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Abstract

Lightwave electronics is based on the idea of using the instantaneous field of strong optical

waves to drive and sculpt electronic states on ultrafast time scales. By utilizing the oscilla-

tion cycle of light, electronic currents can be switched thousand times faster than traditional

electronics to enable petahertz electronics, properties of electronic states in solids become

accessible for quantum information applications, and access to correlated many-body states

in solids is provided. In this Thesis, I present a comprehensive many-body quantum the-

ory based on the quantum-dynamic cluster expansion approach to quantitatively describe

lightwave-driven many-body excitations in quantum materials. The theory is applied to an-

alyze lightwave excitations in quantitative theory–experiment comparisons which led to the

development of an ecosystem of new lightwave-based techniques to characterize quantum

materials and probe quantum correlations in situ. The theory is also extended to describe

spatially inhomogeneous excitations and nanostructures.

First, the theoretical background of the quantum-dynamic cluster expansion is summa-

rized and the theory to describe lightwave excitations in two-dimensional materials derived.

I describe how the resulting semiconductor Bloch equations can be combined with ab initio

density-functional theory computations and solved numerically on the full two-dimensional

Brillouin zone for a predictive description of the excitation dynamics of realistic materials.

By analyzing the emission dynamics of lightwave-driven coherent excitons in quantum

materials, we discovered emergent interference patterns in momentum space, crystal-momen-

tum combs, which precisely locate the emission of harmonic sidebands in momentum space

and connect their intensities to the electronic band structure. I apply this connection to

xv



reconstruct the band structure from harmonic sideband emission, light that is emitted from

a semiconductor in a nonlinear process after excitation with two colors, and demonstrate

the approach for two-dimensional tungsten diselenide in a comprehensive theory-experiment

comparison.

Harmonic sidebands in solids are generated from lightwave-driven electron–hole recolli-

sions and information about the electronic dynamics is encoded in the emitted light. In a

quasiparticle-collider approach, we utilize extremely nonperturbative effects to detect milli-

electronvolt correlations with attosecond precision, beating the Heisenberg uncertainty limit

by two orders of magnitude. We find that strong excitonic correlations in monolayers of

tungsten diselenide create a distinct delay in the attoclocking setup compared to a bulk

sample with weaker correlations. In a detailed theory-experiment analysis, I demonstrate

direct clocking of quasiparticle correlations with attosecond precision which I connect to the

dynamics of electron–hole pairs in phase-space using a Wigner-function representation.

The valley-degree of freedom, emergent in some two-dimensional quantum materials, can

be switched coherently on ultrafast time scales using lightwave excitations with potential

applications in solid-state based classical and quantum-information processing. I apply the

developed theory to predict conditions for efficient coherent valleytronic switches and propose

how sequencing of multiple switches with petahertz clock rates could be realized and detected

experimentally.

Finally, I extend the semiconductor Bloch equations to describe spatial semiconductor

and nanostructure excitation by using a Wigner-function based formulation of the single

and two-particle correlations for an efficient and intuitive representation in phase space. I

find that the spatial dynamics of coherent excitations exhibits a quantum character while

electrons, holes, and incoherent excitons show a classical behavior in their spatial kinetics.

These properties are identified in a careful theoretical analysis and compared to experimental

investigations of the coherent and incoherent dynamics of spatially local excitations.
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Chapter 1

Introduction

Information technology is based on electronic and optoelectronic devices and has seen rapid

technological advancements that have transformed society with applications like the internet,

smartphones, and machine learning. The triumphant success of information technology,

producing an exponential growth of computing power over the last 60 years [1, 2], is owed to

the integrability and scalability of solid-state devices which are products of the first quantum

revolution [3]. While a quantum mechanical description is necessary to understand how

electrons move in solids [4, 5], the functionality of solid-state devices can often be described

in terms of classical electric currents and light.

Today, we are at the cusp of a second quantum revolution [3] as evidenced by recent

breakthroughs in quantum computing [6, 7], communication [8, 9], and sensing [10, 11],

which aim to derive functionality from quantum mechanics directly instead of using devices

that merely work because of quantum mechanics. Several platforms have been developed to

study quantum mechanics and derive functionality from it, some of which include quantum

dots [12], superconducting qubits [13], cold atoms [14, 15], integrated photonics [16, 17], and

vacancy centers [18, 19]. These are often laboratory-size instruments that require peripheral

infrastructure like dilution refrigerators or laser systems. A robust and universal quantum

platform comparable to that of solid-state devices of the first quantum revolution has not

been identified yet.
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Lightwave quantum electronics [20] could provide such a platform by utilizing the quan-

tum properties of electrons in solid-state systems. If successful, such devices could directly

be integrated with electronic and optoelectronic applications. Lightwave electronics aims to

sculpt the quantum dynamics of electrons on time scales faster than the oscillation period

of light by using intense optical waves as fast biasing fields that interact with the electron’s

charge. This concept was first explored in atomic and molecular physics [21] and was used

to explain high-harmonic (HH) generation [22, 23], a nonlinear process in which a target

emits several orders of harmonics of the light illuminating it. High-harmonic generation

can be understood through the semiclassical three-step model (3SM) [24]: (i) The field of

a strong lightwave ionizes and electron from a state bound to the ionic core; (ii) The field

then accelerates the effectively free electron away from the ion and increases its kinetic en-

ergy; (iii) As the oscillating field changes its sign, the electron returns to its ion core and

releases its excess kinetic energy as HH emission upon collision with the ion. By analyzing

the generated HH, information about the electron’s state and can be deduced. This idea

laid the foundations of attosecond physics [21, 25–28] that enabled generation and measure-

ment of attosecond pulses in the extreme-ultraviolet [25, 29–32], imaging dynamic changes

in molecular structures [33–35], and tomographic imaging of molecular orbitals [36–38].

In crystalline solids [4, 5], ionic cores are arranged in a crystal structure. When electrons

move in a solid, many of its properties become strongly distorted and defy classical intuition.

Instead of being bound to a single ion, electrons in solids occupy delocalized Bloch states [39]

that extend over the entire crystal. The electron’s mass can change with velocity, the spin can

flip creating magnetization, or it can encounter energy-forbidden regions dictating materials

to be conductive or insulating. Furthermore, Coulomb interaction between electrons and

ionic cores that make up a solid lead to a wide variety of emergent quantum phenomena such

as the binding of pairs of electrons and holes into excitons [40–42], higher order many-body

complexes [42–44], and superconducting quantum phases [45] which can be functionalized

and manipulated in lightwave quantum electronics.
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First lightwave-electronic investigations in solids explored Rabi flopping [46–49] between

excitonic 1s and 2p states. The HH generation in solids was first observed [50] in ZnS where

harmonics up to the 7th order were detected using strong mid-infrared pulses with peak

intensities in the order of 1012 W/cm2. Subsequently, up to 25 HHs extending above the

band gap were observed in ZnO [51] and the first generation of phase-locked HH pulses

in solids was achieved [52] using THz driving fields. Unlike HH generation from isolated

atoms, HHs in solids originate from multiple processes: transitions between electronic bands

(interband emission [53, 54]) and currents induced by the accelerated electrons (intraband

emission [51, 55]). In addition, electrons with a broad range of momenta can be excited

between multiple electronic bands [56] and electron acceleration can be strong enough to

induce Bloch oscillations [52] across the periodic boundaries of the Brillouin zone, both of

which compromise a simple 3SM interpretation.

The electronic motion in solids can be controlled and studied more precisely by pumping

the system resonantly, creating coherent excitons, and driving the excited states with a

second, strong lightwave. The coherent excitons [41], atom-like bound states between an

electron and a hole, undergo an ionization–acceleration–recollision process that leads to the

emission of harmonic sidebands (HSBs) and resembles the 3SM of atomic HH generation.

This HSB modality was first demonstrated in the perturbative regime in GaAs quantum

wells [57], subsequently observed in the non-perturbative regime [58] with detection of up to

eighteen HSB orders, and the dynamic nature of quasiparticle collisions was studied [59].

The potential of lightwave electronics to manipulate electronic states on the timescale of

light’s oscillation cycle creates promising opportunities for quantum information applications.

The basic concept of lightwave electronics in condensed matter has been proven [60–62],

but innovation of actual applications is challenging because quantum effects are inherently

counterintuitive, hard to grasp, and short lived. Efficient discovery of new applications

requires robust quantum theories to work in conjunction with experiments. The results

presented in this Thesis emerged from strong collaborations between our theory work and
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different experimental groups. The main results presented include:

1. Development of a comprehensive theory framework to describe lightwave-electronic

excitations in semiconductors.

2. Development of an ecosystem of lightwave-based techniques that use HSB generation

to characterize quantum materials and probe quantum correlations in situ.

3. Theoretical discussion of the limitations of valleytronic-based lightwave quantum-in-

formation processing.

4. Development of a microscopic theory to describe the dynamics of spatially local exci-

tations in semiconductor nanodevices.

This Thesis is organized as follows: Chapter 2 briefly summarizes the core concepts of

many-body quantum theories, including the formalism of second quantization and quantum-

dynamic cluster expansion (QDCE) that our theoretical investigations are based on. A

detailed description of the microscopic theory that we developed to describe lightwave-

electronic processes in semiconductors is given in Chapter 3. This theory is the basis of

the results presented in Chapters 4, 5, and 6. Chapter 4 introduces a new technique, super-

resolution crystal-momentum comb tomography, to reconstruct the electronic band structure

of quantum materials from a set of HSB measurements. We demonstrate this technique in

monolayer tungsten diselenide with extensive theory–experiment comparisons. In Chapter 5,

we apply a quasiparticle-collider approach to probe the dynamics of electronic correlations

on attosecond time scales which is demonstrated by theory–experiment comparisons in bulk

and monolayer sample of tungsten diselenide. Chapter 6 discusses the potential and funda-

mental limitations of valleytronic-based information processing with petahertz clock rates by

using strong lightwaves to switch the valleytronic state of electrons. The remaining chapters

present results regarding the effect of spatial inhomogeneities such as created by spatially

local excitations or excitations within nanostructures. Chapter 7 introduces a microscopic
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theory based on a Wigner-function representation of clusters to describe such excitations.

Chapter 8 discusses the effect of spatial inhomogeneities on coherent excitations on ultrafast

time scales, including a comparison to experiment. In Chapter 9, we derive the macroscopic

dynamics of incoherent excitons and compare the resulting equations to experiments. Finally,

Chapter 10 provides a conclusion of the presented work and outlines future opportunities.
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Chapter 2

Theoretical Background

The quantum dynamics of a single particle is described by quantum mechanics and can

be efficiently solved numerically, if not analytically [63]. To describe solids, the dynamics of

billions of interacting particles have to be considered, even for microscopically small samples.

In this chapter, we briefly summarize the key concepts that form the foundation of our

theoretical work. For a more extensive introduction we refer the reader to Reference [41]

which we follow in this chapter.

The starting point of our quantum theory is the formulation of a Hamiltonian. For solids,

the minimal-substitution Hamiltonian [41, 64, 65]

ĤN =
N∑
j=1

{
[pj + |e|A(rj)]

2

2m0

+ U(rj)

}
+

N∑
i<j

V (|ri − rj|) + ĤF + Ĥph , (2.1)

is a common choice where rj and pj are the position and momentum operators of electrons

with mass m0 and charge −|e| which move in a lattice-periodic potential U(r) and couple

to a quantized light field via the vector potential A(r). Electrons interact with each other

via the Coulomb potential V (r). ĤF is the free-field Hamiltonian of the quantized light field

and Ĥph the phonon Hamiltonian.

Applying the Göppert-Mayer transformation [41, 64–66], we obtain the Hamiltonian in
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the so-called length gauge:

ĤGM =
∑
j

[
p2
j

2m
+ U(rj)

]
+
∑
j

|e|rj · E(rj) +
N∑
i<j

V (|ri − rj|) + ĤF + Ĥph . (2.2)

It describes the light-matter interaction by a coupling of the electronic dipole −|e|r with

the electric field E. The two Hamiltonians (2.1) and (2.2) are connected by a unitary

transformation and describe the same system. However, depending on the specific problem,

one might be more suitable than the other.

A thorough description of the formalism of second quantization can be found, for example,

in References [41, 67, 68]. It provides an efficient way to describe many-body states in

a Fock space by introducing creation and annihilation operators to construct Fock states

that satisfy the respective exchange symmetries of fermions and bosons. Following the

description in References [41], an operator Ô with real-space representation UK(r1, . . . rK)

can be expressed in terms of field operators Ψ̂†(r) and Ψ̂(r) which create and annihilate an

electron at position r, respectively:

Ô =

∫
d3Kr Ψ̂†(r1) . . . Ψ̂

†(rK)UK(r1, . . . rK)Ψ̂(rK) . . . Ψ̂(r1) . (2.3)

In the Heisenberg picture, the dynamics of an operator Ô can be derived from the Heisenberg

equation of motion (HEM) [63, 69]

iℏ
∂

∂t
Ô =

[
Ô, Ĥ

]
, (2.4)

where [a, b] = ab− ba denotes the commutator between a and b.

For fermions, operators of the form
〈
Ψ̂† . . . Ψ̂†Ψ̂ . . . Ψ̂

〉
with N creation and N annihi-

lation operators are of interest which we call N–particle operators. For interacting systems

(which we discuss here) the Heisenberg equation of motion (2.4) couples the dynamics of

N–particle operators to higher order ones (e.g. N +1). This leads to an infinite hierarchy of
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coupled equations, known as the hierarchy problem [67]. We solve the hierarchy problem in

the framework of the quantum-dynamic cluster expansion (QDCE) which is described in de-

tail in References [41, 70]. It expands expectation values into their factorizable single-particle

states ⟨1⟩ (singlets), pure two-particle correlations ∆ ⟨2⟩ (doublets), and higher order clusters

∆ ⟨N⟩ (triplets, quadruplets, and so on). For a two-particle interaction like the Coulomb

interaction, the general dynamics of a N -particle cluster has the form [41, 70]

iℏ
∂

∂t
∆ ⟨N⟩ = F[⟨1⟩ ,∆ ⟨2⟩ , . . .∆ ⟨N⟩] + Hi[∆ ⟨N + 1⟩] , (2.5)

where the functional F contains products between ⟨1⟩ ,∆ ⟨2⟩ , . . .∆ ⟨N⟩ and Hi describes

the coupling to higher order clusters. These equations still contain the hierarchy problem,

however, the equation structure introduces a strictly sequential build up of correlations [41,

70–73] where clusters ∆ ⟨N + 1⟩ can only appear if ∆ ⟨N⟩ already exist. This is different

from the N -particle operators ⟨N⟩.

The sequential build up makes QDCE an ideal choice to describe the ultrafast lightwave

electronic processes of interest in this Thesis. Classical lightwave excitations always start

from single-particle states ⟨1⟩ [70], limiting the number of clusters that exist on ultrafast

time scales. Because of this, QDCE can systematically truncate the hierarchy problem by

only including the relevant correlations and still solve the nonperturbative dynamics exactly.
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Chapter 3

Microscopic Theory of Lightwave Electronics

3.1 Introduction

A wide array of simplified models have been used to describe various aspects of lightwave

excitations in solids. Intraband currents, macroscopic currents that are generated from mov-

ing carriers within a single band, were computed from the classical dynamics of a single

electron in a solid [51, 74], effective single-body Schrödinger equation [53, 75–77], or gen-

eralized optical Bloch equations [77, 78]. Floquet-Bloch theory [79–81], in which lightwave

excitations create replicas of the electronic bands (Floquet bands), were applied to under-

stand lightwave electronic effects in topological quantum materials. While these simplified

models provide intuitive pictures and a qualitative understanding of specific mechanisms,

they usually neglect many-body and interaction effects which can be significant in solids.

In my thesis work, I developed a comprehensive theory that exactly solves the nonper-

turbative dynamics of strong lightwave excitations, including many-body interactions, by

combining the quantum-dynamic cluster expansion (QDCE) with realistic matrix elements

from ab initio density-functional theory (DFT) [82–84]. By solving the resulting equations

of motion on the full Brillouin zone including all relevant bands, we obtain a fully predictive,

parameter free theory that can be compared quantitatively to experiments. In the later chap-

ters, we demonstrate that our approach yields an unequaled agreement with experiments and
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provides an unprecedented view into the dynamics of the microscopic state. In this chapter,

I describe how the relevant equations of motion, the semiconductor Bloch equations (SBEs),

are derived, combined with DFT, and solved self-consistently with Maxwell’s equations to

describe lightwave-electronic processes. The discussion is kept general wherever possible,

but the theory is specifically developed to describe lightwave excitations in two-dimensional

quantum materials such as monolayers of transition-metal dichalcogenides (TMDs.)

3.2 Envelope-function approximation

This work concentrates on lightwave electronics in planar nanostructures, more specifically

monolayers of TMDs, and their interaction with classical light fields. The three-dimensional

real-space coordinate r = (r∥, z) can be separated into the two-dimensional r∥ that is parallel

to the nanostructure and the one-dimensional z that is perpendicular to it. Similarly, the

wave vector can be separated into k = (k∥, kz). The envelope-function approximation [41,

69] separates these two coordinates to effectively reduce the dimensionality of the electron

dynamics to two dimensions. The application of this approach is not discussed explicitly in

this Thesis and the reader is referred to References [41, 69] for details. From this point on,

we apply the envelope function approximation and imply k∥ whenever k is written to keep

notation short. Only the lowest subband resulting from the envelope-function approximation

is considered.
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3.3 Hamiltonian in second quantization

3.3.1 Single-particle basis

Equation (2.3) is used to convert the Hamiltonian (2.2) into second quantization. For solids,

it is convenient to expand the field operators in a Bloch basis [41]

Ψ̂(r) ≡
∑
λ,k

ϕλ,k(r)aλ,k , Ψ̂†(r) ≡
∑
λ,k

ϕ∗
λ,k(r)a

†
λ,k , (3.1)

where the single-particle wave functions ϕλ,k(r) describe Bloch electrons in band λ with wave

vector k that are eigenstates of the crystal Hamiltonian

[
p2

2m
+ U(r)

]
ϕλ,k(r) = Eλ,kϕλ,k(r) , (3.2)

with the band structure Eλ,k. The single-particle states obey the Bloch theorem [39]

ϕλ,k(r) =
1√
S
eik·ruλ,k(r) , (3.3)

with quantization volume S and lattice periodic functions uλ,k(r). The fermionic creation

and annihilation operators (a†λ,k and aλ,k) create and annihilate an electron in the state

ϕλ,k(r), respectively.

3.3.2 Hamiltonian and matrix elements

The Hamiltonian (2.2) in second quantization can be computed by inserting the field oper-

ators defined in Eq. (3.1) into Eq. (2.3), resulting in

Ĥlightwave =
∑
λ,k

a†λ,k
[
Eλ,k + |e|

(
i∇k +Aλ

k

)
· E(t)

]
aλ,k −

∑
λ ̸=ν

∑
k

a†λ,kaν,kd
λ,ν
k · E(t)

+
1

2

∑
λ,ν,ν′,λ′

∑
k,k′,q

V λ,ν,ν′,λ′

k,k′,q a†λ,ka
†
ν,k′aν′,k′+qaλ′,k−q , (3.4)
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where phonon contributions have been neglected and the electric field is assumed to be

classical. Also, the separation of length scales [41] was applied by assuming that quantities

like the electric field change slowly within the unit cell. The dipole matrix elements, Berry

connection, and Coulomb matrix elements are identified as

dλ,ν
k ≡ −⟨λ,k||e|r|ν,k⟩ , (3.5)

Aλ
k ≡ ⟨λ,k|i∇k|λ,k⟩ , (3.6)

V λ,ν,ν′,λ′

k,k′,q ≡ Vq ⟨λ,k|λ′,k− q⟩ ⟨ν,k′|ν ′,k′ + q⟩ , (3.7)

respectively, where the abstract notation

⟨λ,k|Ô|ν,k′⟩ ≡ 1

Ω0

∫
Ω0

d2r u∗λ,k(r)O(r)uν,k′(r) (3.8)

defines matrix elements from integrals over the is the unit cell area Ω0. The Coulomb matrix

elements contain the Fourier transformation

Vq =
1

N
∑
R

e−iq·RV (R) , (3.9)

of the Coulomb potential V (r). In the envelope-function approximation, the momentum

representation of the Coulomb interaction Vq no longer resembles the 3D Coulomb interaction

because of quantum confinement [41]. To describe the Coulomb interaction of 2D TMDs,

we use the Keldysh potential [85, 86]

V Keldysh
q =

|e|2

2ε0εr(q)S
1

|q|
, with εr(q) =

εr1 + εr2
2

(1 + ρ0|q|) , (3.10)

where εr1 and εr2 are the relative permittivities of the materials surrounding the TMD on

either side, ε0 is the vacuum permittivity, and ρ0 is a material parameter that relates to an

effective thickness of the TMD.
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3.4 Equations of motion

3.4.1 Semiconductor Bloch equations

The singlets P λ,ν
k ≡

〈
a†λ,kaν,k

〉
are the relevant quantities that describe classical excitations

of solids and we assume an implicit time dependence P λ,ν
k = P λ,ν

k (t) for these expectation

values unless stated otherwise. The diagonal elements (λ = ν) describe the occupation of

the electronic state with momentum k in band λ, the off-diagonal elements (λ ̸= ν) are

microscopic polarizations which describe coherent excitations between two bands λ and ν.

Solids contain an infinite number of bands λ. However, a theoretical description can

often be limited to a finite number of bands that are relevant for the studied processes. If n

bands are considered, the singlet state of the system would be described by n occupations

and n(n − 1)/2 microscopic polarizations. The equations of motions for these singlets can

be computed from the Heisenberg equation of motion (2.4) and are detailed in Appendix A

for a general n-band system. Here, we consider a two-band system with one valence (λ = v)

and one conduction band (λ = c) to simplify the discussion. In the electron–hole picture,

this leads to three singlet quantities which we refer to as the microscopic polarization

Pk ≡ P v,c
k , (3.11)

and the electron and hole occupations

f e
k ≡ P c,c

k , fh
k ≡ 1− P v,v

k , (3.12)

respectively. The equations of motion describing their dynamics, known as the semiconductor
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Bloch equations (SBEs), are

iℏ
∂

∂t
Pk =

[
Ẽeh

k + i|e|E(t) ·
(
∇k − iAeh

k )
]
Pk −

[
1− f e

k − fh
k

]
Ωk(t) + Γk , (3.13a)

ℏ
∂

∂t
f
e/h
k = 2Im[Ω∗

k(t)Pk] + |e|E(t) · ∇kf
e/h
k + Γ

e/h
k , (3.13b)

for which a spatially homogeneous system was assumed by applying the random-phase ap-

proximation [69]. We identify the renormalized kinetic energy

Ẽeh
k ≡ Eeh

k −
∑
k′

(
V c,c
k,k′f

e
k + V v,v

k,k′f
h
k′

)
, (3.14)

with the free electron–hole energy Eeh
k ≡ Ec,k − Ev,k and Coulomb matrix elements V λ,ν

k,k′ ≡

V λ,ν,ν,λ
k,k′,k−k′ , and the renormalized Rabi energy

Ωk(t) ≡ dc,v
k · E(t) +

∑
k′

V c,v
k,k′Pk′ , (3.15)

with the self-consistently coupled electric field E(t). We further define Aeh
k ≡ Ac

k − Av
k

and collect all doublet terms in Γk, Γ
e
k, and Γh

k, respectively, which produce microscopic

scattering [70, 87].

3.4.2 Optical response

The optical response of a semiconductor can be computed self consistently by coupling

Maxwell’s equations (describing the dynamics of classical light) to the SBEs (describing the

dynamics of the semiconductor). Formally, Maxwell’s equations can be derived from the

Hamiltonian (2.2) by computing the Heisenberg equations of motion for bosonic phonon

operators
〈
b̂
〉
and identifying the electric field. Here, we will only use the results and refer

the reader to Refs. [41, 65, 70] for details.

For a two-dimensional quantum material situated at z = 0 and embedded by a dielectric
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environment with refractive index n(z) , the electric field is described by the wave equation

(
∂2

∂z2
− n2(z)

c20

∂2

∂t2

)
E(z, t) = −µ0δ(z)

∂

∂t
J(t) , (3.16)

where plane waves travelling in the z direction and an optically thin semiconductor (thickness

much smaller than the wave length of light) are assumed. The semiconductor excitations

couple to the light field via the macroscopic current density

J(t) = − ∂

∂t
Pinter(t) + Jintra(t) + J[∆ ⟨2⟩] , (3.17)

which can be split into interband currents from the macroscopic polarization

Pinter(t) =
1

S
∑
k

dv,c
k Pk , (3.18)

intraband currents Jintra(t), as well as contributions from doublets J[∆ ⟨2⟩] (see Appendix B

for details). In this Thesis, we focus on coherent processes such as harmonic sideband

generation which are dominated by interband emission. Intraband currents can easily be

included in the dynamics and become important in high-harmonic generation, for example.

The wave equation (3.16) can be solved analytically when assuming the refractive index

to be constant with value n1 for z < 0 and n2 for z > 0. In other words, when the quantum

material is surrounded by materials with constant refractive indices as illustrated in Fig 3.1.

In an experimental setup, this could describe a TMD on a substrate without encapsulation

(n1 = 1, n2 > 1). For an electric field Ein(t) that approaches the quantum material from the

left with perpendicular incident, the transmitted and reflected fields at the quantum-material

position are then given by

ET(t) =
2n1

n1 + n2

Ein(t)−
µ0c0

n1 + n2

∂

∂t
Pinter(t) , (3.19a)

ER(t) = −n2 − n1

n1 + n2

Ein(t)−
µ0c0

n1 + n2

∂

∂t
Pinter(t) , (3.19b)
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Figure 3.1: Self-consistent electric field for a optically thin quantum material surrounded
by dielectric materials. The quantum material (gray line) is surrounded by materials with
refractive indices n1 and n2 and is excited by the incident electric field Ein(t). ER(t) and
ER(t) are the reflected and transmitted electric fields at the position of the quantum material,
respectively.

respectively. The actual field exciting the quantum material and entering the SBEs is E(t) =

ET(t) and contains both the incident field and the field radiated by the quantum material

itself. In later chapters, we also separately study the field

Erad ≡ − µ0c0
n1 + n2

∂

∂t
Pinter(t) , (3.20)

that is radiated by the material.

Reflection and transmission spectra are connected to the fields (3.19) by a Fourier trans-

formation E(f) =
∫
dtE(t)e2πift with frequency f , and intensity spectra are given by

I(f) = |E(f)|2. Later chapters analyze frequency regions for which the incident field Ein(f)

is negligibly small compared to the radiated field Erad(f). In those cases, the intensity

spectra can be computed from

I(f) ∝
∣∣f Pinter(f)

∣∣2 , (3.21)

where Pinter(f) is the Fourier transformation of Pinter(t). The wave equation (3.16) can also

be solved straightforwardly for more complex dielectric structures n(z) using the transfer-

matrix approach [41, 88] and be extended to include multiple coupled quantum-material

layers and different excitation geometries.

16



3.4.3 Doublet contributions and microscopic scattering

As discussed in Chapter 2, classical light first excites singlets (Pk, f
e
k, and fh

k , see Ref-

erence [70]). Once these are formed, scattering among the singlets creates two-particle

correlations, doublets, which couple back to the singlet dynamics via Γk, Γ
e
k, and Γh

k and

create a microscopic scattering. Phenomenologically, the effects of doublets are observed as

excitation-induced dephasing for Pk and carrier relaxation for f
e/h
k [41, 70].

In this thesis, we are interested in the ultrafast coherent dynamics that unfolds on time

scales where singlets dominate and doublets just start forming. Instead of solving the dou-

blets dynamically alongside the singlets (which would significantly increase the computa-

tional complexity), we carefully analyze the doublet dynamics and microscopic scattering.

The two most important aspects of a realistic microscopic scattering (a diffusive character

and quantum memory) are discussed in the following two sections and combined into an

effective microscopic scattering model.

Diffusive scattering

The doublet contributions to Pk collected in the scattering term Γk in the SBE (3.13a)

satisfies the conservation law [70]

∑
k

Γk = 0 , (3.22)

and shows that Coulomb scattering has a diffusive character that alone conserves the micro-

scopic polarization. A phenomenological dephasing Γk = −iγPk that is often applied clearly

violates this conservation. To mimic the diffusive character, we apply a diffusive scattering

model

Γk = −i

[
γ
(1)
k Pk −

∑
k′

γ
(2)
k,k′Pk′

]
, γ

(1)
k =

∑
k′

γ
(2)
k,k′ , (3.23)
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which satisfies Eq. (3.22) by definition. For the scattering kernel, we choose a Gaussian form

γ
(2)
k,k′ = γe−|k−k′|2/∆K2

. (3.24)

This creates a state-dependent dephasing which is an important aspect of excitation-induced

dephasing (EID) and crucial in the context of lightwave excitations. Because lightwave driv-

ing rapidly changes the microscopic state of the system, the effective dephasing becomes

strongly time-dependent. The intricacies of this temporal dephasing cannot be captured by

a simple phenomenological dephasing constant. The parameters γ and ∆K of the diffu-

sive scattering model used in this work were deduced from fully microscopically computed

scattering matrices [89].

Quantum memory

The formation of doublets and the subsequent emergence of dephasing takes time because

of the sequential build-up of correlations discussed in Section 2. A careful analysis of the

build up of scattering led to the development of the quantum-memory model detailed in

Ref. [87]. Its name originates from the fact that dephasing is dependent on the history of

the system at earlier times which results in a frequency-dependent dephasing. It becomes

particularly important in the description of off-resonant excitations as it greatly reduces the

tail of absorption lines which for a constant dephasing would have Lorentzian shapes [41].

Scattering model for monolayer TMDs

In our computations, we combine the diffusive scattering with a quantum-memory model to

describe the Coulomb scattering. At room temperature, phonon-induced dephasing occurs

which we take into account by adding an extra k-dependent dephasing to the quantum-

memory kernel. The scattering model used in our computations is detailed in Appendix C.
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3.5 Interband excitation vs lightwave driving

The electric field enters the SBEs in two places. The first appearance is in the renormalized

Rabi energy (3.15) where the electric field couples via the dipole matrix elements dc,v
k and

creates excitations between the valence and conduction band [41]. These so called interband

excitations are the dominant process of resonant excitations. The electric field also appears

in connection with gradients of the form

∂

∂t
sk(t) =

|e|
ℏ
E(t) · ∇ksk(t) , (3.25)

for all singlet quantities sk ∈
{
Pk, f

e
k, f

h
k

}
. Equation (3.25) is solved by

sk(t) = s
k− |e|

ℏ A(t)
(t0) , with A(t) = −

∫ t

t0

dτ E(τ) , (3.26)

which is a simple translation of sk in momentum space that is equivalent to the acceleration

theorem of Bloch electrons in solids [39, 90]. We refer to these light-induced translations as

lightwave or intraband driving.

For a sinusoidal field E(t) = êE0 cos(2πft) with frequency f and peak electric field E0

in the direction ê, singlets are translated in momentum space by

k(t) =
|e|E0

hf
sin(2πft) , (3.27)

resulting in a sinusoidal motion in the direction of the electric field with amplitude |e|E0

hf
.

From Eq. (3.27) follows that the oscillation amplitude increases with increasing peak field

strength or decreasing driving frequency.

For TMD materials with optical gaps, typical resonant excitations efficiently create in-

terband transitions, but create negligible lightwave driving. In contrast, low frequency,

off-resonant fields can create considerable lightwave driving without inducing substantial in-

terband transitions. At the most extreme excitation strengths, both processes can occur for
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both resonant and off-resonant frequencies. However, such conditions are not considered in

this Thesis.

3.6 Ab initio matrix elements

The single-particle states ϕλ,k(r) defined in Eq. (3.1) are needed to explicitly compute matrix

elements and solve the SBEs for realistic materials. Density-functional theory [82–84] is an

ab initio approach to solve ϕλ,k(r) on the full Brillouin zone for any given crystal structure.

However, calculations are usually performed on k grids that are much coarser than what is

required to solve the SBEs. Solving DFT on dense k grids is possible, but numerically expen-

sive. Maximally localized Wannier functions [91, 92] as implemented by the wannier90 code

[93] can be used to map DFT computations onto a tight-binding (TB) model to interpolate

DFT results at arbitrary k.

The subsequent sections introduce the tight-binding formalism and show how a tight-

binding model can be constructed from a DFT calculation. We then derive all matrix

elements that are needed in the SBEs from the tight-binding model and elaborate how the

gauge freedom in the k-dependent phase of the single-particle states can be settled to recover

smooth and differentiable matrix elements.

3.6.1 Tight-binding model

A detailed introduction of the tight-binding model can be found, for example, in Reference [5].

In this Section, I summarize the key equations and ideas that are needed for the subsequent

explicit computation of microscopic matrix elements.

In a tight-binding model, the single-particle wave functions are approximated as a linear

combination of atomic orbitals (LCAO)

ψα,k(r) =
1√
N

∑
R

eik·Rφα(r−R) , (3.28)
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with atomic orbitals φα(r), number of sites N , and lattice vectors R. The LCAO states

satisfy the Bloch theorem

ψα,k(r+R) = eik·Rψα,k(r) , (3.29)

and are used to obtain the tight-binding Hamiltonian by expressing the crystal Hamiltonian

in the LCAO basis

Hα,β(k) ≡
∫

drψ∗
α,k(r)Ĥ(r)ψβ,k(r)

=
∑
R

eik·R
∫

drφ∗
α(r)H(r)φβ(r−R)

=
∑
R

eik·R ⟨α,0|Ĥ|β,R⟩ , (3.30)

where we introduced the abstract notation φα(r−R) = ⟨r|α,R⟩.

3.6.2 Tight-binding Hamiltonian from DFT

The tight-binding Hamiltonian can be directly constructed from a DFT calculation using the

wannier90 code. It generates maximally localized Wannier functions that act as the atomic

orbitals φα(r) in (3.28). Conveniently, the wannier90 code directly generates outputs of the

matrix elements ⟨α,0|Ĥ|β,R⟩ to be used in Eq. (3.30).

The Wannier functions are constructed from a subset of the DFT states which allows for

downfolding and reduction of the number of bands to a subset relevant for the dynamics.

This process, also referred to as Wannier interpolation [94], is a standard tool in the DFT

community and we refer the reader to References [94, 95] for details.
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3.6.3 Single particle eigenstates and electronic bands

The single-particle eigenstates |ϕλ,k⟩ and eigenenergies Eλ,k that form the band structure

result from the eigenvalue problem

Ĥ |ϕλ,k⟩ = Eλ,k |ϕλ,k⟩ . (3.31)

In the LCAO basis, this is equivalent to diagonalization of the TB HamiltonianHα,β(k) which

can be efficiently performed numerically for each desired k point. The resulting eigenvectors

cλα(k), defined by

∑
β

Hα,β(k)c
λ
β(k) = Eλ,kc

λ
α(k) , (3.32)

expand the eigenstates

ϕλ,k(r) =
∑
α

cλα(k)ψα,k(r)

=
1√
N

∑
α

cλα(k)
∑
R

eik·Rφα(r−R) , (3.33)

in the LCAO basis. Later, we will also use

ϕλ,k(r) =
1√
N
eik·ruλ,k(r) , (3.34)

with the lattice periodic wave functions

uλ,k(r) =
∑
α

cλα(k)
∑
R

eik·(R−r)φα(r−R) , (3.35)

which are orthogonal when integrated over the unit cell with area Ω0:

⟨λ,k|µ,k⟩ ≡ 1

Ω0

∫
Ω0

d2r u∗λ,k(r)uµ,k(r) = δλ,µ . (3.36)
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3.6.4 Coulomb matrix elements

The Coulomb matrix elements

V λ,ν
k,k′ = Vk−k′ ⟨λ,k|λ,k′⟩ ⟨ν,k′|ν,k⟩ (3.37)

require evaluation of the overlap integrals

⟨λ,k|ν,k′⟩ =
∑
α,β

[
cλα(k)

]∗
cνβ(k

′)
∑
R

e−ik·R
∫

d2r e−i(k−k′)·rφ∗
α(r−R)φβ(r) . (3.38)

We approximate
∫
d2r e−i(k−k′)·rφ∗

α(r−R)φβ(r) ≈ δR,0δα,β which is motivated by φα(r)

being localized wave functions that have their largest overlap for R = 0. This approximation

is best for small |k− k′|. However, at large |k− k′| where the approximation fails, the

Coulomb potential Vk−k′ becomes small which renders the precise value of the integral less

important. As a result, the overlaps are well approximated by

⟨λ,k|ν,k′⟩ ≈
∑
α

[
cλα(k)

]∗
cνα(k

′) , (3.39)

which yields the tight-binding Coulomb matrix elements

V λ,λ′

k,k′

∣∣∣∣
TB

= Vk−k′

∑
α

[
cλα(k)

]∗
cλα(k

′)
∑
β

[
cνβ(k

′)
]∗
cνβ(k) . (3.40)

3.6.5 Dipole matrix elements

To compute the dipole matrix elements defined in Eq. (3.5), we use the so called Peierls

approximation. Technically, it applies the generalized Feynman–Hellman theorem [96] to

represent the dipole matrix elements exactly as

dλ,ν
k = − i|e|

Eν(k)− Eλ(k)
⟨λ,k|∇kH(k)|ν,k⟩ . (3.41)
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When inserting the tight-binding states (3.35), the tight-binding dipole can be approximated

as

dλ,ν
k,k′

∣∣∣∣
TB

=
i|e|

Eνk − Eλk

∑
α,β

[
cλα(k)

]∗
cνβ(k)∇kH

α,β(k) , (3.42)

which neglects terms that contain gradients of the LCAO states ψα,k(r).

3.6.6 Berry connection

The Berry connection (3.6) is defined based on gradients of the lattice-periodic functions

(3.35). We use an approach that is based on finite-differences to compute the Berry connec-

tion numerically on a discrete grid.

For an infinitesimal δ and unit vector ê, one finds [95]

ê ·Aλ
k = −Im ⟨λ,k|ê · ∇k|λ,k⟩ = −1

δ
Im ln ⟨λ,k|λ,k+ δê⟩ . (3.43)

Based on this relation, the tight-binding Berry connection along ê-direction can be approx-

imated as

ê ·Aλ
k

∣∣∣∣
TB

= −1

δ
Im ln

(∑
α

[
cλα(k)

]∗
cλα(k+ δê)

)
(3.44)

if we assume k and k + δê to be two neighboring points of a discrete grid with a finite δ.

To derive this expression, similar approximations to ⟨λ,k|λ,k′⟩ as in Section 3.6.4 for the

Coulomb matrix elements have been applied. Equation (3.44) can easily evaluate the Berry

connection along the direction of the vectors spanning the discrete grid. In general, these

are not orthogonal. However, computing the Berry connection in two directions that are not

collinear is sufficient to construct the full vectorial Aλ
k.
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3.6.7 Geometric gauge

The geometric gauge refers to a particular choice of phases of the eigenstates uλ,k(r) which

can be chosen freely [95]. Introducing a new set of states

ũλ,k(r) = eiθλ,kuλ,k(r) , (3.45)

changes the microscopic matrix elements. However, observables such as the interband polar-

ization density in Eq. (3.18) remain invariant under such transformations of the geometric

gauge. When the eigenproblem (3.32) is solved numerically, the phases assigned to the eigen-

states are not physically motivated and can exhibit non-differentiable points as a function

of k. To make numerically computed eigenstates usable in the SBEs, the geometric gauge

needs to be chosen such that the states ũλ,k(r) are differentiable.

Finding a gauge transformation that makes states differentiable in all directions of the

two-dimension Brillouin zone would be ideal. However, this is not generally possible [95].

Differentiability in one particular direction can be achieved by applying the twisted-parallel

transport gauge as discussed in Ref. [95]. This is sufficient for the SBEs because they

only contain gradients in a single direction at any given time (parallel to the electric field).

Integrating the Berry connection along a slice in one direction across the whole Brillouin zone

amounts to a finite Berry phase which is gauge invariant. The twisted-parallel transport

gauge evenly spreads this phase across the slice, generating a constant Berry connection

that is differentiable even across the periodic boundaries of the Brillouin zone. This can be

repeated for all slices in the same direction until the whole two-dimensional Brillouin zone

is covered. For linearly polarized light E, the twisted-parallel transport gauge needs to be

computed only once in the direction of the field. For more general fields, the gauge can also

be adjusted dynamically [77], following the direction of the electric field as a function of

time.
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3.7 Numerical implementation

To describe lightwave-electronic excitations of TMDs, we solve the SBEs numerically on the

full two-dimensional Brillouin zone in a moving frame

smov
k (t) ≡ s

k+
|e|
ℏ A(t)

(t) , with A(t) = −
∫ t

−∞
dτ E(τ) , (3.46)

for all singlets sk ∈
{
Pk, f

e
k, f

h
k

}
, which eliminates the gradient terms in the SBEs. The

two-dimensional Brillouin zone is discretized using a rhombic grid as described in Appendix

D and all matrix elements are computed from ab initio methods as elaborated above. The

resulting set of coupled ordinary differential equations is solved in time, starting from the

ground state, using a the 4th order Runge-Kutta method [97]. We compute the dynamics

on grids with up to 117× 117 = 13689 k points and have verified that the numerical results

are well converged at 69× 69 = 4761 k points.
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Chapter 4

Lightwave Tomography of Quantum Materials

This Chapter is in parts adapted from M. Borsch, C. P. Schmid, L. Weigl,

S. Schlauderer, N. Hofmann, C. Lange, J. T. Steiner, S. W. Koch, R. Huber, and

M. Kira, “Super-resolution lightwave tomography of electronic bands in quantum

materials”, Science 370, 1204 (2020).

4.1 Introduction

The electronic band structure of quantum materials defines important material properties

and is the foundation of quantum functionalities, including spin-valley, topological, and

many-body effects. Characterization of the band structure is an important part in the dis-

covery process to find new materials with quantum functionalities. The metaphorical gold

standard to experimentally access band structures is set by angle-resolved photoemission

spectroscopy (ARPES) [98–101]. Because it is based on detection of photoemitted elec-

trons, it requires ultrahigh vacuum and is only sensitive close to the surface of materials.

Buried materials such as quantum-well structures cannot be probed by ARPES because

photoexcited electrons cannot pass undisturbed through the material, if at all. All-optical

band-structure reconstruction based on high-harmonic generation has been proposed [102]

as an alternative. It provided inspiration for experimental realizations [103–106] of this ap-
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proach which is based on fitting experimentally measured spectra to computed spectra based

on trial band structures to find the maximum agreement. A direct band-structure mapping

is not possible because the strong light fields used to generate HH create excitations through-

out the Brillouin zone that experience significant lightwave driving [52] as well as electronic

interferences between multiple bands [56].

To overcome the limitations set by ARPES and HHG-based approaches, we developed

super-resolution lightwave tomography. It is a new all-optical approach that directly connects

the intensities of harmonic sidebands to the band structure via crystal-momentum combs and

can be applied to microscopically small, atomically thin, or buried materials in situ without

the need of ultra-high vacuum. In this Chapter, super-resolution lightwave tomography is

introduced and the concept is demonstrated for monolayer WSe2 in a detailed comparison

between experiment and the QDCE theory developed in Chapter 3. In addition, the potential

of tomography beyond the band structure to access dipole and Coulomb matrix elements is

discussed.

4.2 Idea of lightwave tomography

Figure 4.1 shows the band structure of WSe2 near its direct gap at the K point and illus-

trates the basic idea of lightwave band-structure reconstruction. A pair of bands (red lines)

is selected by resonantly exciting (red wave) an electron–hole pair (blue and red spheres)

between them. A strong off-resonant lightwave drives the excited coherence to a different

wave vector k (blue and red arrow) where electron and hole can recombine and emit light

at the respective gap energy (blue wave). By scanning k and recording the emitted photon

energy, the energy gap could be reconstructed as function of the wave vector k. However,

two limitation are in the way of such a straightforward approach. First, lightwave sources

with enough control to permanently move coherences to a specific k do not exist. Second,

the dynamics and emission energy is complicated by many-body effects.
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Figure 4.1: Idea of lightwave band-structure reconstruction. A resonant light pulse (red
wave) generates an electron (blue sphere) and hole (red sphere) between two selected bands
(red lines). A off-resonant lightwave then drives the charges to a different wave vector (blue
and red arrows) where electron and hole recombine, emitting light in the form of harmonic
sidebands (HSB, blue wave).

In our approach, we select the two red bands in Fig. 4.1 by resonantly exciting the

1s-A exciton of monolayer WSe2. The excited excitonic wave packet is described by the

microscopic polarization Pk and is located at the K point where the gap energy between the

two bands, Eeh
k , is minimized. The excited Pk is strongly localized in momentum space and

oscillates with frequency f1s where hf1s is the energy of the 1s resonance. Figure 4.2 (bottom

part at t = 0) shows a computed Pk as a color map on top of the electron–hole energy Eeh
k .

A strong multi-terahertz (THz) field moves Pk on an approximately sinusoidal trajectory in

momentum space (Fig. 4.2 at t > 0). The resulting increase in energy Eeh
k when moving

away from the minimum at the K point changes the frequency at which Pk oscillates and

leads to emission of HSBs. In addition to a continued back-and-forth motion, Pk exhibits

considerable spreading and interferences caused by many-body effects which does not allow

for a simple reconstruction as proposed above. However, the combination of a narrow wave

packet excited at the K point and driving along an almost sinusoidal path leads to the

emergence of crystal-momentum combs which elegantly link the emission of HSBs to Eeh
k .
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Figure 4.2: Lightwave dynamics and crystal-momentum combs. Bottom, computed dynam-
ics of the microscopic polarization (color map, |Pk(t)|2) for a typical lightwave excitation
generating harmonic sidebands (HSBs), projected onto the gray surface which shows the
electron–hole energy Eeh

k relative to the gap energy Egap (red line). The black line indicates
the vector potential of the lightwave with cycle length TTHz. Top, Comparison of crystal-
momentum combs (k combs) (blue color map) with their even parts (red–yellow color map)
for 0th to 5th order HSBs based on the dynamics shown below.

4.3 Crystal-momentum combs

To obtain the optical response of a semiconductor from the SBEs (see Section 3.4.2), we

usually compute the dynamics of the microscopic polarization Pk(t) from which the macro-

scopic polarization P (t) = 1
S
∑

k dkPk(t) can be constructed. P (t) is related to the light field

emitted by coherent excitons as a function of time and a Fourier transformation yields the

corresponding emission spectrum I(f) ∝ |fP (f)|2 with frequency f . Mathematically, the

order of macroscopic sum (first) and Fourier transformation (second) can be switched and
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we obtain

I(f) ∝

∣∣∣∣∣f 1

S
∑
k

dkpk(f)

∣∣∣∣∣
2

, (4.1)

where

pk(f) ≡
∫

dt Pk(t)e
2πift , (4.2)

is the Fourier component of the microscopic polarization. It shows which k points in mo-

mentum space oscillate with frequency f and contribute to the emission of light with photon

energy hf .

When the system is excited by a resonant pulse with frequency fopt and a THz pulse

with frequency fTHz, HSBs are expected at frequencies fn = fopt + nfTHz for integer n. The

blue colormap in Fig. 4.2 shows |pk(fn)| for n = 0 to 5 resulting from the dynamics shown

underneath it. The emergence of very distinct interference patterns, the crystal-momentum

combs, becomes clear when analyzing Pk(t) = P rot
k (t)e−2πifoptt in the rotating frame which

removes the excitation frequency fopt from the oscillations of Pk(t).

In a reduced picture, a lightwave with field ETHz simply translates P rot
k (t) = P rot

k(t) by

k(t) = k−2π |e|
h

∫ t

−∞ dt′ETHz(t
′) according to Eq. (3.26). For a Gaussian P rot

k and a sinusoidal

driving field, the integral in Eq. (4.2) can be solved analytically and the resulting pk(fn) are

shown for n = 0 to 6 in Fig. 4.3a. The pk(fn) exhibit the same structure of n nodes and

(n + 1) peaks for the nth order as the k-combs from the QDCE computation in Fig. 4.2,

attesting that the reduced model captures the correct physics. Figure 4.3b illustrates how

the k-combs are generated on the example of the 5th order HSB. A wave packet P rot
k (t)

following a sinusoidal translation (black line) crosses a given k value twice per THz cycle

(sparks), each time creating a contribution to the integral in Eq. (4.2), which in the rotating
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frame and for the 5th order HSB reads

pk(f5) =

∫
dt P rot

k (t)e
2πi∗5 t

TTHz . (4.3)

These two contributions at times t1(k) and t2(k), which are k dependent, can be interpreted

as independent polarization bursts that add up coherently with a relative phase between them

which is defined by the spectrum-projecting kernel, e
2πi∗5 t

TTHz (red and blue oscillating lines).

The latter oscillates five times faster than the k(t) trajectory with period TTHz = 1/fTHz.

The peak and node structure is defined by the coherent addition of these two terms

e
2πi∗5 t1(k)

TTHz + e
2πi∗5 t2(k)

TTHz = e
2πi∗5 t1(k)

TTHz

[
1 + e

2πi∗5 t2(k)−t1(k)
TTHz

]
. (4.4)

The time difference ∆t(k) ≡ t2(k)−t1(k) assumes values between 0 and TTHz, hence creating

exactly 6 k points where the first and second burst are in phase, interfering constructively

(∆t(k) = m
5
TTHz), and 5 k values where the bursts are out of phase creating a node (∆t(k) =

m+1/2
5

TTHz), with integer m. Generally, pk(fn) exhibits (n + 1) lobes separated by n nodes.

We call the resulting k-dependent interference patters crystal-momentum combs, or k-combs

for short, in analogy to frequency combs created by multiple time-domain pulses [107, 108].

At the K point, the symmetry center of the lightwave trajectories, even order k combs

exhibit a peak while the odd ordered ones feature a node. This implies a dominantly odd

(even) symmetry for odd (even) ordered k combs, which is supported by the reduced model.

In WSe2, this symmetry is broken when Pk(t) is driven to regions of the band structure

where the inversion symmetry does not apply and Eeh
k ̸= Eeh

−k.

The symmetry of the k combs greatly affects the HSB intensity defined by Eq. (4.1).

For inversion symmetric systems where Eeh
k = Eeh

−k and dk = d−k, odd-order sidebands

do not exist [62] because antisymmetric k combs make the total sum of I(fn) in Eq. (4.1)

vanish. Only the even part of the k combs, pevenk (fn) ≡ 1
2
[pk(fn) + p−k(fn)], contributes to the

emission, allowing only even ordered sidebands. In monolayer WSe2, the inversion symmetry
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Figure 4.3: Crystal-momentum combs. a, Analytically computed crystal-momentum combs
(k combs) of order n = 0 to 6 for a Gaussian P rot

k translated along a sinusoidal path in
momentum space with maximum displacement kmax. Left, two-dimensional pk(fn), k combs
are shifted in ky for better visibility. Red indicates positive, blue negative values. Right, slices
of pk(fn) through ky = 0. b, Schematic illustrating the origin of k combs on the example of
the 5th order. A wave packet of microscopic polarization (orange wave packet) is translated
along a sinusoidal path in momentum space (black line) via lightwave driving. The wave
packet crosses a given wave vector k twice per translation cycle at times t1(k) and t2(k),
each time (pink sparks) creating a burst of emission. Depending on the relative timing of
the burst, they can either interfere constructively (top dashed line) or destructively (bottom
dashed line), creating an interference pattern in momentum space (red–blue contours on the
right), the k comb.

is broken [109]. Comparing QDCE computed even-ordered k combs pk(fn) (Fig. 4.2, blue

color map) with their even contributions pevenk (fn)(Fig. 4.2, red color map), verifies their

dominantly even symmetry. On the other hand, the even contributions of odd orders n =

1, 3, 5 in Fig. 4.2 vanishes within the K valley but peaks sharply beyond a certain point. Near

the K point, all matrix elements are symmetric and asymmetric features (such as Eeh
k ̸= Eeh

−k)

only become relevant near the M point where the even parts of the odd-order k combs are

located. For odd orders to appear, Pk(t) needs to be translated to such regions. In other

words, the odd order k combs need to extend into the asymmetric regions for odd order HSBs

to appear. For this reason, the emission of odd HSBs strictly originates from the outermost

comb line. Even though the pevenk (fn) of even HSBs are not localized in the same way, the

outermost k-comb line still defines a sharp leading edge which determines the HSB emission
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strength. It is important to note that the k combs are projections of Pk(t) (which oscillate

with energy Eeh
k /h) onto the HSB energy hfn. Their amplitudes decrease quickly if Pk(t)

does not support energies that equal the HSB energy.

For both even and odd orders, the outermost comb line is a good guiding point to locate

HSB emission in momentum space. Classically, this line is expected to be located at the

point of maximum excursion |e|ETHz

hfTHz
as described by Eq. (3.27). To take into account changes

due to many-body effects and dephasing, we quantify the outermost comb line for order n

by

k(n) =
|e|ETHz

hfTHz

Cn(ETHz, fTHz) , (4.5)

where the direction is dictated by the lightwave with peak field strength ETHz and central

frequency fTHz, and Cn captures the deviations from the classically expected wave vector.

Typical values of Cn for n = 4 and 5 are between 0.5 and 1.5 as shown in Fig. 4.4. The

correction factor is almost constant as function of the THz field strength (Panels a and c),

while it is strongly dependent on the THz frequency (Panels b and d). At low frequencies

where the THz period TTHz is long, scattering and dephasing can prevent Pk(t) from reaching

the classically expected maximum excursion. In contrast, the correction factor increases at

higher frequencies and is expected to eventually saturate in the limit where TTHz becomes

large compared to the lifetime of Pk(t).

To quantify the resolution of our approach, we follow the width of the outermost comb

line and compare it to the width of the entire k comb. If the n-th order k comb were evenly

split into (n + 1) lines, the resolution would increase by a factor of (n + 1). Figure 4.5

compares this simple estimate (blue line) to the actual resolution of combs generated by a

lightwave with peak field strength ETHz = 11.4 MV/cm and central frequency fTHz = 42 THz

based on a QDCE computation (black dots), corroborating the super-resolution properties

of the k combs. The resolution improvements grow approximately linear with the sideband
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order n.

4.4 Tomography of electronic bands

4.4.1 Field-strength scan

To demonstrate the band-structure tomography in practice, we use experimental HSB spectra

recorded in Rupert Huber’s group (University of Regensburg). They optically excited the

1s–A exciton resonance in a monolayer sample of WSe2 with a 100 fs long pulse and a photon

energy centered at hfopt = 1.665 eV. A co-propagating linearly polarized and 100 fs long

multi-terahertz transient with central frequency of fTHz = 42 THz was used to accelerate the

excited Pk(t) along the Γ–K direction. The momentum of the outermost comb line k(n) was

controlled by scanning the (vacuum) peak field strength Epeak
THz between 7 and 19 MV/cm.
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For more details about the experiment, we refer the reader to the Supplementary Material of

Ref. [110] as well as Ref. [111]. A subset of the recorded HSB spectra are shown in Fig. 4.6a.

The spectra cover the entire visible range and show strong changes as a function of Epeak
THz .

While the 3rd HSB only emerges for the highest fields, the 5th order intensity (Fig. 4.6c)

increases sharply at Epeak
THz = 7 MV/cm, peaks at 13 MV/cm, and decreases for the highest

fields, clearly exhibiting non-perturbative behavior.

To connect this particular Epeak
THz dependence with the k combs, we compare the exper-

iment to QDCE computations. The computed spectra (Fig. 4.6b) are compared quantita-

tively and agree well with the experiment (Fig. 4.6a). The computed intensity dependence

of the 5th HSB (Fig. 4.6c, shaded area) perfectly reproduces the onset, peak, and drop of

the experimental data (red dots). The QDCE computations provide access to the pevenk (f5)

(Fig. 4.6d, red color map) which assign a crystal momentum k(5) (Fig. 4.6d, blue lines) as

function of Epeak
THz . Figure 4.6e shows the electron–hole energy Eeh

k (shaded area) together

with the inverted Eeh
−k (dotted line) to make the band asymmetries (Eeh

k ̸= Eeh
−k) easier to
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recognize. Comparing the sideband intensity (Fig. 4.6c) with Eeh
k , it is evident that the 5th

HSB precisely sets on when the 5th order k comb, k(5), reaches the band asymmetry (blue

arrow), corroborating the super-resolution connection between the position of the outermost

comb line and odd-ordered HSB intensities.
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Figure 4.6: Crystal-momentum comb tomography with a field-strength scan of the 5th HSB.
a and b, Measured (a) and computed (b) HSB intensity spectra IHSB at different peak field
strengths ETHz (shifted for visibility) and fixed center frequency fTHz = 42 THz. The 5th
order HSB is highlighted by the yellow transparent bar. c, Field-strength dependent (top
axis) 5th-order HSB intensity is shown for the measured (red dots with error bars) and
computed (shaded area) results. The respective k(5) assignment is shown on the bottom
axis. d, The ky = 0 slice of the symmetric part of the 5th order k comb, |pevenk (f5)|, as
function of ETHz. The blue line marks the position of the outermost line, k(5). e, Electron–
hole energy Eeh

k (gray area) along the K–K’ direction and Eeh
−k (dotted line) are connected

(blue arrow) to the HSB intensity via the k combs.

When increasing Epeak
THz further, the k comb is shifted clearly into the asymmetric region,

leading to an increase in intensity. However, at the highest Epeak
THz , the central energy of

the polarization is far offset from the energy of the 5th HSB which eventually reduces the

HSB intensity again. The sharply peaked Epeak
THz dependence of the 5th HSB intensity is a

signature of the super-resolution aspects introduced by the odd-ordered k combs.
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The even orders show a similar behavior. Figure 4.7 provides the k comb analysis for

the 4th order HSB which exhibits a sharp increase in intensity when Eeh
k at k(4) is resonant

with the energy of the 4th HSB (Fig. 4.7b, blue horizontal line). Due to the symmetry of

the even k combs, the 4th order can also detect the band within the symmetric region of

Eeh
k and does not require asymmetries.
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Figure 4.7: Crystal-momentum comb tomography with a field-strength scan of the 4th HSB.
a, Field-strength dependent (top axis) 4th-order HSB intensity is shown for the measured
(red dots with error bars) and computed (shaded area) results. The respective k(4) assign-
ment is shown on the bottom axis. b, Electron–hole energy Eeh

k (gray area) along the K–K’
direction and Eeh

−k (dotted line) are connected (blue arrow) to the HSB intensity via k-comb
tomography.

To summarize, by varying the field strength and scanning k(n) along a fixed sideband

energy, the onset of sideband intensity identifies the band itself for even orders, and the

onset of asymmetries for odd orders. Repeating this process for different THz frequencies

fTHz scans the sideband energy which yields access to the full band structure.

4.4.2 Frequency scan

Experimentally, our collaborators have measured HSB spectra at a fixed field strength of

Epeak
THz = 14 MV/cm while varying the central frequency fTHz over one full octave, from 27 to
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54 THz. The field strength was chosen to provide efficient HSB generation while still being

below the threshold where interband excitation of the lightwaves becomes relevant and high

harmonic generation sets on. A subset of the experimental spectra are shown in Fig. 4.8a

and are compared to QDCE results in Fig. 4.8b. Figure 4.8c shows the measured (red dots)

and computed (shaded area) intensity of the 5th order HSB as function of fTHz. Similar

to the field-strength scan in Fig. 4.6c, the fTHz dependence of the HSB intensity displays a

clear onset, peak, and drop. By scanning fTHz, both k(n) and the sideband energy change.

Figure 4.8d shows the fTHz-dependent p
even
k (f5) (red color map) and k(5) (blue line) relative

to the band gap Eeh
k (black line). The sideband intensity peaks for fTHz = 42 THz where the

sideband energy is close to the energy of the polarization (Eeh
k at k(5)) and also overlaps with

the asymmetric region, fulfilling the two necessary conditions for odd-order HSB emission.

The HSB intensity quickly drops both at lower fTHz because the polarization energy becomes

too far offset from the sideband energy, and at higher fTHz because the k comb does not

reach the asymmetric region. Overall, this results in a narrow fTHz-dependent peak of the

5th order HSB.

4.4.3 Full reconstruction

The combination of experimental measurement and theoretical guiding enables super-re-

solution lightwave tomography. The k combs localize HSB emission from a set of experi-

mental parameters (ETHz, fTHz) to a narrow region in (k, energy) space. By scanning both

ETHz and fTHz, the entire band energy Eeh
k can be mapped tomographically.

We computed HSB intensities I(fn) for a comprehensive scan of (ETHz, fTHz) to demon-

strate what our tomographic approach can achieve. The emission of each sideband order

generated from (ETHz, fTHz) is mapped to (k, energy)-space by assigning the coordinate

[k(n), EHSB
n ]. The mapped intensities for orders n = 3, 4, 5, 6 are shown in Figs. 4.9a–d to-

gether with the band gap Eeh
k (sold lines) and Eeh

−k (dotted lines). The band structure clearly

follows the edge of the intensity, corroborating that the onset of HSB emission is defined by
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peak HSB emission.

the crossing of k(n) with Eeh
k . While the even orders n = 4 and 6 capture the band structure

near the K point, the odd orders n = 3 and 5 provide additional sensitivity to the band

symmetry and reveal Eeh
k ̸= Eeh

−k conditions away from the K point.
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Figure 4.9: Super-resolution lightwave tomography. a to d, Contours show computed HSB
intensities of the 3rd (a), 4th (b), 5th (c), and 6th (d) order based on a two-dimensional
(ETHz, fTHz) scan and mapped into energy–momentum space via crystal-momentum comb
tomography. The intensities are compared the electron–hole energies Eeh

k (solid line) and
Eeh

−k (dotted line) as well as experimentally measured one-dimensional scans of ETHz and
fTHz (colored lines in black boxes). e and f, The electron–hole energy Eeh

k (solid line) is
compared to the computed gradients of the R5th/3rd (e) and R6th/4th (f) ratios along the wave
vector (blue color map) and energy (red color map) directions; only the first gradient peaks
are shown.

The one-dimensional experimental ETHz and fTHz scans discussed in Figs. 4.6 and 4.8,

respectively, are shown in Figs. 4.9a–d as colored traces surrounded by black lines (cross

shaped). A single factor has been multiplied to the experimental intensities in order to

align the units between experiment and theory. Consistent with the earlier discussion, the

experimental intensities almost perfectly fit into the computed intensity landscapes.

According to Eq. (4.1), also the dipole dk affects the HSB intensity. In order to avoid

distortions in the mapped intensities due to the k dependence of dk, we construct the ratio

R5th/3rd ≡ I(f5)/I(f3) between the two analyzed odd sideband orders. The edges of the

intensity map are quantified in a gradient analysis. Fig. 4.9e shows the first positive peak of

∂
∂k
R5th/3rd in the blue color map and the first negative peak of ∂

∂energy
R5th/3rd in the red color
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map. The revealed features closely track the band gap Eeh
k (black line) in the asymmetric

region. While the k gradient is more sensitive to vertical features of Eeh
k to the right of the

K point, the energy gradient captures the more flat dispersion to the left of K. The same

analysis is performed for the ratio of the even orders, R6th/4rd (Fig. 4.9f). The even orders

also track the symmetric part of Eeh
k close to the K point.

The mapping presented in Fig. 4.9 heavily relies on a quantitative theory analysis of the

experiment in order to obtain accurate many-body corrections Cn(ETHz, fTHz) for a precise

mapping of the measured intensities to (k(n), EHSB
n ). However, super-resolution tomography

also works without extensive QDCE computations. Figure 4.10 presents the same gradient

analysis of the 5th/3rd and 6th/4th intensity ratios as Fig. 4.9e and f, but assuming a con-

stant Cn = 1.3. The mapping only uses the parameters ETHz, fTHz, and fopt that are known

from experiment and map intensities onto [k(n), hfopt + nhfTHz]. Even without elaborate

many-body inputs, the analysis locates important band structure features. Compared to

the full analysis (Fig. 4.9e and f), a constant Cn introduces only minor aberrations in the

gradient signal, making a purely experimental super-resolution tomography feasible.

4.5 Lightwave tomography beyond the band structure

The analysis in the previous section is mostly focused on the reconstruction of the band

energy. However, we already saw that other material properties such as the microscopic

dipole and many-body effects mediated by the Coulomb interaction affect the tomography

and the HSBs. Conversely, this means that HSBs contain information about such material

properties that can be extracted.

Figure 4.11a compares the experimentally measured (red line) and computed (black line)

HSB spectrum for a THz field with a peak field strength of ETHz = 9.1 MV/cm and a center

frequency of fTHz = 42 THz. The quantitative agreement between experiment and theory

suggest that the QDCE computations accurately capture all relevant aspects of the material
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and experiment. We artificially modify the accurate dipole matrix elements (Fig. 4.11b,

black line) by adding (dashed line) or removing (dotted line) dipole contributions between

the K and M point. The computed spectra for the modified dipoles (Fig. 4.11a dashed and

dotted lines) mostly affect the intensity of the 6th order HSB and lead to deviations from

experiment.

A similar approach can be used to demonstrate the sensitivity of the HSB spectra to

Coulomb effects (quantified by the excitonic binding energy). Figure 4.12 compares the same

measured (red line) and computed (black line) HSB spectrum as for the dipole discussion.

By changing the Coulomb interaction, the binding energy is tuned from its nominal value of

200 meV (black line) to 0 meV (shaded area), 50 meV (dotted line), and 325 meV (dashed

line). For lower binding energy, the 3rd, 4th, and 5th HSB decrease in intensity by up to one

order of magnitude while the 6th order remains almost unchanged. For a stronger binding

energy of 325 meV, the changes are opposite and intensities increase.
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Figure 4.12: Effect of Coulomb interaction strength on HSB spectra. Measured (red line)
versus computed HSB spectra with varying Coulomb-interaction strengths quantified via
the exciton binding energy. Black line shows computed results using the actual interaction
strength leading with an exciton binding energy of E1s = 200 meV. The results are compared
to cases with no excitons (shaded area) and excitons with a binding energy of 50 meV
(dotted line) and 325 meV (dashed line). The measured and computed HSB spectra are
generated from a THz pulse with peak field strength ETHz = 9.1 MV/cm and center frequency
fTHz = 42 THz.

The two examples of Figs. 4.11 and 4.12 clearly show that HSB spectra are sensitive

to both details of the microscopic dipole and the magnitude of the Coulomb interaction.
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While we were not able to directly map those quantities in a similar tomographic approach

as for the band structure so far, insights can be gained from quantitative theory–experiment

comparisons of the spectra.

4.6 Conclusion and outlook

In this Chapter, we demonstrated super-resolution lightwave tomography by reconstructing

the electronic band structure of WSe2 from a set of HSB measurements. The tomographic

approach is based on crystal-momentum combs which emerge from the near-harmonic driving

of coherent excitons and precisely map the emission of sidebands to narrow regions in mo-

mentum space. The trajectory of the lightwave driven excitons in solids is strongly affected

by many-body effects and consequently impacts the crystal-momentum comb mapping. We

solved the lightwave SBEs introduced in Chapter 3 to quantify the effect of interactions on

the lightwave driving to improve the quality of the mapping and the resulting tomography.

Super-resolution lightwave tomography allows for an all-optical reconstruction of the

electronic band structure and provides experimental access to materials and structures where

ARPES fails due to its requirement to collect photoelectrons. Lightwave tomography only

requires light to get to and out of the sample which enables characterization in situ and under

operational conditions. Furthermore, the tomography can be performed on microscopically

small samples or regions by focusing the HSB-generating lightwaves to a narrow spot. In the

future, this could allow lightwave tomography to track changes of the electronic structure

in devices or nanostructures in real time during their operation. Because of this, lightwave

tomography has the potential to become an important tool in the discovery, development,

and characterization of novel quantum materials, functionalities, and devices.

We expect that lightwave tomography can be further improved in the future. A next

logical step is to correlate the tomography of more than two HSB orders and performing

tomography for different band combinations. By asymmetrically driving the system, for
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example with unipolar pulses [112], directional information can be gained to feed into the

tomography. As a long-term goal, we also hope to directly access dipole and Coulomb matrix

elements which we already demonstrated the HSB are sensitive to (Section 4.5).
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Chapter 5

Lightwave Attoclocking of Quantum

Correlations

This Chapter is in parts adapted from J. Freudenstein, M. Borsch, M. Meierhofer,

D. Afanasiev, C. P. Schmid, F. Sandner, M. Liebich, A. Girnghuber, M. Knorr,

M. Kira, and R. Huber, “Attosecond clocking of correlations between Bloch clec-

trons”, Nature 610, 7931 (2022).

5.1 Introduction

Correlations between delocalized Bloch electrons in solids determine the optical [113] and

electronic [114] properties of materials and lead to the emergence of intriguing effects such as

topological phase transitions [45, 115], and room-temperature stable quantum states [116–

118]. To leverage such effects, for example in quantum-information applications [119, 120],

they need to be switched or otherwise manipulated as a function of time. This requires a

detailed understanding of the dynamics of correlations. Transitions among electronic correla-

tions occur on the order of millielectronvolts [45, 113–115, 121, 122] (meV) and take place at

attosecond time scales [123–132]. While attosecond pulses that provide the desired temporal

resolution ∆t in pump–probe-type experiments exist, they exhibit energy uncertainties ∆E

of tens of electron volts (eV) due to the time–energy uncertainty relation ∆t ·∆E > h with
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the Planck constant h. This makes attosecond pulses virtually blind to the relevant meV

transitions of correlations and prevents a direct detection of the correlation dynamics with

attosecond precision.

In this Chapter, a detailed theory–experiment investigation is presented that demon-

strates how low-frequency lightwaves are utilized to clock the electron–hole pair dynamics

with attosecond precision to detect correlations. The lightwave SBEs developed in Chapter

3 provide insights into the microscopic dynamics which is intuitively visualized and analyzed

using Wigner functions to display coherent excitons in phase space. The Wigner functions

directly show the effect of correlations on the electron–hole dynamics and its connection to

the attoclocking approach. We demonstrate the detection of tunable correlations and mi-

croscopic scattering via the attoclocking approach and predict that attoclocking can detect

phase transitions such as the excitonic Mott transition [41, 133, 134].

5.2 Idea of lightwave chronoscopy

The attoclocking approach (illustrated in Fig. 5.1) is based on the idea of the quasiparticle

collider [59] that uses the oscillations of an intense few-cycle lightwave as a temporal mea-

suring stick. A resonant interband excitation creates coherent electron–hole (e–h) pairs at

a tunable excitation time tex relative to the lightwave. The e–h pairs are initially created

with zero relative momentum ℏk and displacement x. The strong lightwave exerts a force

(Fig. 5.1, shaded area) that acts on the oppositely charged electrons and holes and separates

them by increasing their relative displacement and momentum. When the lightwave changes

polarity, electrons and holes are accelerated back towards each other. If the timing of the ex-

citation tex is right, the electron and hole trajectories recollide (zero displacement) at which

point they recombine and emit their excess kinetic energy as broadband HSB radiation. At

less optimal tex, recollisions are not efficient or do not take place within the lifetime of the

coherent excitons, resulting in lower or no HSB emission. The optimum recollision conditions
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are experimentally determined by recording the HSB emission as function of tex.
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Figure 5.1: Schematic of phase-space trajectories during attoclocking of quasiparticle colli-
sions. Electron–hole pairs (blue and red spheres) are generated by a resonant pulse at time
tex (red arrow) and accelerated by a force that is exerted by an intense THz waveform (shaded
area). The field first separates the electron and hole by changing their crystal momentum
ℏk and relative displacement x in real space. After the field switches sign, electron and hole
are accelerated towards each other where, for ideal conditions and upon recollision (x = 0),
they emit light in the form of harmonic sidebands (sparks). The trajectory that electron and
hole take in phase space (solid blue line) is influenced by the Coulomb interaction (purple
field lines). Without interactions, electron and hole would follow a different trajectory (blue
dashed line) with different recollision and HSB characteristics.

The motion of the e–h pairs is first and foremost determined by the single-particle disper-

sion Eeh
k . In a single-particle picture, the lightwave drives the momentum of e–h pairs, the

velocity with which their relative displacement changes is given by vk = 1
ℏ∇kE

eh
k . Many-

body correlations modify the trajectories and recollision times. The Coulomb interaction

between electrons and holes (purple lines) acts as a restoring force. In order to reach large

momenta for optimum recollision and HSB emission, an earlier tex is required to allow for

enhanced action of the lightwave during the separation to compensate for the Coulomb in-

teraction. At the same time, many-body effects also lead to scattering among electrons

and holes which limits their lifetime. If excitonic coherence decays before electron and hole

recollide, HSB emission does not occur.

Differences in the dynamics of free versus correlated electrons manifest themselves as
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shifts ∆t of the optimum excitation time tex which can be accessed experimentally. Impor-

tantly, measuring the timing of peak HSB emission to determine the optimum tex relative to

the lightwave is not limited by any uncertainty relations and is the key to our attoclocking

approach. Measurement of the optimum tex is only limited by the stability of the experi-

mental setup and is demonstrated to achieve massively subcycle precision (relative to the

lightwave’s cycle length).

5.3 Clocking correlations in tungsten diselenide

While the effect of Coulomb correlations on the e–h dynamics can easily be studied in

theory by explicitly changing the interaction strength, an experimental realization needs to

find alternative ways to modify the Coulomb strength. Transition metal dichalcogenides

(TMDs) offer a versatile testbed as they exhibit vastly different Coulomb interactions in

their bulk vs monolayer forms. For our investigations, we chose tungsten diselenide (WSe2)

whose monolayers feature an exciton binding energy of approximately 300 meV, five times

larger than the 60 meV binding energy of their bulk counterparts.

Our experimental collaborators prepared samples of both bulk and monolayer WSe2 on

a diamond substrate. They used a linearly polarized and 9 fs long near-infrared (NIR)

pulse to exclusively excite the 1s-A exciton resonance of monolayer WSe2 (at 1.665 eV). The

excited coherent excitons are then driven by a linearly polarized THz pulse (as described

above) and the HSB spectra recorded as a function of tex. For more information about the

experimental details and challenges, we refer the reader to Ref. [135]. To quantitatively

analyze the experiment, we perform QDCE computations as outlined in Chapter 3, that use

the same sample structure, pump spectrum, and lightwave transients as the experiment.

Figure 5.2a shows the computed integrated HSB intensity IHSB (integrated over energy

range of 2.0 to 2.64 eV which covers HSB orders 4 to 9) as function of the excitation time

tex for bulk (orange line) and monolayer (blue line) WSe2. The HSBs are generated by a
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lightwave (shaded area) with peak field strength ETHz = 4.9 MV/cm and center frequency

fTHz = 25 THz. As discussed in the previous section, the relative timing between the light-

wave’s cycle and the excitation time tex determines the efficiency of e–h recollisions and

subsequent emission of HSBs. As a result, IHSB is strongly modulated. The intensities peak

shortly after the lightwave’s field crests every half cycle, marking the optimum tex. Com-

parison of IHSB for monolayer (blue) and bulk (orange) computations reveals a systematic

shift between their optimum tex for all peaks. Figure 5.2b shows a zoom-in of the three

largest IHSB peaks (lines) and compares them to experimentally measured intensities (dots).

We find a quantitative agreement in the HSB intensities and the experimental measurement

confirms the predicted delay between the optimum tex of monolayer and bulk samples.

To quantify the delay changes, we define the subcycle delay δsc as the delay difference be-

tween the lightwave’s field crests and the closest maximum of IHSB (Fig. 5.2c). A careful anal-

ysis of the experimental measurement errors results in a timing uncertainty of approximately

300 as (error bars in Fig. 5.2c) which clocks the favourable recollision events with a precision

of 7.5 millicycle (about 130 times better than the lightwave’s cycle length). The experiment

finds that the difference between monolayer and bulk subcycle delay ∆t ≡ δML
sc − δbulksc for

each peak is consistently negative and when averaged over all cycles results in a value of

−1.2± 0.3 fs, in agreement with our computations.

5.4 Visualizing the electron–hole dynamics

The QDCE computations provide insights into the microscopic origins of the ∆t shifts that

experiments cannot access. Coherent e–h excitations, or coherent excitons, are described by

the microscopic polarization Pk as introduced in Chapter 3. To understand the differences

between the monolayer and bulk dynamics, we apply a band-pass filter defined in Appendix E
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Figure 5.2: Clocking quasiparticle collisions in bulk and monolayer WSe2. a, Computed
HSB intensity IHSB (integrated from 2.0 to 2.64 eV) from 60 nm thick bulk (orange line) and
monolayer WSe2 (blue line) as function of the excitation time tex relative to the THz driving
field (shaded area) with 4.9 MV/cm peak field strength and 25 THz center frequency which is
linearly polarized along the K–K’ direction. b, Close-up of the IHSB peaks near tex = −37 fs
(left), tex = −17 fs (middle), and tex = 2 fs (right) comparing the computed results (lines) to
experimentally measured IHSB (circles). The difference between the excitation times at which
the computed bulk and monolayer intensities peak is labelled. c, Computed (squares) and
measured (circles with error bars) subcycle delay δSC between the optimal tex and nearest
THz field maximum for bulk (blue) and monolayer (orange) WSe2. The horizontal lines and
shaded areas indicate the average values and the standard error, respectively. d, Computed
(squares) and measured (circles with error bars) difference ∆t between monolayer and bulk
subcycle delays shown in c. The horizontal line and shaded area indicate the average value
and standard error over the four measured points.

to the microscopic polarization Pk

PHSB
k (t) ≡

∫
dt′ Pk(t

′)G(t− t′) , (5.1)

52



to only include the parts of the coherences that contribute to HSB emission. The kernel G(t)

is chosen to only include frequencies that are contained in the integrated HSB intensity IHSB.

We then transform this frequency-filtered microscopic polarization PHSB
k into the quantum-

equivalent of a phase-space distribution using the Wigner function transformation [136]

W (r,k) ≡ 1

Nπ2

∫
d2q
[
PHSB
k+q

]∗
PHSB
k−q e

−2iq·r , (5.2)

where ℏk is the microscopic momentum, r is the relative e–h displacement of a distribution of

coherent excitons, and N is a normalization constant. This four-dimensional function cannot

be immediately plotted. However, the relevant lightwave dynamics along the direction of the

driving field is extracted by projecting the distribution into 2D space

W (x, k) ≡
∫

dy dkyW (x, y, k, ky) , (5.3)

by integrating over the displacement r and wave vector k in y direction. The phase-space

dynamics can be reduced to a simple (x, k) trajectory by computing centroids

⟨x⟩ ≡
∫

dx xW (x, k) , and ⟨k⟩ ≡
∫

dk kW (x, k) . (5.4)

In this picture, we recover the recollision interpretation of sideband emission as sidebands

are being emitted when electron and hole return to zero displacement. More specifically, we

find that the HSB intensity is proportional to the x = 0 contribution of the Wigner function.

This straightforwardly connects the microscopic dynamics to the HSB emission dynamics as

demonstrated in Fig. 5.3.

Figure 5.3a shows the emitted HSB intensity as function of time for monolayer (black

line) and bulk (red line) WSe2, which can be computed from PHSB
k and Eq. (3.20). A

distribution of coherent excitons is created by a NIR pulse (orange line) at time tex after a

maximum of the lightwave’s transient (shaded area) corresponding to a good excitation time
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Figure 5.3: Synchronization of e–h recollisions and HSB emission. a, Computed time-
resolved HSB emission intensity for monolayer (black line) and bulk (red line) WSe2 from
electron–hole pairs that are excited by an 8.6 fs NIR pulse (yellow line) shortly after the
the maximum of a driving THz waveform (shaded area). Peak of the HSB emission (ver-
tical dashed lines) is reached at TML

coll = 12.6 fs after the excitation for monolayer and at
tbulkcoll = 18.6 fs for bulk WSe2. b–e, Snapshots of the HSB Wigner functions W (x, k) at
times t = 12.6 fs and t = 18.6 fs for monolayer and bulk WSe2 are shown together with the
centroid motion (orange line). Red circles mark recollision contributions (x = 0).

of the monolayer sample. Despite exciting both monolayer and bulk samples at the same

time and driving the coherent excitons with the same lightwave, the HSB emission emerges

at different time delays. For monolayer WSe2, the HSB emission peaks at TML
coll = 12.6 fs

after the excitation, significantly earlier than the bulk sample at time T bulk
coll = 18.6 fs. The

Wigner functions as defined in Eq. (5.3) are plotted in Fig. 5.3b–e for both monolayer and

bulk computations at the respective Tcoll, together with their centroid motion defined by

Eq. (5.4) (orange lines). At time TML
coll of peak HSB emission of the monolayer sample, the

monolayerW (x, k) (Fig. 5.3b) exhibits a clear x = 0 contribution of recolliding electron–hole

pairs (red circle). At a later time (Fig. 5.3c), the distribution has passed x = 0 and no more

HSB emission occurs. On the other hand, the bulk W (x, k) at time TML
coll (Fig. 5.3d) has not

yet reached x = 0. Recollision, and consequently HSB emission, are delayed until time T bulk
coll
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(Fig. 5.3e) when also the bulk W (x, k) reaches x = 0. This demonstrates the connection of

electron–hole collisions in the phase-space picture to HSB emission.

In addition to changes in the Wigner function’s centroid motion, also the shape ofW (x, k)

exhibits significant differences between bulk and monolayer WSe2. While the bulk W (x, k)

is almost positive definite, the monolayer W (x, k) contains significant negative contributions

which are attributed to the quantumness of the respective state. Such states cannot be

represented in semiclassical models and their appearance highlights the necessity of full

many-body quantum theories such as the one employed in this Thesis to accurately describe

lightwave-electronic processes.

5.5 Quantifying the effect of Coulomb correlations on

the subcycle delay

So far, the microscopic dynamics and its connection to measurable subcycle delays was

discussed and compared to experiments in monolayer vs bulk samples. In this Section, we

show that the differences are dominantly attributed to the stronger Coulomb correlations in

monolayer compared to bulk WSe2. The two WSe2 samples differ not only in the strength

of correlations, but also with respect to other material properties such as small changes in

the band structure which can influence the subcycle delay.

To quantify how much the subcycle delay is shifted by the Coulomb strength vs changes

in the crystal structure, we vary a single parameter at a time in our QDCE computations. To

tune the interaction strength, we multiply the Coulomb matrix elements V λ,ν
k,k′ in Eqs. (3.14)

and (3.15) by a suppression factor sC which we track via the absolute value of the 1s exciton

binding energy E1s. The computations (Fig. 5.4) show that δsc decreases at a rate of approx-

imately −9 as/meV with increasing E1s for both the bulk (orange line) and the monolayer

sample (blue line). The almost constant shift of 1.5 fs between the two curves originates

from changes to the band structure between the two samples.
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Figure 5.4: Effect of Coulomb correlations on the subcycle delay. Computed subcycle delay
for bulk (orange) and monolayer (blue) WSe2 as a function of the binding energy which is
changed by artificially reducing the Coulomb interaction strength in the computations. The
exciton binding energy for bulk (60 meV) and monolayer (295 meV) WSe2 is marked by the
orange and blue vertical dashed lines, respectively.

By reducing the Coulomb strength in the monolayer sample to match the bulk binding

energy of E1s = 60 meV, the subcycle delay increases from δML
sc = 1.7 fs to 3.8 fs. This

amounts to a delay shift of 2.1 fs that is expected from pure changes of the interaction

strength, which is 1.5 fs above the actual bulk δbulksc . From this we can conclude that the

delay shift caused by changes of the interaction strength is about 40% larger than the shift

induced by differences in the band structure. Therefore, the experimentally observed ∆t

between monolayer and bulk WSe2 is dominated by changes of the Coulomb interaction

strength.

5.6 Tuning correlations

While studying the effect of the Coulomb strength isolated from other factor is trivial in

computations, this is a much more challenging endeavor in experiments. To directly access
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the effect of the interaction strength also in experiment, we turn to the excitation density.

Equation (3.13a) shows that the renormalization term in the Rabi energy, which induces

correlations, is prefaced by the so called Pauli-blocking factor (1−f e
k−fh

k) with the electron

(e) and hole (h) occupations f
e/h
k at wave vector k. In the limit of low densities, this factor

equals one and the renormalization term has its full effect. At elevated carrier densities

(f
e/h
k > 0), the Pauli blocking factor shrinks, effectively reducing the strength of the Coulomb

matrix elements Vk,k′ . By performing experiments at different excitation levels, which can

be controlled by the intensity of the NIR field, the effect of the interaction strength on the

sub-cycle delay is directly observable.

Limitations in the stability of the experiment did not allow to simply measure the shifts

of the subcycle delay as a function of the excitation density. Instead, we devised a series of

measurements in which the valleytronic properties of WSe2 are used to measure a set of rela-

tive delay shifts to reveal the density dependence. The strong spin-orbit coupling and broken

inversion symmetry of WSe2 creates inequivalent K and K’ points which couple differently

to the helicity of circularly polarized light [109, 137]. Resonant excitations of monolayer

WSe2 with circularly polarized light only excites coherent excitons in one of the two val-

leys. Linearly polarized light on the other hand (which can be viewed as a superposition

of both left and right circularly polarized photons) excites both valleys simultaneously with

the excitation split evenly between them. As a result, by keeping the NIR-pulse intensity

constant, a circularly polarized pulse excites approximately twice as high f
e/h
k compared to a

linearly polarized pulse, consequently leading to a stronger reduction of the Coulomb matrix

elements Vk,k′ .

Our experimental collaborators measured and constructed subcycle delay differences ∆t

between monolayer and bulk samples for excitation with a linearly polarized pulse, ∆tlin, and

circular excitation, ∆tcirc. By assuming that the bulk delay δbulksc is unchanged as function

of the excitation density (which our computations show is true within the experimental
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resolution), the difference

∆tcirc −∆tlin = δtML
sc (circ)− δtML

sc (lin) , (5.5)

directly tracks the shift in the subcycle delay that is caused by Pauli blocking from densities

differing by approximately a factor of two.

Figure 5.5 compares the computed (black line) and measured (red dots with error bars)

∆tcirc −∆tlin difference as function of the total excitation density (among both valleys). As

expected, the difference is positive. Circularly polarized light creates an effectively weaker

interaction, and a weaker interaction leads to a larger subcycle delay compared to linear

excitation. Furthermore, the difference increases with the excitation density because the

relative change of the Pauli-blocking factor that the difference compares increases.
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Figure 5.5: Attoclocking of tunable many-body correlations. Difference between bulk and
monolayer subcycle delay differences for linearly (∆tlin) and circularly (∆tcirc) polarized NIR
pulses as function of the excitation density. Measured differences (red circles with error bars)
are based on averages over five subcycle delays and compared to computed results (black
line).

In conclusion, the interaction strength is tuned by the excitation density, even in exper-

iment, and our attoclocking approach tracks the resulting reduction in correlation strength

due to Pauli blocking.
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5.7 Attoclocking of phase transitions

Since the attoclocking approach directly detects changes to the strength of correlations, it

seems plausible that also other correlation effects such as phase transitions can be investi-

gated. We test this idea for the present system of monolayer WSe2 by studying the excitonic

Mott transition. Figure 5.6 shows the computed subcycle delay δsc for different Fermi levels

which we tune by predicting the electronic fermion degeneracy µ. Experimentally, this could

be achieved by electronic doping or pre-exciting the system with a third pulse [138]. The

computations predict a discontinuity of δsc at the Mott transition (µ = 1, vertical dashed line)

between the insulating (µ < 1) and metallic phase (µ > 1) of the semiconductor. Further-

more, the two phases are separated by a gap which could be easier to detect experimentally

than the discontinuity.
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Figure 5.6: Attoclocking of an excitonic Mott transition. Computed subcycle delay δSC for
monolayer WSe2 as a function of a predicted electronic fermion degeneracy µ. The vertical
line marks the Mott transition (µ = 1) and the shaded area marks a gap of subcycle delays
that separates the insulating phase (µ < 1) from the metallic phase (µ > 1).
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5.8 Attoclocking beyond the subcycle delay

The previous sections used the subcycle delay as a simple measure to connect correlation

effects directly to an experimentally observable quantity. It takes the very rich dataset of HSB

emission spectra as a function of the excitation time tex and condenses it into a single number.

However, as already discussed in Section 4.5, the HSB spectra are extremely sensitive to

both the microscopic properties of the material as well as details of the dynamics. By

comparing QDCE computations quantitatively with experimentally recorded HSB spectra,

further insights into the microscopic properties are gained. Figure 5.7a (bottom) shows

the two-dimensional HSB spectrogram (HSB intensity as a function of the photon energy

and the excitation time) measured for a 100 fs long lightwave with peak field strength

ETHz = 6.2 MV/cm and center frequency fTHz = 25 THz. The computed spectrogram (top),

using the experimental waveform as an input, achieves an outstanding level of agreement

with the experiment, even in absolute units. Both a spectral slice (Fig. 5.7b) and a slice

along the tex direction (Fig. 5.7c) capture all features of the experiment accurately. The

effect of the Coulomb strength and dipole matrix elements on HSB spectra has already been

shown in Section 4.5 as an extension to lightwave tomography. Similar connections can

be found for the measurements of this Section. The time-resolved spectra are sensitive to

dynamical processes during the THz generation, which makes them particularly suitable to

reveal dephasing and excitation-induced dephasing effects.

QDCE predicts that the back-coupling of higher order correlations (doublets) to the

microscopic polarization Pk introduces a scattering with diffusive character that creates a

state-dependent dephasing, as discussion in Section 3.4.3. For the experimental conditions

considered here, QDCE predicts the lifetime of the 1s-A exciton to be τ = 21.9 fs while

the lifetime of higher order excitons and continuum states are as short as a few fs. This

microscopic scattering is especially important in lightwave electronic processes since the

lightwave driving of the resonantly excited 1s states excites them to higher order excitonic

states which experience shorter lifetimes. Effectively, this leads to a strongly time-dependent
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Figure 5.7: Quantitative analysis of many-body aspects in HSB spectrograms of monolayer
WSe2. a, Two-dimension HSB spectrogram of WSe2 as a function of the photon energy hf
and the excitation time tex for a THz waveform with 6.2 MV/cm peak field strength and
center frequency of 25 THz. The HSB intensity IHSB is given relative to the intensity of
the incident NIR pulse, INIR, for theory (top, shifted for clarity) and experiment (bottom).
The black lines indicate cuts through the spectrogram shown in b and c. b, The measured
(shaded area) and computed (red line) HSB spectrum at excitation time tex = −19 fs are
compared to computations using a constant phenomenological dephasing with dephasing
times τ = 21.9 fs (black dashed line) and τ = 8.2 fs (blue dashed line). c, The measured
(shaded area) and computed (red line) HSB intensity as function of the excitation time tex
at a fixed photon energy of 2.06 eV.

lifetime.

To illustrate the importance of the microscopic scattering, we compare a spectral slice of

the full QDCE computation (Fig. 5.7b, red line) with two computations that use a simplified,

constant dephasing model with lifetimes of τ = 21.9 fs (Fig. 5.7b, black dashed line) and

τ = 8.2 fs (Fig. 5.7b, blue dashed line). Evidently, only the full QDCE computation accu-

rately reproduces the experiment (Fig. 5.7b, shaded area). The long-lifetime model exhibits

many more spectral features while the short lifetime produces a much too low intensity.

From this analysis, we can conclude that microscopic scattering in the form of excitation-

induced dephasing (EID) clearly shapes the HSB spectra and can be accessed with the help

of quantitative theory–experiment comparisons.
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5.9 Conclusion and Outlook

We introduced the concept of attosecond chronoscopy to uncover meV-scale many-body

correlations of lightwave-driven Bloch electrons directly in the time domain. The correla-

tions of excitonic states were revealed by forcing electron–hole pairs that constitute coherent

excitons onto recolliding trajectories and tracking their optimum excitation time for HSB

emission. Correlation differences between excitons in bulk and monolayer WSe2, as well as

the tunable reduction of correlations via Pauli-blocking effects were demonstrated. In the

future, our attoclocking concept could be extended to study correlation effects of more com-

plex quasiparticles such as biexcitons and dropletons and be used as a correlation probe to

study topological and quantum phase transitions. To this end, experimental demonstration

of attoclocking of the excitonic Mott transition as proposed in Section 5.7 could be the next

logical step.

To understand the intricate many-body dynamics, we employed Wigner functions intro-

duced in Section 5.4 for an intuitive depiction of the full microscopic state in phase space.

The Wigner functions reveal that many-body correlations modify the average electron–hole

trajectory and also affected the internal state as evidenced by shape changes. In the fu-

ture, this approach could prove useful in visualizing and innovating new ideas for lightwave

processing of quantum information encoded in the microscopic state.
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Chapter 6

Prospects and Efficiency of Lightwave

Valleytronics

6.1 Introduction

Lightwave electronics promises information processing with PHz clock rates by using the

oscillating field of light as a bias to drive electronic states. If such transitions can be driven

faster than scattering, even the quantum properties of electronic state can be utilized to possi-

bly enable quantum-information processing in solids. The first lightwave-induced transport

at PHz rates was demonstrated in bulk fused silica where carriers were coherently trans-

ported across a distance of 500 nm between two gold electrodes [60]. This distance was

later extended to multiple microns [139, 140] and contributions to the current originating

from intraband transport and polarization-induced currents at the interface with electrodes

were distinguished [141]. By using short and asymmetric lightwaves, completely directional

transport was achieved [140, 142, 143] where extreme nonlinear effects can restrict coherent

charge transport to within the field maximum.

The first steps towards lightwave-based quantum-information processing was achieved by

flipping the valley-pseudospin of an excitonic coherence in monolayer WSe2 on femtosecond

time scales [62], much faster than scattering processes that limit the lifetime of quantum
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information. The valley pseudospin appears as an additional binary degree of freedom for

quasiparticles such as electrons, holes, and excitons in some material classes [109, 137]. This

is most famously the case in monolayers of TMDs whose band structures exhibit valleys at

the high-symmetry points K and K’ in the hexagonal Brillouin zone. The broken inversion

symmetry of the crystal structure in combination with time-reversal symmetry creates optical

selection rules that couple the helicity of circularly polarized light to the valley-degree of

freedom. Light with right-handed, σ+, (left-handed, σ−) polarization creates excitations in

the K (K’) valley, and vice versa, electron–hole recombinations at the K (K’) valley emit light

with σ+ (σ−) polarization. This valley-dependent optical selection rule has been probed in

helicity-dependent PL measurements [144–146] and gives direct optical access to the valley-

degree of freedom which the field of valleytronics [119, 120] tries to functionalize, for example

in designing LEDs [137, 147] and photodetectors [109, 137, 148] for circularly polarized light.

The selection rules give a direct path to converting information encoded in the helicity

of light to electronic states and vice versa. However, information processing, manipulation

of the valley-degree of freedom, has been explored to a lesser degree so far. In 2016, two

groups [149, 150] created a superposition between excitations of the K and K’ valley by

exciting a monolayer TMD with linearly polarized light. The polarization angle of the

superposition state could subsequently be rotated via the optical Stark effect [150–152] or

the valley-Zeeman effect [149, 153–157], an operation that resembles a phase gate for qubits.

Based on the first demonstration of ultrafast lightwave switching of the valley-degree of

freedom in WSe2 [62], we theoretically investigate the feasibility and limitations of such

switching processes which have the potential for applications in classical and quantum-

information processing with PHz clock rates. In order to realize PHz technologies, a hierarchy

of milestones need to demonstrated:

1. A single operation can be performed sufficiently fast.

2. A single operation can be performed efficiently.
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3. Multiple operations can be chained together into a sequence of operations.

4. The final state can be read out efficiently.

In the subsequent sections, we theoretically investigate several of these steps. We present

conditions for efficient lightwave switching of the valley-degree of freedom, present how the

lightwaves can be used to precisely control the light reflected from valleytronic materials, and

introduce how frequency combs in the reflection spectra of multiple sequenced operations

can be analyzed to deduce the temporal structure of the underlying switching sequence.

6.2 Efficiency and optimization of lightwave-valleytronic

switching

For this study, we focus on valleytronic materials with a hexagonal lattice structure such as

two-dimensional transition metal dichalcogenides and hexagonal boron nitride. The band

structure of these materials exhibits valleys at the K and K’ point that each host a series

of excitonic states [116, 158]. We use the 1s-excitonic state in each valley as the target

states of our lightwave-switching investigations. Their large oscillator strengths let them

efficiently interact with light and the optical selection rules make them directly addressable

using circularly polarized light.

We study a setup (Fig 6.1a) in which a valley-polarized state is initialized by exciting a

valleytronic material with a σ+-polarized pump pulse that is resonant with the 1s-excitonic

resonance. This excites a wave packet of coherent excitons (described by the microscopic

polarization Pk as introduced in Chapter 3) in the 1s state (Fig. 6.1b). A subsequent strong

lightwave then drives the excitonic wave packet from the K to the K’ point, thereby switching

the valley polarization. This switch can be detected in the reflected light as a switch of the

circular polarization.

Coherent lightwave switching of the valley polarization was first demonstrated by Langer
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Figure 6.1: Efficiency and optimization of lightwave valleytronic switching. a, A σ+-polarized
pump pulse (blue dashed arrow) prepares an initial state by resonantly exciting the 1s-exciton
resonance. A subsequent strong lightwave (purple shaded area) switches the valley-degree of
freedom which can be detected by a change of the circular polarization of the reflected light
(solid arrows) from σ+ (blue) to σ− (red). b, Microscopic polarization Pk of the 1s-excitonic
state of the K valley shown in a rhombic primitive cell (gray lines) with corners at the Γ
points (labelled). Red lines show the boundaries of the hexagonal Brillouin zone. The K
and K’ points are labelled and marked by vertical black lines. c, d, and f–h, Reflection
dynamics for different realizations of the valleytronic switch. Intensity of the reflected σ+

(blue line) and σ−-polarized light (red line) after excitation with a σ+-polarized pump pulse
(gray-shaded area) and driving with a linearly polarized lightwave (purple-shaded area) is
shown. The inset shows the excitonic wave packet at peak displacement using the same color
bar as Panel a. e, Peak spectral intensity of the σ−-polarized reflected light compared to
the pump intensity Ipump (blue line on left axis) and overlap between the switched state and
target 1s-excitonic state at the K’ valley (red line on right axis). The vertical lines mark
the cases shown in Panels c, d, and f–h. The data between the vertical lines is based on
computations for which the parameters have been changed continuously to move from one
realization to the next.

66



et al. [62] in monolayer tungsten diselenide by observing polarization contributions of op-

posite helicity in harmonic sideband orders. We solve the microscopic quantum dynamics

using the semiconductor Bloch equations and compute the optical response as described in

Chapter 3. Figure 6.1c shows the optical response (blue line, σ+-polarized reflection, red

line, σ−-polarized reflection) of the valleytronic switch demonstrated by Langer et al. using

a multi-cycle lightwave with a pulse length of 50 fs (purple shaded area) and exciting the

system near the node of the lightwave with a few-fs long pump pulse (gray shaded area).

During the excitation, the reflected light is purely σ+ polarized. Once the excitonic wave

packet is driven to the K’ valley (inset shows wave packet at peak displacement), the helicity

of the reflected light changes to σ−. However, the mutli-cycle lightwave can only achieve a

transient switch because the oscillating field will drive the wave packet back towards the K

valley. As a result, the reflected light only shows a short burst of σ− emission.

We use two measures to quantify the efficiency of lightwave valleytronic switching:

1. “Spectral efficiency”: Peak spectral intensity of the reflected σ−-polarized light com-

pared to the intensity of the σ+-polarized pump pulse. This measure quantifies how

efficiently σ+-polarized photons are converted into σ−-polarized photons.

2. “Overlap”: Overlap between the excitonic wave packet after switching and the 1s-

excitonic state of the K’ valley. This measure quantifies the quality of the switch with

regards to how much the switched state resembles the target 1s state at the K’ valley.

For the multi-cycle pulse and the experimental conditions in Langer et al., we find a spectral

efficiency in the order of 10−3 and an overlap of 1.6% (Fig. 6.1e, blue and red line at the first

vertical line).

To achieve a permanent switch of the valley polarization, the pulse length of the lightwave

can be reduced to produce single-cycle shape so that the coherent excitons created at the

node of the lightwave are only driven by a single half cycle. Figure 6.1d shows computed

results for such a single-cycle lightwave. Similar to the multi-cycle lightwave, the polarization
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of the reflected light switches with a sharp burst of σ−-polarized light. However, the single-

cycle lightwave has a small contribution of lasting σ− emission which increases the spectral

efficiency approximately by a factor of 5 and achieves an overlap of up to 25% (Fig. 6.1e,

second vertical line).

Even better control over the valleytronic switch can be achieved by unipolar lightwaves,

pulses of light whose electric field only points in one direction and allow for a unidirectional

driving of the excitonic wave packets. In the far field, the electric area (electric field strength

integrated over time) has to vanish [159], demanding lightwaves to have both positive and

negative polarity. However, lightwaves can be shaped into effectively unipolar pulses [112]

with a high-amplitude positive peak that is flanked by two long, low-amplitude negative

peaks. Furthermore, unipolar pulses could exist in one-dimensional wave guides [160]. Figure

6.1f shows lightwave switching for a perfectly unipolar pulse which achieves very similar

efficiencies as the single-cycle pulse (Fig. 6.1e, third vertical line). The efficiency of the

current configuration is inherently limited by the pump pulse overlapping with the lightwave,

creating a streaked excitonic wave packet that is much broader than the target 1s state.

However, with a unipolar pulse, pump and lightwave can be temporally separated (Fig. 6.1g)

creating a narrow wave packet that resembles the target state much better (Fig. 6.1g, inset).

While the spectral efficiency remains almost unchanged, the overlap increases dramatically

(Fig. 6.1e, fourth vertical line).

At this point, the main limitation is set by scattering processes that limit the lifetime of

coherent excitons and lead to non-radiative losses that reduce the spectral efficiency. The

computations in Fig. 6.1c, d, f, and g assume a 1s dephasing time of about 60 fs. Reducing

the dephasing can greatly enhance the spectral efficiency. For cryogenic temperatures and

low excitation powers, dephasing times of up to 1.6 ps have been observed in monolayer

MoSe2 [161, 162]. By increasing the dephasing time to 1.6 ps, our computations show a very

strong and long lasting σ− emission (Fig. 6.1h, red line) which boosts the spectral efficiency

by a factor of about 46 to a value of 42%. Under these conditions, the spectral intensity of
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the reflected light with switched helicity becomes comparable to the intensity of the pump

pulse.

6.3 Lightwave control of emission

Using unipolar pulses and valleytronic materials with long coherence lifetimes, the valley

polarization can be switched efficiently and the reflected light can reach intensities com-

parable to the intensity of the pump field. Lightwave switching can be used to precisely

control the polarization of the reflected light. Figure 6.2a shows the optical response under

the optimized conditions identified in the previous section. After resonant excitation (gray

shaded area), the emission without a switching operation (thick blue line) would be purely

σ+ polarized. When an appropriately chosen lightwave (purple shaded area) is applied, the

reflected light changes from σ+ polarization (thin blue line) to σ− (thin red line). The emis-

sion spectrum of the reflected light (Fig. 6.2g, red line) is dominated by a single line at the

1s resonance of the K’ valley and its intensity is comparable to the σ+ reflection expected

without lightwave switching (Fig. 6.2g, thick light-blue line). The microscopic dynamics of

the lightwave switching is most intuitively visualized in phase space using a Wigner-function

representation

W (r,k) ≡ 1

π2

∫
d2q [Pk+q]

∗Pk−qe
−2iq·r , (6.1)

of the microscopic polarization Pk where ℏk is the crystal momentum and r is the displace-

ment between the electrons and holes that form coherent excitons. The four-dimensional

Wigner function can be reduced to

W (x, kx) ≡
∫

dy dkyW (x, y, kx, ky) , (6.2)
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by integrating over k and r in y direction and the phase-space dynamics can be further

reduced to a simple (x, kx) trajectory by computing the centroids

⟨x⟩ ≡
∫

dx xW (x, kx) , and ⟨kx⟩ ≡
∫

dkx kxW (x, kx) . (6.3)

As discussed in Section 5.4, a microscopic state is bright and emits light when its Wigner

function has a contribution at x = 0. Figure 6.2b shows snapshots of W (x, kx) before (black

contours near K point) and after lightwave switching (blue–red contours and black contours

near K’ point) together with its centroid motion (red line) during the switch. The general

shape of the centroid can be understood from a semiclassical picture. The lightwave leads to

a shift in kx. The displacement x on the other hand changes with a rate that is given by the

group velocity vk = 1
ℏ∇kE

eh
k of the electron–hole dispersion Eeh

k . When the Wigner function

is translated towards K’, it first encounters a positive group velocity which increases x. As

it transitions into the K’ valley, the group velocity changes its sign and electron and hole

approach each other again. Ideal switching not only achieves a translation of the excitonic

wave packet to the K’ point, but also x = 0 to realize an optically bright state.

The emission dynamics of the reflected light can be precisely controlled by the use of

a second lightwave. For example, by switching the excitonic wave packet back towards its

initial state, a short burst of σ− light is generated (Fig. 6.2c, red line) that is spectrally broad

(Fig. 6.2g, dark-blue line) where the length of the light burst is determined by the timing

between the two lightwaves. In phase space (Fig. 6.2d), this operation creates a closed loop

with the Wigner function returning to its initial state.

A burst-like emission can also be achieved by utilizing the band dispersion in an intriguing

way. If the switching is attempted with a lightwave that is too weak, the Wigner function in

momentum space is only translated partway to the K’ point. However, if the Wigner function

that acquired a positive displacement ends up in a region of the band structure with negative

group velocity (Fig. 6.2f), the dispersion will move the state towards negative displacement
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Figure 6.2: Emission modes of reflected light. a, c, and e, Reflection dynamics for different
lightwaves (LWs). Spectral intensity of the reflected σ+ (thin blue line) and σ−-polarized light
(red line) after excitation with a σ+-polarized pump pulse (gray-shaded area) and driving
with a linearly polarized lightwave (purple-shaded area) is compared to the σ+ reflection
without switching by a lightwave (thick blue line). a, Unipolar pulse for optimum switching;
c, Two sequenced, unipolar pulses with opposite polarity; e, Unipolar pulse with lower
intensity compared to case a. b, d, and f, The normalized Wigner function W (x, kx) as
function of the electron–hole displacement x and the wave vector kx of the initial 1s-excitonic
state (black contours near K) are compared to the switched state at peak displacement
(black contours and blue–red color map). The red line shows the trajectory of the centroid
[⟨x⟩ (t), ⟨kx⟩ (t)]; the red dot marks the centroid of the switched state. g, The intensity of the
σ+-polarized reflection spectrum (light-blue line) is compared to the σ−-polarized reflection
spectra resulting from the temporal dynamics shown in Panels a, c, and e (red, blue, and
orange lines).

and create a short emission burst (Fig. 6.2e) when it crosses x = 0. Spectrally (Fig. 6.2g,

orange line), the emission shows both a narrow emission line (near 0.2 eV) and a broad high

energy feature (between 0.4 and 0.8 eV). The high-energy contribution is connected to the

short emission burst that is caused by the Wigner function crossing x = 0 higher in the

bands. The narrow emission line is created by a small contribution of the Wigner function

that arrived at K ′ with x = 0 and survives in the 1s-excitonic state with persistent emission.

6.4 Multi-switch operations

The conditions we identified in Section 6.2 to switch the valleytronic state with lightwaves

are efficient enough to allow for sequencing of multiple switch operations within the lifetime
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of coherent excitons. Figure 6.3 studies the sequencing of switch pulses with alternating

polarity that are 20 fs apart to realize N = 1, 2, 3, 4 back-and-forth switches. The coherent

excitons (Fig. 6.3a, color map) that are prepared at the K point by a σ+-polarized pump pulse

(Fig. 6.3a, blue shaded area) are precisely driven between the K and K’ points by a sequence

of unipolar lightwaves (Fig. 6.3a, purple shaded area). In the time domain (Fig. 6.3b), σ−-

polarized light is emitted whenever the excitonic wave packet is located at the K’ point. As

a result, the reflected light appears as a sequence of N , 20 fs long pulses that are spaced 40 fs

apart. Because of the finite switching efficiency, coherences are lost with every switch. As

a result, the amplitude of each consecutive light pulse is decreased. In the spectral domain

(Fig. 6.3c), the sequence of multiple pulses leads to equally spaced frequency lines similar to

that of a frequency comb. For such interference patters to occur, the phases of the individual

pulses need to be locked relative to each other.

6.4.1 Frequency-comb analysis

For a sequence of equally spaced switch operations, the coherent emission for a given helicity

as function of time can be approximated as a train of N pulses

Etrain(t) =
N−1∑
n=0

Cne−in∆ϕCEPEpulse(t− n∆t) , (6.4)

where each consecutive pulse is delayed by ∆t, decreases in amplitude by a factor of C, and

exhibits a shift of its carrier-envelope phase (CEP) by ∆ϕCEP. Epulse(t) is the amplitude

of the first pulse in the sequence. The spectrum of the this sequence can be computed

analytically and results in

Etrain(ω) = Epulse(ω) ∗ g(ω) , (6.5)
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where Epulse(ω) is the Fourier transformation of the individual pulse Epulse(t) that is modu-

lated by the periodic function

g(ω) =
1− Cn − 2iCneiN(ω∆t−∆ϕCEP)/2 sin [N(ω∆t−∆ϕCEP)/2)]

1− Cn − 2iCnei(ω∆t−∆ϕCEP)/2 sin [ω∆t−∆ϕCEP)/2]
, (6.6)

which exhibits equally spaced frequency lines with periodicity 2π/∆t in ω. Instead of Dirac-

delta-function like lines that appear in the limit of C = 1 and N → ∞, a finite number of

pulses with decreasing amplitudes create lines with a finite width and contrast. An example
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|g(ω)|2 for ∆ϕCEP = 0.6π, C = 0.6, and N = 5 is shown in Fig. 6.4.
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Figure 6.4: Frequency-comb analysis. A plot of |g(ω)|2 for ∆ϕCEP = 0.6 π, C = 0.6, and
N = 5. A set of quantities are labelled that can be used to deduce information about the
temporal signal that created the frequency comb.

Similar to frequency combs, the spacing of the frequency lines is determined by the tempo-

ral spacing ∆t of the pulses and the shift of the lines relative to zero frequency is determined

by ∆ϕCEP. Furthermore, the contrast (relation of maximum and minimum intensities) and

the width of the frequency lines are directly connected to C and N . As a result, temporal

information about the pulse sequence can be obtained from a measurement of the reflection

spectrum by analyzing the emergent frequency comb.

6.4.2 Fourier analysis of the frequency comb

The optical response in the time (E(t)) and frequency domain (E(ω)) are connected by

a Fourier transformation. However, experiments usually measure intensities |E|2 that lack

phase information contained in E. In general, information about the temporal emission dy-

namics |E(t)|2 cannot easily be obtained from an intensity spectrum |E(ω)|2. Interestingly,

this is different for the specific optical response created by the switching operations intro-

duced earlier. Because the first emission burst in the sequence is larger than the remaining

ones, a Fourier transformation of the intensity spectrum |E(ω)|2 back into the time domain

closely reproduces the amplitude |E(t)|.
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Figure 6.5a tests this approach using a sequence of N = 16 back-and-forth switches

which creates a frequency comb in the spectral domain (Fig. 6.5c, black line). The Fourier

transformation of the intensity spectrum (Fig. 6.5a, black line) closely resembles the actual

amplitude |E(t)| (Fig. 6.5a, gray line) of the reflected light and reproduces the emission

sequence. For the comparison, we shifted the Fourier-transformed signal to align with the

actual field. The lack of phase information of the reflection spectrum does not allow to settle

the absolute timing of the emission, however, the relative timing of the individual bursts is

reproduced.

To test this approach further, we modify the switching sequence to skip the fourth switch

(Fig. 6.5b). The altered sequence leads to changes in the intensity spectrum (Fig. 6.5c, red

line) and the skipped emission pulse (Fig. 6.5b, thick red line) is faithfully captured by the

Fourier transformation of the intensity spectrum (Fig. 6.5b, thin red line).

6.5 Conclusion

In this Chapter, we theoretically studied the potential of lightwave valleytronics for infor-

mation processing with PHz clock rates. The valley-degree of freedom of coherent excitons

in valleytronic materials can be switched using strong lightwaves and detected by a change

of the circular polarization of the reflected light. We found that the efficiency of valleytronic

switching strongly depends on the shape of the lightwave as well as on material properties

such as dephasing, both of which can be optimized to achieve emission from the switched

state with high intensities. The optimized conditions were used to show that valleytronic

switching can be applied to precisely control the light reflected from a valleytronic material.

Furthermore, we showed that under such conditions, the developed switch is sufficiently ef-

ficient to sequence multiple switches within the lifetime of coherent excitons. For periodic

switching of the valleytronic state, the reflected light emits a train of light pulses which

create a frequency comb in the spectral domain and we outlined how this frequency comb
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Figure 6.5: Fourier-analysis of emergent frequency combs. a, A sequence of N = 16 pairs of
unipolar lightwaves with alternating polarity is used to drive coherent excitons (top, color
map shows slice of Pk through the K and K’ points along the kx direction that is normalized
at each time) between K and K’ as function of time. The dynamics is compared to the
σ−-polarized reflected field (shaded line) and the Fourier transformation of the reflected σ−-
polarized intensity spectrum (thin line, shifted in time for alignment). b, Same analysis as
Panel a but for a sequence of lightwaves that skips the fourth pair. c, Cross comparison of
the reflected σ−-polarized intensity spectra with (black line) and without (red line) the 4th
pair of switches.

could be used in future experiments to demonstrate successful sequencing of multiple val-

leytronic switches. In the future, this investigation should be extended to propose explicit

excitation schemes and materials that can be realized and used in present-day experiments to

demonstrate the sequencing of multiple valleytronic switches. In order to become applicable

for information processing, algorithms have to be developed that utilize the valley-degree

of freedom. To that end, development of a scheme for conditional switching would be an

important step to realize useful classical or quantum gate operations.
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Chapter 7

Microscopic Theory of Spatially

Inhomogeneous Excitations and

Nanostructures

7.1 Introduction

The QDCE approach described in Section 2 can straightforwardly be applied to derive a

general set of equations of motion that describe any and all effects observable in condensed

matter systems. The challenge posed to theorists is to find solutions of those equations.

Analytic solutions only exist for a limited set of special cases. The only path to general

solutions are given by numerical methods whose capabilities are restricted by the computa-

tional resources available. A brute-force approach of implementing the most general QDCE

equations is not feasible as its demand on computational power easily exceeds that of the

most powerful supercomputers.

To solve this predicament, the system in question and the equations that describe it have

to be carefully studied and symmetries and approximations identified that reduce degrees

of freedom and complexity. The random-phase approximation [69], which enforces position

independence, significantly reduces the dimensionality of the problem and is commonly used

such as in our description of lightwave-electronic processes in Chapter 3. The decision which
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approximations to apply needs to be made on a case-by-case basis to find a reasonable balance

between numerical feasibility and a correct description of the relevant physical processes.

In this Chapter, we derive a QDCE-based microscopic theory to describe spatially in-

homogeneous excitations in semiconductors and nanostructures. The many-body state is

represented by clusters in a Wigner-function form [136, 163, 164] which separates macro-

scopic spatial degrees of freedom from those of the microscopic ones encoding the internal

quantum state. The theory is derived for a generic direct-gap semiconductor described by

two parabolic bands. The separation of length scales by the Wigner function, combined with

the reduced semiconductor model, allows for both numerical and analytical investigations to

identify key physical effects relevant for spatially inhomogeneous systems which are discussed

in Chapters 8 and 9.

7.2 Hamiltonian

Instead of the Hamiltonian in Eq. (2.2), we start from the reduced Hamiltonian

Ĥ = Ĥ0 + Ĥe−e + ĤLM , (7.1)

which we represent in second quantization using the fermionic field operators

Ψ̂†
λ(r) ≡

1

S
∑
k

e−ik·ra†λ,k , and Ψ̂λ(r) ≡
1

S
∑
k

eik·raλ,k , (7.2)

that create and annihilate an electron at position r in the λ band, respectively, and satisfy

the anti-commutation relations

{
Ψ̂λ(r), Ψ̂

†
ν(r

′)
}
= δλ,νδ(r− r′) ,

{
Ψ̂λ(r), Ψ̂ν(r

′)
}
= 0 ,

{
Ψ̂†

λ(r), Ψ̂
†
ν(r

′)
}
= 0 , (7.3)
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where {a, b} ≡ ab + ba denotes the anticommutator between a and b. The single-particle

Hamiltonian is given by

Ĥ0 =
∑
λ

∫
d3r Ψ̂†

λ(r)

[
Eλ −

ℏ2

2mλ

∇2
r + Uλ(r)

]
Ψ̂λ(r) , (7.4)

and describes parabolic bands Eλ,k = ℏ2k2

2mλ
with effective mass mλ where λ = v, c is the band

index. The two bands are separated by a direct gap Egap = Ec − Ev. Uλ(r) is an external

potential. The light–matter Hamiltonian

ĤLM = −
∑
λ ̸=λ′

∫
d3r Ψ̂†

λ(r)dE(r, t)Ψ̂λ′(r) , (7.5)

includes the dipole interaction to describe interband excitations. We assume a constant

dipole d and only take into account the field strength E(r, t) of the electric. The polarization

dependence is neglected without loss of generality. Lightwave effects such as described in

Section 3.5 are neglected here. Finally, the electron–electron interaction is fully included by

Ĥe−e =
1

2

∑
λλ′

∫
d3r d3r′ Ψ̂†

λ(r)Ψ̂
†
λ′(r

′)V (r− r′)Ψ̂λ′(r′)Ψ̂λ(r) , (7.6)

with the Coulomb potential V (r) = |e|2
4πεε0

1
|r| between two electrons separated by the distance

r with the electron charge e, the relative permittivity of the material ε and the vacuum

permittivity ε0.

7.3 Wigner representation of singlets and doublets

The many-body state can be represented in many different ways, depending on the set of

basis states chosen, and must capture both the nanometer-scale correlations of quasiparticles

and spatial changes on the scale of micrometers at the same time. These two length scales

of correlations between two electrons at positions r1 and r2 are most easily separated by
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introducing the relative coordinate r = r2 − r1 and the center-of-mass (COM) coordinate

R = (r1 + r2)/2. Long-range spatial inhomogeneities are then described by R while the

short range correlations are captured by r. To ultimately separate these two coordinates

we use a Wigner-function representation [136, 163, 164] which transforms r into momentum

space with wave vector k. Explicitly, we introduce the microscopic single-particle operator

between bands λ and ν as

P̂ λ,ν
k (R) ≡

∫
d3r Ψ̂†

λ(R− Fλ,νr)Ψ̂ν(R+ Fν,λr)e
−ik·r . (7.7)

This definition applies the correct COM coordinates and takes into account the effective

electron masses in the valence and conduction bands via the weights Fλ,ν ≡ |mν |
|mλ|+|mν | .

Singlet quantities equivalent to the microscopic polarization Pk and the electron and hole

occupations f e
k and fh

k used in lightwave SBEs introduced in Section 3.4.1 are identified from

Eq. (7.7) by

Pk(R) ≡
〈
P̂ v,c
k (R)

〉
, f e

k(R) ≡
〈
P̂ c,c
k (R)

〉
, fh

k(R) ≡ 1−
〈
P̂ v,v
k (R)

〉
. (7.8)

Introduction of the Wigner function allows for a simple interpretation of the singlets by

adding a spatial coordinate R to the singlets that are otherwise familiar from the homoge-

neous investigations of Chapter 3. The Wigner-function approach is also extended for the

exciton doublet

ck,k
′,Q

X (R) ≡ 1

S

∫
d3r∆

〈
P̂ †
k(R− r/2)P̂k′(R+ r/2)

〉
e−iQ·r , (7.9)

which describes incoherent excitons. The definition is chosen such that the new quantity

resembles the ck,k
′,Q

X defined for homogeneous systems [70] and generalizes it by adding a

spatial coordinate.
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7.4 Cluster dynamics

The equations of motion for the quantities defined in Eqs. (7.8) and (7.9) are computed from

the Heisenberg equation of motion (2.4) by utilizing the fermionic anticommutation relations

(7.3) for the field operators. The exact singlet dynamics is summarized in Appendix F and

contains operators of the form

eiα∇k·∇R = 1 + iα∇k · ∇R +O(α2) . (7.10)

Expanding the exponential function in a power series renders the equations of motion into a

more physical form that is easier to interpret. For the remainder of this Chapter, we consider

the lowest order terms in the power expansion as well as a selection of higher order terms

which we found to dominate the spatial dynamics.

For the microscopic polarization, we find

iℏ
∂

∂t
Pk(R) = Ẽk(R)Pk(R)−

[
1− f e

k(R)− fh
k(R)

]
Ωk(R)− iΓvc

k (R) (7.11a)

− ℏ2

2M
∇2

RPk(R) + i∇RUeff(R) · ∇k(R) + . . . , (7.11b)

where the first line (Eq. 7.11a) closely resembles the SBEs for homogeneous systems with the

renormalized kinetic energy Ẽk(R), the renormalized Rabi energy Ωk(R), and a coupling to

higher order clusters Γvc
k (R), as defined in Appendix G. The additional terms in Eq. (7.11b)

contain gradients with respect to the position R which makes them sensitive to spatial

variations within the system. The shown gradient terms resemble the Schrödinger equation

of a particle in an external potential Ueff(R) and dominate the spatial dynamics of Pk(R).

The full equations of motion up to the first order of the power expansion (7.10) as well as

definitions for all symbols are shown in Appendix G.
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A similar equation structure can be found for the electron occupation

ℏ
∂

∂t
f e
k(R) = 2Im[Pk(R)Ω∗

k(R)] + 2Im

[∑
q,Q

Vk−qc
q,k,Q
X (R)

]
(7.12a)

− ℏ2

me

k · ∇Rf
e
k(R) +∇RUeff,e(R) · ∇kf

e
k(R) + . . . , (7.12b)

and the incoherent exciton doublet (in the main-sum approximation [70])

ℏ
∂

∂t
ck,k

′,Q
X (R) = i

[
Ẽk(R)− Ẽk′(R)

]
ck,k

′,Q
X (R) + S[Pk(R)]− γXc

k,k′,Q
X (R)

+ i
[
1− f e

k′(R)− fh
k′(R)

]∑
q

Vk′−qc
k,q,Q
X (R)

− i
[
1− f e

k(R)− fh
k(R)

]∑
q

Vk−qc
q,k′,Q
X (R) (7.13a)

− ℏ2

M
Q · ∇Rc

k,k′,Q
X (R) +∇RUeff,X(R) · ∇Qc

k,k′,Q
X (R) + . . . , (7.13b)

where Eq. (7.12a) and (7.13a) resemble the homogeneous SBEs [70], and (7.12b) and (7.13b)

introduce additional gradient terms with respect to the position R, respectively. For these

incoherent quantities, the dominant gradient terms resemble the Liouville equation of a clas-

sical distribution of particles in phase space moving in an external potential Ueff,e/X. Since

the semiconductor Bloch equations (SBEs) are usually discussed in the context of homo-

geneous conditions, we will refer to Eqs. (7.11–7.13) as the inhomogeneous semiconductor

Bloch equations (inhomogeneous SBEs) from here on.

7.5 Numerical solution

We transform equations (7.11–7.13) for a strictly two-dimensional system into polar coordi-

nates and apply a Fourier mode expansion of the form

W (k,R) = W (k, φk, R, φR) =
∑

mk,mR

|kmkRmR | Wmk,mR
(k,R) ei(mkφk+mRφR) , (7.14)
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which follows the numerical approach of “spectral methods” [97]. The resulting equations of

motion of the scaled Fourier coefficients Wmk,mR
(k,R) are solved numerically using the 4th

order Runge-Kutta method [97] for finite mk and mR and discretized k and R coordinates.

For an extended discussion of the numerical implementation and challenges, we refer the

reader to Ref. [165]. This Fourier-mode representation is particularly well suited for systems

with rotational symmetry that are analyzed in Chapter 8. In those cases, only few mk/R

states are required to converge numerical results.
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Chapter 8

Spatial Dynamics of Coherent Excitons

8.1 Introduction

We study the effect of spatial inhomogeneities on ultrafast time scales by investigating the

excitation dynamics of a spatially local excitation. GaAs quantum wells are chosen as a

model system which are accurately described by a two-band model with parabolic bands

as long as excitations near the optical gap are considered. Explicitly, we study the spatio-

temporal dynamics of coherent excitons described by the microscopic polarization Pk(R)

after excitation of the 1s-excitonic resonance with an ultrashort and tightly focused Gaussian

laser pulse. Spatial inhomogeneities are introduced by the excitation itself while the GaAs

quantum well is assumed homogeneous in space. Our theoretical investigations include

analytical and numerical studies of the inhomogeneous SBEs introduced in Chapter 7 and

are focused on the macroscopic polarization density

P (R) ≡ 1

S
∑
k

dPk(R) , (8.1)

with the quantization area S, and the electron and hole density

ne/h(R) ≡ 1

S
∑
k

f
e/h
k (R) , (8.2)
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in space. These two distributions are physical observables and are, in principle, measurable

by experiments.

8.2 Nonlinear effects on spatial distributions

The (homogeneous) SBEs have been applied and discussed in great detail, for example

in Refs. [41, 47, 52, 59, 69, 70, 87, 112, 166, 167], but also in the Chapters 3–5 of this

Thesis. As shown in Section 7.4, they appear as part of the inhomogeneous SBEs and

describe the excitation dynamics locally, including nonlinear effects which can impact spatial

distributions. In the linear regime, the polarization density P (R) follows the spatial profile of

the pump pulse E(R), meaning that P (R) ∝ E(R). Similarly, the carrier density is expected

to follow n(R) ∝ |E(R)|2. Nonlinear effects such as excitation-induced dephasing [167, 168]

(EID) and excitation-induced shifts [167, 169] (EIS) emerge at elevated excitation densities.

For a pump pulse with Gaussian profile, nonlinear effects are expected to be strongest in

the center of the excitation spot (where n(R) is largest) and weaker in the tail. EID can be

observed as dephasing of the polarization density which increases as function of the carrier

density. For an initially Gaussian spot of polarization, this means that polarization in the

center decays faster than at the tail regions. This flattens the top of the distribution and

changes the shape to deviate from the expected Gaussian shape, effectively broadening the

excitation spot as a function of time. Another important nonlinear effect that influences

the polarization distribution is EIS. Resonant excitations of the GaAs quantum well create

a microscopic polarization that oscillates with the 1s-resonance frequency. However, in the

presence of carrier density, this frequency shifts. Again, for a Gaussian excitation, the

nonlinear shift of the oscillation frequency is strongest in the center of the distribution. As

a result, the polarization distribution will oscillate with different frequencies at different

positions which induces a spatial chirp that accumulates over times.

It is important to note that the spatial changes described above are entirely explained
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by nonlinear effects which only depend on the local density and are independent of the

spatial scale. In contrast, the goal of this Chapter is to explore the effects that distributions

experience on the shortest of length scales where the homogeneous SBEs break down. Those

effects will exhibit a dependence on the length scale of spatial variations such as the size of

the pump spot. This can be used as a condition to identify true inhomogeneous effects also

in experiment.

8.3 Polarization dynamics

A careful numerical study of the inhomogeneous SBEs reveals that the spatial dynamics of

P (R) is clearly dominated by the first term of Eq. (7.11b). To better understand its effect,

we isolate the term and consider the reduced equation of motion

iℏ
∂

∂t
Pk(R) = − ℏ2

2M
∇2

RPk(R) . (8.3)

By summing over k, the dynamics of the macroscopic polarization density yields

iℏ
∂

∂t
P (R) = − ℏ2

2M
∇2

RP (R) , (8.4)

which is equivalent to the free Schrödinger equation of a particle with mass M . We can

conclude that the macroscopic polarization density in space behaves similar to a quantum

mechanical wave packet.

From basic quantum mechanics it is known that a Gaussian wave packet with initial

width ∆R evokes an expansion:

P (R; t = 0) ∝ e−
R2

2∆R2 , (8.5)

⇒ ∆R(t) = ∆R

√
1 +

(
ℏ

M∆R2
t

)2

, (8.6)
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where ∆R(t) is the width of the distribution as a function of time. Furthermore, if the wave

packet is modulated with a phase eik·R, it is translated linearly as a function of time which

can be associated with a momentum.

As discussed in Section 8.2, nonlinear effects such as EIS can induce a spatial chirp of the

polarization wave packet. Due to the symmetry of our setup (excitation with a Gaussian,

rotationally symmetric pulse) the spatial phase changes will be of the form eiφ(R) with radial

symmetry. From a wave-packet point of view, this radial phase can be interpreted as a radial

momentum which, depending on the sign, can lead to an expansive or contractive motion of

the wave packet. For a Gaussian wave packet with φ(R) = αR2/∆R2, where α determines

the amount of chirp, Eq. (8.4) can be solved analytically and the width dynamics results in

P (R; t = 0) ∝ e−
R2

2∆R2+iφ(R) , (8.7)

⇒ ∆R(t) = ∆R

√
1 + α

ℏt
M∆R2

+ (1 + α2)

(
ℏt

M∆R2

)2

. (8.8)

The solution shows that the sign of α determines the direction of ∆R(t) changes at early

times. At later times, the t2 term under the square root dominates over the linear term

leading to an expansion of the wave packet.

We can verify that the changes to the width are true inhomogeneous effects by observing

the scaling of their magnitude with the pulse size

∆R(t)−∆R

∆R
=
αℏt
2M

1

∆R2
+O

(
1

∆R4

)
. (8.9)

The effect increases as the pulse width decreases.

To verify this effect in the many-body dynamics, we solve the full inhomogeneous SBEs

for a GaAs quantum well that is excited resonantly with an ultrafast, 300 fs long pulse

and an initial width of ∆R = 610 nm in a low density limit. A radial phase ϕ(R) =

iα(1 − e−R2/∆R2
) = iαR2/∆R2 + O(R4) is added to the pump pulse to optically excite
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a polarization wave packet similar to (8.7). Figure 8.1 shows the relative change of the

width of the macroscopic polarization density as a function of time t for different values of

α. In agreement with the analytic prediction, α > 0 leads to an immediate increase of the

excitation-spot size, while the change is reversed for α < 0. For the parameters chosen, α = 0

does not induce any noticeable changes to the width. The ballistic expansion predicted in

Eq. (8.6) is negligible within the time window of the computation.
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Figure 8.1: Effect of a radial phase on the dynamics of the polarization density. Com-
puted relative change of the excitation spot size (polarization density) ∆R(t) as function of
time t after excitation with a weak resonant pulse with envelope E(t) and a radial phase
parametrized by α.

8.4 Carrier dynamics

Numerical analysis of the inhomogeneous SBEs reveals that the spatio-temporal dynamics

of the carrier occupations is dominated by the first term of (7.12b) which in its isolated form

ℏ
∂

∂t
fk(R) = −ℏ2

m
k · ∇Rfk(R) , (8.10)

describes the dynamics of a classical phase-space distribution of free particles with position

r, momentum ℏk, and mass m. Equation (8.10) is solved analytically by

fk(R; t) = e−
ℏk
m

·∇Rtfk(R; 0) = fk(R− ℏk
m
t; 0) . (8.11)
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Assuming an initial state with Gaussian spatial distribution of width ∆R and Gaussian

momentum distribution of width ∆k, the spatial width as a function of time is

fk(R; 0) ∝ e−
R2

2∆R2−
k2

2∆k2 , (8.12)

⇒∆R(t) = ∆R

√
1 +

(
ℏ∆k
m∆R

t

)2

. (8.13)

This ballistic expansion of free carriers has the same time dependence as the macroscopic

polarization in Eq. (8.6). However, the rate of expansion is determined by both the initial

spatial width ∆R and the width in momentum ∆k.

Figure 8.2 shows the evolution of the width of electron and hole densities after excitation

with an ultrafast, 300 fs long resonant pulse with Gaussian profile and width ∆R = 610

nm as computed from the singlet dynamics (inhomogeneous SBEs excluding the doublet

dynamics). For resonant excitations of a quantum well, the excited momentum distribution

f
e/h
k (R) for both electrons and holes approximately follows the absolute-value squared of

the 1s-exciton wave function. Because the effective electron and hole masses in GaAs are
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Figure 8.2: Plasma oscillations of the electron and hole distributions. Computed relative
change of the excitation spot size (carrier density) ∆R(t) as function of time t for electrons
(blue) and holes (red) after excitation with a resonant pulse. The calculation does not
include polarization-to-population conversion which results in effectively free carriers after
the microscopic polarization is decayed (0.5 ps lifetime).

drastically different from each other (me = 0.0665m0 and mh = 0.235m0), the distribution

of lighter electrons expands much faster than that of the heavier holes (Fig 8.2, t < 1 fs).
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However, because electrons and holes are charged particles, the fast-advancing electrons

create a ring with net negative charge, leaving behind a net positive charge of slower moving

holes. For sufficiently large densities, the resulting Hartree forces induced by the attractive

Coulomb interaction between electrons and holes (which are included in the inhomogeneous

SBEs (F.2)) slow down the electron motion while holes are being accelerated (Fig 8.2, 1 fs <

t < 3 fs). This leads to radial plasma oscillations of the excited electron–hole distribution

in 2D. However, this behavior is only expected for a free electron–hole plasma as created by

the pure singlet equations.

Correlations, described by the microscopic polarization Pk(R) and the exciton doublet

ck,k
′,Q

X (R), act as a glue that binds electrons and holes together and prevents them from

moving independent of each other. In fact, in the coherent limit [41] where the microscopic

polarization Pk(R) does not dephase, densities strictly follow f e
k(R) = fh

k(R) = |Pk(R)|2.

At resonant excitation of the system, a laser first excites electron–hole pairs that are bound

to coherent excitons described by the microscopic polarization Pk(R). Scattering eventually

leads to a dephasing of Pk(R), however, instead of loosing the correlations, they are converted

into incoherent correlations described by the exciton doublet to form incoherent excitons.

This process is known as polarization-to-population (P2P) conversion [70, 170].

To show the importance of the P2P conversion in our computations, Fig. 8.3 shows

snapshots of the computed electron density at different times after the excitation. For the

full computation including ck,k
′,Q

X (R) (Fig. 8.3, left), the excited electron spot remains almost

unchanged, even at times beyond the Pk(R) life time of about 0.5 ps. By artificially switching

off the P2P conversion in the computations and making Pk(R) dephase without generating

ck,k
′,Q

X (R), the carriers are forced into a plasma state (Fig. 8.3, right) which exhibits a

rapid ballistic expansion, consistent with the plasma behavior shown in Fig. 8.2. When

homogeneous conditions are assumed, differences in the velocities of electrons and holes

do not manifest themselves in local charging. As a result, P2P conversion can sometimes

be neglected and QDCE efficiently limited to the singlet level, which reduces numerical
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computation without P2P conversion and creation of incoherent doublet correlations.

complexity. However, when spatial variations are concerned, the inclusion of doublets become

necessary to keep the electron and hole distributions in check, as evidenced by Fig. 8.3.

8.5 Theory–experiment comparison

To benchmark the inhomogeneous SBEs under real conditions, we compare our computa-

tions to experiments performed in the group of Steven Cundiff (University of Michigan).

Specifically, the ultrafast spatial dynamics of an excitation spot was measured by employ-

ing a pump–probe scheme with two ultrashort, diffraction limited laser pulses, resonantly

pumping and probing the 1s exciton in a system of GaAs quantum wells. By scanning the

time delay and position of the probe pulse relative to the fixed delay and position of the

pump pulse, the width of the excitation spot as a function of time was measured. For more

details about the experiment we refer the reader to Ref. [171]. A subset of the experimental

measurements is presented in Fig. 8.4 (gray squares with error bars) which shows the relative

change of the excitation-spot width as a function of time using diffraction-limited spots with

a width of 600 nm (top) and 12 µm (bottom). The smaller excitation spot (Fig. 8.4, top)

shows a transient reduction in size by up to 2% before increasing via a diffusive expansion.

The same measurement with identical pump intensities but larger spot size (Fig. 8.4, bot-
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tom) does not show this effect. The dependence on the spot size suggests that the observed

transient reduction of the width is directly induced by the spatial inhomogeneities of the

excitation.

0 4 62

-1

0

-2

-0.5

0
D
R
(t
)–
D
R

D
R

(%
)

t (ps)

Experiment
Theory

Figure 8.4: Theory–experiment comparison of excitation-spot dynamics for resonant ex-
citation. Computed (red line) and measured (gray squares with error bars) change of the
excitation-spot width ∆R(t) after excitation with a resonant pump focused to a spot size of
600 nm (top) and 12 µm (bottom).

The red lines in Figure 8.4 show inhomogeneous SBE computations including the P2P

conversion to exciton doublets under conditions similar to the experiment. The computations

reproduce the experimental results closely by postulating a radial phase of α = −3π in the

excited polarization. As discussed in Section 8.3, this produces a shrinking of the excitation

spot. Once all polarization is converted into incoherent excitons by P2P conversion, the

shrinking ends and expansion takes over.

The experimental data has been recorded for later times than shown in Fig. 8.4 and

exhibits a diffusive expansion where the spot-size changes follow a
√
t dependence. Diffusive

expansion of incoherent excitons is created by relaxation of the exciton distribution towards

a local thermal equilibrium. The required exciton–phonon interaction to describe such pro-

cesses microscopically are currently not included in our doublet equations. As a result, our
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model produces a ballistic expansion (∝ t) and is therefore only valid at early times before

the exciton distribution thermalizes.

8.6 Conclusion

We have investigated the effects of spatially inhomogeneous excitations of semiconductors by

analytic and numerical studies of the inhomogeneous SBEs and a theory–experiment com-

parison. At the beginning of this Chapter, we derived the inhomogeneous SBEs using the

QDCE approach and a Wigner-function representation for singlets and doublets that intu-

itively separates the relevant length scales of macroscopic spatial variations and microscopic

many-body correlations.

We found that the spatial dynamics of the microscopic polarization follows that of a

quantum-mechanical wave packet and demonstrated that spatial chirp controls its motion.

This connection could open interesting avenues for solid-state based quantum-information

processing. Chapter 6 discussed how quantum information could be encoded in the valley

degree of freedom of 2D TMDs and manipulated by lightwaves. Combining this approach

with local excitations could make it possible to create multiple valleytronic qubits and move

them in space by inducing appropriate spatial chirp. This way, qubits could even be brought

onto crossing paths to allow them to interfere and interact with each other, creating entangled

states.

While conceptually intriguing, such ideas will face extreme challenges in experimental

realizations. However, comprehensive theories such as the ones developed in this Thesis can

help test such concepts and determine their feasibility. Section 8.4 already determined that

meaningful investigations need to include clusters up to at least the doublet level. Combining

the theory used in this Chapter with that developed in Chapter 3 for lightwave electron-

ics would be an important step to explore the potential of lightwave quantum-information

processing using multiple excitation-spot qubits.
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Chapter 9

Spatial Dynamics of Incoherent Excitons

This Chapter is in parts adapted from Z. Li, M. Florian, K. Datta, Z. Jiang,

M. Borsch, Q. Wen, M. Kira, and P. B.Deotare, “Enhanced exciton-drift trans-

port through suppressed diffusion in one-dimensional guides”, ACS Nano (in

print, 2023).

9.1 Introduction

In conventional electronics, the electric charge of electrons and holes in semiconductors is

employed to switch carrier transport by applying an electric bias. Besides scattering of

charge carriers, with the lattice which manifests as resistance and produces heat, the charge

of electrons and holes also creates parasitic capacitances that reduce efficiency and practically

limit the speed of electronics. Excitons pose an alternative for future IT applications. As

charge-neutral carriers, they are not subject to parasitic capacitances while still maintaining

efficient transport properties [172–174]. The exciton mobility characterizes how fast excitons

move when subjected to an accelerating force and is an important material property to judge

the viability of exciton-based IT applications.

We first derive the macroscopic dynamics of incoherent exciton densities from the mi-

croscopic equations developed in Chapter 7 to describe exciton transport in nanostructure
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potentials. We then discuss how the exciton mobility can be measured from exciton diffusion

or strain-induced exciton drift. Finally, we discuss the application and limitations of these

two approaches to measured the exciton mobility in WSe2.

9.2 Drift–diffusion kinetics of incoherent excitons

In this Section we apply the microscopic theory developed in Chapter 7 to understand the

macroscopic dynamics of incoherent excitons excited in two-dimensional TMDs on nanosec-

ond time scales where excitonic drift and diffusion take place. Specifically, we discuss how

the dynamics of excitons is influenced by strain to enable precise guiding of exciton motion

in strain-engineered nanostructures.

In QDCE, incoherent excitons are represented by the exciton doublet ck,k
′,Q

X (R), as in-

troduced in Section 7.3. At the nanosecond time scales, all coherences have vanished and

the dynamics follows

iℏ
∂

∂t
ck,k

′,Q
X (R) = (Ek′ − Ek)c

k,k′,Q
X (R) +

∑
q

[
Vk−qc

q,k′,Q
X (R)− Vk′−qc

k,q,Q
X (R)

]
+ iΓk,k′,Q(R)

− i
ℏ2

M
Q · ∇Rc

k,k′,Q
X (R) + i∇RU(R) · ∇Qc

k,k′,Q
X (R) +O

([
f e/h

]2)
, (9.1)

where we assume that excitons were formed well below the excitonic Mott transition under

dilute conditions (f
e/h
k (R) ≪ 1) and U(R) is an external potential that excitons move in.

The exciton doublet ck,k
′,Q

X (R) contains all possible electron–hole correlations, including the

exciton populations we are interested in and correlations between electrons and holes that

do not form bound electron–hole pairs, correlated electron–hole plasma states [41, 175]. To

distinguish between the different forms of electron correlations we transform ck,k
′,Q

X (R) into

the exciton basis [70]

Nα,β
Q (R) ≡

∑
k,k′

ϕα(k)ϕ
∗
β(k

′)ck,k
′,Q

X (R) , (9.2)
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where ϕα(k) is an exciton wave function with quantum number α. The diagonal elements

Nα,α
Q (R) (scaling proportional to f

e/h
k (R)) describe the distribution of α-excitons with center-

of-mass momentum ℏQ at position R. The off-diagonal elements Nα,β ̸=α
Q (R) describe co-

herent transitions between states α and β as well as correlated electron–hole plasma which

scales with the product f e
k(R)fh

k(R). Under dilute conditions (f
e/h
k (R) ≪ 1), ck,k

′,Q
X (R) is

dominated by exciton populations which quickly relax into 1s-exciton states. Applying the

transformation of Eq. (9.2), the exciton dynamics (9.1) in the dilute limit yields

D̂NQ(R) = ΓQ(R), with D̂ ≡ ∂

∂t
+

ℏ
M

Q · ∇R − 1

ℏ
[∇RU(R)] · ∇Q , (9.3)

for the 1s-exciton populationNQ(R) ≡ N1s,1s
Q (R), where ΓQ(R) is the projection of Γk,k′,Q(R)

onto the 1s state.

For the scattering ΓQ(R), we introduce a phenomenological relaxation model which drives

the system towards a local thermal equilibrium (LTE) defined by a Boltzmann distribution

Γrlx
Q (R) = −1

τ

[
NQ(R)−NLTE

Q (R)
]
, NLTE

Q (R) ≡ ℏ2N(R)

2MkBT (R)
e−ℏ2Q2/[2MkBT (R)] , (9.4)

with relaxation rate τ , the macroscopic exciton density N(R) = 1
S
∑

QNQ(R) with normal-

ization area S, and a position dependent temperature T (R). The relaxation model can be

applied because the microscopic relaxation processes occur on sub-picosecond time scales,

much faster than the nanosecond time scales concerned here [176].

By integrating Eq. (9.3) over all momenta Q, the macroscopic dynamics can be computed

from

∂

∂t
N(R) = −∇R · j(R) +

1

ℏ
∇RU(R) · I(R) + Γ(R) , (9.5)
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where we defined

j(R) ≡
∫

d2Q
ℏQ
M

NQ(R) , (9.6a)

I(R) ≡
∫

d2Q∇QNQ(R) , (9.6b)

Γ(R) ≡
∫

d2QΓQ(R) . (9.6c)

The integral I(R) vanishes after applying Gauss’ integral theorem. Also, Γ(R) vanishes

because the relaxation model conserves the particle number by definition. The macroscopic

current density j(R) is the only non-vanishing term and can be solved by defining the de-

viation of the actual distribution from the LTE state δNQ(R) ≡ NQ(R) − NLTE
Q (R) which

converts Eq. (9.5) to

δNQ(R) = −τΓQ(R) = −τD̂NQ(R) = −τD̂
[
NLTE

Q (R) + δNQ(R)
]
, (9.7)

with the help of the relaxation model (9.4). The implicit equation (9.7) can be solved

iteratively by inserting the equation back into its right-hand side, resulting in the explicit

series

δNQ(R) =
∞∑
n=1

(−τ)nD̂nNLTE
Q (R) . (9.8)

This equation describes how spatial variations in the exciton density and temperature lead

to deviations of NQ(R) compared to the LTE distribution. In the limit where the relaxation

time τ is much faster than the time scale of spatial changes, it is sufficient to only include

the lowest order in τ . Using δNQ(R) = −τD̂NLTE
Q (R) and δNQ(R) = NQ(R) − NLTE

Q (R),

the integral defining the current density (9.6a) has the analytic solution

j(R) = − τ

M
kBT∇RN(R)−N(R)

[ τ
M
kB(∇RT (R)) +

τ

M
∇RU(R)

]
. (9.9)
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This renders Eq. (9.5) into the well-known convection–diffusion equation

∂

∂t
N(R) = ∇R · [D(R)∇RN(R)]−∇R · [N(R)(vS(R) + vD(R))] , (9.10)

where we identified the diffusivity

D(R) ≡ µkBT (R) , (9.11)

the exciton mobility µ ≡ τ/M , the drift velocity

vD(R) ≡ −µ∇RU(R) , (9.12)

created by gradients of the exciton potential U(R), and the Seebeck velocity

vS(R) ≡ µkB∇RT (R) , (9.13)

following the temperature gradients.

9.3 Exciton mobility

The mobility defines how easily particles in solids can be moved when a force is applied.

More specifically, a particle with mobility µ that is accelerated by a force F responds by

moving with a constant drift velocity

vD = µF . (9.14)

In the case of charged particles like electrons and holes, the mobility is easily measured by

applying an electric bias and measuring the resulting current. This does not work for neutral

particles like excitons. However, there are two alternative approaches. First, the Einstein
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relation

D = µkBT , (9.15)

which appears in the drift–diffusion equation (9.11), directly relates the mobility to diffusion.

By measuring the exciton diffusion at a known temperature, the mobility follows from the

ratio of diffusivity and temperature. Second, strain induces changes to the band structure

which are reflected in the exciton wave functions and energies. Local strain creates a spatial

exciton potential U(R) that exerts an accelerating force on the excitons via Eq. (9.12). With

proper strain engineering, excitons can be accelerated by a constant force, creating excitonic

drift. By relating the drift velocity for a known force, definition (9.14) can directly be applied

to extract the exciton mobility.

9.4 Measuring exciton mobility in tungsten diselenide

We compare the exciton convection–diffusion equation derived in Section 9.2 to measure-

ments performed in the group of Parag Deotare (University of Michigan) who devised an

experimental setup to observe the spatio-temporal dynamics of an exciton density and mea-

sure excitonic drift and diffusion. They furthermore designed strain-based exciton guides in

two-dimension WSe2 which create exciton potentials. For a detailed discussion of the exper-

imental setup as well as the device design and fabrication, we refer the reader to Refs. [177,

178].

The exciton potential U(R) can directly be inferred from spatially-resolved photolumi-

nescence (PL) measurements of the exciton energy. Figure 9.1 shows a one-dimensional scan

of the spectral PL shift (black dots) across an exciton guide as function of the position.

Over a length of 4 µm (shaded area), the PL energy decreases almost linearly. As a result,

excitons are accelerated by a force of approximately F = 2.8 meV/µm in this region.

Figure 9.2a shows the time dynamics of an exciton distribution excited at time t = 0 by
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Figure 9.1: Strain-induced shift of the exciton energy. Dots mark the spatially resolved
photoluminescence (PL) measurement along a nanostructure which tracks changes to the
exciton energy. The shaded area indicates a region of approximately linear slope.

a narrow excitation spot centered at x = 0. The centroid motion (blue line) shows a clear

drift towards positive values, following the strain-induced exciton potential (Fig. 9.1) from

which a drift velocity can be extracted. At the same time, the distribution spreads (black

lines marking the width of the distribution) due to exciton diffusion. By fitting the variance

of the distribution σ(t) to a linear model σ2(t)− σ2(0) = 2Dt, as expected for diffusion, the

diffusivity is obtained.

Similar measurements and analyses were performed on five different samples with varying

amounts of strain resulting in different forces F exerted on the exciton distribution. Figure

9.3 shows the measured drift velocity (black squares on left axis) and diffusivity (red points

on right axis) as function of the force F for the five samples. The drift velocity shows a

linear dependence with the force, consistent with Eq. (9.14). From its slope, the exciton

mobility is estimated to be µ = 169± 39 cm2/(eV s). The diffusivity is almost constant and

independent of F . However, its value is about 20 times smaller than the value predicted by

the Einstein relation of Eq. (9.15) based on the measured mobility at room temperature (red

dashed line). To visualize this discrepancy, we numerically solve the convection–diffusion

equation (9.10) for conditions similar to the measurement shown in Fig. 9.2a. We implement
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Figure 9.2: Spatio-temporal map of the exciton dynamics along a nanostructure potential.
Left, measured photoluminescence (PL) as function of the position along the nanostructure
and time after excitation with a diffraction-limited spot (white line). From the centroid
(blue line) and width (black lines) of the distribution, the diffusivity D and mobility µ
can be estimated. Middle, Numerical solution of the convection–diffusion equation using
the estimated D and µ from measurement (left frame). Right, Numerical solution of the
convection–diffusion equations using the µ estimated from measurement and D following
from the Einstein relation. The data is normalized at each time point.
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Figure 9.3: Drift velocity vD (black squares) and diffusivity D (red dots) estimated from
measurements for five samples with varying strain-induced forces F . The mobility µ can be
estimated from a linear fit of the drift velocity (black line). The observed average diffusivity
among all samples (solid red line) is much smaller than the diffusivity predicted by the
Einstein relation (dashed red line) based on the estimated µ.

an excitonic potential U(R) consistent with the experimental PL measurement, use the

measured µ, and explicitly set D to match the experiment. The exciton dynamics computed

from an initial (t = 0) Gaussian distribution (Fig. 9.2b) visually matches the experiment

(Fig. 9.2a). However, if the diffusivity is chosen to be consistent with the Einstein relation

(Fig. 9.2c), the dynamics is dominated by a rapid diffusion not observed in the experiment.
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This suggests that the Einstein relation is violated in WSe2.

The violation of the Einstein relation can be explained by the presence of defect states

which TMDs are known to have in abundance [179, 180], including saturable trap states that

capture excitons [181]. The exciton density is highest at the center of the distribution where

it can saturate defect states. In the tails of the distribution, defect states remain unoccupied

because the exciton density is low. Diffusion spreads the density into the tail regions where

excitons are easily trapped into immobile states, effectively slowing down the expansion. In

contrast, the centroid motion is dominated by the center of the distribution where exciton

density is high and defects saturated, leaving the drift motion mostly unaffected. This way,

saturable defect states can lead to a decrease of the apparent diffusivity, explaining the

violation of the Einstein relation.

To quantitatively analyze the effect of defects on the exciton dynamics, the convection–

diffusion equation (9.10) was extended phenomenologically to include a capture model with

immobile saturable defect states. This model reproduces the violation of Einstein relation

observed in the experiment. For a comprehensive description and analysis of the model as

well as a detailed examination of the shape of the distribution with theory–experiment com-

parisons we refer the reader to Ref. [178]. The reference also discusses a further extension of

the model to include Auger processes that locally heat the exciton gas to explain experiments

at higher excitation densities where additional drift contributions from the Seebeck effect

(Eq. (9.13)) become important.

9.5 Conclusion

We derived equations of motion to describe the macroscopic dynamics of incoherent excitons

in nanostructures which resulted in the convection–diffusion equation and discussed how the

exciton mobility can be extracted from measurements of excitonic drift and diffusion. A

comparison to experiments revealed that the Einstein relation in WSe2 is violated and that
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saturable defect states significantly slow down exciton diffusion, rendering estimates of the

exciton mobility based on diffusion measurements incorrect.

The violation of the Einstein relation was explained by introducing phenomenological

scattering models that extend the convection–diffusion equation. In the future, defect states

and the related scattering processes could be described microscopically. A more detailed

understanding of the microscopic processes could motivate new concepts and strategies to

minimize or possibly circumvent scattering and increase the efficiency of exciton transport.

103



Chapter 10

Conclusion

In this Thesis, I have developed a comprehensive many-body quantum theory that combines

the quantum-dynamic cluster expansion theory to efficiently describe emerging many-body

correlations with ab inito input from density-functional theory to quantitatively describe

many-body excitations in quantum materials. The developed theory was applied to ana-

lytically and numerically study lightwave-electronic processes and spatially inhomogeneous

excitations in semiconductors alongside extensive theory–experiment comparisons. Below,

each of our main results is briefly summarized with an outlook for future directions and

contextualized with regards to the development of future lightwave-electronics based tech-

nologies.

We developed a new lightwave-based tomographic approach to reconstruct the band

structure of quantum materials from a set harmonic sideband spectra by utilizing emergent

crystal-momentum combs to connect the sideband intensity to the band structure. The ap-

proach was demonstrated in monolayer WSe2 and can be used complementary to traditional

ARPES measurements to probe quantum materials with high spatial resolution under opera-

tional conditions and in ambient. In the future, this approach could be further refined to use

unidirectional and time-resolved lightwave excitations to obtain even more detailed band-

structure information. Additionally, an extension to reconstruct other material properties

such as the dipole, phonon, and Coulomb matrix elements is conceivable.
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We also used two-dimensional harmonic-sideband spectrograms, extending the concept

of quasiparticle colliders, to directly clock correlations of quasiparticle states in the time

domain. This attoclocking approach was demonstrated by resolving differences in the cor-

relation strengths of excitons in samples of monolayer and bulk WSe2. We furthermore

showed that the correlation strength can be tuned and changes be detected in attoclocking

delays. Based on this observation, we predicted that the excitonic Mott transition can be

observed this way. In the future, our attoclocking approach could be expanded to detect

further quantum-phase transitions and probe correlations of higher-order quasiparticles such

as trions, biexcitons, or dropletons. In the context of lightwave electronic applications, the

attoclocking approach could be used to probe correlated states with spatial and temporal

resolution during a device’s operation. Together with lightwave tomography, it forms the ba-

sis of a new ecosystem of lightwave-based tools to characterize and probe materials for, and

the functionality of, future solid-state technologies and creates a bridge between theoretical

modelling and experiments.

We theoretically investigated the feasibility and efficiency of lightwave valleytronics.

Specifically, we optimized lightwave excitations to switch the valley degree of coherent exci-

tons in two-dimensional quantum materials, discussed how a valleytronic switching can be

characterized from its light emission, and described how emergent frequency combs could be

used to experimentally verify the temporal sequencing of multiple valleytronic switches. Co-

herent switching of the valley-degree of freedom provides an intriguing platform for lightwave-

driven information processing and PHz electronics. Future work could include a search of

valleytronic materials to find the best candidates for experimental tests to our predictions.

At the same time, further theoretical work is needed to formulate new excitation schemes to

realize classical or even quantum gates for information processing.

Finally, we introduced a Wigner-function representation of clusters to describe the spatial

degree of freedom in a fully microscopic theory. We found that coherent excitons behave

like quantum-mechanical particles with respect to their spatial dynamics while charge carri-
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ers and incoherent excitons behave more like classical particles. We furthermore found that

defects in semiconductors can lead to non-trivial contributions to the spatial dynamics. Non-

thermal distribution as well as scattering processes can affect the macroscopic dynamics of

drift and diffusion of excitons. Further work is needed to understand the effects of scattering

and defects states to their fullest extend. However, the insights into the spatial dynamics of

local excitations that were gained could already be used to control and manipulate excitation

spots in future applications. For example, multiple local excitations in a valleytronic mate-

rial could be an interesting platform to explore. While the valley-degree of freedom can be

manipulated with lightwave excitations, manipulation of the spatial degree of freedom could

enable gate operations between multiple local excitations. To this end, a full description of

the lightwave dynamics with spatial degrees of freedom would be desirable.
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Appendix A

Multi-Band SBEs

The multi-band SBEs are given by

iℏ
∂

∂t
P λ,ν
k =

[
Eren

ν,k − Eren
λ,k

]
P λ,ν
k + i|e|E(t) ·

[
∇k − i

(
Aν

k −Aλ
k

)]
P λ,ν
k (A.1)

−
∑
α ̸=ν

P λ,α
k Ωα,ν

k (t) +
∑
α ̸=λ

Pα,ν
k Ωλ,α

k (t) + Γλ,ν
k , (A.2)

with the renormalized kinetic energy

Eren
λ,k ≡ Eλ,k −

∑
k′

V λ,λ
k,k′P

λ,λ
k′ , (A.3)

the renormalized Rabi energy

Ωλ,ν
k (t) ≡ dν,λ

k · E(t) +
∑
k′

V ν,λ
k,k′P

λ,ν
k′ . (A.4)

All doublet terms are collected in Γλν
k . We assumed V λ,ν,ν′,λ′

k,k′,q = δλ,λ′δν,ν′V
λ,ν,ν,λ
k,k′,q and define

V λ,ν
k,k′ ≡ V λ,ν,ν,λ

k,k′,k−k′ .
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Appendix B

Macroscopic Current

The SBEs are coupled to Maxwell’s equations via the macroscopic current density J which

is connected to the macroscopic polarization density via

J = −|e| ∂
∂t

⟨r⟩ = ∂

∂t
P . (B.1)

The macroscopic polarization density can be identified from the Hamiltonian (3.4) and is

given by

P =
1

S

〈
P̂d + P̂A + P̂∇

〉
, (B.2)

with

P̂d =
∑
λ̸=ν,k

a†λ,kaν,k dλ,ν
k , P̂A = −|e|

∑
λ,k

a†λ,kaλ,k Aλ
k , P̂∇ = −i|e|

∑
λ,k

a†λ,k(∇kaλ,k) . (B.3)

The expectation value ⟨P̂⟩d can be evaluated directly and yields the interband polariza-

tion density

Pinter ≡ 1

S

〈
P̂d

〉
=

1

S
∑
λ̸=ν,k

P λ,ν
k dλ,ν

k . (B.4)
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The two remaining contributions can be computed in the current form by evaluating the

Heisenberg equation of motion

Jrest =
∂

∂t

1

S

〈
P̂A + P̂∇

〉
= − 1

S
i

ℏ

〈[
P̂A + P̂∇, Ĥ

]〉
. (B.5)

This yields the total macroscopic current density

J =
∂

∂t
Pinter +

∑
λ,k

P λ,λ
k j̃λk −

∑
λ,k

P λ,λ
k

|e|2

ℏ
E(t)×Ωλ

k (B.6)

−
∑
λ ̸=ν,k

P λ,ν
k |e|

[
i(Aλ

k −Aν
k)−∇k

]
Ωλ,ν

k + J[∆ ⟨2⟩] , (B.7)

with the microscopic current j̃λk ≡ − |e|
ℏ ∇kE

ren
λ,k of the renormalized bands Eren

λ,k defined in

(3.14), the Berry curvature Ωλ
k ≡ ∇k×Aλ

k, and the renormalized Rabi energy Ωλν
k defined in

Equation (3.15). J[∆ ⟨2⟩] denotes doublet contributions to the macroscopic current density

that originate from the Coulomb-interaction term in the Hamiltonian in Eq. (B.5).
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Appendix C

Microscopic Scattering Model

The microscopic scattering model used in our lightwave investigations is implemented by

iℏ
∂

∂t
Pk = Sk

[
Pk, f

e/h
k

]
− i
∑
k′

γEIDk,k′Rk′ , (C.1)

iℏ
∂

∂t
Rk = Sk

[
Rk, f

e/h
k

]∣∣∣∣
dc,v
k =0

+ i
∑
k′

γEIDk,k′Pk′ − i
∑
k′

γQM
k,k′Rk′ , (C.2)

where the functional Sk is short hand for the singlet term in the right-hand side of the

SBE (3.13a). The dynamic nature of microscopic scattering, which results in quantum

memory effects discussed in Section 3.4.3, is described by introducing a second, polarization-

like singlet Rk following the description of Ref. [87]. The new singlet is generated by the

scattering of Pk and, once formed, adds scattering to the Pk dynamics. The scattering is

described by a diffusive model

γEIDk,k′ = δk,k′γ
(1)
k − γ

(2)
k,k′ + δk,k′γphononk , γQM

k,k′ = sQMγ
EID
k,k′ , (C.3)

where the factor sQM > 4 determines the strength of scattering for Rk itself and sets the

strength of the quantum-memory effect.
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Appendix D

Numerical Implementation of the SBEs

D.1 Crystal structure of TMDs

The hexagonal lattice of two-dimensional TMDs is described by the primitive lattice vectors

a1 =


a

0

0

 , a2 =


a/2

√
3a/2

0

 , a3 =


0

0

c

 , (D.1)

with lattice constant a and a separation of layers c→ ∞. From these, the reciprocal lattice

vectors are defined by

bi =
2π

V
aj × ak , (D.2)

where (i, j, k) is a cyclic permutation of (1, 2, 3) and V = a1 · (a2 × a3) =
√
3ac/2 is the unit

cell volume. We obtain

b1 =
2π

a


1

−1/
√
3

0

 , b2 =
2π

a


0

2/
√
3

0

 , (D.3)
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with
∣∣b1/2

∣∣ = 4π/(
√
3a).

The important high-symmetry points K and K ′ are separated by

|K −K ′| = 4π/(3a) , (D.4)

in momentum space. For WSe2 with a lattice constant of a = 0.3325 nm, this yields

|K −K ′| = 12.60 nm−1.

D.2 Discretization of momentum space

The honeycomb lattice structure of TMDs yields a hexagonal first Brillouin zone (Fig. D.1,

red line). For numerical purposes, it is more convenient to choose a rhombic primitive cell

in reciprocal space (Fig. D.1, blue lines). We choose the vectors

c1 =

(
4π

3a

) 3/2

−
√
3/2

 , c2 =

(
4π

3a

) 3/2
√
3/2

 , (D.5)

to span the rhombic cell and discretize it with N ×N points

ki,j =
i− 1

N
c1 +

j − 1

N
c2 =

(
4π

3a

)3(i+ j − 2)/(2N)
√
3(i− j)/(2N)

 , (D.6)

with (i, j = 1, . . . N). Each grid point (Fig. D.1, red points) represents a hexagonal area

A surrounding it (Fig. D.1, small hexagons). This grid discretizes the Brillouin zone via a

simple two-dimensional grid where periodic boundary conditions are easily implemented.
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c1

c2

KG K’

Figure D.1: Discretization of the primitive cell. An alternative to the hexagonal Brillouin
zone (red hexagon) of two-dimensional TMDs is a rhombic primitive cell (dashed blue line)
spanned by vectors c1 and c2 (blue arrows) and with Γ points on its corners. The rhombic
shape is discretized with a two-dimensional grid (red dots) where each dot represents a
hexagonal area (small hexagons) around it.

D.3 Coulomb sum

In the SBEs, we encounter Coulomb sums of the form

Ik =
∑
k′

Vk,k′fk′ , (D.7)

that run over discrete k created by a finite quantization length L. In the continuum limit

(L → ∞), the discrete sum can be treated as a Riemann sum and converted into the integral

Ik →
(

L
2π

)2 ∫
BZ

d2k′ Vk,k′fk′ , (D.8)

over the entire Brillouin zone. This integral can be split into smaller pieces using the dis-

cretization (D.6), replacing
∫
BZ

d2k =
∑

i,j

∫
ki,j+A d2k. In the Coulomb sum, fk typically
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changes slowly on the scale of the numerical grid and can be approximated to be constant

within the area A (for k ∈ ki,j +A : fk = fki,j
) so that we can write

Ik ≈
∑
i,j

V num
k,ki,j

fki,j
, (D.9)

with

V num
k,ki,j

≡
(

L
2π

)2 ∫
ki,j+A

d2k′ Vk,ki,j
. (D.10)

In contrast, Vk,k′ can change quickly within the area A, especially near the Coulomb sin-

gularity at k = k′. In order to take into account the fast changes and lift the integrable

Figure D.2: Tiling of the discretization area. The hexagonal area around a grid point (red
dot) is discretized with a fine grid (blue dots and squares) where each point represents a
triangular area around it.

Coulomb singularity, we numerically evaluate the integral (D.10) by tiling the hexagon A

with 6N2
fine triangles as shown in Fig. D.2. As a result, (D.10) is approximated by the sum

V num
k,ki,j

≈
(

L
2π

)2 ∑
α,β,γ,δ

∆A Vk,kfine
i,j;α,β,γ,δ

. (D.11)
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γ 1 2 3 4 5 6

Aγ
1

(
1
0

) (
1/2√
3/2

) (
−1/2√
3/2

) (
−1
0

) (
−1/2

−
√
3/2

) (
1/2

−
√
3/2

)
Aγ

2

(
1/2√
3/2

) (
−1/2√
3/2

) (
−1
0

) (
−1/2

−
√
3/2

) (
1/2

−
√
3/2

) (
1
0

)
Bγ

1

(
1/2

1/(2
√
3)

) (
0

1/
√
3

) (
−1/2

1/(2
√
3)

) (
−1/2

−1/(2
√
3)

) (
0

−1/
√
3

) (
1/2

−1/(2
√
3)

)
Bγ

2

(
1

1/
√
3

) (
0

2/
√
3

) (
−1

1/
√
3

) (
−1

−1/
√
3

) (
0

−2/
√
3

) (
1

−1/
√
3

)
Table D.1: Vectors for fine integration.

over the 6N2
fine points

kfine
i,j;α,β,γ,δ = ki,j +

(
4π

3aN

)
[(α− 1)Aγ

1 + (β − 1)Aγ
2 +Bγ

δ ]/Nfine , (D.12)

with

α = 1, . . . , Nfine ; β = 1, . . . , Nfine + 1− α ; if δ = 1 , (D.13)

α = 1, . . . , Nfine − 1; β = 1, . . . Nfine − α ; if δ = 2 , (D.14)

γ = 1, . . . , 6 ; (D.15)

δ = 1, 2 . (D.16)

The vectors Aγ
1/2 and Bγ

δ are defined in Table D.1 and ∆A = 8π2/(18a2N2N2
fine).
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Appendix E

Band-Pass Filter

We define a gate function

G(ω) =
1

e(ω−ω2)/∆ω + 1
− 1

e(ω−ω1)/∆ω + 1
, (E.1)

that passes frequencies between angular frequencies ω1 and ω2 > ω1 to define a band-pass

filter where ∆ω sets the steepness of the cutoffs. The resulting band-pass filter can be applied

to a time-dependent function P (t) by computing

Pfiltered(t) =

∫
dt′ P (t′)G(t− t′) , (E.2)

where

G(t) =
∆ω sin

(
ω2−ω1

2
t
)

sinh(π∆ω t)
e−i

ω1+ω2
2

t , (E.3)

is the Fourier transformation of G(ω) in Eq. (E.1).
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Appendix F

Inhomogeneous SBEs

The exact singlet dynamics is given by

iℏ
∂

∂t
P λν
k (R) = [Eν − Eλ]P

λν
k (R)

+
[
eiFνλ∇k·∇R1 (Uν(R1) + UH(R1))− eiFνλ∇k·∇R1 (Uλ(R1) + UH(R1))

]
P λν
k (R)

+
[
ℏ2
2

(
F 2
νλ

mλ
− F 2

λν

mν

)
∇2

R − iℏ2
(

Fνλ

mλ
+ Fλν

mν

)
k · ∇R − ℏ2

2

(
1

mλ
− 1

mν

)
k2
]
P λν
k (R)

+
∑
µ̸=λ

[
e−iFλν∇k·∇R1ei(Fµν−Fλν)∇k·∇R2dE(R1)P

µν
k (R2)

]
+
∑
µ̸=λ

[
eiFνλ∇k·∇R1ei(Fλµ−Fλν)∇k·∇R2dE(R1)P

λµ
k (R2)

]
+
∑
µ

ei(Fλµ−Fλν)∇k1
·∇R1ei(Fµν−Fλν)∇k2

·∇R2eiFνλ∇k1
·∇R2e−iFλν∇k2

·∇R1

×
[
∆λµ

k1
(R1)P

µν
k2
(R2)− P λµ

k1
(R1)∆

µν
k2
(R2)

]
+
∑
µ

e
i
2
(2Fνλ−Fµλ)∇k1

·∇Re
i
2
(Fµν−2Fλν)∇k2

·∇R
∑
Q

eQ·(Fµν∇k2
−Fµλ∇k1

)

×

[
1

S
∑
q

Vk1−qc
q,k2,Q
λµ,µν (R)− 1

S
∑
q

Vk2−qc
k1,q,Q
λµ,µν (R)

]
. (F.1)
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For the purpose of denoting the variables that gradients operate on, additional coordinates

R1 = R2 = R and k1 = k2 = k were introduced. We also identified the Hartree potential

UH(R) ≡
∫

d3xV (R− r)
∑
α

1

S
∑
k

Pαα
k (R) , (F.2)

and defined a short hand for Coulomb sums

∆λν
k (R) ≡ 1

S
∑
q

Vk−qP
λν
k (R) . (F.3)
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Appendix G

Inhomogeneous SBEs of a Two-Band Model

Using the power series (7.10), the singlet dynamics (F.1) yields

iℏ
∂

∂t
Pk(R) = Ẽeh

k Pk(R)− ℏ2

2M
∇2

RPk(R)

+i∇R

[
m̄eUe(R)− m̄hUh(R) + UH(R) + m̄e∆

h
k(R)− m̄h∆

e
k(R)

]
· ∇kPk(R)

+i∇k(m̄e∆
e
k(R)− m̄h∆

h
k(R)) · ∇RPk(R)

−
(
1− f e

k(R)− fh
k (R)− imh−me

2M
∇k · ∇R(f

e
k(R) + fh

k (R))
)
Ωk(R)

−∇RΩk(R) · ∇k(m̄ef
e
k(R)− m̄hf

h
k (R))− i∇kΩk(R) · ∇R(m̄ef

h
k (R)− m̄hf

e
k(R))

+Γvc
k (R) +O([∇k · ∇R]

2) , (G.1)
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and

ℏ
∂

∂t
f e
k(R) = 2iIm[Pk(R)Ω∗

k(R)]− ℏ2
me

k · ∇Rf
e
k(R) +∇R(Ue(R) + UH(R)) · ∇kf

e
k(R)

+ mh−me

M
Re[Pk(R)(∇k · ∇RΩk(R))∗ − (∇k · ∇RPk(R))Ωk(R)∗]

+ Re[∇RPk(R) · ∇kΩ
∗
k(R)−∇kPk(R) · ∇RΩ

∗
k(R)]

+∇Rf
e
k(R) · ∇k∆

e
k(R)−∇kf

e
k(R) · ∇R∆

e
k(R)

− im̄e
1
S

∑
q

Vk−q

∑
Q

Q · ∇k

[
cq,k,QX + ck,q,QX

]
+ im̄e

1
S

∑
q

[∇kVk−q] ·
∑
Q

Q
[
cq,k,QX + ck,q,QX

]
(G.2)

+ 1
2

∑
Q

1
S

∑
q

[
(∇kVk−q) · ∇R(m̄ec

q,k,Q
X + m̄hc

k,q,Q)

− Vk−q∇k · ∇R(m̄hc
q,k,Q
X + m̄ec

k,q,Q)
]

+O([∇k · ∇R]
2) . (G.3)

We identified the renormalized kinetic energy

Ẽeh
k (R) ≡ Egap +

ℏ2k2

2µ
+ [Uc(R)− Uv(R)]

−
[
∆e

k(R) + ∆h
k(R)

]
− imh−me

2M

[
∆e

k(R) + ∆h
k(R)

]
, (G.4)

the renormalized Rabi energy

Ωk(R) ≡ dE(R) +
∑
k′

Vk−k′Pk′(R) , (G.5)

the reduced mass µ = (1/me + 1/mh)
−1, and defined ∆e

k ≡ ∆c,c
k and ∆h

k ≡ ∆v,v
k based on

Eq. (F.3).

121



Appendix H

Author’s contributions

All studies presented in this Thesis are the result of frequent meetings and intensive dis-

cussions with my advisor Mackillo Kira where intermediate results were discussed and new

calculations planned. Most of the actual programming and calculations have been performed

by myself.

My work related to lightwave electronics was in large parts driven by a collaboration

with the group of Rupert Huber (University of Regensburg) who performed various mea-

surements of harmonic-sideband (HSB) spectra in quantum materials. In a first project,

I analyzed time-resolved HSB spectrograms that showed differences in the optimum delay

between measurements in bulk and monolayer tungsten diselenide (WSe2) which we hypoth-

esized to originate from differences in the interaction strength within the two materials.

Together with Benjamin Girodias, we first started using a code developed by Peter Hawkins.

Together, we extended the code to use a diffusive scattering model which we fitted to scat-

tering computations performed by Johannes Steiner (now University of Paderborn) in the

group of Stephan Koch (University of Marburg). However, the numerical methods used in

the original code were unable to explain the experiments. In a shift from the old code base,

I developed a completely new code with a different numerical approach to solve the semi-

conductor Bloch equations on the full two-dimensional Brillouin zone combined with inputs

from tight-binding models (later extended to use density-matrix theory computations). This
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new approach was able to explain the experimental data quantitatively. Together with a

Wigner-function based representation of the microscopic state in phase space that I devel-

oped, we were able to confirm our hypothesis. The results were published in J. Freudenstein,

M. Borsch, M. Meierhofer, D. Afanasiev, C. P. Schmid, F. Sandner, M. Liebich, A. Girnghu-

ber, M. Knorr, M. Kira, and R. Huber, “Attosecond clocking of correlations between Bloch

electrons”, Nature 610, 7931 (2022). I performed all quantum-mechanical computations

presented in the paper, contributed to the writing of the manuscript, and was mainly re-

sponsible for writing of the theory part of the Methods section. I also presented the results

at the CLEO conference in San Jose, CA, in 2023.

I also worked on a second set of HSB measurements performed in Rupert Huber’s group.

This time, HSB spectra were measured as function of the peak field strength and central

frequency of the HSB-generating multi-terahertz pulse with the goal to understand the ex-

tremely non-perturbative dependence of the HSB intensities. Together with Mackillo Kira, I

discovered the emergence of crystal-momentum combs and found that they could be used to

connect the HSB intensities to the band structure and explain their nonperturbative behav-

ior. In many meetings and discussions between Mackillo Kira, Rupert Huber’s group, and

myself, we eventually formulated the technique of lightwave tomography that was published

in M. Borsch, C. P. Schmid, L. Weigl, S. Schlauderer, N. Hofmann, C. Lange, J. T. Steiner,

S. W. Koch, R. Huber, and M. Kira, “Super-resolution lightwave tomography of electronic

bands in quantum materials”, Science 370, 1204–1207 (2020). I performed all quantum-

mechanical computations, contributed to the writing of the manuscript, and was responsible

for writing of the theory part of the Supplementary Material. I presented the results of this

publication at several international and national conferences, including the CLEO conference

in 2021 (San Jose, CA) and ATTO VIII in 2022 (Orlando, FL).

Based on the insights gained from the collaboration with Rupert Huber, I also theo-

retically explored the limitations of lightwave valleytronic switching. This work is mainly

the result of frequent meetings and discussions between Mackillo Kira and myself where we
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discussed intermediate results and planned computational investigations. The results are

summarized in Section 6 and are in preparation for publication at the time of this writing.

Preliminary results were presented in several posters as well as a talk at the CLEO conference

in San Jose, CA, in 2019.

Together with Mackillo Kira, Rupert Huber, and Manuel Meierhofer (University of Re-

gensburg) I wrote a review article on lightwave electronics in condensed matter, published as

M. Borsch, M. Meierhofer, R. Huber, M. Kira, “Lightwave electronics in condensed matter”,

Nat. Rev. Mater. 8, 668–687 (2023). I contributed to the researching and writing of the

manuscript and performed quantum-mechanical computations.

The work on spatially inhomogeneous excitations presented Chapters 7 and 8 was a

continuation of my Master’s thesis in which I started to develop the microscopic theory.

During my PhD work, I further refined the approach and developed a code to numerically

solve the theory. I performed extensive analytical and numerical studies to compare our

theory to experimental measurements of the spatio-temporal dynamics of coherent excitons

performed by Eric Martin in the group of Steven Cundiff (University of Michigan). A

subset of the results are discussed in Chapter 8 and were presented at several international

conferences, including a contributed talk at the CLEO conference in San Jose, CA, in 2018.

The theory developed for spatially inhomogeneous excitations was later extended to de-

scribe the macroscopic dynamics of incoherent excitons and compared to experiments in the

group of Parag Deotare (University of Michigan). I contributed to analytical and numeri-

cal studies to explain the measured dynamics of incoherent excitons which were discussed

in regular meetings between Mackillo Kira, Parag Deotare, Matthias Florian (University

of Michigan), Zidong Li (University of Michigan), and myself. The results are published

in Z. Li, M. Florian, K. Datta, Z. Jiang, M. Borsch, Q. Wen, M. Kira, and P. B.Deotare,

“Enhanced exciton-drift transport through suppressed diffusion in one-dimensional guides”,

ACS Nano, https://doi.org/10.1021/acsnano.3c04870 (2023). I have mainly contributed to

writing of the Supplementary Material.
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