roles of Matrix Metalloproteinases 

and Their Inhibitors in Human Diseases.” International Journal of Molecular Sciences 21 

(24): 9739. https://doi.org/10.3390/ijms21249739. 

Cafferata, Emilio A., Gustavo Monasterio, Francisca Castillo, Paola Carvajal, Guillermo Flores, 

Walter Díaz, Aler D. Fuentes, and Rolando Vernal. 2021. “Overexpression of MMPs, 

Cytokines, and RANKL/OPG in Temporomandibular Joint Osteoarthritis and Their As-

sociation with Joint Pain, Mouth Opening, and Bone Degeneration: A Preliminary Re-

port.” Oral Diseases 27 (4): 970–80. https://doi.org/10.1111/odi.13623. 

Cairns, B. E. 2010. “Pathophysiology of TMD Pain – Basic Mechanisms and Their Implications 

for Pharmacotherapy.” Journal of Oral Rehabilitation 37 (6): 391–410. 

https://doi.org/10.1111/j.1365-2842.2010.02074.x. 

Califf, Robert M. 2018. “Biomarker Definitions and Their Applications.” Experimental Biology 

and Medicine 243 (3): 213–21. https://doi.org/10.1177/1535370217750088. 

Cardoneanu, Anca, Luana Andreea Macovei, Alexandra Maria Burlui, Ioana Ruxandra Mihai, 

Ioana Bratoiu, Ioana Irina Rezus, Patricia Richter, Bogdan-Ionel Tamba, and Elena Re-

zus. 2022. “Temporomandibular Joint Osteoarthritis: Pathogenic Mechanisms Involving 

the Cartilage and Subchondral Bone, and Potential Therapeutic Strategies for Joint Re-

generation.” International Journal of Molecular Sciences 24 (1): 171. 

https://doi.org/10.3390/ijms24010171. 

Castellano, G., L. Bonilha, L.M. Li, and F. Cendes. 2004. “Texture Analysis of Medical Imag-

es.” Clinical Radiology 59 (12): 1061–69. https://doi.org/10.1016/j.crad.2004.07.008. 

Cevidanes, A-K Hajati, B Paniagua, PF Lim, DG Walker, G Palconet, AG Nackley, et al. 2010. 

“Quantification of Condylar Resorption in TMJ Osteoarthritis.” Oral Surgery, Oral Med-

icine, Oral Pathology, Oral Radiology, and Endodontics 110 (1): 110–17. 

https://doi.org/10.1016/j.tripleo.2010.01.008. 

Cevidanes, David Walker, Juan Schilling, James Sugai, William Giannobile, Beatriz Paniagua, 

Erika Benavides, et al. 2014. “3D Osteoarthritic Changes in TMJ Condylar Morphology 



 

 

 233 

Correlates with Specific Systemic and Local Biomarkers of Disease.” Osteoarthritis and 

Cartilage / OARS, Osteoarthritis Research Society 22 (10): 1657–67. 

https://doi.org/10.1016/j.joca.2014.06.014. 

Chae, Dong-Sik, Mi Eun Kim, Kyung-Yil Kang, Nae Yoon Lee, Woo-Suk Lee, and Jun Sik Lee. 

2021. “Quantitative Proteomic Analysis Comparing Grades ICRS1 and ICRS3 in Patients 

with Osteoarthritis.” Experimental and Therapeutic Medicine 22 (6): 1–10. 

https://doi.org/10.3892/etm.2021.10905. 

Chen, Huang, Du, and Tong. 2014. “Expression and Significance of MMP3 in Synovium of 

Knee Joint at Different Stage in Osteoarthritis Patients.” Asian Pacific Journal of Tropi-

cal Medicine 7 (4): 297–300. https://doi.org/10.1016/S1995-7645(14)60042-0. 

Chen, Wendy Walwyn, Helena S. Ennes, Hyeyoung Kim, James A. McRoberts, and Juan Carlos 

G. Marvizón. 2014. “BDNF Released during Neuropathic Pain Potentiates NMDA Re-

ceptors in Primary Afferent Terminals.” The European Journal of Neuroscience 39 (9): 

1439–54. https://doi.org/10.1111/ejn.12516. 

Chen, Yan, Yizhong Hu, Y Eric Yu, Xingjian Zhang, Tezita Watts, Bin Zhou, Ji Wang, et al. 

2018. “Subchondral Trabecular Rod Loss and Plate Thickening in the Development of 

Osteoarthritis.” Journal of Bone and Mineral Research 33 (2): 316–27. 

https://doi.org/10.1002/jbmr.3313. 

Cheng, Yuan, Xue-lei Ma, Yu-quan Wei, and Xia-Wei Wei. 2019. “Potential Roles and Targeted 

Therapy of the CXCLs/CXCR2 Axis in Cancer and Inflammatory Diseases.” Biochimica 

et Biophysica Acta (BBA) - Reviews on Cancer 1871 (2): 289–312. 

https://doi.org/10.1016/j.bbcan.2019.01.005. 

Chevalier, T. Conrozier, M. Gehrmann, P. Claudepierre, P. Mathieu, S. Unger, and E. Vignon. 

2001. “Tissue Inhibitor of Metalloprotease-1 (TIMP-1) Serum Level May Predict Pro-

gression of Hip Osteoarthritis.” Osteoarthritis and Cartilage 9 (4): 300–307. 

https://doi.org/10.1053/joca.2000.0389. 

Chevalier, and Eymard. 2019. “Anti-IL-1 for the Treatment of OA: Dead or Alive?” Nature Re-

views Rheumatology 15 (4): 191–92. https://doi.org/10.1038/s41584-019-0185-y. 

Chevalier, Eymard, and Richette. 2013. “Biologic Agents in Osteoarthritis: Hopes and Disap-

pointments.” Nature Reviews. Rheumatology 9 (7): 400–410. 

https://doi.org/10.1038/nrrheum.2013.44. 

Chiba, Ko, Andrew J. Burghardt, Makoto Osaki, and Sharmila Majumdar. 2014. “Three-

Dimensional Analysis of Subchondral Cysts in Hip Osteoarthritis: An Ex Vivo HR-

PQCT Study.” Bone 66 (September): 140–45. 

https://doi.org/10.1016/j.bone.2014.06.001. 

Chow, Yoke Yue, and Kok-Yong Chin. 2020. “The Role of Inflammation in the Pathogenesis of 

Osteoarthritis.” Mediators of Inflammation 2020 (March): e8293921. 

https://doi.org/10.1155/2020/8293921. 

Christidis, Nikolaos, Marika Doepel, EwaCarin Ekberg, Malin Ernberg, Yrsa Le Bell, and Maria 

Nilner. 2014. “Effectiveness of a Prefabricated Occlusal Appliance in Patients with Tem-

poromandibular Joint Pain: A Randomized Controlled Multicenter Study.” Journal of 

Oral & Facial Pain and Headache 28 (2): 128–37. https://doi.org/10.11607/ofph.1216. 

Chung, Geun-Seok Choi, Ki-Young Shin, and Joon-Soo Park. 2016. “Gait Changes after Using a 

Temporomandibular Joint Exerciser in Patients Who Underwent Lower Limb Joint Sur-

gery.” Journal of Physical Therapy Science 28 (5): 1584–87. 

https://doi.org/10.1589/jpts.28.1584. 



 

 

 234 

Chung, Sheng Wang, Ishraq Alshanqiti, Jiaxin Hu, and Jin Y. Ro. 2023. “The Degeneration-Pain 

Relationship in the Temporomandibular Joint: Current Understandings and Rodent Mod-

els.” Frontiers in Pain Research 4. 

https://www.frontiersin.org/articles/10.3389/fpain.2023.1038808. 

Claesson-Welsh, Lena, Elisabetta Dejana, and Donald M. McDonald. 2021. “Permeability of the 

Endothelial Barrier: Identifying and Reconciling Controversies.” Trends in Molecular 

Medicine 27 (4): 314–31. https://doi.org/10.1016/j.molmed.2020.11.006. 

Collins, Jamie E, Tuhina Neogi, and Elena Losina. 2021. “Trajectories of Structural Disease 

Progression in Knee Osteoarthritis.” Arthritis Care & Research 73 (9): 1354–62. 

https://doi.org/10.1002/acr.24340. 

Cömert Kiliç, S., N. Kiliç, and M.A. Sümbüllü. 2015. “Temporomandibular Joint Osteoarthritis: 

Cone Beam Computed Tomography Findings, Clinical Features, and Correlations.” In-

ternational Journal of Oral and Maxillofacial Surgery 44 (10): 1268–74. 

https://doi.org/10.1016/j.ijom.2015.06.023. 

Conceição, Heida Natali dos Santos, Tharcilla Calíope Azevêdo, Alcylene Carla de Jesus dos 

Santos, and Maria Rita Sancho Rios Xavier. 2022. “Comorbidities Associated with Tem-

poromandibular Joint Disorders and the Role of Central Sensitization: Literature Re-

view.” Brazilian Journal Of Pain 5 (1). https://doi.org/10.5935/2595-0118.20220003. 

Coussement, Kristof, and Dries F. Benoit. 2021. “Interpretable Data Science for Decision Mak-

ing.” Decision Support Systems, Interpretable Data Science For Decision Making, 150 

(November): 113664. https://doi.org/10.1016/j.dss.2021.113664. 

Crema, M.D., F.W. Roemer, M.D. Marra, J. Niu, J.A. Lynch, D.T. Felson, and A. Guermazi. 

2010. “CONTRAST-ENHANCED MRI OF SUBCHONDRAL CYSTS IN PATIENTS 

WITH OR AT RISK FOR KNEE OSTEOARTHRITIS: THE MOST STUDY.” Europe-

an Journal of Radiology 75 (1): e92–96. https://doi.org/10.1016/j.ejrad.2009.08.009. 

Cruz, Diogo, Francisca Monteiro, Maria Paço, Manuel Vaz-Silva, Carolina Lemos, Miguel 

Alves-Ferreira, and Teresa Pinho. 2022. “Genetic Overlap between Temporomandibular 

Disorders and Primary Headaches: A Systematic Review.” The Japanese Dental Science 

Review 58 (November): 69–88. https://doi.org/10.1016/j.jdsr.2022.02.002. 

Cuadra, Meritxell Bach, Julien Favre, and Patrick Omoumi. 2020. “Quantification in Musculo-

skeletal Imaging Using Computational Analysis and Machine Learning: Segmentation 

and Radiomics.” Seminars in Musculoskeletal Radiology 24 (01): 50–64. 

https://doi.org/10.1055/s-0039-3400268. 

Cui, Ning, Min Hu, and Raouf A. Khalil. 2017. “Biochemical and Biological Attributes of Ma-

trix Metalloproteinases.” Progress in Molecular Biology and Translational Science 147: 

1–73. https://doi.org/10.1016/bs.pmbts.2017.02.005. 

Czekay, Ralf-Peter, Cynthia E. Wilkins-Port, Stephen P. Higgins, Jennifer Freytag, Jessica M. 

Overstreet, R. Matthew Klein, Craig E. Higgins, Rohan Samarakoon, and Paul J. Higgins. 

2011. “PAI-1: An Integrator of Cell Signaling and Migration.” International Journal of 

Cell Biology 2011: 562481. https://doi.org/10.1155/2011/562481. 

D’Amore, John, MS, President, Informatics, Diameter Health, Sandra Mitchell, RPH, MSIS, 

FASHP, and J. P. Systems; HIMSS Members. 2020. “Electronic Health Record Data 

Governance and Data Quality in the Real World | HIMSS.” July 28, 2020. 

https://www.himss.org/resources/electronic-health-record-data-governance-and-data-

quality-real-world. 



 

 

 235 

Dash, Sabyasachi, Sushil Kumar Shakyawar, Mohit Sharma, and Sandeep Kaushik. 2019. “Big 

Data in Healthcare: Management, Analysis and Future Prospects.” Journal of Big Data 6 

(1): 54. https://doi.org/10.1186/s40537-019-0217-0. 

“Data Mining.” 2023. In Wikipedia. 

https://en.wikipedia.org/w/index.php?title=Data_mining&oldid=1173461237. 

Dawes, C., and D.T.W. Wong. 2019. “Role of Saliva and Salivary Diagnostics in the Advance-

ment of Oral Health.” Journal of Dental Research 98 (2): 133–41. 

https://doi.org/10.1177/0022034518816961. 

Delpachitra, S. N., and G. Dimitroulis. 2022. “Osteoarthritis of the Temporomandibular Joint: A 

Review of Aetiology and Pathogenesis.” British Journal of Oral and Maxillofacial Sur-

gery 60 (4): 387–96. https://doi.org/10.1016/j.bjoms.2021.06.017. 

Derwich, Marcin, Bartłomiej Górski, Elie Amm, and Elżbieta Pawłowska. 2023. “Oral Glu-

cosamine in the Treatment of Temporomandibular Joint Osteoarthritis: A Systematic Re-

view.” International Journal of Molecular Sciences 24 (5): 4925. 

https://doi.org/10.3390/ijms24054925. 

Derwich, Marcin, Maria Mitus-Kenig, and Elzbieta Pawlowska. 2020. “Interdisciplinary Ap-

proach to the Temporomandibular Joint Osteoarthritis—Review of the Literature.” Me-

dicina 56 (5): 225. https://doi.org/10.3390/medicina56050225. 

———. 2021. “Mechanisms of Action and Efficacy of Hyaluronic Acid, Corticosteroids and 

Platelet-Rich Plasma in the Treatment of Temporomandibular Joint Osteoarthritis—A 

Systematic Review.” International Journal of Molecular Sciences 22 (14): 7405. 

https://doi.org/10.3390/ijms22147405. 

Deveza, Leticia A, and Richard F Loeser. 2018. “Is Osteoarthritis One Disease or a Collection of 

Many?” Rheumatology (Oxford, England) 57 (Suppl 4): iv34–42. 

https://doi.org/10.1093/rheumatology/kex417. 

Di Paolo, Carlo, Anna D’Urso, Piero Papi, Francesco Di Sabato, Daniele Rosella, Giorgio 

Pompa, and Antonella Polimeni. 2017. “Temporomandibular Disorders and Headache: A 

Retrospective Analysis of 1198 Patients.” Pain Research & Management 2017: 3203027. 

https://doi.org/10.1155/2017/3203027. 

Doshi, Tina L., Donald R. Nixdorf, Claudia M. Campbell, and Srinivasa N. Raja. 2020. “Bi-

omarkers in Temporomandibular Disorder and Trigeminal Neuralgia: A Conceptual 

Framework for Understanding Chronic Pain.” Canadian Journal of Pain 4 (1): 1–18. 

https://doi.org/10.1080/24740527.2019.1709163. 

Doube, Michael, Michał M Kłosowski, Ignacio Arganda-Carreras, Fabrice P Cordelières, Robert 

P Dougherty, Jonathan S Jackson, Benjamin Schmid, John R Hutchinson, and Sandra J 

Shefelbine. 2010. “BoneJ: Free and Extensible Bone Image Analysis in ImageJ.” Bone 47 

(6): 1076–79. https://doi.org/10.1016/j.bone.2010.08.023. 

Dumast, Priscille de, Clément Mirabel, Lucia Cevidanes, Antonio Ruellas, Marilia Yatabe, Mar-

cos Ioshida, Nina Tubau Ribera, et al. 2018. “A Web-Based System for Neural Network 

Based Classification in Temporomandibular Joint Osteoarthritis.” Computerized Medical 

Imaging and Graphics: The Official Journal of the Computerized Medical Imaging So-

ciety 67 (July): 45–54. https://doi.org/10.1016/j.compmedimag.2018.04.009. 

Dumbuya, Aminata, Amanda Farias Gomes, Leonardo Marchini, Erliang Zeng, Carissa L. Com-

nick, and Saulo L. Sousa Melo. 2020. “Bone Changes in the Temporomandibular Joints 

of Older Adults: A Cone-Beam Computed Tomography Study.” Special Care in Dentis-

try: Official Publication of the American Association of Hospital Dentists, the Academy 



 

 

 236 

of Dentistry for the Handicapped, and the American Society for Geriatric Dentistry 40 

(1): 84–89. https://doi.org/10.1111/scd.12441. 

Dumont, Maxime, Juan Carlos Prieto, Serge Brosset, Lucia Cevidanes, Jonas Bianchi, Antonio 

Ruellas, Marcela Gurgel, et al. 2020. “Patient Specific Classification of Dental Root Ca-

nal and Crown Shape.” Shape in Medical Imaging: International Workshop, ShapeMI 

2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceed-

ings 12474 (October): 145–53. https://doi.org/10.1007/978-3-030-61056-2_12. 

Dworkin, S. F., and L. LeResche. 1992. “Research Diagnostic Criteria for Temporomandibular 

Disorders: Review, Criteria, Examinations and Specifications, Critique.” Journal of Cra-

niomandibular Disorders: Facial & Oral Pain 6 (4): 301–55. 

Dygas, Sebastian, Izabela Szarmach, and Ilona Radej. 2022. “Assessment of the Morphology and 

Degenerative Changes in the Temporomandibular Joint Using CBCT According to the 

Orthodontic Approach: A Scoping Review.” BioMed Research International 2022 (Feb-

ruary): e6863014. https://doi.org/10.1155/2022/6863014. 

Ebrahim, F. H., A. C. O. Ruellas, B. Paniagua, E. Benavides, K. Jepsen, L. Wolford, J. R. Gon-

calves, and L. H. S. Cevidanes. 2017. “ACCURACY OF BIOMARKERS OBTAINED 

FROM CONE BEAM COMPUTED TOMOGRAPHY IN ASSESSING THE 

INTERNAL TRABECULAR STRUCTURE OF THE MANDIBULAR CONDYLE.” 

Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 124 (6): 588. 

https://doi.org/10.1016/j.oooo.2017.08.013. 

Elmahdy, Mahmoud, and Ronnie Sebro. 2023. “Radiomics Analysis in Medical Imaging Re-

search.” Journal of Medical Radiation Sciences 70 (1): 3–7. 

https://doi.org/10.1002/jmrs.662. 

Embree, M., M. Ono, T. Kilts, D. Walker, J. Langguth, J. Mao, Y. Bi, J.L. Barth, and M. Young. 

2011. “Role of Subchondral Bone during Early-Stage Experimental TMJ Osteoarthritis.” 

Journal of Dental Research 90 (11): 1331–38. 

https://doi.org/10.1177/0022034511421930. 

Emshoff, I. Brandlmaier, R. Bösch, S. Gerhard, A. Rudisch, and S. Bertram. 2002. “Validation 

of the Clinical Diagnostic Criteria for Temporomandibular Disorders for the Diagnostic 

Subgroup - Disc Derangement with Reduction.” Journal of Oral Rehabilitation 29 (12): 

1139–45. https://doi.org/10.1046/j.1365-2842.2002.00980.x. 

Emshoff, Rüdiger, Annika Bertram, Linus Hupp, and Ansgar Rudisch. 2021. “A Logistic Analy-

sis Prediction Model of TMJ Condylar Erosion in Patients with TMJ Arthralgia.” BMC 

Oral Health 21 (1): 374. https://doi.org/10.1186/s12903-021-01687-w. 

Emshoff, Rüdiger, Felix Bertram, Dagmar Schnabl, Robert Stigler, Otto Steinmaßl, and Ansgar 

Rudisch. 2016. “Condylar Erosion in Patients With Chronic Temporomandibular Joint 

Arthralgia: A Cone-Beam Computed Tomography Study.” Journal of Oral and Maxillo-

facial Surgery 74 (7): 1343.e1-1343.e8. https://doi.org/10.1016/j.joms.2016.01.029. 

Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, 

and Sebastian Thrun. 2017. “Dermatologist-Level Classification of Skin Cancer with 

Deep Neural Networks.” Nature 542 (7639): 115–18. 

https://doi.org/10.1038/nature21056. 

Faber, Jorge, Carolina Faber, and Pedro Faber. 2019. “Artificial Intelligence in Orthodontics.” 

APOS Trends in Orthodontics 9 (4): 201–5. https://doi.org/10.25259/APOS_123_2019. 



 

 

 237 

Farhadian, Maryam, Fatemeh Salemi, Samira Saati, and Nika Nafisi. 2019. “Dental Age Estima-

tion Using the Pulp-to-Tooth Ratio in Canines by Neural Networks.” Imaging Science in 

Dentistry 49 (1): 19–26. https://doi.org/10.5624/isd.2019.49.1.19. 

Favaretto, Maddalena, David Shaw, Eva De Clercq, Tim Joda, and Bernice Simone Elger. 2020. 

“Big Data and Digitalization in Dentistry: A Systematic Review of the Ethical Issues.” 

International Journal of Environmental Research and Public Health 17 (7): 2495. 

https://doi.org/10.3390/ijerph17072495. 

Favero, Marta, Elisa Belluzzi, Giovanni Trisolino, Mary B Goldring, Steven R Goldring, Augus-

to Cigolotti, Assunta Pozzuoli, et al. 2019. “Inflammatory Molecules Produced by Me-

niscus and Synovium in Early and End-Stage Osteoarthritis: A Coculture Study.” Journal 

of Cellular Physiology 234 (7): 11176–87. https://doi.org/10.1002/jcp.27766. 

Fedorov, Andriy, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet, Jean-Christophe 

Fillion-Robin, Sonia Pujol, Christian Bauer, et al. 2012. “3D Slicer as an Image Compu-

ting Platform for the Quantitative Imaging Network.” Magnetic Resonance Imaging 30 

(9): 1323–41. https://doi.org/10.1016/j.mri.2012.05.001. 

Felson, D. T. 1993. “The Course of Osteoarthritis and Factors That Affect It.” Rheumatic Dis-

eases Clinics of North America 19 (3): 607–15. 

Ferrazzo, K. L., L. B. Osório, and V. A. Ferrazzo. 2013. “CT Images of a Severe TMJ Osteoar-

thritis and Differential Diagnosis with Other Joint Disorders.” Case Reports in Dentistry 

2013: 242685. https://doi.org/10.1155/2013/242685. 

Ferrillo, Martina, Amerigo Giudice, Nicola Marotta, Francesco Fortunato, Daniela Di Venere, 

Antonio Ammendolia, Pietro Fiore, and Alessandro de Sire. 2022. “Pain Management 

and Rehabilitation for Central Sensitization in Temporomandibular Disorders: A Com-

prehensive Review.” International Journal of Molecular Sciences 23 (20): 12164. 

https://doi.org/10.3390/ijms232012164. 

Fields, James K., Sebastian Günther, and Eric J. Sundberg. 2019. “Structural Basis of IL-1 Fami-

ly Cytokine Signaling.” Frontiers in Immunology 10. 

https://www.frontiersin.org/articles/10.3389/fimmu.2019.01412. 

Finkelstein, Joseph, Frederick Zhang, Seth A. Levitin, and David Cappelli. 2020. “Using Big 

Data to Promote Precision Oral Health in the Context of a Learning Healthcare System.” 

Journal of Public Health Dentistry 80 (Suppl 1): S43–58. 

https://doi.org/10.1111/jphd.12354. 

Finnilä, Mikko A. J., Jérôme Thevenot, Olli-Matti Aho, Virpi Tiitu, Jari Rautiainen, Sami Kaup-

pinen, Miika T. Nieminen, et al. 2017. “Association between Subchondral Bone Structure 

and Osteoarthritis Histopathological Grade.” Journal of Orthopaedic Research 35 (4): 

785–92. https://doi.org/10.1002/jor.23312. 

Fischl, Bruce. 2012. “FreeSurfer.” NeuroImage 62 (2): 774–81. 

https://doi.org/10.1016/j.neuroimage.2012.01.021. 

Forsgren, Sture. 2009. “New Data Favouring That Neurotrophins Are of Importance in Arthri-

tis.” Arthritis Research & Therapy 11 (4): 122. https://doi.org/10.1186/ar2754. 

Frank, Michael, Dimitris Drikakis, and Vassilis Charissis. 2020. “Machine-Learning Methods for 

Computational Science and Engineering.” Computation 8 (1): 15. 

https://doi.org/10.3390/computation8010015. 

Fransès, R.E., D.F. McWilliams, P.I. Mapp, and D.A. Walsh. 2010. “Osteochondral Angiogene-

sis and Increased Protease Inhibitor Expression in OA.” Osteoarthritis and Cartilage 18 

(4): 563–71. https://doi.org/10.1016/j.joca.2009.11.015. 



 

 

 238 

Gaballah, Abdellatif, Naglaa A. Hussein, Moustafa Risk, Noha Elsawy, and Somaya Elabasiry. 

2016. “Correlation between Synovial Vascular Endothelial Growth Factor, Clinical, 

Functional and Radiological Manifestations in Knee Osteoarthritis.” The Egyptian Rheu-

matologist 38 (1): 29–34. https://doi.org/10.1016/j.ejr.2015.01.002. 

Garstka, Adam Andrzej, Monika Brzózka, Aleksandra Bitenc-Jasiejko, Roman Ardan, Helena 

Gronwald, Piotr Skomro, and Danuta Lietz-Kijak. 2022. “Cause-Effect Relationships be-

tween Painful TMD and Postural and Functional Changes in the Musculoskeletal System: 

A Preliminary Report.” Pain Research and Management 2022 (February): e1429932. 

https://doi.org/10.1155/2022/1429932. 

Geoffroy, Valérie, Caroline Marty-Morieux, Nathalie Le Goupil, Phillippe Clement-Lacroix, 

Catherine Terraz, Monique Frain, Sophie Roux, Jérome Rossert, and Marie Christine de 

Vernejoul. 2004. “In Vivo Inhibition of Osteoblastic Metalloproteinases Leads to In-

creased Trabecular Bone Mass.” Journal of Bone and Mineral Research 19 (5): 811–22. 

https://doi.org/10.1359/jbmr.040119. 

Georgiev, Tsvetoslav, Mariana Ivanova, Aleksandar Kopchev, Tsvetelina Velikova, Asen Mi-

loshov, Ekaterina Kurteva, Kalina Yuzeir, et al. 2018. “Cartilage Oligomeric Protein, 

Matrix Metalloproteinase-3, and Coll2-1 as Serum Biomarkers in Knee Osteoarthritis: A 

Cross-Sectional Study.” Rheumatology International 38 (5): 821–30. 

https://doi.org/10.1007/s00296-017-3887-y. 

Ghaffar Nia, Nafiseh, Erkan Kaplanoglu, and Ahad Nasab. 2023. “Evaluation of Artificial Intel-

ligence Techniques in Disease Diagnosis and Prediction.” Discover Artificial Intelligence 

3 (1): 5. https://doi.org/10.1007/s44163-023-00049-5. 

Ghassemi, Marzyeh, Tristan Naumann, Peter Schulam, Andrew L. Beam, Irene Y. Chen, and 

Rajesh Ranganath. 2020. “A Review of Challenges and Opportunities in Machine Learn-

ing for Health.” AMIA Summits on Translational Science Proceedings 2020 (May): 191–

200. 

Gholami, Raoof, and Nikoo Fakhari. 2017. “Chapter 27 - Support Vector Machine: Principles, 

Parameters, and Applications.” In Handbook of Neural Computation, edited by Pijush 

Samui, Sanjiban Sekhar, and Valentina E. Balas, 515–35. Academic Press. 

https://doi.org/10.1016/B978-0-12-811318-9.00027-2. 

Giatromanolaki, Alexandra, Efthimios Sivridis, Efstratios Maltezos, Nick Athanassou, Dimitrios 

Papazoglou, Kevin C Gatter, Adrian L Harris, and Michael I Koukourakis. 2003. “Up-

regulated Hypoxia Inducible Factor-1α and -2α Pathway in Rheumatoid Arthritis and Os-

teoarthritis.” Arthritis Research & Therapy 5 (4): R193–201. 

https://doi.org/10.1186/ar756. 

Girish, V., and A. Vijayalakshmi. 2004. “Affordable Image Analysis Using NIH Image/ImageJ.” 

Indian Journal of Cancer 41 (1): 47. 

Glyn-Jones, S., A. J. R. Palmer, R. Agricola, A. J. Price, T. L. Vincent, H. Weinans, and A. J. 

Carr. 2015. “Osteoarthritis.” Lancet (London, England) 386 (9991): 376–87. 

https://doi.org/10.1016/S0140-6736(14)60802-3. 

Gogas, Periklis, and Theophilos Papadimitriou. 2021. “Machine Learning in Economics and Fi-

nance.” Computational Economics 57 (1): 1–4. https://doi.org/10.1007/s10614-021-

10094-w. 

Gohari, Kimiya, Anoshirvan Kazemnejad, Marjan Mohammadi, Farzad Eskandari, Samaneh Sa-

beri, Maryam Esmaieli, and Ali Sheidaei. 2023. “A Bayesian Latent Class Extension of 

Naive Bayesian Classifier and Its Application to the Classification of Gastric Cancer Pa-



 

 

 239 

tients.” BMC Medical Research Methodology 23 (1): 190. 

https://doi.org/10.1186/s12874-023-02013-4. 

Gordon, Kelly J., and Gerard C. Blobe. 2008. “Role of Transforming Growth Factor-Beta Super-

family Signaling Pathways in Human Disease.” Biochimica Et Biophysica Acta 1782 (4): 

197–228. https://doi.org/10.1016/j.bbadis.2008.01.006. 

Grimsley-Myers, Cynthia M., Robin H. Isaacson, Chantel M. Cadwell, Jazmin Campos, Marina 

S. Hernandes, Kenneth R. Myers, Tadahiko Seo, William Giang, Kathy K. Griendling, 

and Andrew P. Kowalczyk. 2020. “VE-Cadherin Endocytosis Controls Vascular Integrity 

and Patterning during Development.” The Journal of Cell Biology 219 (5): e201909081. 

https://doi.org/10.1083/jcb.201909081. 

Gudivada, V., A. Apon, and Junhua Ding. 2017. “Data Quality Considerations for Big Data and 

Machine Learning: Going Beyond Data Cleaning and Transformations.” In . 

https://www.semanticscholar.org/paper/Data-Quality-Considerations-for-Big-Data-and-

Going-Gudivada-Apon/625a9e9822603b79f754c4ce044760f7363b5eb6. 

Guo, Wen, Pengcheng Xu, Tianbo Jin, Jihong Wang, Dongsheng Fan, Zengtao Hao, Yuntao Ji, 

et al. 2017. “MMP-3 Gene Polymorphisms Are Associated with Increased Risk of Osteo-

arthritis in Chinese Men.” Oncotarget 8 (45): 79491–97. 

https://doi.org/10.18632/oncotarget.18493. 

Gupta, Om Prakash Kharbanda, Viren Sardana, Rajiv Balachandran, and Harish Kumar Sardana. 

2016. “Accuracy of 3D Cephalometric Measurements Based on an Automatic 

Knowledge-Based Landmark Detection Algorithm.” International Journal of Computer 

Assisted Radiology and Surgery 11 (7): 1297–1309. https://doi.org/10.1007/s11548-015-

1334-7. 

Gupta, Saurabh, Kenneth E. McCarson, K.m.a. Welch, and Nancy E.J. Berman. 2011. “Mecha-

nisms of Pain Modulation by Sex Hormones in Migraine.” Headache: The Journal of 

Head and Face Pain 51 (6): 905–22. https://doi.org/10.1111/j.1526-4610.2011.01908.x. 

Haeusler, G., I. Walter, M. Helmreich, and M. Egerbacher. 2005. “Localization of Matrix Metal-

loproteinases, (MMPs) Their Tissue Inhibitors, and Vascular Endothelial Growth Factor 

(VEGF) in Growth Plates of Children and Adolescents Indicates a Role for MMPs in 

Human Postnatal Growth and Skeletal Maturation.” Calcified Tissue International 76 (5): 

326–35. https://doi.org/10.1007/s00223-004-0161-6. 

Haghnegahdar, A.A., S. Kolahi, L. Khojastepour, and F. Tajeripour. 2018. “Diagnosis of Tem-

promandibular Disorders Using Local Binary Patterns.” Journal of Biomedical Physics & 

Engineering 8 (1): 87–96. 

Hajian-Tilaki, Karimollah. 2013. “Receiver Operating Characteristic (ROC) Curve Analysis for 

Medical Diagnostic Test Evaluation.” Caspian Journal of Internal Medicine 4 (2): 627–

35. 

Halilaj, E., Y. Le, J. L. Hicks, T. J. Hastie, and S. L. Delp. 2018. “Modeling and Predicting Os-

teoarthritis Progression: Data from the Osteoarthritis Initiative.” Osteoarthritis and Carti-

lage 26 (12): 1643–50. https://doi.org/10.1016/j.joca.2018.08.003. 

Hamilton, John L., Masashi Nagao, Brett R. Levine, Di Chen, Bjorn R. Olsen, and Hee-Jeong 

Im. 2016. “Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and As-

sociated Pain.” Journal of Bone and Mineral Research : The Official Journal of the 

American Society for Bone and Mineral Research 31 (5): 911–24. 

https://doi.org/10.1002/jbmr.2828. 



 

 

 240 

Hapfelmeier, Alexander, Roman Hornung, and Bernhard Haller. 2023. “Efficient Permutation 

Testing of Variable Importance Measures by the Example of Random Forests.” Computa-

tional Statistics & Data Analysis 181 (May): 107689. 

https://doi.org/10.1016/j.csda.2022.107689. 

Haraden, Collin A., Janet L. Huebner, Ming-Feng Hsueh, Yi-Ju Li, and Virginia Byers Kraus. 

2019. “Synovial Fluid Biomarkers Associated with Osteoarthritis Severity Reflect Mac-

rophage and Neutrophil Related Inflammation.” Arthritis Research & Therapy 21: 146. 

https://doi.org/10.1186/s13075-019-1923-x. 

Haralick, Robert M., K. Shanmugam, and Its’Hak Dinstein. 1973. “Textural Features for Image 

Classification.” IEEE Transactions on Systems, Man, and Cybernetics SMC-3 (6): 610–

21. https://doi.org/10.1109/TSMC.1973.4309314. 

Haringman, J. J., J. Ludikhuize, and P. P. Tak. 2004. “Chemokines in Joint Disease: The Key to 

Inflammation?” Annals of the Rheumatic Diseases 63 (10): 1186–94. 

https://doi.org/10.1136/ard.2004.020529. 

Harrar, Khaled, Khadidja Messaoudene, and Mohammed Ammar. 2018. “Combining GLCM 

with LBP Features for Knee Osteoarthritis Prediction: Data from the Osteoarthritis Initia-

tive.” ICST Transactions on Scalable Information Systems, July, 171550. 

https://doi.org/10.4108/eai.20-10-2021.171550. 

Harris, Alex H. S., Alfred C. Kuo, Thomas R. Bowe, Luisa Manfredi, Narlina F. Lalani, and 

Nicholas J. Giori. 2021. “Can Machine Learning Methods Produce Accurate and Easy-to-

Use Preoperative Prediction Models of One-Year Improvements in Pain and Functioning 

After Knee Arthroplasty?” The Journal of Arthroplasty 36 (1): 112-117.e6. 

https://doi.org/10.1016/j.arth.2020.07.026. 

Harris, Alex H. S., Alfred C. Kuo, Yingjie Weng, Amber W. Trickey, Thomas Bowe, and Nicho-

las J. Giori. 2019. “Can Machine Learning Methods Produce Accurate and Easy-to-Use 

Prediction Models of 30-Day Complications and Mortality After Knee or Hip Arthroplas-

ty?” Clinical Orthopaedics and Related Research 477 (2): 452–60. 

https://doi.org/10.1097/CORR.0000000000000601. 

Harris, and Nelson. 2010. “VE-Cadherin: At the Front, Center, and Sides of Endothelial Cell 

Organization and Function.” Current Opinion in Cell Biology 22 (5): 651–58. 

https://doi.org/10.1016/j.ceb.2010.07.006. 

Hassaine, Abdelaali, Gholamreza Salimi-Khorshidi, Dexter Canoy, and Kazem Rahimi. 2020. 

“Untangling the Complexity of Multimorbidity with Machine Learning.” Mechanisms of 

Ageing and Development 190 (September): 111325. 

https://doi.org/10.1016/j.mad.2020.111325. 

Hassija, Vikas, Vinay Chamola, Atmesh Mahapatra, Abhinandan Singal, Divyansh Goel, Kaizhu 

Huang, Simone Scardapane, Indro Spinelli, Mufti Mahmud, and Amir Hussain. 2023. 

“Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence.” Cog-

nitive Computation, August. https://doi.org/10.1007/s12559-023-10179-8. 

Hawker, G. A., and L. S. Lohmander. 2021. “What an Earlier Recognition of Osteoarthritis Can 

Do for OA Prevention.” Osteoarthritis and Cartilage 29 (12): 1632–34. 

https://doi.org/10.1016/j.joca.2021.08.007. 

Haynes, Mark K., Eric L. Hume, and J. Bruce Smith. 2002. “Phenotypic Characterization of In-

flammatory Cells from Osteoarthritic Synovium and Synovial Fluids.” Clinical Immunol-

ogy 105 (3): 315–25. https://doi.org/10.1006/clim.2002.5283. 



 

 

 241 

He, Jianwei, Weiwei Cao, Inayat Azeem, Qiang Zhao, and Zengwu Shao. 2017. “Transforming 

Growth Factor Beta1 Being Considered a Novel Biomarker in Knee Osteoarthritis.” 

Clinica Chimica Acta 472 (September): 96–101. 

https://doi.org/10.1016/j.cca.2017.07.021. 

Heinrichs, John H., and Jeen-Su Lim. 2003. “Integrating Web-Based Data Mining Tools with 

Business Models for Knowledge Management.” Decision Support Systems 35 (1): 103–

12. https://doi.org/10.1016/S0167-9236(02)00098-2. 

Heisinger, Stephan, Wolfgang Hitzl, Gerhard M. Hobusch, Reinhard Windhager, and Sebastian 

Cotofana. 2020. “Predicting Total Knee Replacement from Symptomology and Radio-

graphic Structural Change Using Artificial Neural Networks-Data from the Osteoarthritis 

Initiative (OAI).” Journal of Clinical Medicine 9 (5): 1298. 

https://doi.org/10.3390/jcm9051298. 

Helgeland, Espen, Siddharth Shanbhag, Torbjørn Ostvik Pedersen, Kamal Mustafa, and Annika 

Rosén. 2018. “Scaffold-Based Temporomandibular Joint Tissue Regeneration in Experi-

mental Animal Models: A Systematic ReviewAn Abstract of This Article Was Presented 

as a Poster, at The Bergen Stem Cell Consortium (BSCC), Annual Meeting, Bergen, 

Norway, September 3–4, 2017.” Tissue Engineering Part B: Reviews 24 (4): 300–316. 

https://doi.org/10.1089/ten.teb.2017.0429. 

Helmons, Pieter J., Bas O. Suijkerbuijk, Prashant V. Nannan Panday, and Jos G. W. Kosterink. 

2015. “Drug-Drug Interaction Checking Assisted by Clinical Decision Support: A Return 

on Investment Analysis.” Journal of the American Medical Informatics Association: 

JAMIA 22 (4): 764–72. https://doi.org/10.1093/jamia/ocu010. 

Henrotin, Laurence Pesesse, and Cecile Lambert. 2014. “Targeting the Synovial Angiogenesis as 

a Novel Treatment Approach to Osteoarthritis.” Therapeutic Advances in Musculoskele-

tal Disease 6 (1): 20–34. https://doi.org/10.1177/1759720X13514669. 

Henrotin, Y. 2022. “Osteoarthritis in Year 2021: Biochemical Markers.” Osteoarthritis and Car-

tilage 30 (2): 237–48. https://doi.org/10.1016/j.joca.2021.11.001. 

Hicks, Steven A., Inga Strümke, Vajira Thambawita, Malek Hammou, Michael A. Riegler, Pål 

Halvorsen, and Sravanthi Parasa. 2021. “On Evaluation Metrics for Medical Applications 

of Artificial Intelligence.” medRxiv. https://doi.org/10.1101/2021.04.07.21254975. 

———. 2022. “On Evaluation Metrics for Medical Applications of Artificial Intelligence.” Sci-

entific Reports 12 (April): 5979. https://doi.org/10.1038/s41598-022-09954-8. 

Hilgenberg-Sydney, Priscila Brenner, Danielle Veiga Bonotto, José Stechman-Neto, Liete 

Figueiredo Zwir, Camila Pachêco-Pereira, Graziela De Luca Canto, and André Luís Por-

poratti. 2018. “Diagnostic Validity of CT to Assess Degenerative Temporomandibular 

Joint Disease: A Systematic Review.” Dentomaxillofacial Radiology 47 (5): 20170389. 

https://doi.org/10.1259/dmfr.20170389. 

Hirvasniemi, Jukka, Stefan Klein, Sita Bierma-Zeinstra, Meike W. Vernooij, Dieuwke Schiphof, 

and Edwin H. G. Oei. 2021. “A Machine Learning Approach to Distinguish between 

Knees without and with Osteoarthritis Using MRI-Based Radiomic Features from Tibial 

Bone.” European Radiology 31 (11): 8513–21. https://doi.org/10.1007/s00330-021-

07951-5. 

Hu, Xiao Chen, Sicheng Wang, Yingying Jing, and Jiacan Su. 2021. “Subchondral Bone Micro-

environment in Osteoarthritis and Pain.” Bone Research 9 (1): 1–13. 

https://doi.org/10.1038/s41413-021-00147-z. 



 

 

 242 

Hu, Yueqi Chen, Ce Dou, and Shiwu Dong. 2021. “Microenvironment in Subchondral Bone: 

Predominant Regulator for the Treatment of Osteoarthritis.” Annals of the Rheumatic 

Diseases 80 (4): 413–22. https://doi.org/10.1136/annrheumdis-2020-218089. 

Hu, Kai, and Bjorn R. Olsen. 2016. “Osteoblast-Derived VEGF Regulates Osteoblast Differenti-

ation and Bone Formation during Bone Repair.” The Journal of Clinical Investigation 

126 (2): 509–26. https://doi.org/10.1172/JCI82585. 

Huber, Manuel, Christoph Kurz, and Reiner Leidl. 2019. “Predicting Patient-Reported Outcomes 

Following Hip and Knee Replacement Surgery Using Supervised Machine Learning.” 

BMC Medical Informatics and Decision Making 19 (1): 3. 

https://doi.org/10.1186/s12911-018-0731-6. 

Huddleston Slater, Lobbezoo, and Naeije. 2002. “Mandibular Movement Characteristics of an 

Anterior Disc Displacement with Reduction.” Journal of Orofacial Pain 16 (2): 135–42. 

Hügle, Thomas, and Jeroen Geurts. 2017. “What Drives Osteoarthritis?-Synovial versus Sub-

chondral Bone Pathology.” Rheumatology (Oxford, England) 56 (9): 1461–71. 

https://doi.org/10.1093/rheumatology/kew389. 

Hussain, A. M., G. Packota, P. W. Major, and C. Flores-Mir. 2008. “Role of Different Imaging 

Modalities in Assessment of Temporomandibular Joint Erosions and Osteophytes: A Sys-

tematic Review.” Dento Maxillo Facial Radiology 37 (2): 63–71. 

https://doi.org/10.1259/dmfr/16932758. 

Hwang, Hye-Won, Jun-Ho Moon, Min-Gyu Kim, Richard E. Donatelli, and Shin-Jae Lee. 2021. 

“Evaluation of Automated Cephalometric Analysis Based on the Latest Deep Learning 

Method.” The Angle Orthodontist 91 (3): 329–35. https://doi.org/10.2319/021220-100.1. 

Ibáñez, Lidia, Paloma Guillem-Llobat, Marta Marín, and María Isabel Guillén. 2022. “Connec-

tion between Mesenchymal Stem Cells Therapy and Osteoclasts in Osteoarthritis.” Inter-

national Journal of Molecular Sciences 23 (9): 4693. 

https://doi.org/10.3390/ijms23094693. 

Ibi, Miho, Sawa Horie, Seiko Kyakumoto, Naoyuki Chosa, Mariko Yoshida, Masaharu Kamo, 

Masato Ohtsuka, and Akira Ishisaki. 2018. “Cell-Cell Interactions between Mono-

cytes/Macrophages and Synoviocyte-like Cells Promote Inflammatory Cell Infiltration 

Mediated by Augmentation of MCP-1 Production in Temporomandibular Joint.” Biosci-

ence Reports 38 (2): BSR20171217. https://doi.org/10.1042/BSR20171217. 

Ida-Yonemochi, Hiroko, Yurie Yamada, Hiroyuki Yoshikawa, and Kenji Seo. 2017. “Locally 

Produced BDNF Promotes Sclerotic Change in Alveolar Bone after Nerve Injury.” PLOS 

ONE 12 (1): e0169201. https://doi.org/10.1371/journal.pone.0169201. 

Ioshida, Marcos, Brian Andres Muñoz, Hector Rios, Lucia Cevidanes, Juan Fernando Aristiza-

bal, Diego Rey, Hera Kim-Berman, et al. 2019. “Accuracy and Reliability of Mandibular 

Digital Model Registration with Use of the Mucogingival Junction as the Reference.” 

Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 127 (4): 351–60. 

https://doi.org/10.1016/j.oooo.2018.10.003. 

Ishibashi, Kyota, Eiji Sasaki, Seiya Ota, Daisuke Chiba, Yuji Yamamoto, Eiichi Tsuda, Sugi-

mura Yoshikuni, Kazushige Ihara, and Yasuyuki Ishibashi. 2020. “Detection of Synovitis 

in Early Knee Osteoarthritis by MRI and Serum Biomarkers in Japanese General Popula-

tion.” Scientific Reports 10 (1): 12310. https://doi.org/10.1038/s41598-020-69328-w. 

Ishii, H., H. Tanaka, K. Katoh, H. Nakamura, M. Nagashima, and S. Yoshino. 2002. “Character-

ization of Infiltrating T Cells and Th1/Th2-Type Cytokines in the Synovium of Patients 



 

 

 243 

with Osteoarthritis.” Osteoarthritis and Cartilage 10 (4): 277–81. 

https://doi.org/10.1053/joca.2001.0509. 

Ita, Meagan E., Prabesh Ghimire, Eric J. Granquist, and Beth A. Winkelstein. 2022. “MMPs in 

Tissues Retrieved during Surgery from Patients with TMJ Disorders Relate to Pain More 

than to Radiological Damage Score.” Journal of Orthopaedic Research 40 (2): 338–47. 

https://doi.org/10.1002/jor.25048. 

Iwasaki, L.R., Y.M. Gonzalez, Y. Liu, H. Liu, M. Markova, L.M. Gallo, and J.C. Nickel. 2017. 

“TMJ Energy Densities in Healthy Men and Women.” Osteoarthritis and Cartilage 25 

(6): 846–49. https://doi.org/10.1016/j.joca.2016.12.027. 

Jalloul, Reem, H. K. Chethan, and Ramez Alkhatib. 2023. “A Review of Machine Learning 

Techniques for the Classification and Detection of Breast Cancer from Medical Images.” 

Diagnostics 13 (14): 2460. https://doi.org/10.3390/diagnostics13142460. 

Jang, Dan-in, A-Hyeon Lee, Hye-Yoon Shin, Hyo-Ryeong Song, Jong-Hwi Park, Tae-Bong 

Kang, Sang-Ryong Lee, and Seung-Hoon Yang. 2021. “The Role of Tumor Necrosis 

Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Thera-

peutics.” International Journal of Molecular Sciences 22 (5): 2719. 

https://doi.org/10.3390/ijms22052719. 

Janvier, T., R. Jennane, A. Valery, K. Harrar, M. Delplanque, C. Lelong, D. Loeuille, H. Toumi, 

and E. Lespessailles. 2017. “Subchondral Tibial Bone Texture Analysis Predicts Knee 

Osteoarthritis Progression: Data from the Osteoarthritis Initiative: Tibial Bone Texture & 

Knee OA Progression.” Osteoarthritis and Cartilage 25 (2): 259–66. 

https://doi.org/10.1016/j.joca.2016.10.005. 

Jarecki, Jaromir, Teresa Małecka-Masalska, Ewa Kosior-Jarecka, Wojciech Widuchowski, Piotr 

Krasowski, Martina Gutbier, Maciej Dobrzyński, and Tomasz Blicharski. 2022. “Concen-

tration of Selected Metalloproteinases and Osteocalcin in the Serum and Synovial Fluid 

of Obese Women with Advanced Knee Osteoarthritis.” International Journal of Envi-

ronmental Research and Public Health 19 (6): 3530. 

https://doi.org/10.3390/ijerph19063530. 

Jasim, Hajer, Anders Carlsson, Britt Hedenberg-Magnusson, Bijar Ghafouri, and Malin Ernberg. 

2018. “Saliva as a Medium to Detect and Measure Biomarkers Related to Pain.” Scien-

tific Reports 8 (February). https://doi.org/10.1038/s41598-018-21131-4. 

Jasim, Hajer, Bijar Ghafouri, Björn Gerdle, Britt Hedenberg-Magnusson, and Malin Ernberg. 

2020. “Altered Levels of Salivary and Plasma Pain Related Markers in Temporoman-

dibular Disorders.” The Journal of Headache and Pain 21 (1): 105. 

https://doi.org/10.1186/s10194-020-01160-z. 

Jehan, Frédéric, Mylène Zarka, Guillaume de la Houssaye, Joëlle Veziers, Agnès Ostertag, Mar-

tine Cohen‐Solal, and Valérie Geoffroy. 2022. “New Insights into the Role of Matrix 

Metalloproteinase 3 (MMP3) in Bone.” FASEB BioAdvances 4 (8): 524–38. 

https://doi.org/10.1096/fba.2021-00092. 

Jenei-Lanzl, Zsuzsa, Andrea Meurer, and Frank Zaucke. 2019. “Interleukin-1β Signaling in Os-

teoarthritis - Chondrocytes in Focus.” Cellular Signalling 53 (January): 212–23. 

https://doi.org/10.1016/j.cellsig.2018.10.005. 

Jeon, Hye-Mi, Yong-Woo Ahn, Soo-Min Ok, Hye-Min Ju, Kyung-Hwa Jung, Eun-Young Kwon, 

and Sung-Hee Jeong. 2022. “A Large Subchondral Cyst in an Osteoarthritic Temporo-

mandibular Joint: A Case Report.” Journal of Oral Medicine and Pain 47 (1): 67–71. 

https://doi.org/10.14476/jomp.2022.47.1.67. 



 

 

 244 

Jha, Nayansi, Kwang-sig Lee, and Yoon-Ji Kim. 2022. “Diagnosis of Temporomandibular Dis-

orders Using Artificial Intelligence Technologies: A Systematic Review and Meta-

Analysis.” PLOS ONE 17 (8): e0272715. https://doi.org/10.1371/journal.pone.0272715. 

Jiang, Tammy, Jaimie L. Gradus, and Anthony J. Rosellini. 2020. “Supervised Machine Learn-

ing: A Brief Primer.” Behavior Therapy 51 (5): 675–87. 

https://doi.org/10.1016/j.beth.2020.05.002. 

Jiao, Kai, Li-Na Niu, Mei-Qing Wang, Juan Dai, Shi-Bin Yu, Xiao-Dong Liu, and Jun Wang. 

2011. “Subchondral Bone Loss Following Orthodontically Induced Cartilage Degrada-

tion in the Mandibular Condyles of Rats.” Bone 48 (2): 362–71. 

https://doi.org/10.1016/j.bone.2010.09.010. 

Jiao, M. Zhang, L. Niu, S. Yu, G. Zhen, L. Xian, B. Yu, et al. 2014. “Overexpressed TGF-β in 

Subchondral Bone Leads to Mandibular Condyle Degradation.” Journal of Dental Re-

search 93 (2): 140–47. https://doi.org/10.1177/0022034513513034. 

Joda, Tim, Tuomas Waltimo, Christiane Pauli-Magnus, Nicole Probst-Hensch, and Nicola U. 

Zitzmann. 2018. “Population-Based Linkage of Big Data in Dental Research.” Interna-

tional Journal of Environmental Research and Public Health 15 (11): 2357. 

https://doi.org/10.3390/ijerph15112357. 

Joda, Tim, Tuomas Waltimo, Nicole Probst-Hensch, Christiane Pauli-Magnus, and Nicola U. 

Zitzmann. 2019. “Health Data in Dentistry: An Attempt to Master the Digital Challenge.” 

Public Health Genomics 22 (1–2): 1–7. https://doi.org/10.1159/000501643. 

Johnson, Kevin B., Wei‐Qi Wei, Dilhan Weeraratne, Mark E. Frisse, Karl Misulis, Kyu Rhee, 

Juan Zhao, and Jane L. Snowdon. 2021. “Precision Medicine, AI, and the Future of Per-

sonalized Health Care.” Clinical and Translational Science 14 (1): 86–93. 

https://doi.org/10.1111/cts.12884. 

Jung, and Tae-Woo Kim. 2016. “New Approach for the Diagnosis of Extractions with Neural 

Network Machine Learning.” American Journal of Orthodontics and Dentofacial Ortho-

pedics: Official Publication of the American Association of Orthodontists, Its Constituent 

Societies, and the American Board of Orthodontics 149 (1): 127–33. 

https://doi.org/10.1016/j.ajodo.2015.07.030. 

Jung, Won, Kyung-Eun Lee, and Bong-Jik Suh. 2022. “Comparison of Clinical and Radiological 

Characteristics of Temporomandibular Joint Osteoarthritis in Older and Young People.” 

The Open Dentistry Journal 16 (1). https://doi.org/10.2174/18742106-v16-e2112290. 

Kaggie, Joshua D, Rob Tovey, James MacKay, Fiona J Gilbert, Ferdia Gallagher, Andrew 

McCaskie, and Martin J Graves. 2018. “Automated Textural Classification of Osteoar-

thritis Magnetic Resonance Images.” 

Kaimal, Shanti, Mansur Ahmad, Wenjun Kang, Donald Nixdorf, and Eric L. Schiffman. 2018. 

“Diagnostic Accuracy of Panoramic Radiography and MRI for Detecting Signs of TMJ 

Degenerative Joint Disease.” General Dentistry 66 (4): 34–40. 

Kaji, Hiroshi. 2016. “Adipose Tissue-Derived Plasminogen Activator Inhibitor-1 Function and 

Regulation.” In Comprehensive Physiology, 1873–96. John Wiley & Sons, Ltd. 

https://doi.org/10.1002/cphy.c160004. 

Kalogera, Stefania, Mylène P. Jansen, Anne-Christine Bay-Jensen, Peder Frederiksen, Morten A. 

Karsdal, Christian S. Thudium, and Simon C. Mastbergen. 2023. “Relevance of Bi-

omarkers in Serum vs. Synovial Fluid in Patients with Knee Osteoarthritis.” International 

Journal of Molecular Sciences 24 (11): 9483. https://doi.org/10.3390/ijms24119483. 



 

 

 245 

Kamarudin, Adina Najwa, Trevor Cox, and Ruwanthi Kolamunnage-Dona. 2017. “Time-

Dependent ROC Curve Analysis in Medical Research: Current Methods and Applica-

tions.” BMC Medical Research Methodology 17 (1): 53. https://doi.org/10.1186/s12874-

017-0332-6. 

Kang, Jeong-Hyun. 2020. “Associations Among Temporomandibular Joint Osteoarthritis, Air-

way Dimensions, and Head and Neck Posture.” Journal of Oral and Maxillofacial Sur-

gery 78 (12): 2183.e1-2183.e12. https://doi.org/10.1016/j.joms.2020.08.006. 

Kapos, Flavia Penteado, Fernando Gustavo Exposto, Juan Fernando Oyarzo, and Justin Durham. 

2020. “Temporomandibular Disorders: A Review of Current Concepts in Aetiology, Di-

agnosis and Management.” Oral Surgery 13 (4): 321–34. 

https://doi.org/10.1111/ors.12473. 

Kashif, Muhammad, Thomas M. Deserno, Daniel Haak, and Stephan Jonas. 2016. “Feature De-

scription with SIFT, SURF, BRIEF, BRISK, or FREAK? A General Question Answered 

for Bone Age Assessment.” Computers in Biology and Medicine 68 (January): 67–75. 

https://doi.org/10.1016/j.compbiomed.2015.11.006. 

Kaspiris, Angelos, Argyris C. Hadjimichael, Ioanna Lianou, Ilias D. Iliopoulos, Dimitrios Ntou-

rantonis, Dimitra Melissaridou, Olga D. Savvidou, Evangelia Papadimitriou, and Ef-

stathios Chronopoulos. 2023. “Subchondral Bone Cyst Development in Osteoarthritis: 

From Pathophysiology to Bone Microarchitecture Changes and Clinical Implementa-

tions.” Journal of Clinical Medicine 12 (3): 815. https://doi.org/10.3390/jcm12030815. 

Kaspiris, L. Khaldi, T. B. Grivas, E. Vasiliadis, I. Kouvaras, S. Dagkas, E. Chronopoulos, and E. 

Papadimitriou. 2013. “Subchondral Cyst Development and MMP-1 Expression during 

Progression of Osteoarthritis: An Immunohistochemical Study.” Orthopaedics & Trau-

matology: Surgery & Research 99 (5): 523–29. 

https://doi.org/10.1016/j.otsr.2013.03.019. 

Keemu, Hannes, Felix Vaura, Anu Maksimow, Mikael Maksimow, Aleksi Jokela, Maija 

Hollmén, and Keijo Mäkelä. 2021. “Novel Biomarkers for Diagnosing Periprosthetic 

Joint Infection from Synovial Fluid and Serum.” JBJS Open Access 6 (2): e20.00067. 

https://doi.org/10.2106/JBJS.OA.20.00067. 

Kellesarian, Sergio Varela, Abdulaziz A. Al-Kheraif, Fahim Vohra, Alexis Ghanem, Hans 

Malmstrom, Georgios E. Romanos, and Fawad Javed. 2016. “Cytokine Profile in the 

Synovial Fluid of Patients with Temporomandibular Joint Disorders: A Systematic Re-

view.” Cytokine 77 (January): 98–106. https://doi.org/10.1016/j.cyto.2015.11.005. 

Khanagar, Sanjeev B., Ali Al-Ehaideb, Satish Vishwanathaiah, Prabhadevi C. Maganur, Shan-

kargouda Patil, Sachin Naik, Hosam A. Baeshen, and Sachin S. Sarode. 2021. “Scope and 

Performance of Artificial Intelligence Technology in Orthodontic Diagnosis, Treatment 

Planning, and Clinical Decision-Making - A Systematic Review.” Journal of Dental Sci-

ences 16 (1): 482–92. https://doi.org/10.1016/j.jds.2020.05.022. 

Kim, Jin-Hwa, Soo-Min Ok, Jun-Young Heo, Kyung-Hee Kim, Sung-Hee Jeong, Yong-Woo 

Ahn, and Myung-Yun Ko. n.d. “The Clinical and Radiographic Features of Patients with 

Temporomandibular Joint Osteoarthritis” 39 (1): 2–9. 

Kim, Seong-Gyu Ko, Eun-Kyoung Lee, and Boyoung Jung. 2019. “The Relationship between 

Spinal Pain and Temporomandibular Joint Disorders in Korea: A Nationwide Propensity 

Score-Matched Study.” BMC Musculoskeletal Disorders 20 (1): 631. 

https://doi.org/10.1186/s12891-019-3003-4. 



 

 

 246 

Kim, Sang Min Park, Hyun-Jae Cho, and Ji Woon Park. 2021. “The Relationship Between Pri-

mary Sleep Disorders and Temporomandibular Disorders: An 8-Year Nationwide Cohort 

Study in South Korea.” International Journal of General Medicine 14 (October): 7121–

31. https://doi.org/10.2147/IJGM.S331387. 

Kim, Aleksandra Wojczyńska, and Jeong-Yun Lee. 2016. “The Incidence of Osteoarthritic 

Change on Computed Tomography of Korean Temporomandibular Disorder Patients Di-

agnosed by RDC/TMD; a Retrospective Study.” Acta Odontologica Scandinavica 74 (5): 

337–42. https://doi.org/10.3109/00016357.2015.1136678. 

Kim, Gwanghyun Yang, Jumi Park, Jene Choi, Eunju Kang, and Bu-Kyu Lee. 2019. “Therapeu-

tic Effect of Mesenchymal Stem Cells Derived from Human Umbilical Cord in Rabbit 

Temporomandibular Joint Model of Osteoarthritis.” Scientific Reports 9 (1): 13854. 

https://doi.org/10.1038/s41598-019-50435-2. 

Kirk, William S., and Benjamin S. Kirk. 2006. “A Biomechanical Basis for Primary Arthroplasty 

of the Temporomandibular Joint.” Oral and Maxillofacial Surgery Clinics of North 

America, Modern Surgical Management of the Temporomandibular Joint, 18 (3): 345–

68. https://doi.org/10.1016/j.coms.2006.03.006. 

Kishimoto, Koji, Shumei Liu, Takanori Tsuji, Karen A. Olson, and Guo-Fu Hu. 2005. “Endoge-

nous Angiogenin in Endothelial Cells Is a General Requirement for Cell Proliferation and 

Angiogenesis.” Oncogene 24 (3): 445–56. https://doi.org/10.1038/sj.onc.1208223. 

Kitaura, Hideki, Aseel Marahleh, Fumitoshi Ohori, Takahiro Noguchi, Wei-Ren Shen, Jiawei Qi, 

Yasuhiko Nara, Adya Pramusita, Ria Kinjo, and Itaru Mizoguchi. 2020. “Osteocyte-

Related Cytokines Regulate Osteoclast Formation and Bone Resorption.” International 

Journal of Molecular Sciences 21 (14): 5169. https://doi.org/10.3390/ijms21145169. 

Kline, Adrienne, Hanyin Wang, Yikuan Li, Saya Dennis, Meghan Hutch, Zhenxing Xu, Fei 

Wang, Feixiong Cheng, and Yuan Luo. 2022. “Multimodal Machine Learning in Preci-

sion Health: A Scoping Review.” Npj Digital Medicine 5 (1): 1–14. 

https://doi.org/10.1038/s41746-022-00712-8. 

Koç, Nagihan. 2020. “Evaluation of Osteoarthritic Changes in the Temporomandibular Joint and 

Their Correlations with Age: A Retrospective CBCT Study.” Dental and Medical Prob-

lems 57 (1): 67–72. https://doi.org/10.17219/dmp/112392. 

Koch, A. E., M. V. Volin, J. M. Woods, S. L. Kunkel, M. A. Connors, L. A. Harlow, D. C. 

Woodruff, M. D. Burdick, and R. M. Strieter. 2001. “Regulation of Angiogenesis by the 

C-X-C Chemokines Interleukin-8 and Epithelial Neutrophil Activating Peptide 78 in the 

Rheumatoid Joint.” Arthritis and Rheumatism 44 (1): 31–40. 

https://doi.org/10.1002/1529-0131(200101)44:1<31::AID-ANR5>3.0.CO;2-4. 

Kocher, Martin, Maximilian I. Ruge, Norbert Galldiks, and Philipp Lohmann. 2020. “Applica-

tions of Radiomics and Machine Learning for Radiotherapy of Malignant Brain Tumors.” 

Strahlentherapie Und Onkologie 196 (10): 856–67. https://doi.org/10.1007/s00066-020-

01626-8. 

Kohli, Sarvraj Singh, and Virinder Singh Kohli. 2011. “Role of RANKL–

RANK/Osteoprotegerin Molecular Complex in Bone Remodeling and Its Immunopatho-

logic Implications.” Indian Journal of Endocrinology and Metabolism 15 (3): 175–81. 

https://doi.org/10.4103/2230-8210.83401. 

Kök, Hatice, Ayse Merve Acilar, and Mehmet Said İzgi. 2019. “Usage and Comparison of Arti-

ficial Intelligence Algorithms for Determination of Growth and Development by Cervical 



 

 

 247 

Vertebrae Stages in Orthodontics.” Progress in Orthodontics 20 (November): 41. 

https://doi.org/10.1186/s40510-019-0295-8. 

Kokkotis, Christos, Charis Ntakolia, Serafeim Moustakidis, Giannis Giakas, and Dimitrios 

Tsaopoulos. 2022. “Explainable Machine Learning for Knee Osteoarthritis Diagnosis 

Based on a Novel Fuzzy Feature Selection Methodology.” Physical and Engineering Sci-

ences in Medicine 45 (1): 219–29. https://doi.org/10.1007/s13246-022-01106-6. 

Kokol, Peter, Marko Kokol, and Sašo Zagoranski. 2022. “Machine Learning on Small Size Sam-

ples: A Synthetic Knowledge Synthesis.” Science Progress 105 (1): 

00368504211029777. https://doi.org/10.1177/00368504211029777. 

Kothari, Simple Futarmal, Lene Baad-Hansen, Lars Bolvig Hansen, Niels Bang, Leif Hovgaard 

Sørensen, Helle Wulf Eskildsen, and Peter Svensson. 2016. “Pain Profiling of Patients 

with Temporomandibular Joint Arthralgia and Osteoarthritis Diagnosed with Different 

Imaging Techniques.” The Journal of Headache and Pain 17 (1): 61. 

https://doi.org/10.1186/s10194-016-0653-6. 

Kraan, Peter M. van der. 2022. “Inhibition of Transforming Growth Factor-β in Osteoarthritis. 

Discrepancy with Reduced TGFβ Signaling in Normal Joints.” Osteoarthritis and Carti-

lage Open 4 (1): 100238. https://doi.org/10.1016/j.ocarto.2022.100238. 

Kraan, Peter M. van der, and Wim B. van den Berg. 2007. “Osteophytes: Relevance and Biolo-

gy.” Osteoarthritis and Cartilage 15 (3): 237–44. 

https://doi.org/10.1016/j.joca.2006.11.006. 

Krause, Adam J., Aric A. Prather, Tor D. Wager, Martin A. Lindquist, and Matthew P. Walker. 

2019. “The Pain of Sleep Loss: A Brain Characterization in Humans.” Journal of Neuro-

science 39 (12): 2291–2300. https://doi.org/10.1523/JNEUROSCI.2408-18.2018. 

Kriegeskorte, Nikolaus. 2015. “Deep Neural Networks: A New Framework for Modeling Bio-

logical Vision and Brain Information Processing.” Annual Review of Vision Science 1 (1): 

417–46. https://doi.org/10.1146/annurev-vision-082114-035447. 

Krishnamoorthy, Bhuvana, NS Mamatha, and Vinod AR Kumar. 2013. “TMJ Imaging by 

CBCT: Current Scenario.” Annals of Maxillofacial Surgery 3 (1): 80–83. 

https://doi.org/10.4103/2231-0746.110069. 

Kristensen, K. D., P. Alstergren, P. Stoustrup, A. Küseler, T. Herlin, and T. K. Pedersen. 2014. 

“Cytokines in Healthy Temporomandibular Joint Synovial Fluid.” Journal of Oral Reha-

bilitation 41 (4): 250–56. https://doi.org/10.1111/joor.12146. 

La Touche, Roy, Alba Paris-Alemany, Amanda Hidalgo-Pérez, Ibai López-de-Uralde-

Villanueva, Santiago Angulo-Diaz-Parreño, and Daniel Muñoz-García. 2018. “Evidence 

for Central Sensitization in Patients with Temporomandibular Disorders: A Systematic 

Review and Meta-Analysis of Observational Studies.” Pain Practice 18 (3): 388–409. 

https://doi.org/10.1111/papr.12604. 

Lai, Jung-Pin, Ying-Lei Lin, Ho-Chuan Lin, Chih-Yuan Shih, Yu-Po Wang, and Ping-Feng Pai. 

2023. “Tree-Based Machine Learning Models with Optuna in Predicting Impedance Val-

ues for Circuit Analysis.” Micromachines 14 (2): 265. 

https://doi.org/10.3390/mi14020265. 

Lamot, Urška, Primož Strojan, and Katarina Šurlan Popovič. 2013. “Magnetic Resonance Imag-

ing of Temporomandibular Joint Dysfunction-Correlation with Clinical Symptoms, Age, 

and Gender.” Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 116 (2): 

258–63. https://doi.org/10.1016/j.oooo.2013.04.019. 



 

 

 248 

Lan, Kai-Wen, Jia-Min Chen, Liu-Lin Jiang, Yi-Fan Feng, and Ying Yan. 2022. “Treatment of 

Condylar Osteophyte in Temporomandibular Joint Osteoarthritis with Muscle Balance 

Occlusal Splint and Long-Term Follow-up: A Case Report.” World Journal of Clinical 

Cases 10 (13): 4264–72. https://doi.org/10.12998/wjcc.v10.i13.4264. 

Lange-Brokaar, B. J. E. de, A. Ioan-Facsinay, G. J. V. M. van Osch, A.-M. Zuurmond, J. 

Schoones, R. E. M. Toes, T. W. J. Huizinga, and M. Kloppenburg. 2012. “Synovial In-

flammation, Immune Cells and Their Cytokines in Osteoarthritis: A Review.” Osteoar-

thritis and Cartilage 20 (12): 1484–99. https://doi.org/10.1016/j.joca.2012.08.027. 

Larheim, A-K Abrahamsson, M Kristensen, and L Z Arvidsson. 2015. “Temporomandibular 

Joint Diagnostics Using CBCT.” Dentomaxillofacial Radiology 44 (1): 20140235. 

https://doi.org/10.1259/dmfr.20140235. 

Larheim, Tore A. 2005. “Role of Magnetic Resonance Imaging in the Clinical Diagnosis of the 

Temporomandibular Joint.” Cells, Tissues, Organs 180 (1): 6–21. 

https://doi.org/10.1159/000086194. 

Larroza, Andrés, Vicente Bodí, David Moratal, Andrés Larroza, Vicente Bodí, and David Mora-

tal. 2016. “Texture Analysis in Magnetic Resonance Imaging: Review and Considera-

tions for Future Applications.” In Assessment of Cellular and Organ Function and Dys-

function Using Direct and Derived MRI Methodologies. IntechOpen. 

https://doi.org/10.5772/64641. 

Latourte, Augustin, Chahrazad Cherifi, Jérémy Maillet, Hang-Korng Ea, Wafa Bouaziz, Thomas 

Funck-Brentano, Martine Cohen-Solal, Eric Hay, and Pascal Richette. 2017. “Systemic 

Inhibition of IL-6/Stat3 Signalling Protects against Experimental Osteoarthritis.” Annals 

of the Rheumatic Diseases 76 (4): 748–55. https://doi.org/10.1136/annrheumdis-2016-

209757. 

Lavigne, G.J., and B.J Sessle. 2016. “The Neurobiology of Orofacial Pain and Sleep and Their 

Interactions.” Journal of Dental Research 95 (10): 1109–16. 

https://doi.org/10.1177/0022034516648264. 

Lee, and Q.-Schick Auh. 2022. “Comparison of Sleep Quality Deterioration by Subgroup of 

Painful Temporomandibular Disorder Based on Diagnostic Criteria for Temporomandib-

ular Disorders.” Scientific Reports 12 (1): 9026. https://doi.org/10.1038/s41598-022-

12976-x. 

Lee, Il Ki Hong, and Yang‐Hyun Chun. 2019. “Prediction of Painful Temporomandibular Joint 

Osteoarthritis in Juvenile Patients Using Bone Scintigraphy.” Clinical and Experimental 

Dental Research 5 (3): 225–35. https://doi.org/10.1002/cre2.175. 

Lee, Dae-Jung Kim, Sang-Goo Lee, and Jin-Woo Chung. 2012. “A Longitudinal Study on the 

Osteoarthritic Change of the Temporomandibular Joint Based on 1-Year Follow-up 

Computed Tomography.” Journal of Cranio-Maxillo-Facial Surgery: Official Publica-

tion of the European Association for Cranio-Maxillo-Facial Surgery 40 (8): e223-228. 

https://doi.org/10.1016/j.jcms.2011.10.023. 

Lee, Cheolkyu Park, Hyung Joon Kim, Yong Deok Lee, Zang Hee Lee, Yeong Wook Song, and 

Hong-Hee Kim. 2017. “Stimulation of Osteoclast Migration and Bone Resorption by C-C 

Chemokine Ligands 19 and 21.” Experimental & Molecular Medicine 49 (7): e358. 

https://doi.org/10.1038/emm.2017.100. 

Lee, Hee-Kyung Park, Q.-Schick Auh, Haram Nah, Jae Seo Lee, Ho-Jin Moon, Dong Nyoung 

Heo, In San Kim, and Il Keun Kwon. 2020. “Emerging Potential of Exosomes in Regen-



 

 

 249 

erative Medicine for Temporomandibular Joint Osteoarthritis.” International Journal of 

Molecular Sciences 21 (4): 1541. https://doi.org/10.3390/ijms21041541. 

Lee, Alexander R. Stanton, Austin E. Schumacher, Edmond Truelove, and Lars G. Hollender. 

2019. “Osteoarthritis of the Temporomandibular Joint and Increase of the Horizontal 

Condylar Angle: A Longitudinal Study.” Oral Surgery, Oral Medicine, Oral Pathology 

and Oral Radiology 127 (4): 339–50. https://doi.org/10.1016/j.oooo.2018.12.014. 

Lee, Yung-Tsan Wu, Wu-Chien Chien, Chi-Hsiang Chung, Liang-Cheng Chen, and Yi-Shing 

Shieh. 2020. “The Prevalence of First-Onset Temporomandibular Disorder in Low Back 

Pain and Associated Risk Factors.” Medicine 99 (3): e18686. 

https://doi.org/10.1097/MD.0000000000018686. 

Lee, Yu, Min-ji Kim, Kim, and Choi. 2020. “Automated Cephalometric Landmark Detection 

with Confidence Regions Using Bayesian Convolutional Neural Networks.” BMC Oral 

Health 20 (1): 270. https://doi.org/10.1186/s12903-020-01256-7. 

Lenard, Anna, Elin Ellertsdottir, Lukas Herwig, Alice Krudewig, Loïc Sauteur, Heinz-Georg 

Belting, and Markus Affolter. 2013. “In Vivo Analysis Reveals a Highly Stereotypic 

Morphogenetic Pathway of Vascular Anastomosis.” Developmental Cell 25 (5): 492–506. 

https://doi.org/10.1016/j.devcel.2013.05.010. 

Leung, Kevin, Bofei Zhang, Jimin Tan, Yiqiu Shen, Krzysztof                             J. Geras, James                         

S. Babb, Kyunghyun Cho, Gregory Chang, and Cem                         M. Deniz. 2020. 

“Prediction of Total Knee Replacement and Diagnosis of Osteoarthritis                     by 

Using Deep Learning on Knee Radiographs: Data from the Osteoarthritis                     Ini-

tiative.” Radiology 296 (3): 584–93. https://doi.org/10.1148/radiol.2020192091. 

Li, Chang-hong, Lin-lin Xu, Jin-xia Zhao, Lin Sun, Zhong-qiang Yao, Xiao-li Deng, Rui Liu, 

Lin Yang, Rui Xing, and Xiang-yuan Liu. 2016. “CXCL16 Upregulates RANKL Expres-

sion in Rheumatoid Arthritis Synovial Fibroblasts through the JAK2/STAT3 and 

P38/MAPK Signaling Pathway.” Inflammation Research: Official Journal of the Europe-

an Histamine Research Society ... [et Al.] 65 (3): 193–202. 

https://doi.org/10.1007/s00011-015-0905-y. 

Li, Guangzhao Guan, Li Mei, Kai Jiao, and Huang Li. 2021. “Pathological Mechanism of Chon-

drocytes and the Surrounding Environment during Osteoarthritis of Temporomandibular 

Joint.” Journal of Cellular and Molecular Medicine 25 (11): 4902–11. 

https://doi.org/10.1111/jcmm.16514. 

Li, Deyu Kong, Tian Tang, Di Su, Pu Yang, Huixia Wang, Zhihe Zhao, and Yang Liu. 2019. 

“Orthodontic Treatment Planning Based on Artificial Neural Networks.” Scientific Re-

ports 9 (1): 2037. https://doi.org/10.1038/s41598-018-38439-w. 

Li, and Leung. 2021. “Temporomandibular Disorders: Current Concepts and Controversies in 

Diagnosis and Management.” Diagnostics 11 (3): 459. 

https://doi.org/10.3390/diagnostics11030459. 

Li, Zhenxing Li, Yuyan Li, Xi Hu, Yu Zhang, and Pei Fan. 2020. “Profiling of Inflammatory 

Mediators in the Synovial Fluid Related to Pain in Knee Osteoarthritis.” BMC Musculo-

skeletal Disorders 21 (1): 99. https://doi.org/10.1186/s12891-020-3120-0. 

Li, Wei Luo, Shou-An Zhu, and Guang-Hua Lei. 2017. “T Cells in Osteoarthritis: Alterations 

and Beyond.” Frontiers in Immunology 8: 356. 

https://doi.org/10.3389/fimmu.2017.00356. 

Li, Yiying Mai, Peihua Cao, Xin Wen, Tianxiang Fan, Xiaoshuai Wang, Guangfeng Ruan, Su’an 

Tang, Changhai Ding, and Zhaohua Zhu. 2022. “Relative Efficacy and Safety of Anti-



 

 

 250 

Inflammatory Biologic Agents for Osteoarthritis: A Conventional and Network Meta-

Analysis.” Journal of Clinical Medicine 11 (14). https://doi.org/10.3390/jcm11143958. 

Li, Jie Pan, Hongqi Chen, Yongliang Fang, and Yang Sun. 2022. “CXCR6-Based Immunothera-

py in Autoimmune, Cancer and Inflammatory Infliction.” Acta Pharmaceutica Sinica. B 

12 (8): 3255–62. https://doi.org/10.1016/j.apsb.2022.03.012. 

Li, Yu Wang, Sumanta Basu, Karl Kumbier, and Bin Yu. 2019. “A Debiased MDI Feature Im-

portance Measure for Random Forests.” arXiv. http://arxiv.org/abs/1906.10845. 

Li, Jimin Yin, Junjie Gao, Tak S. Cheng, Nathan J. Pavlos, Changqing Zhang, and Ming H. 

Zheng. 2013. “Subchondral Bone in Osteoarthritis: Insight into Risk Factors and Micro-

structural Changes.” Arthritis Research & Therapy 15 (6): 223. 

https://doi.org/10.1186/ar4405. 

Liang, Xin, Shuming Liu, Xingmin Qu, Zhihui Wang, Jianbo Zheng, Xiaoyan Xie, Guowu Ma, 

Zuyan Zhang, and Xuchen Ma. 2017. “Evaluation of Trabecular Structure Changes in 

Osteoarthritis of the Temporomandibular Joint with Cone Beam Computed Tomography 

Imaging.” Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 124 (3): 

315–22. https://doi.org/10.1016/j.oooo.2017.05.514. 

Liang, Xin, Zuyan Zhang, Jianping Gu, Zhihui Wang, Bart Vandenberghe, Reinhilde Jacobs, Jie 

Yang, Guowu Ma, Haibin Ling, and Xuchen Ma. 2017. “Comparison of Micro-CT and 

Cone Beam CT on the Feasibility of Assessing Trabecular Structures in Mandibular Con-

dyle.” Dento Maxillo Facial Radiology 46 (5): 20160435. 

https://doi.org/10.1259/dmfr.20160435. 

Liang, Joshua Xu, Meilang Xue, and Christopher J. Jackson. 2016. “Matrix Metalloproteinases 

in Bone Development and Pathology: Current Knowledge and Potential Clinical Utility.” 

Metalloproteinases In Medicine 3 (December): 93–102. 

https://doi.org/10.2147/MNM.S92187. 

Liem, Yulia, Andrew Judge, Yunfei Li, and Mohammed Sharif. 2022. “Biochemical, Clinical, 

Demographic and Imaging Biomarkers for Disease Progression in Knee Osteoarthritis.” 

Biomarkers in Medicine 16 (8): 633–45. https://doi.org/10.2217/bmm-2021-0579. 

Limchaichana, N., H. Nilsson, E. C. Ekberg, M. Nilner, and A. Petersson. 2007. “Clinical Diag-

noses and MRI Findings in Patients with TMD Pain.” Journal of Oral Rehabilitation 34 

(4): 237–45. https://doi.org/10.1111/j.1365-2842.2006.01719.x. 

Lin, Fan-ching, and Howard A. Young. 2014. “Interferons: Success in Anti-Viral Immunothera-

py.” Cytokine & Growth Factor Reviews 25 (4): 369–76. 

https://doi.org/10.1016/j.cytogfr.2014.07.015. 

Linardatos, Pantelis, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. 2021. “Explainable AI: A 

Review of Machine Learning Interpretability Methods.” Entropy 23 (1): 18. 

https://doi.org/10.3390/e23010018. 

Ling, S. M., D. D. Patel, P. Garnero, M. Zhan, M. Vaduganathan, D. Muller, D. Taub, et al. 

2009. “Serum Protein Signatures Detect Early Radiographic Osteoarthritis.” Osteoarthri-

tis and Cartilage 17 (1): 43–48. https://doi.org/10.1016/j.joca.2008.05.004. 

Lisignoli, Gina, Stefania Toneguzzi, Anna Piacentini, Sandra Cristino, Francesco Grassi, Carola 

Cavallo, and Andrea Facchini. 2006. “CXCL12 (SDF-1) and CXCL13 (BCA-1) Chemo-

kines Significantly Induce Proliferation and Collagen Type I Expression in Osteoblasts 

from Osteoarthritis Patients.” Journal of Cellular Physiology 206 (1): 78–85. 

https://doi.org/10.1002/jcp.20435. 



 

 

 251 

Liu. 2010. “Feature Selection.” In Encyclopedia of Machine Learning, edited by Claude Sammut 

and Geoffrey I. Webb, 402–6. Boston, MA: Springer US. https://doi.org/10.1007/978-0-

387-30164-8_306. 

Liu, Yu Chai, Guanqiao Liu, Weiping Su, Qiaoyue Guo, Xiao Lv, Peisong Gao, et al. 2021. “Os-

teoclasts Protect Bone Blood Vessels against Senescence through the Angiogenin/Plexin-

B2 Axis.” Nature Communications 12 (1): 1832. https://doi.org/10.1038/s41467-021-

22131-1. 

Liu, Shuo Chen, Dawei Geng, Jie Lei, Jiankang Zhang, Liangliang Li, Yucheng Lin, et al. 2022. 

“Local Drug-Induced Modulation of Gp130 Receptor Signaling Delays Disease Progres-

sion in a Pig Model of Temporo-Mandibular Joint Osteoarthritis.” Frontiers in Dental 

Medicine 3. https://www.frontiersin.org/articles/10.3389/fdmed.2022.937819. 

Liu, Liangliang, Jing Chang, Pei Zhang, Qingzhi Ma, Hui Zhang, Tong Sun, and Hongbo Qiao. 

2023. “A Joint Multi-Modal Learning Method for Early-Stage Knee Osteoarthritis Dis-

ease Classification.” Heliyon 9 (4): e15461. 

https://doi.org/10.1016/j.heliyon.2023.e15461. 

Liu, Roderick J. Tan, and Youhua Liu. 2020. “The Many Faces of Matrix Metalloproteinase-7 in 

Kidney Diseases.” Biomolecules 10 (6): 960. https://doi.org/10.3390/biom10060960. 

Lohmann, Philipp, Martin Kocher, Maximillian I. Ruge, Veerle Visser-Vandewalle, N. Jon Shah, 

Gereon R. Fink, Karl-Josef Langen, and Norbert Galldiks. 2020. “PET/MRI Radiomics in 

Patients With Brain Metastases.” Frontiers in Neurology 11. 

https://www.frontiersin.org/articles/10.3389/fneur.2020.00001. 

Look, John O., Eric L. Schiffman, Edmond L. Truelove, and Mansur Ahmad. 2010. “Reliability 

and Validity of Axis I of the Research Diagnostic Criteria for Temporomandibular Disor-

ders (RDC/TMD) with Proposed Revisions.” Journal of Oral Rehabilitation 37 (10): 

744–59. https://doi.org/10.1111/j.1365-2842.2010.02121.x. 

Lu, Ke, Feng Ma, Dan Yi, Huan Yu, Liping Tong, and Di Chen. 2021. “Molecular Signaling in 

Temporomandibular Joint Osteoarthritis.” Journal of Orthopaedic Translation 32 (Sep-

tember): 21–27. https://doi.org/10.1016/j.jot.2021.07.001. 

Lu, Anjin Liu, Yiliao Song, and Guangquan Zhang. 2020. “Data-Driven Decision Support under 

Concept Drift in Streamed Big Data.” Complex & Intelligent Systems 6 (1): 157–63. 

https://doi.org/10.1007/s40747-019-00124-4. 

Ludin, A., J. J. Sela, A. Schroeder, Y. Samuni, D. W. Nitzan, and G. Amir. 2013. “Injection of 

Vascular Endothelial Growth Factor into Knee Joints Induces Osteoarthritis in Mice.” 

Osteoarthritis and Cartilage 21 (3): 491–97. https://doi.org/10.1016/j.joca.2012.12.003. 

Ma, Yuanjun, Xiaohua Chen, Feng He, Shi Li, Rui He, Qian Liu, Qingshan Dong, et al. 2022. 

“Low Frequency Pulsed Electromagnetic Fields Exposure Alleviate the Abnormal Sub-

chondral Bone Remodeling at the Early Stage of Temporomandibular Joint Osteoarthri-

tis.” BMC Musculoskeletal Disorders 23 (1): 987. https://doi.org/10.1186/s12891-022-

05916-3. 

MacKay, James W., Geeta Kapoor, Jeffrey B. Driban, Grace H. Lo, Timothy E. McAlindon, An-

doni P. Toms, Andrew W. McCaskie, and Fiona J. Gilbert. 2018. “Association of Sub-

chondral Bone Texture on Magnetic Resonance Imaging with Radiographic Knee Osteo-

arthritis Progression: Data from the Osteoarthritis Initiative Bone Ancillary Study.” Eu-

ropean Radiology 28 (11): 4687–95. https://doi.org/10.1007/s00330-018-5444-9. 

Mackie, Tamara, Najla Al Turkestani, Jonas Bianchi, Tengfei Li, Antonio Ruellas, Marcela 

Gurgel, Erika Benavides, Fabiana Soki, and Lucia Cevidanes. 2022. “Quantitative Bone 



 

 

 252 

Imaging Biomarkers and Joint Space Analysis of the Articular Fossa in Temporomandib-

ular Joint Osteoarthritis Using Artificial Intelligence Models.” Frontiers in Dental Medi-

cine 3. https://www.frontiersin.org/articles/10.3389/fdmed.2022.1007011. 

Madrid, Juan, Silvia Ruiz-España, Tania Piñeiro-Vidal, José Manuel Santabarbara, Alicia M. 

Maceira, and David Moratal. 2022. “Texture Analysis in MRI of the Knee for an Early 

Diagnosis of Osteoarthritis.” In 2022 44th Annual International Conference of the IEEE 

Engineering in Medicine & Biology Society (EMBC), 493–96. 

https://doi.org/10.1109/EMBC48229.2022.9871296. 

Manfredini, Daniele, Luca Guarda-Nardini, Ephraim Winocur, Fabio Piccotti, Jari Ahlberg, and 

Frank Lobbezoo. 2011. “Research Diagnostic Criteria for Temporomandibular Disorders: 

A Systematic Review of Axis I Epidemiologic Findings.” Oral Surgery, Oral Medicine, 

Oral Pathology, Oral Radiology, and Endodontology 112 (4): 453–62. 

https://doi.org/10.1016/j.tripleo.2011.04.021. 

Manfredini, Daniele, Marzia Segù, Niki Arveda, Luca Lombardo, Giuseppe Siciliani, Alessandro 

Rossi, and Luca Guarda-Nardini. 2016. “Temporomandibular Joint Disorders in Patients 

With Different Facial Morphology. A Systematic Review of the Literature.” Journal of 

Oral and Maxillofacial Surgery 74 (1): 29–46. 

https://doi.org/10.1016/j.joms.2015.07.006. 

Marias, Kostas. 2021. “The Constantly Evolving Role of Medical Image Processing in Oncolo-

gy: From Traditional Medical Image Processing to Imaging Biomarkers and Radiomics.” 

Journal of Imaging 7 (8): 124. https://doi.org/10.3390/jimaging7080124. 

Massilla Mani, and S. Satha Sivasubramanian. 2016. “A Study of Temporomandibular Joint Os-

teoarthritis Using Computed Tomographic Imaging.” Biomedical Journal 39 (3): 201–6. 

https://doi.org/10.1016/j.bj.2016.06.003. 

Matheus, H. R., Ş D. Özdemir, and F. P. S. Guastaldi. 2022. “Stem Cell-Based Therapies for 

Temporomandibular Joint Osteoarthritis and Regeneration of Cartilage/Osteochondral 

Defects: A Systematic Review of Preclinical Experiments.” Osteoarthritis and Cartilage 

30 (9): 1174–85. https://doi.org/10.1016/j.joca.2022.05.006. 

Matsuzaki, Koichi. 2013. “Smad Phospho-Isoforms Direct Context-Dependent TGF-β Signal-

ing.” Cytokine & Growth Factor Reviews 24 (4): 385–99. 

https://doi.org/10.1016/j.cytogfr.2013.06.002. 

Mayerhoefer, Marius E., Andrzej Materka, Georg Langs, Ida Häggström, Piotr Szczypiński, Pe-

ter Gibbs, and Gary Cook. 2020. “Introduction to Radiomics.” Journal of Nuclear Medi-

cine 61 (4): 488–95. https://doi.org/10.2967/jnumed.118.222893. 

Mehana, El-Sayed E., Asmaa F. Khafaga, and Samar S. El-Blehi. 2019. “The Role of Matrix 

Metalloproteinases in Osteoarthritis Pathogenesis: An Updated Review.” Life Sciences 

234 (October): 116786. https://doi.org/10.1016/j.lfs.2019.116786. 

Mehndiratta, Anurag, Jyoti Kumar, Alpana Manchanda, Ishwar Singh, Sujata Mohanty, Novee 

Seth, and Richa Gautam. 2019. “Painful Clicking Jaw: A Pictorial Review of Internal De-

rangement of the Temporomandibular Joint.” Polish Journal of Radiology 84 (Decem-

ber): e598–615. https://doi.org/10.5114/pjr.2019.92287. 

Mello, Christiane-Espinola-Bandeira, José-Luiz-Góes Oliveira, Alan-Chester-Feitosa Jesus, 

Mila-Leite-de Moraes Maia, Jonielly-Costa-Vasconcelos de Santana, Loren-Suyane-

Oliveira Andrade, Jullyana-de Souza Siqueira Quintans, Lucindo-José Quintans-Junior, 

Paulo-César-Rodrigues Conti, and Leonardo-Rigoldi Bonjardim. 2012. “Temporoman-



 

 

 253 

dibular Disorders in Headache Patients.” Medicina Oral, Patología Oral y Cirugía Bucal 

17 (6): e1042–46. https://doi.org/10.4317/medoral.18007. 

Mélou, Caroline, Pascal Pellen-Mussi, Sylvie Jeanne, Agnès Novella, Sylvie Tricot-Doleux, and 

Dominique Chauvel-Lebret. 2023. “Osteoarthritis of the Temporomandibular Joint: A 

Narrative Overview.” Medicina 59 (1): 8. https://doi.org/10.3390/medicina59010008. 

Menz, Hylton B., Alyssa B. Dufour, Jody L. Riskowski, Howard J. Hillstrom, and Marian T. 

Hannan. 2013. “Foot Posture, Foot Function and Low Back Pain: The Framingham Foot 

Study.” Rheumatology (Oxford, England) 52 (12): 2275–82. 

https://doi.org/10.1093/rheumatology/ket298. 

Messaoudene, Khadidja, and Khaled Harrar. 2022. “A Hybrid LBP-HOG Model and Naive 

Bayes Classifier for Knee Osteoarthritis Detection: Data from the Osteoarthritis Initia-

tive.” In Artificial Intelligence and Its Applications, edited by Brahim Lejdel, Eliseo 

Clementini, and Louai Alarabi, 458–67. Lecture Notes in Networks and Systems. Cham: 

Springer International Publishing. https://doi.org/10.1007/978-3-030-96311-8_42. 

Miller, R. E., P. B. Tran, S. Ishihara, J. Larkin, and A. M. Malfait. 2016. “Therapeutic Effects of 

an Anti-ADAMTS-5 Antibody on Joint Damage and Mechanical Allodynia in a Murine 

Model of Osteoarthritis.” Osteoarthritis and Cartilage 24 (2): 299–306. 

https://doi.org/10.1016/j.joca.2015.09.005. 

Minervini, Giuseppe, Rocco Franco, Maria Maddalena Marrapodi, Salvatore Crimi, Almir 

Badnjević, Gabriele Cervino, Alberto Bianchi, and Marco Cicciù. 2023. “Correlation be-

tween Temporomandibular Disorders (TMD) and Posture Evaluated Trough the Diagnos-

tic Criteria for Temporomandibular Disorders (DC/TMD): A Systematic Review with 

Meta-Analysis.” Journal of Clinical Medicine 12 (7): 2652. 

https://doi.org/10.3390/jcm12072652. 

Miranda, Magdalena, Juan Facundo Morici, María Belén Zanoni, and Pedro Bekinschtein. 2019. 

“Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the 

Pathological Brain.” Frontiers in Cellular Neuroscience 13 (August): 363. 

https://doi.org/10.3389/fncel.2019.00363. 

Mishra, Sairam, Ranjan Kumar Mallick, Debadatta Amaresh Gadanayak, and Pravati Nayak. 

2021. “A Novel Hybrid Downsampling and Optimized Random Forest Approach for Is-

landing Detection and Non-Islanding Power Quality Events Classification in Distributed 

Generation Integrated System.” IET Renewable Power Generation 15 (8): 1662–77. 

https://doi.org/10.1049/rpg2.12137. 

Mishra, Shailendra. 2022. “An Optimized Gradient Boost Decision Tree Using Enhanced Afri-

can Buffalo Optimization Method for Cyber Security Intrusion Detection.” Applied Sci-

ences 12 (24): 12591. https://doi.org/10.3390/app122412591. 

Miyatake, Kazumasa, Kenjiro Iwasa, Sean M. McNary, Gordon Peng, and A. Hari Reddi. 2016. 

“Modulation of Superficial Zone Protein/Lubricin/PRG4 by Kartogenin and Transform-

ing Growth Factor-Β1 in Surface Zone Chondrocytes in Bovine Articular Cartilage.” 

Cartilage 7 (4): 388–97. https://doi.org/10.1177/1947603516630789. 

Mogi, M., A. Kondo, K. Kinpara, and A. Togari. 2000. “Anti-Apoptotic Action of Nerve Growth 

Factor in Mouse Osteoblastic Cell Line.” Life Sciences 67 (10): 1197–1206. 

https://doi.org/10.1016/s0024-3205(00)00705-0. 

Molnar, Vilim, Vid Matišić, Ivan Kodvanj, Roko Bjelica, Željko Jeleč, Damir Hudetz, Eduard 

Rod, et al. 2021. “Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis.” 



 

 

 254 

International Journal of Molecular Sciences 22 (17): 9208. 

https://doi.org/10.3390/ijms22179208. 

Monaco, Annalisa, Ruggero Cattaneo, Maria Chiara Marci, Davide Pietropaoli, and Eleonora 

Ortu. 2017. “Central Sensitization-Based Classification for Temporomandibular Disor-

ders: A Pathogenetic Hypothesis.” Pain Research and Management 2017 (August): 

e5957076. https://doi.org/10.1155/2017/5957076. 

Moritake, Akihiro, Naoyuki Kawao, Kiyotaka Okada, Kohei Tatsumi, Masayoshi Ishida, Katsu-

mi Okumoto, Osamu Matsuo, Masao Akagi, and Hiroshi Kaji. 2017. “Plasminogen Acti-

vator Inhibitor-1 Deficiency Enhances Subchondral Osteopenia after Induction of Osteo-

arthritis in Mice.” BMC Musculoskeletal Disorders 18 (1): 392. 

https://doi.org/10.1186/s12891-017-1752-5. 

Munjal, Akul, Santul Bapat, Daniel Hubbard, Monte Hunter, Ravindra Kolhe, and Sadanand 

Fulzele. 2019. “Advances in Molecular Biomarker for Early Diagnosis of Osteoarthritis.” 

Biomolecular Concepts 10 (1): 111–19. https://doi.org/10.1515/bmc-2019-0014. 

Murakami, KenIchiro. 2022. “Current Role of Arthrocentesis, Arthroscopy and Open Surgery for 

Temporomandibular Joint Internal Derangement with Inflammatory/Degenerative Dis-

ease; -Pitfalls and Pearls-.” Journal of Oral and Maxillofacial Surgery, Medicine, and 

Pathology 34 (1): 1–11. https://doi.org/10.1016/j.ajoms.2021.06.009. 

Muratovic, D., D.M. Findlay, R.D. Quarrington, X. Cao, L.B. Solomon, G.J. Atkins, and J.S. 

Kuliwaba. 2022. “Elevated Levels of Active Transforming Growth Factor Β1 in the Sub-

chondral Bone Relate Spatially to Cartilage Loss and Impaired Bone Quality in Human 

Knee Osteoarthritis.” Osteoarthritis and Cartilage 30 (6): 896–907. 

https://doi.org/10.1016/j.joca.2022.03.004. 

Nakase, Hiroshi, Minoru Matsuura, Sakae Mikami, Norimitsu Uza, and Tsutomu Chiba. 2012. 

“Role of the CXC12-CXCR4 Axis and CXCL16 in Inflammatory Bowel Disease.” Intes-

tinal Research 10 (2): 125–33. 

Nanayakkara, Shanika, Xiaoyan Zhou, and Heiko Spallek. 2019. “Impact of Big Data on Oral 

Health Outcomes.” Oral Diseases 25 (5): 1245–52. https://doi.org/10.1111/odi.13007. 

Neisius, Ulf, Hossam El-Rewaidy, Shiro Nakamori, Jennifer Rodriguez, Warren J. Manning, and 

Reza Nezafat. 2019. “Radiomic Analysis of Myocardial Native T1 Imaging Discrimi-

nates between Hypertensive Heart Disease and Hypertrophic Cardiomyopathy.” JACC. 

Cardiovascular Imaging 12 (10): 1946–54. https://doi.org/10.1016/j.jcmg.2018.11.024. 

Neogi, Tuhina. 2012. “Clinical Significance of Bone Changes in Osteoarthritis.” Therapeutic 

Advances in Musculoskeletal Disease 4 (4): 259–67. 

https://doi.org/10.1177/1759720X12437354. 

Neri, Emanuele, Marzia Del Re, Fabiola Paiar, Paola Erba, Paola Cocuzza, Daniele Regge, and 

Romano Danesi. 2018. “Radiomics and Liquid Biopsy in Oncology: The Holons of Sys-

tems Medicine.” Insights into Imaging 9 (6): 915–24. https://doi.org/10.1007/s13244-

018-0657-7. 

Neve, Anna, Francesco Paolo Cantatore, Addolorata Corrado, Annamaria Gaudio, Simona Rug-

gieri, and Domenico Ribatti. 2013. “In Vitro and in Vivo Angiogenic Activity of Osteoar-

thritic and Osteoporotic Osteoblasts Is Modulated by VEGF and Vitamin D3 Treatment.” 

Regulatory Peptides 184 (June): 81–84. https://doi.org/10.1016/j.regpep.2013.03.014. 

Nicolakis, Peter, Erdogmus Celal Burak, Josef Kollmitzer, Andreas Kopf, Eva Piehslinger, Gün-

ther Franz Wiesinger, and Veronika Fialka-Moser. 2001. “An Investigation of the Effec-



 

 

 255 

tiveness of Exercise and Manual Therapy in Treating Symptoms of TMJ Osteoarthritis.” 

CRANIO® 19 (1): 26–32. https://doi.org/10.1080/08869634.2001.11746148. 

Niessen, Carien M., Deborah Leckband, and Alpha S. Yap. 2011. “Tissue Organization by Cad-

herin Adhesion Molecules: Dynamic Molecular and Cellular Mechanisms of Morphoge-

netic Regulation.” Physiological Reviews 91 (2): 691–731. 

https://doi.org/10.1152/physrev.00004.2010. 

Ning, Yilin, Marcus Eng Hock Ong, Bibhas Chakraborty, Benjamin Alan Goldstein, Daniel Shu 

Wei Ting, Roger Vaughan, and Nan Liu. 2022. “Shapley Variable Importance Cloud for 

Interpretable Machine Learning.” Patterns 3 (4): 100452. 

https://doi.org/10.1016/j.patter.2022.100452. 

Nisbett, William H., Amar Kavuri, and Mini Das. 2020. “On the Correlation between Second 

Order Texture Features and Human Observer Detection Performance in Digital Images.” 

Scientific Reports 10 (1): 13510. https://doi.org/10.1038/s41598-020-69816-z. 

Nixdorf, Donald R., Ana M. Velly, and Aurelio A. Alonso. 2008. “Neurovascular Pains: Impli-

cations of Migraine for the Oral & Maxillofacial Surgeon.” Oral and Maxillofacial Sur-

gery Clinics of North America 20 (2): 221–vii. 

https://doi.org/10.1016/j.coms.2007.12.008. 

Norman, Berk, Valentina Pedoia, Adam Noworolski, Thomas M. Link, and Sharmila Majumdar. 

2019. “Applying Densely Connected Convolutional Neural Networks for Staging Osteo-

arthritis Severity from Plain Radiographs.” Journal of Digital Imaging 32 (3): 471–77. 

https://doi.org/10.1007/s10278-018-0098-3. 

Ntakolia, Charis, Christos Kokkotis, Serafeim Moustakidis, and Dimitrios Tsaopoulos. 2021. 

“Prediction of Joint Space Narrowing Progression in Knee Osteoarthritis Patients.” Diag-

nostics (Basel, Switzerland) 11 (2): 285. https://doi.org/10.3390/diagnostics11020285. 

Ogura, N., K. Satoh, M. Akutsu, M. Tobe, K. Kuyama, N. Kuboyama, H. Sakamaki, H. Kuji-

raoka, and T. Kondoh. 2010. “MCP-1 Production in Temporomandibular Joint Inflamma-

tion.” Journal of Dental Research 89 (10): 1117–22. 

https://doi.org/10.1177/0022034510376041. 

Ohlmann, Brigitte, Peter Rammelsberg, Volkmar Henschel, Bodo Kress, Olaf Gabbert, and Mark 

Schmitter. 2006. “Prediction of TMJ Arthralgia According to Clinical Diagnosis and 

MRI Findings.” The International Journal of Prosthodontics 19 (4): 333–38. 

Orhan, Kaan, Lukas Driesen, Sohaib Shujaat, Reinhilde Jacobs, and Xiangfei Chai. 2021. “De-

velopment and Validation of a Magnetic Resonance Imaging-Based Machine Learning 

Model for TMJ Pathologies.” BioMed Research International 2021 (July): 6656773. 

https://doi.org/10.1155/2021/6656773. 

Orhurhu, Vwaire, Robert Chu, Sebele Ogunsola, Loretta Akpala, Mariam Salisu Orhurhu, Ivan 

Urits, Anh L. Ngo, Omar Viswanath, and Alan D. Kaye. 2020. “The Role of Peripheral 

Brain-Derived Neurotrophic Factor in Chronic Osteoarthritic Joint Pain.” Annals of Pal-

liative Medicine 9 (4): 1361365–1361365. https://doi.org/10.21037/apm-20-888. 

Ota, Kuniaki, Patrick Quint, Megan M. Weivoda, Ming Ruan, Larry Pederson, Jennifer J. 

Westendorf, Sundeep Khosla, and Merry Jo Oursler. 2013. “Transforming Growth Factor 

Beta 1 Induces CXCL16 and Leukemia Inhibitory Factor Expression in Osteoclasts to 

Modulate Migration of Osteoblast Progenitors.” Bone 57 (1): 

10.1016/j.bone.2013.07.023. https://doi.org/10.1016/j.bone.2013.07.023. 

Ottersen, Margareth Kristensen, Anna-Karin Abrahamsson, Tore Arne Larheim, and Linda Za-

moline Arvidsson. 2019. “CBCT Characteristics and Interpretation Challenges of Tem-



 

 

 256 

poromandibular Joint Osteoarthritis in a Hand Osteoarthritis Cohort.” Dentomaxillofacial 

Radiology 48 (4): 20180245. https://doi.org/10.1259/dmfr.20180245. 

Ozsari, Sifa, Mehmet Serdar Güzel, Dilek Yılmaz, and Kıvanç Kamburoğlu. 2023. “A Compre-

hensive Review of Artificial Intelligence Based Algorithms Regarding Temporomandibu-

lar Joint Related Diseases.” Diagnostics 13 (16): 2700. 

https://doi.org/10.3390/diagnostics13162700. 

Panahiazar, Maryam, Vahid Taslimitehrani, Ashutosh Jadhav, and Jyotishman Pathak. 2014. 

“Empowering Personalized Medicine with Big Data and Semantic Web Technology: 

Promises, Challenges, and Use Cases.” Proceedings : ... IEEE International Conference 

on Big Data. IEEE International Conference on Big Data 2014 (October): 790–95. 

https://doi.org/10.1109/BigData.2014.7004307. 

Pantoja, Leticia Lopes Quirino, Isabela Porto de Toledo, Yasmine Mendes Pupo, André Luís 

Porporatti, Graziela De Luca Canto, Liete Figueiredo Zwir, and Eliete Neves Silva Guer-

ra. 2019. “Prevalence of Degenerative Joint Disease of the Temporomandibular Joint: A 

Systematic Review.” Clinical Oral Investigations 23 (5): 2475–88. 

https://doi.org/10.1007/s00784-018-2664-y. 

Parekh, Vishwa, and Michael A. Jacobs. 2016. “Radiomics: A New Application from Estab-

lished Techniques.” Expert Review of Precision Medicine and Drug Development 1 (2): 

207–26. https://doi.org/10.1080/23808993.2016.1164013. 

Park, Dongmin Choi, Joonho Lee, Sung Soo Ahn, Seung-Koo Lee, Sang-Hyuk Lee, and Minji 

Bang. 2020. “Differentiating Patients with Schizophrenia from Healthy Controls by Hip-

pocampal Subfields Using Radiomics.” Schizophrenia Research 223 (September): 337–

44. https://doi.org/10.1016/j.schres.2020.09.009. 

Park, and Jin Woo Chung. 2016. “Inflammatory Cytokines and Sleep Disturbance in Patients 

with Temporomandibular Disorders.” Journal of Oral & Facial Pain and Headache 30 

(1): 27–33. https://doi.org/10.11607/ofph.1367. 

Park, Ji-Hoon, Hye-Won Hwang, Jun-Ho Moon, Youngsung Yu, Hansuk Kim, Soo-Bok Her, 

Girish Srinivasan, Mohammed Noori A. Aljanabi, Richard E. Donatelli, and Shin-Jae 

Lee. 2019. “Automated Identification of Cephalometric Landmarks: Part 1—

Comparisons between the Latest Deep-Learning Methods YOLOV3 and SSD.” The An-

gle Orthodontist 89 (6): 903–9. https://doi.org/10.2319/022019-127.1. 

Park, Donghyun Kim, Ho Sung Kim, Seo Young Park, Jung Youn Kim, Se Jin Cho, Jae Ho 

Shin, and Jeong Hoon Kim. 2020. “Quality of Science and Reporting of Radiomics in 

Oncologic Studies: Room for Improvement According to Radiomics Quality Score and 

TRIPOD Statement.” European Radiology 30 (1): 523–36. 

https://doi.org/10.1007/s00330-019-06360-z. 

Park, Park, and Lee. 2020. “Radiomics and Deep Learning: Hepatic Applications.” Korean 

Journal of Radiology 21 (4): 387–401. https://doi.org/10.3348/kjr.2019.0752. 

Patel, Alpesh, Boon Ching Tee, Henry Fields, Elizabeth Jones, Jahanzeb Chaudhry, and Zong-

yang Sun. 2014. “Evaluation of Cone-Beam Computed Tomography in the Diagnosis of 

Simulated Small Osseous Defects in the Mandibular Condyle.” American Journal of Or-

thodontics and Dentofacial Orthopedics 145 (2): 143–56. 

https://doi.org/10.1016/j.ajodo.2013.10.014. 

Patel, Sagar K. Naik, David P. Naidich, William D. Travis, Jeremy A. Weingarten, Richard Laz-

zaro, David D. Gutterman, Catherine Wentowski, Horiana B. Grosu, and Suhail Raoof. 

2013. “A Practical Algorithmic Approach to the Diagnosis and Management of Solitary 



 

 

 257 

Pulmonary Nodules: Part 2: Pretest Probability and Algorithm.” Chest 143 (3): 840–46. 

https://doi.org/10.1378/chest.12-1487. 

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, 

Olivier Grisel, Mathieu Blondel, et al. 2011. “Scikit-Learn: Machine Learning in Py-

thon.” Journal of Machine Learning Research 12 (85): 2825–30. 

Pedullà, E., G. A. Meli, A. Garufi, M. L. Mandalà, A. Blandino, and P. Cascone. 2009. “Neuro-

pathic Pain in Temporomandibular Joint Disorders: Case-Control Analysis by MR Imag-

ing.” American Journal of Neuroradiology 30 (7): 1414–18. 

https://doi.org/10.3174/ajnr.A1575. 

Perazzo, Joseph, Margaret Rodriguez, Jackson Currie, Robert Salata, and Allison R. Webel. 

2019. “Creation of Data Repositories to Advance Nursing Science.” Western Journal of 

Nursing Research 41 (1): 78–95. https://doi.org/10.1177/0193945917749481. 

Pérez-García, Selene, Mar Carrión, Irene Gutiérrez-Cañas, Raúl Villanueva-Romero, David Cas-

tro, Carmen Martínez, Isidoro González-Álvaro, Francisco J. Blanco, Yasmina Juarranz, 

and Rosa P. Gomariz. 2019. “Profile of Matrix-Remodeling Proteinases in Osteoarthritis: 

Impact of Fibronectin.” Cells 9 (1): 40. https://doi.org/10.3390/cells9010040. 

Pessler, F., L. X. Chen, L. Dai, C. Gomez-Vaquero, C. Diaz-Torne, M. E. Paessler, C. Scanzello, 

N. Cakir, E. Einhorn, and H. R. Schumacher. 2008. “A Histomorphometric Analysis of 

Synovial Biopsies from Individuals with Gulf War Veterans’ Illness and Joint Pain Com-

pared to Normal and Osteoarthritis Synovium.” Clinical Rheumatology 27 (9): 1127–34. 

https://doi.org/10.1007/s10067-008-0878-0. 

Petch, Jeremy, Shuang Di, and Walter Nelson. 2022. “Opening the Black Box: The Promise and 

Limitations of Explainable Machine Learning in Cardiology.” The Canadian Journal of 

Cardiology 38 (2): 204–13. https://doi.org/10.1016/j.cjca.2021.09.004. 

Pfander, D., D. Körtje, R. Zimmermann, G. Weseloh, T. Kirsch, M. Gesslein, T. Cramer, and B. 

Swoboda. 2001. “Vascular Endothelial Growth Factor in Articular Cartilage of Healthy 

and Osteoarthritic Human Knee Joints.” Annals of the Rheumatic Diseases 60 (11): 

1070–73. https://doi.org/10.1136/ard.60.11.1070. 

Plesh, Octavia, Carolyn Noonan, Dedra S. Buchwald, Jack Goldberg, and Niloo Afari. 2012. 

“Temporomandibular Disorder-Type Pain and Migraine Headache in Women: A Prelim-

inary Twin Study.” Journal of Orofacial Pain 26 (2): 91–98. 

Plsikova Matejova, Jana, Timea Spakova, Denisa Harvanova, Marek Lacko, Vladimir Filip, Ras-

tislav Sepitka, Istvan Mitro, and Jan Rosocha. 2021. “A Preliminary Study of Combined 

Detection of COMP, TIMP-1, and MMP-3 in Synovial Fluid: Potential Indicators of Os-

teoarthritis Progression.” CARTILAGE 13 (2_suppl): 1421S-1430S. 

https://doi.org/10.1177/1947603520946385. 

Pm, van der Kraan, Blaney Davidson En, Blom A, and van den Berg Wb. 2009. “TGF-Beta Sig-

naling in Chondrocyte Terminal Differentiation and Osteoarthritis: Modulation and Inte-

gration of Signaling Pathways through Receptor-Smads.” Osteoarthritis and Cartilage 17 

(12). https://doi.org/10.1016/j.joca.2009.06.008. 

Podgorelec, Vili, and Milan Zorman. 2014. “Decision Tree Learning.” In Encyclopedia of Com-

plexity and Systems Science, edited by Robert A. Meyers, 1–28. Berlin, Heidelberg: 

Springer. https://doi.org/10.1007/978-3-642-27737-5_117-2. 

Ponchel, F., A. N. Burska, E. M. A. Hensor, R. Raja, M. Campbell, P. Emery, and P. G. Cona-

ghan. 2015. “Changes in Peripheral Blood Immune Cell Composition in Osteoarthritis.” 



 

 

 258 

Osteoarthritis and Cartilage 23 (11): 1870–78. 

https://doi.org/10.1016/j.joca.2015.06.018. 

PORPORATTI, André Luís, Yuri Martins COSTA, Paulo César Rodrigues CONTI, Leonardo 

Rigoldi BONJARDIM, and Patrícia dos Santos CALDERON. 2015. “Primary Headaches 

Interfere with the Efficacy of Temporomandibular Disorders Management.” Journal of 

Applied Oral Science 23 (2): 129–34. https://doi.org/10.1590/1678-775720130557. 

Pouders, Caroline, Michel De Maeseneer, Peter Van Roy, Jan Gielen, Annietta Goossens, and 

Maryam Shahabpour. 2008. “Prevalence and MRI-Anatomic Correlation of Bone Cysts 

in Osteoarthritic Knees.” American Journal of Roentgenology 190 (1): 17–21. 

https://doi.org/10.2214/AJR.07.2098. 

Prim, Julianna H, Sangtae Ahn, Maria I Davila, Morgan L Alexander, Karen L McCulloch, and 

Flavio Fröhlich. 2019. “Targeting the Autonomic Nervous System Balance in Patients 

with Chronic Low Back Pain Using Transcranial Alternating Current Stimulation: A 

Randomized, Crossover, Double-Blind, Placebo-Controlled Pilot Study.” Journal of Pain 

Research 12 (December): 3265–77. https://doi.org/10.2147/JPR.S208030. 

Puntmann, V. O. 2009. “How-to Guide on Biomarkers: Biomarker Definitions, Validation and 

Applications with Examples from Cardiovascular Disease.” Postgraduate Medical Jour-

nal 85 (1008): 538–45. https://doi.org/10.1136/pgmj.2008.073759. 

Qi, Changlin, Yuxing Shan, Jing Wang, Fupeng Ding, Ding Zhao, Teng Yang, and Yanfang 

Jiang. 2016. “Circulating T Helper 9 Cells and Increased Serum Interleukin-9 Levels in 

Patients with Knee Osteoarthritis.” Clinical and Experimental Pharmacology & Physiol-

ogy 43 (5): 528–34. https://doi.org/10.1111/1440-1681.12567. 

Qiao, Yusen, Jun Li, Catherine Yuh, Frank Ko, Louis G. Mercuri, Jad Alkhudari, Robin Pourzal, 

and Chun-do Oh. 2023. “Chemokine Regulation in Temporomandibular Joint Disease: A 

Comprehensive Review.” Genes 14 (2): 408. https://doi.org/10.3390/genes14020408. 

Raghupathi, Wullianallur, and Viju Raghupathi. 2014. “Big Data Analytics in Healthcare: Prom-

ise and Potential.” Health Information Science and Systems 2 (February): 3. 

https://doi.org/10.1186/2047-2501-2-3. 

Raheem1, Noor Natik, Mohammed Faris2, Athraa Y. Al-Hijazi3, and Ali I. Alqurshi4. 2020. 

“Roles of Brain-Derived Neurotrophic Factor (BDNF) In Developing Jaw.” Medico Le-

gal Update 20 (3): 1082–87. https://doi.org/10.37506/mlu.v20i3.1546. 

Rahman, Md. Mokhlesur, Opeyemi Lateef Usman, Ravie Chandren Muniyandi, Shahnorbanun 

Sahran, Suziyani Mohamed, and Rogayah A Razak. 2020. “A Review of Machine Learn-

ing Methods of Feature Selection and Classification for Autism Spectrum Disorder.” 

Brain Sciences 10 (12): 949. https://doi.org/10.3390/brainsci10120949. 

Raman, Dayanidhi, Tammy Sobolik-Delmaire, and Ann Richmond. 2011. “Chemokines in 

Health and Disease.” Experimental Cell Research 317 (5): 575–89. 

https://doi.org/10.1016/j.yexcr.2011.01.005. 

Ranganathan, Priya, C. S. Pramesh, and Rakesh Aggarwal. 2017. “Common Pitfalls in Statistical 

Analysis: Logistic Regression.” Perspectives in Clinical Research 8 (3): 148–51. 

https://doi.org/10.4103/picr.PICR_87_17. 

Ray, Bimal K., Arvind Shakya, and Alpana Ray. 2007. “Vascular Endothelial Growth Factor 

Expression in Arthritic Joint Is Regulated by SAF-1 Transcription Factor.” Journal of 

Immunology (Baltimore, Md.: 1950) 178 (3): 1774–82. 

https://doi.org/10.4049/jimmunol.178.3.1774. 



 

 

 259 

Redding, S., L. Junginger, P. Rzeczycki, C. Rasner, and T. Maerz. 2020. “CXCL16 Expression 

during Post-Traumatic Osteoarthritis Development: Implications for Mesenchymal Stem 

Cell Recruitment.” Osteoarthritis and Cartilage 28 (April): S508–9. 

https://doi.org/10.1016/j.joca.2020.02.799. 

Reeh, Heike, Nadine Rudolph, Ulrike Billing, Henrike Christen, Stefan Streif, Eric Bullinger, 

Monica Schliemann-Bullinger, et al. 2019. “Response to IL-6 Trans- and IL-6 Classic 

Signalling Is Determined by the Ratio of the IL-6 Receptor α to Gp130 Expression: Fus-

ing Experimental Insights and Dynamic Modelling.” Cell Communication and Signaling : 

CCS 17 (May): 46. https://doi.org/10.1186/s12964-019-0356-0. 

Reid, Matthew J., Abhishek Dave, Claudia M. Campbell, Jennifer Haythornthwaite, Patrick H. 

Finan, and Michael T. Smith. 2022. “Increased Pain Sensitivity Is Associated with Re-

duced REM Sleep in Females with Temporomandibular Joint Disorder (TMD).” The 

Journal of Pain 23 (5, Supplement): 58–59. https://doi.org/10.1016/j.jpain.2022.03.220. 

Reinhold, Jacob C., Blake E. Dewey, Aaron Carass, and Jerry L. Prince. 2019. “Evaluating the 

Impact of Intensity Normalization on MR Image Synthesis.” Proceedings of SPIE--the 

International Society for Optical Engineering 10949 (March): 109493H. 

https://doi.org/10.1117/12.2513089. 

Rener-Sitar, Ksenija, Mike T. John, Snigdha S. Pusalavidyasagar, Dipankar Bandyopadhyay, and 

Eric L. Schiffman. 2016. “Sleep Quality in Temporomandibular Disorder Cases.” Sleep 

Medicine 25 (September): 105–12. https://doi.org/10.1016/j.sleep.2016.06.031. 

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “‘Why Should I Trust You?’: 

Explaining the Predictions of Any Classifier.” In Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 1135–44. KDD 

’16. New York, NY, USA: Association for Computing Machinery. 

https://doi.org/10.1145/2939672.2939778. 

Ribera, Nina Tubau, Priscille de Dumast, Marilia Yatabe, Antonio Ruellas, Marcos Ioshida, Be-

atriz Paniagua, Martin Styner, et al. 2019. “Shape Variation Analyzer: A Classifier for 

Temporomandibular Joint Damaged by Osteoarthritis.” Proceedings of SPIE--the Inter-

national Society for Optical Engineering 10950 (February): 1095021. 

https://doi.org/10.1117/12.2506018. 

Richardson, Michael                            L. 2020. “Deep Learning Improves Predictions of the 

Need for Total Knee                    Replacement.” Radiology 296 (3): 594–95. 

https://doi.org/10.1148/radiol.2020202332. 

Robinson, Jennifer L., Pamela M. Johnson, Karolina Kister, Michael T. Yin, Jing Chen, and 

Sunil Wadhwa. 2020. “Estrogen Signaling Impacts Temporomandibular Joint and Perio-

dontal Disease Pathology.” Odontology 108 (2): 153–65. https://doi.org/10.1007/s10266-

019-00439-1. 

Rodriguez-Fontenla, Cristina, Manuel Calaza, Evangelos Evangelou, Ana M. Valdes, Nigel Ar-

den, Francisco J. Blanco, Andrew Carr, et al. 2014. “Assessment of Osteoarthritis Candi-

date Genes in a Meta-Analysis of Nine Genome-Wide Association Studies.” Arthritis & 

Rheumatology (Hoboken, N.J.) 66 (4): 940–49. https://doi.org/10.1002/art.38300. 

Roithmann, Camila Caspary, Carlos Augusto Gomes da Silva, Marcos Pascoal Pattussi, and 

Márcio Lima Grossi. 2021. “Subjective Sleep Quality and Temporomandibular Disor-

ders: Systematic Literature Review and Meta-Analysis.” Journal of Oral Rehabilitation 

48 (12): 1380–94. https://doi.org/10.1111/joor.13265. 



 

 

 260 

Rollín, R., F. Marco, J. A. Jover, J. A. García-Asenjo, L. Rodríguez, L. López-Durán, and B. 

Fernández-Gutiérrez. 2008. “Early Lymphocyte Activation in the Synovial Microenvi-

ronment in Patients with Osteoarthritis: Comparison with Rheumatoid Arthritis Patients 

and Healthy Controls.” Rheumatology International 28 (8): 757–64. 

https://doi.org/10.1007/s00296-008-0518-7. 

Rose-John, Stefan. 2018. “Interleukin-6 Family Cytokines.” Cold Spring Harbor Perspectives in 

Biology 10 (2): a028415. https://doi.org/10.1101/cshperspect.a028415. 

Rousseau, Jean-Charles, Roland Chapurlat, and Patrick Garnero. 2021. “Soluble Biological 

Markers in Osteoarthritis.” Therapeutic Advances in Musculoskeletal Disease 13 (Sep-

tember): 1759720X211040300. https://doi.org/10.1177/1759720X211040300. 

Ruth, Jeffrey H., Christian S. Haas, Christy C. Park, M. Asif Amin, Rita J. Martinez, G. Kenneth 

Haines, Shiva Shahrara, Phillip L. Campbell, and Alisa E. Koch. 2006. “CXCL16-

Mediated Cell Recruitment to Rheumatoid Arthritis Synovial Tissue and Murine Lymph 

Nodes Is Dependent Upon the MAPK Pathway.” Arthritis and Rheumatism 54 (3): 765–

78. https://doi.org/10.1002/art.21662. 

Sabeti, Elyas, Joshua Drews, Narathip Reamaroon, Elisa Warner, Michael W. Sjoding, Jonathan 

Gryak, and Kayvan Najarian. 2021. “Learning Using Partially Available Privileged In-

formation and Label Uncertainty: Application in Detection of Acute Respiratory Distress 

Syndrome.” IEEE Journal of Biomedical and Health Informatics 25 (3): 784–96. 

https://doi.org/10.1109/JBHI.2020.3008601. 

Sadaksharam, Jayachandran, and Priyanka Khobre. 2016. “Osteophytes in Temporomandibular 

Joint, a Spectrum of Appearance in Cone-Beam Computed Tomography: Report of Four 

Cases.” Journal of Indian Academy of Oral Medicine and Radiology 28 (3): 289. 

https://doi.org/10.4103/0972-1363.195672. 

Sakkas, Lazaros I., and Chris D. Platsoucas. 2007. “The Role of T Cells in the Pathogenesis of 

Osteoarthritis.” Arthritis and Rheumatism 56 (2): 409–24. 

https://doi.org/10.1002/art.22369. 

Salemi, Fatemeh, Abbas Shokri, Fatemeh Hafez Maleki, Maryam Farhadian, Gholamreza Dashti, 

Farzane Ostovarrad, and Hadi Ranjzad. 2016. “Effect of Field of View on Detection of 

Condyle Bone Defects Using Cone Beam Computed Tomography.” The Journal of Cra-

niofacial Surgery 27 (3): 644–48. https://doi.org/10.1097/SCS.0000000000002592. 

Sandhu, Amit, Jason S. Rockel, Starlee Lively, and Mohit Kapoor. 2023. “Emerging Molecular 

Biomarkers in Osteoarthritis Pathology.” Therapeutic Advances in Musculoskeletal Dis-

ease 15 (June): 1759720X231177116. https://doi.org/10.1177/1759720X231177116. 

Sannajust, Sébastien, Ian Imbert, Victoria Eaton, Terry Henderson, Lucy Liaw, Meghan May, 

Mary F. Barbe, and Tamara King. 2019. “Females Have Greater Susceptibility to Devel-

op Ongoing Pain and Central Sensitization in a Rat Model of Temporomandibular Joint 

Pain.” Pain 160 (9): 2036–49. https://doi.org/10.1097/j.pain.0000000000001598. 

Santos, Glaucia Nize Martins, Helbert Eustáquio Cardoso da Silva, Filipe Eduard Leite Ossege, 

Paulo Tadeu de Souza Figueiredo, Nilce de Santos Melo, Cristine Miron Stefani, and 

André Ferreira Leite. 2023. “Radiomics in Bone Pathology of the Jaws.” Dentomaxillofa-

cial Radiology 52 (1): 20220225. https://doi.org/10.1259/dmfr.20220225. 

Sarchielli, Paola, Maria Luisa Mancini, Alessandro Floridi, Francesca Coppola, Cristiana Rossi, 

Katiuscia Nardi, Monica Acciarresi, Luigi Alberto Pini, and Paolo Calabresi. 2007. “In-

creased Levels of Neurotrophins Are Not Specific for Chronic Migraine: Evidence from 



 

 

 261 

Primary Fibromyalgia Syndrome.” The Journal of Pain 8 (9): 737–45. 

https://doi.org/10.1016/j.jpain.2007.05.002. 

Sarker, Iqbal H. 2021. “Machine Learning: Algorithms, Real-World Applications and Research 

Directions.” Sn Computer Science 2 (3): 160. https://doi.org/10.1007/s42979-021-00592-

x. 

Sauteur, Loïc, Alice Krudewig, Lukas Herwig, Nikolaus Ehrenfeuchter, Anna Lenard, Markus 

Affolter, and Heinz-Georg Belting. 2014. “Cdh5/VE-Cadherin Promotes Endothelial Cell 

Interface Elongation via Cortical Actin Polymerization during Angiogenic Sprouting.” 

Cell Reports 9 (2): 504–13. https://doi.org/10.1016/j.celrep.2014.09.024. 

Scanzello, Carla R. 2017. “Chemokines and Inflammation in Osteoarthritis: Insights From Pa-

tients and Animal Models.” Journal of Orthopaedic Research : Official Publication of the 

Orthopaedic Research Society 35 (4): 735–39. https://doi.org/10.1002/jor.23471. 

Scapicchio, Camilla, Michela Gabelloni, Andrea Barucci, Dania Cioni, Luca Saba, and Emanu-

ele Neri. 2021. “A Deep Look into Radiomics.” La Radiologia Medica 126 (10): 1296–

1311. https://doi.org/10.1007/s11547-021-01389-x. 

Schaible, Hans-Georg. 2014. “Nociceptive Neurons Detect Cytokines in Arthritis.” Arthritis Re-

search & Therapy 16 (5): 470. https://doi.org/10.1186/s13075-014-0470-8. 

Scheller, Jürgen, Athena Chalaris, Dirk Schmidt-Arras, and Stefan Rose-John. 2011. “The Pro- 

and Anti-Inflammatory Properties of the Cytokine Interleukin-6.” Biochimica Et Biophys-

ica Acta 1813 (5): 878–88. https://doi.org/10.1016/j.bbamcr.2011.01.034. 

Schiffman, and Ohrbach. 2016. “Executive Summary of the Diagnostic Criteria for Temporo-

mandibular Disorders for Clinical and Research Applications.” The Journal of the Ameri-

can Dental Association 147 (6): 438–45. https://doi.org/10.1016/j.adaj.2016.01.007. 

Schiffman, Richard Ohrbach, Edmond L. Truelove, Tai Feng, Gary C. Anderson, Wei Pan, Yoly 

M. Gonzalez, et al. 2010. “The Revised Research Diagnostic Criteria for Temporoman-

dibular Disorders: Methods Used to Establish and Validate Revised Axis I Diagnostic 

Algorithms.” Journal of Orofacial Pain 24 (1): 63–78. 

Schiffman, Richard Ohrbach, Edmond Truelove, John Look, Gary Anderson, Jean-Paul Goulet, 

Thomas List, et al. 2014. “Diagnostic Criteria for Temporomandibular Disorders 

(DC/TMD) for Clinical and Research Applications: Recommendations of the Internation-

al RDC/TMD Consortium Network and Orofacial Pain Special Interest Group.” Journal 

of Oral & Facial Pain and Headache 28 (1): 6–27. 

Schiffman, A. M. Velly, J. O. Look, J. S. Hodges, J. Q. Swift, K. L. Decker, Q. N. Anderson, et 

al. 2014. “Effects of Four Treatment Strategies for Temporomandibular Joint Closed 

Lock.” International Journal of Oral and Maxillofacial Surgery 43 (2): 217–26. 

https://doi.org/10.1016/j.ijom.2013.07.744. 

Schmitter, Marc, Bodo Kress, Michael Leckel, Volkmar Henschel, Brigitte Ohlmann, and Peter 

Rammelsberg. 2008. “Validity of Temporomandibular Disorder Examination Procedures 

for Assessment of Temporomandibular Joint Status.” American Journal of Orthodontics 

and Dentofacial Orthopedics: Official Publication of the American Association of Ortho-

dontists, Its Constituent Societies, and the American Board of Orthodontics 133 (6): 796–

803. https://doi.org/10.1016/j.ajodo.2006.06.022. 

Schroder, Kate, Paul J. Hertzog, Timothy Ravasi, and David A. Hume. 2004. “Interferon-γ: An 

Overview of Signals, Mechanisms and Functions.” Journal of Leukocyte Biology 75 (2): 

163–89. https://doi.org/10.1189/jlb.0603252. 



 

 

 262 

Schwendicke, F., W. Samek, and J. Krois. 2020. “Artificial Intelligence in Dentistry: Chances 

and Challenges.” Journal of Dental Research 99 (7): 769–74. 

https://doi.org/10.1177/0022034520915714. 

Shaefer, J.R., D.L. Jackson, E.L. Schiffman, and Q.N. Anderson. 2001. “Pressure-Pain Thresh-

olds and MRI Effusions in TMJ Arthralgia.” Journal of Dental Research 80 (10): 1935–

39. https://doi.org/10.1177/00220345010800101401. 

Shan, Yuxing, Changlin Qi, Yijun Liu, Hui Gao, Ding Zhao, and Yanfang Jiang. 2017. “In-

creased Frequency of Peripheral Blood Follicular Helper T Cells and Elevated Serum 

IL‑21 Levels in Patients with Knee Osteoarthritis.” Molecular Medicine Reports 15 (3): 

1095–1102. https://doi.org/10.3892/mmr.2017.6132. 

Shen, ZiXian Jiao, Ji Si Zheng, Wei Feng Xu, Shang Yong Zhang, An Qin, and Chi Yang. 2015. 

“Injecting Vascular Endothelial Growth Factor into the Temporomandibular Joint Induc-

es Osteoarthritis in Mice.” Scientific Reports 5 (1): 16244. 

https://doi.org/10.1038/srep16244. 

Shen, Li, and Chen. 2014. “TGF-β Signaling and the Development of Osteoarthritis.” Bone Re-

search 2 (1): 1–7. https://doi.org/10.1038/boneres.2014.2. 

Shen, C.-L. Wu, I.-M. Jou, C.-H. Lee, H.-Y. Juan, P.-J. Lee, S.-H. Chen, and J.-L. Hsieh. 2011. 

“T Helper Cells Promote Disease Progression of Osteoarthritis by Inducing Macrophage 

Inflammatory Protein-1γ.” Osteoarthritis and Cartilage 19 (6): 728–36. 

https://doi.org/10.1016/j.joca.2011.02.014. 

Sheng, Jinghao, and Zhengping Xu. 2016. “Three Decades of Research on Angiogenin: A Re-

view and Perspective.” Acta Biochimica et Biophysica Sinica 48 (5): 399–410. 

https://doi.org/10.1093/abbs/gmv131. 

Shi, J., S. Lee, H.C. Pan, A. Mohammad, A. Lin, W. Guo, E. Chen, et al. 2017. “Association of 

Condylar Bone Quality with TMJ Osteoarthritis.” Journal of Dental Research 96 (8): 

888–94. https://doi.org/10.1177/0022034517707515. 

Shim, Ji Suk, Chulhan Kim, Jae Jun Ryu, and Sung Jae Choi. 2020. “Correlation between TM 

Joint Disease and Rheumatic Diseases Detected on Bone Scintigraphy and Clinical Fac-

tors.” Scientific Reports 10 (March): 4547. https://doi.org/10.1038/s41598-020-60804-x. 

Shoukri, B., J. C. Prieto, A. Ruellas, M. Yatabe, J. Sugai, M. Styner, H. Zhu, et al. 2019. “Mini-

mally Invasive Approach for Diagnosing TMJ Osteoarthritis.” Journal of Dental Re-

search 98 (10): 1103–11. https://doi.org/10.1177/0022034519865187. 

Shrivastava, Mayank, Ricardo Battaglino, and Liang Ye. 2021. “A Comprehensive Review on 

Biomarkers Associated with Painful Temporomandibular Disorders.” International Jour-

nal of Oral Science 13 (1): 1–13. https://doi.org/10.1038/s41368-021-00129-1. 

Sidey-Gibbons, Jenni A. M., and Chris J. Sidey-Gibbons. 2019. “Machine Learning in Medicine: 

A Practical Introduction.” BMC Medical Research Methodology 19 (1): 64. 

https://doi.org/10.1186/s12874-019-0681-4. 

Simão, Adriano Prado, Vanessa Amaral Mendonça, Tássio Málber de Oliveira Almeida, Sérgio 

Antunes Santos, Wellington Fabiano Gomes, Candido Celso Coimbra, and Ana Cristina 

Rodrigues Lacerda. 2014. “Involvement of BDNF in Knee Osteoarthritis: The Relation-

ship with Inflammation and Clinical Parameters.” Rheumatology International 34 (8): 

1153–57. https://doi.org/10.1007/s00296-013-2943-5. 

Skaper, Stephen D. 2008. “The Biology of Neurotrophins, Signalling Pathways, and Functional 

Peptide Mimetics of Neurotrophins and Their Receptors.” CNS & Neurological Disor-

ders Drug Targets 7 (1): 46–62. https://doi.org/10.2174/187152708783885174. 



 

 

 263 

Slade, Mathew S. Conrad, Luda Diatchenko, Naim U. Rashid, Sheng Zhong, Shad Smith, Jesse 

Rhodes, et al. 2011. “Cytokine Biomarkers and Chronic Pain: Association of Genes, 

Transcription, and Circulating Proteins with Temporomandibular Disorders and Wide-

spread Palpation Tenderness.” PAIN 152 (12): 2802–12. 

https://doi.org/10.1016/j.pain.2011.09.005. 

Slade, R. Ohrbach, J.D. Greenspan, R.B. Fillingim, E. Bair, A.E. Sanders, R. Dubner, et al. 2016. 

“Painful Temporomandibular Disorder.” Journal of Dental Research 95 (10): 1084–92. 

https://doi.org/10.1177/0022034516653743. 

Smith, James O., Richard O. C. Oreffo, Nicholas M. P. Clarke, and Helmtrud I. Roach. 2003. 

“Changes in the Antiangiogenic Properties of Articular Cartilage in Osteoarthritis.” Jour-

nal of Orthopaedic Science: Official Journal of the Japanese Orthopaedic Association 8 

(6): 849–57. https://doi.org/10.1007/s00776-003-0717-8. 

Sobue, T., Y. Hakeda, Y. Kobayashi, H. Hayakawa, K. Yamashita, T. Aoki, M. Kumegawa, T. 

Noguchi, and T. Hayakawa. 2001. “Tissue Inhibitor of Metalloproteinases 1 and 2 Direct-

ly Stimulate the Bone-Resorbing Activity of Isolated Mature Osteoclasts.” Journal of 

Bone and Mineral Research: The Official Journal of the American Society for Bone and 

Mineral Research 16 (12): 2205–14. https://doi.org/10.1359/jbmr.2001.16.12.2205. 

Soenksen, Luis R., Yu Ma, Cynthia Zeng, Leonard Boussioux, Kimberly Villalobos Carballo, 

Liangyuan Na, Holly M. Wiberg, Michael L. Li, Ignacio Fuentes, and Dimitris Bertsi-

mas. 2022. “Integrated Multimodal Artificial Intelligence Framework for Healthcare Ap-

plications.” Npj Digital Medicine 5 (1): 1–10. https://doi.org/10.1038/s41746-022-00689-

4. 

Sohn, Dong Hyun, Jeremy Sokolove, Orr Sharpe, Jennifer C. Erhart, Piyanka E. Chandra, Lau-

ren J. Lahey, Tamsin M. Lindstrom, et al. 2012. “Plasma Proteins Present in Osteoarthrit-

ic Synovial Fluid Can Stimulate Cytokine Production via Toll-like Receptor 4.” Arthritis 

Research & Therapy 14 (1): R7. https://doi.org/10.1186/ar3555. 

Song, Hwanhee, Jeong Yun Lee, Kyung-Hoe Huh, and Ji Woon Park. 2020. “Long-Term 

Changes of Temporomandibular Joint Osteoarthritis on Computed Tomography.” Scien-

tific Reports 10 (April): 6731. https://doi.org/10.1038/s41598-020-63493-8. 

Souza, Gilberto Francisco Martha de, Adherbal Caminada Netto, Arthur Henrique de Andrade 

Melani, Miguel Angelo de Carvalho Michalski, and Renan Favarão da Silva. 2022. 

“Chapter 6 - Engineering Systems’ Fault Diagnosis Methods.” In Reliability Analysis and 

Asset Management of Engineering Systems, edited by Gilberto Francisco Martha de Sou-

za, Adherbal Caminada Netto, Arthur Henrique de Andrade Melani, Miguel Angelo de 

Carvalho Michalski, and Renan Favarão da Silva, 165–87. Advances in Reliability Sci-

ence. Elsevier. https://doi.org/10.1016/B978-0-12-823521-8.00006-2. 

Sperry, M. M., S. Kartha, B. A. Winkelstein, and E. J. Granquist. 2019. “Experimental Methods 

to Inform Diagnostic Approaches for Painful TMJ Osteoarthritis.” Journal of Dental Re-

search 98 (4): 388–97. https://doi.org/10.1177/0022034519828731. 

Spin-Neto, Rubens, Erik Gotfredsen, and Ann Wenzel. 2013. “Impact of Voxel Size Variation on 

CBCT-Based Diagnostic Outcome in Dentistry: A Systematic Review.” Journal of Digi-

tal Imaging 26 (4): 813–20. https://doi.org/10.1007/s10278-012-9562-7. 

Stafford, I. S., M. Kellermann, E. Mossotto, R. M. Beattie, B. D. MacArthur, and S. Ennis. 2020. 

“A Systematic Review of the Applications of Artificial Intelligence and Machine Learn-

ing in Autoimmune Diseases.” Npj Digital Medicine 3 (1): 1–11. 

https://doi.org/10.1038/s41746-020-0229-3. 



 

 

 264 

Stannus, O., G. Jones, F. Cicuttini, V. Parameswaran, S. Quinn, J. Burgess, and C. Ding. 2010. 

“Circulating Levels of IL-6 and TNF-α Are Associated with Knee Radiographic Osteoar-

thritis and Knee Cartilage Loss in Older Adults.” Osteoarthritis and Cartilage 18 (11): 

1441–47. https://doi.org/10.1016/j.joca.2010.08.016. 

Stiglic, Gregor, Primoz Kocbek, Nino Fijacko, Marinka Zitnik, Katrien Verbert, and Leona Ci-

lar. 2020. “Interpretability of Machine Learning-Based Prediction Models in Healthcare.” 

WIREs Data Mining and Knowledge Discovery 10 (5): e1379. 

https://doi.org/10.1002/widm.1379. 

Su, Naichuan, Yan Liu, Xianrui Yang, Jiefei Shen, and Hang Wang. 2016. “Correlation between 

Oral Health-Related Quality of Life and Clinical Dysfunction Index in Patients with 

Temporomandibular Joint Osteoarthritis.” Journal of Oral Science 58 (4): 483–90. 

https://doi.org/10.2334/josnusd.16-0224. 

Su, Zhaoqian, Kalyani Dhusia, and Yinghao Wu. 2022. “Understanding the Functional Role of 

Membrane Confinements in TNF-Mediated Signaling by Multiscale Simulations.” Com-

munications Biology 5 (1): 1–11. https://doi.org/10.1038/s42003-022-03179-1. 

Suenaga, Shigeaki, Kunihiro Nagayama, Taisuke Nagasawa, Hiroko Indo, and Hideyuki J. 

Majima. 2016. “The Usefulness of Diagnostic Imaging for the Assessment of Pain Symp-

toms in Temporomandibular Disorders.” Japanese Dental Science Review 52 (4): 93–

106. https://doi.org/10.1016/j.jdsr.2016.04.004. 

Szekanecz, M. M. Halloran, M. V. Volin, J. M. Woods, R. M. Strieter, G. Kenneth Haines, S. L. 

Kunkel, M. D. Burdick, and A. E. Koch. 2000. “Temporal Expression of Inflammatory 

Cytokines and Chemokines in Rat Adjuvant-Induced Arthritis.” Arthritis and Rheuma-

tism 43 (6): 1266–77. https://doi.org/10.1002/1529-0131(200006)43:6<1266::AID-

ANR9>3.0.CO;2-P. 

Szekanecz, Aniko Vegvari, Zoltan Szabo, and Alisa E. Koch. 2010. “Chemokines and Chemo-

kine Receptors in Arthritis.” Frontiers in Bioscience (Scholar Edition) 2 (January): 153–

67. 

Takahara, Namiaki, Satoshi Nakagawa, Kanako Sumikura, Yuji Kabasawa, Ichiro Sakamoto, 

and Hiroyuki Harada. 2017. “Association of Temporomandibular Joint Pain According to 

Magnetic Resonance Imaging Findings in Temporomandibular Disorder Patients.” Jour-

nal of Oral and Maxillofacial Surgery 75 (9): 1848–55. 

https://doi.org/10.1016/j.joms.2017.03.026. 

Tallón-Ballesteros, Antonio J., and José Riquelme. 2014. Deleting or Keeping Outliers for Clas-

sifier Training? 2014 6th World Congress on Nature and Biologically Inspired Compu-

ting, NaBIC 2014. https://doi.org/10.1109/NaBIC.2014.6921892. 

TALMACEANU, DANIEL, LAVINIA MANUELA LENGHEL, NICOLAE BOLOG, 

MIHAELA HEDESIU, SMARANDA BUDURU, HORATIU ROTAR, MIHAELA 

BACIUT, and GRIGORE BACIUT. 2018. “Imaging Modalities for Temporomandibular 

Joint Disorders: An Update.” Clujul Medical 91 (3): 280–87. 

https://doi.org/10.15386/cjmed-970. 

Tanaka, E., M. S. Detamore, and L. G. Mercuri. 2008. “Degenerative Disorders of the Tem-

poromandibular Joint: Etiology, Diagnosis, and Treatment.” Journal of Dental Research 

87 (4): 296–307. https://doi.org/10.1177/154405910808700406. 

Tang, Fengyi, Cao Xiao, Fei Wang, Jiayu Zhou, and Li-wei H. Lehman. 2019. “Retaining Privi-

leged Information for Multi-Task Learning.” KDD : Proceedings. International Confer-



 

 

 265 

ence on Knowledge Discovery & Data Mining 2019 (July): 1369–77. 

https://doi.org/10.1145/3292500.3330907. 

Tao, Yulei, Xianxing Qiu, Changbo Xu, Bo Sun, and Changxiu Shi. 2015. “Expression and Cor-

relation of Matrix Metalloproteinase-7 and Interleukin-15 in Human Osteoarthritis.” In-

ternational Journal of Clinical and Experimental Pathology 8 (8): 9112–18. 

Teoh, Yun Xin, Khin Wee Lai, Juliana Usman, Siew Li Goh, Hamidreza Mohafez, Khairunnisa 

Hasikin, Pengjiang Qian, Yizhang Jiang, Yuanpeng Zhang, and Samiappan Dhanalaksh-

mi. 2022. “Discovering Knee Osteoarthritis Imaging Features for Diagnosis and Progno-

sis: Review of Manual Imaging Grading and Machine Learning Approaches.” Journal of 

Healthcare Engineering 2022 (February): 4138666. 

https://doi.org/10.1155/2022/4138666. 

Theeuwes, Wessel F., Martijn H. J. van den Bosch, Rogier M. Thurlings, Arjen B. Blom, and 

Peter L. E. M. van Lent. 2021. “The Role of Inflammation in Mesenchymal Stromal Cell 

Therapy in Osteoarthritis, Perspectives for Post-Traumatic Osteoarthritis: A Review.” 

Rheumatology (Oxford, England) 60 (3): 1042–53. 

https://doi.org/10.1093/rheumatology/keaa910. 

Thielen, Nathalie, Margot Neefjes, Renske Wiegertjes, Guus van den Akker, Elly Vitters, Henk 

van Beuningen, Esmeralda Blaney Davidson, et al. 2021. “Osteoarthritis-Related In-

flammation Blocks TGF-β’s Protective Effect on Chondrocyte Hypertrophy via 

(de)Phosphorylation of the SMAD2/3 Linker Region.” International Journal of Molecu-

lar Sciences 22 (15): 8124. https://doi.org/10.3390/ijms22158124. 

Thiolloy, Sophie, Jennifer Halpern, Ginger E. Holt, Herbert S. Schwartz, Gregory R. Mundy, 

Lynn M. Matrisian, and Conor C. Lynch. 2009. “Osteoclast Derived Matrix Metallopro-

teinase-7 but Not Matrix Metalloproteinase-9 Contributes to Tumor Induced Osteolysis.” 

Cancer Research 69 (16): 6747–55. https://doi.org/10.1158/0008-5472.CAN-08-3949. 

Thomas, M., Z. Fronk, A. Gross, D. Willmore, A. Arango, C. Higham, V. Nguyen, et al. 2019. 

“Losartan Attenuates Progression of Osteoarthritis in the Synovial Temporomandibular 

and Knee Joints of a Chondrodysplasia Mouse Model through Inhibition of TGF-Β1 Sig-

naling Pathway.” Osteoarthritis and Cartilage 27 (4): 676–86. 

https://doi.org/10.1016/j.joca.2018.12.016. 

Timmeren, Janita E. van, Davide Cester, Stephanie Tanadini-Lang, Hatem Alkadhi, and Bettina 

Baessler. 2020. “Radiomics in Medical Imaging—‘How-to’ Guide and Critical Reflec-

tion.” Insights into Imaging 11 (1): 91. https://doi.org/10.1186/s13244-020-00887-2. 

Tipton, David A., James Christian, and Adam Blumer. 2016. “Effects of Cranberry Components 

on IL-1β-Stimulated Production of IL-6, IL-8 and VEGF by Human TMJ Synovial Fi-

broblasts.” Archives of Oral Biology 68 (August): 88–96. 

https://doi.org/10.1016/j.archoralbio.2016.04.005. 

Tiulpin, Aleksei, Jérôme Thevenot, Esa Rahtu, Petri Lehenkari, and Simo Saarakkala. 2018. 

“Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-

Based Approach.” Scientific Reports 8 (1): 1727. https://doi.org/10.1038/s41598-018-

20132-7. 

Tokuhara, Cintia Kazuko, Mariana Rodrigues Santesso, Gabriela Silva Neubern de Oliveira, 

Talita Mendes da Silva Ventura, Julio Toshimi Doyama, Willian Fernando Zambuzzi, 

and Rodrigo Cardoso de Oliveira. 2019. “Updating the Role of Matrix Metalloproteinases 

in Mineralized Tissue and Related Diseases.” Journal of Applied Oral Science: Revista 

FOB 27 (September): e20180596. https://doi.org/10.1590/1678-7757-2018-0596. 



 

 

 266 

Toshima, Hiroo, and Ichiro Ogura. 2020. “Characteristics of Patients with Temporomandibular 

Joint Osteoarthrosis on Magnetic Resonance Imaging.” Journal of Medical Imaging and 

Radiation Oncology 64 (5): 615–19. https://doi.org/10.1111/1754-9485.13054. 

Truelove, Edmond L., Earl E. Sommers, Linda LeResche, Samuel F. Dworkin, and Michael Von 

Korff. 1992. “Clinical Diagnostic Criteria for TMD New Classification Permits Multiple 

Diagnoses.” The Journal of the American Dental Association 123 (4): 47–54. 

https://doi.org/10.14219/jada.archive.1992.0094. 

Tucker, Katherine, Janice Branson, Maria Dilleen, Sally Hollis, Paul Loughlin, Mark J. Nixon, 

and Zoë Williams. 2016. “Protecting Patient Privacy When Sharing Patient-Level Data 

from Clinical Trials.” BMC Medical Research Methodology 16 (1): 77. 

https://doi.org/10.1186/s12874-016-0169-4. 

Uddin, Shahadat, Ibtisham Haque, Haohui Lu, Mohammad Ali Moni, and Ergun Gide. 2022. 

“Comparative Performance Analysis of K-Nearest Neighbour (KNN) Algorithm and Its 

Different Variants for Disease Prediction.” Scientific Reports 12 (1): 6256. 

https://doi.org/10.1038/s41598-022-10358-x. 

Uddin, Shahadat, Arif Khan, Md Ekramul Hossain, and Mohammad Ali Moni. 2019. “Compar-

ing Different Supervised Machine Learning Algorithms for Disease Prediction.” BMC 

Medical Informatics and Decision Making 19 (1): 281. https://doi.org/10.1186/s12911-

019-1004-8. 

Umscheid, Craig A., Joel Betesh, Christine VanZandbergen, Asaf Hanish, Gordon Tait, Mark E. 

Mikkelsen, Benjamin French, and Barry D. Fuchs. 2015. “Development, Implementation, 

and Impact of an Automated Early Warning and Response System for Sepsis.” Journal of 

Hospital Medicine 10 (1): 26–31. https://doi.org/10.1002/jhm.2259. 

Vapnik, Vladimir, and Akshay Vashist. 2009. “A New Learning Paradigm: Learning Using Priv-

ileged Information.” Neural Networks 22 (5–6): 544–57. 

https://doi.org/10.1016/j.neunet.2009.06.042. 

Varghese, Bino A., Steven Y. Cen, Darryl H. Hwang, and Vinay A. Duddalwar. 2019. “Texture 

Analysis of Imaging: What Radiologists Need to Know.” American Journal of Roentgen-

ology 212 (3): 520–28. https://doi.org/10.2214/AJR.18.20624. 

Varma, G. R. Raveendra, B. Harsha, Santosh Palla, S. P. Amulya Sravan, J. Raju, and K. Raja-

vardhan. 2019. “Genetics in an Orthodontic Perspective.” Edited by Tejavathi Nagaraj. 

Journal of Advanced Clinical and Research Insights 6 (3): 86–90. 

https://doi.org/10.15713/ins.jcri.267. 

Vellido, Alfredo. 2020. “The Importance of Interpretability and Visualization in Machine Learn-

ing for Applications in Medicine and Health Care.” Neural Computing and Applications 

32 (24): 18069–83. https://doi.org/10.1007/s00521-019-04051-w. 

Venkatesh, Elluru, and Snehal Venkatesh Elluru. 2017. “Cone Beam Computed Tomography: 

Basics and Applications in Dentistry.” Journal of Istanbul University Faculty of Dentistry 

51 (3 Suppl 1): S102–21. https://doi.org/10.17096/jiufd.00289. 

Vergunst, C. E., M. G. H. van de Sande, M. C. Lebre, and P. P. Tak. 2005. “The Role of Chemo-

kines in Rheumatoid Arthritis and Osteoarthritis.” Scandinavian Journal of Rheumatolo-

gy 34 (6): 415–25. https://doi.org/10.1080/03009740500439159. 

Vikram, Khanna, and F. R. Karjodkar. 2009. “Decision Support Systems in Dental Decision 

Making: An Introduction.” The Journal of Evidence-Based Dental Practice 9 (2): 73–76. 

https://doi.org/10.1016/j.jebdp.2009.03.003. 



 

 

 267 

Vimort, Jean-Baptiste, Antonio Ruellas, Jack Prothero, J. S. Marron, Matthew McCormick, Lu-

cia Cevidanes, Erika Benavides, and Beatriz Paniagua. 2018. “Detection of Bone Loss 

via Subchondral Bone Analysis.” Proceedings of SPIE--the International Society for Op-

tical Engineering 10578 (February): 105780Q. https://doi.org/10.1117/12.2293654. 

Vrbanović, Ema, and Iva Z. Alajbeg. 2017. “A Young Patient with Temporomandibular Joint 

Osteoarthritis: Case Report.” Acta Stomatologica Croatica 51 (3): 232–39. 

https://doi.org/10.15644/asc51/3/7. 

Walsh, David A., Dan F. McWilliams, Matthew J. Turley, Madeleine R. Dixon, Rebecca E. 

Fransès, Paul I. Mapp, and Deborah Wilson. 2010. “Angiogenesis and Nerve Growth 

Factor at the Osteochondral Junction in Rheumatoid Arthritis and Osteoarthritis.” Rheu-

matology (Oxford, England) 49 (10): 1852–61. 

https://doi.org/10.1093/rheumatology/keq188. 

Wan, Jiangtao, Guowei Zhang, Xin Li, Xianshuai Qiu, Jun Ouyang, Jingxing Dai, and Shao-

xiong Min. 2021. “Matrix Metalloproteinase 3: A Promoting and Destabilizing Factor in 

the Pathogenesis of Disease and Cell Differentiation.” Frontiers in Physiology 12. 

https://www.frontiersin.org/articles/10.3389/fphys.2021.663978. 

Wang, Dongyun, Yajie Qi, Zhubing Wang, Anyun Guo, Yingxin Xu, and Yang Zhang. 2023. 

“Recent Advances in Animal Models, Diagnosis, and Treatment of Temporomandibular 

Joint Osteoarthritis.” Tissue Engineering Part B: Reviews 29 (1): 62–77. 

https://doi.org/10.1089/ten.teb.2022.0065. 

Wang, Jiang, and Zhang. 2019. “Significantly Dysregulated Genes in Osteoarthritic Labrum 

Cells Identified through Gene Expression Profiling.” Molecular Medicine Reports 20 (2): 

1716–24. https://doi.org/10.3892/mmr.2019.10389. 

Wang, Xiang Qun Shi, Wenjia Wu, Maria Gueorguieva, Mu Yang, and Ji Zhang. 2018. “Sus-

tained and Repeated Mouth Opening Leads to Development of Painful Temporomandibu-

lar Disorders Involving Macrophage/Microglia Activation in Mice.” PAIN 159 (7): 1277. 

https://doi.org/10.1097/j.pain.0000000000001206. 

Wang, J.N. Zhang, Y.H. Gan, and Y.H. Zhou. 2015. “Current Understanding of Pathogenesis 

and Treatment of TMJ Osteoarthritis.” Journal of Dental Research 94 (5): 666–73. 

https://doi.org/10.1177/0022034515574770. 

Wassan, Sobia, Beenish Suhail, Riaqa Mubeen, Bhavana Raj, Ujjwal Agarwal, Eti Khatri, Sujith 

Gopinathan, and Gaurav Dhiman. 2022. “Gradient Boosting for Health IoT Federated 

Learning.” Sustainability 14 (24): 16842. https://doi.org/10.3390/su142416842. 

Watanabe, Haruhisa, Takashi Iori, Ji-Won Lee, Takashi S. Kajii, Aya Takakura, Ryoko Takao-

Kawabata, Yoshimasa Kitagawa, Yutaka Maruoka, and Tadahiro Iimura. 2023. “Associa-

tion between an Increased Serum CCL5 Level and Pathophysiology of Degenerative 

Joint Disease in the Temporomandibular Joint in Females.” International Journal of Mo-

lecular Sciences 24 (3): 2775. https://doi.org/10.3390/ijms24032775. 

Wichtmann, Barbara D., Felix N. Harder, Kilian Weiss, Stefan O. Schönberg, Ulrike I. Atten-

berger, Hatem Alkadhi, Daniel Pinto Dos Santos, and Bettina Baeßler. 2023. “Influence 

of Image Processing on Radiomic Features From Magnetic Resonance Imaging.” Investi-

gative Radiology 58 (3): 199–208. https://doi.org/10.1097/RLI.0000000000000921. 

Wieckiewicz, Mieszko, Yuh-Yuan Shiau, and Klaus Boening. 2018. “Pain of Temporomandibu-

lar Disorders: From Etiology to Management.” Pain Research & Management 2018 

(June): 4517042. https://doi.org/10.1155/2018/4517042. 



 

 

 268 

Wiegertjes, R., A. van Caam, H. van Beuningen, M. Koenders, P. van Lent, P. van der Kraan, F. 

van de Loo, and E. Blaney Davidson. 2019. “TGF-β Dampens IL-6 Signaling in Articular 

Chondrocytes by Decreasing IL-6 Receptor Expression.” Osteoarthritis and Cartilage 27 

(8): 1197–1207. https://doi.org/10.1016/j.joca.2019.04.014. 

Wiens, Jenna, Suchi Saria, Mark Sendak, Marzyeh Ghassemi, Vincent X. Liu, Finale Doshi-

Velez, Kenneth Jung, et al. 2019. “Do No Harm: A Roadmap for Responsible Machine 

Learning for Health Care.” Nature Medicine 25 (9): 1337–40. 

https://doi.org/10.1038/s41591-019-0548-6. 

Wiesinger, Birgitta, Hans Malker, Erling Englund, and Anders Wänman. 2007. “Back Pain in 

Relation to Musculoskeletal Disorders in the Jaw-Face: A Matched Case–Control Study.” 

PAIN 131 (3): 311. https://doi.org/10.1016/j.pain.2007.03.018. 

Wilkinson, David J. 2021. “Serpins in Cartilage and Osteoarthritis: What Do We Know?” Bio-

chemical Society Transactions 49 (2): 1013–26. https://doi.org/10.1042/BST20201231. 

Withrow, Joseph, Cameron Murphy, Yutao Liu, Monte Hunter, Sadanand Fulzele, and Mark W. 

Hamrick. 2016. “Extracellular Vesicles in the Pathogenesis of Rheumatoid Arthritis and 

Osteoarthritis.” Arthritis Research & Therapy 18 (1): 286. 

https://doi.org/10.1186/s13075-016-1178-8. 

Wojdasiewicz, Piotr, Łukasz A. Poniatowski, and Dariusz Szukiewicz. 2014. “The Role of In-

flammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis.” Me-

diators of Inflammation 2014: 561459. https://doi.org/10.1155/2014/561459. 

Wu, Chuan Bin, Tie Ma, Lin Ma, and Qing Zhou. 2022. “Efficacy Analysis of Splint Combined 

with PRP Injection in the Treatment of Temporomandibular Joint Osteoarthritis.” Journal 

of Surgical Oncology 2022 (1): 1–6. https://doi.org/10.31487/j.JSO.2022.01.03. 

Wynants, L., D. M. Kent, D. Timmerman, C. M. Lundquist, and B. Van Calster. 2019. “Un-

tapped Potential of Multicenter Studies: A Review of Cardiovascular Risk Prediction 

Models Revealed Inappropriate Analyses and Wide Variation in Reporting.” Diagnostic 

and Prognostic Research 3 (1): 6. https://doi.org/10.1186/s41512-019-0046-9. 

Xi, Yongming, Hui Huang, Zheng Zhao, Jinfeng Ma, and Yan Chen. 2020. “Tissue Inhibitor of 

Metalloproteinase 1 Suppresses Growth and Differentiation of Osteoblasts and Differen-

tiation of Osteoclasts by Targeting the AKT Pathway.” Experimental Cell Research 389 

(2): 111930. https://doi.org/10.1016/j.yexcr.2020.111930. 

Xu, Yan Ke, Bin Wang, and Jian-hao Lin. 2015. “The Role of MCP-1-CCR2 Ligand-Receptor 

Axis in Chondrocyte Degradation and Disease Progress in Knee Osteoarthritis.” Biologi-

cal Research 48 (November): 64. https://doi.org/10.1186/s40659-015-0057-0. 

Xu, Yongjun, Xin Liu, Xin Cao, Changping Huang, Enke Liu, Sen Qian, Xingchen Liu, et al. 

2021. “Artificial Intelligence: A Powerful Paradigm for Scientific Research.” The Inno-

vation 2 (4): 100179. https://doi.org/10.1016/j.xinn.2021.100179. 

Xuan, Anran, Haowei Chen, Tianyu Chen, Jia Li, Shilong Lu, Tianxiang Fan, Dong Zeng, et al. 

2023. “The Application of Machine Learning in Early Diagnosis of Osteoarthritis: A Nar-

rative Review.” Therapeutic Advances in Musculoskeletal Disease 15 (March): 

1759720X231158198. https://doi.org/10.1177/1759720X231158198. 

Xue, Zhihao, Liao Wang, Qi Sun, Jia Xu, Ying Liu, Songtao Ai, Lichi Zhang, and Chenglei Liu. 

2022. “Radiomics Analysis Using MR Imaging of Subchondral Bone for Identification of 

Knee Osteoarthritis.” Journal of Orthopaedic Surgery and Research 17 (1): 414. 

https://doi.org/10.1186/s13018-022-03314-y. 



 

 

 269 

Yakkaphan, Pankaew, Jared G Smith, Pav Chana, Tara Renton, and Giorgio Lambru. 2022. 

“Temporomandibular Disorder and Headache Prevalence: A Systematic Review and Me-

ta-Analysis.” Cephalalgia Reports 5 (January): 25158163221097350. 

https://doi.org/10.1177/25158163221097352. 

Yang, Guang, Qinghao Ye, and Jun Xia. 2022. “Unbox the Black-Box for the Medical Explaina-

ble AI via Multi-Modal and Multi-Centre Data Fusion: A Mini-Review, Two Showcases 

and Beyond.” An International Journal on Information Fusion 77 (January): 29–52. 

https://doi.org/10.1016/j.inffus.2021.07.016. 

Yang, Yazhen Li, Ying Liu, Qiang Zhang, Qi Zhang, Junbo Chen, Xiao Yan, and Xiao Yuan. 

2020. “Role of the SDF-1/CXCR4 Signaling Pathway in Cartilage and Subchondral Bone 

in Temporomandibular Joint Osteoarthritis Induced by Overloaded Functional Orthope-

dics in Rats.” Journal of Orthopaedic Surgery and Research 15 (1): 330. 

https://doi.org/10.1186/s13018-020-01860-x. 

Yang, J. Zhang, Y. Cao, M. Zhang, L. Jing, K. Jiao, S. Yu, W. Chang, D. Chen, and M. Wang. 

2015. “Wnt5a/Ror2 Mediates Temporomandibular Joint Subchondral Bone Remodeling.” 

Journal of Dental Research 94 (6): 803–12. https://doi.org/10.1177/0022034515576051. 

Yeh, Chih-Chang, Hsin-I Chang, Jui-Kun Chiang, Wang-Ting Tsai, Li-Ming Chen, Chean-Ping 

Wu, Shu Chien, and Cheng-Nan Chen. 2009. “Regulation of Plasminogen Activator In-

hibitor 1 Expression in Human Osteoarthritic Chondrocytes by Fluid Shear Stress: Role 

of Protein Kinase Cα.” Arthritis & Rheumatism 60 (8): 2350–61. 

https://doi.org/10.1002/art.24680. 

Yoda, Tetsuya, Nobumi Ogi, Hiroyuki Yoshitake, Tetsuji Kawakami, Ritsuo Takagi, Kenichiro 

Murakami, Hidemichi Yuasa, Toshirou Kondoh, Kanchu Tei, and Kenichi Kurita. 2020. 

“Clinical Guidelines for Total Temporomandibular Joint Replacement.” The Japanese 

Dental Science Review 56 (1): 77–83. https://doi.org/10.1016/j.jdsr.2020.03.001. 

Yoshida, Ken, Olexandr Korchynskyi, Paul P. Tak, Takeo Isozaki, Jeffrey H. Ruth, Phillip L. 

Campbell, Dominique L. Baeten, Danielle M. Gerlag, M. Asif Amin, and Alisa E. Koch. 

2014. “Citrullination of Epithelial Neutrophil–Activating Peptide 78/CXCL5 Results in 

Conversion From a Non–Monocyte-Recruiting Chemokine to a Monocyte-Recruiting 

Chemokine.” Arthritis & Rheumatology 66 (10): 2716–27. 

https://doi.org/10.1002/art.38750. 

Yost, Olivia, Cathy T. Liverman, Rebecca English, Sean Mackey, and Enriqueta C. Bond, eds. 

2020. Temporomandibular Disorders: Priorities for Research and Care. The National 

Academies Collection: Reports Funded by National Institutes of Health. Washington 

(DC): National Academies Press (US). http://www.ncbi.nlm.nih.gov/books/NBK555057/. 

Yuan, Li Sun, Jian-Jun Li, and Chun-Hou An. 2014. “Elevated VEGF Levels Contribute to the 

Pathogenesis of Osteoarthritis.” BMC Musculoskeletal Disorders 15 (1): 437. 

https://doi.org/10.1186/1471-2474-15-437. 

Yuan, Yange Wu, Maotuan Huang, Xueman Zhou, Jiaqi Liu, Yating Yi, Jun Wang, and Jin Liu. 

2022. “A New Frontier in Temporomandibular Joint Osteoarthritis Treatment: Exosome-

Based Therapeutic Strategy.” Frontiers in Bioengineering and Biotechnology 10 (No-

vember): 1074536. https://doi.org/10.3389/fbioe.2022.1074536. 

Yushkevich, Paul A., null Yang Gao, and Guido Gerig. 2016. “ITK-SNAP: An Interactive Tool 

for Semi-Automatic Segmentation of Multi-Modality Biomedical Images.” Annual Inter-

national Conference of the IEEE Engineering in Medicine and Biology Society. IEEE 



 

 

 270 

Engineering in Medicine and Biology Society. Annual International Conference 2016 

(August): 3342–45. https://doi.org/10.1109/EMBC.2016.7591443. 

Zebari, Rizgar, Adnan Abdulazeez, Diyar Zeebaree, Dilovan Zebari, and Jwan Saeed. 2020. “A 

Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection 

and Feature Extraction.” Journal of Applied Science and Technology Trends 1 (2): 56–70. 

https://doi.org/10.38094/jastt1224. 

Zelová, Hana, and Jan Hošek. 2013. “TNF-α Signalling and Inflammation: Interactions between 

Old Acquaintances.” Inflammation Research: Official Journal of the European Histamine 

Research Society ... [et Al.] 62 (7): 641–51. https://doi.org/10.1007/s00011-013-0633-0. 

Zhang, Jonas Bianchi, Najla Al Turkestani, Celia Le, Romain Deleat-Besson, Antonio Ruellas, 

Lucia Cevidanes, et al. 2021. “Temporomandibular Joint Osteoarthritis Diagnosis Using 

Privileged Learning of Protein Markers.” Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biolo-

gy Society. Annual International Conference 2021 (November): 1810–13. 

https://doi.org/10.1109/EMBC46164.2021.9629990. 

Zhang, Monte S. Buchsbaum, King-Wai Chu, and Erin A. Hazlett. 2013. “A Manual, Semi-

Automated and Automated ROI Study of FMRI Hemodynamic Response.” Studies in 

Health Technology and Informatics 192: 921. 

Zhang, David V. Fried, Xenia J. Fave, Luke A. Hunter, Jinzhong Yang, and Laurence E. Court. 

2015. “Ibex: An Open Infrastructure Software Platform to Facilitate Collaborative Work 

in Radiomics.” Medical Physics 42 (3): 1341–53. https://doi.org/10.1118/1.4908210. 

Zhang, Di Liu, Djandan Tadum Arthur Vithran, Bosomtwe Richmond Kwabena, Wenfeng Xiao, 

and Yusheng Li. 2023. “CC Chemokines and Receptors in Osteoarthritis: New Insights 

and Potential Targets.” Arthritis Research & Therapy 25 (1): 113. 

https://doi.org/10.1186/s13075-023-03096-6. 

Zhang, Shihua, Tingting Li, Yao Feng, Keping Zhang, Jun Zou, Xiquan Weng, Yu Yuan, and 

Lan Zhang. 2023. “Exercise Improves Subchondral Bone Microenvironment through 

Regulating Bone-Cartilage Crosstalk.” Frontiers in Endocrinology 14. 

https://www.frontiersin.org/articles/10.3389/fendo.2023.1159393. 

Zhang, Yuyuan Xiong, Bangjun Wang, Yi Zhou, Zijian Wang, Jiaqi Shi, Chao Li, Xinyan Lu, 

and Gang Chen. 2022. “Potential Value of Serum Brain-Derived Neurotrophic Factor, 

Vascular Endothelial Growth Factor, and S100B for Identifying Major Depressive Disor-

der in Knee Osteoarthritis Patients.” Frontiers in Psychiatry 13. 

https://www.frontiersin.org/articles/10.3389/fpsyt.2022.1019367. 

Zhang, Lili Xu, Dandong Wu, Chunhua Yu, Shuai Fan, and Bin Cai. 2021. “Effectiveness of 

Exercise Therapy versus Occlusal Splint Therapy for the Treatment of Painful Temporo-

mandibular Disorders: A Systematic Review and Meta-Analysis.” Annals of Palliative 

Medicine 10 (6): 6122132–132. https://doi.org/10.21037/apm-21-451. 

Zhang, Xu, and Liu. 2017. “Comparison of Morphologic Parameters of Temporomandibular 

Joint for Asymptomatic Subjects Using the Two-Dimensional and Three-Dimensional 

Measuring Methods.” Journal of Healthcare Engineering 2017: 5680708. 

https://doi.org/10.1155/2017/5680708. 

Zhang, and Yang. 2019. “A New Learning Paradigm for Random Vector Functional-Link Net-

work: RVFL+.” Neural Networks 122 (October). 

https://doi.org/10.1016/j.neunet.2019.09.039. 



 

 

 271 

Zhao. 2021. “Understanding Sources of Variation to Improve the Reproducibility of Radiomics.” 

Frontiers in Oncology 11. 

https://www.frontiersin.org/articles/10.3389/fonc.2021.633176. 

Zhao, Yanhui Ding, Ying Han, Yong Fan, Aaron F. Alexander-Bloch, Tong Han, Dan Jin, et al. 

2020. “Independent and Reproducible Hippocampal Radiomic Biomarkers for Multisite 

Alzheimer’s Disease: Diagnosis, Longitudinal Progress and Biological Basis.” Science 

Bulletin 65 (13): 1103–13. https://doi.org/10.1016/j.scib.2020.04.003. 

Zhao, Shaopeng Liu, Chuan Ma, Shixing Ma, Guokun Chen, Lingyu Yuan, Lei Chen, and 

Huaqiang Zhao. 2019. “Estrogen-Related Receptor γ Induces Angiogenesis and Extracel-

lular Matrix Degradation of Temporomandibular Joint Osteoarthritis in Rats.” Frontiers 

in Pharmacology 10 (November): 1290. https://doi.org/10.3389/fphar.2019.01290. 

Zhao, Yuqing, Yanxin An, Libo Zhou, Fan Wu, Gaoyi Wu, Jing Wang, and Lei Chen. 2022. 

“Animal Models of Temporomandibular Joint Osteoarthritis: Classification and Selec-

tion.” Frontiers in Physiology 13. 

https://www.frontiersin.org/articles/10.3389/fphys.2022.859517. 

Zhao, Zu-yan Zhang, Yun-tang Wu, Wan-Lin Zhang, and Xu-chen Ma. 2011. “Investigation of 

the Clinical and Radiographic Features of Osteoarthrosis of the Temporomandibular 

Joints in Adolescents and Young Adults.” Oral Surgery, Oral Medicine, Oral Pathology, 

Oral Radiology, and Endodontology 111 (2): e27–34. 

https://doi.org/10.1016/j.tripleo.2010.09.076. 

Zhen, Gehua, Chunyi Wen, Xiaofeng Jia, Yu Li, Janet L. Crane, Simon C. Mears, Frederic B. 

Askin, et al. 2013. “Inhibition of TGF–β Signaling in Subchondral Bone Mesenchymal 

Stem Cells Attenuates Osteoarthritis.” Nature Medicine 19 (6): 704–12. 

https://doi.org/10.1038/nm.3143. 

Zheng, Liwei, Caixia Pi, Jun Zhang, Yi Fan, Chen Cui, Yang Zhou, Jianxun Sun, et al. 2018. 

“Aberrant Activation of Latent Transforming Growth Factor-β Initiates the Onset of 

Temporomandibular Joint Osteoarthritis.” Bone Research 6 (September): 26. 

https://doi.org/10.1038/s41413-018-0027-6. 

Zhu, Xiaobo, Yau Tsz Chan, Patrick S. H. Yung, Rocky S. Tuan, and Yangzi Jiang. 2021. “Sub-

chondral Bone Remodeling: A Therapeutic Target for Osteoarthritis.” Frontiers in Cell 

and Developmental Biology 8. 

https://www.frontiersin.org/articles/10.3389/fcell.2020.607764. 

Zikos, Dimitrios, and Nailya DeLellis. 2018. “CDSS-RM: A Clinical Decision Support System 

Reference Model.” BMC Medical Research Methodology 18 (1): 137. 

https://doi.org/10.1186/s12874-018-0587-6. 

Zuo, Qiliang, Shifeier Lu, Zhibin Du, Thor Friis, Jiangwu Yao, Ross Crawford, Indira Prasadam, 

and Yin Xiao. 2016. “Characterization of Nano-Structural and Nano-Mechanical Proper-

ties of Osteoarthritic Subchondral Bone.” BMC Musculoskeletal Disorders 17 (1): 367. 

https://doi.org/10.1186/s12891-016-1226-1. 

Zwanenburg, Alex, Stefan Leger, Linda Agolli, Karoline Pilz, Esther G. C. Troost, Christian 

Richter, and Steffen Löck. 2019. “Assessing Robustness of Radiomic Features by Image 

Perturbation.” Scientific Reports 9 (1): 614. https://doi.org/10.1038/s41598-018-36938-4. 

Zwiri, Abdalwhab, Mohammad A. I. Al-Hatamleh, Wan Muhamad Amir W. Ahmad, Jawaad 

Ahmed Asif, Suan Phaik Khoo, Adam Husein, Zuryati Ab-Ghani, and Nur Karyatee Kas-

sim. 2020. “Biomarkers for Temporomandibular Disorders: Current Status and Future Di-

rections.” Diagnostics 10 (5). https://doi.org/10.3390/diagnostics10050303. 
  




