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ABSTRACT

Emotion recognition is a complex task due to the inherent subjectivity in both the

perception and production of emotions. The subjectivity of emotions poses significant

challenges in developing accurate and robust computational models. This thesis examines

critical facets of emotion recognition, beginning with the collection of diverse datasets that

account for psychological factors in emotion production. To address these complexities, the

thesis makes several key contributions.

To handle the challenge of non-representative training data, this work collects the

Multimodal Stressed Emotion dataset, which introduces controlled stressors during data

collection to better represent real-world influences on emotion production. To address issues

with label subjectivity, this research comprehensively analyzes how data augmentation

techniques and annotation schemes impact emotion perception and annotator labels. It

further handles natural confounding variables and variations by employing adversarial

networks to isolate key factors like stress from learned emotion representations during model

training. For tackling concerns about leakage of sensitive demographic variables, this work

leverages adversarial learning to strip sensitive demographic information from multimodal

encodings. Additionally, it proposes optimized sociological evaluation metrics aligned with

cost-effective, real-world needs for model testing.

The findings from this research provide valuable insights into the nuances of emotion

labeling, modeling techniques, and interpretation frameworks for robust emotion recognition.

The novel datasets collected help encapsulate the environmental and personal variability

prevalent in real-world emotion expression. The data augmentation and annotation studies

improve label consistency by accounting for subjectivity in emotion perception. The stressor-
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controlled models enhance adaptability and generalizability across diverse contexts and

datasets. The bimodal adversarial networks aid in generating representations that avoid

leakage of sensitive user information. Finally, the optimized sociological evaluation metrics

reduce reliance on extensive expensive human annotations for model assessment.

This research advances robust, practical emotion recognition through multifaceted

studies of challenges in datasets, labels, modeling, demographic and membership variable

encoding in representations, and evaluation. The groundwork has been laid for cost-effective,

generalizable emotion recognition models that are less likely to encode sensitive demographic

information.

xix



CHAPTER I

Introduction

In human communication, perceiving and responding to others’ emotions in interpersonal

conversations play a crucial role [76]. To create systems that can aid in human-centered

interpersonal situations, it is necessary for these systems to possess the capability to recognize

emotions effectively [220]. Robust Emotion Recognition (ER) models can be beneficial

in various situations, such as crisis text lines or passive mental health monitoring [160].

However, these ML models often lack robustness when faced with unseen data situations,

making deploying them in high-risk situations or healthcare a challenging task [241].

Recongizing emotion is a challenging task because it is subjective in both perception

and production [178]. The labels used to train emotion recognition models are perceptually

subjective [28]. The same emotion can be perceived differently by different people, depending

on their cultural background, personal experiences, and other factors [147]. Additionally,

there is production subjectivity. The same emotion can be expressed differently by different

people, depending on their individual personality, cultural background, physiological and

other factors [13]. The subjectivity of emotion recognition makes it difficult to develop

accurate and robust models that account for these numerous variations [221].

In addition to the challenges posed by subjectivity, there are challenges that relate to the

information that is learned in addition to and beyond the expression of emotion itself. The

manner in which emotions are expressed are correlated with a person’s demographic and
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identifying features. Hence, systems trained to recognize emotion can often learn implicit

associations between an individual’s demographic factors and emotion [208]. When used

as a component in larger systems, these implicit associations can lead to either the leakage

of demographic information, or can bias the larger system’s output based on demographic

information, even when not explicitly trained to do so.

Training any robust machine learning model necessitates having access to large amounts

of diverse and labelled data. Training models for emotion recognition faces the challenge

of not having access to large quantities of diverse data. Scraping data over the internet, as

is done for other areas, leads to a dataset that is often demographically biased, and, often

exaggerated for entertainment purposes. On the other hand, data collected in laboratory

environments is intentionally cleaner and often exaggerated in case of scripted sessions.

Therefore, both of these data collection methods do not encapsulate possible environmental

and personal factors, which leads to models often being trained on either highly skewed or

non-representative data. The resulting models are either fragile or biased, and ultimately

unable to handle real-world variability.

In this dissertation, critical facets of emotion recognition are thoroughly explored,

beginning with the collection of datasets, which take into account psychological factors in

producing emotions. This is followed closely by examining the influence that alterations in

data augmentation processes have on emotion labels, while also challenging and interrogating

the validity of previously established labels. Alterations in labeling techniques and the

resulting effects on annotator-assigned labels are also scrutinized. Simultaneously, the

research develops robust models specifically trained to disregard certain physiological

emotion production factors. Integral to the research is the creation of bimodal models that

generate representations aiming to tackle the reduction of leakage of sensitive demographic

variables. The concluding portion of the study involves an in-depth evaluation of the

robustness and impartiality of these models, carried out in a human-centric manner, ensuring

an emphasis on minimal costs for data annotation. From this extensive research, valuable
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insights are gained into the complexities of emotion recognition, which pave the way for

more nuanced and robust labeling, modeling, and interpretation techniques. It also lays

the groundwork for future efforts in the development of robust and cost-effective emotion

recognition models.

1.1 Emotion Theories and the Impact on Emotion Recognition Model

Development

To better understand the subjectivity inherent in emotion recognition and its correlation

with the research gaps and challenges, we must first explore the contrasts between emotion

production and emotion perception theories. These theories elucidate the distinct factors

related to the subjectivity of emotions in both production and recognition processes and

offer valuable insights for developing robust and unbiased emotion recognition models.

1.1.1 Emotion Production and Emotion Perception

Emotion production refers to experiencing and generating emotional responses, encom-

passing several factors, including cognitive appraisal, physiological response, behavior and

expression, and subjective experience. These components work together to create the unique

process of producing emotions within each person.

Emotion perception, conversely, focuses on recognizing and interpreting others’ emotional

signals, influenced by factors such as emotional cues, context and environment, past

experiences and learning, and individual differences. This process involves making sense of

others’ emotions based on various internal and external factors.
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1.1.2 Emotion Theories, Research Challenges, and Implications for Emotion Recogni-

tion

Various theories of emotion provide insights into the challenges faced in developing

computational models for emotion recognition in speech or text. Below, we discuss the

relevance and implications of some prominent theories in the context of speech or text-based

(bimodal) emotion recognition.

• James-Lange Theory and Cannon-Bard Theory [204]: Both theories emphasize

physiological responses’ importance in emotion. In speech or text-based recognition, it

is vital to consider correlations between observable features (e.g., vocal tonality, speech

patterns) and underlying physiological responses. Accounting for these correlations

can help capture emotions, even though the relationship might be subjective due to

personal and cultural differences.

• Schachter-Singer Two-Factor Theory [204]: This theory stresses the importance

of both physiological arousal and cognitive appraisal for experiencing emotions.

In speech or text-based emotion recognition, cognitive appraisal aspects such as

semantic content, contextual factors, and discourse patterns can be extracted. However,

the subjectivity of cognitive appraisal processes presents challenges given personal

experiences’ impact on interpretation.

• Lazarus Cognitive-Mediational Theory [204]: Centered around the role of cognitive

appraisal, this theory highlights the need for emotion recognition systems to account for

individuals’ interpretations of situations through cues that may suggest appraisal (e.g.,

word choice, phrase structure, conversational context). Advanced models might need

to factor in users’ personal and demographic features to better understand cognitive

appraisal processes. This approach introduces more subjectivity and potential privacy

concerns, as individual perspectives and experiences can vary significantly.
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Integrating insights from these theories can aid unraveling the complexities and subjective

nature of emotions expressed through language, as speech or text-based emotion recognition

relies primarily on linguistic patterns, tone, and content analysis.

1.1.3 Addressing Challenges Through Thesis Contributions

The thesis contributions align with and address the subjectivity challenges in emotion

production and perception, thus tackling the complexities involved in developing robust and

unbiased emotion recognition models.

• Collecting datasets that account for psychological factors in emotion production: By

considering psychological factors influencing unique emotional experiences, more

diverse datasets are created, allowing models to account for subjectivity in emotion

production and generalize across emotions.

• Examining the influence of data augmentation processes on emotion perception labels:

This contribution seeks to understand data augmentation’s impact on ground truth

labels, creating better representations of emotions in the datasets, accounting for

subjectivity in emotion perception.

• Analyzing labeling setups’ impact on annotators’ emotion perception labels: This

investigates how labeling setups influence emotion perception, aiming to improve

label consistency and reduce inter-annotator disagreement, thus better representing

subjectivity in emotion perception.

• Training robust models by explicitly disregarding emotion production factors: This

minimizes the impact of subjective elements associated with emotion production,

enabling models to focus on core emotional cues.

• Developing bimodal models for generation of emotion representations that are debiased

and reduce encoding of demographic and membership information: This creates
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models that consider multiple emotional cues while disregarding sensitive features,

addressing subjectivity challenges in both emotion production and perception.

• Evaluating models in a human-centric manner: Designing evaluation methods aligned

with real-world expectations and without incurring significant annotation costs ensures

the models effectively tackle subjectivity challenges in a practical way.

By focusing on these contributions, the thesis emphasizes the connection between

emotion production and perception’s subjectivity and its influence on model devel-

opment, advancing the creation of more robust and unbiased emotion recognition

models.

1.2 Emotion Recognition

Emotion recognition models are customarily trained using laboratory-collected data

encompassing video, audio, and corresponding text. These algorithms strive to capture the

speaker’s underlying emotional state either autonomously or as part of a larger pipeline, such

as response generation. Supervised learning techniques predominantly train these models.

Obtaining ground truth labels for the dataset samples is crucial for successfully training a

supervised learning model. The emotion theories presented earlier are intrinsically linked

with the complexity of emotion recognition. Understanding the interplay between these

theories and model development is essential.

1.2.1 Emotion Labels

Emotion labels typically fall into two categories: categorical and dimensional. Categori-

cal variables aim to discretely categorize emotion attributes, such as excitement, happiness,

anger, or sadness. These labels’ limitations align with the James-Lange and Cannon-Bard

theories—emotions are subjective, making it difficult to define universal emotions across

cultures. This subjectivity is intensified by both personal physiological responses to stimuli
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and cultural context.

Dimensional emotional labels describe emotions across two dimensions, valence (sad

to happy) and arousal (calm to excited). The dimensional approach is more consistent

with the James-Lange and Cannon-Bard theories, addressing the physiological components

of emotions, as well as the cognitive components emphasized by the Schachter-Singer

Two-Factor Theory and Lazarus Cognitive-Mediational Theory. However, these dimensional

labels also face the challenge of cultural and personal influences on the perception and

expression of emotions.

1.2.2 Emotion Features

Three primary modalities are used in combination to train emotion recognition models:

text, audio, and video. This thesis focuses predominantly on audio and its corresponding

text as the feature set for these models.

Mel-filterbanks (MFBs) are often used as inputs to neural network models in speech.

MFBs can capture correlations between vocal tonality, speech patterns, and underlying

physiological responses. Nevertheless, factors like pitch, volume, or other nuances of speech

may be affected by cultural and linguistic contexts. Furthermore, personal characteristics

can influence these features, further complicating emotion recognition in cross-cultural or

highly diverse settings.

Language features, which provide contextualized representations for words, capture the

cognitive appraisal aspects (semantic content, contextual factors, and discourse patterns). The

Lazarus Cognitive-Mediational Theory further highlights the need for models that account

for user demographics. More advanced models may need to balance the understanding of

individual emotions with ethical considerations.
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1.2.3 Emotion Recognition Models

Audio-based emotion recognition models initially relied on Hidden Markov Models

(HMMs) or Gaussian Mixture Models (GMMs) and later shifted focus to LSTMs and RNNs.

These models aim to capture the dynamic and time-varying nature of speech, reflecting

the James-Lange Theory and Cannon-Bard Theory’s emphasis on physiological responses.

However, these models must also account for the inherent cultural and linguistic differences

in the way emotions are expressed through speech.

Language-based models, like recent advances in transformer architectures, address long

and indirect contextual information challenges, in line with the Schachter-Singer Two-Factor

Theory’s cognitive appraisal aspects. These models strive to understand the nuances

of language, cultural expressions, and individual semantic and contextual differences in

recognizing emotions.

Multi-modal models exploit relevant information from text, audio, or video to form

powerful emotion recognition models. Informed by the emotion theories, these models take

into account the subjectivity of emotions by leveraging different modalities to discern the

nuances of emotion expression. By combining these modes, models can better account for

the emotional complexity that arises from intercultural and personal differences in perception,

expression, and context.

1.3 Challenges in Emotion Recognition

The variable and subjective nature of emotions make it challenging to train models that

can accurately identify emotion in any given scenario. Addressing three major challenges

is necessary for any emotion recognition model deployed in a real-world setting: (a) Non-

representative training data, (b) Subjective labels, (c) Unintentional encoding and leakage of

sensitive information. Previous work has looked at varying ways to counter these challenges,

talked about in detail in Chapter III, Section 2.1.
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1.3.1 Non-representative data

Emotion production in real-world settings is influenced by various factors, including

data collection settings, demographics, and personal factors. Addressing these confounding

factors aligns with the implications of the earlier-discussed emotion theories. Researchers can

tackle this challenge by developing more robust models, incorporating real-world variability

through dataset augmentation or mitigating confounding factors.

1.3.2 Label Subjectivity

As highlighted in the emotion theories, emotions are inherently subjective and deeply

influenced by personal experiences, culture, and context. This subjectivity leads to difficulty

in pinpointing an objective and universal ground truth for training emotion recognition

models. Researchers should account for label subjectivity by using diverse and representative

datasets, annotations from multiple sources, and considering multiple emotion theories

during the model design process.

1.3.3 Unintentional encoding and leakage of sensitive information

Variability can lead unintentional encoding and leakage of sensitive information concerns,

specifically in human centered tasks, such as emotion recognition models, as the associative

nature of the task and sensitive demographic variables may inadvertently lead to encoding

personal information.

1.4 Proposed Methods

A robust and effective emotion recognition system must successfully navigate a range of

challenges, including addressing subjectivity in emotion production and perception, handling

natural variations and confounding variables, reducing encoded sensitive information, and

providing relevant evaluation metrics. Here, we present a series of proposed methods aligned
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with the outlined contributions to address these challenges.

1.4.1 Dataset Collection for Emotion Recognition

Tackling the challenge of subjectivity in emotion production, it’s essential that we consider

the issues in widely used emotion recognition datasets that arise due to design choices,

methodology of data collection, and inherent subjectivity. Emotion datasets traditionally

aim for minimal variation to ensure generalizability. However, this can result in non-robust

models that struggle with unexpected variability. We propose the construction and validation

of a new dataset called Multimodal Stressed Emotion (MuSE), which introduces a controlled

situational confounder (stress) to better account for subjectivity. In addition, we discuss

the use of domain adversarial networks to achieve more stable and reliable cross-corpus

generalization while avoiding undesired characteristics in encodings.

1.4.2 Data Augmentation with Noise in Emotion Datasets

Addressing the challenge of subjectivity in emotion perception, we examine data

augmentation with noise in emotion datasets, focusing on the Interactive Emotional Dyadic

Motion Capture (IEMOCAP) dataset, which features dyadic interactions with text, video, and

audio modalities. Introducing realistic noisy samples through environmental and synthetic

noise, we evaluate how ground truth and predicted labels change due to noise sources. We

discuss the effects of commonly used noisy augmentation techniques on human emotion

perception, potential inaccuracies in model robustness testing, and provide recommendations

for noise-based augmentation and model deployment.

1.4.3 Annotations of Emotion Datasets

To further address subjectivity in emotion perception, we investigate how design choices

in the annotation collection process impact the performance of trained models. Focusing on

contextual biasing, we examine how annotators perceive emotions differently in the presence
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or absence of context. Commonly-used emotion datasets often involve annotators who

have knowledge of previous sentences, but models are frequently evaluated on individual

utterances. We explore the implications of this discrepancy on model evaluation, and its

potential for generating errors.

1.4.4 Methods for Handling Natural Variations and Confounding Variables

As mentioned earlier, we collect a dataset of differences in similar emotion production

under varying levels of stress. Emotion recognition models may spuriously correlate

these stress-based factors to perceived emotion labels, which could limit generalization

to other datasets. Consequently, we hypothesize that controlling for stress variations can

improve the models’ generalizability. To achieve this, we employ adversarial networks

to decorrelate stress modulations from emotion representations, examining the impact of

stress on both acoustic and lexical emotion predictions. By isolating stress-related factors

from emotion representations, we aim to enhance the model’s ability to generalize across

different stress conditions. Furthermore, we analyze the transferability of these refined

emotion recognition models across various domains, assessing their adaptability to evolving

contexts and scenarios. Ultimately, our approach aims to improve emotion recognition

model robustness by addressing the inherent variability of emotional expression due to stress

and ensuring greater applicability across multiple domains.

1.4.5 Approaches for Tackling Sensitive Information Leakage in Trained Emotion

Recognition Models

Emotions are inherently related to demographic factors such as gender, age, and race.

Consequently, emotion recognition models often learn these latent variables even if they are

not explicitly trained to do so. This learning behavior poses a risk to user privacy, as the

models inadvertently capture sensitive demographic information. Storing representations

instead of raw data does not fully mitigate this issue, as latent variables can still compromise
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user privacy. To address this challenge, we present approaches for mitigating the learning of

certain demographic factors in emotion recognition embeddings. Furthermore, we tackle

the issue of user-level membership identification by employing an adversarial network that

strips this information from the final encoding, reduced leakage of sensitive information

from generated representations.

1.4.6 Methods for Model Evaluation and Perception

Large language models face limitations in subjective tasks like emotion recognition due

to inadequate annotation diversity and data coverage. Acquiring comprehensive annotations

and evaluations is often costly and time-consuming. To address these challenges, we propose

cost-effective sociological metrics for emotion generalization and reduced demographic

vairable leakage. These metrics reduce reliance on expensive human-based feedback while

still capturing the nuances of human emotions. By evaluating model performance and

demographic variables encoded in generated representations, the proposed metrics improve

cross-corpus results and allow for the development of accurate, relevant emotion recognition

models in a more economic manner.

1.5 Contributions

This dissertation proposes several investigations and novel solutions to address various

concerns related to real-world emotion recognition model deployment.

The contributions of the works in this dissertation can be summarized as follows:

• Chapter IV:

– Introduction of Multimodal Stressed Emotion (MuSE) dataset.

– Detailed data collection protocol.

– Potential uses and emotion content annotations.
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– Performance measuring baselines for emotion and stress classification.

• Chapter V:

– Speech emotion recognition’s impact under influence of various factors such as

noise.

– Investigation of noise-altered annotation labels and their aftermath.

– Consequences on evaluation of ML models considering noise.

– Specific recommendations for noise augmentations in emotion recognition

datasets.

• Chapter VI:

– Crowdsourced experiments to study the subjectivity in emotion expression and

perception.

– Contextual and randomized annotation schemes of the MuSE dataset.

– Comparative analysis revealing contextual scheme’s closeness to speaker’s

self-reported labels.

• Chapter VII:

– Examination of emotion expressions under stress variations.

– Utilization of adversarial networks to separate stress modulations from emotion

representations.

– Exploration of stress’s impact on acoustic and lexical emotional predictions.

– Evidence of improved generalizability with stress control during model training.

• Chapter VIII:

– Highlighting the unintentional leak of sensitive demographic information in

multimodal representations.
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– Use of adversarial learning paradigm to improve sensitive information reduction

metric.

– Maintenance of primary task performance, despite improvements to privacy.

• Chapter IX:

– New template formulation to derive human-centered, optimizable and cost-

effective metrics.

– Correlation establishment between emotion recognition performance, biased

representations and derived metrics.

– Employment of metrics for training an emotion recognition model with increased

generalizability and decreased bias.

– Finding of positive correlation between proposed metrics and user preference.

1.6 Outline of the dissertation

Initiating with Chapter III, it delves into a comprehensive review of pertinent literature

spanning from emotion recognition and privacy preservation to adversarial networks, model

interpretability, and crowdsourcing designs. Moving forward, Chapter II provides an

introduction to the common datasets, and features employed throughout this research.

Subsequent chapters, from Chapter IV to IX, engage in a thorough exploration and discussion

of the research work undertaken, characterized in the Contributions section. Lastly, Chapter X

serves as a conclusive summary encapsulating the primary contributions made, elaborating

on the proposed future works.
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CHAPTER II

Related Work: Modeling Emotions

Emotion recognition is a complex, multifaceted field drawing on various research areas.

This chapter explores the various methods and considerations in this field, from the use

of crowdsourcing to the importance of context, and from handling confounding factors to

the impact of noise on machine learning models. We explore the ethical considerations

of unintentional encoding of sensisitive variables in data collection and neural networks,

the role of interpretability in model trustworthiness, and the importance of automating

human in the loop feedback. We also delve into the challenge of generalizability in emotion

recognition.

2.1 Concerns with Emotion Recognition Datasets

Some aspects of the above mentioned datasets limit their applicability, including: a

lack of naturalness, unbalanced emotion content, unmeasured confounding variables, small

size, small number of speakers, and presence of background noise. These datasets are also

limited in the number of modalities they use, usually relying on visual and acoustic/lexical

information.
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2.1.1 Recorded Modalities

As shown in Table 2.1, the most common modalities are video, acoustics, and text.

In addition to these modalities, we chose to record two more modalities: thermal and

physiological. Previous research has shown that thermal recordings perform well as non-

invasive measurement of physiological markers like, cardiac pulse and skin temperature

[173, 172, 80]. They have been shown to be correlated to stress symptoms, among other

physiological measures. We used the physiological modality to measure stress responses

[234, 210] to psychological stressors. This modality has been previously noted in literature

for measuring stress [96], usually measured in polygraph tests. We perform baseline

experiments to show that the modalities collected in the dataset are indeed informative for

identifying stress and emotion.

2.1.2 Lack of Naturalness

A common data collection paradigm for emotion is to ask actors to portray particular

emotions. These are usually either short snippets of information [36], a single sentence in a

situation [38], or obtained from sitcoms and rehearsed broadcasts [47]. A common problem

with this approach is that the resulting emotion display is not natural [113]. These are more

exaggerated versions of singular emotion expression rather than the general, and messier,

emotion expressions that are common in the real world [12, 21, 72]. Further, expressions

in the real world are influenced by both conversation setting and psychological setting.

While some datasets have also collected spontaneous data [36, 38], these utterances, though

emotionally situated, are often neutral in content when annotated. The usual way to get

natural emotional data is to either collect data using specific triggers that have been known

to elicit a certain kind of response or to completely rely on in-the wild data, which however

often leads to unbalanced emotional content in the dataset [183].
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2.1.3 Unbalanced Emotion Content

In-the-wild datasets are becoming more popular [47, 118, 138]. The usual limitation

to this methodology is that, firstly, for most people, many conversations are neutral in

emotion expression. This leads to a considerable class imbalance [183]. To counter this

issue, MSP-Podcast [143] deals with unbalanced content by pre-selecting segments that are

more likely to have emotional content. Secondly, data collected in particular settings, e.g.,

therapy [162], or patients with clinical issues [130] comprise mostly of negative emotions

because of the recruitment method used in the collection protocol.

2.1.4 Presence of Interactional Variables

The common way of inducing emotions involves either improvisation prompts or scripted

scenarios. Emotion has been shown to vary with a lot of factors that are different from

the intended induction [198, 240, 156]. These factors in general can be classified into: (a)

recording environment confounders and (b) collection confounders. Recording environment-

based variables hamper the models’ ability to to learn the emotion accurately. These can be

environment noise [16], placement of sensors or just ambient temperature [31].
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2.1.5 Demographics in Dataset Collection Recruitment

The data collection variations influence both the data generation and data annotation

stages. The most common confounders are gender, i.e., ensuring an adequate mix of male vs

female, and culture, i.e., having a representative sample to train a more general classifier.

Another confounding factor includes personality traits [242], which influence how a person

both produces [242] and perceives [158] emotion. Another confounder that can occur at

the collection stage is the familiarity between the participants, like RECOLA [183], which

led to most of the samples being mainly positive due to the colloquial interaction between

the participants. They also do not account for the psychological state of the participant.

Psychological factors such as stress [132], anxiety [229] and fatigue [26] have been shown

previously to have significant impact on the display of emotion. But the relation between

these psychological factors and the performance of models trained to classify emotions in

these situations has not been studied.

2.2 Crowdsourcing and Context in Emotion Recognition

Crowdsourcing has emerged as a highly efficient approach for gathering dependable

emotion labels, as extensively investigated by Burmania et al. [33]. In addition to this,

previous studies have concentrated on enhancing the dependability of annotations by

employing quality-control methods. For instance, Soleymani et al. [201] have proposed the

utilization of qualification tests to weed out spammers from the crowd, thereby ensuring

the quality of collected data. Furthermore, Burmania et al. [35] have explored the use of

gold-standard samples to continuously monitor the reliability and fatigue levels of annotators.

The interpretation of emotions is heavily influenced by the context in which they

are expressed. Various factors such as tone, choice of words, and facial expressions

can significantly impact how individuals perceive and understand emotions [129]. It is

noteworthy that this contextual information is implicitly incorporated in the labeling schemes
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of commonly used emotion datasets like IEMOCAP [36] and MSP-Improv [38]. However, a

notable disparity often exists between the information available to human annotators and

that accessible to emotion classification systems. This discrepancy arises because emotion

recognition systems are typically trained on individual utterances [10, 3, 157, 190].

2.3 Handling Confounding Factors

2.3.1 Singularly Labeled or Unlabeled Factors

To address confounding factors that are either labeled singularly or cannot be labeled,

researchers have devised specific methods. For instance, Ben-David et al. [23] conducted

a study wherein they showed that a sentiment classifier, trained to predict the sentiment

expressed in reviews, could also implicitly learn to predict the category of the products

being reviewed. This finding highlights the potential of classifiers to capture additional

information beyond their primary task. In a similar vein, Shinohara [196] employed an

adversarial approach to train noise-robust networks for automatic speech recognition. By

leveraging this technique, Shinohara aimed to enhance the network’s ability to handle noisy

and distorted speech signals.

2.3.2 Explicitly Labeled Factors

In addition to addressing confounding factors that are singularly or unlabeled, researchers

have also developed methods to handle confounding factors that are explicitly labeled during

the data collection process. One such approach involves the use of adversarial multi-task

learning, which aims to mitigate variances caused by speaker identity [153]. By incorporating

this technique, researchers can reduce the influence of speaker-specific characteristics on

the emotion recognition system, thereby enhancing its generalizability. Furthermore, a

similar approach has been employed to prevent networks from learning publication source

characteristics, which could introduce biases in the classification process [149]
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2.4 Noise and Approaches to Dealing with it in Machine Learning

Models

The impact of noise on machine learning models has been the subject of extensive research,

which can be broadly classified into three main directions: robustness in automatic speech

recognition, noise-based adversarial example generation, and performance improvement

through model augmentation with noise.

One area of focus is the robustness of models in automatic speech recognition (ASR) when

exposed to noisy environments. Researchers have explored various techniques to enhance

the performance of ASR systems in the presence of noise. This includes the development

of noise-robust feature extraction methods, such as mel-frequency cepstral coefficients

(MFCCs) and perceptual linear prediction (PLP) features [135]. These techniques aim to

minimize the impact of noise on the accuracy of speech recognition systems, enabling them

to effectively operate in real-world, noisy conditions.

Another line of research involves the generation of noise-based adversarial examples,

which are intentionally crafted to deceive machine learning models. Adversarial attacks

exploit vulnerabilities in models by adding imperceptible noise to input samples, causing the

models to misclassify or produce incorrect outputs. Carlini and Wagner [42] and Gong et

al. [89] have proposed methodologies for generating adversarial audio examples that can fool

ASR systems. These techniques highlight the importance of understanding and addressing

the susceptibility of machine learning models to adversarial noise.

Furthermore, researchers have explored the potential benefits of incorporating noise

during the training and augmentation process of machine learning models. By augmenting

the training data with various types of noise, models can become more robust and adaptable

to real-world conditions. For instance, Sohn et al. [200] and Wallace et al. [224] have

investigated the effectiveness of noise augmentation techniques in improving the performance

of models across different tasks. These methods aim to enhance model generalization and
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reduce overfitting, ultimately leading to better model performance in noise-affected scenarios.

While evaluating model robustness to noise or adversarial attacks, researchers commonly

introduce noise into the dataset and assess the model’s performance [5]. However, when

it comes to emotion recognition, introducing noise while ensuring that the perception of

emotions remains intact can be highly challenging. It is crucial to strike a balance between

adding noise for robustness evaluation purposes and preserving the original emotional

content. This ensures that the introduced noise does not distort or alter the true emotional

expression, enabling accurate and reliable emotion recognition systems.

2.5 Unintentional Sensisitve Variable Encoding, and Ethical Consider-

ations in Data Collection and Neural Networks

The preservation of privacy in data collection has been a key area of focus in early

research. Various methods such as rule-based systems and the introduction of background

noise have been explored in order to achieve this goal [88, 69]. However, more recent

studies have shifted their attention towards privacy preservation in the context of neural

networks. In particular, researchers have primarily concentrated on ensuring that the input

data used in these networks are not memorized and cannot be retrieved even when the model

is deployed [41, 2].

Another crucial consideration in the field of privacy preservation is fair algorithmic

representation. The objective here is to develop networks that are invariant to specific

attributes, often related to demographic information, in order to ensure fairness [29, 59, 61].

Although certain methods have demonstrated promise in achieving fairness, they may still

inadvertently lead to privacy violations [108].
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2.6 The Role of Interpretability in Model Trustworthiness

The aspect of interpretability plays a crucial role in establishing trustworthiness of

models. Studies have indicated that individuals are more inclined to trust the decisions made

by a model if its explanations align with their own decision-making processes [203, 73, 195].

In addition, interpretability methods can be employed by model designers to evaluate and

debug a trained model [68]. These methods provide insights into the inner workings of the

model and facilitate a better understanding of its decision-making process.

2.7 Automating Human in the Loop Feedback

In order to automate human in the loop feedback, several approaches have been proposed.

One such approach involves the utilization of a teacher-student feedback model, where

feedback from human teachers is used to improve the performance of the model [179].

Another avenue of research focuses on enhancing active learning techniques, which aim to

select the most informative data points for annotation by human experts, thereby reducing

the overall labeling effort required [115].

These methods often incorporate a combination of fine-tuning and prompt-based learning

techniques, which further enhance the model’s ability to learn from human feedback and

adapt its performance accordingly [217]. By fine-tuning the model based on the feedback

received and utilizing prompts as guiding cues, these approaches enable the model to

continually improve its performance, making it more effective in addressing the specific task

or problem at hand.

2.8 Generalizability in Emotion Recognition

Achieving generalizability in emotion recognition poses a significant challenge for

researchers. To address this challenge, various methods have been explored in order to obtain

models that can generalize well across different datasets and scenarios. One approach is the
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use of combined and cross-dataset training, where multiple datasets are combined during

the training process to create a more comprehensive and diverse training set. This helps

the model learn a wider range of emotion patterns and improves its ability to generalize to

unseen data [137].

Another technique that has been investigated is transfer learning, which involves lever-

aging knowledge acquired from pre-trained models on a related task and applying it to

the emotion recognition task. By transferring the learned representations and weights

from a pre-trained model, the model can benefit from the general knowledge and feature

extraction capabilities it has acquired, leading to improved generalizability in emotion

recognition [137].

Furthermore, researchers have also explored the concept of generalizability from the

perspective of noisy signals. Emotion recognition often deals with noisy data, such as speech

with background noise or facial expressions with occlusions. By developing models that are

robust to such noise and can effectively extract emotion-related information from imperfect

signals, the generalizability of the models can be enhanced [93].

2.9 Conclusion

The field of emotion recognition is complex, with many factors and considerations

influencing the development and deployment of effective models. This chapter has explored

some of the key areas in this field, highlighting the importance of crowdsourcing, context,

handling confounding factors, dealing with noise, and ensuring that the representations

don’t inadverdently encode sensitive demographic or membership information. The role of

interpretability in model trustworthiness and the challenge of automating human in the loop

feedback were also discussed. Although progress has been made in many of these areas, the

challenge of generalizability in emotion recognition remains, and future research will need

to continue to address this issue.
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CHAPTER III

Datasets and Pre-processing

This thesis focusses on emotion recognition as a task. For this purpose, we use a

standard set of datasets and features as described in this chapter. This allows us to perform

experiments with a set of known and commonly used datasets, keeping them uniform across

experimental variables.

3.1 Datasets Used In Thesis

In the past years, there have been multiple emotional databases collected and curated to

develop better emotion recognition systems. Table 2.1 shows the major corpora that are used

for emotion recognition.

3.1.1 IEMOCAP

The IEMOCAP dataset was created to explore the relationship between emotion, gestures,

and speech. Pairs of actors, one male and one female (five males and five females in total),

were recorded over five sessions. Each session consisted of a pair performing either a series

of given scripts or improvisational scenarios. The data were segmented by speaker turn,

resulting in a total of 10,039 utterances (5,255 scripted turns and 4,784 improvised turns).
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3.1.2 MSP-Improv

The MSP-Improv dataset was collected to capture naturalistic emotions from improvised

scenarios. It partially controlled for lexical content by including target sentences with fixed

lexical content that are embedded in different emotional scenarios. The data were divided

into 652 target sentences, 4,381 improvised turns (the remainder of the improvised scenario,

excluding the target sentence), 2,785 natural interactions (interactions between the actors in

between recordings of the scenarios), and 620 read sentences for a total of 8,438 utterances.

3.1.3 MSP-Podcast

The MSP-Podcast dataset was collected to build a naturlisitic emotionally balanced

speech corpus by retrieving emotional speech from existing podcast recordings. This was

done using machine learning algorithms, which along with a cost-effective annotation

process using crowdsourcing, led to a vast and balanced dataset. We use a pre-split part of

the dataset which has been identified for gender of the speakers which comprises of 13,555

utterances. The dataset as a whole contains audio recordings.

3.1.4 MuSE

The MuSE dataset consists of recordings of 28 University of Michigan college students,

9 female and 19 male, in two sessions: one in which they were exposed to an external

stressor (final exams period at University of Michigan) and one during which the stressor

was removed (after finals have concluded). Each recording is roughly 45-minutes. We

expose each subject to a series of emotional stimuli, short-videos and emotionally evocative

monologue questions. These stimuli are different across each session to avoid the effect

of repetition, but capture the same emotion dimensions. At the start of each session, we

record a short segment of the user in their natural stance without any stimuli, to establish a

baseline. We record their behavior using four main recording modalities: 1) video camera,

both close-up on the face and wide-angle to capture the upper body, 2) thermal camera,
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close-up on the face, 3) lapel microphone, 4) physiological measurements, in which we

choose to measure heart rate, breathing rate, skin conductance and skin temperature (Figure

4.1). The data include self-report annotations for emotion and stress (Perceived Stress Scale,

PSS) [56, 57], as well as emotion annotations obtained from Amazon Mechanical Turk

(AMT). To understand the influence of personality on the interaction of stress and emotion,

we obtain Big-5 personality scores [87], which was filled by 18 of the participants, due to

the participation being voluntary.

3.2 Data Pre-Processing

We use these features consistently across the thesis to have a standardized set of inputs,

aiming to avoid variability that comes from different labelling or pre-processing schemas.

Our preprocessing corresponds to converting Likert scale emotion annotations to classes

based on quartiles. The feature processing has 2 components, acoustic and lexical, for

training, testing or fine-tuning speech-only, text-only or bimodal models.

3.2.1 Emotion Labels

Each utterance in the MuSE dataset was labeled for activation and valence on a nine-point

Likert scale by eight crowd-sourced annotators [105], who observed the data in random

order across subjects. We average the annotations to obtain a mean score for each utterance,

and then bin the mean score into one of three classes, defined as, {“low”: [min, 4.5], “mid”:

(4.5, 5.5], “high”: (5.5, max]}. The resulting distribution for activation is: {“high”: 24.58%,

“mid”: 40.97% and “low”: 34.45%} and for valence is {“high”: 29.16%, “mid”: 40.44%

and “low”: 30.40%}. Utterances in IEMOCAP and MSP-Improv were annotated for valence

and activation on a five-point Likert scale. The annotated activation and valence values were

averaged for an utterance and binned as: {“low”: [1, 2.75], “mid”: (2.75, 3.25], “high”:

(3.25, max]}
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3.2.2 Stress Labels

Utterances in the the MuSE dataset include stress annotations, in addition to the activation

and valence annotations. The stress annotations for each session were self-reported by the

participants using the Perceived Stress Scale (PSS) [58]. We perform a paired t-test for

subject wise PSS scores, and find that the scores are significantly different for both sets

(16.11 vs 18.53) at 𝑝 < 0.05. This especially true for question three (3.15 vs 3.72), and

hence, we double the weightage of the score for this question while obtaining the final

sum. We bin the original nine-point adjusted stress scores into three classes, {“low”: (min,

mean−2], “mid”: (mean−2, mean+2], “high”: (mean+2, max]}. We assign the same stress

label to all utterances from the same session. The distribution of our data for stress is “high”:

40.33%, “mid”: 25.78% and “low”: 38.89%

Improvisation Labels. Utterances in the IEMOCAP dataset were recorded in either

a scripted scenario or an improvised one. We label each utterance with a binary value

{“scripted”, “improvised”} to reflect this information.

3.3 Lexical and Acoustic Feature Extraction

3.3.1 Acoustic

We use Mel Filterbank (MFB) features, which are frequently used in speech processing

applications, including speech recognition, and emotion recognition [116, 126]. We extract

the 40-dimensional MFB features using a 25-millisecond Hamming window with a step-size

of 10-milliseconds. As a result, each utterance is represented as a sequence of 40-dimensional

feature vectors. We 𝑧-normalize the acoustic features by session for each speaker.

3.3.2 Lexical

We have human transcribed data available for MuSE and IEMOCAP. We use the word2vec

representation based on these transcriptions, which has shown success in sentiment and
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emotion analysis tasks [121]. We represent each word in the text input as a 300-dimensional

vector using a pre-trained word2vec model [155], replacing out-of-vocab words with the

⟨𝑢𝑛𝑘⟩ token. Besides, we also incorporate BERT embeddings for enhanced contextual

understanding. These embeddings, generated from the pre-trained BERT model, provide

deep, bidirectional representations by understanding the text context from both directions.

Each utterance is eventually represented as a sequence of 768-dimensional feature vectors.

We use just acoustic inputs for MSP-Improv because human transcriptions are not available.
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CHAPTER IV

Emotion Recognition Dataset: MuSE

4.1 Motivation and Contributions

Endowing automated agents with the ability to provide support, entertainment and

interaction with human beings requires sensing of the users’ affective state. These affective

states are impacted by a combination of emotion inducers, current psychological state, and

various contextual factors. Although emotion classification in both singular and dyadic

settings is an established area, the effects of these additional factors on the production and

perception of emotion is understudied. This chapter presents a dataset, Multimodal Stressed

Emotion (MuSE), to study the multimodal interplay between the presence of stress and

expressions of affect. We describe the data collection protocol, the possible areas of use,

and the annotations for the emotional content of the recordings. The chapter also presents

several baselines to measure the performance of multimodal features for emotion and stress

classification.

4.2 Introduction

Virtual agents have become more integrated into our daily lives than ever before [144].

For example, Woebot is a chatbot developed to provide cognitive behavioral therapy to a

user [74]. For this chatbot agent to be effective, it needs to respond differently when the user
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is stressed and upset versus when the user is calm and upset, which is a common strategy in

counselor training [213]. While virtual agents have made successful strides in understanding

the task-based intent of the user, social human-computer interaction can still benefit from

further research [54]. Successful integration of virtual agents into real-life social interaction

requires machines to be emotionally intelligent [27, 238].

But humans are complex in nature, and emotion is not expressed in isolation [90]. Instead,

it is affected by various external factors. These external factors lead to interleaved user

states, which are a culmination of situational behavior, experienced emotions, psychological

or physiological state, and personality traits. One of the external factors that affects

psychological state is stress. Stress can affect everyday behavior and emotion, and in

severe states, is associated with delusions, depression and anxiety due to impact on emotion

regulation mechanisms [122, 193, 216, 225]. Virtual agents can respond in accordance to

users’ emotions only if the machine learning systems can recognize these complex user

states and correctly perceive users’ emotional intent. We introduce a dataset designed to

elicit spontaneous emotional responses in the presence or absence of stress to observe and

sample complex user states.

There has been a rich history of visual [235, 111], speech [143], linguistic [207], and

multimodal emotion datasets [38, 36, 183]. Vision datasets have focused both on facial

movements [111] and body movement [131]. Speech datasets have been recorded to capture

both stress and emotion separately but do not account for their inter-dependence [185, 97,

127, 243]. Stress datasets often include physiological data [234, 210].

Existing datasets are limited because they are designed to elicit emotional behavior,

while neither monitoring external psychological state factors nor minimizing their impact

by relying on randomization. However, emotions produced by humans in the real world

are complex. Further, our natural expressions are often influenced by multiple factors (e.g.,

happiness and stress) and do not occur in isolation, as typically assumed under laboratory

conditions. The primary goal of this work is to collect a multimodal stress+emotion dataset
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Figure 4.1: Experimental Protocol For Recording

– Multimodal Stressed Emotion (MuSE) – to promote the design of algorithms that can

recognize complex user states.

For MuSE, The extracted features for each modality, and the anonymized dataset (other

than video) will be released publicly along with all the corresponding data and labels. We

present baseline results for recognizing both emotion and stress in the chapter, in order

to validate that the presence of these variables can be computationally extracted from the

dataset, hence enabling further research.

4.3 MuSE Dataset

4.3.1 Experimental Protocol

We collect a dataset that we refer to as Multimodal Stressed Emotion (MuSE) to facilitate

the learning of the interplay between stress and emotion. The protocol for data collection is

shown in Figure 4.1. There were two sections in each recording: monologues and watching

emotionally evocative videos. We measure the stress level at the beginning and end of

each recording. The monologue questions and videos were specifically chosen to cover all
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categories of emotions. At the start of each recording, we also recorded a short one-minute

clip without any additional stimuli to register the baseline state of the subject.

Previous research has elicited situational stress such as public speaking [123, 85, 8],

mental arithmetic tasks [139] or use Stroop Word Test [215]. However, these types of stress

are often momentary and fade rapidly in two minutes [139]. We alleviate this concern by

recording both during and after final exams (we anticipate that these periods of time are

associated with high stress and low stress, respectively) in April 2018. We measure stress

using Perceived Stress Scale [57] for each participant. We measure their self-perception of

the emotion using Self-Assessment Manikins (SAM) [30]. The recordings and the survey

measures were coordinated using Qualtrics1 enabling us to ensure minimal intervention and

limit the effect of the presence of another person on the emotion production.

Each monologue section comprised of five questions broken into sections meant to

elicit a particular emotion (Table 4.1). These questions were shown to elicit thoughtful and

emotional responses in their data pool to generate interpersonal closeness [11]. We include

an icebreaker and ending question to ensure cool off periods between change in recording

section, i.e., from neutral to monologues, and from monologues to videos, hence decreasing

the amount of carry-over emotion from the previous monologue to the next. Each subject

was presented with a different set of questions over the two recordings to avoid repetition

effect. We also shuffle the order of the other three questions to account for order effects [133].

Each subject was asked to speak for a minimum of two minutes. After their response to

each question, the subjects marked themselves on two emotion dimensions: activation and

valence on a Likert Scale of one to nine using self-assessment manikins [30].

For the second part of the recording, the subjects were asked to watch videos in each of

the four quadrants i.e., the combination of {low, high} × {activation, valence} of emotion.

These clips were selected from the corpus [140, 20], which tested for the emotion elicited

from the people when watching these clips (Table 4.2). The subjects were monitored for

1umich.qualtrics.com
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their reaction to the clips. After viewing a clip, subjects are asked to speak for thirty seconds

about how the video made them feel. After their response, they marked a emotion category,

e.g., angry, sad, etc. for the same clip. When switching videos, the subjects were asked to

view a one-minute neutral clip to set their physiological and thermal measures back to the

baseline [189].

The 28 participants were also asked to fill out an online survey used for personality

measures on the big-five scale [87], participation being voluntary. This scale has been

validated to measure five different dimensions named OCEAN (openness, conscientiousness,

extraversion, agreeableness, and neuroticism) using fifty questions and has been found to

correlate with passion [60], ambition [19], and emotion mechanisms [181]. We received

responses for this survey from 18 participants. These labels can be used in further work

to evaluate how these personality measures interact with the affects of stress in emotion

production, as previously studied in [242].

4.3.2 Equipment Setup

The modalities considered in our setup are: thermal recordings of the subject’s face,

audio recordings of the subject, color video recording of the subject’s face, a wide-angle

color video recording the subject from the waist up and physiological sensors measuring

skin conductance, breathing rate, heart rate and skin temperature. For these modalities we

have set up the following equipment:

1. FLIR Thermovision A40 thermal camera for recording the close-up thermal

recording of the subject’s face. This camera provides a 640x512 image in the thermal

infrared spectrum.

2. Raspberry Pi with camera module V2 with wide-angle lens used for the waist up

shot of the subject. We have chosen Raspberry Pi’s due to its low price and support

for Linux OS, which integrates easily into a generic setup.

3. Raspberry Pi with camera module V2 used to record the subject from the waist up.
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Table 4.1: Emotion elicitation questions.

Icebreaker

1. Given the choice of anyone in the world, whom would you want as a dinner guest?
2. Would you like to be famous? In what way?

Positive

1. For what in your life do you feel most grateful?
2. What is the greatest accomplishment of your life?

Negative

1. If you could change anything about the way you were raised, what would it be?
2. Share an embarrassing moment in your life.

Intensity

1. If you were to die this evening with no opportunity to communicate with anyone, what
would you most regret not having told someone?

2. Your house, containing everything you own, catches fire. After saving your loved ones and
pets, you have time to safely make a final dash to save any one item. What would it be?
Why?

Ending

1. If you were able to live to the age of 90 and retain either the mind or body of a 30-year old
for the last 60 years of your life, which would you choose?

2. If you could wake up tomorrow having gained one quality or ability, what would it be?

4. TASCAM DR-100 mk II used to record audio. We chose this product for its high

fidelity. It can record 24-bit audio at 48kHz.

5. ProComp∞-8 channel biofeedback and neurofeedback system v6.0 used to measure

blood volume pulse (BVP sensor), skin conductance (SC sensor), skin temperature (T

sensor), and abdominal respiration (BR sensor)

The equipment operator started and marked the synchronization point between video

and audio recordings using a clapper. Subsequent time stamps are recorded by the qualtrics

35



Table 4.2: Emotion elicitation clips.

Movie Description

Low Valence, Low Activation (Sad)

City of Angels Maggie dies in Seth’s arms
Dangerous Minds Students find that one of their classmates has died

Low Valence, High Activation (Anger)

Sleepers Sexual abuse of children
Schindler’s List: Killing of Jews during WWII

High Valence, Low Activation (Contentment)

Wall-E Two robots dance and fall in love
Love Actually Surprise orchestra at the wedding

High Valence, High Activation (Amusement)

Benny and Joone Actor plays the fool in a coffee shop
Something About Mary Ben Stiller fights with a dog

Neutral

A display of zig-zag lines across the screen
Screen-saver pattern of changing colors

survey using subject click timings.

4.3.3 Post-processing

Splitting of the Recordings. Each modality is split into neutral recordings of one-minute,

five questions and four video recordings with associated monologues, resulting in fourteen

recordings for emotional content, thus 28 recordings per subject. In total we have 784

distinct recordings over five modalities, 28 subjects and two stress states, for a total of 3920

recording events. Temperatures are clamped to between 0𝑜C and 50𝑜C. This helps reduce

the size of the thermal recording files after being zipped.

Utterance Construction. The five monologues extracted above were divided into

utterances. However, since the monologues are a form of spontaneous speech, there are

no clear sentence boundaries marking end of utterance. We manually created utterances

by identifying prosodic or linguistic boundaries in spontaneous speech as defined by [125].
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Figure 4.2: Close-up view of the thermal and video recording equipment.

The boundaries used for this work are: (a) clear ending like a full stop or exclamation, (b) a

change in context after filler words or completely revising the sentence to change meaning,

or (c) a very long pause in thought. This method has been previously shown to be effective

in creating utterances that mostly maintain a single level of emotion [118].

The dataset contains 2,648 utterances with a mean duration of 12.44 ± 6.72 seconds

(Table 4.3). The mean length of stressed utterances (11.73 ± 5.77 seconds) is significantly

different (using two-sample t-test) from that of the non-stressed utterances (13.30 ± 6.73

seconds). We remove utterances that are shorter than 3-seconds and longer than 35-seconds

and end up retaining 97.2% of our dataset. This allows us to to avoid short segments that

may not have enough information to capture emotion, and longer segments that can have

variable emotion, as mentioned in [118]. Because our dataset is comprised of spontaneous

utterances, the mean length of utterance is larger than those in a scripted dataset [38] due to

more corrections and speech overflow.

Stress State Verification. We perform a paired t-test for subject wise PSS scores,

and find that the mean scores are significantly different for both sets (16.11 vs 18.53) at

𝑝 < 0.05. This implied that our hypothesis of exams eliciting persistently more stress than
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normal is often true. In our dataset, we also provide levels of stress which are binned into

three categories based on weighted average (using questions for which the t-test score was

significant).

4.4 Emotional Annotation

4.4.1 Crowdsourcing

Crowdsourcing has previously been shown to be an effective and inexpensive method for

obtaining multiple annotations per segment [99, 34]. We posted our experiments as Human

Intelligence Tasks (HITs) on Amazon Mechanical Turk and used selection and training

mechanisms to ensure quality [106]. HITs were defined as sets of utterances in a monologue.

The workers were presented with a single utterance and were asked to annotate the activation

and valence values of that utterance using Self-Assessment Manikins [30]. Unlike the

strategy adopted in [47], the workers could not go back and revise the previous estimate of

the emotion. We did this to ensure similarity to how a human listening into the conversation

might shift their perception of emotion in real time. These HITs were presented in either the

contextual or the random presentation condition defined below.

In the contextual experiment, we posted each HIT as a collection of ordered utterances

from each section of a subject’s recording. Because each section’s question was designed to

elicit an emotion, to randomize the carry-over effect in perception, we posted the HITs in a

random order over the sections from all the subjects in our recording. For example, a worker

might see the first HIT as Utterance 1...N from Section 3 of Subject 4’s stressed recording and

see the second HIT as Utterance 1...M from Section 5 of Subject 10’s non-stressed recording

where N, M are the number of utterances in those sections respectively. This ensures that the

annotator adapts to the topic and fluctuations in speaking patterns over the monologue being

annotated.

In the randomized presentation, each HIT is an utterance from any section, by any speaker,
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Table 4.3: Data summary (R:random, C:context, F:female, M:male).

Monologue Subset

Mean no. of utterances/monologue 9.69 ± 2.55
Mean duration of utterances 12.44 ± 6.72 seconds
Total no. of utterances 2,648
Selected no. of utterances 2,574
Gender distribution 19 (M) and 9 (F)
Total annotated speech duration ∼ 10 hours

Crowdsourced Data

Num of workers 160 (R) and 72 (C)
Blocked workers 8

Mean activation 3.62±0.91 (R)
3.69±0.81 (C)

Mean valence 5.26±0.95 (R)
5.37±1.00 (C)

in random order. So, a worker might see the first HIT as Utterance 11 from Section 2 of

Subject 1’s stressed recording monologue and see the second HIT as Utterance 1 from Section

5 of Subject 10’s non-stressed monologue recording. We use this method of randomization

to ensure lack of adaptation to both speaker specific style and the contextual information.

The per-utterance and the contextual labels can be used to train different machine learning

models that are apt for either singular one-off instances or for holding multiple turn natural

conversation, respectively.

4.4.2 Emotion Content Analysis

We show the distribution of the annotations received in both the random and contextual

setting in Table 4.3 and Figure 4.3. The labels obtained for our dataset form a distribution

that mostly covers negative and neutral levels of activation, and all but extremities for valence.

This can also be seen in the data summary in Table 4.3. We performed a paired t-test between

the labels obtained from random vs contextual presentation and found that these labels are

significantly different (using paired t-test at 𝑝 < 0.05 for both activation and valence for

utterances in the non-stressed situation). Although the obtained labels are significantly
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Figure 4.3: Distribution of the activation and valence ratings in random labeling scheme (on
left) and contextual labeling scheme (on right).

different for valence in the stressed category using the same method as above, the same does

not hold true for the activation annotations in this category.

4.5 Experiments

In this section, we describe our baseline experiments for predicting emotion and stress

in the recorded modalities. We have a more granular marked annotation of emotion, i.e.,

over each utterance, as compared to stress over the complete monologue. Hence, we extract

features for each modality over continuous one second frame intervals for predicting stress,

and over the complete utterance for emotion. Audio and lexical features are still extracted

over a complete utterance for stress due to higher interval of variation over time.

4.5.1 Evaluation of Emotion Recognition

We use the following set of features for our baseline models:

1. Acoustic Features. We extract acoustic features using OpenSmile [71] with the

eGeMAPS configuration [70]. The eGeMAPS feature set consists of 88 utterance-
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Figure 4.4: An overview of the instructions provided to the annotators for annotating an
utterance.

level statistics over the low-level descriptors of frequency, energy, spectral, and cepstral

parameters. We perform speaker-level 𝑧-normalization on all features.

2. Lexical Features. We extract lexical features using Linguistic Inquiry and Word Count

(LIWC) [174]. These features have been shown to be indicative of stress, emotion,

veracity and satisfaction [86, 161, 164]. We normalize all the frequency counts by the

total number of words in the sentence accounting for the variations due to utterance

length.

3. Thermal Features. For each subject a set of four regions were selected in the thermal

image: the forehead area, the eyes, the nose and the upper lip as previously used

in [172, 80, 6]. These regions were tracked for the whole recording and a 150-bin

histogram of temperatures was extracted from the four regions per frame, i.e., 30

frames a second for thermal recordings. We further reduced the histograms to the

first four measures of central tendency, e.g. Mean, Standard Deviation, Skewness and

Kurtosis. We combined these features over the utterance using first delta measures

(min, max, mean, SD) of all the sixteen extracted measures per frame, resulting in 48

measures in total.
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Figure 4.5: Annotation scale used by MTurk workers to annotate the emotional content of
the corpus. They annotate valence and activation for each utterance.

4. Close-up Video Features. We use OpenFace [15] to extract the subject’s facial action

units. The AUs used in OpenFace for this purpose are AU1, AU2, AU4, AU5, AU6,

AU7, AU9, AU10, AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26, AU28 and

AU25 comprising of eyebrows, eyes and mouth. These features have been previously

shown to be indicative of emotion [227, 64] and have been shown to be useful for

predicting deception [110]. We summarize all frames into a feature using summary

statistics (maximum, minimum, mean, variance, quantiles) across the frames and

across delta between the frames resulting in a total of 144 dimensions.

Network Setup. We train and evaluate multiple unimodal Deep Neural Networks (DNN)

models for predicting valence and activation using Keras [91]. [106] have shown that a match

between the context provided to the classifier and the annotator leads to better classification

performance. Because we are performing single utterance classification, for all further

experiments, we use the annotations obtained in a random manner as mentioned above. In

all cases, we predict the continuous annotation using regression.

We also use an ensemble of these four networks (audio, lexical, visual and thermal) to

measure multimodal performance. For each network setup, we follow a five-fold subject
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Table 4.4: RMSE for emotion classification models using multiple modalities. Significance
established at 𝑝 < 0.05.

Activation Valence

Unimodal Models

Acoustic (A) 1.004∗ 1.122
Lexical (L) 1.343 0.980
Close Video (V) 1.111 0.879∗∗
Thermal (T) 2.012 1.565

Ensemble

A+L 0.987 0.981
A+V 0.970 0.899
L+V 0.981 0.901
A+L+V 0.972 0.856∗
A+L+V+T (All) 0.961∗ 0.868

independent evaluation scheme and report the average RMSE across the folds. For each

test-fold, we use the previous fold for hyper-parameter selection and early stopping. The

hyper-parameters include: number of layers {2, 3, 4} and layer width {64, 128, 256}. We

use ReLU activation and train the networks with MSE loss using the Adam optimizer.

We train our networks for a maximum of 50 epochs and monitor the validation loss

after each epoch. We perform early stopping if the loss doesn’t decrease for 15 consecutive

epochs. We save the weights that achieved the lowest validation performance during training.

We train each network five times with different seeds and average the predictions to account

for variations due to random initialization.

Results. We show our results in Table 4.4. We find that between acoustic and lexical

modalities, the acoustic modality carries more information about activation and the lexical for

valence. This is in line with previous research [232, 39]. We also note that the visual modality

significantly outperforms both the speech and lexical modalities for valence prediction.

When we merge these networks using late voting on each modality (decision fusion), we

find that the combination of all modalities performs the best for predicting activation. But

43



for predicting valence, the best performance is shown by the combination of acoustic, lexical,

visual and thermal modalities. We believe this is true because previous work has shown that

thermal features are mostly indicative of intensity and discomfort [94] and hence improves

performance on activation prediction, while the visual expressions are most informative

about valence [186].

4.5.2 Evaluation of Presence of Stress

We use the following set of features for our baseline models. Given that stress vs

non-stressed state is classified for the complete section (monologue or neutral recording),

we extract visual features differently to use the the sequential information over the whole

segment, i.e., a monologue. We also use physiological features for our network, since we

found that even though they are highly variable over shorter segments (utterances), they are

informative for recognizing physiological state on a whole section.

1. Acoustic, Lexical, and Thermal Features. We use the same features as extracted for

predicting emotion.

2. Wide-angle Video Features. We extract the subject’s pose using OpenPose [40, 199,

228] at 25 frames per second. For each frame, we extract 14 three-dimensional points

representing anchor points for the upper body. For classification of each 3D point is

interpolated over one second using a 5𝑡ℎ order spline [167, 102]. The parameters of

the splines are then used as features for classification.

3. Close-up Video Features. We use OpenFace to extract the subject’s action units [15].

The features are extracted for every frame. In each frame, features include the gaze

direction vectors, gaze angles, 2D eye region landmarks, head locations, rotation

angles of the head, landmark locations, and facial action units. Landmarks locations

offset by the nose location. We window the data into segments of one-second windows

with 0.5 second overlap and calculate summary statistics (maximum, minimum, mean,
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Table 4.5: Baseline results for classifying stressed and non-stressed situations per time unit,
unless specified otherwise. A - Accuracy, P - Precision, R - Recall.

Recording Parts 𝐴 𝑃 𝑅 𝐹1
Thermal

Neutral 0.61 0.67 0.62 0.64
Questions 0.50 0.64 0.52 0.57

Wide-angle Video
Neutral 0.66 0.41 0.96 0.58
Questions 0.69 0.45 0.82 0.58

Close-up Video
Neutral 0.61 0.78 0.33 0.46
Questions 0.65 0.65 0.69 0.67

Physiological
Neutral 0.66 0.47 0.89 0.64
Questions 0.70 0.55 0.88 0.67

Audio - Per utterance
Questions 0.67 0.70 0.69 0.69

Text - Per utterance
Questions 0.60 0.74 0.61 0.67

Late Fusion - Voting
Questions 0.60 0.74 0.61 0.67

variance). We retain the top 300 features based on the F values between the training

features and corresponding labels (stressed vs non-stressed).

4. Physiological Features. While the physiological features varied greatly per second to

be informative for emotion, they are informative for recognizing presence or absence

of stress. We consider the raw measurements for heart rate, breathing rate, skin

conductance and skin temperature and compute the first four measures of central

tendency, e.g. mean, standard deviation, skewness, and kurtosis.

Network. We train a DNN to perform binary classification, i.e., to recognize stressed

vs. non-stressed situation using ReLU as activation, with softmax as the classification

method.The final layer uses a soft-max activation. We train six different networks for

thermal, wide-angle video, close-up video, physiological, audio, and lexical modalities.

Each network is trained in a subject-independent manner. We train network to recognize
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stress vs non-stress situation in both neutral recording,i.e., when the subject isn’t speaking at

the beginning of the recording, and during emotional monologue questions. To do so, we

decide the final prediction by a majority vote over one-second predictions for the complete

section of the recording. For the lexical and acoustic modality, we train the network for

the question monologues, and decide the final prediction based on a majority vote over

prediction for each utterance.

Results. We report our results for prediction of stress vs non-stress situation using

various modalities in Table 4.5. We see that the captured modalities are indeed informative

for recognizing stress vs non-stressed situations. We find that for recognizing this distinction

when the subjects are speaking, audio and physiological features perform the best. This is in

agreement with previous related work [131, 234, 96]. Interestingly, we also find that the

thermal and physiological modality is apt at recognizing differences in stress, even in the

neutral recording, i.e., when the subject is not speaking. This advantage of thermal modality

has been previously documented by researchers [7, 173, 172, 80]. We find that answering

emotional monologue questions interferes with the recorded thermal modality, leading to a

poorer performance at stress recognition.

4.6 Conclusions and Future Work

In this chapter, we introduced a dataset that aims to capture the interplay between

psychological factors such as stress and emotion. While various other datasets have explored

the relationship between gender or personality measures and emotion production and

perception, the relationship between psychological factors and emotion is understudied from

a data collection point of view, and hence an automated modeling perspective.

We verified that the presence of emotion and stress can be detected in our dataset. Our

baseline results for emotion classification using DNNs with acoustic, linguistic and visual

features on our dataset are similar to reported results on other datasets such as IEMOCAP [36]

and MSP-Improv [38].
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CHAPTER V

Best Practices for Noise Based Augmentation in Emotion

Datasets

5.1 Motivation and Contributions

Speech emotion recognition is an important component of any human centered system.

But speech characteristics produced and perceived by a person can be influenced by a

multitude of reasons, both desirable such as emotion, and undesirable such as noise. To

train robust emotion recognition models, we need a large, yet realistic data distribution,

but emotion datasets are often small and hence are augmented with noise. Often noise

augmentation makes one important assumption, that the prediction label should remain

the same in presence or absence of noise, which is true for automatic speech recognition

but not necessarily true for perception based tasks. In this chapter we make three novel

contributions. We validate through crowdsourcing that the presence of noise does change

the annotation label and hence may alter the original ground truth label. We then show how

disregarding this knowledge and assuming consistency in ground truth labels propagates

to downstream evaluation of ML models, both for performance evaluation and robustness

testing. We end the chapter with a set of recommendations for noise augmentations in speech

emotion recognition datasets.

47



5.2 Introduction

Speech emotion recognition is increasingly included as a component in many real-world

human-centered machine learning models. Modulations in speech can be produced for a

multitude of reasons, both desirable and undesirable. In our case desirable modulations

encode information that we want our model to learn and be informed by, such as speaker

characteristics or emotion. Undesirable modulations encode information that are extrinsic

factors change with the environment, such as noise. In order to handle these modulations, we

need large datasets that capture the range of possible speech variations and their relationship

to emotion expression. But, such datasets are generally not available for emotion tasks. To

bridge this gap, researchers have proposed various methods to generate larger datasets. One

of the most common is noise augmentation. The baseline assumption of noise augmentation

is that the labels of the emotion examples do not change once noise has been added [169].

While this assumption can be confidently made for tasks such as automatic speech recognition

(ASR), the same cannot be said for perception-based tasks, such as emotion recognition.

In this chapter, we question the assumption that the annotation label remains the same in

the presence of noise. We first create a noise augmented dataset and conduct a perception

study to label the emotion of these augmented samples, focused on the type of noise in

samples whose perception has changed or remained the same given the agumentation. We

use the results from this study to classify the complete set of augmentation noises into two

categories, perception-altering (i.e., noises that may change the perception of emotion)

and perception-retaining (i.e., noises that do not change the perception of emotion). We

propose that the perception-altering noises should not be used in supervised learning or

evaluation frameworks because we cannot confidently maintain that the original annotation

holds for a given sample. We evaluate the effects of disregarding emotion perception changes

by examining how the performance of emotion recognition models and analyses of their

robustness change in unpredictable manners when we include samples that alter human

perception in the training of these models. Lastly, we provide a set of recommendations for
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noise based augmentation of speech emotion recognition datasets based on our results.

Researchers have considered the impact of noise on emotion perception and thereby the

annotation of emotions. [X] looked at how pink and white noises in varying intensities

change the perception of emotion. Another set of research has concentrated on training

and validating noise robust models with the assumption that intent label prediction remains

consistent in the presence of noise. For example, [X] have looked at training student teacher

models that aim to ignore the effect of noise introduced to the model. On the other hand [X]

have proposed copy pasting various emotion segments together along with neutral noise to

balance the classes in an emotion dataset, thus improving performance.

In this chapter, we claim that the standard assumption about perception and hence, label

retention of emotion in the presence of noise may not hold true in a multiple noise categories.

To understand which noises impact emotion perception, we use a common emotion dataset,

IEMOCAP and introduce various kinds of noises to it, at varying signal to noise ratio (SNR)

levels as well as at different positions in the sample. We then perform a crowdsourcing

experiment that asks workers to annotate their perception of emotion for both the clean and

the corresponding noise-augmented sample. This enables us to divide noise augmentation

options into groups characterized by their potential to either influence or not influence human

perception.

The results of the crowdsourcing experiments inform a series of empircal analyses focused

on model performance and model robustness. We first present an empirical evaluation of the

effects of including perception-altering noises in training. It will allow us to observe how the

inclusion of perception-altering noises creates an impression of performance improvement.

We will discuss how this improvement is a myth, this new model will have learned to predict

labels that are not truly associated with a given sample due to the perceptual effects of

these noises. We consider both a general recurrent neural network (RNN) model and an

end-to-end model for this purpose. We evaluate conditions in which novel augmentation

noises are either introduced during training (matched) or seen for the first time during testing
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(mismatched). The second empirical evaluation analyzes whether the gap in performance

between the matched and mismatched conditions can be bridged using noise robust modeling

techniques. The third and final evaluation is focused on the robustness of the model. It will

allow us to observe how the inclusion of these perception altering noises ultimately leads

to a model that is more susceptible to attack compared to a model that does not include

these noises. We train an attack model for robustness testing. It considers a pool of noises

and picks the best noise with a minimal SNR degradation that is able to change a model’s

prediction. We consider a condition in which the attack model has black-box access to the

trained model. The attack has a fixed number of allowed queries to the trained model, but not

the internal gradients or structure (i.e., the attack model can only provide input and can only

access the trained model’s prediction). We test and monitor the difference in the observed

robustness of these aforementioned models.

We find that the crowdsourced labels do change in the presence of some kinds of noise.

We then verify that the models perform worse on noisy samples when trained only on clean

datasets. But, we show that this decrease in performance is different when using the complete

set of noises for augmenting the test set vs. when only using the perception-retaining

noises for augmentation. We show similar patterns for noise-robust models, specifically

showing how there is an increased drop in performance for the end-to-end noise-robust

model when excluding performance-altering noises during augmentation. We then discuss

how our conventional metrics, those that look only at model performance, may be incorrectly

asserting improvements as the model is learning to predict an emotion measure that is not

in line with human perception. Troublingly, we find that the attack model is generally

more effective when it has access to the set of all noises as compared to when excluding

perception-altering noises for allowed augmentations. We also specifically find that given

just a pool of carefully crafted reverberation modulations, the attack model can be successful

in almost 65% of the cases with minimal degradation in SNR and in less than ten queries

to the trained model. We end the chapter with a general set of recommendations for noise
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augmentations in speech emotion recognition datasets.

5.3 Research Questions

In this chapter, we investigate five research questions:

Purpose 1: Premise Validation through Crowdsourcing

RQ1: Does the presence of noise affect emotion perception as evaluated by human raters?

Is this effect dependent on the utterance length, loudness, the type of the added noise, and

the original emotion?

Reason: Noise has been known to have masking effect on humans in specific situations.

Hence, humans can often understand verbalized content even in presence of noise. Our goal

is to understand whether the same masking effect extends to paralinguistic cues such as

emotion, and to what extent. Our continuing claim from hereon remains that only noises that

do not change human perception should be used for the training and evaluation of machine

learning models. Not doing so, can lead to gains or drops in performance measurement that

may not actually extend to real world settings. We call these changes ”unverified” because

we cannot, with certainity, be sure that the model should have predicted the original label

(i.e., the label of the sample before noise was added) because the human did not neccessarily

label the noisy instance with that same label.

Purpose 2: Noise Impact Quantification

RQ2: Can we verify previous findings that the presence of noise affects the performance of

emotion recognition models? Does this effect vary based on the type of the added noise?

Reason: We have known that presence of noise in data shifts the data distribution [50].

This shift often leads to poor performance by machine learning models. We aim to quantify

the amount of performance drop based on the type of noise in these systems, both, for

any kind of noise, and then, specifically for noises that do not change human perception

(perception-retaining).

Purpose 3: Denoising and Augmentation Benefits Evaluation
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RQ3: Does dataset augmentation (Q3a) and/or sample denoising (Q3b) help improve the

robustness of emotion recognition models to unseen noise?

Reason: We test whether the commonly-used methods for improving the performance

of these models under distribution shifts is helpful. We focus on two main methods,

augmentation and denoising. We specifically look at how performance changes when we

augment with noises that include those that are perception-altering vs. when we exclude

such noises.

Purpose 4: Model Robustness Testing Conditions

RQ4: How does the robustness of a model to attacks compare when we are using test

samples that with are augmented with perception-retaining noise vs. samples that are

augmented with all types of noise, regardless of their effect on perception?

Reason: Another major metric for any deployable machine learning algorithm is its

performance on ”unseen situations” or handling incoming data shifts (i.e., robustness testing).

We test robustness using a noise augmentation algorithm that aims to forcefully and efficiently

change a model’s output by augmenting test samples with noise. We look at how often this

algorithm is unsuccessful in being able to ”fool” a model with its augmented samples. We

look at the changes in frequency with which a model is successfully able to defend itself

when the attack algorithm uses a set that includes all types of noises vs. when it only uses

perception-retaining noises.

Purpose 5: Recommendations

RQ5: What are the recommended practices for speech emotion dataset augmentation and

model deployment?

Reason: We then provide a set of recommendations based on our empirical studies for

deploying emotion recognition models in real world situations.
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5.4 Noise

We investigate the effects of two types of noise, environmental and signal distortion.

Environmental noises are additive, while signal distortion noise involves other types of

signal manipulation.

5.4.1 Environmental Noise

We define environmental noises (ENV) as additive background noise, obtained from the

ESC-50 dataset[176]1. ESC-50 is generally used for noise contamination and environmental

sound classification [231]. These environmental sounds are representative of many types of

noise seen in real world deployments, especially in the context of virtual and smart home

conversational agents. We use the following categories:

• Natural soundscapes (Nat), e.g., rain, wind.

• Human, non-speech sounds (Hum), e.g., sneezing, coughing, laughing or crying in the

background etc.

• Interior/domestic sounds (Int), e.g., door creaks, clock ticks etc.

We manipulate three factors when adding the noise sources:

• Position: The position of the introduction of sound that: (i) starts and then fades out

in loudness or (ii) occurs during the entirety of the duration of the utterance. In the

second case, this complete additive background would represent a consistent noise

source in real world (e.g., fan rotation).

• Quality Degradation: The decrease in the signal to noise ratio (SNR) caused by the

addition of the additive background noise at levels of 20dB, 10dB and 0dB. This is

used only when noise is added to the entirety of the utterance.
1https://github.com/karoldvl/ESC-50
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5.4.2 Signal Distortion

We define signal distortion noise as modulations that aren’t additive in the background.

These kinds of noise in the audio signal can occur from linguistic/paralinguistic factors,

room environment, internet lags, or the physical locomotion of the speaker.

We use the nine following categories:

• SpeedUtt: The utterance is sped up by either 1.25× or 0.75×.

• SpeedSeg: A random segment within an utterance is sped up by 1.25×. The package

pyAudio 2 that we used to speed up a segment did not permit slowing a segment down.

Thus, the 0.75× was not used here.

• Fade: The loudness of the utterance is faded by 2% every second, which emulates the

scenario of a user moving away from the speaker. The loudness is increased for fade

in, and decreased for fade out.

• Filler: Non-verbal short fillers such as ‘uh’, ‘umm’ (from the same speaker) are

inserted in the middle of a sentence. The insertion is either just the filler or succeeded

and preceded by a long pause 3.

• DropWord: A randomly selected set of non-essential words belonging to the set: {a,

the, an, so, like, and} are dropped from an utterance using word-aligned boundaries

and stiching the audio segments together.

• DropLetters: Following the same approach as drop word, letters are dropped

in accordance with various linguistic styles chosen from the set: {/h/+vowel,

vowel+/nd/+consonant(next word), consonant+/t/+consonant(next word),

vowel+/r/+consonant, /ihng/}. This is supported by research that has studied phono-

logical deletion or dropping of letters in the native US-English dialect [1, 237].

2https://people.csail.mit.edu/hubert/pyaudio/
3Fillers are obtained by parsing audio files for a given speaker and finding occurrences of any of the options

from the above mentioned set. We will release the extracted fillers per speaker for IEMOCAP
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• Laugh/Cry: “Sob” and “short-laughter” sounds are added to the utterance. They are

obtained from AudioSet [82].

• Pitch: The pitch is changed by ± 3 half octaves using the pyAudio library.

• Rev: Room reverberation is added to the utterance using py-audio-effects (pysndfx4).

We vary metrics such as reverberation ratio or room size to vary the type and intensity

of reverberation added.

5.4.3 Sampling and Noise-Perturbations

We randomly select 900 samples from the IEMOCAP dataset, which is far larger than

the ones used for previous perception studies [170, 191]. We select 100 samples from each

activation and valence pair bin, i.e., 100 samples from the bin with activation: low, valence:

low; 100 samples from the bin with activation: low, and valence: mid, and so on. This

ensures that the chosen 900 samples cover the range of emotions expressed. We impose

another constraint on these 100 samples from each bin, 30 of them are shorter than the

first quartile or greater than fourth quartile of utterance length in seconds to cover both

extremities of the spectrum, and the remaining 70 belong in the middle. We also ensure that

the selected samples had a 50-50 even split amongst gender. We introduce noise to the 900

samples (Section 3.1). Each sample is modulated in ten ways: four randomly chosen types

of environmental noise and six randomly chosen signal distortion noise modulations, giving

us a total of 9,000 noisy samples5.

5.5 User study

We first analyze the effects of noise on human perception by relabeling the noise-

enhanced data using the Amazon Mechanical Turk (AMT) platform. We use insights from

this experiment to guide the machine learning analyses that follow.

4https://github.com/carlthome/python-audio-effects
5We will release the script to create these files.
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5.5.1 Crowdsourcing Setup

We recruited 147 workers using Amazon Mechanical Turk who self-identify as being

from the United States and as native English speakers, to reduce the impact of cultural

variability. We ensured that each worker had > 98% approval rating and more than 500

approved Human Intelligence Tasks (HITs). We ensured that all workers understood the

meaning of activation and valence using a qualification task that asked workers to rank

emotion content similar to [105]. The qualification task has two parts: (i) we explain the

difference between valence and activation and how to identify those, and, (ii) we ask them to

identify which of the two samples has a higher/lower valence and a higher/lower activation,

to ensure that they have understood the concept of activation and valence annotations. All

HIT workers were paid a minimum wage ($9.45/hr), pro-rated to the minute. Each HIT was

annotated by three workers.

For our main task, we created pairs that contained one original and one modulated

sample. We then asked each worker to annotate whether or not they perceived the pair to

have the same emotion. If they said yes for both activation and valence, the noisy sample was

labeled same and they could directly move to the next HIT. If they said no, the noisy sample

was labeled different. In this case, they were asked to assess the activation and valence of

the noisy sample using Self Assessment Manikins [30] on a scale of [1, 5] (similar to the

original IEMOCAP annotation).

We also include three kinds of attention checks:

1. We show two samples that have not been modified and ask them to decide if the

emotion represented was different. If the person says yes, then the experiment ends.

2. We observe the time spent on the task. If the time spent on the task is less than the

combined length of both samples, then the user’s qualification to annotate the HITs is

rescinded and their responses are discarded.

3. We show two samples, one which has a gold standard label, and another, which has
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been contaminated with significant noise (performance degradation >30dB), such that

the resulting sample is incomprehensible. If people do not mark this set of samples as

being different, the experiment ends.

The failure rate based on the above criteria was 8%. We ensured the quality of the annotations

by paying bonuses based on time spent, not just number of HITs, and by disqualifying

annotators if they annotated any sample (including those outside of the attention checks)

more quickly than the combined length of the audio samples.

We then created two sets of labels for each noise-augmented clip. The first type of label

compared a noise-augmented clip to its original. The noise-augmented clip was labeled the

same if the modified and original clip were perceived to have the same valence or activation,

otherwise it was labeled different. We created this label by taking the majority vote over all

evaluations. The second type of label included valence and activation. A noise-augmented

clip was given the average valence and activation over all evaluations.

The inter-annotator agreement was measured using Cohen’s kappa. Conventionally, when

estimating Cohen’s kappa, annotators are not considered as individuals, instead reducing

annotators to the generic 1, 2, and 3. The challenge is that this often leads to artificially

inflated inter-annotator agreement because individual characteristics and behavior of a

particular worker are not taken under consideration [95]. We take a different approach,

creating a table for the calculation of the statistic that considers annotators as individuals

with separate entries for each clip, following the approach of [95]. If an annotator didn’t

evaluate a given clip, the cell has a null (missing data) value. We found that the Cohen’s

kappa was 79% for activation and 76% for valence 6.
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Pseudo-code for testing model robustness. Exit Code is Success when the
algorithm finds a noise-augmented version of the sample that the model
changes prediction for. Exit Code is Failure when the model maintains its

predictions over the any of the noise-augmented versions tried.
Randomly sample 1 noise variation from each category mentioned in Section 5.4.;
𝑛𝑢𝑚𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 0;
for each noise in selected random noises: do

Add noise to the sample such that the decrease in SNR is 1.;
Get the classifier output with this new sample variation.;
𝑛𝑢𝑚𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠+ = 1;
if 𝑛𝑢𝑚𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 > 𝑘 then

return Exit Code = Failure
end
if classifier output changes then

return Exit Code = Success
end

end
for each noise in selected random noises: do

Add noise to the sample such that the decrease in SNR is 5.;
Get the classifier output with this new sample variation.;
𝑛𝑢𝑚𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠+ = 1;
if 𝑛𝑢𝑚𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 > 𝑘 then

return Exit Code = Failure
end
if classifier output changes then

return Exit Code = Success
end
if classifier output changes then

while classifier output does not change do
Iterate over all SNR decreases from 2-5;
Get classifier output for the modified sample;
𝑛𝑢𝑚𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠+ = 1;
if 𝑛𝑢𝑚𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 > 𝑘 then

return Exit Code = Failure
end
if classifier output changes then

return Exit Code = Success
end

end
end

end
for each noise in selected random noises: do

Add noise to the sample such that the decrease in SNR is 10.;
Get the classifier output with this new sample variation.;
if classifier output changes then

return Exit Code = Success
end
if classifier output changes then

while classifier output does not change do
Iterate over all SNR decreases from 6-10 Get classifier output for the modified sample;
𝑛𝑢𝑚𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠+ = 1;
if 𝑛𝑢𝑚𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 > 𝑘 then

return Exit Code = Failure
end
if classifier output changes then

return Exit Code = Success
end

end
end

end
return Exit Code = Failure
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Table 5.1: The table shows the ratio of samples marked by human evaluators as imperceptible
to difference in emotion perception. V: Valence, A: Activation, 𝛿V:Average change in Valence
on addition of noise, 𝛿A:Average change in Activation on addition of noise.

V A 𝛿V 𝛿A

Environmental Noise

NatSt 0.01 0.00
NatdB (Co) -10dB 0.01 0.00

Same 0.02 0.00
+10dB 0.03 0.01

HumSt 0.01 0.00
HumdB (Co) -10dB 0.03 0.00

Same 0.02 0.00
+10dB 0.04 0.01

IntSt 0.05 0.01
IntdB (Co) -10dB 0.02 0.01

Same 0.02 0.00
+10dB 0.04 0.01

Signal Distortion

SpeedSeg 0.01 0.0
Fade In 0.04 0.01

Out 0.04 0.00
DropWord 0.01 0.00
DropLetters 0.01 0.00
Reverb 0.04 0.01

Filler L 0.10 0.06
S 0.06 0.03

Laugh 0.16 0.17 + .11 + .26
Cry 0.20 0.22 - .20 - .43
SpeedUtt 1.25x 0.13 0.03 - .10 - .13

0.75x 0.28 0.06 - .18 - .23
Pitch 1.25x 0.22 0.07 - .11 + .19

0.75x 0.29 0.10 - .07 - .15
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Table 5.2: State of the art model performance in terms of UAR when using the general
versions of traditional deep learning and end-to-end deep learning models. No noise
refers to clean speech, all noises refers to the combined set of perception-retaining and
perception-altering noise. The environmental and signal distortion categories shown include
only the perception-retaining noises. As a reminder, samples in the all noises category have
an uncertain ground truth, the row is marked with two stars (∗∗). V: Valence, A: Activation,
Clean: Training on clean dataset, Clean+Noise — Mismatch: Cleaning on noisy dataset and
testing on mismatched noisy partition, Clean+Noise — Match: Cleaning on noisy dataset
and testing on matched noisy partition. Random chance UAR is 0.33.

Traditional Deep Neural Network End-To-End Deep Neural Network

Clean
Clean+Noise

Clean
Clean+Noise

Mismatch Match Mismatch Match

A V A V A V A V A V A V

No Noise 0.67 0.59 - - - - 0.70 0.63 - - - -

All Noises** 0.40 0.38 0.55 0.42 0.66 0.59 0.70 0.63 0.44 0.38 0.67 0.60
Perception Retaining Noises 0.50 0.42 0.57 0.48 0.60 0.52 0.53 0.45 0.60 0.50 0.62 0.54

En
vi

ro
nm

en
ta

lC
at

eg
or

y

Nature At Start 0.50 0.45 0.61 0.53 0.63 0.55 0.56 0.48 0.64 0.55 0.66 0.58

C
on

t.

-5dB 0.45 0.39 0.55 0.44 0.59 0.50 0.49 0.42 0.58 0.47 0.62 0.53
-10dB 0.42 0.35 0.56 0.46 0.59 0.49 0.47 0.38 0.57 0.48 0.61 0.51
-20dB 0.40 0.35 0.51 0.44 0.55 0.47 0.47 0.39 0.52 0.46 0.56 0.50

Interior At Start 0.53 0.44 0.61 0.52 0.64 0.57 0.57 0.47 0.64 0.56 0.66 0.59

C
on

t -5dB 0.46 0.36 0.55 0.44 0.58 0.49 0.49 0.39 0.59 0.49 0.62 0.51
-10dB 0.44 0.36 0.54 0.43 0.57 0.48 0.49 0.39 0.56 0.45 0.59 0.52
-20dB 0.40 0.35 0.52 0.44 0.55 0.49 0.46 0.37 0.56 0.45 0.58 0.51

Human At Start 0.52 0.45 0.60 0.51 0.63 0.55 0.58 0.47 0.62 0.52 0.66 0.57

C
on

t -5dB 0.45 0.37 0.52 0.43 0.55 0.48 0.49 0.40 0.56 0.44 0.57 0.50
-10dB 0.42 0.34 0.51 0.43 0.53 0.47 0.49 0.38 0.53 0.45 0.55 0.49

-20dB 0.40 0.34 0.50 0.41 0.53 0.46 0.46 0.38 0.54 0.43 0.56 0.48

Si
gn

al
D

ist
or

tio
n Speed Segment 0.61 0.52 0.63 0.53 0.64 0.55 0.63 0.55 0.64 0.55 0.67 0.58

Fade In 0.62 0.53 0.65 0.55 0.67 0.58 0.64 0.55 0.67 0.58 0.68 0.59
Out 0.61 0.51 0.62 0.54 0.64 0.57 0.63 0.54 0.64 0.56 0.66 0.59

DropWord 0.64 0.56 0.65 0.56 0.67 0.59 0.65 0.58 0.67 0.58 0.69 0.61
DropLetters 0.65 0.58 0.69 0.60 0.71 0.62 0.66 0.59 0.72 0.60 0.74 0.63
Reverb 0.43 0.37 0.50 0.43 0.53 0.45 0.35 0.34 0.51 0.42 0.55 0.46
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Table 5.3: Noise-Robust (NR) state of the art model performance in terms of UAR when using
the noise-robust versions of traditional deep learning and end-to-end deep learning models.
No noise refers to clean speech, all noises refers to the combined set of perception-retaining
and perception-altering noise. The environmental and signal distortion categories shown
include only the perception-retaining noises. As a reminder, samples in the all noises
category have an uncertain ground truth, the row is marked with two stars (∗∗). V: Valence,
A: Activation, Clean: Training on clean dataset, Clean+Noise — Mismatch: Cleaning on
noisy dataset and testing on mismatched noisy partition, Clean+Noise — Match: Cleaning
on noisy dataset and testing on matched noisy partition, NR: Noise Robust versions of the
corresponding models Random chance UAR is 0.33.

NR-Traditional Deep Neural Network NR-End-To-End Deep Neural Network

Clean
Clean+Noise

Clean
Clean+Noise

Mismatch Match Mismatch Match

A V A V A V A V A V A V

No Noise 0.67 0.59 - - - - 0.70 0.63 - - - -

All Noises** 0.44 0.40 0.58 0.44 0.68 0.60 0.50 0.40 0.50 0.40 0.72 0.61

Perception Retaining Noises 0.52 0.44 0.59 0.50 0.61 0.51 0.55 0.48 0.61 0.52 0.63 0.54

En
vi

ro
nm

en
ta

lC
at

eg
or

y

Nature At Start 0.54 0.49 0.63 0.55 0.63 0.55 0.57 0.50 0.66 0.55 0.67 0.56

C
on

t.

-5dB 0.50 0.42 0.58 0.50 0.60 0.52 0.49 0.42 0.61 0.51 0.63 0.53
-10dB 0.48 0.38 0.59 0.48 0.61 0.51 0.50 0.46 0.63 0.52 0.65 0.53
-20dB 0.44 0.38 0.55 0.49 0.59 0.51 0.50 0.43 0.53 0.46 0.58 0.47

Interior At Start 0.53 0.44 0.61 0.52 0.65 0.54 0.58 0.52 0.63 0.56 0.66 0.58

C
on

t -5dB 0.46 0.36 0.55 0.44 0.59 0.47 0.51 0.42 0.58 0.48 0.62 0.52
-10dB 0.44 0.36 0.54 0.43 0.57 0.43 0.49 0.44 0.57 0.48 0.61 0.50
-20dB 0.40 0.35 0.52 0.44 0.55 0.46 0.46 0.40 0.55 0.48 0.58 0.49

Human At Start 0.52 0.45 0.60 0.51 0.63 0.52 0.59 0.49 0.63 0.53 0.66 0.56

C
on

t -5dB 0.45 0.37 0.52 0.43 0.55 0.46 0.49 0.42 0.56 0.48 0.58 0.50
-10dB 0.42 0.34 0.51 0.43 0.54 0.44 0.47 0.38 0.54 0.49 0.55 0.45
-20dB 0.40 0.34 0.50 0.41 0.52 0.43 0.43 0.38 0.54 0.45 0.58 0.49

Si
gn

al
D

ist
or

tio
n Speed Segment 0.63 0.55 0.65 0.57 0.67 0.58 0.66 0.58 0.67 0.59 0.67 0.60

Fade In 0.64 0.55 0.66 0.57 0.68 0.59 0.65 0.58 0.67 0.59 0.69 0.60
Out 0.64 0.56 0.65 0.57 0.67 0.58 0.66 0.57 0.68 0.59 0.69 0.63

DropWord 0.67 0.60 0.66 0.58 0.66 0.59 0.68 0.60 0.69 0.60 0.69 0.60
DropLetters 0.67 0.60 0.65 0.62 0.66 0.60 0.68 0.64 0.69 0.60 0.69 0.60
Reverb 0.48 0.41 0.56 0.47 0.58 0.48 0.52 0.40 0.55 0.45 0.60 0.45
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Table 5.4: Success of misclassification attempts on different models with varying number of
allowed attempts (lower is better). As a reminder, samples in the all noises category have
an uncertain ground truth, the row is marked with two stars (∗∗). Reverberation (reverb)
is a perception-retaining noise that is also analyzed separately. Trad: Traditional Deep
Learning Model, E2E: End to End deep learning model, NR: Noise Robust version of the
deep learning model.

N
oi

se
Se

t

N
o.

of
A

t-
te

m
pt

s Activation Valence

Trad E2E NR-Trad NR-E2E Trad E2E NR-Trad NR-E2E

Pe
rf

or
m

an
ce

Im
pa

ct
Pe

r
N

oi
se

Is
U

nk
no

w
n

A
ll

N
oi

se
s*

* 5 0.29 0.22 0.15 0.10 0.11 0.15 0.13 0.05
15 0.31 0.33 0.31 0.32 0.23 0.24 0.22 0.22
25 0.40 0.28 0.40 0.33 0.22 0.19 0.21 0.20
inf 0.43 0.41 0.44 0.35 0.25 0.20 0.26 0.18

Pe
rc

ep
tio

n-
Re

ta
in

in
g 5 0.18 0.11 0.07 0.05 0.11 0.05 0.02 0.02

15 0.25 0.12 0.25 0.15 0.14 0.08 0.18 0.10
25 0.32 0.24 0.32 0.20 0.13 0.10 0.11 0.09
inf 0.40 0.26 0.36 0.23 0.19 0.14 0.17 0.14

Re
ve

rb 5 0.33 0.15 0.22 0.18 0.20 0.14 0.22 0.09

15 0.40 0.23 0.30 0.21 0.30 0.13 0.34 0.16

Pe
rf

or
m

an
ce

Im
pa

ct
Pe

r
N

oi
se

Is
K

no
w

n

A
ll

N
oi

se
s*

* 5 0.33 0.28 0.24 0.22 0.15 0.14 0.12 0.12
15 0.38 0.38 0.32 0.33 0.20 0.21 0.18 0.16
25 0.52 0.32 0.44 0.37 0.25 0.16 0.18 0.16
inf 0.54 0.42 0.46 0.41 0.24 0.20 0.22 0.22

Pe
rc

ep
tio

n-
Re

ta
in

in
g 5 0.29 0.16 0.22 0.13 0.14 0.10 0.15 0.08

15 0.32 0.32 0.32 0.28 0.14 0.15 0.16 0.12
25 0.47 0.30 0.47 0.29 0.22 0.18 0.23 0.16
inf 0.51 0.36 0.50 0.32 0.22 0.19 0.25 0.17

Re
ve

rb 5 0.38 0.22 0.33 0.22 0.28 0.20 0.31 0.21

15 0.47 0.29 0.41 0.28 0.30 0.23 0.35 0.26
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Table 5.5: Hyper-parameters used to select the best performing model on validation subset
whilst training the traditional deep learning model.

Hyper-parameter Values

Traditional

No. of Convolution Kernels {64, 128}
Convolution Kernels Width {2}
Number of Convolution Layers {5}
Number of GRU layers {1, 2, 3}
Pooling Kernel Width {2, 4}
GRU Layers Width {32, 64}
Number of Dense Layers {1, 2, 3}

End to End

No. of Dense Layers {1, 2}

5.6 Methods

We now describe the emotion recognition approaches, presenting two separate pipelines,

one that relies upon direct feature extraction (Section 5.6.2) and the other that is end-to-end

(Section 5.6.3). This allows us to investigate whether noise has a consistent effect. We

discuss approaches to improve noise robustness by training models with noise-augmented

data or denoised data (Section 5.6.4). Finally, we describe the setup and evaluation of

the model robustness using an untargeted model misclassification test, which measures a

model’s fragility in terms of how likely it is that the model’s decisions will change when

specific types of noise are observed at test time (Section 5.6.5).

5.6.1 Creation of Data Partitions

We use a subject-independent five-fold cross validation scheme to select our train, test

and validation sets. In the first iteration, sessions 1-3 are used for training, session 4 is used

as validation, and session 5 is used for testing. This is repeated in a round-robin fashion,

resulting in each session serving as a validation and a test fold. We also divide possible

6The sample name, code to create the paired noisy examples, and the resulting annotations will be made
available for further research
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noises in two different categories based on results of crowdsourcing study (see Section 5.7.1).

The first category is perception-altering, those that changed perception of humans and

hence cannot be used for model training or evaluation with the old annotations. The second

category is perception-retraining, those that did not change human perception, and hence,

the model should produce no change in predictions when using those noise categories for

sample augmentation.

We use the noise categories (seeSection 5.4) in two varying circumstances. The first

category is matched, where both the training and testing sets are augmented with same kinds

of noise (e.g., both have nature-based sounds in them). The second category is mismatched,

where the testing set is augmented with a noise category not used for augmenting the

training set (e.g., only the test set is augmented with nature-based noise while the train set is

augmented with human or interior noises).

5.6.2 Traditional Deep Learning Network

We first explore a common “traditional” deep learning network that is used in speech

emotion recognition. In this method we extract Mel Filterbank (MFB) features as input to a

model composed of convolutional and gated recurrent unit (GRU) layers.

5.6.2.1 Features

We extract 40-dimensional Mel Filterbank (MFB) features using a 25-millisecond

Hamming window with a step-size of 10-milliseconds using python-speech-features 7. Each

utterance is represented as a sequence of 40-dimensional feature vectors. We 𝑧-normalize

the acoustic features using parameters extracted from the training dataset. During each

cross-validation fold, the parameters are chosen from the training data and are applied to

both the validation and testing data.

7https://github.com/jameslyons/python speech features
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5.6.2.2 Network

Our baseline network is a state-of-art single utterance emotion classification model which

has been used in previous research [9, 116, 126]. The extracted MFBs are processed using a

set of convolution layers and GRUs (see Table 5.5 for the hyperparameters used for these

layers). The output of these layers is then fed through a mean pooling layer to produce an

acoustic representation which is then fed into a set of dense layers to classify activation or

valence.

5.6.2.3 Training.

We implement the models using the Keras library [51]. We use a cross-entropy loss

function for each task (e.g., valence or activation). We learn the model parameters using

the RMSProp optimizer. We train our networks for a maximum of 50 epochs and use early

stopping if the validation loss does not improve after five consecutive epochs. Once the

training process ends, we revert the network’s weights to those that achieved the lowest

validation loss. We repeat the experiment five times. We report the results in terms of

Unweighted Average Recall (UAR, chance is 0.33), averaged over all test samples and five

repetitions. We compare the performance of different models or the same model in different

noisy conditions/partitions using a paired t-test using the Bonferroni correction, asserting

significance when 𝑝 ≤ 0.05.

5.6.3 End-to-End Deep Learning Networks

Next, we explore a transformer-based model. In this method the raw audio signal is

used as input to a pre-trained and fine-tuned network and the emotion prediction is directly

obtained as an output. These models do not require us to perform manual or domain

knowledge-based extraction of features. They instead have a feature encoder component

inside the model, which is dynamic in nature, and hence, can change its output for the same

signal based on the dataset and nature of the task.
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5.6.3.1 Features

For the end-to-end deep learning models, we do not need to extract audio features.

Instead we rely on the network itself to both normalize and extract features, that are later

passed onto the deeper layers of the network. The feature set here is the original wav files that

are not modified in any capacity. The eventual representations are of size 512, reproducing

the setup in the state-of-the-art implementation [175].

5.6.3.2 Network

Our baseline network is the state-of-the-art wav2vec2.0 emotion recognition model [175].

The wav2vec model is comprised of three parts: (i) a convolutional neural network (CNN)

that acts as feature encoder, (ii) a quantizier module, and (iii) a transformer module. The

input to the model is raw audio data (16kHz) that is passed to a multi-block 1-d CNN to

generate audio representations (25ms). The quantizer is similar to a variational autoencoder

that encodes and extracts features using a contrastive loss. The transformer is used for

masked sequence prediction and encodes the bi-directional temporal context of the features.

We use the base model, which has not been fine-tuned for ASR (wav2vec2.0-PT). We then

fine-tune the base model to predict the binned emotion labels. We use the final representation

of the output as an input to dense layers to produce the final output.

5.6.3.3 Training

We implement the model provided in the speech brain library 8. As in the other pipeline

(Section 5.6.2), we use cross-entropy loss for each task and learn the dense layer parameters.

Reproducing the state of the art model [175] We run the model for a maximum of eight

epochs. We revert the network’s state to the one that achieved the lowest validation loss. We

repeat this experiment five times. Again, we use UAR and report the results averaged over

8https://speechbrain.readthedocs.io/en/latest/API/
speechbrain.lobes.models.fairseq wav2vec.html
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both subjects and repetitions.

5.6.4 Noise Augmentation Overview

We will be assessing a model’s ability to classify emotion given either environmental or

signal distortion noise. We perform two kinds of analysis, one when using the set of noises

that includes those that do alter human perception, and another when only using noises that

are perception-retaining. We report overall model performances for both of these categories.

For a more thorough analysis, we then specifically focus on the categories of noise that

do not significantly affect human perception. This allows us to evaluate a model’s robustness,

or its fragility, with respect to variations that wouldn’t alter a human’s perception of emotion.

This is important because the overwhelming majority of the noise-augmented utterances

in the IEMOCAP dataset were not included in the user study and, therefore, do not have

perceptual labels (Section 5.5). We consider three types of environmental noise {Human

(Hum), Interior (Int), Natural (Nat)} and three types of signal distortion noise {Speeding a

segment (SpeedSeg), Fade, Reverberation (Reverb)}.

We use two separate testing paradigms: (i) matched testing, in which all noise types are

introduced to the training, testing, and validation data and (ii) mismatched testing, in which

𝑛-1 types of noise are introduced to the training and validation sets and the heldout type of

noise is introduced to the test set. In all cases, we analyze the test data in terms of specific

noise categories. Therefore, the test sets are the same between the two paradigms.

We run both the matched and mismatched experiments twice, first with the noise-

augmented data and second with a noise-robust/denoising pipeline. The first iteration will

allow us to quantify the effect of the noise on the traditional and end-to-end classification

pipelines. We then repeat the experiment with either denoised data for the traditional

classifier (Section 5.6.4.1) or using the noise-robust implementation of wav2vec2.0 for the

end-to-end classifier (Section 5.6.4.2). This allows us to investigate how, or if, noise-robust

implementations can offset the effects of background noise.
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5.6.4.1 Denoising

We implement denoising using the well-known Recurrent Neural Network Noise Sup-

pression (RNNNoise, denoising feature space) approach, proposed in 2017 for noise

suppression [218]. RNNNoise is trained on environmental noise, and these noises overlap

considerably with those in our dataset. We use the algorithm’s default parameters and use

it on an ‘as-is’ basis for our experiments. We assume that the system does not have the

knowledge of which noise, from the set of available noise categories, is introduced and,

therefore, we do not compare with other denoising algorithms that assume a priori knowledge

of noise category. The result is a set of ‘noise-suppressed’ samples in the training, validation

and testing sets.

We pass all the data, including both the original and noise-augmented data, through a

denoising algorithm. This allows us to ensure that acoustic artifacts, if any, are introduced

to both the original and noise-augmented data. We then train the traditional deep learning

model as described in Section 5.6.2.

5.6.4.2 Using a Noise-Robust Model

In the end-to-end model, we need to use a different denoising approach because the

approach described in the previous section does not return a wav file, but instead is applied

to the feature-space directly. Here, we enforce robustness to noise using a model trained to

be noise-robust in an end-to-end fashion. We use the noise-robust version (Wav2Vec2-Large-

Robust) of the aforementioned wav2vec2.0 model [98]. The noise-robust large model was

pretrained on 16kHz sampled speech audio. Noisy speech datasets from multiple domains

were used to pretrain the model: Libri-Light, CommonVoice, Switchboard, and, Fisher [98].

We then train the end-to-end model as described in Section 5.6.3.
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5.6.5 Model Robustness Testing

Deployed emotion recognition models must be robust. One of the major scenarios that

we robustness test any speech-based model for is the presence of noise. But the set of noises

we choose to test robustness on can lead to different conclusions about the robustness of the

models. In our case, we consider two different scenarios:

1. Robustness evaluation when using perception-retaining samples, noise samples that

do not change human perception

2. Robustness evaluation when using any kind of noise (i.e., both perception-retaining

and perception-altering)

We perform robustness evaluation of a model by using the model’s output predictions to

create new noise-enhanced samples that change the model’s output, compared to the original

clean sample. We do this using an untargeted model misclassification test, in which we add

noise to the samples. The intentional misclassification algorithm assumes black-box model

access. For our purposes, it needs to have access to: (i) a subset of the dataset, (ii) noises to

add to create perturbed samples, and (iii) model input and output.

As in any other perturbation-based robustness testing, the goal is to introduce perturbations

to the samples such that the resulting samples are as close to the original sample as possible.

The minimally perturbed sample should be the one that causes a classifier to change its

original classification. We measure the amount of perturbation using SNR, calculated using

the logarithmic value of the ratio between the original signal and the noise-augmented

signal’s power. We note that the lower the decrease in SNR, the more minimally perturbed

a sample is. The maximal decrease in SNR that we use in the algorithm is a difference of

10 dB. This condition ensures that the sample is not audibly judged as contaminated by

humans [119].

The algorithm to choose this minimally perturbed sample has four major components:
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1. Requirements: some labelled samples, noise files, model input and output access,

unlabelled samples for testing, and, optionally, correlation between noise type and

performance degradation for a given model.

2. Looping: The algorithm then loops over each noise category to figure out whether it

can successfully force the model to misclassify. The noise category order is random if

we do not have access to the optional performance degradation correlations.

3. Minimizing: The algorithm then aims to find the lowest decrease in dB, such that

the model still misclassifies. This ensures that the resultant noisy sample is as

imperceptible to humans as possible.

4. End Condition: The algorithm ends if a noise addition has been found, or if it runs out

of number of tries allowed for model access.

Please see Algorithm 1 for more details. In the algorithm, numAttempts is the number of

times the algorithm is allowed to access the model’s input-output pairs. Classifier output

refers to the prediction made by the model when the attack algorithm sends an input to

the model to be classified. Classifier output changes is true when the model predicted the

emotion label differently after noise was added to the sample, compared to the original clean

sample. Success implies that the algorithm was successfully able to force the model to

misclassify a particular sample in the allowed number of attempts. Failure implies that the

algorithm could not force the model to misclassify in the allowed number of attempts and

that the model can be considered robust for that sample.

We use the above algorithm in two different settings, under two different pre-known

assumptions, with four levels of allowed queries, and four models (64 categories):

1. Settings {All vs. Not-Altering Human Perception}

2. Pre-Known Assumptions {No Knowledge vs. Knowledge About Noise Category

Degradation Level}
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3. Allowed Queries {5, 15, 20, inf}

4. Models {Traditional Deep Neural Network (T-DNN), End to End Deep Neural Network

(E-DNN), Noise-Robust T-DNN (T-DNN-NR), Noise-Robust E-DNN (E-DNN-NR)}

For all the test samples, we execute five runs of the above algorithm to account for

randomization in noise choices. These five runs are then averaged to obtain the average

success of misclassification or average robustness for a given sample (1- average success of

misclassification). We then average the robustness value over all the test samples. We report

our obtained results for the above mentioned scenarios.

5.7 Analysis

5.7.1 Research Question 1 (Q1): Does the presence of noise affect emotion perception

as evaluated by human raters? Is this effect dependent on the utterance length,

loudness, the type of the added noise, and the original emotion?

We find that the presence of environmental noise, even when loud, rarely affects annotator

perception, suggesting that annotators are able to psycho-acoustically mask the background

noise in various cases, as also shown in prior work (e.g., [206]).

We find that the addition of signal distortion noise alters human perception. The reported

change in valence and activation values is on a scale of -1 to 1 (normalized). The addition

of laughter changes the activation perception of 16% of the utterances, with an average

change of +22% (+.26). The valence perception is altered in 17% of the utterances, with

an average change of +14% (+.11). Similarly for crying, valence is altered in 20% of the

cases, with an average change of -21% (-.20). Crying changes activation perception in 22%

of the cases, with an average change of -32% (-.43). Raises in pitch also alter the perception

of emotion. In 22% of utterances, the perception of activation is changed. This contrasts

with the perception of valence, which was altered only in 7% of utterances. In this scenario,

activation increases by an average of 26% (+.19), and valence decreases by 12% (-.11). On
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the other hand, decreases in pitch change the perception of activation in 10% of the cases and

of valence in 29% of the cases. In this scenario, activation decreases by an average of 16%

(-.15), and valence decreases by 7% (-.07). This ties into previous work [37], which looked

into how changes and fluctuations in pitch levels influenced the perception of emotions.

Changes in the speed of an utterance affect human perception of valence in 13% (average

of -.13) of the cases when speed is increased, and 28% (average of -.23) when speed is

decreased. On the other hand, changes in the speed of an utterance do not affect activation

as often, specifically, 3% in case of increase and 6% in case of decrease.

We ensured that our crowsdourcing samples had an even distribution over gender of the

speaker and the length of the sample (see Section 5.4.3). We performed paired t-test to

evaluate whether these variables influenced the outcome of emotion perception change in

presence of noise. We found that the changes in perception were not tied to characteristics

of the speakers. For example, there was no correlation between changes in perception and

variables such as, the original emotion of the utterance, the gender of the speaker, and the

length of the utterance.

The human perception study provides insight into how emotion perception changes given

noise. This also provides information about the potential effects of noise addition on model

behavior. In the sections that follow, we will evaluate how machine perception changes given

these sources of noise.

5.7.2 RQ2: Can we verify previous findings that the presence of noise affects the

performance of emotion recognition models? Does this effect vary based on the

type of the added noise?

We first assess the performance of the model on the original IEMOCAP data and find

that the traditional model obtains a performance of 0.67 UAR on the activation and 0.59

UAR on the valence task. On the other hand, the end-to-end model obtains a performance of

0.73 on activation and 0.64 on the valence task. We hypothesize that the wav2vec2 model
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has an added advantage of being trained to recognize word structures that can incorporate

some paralinguistic/langauge information in the fine-tuned model.

Next, we augment the test samples of each fold with each of the noise types (Section 5.4)

and investigate how the performance of the model changes. We include two cases: (i) only

perception-retaining noises and,(ii) all noises.

In the first scenario, we do not include noise types that were found to affect human

perception (e.g., Pitch, SpeedUtt, Laugh) because once these noises are added, the ground

truth is no longer reliable. This lack of reliable ground-truth data hinders the evaluation of

the model’s performance on these samples because the majority of the utterances were not

part of the original crowdsourcing experiment and are thus unlabeled. The remainder of this

section focuses on the second scenario only.

We find that for matched train and test noise conditions, the traditional machine learning

model’s performance decreases by an average of 28% for environmental noise while it drops

by 32% for signal manipulation. On the other hand, for end-to-end deep learning model,

the model’s performance decreases by an average of 22% and 26% for environmental and

manipulated noises, respectively. In mismatched noise conditions, the models’ performance

decreases by an average of 33% for environmental noise, fading, and reverberation. There

is also a smaller drop in performance for speeding up parts of the utterance and dropping

words, showing the brittleness of these models. Table 5.2 reports the percentage change in

performance when testing on noisy test data, compared to clean test data.

We see that the end-to-end deep learning model is less affected by environmental

noise, but has a larger drop due to fading and reverberation. We observe a larger drop

on performance when dropping words, which possibly can be attributed to the change in

audio-structure and non-controllable feature extraction for this model.

In the second scenario, we observe a large drop in performance for both the traditional

and the end to end machine learning model. For example, in the case of a traditional deep

learning model, the valence prediction performance drops to a near-chance performance
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when including all kinds of noises (see Table 5.2).

We specifically want to point out how the inclusion of all noises in the test conditions

changes the observed model performance. Primarily, the models on an average seem to do

20% worse than they would if we only consider noises that do not alter human perception. We

note the discrepancy between the results of the two noise addition scenarios and that results

should be described with respect to the perceptual effects of noise, if noise augmentation is

used.

5.7.3 RQ3a: Does dataset augmentation help improve the robustness of emotion

recognition models to unseen noise?

We first report results for only perception-retaining noises. When the training datasets

are augmented with noise, we observe an average performance drop of 26% and 10% for

matched noise conditions when using the traditional and the end-to-end deep learning model,

respectively. For the mismatched noise conditions, we observe an average performance drop

of 31% and 16% for the traditional and end-to-end deep learning models, respectively.

Both models see improved performance when the training dataset is augmented with

continuous background noise in the matched noise setting. We find that data augmentation

improves performance on mismatched noisy test data over a baseline system trained only

on the clean IEMOCAP data. For example, the end-to-end model tested on environmental

noise-augmented dataset (as compared to traditional deep learning model), reduces the

performance drop to nearly zero. This improvement is particularly pronounced (an increase

of 22% as compared to when trained on the clean partition) when the environmental noise is

introduced at the start of the utterance (e.g., when the test set is introduced with nature-based

noises at the start of the utterance and the train set is introduced with human and interior

noises at the start of the utterance). We speculate that the network learns to assign different

weights to the start and end of the utterance to account for the initial noise.

However, we find that in both matched and mismatched conditions, it is hard to handle
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utterances contaminated with reverberation, a common use case, even when the training set is

augmented with other types of noise. We find that this improvement in performance is even

more reduced when using the wav2vec model, alluding to the model’s fragility towards data

integrity/structural changes. This can be because reverberation adds a continuous human

speech signal in the background delayed by a small period of time. None of the other kind

of noise types have speech in them, and hence augmentation doesn’t aid the model to learn

robustness to this kind of noise.

Finally, we investigate the differences in model performance when we use all types of

noise vs. those that are perception-retaining. Specifically, we focus on the perception-altering

noises because samples augmented with noises in this category no longer have a known

ground truth. We inquire as to whether the use of samples that alter perception may lead to

the appearance of model performance improvement (note: appearance because the samples

now have uncertain ground truth). To maintain equivalence, we ensure that the training and

validation dataset sizes are equal even when they are augmented with more noise conditions.

We observe that many cases of performance improvement occur when the noises include

those that are perception-altering (see “Al noises” in Table 5.2). We observe a difference

of 12% to 25% between the numbers that we obtain for the perception-retaining noises vs.

when not distinguishing between the two noise categories. This supports our claim that

the choice between types of noises used for data augmentation during model training and

performance evaluation affects the empirical observations and should be carefully considered.

We hypothesize that this improvement in performance may be due to the inherent nature of

noises that change emotion perception, if they are perceptible enough to change emotion

perception, then they may stand out enough that the model can adequately learn to separate

them out and improve its prediction towards the original ground truth annotation. However,

if the noise alteration truly does change perception, then the model is learning to ignore this

natural human perceptual phenomenon. This may have negative consequences during model

deployment.
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5.7.4 RQ3b: Does sample denoising help improve the robustness of emotion recogni-

tion models to unseen noise?

In the matched training testing condition, we find that the traditional deep learning model

has an average performance of 0.57 across all the datasets and testing setups, while the

end-to-end models do substantially better at 0.61 UAR. See Table 5.3 for details.

In the mismatched training testing condition, we find that for the traditional deep learning

model, adding a denoising component to the models leads to a significant improvement when

the original SNR is high (e.g., after continuous noise introduction the SNR decreases only by

10dB). In this case, we see an average improvement of 23% ± 3% across all environmental

noise categories, compared to when there is no denoising or augmentation performed.

However, when the SNR decreases by 20dB, we observe a decline in performance when

using the noise suppression algorithms. We believe that this decline in performance is

reflective of the mismatch in goals: the goal of noise suppression is to maintain, or improve,

the comprehensibility of the speech itself, not necessarily highlight emotion. As a result, it

may end up masking emotional information, as discussed in [145].

We further show that the addition of a denoising component does not significantly

improve performance in the presence of signal distortion noise (other than reverberation)

as compared to the presence of environmental noise (noise addition). For example, when

samples were faded in or out or segments were sped up, the performance is significantly

lower (−28%) than when tested on a clean test set. However, we did see an improvement

in the performance for unseen reverberation contaminated samples as compared to data

augmentation (an average of +36%). Finally, we observe a general trend of increase in

emotion recognition performance for the combined dataset (noisy and non-noisy samples),

as compared to when the model is trained on the clean training set, which supports the

findings from previous dataset augmentation research [10].

For the end-to-end deep learning model, we use the noise-robust version. We find

that the model is effective at countering environmental noise when trained on a dataset
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augmented with environmental noise, even in the mismatched condition. The performance

is equivalent to the model evaluated on the clean data. We further delve into the amount

of noise augmentation needed to achieve this equivalency. We consider all of the original

training data. We augment a percentage of the training data, starting by augmenting a

random sample of 10% with perception-retaining noise and increasing by 10% each time.

We find that we obtain equivalency after augmenting with only 30% of the training data.

We compare this compares to the traditional model, in which all of the training data are

noise-augmented and we still do not see equivalency.

We separately consider the signal distortion noise samples. These were not part of the

training of the wav2vec2-Large-robust model. However, this model only sees a 6% loss in

performance, where the traditional robust model saw a 20% loss in performance.

However, as discussed in the original traditional model, the end-to-end noise-robust model

also fails on reverberation-based contamination even when trained on a similarly augmented

dataset (note that the denoised traditional model could effectively handle reverberation). We

believe that this may be because the wav2vec model is trained on continuous speech and

relies on the underlying linguistic structure of speech. However, in reverberation, there is

an implicit doubling of the underlying information, which is at odds with how this model

was trained. This may explain why it is not able to compensate for this type of signal

manipulation.

Next, we analyze whether the perception category of noise used for data augmentation of

the samples, in both, the train and test dataset influences the reported results for noise-robust

model improvement. We find that there is a significant difference in performance when the

testing dataset is augmented with any kind of noise vs. when augmented with perception-

retaining noise. Specifically, we observe that the maximal gains in performance when testing

on matched noisy conditions are for samples for which we do not know whether or not the

ground truth holds (i.e., both noise categories). For example, when using the noise robust

traditional deep learning model, where the test and train dataset is augmented with any type
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of noises, we observe a performance improvement, as compared to that using a clean train

dataset, of 12%. Similarly for noise robust end to end models, the performance improvement

difference when using all noises vs. only perception retaining ones is 15% for activation and

13% for valence. Again, this is a problem when we think about deploying models in the real

world because although the perception of these emotion expressions may change, we are

assuming that the system should think of these perception labels as rigid and unchanging.

5.7.5 RQ4: How does the robustness of a model to attacks compare when we are

using test samples that with are augmented with perception-retaining noise vs.

samples that are augmented with all types of noise, regardless of their effect on

perception?

In this section, we aim to show the effects of noise augmentation in general and specifically

highlight noise categories that do not alter human perception. We will show that if we are

not careful with the selection of our noise types, moving from noise that we know not to alter

perception to noise that may, the resulting noise sources can not only impact the brittleness of

models, but also lead to inaccurate evaluation metrics. We also specifically report robustness

performance when using reverberation-based contamination, as we observed that it is the

most likely noise category to degrade the robustness of the model.

We allow the decision boundary attack algorithm a maximum of five queries to create

a noise augmented sample that will change the model output. We find that if the attacker

is also given perception-altering noises, compared to perception-retaining, it can more

effectively corrupt the sample. It achieves an increase in success rate from 35% (only

perception-retaining) to 48.5% (all noise categories). This increase in the success rate when

perception-altering noises are included implies that the model does not remain robust when

the effects of noise on human perception are not considered.

We next consider the type of noise (environmental vs. signal manipulation). We find that

the success rate of flipping a model’s output is 18% for noises belonging to the environmental
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category, which is generally a category of perception-retaining noise. The success rate of

flipping a model’s output is 37% for all noises belonging to the signal manipulation category.

When we constrain our possible noise choices to perception-retaining signal manipulations,

we see that the success rate of the intentional misclassification algorithm drops to 24%. On

the other hand, we observe that when we also consider the signal manipulations that are

perception-altering, the success rate of flipping a model output is 39%. See Table 5.4 for

more details.

We previously discussed the fragility of end-to-end models towards reverberation-based

noise contamination, noise that is perception-retaining for human evaluators. Here, we

specifically run an experiment to use only that particular noise category for the model

fragility testing. If the attacker knows that the model is susceptible to reverberation-based

prediction changes, the intentional misclassification algorithm can land on an optimal set of

room and reverberation parameters in a maximum of five queries to be able to produce a

flipped output for that particular sample. It achieves a success rate of 24%, compared to 12%

for other perception-retaining noises. The traditional noise-robust deep learning model is

even more challenged, compared to the end-to-end model. The number of queries required

to flip the output is three, vs. five for the end-to-end model, suggesting that it is less robust.

This empirical evaluation is performed primarily to demonstrate how such noise inclusions

can not only invalidate the ground truth but also lead to inaccurate and fragile benchmarking

and evaluation of adversarial efficiency and robustness.

5.7.6 RQ5: What are the recommended practices for speech emotion dataset aug-

mentation and model deployment?

We propose a set of recommendations, for both augmentation and deployment of emotion

recognition models in the wild, that are grounded in human perception. For augmentation,

we suggest that:

1. Environmental noise should be added to datasets to improve generalizability to varied
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noise conditions, whether using denoising, augmentation, or a combination of both.

2. It is good to augment datasets by fading the loudness of the segments, dropping

letters or words, and speeding up small (no more than 25% of the total sample length)

segments of the complete sound samples in the dataset. But it is important to note that

these augmented samples should not be passed through the denoising component as

the denoised version loses emotion information.

3. One should not change the speed of the entire utterance more than 5% and should not

add intentional pauses or any background noises that elicit emotion behavior, e.g.,

sobs or laughter.

Regarding deployment, we suggest that:

1. Noisy starts and ends of utterances can be handled by augmentation, hence, if the

training set included these augmentations, there should be no issue for deployed

emotion recognition systems.

2. Reverberation is hard to handle for even augmented emotion recognition models.

Hence, the samples must either be cleaned to remove the reverberation effect, or must

be identified as low confidence for classification.

3. Deploy complementary models that identify the presence of noise that would change a

human’s perception.

5.8 Conclusion

In this work, we study how the presence of real world noise, environmental or signal

distortion, affects human emotion perception. We identify noise sources that do not affect

human perception, such that they can be confidently used for data augmentation. We look

at the change in performance of the models that are trained on the original IEMOCAP
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dataset, but tested on noisy samples and if augmentation of the training set leads to an

improvement in performance. We conclude that, unlike humans, machine learning models

are extremely brittle to the introduction of many kinds of noise. While the performance of the

machine learning model on noisy samples is aided from augmentation, the performance is

still significantly lower when the noise in the train and test environments does not match. In

this chapter, we demonstrate fragility of the emotion recognition systems and valid methods

to augment the datasets, which is a critical concern in real world deployment.
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CHAPTER VI

Context in Crowdsourcing Emotion Annotations

6.1 Motivation and Contributions

Emotion recognition algorithms rely on data annotated with high quality labels. However,

emotion expression and perception are inherently subjective. There is generally not a

single annotation that can be unambiguously declared “correct”. As a result, annotations

are colored by the manner in which they were collected. In this chapter, we conduct

crowdsourcing experiments to investigate this impact on both the annotations themselves

and on the performance of these algorithms. We focus on one critical question: the effect

of context. We present a new emotion dataset, Multimodal Stressed Emotion (MuSE), and

annotate the dataset using two conditions: randomized, in which annotators are presented

with clips in random order, and contextualized, in which annotators are presented with clips

in order. We find that contextual labeling schemes result in annotations that are more similar

to a speaker’s own self-reported labels and that labels generated from randomized schemes

are most easily predictable by automated systems.

6.2 Introduction

Emotion technologies, both recognition and synthesis, are heavily dependent on having

reliably annotated emotional data, annotations that describe the observed emotional display.
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The hope is often that these annotations capture the speaker’s true underlying state. Yet, in

practice, this true felt sense emotion is unknown, and researchers must resort to manual

labeling of data. The hope is that these manual labels are sufficiently “correct” to enable the

training and evaluation of emotion technologies. One method of ensuring quality labels has

been to require the participation of expert raters. However, it can be both expensive and time

consuming to hire expert raters. More recently, researchers have embraced crowdsourcing

services (e.g., Amazon Mechanical Turk) to efficiently collect annotations from non-expert

workers in a cost-effective and timely manner [201]. Once collected, annotations from

non-expert workers are aggregated to form ground-truth labels that are used for training and

evaluating automated systems. However, the method through which these annotations are

collected can profoundly impact the behavior of the annotators. In this chapter, we study

how the setup of a crowdsourcing task can influence both the collected emotion labels as

well as the performance of classifiers trained using these labels.

The effective use of crowdsourcing for collecting reliable emotion labels has been an

active research topic. Burmania et al. investigated the trade-off between the number of

annotators and underlying reliability of the annotations [33]. Other work has looked at

quality-control techniques to improve the reliability of annotations. For example, Soleymani

et al. used qualification tests to filter out spammers and retain high-quality annotators [201].

Burmania et al. investigated the use of gold-standard samples to monitor annotators’

reliability and fatigue [35].

However, variability also results from context, relevant past information that provides

cues as to how to interpret an emotional display. Context, such as tone, words, expressions

can affect how individuals perceive emotion [129]. Context is also implicitly included in

the labeling schemes of many of the most common emotion datasets (e.g., IEMOCAP [36]

and MSP-Improv [38]) because annotators rate each utterance (or time period) in order.

That means that annotators are influenced by information that they recently observed [233].

However, emotion recognition systems are often trained over single utterances [10, 3, 157,
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190], leading to a mismatch in the information available to annotators and to classification

systems.

In this work, we study the difference between annotations obtained for audio clips when

emotional displays are presented to annotators with context and when presented randomly. In

both cases, annotators are affected by the emotion displays that they have recently observed

[180, 188]. However, only in the contextual presentation there is also a cohesive story. We

investigate the following research questions:

• Q1: Is there a significant difference between annotations obtained from random and

contextual presentations?

• Q2: Are annotations obtained from contextual presentations more similar to a speaker’s

own self-reported labels than those from random presentations?

• Q3: Is there a significant difference between the inter-rater agreements obtained from

random and contextual presentations?

• Q4: How does the performance of an emotion recognition system, operating on single

utterances, vary given annotations obtained from random and contextual presentations?

• Q5: How does the performance gain of an emotion recognition system operating

across multiple utterances vary given different amounts of context (defined as number

of prior utterances) and labels obtained from random and contextual presentations?

The findings from this work will provide insight into performance implications of

emotion recognition system given mismatches between the amount of context provided to

the annotators generating the labels and the ultimate classification system.

The main aim of the work was to annotate the dataset described in the previous chapter.

For all further experiments, we use the utterances created from the MuSE dataset.
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6.2.1 Crowdsourcing

We posted our experiments as Human Intelligence Tasks (HITs) on Amazon Mechanical

Turk. HITs were defined as sets of utterances in either the contextual or random presentation

condition. In each condition, workers were presented with a single utterances and were

asked to annotate the activation and valence values of that utterance using Self Assessment

Manikins [30]. Once completed, the worker was presented with a new HIT and could not go

back to revise a previous estimate of emotion. This annotation strategy is different than the

one deployed in [48],where the workers could go back and re-evaluate utterances.

In the randomized experiment, each HIT is an utterance from any section, by any speaker,

from any session and all HITs appear in random order. So, a worker might see the first HIT

as Utterance 10 from Section 3 of Subject 4’s stressed recording and see the second HIT as

Utterance 1 from Section 5 of Subject 10’s non-stressed recording. This setup ensured that

the workers couldn’t condition to any speaker’s specific style or contextual information.

In the contextual experiment, we posted each HIT as a collection of ordered utterances

from a section of a particular subject’s recording. Because each section’s question was

designed to elicit a particular emotion, we still posted the HITs in a random order over

sections from all subjects. This prevented workers from conditioning to the speaking style

of an individual participant. For example, a worker might see the first HIT as Utterance

1...N from Section 3 of Subject 4’s stressed recording and see the second HIT as Utterance

1...M from Section 5 of Subject 10’s non-stressed recording where N, M are the number of

utterances in those sections respectively.

We recruited from a population of workers in the United States who are native English

speakers, to reduce the impact of cultural variability. We ensured that each worker had

> 98% approval rating and number of HITs approved as > 500. We ensured that all workers

understood the meaning of activation and valence using a qualification task that asked

workers to rank emotion content. The workers were asked to select, given two clips, which

clip had the higher valence and which had the higher activation. The options were chosen
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from a set including: (1) a speaker in low activation, high valence state and (2) a speaker in

high activation, low valence state.

We assigned each HIT to eight workers. All HIT workers were paid a minimum wage

($9.25/hr), pro-rated to the minute. We removed and re-posted assignments where the

worker completed the assignment in time shorter than the audio length. The ground-truth for

each utterance was formed by taking the average of the eight annotations. Table 4.3 shows

the data summary for the collected annotations and corresponding data points.

6.3 Experimental Setup

Acoustic Features. We extract acoustic features using OpenSmile [71] with the

eGeMAPS configuration [70]. The eGeMAPS feature set consists of 88 utterance-level

statistics over the low-level descriptors of frequency, energy, spectral, and cepstral parameters.

We perform speaker-level 𝑧-normalization on all features.

Static Network Setup (Hypothesis 4). We train and evaluate four Deep Neural Networks

(DNN) models: {random, contextual}× {valence, activation}. In all cases, we predict

the continuous annotation using regression. For each network setup, we follow a five-fold

evaluation scheme and report the average RMSE across the folds. For each test-fold, we use

the previous fold for hyper-parameter selection and early stopping. The hyper-parameters

include: number of layers {2, 3, 4} and layer width {64, 128, 256}. We use ReLU activation

and train the networks with MSE loss using Adam optimizer.

Dynamic Network Setup (Hypothesis 5). We use Gated Recurrent Unit networks

(GRU). The hyper-parameters are: number of layers {1, 2} and layer width {64, 128, 256}.

We pass the GRU output of the last time step through a regression layer to get the final

outputs. We train the networks with MSE loss using Adam optimizer.

Network Training. We train our networks for a maximum of 100 epochs and monitor

the validation loss after each epoch. We stop the training if the validation loss does not

improve for 15 consecutive epochs. We revert the network’s weights to those that achieved
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Table 6.1: Mean activation and valence values obtained from the two crowdsourcing labeling
schemes (random and context) grouped by speaker condition (stress and non-stress).

Activation Valence

Random Context Random Context

Stress 3.63 3.59 5.27 5.36
Non-Stress 3.61 3.79 5.26 5.39

the lowest validation loss during training. Finally we train each network five times and

average the predictions to reduce variance due to random initialization.

6.4 Results and Analysis

6.4.1 RQ1: Differences in Obtained Annotations

Hypothesis: Human annotations collected through randomized labeling are significantly

different from those collected through contextualized labeling. Prior work has shown context

effects emotion perception [233], even when observers are explicitly asked not to take it under

consideration [165, 43]. Hence, we believe that context provided by previous utterances

would lead to a change in perception of a particular utterance. Tables 6.1 and 6.2 (sets

of significantly different means are bolded (𝑡-test, 𝑝 < 0.01)) show the mean activation

and valence, for the random and contextualized labeling schemes, grouped by condition

and question, respectively. Table 6.1 shows that, for non-stress conditions, the mean of

the activation ratings obtained through contextual labeling is significantly higher than that

obtained through random labeling. The table also shows that, for both stress and non-stress

conditions, the valence means obtained through contextual labeling are significantly higher

than those obtained through random labeling. Table 6.2 shows that, although the mean

valence and activation values were consistently different for the labelling schemes across all

emotion elicitation techniques, the differences were significant in some elicitation techniques

and not in others.
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Table 6.2: Mean activation and valence values obtained from the two crowdsourcing labeling
schemes (random and context) grouped by emotion elicitation question.

Activation Valence

Random Context Random Context

Icebreaker 3.55 3.60 5.41 5.61
Positive 3.64 3.71 5.11 5.13
Negative 3.57 3.67 5.40 5.55
Intensity 3.64 3.74 5.17 5.31
Ending 3.69 3.71 5.23 5.29

6.4.2 RQ2: Self-Annotations and Crowdsourced Annotations

Hypothesis: Annotations of outside observers are more similar to self-annotations in the

contextual case, compared to the randomized case. Path models [17] suggest that subjective

voice variation, from the established mental baseline accounts for much of the variance in

emotion inference. Hence, emotion inference is aided with more cues about the speech

patterns that are more readily provided through context. Figure 6.1 shows the absolute

differences between the mean crowdsourced labels (valence and activation, each for random

and contextual schemes) and self-reported scores as a function of utterance position. The

figure shows that contextual labels have consistently lower absolute differences, compared to

self-reported labels, than the random labels. A paired 𝑡-test shows that these differences

between the contextual and random labels are significant (𝑝 < 0.01) for both valence and

activation.

Our results suggest that crowdsourced emotion labels collected with access to contextual

information are closer to self-reported emotion labels. Our results further suggest that these

differences are consistent across recording conditions (Table 6.3) and emotion elicitation

questions ( Table 6.4, sets of significantly different means are bolded, 𝑡-test, 𝑝 < 0.01).

6.4.3 RQ3: Inter-Annotator Agreement

Hypothesis: Individual annotators differ in annotation similarity in the contextual
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Table 6.3: Mean difference between the self-reported activation and valence ratings from
the two labeling schemes (random and context) grouped by speaker condition (stress and
non-stress).

Activation Valence

Random Context Random Context

Stress 2.03 1.96 1.20 1.14
Non-Stress 1.82 1.67 1.20 1.12

Table 6.4: Mean difference between the self-reported activation and valence ratings from
the two labeling schemes (random and context) grouped by emotion elicitation question.

Activation Valence

Random Context Random Context

Icebreaker 1.81 1.80 0.97 0.85
Positive 1.89 1.74 1.14 1.11
Negative 1.96 1.76 1.18 1.07
Intensity 2.19 2.08 1.49 1.44
Ending 1.81 1.73 1.23 1.28

presentations, compared to the randomized presentation. Joseph et al. in [112] show that

while insufficient context results in noisy and uncertain annotations, an overabundance of

context may cause the context to outweigh other signals and lead to lower agreement. Further,

contextual information biases different people differently on both temporal and intensity

metrics [219, 223]. Our results highlight the impact of context: the agreement is significantly

higher in the case of labels obtained from the randomized presentations, compared to

the contextualized presentations: (1.55 vs. 1.62) for activation and (1.07 vs. 1.14) for

valence. This trend holds true for all experimental design setups i.e. {random, contextual}×

{valence, activation} and {random, contextual}× {icebreaker, positive, negative, intensity

and ending}. As shown in Tables 6.1 and 6.2, the labels obtained in both cases are

significantly different due to context-based conditioning. However, the conditioning may not

impact the labels consistently across all workers, which may lead to lower inter-annotator

agreement values. This suggests that it may be beneficial to consider the distribution of

annotations as ground-truth, rather than averaging labels, which presumes that the impact of
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conditioning is consistent across all workers [239].

6.4.4 RQ4: Non-Contextual Annotations and Static Classifiers

Hypothesis: A static classifier will perform better when trained and evaluated using

labels annotated with a randomized presentation, compared to a contextualized presentation.

Prior studies have shown that it is easier to classify data with less target variation [141] and

matched classifier input, which in our case is labels obtained from the random labelling

presentation (the classifier processes single utterances at a time, no context).

We test this hypothesis by training and evaluating classifiers for the four possible setups:

{𝑟𝑎𝑛𝑑𝑜𝑚, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙} x {𝑣𝑎𝑙𝑒𝑛𝑐𝑒, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛}. The classifier is described in Section 6.3.

We find that the RMSEs are lower for the contextual labels in the case of activation (0.91

vs. 1.00) while the errors are lower for the random labels in the case of valence (1.13 vs.

1.20). Using a paired 𝑡-test, we find that the differences in errors are significant in the case of

valence but not activation. These findings suggest that classification performance is impacted

by the labelling methodology, but that this effect may depend on emotion dimension.

Prior work has demonstrated the importance of considering long-term context when

predicting valence (the same effect has not been shown in activation) [116]. The contextual

annotations provided the annotators with this information, but the classifier could not take

advantage of this effect. This mismatch may have contributed to the relatively lowered

performance of the valence classifier, compared to the activation classifier.

6.4.5 RQ5: Contextualized Annotations and Long-Context Classifiers

Hypothesis: We anticipate that systems trained on contextualized labels will see greater

increases in performance as the amount of provided context increases. This finding would

support results in the literature regarding the ordinal nature of emotion perception [233] and

previous works in emotion recognition that have demonstrated that context can influence the

performance of emotion classifiers [116].
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Figure 6.1: Mean difference between the self-reported activation and valence ratings and the
random and contextual presentations.
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The classifier is described in Section 6.3. We test this hypothesis by using the contextual

annotations in one classifier and the non-contextual (random) annotations for the other

classifier. We select a subset of utterances in each section that have at least five consecutive

utterances before them (59% of the original data). The initial classifier is trained without

temporal context (but with the contextualized labels). We incrementally increase the number

of past utterances (from zero to five). We run this for every task combination and report the

results in Table 6.5.

Table 6.5 shows the performance gains after incrementally adding the past utterance,

relative to the baseline performance. The addition of past utterances improves the performance

over baseline for all setups. Where using contextual labels, however, the performance gains

are generally higher than the gains obtained after using random labels. Our results suggest

that it is necessary to consider the mismatch the amount of context provided to the annotators

generating the labels and the ultimate classification system.

91



Table 6.5: Relative improvement in RMSE (%) obtained for each additional previous
utterance, comparing random and contextual labels.

Activation Valence

Past steps Random Context Random Context

0 - - - -
1 +1.96% +1.24% +0.85% +3.32%
2 +2.28% +2.93% +5.23% +7.63%
3 +3.36% +8.72% +6.08% +8.43%
4 +4.41% +10.5% +8.23% +8.36%

6.5 Conclusion

In this work we showed that the amount of context provided to annotators when assigning

emotion labels affects both the annotations themselves and the performance of classifiers

using these annotations. We also studied the implications of a mismatch between annotation

context and classifier context on classifier performance.
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CHAPTER VII

Controlling for Confounders in Emotion Recognition

7.1 Motivation and Contributions

Various psychological factors affect how individuals express emotions. Yet, when we

collect data intended for use in building emotion recognition systems, we often try to do so

by creating paradigms that are designed just with a focus on eliciting emotional behavior.

Algorithms trained with these types of data are unlikely to function outside of controlled

environments because our emotions naturally change as a function of these other factors. In

this work, we study how the multimodal expressions of emotion change when an individual

is under varying levels of stress. We hypothesize that stress produces modulations that can

hide the true underlying emotions of individuals and that we can make emotion recognition

algorithms more generalizable by controlling for variations in stress. To this end, we use

adversarial networks to decorrelate stress modulations from emotion representations. We

study how stress alters acoustic and lexical emotional predictions, paying special attention

to how modulations due to stress affect the transferability of learned emotion recognition

models across domains. Our results show that stress is indeed encoded in trained emotion

classifiers and that this encoding varies across levels of emotions and across the lexical and

acoustic modalities. Our results also show that emotion recognition models that control for

stress during training have better generalizability when applied to new domains, compared

to models that do not control for stress during training. We conclude that is is necessary to
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consider the effect of extraneous psychological factors when building and testing emotion

recognition models.

7.2 Introduction

Many extraneous psychological factors influence how individuals express and perceive

emotions [171]. However, most emotion recognition algorithms, rely on data collected in

controlled laboratory environments (e.g., [36, 38]) where influences from such factors are

either not present, or kept constant. The performance of emotion recognition algorithms is

likely to vary when applied to data where these external psychological factors are present.

In this work, we study how an extraneous psychological factor, stress, affects multimodal

(acoustic+lexical) emotion classifiers. Stress can affect how individuals produce and perceive

emotion [171]. Yet, the effect of stress levels on the performance of state-of-the-art emotion

recognition systems has not been explored.

Extraneous psychological factors can act as confounding factors, variables that influence

both the output (e.g., emotion) and the input (e.g., acoustic and lexical features). Not

controlling for confounding variables when training emotion classifiers can cause the

classifiers to learn unintentional associations between the variables, associations that might

not replicate in real world scenarios. For instance, consider a dataset where all the “sad”

samples were unintentionally recorded from individuals who were experiencing stress at the

time of recording. Not taking special care when building the models could cause a trained

classifier to erroneously associate experiencing stress with being sad. In this work, we study

how stress alters the performance of trained emotional classifiers in the context of neural

networks. We then see how performance is affected when tested on samples out of domain,

when we explicitly impede the network from learning such associations.

Previous research showed that controlling for confounding variables when training

emotion recognition classifiers results in more robust models when compared to models

trained without controlling for the same confounding variables. For instance, Abdelwahab
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et al. [4] and Gideon et al. [83] showed that controlling for domain (i.e., data source),

as a confounding factor, when training emotion recognition models results in improved

cross-corpus generalization performance when compared to performance of models that were

trained without controlling for domain as a confounding factor. Most of the above mentioned

methods rely on samples obtained from the target domain to extract representations that

retain information only about emotion and not domains. Our goal is to go beyond studying

the effects of variations due to domain and background noise on the robustness of trained

emotion recognition models, and instead focus on how stress affects the learned acoustic and

lexical emotional representations. Unlike the commonly used methods for learning domain

invariance, we aim to accomplish generalizing person specific behavior by proactively

“unlearning” the modulations due to the presence of stress while still retaining emotion

information in representations.

In particular, we seek to answer the following questions:

1. Can we recognize stress given representations trained solely for recognizing emotion?

Is the stress recognition performance similar across the lexical and acoustic modalities?

2. Can we completely decorrelate emotion representations from stress representations?

If so, how does this decorrelation impact the performance of emotion classifiers?

3. Does the impact of decorrelation on the performance of emotion classifiers vary given

different levels of stress?

4. Does decorrelating these representations (i.e., emotion and stress) aid in model

generalizability?

5. Can we proactively remove other types of confounders (e.g., spontaneity) to improve

cross-dataset performance?

6. Are there identifiable lexical patterns in samples that are especially successfully

classified by the adversarially trained model for emotion classification?
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Figure 7.1: Adversarial multi-task network architecture.

To the best of our knowledge, this is the first work that studies the interplay between emotion

and stress in the context of automatic emotion recognition and representation learning.

7.3 Experimental Setup

We use three datasets to study the effect of stress on emotion recognition: (1) Multimodal

Stressed Emotion (MuSE) dataset [105]; (2) Interactive Emotional Dyadic MOtion Capture

(IEMOCAP) dataset [36]; and (3) MSP-Improv dataset [38]. We use the acoustic and lexical

features, MFBs and word2vec respectively, as defined in Section 3.3. We then describe the

network architecture and the training recipe of the two emotion recognition models, one that

controls for stress as a confound and one that does not.
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7.3.1 Architecture

The network consists of three components (Figure 7.1): (1) embedding sub-network; (2)

emotion classifier; and (3) stress classifier. The embedding sub-network induces fixed-size

representations given the acoustic and lexical input streams. In Figure 7.1, the concatenation

layer of acoustic and lexical stream shows the induced fixed-size representations. The

emotion and stress classifiers perform their respective classification tasks given the fixed-size

representations from the embedding sub-network. We use two variants of the embedding

sub-network in this work: a unimodal and a multimodal variant. The unimodal embedding

sub-network takes a single stream (acoustic or lexical) input while the multimodal embedding

sub-network takes a two-stream (acoustic and lexical) input. The objective of the adversarial

multi-task system is to maximize the performance of the emotion classifier while minimizing

the performance of the stress classifier.

Stress-Invariance. The network is trained to unlearn stress. We achieve this goal using

a Gradient Reversal Layer (GRL) [77]. The use of GRLs is a common approach that can

be used to train networks that are invariant to specific properties [153, 196, 4, 79, 150, 67].

During the backward pass of the training phase, the GRL multiplies the backpropagated

gradients by −_. During the forward pass, the GRL acts as an identity function. To make

the network invariant to stress, we place the GRL between the embedding sub-network and

the stress classifier as shown in Figure 7.1.

Model Variations. We use 12 variants of the network shown in Figure 7.1 with the

following combinations: {normal-classification, adversarial-classification} × {activation,

valence} × {uni-lexical, uni-acoustic, multimodal}. The normal classification setup consists

of the embedding sub-network (lexical, acoustic, or multimodal) and the emotion classifier

(activation or valence) parts of the model. The adversarial classification setup adds the

adversarial stress classifier.
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7.3.2 Training

We implement models using the Keras library [52]. We use a weighted cross-entropy loss

function for each task and learn the model parameters using the RMSProp optimizer [214].

We train our networks for a maximum of 50 epochs and monitor the validation loss from

the emotion classifier after each epoch, stopping the training if the validation loss does

not improve after five consecutive epochs. Once the training process ends, we revert

the network’s weights to those that achieved the lowest validation loss on the emotion

classification task. For the adversarial classification model, we ensure that the chosen model

yields a validation unweighted average recall (UAR) that is random (0.33) for the stress

classification task. Finally, we train each setup three times with different random seeds and

average the predictions over these runs to reduce variations due to random initialization.

We use validation samples for hyper-parameter selection and early stopping. The hyper-

parameters that we use in our search include: number of convolutional layers {3, 4}, number

of convolutional kernels {2, 3}, conv. layers width {32, 64, 128}, 1D max-pooling kernel

width {2}, number of GRU layers {2, 3}, GRU layers width {32}, number of dense layers

{1, 2}, dense layers width {32, 64}, GRL _ {0.3, 0.6, 0.8}. For the adversarial emotion

classification setups, we use the hyper-parameters that maximize the validation emotion

classification performance while minimizing the validation stress classification performance.

We assess performance using UAR, given the imbalanced nature of our data [184].

7.4 Analysis

7.4.1 RQ1: Implicit Stress Encoding

Question: Can we recognize stress given representations trained solely for recognizing

emotion?

Hypothesis: We expect the performance of detecting stress from representations obtained by

training emotion classifiers to vary based on the modality, and the emotion being modeled.
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Table 7.1: UAR (chance = 0.333) for predicting activation (top) and valence (bottom)
in adversarial and non-adversarial (normal) setups. Bold signifies significantly different
performance (paired 𝑡-test, 𝛼 < 0.05).

Normal Adversarial

Setup Act. Stress Act. Stress

Unimodal (A) 0.611 0.412 0.572 0.305
Unimodal (L) 0.550 0.394 0.527 0.332
Multimodal (A+L) 0.659 0.425 0.613 0.322

(a) Activation

Normal Adversarial

Setup Val. Stress Val. Stress

Unimodal (A) 0.460 0.396 0.431 0.332
Unimodal (L) 0.685 0.353 0.674 0.323
Multimodal (A+L) 0.666 0.397 0.641 0.328

(b) Valence

Stress has been shown to have varying effects on both the linguistic [32] and para-

linguistic [171, 205] components of communication. Previous work has also demonstrated

that the lexical part of speech carries more information about valence while the para-linguistic

part carries more information about activation [116]. As a result, we expect the performance

of stress classification to vary based on modality, and emotion dimension being modeled.

To test our hypothesis, we train the 12 model variants described in section 7.3.1 with

five-fold speaker-independent cross-validation. We report the average across the five folds

for the normal classification and the adversarial classification setups in Tables 7.1a and 7.1b

for predicting activation and valence, respectively. Our results show that a network trained

to only recognize emotion is generally discriminative for stress. For instance, we obtain a

maximum UAR of 0.425 when using a multimodal network that was trained to only detect

activation; and a maximum UAR of 0.397 when using multimodal network that was trained

to only detect valence.

Our results in Table 7.1a suggest that the acoustic modality encodes information that

is relevant for recognizing stress and activation. In contrast, the results show that the
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Table 7.2: Confusion matrices for predicting activation (top) and valence (bottom) showing
percentage change in classification performance of the multimodal setup for each emotion
class after controlling for stress.

Low Stress High Stress

Act. (0) (1) (2) (0) (1) (2)

(0) −1.21 −0.22 +1.44 +1.30 −2.11 +7.35
(1) +4.22 −2.73 +1.31 +18.40 −22.03 +14.80
(2) −2.01 +6.66 −6.38 −8.81 +6.21 −3.14

(a) Activation

Low Stress High Stress

Val. (0) (1) (2) (0) (1) (2)

(0) −1.66 +1.12 +1.11 −8.22 +7.88 +1.33
(1) −0.76 −2.22 +0.87 −2.31 −6.11 +4.26
(2) −1.01 +0.31 +1.45 −1.15 −2.10 +0.79

(b) Valence

representations trained on lexical modality encode information that is relevant for detecting

valence but not for stress. Our findings are consistent with previous research that demonstrated

that stress is encoded in acoustic features [32, 75, 62].

7.4.2 RQ2: Decorrelate Emotion and Stress Representations

Question: Can we decorrelate emotion representations from stress representations? How

does it impact performance of emotion classifiers?

Hypothesis: Decorrelating the stress and emotion representations will cause a decrease in

emotion classification performance on the source domain.

Previous research demonstrated that controlling for confounders during the training process

can cause the performance of the main task on the same dataset to decrease [149, 209]. For

instance, Zhang et al. [149] showed that the performance of detecting sarcasm decreases

when controlling for publication as a confounding variable in the training process, but the

prediction accuracy increases on an unseen publication set. Similarly, Ganin et al. [79]
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showed that controlling for domain while training a network for detecting sentiment can

result in a performance reduction on the main task. The reduction in performance on the

main task, after controlling for an extraneous confounding variable, can be attributed to the

removal of information that the model can use as a “shortcut” for achieving the main task.

Our results show that (Tables 7.1a and 7.1b):

• Activation classification performance decreases given adversarial training. This

decrease is statistically significant for the acoustic (6.382% drop in UAR) and

multimodal (6.980% drop in UAR) setups.

• Valence classification performance decreases given adversarial training. This decrease

is statistically significant for the multimodal setup (3.754% drop).

The reduction in performance in the main task after controlling for a confounding variable

can also be caused by the removal of information that is equally beneficial for both detecting

stress and detecting emotion. Our results in further sections , however, show that models

that control for stress are better able to recognize emotion in new domains, compared to

models that do not control for stress. This suggests that the process of “unlearning” stress

does not come at the expense of the primary task of emotion detection.

7.4.3 RQ3: Impact of Stress Levels on Emotion Recognition

Question: Does the impact on the performance of emotion classifiers vary given different

levels of stress

Hypothesis: The valence and activation emotion classes (low, medium, and high) are

impacted differently by stress.

Prior research demonstrated that emotions produced by stressed individuals are not recognized

in the same way as those by non-stressed individuals [171]. In particular, researchers found

that speech patterns of negative emotions produced by stressed individuals are more difficult

to recognize than negative emotions produced by non-stressed individuals [171]. We expect
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similar patterns to hold in automatic emotion recognition systems. That is, we expect the

presence of stress to have a varying effect on the performance of the classifier depending on

the emotion class (for valence and activation), and the amount of stress induced.

To test our hypothesis, we study how the performance of the classifier varies for each

emotion class when we control for stress. We report the changes in performance, after

controlling for stress, for each emotion class, grouped by stress level (low, high), in Table 7.2.

The results in the table show:

• High levels of stress impact classification more strongly (3.89% and 2.41% drop in

UAR for activation and valence, respectively) than low levels of stress do (1.44% and

0.31% drop in UAR for activation and valence, respectively). This is generally true

for all emotion classes (valence and activation).

• High levels of stress have the biggest impact on mid level of activation predictions

(22.03% drop in accuracy for detecting neutral activation).

• High levels of stress have the biggest impact on low valence predictions (8.22% drop

for low valence).

The results show that stress level effects emotion recognition, for both activation and valence.

This drop in performance can be attributed to changes in the perceived emotions by the

annotators. Researchers have demonstrated that stressed sentences are usually perceived by

annotators to be more neutral than they were originally intended to be [171].

7.4.4 RQ4: Decorrelation and Model Generalizability

Question: Does the process of decorrelating these representations (i.e., emotion and stress)

aid in model generalizability?

Hypothesis: Removing the confounding factor stress would aid in creating models that are

more generalizable across datasets.

Previous research has shown that laboratory collected datasets are too small and often fail
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to capture the complete distribution of the domain [100, 142] present in the real world.

These datasets are often plagued with unintentional correlational factors [142, 128]. Hence

we believe that removing modulations due to stress should aid the generalizability of the

model to datasets, where this psychological factor is either unmeasured or the distribution is

non-uniform between training and testing.

To answer if the models trained on MuSE dataset generalize better, we perform two sets

of experiments: (a) self generalizability in artificially partitioned datasets with different

stress distributions for evidence of concept and (b) cross-dataset generalizability.

Artificially Segmented Within-Dataset Performance. We run the first set of ex-

periments by creating partitions of data by stress level. We do this to create artificially

mismatched environments between training and testing. We reserve one set to be test set

(target), while keeping the other two for training and validation combined (source). This is in

similar vein to partitioning created across confounding factor for UCI Bike Rentals Dataset

in [209]. To ensure speaker independent sets, we divide the training set using an 80:20 split

(train and validation), ensuring no speakers overlap. We run these models 𝑛 times where

𝑛 is the number of speakers in test data, that are also present in train/validation data. For

each run, we remove one speaker from the train/validation data and test on that speaker. We

calculate the average test performance of all these runs as the performance of the model for

that setup.

We report our results in Table 7.3. When we consider low levels of stress as our

target, we see that adversarial classification significantly improves performance over normal

classification for multimodal setup for activation and for both, lexical and multimodal

setup for valence. Considering mid levels of stress as our target, adversarial classification

significantly improves performance over normal classification for all setups for activation

and for both, acoustic and multimodal setup for valence. Subsequently considering high

levels of stress as our target, adversarial classification significantly improves performance

over normal classification for acoustic setups for activation and for all setups for valence.
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Table 7.3: Performance (UAR) predicting activation (left) and valence (right) in non-
adversarial and adversarial (for best lambda value) for self-partition on MuSE. Bold signifies
significantly different performance (paired 𝑡-test, 𝛼 < 0.05).

Normal Adversarial

Act Val Act Val

Train: Stress (Medium + High) Test: Stress (Low)

Unimodal (A) 0.623 0.451 0.582 0.453
Unimodal (L) 0.561 0.654 0.548 0.691
Multimodal (A+L) 0.650 0.673 0.662 0.703

Train: Stress (Low + High) Test: Stress (Medium)

Unimodal (A) 0.610 0.420 0.628 0.432
Unimodal (L) 0.520 0.672 0.545 0.669
Multimodal (A+L) 0.602 0.621 0.638 0.649

Train: Stress (Medium + High) Test: Stress (Low)

Unimodal (A) 0.582 0.384 0.605 0.411
Unimodal (L) 0.540 0.630 0.513 0.652
Multimodal (A+L) 0.642 0.621 0.647 0.637

Cross-dataset Performance. Now that we have evidence for concept for artificially

mismatched distributions that removing stress as a confounding factor can aid generalizability,

we ask if adversarially removing encoded stress from emotion representation improves

cross-dataset performance. We assume that we previously do not have any samples from

the target dataset to train our model, to test generalizability at deployment. We train a

dataset on complete MuSE data, keeping 20% of speaker independent data for validation of

hyper-parameters. Then we use the trained model to test on IEMOCAP for a combination of

acoustic, lexical and multimodal inputs and on MSP-Improv for acoustic inputs.

We report our results of comparing the performance of the adversarial and normal models

(Table 7.4):

• Activation: There is a significant increase in performance in all setups when the

adversarial classification model is tested on IEMOCAP. We observe a significant

increase in performance in acoustic setup of adversarial classification model (0.404 vs
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Table 7.4: Performance (in UAR) predicting activation (left) and valence (right) in non-
adversarial and adversarial (for best lambda value) setups across datasets when trained on
MuSE. Bold signifies significantly different performance (paired 𝑡-test, 𝛼 < 0.05).

Normal Adversarial

Act Val Act Val

MuSE to IEMOCAP

Unimodal (A) 0.419 0.376 0.448 0.401
Unimodal (L) 0.401 0.433 0.436 0.447
Multimodal (A+L) 0.422 0.431 0.459 0.472

MuSE to MSP-Improv

Unimodal (A) 0.404 0.368 0.431 0.372

0.421) when tested on MSP-Improv.

• Valence: There is a significant increase in performance using acoustic setup (0.376

vs 0.401) and multimodal setup (0.431 vs 0.472) of adversarial model when tested

on IEMOCAP. We see no significant difference in performance when testing on

MSP-Improv using adversarial classification model .

Based on these results, we understand that removal of a psychological confounding factor,

stress, generally aids in the generalizability of the model on completely unseen data, where

the distribution of this confounding factor is unknown.

7.4.5 RQ5: Spontaneity as Confounding Factors

Question: Can we proactively remove other types of confounders to improve cross-dataset

performance?

Hypothesis: Removing the confounding factor of spontaneity in IEMOCAP will improve

cross-dataset performance.

We observed in the last question that “unlearning” the confounder stress can aid generalizabil-

ity. Now, we want to see if the same method can be used to make models trained using other

datasets more reliable to change in target data distribution. We hypothesize that decorrelating
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the effect of spontaneity on emotion representation will lead to models that generalize better.

This is because, as shown in [146], the emotional content expression is different in scripted

vs spontaneous speech, and hence should modulate the emotion representation in trained

model. To this end, we use the IEMOCAP dataset which has utterances that come from

sessions that are both scripted and improvised. We do not use MSP-Improv for similar

analysis here, because the scripted sessions, by corpus design, have limited lexical content

and hence wouldn’t cover enough input representation space for generalizability. We train the

same 12 model variants described in section 7.3.1 replacing the adversarial stress classifier

sub-component with adversarial spontaneity classifier for this analysis.

We report our results in Table 7.5. We compare the performance of the adversarial and

normal models:

• Activation: There is a significant increase in performance in lexical (0.401 vs 0.425)

and multimodal setup (0.433 vs 0.467) when the adversarial model is tested on MuSE

dataset. We see no significant difference in performance when the adversarially trained

model is tested on MSP-Improv.

• Valence: There is a significant increase in the performance using all setups of the

adversarial classification model when tested on MuSE. We observe a significant

increase in the performance in the acoustic setup of the adversarial model (0.410 vs

0.438) when tested on MSP-Improv.

We see that the removal of modulations due to the data collection methodology improves

generalizability for many cross-dataset cases. This suggests that this method can be extended

to train stabler models by explicitly accounting for confounding variables in limited amounts

of training data.
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Table 7.5: Performance (in UAR) predicting activation (left) and valence (right) in non-
adversarial and adversarial (for best lambda value) setups across datasets when trained on
IEMOCAP. Bold signifies significantly different performance (paired 𝑡-test, 𝛼 < 0.05).

Normal Adversarial

Act Val Act Val

IEMOCAP to MuSE

Unimodal (A) 0.428 0.401 0.427 0.431
Unimodal (L) 0.401 0.423 0.425 0.455
Multimodal (A+L) 0.430 0.429 0.463 0.468

IEMOCAP to MSP-Improv

Unimodal (A) 0.414 0.410 0.402 0.439

7.4.6 RQ6: Lexical Patterns in Samples That Benefit from Adversarial Training

Question: Are there identifiable lexical patterns in samples that are especially successfully

classified by the adversarially trained model for emotion classification?

Hypothesis: Certain properties of input features correlate with the increase in probability

of successful classification in adversarially trained emotion recognition models.

Our results in questions 4 and 5 of section 7.4.4 demonstrate that decorrelating the

representations from modulations due to confounding factors can positively affect the

classification performance of our trained emotion recognition models when applied to

datasets whose properties differ from the data on which the models were trained.

In this section, we aim to understand what properties of input features in a given sample

correlate with the probability of successful classification in trained emotion recognition

models due to decorrelation of such modulations. Understanding the relationship between the

properties of the input features and the likelihood of success can help us identify data points

that are more likely to be correctly classified using adversarially trained models. This can help

us identify samples in an unseen dataset for which we can trust the classification label obtained

from the adversarial model as compared to the normal classification model. We analyze this

relationship using word tokens, which are low-dimensional and human-interpretable.
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7.4.6.1 Adjusted Probability of Success

We study the correlation between the lexical patterns of data samples and the probability

that those samples are correctly classified. We focus on improvements in classifaction,

moving from the normal model to the adversarial model. This allows us to focus on

improvement and mitigates the challenge that certain samples may just be particularly easy

or hard to classify. We define probability of success for a sample as the 𝑃𝐴,𝑠(𝑆𝑢𝑐𝑐𝑒𝑠𝑠)

where A can either be a normal (normal) classification model or an adversarial classification

model (adv) and 𝑠 refers to the index of a particular sample. We calculate 𝑃𝐴(𝑆𝑢𝑐𝑐𝑒𝑠𝑠)

as the ratio of the number of times a model correctly classifies a given sample to the total

number of fifteen runs. If a sample is correctly classified across all runs by adversarial

model, the 𝑃𝑎𝑑𝑣(𝑆𝑢𝑐𝑐𝑒𝑠𝑠) for that sample would be 1. But we want to concentrate on the

gain in performance of using adversarial over normal classification. It might be the case that

this sample is correctly classified across all runs by normal classification model as well, the

𝑃𝑛𝑜𝑟𝑚𝑎𝑙(𝑆𝑢𝑐𝑐𝑒𝑠𝑠) for that sample would be 1. In this case, we do not see any betterment as

a result of using adversarial training paradigm. To mitigate the above limitation, we define

adjusted probability of success in the following manner: We define adjusted probability of

success (APS) for sample 𝑠 as: 𝑃𝑎𝑑𝑣,𝑠(𝑆𝑢𝑐𝑐𝑒𝑠𝑠) − 𝑃𝑛𝑜𝑟𝑚𝑎,𝑠𝑙(𝑆𝑢𝑐𝑐𝑒𝑠𝑠). When the APS is

greater than 0, the sample is more accurately classified using the adversarial model. When

the APS is less than zero, it is more accurately classifed using the normal model.

7.4.6.2 Features

Our goal is to correlate APS with interpretable lexical features. We use the Linguistic

Inquiry and Word Count (LIWC) [174] tool. LIWC assigns a predefined category to a word

based on its association with social, affective and cognitive process. These categories have

been shown to be highly predictive of both emotion [114], spontatenity [53] and stress [226].

We form a twelve length feature vector for each utterance by counting the number of

words that fall into each of the nine LIWC categories (adverb, pronoun, social process,
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negation, positive and negative emotion, insight, tentative and certainty). We normalize

the feature vector by how many words in the utterance. We augment this feature vector to

include: (1) fillers (e.g., “uhh”), hesitation (e.g., “like”), and discourse markers (e.g., “so”)

and (2) content rate, defined as the number of words per unit length of time. The final feature

vector comprises of all the above mentioned categories.

7.4.6.3 Discussion

Decorrelating Stress. We report the Pearson correlation coefficient and the resulting

Benjamini-Hochberg adjusted [25] 𝑝-values that we obtain between each feature in the

vector, and the APS for each sample. We perform this assessment for both the activation and

valence normal and adversarial lexical models. We focus on the cross-dataset case in which

the models were trained on MuSE and tested on IEMOCAP (in Table 7.6). A large positive

correlation between a category and APS implies that samples with larger numbers of words

in a given category are likely to be classified correctly more often given the adversarial

model versus the normal model.

• Activation recognition: APS is significantly positively correlated with the presence

of words that relate to: Adverb (0.217), pronoun (0.165), positive emotion (0.154),

certainity (0.138), fillers (0.154), discourse markers (0.141), and content rate (0.196).

• Valence recognition: APS is significantly positively correlated with the presence of

words that relate to: Adverb (0.177), negative emotion (0.143), fillers (0.182), content

rate (0.178).

This finding is consistent with previous research [151], where the authors have shown that

there is often an increase in usage of function words and intensifiers in stressed conditions.

So, for example a sentence ”I am really really sad about losing my pen” would have more

likelihood of being correctly classified by the adversarial model compared to the normal

emotion classification model. Hence, we can hypothesise that an increase in the likelihood
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Table 7.6: Correlation between LIWC features and APS due to stress decorrelation, for
activation and valence. 𝑝-values are Benjamini-Hochberg adjusted for multiple comparisons
(𝛼 = 0.05). p-value codes: ‘**’<0.01; ‘*’<0.05; ‘-’<0.1

Act. Val.

r p r p

LIWC

Adverb 0.217 ** 0.177 *
Pronoun 0.165 - 0.082 *
Social Process (social) 0.084 - 0.001 -
Negations (negate) -0.018 - 0.005 -
Positive emotion (posemo) 0.154 * 0.093 -
Negative emotion (negemo) 0.086 - 0.143 *
Insight -0.021 - -0.012 -
Tentative (tentat) 0.074 - 0.101 -
Certainty (certain) 0.138 * 0.116 -

Hesitation

Fillers 0.154 * 0.182 *
Discourse marker 0.141 * 0.111 -
Content Rate 0.196 ** 0.178 **

of correct classification of samples containing these intensifiers occurs due to reduced

weightage of adverbs in adversarial training paradigm.

There are fewer significant categories for valence than for activation. This is consistent

with the results in Table 7.4 for the lexical modality. Although we see a significant correlation

between filler words and APS for activation classification [65], we do not observe the same

for discourse markers and presence of social process words. The absence of significance in

these cases implies that though these values are markers of stress, the normal classifier is

still able to learn reliable representations invariant of stress for predicting the correct target

label, resulting in negligible impact on classification performance when decorrelating the

representations.

Decorrelating Spontatenity. We do a similar analysis for analyzing lexical properties

of samples that were aided by decorrelating spontaneity. We report the Pearson correlation

coefficient and the resulting Benjamini-Hochberg adjusted [25] 𝑝-values that we obtain
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Table 7.7: Correlation between LIWC features and APS due to spontaenity decorrelation, for
activation and valence. 𝑝-values are Benjamini-Hochberg adjusted for multiple comparisons
(𝛼 = 0.05). p-value codes: ‘**’<0.01; ‘*’<0.05; ‘-’<0.1

Act. Val.

r p r p

LIWC

Adverb 0.121 ** 0.088 -
Pronoun 0.138 - 0.016 *
Social Process (social) 0.132 - 0.166 *
Negations (negate) -0.003 - -0.011 -
Positive emotion (posemo) 0.122 - 0.161 *
Negative emotion (negemo) 0.137 * 0.148 *
Insight 0.017 - 0.099 -
Tentative (tentat) 0.155 * 0.112 -
Certainty (certain) 0.191 * 0.172 *

Hesitation

Fillers 0.221 ** 0.119 *
Discourse marker 0.189 * 0.122 -
Content Rate 0.165 * 0.144 -

from the LIWC features and APS for both emotion axes lexical-based classification models

(trained on IEMOCAP; tested on MuSE) in Table 7.7.

• Activation recognition: APS is significantly positively correlated with the presence of

words that relate to: Pronoun (0.138), negative emotion (0.137), tentativeness (0.155),

certainty (0.191), fillers (0.221), discourse markers (0.189) and content rate (0.165).

• Valence recognition: APS is significantly positively correlated with the presence of

words that relate to: Social Process (0.166), positive (0.161) and negative (0.148)

emotion, certainty (0.172), and content rate (0.144).

The results suggest that there are identifiable linguistic properties of samples whose

likelihood of correct classification benefits from the model trained adversarially to decorrelate

spontaneity and emotion representation as compared to normal classification model. This is

especially true for the use of words in the certainty category for both emotion dimensions
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and all hesitation categories for activation. Spontaneous speech has been shown to have

more of these words in [53]. Scripted content has been shown to have more exaggerated

displays of emotion through words and facial expressions [113]. Controlling for the weights

assigned to words in positive and negative emotion categories using the adversarial model,

leads to better classification of samples that are comprised of these word tokens.

7.5 Conclusions

This work focused on the interplay between stress and emotion in the context of automatic

emotion recognition. We first showed that the presence of stress affects the performance

of emotion recognition models. We then observed that these effects vary depending on

modality (acoustic or lexical) and task (activation or valence classification). We then showed

how decorrelating stress modulations from emotion representations aids the generalizability

of the model. Next, we showed how a similar method could be used to control for variations

due to spontaneity; facilitating the generalizability of the model. Finally, we identified

human interpretable lexical markers that correlate with successful generalization of the

model; especially concentrating on samples that are aided by decorrelation of stress and

emotion representation.

Our results suggest that an extraneous psychological factor, such as stress, can significantly

impact the performance of emotion recognition systems both within and across datasets.

As a result, extraneous psychological factors should be accounted for when collecting data

for training emotion recognition systems, especially when being used to predict labels of

data that may or may not be modulated by those same factors. We then show how proactive

decorrelation of this confounder can improve generalization of the model to other dataset at

time of deployment.
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CHAPTER VIII

Reducing Leakage of Demographic and Membership

Information Through Adversarial Networks

8.1 Motivation and Contributions

The rise of mobile applications and conversational agents harnessing emotion recognition

capabilities has brought a crucial challenge to the forefront: the safeguarding of sensitive user

information. This data, encapsulating detailed demographic aspects, is often extracted from

user devices and stored on centralized servers. In worst-case scenarios, these details could

be exploited without user consent or manipulated by harmful entities. Storing abstracted

representations rather than raw data, while a potential solution, doesn’t fully counter the

problem. Indeed, these representations, intended for tasks like emotion recognition, are

susceptible to inadvertent demographic leakage undermining user-defined settings (for

example, to not receive gender targetted ads) and exposing sensitive variables from unimodal

(textual or acoustic) or multimodal data.

The consequences of unintentional demographic leakage are significant. Continual

exposure of sensitive attributes threatens the integrity of user data. Moreover, the inherent

tie-in of demographics such as age, gender, and race with emotion recognition models makes

these models potential reservoirs of sensitive user information—even when storing only

representational data. As a result, measures to counter demographic leakage have become a
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pressing need.

Addressing these issues, our research focuses on developing robust methods to mitigate

demographic leakage. We propose to use an adversarial learning model, which is trained with

the aim to remove the learnt sensitive information encoded in the generated representation

from any emotion recognition system. Varying the intensity of this ”removal” offers us

insight into the effects on the primary task and the ability of an attacker to accurately predict

demographic information from just the input to a model and the generated representations.

Additionally, we introduce a metric aimed at quantifying the defense against sensitive

information exposure and the probability of membership identification — an unauthorized

person’s ability to determine if a user was part of the training data set. Our work across

multiple datasets yields encouraging results; enhancing protection of sensitive data without

significantly hampering the performance of primary emotion-recognition tasks. Ultimately,

our work represents a pivotal stride in bolstering user data security within emotion recognition

systems, setting in place a strong foundation for future research and improvements in this

critical field.

8.2 Introduction

Virtual conversational agents strive to emulate human-like interaction to have more

naturally flowing conversation [154]. These agents often employ models that classify aspects

of communication, including the classification of the emotional content of speech. [101]. The

resulting predictions can then be used to bias response generation. Emotion classification is

also used in mobile and web applications to identify heightened risk of suicidal ideation

or mood fluctuations [117, 148, 84], for the purpose of tracking or intervention. Data are

sent from users’ devices, including mobile applications [117] and Alexa or Google home

devices [177], and are stored on central servers for analysis.

However, data transmitted from users’ devices are vulnerable to data hacking and

re-identification [18]. Eavesdroppers can use these data for identification of an individual
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and to gain access to sensitive information. A way to counter this issue in data collected by

mobile or smart home applications is to generate a data representation on the device and

then to transfer that representation to the server for additional processing. The benefit is that

these representations can decrease leakage of content and sensitive information by partially

obfuscating the actual content of the conversation [24]. However, they still contain sensitive

demographic information.

The implications of sensitive information leakage is profound: research has shown

that discrimination occurs across variables of age, race, and gender in hiring, policing and

credit ratings [92]. [2] showed how adding random noise to aggregated dataset or individual

samples can ensure defense against attacks that aim to classify sensitive information from

the representation. But, previous research has shown that using additional noise can often

be exploited if the adversary has access to the network used to generate anonymity [120].

Therefore to ensure robustness, we consider a scenario of the attacker having access to the

same embedding sub-network to generate the representations that will be used to train its

attack network.

In this work, we focus on sensitive information encoding in the context of emotion

recognition. Emotion recognition provides an important test case because emotion production

varies significantly across gender and race. As a result, the outputs of emotion recognition

models are often highly correlated with these secondary demographic signals [45, 202]. We

design approaches to first measure leakage and then to counteract this leakage. We measure

sensitive information encoding in two ways: 1) using a sensitive information reduction

metric, which we define as the incapability of an attacker to recover demographic information

from representations, and 2) by determining an adversary’s ability to perform membership

identification [136], defined as the ability to determine if a given user was in a dataset from

which the emotion recognition models were trained (this can be harmful if the training data

are collected in a sensitive context, such as counselling or therapy). We ask the following

seven questions:
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1. Does demographic leakage differ in umimodal and multimodal emotion recognition

models?

2. How does the sensitive information reduction metric change when a network is trained

to not encode sensitive information?

3. How does emotion recognition performance change when networks are trained to not

encode sensitive information?

4. How does the adversarial component’s strength impact emotion recognition perfor-

mance and the sensitive information reduction metric?

5. Focusing on gender, how does the performance of emotion recognition change when a

network is trained to not encode sensitive information?

6. Does the location of the adversarial component within a network affect the sensitive

information reduction metric and emotion recognition performance?

7. Does the sensitive information reduction paradigm that we used to reduce encoding

of gender information also help defend against other attacks such as membership

identification?

Our results show that representations obtained for emotion recognition can be exploited

by an adversary to predict sensitive variables given unimodal information (either audio or

lexical). We further show that multimodal models contain even more sensitive information,

as lexical and audio each encode different aspects of demographic information. We show

that we can increase the defense against this attack by adversarially training representations

to be invariant to gender. The novelty of this work is two fold: (1) we analyze how the

demographic variable encoded in a representation differs across modalities and how it

can be increased using adversarial paradigm; and, (2) we obtain enhanced representations

that defend against multiple sensitive information leakage or prediction attacks while still

maintaining performance on emotion recognition.

Given most of the previous work on representations that aim to reduce encoded sensitive

information concentrates on just lexical information, we tackle the questions that arise from
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Figure 8.1: Privacy preserving network architecture.

desiring such preservation in multimodal representations for emotion recognition. While

the primary goal of most previous works has been to avoid unintentional inference by the

application itself, we concentrate on minimizing the potency of an attacker to deliberately

recover sensitive attributes from an invariant representation.

8.3 Experimental Setup

We use four common emotion recognition datasets: MSP-Improv [38], MSP-Podcast [143],

Interactive Emotional Dyadic MOtion Capture (IEMOCAP) dataset [36], and Multimodal

Stressed Emotion (MuSE) dataset [105]. We use the acoustic and lexical features, MFBs and

word2vec respectively, as defined in Section 3.3. Next, we describe the network architecture,

the training recipe, and the metrics in consideration.

8.3.1 Architecture

The objective of this system is to maximize the performance of the emotion classifier

while minimizing the performance of the gender classifier (see Figure 8.1). The main
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network consists of three components: (1) embedding sub-network, 𝑀𝑜𝑑𝑒𝑙(\); (2) emotion

classifier, \𝑐 and output 𝑦𝑖; and (3) gender classifier, 𝐷𝑖(\𝑑𝑖 ), with output, 𝑏𝑖. We then

disucss how an attacker network could maliciously use this information to obtain sensitive

demographic information.

Main Network. The embedding sub-network uses a state-of-the-art multimodal approach

in emotion recognition [9] in which the acoustic and lexical information are processed

separately and then joined after the application of modality-specific global mean pooling.

The acoustic input stream (𝑥𝑖(𝑎)), where 𝑖 represents an input frame (40-dimensional) and 𝑎

represents acoustic, is processed using a set of convolution layers and Gated Recurrent Units

(GRU), which are fed through a mean pooling layer to produce an acoustic representation

(ℎ𝑎). The lexical input (𝑥𝑖(𝑙)), where 𝑖 represents an input word (300-dimensional) and 𝑙

represents lexical, is passed through GRUs and pooled to obtain a lexical representation

(ℎ𝑙). For the multimodal setup, these two representations, (ℎ𝑎) and (ℎ𝑙), are concatenated

(ℎ). The representations (ℎ, ℎ𝑎, ℎ𝑙) are of fixed-length given acoustic and lexical inputs. The

emotion classifier takes in the representation (ℎ, ℎ𝑎, or ℎ𝑙) as input and estimates valence or

activation using a set of dense layers. The gender classifier estimates the gender label (i.e.,

male or female) using a set of dense layers.

Gender-Leakage. The main network is trained to unlearn gender. To achieve this goal,

we use a Gradient Reversal Layer (GRL) [77]. GRLs are a common multi-task approach

to train networks such that they are invariant to specific properties [153, 107]. During the

backward pass of the training phase, the GRL multiplies the backpropogated gradients by

−_ (i.e., the strength of the adversarial component). During the forward pass, the GRL acts

as an identity function. To make the network invairant to gender, we place the GRL function

between the embedding sub-network and the gender classifier. We obtain gender-invariant

representations using the following loss function:

\̂ = 𝑚𝑖𝑛
\𝑀

𝑚𝑎𝑥
{\

𝐷𝑖 }𝑁𝑖=1

𝜒(�̂�(𝑥; \𝑀), 𝑦) −
𝑁∑︁
𝑖=1

(_𝑖 .𝜒(�̂�(𝑥; \𝐷𝑖 ), 𝑏𝑖))
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where 𝑁 is the number of targeted sensitive variables (here 𝑁=1). The loss function ensures

that while the output components are trained to be good predictors, the representation is

trained to be maximally good for the primary task (emotion) and maximally poor for the

secondary task (gender).

Attacker Network. We assume that the attacker has access to a held-out dataset (either a

different dataset or a section of the original dataset) with known gender labels. The attacker

generates representations for this dataset using the previously described embedding sub-

network. The network then learns to predict gender labels from the generated representations

using a set of dense layers. Since the parameters used to construct the representation are fixed,

the attacker only acts upon its own parameters to optimize the gender prediction linear loss.

The purpose of the attacker’s network is to recover gender information from representations

whose labels are unknown. Though testing using a singular network isn’t a guarantee of

robustness of the representation to attacks that aim to predict or extract sensitive information

from representations, for the scope of this chapter, we use a feed forward network, one of the

powerful learning methods on a fixed size static representation.

Model Variations. We use 12 variants of the network shown in Figure 8.1. We

train combinations of the following setups: {general-classification-model (Gen), sensitive-

information-reduction-classification-model (SIR)} × {activation, valence} × {uni-lexical,

uni-acoustic, multimodal}.

The general classification setup makes use of the embedding sub-network with text,

speech, or both as input streams and the emotion classifier. The sensitive information

reducing classification setup adds the gender classifier to the general setup.

Training. We implement models using the Keras library. [52]. We use a weighted

cross-entropy loss function for each task and learn the model parameters using the RMSProp

optimizer. [214]. We train our networks for a maximum of 50 epochs and monitor the

validation loss for the emotion classifier after each epoch, stopping the training if the

validation loss does not improve for five consecutive epochs. Once the training ends, we
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revert the network’s weights to those that achieved the lowest validation loss on the emotion

classification task. For the classification model trained to not encode sensitive information,

we ensure that the chosen model yields a chance unweighted average recall (UAR) for the

gender classification task on the validation set. Finally, we train each setup three times with

different random seeds and average the predictions over these runs to reduce variations due

to random initialization.

We use validation samples for hyper-parameter selection and early stopping. The hyper-

parameters that we use for the main network include: number of convolutional layers {3, 4},

width of the convolutional layers {2, 3}, number of convolutional kernels {32, 64, 128},

number of GRU layers {2, 3}, GRU layers width {32}, number of dense layers {1, 2}, dense

layers width {32, 64}, GRL _ {0.3, 0.5, 0.75, 1}. For the adversarial emotion classification

setups, we use the hyper-parameters that maximize the validation emotion classification

performance while minimizing the validation gender classification performance. For the

attacker’s model, we use the following hyper-parameters: number of dense layers {2, 3, 4},

dense layers width {32, 64}. We report the UAR performance of our models, given the

imbalanced nature of our data. [184].

8.3.2 Metrics

Performance. We define performance for emotion recognition as the ability of the

model to correctly classify either activation or valence into 3 categories: low, medium, and

high. We measure performance using UAR (chance is 0.33).

Demographic Leakage. Leakage is defined as the ability of a trained gender classifier to

predict gender from the representations which are obtained when the network is simultane-

ously trained to perform the primary task.

Demographic Sensitive Information Reduction Metric. We define the sensitive informa-

tion reduction metric as the inability of an attacker to be able to recover gender from the

representations trained on a primary task. To test this, we use four phases of training.
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1. We train the main network on a dataset (D1), represented by the pair (𝑥𝐷1, 𝑦𝐷1), where

𝑥 is the data input while 𝑦 is the gender label. We obtain representations for this

dataset (ℎ(𝑥𝐷1)).

2. We consider that the attacker has access to another dataset or unused subset of the same

dataset (D2) represented by the pair (𝑥𝐷2, 𝑦𝐷2). We generate representations ℎ(𝑥𝐷2)

for the pairs in this dataset using the embedding sub-network of the main network.

3. We train a model (𝑀𝑎𝑡𝑡) to predict gender labels using the representations obtained in

step 2, represented as 𝑀𝑎𝑡𝑡((ℎ(𝑥𝐷2), 𝑦𝐷2)).

4. Using the model obtained previously (𝑀𝑎𝑡𝑡), we choose ℎ(𝑥𝐷1) as inputs, and measure

the gender prediction capability of the attacker 𝑈𝐴𝑅(𝑀𝑎𝑡𝑡((ℎ(𝑥𝐷1), 𝑦𝐷1)). The Demo-

graphic Sensitive Information Reduction metric of an attacker is then quantitatively

defined as 1 −𝑈𝐴𝑅(𝑀𝑎𝑡𝑡).

The range of the sensitive information reduction metric goes from 0 (the attacker is always

correct) to 0.5 (the attacker has a chance UAR).

Membership Identification. Membership identification is the possibility of an attacker

being able to recognize if a speaker belongs to the training set. We assume that the adversary

can obtain samples from a speaker from the same distribution as that for the training set.

Consider that the adversary knows some speakers for whom representations definitely exist

in the training set and some for whom they definitely don’t. We test the possibility of

membership identification using four steps:

1. We simulate the above using cross-validation. Given five speaker independent folds,

we use three for the training set. From the remaining two folds, we add some samples

of the selected speakers to the training set.

2. We consider that the attacker knows both, the speakers selected and not selected for

training from set four (𝑠4), but has no information about this split for set five (𝑠5). The

objective of the attacker is to predict whether speakers were selected for inclusion in
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the training set from (𝑠5).

3. The attacker trains a binary classification model comprised of dense layers (𝑀𝑎𝑡𝑡−𝑚𝑖)

using the representations obtained from dataset D1 as 𝑀𝑎𝑡𝑡−𝑚𝑖(ℎ(𝑥𝐷1), ‘𝑌𝑒𝑠′). It

obtains representations of the samples not used in training for the the selected speakers

included in the training set and trains its model as 𝑀𝑎𝑡𝑡−𝑚𝑖(ℎ(𝑥𝑠4𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑), ‘𝑌𝑒𝑠′) and

for the speakers not included in training as 𝑀𝑎𝑡𝑡−𝑚𝑖(ℎ(𝑥𝑠4𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑), ‘𝑁𝑜′). A speaker is

saved from each label for validation.

4. We then define the UAR of the performance of 𝑀𝑎𝑡𝑡−𝑚𝑖(ℎ(𝑥𝑠5)) as membership

identification.

122



Ta
bl

e
8.

1:
Re

su
lts

us
in

g
ge

ne
ra

l(
le

ft)
an

d
m

od
el

st
ra

in
ed

to
no

te
nc

od
e

se
ns

iti
ve

in
fo

rm
at

io
n

(r
ig

ht
)f

or
ac

tiv
at

io
n

an
d

va
le

nc
e

pr
ed

ic
tio

n.
U

-U
A

R,
U

(M
/F

)-U
A

R
fo

rm
al

e/
fe

m
al

e,
L-

le
ak

ag
e,

SI
R-

se
ns

iti
ve

in
fo

rm
at

io
n

re
du

ct
io

n
m

et
ric

,M
I-m

em
be

rs
hi

p
id

en
tifi

ca
tio

n.
Bo

ld
-I

ta
lic

sh
ow

ss
ig

ni
fic

an
ti

m
pr

ov
em

en
ti

n
m

et
ric

sa
sc

om
pa

re
d

to
ge

ne
ra

lc
la

ss
ifi

ca
tio

n
m

od
el

an
d

Ita
lic

sh
ow

ss
ig

ni
fic

an
td

iff
er

en
ce

in
m

et
ric

sa
s

co
m

pa
re

d
to

th
e

m
od

el
tra

in
ed

to
no

te
nc

od
e

se
ns

iti
ve

in
fo

rm
at

io
n.

Si
gn

ifi
ca

nc
e

is
es

ta
bl

is
he

d
us

in
g

pa
ire

d
t-t

es
ta

ta
dj

us
te

d
p-

va
lu

e<
0.

05
.

(a
)P

re
di

ct
io

n
of

ac
tiv

at
io

n
us

in
g

ge
ne

ra
l(

le
ft)

an
d

m
od

el
st

ra
in

ed
to

no
te

nc
od

es
en

sit
iv

ei
nf

or
m

at
io

n
(r

ig
ht

)

G
en

er
al

C
la

ss
ifi

ca
tio

n
Pr

iv
ac

y
Pr

es
er

vi
ng

C
la

ss
ifi

ca
tio

n
L

U
(M

)
U

(F
)

U
SI

R
M

I
U

(M
)

U
(F

)
U

SI
R

M
I

A
ud

io

Im
p

0.
69

0.
65

0.
62

0.
63

0.
35

0.
71

0.
64

0.
57

0.
60

0.
44

0.
68

Po
d

0.
71

0.
69

0.
70

0.
70

0.
32

0.
73

0.
68

0.
69

0.
69

0.
44

0.
68

Ie
m

0.
73

0.
66

0.
69

0.
67

0.
30

0.
72

0.
68

0.
70

0.
69

0.
43

0.
67

M
uS

0.
72

0.
61

0.
64

0.
63

0.
33

0.
75

0.
58

0.
61

0.
60

0.
45

0.
69

Le
xi

ca
l

Ie
m

0.
62

0.
51

0.
52

0.
52

0.
39

0.
59

0.
55

0.
56

0.
56

0.
48

0.
55

M
uS

0.
64

0.
54

0.
56

0.
55

0.
38

0.
60

0.
58

0.
57

0.
58

0.
47

0.
58

M
ul

tim
od

al
Ie

m
0.

74
0.

66
0.

70
0.

68
0.

30
0.

74
0.

66
0.

69
0.

68
0.

41
0.

67
M

uS
0.

73
0.

65
0.

66
0.

66
0.

31
0.

76
0.

65
0.

64
0.

65
0.

43
0.

69
(b

)P
re

di
ct

io
n

of
va

le
nc

e
us

in
g

ge
ne

ra
l(

le
ft)

an
d

m
od

el
st

ra
in

ed
to

no
te

nc
od

e
se

ns
iti

ve
in

fo
rm

at
io

n
(r

ig
ht

)

G
en

er
al

C
la

ss
ifi

ca
tio

n
Pr

iv
ac

y
Pr

es
er

vi
ng

C
la

ss
ifi

ca
tio

n
L

U
(M

)
U

(F
)

U
SI

R
M

I
U

(M
)

U
(F

)
U

SI
R

M
I

A
ud

io

Im
p

0.
56

0.
53

0.
49

0.
51

0.
44

0.
70

0.
51

0.
49

0.
48

0.
48

0.
68

Po
d

0.
60

0.
56

0.
57

0.
56

0.
42

0.
71

0.
55

0.
56

0.
56

0.
47

0.
70

Ie
m

0.
62

0.
60

0.
61

0.
60

0.
39

0.
70

0.
60

0.
62

0.
61

0.
45

0.
68

M
uS

0.
58

0.
50

0.
47

0.
48

0.
42

0.
72

0.
48

0.
47

0.
47

0.
46

0.
71

Le
xi

ca
l

Ie
m

0.
61

0.
64

0.
65

0.
65

0.
41

0.
62

0.
67

0.
68

0.
67

0.
46

0.
62

M
uS

0.
57

0.
68

0.
69

0.
68

0.
45

0.
63

0.
70

0.
71

0.
70

0.
47

0.
62

M
ul

tim
od

al
Ie

m
0.

68
0.

67
0.

71
0.

69
0.

32
0.

70
0.

68
0.

70
0.

69
0.

45
0.

68
M

uS
0.

64
0.

67
0.

66
0.

67
0.

38
0.

71
0.

64
0.

65
0.

65
0.

46
0.

71

123



8.4 Analysis

In all the tables, U is the unweighted average recall (UAR), and U(M) and U(F) represent

the performance of the model for emotion recognition when gender is male and female

respectively. Leakage in the model is represented by L, the lower the better, where chance

leakage is 0.5. sensitive information reduction metric, represented by P, ranges from

[0, 0.5], and is the incapability of an attacker to obtain demographic information from

the representation, the higher the better. Membership identification represented by MI,

ranges from [0.5 (chance UAR),1], and is the capability of an attacker to identify if the

subject belongs in the training set, for which the lower the value, the better. We code

identify the datasets as follows: Imp-MSP-Improv; Pod-MSP-Podcast; Iem-IEMOCAP; and

MuS-MuSE. All significance tests are paired t-test, with significance established (shown in

bold) when Benjamini-Hochberg adjusted (FDR = 5%) 𝑝-value< 0.05.

8.4.1 RQ1: Unimodal vs Multimodal Leakage

Q: Does demographic leakage differ in umimodal and multimodal emotion recognition

models?

Hypothesis: Multimodal representations leak more gender information than unimodal

representations.

Previous research has shown that different modalities have varying capabilities of capturing

demographic information, such as age or gender [134] information.The authors showed

that audio, as compared to lexical, is used more successfully to predict gender. Hence, we

hypothesize that a combination of these modalities leads to an increase in the leakage of the

sensitive variable.

We train the six setups separately for each dataset described in Section 8.3.1 for activation

and valence. We report the average across five-fold speaker-independent cross-validation in

Table 8.1a and Table 8.1b. We find that:
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• A network trained to only recognize emotion is generally discriminative for gender as

well. For instance we obtain a leakage of 0.73 when training a multi-modal network

for activation and of 0.64 when trained for valence on MuSE.

• In unimodal systems, leakage is higher when systems are trained using only audio

streams compared to lexical.

• Leakage of gender in learned representation is higher for multimodal systems than

that for the unimodal systems for both, MuSE and IEMOCAP (the two datasets with

both audio and lexical information).

Our results suggest that models that aren’t explicitly trained for gender recognition, or,

that don’t use gender as an input feature, still learn representations that are discriminative to

identify gender. This leakage is more prominent when the input stream is audio as compared

to lexical, but the leakage compounds in multimodal systems.

8.4.2 RQ2: Privacy Preservation Performance

Q: How does the sensitive information reduction metric change when a network is trained to

not encode sensitive information?

Hypothesis: Representations that are gender-invariant are less prone to leakage when

attacked by an adversary, leading to reduced leakage of sensistive information.

Previous research has shown that obtaining a representation from a model trained to be

invariant to gender, age, or location leads to better protection from an attacker who tries

to recover this information [55]. Previous research [67] has also shown that while the

representations might be trained such that leakage of sensitive variable is reduced to chance,

the attacker might still be able to recover this information. Hence, we concentrate on using

this incapability as our primary metric. To test our hypothesis, we train the adversarial

variants of the six models as mentioned above, while making sure that the leakage in the

models is reduced to chance performance and compare our results to those in Table 8.1a and

Table 8.1b. We train the multimodal models only for MuSE and IEMOCAP. Our results in
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Table 8.1a and Table 8.1b show that:

• The sensitive information reduction metric is always higher when the representations

are trained adversarially, compared to generally.

• Even when leakage is adversarially reduced to chance, the attacker is still able to

recover information about gender.

• The sensitive information reduction metric is in general always lower for audio than

for lexical based unimodal systems.

• Multimodal systems often have the lowest sensitive information reduction metric.

Our results suggest that, though the sensitive information encoded in the learned representation

is reduced using the proposed method, the attacker can still recover that information.

This effect is especially compounded for multimodal systems. While previous work has

concentrated on text (Section II), our work shows how audio is the major culprit and that

models involving audio as input are easier to exploit, even when trained adversarially for not

encoding sensitive information.

8.4.3 RQ3: Privacy Preserving Emotion Recognition Performance

Q: How does emotion recognition performance change when networks are trained to not

encode sensitive information?

Hypothesis: There is a minor drop in emotion recognition performance when models are

trained to not encode sensitive information.

Previous research has shown that training a model invariant to a dataset variable might lead

to drop in performance on the primary task, especially when there exists known correlations

or biases in the datasets between the target label for the primary task and the secondary

task [153]

We compare the performance for predicting activation and valence of the models

trained just to predict emotion (Act: Table 8.1a, Val: Table 8.1b) versus the model trained
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to not encode sensitive information while still predicting emotion in (Act: Table 8.1a,

Val: Table 8.1b). Our results suggest that, in general there is no significant effect on

the performance on the primary task when we train networks to not encode sensitive

information. We find that the performance is either maintained, e.g., Act: multimodal-MuSE;

Val: multimodal-IEMOCAP, or there is a slight decrease in performance for some setups,

e.g., Act: unimodal-acoustic-MuSE; Val: multimodal-MuSE. In multiple cases, such as

Act/Val:unimodal-lexical-MuSE/IEMOCAP, contrary to some previous work, we also see

a significant increase in performance, implying that making the model invariant to gender

increases its robustness by not learning replicable associations between gender and emotion

label.

8.4.4 RQ4: Privacy Preservation Strength

Q: How does the adversarial component’s strength impact emotion recognition performance

and the sensitive information reduction metric?

Hypothesis: As the strength of the adversarial component increase, the sensitive information

reduction metric increases and the performance on the pimary task is unchanged.

Our results in Section 8.4.2 suggest that while the leakage of the model was reduced to

chance performance, the attacker is still capable of recovering this information. We analyze

the effect of the strength of the adversarial component on the performance of the primary

task and the sensitive information reduction metric.

We find that the emotion recognition performance is generally unaffected with a change

in _, as expected from the results in Section 8.4.3. We observe that the the attacker is

usually less capable of inferring gender from learned representations when _ = 0.50 as

compared to when _ = 0.75. For example, the sensitive information reduction metric for the

unimodal audio system trained on MuSE increases from 0.39 to 0.45. But contrary to our

expectation, we often see a decrease in the sensitive information reduction metric when we

move from _ = 0.75 to _ = 1.00 for both activation and valence. For example, the sensitive
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information reduction metric for the unimodal audio system trained on MuSE decreases from

0.45 to 0.41. The decrease in the sensitive information reduction metric as _ → 1 could

be attributed to overfitting of data [194] when being trained for invariance to the sensitive

variable which the attacker network is able exploit. This suggests that an increase in the

strength of the adversarial component doesn’t necessarily correlate to an increase in the

sensitive information reduction metric.

8.4.5 RQ5: Privacy Preserving Emotion Recognition Performance Change & Gender

Q: Focusing on gender, how does the performance of emotion recognition change when a

network is trained to not encode sensitive information?

Hypothesis: Learning representations invariant to gender will affect performance on the

primary task in an imbalanced manner across subgroups.

Previous research [14] has shown that training models invariant to race or gender can harm

performance for one group more than others. This may be worrying when the prediction

is used for sensitive application such as intervention or policing. Hence, we analyze if the

performance on emotion recognition is affected in an imbalanced way for the models trained

to not encode sensitive information.

We compare the performance for predicting activation and valence of the models trained

just to predict emotion (Act: Table 8.1a, Val: Table 8.1b) versus the model trained to

not encode sensitive information while still predicting emotion in (Act: Table 8.1a, Val:

Table 8.1b). We find that while the performance is affected differently for the subgroups,

the effect is not consistent across multiple setups and datasets. For example, the unimodal-

acoustic system trained on MSP-Improv for activation classification decreases in performance

for both the male and female groups, but the effect on the female group is greater. But the

pattern isn’t consistent across other datasets for the same model setup. Our takeaway from

this analysis is cautionary, that though the sensitive information reduction metric increases

when a model is adversarially trained to not encode sensitive information, we need to ensure
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that the performance of the model on that dataset doesn’t harm one subgroup more than the

other.

8.4.6 RQ6: Location of Adversarial Component

Q: Does the location of the adversarial component within a network affect the sensitive

information reduction metric and emotion recognition performance?

Hypothesis: Unlearning the demographic variable in separate pooled streams will improve

the sensitive information reduction metric.

Previous work has shown that curtailing a variable on intermediate layers often leads to a

difference in the performance of the classifier [44]. As seen in Section 8.4.1, audio is more

prone to leakage than lexical information, hence, a multimodal system’s sensitive information

reduction metric might benefit from curtailing audio separately. Our initial multimodal model

(Fig 8.1) only allows for the same strength and parameters of the adversarial component to

be applied for both audio and lexical streams. To test our hypothesis, we place the same

adversarial component after the mean pooling layer of both input streams, allowing us separate

control of gender invariance for both modalities, before concatenation of representation.

We show our results in Table 8.2. We find that, using adversarial component separately

for each input stream improves sensitive information reduction metric for emotion recognition

models trained on both datasets, as compared to using one adversarial component. This

suggests that a granular control of invariance over modalities leads to better defense of

representations against gender identification.

8.4.7 RQ7: Defending Set-Based Membership Identification

Q: Does the sensitive information reduction paradigm that we used to reduce encoding of

gender information also help defend against other attacks such as membership identification?

Hypothesis: Membership identification will decrease when models are trained to be

invariant to speaker.
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Table 8.2: Results for activation (Act) and valence (Val) prediction using multimodal input,
when adversarially unlearning gender in each input (SIR-E) [left] stream separately. U-UAR,
U(M/F)-UAR for male/female, P-sensitive information reduction metric, MI-membership
identification. Bold-Italic shows significant improvement in the sensitive information
reduction metric as compared to model trained to not encode sensitive information by
maximizing loss on the concatenated representation (SIR-C) [right]. Significance is
established using paired t-test, adjusted p-value< 0.05.

SIR-E SIR-C
U P MI U P MI

Act Iem 0.66 0.43 0.73 0.68 0.41 0.67
MuS 0.65 0.44 0.74 0.65 0.43 0.69

Val Iem 0.67 0.46 0.70 0.69 0.45 0.68
MuS 0.66 0.47 0.74 0.65 0.46 0.71

Membership identification is defined as an attack that tries to identify if samples from a

speaker ‘x’ were present in the training set [136]. [168] showed that removing identifying

factors from learned representations reduces the probability of membership leakage. For this

analysis, we ask two questions: (a) can we defend against membership identification using a

proxy task and, (b) can we defend against both, gender and membership identification?

We train an attack model for membership identification as specified in Section 8.3.2. We

find that while adversarial removal of gender in the learned representation (Act: Table 8.1a

and Val: Table 8.1b) does lead to reduced membership identification, as compared to a

model trained solely for emotion recognition (Act: Table 8.1a and Val: Table 8.1b), the

membership identification is still far higher than chance.

Our goal is to be unable to identify whether samples from speaker ‘x’ exist in the

training set. This is different from the usual membership defense that prevents prediction of

presence of a data-point pair (𝑖𝑛𝑝𝑢𝑡𝑥 , 𝑜𝑢𝑡 𝑝𝑢𝑡𝑥) is in the training set. As a result, we require

a proxy task, because our model cannot use samples from the speakers not in the training set

even to induce invariance. We hypothesize that given randomly chosen speakers from the

population, speaker-invariant training leads to representations that are less likely to encode

speaker-specific information. This will make it harder for the attacker to identify membership

of a particular speaker in the training set. We train the emotion recognition models specified
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Table 8.3: Results for activation and valence prediction, for general classification (General),
and, when adversarially unlearning subject identity (SIR-SubjectID) and both subject

identity and gender (SIR-Multiple). U-UAR, U(M/F)-UAR for male/female, SIR-sensitive
information reduction metric, MI-membership identification. Bold-Italic shows significant

improvement in metrics as compared to general classification model and Italic shows
significant difference in metrics as compared to the models trained to not encode sensitive

information. Significance is established using paired t-test at adjusted p-value< 0.05.

General SIR-SpeakerID SIR-Multiple
U SIR MI U SIR MI U SIR MI

Activation

Audio

Imp 0.63 0.35 0.71 0.59 0.40 0.58 0.59 0.45 0.58
Pod 0.70 0.32 0.73 0.67 0.37 0.60 0.69 0.46 0.59
Iem 0.67 0.30 0.72 0.66 0.35 0.58 0.67 0.43 0.57
MuS 0.63 0.33 0.75 0.61 0.36 0.62 0.59 0.44 0.60

Lexical Iem 0.52 0.39 0.59 0.51 0.40 0.52 0.53 0.48 0.52
MuS 0.55 0.38 0.60 0.52 0.39 0.53 0.54 0.47 0.52

Multimodal Iem 0.68 0.30 0.74 0.67 0.33 0.58 0.66 0.40 0.57
MuS 0.66 0.31 0.76 0.65 0.33 0.60 0.65 0.40 0.58

Valence

Audio

Imp 0.51 0.44 0.70 0.47 0.45 0.54 0.47 0.48 0.53
Pod 0.56 0.42 0.71 0.55 0.43 0.56 0.54 0.48 0.56
Iem 0.60 0.39 0.70 0.61 0.41 0.59 0.60 0.47 0.57
MuS 0.48 0.42 0.72 0.45 0.42 0.60 0.46 0.46 0.58

Lexical Iem 0.65 0.41 0.62 0.67 0.41 0.52 0.66 0.47 0.53
MuS 0.68 0.45 0.63 0.68 0.44 0.53 0.68 0.46 0.53

Multimodal Iem 0.69 0.32 0.70 0.69 0.34 0.57 0.65 0.43 0.56
MuS 0.67 0.38 0.71 0.64 0.37 0.58 0.62 0.44 0.58

in Section 8.3.1 and replace the gender invariance sub-network with speaker invariance and

use the same membership attack network.

We show our results in Table 8.3. We find that models trained to be invariant to speaker

identity have significantly lower UAR for membership identification than those trained solely

to recognize emotion, or trained invariant to gender, which matches our hypothesis.

Extension towards multi-attribute invariance. We train our emotion recognition

model using both the adversarial components (speaker id and gender) and the primary

classification task i.e., emotion recognition. This ensures that the model can defend against

both, gender and membership identification attacks. We report our results in Table 8.3. We
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find that we can successfully train models that are safer against both, gender and membership

identification attacks, while still maintaining similar performance on the primary task, as an

evidence towards multi-attribute invariance.

8.5 Conclusion

In this work, we show how sensitive information preserving networks trained for emotion

recognition can be used to protect against gender and membership identification. This

provides a compelling case for separating the process of data processing on user devices

and of task-specific training on central servers. While in this chapter we concentrate on

a single primary task i.e., emotion recognition, this method can be extended to maximize

utility on multiple primary tasks that are loosely related to each other and are benefited from

a multi-task setup as shown for dialogue act and turn detection, and sentiment and topic

classification [187].
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CHAPTER IX

Sociolinguistics Based Human-Centered Metric for Emotion

Recognition

9.1 Motivation and Contribution

Large language models have limitations in subjective tasks like emotion recognition,

partly due to insufficient annotation diversity and inadequate data coverage. A diverse range

of annotations is crucial for capturing the complex expressions of human emotions, while

extensive data coverage renders it more likely that the many possible variations of these

expressions are adequately represented. However, obtaining a comprehensive and diverse

set of annotations in emotion datasets is both time-consuming and expensive, involving the

recruitment of numerous human annotators to provide their unique perspectives on emotional

expressions.

These annotation costs are further compounded by the need to evaluate models against

diverse emotions, which often require not only human annotation for the collected data but

also for the generated emotion label on unseen data for validation purposes. Current strategies

rely heavily on costly, time-consuming human-based feedback for model evaluation, which,

while effective in their own right, may not always be economically viable or efficient.

To address these challenges, we propose using metrics that are based off sociological liter-

ature to capture the nuances of human behavior and emotions in a more cost-effective manner.
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We propose model-agnostic evaluation templates can be instantiated with sociological word

lists, and these templates can be generalized to any task with existing word lists. We introduce

two metrics: one for emotion generalization and another for intentional reduction of learnt

sensitive information. These metrics aim to comprehensively assess model performance,

while reducing dependency on expensive human-based feedback. By effectively evaluating

the robustness and sensitive variable leakage of models, the proposed metrics provide

valuable insights into model performance, resulting in more efficient utilization of resources.

Evaluating their effectiveness in enhancing model performance and reducing leakage of

sensitive demographic, we find that these metrics are significantly correlated with model

performance and can improve cross-corpus results. The proposed method empowers us

to leverage the benefits of diverse and comprehensive emotion recognition models, while

mitigating the costs associated with the traditional, labor-intensive feedback processes.

Ultimately, this approach leads to the development of more accurate and relevant emotion

recognition models in a cost-effective manner.

9.2 Introduction

Recent advances in natural language processing have led to the development of large

and very large language models that can be trained on massive amounts of labeled data.

However, despite their impressive performance on various natural language processing tasks,

these models do not necessarily learn behavior that is similar to that of humans. Data

diversity is particularly important in subjective, paralinguistic tasks, such as those seen in

emotion recognition and other behavior modeling areas. But paralinguistic datasets are often

relatively small, compared to the size of datasets seen in fields such as speech recognition.

Further, it can be difficult to identify appropriate metrics for these subjective tasks and, as a

result, those common in emotion recognition tend to be metrics such as cross-entropy loss

between the predicted and original labels.

The challenge with the common metrics is that they do not capture the full complexity of
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the problem, leading to models that have limitations at their core. Models trained to optimize

for cross-entropy are often suffused with biases. Reducing learnt sensitive information or

generalizing these models can be extremely difficult because sensitive information reduction

processes generally rely on these same data and labels. Therefore, limitations in the

original dataset are still present when the model attempts to unlearn these problematic

associations [192, 81].

Researchers have looked at countering these issues in several different ways: from data

generation, to data augmentation, and, from annotation diversification to comprehensive

data collection [46]. Each of these methods comes with its own pros and cons. For

example, generating data samples that are not perceived differently by humans is not only

challenging, but also, requires extensive post-hoc evaluations [109]. Researchers have also

looked at diverse data collection methods, focusing on active learning optimizing for data

diversity [182]. While this method generally improves performance by a significant measure,

we can still end up with datasets that reinforce unwanted stereotypes and prejudices [49].

This has led to a growing need for feedback that is based on human evaluation to ensure

that the models produce more accurate and relevant results. One of the main challenges of

using human-based feedback though is that it can be expensive to obtain, particularly for

tasks that involve emotions. This is because emotions are subjective and can vary widely

depending on demographic and situational factors. As a result, there is a need for alternative

methods that can provide metrics for evaluating the performance of language models that

are centered around human behavior.

To address this issue, we propose leveraging metrics that are based on sociological

literature, which can capture the nuances of human behavior and emotions. By drawing on

insights from sociology, we can develop more nuanced and context-sensitive metrics that

can better capture the complexities of human behavior. This approach has the potential to

provide a more comprehensive optimization of language models, while also reducing the

dependence on expensive and time-consuming human-based feedback.
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Figure 9.1: Diagram of the approach. In step 1, the wordlists are created (e.g., for gender,
𝑤𝑔, and for emotion, 𝑤𝑒. The length is the number of words. The brightness corresponds
to the strength of the relationship between the word and the category (gender or emotion).
In step 2, the model learns a shared representation with the goal of learning emotion, �̂�𝑖,
and unlearning gender, �̂�𝑖. The shared representation is used to create a word-level saliency
vector. In step 3, the HCM metrics are calculated by combining the salience with either 𝑤𝑔

or 𝑤𝑒. In step 4, the model is trained with a loss that includes the original target (maximizing
emotion accuracy and minimizing gender accuracy) in addition to the two HCM metrics.

9.3 Intuition Behind Human-Centered Metric Design

In this chapter, we propose a novel approach to developing task-invariant metric templates

that are centered around human perception. To begin with, we define metric blueprints,

called as metric templates. These templated metrics that have generic components that can

be adapted for specific tasks. Our aim is to leverage these templates to evaluate a model, and

to add a training objective that relies on sociological literature in addition to human-obtained

labels. This is a significant departure from the traditional approach of using labeled data,

which can be costly and time-consuming to obtain.

Ideally, important words identified by models should align well with human’s interpre-

tations. To achieve this, we use model interpretability; any method that provides us some

intuition as to the words that the model pays attention to for its prediction to define the

metric templates. This allows us to have a training objective that optimizes for importance

assigned to certain words based on sociolinguistic literature. This approach is different from

using labels because it enables us to incorporate sociolinguistic knowledge into the metric
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templates.

The metric templates we propose consist of three components: directionality (sign), input

interpretation saliency weights, and word lists. The combination of the three components

results in a task-invariant metric template.

The sign component specifies whether the metric is meant to be maximized or minimized.

By setting the sign, we can control the direction of the correlational relationship between the

input and output variables, and thus, improve the accuracy of our predictions.

The input interpretation saliency weights component specifies how the input data should

be interpreted. They are saliency values obtained from the model for each word token in

the input. These values are highly correlated with the predicted label and can be positive,

negative, or zero. A positive value indicates that the presence of a word correlates with the

prediction of that label. A negative value indicates that the presence of that word correlates

with “not predicting the given label.” A zero value means that the word has no influence on

the prediction.

The wordlists component provides a list of words that should be given special consideration

when computing the metric. These lists can be grouped by class labels and may have

associated weights with each word, but both of these features are optional. Wordlists are an

essential tool for training machine learning models, as they allow us to focus on specific

words or concepts that are relevant to our task. By using wordlists, we can improve the

accuracy and efficiency of our models, as well as gain valuable insights into the relationships

between words and concepts in our data.

In summary, our metric template allows us to focus on three separate aspects, each aligned

with one of the components. Sign allows us to encourage the model to learn the correlation

between a particular word and the output (sign of loss function). The input interpretation

saliency weights allow us to measure how well the model captures the correlation between all

words in a sentence and the output. The wordlists allow us to impact the learned correlations

to align with our expectations about the relationshp between a given category and word
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choice.

We now ground these aspects, focusing on a given task-related wordlist focusing on

the task of emotion recognition. For our purposes, we use the NRC-VAD [159] and a self

curated, Emotion-Gender wordlists. We first calculate the overlap between the words in the

input sentence and the task-related wordlist(s). This overlap allows us to identify words

whose correlations (learned by a model) may need to change. For class-based wordlists, we

use the signed correlation that corresponds to the predicted class label, which is controlled by

the sign component of our metric template. By setting the sign, we can encourage the model

to learn the correlation between a particular word and the output. In cases where we want to

unlearn a task completely, we aim to move the correlation of those words to zero to remove

any influence on the model output. The input interpretation saliency weights component

of our metric template specifies how well the model captures the correlation between all

words in a sentence and the output. By leveraging the overlap between task-related words

and the input sentence, we can effectively optimize the correlations and improve the model’s

performance. Our proposed metric is designed to help models learn the correlations that

are relevant to the task at hand while minimizing the impact of irrelevant words. By using

the metric template, we can focus on three separate aspects, each aligned with one of the

components: sign, iiw, and wordlists, allowing us to impact the learned correlations to align

with our expectations about the relationship between a given category and word choice.

The focus of this chapter is on the extensive testing of a metric template designed for

the task of emotion recognition. We had the option to choose between task coverage or

usability. Task coverage involves testing multiple tasks on a single state-of-the-art (SoTA)

dataset and model, while usability involves extensively evaluating the proposed metric

for one subjective task of emotion, but testing it on multiple datasets and different model

combinations. We chose the latter approach to validate the usability of the metric rather than

the task coverage. Our approach involves selecting one task for learning, which is emotion,

and one subtask for unlearning, which is demographics. Through this chapter, we iterate
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over various combinations of this setup, thoroughly validating the utility of the metric for

both cases, including emotion classification improvement and reducing encoded sensitive

information in emotion classification models, while varying the datasets and other factors.

Our results demonstrate the effectiveness of the proposed metric in improving emotion

classification and producing models with reduced sensitive information leakage.

To ensure that our proposed metric aligns with annotator choices, we conduct a crowd-

sourcing survey. The survey results indicate that our metric aligns well with annotator

choices, thereby validating the effectiveness of our approach. The metric can be similarly

applied to any other human-centered subjective tasks, such as, deception detection, opinion

analysis etc.

9.3.1 Requirements

The proposed templates has three inputs: input interpretation saliency weights, direction

of learning (sign) and relevant wordlists.

9.3.1.1 Input Interpretation Saliency Weights

The goal of input interpretation saliency weights is to understand what a trained black-box

neural network is doing. This is achieved by examining the learned correlations from the

model, which are obtained through a post-hoc method. By analyzing these correlations, we

can gain insights into how the model is making its predictions and identify any potential

leakage of sensitive information or limitations.

We calculate the reliance of a model on any given word in the input using the Captum

interpretability library for PyTorch [124]. Captum provides state-of-the-art algorithms to

identify how input features contribute to a model’s output.

We use the attribution algorithms implemented via integrated gradients [211]. Integrated

gradients represent the integral of gradients with respect to inputs along the path from a

given baseline (absence of the cause) to input sample. The output is a set of words for each
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model instance that contribute towards the prediction along with their attribution weights.

The sign of the attribution weight shows the direction of the correlation, and the value

is the strength of the correlation. Words that do not influence prediction should have zero

correlation.

9.3.1.2 Wordlists

A wordlist here refers to linguistic indicators extracted from the literature for a given task.

The lists can either have singular words or phrases. A wordlist has three main properties:

the variable it is created for, existence of label associations, and associated weights or

importances. For example, if we want to measure ‘emotion’ then words such as ‘excited’,

or ‘lonely’ are strong linguistic indicators, the former for positive emotion, the latter for

negative emotion.

Similarly, if our measurement variable is ‘age’, then phrases such as ‘cancel culture’ or

‘groovy’ have been found influencing perception of age. If the aim is to evaluate ‘unlearning’

of information in a given model, we do not necessarily need to have a pairwise list (e.g.,

words related to females or males). Instead, a combined list will still allow us to mitigate the

possibility of encoding sensitive variables in the learned representations. A wordlist can also

have weights associated with a particular entry that correlate to strength of distinguishing

ability of perception. For example, a wordlist associated with ‘emotion’ can have a weight of

4 for ‘amazing’ vs. 2 for ‘good’, the former being perceived as a stronger positive emotion

as compared to the latter.

9.3.2 Terminology

First, let’s consider a model trained for for a binary classification task ([𝑇]), using dataset

(𝐷) of size |𝐷 | with two output labels (𝐿), A and B ({𝐴, 𝐵}), i.e., ([𝑇] → 𝐿{𝐴,𝐵}). We refer

to samples in the dataset as 𝑠 and individual words as 𝑥, and if a word occurs in both as,

𝑥 ∈ 𝑠.
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We create a wordlist ([) that has human-centered linguistic indicators corresponding

to [𝑇]. Depending on the nature of the task, the wordlist can either be combined, for both

output labels, ([𝐿𝐴+𝐵), or can have pairwise association with only one output label (e.g., [𝐿𝐴

or [𝐿𝐵
). While this does not necessarily need to be the case, combined wordlists can be

used for reduced sensitive information leakage tasks (HCMSIR), i.e., where the aim is to

minimize the presence of information relevant to the sensitive variable. On the other hand,

pairwise associative wordlists can be used for generalizability (HCMgz) tasks, i.e., we need

to learn and investigate associations between learned model correlations and the task outputs.

The wordlist can also have weights, 𝜔, associated with the individual entries (e.g., individual

words, 𝜔𝑥). If the associated weights are absent, all entries are assigned a weight of 1.

During prediction, the model outputs a saliency value (_𝑥) for each word. We group

words that have a positive (_𝑥 > 0.05), negative (_𝑥 < −0.05), or negligible (|_𝑥 |≤ 0.05)

saliency attribution value. The set of words in a sample with positive saliency will be noted

+𝑥 = {𝑥 |_𝑥 > 0.05, 𝑓 𝑜𝑟𝑥 ∈ 𝑠} and negative saliency −𝑥 = {𝑥 |_𝑥 < −0.05, 𝑓 𝑜𝑟𝑥 ∈ 𝑠} 1.

We describe how this information can be used at a sample-level (HCM : s) or of the

dataset (HCM) as a whole to either promote generalizability or reduced sensitive variable

information encoding:

1. HCMgzEmo is a metric calculated over a dataset that is focused on generalizability

(𝑔𝑧) in the task of emotion recognition (𝐸𝑚𝑜). It can be evaluated in either a

standalone fashion (𝑠𝑡𝑛,HCMgz
stnEmo), in terms of performance on a dataset. It

can also be calculated as the difference in performance between two models (relative

improvement), (𝑟𝑖,HCMgz
ri Emo).

2. HCMsirDem is a metric calculated over a dataset that is focused on sensitive informa-

tion reduction (𝑠𝑖𝑟) with respect to a demographic variable (𝐷𝑒𝑚, e.g., gender). It can

also be evaluated in terms of either standalone performance or relative improvement.
1We do not specifically call out words with negligible saliency.
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9.3.3 Metric Types and Calculation

The template enables two different types of model evaluations: (a) standalone (stn), and,

(b) relative improvement (ri).

9.3.3.1 Standalone (HCMstn)

We refer to standalone evaluation as benchmarking a model in isolation. We will first

consider the case where we have combined wordlists (e.g., [𝐿𝐴+𝐵). This condition would be

used when we do not have the class labels for a specific task in our setup, as in the case

for the sensitive variable of age. It allows us to identify words that are broadly associated

with age in general, rather than a specific age grouping (e.g., older adults).

We define {_𝑥}𝑥∈𝑠 as the set of saliency values for all words in a given sample 𝑠. We

then define an intersection set, which identifies words that occur both in the sample (𝑥 ∈ 𝑠)

and in a wordlist ([𝐿𝐴+𝐵). The intersection set is defined as:

𝑖𝑛𝑡 = {𝑥 |𝑥 ∈ 𝑠} ∩ [𝐿𝐴+𝐵 (9.1)

We can then derive the standalone metric (HCMstn) from this intersection set for a given

sample. We consider each word (𝑥) in the intersection set defined by Equation 9.1. We

weigh the saliency attribution for that word (_𝑥) by the wordlist weight (𝜔𝑥) and sum this

value over all words in intersection set for the sample. We normalize by the number of words

in the intersection set (𝑛𝑠). This gives us the sample-wise generalizability, HCMgz
stn[T] : s,

for sample, 𝑠 (Equation 9.2).

HCMgz
stn[T] : s =

1
𝑛

∑︁
𝑥∈𝑖𝑛𝑡

(|𝜔𝑥 |×|_𝑥 |) (9.2)

We calculate the generalizability metric for a dataset by averaging over the number of

samples in the dataset (Equation 9.3).
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HCMgz
stn[T] =

1
|𝐷 |

∑︁
𝑠∈𝐷

HCMgz
stn[T] : s (9.3)

We use HCMgz
stn[T] to anticipate the generalizability of the model for a given task [𝑇].

Higher values of _𝑥 for words with higher wordlist weights 𝜔𝑥 suggest that the model is

relying on words that are known to be related to a given task (e.g., the word “thrilled” and

positive valence).

We can use the same metric to anticipate the degree to which a model reduces encoded

sensitive information by replacing |_𝑥 | with 1 − |_𝑥 | (Equation 9.4) for sample 𝑠. Lower

values of _𝑥 (and therefore high weights of 1 − |_𝑥 |) for words with higher wordlist weights

𝜔𝑥 suggest that the model is not relying upon words that are known to be related to a

demographic variable (e.g., the word “she” and the task of gender classification).

HCMsir
stn[T] : s =

∑︁
𝑥

|𝜔𝑥 |×(1 − |_𝑥 |) (9.4)

We again calculate the sensitive information reduction metric for a dataset by averaging

over the number of samples in the dataset (Equation 9.5).

HCMsir
stn[T] =

1
|𝐷 |

∑︁
𝑠∈𝐷

HCMsir
stn[T] : s (9.5)

Next, we consider the case where we do have labels for a given sensitive variable

(e.g., gender). In this case, we calculate the value of the metric with respect to the pairwise

association between the wordlist for a given label (e.g., [𝐿𝐴
) and the model’s output saliency

attribution value for words within the sample ({_𝑥}𝑥∈𝑠).

We must consider four separate intersections, each of which evaluates the alignment

between the directionality of the saliency attribution for a given word (i.e., positive vs.

negative, _𝑥,𝑥∈𝑠) and whether or not the word is in a given class 𝐴. For simplicity, we will

discuss the metric applied to a single class2, class 𝐴.

2The metric can be extended to multiclass problems.
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We first define four intersections, using the notation: (𝑖𝑛𝑡𝑖, 𝑖 ∈ {1, 2, 3, 4}). We will

discuss sets of words with certain properties:

1. Words with positive saliency and in wordlist, [𝐿𝐴
:

𝑖𝑛𝑡1 = +𝑥 ∩ {𝑥 |𝑥 ∈ [𝐿𝐴
}

2. Words with negative saliency and not in wordlist, [𝐿𝐴
:

𝑖𝑛𝑡2 = −𝑥 ∩ {𝑥 |𝑥 /∈ [𝐿𝐴
}

3. Words with negative saliency and in wordlist, [𝐿𝐴
:

𝑖𝑛𝑡3 = −𝑥 ∩ {𝑥 |𝑥 ∈ [𝐿𝐴
}

4. Words with positive saliency and not in wordlist, [𝐿𝐴
:

𝑖𝑛𝑡4 = +𝑥 ∩ {𝑥 |𝑥 /∈ [𝐿𝐴
}

Intuitively, we would like to encourage the model to maximize the number of words

in the first and second intersection sets (𝑖𝑛𝑡1, 𝑖𝑛𝑡2) and minimize the number of words in

the third and fourth intersection sets (𝑖𝑛𝑡3, 𝑖𝑛𝑡4). When this occurs, the model’s behavior is

aligned with the sociolinguistic wordlists.

We can then calculate the generalizability and sensitive information reduction metrics.

For a given sample, we calculate either HCMgz
stn[T] : s (Equation 9.2) or HCMsir

stn[T] : s

(Equation 9.4) for each of the four interaction sets. We calculate the metric by summing over

weighting saliency values for matching sets and subtracting out the sum of weighted saliency

values for the mistmatched sets. We show the calculation of the generalizability metric here:

(9.6)HCMgz
stn[T] : s =

2∑︁
𝑖=1

∑︁
𝑥∈𝑖𝑛𝑡𝑖

𝜔𝑥 × _𝑥 −
4∑︁
𝑖=3

∑︁
𝑥∈𝑖𝑛𝑡𝑖

𝜔𝑥 × _𝑥

We average over the samples within the dataset to obtain the dataset-level metric for

generalizability metric as in Equation 9.3 and for the sensitive information reduction metric

as in Equation 9.5.

144



9.3.3.2 Relative Improvement (HCMri)

We refer to relative improvement evaluation as measuring how a model improves in

a given task after adding an additional component (e.g., to reduce sensitive information

encoded in a model). In aggregated level metrics such as accuracy, the relative improvement

is measured by difference in performance aggregated over all sample’s predictions. In our

proposed method, we instead of focus on relative improvement per sample, as measured by

the weights assigned to words/phrases. This is to measure the shift in the learnt associations

of the model as compared to just the output predictions. As in the standalone case, we first

calculate the relative improvement at the sample-level (e.g., HCMgz
ri [T] : s or HCMsir

ri [T] : s).

For example, we can capture the relative improvement in the generalizability of the new

model, by calculating the standalone values of both the new and original models (each using

Equation 9.2) and dividing by the standalone of the original:

HCMsir
ri [T] : s =

HCMsir
stn[T]new : s − HCMsir

stn[T]orig : s
HCMsir

stn[T]orig : s
(9.7)

We can then average this value over all samples within the dataset, to calculate the

dataset-level relative improvement metric for generalizability as in Equation 9.3 and for the

sensitive information reduction metric as in Equation 9.5. The final sensitive information

reduction metric for relative improvement, moving from model 𝑜𝑟𝑖𝑔 (the original) to model

𝑛𝑒𝑤 can be written as:

HCMsir
ri [T] =

1
|𝐷 |

∑︁
𝑠∈𝐷

HCMsir
ri [T] : s (9.8)

9.3.4 Metrics for Measuring and Improving Emotion Recognition Model Generaliz-

ability

We use the sample-wise metric (HCMgz
stnEmo : s, Equation 9.2) for model training. We

use the dataset-level metric (HCMgz
stnEmo, Equation 9.3) to quantify emotion recognition
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performance. We empirically evaluate both the correlation and impact of including this

metric on the performance of the model, both in within and cross-dataset model analyses.

We create wordlists using the valence annotations from National Research Council

Canada - Valence, Arousal, and Dominance (NRC-VAD) Lexicon [159] consisting of 20,000

annotated unigrams. We normalize the annotated valence values between -1,1 and bin those

into 3 quantile categories low, med, high to match our model training label schema. This

wordlist has information about the class label and the associated word. Therefore, we use

the metric that leverages this information (Eq. 9.6).

9.3.5 Metrics for Relative Measurement and Improvement of Reducing Sensitive

Information Encoded in Emotion Recognition Models

We use the sample-wise metric (HCMsir
stnDem : s, Equation 9.5) for model training. We

use the dataset-level metric (HCMsir
ri Dem, Equation 9.8) to quantify the sensitive information

reduction efficacy.

We use various sociological studies to create wordlists (Section 9.3.1.2) and derive

sensitive information reduction metrics corresponding to three demographic variables:

gender (HCMsir
stnGen : s), age (HCMsir

stnAge : s), and race (HCMsir
stnRace : s). For gender

and race, we use (a) word lists that have been tested using the Implicit Association Test

(IAT) [166] to measure population-level bias between the genders and (b) sociological

studies [163] and the corresponding category based words from LIWC [212]. For age, we

consider sociolinguistic literature for both, biological and social age [66], using word trends

dataset [197], dictionary updates [222] and vocabulary grade levels [236].

9.4 Research Questions

RQ0-emo: Can we accurately recognize emotion, here labeled in terms of valence (positive

vs. negative)? This baseline question demonstrates that our system is capable of recognizing

the information of interest.
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RQ0-SIR: Can we use representations trained in the context of emotion recognition to

recognize a demographic variable, here gender3? We use this second research question

to demonstrate that emotion representations encode information beyond the categories of

interest, as shown in our prior work [108].

RQ1: How do metrics that capture sensitive information reduction (HCMsir
stnDem) and

generalizability (HCMgz
stnEmo) relating to reliance on emotionally-unrelated words vary

across different sensitive information reduction methods? This research question provides

a validation of the metrics and a way of measuring the effects of sensitive information

reduction by itself.

RQ2: How can the HCMsir
stnDem metric be used in model training to decrease the leakage

of gender information? This research question provides evidence that the metric can be

effectively leveraged as a sensitive information reduction technique in model training.

RQ3: How does the inclusion of HCMgz
stnEmo increase cross-dataset performance? This

research question provides evidence that increasing reliance on emotional words, and decreas-

ing reliance on non-emotional words, promotes better performance in unknown environments.

RQ4: How does cross-dataset performance change when we include both HCMgz
stnEmo and

HCMsir
stnDem? Here, we investigate generalizable metrics that are based on knowledge of

emotion expression and on spurious correlations between the perception of emotion and

demographic categories (i.e., gender, age, race).

RQ5: For each of these tasks, emotion recognition and sensitive information reduction,

3In this chapter, we rely on binary markers of gender because these are the labels available within existing
emotion corpora. Binary labels of gender to not align with how many individuals identify.
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do humans’ model preferences correlate with HCMgz
stnEmo and HCMsir

ri Dem, respectively,

when considering the sample, model’s prediction and salient explanations?

9.5 Methods

In this section, we provide an overview for the all the baseline models that we will

evaluate with respect to HCM.

9.5.1 Emotion Recognition

9.5.1.1 Baseline Emotion Recognition Model: Base

We use the base version of Bidirectional Encoder Representations from Transformers

(BERT) model due to the prevalence of this approach [63]. We use a pre-trained BeRT

tokenizer for the model. We implement and fine-tune the model using the HuggingFace

library [230].

9.5.1.2 Multi-Dataset Training: Multi-D

Our goal is to create an emotion recognition model that is not biased by dataset. To

do this, we start with the same model described above (Base). We introduce an additional

adversarial task, recognizing the dataset (e.g., IEMOCAP, Section 3.1), following the domain

adversarial networks method suggested in [78]. We train our model on combinations of two

datasets and test on the third.

9.5.2 Sensitive Information Reduction

Our goal is to reduce a given model’s ability to detect a sensitive attribute (e.g., gender)

from embeddings learned for the task of emotion recognition. In all cases, the models are

initialized with the Base model.
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We measure sensitive information reduction success using Sensitive Information Leakage

Measurement [152]. It assumes that an adversary has black-box access to the representations

learned from the emotion recognition algorithm and access to a gender labeled subset of

the dataset. The adversary uses these representation to train an auxiliary model to predict

gender for any representation from that model, as described in our prior work [108].

9.5.2.1 Sensitive Information Reduction by Adversarial Training: SIRAdv

SIRAdv uses an adversarial training paradigm to reduce the sensitive information

encoded in the generated embeddings with respect to gender. The main network is trained to

unlearn gender using a Gradient Reversal Layer (GRL) [77], a multi-task approach to train

models invariant to specific properties [153]. We place the GRL between the embedding

sub-network and gender classifier to obtain gender-invariant representations.

9.5.2.2 Sensitive Information Reduction by Data Augmentation: SIRAug

SIRAug is is trained using an augmented data set using gender-swapping to compare

our proposed method and resultant metric to other successful approaches [104]. We use

a pronoun-based word list and create a gender-swapped equivalent for each sentence, e.g.,

replacing “he” with “she”, “his” with “hers”, and so on. Data augmentation has its own

issues: it doubles the training data size with no added label information, has expensive

list creation of gender-based words in the dataset to be replaced, and nonsensical sentence

creation [22].

9.5.2.3 Sensitive Information Reduction by Bias Fine-Tuning: SIRBias

SIRBias leverages an additional outside dataset that is has reduced correlations with

respect to the sensitive variable, which is used to train an initial model. We use the improvised

turns subset of MSP-Improv (see Section 3.1). We chose this subset because both actors

(the male and female actor) perform improvisations using the same initial set of scenarios,
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controlling the word choice due to topic variations. Therefore, the manner and speaking and

word choice is more likely to be related to gender differences, rather than topic differences.

We then fine tune a BERT model to be unable to distinguish between genders for a particular

improvisational target. This clusters samples together by prompt, accounting for topic-based

word variations. The result of this fine-tuning should ideally be a model with reduced leakage

of gender information. This resulting model is then finetuned for emotion recognition on

IEMOCAP (see Section 3.1).

9.5.3 Helper Model

9.5.3.1 Gender Control: GenControl

Gender Control is a sanity check for verifying the reliability of our template. We

hypothesize that if our proposed method indeed captures relevant information, then a model

trained specifically to recognize gender should have the lowest HCMsir
ri Gen value. We train

a multi-task model for predicting both gender and emotion.

9.5.3.2 Artificially Noisy Model: ArtNoise

We create a parallel corpus of IEMOCAP to use as an attention check for the crowdsourced

task. We add six artificial “noisy” features, {’zq0’, ’zq1’, ’zq2’, ’zx0’, ’zx1’, ’zx2’}, such

that they correlate specifically with both emotion and gender and train a classification model

to predict emotion on this dataset. The added signals are 100% correlated to the sub-classes,

ensuring that the model always learns these added nonsensical tokens as salient features.

9.6 Experimental Setup

9.6.1 Models for Metric Correlation To Performance

We perform all training experiments three times, using one dataset for training at a time,

and testing on the same dataset (within-corpus testing) as well as the other two (cross-corpus
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testing). We train six models as described in Section 9.5.1 and Section 9.5.2: two solely for

emotion recognition {Base,Multi − D}, three for reduced sensitive information encoded

emotion recognition {SIRAdv, SIR,Aug, SIRBias}, and one control {GenControl}.

9.6.2 Using the Metrics to Train Generalizable and Sensitive Information Reduced

Models

We evaluate whether including the proposed metric in the training process improves

emotion recognition and sensitive information reduction performance. We initialize the

model with the baseline emotion recognition model (Base, Section 9.5.1.1). We retrain the

model with the approaches discussed in Section 9.5.2. Please see Figure 9.1 for a pictorial

example for how metrics are integrated within the training process. We consider five different

training conditions:

1. Only HCMgz
stnEmo : s

2. Cross-entropy + HCMgz
stnEmo : s

3. Only HCMsir
stnDem : s

4. Adversarial component + HCMsir
stnDem : s

5. Cross-entropy + adversarial component + HCMgz
stnEmo : s + HCMsir

stnDem : s

We also perform experiments with each demographic metric on its own and other

permutations of the setup.

9.6.3 Crowdsourcing

Finally, we explore whether user preference aligns with our proposed metrics. We select

a representative sample population by considering three levels of: 1) valence (low, medium,

and high, see Section 3.2.1) and 2) the metrics of 𝐻𝐶𝑀 𝑠𝑖𝑟
𝑠𝑡𝑛𝐺𝑛𝑑 : 𝑠 (low, medium, and high,

measured via quantiles). This results in nine bins.
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Figure 9.2: The crowdsourcing interface. Users are asked to indicate their model preference
given visualizations of the relative importance of specific words in the prediction of emotion.
The evaluators were not presented with the names of the models and the order of model
outputs was randomized for each viewing. Note that the sentence was chosen to clearly
convey gender, and potentially, gendered information. In the figure, green indicates that the
model is using the word in the prediction, while red indicates that it is not. The outputs
correspond to: 1) GenControl - note the heavy focus on the word “dress”, 2) SIRBias, 3)
ArtNoise, 4) SIRAug, 5) SIRAdv (for model details, see Section 9.5.2). Observe that the
three sensitive information reduction methods are no longer focusing on the word “dress”.

We select 60 random samples from each bin for a total 540 samples. We classify

each sample using our five models (SIRAdv, SIRAug, SIRBias, GenControl, ArtNoise,

described above). We extract sample-level predictions. In addition, we extract sample-level

explanations using Captum [211], Section 9.3.1.1).

ArtNoise is used as a attention check baseline for human evaluation, ensuring that the

evaluators are paying attention to the task at hand. We consider this option as an attention

check and discard any response where the crowdsourced worker preferred the result and/or

the explanation from this model (7.31% samples were discarded in total).

We presented the predictions from the models and heat map-based explanations. We

asked the workers to choose between the five models, focusing on the following questions:

(1) which model are you more likely to trust for emotion prediction and (2) which model are

you more likely to trust for not being able to predict sensitive information.
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We recruited annotators using Prolific from a population of workers with the following

characteristics: 1) in the United States, and 2) native English speakers. Each task was

annotated by three workers. We used qualification tests to check that all workers understood

valence. Each task took an average of one-minute. The compensation was $9.45/hr.

9.7 Results and Discussion

9.7.1 RQ0-emo: Can we accurately recognize emotion, here labeled dimensionally

for valence?

The baseline emotion classification model (Base) for within-corpus valence classification

has 0.65 UAR for IEMOCAP, 0.68 for MuSE, and, 0.54 for MSP-Podcast (chance is 0.33

UAR), which is comparable to existing approaches on this domain [9].

In the cross-corpus setting, we see an average drop of at least 15% on all the models and

datasets permutations. For example, a model trained on IEMOCAP and tested on MuSE

has a UAR of 0.58 for Base, and, 0.53 for the SIRAdv model, which is significantly lower

(paired t-test adjusted for multiple comparisons, p=0.0017) than the performance of these

models when trained and tested on MuSE (0.68 and 0.71 respectively).

The multi-dataset emotion classification model has an overall higher performance in the

cross-corpus setting. For example, the Multi-D has 0.64 UAR for IEMOCAP as compared

to 0.61 and 0.57 obtained using Base.

We find that while reducing sensitive information leakage reduces within-corpus emotion

recognition performance in many cases, these sensitive information leakage reduced models,

especially SIRAdv usually have equivalent or better performance as compared to Base in

cross-corpus setting, e.g., Base and SIRAdv trained on MuSE and tested on IEMOCAP has

a UAR of 0.61 and 0.63, respectively.
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9.7.2 RQ0-SIR: Can we use representations trained in the context of emotion recogni-

tion to recognize a demographic variable, here gender?

Gender classification within dataset is highest for models using the emotion representa-

tions learned from the baseline model and the control gender-addition model, supporting

prior work [108]. The multi-dataset model usually has a lower or equivalent gender UAR

as compared to the baseline model. Gender classification operating on the representations

learned from all three sensitive information reduction models have lower UAR, compared to

the multi-dataset model.

The leakage of gender information is higher for all models in the cross-corpus condition,

compared to within corpus testing, excepting the multitask emotion-gender model. This

suggests some loss of efficacy of the sensitive information reduction methods in cross-corpus

settings. In almost all the cases, SIRAdv has the lowest cross-corpus gender leakage while

almost retaining emotion recognition performance. Hence, we use SIRAdv as our main

model for retraining purposes (please see results tables in appendix for full details).

9.7.3 RQ1: How do metrics that capture sensitive information reduction, HCMsir
ri Dem,

and reliance on words unrelated to emotion, HCMgz
stnEmo, correlate to a model’s

emotion recognition and sensitive information reduction performance?

We expect that models that effectively reduce leakage of sensitive information the model

have high HCMsir
ri Dem values, while models that do not will have low HCMgz

stnEmo values.

We initially validate the assumption that the HCMsir
ri Gen metric is very low for the

GenControl model (-0.21). This aligns with our expectation that the relative sensitive

information reduction should be low. The goal of the GenControl model is to learn, rather

than ignore, gender identity.

For within corpus settings, our expectation is that the SIRAug and SIRAug models will

have the highest HCMsir
ri Gen values. We find that across all the datasets, and models, gender

leakage is significantly negatively correlated (paired t-test adjusted for multiple comparisons)
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with HCMsir
ri Gen for both within corpus (−0.95∗) and cross-corpus (−0.89∗) evaluation. (∗

refers to significant value when using paired t-test adjusted for multiple comparisons)

We expect that models that generalize well will have high HCMgz
stnEmo values, while

models that generalize poorly will have low HCMgz
stnEmo values. We find that in two out

of three cases, SIRAdv has a higher HCMgz
stnEmo than Base. We find that across all the

datasets, and models, emotion recognition performance is significantly positively correlated

(paired t-test adjusted for multiple comparisons) with HCMgz
stnEmo for both within corpus

(0.72∗), and cross-corpus (0.80∗) evaluation.

We analyze the intersections between word-lists and saliency attribution. We consider

instances in which HCMgz
stnEmo positively impacts model performance, when a sample

moves from being incorrectly to correctly classified after HCMgz
stnEmo is included in model

training. We observe that in 87.3% of the words in the intersections (Equation 9.1), in the

better performing model have medium valence label (from the set: low, medium, and high).

This suggests that the metric enables the model improve in the recognition of subtle displays

of emotion.

9.7.4 RQ2: How does additionally optimizing for HCMsir
stnGen affect gender informa-

tion leakage?

We observe that when using the HCMsir
stnGen metric as the only optimizer, we fall short

of the sensitive information reduction performance of SIRAdv, indicating need for composite

metrics. We find that augmenting SIRAdv training with HCMgz
stnGen : s improves valence

and decreases gender classification performance (0.64 in SIRAdv vs 0.61 with SIRAug)

in cross-corpus settings (Table 9.1). In within corpus settings, we find that the addition of

metric still benefits sensitive information reduction but can also lead to a non-negligible

drop in emotion recognition performance. We also find that while age (HCMsir
stnAge) and

race (HCMsir
stnRace) metrics on their own do not signify any positive change in cross-corpus

dataset performance.
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Table 9.1: Training models with only HCMgz
stnGen : s

Training Testing
IEMOCAP MuSE MSP-Improv

IEMOCAP 0.64 0.60 0.45
MuSE 0.63 0.67 0.41

MSP-Podcast 0.60 0.62 0.52

We find that the metrics can be jointly considered in a simple multi-task setup between

the primary task (i.e., emotion) and an adversarial component (HCMsir
stnGen). The multi-task

setup results in the best performing gender information reduction (we do not have labels to

measure age/race) of emotion recognition model (Table 9.2).

9.7.5 RQ3: How does additionally optimizing for HCMgz
stnEmo affect emotion recog-

nition?

We find that optimizing for alignment with the human-centered metric leads to better

cross-corpus performance across every setup (Table 9.1). For example, when we augment

the Base model trained on IEMOCAP with HCMgz
stnEmo. The UAR increases to 0.6 and

0.45 for Muse and MSP-Podcast respectively, as compared to 0.58 and 0.43. Additionally,

we find that, training the model with these metrics give us better or equivalent performance

to when using the combined dataset method, which was the best solely emotion recognition

model. This shows the effectiveness of the metric, and lowers the required computation time

and power.

We also see that while we see a performance increase for cross-dataset testing, some

within dataset performances are lower than the generally trained model (e.g., Base has UAR

0.54 for MSP-Podcast, but Base+HCMgz
stnEmo has a UAR 0.52). We hypothesize that this

occurs because the models were relying on spurious correlations (sprurious, with respect to

emotion recognition), which, when removed, decreased the model’s performance.
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Table 9.2: Training models with composite metrics: HCMgz
stnGen : s + SIRAdv(Gender) +

HCMsir
stnDem : 𝑠 (HCMsir

stnGen : 𝑠 + HCMsir
stnAge : 𝑠 + HCMsir

stnRace : 𝑠)

Training Testing
IEMOCAP MuSE MSP-Improv

IEMOCAP 0.71 0.59 0.45
MuSE 0.67 0.70 0.46

MSP-Podcast 0.57 0.56 0.50

9.7.6 RQ4: Does emotion recognition and sensitive information reduction perfor-

mance change when including both HCMgz
stnEmo and HCMsir

stnDem during

training?

We include all sensitive information reduction components (HCMsir
stnGen, HCMsir

stnAge,

HCMsir
stnRace) and the emotion generalizability component (HCMgz

stnEmo) in multi-task

setup method in model training. We find that this composite metric (combination of all

metrics: HCMsir
stnGen : 𝑠 + HCMsir

stnAge : 𝑠 + HCMsir
stnRace : 𝑠) leads to better model

performance across the board. For example, models trained with the composite metric

improves the UAR to 0.7 on MuSE within-corpus, as compared to 0.68 from the Base

model).

We find that the two components interact to give better performance on both cross-corpus

emotion recognition and sensitive information reduction performance. For example, we see

an improved UAR of 0.67 on IEMOCAP (cross-corpus), compared to 0.62 from the Base

method). Further, we also see that the gender leakage universally reduces when training the

models on this combination (cross-corpus testing on MSP-Podcast when using composite

metric training on Muse improves performance by 6%). We hypothesize that encouraging

certain generalizable correlations while discouraging spurious correlations leads to models

that are more robust and have reduced sensitive information leakage across the spectrum,

but the enforcement of specific ‘unlearning’ often leads to negligible drops in within-corpus

sensitive information reduction performance.

Finally, we found that inclusion of age and race, to gender, as sensitive information
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reduction components improves emotion recognition performance in cross corpus evaluation

(Please see the full results table in the appendix).

9.7.7 RQ5: For each of these tasks, emotion recognition and sensitive information

reduction, do humans’ model preferences correlate with HCMgz
stnEmo and

HCMsir
ri Dem respectively, when considering the sample, model’s prediction and

salient explanations?

We show that user preference depends on what the user was asked to consider the model’s

behavior for, with respect to emotion or to sensitive information leakage [103]. The user

preference for emotion recognition models is significantly correlated with within-corpus

valence recognition performance (0.78) and with the HCMgz
stnEmo metric (0.71).

The correlation between user preference for emotion recognition and the HCMsir
ri Gen

metric is negligible (0.09). This suggests that when asked to focus on emotion recognition

performance with models that have the same prediction but different highlighted words,

both performance and the potential for generalizability (when grasped using the highlighted

words/phrases for attributed by the model for the prediction) dominate user preference.

When choosing sensitive information leakage reducing model, we find that user’s

preference is moderately correlated with emotion recognition performance (0.46) and strongly

negatively correlated with the ability to predict gender (-0.86). This is also supported by

the correlation between user preference and HCMsir
ri Gen (0.64) and HCMgz

stnEmo (0.81).

This support the hypothesis that, human perception can be encoded into models through the

proposed metric template (HCM[T]).

9.8 Conclusion

In this chapter, we present a novel set of emotion generalizability metrics focused on

reducing sensitive information encoding, and reliance on emotionally-unrelated words.

We evaluate these metrics across the tasks of emotion recognition and classification of
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demographic variables (here, gender). We demonstrate that these metrics are correlated

with the performance of algorithms, both within and across corpus, and that these metrics

can be used during model training to improve classification performance and leakage of

gender information. In future work, we aim to look at finer grained controls over reducing

learnt sensitive information when evaluated by the end user, and methods to incorporate

user-specific personalization of the baseline metric.

Please see the table on the following page that provides a detailed accounting for the

results discussed in the rest of the chapter.
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Table 9.3: Within and cross dataset performance of models across various datasets, correlation
with these metrics and using metrics for training. Note that for space, the column headings
refer to H, rather than HCM. We use the notation ”Dem” to refer to the combined demographic
categories of Gender, Age, and Race. SIR refers to sensitive information reduction.

Train Model Valence Hgz
stnE Gender Hsir

ri G 1- Hsir
ri GIEM MuSE MSP-P IEM MuSE MSP-P

IE
M

O
CA

P

Baseline 0.65 0.58 0.43 0.64 0.71 0.74 0.68 -
SIRAdv 0.67 0.53 0.38 0.62 0.56 0.62 0.59 0.65 0.35
SIRAug 0.64 0.59 0.44 0.68 0.55 0.64 0.55 0.68 0.32
SIRBias 0.62 0.53 0.38 0.6 0.62 0.69 0.7 0.56 0.44
GenControl 0.63 0.52 0.37 0.59 0.82 0.76 0.76 -0.21 1.21
HCMsir

stnGen 0.64 0.56 0.4 0.61 0.58 0.61 0.6 0.6 0.4
HCMsir

stnAge 0.65 0.51 0.38 0.63 - - - 0.32 0.68
HCMsir

stnRace 0.63 0.52 0.39 0.65 - - - 0.51 0.49
HCMsir

stnDem 0.65 0.54 0.41 0.64 - - - 0.63 0.37
SIRAdv+HCMsir

stnGen 0.69 0.56 0.43 0.67 - - - 0.74 0.26
SIRAdv+HCMsir

stnDem 0.67 0.58 0.44 0.66 0.54 0.6 0.52 0.72 0.28

M
uS

E

Baseline 0.61 0.68 0.38 0.65 0.67 0.57 0.72 -
SIRAdv 0.63 0.71 0.36 0.67 0.58 0.53 0.56 0.67 0.33
SIRAug 0.57 0.62 0.34 0.6 0.6 0.51 0.59 0.61 0.39
SIRBias 0.56 0.6 0.34 0.59 0.62 0.55 0.63 0.59 0.41
GenControl 0.4 0.53 0.3 0.52 0.8 0.88 0.72 -0.17 1.17
HCMsir

stnGen 0.58 0.62 0.34 0.6 0.65 0.54 0.58 0.58 0.42
HCMsir

stnAge 0.6 0.62 0.35 0.58 - - - 0.21 0.79
HCMsir

stnRace 0.57 0.61 0.34 0.59 - - - 0.33 0.67
HCMsir

stnDem (all) 0.6 0.64 0.38 0.62 - - - 0.55 0.45
SIRAdv+HCMsir

stnGen 0.66 0.7 0.44 0.73 - - - 0.7 0.3
SIRAdv+HCMsir

stnDem 0.64 0.69 0.4 0.7 0.55 0.52 0.55 0.69 0.31

M
SP

Po
d-

ca
st

Baseline 0.57 0.58 0.54 0.53 0.65 0.55 0.72 -
SIRAdv 0.54 0.48 0.5 0.42 0.54 0.51 0.57 0.68 0.32
SIRAug 0.52 0.43 0.48 0.38 0.59 0.52 0.59 0.64 0.36
SIRBias 0.44 0.42 0.48 0.38 0.61 0.54 0.61 0.53 0.47
GenControl 0.37 0.38 0.4 0.32 0.78 0.7 0.79 -0.19 1.19
HCMsir

stnGen 0.44 0.46 0.45 0.37 0.59 0.6 0.58 0.5 0.5
HCMsir

stnAge 0.46 0.48 0.47 0.38 - - - 0.45 0.55
HCMsir

stnRace 0.47 0.5 0.47 0.39 - - - 0.5 0.5
HCMsir

stnDem 0.47 0.51 0.48 0.4 - - - 0.55 0.45
DemAdv+HCMsir

stnGen 0.54 0.56 0.57 0.55 - - - 0.69 0.31
DemAdv+HCMsir

stnDem 0.52 0.55 0.53 0.51 0.53 0.52 0.52 0.63 0.37
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CHAPTER X

Concluding Remarks

The objective of this dissertation is to investigate the effect of implicit decisions made

during the machine learning (ML) process on the performance of ML models trained for

emotion recognition. Implicit decisions refer to the choices made by practitioners during the

various stages of the ML pipeline, such as data preprocessing, feature selection, and model

selection. These decisions are often made based on intuition, experience, or convenience,

rather than a rigorous analysis of their impact on the final model. Chapters IV and Chapter VI

of this dissertation focus on identifying key areas for dataset creation and annotation that

can significantly impact the evaluation and performance of trained machine learning (ML)

models. Chapters VI and VII of this dissertation are dedicated to investigating the impact

of confounding factors in data on the performance and reliability of machine learning

(ML) models. Chapters VIII and IX of this dissertation are dedicated to addressing two

critical challenges in the development and deployment of machine learning (ML) models:

unintentional encoding of demographic and memership information in model representations

and generalizability of these models.

10.1 Summary of Contributions

• Chapter IV presented the following contributions:
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– We unveiled a unique dataset, Multimodal Stressed Emotion (MuSE), purposed

for studying the interaction between stress and emotion in speech.

– We elucidated the procedure for data collection, the potential applications, and

the methodology for annotating emotional content.

– We showcased the dataset’s potential in the development and evaluation of models

focused on emotion recognition and stress detection.

• Chapter V brought forth:

– Augmenting IEMOCAP with realistic noisy samples through the use of various

types of environmental and synthetic noise.

– An evaluation of how noise influences both the ground truth and predicted labels

with associated guidance for noise-based augmentation within speech emotion

datasets.

– A strong emphasis on the need to consider the influence of noise on human

emotion perception and the necessity of robustly testing models.

• Chapter VI provided insights on:

– How context influences the annotation of emotional content within the MuSE

dataset.

– The comparison between two labeling methods, randomized and contextualized,

and the discovery that contextualized labeling produces annotations closer to

self-reported labels.

– The finding that labels generated using the randomized method can be more

efficiently predicted by automated systems.

• Chapter VII offered:
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– A new method for separating stress modulations from emotion representations

utilizing adversarial networks.

– Evidence showing that controlling for stress during training boosts the generaliz-

ability of emotion recognition models across new domains.

– An effective demonstration of our unique approach’s usability using the MuSE

dataset and its potent applicability to other confounding variables present in

emotion datasets.

• Chapter VIII achieved:

– A comprehensive analysis of demographic leakage in representations obtained

from textual, acoustic, and multimodal data when trained for emotion recognition.

– The introduction of an adversarial learning paradigm to reduce demographic

leakage from generated representations.

– A valid demonstration of our novel approach’s efficacy on numerous datasets

and its potential use to defend against set-based membership identification.

• Chapter IX proposed:

– Automatic and quantifiable metrics for measuring generalizability and sensitive

information encoding in the representation of machine learning models within

the context of speech emotion recognition.

– A verification method of the utility of the proposed metrics using crowdsourcing,

showcasing their adaptability for evaluating cross-corpus generalization.

– A cost-efficient and dependable way of appraising the effectiveness of machine

learning models within speech emotion recognition.

These points, in sum, illustrate the specific contributions this dissertation makes to

improve understanding, methodologies, and tools in the area of emotion recognition research.
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10.2 Future Work

Building upon the contributions of this dissertation, there are two primary areas where

future research could focus.

Firstly, when using interpretation and explanation, whether for emotion recognition or

other human centered machine learning tasks, future research should focus on developing

a standardized evaluation checklist for deep learning model explanations. Currently, the

field is marked by inconsistent evaluation methodologies in various research papers, making

it challenging to compare results. It is essential to address these variations by designing

a checklist that encapsulates evaluation criteria applicable across different studies. The

introduction of such a tool will help simplify the evaluation process and foster a clearer

understanding and comparison of diverse research outcomes. The current environment lacks

a standardized approach, and individual studies often adopt unique methods, which detracts

from the comparability of research. Creating a universal evaluation framework is thus a

crucial step for future advancements in the field.

Secondly, in terms of evaluation metrics for any human centered tasks, the use of

closed language models (LLMs) poses certain challenges when it comes to testing their

performance. If we do not know what went into the training dataset of a closed LLM,

it is very likely that the test dataset we use or generate will be contaminated. This can

result in inaccurate performance metrics and difficulty in verifying the correctness of the

model’s responses. Prompt-based benchmarking can exacerbate these challenges further by

introducing another layer of complexity. If we are not directly testing for an “input sample” to

“output” correspondence, the way we write the prompt and what we ask for as an output will

significantly change how we benchmark the ability of any model. This can make evaluating

the performance of a closed LLM more difficult and error-prone, and increase the risk of

producing biased results. Future work can look into Prompt Based Experimental Design

Schemas. These schemas can be thought of as templates, but with a key distinction. They

not only focus on varying the input sample, but also on modifying the prompt specifications.
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By doing so, they allow us to closely monitor and analyze the changes that occur from one

prompt to another. This approach provides a valuable way to study and understand the

impact of different prompts on the overall outcome of an experiment.

In essence, these proposed trajectories, in tandem with this dissertation’s contributions,

provide a roadmap for further research in the field of models trained for human centered

tasks such as emotion recognition. The continuance of these research undertakings will

augment our understanding and enhance the effectiveness of the techniques used in the

recognition and evaluation of human centered predictive models.
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[44] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and
Emmanuel Prouff. Privacy-preserving classification on deep neural network. IACR
Cryptology ePrint Archive, 2017.

[45] Tara M Chaplin. Gender and emotion expression: A developmental contextual
perspective. Emotion Review, 2015.

[46] Aggelina Chatziagapi, Georgios Paraskevopoulos, Dimitris Sgouropoulos, Georgios
Pantazopoulos, Malvina Nikandrou, Theodoros Giannakopoulos, Athanasios Kat-
samanis, Alexandros Potamianos, and Shrikanth Narayanan. Data augmentation using
gans for speech emotion recognition. In Interspeech, pages 171–175, 2019.

[47] Sheng-Yeh Chen, Chao-Chun Hsu, Chuan-Chun Kuo, Ting-Hao K. Huang, and
Lun-Wei Ku. Emotionlines: An emotion corpus of multi-party conversations. CoRR,
abs/1802.08379, 2018.

170



[48] Sheng-Yeh Chen, Chao-Chun Hsu, Chuan-Chun Kuo, Lun-Wei Ku, et al. Emotionlines:
An emotion corpus of multi-party conversations. arXiv preprint arXiv:1802.08379,
2018.

[49] Yunliang Chen and Jungseock Joo. Understanding and mitigating annotation bias
in facial expression recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14980–14991, 2021.

[50] Farah Chenchah and Zied Lachiri. Speech emotion recognition in noisy environment.
In 2016 2nd International Conference on Advanced Technologies for Signal and
Image Processing (ATSIP), pages 788–792. Ieee, 2016.

[51] François Chollet. keras. https://github.com/fchollet/keras, 2015.

[52] François Chollet. keras. https://github.com/fchollet/keras, 2015.

[53] Herbert H Clark and Jean E Fox Tree. Using uh and um in spontaneous speaking.
Cognition, 84(1):73–111, 2002.

[54] Leigh Clark, Nadia Pantidi, Orla Cooney, Philip Doyle, Diego Garaialde, Justin
Edwards, Brendan Spillane, Emer Gilmartin, Christine Murad, Cosmin Munteanu,
et al. What makes a good conversation?: Challenges in designing truly conversational
agents. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, page 475. Acm, 2019.

[55] Maximin Coavoux, Shashi Narayan, and Shay B Cohen. Privacy-preserving neural
representations of text. arXiv preprint arXiv:1808.09408, 2018.

[56] Sheldon Cohen. Perceived stress in a probability sample of the united states. 1988.

[57] Sheldon Cohen, T Kamarck, R Mermelstein, et al. Perceived stress scale. Measuring
stress: A guide for health and social scientists, pages 235–283, 1994.

[58] Sheldon Cohen, Tom Kamarck, and Robin Mermelstein. A global measure of
perceived stress. Journal of health and social behavior, pages 385–396, 1983.

[59] Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness: A
critical review of fair machine learning. arXiv preprint arXiv:1808.00023, 2018.
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[105] Mimansa Jaiswal, Zakaria Aldeneh, Cristian-Paul Bara, Yuanhang Luo, Mihai
Burzo, Rada Mihalcea, and Emily Mower Provost. Muse-ing on the impact of
utterance ordering on crowdsourced emotion annotations. In 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Ieee, 2019.

[106] Mimansa Jaiswal, Zakaria Aldeneh, Cristian-Paul Bara, Yuanhang Luo, Mihai Burzo,
Rada Mihalcea, and Emily Mower Provost. Muse-ing on the impact of utterance
ordering on crowdsourced emotion annotations. CoRR, abs/1903.11672, 2019.

[107] Mimansa Jaiswal, Zakaria Aldeneh, and Emily Mower Provost. Controlling for
confounders in multimodal emotion classification via adversarial learning. arXiv
preprint arXiv:1908.08979, 2019.

[108] Mimansa Jaiswal and Emily Mower Provost. Privacy enhanced multimodal neural
representations for emotion recognition. In Aaai, pages 7985–7993, 2020.

[109] Mimansa Jaiswal and Emily Mower Provost. Best practices for noise-based augmen-
tation to improve the performance of emotion recognition ”in the wild”. volume
abs/2104.08806, 2021.

[110] Mimansa Jaiswal, Sairam Tabibu, and Rajiv Bajpai. The truth and nothing but the
truth: Multimodal analysis for deception detection. In 2016 IEEE 16th International
Conference on Data Mining Workshops (ICDMW), pages 938–943. Ieee, 2016.

[111] Yu-Gang Jiang, Baohan Xu, and Xiangyang Xue. Predicting emotions in user-
generated videos. In Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014.

[112] Kenneth Joseph, Lisa Friedland, William Hobbs, Oren Tsur, and David Lazer.
Constance: Modeling annotation contexts to improve stance classification. arXiv
preprint arXiv:1708.06309, 2017.

[113] Rebecca Jürgens, Annika Grass, Matthis Drolet, and Julia Fischer. Effect of acting
experience on emotion expression and recognition in voice: Non-actors provide better
stimuli than expected. Journal of nonverbal behavior, 39(3):195–214, 2015.

175



[114] Jeffrey H Kahn, Renee M Tobin, Audra E Massey, and Jennifer A Anderson. Measuring
emotional expression with the linguistic inquiry and word count. The American
journal of psychology, pages 263–286, 2007.

[115] Divyansh Kaushik, Douwe Kiela, Zachary Chase Lipton, and Wen tau Yih. On
the efficacy of adversarial data collection for question answering: Results from a
large-scale randomized study. volume abs/2106.00872, 2021.

[116] Soheil Khorram, Zakaria Aldeneh, Dimitrios Dimitriadis, Melvin McInnis, and
Emily Mower Provost. Capturing long-term temporal dependencies with convolutional
networks for continuous emotion recognition. Proc. Interspeech, 2017.

[117] Soheil Khorram, Mimansa Jaiswal, John Gideon, Melvin McInnis, and Emily Mower
Provost. The priori emotion dataset: Linking mood to emotion detected in-the-wild.
In Interspeech 2018.

[118] Soheil Khorram, Mimansa Jaiswal, John Gideon, Melvin McInnis, and Emily Mower
Provost. The priori emotion dataset: Linking mood to emotion detected in-the-wild.
arXiv preprint arXiv:1806.10658, 2018.

[119] Gerald Kidd Jr, Christine R Mason, Jayaganesh Swaminathan, Elin Roverud,
Kameron K Clayton, and Virginia Best. Determining the energetic and informational
components of speech-on-speech masking. The Journal of the Acoustical Society of
America, 2016.

[120] Daniel Kifer and Ashwin Machanavajjhala. No free lunch in data privacy. In
Proceedings of the ACM SIGMOD International Conference on Management of data,
2011.

[121] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[122] Cara Kingston and James Schuurmans-Stekhoven. Life hassles and delusional ideation:
Scoping the potential role of cognitive and affective mediators. Psychology and
Psychotherapy: Theory, Research and Practice, 89(4):445–463, 2016.

[123] Clemens Kirschbaum, Karl-Martin Pirke, and Dirk H Hellhammer. The ‘trier social
stress test’–a tool for investigating psychobiological stress responses in a laboratory
setting. Neuropsychobiology, 28(1-2):76–81, 1993.

[124] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh,
Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan,
et al. Captum: A unified and generic model interpretability library for pytorch. arXiv
preprint arXiv:2009.07896, 2020.
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