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ABSTRACT

Hall thrusters are the most widely-used type of in-space electric propulsion device.
However, aspects of the physics of their operation remain poorly-understood. Notably,
the problem of enhanced cross-field electron transport prevents predictive modeling
and simulation of these devices. This “anomalous” electron transport, which is often
represented as an effective collisional scattering process likely stems from kinetic
instabilities and plasma turbulence. This poses a challenge for incorporating this
phenomenon into fluid models suitable for engineering applications.

In this dissertation, several models for the anomalous electron transport in Hall
thrusters are reviewed and evaluated, and methods for model validation are assessed.
Electron transport models from the scientific literature are reviewed, and several new
models are derived. It is first shown that the common practice of evaluating models
on calibrated simulation outputs and comparing them to hand-tuned, ad-hoc anomalous
collision frequencies does not yield predictive results.

Next, the behavior of four electron transport models from the literature is investigated
using a fluid Hall thruster code. The models are calibrated against a baseline experimental
condition of a 9-kW-class magnetically-shielded Hall thruster operating at 300 V and 15 A
on xenon propellant. The extensibility of the models is then assessed by using this
calibrated model to simulate three additional operating conditions—300 V and 30 A, 600 V
and 15 A, and 300 V and 15 A operating on krypton propellant. The quality of the model
prediction is quantified by comparing the model outputs to experimental measurements of
discharge current, thrust, and ion velocity. It is found that while none of the models can
predict the ion acceleration characteristics accurately, some compare favorably in terms
of the scaling of thrust and discharge current across operating conditions. The limitations
of the models are attributed to the coupling between the functional scaling of the closure
models with respect to the local plasma properties and the fluid model. The role of the
electron energy balance in this coupling is also highlighted.

Finally, several novel models are assessed. These models are derived by altering the
underlying assumptions of a previously-discussed first-principles transport model. It is
found that some of these models are able to predict thruster performance characteristics—

Xii



such as thrust and efficiency—better than the baseline model, while inaccurately
reproducing the experimentally-observed spatial variation in ion velocity. Another model
is then evaluated which improves upon these results, yielding improved accuracy with
respect to these velocity measurements in all but one case. The results of this
dissertation are finally discussed in the context of motivating improved closure models
of the anomalous electron transport in Hall thrusters.
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CHAPTER 1

Introduction

Rocket science has been mythologized all out of proportion to its

true difficulty.

John Carmack

1.1 Basic rocket science

In 1904, Konstantin Tsiolkovsky derived the famous rocket equation, which relates how
much we can change the velocity of a spacecraft to the amount of propellant onboard
and the velocity at which it can be ejected. He was not the first nor the last to derive it
independently, but it bears his name because he was one of the first people to consider
how humankind might one day travel to the stars. In addition to this equation, Tsiolkovsky
developed the concept of airlocks, multi-stage rockets, and space elevators. He derived
the rocket equation while working as a schoolteacher in Kaluga, a rural town in the Russian

Empire, far from any universities or centers of learning. The equation is

m;
AV = Vg In = 1.1
V = Vex ”m, (1.1)



In this expression, Av is the amount by which we would like to change our velocity, m; is
the initial mass of our spacecraft (i.e. when it is full of propellant), my is the final mass
of our spacecraft (after it is finished exhausting propellant) and v, is how fast we eject
propellant from our spacecraft. This expression shows that the amount that a craft can
change its velocity depends linearly on the exhaust velocity but only logarithmically on the
ratio of initial to final mass (i.e. the amount of propellant we carry). This suggests that if
we want our rocket to go very fast, and by extension very far, it is more effective to increase
our exhaust velocity than to add additional propellant. We can re-arrange this expression

to make this conclusion more explicit:

i~ gav/ve (1.2)

Here, we can see that the ratio of initial to final mass of our spacecraft depends
exponentially on the ratio between the change in velocity we wish to enact and the exhaust
velocity. At a fixed exhaust velocity, increasing Av linearly requires exponentially more
propellant, as every additional bit of propellant added also needs to be accelerated,
requiring still more propellant, in a cascade known as the tyranny of the rocket equation.
Thus, if we want to go fast, we want to impart as much momentum as possible to each gram
of propellant we exhaust. In spacecraft propulsion, we typically quantify how effectively we
achieve this goal via the specific impulse (/s,), measured in seconds, which is the effective

exhaust velocity divided by the acceleration due to gravity at sea level (go = 9.81 m/s):

Vex
I = 1 - 3
* 9o ( )

If we want to to reduce the amount of propellant we need to achieve a given Av, or increase
the amount of Av we can get for a fixed propellant mass, we want an engine with higher
specific impulse. For existing propulsion systems, specific impulse ranges from tens of

seconds on the low end to several thousand seconds on the high end.



The most basic type of rocket is a cold gas thruster, in which we have a pressurized tank
of gas which is allowed to exhaust through a valve to produce a small amount of thrust.
Since the gas is cold, the particles do not have much kinetic energy and move quite slowly,
so these systems can only attain specific impulses around 10 - 100 seconds, depending
on the gas used and the pressure in the tank. To further speed up the propellant, we can
use a nozzle. Nozzles work by transforming thermal energy (i.e. pressure and heat) into
kinetic energy are thus able to increase the speed of the propellant. However, there is
not much energy available in a cold gas, so the ability of a nozzle to increase the specific
impulse is limited. Despite their poor performance, cold gas thrusters are often employed

to propel small satellites due to their simplicity.

1.1.1 Chemical propulsion

If we want our gas to go faster, we can heat the propellant. This gives the particles more
thermal energy, which a nozzle can turn into kinetic energy. Traditionally, the easiest way
to do this has been to use a chemically-reactive propellant or mix of propellants. If the
propellants react exothermically, the breaking and reforming of bonds during the reaction
will release heat. In a chemical rocket, we inject our reactive propellants into a combustion
chamber, which contains the reaction products as they heat and increase in pressure.
This gas then flows into a nozzle, which transforms this heat and pressure into directed
kinetic energy. In this way, these rockets can achieve specific impulses between 100
and 500 seconds,* depending on the propellant chosen. Lighter molecules move faster
at a fixed kinetic energy, so propellants with lower molecular weights can attain higher
specific impulses. The F-1 engines which powered the first stage of the Saturn V moon
rockets employed a mixture of RP-1 (a type of specially-formulated kerosene) and liquid
oxygen and achieved specific impulses of around 250 to 300 seconds.* In contrast, the
space shuttle main engines used liquid hydrogen, which is very light, and reached specific

impulses in excess of 400 seconds. More exotic propellant-oxidizer combinations involving
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fluorine have been able to reach 480 seconds,* However, such combinations are toxic,
corrosive, and highly explosive. They are thus generally avoided.

No matter the propellant, the specific impulse of a chemical rocket is ultimately limited
by the amount of energy stored in the chemical bonds of the propellant/oxidizer mixture.
By Equation 1.2, this limitation on specific impulse means that chemical rockets need a
lot of propellant compared to the amount of payload they can carry. The Apollo capsule,
service module, and lunar lander only comprised 4% of the total launch mass of the Saturn
V rocket. The rest of the mass was propellant, propellant tanks, and engines. Despite this
limitation, the power and thrust-to-weight ratio of these rockets means they are the only
option for launching payloads from the surface of the earth into space. Once in space,
however, the utility of chemical rockets is more limited. If we want to launch a probe to
another planet using a chemical rocket, most of the available payload will be propellant for
the probe, rather than useful scientific instrumentation. To reduce fuel mass, we usually
launch scientific probes on one-way trajectories to other planets (or into interstellar space),
and usually usually need to rely on complex slingshot maneuvers to get enough energy
to reach the target. Such missions typically take many years to reach their destination,
and have limited maneuverability once they arrive. If we want to go faster or execute more

complex maneuvers, such as visiting multiple bodies, chemical rockets may not suffice.

1.1.2 Nuclear thermal propulsion

To get around the limitations of chemical propulsion, we might try adding energy to the
propellant directly, rather than relying on chemical bonds. One way to do this is with a
nuclear reactor. When a radioactive material like uranium or plutonium starts decaying, it
emits high energy neutrons which heat everything they encounter. If we flow a propellant
(like hydrogen) around this hot slug of radioactive metal to heat it before expanding it
through a nozzle, we obtain a nuclear thermal rocket. First developed inthe 1960s, nuclear

thermal rockets can achieve specific impulses of between 800 and 1,200 seconds while
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maintaining good thrust levels (although the thrust-to-weight ratio is sometimes lower than
chemical systems). Despite their potential usefulness, political challenges and technical

issues have to date prevented nuclear thermal rockets from flying.

1.1.3 Electric propulsion

If we are unable to use radioactive decay to heat our propellant, then we can use electricity.
Systems which use electricity in some way to energize and accelerate a propellant and
produce thrust are called electric propulsion (EP) systems. One simple way to do this
is to just put a resistive heating element, like the filament of a traditional incandescent
lightbulb, in the path of the propellant. The resulting thruster is called a resistojet and
can achieve specific impulses between 100 and 500 seconds,® depending on architecture
and propellant choice. Arcjets are a related technology, in which a voltage drop is applied
across a gap. This creates an electrical arc discharge, which heats the gas before it is
accelerated in a nozzle. Arcjets typically reach 500 to 1,000 seconds of specific impulse.®
Together, resistojets, arcjets, and other similar systems which use electricity primarily to
heat the propellant are called electrothermal thrusters.

To reach higher specific impulses, we must go beyond simply heating the propellant.
Electrostatic acceleration systems ionize the propellant gas by some means. Then, the
charged particles are accelerated using an electric field to produce thrust. This electric
field is created by means of an applied voltage of a few hundred to a few thousand volts.
Depending on the choice of propellant and the applied voltage, the specific impulse of
these systems can be anywhere from 1,000 seconds to upwards of 10,000 seconds. The
most popular electrostatic acceleration systems are gridded ion thrusters (GITs) and Hall
effect thrusters (HETs). Finally, there are devices which employ magnetic fields to confine
and/or accelerate an ionized gas. These are called electromagnetic propulsion systems,
and include technologies such as magnetoplasmadynamic, rotating magnetic field, and

magnetic nozzle thrusters.



Due to their high specific impulses, EP systems require less propellant for a given
spacecraft mass. This means more of the spacecraft’s total mass can be taken up by
useful payload instead of fuel or tankage. For this reason, EP systems are common
for in-space station-keeping applications, in which a satellite needs to continually correct
its orbit over a long period of time so that it stays in place. These same advantages
make them equally useful for deep space exploration. Notably, the enabling features
of electric propulsion allowed the NASA Dawn mission to visit two asteroid belt objects,
Vesta and Ceres, in the same mission.® EP facilitated the European Space Agency’s small
and lightweight SMART-1 moon orbiter,” as well as the Hayabusa asteroid sample return
missions.® In the near future, EP will play an important role as the main propulsion on
the upcoming Psyche mission.®'® Further down the line, EP is being considered as a
key enabling technology for crewed Mars exploration'" and even for use on missions to
the outer solar system,'2 where the limitations of chemical rocket systems are even more

restrictive.

1.2 Hall thrusters

Despite the key advantages of electric propulsion, high specific impulse alone is not
sufficient. If it were, we could simply attach high-powered flashlights to all of our
spacecraft. Since the propellant has the maximum possible exhaust velocity (the speed
of light), we could go anywhere we wanted with minimal propellant usage. However, if
we did this, we would find we went nowhere fast. We want high specific impulse, so we
can go fast eventually, but we also want high thrust, so we can go fast soon. At constant
power, these two factors trade off of each other, so that high specific impulse systems
have low thrust, and vice-versa. To see this, we can write the expression for thrust power,

sometimes also called jet power:



1. 1
Pr = Emvgx = ET Isp 9o (1.4)

For a 5 kW system with an exhaust velocity for 20,000 m/s (s, ~ 2000s) the maximum
thrust force we could possibly get would be 500 mN. This is a bit less than the weight of
a typical tennis ball. Keeping the power constant, if we doubled the specific impulse,
we would halve the amount of thrust generated. In the limit of maximum possible
specific impulse, ignoring relativistic effects, a 5 kW flashlight would produce about 33
micronewtons of force, which is enough force to lift a mass of 0.003 grams in earth’s gravity
(about the weight of a seasame seed). Compare this to the F-1 engine, which produced
7.7 million Newtons of force at a specific impulse of 263 seconds at sea level, equivalent
to 10 GW of thrust power. For chemical rockets, this power comes from combusting the
fuel, but for EP systems, we would need to supply this as electrical power. Thus, with
extremely-high specific impulse systems, even though we could eventually go very fast, it
would take us prohibitively long to accelerate to such speeds, or we would need massive
and very efficient power plants. To achieve the same thrust as the F-1 engine with a
specific impulse of 2,000 seconds, we would need at least 80 GW of power, assuming
100% efficient conversion of electrical power to thrust power. This is about 50% more
than the average power draw of the entirety of my home state of Arizona. In real-world
applications, we therefore need to balance thrust, specific impulse, and power to achieve
reasonable mission durations on reasonably-sized spacecraft.

Hall thrusters occupy a middle position in this trade space. These devices were first
invented in the 1960s by both the U.S. and Soviet Union, and reached maturity in the Soviet
Union in the 1960s and 70s,'®'* as Stationary Plasma Thrusters (SPTs). Compared
to their main rival, the gridded ion thruster, they have high thrust density.'* This comes
down to the fact that the plasma in a Hall thruster is quasineutral, and thus is not limited
by physical laws governing the amount of charge allowed through a certain volume. In

contrast, gridded ion thrusters are non-neutral, and their thrust density is limited by the size
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Figure 1.1: Diagram of a Hall thruster, showing particles, forces, and drifts. lons, neutrals, and
electrons are denoted @, ®, and @, respectively.

of the openings of the eponymous grid. Despite this, Hall thrusters can achieve specific
impulses competitive with those of gridded ion thrusters, between 1500 seconds and 3000
seconds, '* although even higher specific impulses (up to 8000 s'°) have been achieved.
This means Hall thrusters can be tailored for a wide variety of missions.

Figure. 1.1 depicts a Hall thruster. Hall thrusters are annular (ring-shaped) devices
consisting of a discharge chamber, an anode, and a hollow cathode. The right-hand side
of the image shows a cross-section of a Hall thruster along the r — z plane. To start a Hall
thruster, we apply a discharge voltage (Vp) between the anode and cathode. This creates
an electric field (E) pointing downstream. Simultaneously, we apply a magnetic field in
the radial () direction, perpendicular to the electric field. The hollow cathode produces
electrons (labelled © in the diagram), which follow the electric field toward the anode and
into the discharge channel. The crossed electric and magnetic fields cause the electrons
to drift in the azimuthal (d) direction. The resulting Hall current, from which these devices
derive their names, is labelled jge in the diagram. Electrons in this drift move very rapidly,

with speeds in excess of 100,000 m/s. The magnetic field also acts to halt the electrons



on their path from cathode to anode, enabling them to remain in the discharge channel for
relatively long periods of time.

At the same time, neutral gas particles (labelled @ in the diagram) are injected at the
anode. They drift downstream until they collide with the “buzzsaw" of drifting electrons.
These electrons strip one or more of the outer valence electrons from the neutral, leaving
behind a positively-charged ion (labelled &). The freed electrons join the Hall drift and
in turn ionize even more neutrals, which produces yet more ions until most of the gas is
ionized. This cascade is known as avalanche ionization and the resulting ionized gas is
known as a plasma. We will describe plasmas in more detail in Chapter 2. The applied
electric field accelerates the newly-born ions downstream and eventually out of the device,
producing thrust. Enough electrons follow the departing ions so that the plasma remains
electrically-neutral. As previously noted, this quasineutrality, or the state of having zero
net-charge despite the presence of many local positive and negative charges is what
enables Hall thrusters to have higher thrust density than competing electric propulsion
systems.

Traditionally, Hall thrusters have used xenon as their main propellant. ' Xenon has three
attractive properties. First, it is a relatively massive atom. This means that for a fixed
acceleration voltage, we get more thrust per ion, at the cost of reduced specific impulse.
It also means that xenon can be stored at high densities, which reduces the amount of
spacecraft mass needed for fuel tanks. Second, it is easy to ionize. Since neutral gas
that is not ionized is essentially wasted, this property means we need less propellant to
produce a given amount of plasma. Lastly, it is a noble gas, and therefore nonreactive.
This means it is nice to work with and does not corrode thruster surfaces. However, krypton
and argon have recently become popular alternatives. As they are smaller and harder to
ionize than xenon, they sacrifice some amount of performance and storage density in

exchange for reduced cost, while maintaining the attractive chemical properties of xenon.



(a) (b)

Figure 1.2: The H9 Hall thruster operating on (a) xenon and (b) krypton at 300 V and 15 A. Photo
credit: Leanne Su' and the Plasmadynamics and Electric Propulsion Laboratory at the University
of Michigan.

In Figure 1.2 we show photos of a Hall thruster operating on xenon (Figure 1.2a) and

krypton (Figure 1.2b).

1.2.1 Electron transport in Hall thrusters

In the past 30 years, modeling and simulation (M&S) have played an increasingly-important
role in the design and qualification of aerospace systems. Just as we can predict
the lift, drag, and stall angle of a wing using computational fluid dynamics, we would
ideally be able to predict the performance and lifetime of a propulsion system from its
geometry and operating conditions alone. However, despite the widespread application
of Hall thrusters to a number of domains, there are still aspects of their operation and
performance that remain poorly-understood. This lack of understanding precludes use
from simulating Hall thrusters in a fully-predictive manner. In the last fifteen years, many

interesting new Hall thruster concepts and design modifications have been proposed
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and developed. These include magnetically-shielded'®, high-current-density 81 wall-
less,2° cylindrical,?' and air-breathing Hall thrusters.?? Without the ability to simulate these
advanced concepts ahead of time and have confidence in the results, we must rely instead
solely on experimental testing. Qualifying a Hall thruster for flight requires hundreds
of hours of ground testing in a vacuum chamber, which is both time-consuming and
expensive.?® There is thus a clear need for improved M&S capabilities for Hall thrusters.
To achieve this, we must tackle some of the unknowns about Hall thruster physics and
operation.

Chief among these unknowns is the problem of anomalous electron transport in Hall
thrusters. Referring again to Figure 1.1, we see that in order for electrons to traverse the
distance from cathode to anode, they have to cross the applied magnetic field pointing
in the radial direction. In the presence of a magnetic field, charged particles will exhibit
gyrations about the imposed field lines, in a process known as Larmor precession, named
after Irish physicist Joseph Larmor. The Larmor radius (r., Equation 1.5) of the resulting
orbit scales with the particle’s mass, m, and velocity perpendicular to the magnetic field,
v, and inversely with the charge of the particle, g, and the strength of the applied magnetic
field, B.

r (15)

m
=v LW
In Hall thrusters, the strength of the magnetic field is tailored such that the Larmor radius
of the electrons is much smaller than the size of the device. In contrast, the Larmor radius
of the ions, which are thousands of times more massive than the electrons, is much larger
than the device scale. The implication of this fact is that the electrons are “trapped" in
Larmor procession and unable to migrate across the magnetic field lines, while the ions
are free to cross the field lines and exit the device. In principle the electrons thus will

remain in the discharge channel, whirling around in the Hall drift, free to ionize neutral
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Figure 1.3: How collisions create cross-field transport in a Hall thruster

atoms with minimal additional input power. However, some electrons must eventually leak
to the anode to complete the circuit. Classically, this occurs via collisions.

In Figure 1.3, we show how electrons are able to cross the magnetic field lines in
the presence of collisions. The electrons, which are simultaneously engaged in Larmor
procession about the magnetic field lines and an E x B drift around the device with velocity
Ves, Collide with neutrals and ions. This creates a drag force, R4 on the electrons in the
azimuthal direction. For reasons described mathematically in Chapter 3, this induces the
electrons to drift across the magnetic field lines in the opposite direction of the applied
electric field with velocity ve . The resulting cross-field electron current scales with the
collision frequency, v, of electrons with heavier species. However, even accounting for
all known collision types, the predicted electron current is orders of magnitude lower 314
than the electron current measured in Hall thruster experiments. To create this enhanced
“anomalous" transport, there must be some additional drag-like force in the azimuthal

direction which is much stronger than the collisional drag.
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The cause of this enhanced transport has been a focus of Hall thruster research since
the very early days of their development. Initially, two theories dominated—Bohm-diffusion
and near-wall conductivity. Bohm diffusion is a type of enhanced transport first observed
by David Bohm in 1949 and later found to exist in a wide variety of magnetic confinement
fusion devices through the late 1960s. The cause of this enhanced diffusion is plasma
turbulence. Specifically, microscopic fluctuations in the ion density induce fluctuations in
the electrostatic potential, which then enhance electron transport.?* In Bohm diffusion, the
cross-field electron mobility (1., a measure of how readily electrons can move in response

to an applied electric field) is expressed as:

1
"= 16B

(1.6)
The association of Bohm diffusion with Hall thrusters is 60 years old. Alexey Morozov
(one of the original Hall thruster designers) recounts that the opponents of the SPT
development program within the Soviet Union said that the device would not possibly
work, as Bohm diffusion would thwart any attempt to confine the electrons in the discharge
channel.® While the first SPTs did indeed see increased electron mobility over what was
expected from collisions alone, the magnitude of this enhanced transport was lower the
value predicted by Bohm diffusion. This lead to the development of the theory of near-
wall conductivity.?>'326 When high-energy electrons collide with a surface, such as the
discharge channel walls of a Hall thruster, they may induce that surface to emit additional
electrons. This secondary electron emission can then enhance the electron current in the
device channel. Additionally, any collisions or backscattering by electrons with the thruster
walls can produce a drag force in the same way that collisions with other particles can.
As previously described, this drag force may then enhance transport across the magnetic
field lines. Lastly, if the wall material is sufficiently conductive, electrons may short-circuit
across the magnetic field lines by travelling through the channel wall rather then through

the plasma. These three related effects are summarized in Figure 1.4.
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1. Secondary emission 2. Backscattering 3. Short—ci’rcuiting

Figure 1.4: Processes inducing near-wall conductivity in Hall thrusters

All of these effects have been observed experimentally in Hall thrusters.'3264 and
do serve to enhance the movement of electrons across the applied magnetic field.
However, near-wall conductivity alone is not sufficient to describe all of Hall thruster
electron transport. In some Hall thrusters, particularly magnetically-shielded and wall-
less Hall thrusters, the flux of electrons to the walls is dramatically reduced.® If near-
wall conductivity was solely responsible for electron transport, then these devices should
have significantly-lower electron currents than conventionally-designed Hall thrusters.'*
However, this is not the case.?’-?® Additionally, measurements and simulations of the
anomalous electron transport have found that it is much higher outside of the discharge
channel than inside of it.2%3%3" Taken together, these indicate that there must therefore be
some additional process driving the enhanced cross-field electron transport that is not tied
to electron interactions with the walls.

In the last fifteen years, a consensus has emerged that this additional process is
plasma turbulence, albeit turbulence which does not follow the Bohm scaling'. Soviet
physicist Yuri Esipchuk was one of the first researchers to measure high-frequency

oscillations in Hall thrusters. In 1976, he identified the cause of these oscillations as
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electron drift waves.®? These waves derive energy from the Hall drift and propagate in
the azimuthal direction. By removing energy from the azimuthal drift, they produce an
effective drag force on the electrons, which enhances cross-field transport in the same
manner as collisional drag. Since the 2000s, experimental, 3334353637 theoretical,*® and
computational®® evidence of the presence of these waves in Hall thrusters and their effect
on electron transport has only grown.

Despite this consensus that turbulence originating from electron drift instabilities
governs anomalous electron transport in Hall thrusters, we are still unable to model its
effect on new Hall thruster designs in a fully-predictive manner. Recent high-fidelity
particle-in-cell (PIC) simulations®® have given us unprecedented insight into the growth
and scaling of this transport. In the coming decades, this type of direct numerical
simulation may be invaluable in improving our physical knowledge of anomalous transport.
However, such simulations currently take months to run and thousands of CPU cores. This
makes them prohibitively-expensive for engineering design applications. We would prefer
to use simulations which treat the electrons as a continuous fluid instead of particles.
These models run dramatically faster—on the order of hours to a few days—but sacrifice
the ability to self-consistently resolve the plasma fluctuations which give rise to anomalous
transport.

To close this gap, we require a model for how anomalous transport affects the plasma
which does not require us to resolve the microscopic length- and time-scales over which the
instabilities grow and propagate. Such models are common in the theory of classical fluid
turbulence,*° and find wide application in commercial, industrial, and research settings.
Thanks to such models, we can more-or-less accurately predict the drag across an
entire airplane, the flow of water through a rough pipe, or the movement of air over the
dimpled surface of a golf ball. While there are always improvements to be made, the
development of reliable approximations for the effect of turbulence on mean flow properties

(i.e. density, velocity, temperature) has made modeling and simulation an inextricable and
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indispensable step in the design, testing, and qualification of aerospace and consumer
devices.

We would like to find turbulence models that do the same for Hall thruster simulations
that they have for conventional fluid simulations. Indeed, many people*'#?2 have proposed
such models, but they have not been well-tested or extensively evaluated in the publicly-
available literature. This raises several questions. Once we have a model in hand, how
should we evaluate it? To what data should we compare it? If the model has parameters,

how should we calibrate them?

1.3 Objectives of this dissertation

In this dissertation, | will try to answer some of the above questions. Unfortunately, |
was unable to completely and forever resolve the problem of anomalous transport in
Hall thrusters. | leave that problem to the younger generation. However, | made several
interesting discoveries and developed some useful methods that should hopefully make
the solution of this longstanding problem a little bit easier. | hope to advance the state of
the art in developing and testing models of anomalous electron transport in fluid models

of Hall thruster plasmas. As part of that goal, | will

1. Review previously-proposed models for anomalous transport from literature,
2. Develop of new methods for calibration of transport models against data,

3. Demonstrate that empirically-derived transport profiles alone are not suitable

for model calibration,

4. Evaluate the predictive performance of several models in a fluid Hall thruster

code, and

5. Evaluate novel models of anomalous transport and propose several more.
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1.4 Organization

The rest of the dissertation is structured in the following way.

In Chapter 2, | overview the basic plasma physics that underpin the dissertation. |
describe what plasmas are and how they can be described both statistically as collections
of individual particles, and as fluids. | then give the equations of motion for a fluid plasma,
and show how these can applied to understanding how electrons move in a Hall thruster.
| then show how anomalous electron transport can be incorporated into a fluid description
of electron motion.

In Chapter 3, | will discuss the types of models of transport in which we are interested.
| will then review what models of anomalous electron transport have been proposed to
date in the scientific literature, before finally discussing how these models can be altered
create new models which may be worth investigating.

Next, in Chapter 4, | describe the simulation code, Hall2De, that we employ for the
bulk of the work in this dissertation. This includes a description of history of the code, the
physics it models, as well as the numerical procedure by which its governing equations
are solved. | discuss how | implemented anomalous transport models into the code and
describe what other model parameters are needed to run a simulation. | then show the
results of grid convergence and sensitivity studies which | performed determine the effect
of parameters which are not related to the anomalous electron transport. Lastly, | discuss
the thruster being simulated in the remainder of the dissertation, the data to which we
compare our simulation results, and the metrics by which that comparison is made.

Then, in Chapter 5, | discuss the common practice of fitting empirical anomalous
transport profiles to experimental data. | describe my efforts to evaluate models by
comparing them to these empirical profiles before demonstrating that this process is flawed
and does not work. | then discuss the relevance of these empirical transport profiles to

anomalous transport modeling in general.

17



After that, in Chapter 6, | use Hall2De to evaluate four of the models introduced in
Chapter 3. | test the models’ ability to predict the performance and plasma properties of
a magnetically-shielded laboratory Hall thruster. | examine the ability of the models’ fit
coefficients to generalize beyond their calibration condition and accurately scale across
discharge voltages, discharge currents and propellants. | then discuss these results in the
context of future transport modeling efforts.

Next, in Chapter 7, we test a few models not found in the literature. These were created
by tweaking some of the assumptions underlying the models in Chapter 3.

Finally, in Chapter 8, | conclude by summarizing my research. | list the major
contributions of my thesis work and provide some hopeful avenues for future exploration.

After all of that, | describe in Appendix A the development of an open source one-
dimensional Hall thruster code, and give some thoughts on the usefulness of such a model

in future anomalous transport modeling efforts.
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CHAPTER 2

Hall Thruster Plasma Physics

The electron: may it never be of any use to anybody!

Joseph John Thomson, discoverer of the electron

In the preceding chapter, | said that the goal of this thesis was to to advance the state of
the art in developing and testing models of anomalous electron transport in fluid models
of Hall thruster plasmas. So far, | have explained what Hall thrusters are, and described
(in brief) the problem of anomalous electron transport, and why we would like to develop
models for this crucial and poorly-understood process. In this chapter, | will tackle the next
part of the sentence, by explaining what a plasma is and describing how electrons in a
plasma may be modelled as a fluid. | will then discuss how anomalous transport can be

incorporated into a fluid model of a plasma.

2.1 States of matter

All matter is made of particles called atoms. Each atom is the in turn composed of a
nucleus (itself made of neutrons and positively-charged protons) and a cloud of negatively-
charged electrons. These electrons are arranged in a matryoshka-doll like series of shells

known as orbitals. The electrons in the inner-most orbital are bound tightly to the nucleus,
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while those in the outermost orbital are held only tenuously by the positively-charged core.
Electrons in this outermost shell are known as valence electrons, and interactions between
valence electrons of different atoms are responsible for virtually all chemistry. Electrons
in an atom typically occupy the orbital with the lowest available energy. An atom in which
all electrons exist at the lowest-possible energy level are said to be in the ground state.
Atoms are most stable when their valence shells are full, a condition which is only true
for the noble gases: helium, neon, argon, krypton, xenon, and radon. For other types of
atoms to fill their valence shells, they need to exchange or share their valence electrons
with neighboring atoms.

Consider salt, or sodium chloride (NaCl). Sodium (Na) has only one electron in its
valence shell. The easiest way for it to have a full valence shell would be to lose this solitary
electron, exposing the full shell one level below. Chlorine has seven valence electrons,
one less than a full set of eight for its outermost orbital. Because both of these atoms
are so close to having a full set of valence electrons, they bond with each other readily.
Indeed, both sodium and chlorine are highly reactive with almost anything, and do not exist
in nature in their atomic forms. A bond like the one formed between sodium in chlorine is
known as an jionic bond (Figure 2.1), because when sodium gives its one valence electron
to chlorine, it becomes a positively-charged ion, while chlorine becomes a negatively-
charged ion. An ion is any atom which has a net charge, positive or negative, in contrast
to the normal state of affairs where the number of electrons exactly matches the number of
protons. Once both atoms become ions, they are bound tightly together by the electrostatic
force of attraction between the positive and negative charge.

Other types of bonds exist, such as covalent bonds. In these bonds, electrons are
shared, rather than exchanged, between atoms. There are also metallic bonds, in which
many metal atoms share all of their valence electrons in one giant electron cloud which
extends across the whole substance. This accounts for the high conductivity of metals, as

electrons are very free to move from one side of a chunk of a metal to another.
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Figure 2.1: Example of an ionic bond between sodium (Na) and chlorine (ClI).

Chemical bonds are the strongest type of force that exists between atoms. These forces
are strong enough that the atoms combine into a new unit (known as a molecule), which
exhibits completely different properties than its constituent atoms. lonic bonds and metallic
bonds are typically stronger than covalent bonds. One level down in strength are the
interatomic or intermolecular forces. As the name implies, these are forces which attract
or repel nearby atoms to or from one another, but which are insufficiently-strong to join the
atoms permanently into a molecule.

Intermolecular forces are responsible for what we know as states of matter, and
explain why, for example, ice melts and then vaporizes as its temperature increases.
The temperature of a substance is a statistical property which describes the average
kinetic energy of a collection of atoms or molecules. A single molecule cannot have a
temperature, only an individual mass, charge, and velocity. In a collection of molecules at a
low temperature, the relatively-weak intermolecular forces are strong enough to overcome
the low kinetic energies of the particles. The molecules are then able to clump together into
a single hunk of substance known as a solid. As the temperature increases, the average
energy of the particles becomes high enough that they are no longer bound as tightly to
one another by the intermolecular forces, but not so high that they can completely escape
each others’ influence. This state of matter is known as a liquid. Finally, as the temperature

continues to increase, the kinetic energies of the particles become high enough that the
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Figure 2.2: The four major states of matter: solid, liquid, gas, plasma.

interatomic forces become inadequate to hold them together, and the liquid breaks apart
into a collection of freely-moving atoms, or a gas.

What happens if we increase the temperature further? First, the molecules continue
to gain kinetic energy, i.e. speed up. Energy can also be deposited into the gas in other
ways. The molecules may exhibit rotation or vibration. These energy modes become
more important at higher temperatures. Additionally, energy may be deposited directly into
electrons. These electrons gain kinetic energy which can allow them to reach an energy
level above the ground state. This process of electronic excitation increases in importance
as the temperature increases. Finally, there comes a point at which the electron which is
most loosely-bound to the atom gains enough energy that the attraction of the nucleus
can no longer retain it. That electron leaves the atom and begins to float freely among the
other atoms in the gas. A positively-charged ion is left behind.

If this process continues, a large fraction of the atoms of the gas will become ions.
A substance in this state is known as a plasma, the so-called "fourth state of matter".
We summarize the four main? states of matter in Figure 2.2. Plasmas exhibit many
features common to gases. For instance, they will diffuse to fill the container they are in.

Additionally, they are compressible, meaning the volume occupied by of a fixed number of

a0ther more exotic states of matter, such as the Bose-Einstein condensate, exist but are not germane to
the present work.
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atoms can change if the pressure changes. This is not the case of something like water,
which is highly incompressible and cannot be easily squeezed into a smaller volume.
Despite the similarities with a standard neutral gas, plasmas exhibit a wide variety of
emergent properties which make them both interesting to study and useful for a number

of engineering purposes.

2.2 Elementary plasma physics

The most visible property of a plasma which makes it different from a normal gas is that
plasmas typically glow. The color of this glow depends on which atoms are present, as
well as the density and temperature of the plasma. As discussed previously, electrons
in a hot gas can be excited. These excited states are typically unstable, meaning that is
very easy for an electron to spontaneously de-excite. When this happens, the electron falls
either back down to ground or to some intermediate excited state. The difference in energy
between the excited state and the new state is then released in the form of light, with a
wavelength inversely proportional to the energy released electron was. Electrons which
fall further release more energy, and the wavelength of the light is shorter (i.e. more blue).
In plasmas, since there is enough energy to ionize the atoms, there is also enough energy
for a large degree of electronic excitation to occur. As a result, plasmas glow (Figure 2.3).

This glow is one of the most useful properties of a plasma. A “neon” light is just a
tube filled with a (typically noble) gas at low pressure. When the light is turned on, a
voltage is applied across the tube. This creates an electric field which helps accelerate
the small number of free electrons present in the gas to high velocities. When these
electrons hit the electrons in the outer valence shell of a neutral atom, they can sometimes
knock the valence electrons free, ionizing the atom. This newly-freed electron can then
be accelerated and ionize another atom. This produces a chain reaction, leading to a a

large fraction of the gas becoming ionized. This avalanche ionization, as discussed in
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Figure 2.3: Some examples of plasmas glowing. (a) A neon sign (b) a compact fluorescent light
(c) the sun (d) a Hall thruster. All images either licensed under Creative Commons Share-A-Like
License or copyright Plasmadynamics and Electric Propulsion Laboratory.

24



Figure 2.4: A typical DC glow discharge. From the wikipedia page on glow discharges.

the introduction, is the same process that creates ionization in Hall thrusters. The type
plasma found in a neon light is known as a DC glow discharge (Figure 2.4) and is one
of the simplest plasma devices. Another commonly-encountered type of glow discharge
is in a fluorescent lightbulb, which works in basically the same way as a neon light, but
includes a phosphor coating on the tube which absorbs the light emitted by the plasma
and re-emits it as broad-spectrum white light.

DC (direct current) discharges are plasmas created by the application of a constant
voltage across two conducting surfaces, called electrodes. This difference in voltage,
or electrostatic potential, creates an electric field pointing from the anode (the electrode
at high voltage) to the cathode (the electrode at low voltage). This contrasts with AC
(alternating current) discharges, in which the voltage varies at some constant frequency,
just like the AC power coming out of a home power outlet. If the frequency of the applied
voltage/current oscillations is in the radio range (3 kHz to 300 GHz), then we have a
radiofrequency (RF) plasma. The plasma does not need to be ionized by the direct
application of a voltage across electrodes. Electromagnetic waves, whether microwave

or radio, can accomplish the same goal. There is a huge variety of ways in which plasmas
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may be generated, but as Hall thrusters are DC discharges, we will not discuss these
methods here.

The second important property of a plasma is electrical conductivity. Typical gases are
not conductive, which is why high-voltage power lines do not typically shock passersby.
However, plasmas have lots of electrons which are not bound to atoms and are thus free to
move around, making them very conductive. This means plasmas can carry currents, as
well as generate and respond to electric and magnetic fields. This property gives plasmas
their third important property: collective behavior. This term refers to interactions which
take place on a larger length scale and involve more atoms than the typical collisional
processes which govern neutral gases. In addition to responding to external fields,
plasmas can generate and respond to their own fields. This allows them to self-organize,
produce large-scale structures, and undergo a rich variety of waves and instabilities. As
one example, the plasma in the outermost layer of the sun can form massive arches or
filaments larger than the size of the earth (Figure 2.5), with the structure of the arch created
and supported by magnetic fields induced by the plasma.

The simplest type of collective behavior is simple plasma oscillation. If we displace
displace some of the electrons in a plasma away from the ions, such that get a region
of net negative charge and a region of net positive charge are produced, the plasma will
respond collectively in a way in such a way as to restore charge neutrality. In this case, the
displaced electrons will be attracted back toward the region of positive charge, overshoot,
and then reverse course. The electrons will thus oscillate in the same manner as a spring
stretched or compressed past its neutral point and then release. The frequency that this

oscillation takes place at is the plasma frequency, wpe, and is given by:

Qane
Me€g

Wpe = radians per second (rad/s) (2.1)

In this expression, g. is the fundamental charge, or 1.6 x 10~'® Coulombs (C), n. is the

number density of electrons, which refers to the number of atoms per unit volume (1/m3),
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Figure 2.5: A solar filament. Image copyright NASA.

me is the mass of an electron, or 9.1 x 103" kilograms (kg), and ¢, is a fundamental
constant known as the permittivity of free space, 8.854 x 1012 Farads per meter (F/m).
Another form of collective interaction that plasmas experience is Debye shielding.
Despite being composed of many individual positive and negative charges, plasmas are
overall electrically-neutral, meaning that the number of negative charges is equal to the
number of positive charges. This condition is called quasineutrality. If a small local charge
imbalance develops, the charges will re-orient in order to screen out that charge imbalance
from being seen by particles far away. The maximum length scale over which a plasma
can support small charge imbalances is known as the Debye length, \p, and is given by:

6OkB Te

Ap = s meters (m) (2.2)

In the above, kg is the Boltzmann constant, 1.38 x 10723 Joules per Kelvin (J/K), which

relates the temperature of a substance to the average kinetic energy of the particles, and
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T, is the temperature of the electrons, which is typically on the order of 10,000 - 1,000,000
K for the “low-temperature plasmas" that we are interested in. Typically, we use units of
electron-Volts to describe the temperature of a plasma. One electron-Volt is the amount of
energy gained by a charged particle with charge g, accelerated down a one-volt potential
drop, and corresponds a temperature of around 11,600 K.

In addition to these longer-range interactions, particles in a plasma can undergo
collisions, just as particles in a gas do. The collision frequency, generally denoted by
the greek letter nu (v), is the frequency at which a single particle will collide with other
particles. However, in addition to collisions between electrons and ions with neutral atoms,
there are also collisions between the charged species. These electron-ion (vg;), electron-
electron (vee), and ion-ion collisions (v;) take place over a larger length scale than typical
neutral-neutral collisions as the electrostatic interaction between charged particles means
the particles “see" one another from further away than in a neutral gas.

With the Debye length and plasma frequency defined, we can introduce the three basic

conditions for a gas to be a plasma. Mathematically, these are:

1. e < L
This condition states that the Debye length must be significantly smaller than the
characteristic length scale (L) of the system we care about. If this is not true, then we
can have charge imbalances on the scale of our system of interest, violating the principle

of quasineutrality and the system will not behave as a plasma.

4713
This condition states that the number of particles in a sphere with a radius equal to the
Debye length is much greater than one. If this is not true, then there will not be enough
particles free to redistribute around to shield any charge imbalances. This will thwart

Debye screening and thus quasineutrality.
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Figure 2.6: Gyration of charged particles around magnetic field lines. Due to their opposite
charges, ions and electrons orbit in opposite directions.

3. Wpe >V
This condition states that the frequency of plasma oscillations is much larger than the
collision frequency between patrticles. If this is not true, then collisions will randomize the
velocities of the constituent particles in a way that disrupts collective (long-range) behavior.

Before we move onto developing the equations of motion for a fluid plasma, we briefly
touch on the motion of a plasma in a magnetic field. As introduced in the previous chapter,
charged particles orbit magnetic fields with a frequency and radius which depend on the
magnetic field strength and the particle velocity (Figure 2.6). The cyclotron frequency, w.

is the frequency of this gyration, and is given by

We = w rad/s (2.3)

This is also often referred to as the gyrofrequency. In this expression, q is the charge of
the particle in Coulombs, |B| is the magnitude of the magnetic field vector, in Tesla, and m
is the mass of the particle in kilograms. The gyroradius, also known as the Larmor radius

(r.), is then
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where v, is the velocity of the particle perpendicular to the direction of the applied magnetic
field.

Due to their larger masses, ions typically experience gyro-orbits with much lower
frequencies and larger radii, while electrons circle the field lines in rapid, tight orbits. If the
cyclotron frequency of a species is much larger than the frequency at which it experiences
collisions, or if the Larmor radius is significantly smaller than the size of the system, then
that species is said to be magnetized. This means the particle is able to complete many
orbits before it experiences a collision or leaves the system. On the other hand, if a species
collides much more often then it orbits, or if the Larmor radius is larger than the system
size, then it is unlikely that a particle of that species will complete even a single orbit.
In this case, that species is said to be unmagnetized. Due to the difference in Larmor
radii and cyclotron frequencies, it is common in many plasma devices for the ions to be
unmagnetized while the electrons are strongly magnetized. We can quantify the degree
of magnetization of a plasma using the Hall parameter, 2, which is just the ratio of the

cyclotron frequency to the collision frequency:

Qg = 28 (2.5)

Vs

Here, s refers to the type—or species—of particle under consideration. In the simplest
case, s could be i or e, denoting ions or electrons, respectively. In more complicated
situations, we might have multiple types of ions, either of different elements or chemical
species, different charge states, or both. If Qg > 1, then we consider species s to be
magnetized. Otherwise, s is unmagnetized.

The propensity of particles in a plasma to gyrate about the magnetic field lines means
that the motion of magnetized species perpendicular to the magnetic field lines is inhibited.
If the particle is magnetized, any velocity perpendicular to that field, v, , will in effect be

curved into a circle around the field line. This means that magnetic fields are often used to
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Figure 2.7: lllustration of the E x B drift in a slab of plasma.

confine and shape plasmas. Indeed, in the absence of collisions and applied electric fields,
a single particle should not be able to diffuse across the magnetic field at all. Nonetheless,
they do, and the ability of plasmas to diffuse across magnetic fields despite this strong
confining effect is a challenge for engineers in virtually every field of plasma science.

If an electric field is applied perpendicular to the magnetic field, charged particles will
begin to move or drift perpendicular to both of these fields. This phenomenon is known
as the E x B (“E-cross-B") drift (Figure 2.7). The drift velocity is given by cross product
of the electric and magnetic field vectors, divided by the square of the magnitude of the

magnetic field:

VEyB = BP? m/s (2.6)

Note that the direction of this drift does not depend on the sign of the charge of the particles,
so electrons and ions will drift in the same direction as each other. Conversely, applying
a current across a magnetic field will produce a voltage drop (and thus an electric field)
perpendicular to both the applied magnetic field and the the direction of the net current.
This phenomenon is known as the Hall effect.

With the basics of plasmas out of the way, we can discuss the ways in which we model

and simulate plasma devices like Hall thrusters. We can then discuss how, despite the
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presence of gyro-orbits, particles can and do diffuse across magnetic field lines in plasmas,

and how instabilities and waves can enhance this diffusion.

2.3 Kinetic description of a plasma

The most complete description of a plasma would be given by considering the mutual
electrostatic forces between every single pair of particles in the entire system. Even though
plasmas, especially the low-temperature plasmas we are interested in, are typically diffuse,
there are still an enormous number of particles in even a very small volume of gas. In Hall
thruster plasmas, we typically encounter densities on the order of 106 - 10'® particles per
cubic meter (m~3). For reference, one billion is 10°, one trillion is 10'2, and one quadrillion
is 10'5. One quintillion (10'®) is about one tenth of the number of grains of sand on all
of the beaches on Earth combined. Modeling all of these interactions together would be
absolutely infeasible.

To get around this, we could instead consider a statistical, or kinetic description of the
plasma. We do not generally care to know what each individual particle in a system is
doing. Instead, we care about the consequences of the summed motion of all of these
countless microsopic particles on the macroscopic behavior of the system. To this end,
instead of considering the trajectories what the velocity of a single particle is, we might
instead consider the probability of finding a particle at position x and velocity v is. If we
evaluated this probability across all particles in the system, we would obtain a probability
distribution function (PDF). If we query this probability distribution function at just one
location x and ask only what the probability of finding a particle with velocity vector v
at that location is, then we obtain a velocity distribution function (VDF), which we usually
denote f(v). This is useful because the VDF characterizes most of the behavior we care
about in a plasma while allowing us to discard all of the irrelevant microscopic detail. In

Figure 2.8, we give an example of a (one-dimensional) VDF. This VDF has two peaks,
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Figure 2.8: Example of a bimodal (two-peaked) velocity distribution function in one dimension.

one at v; and one at v», indicating that the are many particles with velocities near v,, fewer
with velocities close to v», and very few particles with other velocities. In general, a VDF
may have arbitrarily many peaks and and arbitrarily-complex shape.

The Boltzmann equation describes how a velocity distribution function evolves over time
and space in response to external forces and collisions between particles.” Considering
only electrostatic body forces (i.e. neglecting things like gravity), this equation is

of of g of

StV o+ (E+vxB). o = C(f). (2.7)

The first term in Eq. 2.7 is time rate of change of the distribution function. The second
term represents the convection of the distribution function with the particles. The third
term represents the change in the distribution function due to body forces (in this case
only electromagnetic forces). The term on the righthand side of the equation, C(f), is the

collision operator. It is an integral expression for the effect of collisions on the distribution

bThe Boltzmann equation is an averaged description of the Klimontovich equation, which is an exact
description of the motion of all particles in a system. It is obtained by averaging over small volumes of
physical and velocity space.
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function. The simplest collision operator is the Bhatnagar-Gross-Krook (BGK) operator, 43

given by

C(f) = —v(f — fy). (2.8)

Here, as described in the preceding section, v is the characteristic collision frequency,
and fq is some equilibrium distribution function. Physically, this operator encodes the fact
that collisions between particles serve to spread out energy among the particles and relax
their distribution toward some equilibrium, at which point the distribution function ceases
to change further. In order to solve the Boltzmann equation, we need to consider not
only the usual three dimensions of space and one of time, but also three dimensions of
velocity space. This is because in the kinetic description of a gas or plasma, velocity is
a coordinate, not a variable. We are interested in the probability of finding a particle at
some velocity. In its full form, describing a gas or plasma kinetically requires the solution
of a seven-dimensional partial differential equation. This is far better than considering
every particle individually, but still quite computationally expensive. Additionally, while
simple collision operators like the BGK operator suffice for highly collisional plasmas
close to equilibrium, they are insufficient in other cases, so a detailed treatment of the
collision operator is often required. One example of a more complex collision operator
is the Landau collision operator**, which describes the effects of coulombic interactions
between charged particles. Directly modeling these operators might turn the relatively
tractable seven-dimensional differential equation into a less-tractable seven-dimensional
integrodifferential equation. Direct solution of the Boltzmann equation is thus typically
avoided unless kinetic (i.e. nonequilibrium) effects are so important that they cannot be
easily approximated by lower-order methods.

Some tricks exists which allow us to solve the Boltzmann equation approximately while
not paying the full price of the solution of a seven-dimensional integrodifferential equation.

Particle-in-cell (P1C) methods track the motion of macroparticles, each of which comprise
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millions of real particles. Instead of considering the direct forces of interaction between
each particle pair, we instead solve for the global electromagnetic field on some sort of
computational grid and move the macroparticles in response to that field. This technique
is both elegant and powerful. It allows us to resolve the shape of the distribution function
at the cost of losing resolution. Despite these drawbacks, the particle-in-cell method is
widely-used throughout computational plasma physics.

Even so, there are limitations to PIC which make other approaches more viable
in certain situations. First, the results change depending on the number of particles
employed, which manifests as statistical noise that further limits the resolution of the
method. Additionally, there are fundamental restrictions on the allowable timestep and
grid resolution. If the timestep is larger than the inverse of the plasma frequency w,;1 or
the grid size is larger than the Debye length )\p, the PIC method becomes unstable or
exhibits unphysical behavior, such as excess heating of the particles. In Hall thrusters, the
electron plasma frequency is around a picosecond (10~'2 seconds) and the Debye length
is around a micrometer (10~® meters). This means that it becomes prohibitively expensive
in most cases to simulate a Hall thruster, which operates on timescales greater than one
millesecond (10~2 seconds) and length scales of up to a meter, using full particle-in-cell
methods in which both electrons and ions treated as particles.

Despite these challenges, recent full-PIC simulations of Hall thrusters have probed
the fundamental physics of their operation and the nature and scaling of the instabilities
that drive transport.3® However, such simulations still take a month or more to run, using
thousands of CPU cores. Additionally, they are so far limited to small thrusters operating
over short timescales. While there may exist techniques to speed up these methods, the
cost of full-PIC simulations of Hall thrusters makes them impractical for engineering design
applications. For this purpose, we need to reduce the level of fidelity once more and model

the electrons as a fluid.
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2.4 Fluid description of a plasma

As we have discussed, an individual particle only has a location, a mass, a charge, and a
velocity, but a collection particles might have a temperature or a density. These so-called
fluid quantities emerge only as statistical properties of large collections of particles. We
can express these properties by taking moments of the velocity distribution function. The
n-th moment of a probability distribution function is defined as

n-th moment = /OO v f(v) dv. (2.9)
We first consider how we can get the number density, n from the velocity distribution
function. Consider two systems of particles, in which all properties except density are the
same, where we define system 1 to have a higher density than system 2 (Figure 2.9a). In
this case, the probability of finding a particle with velocity v in system 1 is always higher
than the probability of finding a particle in system 2 with the same velocity, simply because
there are more particles in system 1. Thus, the magnitude of the distribution function
contains important information about the number of particles contained within a volume of
space, irrespective of the velocity. In fact, the density is the zero-th moment of the velocity

distribution function.

n= /OO f(v)adv (2.10)

In one dimension, this corresponds to the area under curve that defines the VDF, while in
three dimensions this is a four-dimensional volume. Another property we might care about
the the average velocity of a collection of particles. Considering 3-dimensional space with
X-, ¥-, and x-coordinates, we can write the average velocity in the x-direction, u,, as the

first moment of the normalized velocity distribution function g(v):
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Figure 2.9: Examples of velocity distribution functions with different (a) zero-th moments (i.e.
density), (b) first moments (i.e. mean velocity), (c) second moments (i.e. temperature).

Uy = / b vg(v)av (2.11)

The normalized VDF is just the regular VDF divided by the number density, g(v) = f(v)/n
such that now the “area" under the curve is one. We can write equivalent expressions to
Eq. 2.11 to get the y- and z-components of the mean velocity. Intuitively, the mean velocity
is the point around which the velocity distribution function is centered. In Figure 2.9b, we
show two distributions which are identical except for their mean velocity, showing how the
location of the mean changes with changing velocity.

Next, we can write the mean particle kinetic energy e in terms of the second moment of

the normalized VDF:

€= m/Oo vig(v)dv. (2.12)

For monatomic species like xenon atoms or electrons, which have no vibrational or
rotational energy modes, the total energy is just the sum of the directed and random (i.e.
thermal) kinetic energies, or

3 1

€= EKBT+§m|U|2. (213)
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The temperature of a gas corresponds to the width of its velocity distribution function. In
Figure 2.9¢c we show two distribution functions which only differ in their second moment,
i.e. temperature. At low temperatures, all particles have velocities very close to the mean
speed of the population, while at high temperatures particles may have speeds which differ
substantially from the mean speed. Consider moving an ice cube with some velocity. All of
the particles move with the center of mass of the ice cube. Compare this to piping steam
through a tube with the same velocity. While the center of mass velocity might be the
same, the water molecules in the steam can spread out ahead of and behind the center
of mass due to their differing velocities.

We can continue taking moments of the distribution function past this point. The third
moment encodes information about the skewness of the distribution, i.e. how asymmetric
about the mean the distribution is, while the fourth moment corresponds to the kurtosis,
which measures how “fat" the tails of the distribution function are compared to the peak.
The physical interpretation of these higher moments becomes more difficult, and we
typically only employ the zero-th, first, and second moments.

Just as we can take the moments of the distribution function, we can also take moments
of the entire Boltzmann equation. If we do this for the equilibrium distribution function,
we obtain the fluid equations of motion. This equilibrium is described by the Maxwell-

Boltzmann distribution (Figure 2.10), which is given by:

_ m 2 m (v —u)?
f(")‘”(znkgre) eXp (_E KoTo ) (2.14)

This distribution, commonly referred to as a Maxwellian distribution, is a normal distribution
(i.e. a bell curve), whose center is given by the mean velocity u and whose variance
is kT /m. Using a process called Chapman-Enskog expansion*® (the details of which
are out of the scope of this thesis), we can take moments of the Boltzmann equation,
assuming only small perturbations from the Maxwellian distribution. In doing this, we

lose detailed information about the velocity distribution function but are rewarded with
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Figure 2.10: An Maxwell-Boltzmann distribution. The standard deviation is given by /kgT /m.

increased computational tractability. For a neutral fluid, we typically employ the BGK
collision operator, while for a plasma, we use the Landau operator. For a species s, where
s could be electrons, neutrals, ions, or other constituents of a plasma, we can first take the

zero-th moment of the Boltzmann equation and arrive at the continuity equation, which is

ong
ot

+V - (ngus) = As. (2.15)

The continuity equation describes the conservation of mass within a small volume of
space. The first term on the left side is the change in density of the fluid over time in
that volume. The second term represents the net flux of fluid into or out of that volume,
and the last term, ns denotes the creation or destruction of species s due to ionization,
recombination, or chemical reactions. Taken together, this equation states that the rate of
change of the amount of a substance in a volume is equal to the amount that enters or

leaves it, plus the amount that is added due to various reaction processes.
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We can next take the first moment of the Boltzmann equation to obtain the momentum
equation. This is a vector equation describing the change in momentum in each of the

coordinate dimensions (i.e. x, y, and z). It is given by

ONsUg
ot

+V - (NsUsUs + ps/m) = qmig (E+Us x B) = > ngrse(us — Ug). (2.16)
p

Just as the continuity equation describes the conservation of mass, the above equation(s)
describe the conservation of momentum of a fluid. The first two terms denote the change
in the amount of momentum in a volume over time and the flux of momentum into and
out of the volume. Note that the second term contains a contribution from the gradient
of the fluid pressure, ps = nskgTs. Physically, this stems from the fact that a difference in
pressure across a region of space will impart a net force, and thus momentum, to the fluid.
The first term on the right-hand side is the Lorentz force, which represents the force on a
charged fluid due to electromagnetic effects, while the last term denotes the the transfer
of momentum due to collisions between species s and all other species (denoted s'). In
the above equation, we have neglected the effects of viscosity on the fluid, as plasmas
are typically quite diffuse and thus not strongly impacted by viscosity. In classical fluid
mechanics, a variant of the above set of equations (including viscosity but not the Lorentz
force or collisional terms) form the famous Navier Stokes Equations.

Finally, taking the second moment of the Boltzmann equation, we get the energy

equation, given by

on 5 .
asfs +V- (gnsesus + qs> = js - E + Scon (2.17)

In Equation 2.17, q; = xV T; is the conductive heat flux vector, where « is the thermal

conductivity tensor, js = gshsUs is the current density vector of species s and S, is the rate
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of energy loss due to collisions with other species, as well as to ionization and electronic
excitation. The j-E term is known as the Joule heating or Ohmic heating term, and captures
the phenomenon that sending a current through a material will produce heat. The amount
of heat produced per unit time scales with the amount of current passed through the plasma
and the magnitude of the voltage difference (and thus electric field) across the plasma,
giving the familiar P = IV scaling. As Hall thrusters feature a strong electric field combined
with a net cross-field electron current, this term is responsible for the vast majority of the
electron heating in these devices.

In writing the above equations, we have implicitly assumed that the distribution function
has the same width in each coordinate direction. As a result, we can consider only a
single temperature which applies to all three spatial dimensions.© More generally, the
temperature might be different in different directions, such as along versus across the
magnetic field. A property which varies depending on direction is called anisotropic. In
saying the temperature does not do this, we are assuming that the temperature, and

therefore the pressure, are isotropic.

2.5 Hall thruster physics

With all of the fundamentals out of the way, we can return to Hall thrusters. Like the glow
discharges discussed in Section 2.2, and as illustrated in Figure 2.11, Hall thrusters are
DC discharges, in which a voltage is applied between an anode and a cathode to produce
a plasma. The application of a magnetic field in the radial direction, perpendicular to the
applied electric field, causes the particles to undergo the E x B drift around the discharge
channel. Normally, this drift induces the electrons and ions to move with the same speed
in the same direction, and thus no net current is produced. However, the strength of the

magnetic field is tuned so that the electrons are confined in gyro-orbits around the magnetic

Different species of particle may still have different temperatures. In Hall thrusters, the electrons are
typically much hotter an the ions.
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Figure 2.11: Diagram of the operation Hall thruster overlaid on a photograph of the H9 Hall thruster
operating at 300 V and 15 A on krypton. Photo credit Leanne Su and the Plasmadynamics and
Electric Propulsion Laboratory.

field lines, while the ions are unmagnetized and free to follow the electric field out of the
thruster. Put another way, the Larmor radii of the electrons are on the order of a millimeter,
while those of the ions are on the order of tens of centimeters to a meter. The ions thus
remain in the region of high electric and magnetic fields for a very short period of time and
do not undergo the E x B drift with the electrons. A net current around the device channel,
called a Hall current, is thus produced.

To model the physics of Hall thrusters, we would like to use a fluid description for the
electrons. When is such a description valid? As we saw in the preceding section, when
modeling a plasma as a fluid, we are assuming that the particle velocity distribution function
is Maxwellian, or at least very close to Maxwellian. As the Maxwellian distribution function
is the equilibrium state of the Boltzmann equation, using a fluid description of the plasma
is the same thing as assuming that the plasma is in local thermodynamic equilibrium. For

this condition to be true, we require that particles collide with each other frequently enough
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that any perturbations from the equilibrium distribution function are rapidly smoothed out.
To illustrate how collisions can return a distribution function to equilibrium, consider a game
of pool or billiards (Figure 2.12). Before the cue ball is hit, the balls are in equilibrium, i.e.
not moving at all. This means they have a mean velocity of zero, as well a temperature
of zero since all of the balls have the same speed. At the moment we strike the cue ball,
the velocity distribution function becomes non-Maxwellian. Most of the balls (particles)
have zero speed, while the cue ball has a significant amount of speed. This state of affairs
continues until the moment cue ball collides with another ball. At that instant, the cue ball
transfers some of its energy from into the ball it collides with. Both of these balls then go on
to collide with other balls, transferring more and more of their energy into the other balls,
and so on. In the absence of friction with the pool table and the walls, the pool balls would
quickly assume an equilibrium state in which all of them are moving a small amount.

The consequence of this phenomenon is that we are only justified in treating a system
as a fluid if there are sulfficient collisions that the distribution function is near equilibrium.
To quantify this, we introduce the mean free path (A\mg), Which is the average distance a

particle travels before colliding with another particle. The mean free path is defined as

1

where nis the particle number density and ¢ is the average collisional cross-section, which

m, (2.18)

is the effective cross-sectional “area” of particles in a system, measured in square meters.
Physically, this expression shows that if the particles are larger, or the density is higher,
then collisions are more likely and individual particles travel a shorter distance before
colliding with their neighbors. To assess whether the mean free path for a given system
is “short enough” to treat the system as a fluid, we employ the Knudsen number (Kn),

defined as
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Figure 2.12: Collisional equilibration of a non-Maxwellian velocity distribution function, as
illustrated by a break in a game of pool or billiards. In (a), all particles are in equilibrium with
nearly zero velocity. In (b), the cue ball has a much higher velocity than the other balls, so the
distribution function is non-equilibrium. In (c), collisions between the balls have randomized their
velocities and restored equilibrium to the VDF. Photo credit: Lil’ Chris on Youtube.
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Kn = M, (2.19)

where L is the characteristic “size” of the system. If Kn < 0.01, then particles undergo
O(100) collisions before transiting the length of the system, and we are justified in treating
that system as a fluid. This regime is called continuum flow. On the other hand, if Kn > 10,
then the particle may not collide with anything at all before leaving, and we would need
a more detailed kinetic description of our system. This regime is called free molecular
flow. Between these extremes, we have transitional flow, where special techniques may
be needed.

Where do Hall thrusters fit on this spectrum? There are three species we would need
to consider: neutral atoms, ions, and electrons. Typical neutral densities in a Hall thruster
are around 10'® m—3, and the diameter® of a xenon atom is about 396 picometers, or
3.96 x 10~"% meters. The cross section can then be computed as 7d? /4. This gives a cross
section of around 1.5 x 10~'° square meters. Plugging these numbers into Equation 2.18,
we get a mean free path for neutral atoms of around four meters. As the neutrals do
not circuit the channel, we take the relevant characteristic "size" to be the length of the
discharge channel, which is on the order of 1 to 10 centimeters. This gives us a Knudsen
number is between 40 and 400. Thus, the neutral atoms in a Hall thruster are typically
free molecular and cannot be treated as a fluid.

What about ions? Since ions are positively-charged, they will repel each other before
they can collide in the conventional sense. However, these electrostatic repulsion events
end up working in much the same way as classical hard-sphere collisions. The effective

collision diameter of a population of ions with temperature T; (in electron-Volts) is

__2Ge
"7 Axe Ty

(2.20)

dAtoms are not really billiard ball-like hard spheres with well-defined diameters, but it suffices for our
purposes to treat them as such.
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where Z is the ion charge state (i.e. Z = 1 ifthe ion is singly-charged), q. is the fundamental
charge, and ¢ is the permittivity of free space. For ions with a temperature of 500 Kelvins,
this gives us a diameter of around 33 nanometers. The cross section is then 9 x 106
square meters, giving a Knudsen number between 0.01 and 0.1, which is on the lower
end of the transitional flow regime. If the ions are hotter (say 5000 K) the Knudsen
number may grow to between 0.8 and 8, which is at the upper end of this range. Other
changes in parameters, such as increased density, could push the ions firmly into the fluid
regime, while still others could tip them over the line into free molecular flow. Experimental
measurements of Hall thruster ion dynamics suggest they are largely Maxwellian, *6 except
near the location of the peak electric field. Here, in the aptly-named acceleration zone,
the ions experience the majority of their acceleration over a very short length (around 10
mm). Taking this as our characteristic scale, the ions in this location would be fully free-
molecular. Owing to the transitional nature of the ion dynamics in Hall thrusters, many
Hall thruster codes treat the ions kinetically*’, while others'® treat them as a fluid. The
code we employ for this thesis, Hall2De, is one of the latter codes, and treats the ions as
a continuum fluid rather than a free molecular flow. We describe Hall2De in more detail in
Chapter 4.

Following a similar procedure, the mean free path for electrons can be calculated as
somewhere between 0.5 and 2 meters, assuming a temperature of between 10 and 30
eV. This would seem to put them firmly in the free molecular category. However, as stated
earlier, electrons circle the discharge channel azimuthally as part of the Hall current. The
distance they traverse from when they enter the drift to when finally reach the anode can
be calculated from their axial drift speed, their azimuthal drift speed, and the channel
length. Assuming an axial drift speed of 10,000 meters per second, the electrons will
take between 1 and 10 microseconds to traverse the channel. Assuming they circle the
discharge channel at around 10® meters per second, this means they travel between 1

and 10 meters in that time. This puts their Knudsen number between 0.05 and 2, which
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is in the middle of the transitional regime. Thus, while electrons are not immune from
non-equilibrium or kinetic effects, it may be reasonable to treat them as a fluid.

Given the previously-discussed challenges with treating electrons kinetically, this
is a fortunate result. However, if we were to apply the fluid momentum equation
(Equation 2.16) directly, we would encounter some difficulties. To solve such an equation
computationally, we typically discretize it, meaning that we break the region of time and
space we want to simulate into a bunch of small chunks. Consider solving the momentum
equation on a domain which extends from x = 0 to x = L. We would break this domain
into cells with size Ax. Starting from some time t,, we would then advance the solution in
time by timesteps of size At until we reach our desired final time T. This makes it possible
to solve coupled systems of partial differential equations in a reasonable amount of time,
but introduces additional difficulties. These include issues of numerical consistency (by
discretizing the equations, are we sure we are still solving the same problem?), accuracy
(how small do we need to make Ax and At in order to achieve a desired level of accuracy?)
and stability (how big can we make At without the solution blowing up?). While the former
two are worthwhile challenges in their own right, it is last condition—numerical stability—
which will cause us problems in this instance. The famous Courant Friedrichs Lewy (CFL)
condition states that in order for equations of the type we want to solve to be stable, the
timestep must obey the following:

At

ar <1 (2.21)

Here, a is the characteristic speed at which information propagates in the flow, and the
quantity aAt/Ax is the CFL or Courant number. In a fluid, information can either move
with the bulk flow velocity u or as a pressure wave with velocity equal to the speed of sound
a. The maximum speed of information propagation is thus (roughly) u + a. We can apply
this condition to ions and electrons individually to determine the largest timestep we would

be allowed to take in our simulation. We assume that u ~ 20,000 and Ax ~ 1 mm, while
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the ion sound speed is typically around 1,000 or 2,000 m/s, depending on the temperature.
This gives us an allowable timestep of approximately 5 x 10~ seconds. While the electron
speed in the axial direction is roughly the same as the ion speed, the electron sound speed
is closer to 2,000,000 m/s. This stems from the fact that electrons are very light, so a small
amount of energy is able to accelerate them to very high speeds. The maximum allowable
electron timestep is then closer to 5 x 10~'° seconds, and can be lower. This means that
we need to run our simulation for 100 times longer than if we just considered ions. While
some authors do make this sacrifice in the name of increased accuracy,*® the majority of
Hall thruster simulations make additional assumptions to allow us to use timesteps closer
to the ion timestep.

Since electrons move so quickly, we could assume that (in the presence of some change
in local electrical or plasma properties) the electrons are able to rearrange themselves and
reach steady state before the much heavier® ions have a chance to notice the change. We
can then set terms relating to the time variation of the electrons to zero and consider
only their steady-state behavior. This is called the inertia-less assumption, as it implies
that —due to their low mass— the electrons’ inertia has little relevance to the rest of
the flow, especially compared to larger factors like the electric and magnetic fields, as
well as changes in plasma density and temperature. With this assumption, the electron

momentum equation (Equation 2.16) reduces to

_9ele g Ly, xB) -

g o %:ns,ue,s/(ue —ug) =0. (2.22)

For simplicity, we can then make the assumption that, since the electrons (e) are much
faster than neutrals (n) or ions (i), we can assume (U, — Up) =~ (Ue — U;) =~ U.. We note that

this assumption is not critical to making the electron motion computationally tractable, but

it simplifies the algebra. With that caveat, the electron momentum equation now becomes:

®The ratio between the mass of a xenon atom and the mass of an electron is about 240,000.
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QeNe (E + Ug X B) + Vpe + MeneUere = 0, (2.23)

where v, = vgj+1ep is the total electron collision frequency, including collisions with both ions
and neutral atoms. By eliminating the time-dependent terms, this equation has become
algebraic, meaning we can use it to solve for electron velocity at a given time, provided
we know the electric and magnetic fields, electron density, and electron pressure. As
this equation has no timestep constraints, we can use the ion timestep in our simulations
rather than the electron timestep, and get simulations which converge in a timely manner.
Equation 2.23 is often called the generalized Ohm’s law, for reasons we will discuss in a
moment.

At no point in this discussion have we mentioned the anomalous electron transport.
Experiments show that electrons move across the magnetic field lines much faster
than Equation 2.23 predicts. This means that at some point on the road from the
Boltzmann equation (Equation 2.7) to the simplified algebraic description above, we
neglected some critical physics which gives rise to enhanced cross-field electron transport.
Perhaps the electron distribution function is not truly Maxwellian, or maybe the electron
inertia enhances transport. To get a simulation of a Hall thruster which self-consistently
incorporates this effect would require us to increase the fidelity of the model, at the
cost of increased computational time. If we want to retain the time benefits of the fluid
approach, we could instead include a model of the anomalous transport into our simplified
description. Ideally, such a model would capture the correct scaling of the transport
with other local fluid properties such as density and temperature, while eliding lower-level

details which do not impact the behavior of the bulk plasma.
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2.6 Anomalous electron transport in a fluid plasma

Before we address how anomalous processes enhance the motion of electrons across the
magnetic field lines, we first discuss how classical effects, like collisions, affect this motion.
We first decompose the vector form of the generalized Ohm’s law (Equation 2.23) into its
vector components. We choose a coordinate system aligned with the thruster magnetic
field, allowing us to write equations for the electron motion in the direction along (parallel,
|| to) and across (perpendicular, L, to) the applied magnetic field, as well as around the
device channel in the azimuthal () direction. After such a decomposition, the electron

momentum balance becomes

QeNeE || + V| Pe + MeNelg Ve = 0 (2.24)
QeNe (EL + UegB) + V 1 Pe + MeNele 1 Ve = 0 (2.25)
GeNe (Eop — Ue 1 B) + Vgpe + MeNele pre = 0, (2.26)

where we have made use of the fact that in a field-aligned coordinate system, B = B |.
We next employ the assumption of axisymmetry. Under this assumption, properties do
not vary in the ¢-direction, so all gradients or derivatives in this direction go to zero. This
eliminates not only the pressure gradient in Equation 2.26, but also the electric field, as
it is defined as the gradient of the electrostatic potential. The azimuthal component of the

electron momentum balance thus reduces to:

UQ’Q = QeUeJ_ (2.27)

This gives us an explicit expression for the electron azimuthal velocity in terms of the
perpendicular velocity and the electron Hall parameter, Q. = mgve/q.B. We can then

substitute Equation. 2.26 back into Equation 2.25 to find an expression for the electron
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velocity in the cross-field/perpendicular direction. After some algebra, we arrive at:

_ 1 qe vJ_pe
el = =77, O Move (EL + ol ) (2.28)

Multiplying through by —q.n., we can get an expression for the cross-field electron
current density, jo 1 = —Qenele . We can then follow a similar procedure for the parallel
component of the equation to arrive at a set of equations for the electron current density

vector in terms of the other local plasma properties.

. qzne ( V||pe>
_ E, 4 YIPe 2.29
lel Melg | QeNe ( )
. _ 1 qgne vJ_pe
je,L - 1 + Qg melje (EL + qene (2-30)
je,0 = ere,J_ (2.31)

With the above form of the expressions, we can see why Equation 2.23 is called the
generalized Ohm’s law. The classical Ohm’s law for circuits is given by I = V/R, where
| is the current, V is the voltage, and R is the resistance. Above, we have an expression
for current density, which is proportional to a difference in voltage (the electric field) and
inversely proportional to the plasma resistivity, n, which is defined as n = meve/q2ne. We
can see that from Equation 2.30 that if the Hall parameter is large, then the resistivity in
the perpendicular direction is much larger than that in the parallel direction. This captures
our intuition that the magnetic field should act to impede or resist electron motion.

From the above equations, we can see that increasing the electric field or electron
pressure gradient should increase the electron current density, both along and across
field lines. Less intuitive is the effect of collisions. From the expression for resistivity, it
seems like collisions should increase the resistance and thus reduce the electron current
density. Recall, however, that the Hall parameter €2, depends inversely on the electron

collision frequency. We can more clearly elucidate the effect of the collisions on the cross-
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field transport by invoking one final assumption. If the electrons are magnetized, then the
electron collision frequency is much less than the electron cyclotron frequency. Recall, too,
that this implies that the electrons are able to complete many orbits around the magnetic
field lines before they encounter a particle to collide with. This is equivalent to stating that

Qe > 1. With this assumption, we can reduce our components of Ohm’s law one final

time:

. qgne ( V||pe)

_ £, 4+ YiPe 232
Jel Melg | QeNe ( )
, GeNele V _1Pe

= E 2.
Je.L wooB ( Lt qene> (2.33)
je,9 = ere,L (2-34)

Now, we can see that in the direction aligned with the magnetic field (the ||-direction),
collisions increase the resistance of the plasma, and decrease the electron current density.
However, across the magnetic field lines, collisions decrease the plasma resistivity and
increase the electron current. This stems from the fact that since collisions randomize
particle velocities, they work against the confining effect of the magnetic fields. Incidentally,
the quantity v /weB is known as the cross-field electron mobility, denoted . . We are
now ready to include anomalous electron transport in this framework. If electrons are to
be moved in some manner across the magnetic field lines, there must be an additional
force in the system which we have not accounted for. The nature and scaling of this
force is unknown. We can incorporate this anomalous force into the vector Ohm’s law

by introducing an additional term, F,, so

GeNe (E + Ug X B) + VPpe + MeNeUere — Fap = 0. (2.35)

In the absence of any first-principles knowledge of how this force should act, we can make

some guesses. First, the force should not violate the laws of physics. In our system,
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this means that the force should not be able to accelerate the electrons to arbitrarily high
velocities. Hall thrusters do not emit large amount of x-rays', so we know that the electrons
are not moving close to the speed of light. Typically, forces in nature work against motion.
Therefore, we might assume this “anomalous” force which enhances electron mobility
across the magnetic field lines works like a drag force. After all, we just saw that collisional
drag between electrons and the heavier species (i.e. neutrals and ions) enhances, rather
than impedes, electron motion across the magnetic field lines. If we make this assumption,

than F,, becomes

F.n = —MeNeUgr/zp. (2.36)

This functional form states that the anomalous force should oppose the electron velocity
vector, u.. Additionally, as this force term scales with the plasma density, n., we should
get a smaller anomalous drag if we have less plasma. Just as in Eq. 2.23, the collisional
drag also scales with the effective electron collision frequency, v,,, which we call the
“anomalous” collision frequency. This does not imply that the anomalous effects result
from collisions, only that we are representing their contribution to the overall plasma
solution the form of a collision frequency.

Applying this choice of scaling is convenient for modeling purposes, as we can still
directly apply Equations 2.32-2.27 to describe the motion of electrons across the
magnetic field lines. We only need to include the anomalous collision frequency in v,
such that

Ve = Vg classical t+ Van- (2.37)

fElectrons deflected by a magnetic field will emit photons with energy that scales with their velocity. For
electrons that are near the speed of light, this is called synchrotron radiation and typically ranges between
high ultraviolet and gamma in wavelength.
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Here, ve cassicar 1S the sum of the electron-neutral and electron-ion collision frequencies.?
While convenient, positing the existence of the anomalous collision frequency leaves us
with a problem. Namely, we have no clue how it should scale. Mathematically speaking,
we now have one more variable than we have equations. We need to introduce an
additional equation which describes the functional dependence of v,, on the rest of the
plasma in order to close the system of equations. We call this state of affairs a closure
problem. A model for v,, which depends on the other plasma properties would then be
termed a closure model. The goal of this thesis is thus to develop and test closure models
for the anomalous electron collision frequency in Hall thrusters.

This situation is analogous to the problem of turbulence modeling in classical fluids,
famously one of the great unsolved problems in physics. In these systems, it is often
assumed that the effect of small-scale turbulent fluctuations manifests as an effective
“eddy" viscosity, which acts on top of the normal fluid viscosity. The goal of certain types"
of turbulence modeling is then to find a closure model for the eddy viscosity in terms of
the bulk fluid properties, such as density, temperature, and velocity.

Turbulence models have not solved forever the problem of turbulence, but the efforts
toward this goal have made it possible to apply predictive fluid simulations to a wide variety
of fluid flow problems, such as that over an aircraft wing, through a nozzle, or in a pipe.
This has in turn made simulation an integral part of the design process across all fields of

fluid mechanics.

9Electron-electron collisions do not alter the bulk momentum of the electron fluid and thus do not appear
in this expression.

hSuch models are called, fittingly, eddy viscosity models, and the assumption of an effective eddy viscosity
is called the Boussinesq approximation. Other forms of turbulence modeling include large eddy simulation
(LES) in which the larger parts of the turbulence are directly simulated, while a subgrid-scale model is needed
to describe the smaller scales, and direct numerical simulation (DNS), in which all scales of the turbulence
are resolved. The analogy of DNS in Hall thruster modeling would be full particle-in-cell simulation of both
electrons and ions.
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2.7 Goals of Hall thruster modeling and simulation

Given their long heritage and history of successful flights, one might wonder whether
modeling and simulation need to play a significant role in the Hall thruster design process.
Simulation can alleviate several challenges faced during the testing and qualification of
Hall thrusters. The first of these is thruster lifetime. The energetic plasmas present in Hall
thrusters discharges will gradually erode spacecraft surfaces.*® After enough erosion, the
thruster may cease to function. As these thrusters can run for potentially tens of thousands
of hours,%° it can become extremely expensive to demonstrate thruster life in a ground
facility. By predicting the erosion rate of thruster surfaces, models can accelerate this
process.

Second, it is known that Hall thrusters perform differently in a vacuum chamber on the
ground than in space.%"246 Accurately characterizing how these “facility effects" alter a
thruster’s performance during the transition from ground testing to flight is a major goal
of electric propulsion research. The role of facility effects grows as the thruster power
increases, and it may not be possible to test high power thrusters like those we might use
to send astronauts to Mars on the ground. Better modeling of the physical phenomena
underlying the ground to flight transition can enable higher confidence in the performance
of a system on orbit.

Lastly, predictive modeling and simulation tools would enable more rapid design of
Hall thrusters to meet new operating regimes. These include thrusters that operate at
high power,>® low power, and using alternative propellants. Ideally, given a geometry,
operating condition, and magnetic field configuration, we could predict the performance
(i.e. thrust, discharge current, and efficiency) and impact of the plasma on surrounding
spacecraft surfaces. Currently, however, evaluating the performance of a thruster after a
design change requires a thruster to be built and tested, which can become expensive.

Predictive simulation could accelerate this process by allowing new thruster designs to be
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evaluated on the computer before they are built. This would enable thruster designs that
are better-optimized for a given operating regime.

The first two challenges do not necessarily require the resolution of the problem of
anomalous electron transport. Given data from a thruster, we can calibrate simulations to
match experiment by adjusting the spatial variation of the anomalous collision frequency.
We can then use these calibrated simulations to assess the erosion rate of different
thruster surfaces, or determine the flux of plasma to spacecraft surfaces.® However, this
process only works if there is data available against which we can calibrate our simulations.
This requires the thruster to be built, which limits the use of this type of empirically-
inferred anomalous transport model in the design of novel Hall thrusters. Therefore,
while predictive anomalous transport models cannot resolve all challenges inherent to
Hall thruster modeling, they are the single biggest piece of missing physics which limit the
use of simulations in thruster design and qualification.

In the next chapter, we explore how we can derive and test models of the effective
anomalous collision frequency. We examine models that have been proposed to date in
the scientific literature, and show how, by tweaking certain assumptions, a single model

can be expanded into an entire family of models.

56



CHAPTER 3

Models of Anomalous Transport

Basic research is what I'm doing when | don’t know what | am doing.

Wernher von Braun

In the last chapter, we gave an overview of the assumptions underlying a fluid
description of a plasma. We then showed how we can account for anomalous transportin a
fluid framework by including an effective anomalous collision frequency, v,,. We discussed
how this leads to a problem of closure, which must be resolved by relating v, to the other
variables in the system. In this chapter, | introduce some of the various attempts to solve
this problem found in the literature, and propose some new models of our own. In each
case, | discuss the assumptions which each model relies upon, and illustrate the impacts

of tweaking those assumptions.

3.1 Terminology

Before we discuss what models have been proposed for the anomalous collision
frequency, | briefly introduce some terminology. In classical turbulence, models are
typically classified by the number of differential equations needed to describe the effect

of the turbulence on the mean flow. Thus, a zero-equation model (also-known as an
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algebraic model) is one which has zero differential equations. Instead, the unknown
quantity is an explicit or implicit function of the mean flow properties. A one-equation
model, then, is a model in which a differential transport equation must be solved before
the turbulent effects on the mean flow can be determined. This terminology continues to
two-equation models and further. This work primarily focuses on zero-equation models of
the anomalous electron collision frequency, but | will introduce one or two multi-equation
models as well.

In addition to the number of equations, models may be characterized by the number
of fit coefficients they require. All of the models examined in this work feature one or
more parameter which must be adjusted to fit data. This is also a feature of classical
turbulence models. These numbers typically represent the impact of higher-order physical
phenomena which (hopefully) do not vary much with the parameters under study. As a
result, these phenomena may be lumped together under constants, which are adjusted
to fit available data. Ideally, these coefficients would be general and thus not need to be
adjusted when changing thrusters or operating regimes. In practice, this is not usually the
case. In general, the more coefficients that a model has, the better chance it has of fitting
data, since the modeler has more ability to tweak and tune the coefficients to match a given
situation. However, this usually comes at the cost of generalizablity, as it is easy to over-fit
the coefficients to a particular dataset. In our case, this means that a model might only work
for a single thruster or operating condition, and thus not be truly predictive. Additionally,
the more coefficients a model has, the more expensive it is to calibrate these coefficients.
Consider a model with a single coefficient. One easy way to tune this coefficient might be
to run ten simulations, each with different values of this coefficient, and then pick the value
which gave the best fit with experiment. With two coefficients, we would need to run 100
simulations to get the same resolution. With three coefficients, this balloons to 1000, and
so on. A ten-coefficient model would require us to run ten billion simulations if we apply

the same strategy that we used to tune the coefficients for the one-coefficient model. This
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is one manifestation of the famous curse of dimensionality. For d coefficients, we have a
d — dimensional parameter space to explore, and the cost scales with N9, where N is the
number of grid points in each dimension. For this reason, we primarily focus on models
with no more than four coefficients. Later in this thesis, | will discuss a few approaches
that we tried to accelerate this calibration procedure.

Finally, | will often make a distinction between “empirical” and “self-consistent” models
of the anomalous collision frequency. This is more a difference in degree than kind.
A self-consistent model is one which is able to reproduce the effect of the anomalous
transport by its functional dependencies alone, and which is allowed to change as the
plasma changes. An empirical model, by contrast, may get the correct degree of transport
but must be tuned to match experiment. It may also not depend to the same degree on
local plasma properties. All of the models examined in this work are in some sense semi-
empirical, as they feature fit coefficients which have to be tuned to data. However, as
they also depend on the plasma, they offer a better chance of being predictive than if they
were fully empirical and had no basis in physics. Before discussing these “self-consistent”
models, we first describe the typical empirical methods by which anomalous transport has

traditionally been incorporated into simulations of Hall thrusters.

3.2 Empirical models

The most widely-used method of empirically specifying the anomalous collision frequency
is to assume that it is constant in time and with respect to the plasma properties but
may vary spatially. The spatial variation can in turn be adjusted until key aspects of
the simulation predictions, e.g. the acceleration of ions and discharge current, match
experiment. This has resulted in a canonical “shape” for v,,. Figure 3.1a depicts an
example of this typical shape in a Hall thruster plotted as a function of distance from the

anode along channel centerline. We generated this result from numerical simulations of a
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magnetically shielded Hall thruster operating with xenon at 300 V and 15 A. This simulation
is described in more detail in Chapter 5. We also show in this result the classical collision
frequency, 1., and electron cyclotron frequency fze = wee/2m Hz. Figure 3.1b shows key
plasma properties like the electric field strength, electron temperature, and plasma from
this simulation.

The properties of the anomalous profile can be understood in the context of the
trends in the plasma properties and background magnetic field. In the near-anode region
(z/L = 0), the neutral density and thus the electron-neutral collision frequency are high,
S0 v, ~ V. Inside the discharge channel, the anomalous collision frequency ranges from
around the same magnitude to an order of magnitude greater than the classical frequency.
However, near the channel exit plane, in the region of peak magnetic field strength (and
thus maximum cyclotron frequency), the collision frequency decreases by an order of
magnitude. The corresponding increase in electron resistivity in this location results
in strong electric fields and enhanced Ohmic heating. This is reflected by the profiles
exhibited in Figure 3.1b. Without this transport barrier, the predicted gradients in plasma
properties from simulation would be much more shallow than observed experimentally.
Downstream of the exit plane, the anomalous collision frequency increases by up to two
orders of magnitude to reach a maximum value in the near-plume region. It then declines
with the magnetic field strength with increasing distance from the thruster exit plane.

Adjusting the spatial variation of v,, to reflect these typical features has allowed fluid-
based Hall thruster simulations to match experiment to a high degree of fidelity. In later
parts of this work, we will refer to these tuned anomalous collision frequency curves
as “empirical profiles,” as they represent an empirically-inferred estimate of what the
anomalous collision frequency needs to be in order to yield a simulation that matches
data. Calibrated simulation results obtained via the use of such empirical profiles have
been extensively leveraged for the design and qualification of Hall thrusters.>*°> However,

despite the success of these empirical profiles and the commonalities in their shapes,
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Figure 3.1: (a) Example of an empirical anomalous collision frequency profile for a Hall thruster
operating at 4.5 kW, compared to the classical and electron cyclotron frequencies. (b) Normalized
plasma properties from a simulation run with the empirical profile in (a). Distance (x-axis) is
referenced from the downstream surface of the anode, measured along the channel centerline,
and normalized by the channel length (L).
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they are not extensible. An empirical profile calibrated to work on one thruster will not
work with a different thruster or even a different operating condition on the same thruster.
For each new thruster or operational state, we instead must infer a new empirical profile
from experimental measurements of the thruster.®%°® This limits our ability to leverage
empirical profiles for fully predictive simulations. In the next sections, we will examine
different approaches toward this goal. In Chapter 5, we will return to a discussion of these
empirical profiles and how they might (or might not) be used to develop more predictive

models of the anomalous collision frequency.

3.3 Bohm diffusion

The simplest and most widespread closure model for anomalous transport in Hall thrusters
(as well as other magnetized plasma devices) is Bohm diffusion. In this model, the

anomalous electron collision frequency is given by

Van = C1Wee, (3.1)

where c; is an adjustable constant. The classical value of ¢4 is 1/16, but it is often adjusted
to match data. Equation 3.1 was originally an empirical scaling law, but it can be derived
by assuming that the plasma in question exhibits fluctuations in electrostatic potential with
length-scales comparable to the electron Larmor radius and magnitudes proportional to
the electron temperature.?* The diffusion is thus assumed to result from micro-turbulence.
As discussed in the Chapter 1, Bohm diffusion alone is inadequate to predict anomalous
electron transport in Hall thrusters. This stems from the fact that a single coefficient is
inadequate to capture the previously-discussed “canonical” anomalous collision frequency
profile. However, due to the simplicity of the Bohm scaling, it is often used as the basis
for the spatially-varying empirical anomalous transport profiles discussed in the preceding

section. To generate these profiles, the scaling constant between the anomalous collision

62



frequency and electron cyclotron frequency is adjusted as a function of axial distance
from the anode until a satisfactory match with data is obtained. One common “two-zone”

approximation is given by 78

L wee Z <L
van(z) = 4 10 ° (3.2)

e  Z > Len,
where L., is the length of the discharge channel. This captures the observation that
the anomalous transport inside the discharge channel is lower than the traditional Bohm
scaling would predict. By including more zones and adjusting the scaling coefficients, good
agreement with spatially-resolved plasma measurements can be obtained. However, such
profiles are not extensible across thrusters or operating conditions, so Bohm diffusion is

not a predictive closure model.

3.4 Models derived by analogy to classical turbulence

As outlined in the preceding chapter, the approach we take toward including anomalous
transport derives heritage from the eddy viscosity-type models employed in classical fluid
mechanics. It would make sense, then, to attempt to apply the same methods used in
that field to obtain models for the anomalous collision frequency. Classical turbulence
obeys what is known as an energy cascade. This is a relationship between the amount of
energy stored in turbulent fluctuations and the size of those fluctuations. The energy for the
turbulence in normal flows derives from the bulk velocity of the fluid. Small differences in
velocity give rise to shear, which causes the fluid to rotate. This produces large vortices,
contain the majority of the turbulent energy. By the same process, the larger vortices
decay into smaller vortices with less energy, and so on down the line. At a certain point,
the fluctuations get small enough that they are able to be totally damped out or dissipated

by viscosity. Thus, the energy “cascades” down across length-scales, from bulk flow to
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large vortices to small vortices. In 1922, this process was immortalized by Lewis Fry

Richardson in the form of a rhyming quatrain,®® as

Big whorls have little whorls
Which feed on their velocity,
And little whorls have lesser whorls

And so on to viscosity.

While vorticity does not play as much of a role in Hall thruster plasma turbulence as
classical turbulence, other processes may give rise to an energy cascade qualitatively

similar to that seen in neutral fluids.

3.4.1 Model of Cappelli et al. (2015)

Making use of classical scaling relationships between mean flow and turbulent properties,
Cappelli et al. derived a simple zero-equation closure model for the anomalous collision
frequency asssuming the presence of a turbulent energy cascade with a characteristic
dissipation rate.*? In this model, it is assumed that the scattering of electrons by plasma
turbulence is the dominant driver of electron thermalization and heating. It is also assumed
that the small length scales at which dissipation occurs scale with the electron Larmor
radius. Finally, the authors assume that speed at which the turbulent eddies transport is
the same as the electron mean speed, ¢, = \/8kgTe/mm.. Under these assumptions, the

anomalous electron mobility can be written as

_ . | lie- E|
:uan - C1 KneeC§B3 (33)

Here, ¢, is an empirical scaling constant, which would need to be tuned to match data.
This expression for electron mobility can then be related to an effective electron collision

frequency using the relationship u ~ v/weeB, giving us
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P E
Van = C1ch\/ %- (34)
[ ]

In the paper first describing this model, Cappelli et al. compare the results of a 2D
axisymmetric hybrid particle-in-cell (hybrid-PIC) simulation carried out using their model
to experimental data from Stanford’s Z-70 Hall thruster. They find that the model correctly
captures the expected decrease in mobility near the exit plane and produces simulations
with velocity profiles similar to those found experimentally via laser-induced fluorescence.
However, the researchers did not compare the predicted performance of the simulation to

experimental performance measurements in that work.

3.4.2 Jorns two-equation model (2019)

Jorns took similar inspiration from classical turbulence to derive an analogy to the famous
k — ¢ ("k-epsilon") turbulence model for application to Hall thrusters.®® Here, k refers to
the turbulent kinetic energy, and ¢ is the dissipation rate. By describing the transport of
these properties, we can learn both where turbulence is, and where it is growing/decaying.
The k — e model is one of the most widely-used eddy viscosity models, and while it is not
suitable for all turbulent flows, it provides a reasonable approximation of the turbulence in
a variety of situations. The model of Jorns, as in the k — ¢ model, solves two differential
equations and is thus a two-equation model. The first equation describes the transport of
wave energy (W) as it convects with the plasma. This is analogous to the k in the k — ¢
model. The second equation describes transport of the growth rate (w;), analogous to e.
In deriving this model Jorns notes that, in contrast to classical turbulence, Hall thruster
plasmas exhibit an inverse energy cascade.®” This means that the turbulent energy in the
plasma transfers primarily from small length scales and high frequencies to longer scales
and lower frequencies. Additionally, since the plasma in a Hall thruster is diffuse and

largely inviscid, the processes that mediates the energy transport are tied to wave-wave
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and wave-particle interactions rather than viscosity and vorticity. Lastly, Jorns assumes
that the plasma waves largely follow an ion acoustic-like dispersion relation. We will
discuss this assumption in more detail in the next section. Armed with these assumptions

and employing a few additional mathematical simplifications, we can write the model as

w
8a—t+u,-~VW=2W(w,-—w,OSS—V-u,-) (35)
Owj 1

a—u; +U; - Vw; = 2w; (C1 Mew,g,' — w,-) - Cgvewiz (3.6)

m,-1 w

Van = C34 ) — —Wi——,
an meMe " neTe

(3.7)

where the first equation describes the transport of wave energy, W, and the second
describes the transport of the growth rate, w;, and the final equation relates the anomalous
collision frequency to these two transported quantities. Note that since the last equation
is algebraic, it does not affect this model’s status as a “two-equation model”. In the above
equations, wpss represents the rate at which energy is dissipated from the wave. Jorns
makes the assumption that this is proportional to the ion-neutral collision frequency, vj,.
Additionally, M, is the electron Mach number, or the ratio between the electron drift speed
and electron sound speed. Additionally, there are three fit coefficients, denoted ¢y, co,
and c3, which must be adjusted to fit data. This model was able to match time-averaged
measurements of the anomalous collision frequency from the H9 Hall thruster (described
later in this work), using ¢; = 0.01, ¢, = 400, and ¢3 = 130. However, Jorns did not
implement this model directly into a Hall thruster simulation so its predictive capabilities

have not been assessed in the open literature.
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3.5 Models based on plasma instabilities

Just as in the model of Jorns, one can derive models of the anomalous collision frequency
by making assumptions about the type and scaling of plasma instabilities in the device. As
discussed in Chapter 1 and the preceding section, anomalous transport in Hall thrusters
is commonly believed to result from an instability which gives rise to plasma turbulence.
This turbulence derives energy from the electron drift, and thus produces an effective drag
force on the electrons’ azimuthal motion. Per our derivation in the preceding chapter, gives
rise to enhanced cross-field electron current. In order to turn this insight into a model, it
is important to understand precise manner in which the instability grows, convects, and
decays. | begin this section by briefly outlining some of the experimental and computational
evidence of instability-induced transport in Hall thrusters. | then discuss two models
of how instabilities affect the anomalous transport before finally discussing some of the

assumptions of these models and how they may be adjusted to yield new models.

3.5.1 Theory of plasma instabilities

Although we have discussed waves can create anomalous transport, we do not yet know
how to turn these kinetic effects into a useful closure model for the effective anomalous
collision frequency. To accomplish this, we will derive some basic plasma wave theory,
and show how wave theory can be used to derive a closure model for anomalous electron
transport.

The primary objective of plasma wave theory is to describe the spectrum of the waves
in a given plasma. Much like how sunlight contains light of many frequencies, plasma
turbulence may take place over a wide range of frequencies. By determining which
frequencies contain more energy than others, and how energy is transferred between
frequencies, we can gain insight into which physical processes give rise to the turbulence,

and hopefully how to model it. Like light, too, the frequency, w (in radians per second) of
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a plasma wave is related to its wavelength, A (in meters). For an electromagnetic wave

travelling in a vacuum (like a light ray), this relation is:

A= (3.8)

Here, c is the speed of light in a vacuum, 299,792,458 meters per second. This relationship
shows us that higher frequency light waves have shorter wavelengths. Instead of the
wavelength, we may consider the wavenumber, k, defined to be equal to 27/A. The
wavenumber represents the “spatial frequency” of a wave. We can write Equation 3.8

in terms of the wavenumber as

=C (3.9)

x| &

A relationship such as this one between the frequency of a wave, w and its wavenumber, k,
is known as a dispersion relation. This is the basic object of consideration when studying
plasma waves. While the scaling relationship between the frequency and wavenumber
for a light wave is a simple constant factor, dispersion relations for waves in plasmas may
get very complex indeed. While light rays are electromagnetic, meaning both the electric
and magnetic fields fluctuate, we consider only electrostatic waves in this work. This is
because the strong applied magnetic field in Hall thrusters inhibits the propagation of many

electromagnetic waves.

3.5.2 Electrostatic dispersion relation for a plasma

We now turn to deriving a few basic example dispersion relations common to the types of
plasma we are interested in. As in Section. 2.4, our analysis begins with the Boltzmann
equation, which describes the evolution of a velocity distribution function f(x,v,t) of

particles with charge g and mass m over physical (x) and velocity (v) space, subject to an
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electric field E, a magnetic field B, and collision forces represented by an integral operator

N

C:

of of q ofr .
E+V-&+E(E+VXB)-E—C(7‘) (3.10)

To analyze how plasma waves propagate and determine how they might affect electron

transport, we employ quasi-linear wave theory, which relies on the following assumptions

1. The effect of the wave on the distribution function is small, so we can decompose

the distribution function into an equilibrium part and a fluctuating part (f ~ fy + ).

2. Since the fluctuations are small, products of two fluctuating quantities are even

smaller, so we neglect them.

3. The wave is electrostatic, so the electric field is a fluctuating quantity, while the

magnetic field is constant.
4. The equilibrium electric field is zero.

5. Collisions are approximated using the Bhatnagar-Gross-Krook (BGK) collision
operator, so C(f) ~ v(fy — f), where v is a collision frequency and f, is the equilibrium
distribution function. Physically, this represents the tendency of collisions to move a

particle distribution toward equilibrium.

6. Perturbations are modelled as plane waves, such that for a fluctuating quantity Q'
that we are interested in, @ ~ Q exp(i(k-x—iwt), where Q is the (in general complex)

amplitude of the wave, w is the frequency of the wave, and k is the wave-vector.

Subject to these assumptions, the Boltzmann equation for a set of arbitrary particles

becomes
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The bracketed term in the above expression is just the left-hand side of Equation 3.10 with
zero electric field. Since the collision operator is zero for an equilibrium plasma, the entire
term vanishes. Additionally, we invoke the second and fourth assumptions to neglect the

term LE. 3f . With these terms removed, we are left with the perturbed Boltzmann equation:

of’ of q_ ofy ,
E+V-&+EE av——l/f (3.11)

To continue, we invoke assumption 3 and replace all quantities with plane waves. We also
replace the electric field with the potential by noting that E = —0¢/0x = —ik¢.
Ofy

a@ [fexp( (k-x— th)] %[Eexp( (k- x— th)] Sy

- v [? exp(i(k - X — iwt)}

0 .
T fexp(i(k - x — th)}+

—iw [fexp( (K-x— iwt)} +i(v-K) [fexp( (k-x— iwt)] —/—k¢ 7o

-y [f exp(i(K - X — iwt)

i + ik - [vf’ qqsgﬂ - (3.12)
We can then solve for f':
k-4 ¢3fo
fl=— (3.13)

w—K-v+iv
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Up until this point, we have been dealing with a distribution function composed of arbitrary
particles. To get more specific, let us suppose we have two species—negatively-charged
electrons and positively-charged ions. Quantities relating to electrons will have the
subscript e and those relating to ions will have the subscript i. Let us further assume
that since ions are much more massive than electrons, collisions between the two species
will mostly alter electron trajectories, leaving ions unchanged. The governing equations of

our system then become:

. Qe %0
k e )

! ov
= - 14
fe w—K-V+iv (3.14)
. 9 490
! m; 7 oV
e P N
f; KoV (3.15)

Additionally, the ions and electrons are coupled through the electrostatic potential via

Gauss’s law:

1 1
—V2p =K3%¢p = — (qin; + QeNe) = . [Gi(nio + 1) + Ge(Neo + )] (3.16)

0
For notational simplicity, we denote k = |k|. We assume the plasma is quasi-neutral at
equilibrium, so n; o = neo. We can express the perturbed densities in terms of the perturbed

distribution functions to get

Kep= 1 / (il + qof’) dv (3.17)

€0 Jv
Finally, we substitute Eqgs. 3.14 and 3.15 into the above relation to arrive at a general

dispersion relation for electrostatic waves propagating in a two-component warm plasma:

1 k . 9 %o . G Yoo
k) =1 m v Me NV_ | gy =0 3.18
(. k) +eok2/v w—k-V-'-w—k-v+iVe ( )

This dispersion relationship is the starting point for deriving expressions for the effects of

the instabilities which drive electron transport in Hall thrusters. Next we will illustrate how
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Equation 3.18 is used by deriving reduced dispersion relations for some simple plasma

waves.

3.5.2.1 Simple plasma oscillation

This is the simplest plasma wave. We assume the ions are unperturbed, and thus neglect
the ion contribution to Equation 3.18. We also assume that the electrons are cold, so
fe0(X, V) = ned(V — Vp), where ¢ signifies the Dirac Delta function? and vy is the equilibrium
velocity of the electrons, which we set to zero without loss of generality. Finally, we
consider one-dimensional propagation, reducing k to a scalar. This gives us the following

dispersion relation:

192n, 2.5(v)
Ky=1+-2 ov _
lw.k) * kK meeg /vw—kv+i1/edv 0

Integrating by parts, we find that

2 2
1 . qene / 6(") dV - 1 o qene 1 — 0,

Meeo Jy (W — KV — ivg)? Meéeg (w + ive)?

[ A2

n

elle . .

W=4] == — Vg = Wpe — ile. 3.19
€0 e pe e ( )

This dispersion relation captures the fact that a mono-energetic population of charged

and thus,

particles will oscillate in an fluctuating electic field with a characteristic frequency wpe.
If there are collisions, they act to damp the oscillation by adding a negative imaginary

component to the frequency.

aThis is a distribution with a “width” of zero, so all particles have the same velocity. It is defined such
that the area under this distribution is one, so as to preserve the properties we expect from a normalized
distribution function.
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3.5.2.2 Warm plasma waves and Landau damping

We can move up a level of complexity by allowing the electrons be warm, i.e. T, > 0. The
dispersion relation for warm electrons in one dimension (where v is along the direction of

propagation of the wave) is

_ 1 g2 OMep/Ov av
) =14 g e / e =0 (3.20)

where the electrons have a one-dimensional Maxwellian distribution along the direction of

propagation:
fovdy = " exp |- | dv (3.21)
&0 ﬁvth,e Vt%,e -
Ofso ( 1 )2 Vv V2
—dv = —2/7n exp | — av 3.22
ov Ve VTVine ) Vihe P V2, (3:22)

In the above, we have introduced the thermal speed of a species s, defined as viy,s =
\/2kgTs/ms. The integral in Eq. 3.20 has a singularity on the complex plane where w —
kv + ive = 0. To handle this, we make use of the Sokhotski—Plemelj theorem,®' which
states that for some value x,

. 1
lim
e—=0 X + €

L (3.23)

where P denotes the Cauchy principle value. The integral then becomes

Ofao/OV v [ Ofag 1 . .
/Vw—kv+i1/e ‘/V v [Pw—kv+iz/e _’”5(“_"‘”’”6)] dv

_P / Heo/Ov v, (Moo (3.24)
, W — KV +ive ov V=(wsive)

We can then expand the denominator using a Taylor series. After integration, we obtain

our final dispersion relation:
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The real part of the above equation is known as the Bohm-Gross dispersion relation. The
imaginary part (the part multiplied by i) accounts for both collisional damping (ive) and
a new term, known as Landau damping. Physically, this term means that waves with
wavelengths near the Debye length (kMg ~ 1) will be damped.

By relaxing more assumptions (i.e. including ion contributions) and performing similar
analyses to the two examples above, we can arrive dispersion relations which more

accurately describe the sorts of wave which are thought to exist in Hall thrusters.

3.5.3 Plasma instabilities in Hall thrusters

Since the 1970s,%? it has been known that Hall thrusters play host to azimuthally-
propagating waves with frequencies in the megahertz (MHz) range. Since 2000,
significant experimental, 3334366237 computational,®33° and theoretical®® effort has gone
into understanding the dispersion of these instabilities. This work has produced a
consensus that these azimuthal drift waves are a leading contributor to electron transport,
and has shed light on the precise nature and scaling of these waves. It is believed
that the anomalous electron transport results from the electron cyclotron drift instability
(ECDI). This instability derives its energy from, and is driven unstable by, the E x B
drift. The energy enters the turbulence as fluctuations at small wavelengths and high
frequencies, and transfers to longer wavelengths via wave-wave interactions in an inverse
energy cascade.®” The dissipation of the wave energy at the longer length scales may
primarily result from convection, as the energy is transported downstream and out of
the Hall thruster. Other loss mechanisms, such as ion-neutral collisions and ion Landau

damping may also play a role, though their importance is debated.?%’

74



The dispersion of this instability is characterized by sharp cyclotron resonances. These
are peaks in the frequency and growth rate of the instability which occur for wavenumbers

near cyclotron harmonics. Mathematically, these resonances occur when

KoVie ~ jwee, j=1,2,3, ... (3.26)

where v, is the drift speed of the electrons. While the instability primarily propagates in
the azimuthal direction, i.e. k ~ ky0, it also has a small component in the radial direction,
parallel to the applied magnetic field. In Figure 3.2, we show qualitatively how these
resonances respond to an increased radial wavenumber. As this component of the wave-
vector grows larger, the cyclotron resonances seem to “smooth out”, and the dispersion
relation approaches that of the modified ion acoustic instability. *® This theoretical result has
been borne out in numerical simulations, with particle-in-cell simulations often displaying
ion-acoustic like wave dispersions. 633° Experimental evidence is less conclusive, however,
and probe-based measurements of this instability3” have shown the presence of strong
cyclotron resonances. Ultimately, the dispersion of this instability will differ based on
local plasma properties and thruster geometry, so whether or not strong resonances are

observed may be a function of the thruster and operating condition, as well as where in

the discharge (and at what frequencies and wavenumbers) the waves are measured.

3.5.4 Model of Lafleur et al. (2016)

Applying insights from particle-in-cell simulations of the ECDI, Lafleur et al. derived a
zero-equation closure model based on the modified ion acoustic dispersion relation. This
dispersion relation can be derived by following a procedure similar to the one we used
to derive the for the warm plasma dispersion relation, but including the contributions of
ions and allowing both ions and electron to drift relative to each other with characteristic

velocities u; and ue, respectively. This dispersion relation can be written as
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Figure 3.2: Qualitative evolution of the growth rate of the electron cyclotron drift instability with
increasing radial wavenumber. The ion acoustic limit is shown in red.

A SR TN B (3.27)
\/1+k2N2,
=t M K-Ue (3.28)

where w, and w; are the real and imaginary parts, respectively, of the frequency. The
imaginary part of the frequency is known as the the growth rate, often denoted ~. In
obtaining the above dispersion, Lafleur et al. have neglected both collisional damping as
well as ion Landau damping. They next make use of a conservation equation for the wave
energy density, W

ow

At steady state, the time-dependent term vanishes. If the group velocity, v, of the wave

is equal to the ion drift speed, u;, then the growth rate can be written as
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Physically, this reflects an assumption that the wave is saturated everywhere, so the
growth rate is equal to the loss due to convection, and that convection is the dominant
loss mechanism. Next, the authors argue that the waves saturate due to ion trapping.
If this is the case, then the wave energy density should be proportional to the electron

thermal energy density. Using this assumption, and after some additional manipulation,

an expression for the anomalous collision frequency can be derived. This expression is

- (Uineks T,
an = ¢, FY Wintehe Te) (3.31)
MeNegCsVye

where v4e = |E|/|B| is the electron E x B drift speed. Lafleur et al. show that, under
appropriate scaling of the fit coefficient ¢, this model agrees well with empirical anomalous
collision frequency profiles such as those discussed earlier in this chapter. However, they
do not implement it directly into a Hall thruster model, so its behavior when treated as a

true self-consistent model was not yet known.

3.5.5 Model of Katz et al. (2016)

The model of Katz et al.®* uses the same theoretical starting point of the model of Lafleur
et al., but considers ion Landau damping, rather than convection, to be the dominant
loss mechanism. Additionally, Katz et al. consider the effects of different energies in
ion populations. They consider a low-energy ion population that is not subject to strong
Landau damping, and a high energy ion population which is. lons born at a potential of less
than 100 V are assigned to the low-energy population, while those born at higher potentials
are assigned to the high-energy population. The total anomalous collision frequency is
then taken as the sum of the anomalous collision frequencies originating in each of these

populations. Mathematically, this is written as
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Van2 = Wpeﬁ (3.33)
Van = Vani + Van2 (3.34)

where the subscripts 1 and 2 denote ions belonging to the high and low energy populations,
respectively. The authors evaluate their model using a one-dimensional fluid Hall thruster
code. Instead of implementing the model directly into the code, they instead evaluate
Equations 3.32 - 3.34 on the output of a simulation which used a calibrated empirical
anomalous collision frequency. The result of this procedure was used as a new empirical
collision frequency profile. The process was repeated until convergence. The model
produced features very similar to the calibrated profile, including low anomalous transport
near the exit plane and high transport downstream. However, it was not implemented into

the code in a truly self-consistent manner.

3.5.6 Effect of modifying model assumptions

Both the model of Lafleur et al. and that of Katz et al. made use of the assumption that the
instability leading to anomalous electron transport is governed by the modified ion acoustic
dispersion relation, and that the turbulence is marginally stable.®® This latter assumption
means that at all spatial locations, the growth rate of the wave, ~ is equal to the damping
or loss rate, vss, SO the net growth rate is zero. The consequence of this assumption is
that we can derive expressions for the positive part of the wave growth rate by considering
only the mechanisms that cause the wave to lose energy. Combining this with an assumed

scaling of the wave energy density, we can derive an expression for the anomalous electron
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collision frequency, assuming the waves follow an ion-acoustic-like dispersion. For some

choice of W and ~, the anomalous collision frequency can be written as

2vW

X — . (3.35)
MeNegCsVye

Van

Physically, the effective collision frequency scales with the rate at which energy is taken
from the plasma, YW, which matches our intuition that the wave acts as an effective drag
on the electron drift. Given different choices for the scaling of the wave energy density
and growth rate, different transport models can be obtained. For instance, if the wave
energy density saturates at the electron kinetic—rather than thermal—energy density, but
still assumed that convection was the dominant loss mechanism, then we could derive a
Lafleur-like model of the form
V - (ujne|ue|?)

3.36
Van X NgCsVge ( )

Alternatively, we could include multiple loss mechanisms (such as ion Landau damping

and collisions), to arrive at a model like

Qe (v : (U,' W) + W(”Yloss,collision + ’Yloss,Landau))
Van X (3.37)
MeNegCsVye

In principle, each of the terms in the numerator could have a different scaling constant,
i.e. ¢y, C2, c3. One could also assume a different group velocity, so the waves no longer
convect with the ions. Lastly, we could assume a alternate form of the convection term.
Depending on how one derives the conservation equation for wave energy, one of three

forms is possible:

1.

aa—l/l!/ +V - (vgW) =29W (3.38)
2.
%—Mt/+vg‘VW:2’yW (3.39)
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Thus, by altering some of the key assumptions underlying the models of Lafleur et al. and
Katz et al., we have generate a novel family of possible anomalous transport models in a

common framework. We will return to evaluating a few models of this type in Chapter 7.

3.6 Shear-based models

In many magnetized plasma devices, it is common to adopt models for the anomalous
collision frequency in which the transport is essentially Bohm-like, or follows some other
well-known scaling, but is reduced in areas of high electron shear.®® The electron shear

rate, s, is given by

S = Vg, (3.41)

where v, is defined, as in the Lafleur et al model., as the E x B drift speed. Scharfe et al.*’
proposed a semi-empirical shear-suppressed transport model with the following functional

form:

Ciwee

+ C: Z < Ltrans
Van = {2 (3.42)

Cilee Z > Lians.

In this expression, ¢y, Co, and c3 are adjustable scaling constants and L;.ns is the axial
distance at which the effect of electron shear suppression is assumed to disappear. This is
typically taken to be either the discharge channel location or the location of peak magnetic
field. This model has the advantage of reducing the electron transport near regions of
high electron velocity. As discussed in preceding sections, this is a common feature of
empirical anomalous collision frequency profiles and is necessary to capture the strong

electric field and steep ion acceleration profiles near the channel exit plane.
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In contrast to the others in this work, this model has been implemented into Hall thruster
simulations and evaluated against different operating conditions and propellants. Cha et
al simulated the Stanford Hall thruster on a few different propellants using this model and
found to perform reasonably well,®” although the coefficients are not transportable across
operating conditions. Despite this heritage, this model has a few disadvantages. First, the
cutoff in shear suppression at an arbitrary axial location is ad-hoc and unphysical. Second,
the reliance on Bohm diffusion means that the coefficient ¢; will not be applicable for all
thrusters, as empirical Bohm-like transport profiles are not generally extensible. Finally,
the coefficient c,, which generally has a magnitude on the order of 10~7s~" is not well-
motivated physically.

To resolve the first objection, we might simply try eliminating the positional dependence.
Second, as the functional form of this model is somewhat ad-hoc to begin with, we might try
replacing the Bohm collision frequency with a more physically-relevant collision frequency,
such as one of the variants of the Lafleur et al. / Katz et al. model described previously.
Augmenting these models with shear suppression could help steepen the gradients in
the acceleration region and produce ion velocity profiles more in line with experiment. To
address the third objection, we turn to previous shear-suppressed turbulence models from
the literature, such as those originating in the fusion community. In such models, the

shear-induced anomalous collision frequency is given by®®

C1Wee

" T (5 (5.49)

Van

In this expression, ¢ is as defined in the model of Scharfe et al., and .« is the growth
rate of the dominant instability in the device. Thus, ¢, in the model of Scharfe et al. likely
represents an effective growth rate. If we also make the assumption that ¢; = 2, as Cha
et al. and Scharfe et al. do, and apply a non-Bohm base anomalous collision frequency,

Van pase; W€ Can derive a more general shear-suppressed transport model for Hall thrusters,
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Vo = —2nbase (3.44)
1 + <’Yr:ax)

Employing the assumption of marginal stability as in the previous section, we could then

assume that vnac is equal to losses resulting from convection, collisions, ion Landau
damping, or other processes. Both the base collision frequency, vanpase, @and the growth

rate, ymax Will likely feature fit coefficients which must be tuned to match data.

3.6.1 Chodura model

While not explicitly a shear-suppressed transport model, the Chodura model®® shares
many features with the model of Scharfe et al. Namely, this model posits that the
anomalous collision frequency is equal to the ion plasma frequency, but is reduced where

the electron drift speed is high. Mathematically, this can be expressed as

Van = C1Wpi (1 — exp (—CV:Ce )) , (3.45)
S

where ¢y and ¢, are fit coefficients. In contrast to many of the previously-discussed models,

the Chodura model was not derived to explain Hall thruster anomalous transport. Instead,
this semi-empirical model describes the effect of microturbulence in a few select types of
plasma device, such as theta-pinch and field-reversed-configuration devices.®®7%7! More
recently, Simmonds et al.'® proposed that a Chodura-like transport model might apply
to Hall thrusters. They investigated the effect of such a scaling on the theoretical thrust
density limit for Hall thrusters. However, the model has not yet been implemented self-

consistently in a Hall thruster code.
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3.7 Data-driven models

The last type of model we investigate comes from a recent investigation by Jorns.® In
this work, a training dataset of empirically-derived anomalous transport profiles such as
those described in Section 3.2 was combined with the outputs of simulations performed
using those profiles. This dataset included four Hall thrusters at nine distinct operating
conditions. Jorns applied symbolic regression to attempt to determine how the empirically-
inferred anomalous collision frequencies scale with changes in plasma properties. One of

the more promising of these models was given by

||

_— (3.46)
CoCs + Ve

Van = C1Wee

The above expression implies the anomalous collision frequency should exhibit a Bohm-
like functional dependence, scaled by the ratio between the ion velocity and the electron
E x B drift speed. While no physical explanation for such a scaling was readily apparent,
this model was able to predict the empirical profile of a thrusters not present in the training
dataset. However, this model was not implemented directly into a thruster code, so its true

predictive capabilities were not assessed in a self-consistent manner.

3.8 Conclusion

Over the course of this thesis work, we tested hundreds of models for the anomalous
collision frequency. In this chapter, we have discussed a few of the more promising models.
We have not described all of the models we tried, nor will we investigate in detail all of
the models introduced in this chapter. By listing and describing these closure models,
however, we hope that we have given the reader a good overview of the attempts that
have been made to develop a fluid closure model for the anomalous collision frequency.

In addition, we have demonstrated how new models may be generated by adjusting some
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of the assumptions underlying these models. As more experimental data about plasma
turbulence in Hall thrusters arrives, the validity—or lack thereof—of these assumptions
may become more clear, and the models may be fine-tuned to better match data.

As each of these models has one or more fit coefficients, it is important to find out how
to best fit them to data. In order to calibrate these coefficients, we need to define what “fit”
means. It turns out that this is a more complicated question than it seems. We will return
to this question in Chapter 5, in which we investigate the data-driven approach proposed
by Jorns?® and determine the relevance and efficacy of comparing self-consistent transport
models to empirical transport models. Before we do that, we turn in the next chapter to
discussing the simulations we perform in the remainder of the thesis, as well as the thruster

we simulate.
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CHAPTER 4

Thruster Simulations in Hall2De

"A theory is something nobody believes, except the person who
made it. An experiment is something everybody believes, except the

person who made it.”

Albert Einstein

In this chapter, we introduce Hall2De, the Hall thruster code we use for all of our
simulations. We then describe the thruster and operating conditions being simulated and
the data against which we compare our simulation results. Finally, we overview the metrics

by which we compare our simulation results to the data.

4.1 Modeling and simulation of Hall thrusters

As we discussed in Chapter 2, full particle-in-cell methods (PIC), in which electrons and
ions are treated as particles, are infeasible for engineering simulations of Hall thrusters.
Instead, the electrons need to be treated as a fluid. lons and neutrals may still be treated
as particles. Simulations in which electrons are modelled as a fluid but ions and neutrals

are modelled as particles are called hybrid-PIC simulations.
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Additionally, while the fluid approximation for electrons enables us to simulate larger
devices and longer timescales than we can using full PIC, it can still be very expensive
to perform three-dimensional Hall thruster simulations. To reduce simulation times, a
common approach is to use the assumption of axisymmetry. This means that the gradients
in the azimuthal direction are zero, and we can therefore reduce our simulations to two-
dimensions (axial and radial). In making this assumption, we lose the ability to model
differences in plasma properties in the azimuthal dimension (such as rotating spokes),
but gain a large reduction in computational time. For most engineering applications, then,
2-D axisymmetric hybrid-PIC or fluid Hall thruster codes have become the standard Hall
thruster simulation tool.

In Table 4.1, we list published two-dimensional axisymmetric Hall thruster codes similar
to Hall2De. Of these codes, only Hall2De and HYPHEN simulate the electron dynamics
in a fully two-dimensional manner. The other hybrid-PIC codes employ a quasi-one
dimensional approach to the electron dynamics, in which the magnetic field lines are
assumed to be isothermal and follow the Boltzmann relation, so the electrostatic potential,

¢, can be determined by

¢:¢0+kgTe Iog(ne), (4.1)

e ne,O
where ¢y and n. o are reference potential and density values. Hall2De is able to recover the
generally isothermal nature of Hall thruster magnetic field lines®* but does not presuppose

it, allowing for deviations from isothermality to occur when necessary.
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4.2 Hall2De

All simulations in this work were conducted using Hall2De, '® a multi-fluid/particle-in-cell
thruster code developed at the Jet Propulsion Laboratory by loannis Mikellides, Ira Katz,
and Alejandro Lopez Ortega. In this work, we use only the multi-fluid version of the
code, which models both electrons and ions as fluids, while neutrals are treated as a
free molecular flow.

We first describe the algorithm used to compute the neutral dynamics. The present
version of the code uses a line-of-sight view factor algorithm described in Reference 75.
When the simulation is initialized, view-factors of each thruster surface are computed for
all points in the domain (i.e. cells, edges, vertices). The view factor of a surface at a point
is the fraction of one’s view that is taken up by that surface if one was to stand at that point.
The neutral velocity at a point can then be computed by considering the temperatures and
speeds of the neutral populations that enter the domain at each surface, weighted by the
view factor of that surface at that point. By considering convection from these emission
surfaces, the neutral density is then updated every timestep using the velocity computed
from the view factors. lonization is treated as a sink term which reduces neutral density in
locations of high ionization rate.

The version of Hall2De employed in this thesis solves continuity, momentum, and
energy equations for several ion species. These species include both ions of different
charge states (singly-charged to triply-charged), and up to four populations which are
distinguished by the electrostatic potential at their origin and thus by their energies. Axial,
radial, and azimuthal ion momentum equations are solved. As the code is axisymmetric,
however, no gradients in the azimuthal direction are considered. For each ion species s,

the governing equations are
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(9n,-s

ot + V- (NisUis) = Njs (4.2)
8n,- u;
TR 4V (Molisus + nskgTis/m) = Zs%n,-s (E + U x B) — Rs (4.3)
03 5
&E (niskB T/s) +V- E (uisniskBTis) = eric,s + Qan,s- (4.4)

In the above, njs is the total rate of change of the density of ion species s due to ionization
reactions. This includes both increases in density due to ionization of neutrals or ions
of lower charge states, as well as decreases in density due to ionization of species s to
higher charge states. This also accounts for the loss of ions to charge exchange collisions
with neutrals. Z; is the charge state (i.e. 1, 2, or 3) of species s, and R; is the net
elastic and inelastic frictional force between ions of species s and all other ion and neutral
species. Lastly, Qi s and Qg s are the rates at which the ions of species s heat due to the
aforementioned inter-species friction and anomalous effects, respectively.

Next, we can write the electron governing equations, which consist of quasi-neutrality,
current conservation, a generalized Ohm’s law, and an energy equation. Mathematically,

these are given by

ne = ZZSnLS (4.5)
S
V-(e+j)=0 (4.6)
Qele (E + Ue x B) + V(NeksTe) + Mee »  (Ue — ) = 0 (4.7)
S
03 5
55 (nekBTe) +V- EuenekBTe +keVTe | = Qric — Qi — Qex, (48)

where je and j; are the electron and ion current densities, respectively, «. is the electron

thermal conductivity coefficient, Qg is the electron heating rate due to classical and
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anomalous friction forces (i.e. the Ohmic heating), and Q;; and Q. represent the
reduction in electron thermal energy due to ionization and excitation, respectively. The
generalized Ohm’s law (Equation 4.7) is then broken into field-aligned, field-perpendicular,
and azimuthal components, as outlined in Chapter 2. This transforms the above into a
set of six equations which together solve for the electron density, n., the electric field, E,
the electron parallel, perpendicular, and azimuthal current densities, jg ||, je, 1, @and je 4, and
the electron temperature, Te.

In order to solve these equations numerically, they are discretized using the first-order
finite volume method on appropriate computational meshes. As electrons are strongly-
magnetized in Hall thrusters, Hall2De solves for their behavior using a mesh aligned with
the applied magnetic field. This magnetic field-aligned mesh (MFAM) reduces numerical
diffusion and preserves the largely equipotential and isothermal nature of the magnetic field
lines while still solving a two-dimensional electron energy equations. However, such field-
aligned meshes inherently have small, high-aspect-ratio and high-skewness cells near
boundaries and in regions where the magnetic field is convergent. Small timesteps are
thus required to accurately and stably solve the governing equations in these regions. In
order to increase the allowable timestep and improve numerical stability, Hall2De provides
the option to solve the equations of motion for the unmagnetized ions and neutrals on
a rectilinear grid with more uniform cell sizes. Similar approaches have previously been
applied to hybrid particle-in-cell (hybrid-PIC) Hall thruster simulations.*”-’¢ As the geometry
and magnetic field configuration of the H9 Hall thruster are export-controlled, we cannot
show the simulated mesh in this work. To illustrate the difference in grids, we show instead
in Figure 4.1a a field-aligned mesh for the SPT-100 Hall thruster. In contrast, we show a
rectilinear mesh constructed for the same thruster in Figure 4.1b.

We employed a MFAM with 3925 cells for the electrons and a rectilinear grid with 3955
cells for the ions. The resolution of each of these grids was selected following a grid

convergence study described in the next section. To increase the allowable timesteps, the
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Figure 4.1: Example (a) field-aligned and (b) rectilinear meshes for an SPT-100 simulation in
Hall2De.
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ion equations of motion, as well as the electron temperature equation, are discretized semi-
implicitly in time. Figure 4.2 depicts the domain of the simulation with labelled boundaries.
The domain extended eight channel lengths downstream from the thruster anode and the

same distance radially outward from the channel centerline.

4.2.1 Boundary conditions

In order to close our system of PDEs, we are required to specify properties at the simulation
boundaries. These boundaries are labelled in Figure 4.2. We can treat solid walls, such as
the discharge channel or pole covers, as either insulating or conducting. If insulating, then
no net current is allowed to enter the surface, and j. - /1 is set equal to j; - A, where A is the
outward-facing wall normal vector. If conducting, then a sheath boundary condition is used
to determine the amount of current collected at the boundary, following the model of Hobbs
and Wesson.””° A similar sheath boundary condition is also used at the anode, with the
electrostatic potential at the anode surface set to the sum of the applied discharge voltage
and the computed sheath potential. If the discharge channel walls are set to conducting,
they are also set to anode potential. We compute the ion current at solid boundaries by
assuming a pre-sheath potential drop equal to the electron temperature. This leads to the
ions impacting the walls at the Bohm speed, Uiswar - i = \/ZqeksTe/m;. lons that hit the
walls recombine and are re-emitted as neutrals. At outflow boundaries, we assume the
ions can leave freely, so we apply Neumann (zero-gradient) boundary conditions for the
ion density, momentum, and temperature. To ensure no net current leaves the device, we
also set the electron current equal to the ion current at such boundaries. The electron
temperature and density are fixed to a user-specified value at the cathode orifice. The ion
velocity at this location is assumed to be a fraction of the Bohm speed, while the electron
current is computed using Ohm’s law. Finally, along the symmetry axis, all properties are
set to have zero gradient. This captures the fact that there should not be a net flux of any

property across this axis, or else it would not symmetric.
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Figure 4.2: Simulation domain overlaid on the H9 Hall thruster, with labelled boundary conditions
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Figure 4.3: Example of a “converged” discharge current trace for a simulation at 300 V and 15 A
over 1 ms of simulated time.

4.2.2 Simulation setup

For the majority of this work, we simulated three ion charge states and two ion populations.
The first ion population comprised ions originating in the main beam, and the second
consisted of ions emitted from the cathode or born in the cathode plume. This yielded a
total of six ion species.

As Hall thrusters are inherently oscillatory devices, '* our simulations did not converge
to a steady state. Instead, after an initial transient, we have found the simulated discharge
current will eventually exhibit a quasi-perodic oscillation with constant frequency and
amplitude (Figure 4.3), with no change in the time-averaged properties. We ran each
of our simulations for two milliseconds of simulated time, which was sufficiently long for

the simulation to converge to this quasi-stationary state in all cases.
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4.2.3 Parameter sensitivity

In addition to the anomalous collision frequency of the main Hall thruster beam, Hall2De
requires the user to specify several other parameters related to the plasma and simulation
numerics. In this section, we discuss our choices for these parameters, and assess the
sensitivity of the simulation to some of these numbers.

While some of these parameters do not have a large effect on the Hall thruster plasma,
or can be directly measured, others are more uncertain. Chief among these are the
cathode plasma properties. Figure 4.5a depicts a centrally-mounted hollow cathode with
its associated magnetic field and field-aligned coordinate system. Electrons emitted from
the cathode stream outward along the magnetic field lines until they eventually encounter
the main Hall thruster ion beam. Some of these electrons remain with the beam to
keep it electrically neutral as it leaves the device, while the remaining others then stream
toward the anode across the field lines. While Hall2De simulates the cathode plume, it
does not simulate the interior of the cathode. As a result, the properties at the cathode
orifice, namely electron temperature and ionization fraction, must be specified. Following
standalone experimental measurements of a cathode similar to the one used in the H9,”®
we fixed the electron temperature and ionization fraction at 3 eV and 5%, respectively. In
Figure 4.4, we show how the thrust and discharge current of an example simulation vary
as these parameters are altered. We find that these global performance metrics are largely
insensitive to the cathode orifice electron temperature and ionization fraction, especially
near our chosen values. The one exception to this is that the simulation thrust increases
by 3% as the electron temperature at the cathode orifice increases from 3 to 5 eV.

An additional uncertain parameter relates to the question of anomalous electron
transport in the cathode plume. As with the thruster channel, experimental and
computational evidence have shown that anomalous transport exists in the plumes of
hollow cathodes like those used in Hall thrusters.”®8° There may be two primary types

of anomalous electron transport in the cathode plume.& The first is ion-acoustic in nature
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Figure 4.4: Performance quantities versus changing cathode electron temperature (a) and
ionization fraction (b).

and acts primarily along the magnetic field lines. The other results from azimuthally-
propagating anti-drift waves®' and yields cross-field electron transport. In this work,
we consider the effect of the parallel transport only. In thruster models, the effect of
this anomalous collision frequency on the electron dynamics can be represented with a
generalized Ohm’s law in the same manner as the anomalous transport in the rest of
the thruster, albeit in the field-parallel rather than field-parallel direction. Following the

derivation in Chapter 2, we obtain the following equation:

(4.9)

Here, we see that the field-aligned potential and pressure gradients £ and Vo, scale with
the anomalous collision frequency for a fixed density n. and parallel electron current jg.
We can see from this equation introducing an additional anomalous collision frequency
in the cathode plume can lead to steeper gradients in both pressure and electric field.
This is consistent with experimental measurements. Indeed, it has been shown that
incorporating anomalous transport in the cathode plume can significantly increase the
agreement between Hall thruster simulations and experiments.®? As is the case with the

Hall thruster channel dynamics, however, introducing this additional collision frequency
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Figure 4.5: (a) Magnetic field lines (yellow) and magnetically-aligned coordinate system of a
centrally-mounted hollow cathode. lon acoustic waves propagate primarily in the field-aligned
direction. (b) The region of the plume in which the cathode anomalous collision frequency model
is applied. Here, r¢ , is the inner-channel radius.

again opens the governing fluid equations. We therefore need to select a closure model
for the cathode anomalous collision frequency.
Following the work of Mikellides et al”® and Jorns et al,®° we adopt a model for the

transport based on the Sagdeev model®:

Van,cathode = 0Mtwpi f (4.10)
Here, M. is the electron Mach number, wy; is the ion plasma frequency, and o is a
proportionality constant of order 0.0184%_ In this model, the spectrum of the ion acoustic
turbulence is saturated by nonlinear ion Laundau damping. The wave grows linearly
with the electron drift speed, leading to a dependence on the electron Mach number.
When applying this model to the cathode plume, we typically assume that the ion acoustic
turbulence is able to heat the ions, so the ion temperature, T;, self-consistently depends

on the turbulent collision frequency.

97



240 12
P10 0 [ L1102
Z 160+ L8 o
E —
% 120 L6 O
§ 120 o 6 %
£ 80 ==, E
= Thrust G
40| = . pischarge current Probability distribution of SE-

cathode anomalous coefficient
0 ' T T ' 0
10-3 10— 10-3 10-2 10-1 10°

Cathode anomalous collision frequency coefficient

Figure 4.6: Performance quantities versus cathode anomalous collision frequency.

While it has been shown that this model may not be able to accurately capture
oscillations in the cathode plume?®®, it has been used with great success to improve the fit
between experiment and simulation in hollow cathodes’® and Hall thrusters.® In terms of
actual implementation for this closure, unlike the case of the wave-driven effects in the Hall
thruster channel, the IAT will not persist far downstream of the cathode. To represent this
in practice, we therefore confine the region where this closure is adopted. We show this
region in Figure 4.5b. Outside of this region, the cathode contribution to the anomalous
cathode collision frequency is assumed to be negligible. In Figure 4.6, we show how
the thrust and discharge current vary with increasing values of the cathode anomalous
collision frequency. In some of our initial work (described in the next chapter), we treated
this value as uncertain and sampled from a probability distribution function, also shown
on Figure 4.6. However, the global performance metrics were largely insensitive to the
cathode anomalous collision frequency coefficient up to a value of 0.01, so in subsequent
work we used a fixed value of 0.005 for this coefficient.

Consistent with the experimental operating conditions described in the next section,
we set the cathode flow rate to be 7% of the anode flow rate. In addition, we fixed both

the neutral gas temperature and wall temperature to 500 K, which are consistent with
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Parameter Value
Maximum charge state 3+
Number of fluids 2 (beam and cathode)
Number of cells (MFAM) 3925
Number of cells (rectilinear grid) 3955
Cathode flow fraction 7%
Cathode ionization fraction 5%
Cathode electron temperature 3eV
Cathode plume anomalous collision frequency coefficient 0.005
Neutral temperature 500 K
Wall temperature 500 K

Table 4.2: Numerical parameters employed in this work

typical operating temperatures of the Hall thruster being studied. Finally, in Table 4.2, we

summarize the simulation parameters employed throughout this thesis.

4.2.4 Grid convergence

In order to ensure that the field-aligned mesh had sufficient resolution, we carried out a grid
convergence study. We tracked how the thrust and integrated velocity residual (a measure
of how the ion velocity as a function of space differs from experiment, defined in more
detail in the final section of this chapter) varied as we increased the number of cells in the
computational domain. The results of this study are presented in Table 4.3. Additionally,
we plot in Figure 4.7 the fractional error in these performance metrics against the grid
resolution. We find that the error decreases with increasing resolution. At the penultimate
resolution of 3438 cells, all quantities differ by less than 5% from those at the finest studied
resolution of 3925 cells. We note that the convergence is not monotonic—increasing the
number of cells does not always decrease the error. This is likely due to the manual field-
aligned mesh generation procedure, which makes it difficult to ensure that the resolution
smoothly increases across the whole domain as the number of cells is increased. Despite
these caveats, our chosen resolution of 3925 cells for the field-aligned mesh appears to

be sufficiently converged.
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Number of cells T Iy IVR
949 2442 mN | 13.57 A | 0.200
1423 2541 mN | 16.49 A | 0.118
1949 226.6 mN | 15.70 A | 0.057
2176 243.1 mN | 14.64 A | 0.101
2750 232.9mN | 16.44 A | 0.060
3438 249.2mN | 1595 A | 0.073
3925 258.3 mN | 15.20 A | 0.072

Table 4.3: Thrust (T), discharge current (/5), and integrated velocity error for different grid
resolutions.
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Figure 4.7: Variation of error in quantities of interest with increasing grid resolution.
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All simulations in this this thesis were carried out on the Great Lakes supercomputing
cluster at the University of Michigan. This enabled us to run many simulations in parallel.
As Hall2De is designed to be run on workstation-class computers, each instance of the
code used eight CPU cores and a single compute node. The time required to complete
a simulation varied with the grid resolution, simulation duration, and chosen timestep, but

typical values ranged between 12 and 24 hours.

4.3 Thruster

In this work, we primarily simulate the H9 Hall thruster. This is a 9-kW class |laboratory
Hall thruster developed in a collaboration between the University of Michigan, the Air Force
Research Laboratory, and the Jet Propulsion Laboratory.®”-28 In Figure 1.2a, we show the
H9 operating at a discharge voltage of 300 V and a discharge current of 15 A on its design
propellant of xenon. In the years since its development, the H9 has subsequently been
tested extensively using krypton' (Figure 1.2b), as well as at discharge current densities
well outside of its design envelope (up to 150 A).'® In this work, however, we confine our
investigations to discharge currents between 15 and 30 A, and discharge voltages between
300 and 600 V, due to the lack of spatially-resolved data at these extreme conditions.
Throughout this thesis, we compare our simulation results to experimental data
obtained from this thruster. These data include global performance metrics—such as the
thrust, discharge current, and specific impulse—as well as the spatially-resolved mean
ion velocity along channel centerline. These latter data were obtained via the method
of laser-induced fluorescence (LIF).® This type of local experimental plasma data is
preferred for model validation as it is collected non-invasively. In contrast, probe-based
methods to perform local measurements have shown in some cases to perturb the plasma
properties®®. We use the experimental thrust and discharge current data taken by Su and

Jorns in 2021, in combination with ion velocity profiles measured by the same authors in
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2022.%3 All experimental data were collected in the Alec D. Gallimore Large Vacuum Test

Facility at the University of Michigan.

4.4 Metrics for comparison to experiment

In order to quantitatively compare the performance of our simulations to experimental
data, we consider five metrics. The first of these metrics is the thrust, which is the
amount of propulsive force generated by the device. To compute the thrust from the
simulation results, we integrate the flux of axial momentum over the outflow boundaries of

the simulation:

2

3
T= // D > M ngjus sl - A) S, (4.11)
outflow =1 j=0

In the above expression, Uy is the velocity vector of particles belonging to fluid f with charge
J, Uz is the component of that vector parallel to the Z axis, ny; is the number density of
fluid f with charge j, dS is the differential surface area, f is the surface normal vector, and
M is the mass of a xenon atom.

The second metric we consider is the discharge current I, which is the current carried
by ions and electrons from anode to cathode. We compute /Iy from our simulations by

integrating the sum of the ion and electron currents over the anode boundary surface:

2 3
ly = // YOS iqmtig | +je| -hdS. (4.12)
anode

f=1 j=1
Here, g is the fundamental charge and j; is the electron current density vector. The
third metric for comparison is the anode efficiency 7,, which measures the fraction of the
discharge power converted into useful thruster power. It is defined as

1 T2

773= Emavdld! (4.13)
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where i, is the mass flow rate injected through the anode and V/ is the discharge voltage.
The fourth metric we employ is the integrated velocity residual (IVR). We also refer to this
as the integrated velocity error (IVE) in various places in this dissertation. This measures
how well the simulation predicts the ion velocity along the discharge channel centerline.

We define this as

szON(UiJ (2) — ui2(2))%dz

IVR =
fZZON U2, (2)dz

(4.14)

In the above, zy and zy are the axial locations of the first and last ion velocity data-points,
respectively, and u;; and u;» are the axial components of the ion velocity obtained from
two different measurements or simulations. Higher values of the IVR correspond to worse
agreement between simulation and experiment. For example, if the ion velocity curves
differ by 10% on average, then the IVR should be approximately 0.1.

The final metric we use in this work is the integrated anomalous collision frequency
residual (IAR). This is a measure of how well the anomalous collision frequency profiles
from two simulations agree with each other. This has the same functional form as the

integrated velocity error:

szON(VAN,1 (2) — van2(2))?dz

Z,
Jz van1(2)0z

IAR =

(4.15)

We note that all of the metrics we consider here are time-averaged, and we do not
consider time-dependent metrics like the oscillation frequency and amplitude in the
present dissertation. The oscillation characteristics are sensitive to changes in simulation
parameters not related to the anomalous collision frequency, such as the temperature and
velocity of the injected neutrals. This means that they may be sufficiently diagnostic to use
in evaluating closure models. Additionally, as we will see, the present state of anomalous
transport modeling in Hall thrusters is such that matching these time-averaged metrics is

very difficult, so it may be premature to consider time-dependent properties.
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4.5 Summary

In this chapter, we described the code we use for the simulations in the remainder of the
thesis, as well as the thruster being simulated and the data to which we compare our
simulation results. We then introduced the metrics that allow us to evaluate the efficacy of
our simulations. In the next chapter, we will discuss the first application of these tools in

this thesis.
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CHAPTER 5

Model Calibration Against Empirical

Transport Profiles

Engineering is too important to wait for science.

Benoit Mandelbrot

In Chapter 3, we described the common practice of tuning the spatial variation of
the anomalous collision frequency to match experimental data. We also introduced the
data-driven approach to anomalous transport modeling, which relies on these “empirical”
anomalous collision frequency profiles as a “ground truth” from which physical scaling laws
can be inferred. However, as these data-driven models had not yet been implemented
directly into a Hall thruster code, it was still unclear how predictive they were. In this
chapter, we address this question in two parts. First, we implement one of these data-
driven models into Hall2De in order to investigate its performance. We run hundreds of
simulations of the H9 at multiple operating conditions. Each of these simulations uses a
set of model coefficients sampled from a distribution calibrated to match empirical profiles
from thrusters not including the H9. This gives us probabilistic predictions of thruster
performance using the data-driven model. Second, we examine the broader question

of how valid it is to tune a model’s coefficients to match empirical transport profiles in the
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first place. For a single operating condition, we calibrate an empirical anomalous collision
frequency profile for the H9 thruster. We then tune the model coefficients of the data-driven
model and the model of Lafleur et al. to match the empirical profile. After implementing
the models into Hall2De, we investigate how well the initial calibrated results correspond to
the outputs of our self-consistent simulations. Finally, we discuss our results in the context

of future closure modeling efforts.

5.1 Probabalistic evaluation of a data-driven transport

model in Hall2De

This work was previously presented at the 2021 AIAA Propulsion and Energy Forum as
Reference 90.

As discussed in Chapter 3, Jorns® applied symbolic regression to a dataset of
ten empirical anomalous collision profiles inferred from experimental measurements to
propose algebraic closure models for this coefficient. This effort produced several models
capable of predicting the anomalous collision frequency profile of the H9 operating at
300 V and 15 A with greater accuracy than previously-proposed first principles models.
These first principles models included some of the models we introduced in Chapter 3,
namely those of Cappelli et al., Lafleur et al., and Scharfe et al. Notably, the H9 was not
in the training dataset, so this result held promise for the extensibility of the model’s fit
coefficients beyond its training dataset. However, the models were not self-consistently
implemented into a Hall thruster simulation. Instead, they were computed on the time-
averaged plasma properties output by calibrated Hall thruster simulations, such as those
shown in Figure 3.1b. As a result, it was unclear whether these predictions would
yield converged simulations with thruster performance and plasma properties similar to

experiment.
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To assess this, we expand the implementation of one of these data-driven closure
models to be applied locally everywhere in the domain, making for a more self-consistent
test. We also expand the dataset for comparison by simulating five operating conditions
on the H9 magnetically-shielded Hall thruster. We perform a statistical characterization
of the model’s performance by running O(100) simulations per condition, each simulation
using a coefficient set drawn from an inferred distribution. Lastly, we treat the scaling
coefficient of the cathode anomalous collision frequency as uncertain, and sample from a
distribution of this coefficient in concert with the other sampled model fit coefficients. This
process yields proba