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line is enclosed in a dotted red box. Colormap indicates the mode polarization using the metric 

𝛱. Blue modes are primarily in-plane modes; black modes are primarily out-of-plane polarized.
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Fig 3.7. (a) Schematic of the supercell used for band structure calculations, with periodic and 

low-reflecting boundary conditions applied at the surfaces/directions that are indicated. 

Reciprocal space, where the light blue outline indicates one-half of the surface BZ projected onto 
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II (purple square) interfaces are at the bottom. (e) Band structure for the entire projected surface 

BZ for the supercell with a Type I interface. (f) Band structure for the entire projected surface 
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Fig 3.8. (a) 3D metastructure built from 8x8x8 unit cells and a schematic of three waveguide 
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Fig 3.9. (a) Schematic of the bilayer unit cell comprised of two Type 0 monolayer unit cells 
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marked by a black star. (e) Layer-polarized topological wave propagation illustrated by steady-

state displacement that is confined to four specific layers (outlined with dashed black lines). 
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Fig 3.12. (a) Schematic (isometric and front views) of an eight-layer stack supercell, consisting 
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modes are displayed to the right of the band structure. (b) Adaptive topological wave 

propagation of bilayer-locked state in 3D metastructure (straight line and sharp corner), 
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Fig 3.13. (a) Layer converter schematic and steady-state displacement (side view and layer 

views) for excitation located at the star. Type I interfaces are marked in blue and Type II 

interfaces are marked in red. Steady-state displacement results illustrate layer conversion (𝑓𝑒 = 

2920 Hz) and wave splitting (𝑓𝑒 = 3020 Hz) behavior (b) Wave-focusing gate schematic and 

steady-state displacement (side view and layer views) for excitation located at the star. Steady-

state displacement results show a wave-focusing behavior that can act as a frequency-dependent 
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Fig 4.1. (a) A schematic of the 3D TM. (b) Isometric and top views of the metamaterial unit cell. 

(c) The band structure for the Type 0 lattice (𝛼 = 0). The four Dirac nodal line degeneracies are 

indicated by the dotted red boxes. The colorbar indicates the mode polarization quantified by the 

parameter 𝛱. (d) The band structure for the Type A/B (𝛼 = -0.11/0.11) lattices. The band 
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that border the four (D1, D2, D3, and D4) topological bandgaps in the |𝛼|=0.11 case, illustrating 
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Fig 4.2. Parameter study illustrating the effect of the (a) mass height ℎ𝑚 and (b) spring ligament 
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Fig 4.5. (a) The experimental testbed with an inset showing detail for a unit cell. (b) A 
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all four degeneracies D1-D4 are well separated from the ligament/rod modes in the frequency 
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Abstract 

Elastic metamaterials enable control over the propagation of vibrations and elastic waves in 

mechanical structures, a useful feature that has been employed in numerous applications, such as 

energy harvesting, seismic mitigation, vibration and noise mitigation, sensing and imaging, and 

information processing. Recently, researchers have incorporated topological phase theory from 

condensed matter physics into elastic metamaterials to attain new functionality and robustness. 

Elastic wave control with these so-called topological metamaterials is immune to unwanted 

performance degradation in the presence of structural imperfections. Topological metamaterials 

also facilitate the manipulation of elastic wave energy in nearly arbitrary directions and serve as 

excellent macroscale platforms to investigate quantum transport physics.  

While topological metamaterials have demonstrated extraordinary control over elastic wave 

propagation, research gaps exist that are hindering their implementation in technical applications 

and provide opportunities for advancement. Easily integrated (i.e., compact) topological 

metamaterials that provide comprehensively adaptable wave control have yet to be developed. 

Furthermore, the topological metamaterials studied to date are often constrained to function over 

a fixed, singular, and narrow frequency bandwidth. Finally, despite plenty of studies on 1D and 

2D topological metamaterials, topological phases in 3D and fractal mechanical systems have yet 

to be fully explored. To address the research gaps and advance the state of the art, this thesis 

explores a new class of advanced topological metamaterials that achieve responsive, broadband, 

easily integrated, and multidimensional elastic wave control and uncover new knowledge in 

topological and elastic wave physics. To achieve the research vision, the suite of novel topological 

metamaterials presented in this dissertation is synthesized through the understanding and 

harnessing of comprehensive on-demand adaptivity, local resonance, higher-order topological 

phases, and the rich dimensionality of 3D mechanical structures. 

Four novel topological metamaterials are created and investigated in this dissertation. First, a 

2D topological metamaterial is synthesized that harnesses resonant piezoelectric circuitry for 

comprehensively tunable elastic wave control. This innovative metamaterial unlocks the capability 
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to concurrently adjust the path, shape, and frequency of topological states, operates over a broad 

and subwavelength frequency bandwidth, and facilitates a new understanding of adaptive 

topological wave control. Next, a 3D topological metamaterial is proposed that can be tuned on-

line through metastable elements. By taking advantage of the adaptivity of this 3D metastable 

metamaterial, the path of 2D topological surface states is on-demand controlled for the first time, 

a bilayer-locked topological state is discovered, and 3D elastic wave networks with unprecedented 

dimension-switching, filtering, and splitting capabilities are realized. Taking inspiration from the 

first two studies, a novel 3D topological metamaterial is created that exploits multimodal local 

resonance to achieve wave control that is low-frequency, multiband, and polarization-dependent. 

Outcomes from this work include the first full-field experimental measurements of a 2D 

topological state and multi-polarized waveguides in a 3D mechanical structure. Finally, higher-

order topological phases and multimodal resonance are used to synthesize a 2D topological 

metamaterial that attains 0D and 1D topological waveguides across multiple frequency bands. The 

unique capabilities of this novel metamaterial are employed to investigate topological wave control 

in fractal geometries and realize wave-based mechanical logic gates. Overall, this thesis presents 

groundbreaking results in elastic wave control, establishing unprecedented capabilities that hold 

promise for a diverse set of engineering applications. Moreover, this research uncovers new 

fundamental insights into the interplay between topological and elastic wave physics, with 

implications across multiple disciplines in the physical sciences.  
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Chapter 1. Introduction 

1.1 Background  

1.1.1 Elastic metamaterials 

Modern engineering applications (e.g., autonomous electric vehicles, interconnected wireless 

devices, on-chip transducers, robotic systems, and biomedical implantable devices) often require 

materials with extraordinary performance and function. The bulk properties of conventional 

structural materials (e.g., metals, ceramics, plastics) are determined by the composition of their 

atomic-scale building blocks, which are atoms and molecules. To surpass what is attainable with 

these conventional materials, researchers have developed metamaterials [1,2,11–14,3–10] to 

control the electromagnetic (e.g., photonic), acoustic, and mechanical properties of advanced 

structural systems. Metamaterials are constructed from the rational geometric design of internal 

building blocks that are microscopic to macroscopic in size and fabricated from conventional bulk 

materials. These internal building blocks are tessellated into periodic (or sometimes quasiperiodic 

or random) patterns to create the metamaterial architecture. With this unique design methodology, 

metamaterials can achieve extraordinary properties that are “beyond” what is achievable with the 

constituent bulk materials (e.g., negative Poisson’s ratio, anomalous refractive index, negative 

effective mass or modulus, non-reciprocal behaviors [1,2,11–14,3–10]).  

The need to manipulate vibrations and elastic waves in mechanical structures poses a 

formidable technical challenge that has widespread implications across numerous fields, including 

energy generation [15], manufacturing [16,17], transportation [18], civil infrastructure [19,20], and 

aerospace/defense [21–24] (Fig 1.1). Metamaterials that are specifically designed to control 

vibrations and elastic waves in mechanical structures are known as elastic metamaterials (EMs) 

[1–4,7,12]. Apart from addressing the aforementioned need for vibration and elastic wave control 

in many critical industries, EMs contain intriguing characteristics that have made them the subject 

of significant research interest, some of which include:   

 EMs can be used to create load-bearing structural systems. 
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Fig 1.1. Vibrations and elastic waves are nearly ubiquitous in mechanical structures. Structures are exposed to ambient 

vibrations from the external environment (e.g., wind loading, seismic events) and operational vibrations caused by the 

active operation of mechanical systems (e.g., aircraft or automotive engine, CNC turning). 

 EMs contain a larger set of wave polarizations (three: two quasi-shear and one quasi-

longitudinal) than acoustic (one: longitudinal) and electromagnetic/photonic (two: two 

transverse) metamaterials [25]. This feature of EMs results in both technical challenges 

and a rich design space. 

 Elastic waves can hold a high amount of energy, are scalable, are not easily “jammed,” and 

generally have low material and radiation losses for frequencies less than 100 kHz [26,27].  

 EMs can be designed to operate in a low-frequency regime, which is defined in this thesis 

as less than 20 kHz (i.e., the audible frequency regime). Functionality in this frequency 

range is crucial for many structural applications, such as those shown in Fig 1.1.  

With these features in mind, EMs have been investigated as a method to improve performance and 

achieve new functionality in applications that include, but are not limited to, vibration energy 

harvesting [28–33], seismic mitigation [7,34,35], vibration and noise mitigation [36–43], 

sensing/imaging [44–47], actuation [12,48,49], and information processing [50–54].  

EMs traditionally derive many of their intriguing attributes from the phenomenon of local 

resonance [2,55–63]. Local resonance in EMs is realized through the embedding or attaching of 

spring-mass resonators to a mechanical medium, which is typically a continuous or lattice-like 
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mechanical structure. A model of a one-dimensional (1D; note that “dimension” throughout this 

dissertation refers to the spatial dimension) locally resonant EM is shown in Fig 1.2a, where local 

resonators with stiffness 𝑘𝑟 and mass 𝑚𝑟 are attached to a mechanical medium that is modeled as 

a spring-mass lattice with stiffness 𝑘1 and mass 𝑚1. The unit cell, which is the smallest repeated 

unit of the EM, is periodically tessellated to create the lattice that makes up the EM. The size of 

the unit cell in an EM is defined by the lattice constant (labeled as 𝑎 in Fig 1.2a), which represents 

the characteristic size of the EM. When an EM with local resonance is subjected to a dynamic 

excitation near the natural frequency of the resonators, 𝑓𝑟 = 
1

2𝜋
√

𝑘𝑟

𝑚𝑟
 (i.e., the resonant frequency), 

there is energy stored by the resonator masses and then extracted from the system as negative work 

[57,60]. In other words, there is an energy exchange between the elastic wave and the local 

resonators that leads to wave attenuation near the frequency 𝑓𝑟. This phenomenon can be analyzed 

using the dispersion relation (i.e., the band structure) of the EM (Fig 1.2b), which characterizes 

wave propagation by relating the wave frequency (temporal frequency) 𝑓 and wavenumber 𝑘. The 

wavenumber refers to the spatial frequency of a wave, is also known as the wave vector, and is 

related to the spatial wavelength 𝜆 of the wave through 𝑘 = 1/𝜆. The vertical dashed lines at 𝑘 = 

𝜋/𝑎 in the band structures of Fig 1.2b signify the border of the first Brillouin zone, which 

encapsulates the periodic unit cell in reciprocal space. Reciprocal space, or 𝑘-space, is the space 

where the Fourier transform of the lattice in direct/real space is represented and characterizes the 

periodicity of a system [64]. A system with local resonators that are decoupled from a generic 

mechanical medium is considered first, as shown at the bottom of the left panel in Fig 1.2b. 

Assuming the mechanical medium is non-dispersive (meaning all waves have the same phase 

speed 𝑐𝑝 = 2𝜋𝑓/𝑘) and linear, the wave propagation in it can be represented by a straight line 

with slope 𝑐𝑔, which is the wave speed in the medium (left panel in Fig 1.2b) [56]. The decoupled 

local resonators are represented by a flat band at 𝑓𝑟, since there is no wave propagation in the 

disconnected resonators (i.e., the wave is stationary and the wave speed 𝑐𝑔 = 0). When the 

resonators are connected to the mechanical medium (see the bottom of the right panel in Fig 1.2b), 

they interact with the elastic waves propagating through the medium. This interaction results in an 

energy exchange and mode hybridization that appears in the band structure as two continuous 

bands (see the two lowest frequency bands represented by solid lines in the right panel of Fig 1.2b) 

that are formed from the avoided crossing of the two independent bands shown in the left panel 
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Fig 1.2. (a) Simplified model of local resonance in a 1D spring-mass lattice. Local resonators have mass 𝑚𝑟 and 

stiffness 𝑘𝑟; spring-mass lattice has mass 𝑚1 and stiffness 𝑘1. (b) Band structures for a locally resonant EM with 

resonators that are decoupled from a generic mechanical medium (left panel) and resonators attached to a generic 

mechanical medium (right panel). The locally resonant bandgap is designated by the orange shading and the Bragg 

bandgap is designated by the gray shading.  

of Fig 1.2b [56]. As illustrated by the orange shading in Fig 1.2b, the resulting two continuous 

bands are separated by a frequency gap centered near 𝑓𝑟, known as a locally resonant bandgap, 

where elastic waves do not propagate and there is wave/vibration attenuation. The frequency range 

of this locally resonant bandgap is dependent on the properties of the resonators, i.e., 𝑘𝑟 and 𝑚𝑟, 

which means that locally resonant bandgaps can be specified at very low frequencies if desired 

and are not reliant on the spatial periodicity of the lattice (i.e., on the value of the lattice constant 

𝑎). This lattice size-independent feature distinguishes local resonance from the other physical 

mechanism that is often used to achieve wave/vibration bandgaps: the Bragg scattering 

phenomenon. Bragg bandgaps are formed in periodic mechanical structures that are often referred 
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Fig 1.3. Local resonance in EMs. (a) Simplified local resonators attached to a 1D rotating rod, a 1D beam, and a 2D 

thin plate (figure reused from [65] with written permission from the publisher). (b) Beam and tip-mass resonators 

attached to a 1D beam (figure reused from [65] with written permission from the publisher). (c) Bolt resonators 

attached to a 2D thin plate (figure reused from [66] under license CC BY 3.0). (d) Electromechanical resonators 

coupled to a 1D beam (figure reused from [67] with written permission from the publisher).  

to as phononic crystals [2,56,58]. The Bragg bandgaps in these so-called phononic crystals are 

formed by the destructive interference of incident and scattered waves at wavelengths 𝜆 near the 

spatial periodicity of the lattice 𝑎, according to the Bragg condition 𝑎 = 𝑛
𝜆

2
  for an integer 𝑛 

[2,56,58]. This destructive interference is caused by a periodic impedance mismatch that is 

engineered into the phononic crystals. The periodic impedance mismatch has been achieved 

through many different methods, with two primary examples being material periodicity and 

geometric periodicity (e.g., periodically arranged holes in a thin plate) [2,56,62,68–72]. Per the 

Bragg condition, the center frequency of Bragg bandgaps is determined by the characteristic size 

of the lattice (𝑎), and thus large structures are required to achieve large wavelength 𝜆 and low-

frequency Bragg bandgaps [2,56,58]. In the band structure, Bragg bandgaps emerge from band 

folding at the edges of the first Brillouin zone near frequencies that are governed by the Bragg 

condition (e.g., see the gray shading in the right panel of Fig 1.2b). The frequency range of the 

Bragg bandgap indicated by the gray shading in the right panel of Fig 1.2b can be changed by 

adjusting the lattice constant 𝑎, whereas the frequency range of the locally resonant bandgap 

https://creativecommons.org/licenses/by/3.0/
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indicated by the orange shading in the right panel of Fig 1.2b can be tailored by adjusting the 

properties of the local resonators 𝑚𝑟 and 𝑘𝑟. The ability to modify the frequency properties of 

locally resonant EMs without adjusting the lattice constant 𝑎 is a significant advantage that has 

been heavily exploited to achieve low-frequency vibration and elastic wave control in compact 

mechanical structures [2,55–63].  

Examples of EMs that are comprised of spring-mass resonators affixed to continuous 

mechanical structures are given in Fig 1.3a, where resonators are attached to a 1D rotating rod, 1D 

beam, and 2D thin plate [65]. Beyond the simplified spring-mass resonators depicted in Fig 1.3a, 

there are a wide variety of practical spring-mass resonator designs that can be physically realized 

and attached to or embedded within structures. Some examples from previous research include 

two-phase structures with soft material inclusions in a stiff 2D matrix [73], three-phase structures 

such as lead spheres coated in silicone rubber embedded into an epoxy matrix [55], beam and tip 

mass resonators attached to a 1D beam [65] (Fig 1.3b), bolt resonators affixed to a 2D thin plate 

[66] (Fig 1.3c), cylindrical stubs attached to 2D thin plates [59], and resonant circuits 

electromechanically coupled to a 1D beam [67] (Fig 1.3d).  

 

 

Fig 1.4. Elastic waveguides formed from inclusions in periodic lattices. Upon excitation, a confined elastic wave will 

propagate through the inclusion. (a) is an example of successful waveguiding (figure reused from [74] with written 

permission from the publishers). (b) is an example of how unwanted scattering or localization can inhibit successful 

propagation around sharp bends of a waveguide (figure reused from [75] under license CC BY 4.0).  

https://creativecommons.org/licenses/by/4.0/
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Building upon the wave/vibration attenuation made possible in EMs, an advanced objective 

that has received significant research attention is the confinement of elastic waves to a specified 

path or location through the formation of a waveguide. Conventional elastic waveguides obtain 

wave confinement by creating an inclusion where the wave can preferentially localize within a 

periodic lattice [74,76–82] (Fig 1.4a). In the periodic lattice, waves are attenuated by a locally 

resonant or Bragg bandgap. When the inclusion is added to the lattice by removing local resonators 

or Bragg scattering elements (e.g., left side of Fig 1.4a), defect modes emerge within the bandgap 

[74]. These defect modes enable the confined propagation of elastic waves and vibrations through 

the waveguide path (e.g., right side of Fig 1.4a [74]). While these conventional waveguides 

facilitate useful functionalities for various wave/vibration engineering systems, they can suffer 

from performance degradation when disorder (e.g., a sharp bend in the waveguide or mistuned 

elements) or imperfections (e.g., a manufacturing impurity) exist within the periodic lattice 

[75,76,83–85] (Fig 1.4b). 

1.1.2 Topological metamaterials 

Discoveries in the field of condensed matter physics have inspired investigations into how 

topological phases [86–89] can be used to avoid the aforementioned (Sec. 1.1.1) performance 

degradation and attain exceptional control over wave propagation in elastic [90–96], acoustic 

[97,98], and photonic [99–102] metamaterials. The mathematical field of topology involves the 

study of quantized properties of geometric objects or spaces [87,89,100]. These quantized 

properties, known as topological invariants, are conserved under continuous deformations (e.g., 

compressing or stretching). Topologically distinct (equivalent) objects have different (identical) 

topological invariants. As initially established in quantum electronic systems, the topology of the 

band structure can be utilized as a tool to obtain protected conducting states at the boundaries of a 

crystal that is insulating (meaning it contains an energy bandgap) in the bulk (or alternatively, 

protected states may occur at the interface of two topologically distinct bulk-insulating crystals), 

creating a phase of matter known as a topological insulator (TI) (see Fig 1.5a,b for a basic 

schematic of a TI and its band structure) [86–88]. Topological phases, such as TIs, are generally 

realized and protected by crystal symmetries (most commonly time-reversal symmetry and parity 

symmetry) [86]. The topology of a bulk crystal band structure can be quantified by a topological  
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Fig 1.5. (a) Diagrams of a TI. The top panel is a TI composed of bulk crystal and exhibiting a topologically protected 

boundary state (represented by the orange arrows). The bottom panel shows a TI comprised of two bulk crystals 

connected at an interface, where a topologically protected interface state preferentially localizes (represented by the 

orange arrow). (b) The crystal band structure for the TI. The orange band represents the topological boundary (or 

interface) state, which emerges in the bulk energy bandgap. (c) Summary of the analogy between quantum materials 

and EMs that is employed to create TMs.   
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invariant, which is calculated from the winding of the system eigenmodes in reciprocal (i.e., 

momentum) space [86,87,100]. In an ordinary insulator, the dispersion bands are topologically 

trivial, and the value of the topological invariant is zero. For a topologically nontrivial insulator 

(e.g., a TI), the bands have a nonzero topological invariant. A continuous deformation connects 

two topologically equivalent insulators, where the bulk energy bandgap does not close 

[86,87,89,100]. On the other hand, two topologically distinct insulators are connected through a 

discontinuous deformation, where the bandgap must close and reopen (i.e., a cutting of the band 

structure in reciprocal space) [86,87,89,100]. This discontinuous deformation corresponds to a 

topological transition. According to the bulk-boundary correspondence principle, gapless 

boundary states will emerge at the boundary/interface where the topological transition occurs 

[86,87,91] (Fig 1.5a,b). These topological states contain exotic properties, such as robustness, 

confinement, and directionality, which are protected against any imperfections that do not alter the 

bulk topology.  

Topological states can be incorporated into mechanical structures by creating analogs of 

topological quantum materials in EMs. The analogy between quantum electronic materials and 

EMs is summarized in Fig 1.5c. For quantum materials, the wavelike behavior of electrons in an 

atomic crystal lattice is modeled using the Schrödinger wave equation [103], which is solved as 

an eigenvalue problem (left column of Fig 1.5c). Computing the eigensolution results in a band 

structure that relates energy to crystal momentum (from the eigenvalues) and atomic orbitals that 

describe the probabilistic locations of electrons in the atoms (from the eigenvectors). When 

building a macro-scale mechanical analog in EMs (right column of Fig 1.5c), the atomic lattice is 

replaced by a mass-spring lattice or continuous structures with distinct mass sites and stiffness 

couplings. In this case, the solution to the elastic wave eigenvalue problem [25] provides a band 

structure that relates wave frequency to wavenumber (from the eigenvalues) and elastic modes that 

describe the wave fields (i.e., mechanical displacement fields) of the system (from the 

eigenvectors). To obtain topological states in quantum materials (mechanical structures/EMs), the 

band structure is used to identify the energy (frequency) bandgap where the state may emerge and 

the atomic orbital (elastic eigenmode) wavefunctions are used to evaluate the topological 

invariants. This analogy facilitates the integration of topological states, which were initially 

uncovered in quantum materials, into EMs.  
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When exploited by EMs for the control of elastic waves, topological states provide an avenue 

to achieving quasi-lossless (i.e., immune to undesirable scattering) transportation of elastic energy 

along waveguides with sharp bends and structural imperfections. This robust feature of topological 

metamaterials (TMs, as EMs with topological phases will be referred to in this document) makes 

them a promising choice for a wide variety of practical engineering applications, which often 

contain imperfections or disorders due to fabrication defects. In addition to alleviating practical 

concerns, the robustness of TMs adds functionality by enabling the manipulation of elastic wave 

energy in waveguides that travel in nearly arbitrary directions and/or unidirectional paths. The 

remarkable functionality and robustness of TMs have been exploited to enhance performance in 

engineering applications, which include vibration energy harvesting [104–108], on-chip 

communications [109–112], elastic antennas [113], and mechanical information processing (e.g., 

mechanical computing and wave splitting) [114–116]. More generally, topological materials (i.e., 

materials in all quantum and classical wave systems that incorporate topological phases) have also 

shown great promise for use in sensing/imaging [117–119], communications delay lines [120,121], 

memory [122], lasing [123–125], quantum computations [126–128], and tweezer manipulation 

[129]. Moreover, TMs are of particular scientific importance, as they serve as excellent macroscale 

platforms to investigate topological transport theories developed in condensed matter physics. The 

mechanical structures made from TMs are often easier to design, build, manipulate (i.e., scientists 

can explore a large parameter space), and test with (i.e., experimental measurements are more 

straightforward and atomic-level manipulation is not required), when compared to experimental 

quantum systems [88,91].  

1.2 Current state of the art and research gap 

1.2.1 First-order topological metamaterials 

TMs have been investigated in 1D, 2D, and 3D mechanical systems that contain the 

symmetries that are necessary to realize the desired topological phases. According to topological 

phase theory, a nth order 𝑑-dimensional TIs (and therefore, TMs) contain 𝑑 − 1, 𝑑 − 2, …𝑑 − 𝑛 +

1 dimensional gapped boundary states and 𝑑 − 𝑛 dimensional gapless boundary states [88,93,100]. 

Thus, first-order TMs (𝑛=1) contain gapless boundary states that are one dimension lower than the 

bulk. For first-order TMs, there are 0D “point” states in 1D structures, 1D topological “edge” states 

in 2D structures, and 2D “surface” states in 3D structures (see a schematic of the topological states  
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Fig 1.6. (a) Schematic of topological states in 1D, 2D, and 3D first-order TMs. Topological states are confined to the 

paths that are shown in orange. “Type A” and “Type B” represent topologically distinct bulk crystals (i.e., at their 

interface, there is a topological transition). These crystals are insulating in the bulk. (b) 1D first-order TM (beam with 

a varying cross-section) hosting a 0D topological point state (figure reused from [130] under license CC BY 4.0). (c) 

2D first-order TM (thin plate with circular inclusions) hosting a 1D topological edge state (figure reused from [27] 

under license CC BY 4.0). (d) 3D first-order TM (cubic lattice) hosting 2D topological surface state (top) and layer-

selective topological state (bottom) (figure reused from [131] with written permission from the publisher).  

of first-order TMs in Fig 1.6a). 

1D topological physics have been explored in spring-mass chains [83,132,133], rods [134], 

and beams [130,135–137]. In 1D TMs, the Zak phase [138,139] is the topological invariant that is 

calculated to characterize the bulk topology (i.e., it characterizes the topological properties of the 

bulk). Topologically protected wave localization is obtained by connecting two bulk 

configurations with dissimilar Zak phases to form a topological transition. By using this 

methodology, both in-plane (i.e., longitudinal) and out-of-plane (i.e., bending) polarized elastic 

waves have successfully been localized to 0D locations in 1D structures (see an example in Fig 

1.6b [130]). More recently, on-line tunable TMs have been created to maximize performance in 

the presence of varying external conditions, adapt to changing operating requirements, and enable 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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new functionality. Tunable 1D TMs have been developed that use active piezoelectric circuit 

elements [134,135] or externally applied deformations [137] to adjust the frequency of the 0D 

topological state in an on-demand fashion. This frequency adjustment capability significantly 

enhances the operating bandwidth of the TM.  

To achieve protected wave propagation that is localized to waveguides in first-order 2D TMs, 

the elastic analogs of the quantum Hall effect (QHE) [140–143], quantum spin Hall effect (QSHE) 

[144–149], and quantum valley Hall effect (QVHE) [83,150,159–164,151–158] have been 

extensively investigated (along with other mechanisms, such as finite-frequency Maxwell modes 

[165]). The mechanical structures used to realize these 2D topological phases include thin plates, 

2D reticular designs, and interconnected active or gyroscopic elements that contain the required 

symmetries for each phase (QHE, QSHE, or QVHE). Researchers have shown in-plane and out-

of-plane (i.e., flexural) polarized elastic waves confined within 1D topological edge states (see an 

example in Fig 1.6c [27]). Like first-order 1D TMs, recent investigations have focused on 

introducing tunability to first-order 2D TMs. First-order 2D TMs with on-line adjustable spatial 

path [166–172], mode shape [173], and frequency [174–176] have each been explored. Advanced 

wave control functions can be attained by tailoring the mode shape or spatial path, such as a 

versatile elastic wave filter or splitter.  

3D TMs offer a pathway to study 3D topological physics and enable unprecedented elastic 

wave control functionality along multiple planes and spatial directions. 2D topological surface 

states in first-order 3D TMs are more difficult to realize than topological states in first-order 1D 

and 2D TMs due to the inherent complexities of manufacturing intricate 3D mechanical structures, 

computational resource requirements for full-scale 3D modeling, and the frequent presence of 

undesirable wave coupling and mode conversion that are consequences of the three distinct elastic 

wave mode polarizations. Recent advances in 3D fabrication methods and high-performance 

computing resources have prompted the development of 3D EMs (where the focus is on the 

formation of elastic wave bandgaps) [37,38,43,177–183] and first-order 3D TMs [26,75,131,184–

188]. The elastic analog of Weyl semimetals [189,190] (Weyl semimetals are a 3D topological 

phase) has been harnessed in various theoretical studies to investigate the formation of Weyl points 

in 3D TMs and achieve unidirectional and topologically protected 2D surface states [26,75,184–

187]. The QVHE has also been incorporated into a 3D layered mechanical structure [131], where 

2D topological surface states and layer-selective wave control are demonstrated (Fig 1.6d). The 
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initial studies on first-order 3D TMs illustrate some of the many benefits that comprehensive 3D 

elastic wave control could provide, extending beyond what is achievable in 1D and 2D systems.  

1.2.2 Higher-order topological metamaterials 

Higher-order topological insulators (HOTIs) are a new class of topological phases of matter 

that emerged from TI theory. In nth order 𝑑-dimensional HOTIs, there are 𝑑 − 1, 𝑑 − 2,…𝑑 −

𝑛 + 1 dimensional gapped boundary states and 𝑑 − 𝑛 dimensional gapless boundary states, where 

𝑑 > 1 and 𝑛 > 1 [88,93,100,191–194]. Therefore, a second-order 2D HOTI has gapped 1D edge 

states and in-gap boundary states at its 0D corners, a second-order 3D HOTI has gapped 2D surface 

states and gapless boundary states along its 1D “hinges,” and a third-order 3D HOTI has gapped 

2D surface states and 1D hinge states to go along with in-gap boundary states at its 0D corners 

(see a schematic for HOTIs in Fig 1.7a). HOTIs have distinct topological physics (and distinct 

topological invariants) when compared to the first-order TI class of topological materials [88]. The 

topological phase theories used to derive HOTIs are generally separated into two primary 

categories that reflect their different fundamental mechanisms: (i) HOTIs with quantized multipole 

moments [193] or (ii) 𝐶𝑛-symmetric HOTIs without quantized multipole moments (but usually do 

have bulk dipole moments) [195–197]. Noncommutative mirror symmetries that may be difficult 

to realize in practical settings are required to realize HOTIs in (i), making the methodology in (ii) 

easier to implement experimentally. In all HOTIs, gapless topological states are found at the 

“boundaries of boundaries,” unlocking a pathway to multidimensional topological physics. Within 

this dissertation, multidimensional refers to the ability to achieve topological states across a 

hierarchy of several unique dimensions (e.g., 1D edge states and 0D corner states coexisting in the 

same 2D system).  

Higher-order TMs (HOTMs) have been investigated in 2D mechanical structures. These 

second-order 2D TMs have an insulating bulk, gapped 1D edge states, and in-gap 0D corner states. 

2D HOTMs have been realized using quantized multipole moments [198] (Fig 1.7b) or various 

𝐶𝑛-symmetric mechanisms [110,199,208,200–207] (Fig 1.7c). The HOTMs presented thus far 

display extraordinary elastic wave manipulation along multidimensional boundaries and serve as 

excellent platforms for investigating novel topological physics. It is anticipated that further 

research in HOTMs will result in significant advances for various technical applications, such as 

vibration energy harvesting, quantum computing, imaging, sensing, and signal processing [88]. 
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Fig 1.7. (a) Schematics of (from left to right) second-order 2D HOTI, second-order 3D HOTI, and third-order 3D 

HOTI. (b) 2D HOTM with corner states generated from quantized multipole moments (figure reused from [198] with 

written permission from the publisher). (c) 2D HOTM with corner states generated from a 𝐶𝑛-symmetric mechanism 

(figure reused from [110] with written permission from the publisher).  

1.2.3 Research gaps 

The previous research on TMs has uncovered new knowledge in topological physics and elastic 

wave transport phenomena. These breakthroughs have been exploited to synthesize platforms with 

unprecedented wave control capabilities. The most cutting-edge TMs that have been investigated 

to date employ basic on-demand adaptivity (in first-order 1D and 2D TMs), 3D first-order 

topological physics (in first-order 3D TMs), or higher-order topological physics (in 2D HOTMs). 
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However, research gaps exist that are impeding the broad implementation of TMs in practice and 

offer clear opportunities for advancement. The key gaps in the current state of the art include:  

i. Lack of concurrent and comprehensive adaptivity of path, shape, dimensionality, and 

frequency of topological states: The tunable 1D [134,135,137] and 2D TMs 

[166,167,176,168–175] that have been investigated thus far have each concentrated on 

tailoring an individual characteristic (e.g., the spatial path) of the elastic waves, and tunable 

3D TMs have yet to be realized. As a result, concurrent tunability of the wave path, shape, 

dimensionality, and frequency characteristics of topological states has yet to be achieved. 

Moreover, the lack of tunability in 3D TMs has hindered the broad and efficient exploration 

of topological phases in 3D mechanical structures. To fully explore integrated topological 

physics in TM platforms and enable robust performance for a broad set of wave control 

applications, TMs with multiple comprehensively tunable wave transport characteristics 

must be developed.  

ii. TMs often have an operating frequency range that is singular, narrow, and fixed: Little 

attention has been paid to creating TMs that operate over multiple distinct frequency bands, 

despite studies in photonic metamaterials, acoustic metamaterials, and EMs that illustrate 

the great promise of multiband lasers [209], filters [210], resonators [211], on-chip circuits 

[212], and isolators [213,214]. Apart from operating over a sole frequency band, the TMs 

studied to date predominantly operate over a limited and invariable frequency region. Since 

the primary focus of tunable TMs has been on the adjustability of the wave path [166–172], 

TMs that are programmable over a broad frequency bandwidth have yet to be fully 

explored. There is a lack of insight into the physical mechanisms that could be exploited 

to tune the frequency of a TM over a wide range, resulting in a bandwidth limitation that 

is a notable disadvantage in technical applications requiring robust wave control over a 

wide range of frequencies.  

iii. Large-scale TMs are required for elastic wave control at low frequencies: The tunable or 

3D TMs generated thus far do not exhibit subwavelength elastic wave control, and thus 

must be very large to manipulate waves in a low-frequency regime (audible range of few 

Hz to 20 kHz). In a subwavelength system, the dimensions (specifically, the lattice constant 

𝑎) of the structure are less than the wavelength 𝜆 of the wave being controlled (𝑎 < 𝜆/2). 

The frequency bandwidth of such systems can be altered (e.g., moved to a low-frequency 
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range) by tailoring local properties (e.g., the frequencies of local resonators) without 

adjusting the lattice constant. The compact characteristic of subwavelength structures 

makes them easy to integrate within size-constrained applications where low-frequency 

wave control is desired (e.g., structural elements of vehicles/aircraft/spacecraft).  

1.3 Research statement  

To address the research gaps and advance the state of the art, this dissertation aims to 

synthesize and explore a new class of advanced TMs that achieve responsive, broadband, easily 

integrated, and multidimensional elastic wave control and facilitate the discovery of new 

knowledge in topological and elastic wave physics. The research hypothesis is that the 

understanding and harnessing of comprehensive adaptivity, local resonance, higher-order 

topological states, and the rich dimensionality of 3D mechanical structures will enable the 

achievement of the broad research aims. The research questions that must be addressed to evaluate 

the hypothesis include: 

I. Can TM design methodologies be uncovered that enable concurrent on-demand adaptivity 

of elastic wave path, shape, dimensionality, and frequency?  

II. How can local resonance be strategically incorporated into 2D, 3D, and higher-order TMs 

to attain topological states that operate in multiband and subwavelength frequency 

regimes? 

III. How can the rich dimensionality of 3D mechanical architectures be exploited and 

physically realized in experimental testbeds to achieve unparalleled elastic wave control 

functionality and uncover a new understanding of elastic wave propagation in 3D 

structures?  

In this dissertation, new theoretical and experimental approaches are established that harness 

cutting-edge topological physics, stimuli-responsive materials (e.g., piezoelectric), metastability 

(metastability is the coexistence of several internal stable states given a constant global topology 

[215]), multimodal local resonance, and novel 3D geometric architectures to answer the research 

questions. Through these innovative approaches, unprecedented elastic wave control capabilities 

are attained and new insight is uncovered into the physics that govern tunable, multidimensional 

(i.e., across a hierarchy of multiple unique dimensions), and 3D topological phases in mechanical 

systems. The advanced TMs synthesized herein may have a profound impact on myriad 
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engineering applications and serve as platforms for future scientific exploration in topological and 

elastic wave physics.  

1.4 Outline of dissertation chapters and addressing the research gaps 

This dissertation is outlined as follows:  

Chapter 1: Introduction 

Introductory chapter that includes a background on EMs and TMs, literature review on the current 

state of the art, the identified research gaps, and the research statement for this dissertation.  

Chapter 2: 2D Piezoelectric Metamaterial (addresses research gaps i, ii, and iii) 

Synthesis of a tunable first-order 2D TM that exploits resonant piezoelectric circuitry to 

concurrently tailor the frequency, path, and shape of topological 1D edge states that are in multiple 

distinct frequency bands and within a subwavelength frequency regime.  

Chapter 3: 3D Metastable Metamaterial (addresses research gap i) 

Creation of a tunable first-order 3D TM that can be adjusted via metastability. The adaptive 

property of the proposed TM is used to adjust the path of 2D topological surface states, uncover a 

bilayer-locked topological state, and construct advanced 3D elastic wave networks.  

Chapter 4: 3D Multimodal Locally Resonant Metamaterial (addresses research gaps ii and iii) 

Development and experimental realization of a first-order 3D TM that exploits multimodal local 

resonance to enable low-frequency (i.e., few Hz to 20 kHz) elastic wave control over multiple 

distinct frequency bands. A rich set of polarization-, frequency-, and layer-dependent behaviors 

are uncovered and a comprehensive experimental investigation is undertaken.   

Chapter 5: 2D Higher-Order Locally Resonant Metamaterial (addresses research gaps ii and 

iii) Synthesis of a 2D HOTM that exploits higher-order topological phases and multimodal 

resonance to obtain multiband 0D corner states in a low-frequency regime. The proposed 

metamaterial platform is employed to create multifunctional wave-based logic elements and 

explore elastic wave control in fractal TMs. 

Chapter 6: Summary of Scholarly Contributions and Broader Impact 

A summary of the dissertation that includes a discussion on the scholarly contributions, potential 

broader impacts on science and technology, and promising opportunities for future research.   

Appendix A: Supplemental Information for Chapter 2 

Appendix B: Supplemental Information for Chapter 3 
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Chapter 2. 2D Piezoelectric Metamaterial 

In this chapter, a 2D piezoelectric metamaterial is introduced with the capability to 

concurrently tailor the frequency, path, and mode shape of topological 1D edge states using 

resonant circuitry (i.e., this is a first-order 2D TM). The plane wave expansion method is used to 

detect a frequency-tunable subwavelength Dirac point in the band structure of the periodic unit 

cell and discover an operating region over which topological wave propagation can exist. 

Dispersion analyses for a supercell illuminate how circuit parameters can be utilized to adjust 

mode shapes corresponding to topological edge states. A further evaluation provides insight into 

how increased electromechanical coupling and lattice reconfiguration can be exploited to enhance 

the frequency range for topological wave propagation, increase achievable mode localization, and 

attain edge states in an additional discrete frequency band. Topological guided wave propagation 

that is subwavelength in nature and adaptive in path, localization, and frequency is illustrated in 

numerical simulations of thin plate structures. The outcomes from this chapter indicate that the 

proposed 2D piezoelectric TM is easily integrable (i.e., it is subwavelength) in low-frequency 

applications, can operate over an adjustable wide frequency bandwidth that spans multiple discrete 

bands, and is the most comprehensively tunable 2D TM realized to date.  

2.1 Introduction 

Protected wave propagation in first-order 2D TMs that is confined to a waveguide is obtained 

through the activation of localized topological edge states that arise from the QHE, QSHE, and 

QVHE. Due to the active/moving components that are generally required to break time-reversal 

symmetry (TRS) for the QHE [140–143] and the complex geometries necessary to achieve a 

double Dirac cone (a band degeneracy where four cones meet in reciprocal space) in the band 

structure for the QSHE [144–149], the relatively simpler QVHE has garnered significant attention. 

The QVHE requires the formation of a single Dirac cone (a degeneracy where two cones meet) in 

the band structure of the periodic unit cell. This single Dirac cone is opened with a lattice 

perturbation that breaks space inversion symmetry (SIS), which produces a bandgap that can 

support 1D topological edge states due to valley-dependent topological properties [150–153]. 
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These valley-dependent topological properties are characterized by the topological invariant 

known as the valley Chern number. A topological transition can be engineered by connecting 

lattices with distinct valley Chern values at an interface. This topological transition enables 

topologically protected 1D edge states with localized displacement at the interface. Topologically 

protected wave transmission according to the elastic analog of the QVHE has been obtained in 2D 

reticular structures [154–156] and continuous thin plates with periodically placed masses 

[157,158] or inclusions [27,159]. These structures emulate the elastic QVHE by exploiting a 

periodic impedance mismatch (Bragg scattering mechanism), and thus the resulting topological 

edge states exist at frequencies corresponding to wavelengths that are dependent on (and on the 

same order of) the lattice constant. The addition of local mass resonators [83,160,162–164] and 

acoustic black holes [161] to continuous plates has facilitated the achievement of topological edge 

states at frequencies that are determined by the characteristics of the local element (mass resonator 

or acoustic black hole). Topological wave propagation at low frequencies corresponding to 

wavelengths that are larger than the lattice constant has been demonstrated by carefully selecting 

the properties of these local elements [83,144,162,164]. Subwavelength TMs such as these could 

be highly valuable for engineering applications that require wave control at low frequencies in 

size-constrained environments. 

To extend beyond the functionalities available in fixed structures and enable adaptivity to 

varying operating requirements and external conditions, many recent investigations have focused 

on introducing tunability to first-order 2D TMs. The spatial path of topological wave propagation 

has been demonstrated to be adjustable by applying an external magnetic field [166], modifying 

mechanical boundary conditions [167,168], adding an elastic foundation [169], connecting 

negative capacitance piezoelectric circuitry [170,171], or switching stable states in bistable 

elements [172]. The shape and localization of topological edge states have been tuned by 

exploiting an applied strain field [173]. Initial studies involving real-time frequency tuning of 

topological edge states have shown that an applied temperature [174], strain field [175], or 

electrical field [176] can increase the frequency range over a limited region that is related to the 

Bragg mechanism or the magnitude of lattice perturbation.  

The tunable TMs that have been investigated thus far have each concentrated on tailoring an 

individual characteristic of the topological wave to unlock novel functions and enhance 

performance in devices exhibiting elastic wave control. However, concurrent tunability of the 
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frequency and spatial characteristics of topological edge states has yet to be fully explored in a 

singular TM. Such a metamaterial would be of great benefit for devices such as wave filters, 

multiplexers, and energy harvesters that must route energy over a large frequency bandwidth. 

Besides primarily focusing on one adaptive characteristic, the currently established tunable TMs 

generally rely on the Bragg mechanism to generate a Dirac cone. Due to the interaction of 

platform-specific tuning parameters with the underlying physics of the Bragg mechanism, these 

metamaterials are either incapable of on-line frequency tuning (e.g., they are path tunable only) or 

can only practically do so over a limited range. Moreover, structures fabricated from these 

metamaterials would need to be large to control energy at low frequencies that correspond with 

fundamental system modes, which can be critical in structural applications. As a result, an easily 

integrable TM that is capable of subwavelength elastic wave control and programmable over a 

broad frequency bandwidth has yet to be developed.  

The research presented within this chapter proposes a piezoelectric TM harnessing integrated 

resonant circuitry for comprehensively tunable subwavelength wave control. The goal of this 

chapter is to uncover insights into critical adaptive parameters and synthesize a framework for the 

attainment of programmable topological wave propagation using resonant electromechanical 

metamaterials. In contrast to previous works, the proposed methodology and approach in this 

chapter has achieved clear advancements: (a) the rich tailorable characteristics of the piezoelectric 

metamaterial enable the concurrent adaptation of the frequency range, path, and mode shape of 

topological edge states and the discovery an additional edge state in a separate discrete frequency 

band and (b) this on-demand tunability of topological properties is achieved for the first time in a 

subwavelength (i.e., compact) and load-bearing thin plate structure.  

To accomplish the research objective, this chapter presents the evaluation of the dispersion 

relation for the unit cell from the plane wave expansion (PWE) method. The PWE method is 

selected because of its concise nature and computational efficiency when compared to the often-

used finite element (FE) method, since there can be a low (e.g., 50-100) number of degrees of 

freedom required to achieve an accurate result from PWE calculations for thin plate structures 

[58,83]. This method is utilized to establish the working principle for the achievement of 

topological edge states from the QVHE. Beyond establishing a working principle for the 

attainment of topological edge states for fixed system parameters, the advantages of the PWE 

method facilitate a comprehensive parameter study through rapid calculations of the metamaterial 
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dispersion relation. A parametric analysis is performed to identify and explore an achievable 

operating region for tunable topological wave propagation. Numerical computations of the 

dispersion relation for a finite strip of connected unit cells (i.e., a supercell) uncover how circuit 

parameters can enable the adjustment of topological edge states. Further analysis is conducted to 

investigate how topological edge state adaptivity can be augmented by the connection of negative 

capacitance to enhance electromechanical coupling and lattice reconfiguration via shorting circuits 

to obtain an additional Dirac cone. Finally, the activation of topological edge states for the 

achievement of guided topological wave propagation at lattice interfaces and boundaries is 

revealed by numerical simulations of a thin plate structure.  

2.2 Concept and theoretical model  

2.2.1 System description 

As shown in Fig 2.1, the proposed piezoelectric metamaterial is comprised of a bimorph thin 

plate with substrate (gray) and piezoelectric (yellow) layers. The substrate layer has thickness ℎ𝑠, 

density 𝜌𝑠, elastic modulus 𝐸𝑠, and Poisson’s ratio 𝜈𝑠 while the piezoelectric layers have thickness 

ℎ𝑝 and density 𝜌𝑝. The piezoelectric elements are connected to external circuitry through 

conductive circular electrodes (red and blue in Fig 2.1) with radius 𝑟𝑝 and a thickness that is 

assumed to be negligible [216]. The electrodes are arranged in a honeycomb lattice formation that 

contains the symmetries required to achieve the elastic analog of the QVHE. The metamaterial 

unit cell is defined by the basis vectors �⃑�1 = 𝑎𝑖̂ and �⃑�2 = 𝑎 (cos
𝜋

3
𝑖̂ + sin

𝜋

3
𝑗̂), where 𝑎 is the 

lattice constant, and the resulting unit cell area is 𝐴𝑐 =
√3

2
𝑎2 (Fig 2.1c). This unit cell contains two 

electrode pairs that form capacitors (capacitor 1 and capacitor 2) that are centered at �⃑⃑�1 =

𝑎

2√3
(cos

𝜋

6
𝑖̂ + sin

𝜋

6
𝑗̂) and �⃑⃑�2 =

−𝑎

2√3
(cos

𝜋

6
𝑖̂ + sin

𝜋

6
𝑗̂). Each capacitor (𝐶𝑝,1 and 𝐶𝑝,2) is connected 

to an inductor (𝐿1 and 𝐿2) to form a resonant 𝐿𝐶 circuit with a natural frequency of 𝜔𝑡,𝑗 = √
1

𝐿𝑗𝐶𝑝,𝑗
 

for the 𝑗th circuit. A negative capacitor with capacitance 𝐶𝑁,𝑗 (i.e., for a capacitor with capacitance 

𝐶 = -1 F, 𝐶𝑁 = 1 F) is connected in parallel to the 𝑗th resonant circuit. Ohmic losses are not 

considered in the derivation for the dispersion analysis, as all circuit elements are assumed to be 

ideal. In addition, damping is neglected, and perfect adhesion is assumed to exist between layers.   
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2.2.2 Governing equations 

In the derivation of the theoretical model for the metamaterial, small deflections and a thin 

structure (in the 𝑧̅ direction) are assumed. The classical theory of thin plates [25] and the linear 

theory of piezoelectricity [217,218] are applied. Assuming a transversely isotropic material and 

plane stress, the elastic, piezoelectric, and permittivity constants for the piezoelectric elements of 

the bimorph plate are obtained from the reduced (from the full 3D form) piezoelectric constitutive 

relations for a thin plate [217] as:  

c̅11
E =

s11
E

(s11
E + s12

E )(s11
E − s12

E )
 

c̅12
E =

−s12
E

(s11
E + s12

E )(s11
E − s12

E )

c̅66
E =

1

s66
E =

1

2
(c̅11

E − c̅12
E )

e̅31 =
d31

s11
E + s12

E ε̅33
S = ε33

T −
2d31

2

s11
E + s12

E  

(2.1) 

where 𝑐1̅1
𝐸 , 𝑐1̅2

𝐸 , and 𝑐6̅6
𝐸  are the reduced elastic constants evaluated at a constant electric field, �̅�31 

is the reduced piezoelectric constant, 𝜀3̅3
𝑆  is the reduced permittivity constant evaluated at a  

constant strain, 𝑠11
𝐸  and 𝑠12

𝐸  are elastic compliance constants, 𝑑31 is a piezoelectric coefficient, and 

𝜀33
𝑇  is permittivity calculated under constant stress. A uniform electric field is assumed across each 

electrode. The governing equations for the flexural displacement and voltage response of the 

metamaterial are derived using the extended Hamilton’s principle [219], the integral form of 

Gauss’s law [217], and Kirchoff’s laws, and are given as:  

𝐷𝑇�̅�4�̅�(�̅�, 𝑡) + 𝑚
𝜕2�̅�(�̅�, 𝑡)

𝜕𝑡2
− 𝜃 ∑�̅�2�̅�𝑗(𝑡)�̅�𝑗(�̅�) = 0

𝑁𝑒

𝑗=1

 (2.2) 

𝐿𝑗(𝐶𝑝,𝑗 − 𝐶𝑁,𝑗)
𝜕2�̅�𝑗(𝑡)

𝜕𝑡2
+ �̅�𝑗(𝑡) + 𝜃 ∬𝐿𝑗

𝜕2

𝜕𝑡2

�̅�𝑗

�̅�2�̅�(�̅�, 𝑡)𝑑2�̅� = 0, 𝑗 = 1… .𝑁𝑒 electrode pairs  (2.3) 

where  �̅� = (�̅�, �̅�), �̅�(�̅�, 𝑡) is the flexural displacement of the plate, 𝑚 is the effective mass per unit 

area of the plate, 𝐷𝑇  is the effective flexural rigidity of the plate at short circuit, 𝜃 is an 

electromechanical coupling coefficient, �̅�𝑗(𝑡) is the output voltage across the 𝑗th electrode pair, 

𝐶𝑝,𝑗, 𝐿𝑗, and 𝐶𝑁,𝑗 are the capacitance, connected inductance, and connected negative capacitance 

corresponding to the 𝑗th electrode pair, 𝑁𝑒 is the total number of electrode pairs, �̅�2 and �̅�4 are the 
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Laplacian and biharmonic operators, respectively, and 𝑡 is time. Furthermore, �̅�𝑗(�̅�) =

{
1, �̅� ∈ �̅�𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, where the value of the step-function �̅�𝑗(�̅�) depends on �̅�𝑗 , which represents the 

subdomain in �̅� − �̅� space containing the 𝑗th electrode pair. The definitions for 𝑚, 𝐷𝑇, 𝜃, and 𝐶𝑝,𝑗 

are given by:  

𝑚 = 𝜌𝑠ℎ𝑠 + 2𝜌𝑝ℎ𝑝 

𝐷𝑇 = 𝐷𝑠 + 𝐷𝑝 =
𝐸𝑠ℎ𝑠

3

12(1 − 𝜈𝑠
2)

+ 𝑐1̅1
𝐸 (

2ℎ𝑝
3

3
+ ℎ𝑝

2ℎ𝑠 +
ℎ𝑝ℎ𝑠

2

2
)

𝜃 = �̅�31(ℎ𝑝 + ℎ𝑠)

𝐶𝑝,𝑗 =
2𝜀3̅3

𝑆

ℎ𝑝
𝐴𝑒,𝑗 = �̃�𝑝𝐴𝑒,𝑗

(2.4) 

where 𝐷𝑠 and 𝐷𝑝 are the flexural rigidities of the substrate and the piezoelectric layers, 

respectively, 𝐴𝑒,𝑗 is the area within the unit cell that contains the 𝑗th electrode pair, and �̃�𝑝 is the 

capacitance per unit area. A harmonic response is assumed at frequency 𝜔, such that:  

�̅�(�̅�, 𝑡) =  �̅�(�̅�)𝑒𝑖𝜔𝑡 �̅�𝑗(𝑡) =  �̅�𝑗𝑒
𝑖𝜔𝑡 (2.5) 

To generalize the results, a nondimensionalization scheme is adopted and the resulting 

equations are:  

(𝛻4 −
𝜔2𝑚𝑎4

𝐷𝑇
)𝑤(𝑟) − ∑

𝜃2𝑎2

(𝐶𝑝,𝑗 − 𝐶𝑁,𝑗)𝐷𝑇

𝛻2𝑣𝑗𝜒𝑗(𝑟) = 0

𝑁𝑒

𝑗=1

 (2.6) 

(1 − 𝐿𝑗(𝐶𝑝,𝑗 − 𝐶𝑁,𝑗)𝜔
2)𝑣𝑗 − 𝜔2𝐿𝑗(𝐶𝑝,𝑗 − 𝐶𝑁,𝑗)∬𝛻2𝑤(𝑟)

𝐷𝑗

𝑑2𝑟 = 0;  𝑗 = 1… .𝑁𝑒  electrode pairs (2.7) 

where the non-dimensional flexural displacement, voltage, time, and length scales are defined as: 

𝑤 =
�̅�

𝑎
, 𝑣𝑗 =

1

𝑎

𝐶𝑝,𝑗−𝐶𝑁,𝑗

𝜃
 �̅�𝑗 , 𝜏 = √

1

𝐿𝑗(𝐶𝑝,𝑗−𝐶𝑁,𝑗)
𝑡, 𝑥 =

�̅�

𝑎
, 𝑦 =

�̅�

𝑎
, and 𝑧 =

�̅�

𝑎
, respectively, 𝑟 = (𝑥, 𝑦), 

𝛻2 and 𝛻4 are the nondimensional Laplacian and biharmonic operators, respectively, and 𝜒𝑗(𝑟) =

{
1, 𝑟 ∈ 𝐷𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, where 𝐷𝑗  is the subdomain in 𝑥 − 𝑦 space containing the 𝑗th electrode pair.  

2.2.3 Dispersion relation 

To attain the dispersion diagram (i.e., band structure) of the metamaterial, the dispersion 

relation of the unit cell is analyzed using the PWE method. For this study, the number of electrode 

pairs (capacitors) in the unit cell is set to 𝑁𝑒 = 2, as is shown in Fig 2.1. The inductors 𝐿1 and 𝐿2 
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Fig 2.1. (a) Isometric view of piezoelectric metamaterial, with unit cell enclosed in dashed lines. (b) Cross-section 

and (c) top view of metamaterial unit cell. Blue indicates electrode geometry connected to circuit 1, red indicates 

electrode geometry connected to circuit 2. 

are defined as 𝐿1 = 𝐿(1 + 𝛽) and 𝐿2 = 𝐿(1 − 𝛽), where 𝛽 is a circuit inductance perturbation 

parameter. The PWE method is applied following the steps outlined in previous investigations 

utilizing mechanical resonators [58,83,144], where the nondimensional flexural displacement 

𝑤(𝑟) of the plate is expressed as a superposition of plane waves:   

𝑤(𝑟) = ∑𝑊(𝐺)𝑒−𝑖𝑎(𝑘+𝐺)∙𝑟

𝐺

, 𝐺 = 𝑚�⃑� 1 + 𝑛�⃑� 2 

𝑚, 𝑛 ∈ [−𝑀,𝑀], 𝑘 = (𝑘𝑥, 𝑘𝑦)

(2.8) 

where �⃑� 1 =
𝜋

𝑎
(2𝑖̂, −

2

√3
𝑗̂) and �⃑� 2 =

𝜋

𝑎
(0𝑖̂,

4

√3
𝑗̂) are the reciprocal lattice basis vectors (a diagram 

of the reciprocal lattice is contained in the inset of Fig 2.2), 𝐺 is the reciprocal lattice vector, 𝑚 

and 𝑛 are the plane wave indices, 𝑘 is the Bloch wave vector, and 𝑀 is an integer chosen such that 

𝑁2 = (2𝑀 + 1)2 is the number of plane waves that are included in the calculation. Eq. 2.8 is 

substituted into Eq. 2.6, the result is multiplied by the complex conjugate 𝑒𝑖𝑎(𝐾+𝐺′)∙𝑟, and 

integrated over the dimensionless unit cell ∬ 𝑑𝑟
𝐴𝑐−𝑁𝐷

, where 𝐴𝑐−𝑁𝐷 = √3 2⁄  represents the 

dimensionless area of the unit cell, defined as 𝐴𝑐−𝑁𝐷= 𝐴𝐶/𝑎2. Using the property of orthogonality:  
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∬ 𝑒−𝑖𝑎(𝐺−𝐺′) ∙𝑟𝑑𝑟 = {
𝐴𝑐−𝑁𝐷 𝑓𝑜𝑟 𝐺 = 𝐺′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐴𝑐−𝑁𝐷

(2.9) 

Eq. 2.10 is obtained. Similarly, by substituting Eq. 2.8 into Eq. 2.7, Eq. 2.11 is obtained. The 

following equations define the dispersion relation of the metamaterial unit cell:    

(𝑎4|𝑘 + 𝐺|4 − Ω2)𝑊(𝐺) + ∑
ϑ

1 − 𝜉𝑗

𝑎2

𝐴𝑐

𝑎2

𝐴𝑒,𝑗
𝑎2|𝑘 + 𝐺|2 ∬𝑣𝑗𝑒

𝑖𝑎(𝑘+𝐺) ∙𝑟𝑑2𝑟 =

𝐷𝑗

𝑁𝑒

𝑗=1

0 (2.10) 

(
Ω𝑡,𝑗

2

(1 − (−1)𝑗𝛽)(1 − 𝜉𝑗)
− Ω2)𝑣𝑗 + Ω2𝑎2 ∑𝑊(𝐺)|𝑘 + 𝐺|2 ∬𝑒−𝑖𝑎(𝑘+𝐺) ∙𝑟𝑑2𝑟 =

𝐷𝑗𝐺

0

 
  𝑗 = 1… .𝑁𝑒 electrode pairs

(2.11) 

where Ω is nondimensional frequency, ϑ is the nondimensional electromechanical coupling factor, 

Ω𝑡,𝑗 is the nondimensional circuit tuning frequency, and 𝜉𝑗 is the negative capacitance ratio for the 

𝑗th circuit. The derived model is general and allows for unit cells with different electrode shapes 

and capacitance definitions. However, in this study, these features are selected to be uniform across 

both electrode pairs, as 𝐶𝑁,𝑗 = 𝐶𝑁, 𝐶𝑝,𝑗 = 𝐶𝑝, and 𝐴𝑒,𝑗 = 𝐴𝑒 , such that Ω𝑡,𝑗 = Ω𝑡 and 𝜉𝑗 = 𝜉. The 

equations for Ω, ϑ, Ω𝑡, and 𝜉 are given as:  

Ω = 𝜔𝑎2√
𝑚

𝐷𝑇

ϑ =
𝜃2

�̃�𝑝𝐷𝑇

Ω𝑡 = √
1

𝐿𝐶𝑝
𝑎2√

𝑚

𝐷𝑇

𝜉 =
𝐶𝑁

𝐶𝑝

(2.12) 

To evaluate the dispersion relation for the system, Eqs. 2.10 and 2.11 are arranged in the form 

of the classical eigenvalue problem: 

([𝐊] − 𝜆[𝐌])[𝒖] = 0 (2.13) 

where the eigenvalues 𝜆 (defined as 𝜆 = Ω2) and eigenvectors [𝒖] (defined as [𝒖] = 

[{𝑊𝑚,𝑛} 𝑣1 𝑣2 ]
𝑇
) can be computed by specifying the Bloch wave vector 𝑘. The matrices [𝐊] 

and [𝐌] of the eigenvalue problem are explicitly defined in Appendix A.1. For the given 

eigenvalue problem with a specified wave vector 𝑘, there are 𝑁2 + 2 calculated eigenvalues 𝜆 that 
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are used to obtain the band structure in the Ω(𝑘) format, since the band frequencies Ω can be 

computed from the eigenvalues as Ω = √𝜆. This is referred to as the Ω(𝑘) method, since the band 

frequency Ω is calculated for a prescribed wave vector 𝑘. The Ω(𝑘) method is selected for the band 

structure calculations because it has been previously demonstrated to effectively identify the 

bandgaps and Dirac points that are required to achieve topological waves in EMs [58,83,144].  

2.2.4 Negative capacitance circuitry  

Per Eq. 2.12, Ω𝑡 and 𝜉 are parameters that are directly controllable with circuit elements (e.g., 

synthetic inductor or negative capacitor), while the electromechanical coupling factor ϑ is 

dependent on material and geometric properties, and thus cannot be altered after metamaterial 

fabrication. While ϑ cannot be controlled directly by external circuitry, the addition of a negative 

capacitor in parallel to resonant circuitry has been shown to effectively (i.e., “synthetically”) 

enhance the electromechanical coupling of a piezoelectric system. Previous studies have exploited 

an enhanced electromechanical coupling through negative capacitance circuitry to achieve 

vibration attenuation over a broad frequency bandwidth [36,220–223]. In this investigation, 

negative capacitance circuitry is also used to tailor the electromechanical coupling of the system, 

as can be seen by defining an effective electromechanical coupling factor 𝜗𝑒𝑓𝑓 as: 

𝜗𝑒𝑓𝑓 =
𝜗

1 − 𝜉
(2.14) 

This term, which is present in Eq. 2.10, measures the level of effective electromechanical coupling 

when accounting for the connected negative capacitor. Thus, by careful selection of the negative 

capacitance ratio (e.g., 𝜉 ≈ 1), the effective electromechanical coupling 𝜗𝑒𝑓𝑓 can be significantly 

enhanced.  

Since 𝐶𝑁 is an active component, a stability analysis is necessary. The stability requirement is 

obtained from the dispersion relation for the metamaterial by evaluating the eigenvalues of Eq. 

2.13, per the technique outlined in [224]. For positive eigenvalues (𝜆 = Ω2 > 0), the oscillation 

frequencies (±𝜔) are purely real, and there is a bounded oscillatory response (see Eq. 2.5). On the 

other hand, for negative eigenvalues (𝜆 = Ω2 < 0), the result is frequencies with a nonzero 

imaginary part (±𝑖𝜔) and an unbounded response (Eq. 2.5). For the proposed metamaterial, when 

𝜉 < 1, all eigenvalues are positive, and the system response is bounded. In contrast, when 𝜉 > 1, 
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negative eigenvalues appear, and the system response is unbounded. Therefore, to maintain 

stability: 

𝐶𝑁 < 𝐶𝑝 ↔ 𝜉 < 1 (2.15) 

There is a physical explanation for the derived stability criterion. The parallel-connected 

negative capacitor reduces the effect of the inherent capacitance of an electrode pair, causing a 

reduction in the total capacitance present in the corresponding circuit (𝐶𝑇 = 𝐶𝑝 − 𝐶𝑁, see Eq. 2.3). 

𝐶𝑇 must remain positive to maintain stability, since negative total capacitance in a circuit is 

analogous to negative compliance (stiffness) in a mechanical system, and no additional balancing 

terms exist in the circuit governing equation (Eq. 2.3).  

In addition to changing the effective electromechanical coupling, the inclusion of negative 

capacitance influences the effective nondimensional tuning frequency of the resonant circuits. 

Through observation of Eq. 2.11, this influence can be measured as:   

Ω𝑡−𝑒𝑓𝑓
2 =

Ω𝑡
2

1 − 𝜉
(2.16) 

where Ω𝑡−𝑒𝑓𝑓 is the effective nondimensional tuning frequency. Therefore, as the negative 

capacitance ratio 𝜉 is increased towards unity and effective coupling is enhanced, the effective 

tuning frequency is shifted to a higher value. The result indicates that, if 𝜉 is specified to be close 

to unity, a large inductance would be required to achieve a low-frequency value for Ω𝑡−𝑒𝑓𝑓 because 

Ω𝑡 would need to be set to a very low value. If the inductance required to achieve a desired low 

tuning frequency is too large to be achieved with a standard inductor, a synthetic inductor created 

from active circuit components [225] or a specially designed large passive inductor [226] could be 

utilized. If these alternative inductor solutions are deemed impractical due to power or size 

requirements, an alternative for enhancing the effective electromechanical coupling is to connect 

the negative capacitor to the resonant circuit in a series configuration [221,222], instead of parallel 

(see Appendix A.2). 

2.3 Working principle - obtainment of tunable topological wave propagation 

In this section, the working principle is outlined for the attainment of subwavelength 

topological wave propagation using the proposed metamaterial. A unit cell dispersion analysis is 

conducted to identify lattices with nontrivial topological characteristics and define metrics that are 

indicators of waveguide performance. A finite strip analysis is undertaken to investigate how 
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Fig 2.2. 𝛺(𝑘) Dispersion diagram for unit cell with 𝛽 = 0 and 𝛺𝑡−𝑒𝑓𝑓  = 16.0. The red lines represent results from PWE 

method, and the open black circles represent results from FE simulations. Band structure for bare bimorph plate is 

shown as gray dashed lines. For all results in this figure, the three bands with the lowest frequency (i.e., the first three 

bands) are displayed. The Dirac point is enclosed in the black box. Inset contains schematic of reciprocal lattice and 

IBZ (blue triangle). 

localized topological edge states can be obtained through the connection of topologically distinct 

lattices. Numerical simulations are performed to illustrate how these edge states can be exploited 

to achieve guided topological wave propagation that is tunable in both the frequency and spatial 

domains.  

2.3.1 Unit cell dispersion analysis  

The band structure of the proposed metamaterial is obtained through a unit cell dispersion 

analysis. For this study, PZT-5H (a commonly utilized piezoceramic) is selected as the material 

for the piezoelectric layers and aluminum is selected as the material for the substrate layer. The 

material properties associated with PZT-5H and aluminum that are used in dispersion calculations 

are listed in Table 2.1. The geometric dimensions specified for the analysis are also included in 

Table 2.1. The layer thicknesses ℎ𝑠 and ℎ𝑝 are selected such that the nondimensional  
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Table 2.1. Definition of geometric and material properties. 

Parameter Value 

Geometric Dimensions 

𝑎 40 mm 

ℎ𝑠 1 mm 

ℎ𝑝 1 mm 

𝑟𝑝 10.6 mm 

Substrate Layer Material Properties 

𝜌𝑠 2700 kg/m3 

𝐸𝑠 70 GPa 

𝜈𝑠 0.3 

Piezoelectric Layer Material Properties 

𝜌𝑝 7500 kg/m3 

𝑐1̅1
𝐸  66.2 GPa 

�̅�31 -23.4 C/m2 

𝜀3̅3
𝑆  17.3 nF/m 

 

electromechanical coupling factor is maximized for the selected materials (𝜗 = 0.42, see Eq. 2.12). 

The negative capacitance ratio is set to 𝜉 = 0.79, such that the effective electromechanical coupling 

factor 𝜗𝑒𝑓𝑓 is equal to 2. The tuning frequency of the circuit (Ω𝑡) is selected as 7.3, resulting in an 

effective tuning frequency (Ω𝑡−𝑒𝑓𝑓) of 16.0. The dispersion analysis of the unit cell is performed 

by solving the eigenvalue problem derived from the PWE method (Eq. 2.13). 𝑀 = 3 is chosen, 

such that 𝑁2 = (2𝑀 + 1)2 = 49 plane waves are considered in the calculation and 𝑁2 + 2 = 51 

eigenvalues 𝜆 are obtained for each selected 𝑘. The band (i.e., dispersion curve) frequencies Ω are 

calculated by specifying the Bloch wave vector 𝑘 to follow the edges of the irreducible Brillouin 

zone (IBZ - shown as the blue triangle in the inset of Fig 2.2), solving for the eigenvalues 𝜆, and 

converting to frequency (Ω = √𝜆), such that the resulting band structure is in the Ω(𝑘) form. The 

band structure for the unit cell with both inductance parameters set as identical values (i.e., 𝛽 = 0) 

is displayed as the solid red lines in Fig 2.2. The band structure is also generated using the 

commercial FE software COMSOL Multiphysics to validate the results derived from the PWE 

method (see Appendix A.3.1 for more information on the FE model). Comparison of the results 

(in Fig 2.2) generated from the PWE method (solid red lines) and FE simulations (open black 
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circles) indicates a close match, despite the solution from the PWE method requiring multiple 

orders of magnitude fewer degrees of freedom (13348 for FE vs. 51 for PWE). As seen in Fig 2.2, 

there are FE results located near the Γ point in reciprocal space that do not directly match the PWE 

predictions. This discrepancy is observed because the additional FE results are modes that are 

dominated by in-plane (refers to the �̅�-�̅� plane, perpendicular to the thickness of the plate) 

displacement, which is not accounted for in the governing equations for flexural (i.e., out-of-plane, 

𝑧̅ direction) plate response (Eqs. 2.2 and 2.3) that are used in the derivation of the PWE solution 

(Eq. 2.13). As presented in Appendix A.3.2, these in-plane modes do not hybridize with the 

specific out-of-plane modes that are of interest in this study, and thus do not inhibit the 

achievement of topologically-protected flexural waves (as will be shown in later sections).  

Due to the presence of 𝐶3 lattice symmetry, SIS, and TRS [91], a Dirac point (which is the 

vertex of a Dirac cone in 𝑘𝑥- 𝑘𝑦 space) is formed in the band structure between the first and second 

bands at the 𝐾 point in reciprocal space (see black box in Fig 2.2). The Dirac point exists at the 

Dirac frequency Ω𝐷𝑖𝑟𝑎𝑐 = 8.9. Per the QVHE, topological wave propagation can be obtained at 

frequencies near this Dirac point. To determine whether subwavelength topological wave 

propagation could be obtained at this frequency, the band structure for a bare bimorph plate 

(defined to be the bimorph plate consisting of the substrate layer, piezoelectric layers, and 

electrodes, with all of the connected circuits shorted) is calculated using the PWE method (dashed 

gray curves in Fig 2.2). At the Dirac frequency, the wavelength of propagating waves in the bare 

plate is 97 mm (marked by a black star in Fig 2.2), which is 2.4 times larger than the lattice constant 

(𝑎 = 40 mm). Thus, by connecting resonant circuitry in the proposed metamaterial, the Dirac point 

is attainable in a subwavelength frequency regime. This subwavelength characteristic could be 

leveraged in applications that require low frequency (corresponding to large wavelengths) 

topological wave control in a small package.  

To obtain topological edge states per the QVHE, different inductance values are selected for 

each of the two circuits in the unit cell (𝛽 ≠ 0), which breaks SIS. The band structure for 𝛽 = 

±0.04 is shown as the dotted lines in Fig 2.3a (the band structure for 𝛽 = 0 is also included as solid 

lines for reference). Due to the broken SIS when 𝛽 ≠ 0, a bandgap (i.e., topological bandgap) is 

opened from the Dirac point, which is indicated by the shaded region (Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝). To provide a 

measure of bandgap size that is not skewed toward higher frequencies, a relative bandgap 

(Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) is defined as:  



 32 

Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
Ω2−𝑚𝑖𝑛−Ω1−𝑚𝑎𝑥
Ω2−𝑚𝑖𝑛+Ω1−𝑚𝑎𝑥

2

=
2|Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝|

Ω2−𝑚𝑖𝑛+Ω1−𝑚𝑎𝑥
  (2.17)

where |Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝| is the magnitude of Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝 (shown in Fig 2.3a), and Ω𝑝−𝑚𝑖𝑛 and Ω𝑝−𝑚𝑎𝑥 

represent the minima and maxima of the 𝑝th band, respectively. A lattice with the inductance 

perturbation parameter specified as 𝛽 > 0 is defined as a Type A lattice, whereas 𝛽 < 0 for a Type 

B lattice (see schematics in Fig 2.3b). While the dispersion diagrams for Type A (𝛽 = 0.04) and 

Type B (𝛽 = -0.04) lattices are identical (Fig 2.3a), a band inversion exists between the two lattice 

types. The mode shapes for the first two bands evaluated at the 𝐾 point are shown in Fig 2.3c for 

Type A and Type B lattices. These mode shapes illustrate the band inversion, as the eigenvectors 

𝑢𝑝(𝑘) for the 𝑝th band (where 𝑝 = 1 is marked by a triangle and 𝑝 = 2 is marked by a square) are 

interchanged for Type A and Type B lattices. This band inversion contributes to different 

topological characteristics for each lattice type. These topological characteristics are quantified by 

evaluating the topological invariant for the QVHE, the valley Chern number 𝐶𝑣−𝑝, which is defined 

as [153,157,227]: 

𝐶𝑣−𝑝 =
1

2𝜋
∬𝐵𝑝(𝑘)𝑑2𝑘

𝑣

𝐵𝑝(𝑘) = −𝛻𝑘 × 〈𝑢𝑝(𝑘)|𝑖𝛻𝑘[𝐌]|𝑢𝑝(𝑘)〉

(2.18) 

where 𝐶𝑣−𝑝 is the topological charge (called the valley Chern number) for the 𝑝th band, which is 

calculated by integration of the Berry curvature (𝐵𝑝(𝑘)) near the 𝐾 point in reciprocal space. The 

theoretical values for 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐴

,  𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐴

, 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐵

, and  𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐵

 are -0.5, 0.5, 0.5, and -0.5, 

respectively [157,228]. The opposite signs of the 𝐶𝑣−𝑝 values for Type A and Type B lattices 

indicate that they are topologically distinct. A method that is commonly utilized to obtain 

topological edge states is the connection of two topologically distinct lattices (e.g., Type A and 

Type B lattices) at an interface. The result is a topological transition and 𝑁𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒−𝑠𝑡𝑎𝑡𝑒𝑠 (where  

𝑁𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒−𝑠𝑡𝑎𝑡𝑒𝑠 = |𝐶𝑣−𝑝
𝑇𝑦𝑝𝑒 𝐴

− 𝐶𝑣−𝑝
𝑇𝑦𝑝𝑒 𝐵

|) protected edge states with displacement localized at the 

interface, otherwise referred to as topological interface states [91,228]. Therefore, a topological 

interface state can be obtained by connecting the Type A and Type B lattices outlined in this 

analysis (𝑁𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒−𝑠𝑡𝑎𝑡𝑒𝑠 = 1).  

The topological interface state must be excited in a way that does not activate the bulk modes 

of a given structure to obtain localized topological wave propagation. To achieve this goal, the 
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Fig 2.3. (a) Dispersion curves (specifically, the first and second bands) for 𝛽 = 0 (solid lines) and 𝛽 = ±0.04 (dotted 

lines) with 𝛺𝑡−𝑒𝑓𝑓  = 16.0. The bandgap 𝛺𝑏𝑎𝑛𝑑𝑔𝑎𝑝 opened from the Dirac point when 𝛽 = ±0.04 is indicated by the 

shaded region. (b) Schematic of unit cells for Type A (𝛽 > 0) and Type B (𝛽 < 0) lattices. The smaller inductance (𝐿𝐼) 

is connected to the red electrode and the larger inductance (𝐿𝐼𝐼) is connected to the blue electrode. (c) Mode shapes 

evaluated at the 𝐾 point for the first band (▲) and second band (■), revealing a band inversion between Type A (𝛽 = 

0.04) and Type B (𝛽 = -0.04) unit cells.   

interface state is excited at a frequency within the common topological bandgap that is found in 

the dispersion diagrams of the Type A and Type B lattices (Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝, Fig 2.3a). Therefore, the 

potential operating bandwidth of the topological interface state for a fixed selection of system 

parameters spans the topological bandgap (Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝). A nontrivial topological bandgap is 

required for an easily activated interface state to exist, and the larger the bandgap is, the greater 

the potential operating bandwidth of the topological waveguide. In addition to a nontrivial 

operating bandwidth, topological protection from defects and disorder is a required characteristic 

of the topological interface state. According to the elastic analog of the QVHE, the robustness to 

defects and disorder is related to the localization of the Berry curvature 𝐵𝑝(𝑘) at the 𝐾, 𝐾′ points 

in reciprocal space [159,229]. The magnitude of the valley Chern number |𝐶𝑣−𝑝| provides a 

measure of this localization and thus describes the level of topological protection inherent to the 

interface state. The closer the value of |𝐶𝑣−𝑝| is to the theoretical value of 0.5, the greater the 

amount of topological protection. The value of 0.5 is an idealized value for |𝐶𝑣−𝑝|, as the lattice 

perturbation that breaks SIS and opens the topological bandgap reduces its magnitude [175,229]. 
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Previous investigations into the elastic analog of the QVHE have shown that |𝐶𝑣−𝑝| ≥ 0.25 can 

provide a sufficient amount of topological protection from disorder and defects in mechanical 

lattices [157,175].  

Based on this discussion, the performance criteria defined for this investigation that are 

obtainable from the unit cell dispersion analysis are (1) Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 > 0, such that a 

nontrivial potential operating bandwidth exists, and (2) |𝐶𝑣−𝑝| ≥ 0.3 for 𝑝 = 1,2, such that there is 

a minimum acceptable level of topological protection. The values of Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 and |𝐶𝑣−𝑝| 

are 0.02 and 0.3, respectively, for the parameters specified in this analysis (where Ω𝑡−𝑒𝑓𝑓 = 16.0 

and 𝛽 = ±0.04). These results indicate that a topologically protected edge state would emerge in a 

structure containing an interface between the Type A (𝛽 = 0.04) and Type B (𝛽 = -0.04) lattices.  

2.3.2 Topological interface states 

A dispersion analysis is conducted for a finite strip of unit cells containing an interface between 

Type A and Type B lattices to demonstrate the emergence of topologically protected interface 

states. For this finite strip analysis, all parameters are defined identically to the unit cell analysis 

discussed in the previous section (𝛽 = ±0.04, Ω𝑡−𝑒𝑓𝑓 = 16.0, 𝜗𝑒𝑓𝑓 = 2, and all parameters from 

Table 2.1). The finite strip is comprised of 18 unit cells, with nine Type A unit cells connected to 

nine Type B unit cells at an interface (see Fig 2.4 for a schematic). A periodic boundary condition 

is applied in the 𝑘// direction, while the remaining boundaries at the ends of the finite strip are 

fixed. An interface composed of adjacent smaller inductance values (𝐿𝐼, marked in red on the 

schematic) is designated as a Type I interface (Fig 2.4a), while an interface composed of adjacent 

larger inductance (𝐿𝐼𝐼, marked in blue on the schematic) values is designated as a Type II interface 

(Fig 2.4b). The dispersion diagrams for Type I (Fig 2.4a) and Type II (Fig 2.4b) interfaces are 

generated using COMSOL Multiphysics. For each band, a localization parameter Λ is defined to 

measure the amount of flexural displacement that is localized at the interface as: 

Λ =
∭ |�̅�|2

𝑉𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝑑𝑉

∭ |�̅�|2
𝑉𝑆

𝑑𝑉
(2.19)

where 𝑉𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 is the total volume of the two adjacent unit cells at the interface (enclosed in the 

dashed black boxes in Fig 2.4) and 𝑉𝑆 is the volume of the entire finite strip. This localization 

parameter is calculated for each band and is represented in the dispersion diagrams as a colormap. 

For a mode shape with flexural displacement that is highly localized to the interface (i.e., an 
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interface state), the band is a dark red shade. Lighter shaded bands indicate bulk modes (Λ ≪ 1). 

The rectangular gray shaded region in both Fig 2.4a and Fig 2.4b separates an acoustic (low-

frequency) set of bulk modes from an optical (higher-frequency) set of bulk modes and closely 

aligns with the topological bandgap (Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝) calculated in the unit cell dispersion analysis. For 

the Type I interface (Fig 2.4a), an interface state with highly localized displacement emerges from 

the optical set of bulk bands and crosses the topological bandgap to the acoustic set of bulk bands. 

A mode shape corresponding to this interface state at Ω = 8.5 is shown in Fig 2.4a, where 

symmetric localized displacement exists at the interface. This mode shape contains the maximum 

localization of flexural displacement at the interface (as measured by Λ𝑚 = 0.92) when compared 

to all other interface state modes that reside within the topological bandgap. The mathematical 

expression for Λ𝑚 is given as:  

Λ𝑚 = max
Ω∈Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝

Λ(Ω) (2.20) 

An additional localized state exists near Ω = 9.4. However, this interface state is difficult to 

utilize without activating the bulk modes since it is not in the topological bandgap. In contrast to 

the Type I interface, for a Type II interface, the primary interface state emerges from the acoustic 

bulk bands and crosses the topological bandgap to approach the optical bulk bands (Fig 2.4b). A 

mode shape corresponding to this interface state at Ω = 8.7 is shown in Fig 2.4b, where the flexural 

displacement field is now antisymmetric about the interface, and the resulting maximum 

displacement localization is somewhat less (Λ𝑚 = 0.72 compared to Λ𝑚 = 0.92 for the Type I 

interface state).  

Two observations are gained from the finite strip analysis. First, the proposed metamaterial 

enables the obtainment of symmetric and antisymmetric topological interface states, which aligns 

with previous investigations into the QVHE [157]. Due to the tunability of the circuit parameters 

in the proposed metamaterial, switching between these interface state types (symmetric and 

antisymmetric) could easily be achieved in practice. Second, the finite strip dispersion analysis 

supports the performance requirement for a nontrivial topological bandgap (Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 >0) 

derived from the unit cell dispersion analysis. In the finite strip analysis, the potential frequency 

bandwidth for both interface state types aligns with the topological bandgap, as unwanted 

hybridization of the interface state with bulk states may occur for frequencies outside of the 

targeted bandgap range (the rectangular gray shaded regions in Fig 2.4).  
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Fig 2.4. (a) Band structure for a finite strip (|𝛽| = 0.04, 𝛺𝑡−𝑒𝑓𝑓  = 16.0, 𝜗𝑒𝑓𝑓  = 2, and all parameters from Table 2.1) 

with a Type I interface. The colormap indicates the localization of the flexural displacement at the interface through 

the localization parameter 𝛬, with darker red shading indicating localized interface states (𝛬 ≈ 1). The rectangular 

gray shaded region represents a frequency range where no bulk modes exist and corresponds to the topological 

bandgap. The diagram of the finite strip is shown below the band structure, with the interface used for 𝛬 calculations 

enclosed in a dashed black box. A symmetric mode shape that is calculated from the interface state at 𝛺 = 8.5 with a 

localized displacement (𝛬𝑚 = 0.92) is also shown. (b) Band structure and schematic for a finite strip with a Type II 

interface. At the bottom, an antisymmetric mode shape that is calculated from the interface state at 𝛺 = 8.7 (with 𝛬𝑚 

= 0.72). 

2.3.3 Path tunable topological wave propagation 

The ability to achieve topological wave propagation from the interface states is investigated 

with FE simulations of a plate constructed from the proposed metamaterial. The proposed 

metamaterial enables concurrent tunability of the topological wave path, mode shape, and 

frequency, which advances upon previously developed platforms that are generally narrowband in 

nature and only focus on one tailorable characteristic. Each of the proposed metamaterial’s 

tailorable properties are investigated separately in this chapter to simplify the analysis. The path 

tunability of the topologically protected waveguide is examined in this section, while 

comprehensive analyses on frequency and mode shape tailoring are contained in Section 2.4.  

The plate used for FE simulations consists of a 16 by 20 lattice of unit cells, with low-reflecting 

boundary conditions (see Appendix A.3.1 for more information on the low-reflecting boundary 

conditions) applied along all outer boundaries to suppress reflections (see left column of Fig 2.5 

for plate schematics). The lattice contains an interface between Type A and Type B unit cells, 
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which is enclosed by the black lines in Fig 2.5a, Fig 2.5b, Fig 2.5c, and Fig 2.5d. A resistance (𝑅) 

of 10 Ω is applied to each individual circuit to account for minor circuit losses that may arise in 

practical implementation. The plate is excited harmonically at a frequency that is within the 

topological bandgap (Ω𝑒 = 8.7), thus corresponding to a subwavelength regime (since the Dirac 

point at ΩDirac = 8.9 contains the subwavelength characteristic). The excitation is applied as an 

out-of-plane point excitation at the location indicated by the arrow. FE simulations using 

COMSOL Multiphysics are conducted to obtain the steady-state displacement field. Fig 2.5a 

shows a displacement field with flexural response that is guided along a Type I interface, which 

supports a symmetric interface state. This specific case shows a straight line of wave propagation 

that is localized at the interface and is guided to a receiver indicated in Fig 2.5a as “R1”. In Fig 

2.5b and Fig 2.5c, the interface is changed using circuit parameters such that flexural response 

under the same excitation is guided to receivers “R2” or “R3”. In Fig 2.5b, guided transmission is 

demonstrated along a Type I interface with a sharp (120°) corner, indicating that the nontrivial 

topological property of the interface state provides protection from disorder. In Fig 2.5c, a Type I 

interface and a Type II interface are concatenated to achieve topological wave propagation around 

a shallow (60°) corner. It can be seen that the flexural displacement is symmetric along the Type 

I interface segment and antisymmetric along the Type II segment, revealing that the two edge state 

types are compatible and can be used in series to achieve a variety of interface paths. The results 

in Fig 2.5a, Fig 2.5b, and Fig 2.5c illustrate the path tunability of the proposed TM. As shown in 

the presented example, an input can be guided to three different receivers by using circuit elements 

(e.g., a synthetic inductor that can tune 𝛽) to vary the interface properties and location. For each 

of these cases, the wave amplitude (as indicated by the color intensity) is nearly identical from the 

input location to the designated output receiver, while the energy present at the other output 

receivers is negligible (e.g., in Fig 2.5a, there is a trivial amount of flexural displacement present 

near R2 and R3). This realization of nearly lossless transmission to the desired location(s) is 

obtainable due to the robustness of the topological interface state and the presence of the 

topological bandgap, which minimizes energy leakage into the bulk. Finally, to demonstrate the 

robustness of the topological interface state in the presence of both disorder and defects, a lattice 

is constructed with two sharp corners and a defect (one unit cell with both circuits shorted) in the 

interface path (Fig 2.5d). The steady-state response of the plate reveals flexural displacement that 

is guided along the Z-shaped interface path without undesirable localization or amplitude reduction 



 38 

at defects or sharp corners. This result indicates that guided transmission through more 

complicated wave paths (e.g., having multiple corners) can be obtainable from the proposed 

metamaterial, even in the presence of imperfections (e.g., malfunctioning/shorted circuits) that are 

commonly found in practical applications. 

2.4 Parametric study – frequency and mode shape tunability 

In this section, a parametric study is undertaken to extensively explore the adaptive 

characteristics of the proposed metamaterial and develop a detailed understanding of system 

parameters that govern performance. A framework is developed to assess the frequency and 

interface mode shape tunability of the metamaterial and uncover insights into the impact of 

electromechanical coupling on topological elastic wave control.    

2.4.1 Frequency tunability of the Dirac point 

Since topological wave propagation occurs at a frequency near the Dirac frequency (Ω𝐷𝑖𝑟𝑎𝑐), 

the tunability of the Dirac point is investigated. The eigenvalue problem derived from the PWE 

method (Eq. 2.13) is utilized to calculate Ω𝐷𝑖𝑟𝑎𝑐 as a function of the effective circuit tuning 

frequency Ω𝑡−𝑒𝑓𝑓. Calculations are conducted with 𝛽 = 0 for three different effective negative 

capacitance is implemented with PZT-5H (𝜉 = 0.79, 𝜗𝑒𝑓𝑓 = 2). Fig 2.6a illustrates how Ω𝐷𝑖𝑟𝑎𝑐 

can be continuously tuned through a large frequency range (Ω𝐷𝑖𝑟𝑎𝑐 exists between 0 and 17.55) 

by tailoring the effective tuning frequency Ω𝑡−𝑒𝑓𝑓 of the resonant circuits. Alterations to the 

lattice constant 𝑎, which can be difficult or impractical to achieve in mechanical structures after 

they have been fabricated, are not required to tune the Dirac frequency, since the proposed 

metamaterial relies on locally resonant circuits instead of a Bragg scattering mechanism. Further 

observation of Fig 2.6a indicates that the Dirac frequency Ω𝐷𝑖𝑟𝑎𝑐 is always less than the effective 

tuning frequency Ω𝑡−𝑒𝑓𝑓 of the resonant circuits (regardless of 𝜗𝑒𝑓𝑓), which can facilitate the 

achievement of Dirac points in a deep subwavelength regime (Ω𝐷𝑖𝑟𝑎𝑐 → 0 for Ω𝑡−𝑒𝑓𝑓 → 0) and 

aligns with results that have been previously reported for thin plate metamaterials with spring- 

mass resonators [162,163]. In contrast to previous studies that have used mechanical resonators, 

the frequency of the Dirac point (Ω𝐷𝑖𝑟𝑎𝑐) in the proposed metamaterial can easily be adjusted on-

line by using tunable circuit parameters (Ω𝑡−𝑒𝑓𝑓). Therefore, the tunability of the proposed  
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Fig 2.5. Schematics (left column) and steady-state response (right column) for guided wave propagation along (a) 

straight, (b) sharp corner, (c) shallow corner, and (d) ‘Z-shape with defect’ interfaces. In the schematics, R1, R2, and 

R3 represent output signal receivers and black lines enclose the interface between Type A and Type B lattices. Circuit 

parameters are defined as: 𝛽 = ±0.04, 𝛺𝑡−𝑒𝑓𝑓  = 16.0, and 𝜉 = 0.79, resulting in 𝛺𝐷𝑖𝑟𝑎𝑐  = 8.9 and 𝜗𝑒𝑓𝑓  = 2. A harmonic 

out-of-plane point excitation (𝛺𝑒 = 8.7) is applied where indicated by the black arrow. For steady-state response, the 

out-of-plane displacement amplitude is indicated by the color intensity. The steady-state displacement fields illustrate 

the path tunability and topological protection of the proposed metamaterial. 
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Fig 2.6. (a) Dirac frequency 𝛺𝐷𝑖𝑟𝑎𝑐  as a function of circuit tuning frequency 𝛺𝑡−𝑒𝑓𝑓  for various 𝜗𝑒𝑓𝑓 . The upper 

limiting frequency (𝛺𝑙𝑖𝑚𝑖𝑡) of 17.55 is indicated by a dotted black line. (b) Evolution of the first and second bands (all 

bands are shown as black lines) with increasing 𝛺𝑡−𝑒𝑓𝑓  (indicated by arrow) for 𝛺𝑡−𝑒𝑓𝑓  specified between 2 and 150 

(𝛽 = 0 and 𝜗𝑒𝑓𝑓  = 2). 𝛺𝑙𝑖𝑚𝑖𝑡 is indicated by dashed red lines. (c) Evolution of third band for same set of parameters. 

(d) Band structure comparison for proposed metamaterial with high tuning frequency (𝛺𝑡−𝑒𝑓𝑓  = 131, indicated by 

solid red lines) and bare bimorph plate (indicated by dashed black line). 

metamaterial could be exploited to achieve topological phenomena that are adaptive to variable 

frequency requirements derived from operating conditions or external stimuli. 

According to Fig 2.6a, the achievable frequency range for Ω𝐷𝑖𝑟𝑎𝑐 begins at Ω𝐷𝑖𝑟𝑎𝑐 ≈ 0 and 

asymptotically approaches Ω𝐷𝑖𝑟𝑎𝑐 = 17.55 as Ω𝑡−𝑒𝑓𝑓 is made very large. This frequency range is 

unaltered by variation of the effective electromechanical coupling (𝜗𝑒𝑓𝑓), as can be seen in Fig 

2.6a and Appendix A.4, where a parametric analysis is conducted with extreme 𝜗𝑒𝑓𝑓 values. Thus, 

17.55 is designated as the limiting frequency (Ω𝑙𝑖𝑚𝑖𝑡) for the Dirac point (see dotted black line in 

Fig 2.6a). Insight into why this limit exists is gained by studying the evolution of the band structure 

with increasing Ω𝑡−𝑒𝑓𝑓 (Fig 2.6b, Fig 2.6c, and Fig 2.6d). In Fig 2.6b, the first and second 

dispersion curves are plotted for Ω𝑡−𝑒𝑓𝑓 values that are between 2 and 150, with the arrow 
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indicating how the bands evolve with increasing Ω𝑡−𝑒𝑓𝑓. As can be seen in this figure, the Dirac 

point (the degeneracy between the first and second bands at 𝐾) converges to Ω𝑙𝑖𝑚𝑖𝑡 = 17.55 

(indicated with dashed red lines) for large Ω𝑡−𝑒𝑓𝑓 values. Fig 2.6c contains the variation of the 

third dispersion curve for the same Ω𝑡−𝑒𝑓𝑓 range. The band evolution illustrated in Fig 2.6c 

illuminates how the frequency value of the third band at the 𝐾 point remains constant at Ω𝑙𝑖𝑚𝑖𝑡 = 

17.55 for all Ω𝑡−𝑒𝑓𝑓, and thus cannot be adjusted by circuit parameters. This phenomenon causes 

the third band to effectively act as a “constraint” that limits the maximum frequency of the Dirac 

point. A physical explanation for this observation is obtainable by analysis of Fig 2.6d where the 

band structure for the proposed metamaterial with Ω𝑡−𝑒𝑓𝑓 = 131 (solid red lines) is compared to 

the band structure for the bare bimorph plate (dashed black lines). The two band structures are 

effectively identical because the tuning frequency has been set to such a large value that the effects 

of the resonant circuits are no longer present in this frequency region. Thus, for large Ω𝑡−𝑒𝑓𝑓, the 

dispersion properties of the proposed metamaterial will converge to those of the bare bimorph plate 

within the targeted frequency range (the range containing the first and second bands), resulting in 

an “upper bound” for the Dirac frequency. Although it has yet to be reported in previous 

investigations, this phenomenon is also observable for a thin plate with attached spring-mass 

resonators. The discovery of the limiting frequency Ω𝐷𝑖𝑟𝑎𝑐 presented in this work and the 

awareness of the underlying phenomena that define it could be utilized as part of a design 

framework in future studies that leverage local (electrical or mechanical) resonators to achieve 

Dirac dispersions.  

2.4.2 Achievable operating region for topological interface states 

A lattice perturbation must be applied to open a topological bandgap from the Dirac point and 

achieve topological edge states per the QVHE. While the previously presented analysis (see 

Section 2.3) demonstrates this working principle under a fixed set of parameters, further 

exploration is required to fully evaluate the tunability of the proposed metamaterial. Thus, a 

parametric study involving the inductance perturbation parameter 𝛽 and the circuit tuning 

frequency Ω𝑡−𝑒𝑓𝑓 is conducted to define an achievable operating region where adaptive topological 

wave propagation could exist. The classical eigenvalue problem for the unit cell (Eq. 2.13) is 

solved for a wide range of 𝛽 and Ω𝑡−𝑒𝑓𝑓 values, and the achievable operating region is defined by 

evaluating the previously specified performance criteria of (1) a nontrivial potential operating 
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bandwidth, as suggested by Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 > 0, and (2) a sufficient level of topological 

protection, as indicated by the valley Chern number (|𝐶𝑣−𝑝| ≥ 0.3 for 𝑝 = 1,2). For this parametric 

study, all geometric and material parameters are selected as indicated in Table 2.1, and no negative 

capacitance is connected (𝜉 = 0), such that 𝜗𝑒𝑓𝑓 = 0.42. The magnitude of the valley Chern number 

(|𝐶𝑣−𝑝|) and the relative bandgap size (Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) are calculated and shown in Fig 2.7a 

and Fig 2.7b as a function of the lattice perturbation magnitude |𝛽| and the Dirac frequency Ω𝐷𝑖𝑟𝑎𝑐 

(which is determined by Ω𝑡−𝑒𝑓𝑓, as shown in the preceding section). The magnitude of the valley 

Chern number is listed more generally as |𝐶𝑣| in Fig 2.7a, because calculations indicate that: 

𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐴

 = 𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐵

 ≈ −𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐴

 = −𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐵

 ∴ |𝐶𝑣−𝑝
𝑇𝑦𝑝𝑒 𝐴

| ≈ |𝐶𝑣−𝑝
𝑇𝑦𝑝𝑒 𝐵

| = |𝐶𝑣| for 𝑝 = 1,2. In Fig 2.7a, 

it is shown that the localization of the Berry curvature |𝐶𝑣| decreases as the inductance perturbation 

|𝛽| is increased for a fixed Ω𝐷𝑖𝑟𝑎𝑐. On the other hand, results in Fig 2.7b illustrate how 

Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 increases as |𝛽| is made larger for a particular Ω𝐷𝑖𝑟𝑎𝑐. This tradeoff between 

topological protection and potential operating bandwidth is a common feature of TMs mimicking 

the QVHE, and previous works have investigated how to overcome the limitations associated with 

balancing these performance criteria [159,175]. Due to the adaptivity of the proposed 

metamaterial, the frequency range where topological wave propagation is achievable is not 

restricted to the potential operating bandwidth under fixed parameters. The frequency range where 

topological interface states that satisfy performance criteria (1) and (2) are attainable is indicated 

by the dashed black lines in Fig 2.7b. This enclosed region is referred to as the “achievable 

operating region,” which is dependent on the predefined performance criteria. For this study, the 

achievable operating region spans Ω𝐷𝑖𝑟𝑎𝑐 = 4.2 to Ω𝐷𝑖𝑟𝑎𝑐 = 11, and examples of topological 

interface states derived from Dirac points at Ω𝐷𝑖𝑟𝑎𝑐 = 5.9, 8.9, and 10.4 are shown in Fig 2.7c 

(corresponding |𝛽|, Ω𝐷𝑖𝑟𝑎𝑐 are marked with  ● ,■, ▲, ★, and ⬟ in Fig 2.7b). These topological 

interface states are obtained by creating a Type I interface in a finite strip of 18 unit cells (see 

schematic in Fig 2.7c) and selecting the most localized interface mode (Λ𝑚, see Eq. 2.20) present 

in the topological bandgap of the dispersion diagram. The results illuminate how the frequency 

tunability of the proposed metamaterial could be utilized to achieve topological interface states 

over a broadband set of frequencies. In addition, the evaluation of the achievable operating region 

reveals that while Dirac points can be obtained with a Ω𝐷𝑖𝑟𝑎𝑐 between 0 and 17.55, topological 

interface states are attainable over a narrower frequency range (for the performance criteria  
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Fig 2.7. (a) Valley Chern magnitude |𝐶𝑣 | calculated as a function of Dirac frequency 𝛺𝐷𝑖𝑟𝑎𝑐  and inductance 

perturbation magnitude |𝛽| with 𝜗𝑒𝑓𝑓  = 0.42. Increasing |𝐶𝑣 | indicated by increasing brightness. (b) Relative bandgap 

𝛺𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒  as a function of Dirac frequency 𝛺𝐷𝑖𝑟𝑎𝑐  and inductance perturbation magnitude |𝛽| with 𝜗𝑒𝑓𝑓  = 0.42. 

Increasing 𝛺𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒  indicated by increasing brightness. The achievable operating region is enclosed by the 

dashed black line. (c) Schematic for finite strip with Type I interface that is used to generate interface modes. Interface 

mode shapes for finite strip with unit cell parameters indicated by ● ,■, ▲, ★, and ⬟ markings in (b). 

specified in this case: Ω𝐷𝑖𝑟𝑎𝑐 = 4.2 to Ω𝐷𝑖𝑟𝑎𝑐 = 11). 

Aside from enabling an adjustable frequency range for topological interface states, the 

proposed metamaterial also facilitates the tailoring of interface mode shape and localization. The 

ability to adjust interface mode localization is investigated by varying the inductance perturbation 

parameter |𝛽| for a fixed Ω𝐷𝑖𝑟𝑎𝑐 within the achievable operating region. For each |𝛽|, the interface 

mode shapes that contain maximum displacement localization (Λ𝑚) within the topological 

bandgap are selected. For Ω𝐷𝑖𝑟𝑎𝑐 = 8.9, |𝛽| is set to 0.005, 0.010, and 0.015, and the corresponding 

interface modes are shown in Fig 2.7c (marked by ■, ▲, and ★, respectively). Analysis of the 

mode shapes indicates that the displacement localization at the interface increases substantially as 

|𝛽| is made larger, from Λ𝑚 = 0.34 for |𝛽| = 0.005 (■ in Fig 2.7c) to Λ𝑚 = 0.69 for |𝛽| = 0.015 (★ 

in Fig 2.7c). This increased mode localization is due to a progressively enhanced band inversion 

between the Type A and Type B unit cells that make up the interface. In addition to tailoring the 
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displacement localization of the interface state, the mode shape could be switched from symmetric 

to antisymmetric by changing to the appropriate interface type (Type I or Type II, see Fig 2.4). 

This capability to manipulate the interface mode could be leveraged in applications requiring 

adjustable displacement fields. 

2.4.3 Influence of electromechanical coupling on topological wave tunability 

The effect of electromechanical coupling on the vibration attenuation performance of 

piezoelectric metamaterials is well documented [36,220,221]. In this investigation, the influence 

of the effective electromechanical coupling factor 𝜗𝑒𝑓𝑓 on the tunability of topological edge states 

in piezoelectric metamaterials is investigated for the first time. In the preceding section, a 

framework for the evaluation of topological edge state tunability was synthesized and applied to a 

baseline example case (piezoelectric layers made of PZT-5H, 𝜉 = 0, 𝜗𝑒𝑓𝑓 = 0.42). In this section, 

two additional cases with identical geometric parameters are analyzed to assess the effect of 

enhanced electromechanical coupling: PNN-PZT piezoelectric layers with no negative capacitance 

circuitry (𝜉 = 0, 𝜗𝑒𝑓𝑓 = 0.56) and PZT-5H piezoelectric layers with a parallel-connected negative 

capacitor (𝜉 = 0.79, 𝜗𝑒𝑓𝑓 = 2). In Fig 2.8a and Fig 2.8b, the relative bandgap Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 is 

shown as a function of the inductance perturbation parameter (|𝛽|) and the Dirac frequency 

(Ω𝐷𝑖𝑟𝑎𝑐) for cases where 𝜗𝑒𝑓𝑓 = 0.56 and 𝜗𝑒𝑓𝑓 = 2, respectively. Dashed black lines enclose the 

achievable operating regions where the performance criteria (Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 > 0 and |𝐶𝑣−𝑝| ≥ 

0.3) are satisfied. By comparison of Fig 2.7b with Fig 2.8a and Fig 2.8b, it is apparent that the 

achievable operating region is augmented by enhancing the electromechanical coupling. This 

expansion occurs because the band structure is “shaped” in a manner that is beneficial from the 

perspective of the QVHE when the electromechanical coupling is increased (see Appendix A.5 for 

further information).  

The expansion of the achievable operating region signifies an increased level of tunability. In 

terms of frequency range, the achievable operating region is extended to lower frequencies (while 

maintaining an upper bound of approximately Ω𝐷𝑖𝑟𝑎𝑐 = 11), as the lower boundary extends to 

Ω𝐷𝑖𝑟𝑎𝑐 = 3.8 for 𝜗𝑒𝑓𝑓 = 0.56 and Ω𝐷𝑖𝑟𝑎𝑐 = 3.2 for 𝜗𝑒𝑓𝑓 = 2, resulting in 6% and 15% increases in 

operating region frequency range, respectively (when compared to Ω𝐷𝑖𝑟𝑎𝑐 = 4.2 to 11 for 𝜗𝑒𝑓𝑓 = 

0.42). In addition, for any selected Ω𝐷𝑖𝑟𝑎𝑐, a greater |𝛽| can be attained (i.e., the right edge of the 

achievable operating region is extended to larger |𝛽| values). As demonstrated in the previous 
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Fig 2.8. (a) Relative bandgap 𝛺𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 as a function of Dirac frequency 𝛺𝐷𝑖𝑟𝑎𝑐  and inductance perturbation 

magnitude |𝛽| for PNN-PZT piezoelectric layers (𝜗𝑒𝑓𝑓  = 0.56). Increasing 𝛺𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒  indicated by increasing 

brightness. The achievable operating region is enclosed by the dashed black lines. (c) Schematic for finite strip with 

Type I interface that is used to generate interface modes. Interface mode shapes for finite strip with unit cell parameters 

indicated by ●, ★, ⬟, and markings in (a). (b) and (d) report the same results as (a) and (c), respectively, for PZT-5H 

with negative capacitance circuitry (𝜗𝑒𝑓𝑓  = 2). Findings illustrate how the size of the achievable operating region, and 

thus tunability of the topological interface state, increases with larger 𝜗𝑒𝑓𝑓 . 

section, a larger |𝛽| corresponds to a wider potential operating bandwidth under fixed parameters 

(Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) and an amplified band inversion at the interface. Due to this increased band 

inversion, the topological interface mode shapes for the 𝜗𝑒𝑓𝑓 = 0.56 and 𝜗𝑒𝑓𝑓 = 2 cases (shown in 

Fig 2.8c and Fig 2.8d) contain greater localization at the interface than the interface modes for 

𝜗𝑒𝑓𝑓 = 0.42 (Fig 2.7c). Regardless of the specified Ω𝐷𝑖𝑟𝑎𝑐 (examples shown in Fig 2.7 and Fig 2.8 

are Ω𝐷𝑖𝑟𝑎𝑐 = 5.9, 8.9, and 10.4), the greatest achievable mode localization, which is quantified by 

Λ𝑚, increases with the effective coupling (e.g., for Ω𝐷𝑖𝑟𝑎𝑐 = 8.9, Λ𝑚 = 0.69, 0.74, 0.92 when 𝜗𝑒𝑓𝑓 

= 0.42, 0.56, 2, respectively, see ★ in Fig 2.7c and Fig 2.8c and Fig 2.8d).  
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These findings indicate that electromechanical coupling plays a crucial role in determining the 

extent of the tunability of the topological interface state. Thus, care must be taken to maximize the 

effective electromechanical coupling through material selection and geometric design. In addition, 

negative capacitance circuitry could be utilized to artificially enhance the coupling and achieve 

topological interface states with a broader frequency range and increased displacement 

localization.   

2.4.4 Finite element evaluation of frequency and mode shape tunable topological waves 

FE simulations of plates constructed from the proposed metamaterial are conducted to verify 

that tunable topological wave propagation can be realized by activation of the topological interface 

states contained within the achievable operating region. Plates with straight line and Z-shaped 

Type I interfaces are harmonically excited at the locations indicated by the arrows in Fig 2.9a. 

Geometric, material, and negative capacitance (𝜉 = 0.79) parameters are selected to match the 

analysis presented in Section 2.3, where wave propagation for |𝛽| = 0.04, Ω𝐷𝑖𝑟𝑎𝑐 = 8.9 (★ in Fig 

2.8b and Fig 2.8d), and Ω𝑒 = 8.7 was displayed (see Fig 2.5). To complement the results shown 

for Ω𝐷𝑖𝑟𝑎𝑐 = 8.9, topological wave propagation is investigated for high frequency (Ω𝐷𝑖𝑟𝑎𝑐 = 10.4) 

and low frequency (Ω𝐷𝑖𝑟𝑎𝑐 = 5.9) Dirac points that are near the upper and lower boundaries of the 

achievable operating region defined in Fig 2.8b. Fig 2.9b contains the steady-state displacement 

fields for a plate with circuit parameters specified as |𝛽| = 0.050 and Ω𝐷𝑖𝑟𝑎𝑐 = 10.4 (● in Fig 2.8b 

and Fig 2.8d) that is harmonically excited at Ω𝑒 = 10.2. The flexural displacement is successfully 

guided along the interfaces. However, displacement localization at the interface is noticeably 

reduced from what is observed in Fig 2.5 due to a less localized interface mode (Λ𝑚 = 0.75 for ● 

and Λ𝑚 = 0.92 for ★ in Fig 2.8d). The steady-state displacements for |𝛽| = 0.032, Ω𝐷𝑖𝑟𝑎𝑐 = 5.9 (⬣ 

in Fig 2.8b and Fig 2.8d), and Ω𝑒 = 5.9 are shown in Fig 2.9c. The flexural displacement is highly 

localized to the interface for both the straight line and Z-shaped cases. These high- and low-

frequency results, paired with the results for Ω𝐷𝑖𝑟𝑎𝑐 = 8.9, illustrate how guided topological wave 

propagation in the proposed metamaterial can be tuned across a broad frequency range. The 

adjustment of the displacement field (i.e., localization) at the interface is also displayed.    

Notably, for the low-frequency case (Ω𝐷𝑖𝑟𝑎𝑐 = 5.9), the inductance perturbation (|𝛽| = 0.032) 

is outside of the achievable operating region (⬣ in Fig 2.8b and Fig 2.8d). For the maximum |𝛽| 

contained within the achievable operating region (|𝛽| = 0.014, ⬟ in Fig 2.8b and Fig 2.8d), the  



 47 

 

Fig 2.9. (a) Schematics for thin plate metastructures with straight and Z-shaped Type I lattice interfaces (enclosed in 

black lines). A harmonic out-of-plane point excitation is applied where indicated by the arrow. Negative capacitance 

circuity is connected such that 𝜗𝑒𝑓𝑓  = 2 in all cases. (b) Steady-state displacement fields for |𝛽| = 0.050, 𝛺𝐷𝑖𝑟𝑎𝑐  = 

10.4, and 𝛺𝑒 = 10.2. (c) Steady-state displacement fields for |𝛽| = 0.032, 𝛺𝐷𝑖𝑟𝑎𝑐  = 5.9, and 𝛺𝑒 = 5.9. For steady-state 

response, the out-of-plane displacement amplitude is indicated by the color intensity. The results illuminate how 

tunable topological interface states can be harnessed to achieve topological wave propagation with adjustable levels 

of displacement localization over a large frequency range.  

flexural response does not successfully maintain localization along the sharp corners in the lattice 

with the Z-shaped interface (see Appendix A.6). Thus, despite the resulting reduction in valley 

Chern magnitude (|𝐶𝑣| = 0.015 for |𝛽| =0.032), a larger |𝛽| (and corresponding augmented band 

inversion and topological bandgap) is required to successfully guide a wave along multiple sharp 

corners within this deep subwavelength frequency regime. This result, paired with a similar 
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observation reported in [175], indicates that under certain conditions (e.g., multiple sharp corners 

at very low frequencies), the performance criteria that define the achievable operating region may 

need to be modified (e.g., reducing the minimum |𝐶𝑣| requirement). Due to the comprehensive 

tunability of the proposed metamaterial, circuit adjustments could be made on-line to achieve the 

desired performance (as is shown in Fig 2.9c) when scenarios such as these arise (see Appendix 

A.6 for further discussion). 

2.5 Lattice reconfiguration 

The architecture of the proposed metamaterial can also be exploited to enhance adaptivity 

through lattice reconfiguration, which has been used in previous investigations to achieve 

tailorable bandgaps and waveguides in topologically trivial structures [230,231]. In this section, 

lattice reconfiguration is explored as a mechanism to enhance the frequency range of topological 

waves and obtain additional topological edge states.   

2.5.1 Formation of additional Dirac point through lattice reconfiguration 

Fig 2.10a contains schematics for three different lattice configurations that are attainable with 

the proposed metamaterial. Fig 2.10b contains the corresponding dispersion diagrams for each 

lattice configuration with circuit conditions specified such that Ω𝑡−𝑒𝑓𝑓 = 28 and 𝜗𝑒𝑓𝑓 = 2. 

Configuration 1 is a honeycomb lattice that contains identical resonant circuits (𝛽 = 0) and the 

symmetries (𝐶3, SIS, TRS) required to achieve a Dirac point between the first and second bands 

(labeled as “Dirac 1” in Fig 2.10b). Configuration 3 is a triangular lattice that is realized by shorting 

one of the two circuits in the unit cell (𝛽 = 1, see Fig 2.10a). This triangular lattice also contains 

𝐶3, SIS, and TRS symmetries, resulting in the formation of a Dirac point between the second and 

third bands at Ω𝐷𝑖𝑟𝑎𝑐 = 17.55 (labeled as “Dirac 2” in Fig 2.10b). Previous works concerning 

triangular lattices in photonic crystals have also uncovered a Dirac point between the second and 

third bands [232–234], supporting this result. As shown in previous sections, Dirac 1 can be tuned 

from Ω𝐷𝑖𝑟𝑎𝑐 = 0 to Ω𝐷𝑖𝑟𝑎𝑐 = 17.55 due to the resonant characteristic of the connected circuitry. In 

addition, topological interface states derived from Dirac 1 are attainable for a narrower frequency 

range that covers Ω𝐷𝑖𝑟𝑎𝑐 = 3.2 to Ω𝐷𝑖𝑟𝑎𝑐 = 11. Unlike Dirac 1, the formation of Dirac 2 is the result 

of a Bragg scattering mechanism, and it is not frequency-tunable with resonant circuit parameters. 

However, it exists at a high frequency (Ω𝐷𝑖𝑟𝑎𝑐 = 17.55) that is outside of the operating range for 
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topological interface states derived from Dirac 1, and thus could be exploited to further broaden 

the frequency range of interface states in the proposed metamaterial. Furthermore, this additional 

Dirac point could be employed to achieve other capabilities derived from the rich physics 

associated with Dirac cones, such as boundary states. 

2.5.2 High-frequency interface state from Dirac 2 

The same process described in previous sections for Dirac 1 is followed to construct interface 

states from Dirac 2. Fig 2.10a includes the schematic for a lattice (defined as Configuration 2: 

Perturbed Lattice) with the inductance perturbation parameter 𝛽 specified to be between 0 and 1 

(|𝛽| = 0.7), which breaks SIS. Fig 2.10b contains the dispersion diagram for Configuration 2, where 

it is shown that bandgaps exist in place of Dirac 1 and Dirac 2. For Dirac 2, the bandgap extends 

from a fixed upper boundary of Ω = 17.55 to lower frequencies (Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝 spans Ω = 15.13 to Ω = 

 

Fig 2.10. (a) Schematics for three lattice configurations attainable through circuit tailoring in the proposed 

metamaterial. Circuits are connected to electrodes that are represented by blue and red circles. For Configuration 3, 

electrodes pertaining to shorted circuits are omitted for clarity. Unit cell (enclosed in dashed black lines) circuit 

parameter details and lattice symmetries are listed below each schematic. (b) Dispersion diagrams corresponding to 

lattice Configurations 1-3 calculated using the PWE method with 𝛺𝑡−𝑒𝑓𝑓 = 28 and 𝜗𝑒𝑓𝑓  = 2. Dirac 1, topological 

bandgaps, and Dirac 2 are all highlighted for Configuration 1, Configuration 2, and Configuration 3, respectively.    
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17.55 for |𝛽| = 0.7). To investigate whether an interface state can be obtained within this bandgap, 

Type A (𝛽 = 0.7) and Type B (𝛽 = -0.7) lattices are connected at a Type I interface, and a dispersion 

analysis is conducted for a finite strip of 18 unit cells (see schematic in Fig 2.11a). For this analysis, 

periodic boundary conditions are applied in the 𝑘// direction, and the ends are specified as free. 

The dispersion diagram for the finite strip is shown in Fig 2.11a, where it is apparent that a 

localized interface state exists within the bandgap (the interface state is the red band present in the 

gray shaded bandgap). A symmetric and highly localized (Λ𝑚 = 0.96) interface mode shape 

evaluated at Ω = 16.3 is shown in Fig 2.11b. In addition to the interface state, multiple localized 

edge states exist at the left and right boundaries of the finite strip, as indicated by the white circles 

in the band diagram (for Λ ≈ 0, dispersion curves are white, Fig 2.11a). Mode shapes for two 

degenerate “boundary states” with flexural displacement localized at the left and right boundaries 

are shown for Ω = 17.2 in Fig 2.11b. Similar results for a Type II interface and the corresponding 

antisymmetric interface state are reported within Appendix A.7.  

To demonstrate guided wave propagation, plates are constructed with straight and Z-shaped 

Type I interfaces and excited harmonically (Ω𝑒 = 16.8) with a point source at the locations 

indicated by “Src” in Fig 2.11c (see schematics in top row of Fig 2.11c). The resulting steady-state 

displacement fields show that flexural displacement can be localized along the interfaces for these 

high-frequency interface states (see steady-state displacement fields in bottom row of Fig 2.11c). 

However, coupling between the interface states and boundary states does occur. Therefore, to 

selectively activate an interface state, care must be taken to specify an excitation (e.g., location at 

the center of the plate) that will not localize displacement at the boundaries.  

2.5.3 Boundary states from Dirac 2 

Results from the finite strip dispersion analysis for a Type I interface (Fig 2.11) suggest that 

boundary states are readily achievable from Dirac 2. To further investigate the formation of 

boundary states from Dirac 2, a dispersion analysis is conducted for a finite strip with 18 Type B 

unit cells (no interface is present, see schematic in Fig 2.12a). The left boundary is specified as 

fixed, the right boundary is specified as free, and periodic boundary conditions are applied in the 

𝑘// direction. The left boundary is fixed because a fixed condition enforces dynamic behavior at 

the boundary that closely approximates the interface behavior for the antisymmetric interface state. 

As shown in Appendix A.7, the antisymmetric interface state is obtainable by creating a Type II 
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Fig 2.11. (a) Band structure for a finite strip (|𝛽| = 0.70, 𝛺𝑡−𝑒𝑓𝑓  = 28.0, 𝜗𝑒𝑓𝑓  = 2) with a Type I interface. Dark red 

shading indicates localized interface states (𝛬 ≈ 1) and white shading indicates boundary states (𝛬 ≈ 0). The 

rectangular gray shaded region represents a frequency range where no bulk modes exist. (b) A symmetric mode shape 

that is calculated from the interface state at 𝛺 = 16.3 with a localized displacement (𝛬𝑚 = 0.96) is shown. Two 

boundary mode shapes that are calculated from the degenerate boundary states at 𝛺 = 16.8 (𝛬 = 0) are also shown. (c) 

(top row) Schematics for thin plate metastructures with straight and Z-shaped Type I lattice interfaces (enclosed in 

black lines). A harmonic (𝛺𝑒 = 16.8) out-of-plane point excitation is applied where indicated by ‘Src’. (bottom row) 

Steady-state displacement fields illustrating guided wave propagation for the high-frequency interface states.  

interface. Since the Type B unit cell at the left boundary comprises the right half of a Type II 

interface, the fixed condition effectively approximates the left half, and a boundary state that 

resembles half of the antisymmetric interface state is expected to occur [173]. Similarly, a 

boundary state closely approximating half of the symmetric interface state is expected to appear at 

the right boundary, which is designated as free. For each band in the calculated dispersion diagram, 

a boundary localization parameter 𝜓 is defined to measure the amount of flexural displacement 

that is localized at the left and right boundaries as: 

𝜓 =
∭ |�̅�|2

𝑉𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠
𝑑𝑉

∭ |�̅�|2
𝑉𝑆

𝑑𝑉
(2.21) 

where 𝑉𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 is the total volume of the two unit cells at the boundaries (enclosed in the dashed 

black boxes in Fig 2.12a) and 𝑉𝑆 is the volume of the entire finite strip. This boundary localization 

parameter is evaluated for each band and is represented in the dispersion diagram by color 

intensity. Boundary states are indicated in the dispersion diagram (Fig 2.12a) as dark red bands (𝜓 
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≈ 1). One boundary state emerges from a lower frequency set of bulk modes and crosses into the 

bandgap (gray shaded region) towards a higher frequency set of bulk modes. The mode shape for 

this band with the maximum level of displacement localization at the boundary is shown in Fig 

2.12a (𝜓𝑚 = 0.92 for Ω = 16.5), indicating that this band corresponds to a left boundary state that 

approximates half of the antisymmetric interface state derived from Dirac 2. Another boundary 

state emerges from the higher frequency set of bulk modes and crosses towards the lower 

frequency set of bulk modes. This boundary state is localized to the right boundary, as illustrated 

by the mode shape calculated for Ω = 15.3 (𝜓𝑚 = 0.98), and approximates half of the symmetric 

interface state. 

A plate is constructed with boundary conditions (free and fixed) specified such that the outlined 

boundary states are supported at all four boundaries. The plate is excited harmonically (Ω𝑒= 16.5) 

with a point source located as indicated by “Src” in Fig 2.12b. Results show that both boundary 

states are activated and compatible with each other, resulting in flexural wave propagation around 

 

Fig 2.12. (a) Band structure for a finite strip (|𝛽| = 0.70, 𝛺𝑡−𝑒𝑓𝑓  = 28.0, 𝜗𝑒𝑓𝑓  = 2) comprised of Type B unit cells (no 

interface, see schematic). Dark red shading indicates localized boundary states (𝜓 ≈ 1). The rectangular gray shaded 

region indicates a frequency range where no bulk modes exist. Left and right boundary mode shapes are shown. (b) 

(top) Schematic for thin plate metastructure with fixed and free boundaries selected to attain boundary states. A 

harmonic (𝛺𝑒 = 16.5) out-of-plane point excitation is applied where indicated by ‘Src’. (bottom) Steady-state 

displacement field illustrating flexural displacement confinement along plate boundaries.    
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multiple sharp and shallow corners that is localized to all four boundaries of the plate. This 

capability to achieve adaptive wave propagation along structural boundaries could be beneficial in 

applications requiring confinement of energy along the edges of structures, such as vibration 

mitigation systems.  

2.6 Conclusions and discussion 

The research presented in this chapter proposes and develops a TM that harnesses resonant 

piezoelectric circuitry to enable comprehensively tunable elastic wave control. Overall, this 

investigation advances the state of the art by enabling and exploring the adaptation of topological 

wave path, frequency, and edge mode shape in a single mechanical platform for the first time. The 

proposed metamaterial operates over a broad frequency bandwidth (including multiple discrete 

bands) and can be integrated in a compact fashion for applications that require control of large-

wavelength (i.e., low-frequency) waves due to its subwavelength characteristic, which constitutes 

a breakthrough in the field of tunable TMs. 

In this chapter, the tunability of wave path, frequency range, and edge states is explored 

through a systematic analysis of the dispersion properties and dynamic response characteristics of 

the proposed metamaterial. A subwavelength and frequency-tunable Dirac point (Dirac 1) is 

uncovered, and it is revealed that symmetric and antisymmetric topological interface states can be 

obtained from it. FE simulations illuminate how these interface states can be activated to achieve 

guided elastic wave transmission that is robust to disorder and defects and can be manipulated on-

demand into a myriad of desired directions. A deeper understanding of the adaptive characteristics 

of the metamaterial is formed through parametric studies. A finite tunable frequency range and its 

underlying physical basis are discovered for Dirac 1. An achievable operating region is defined 

for topological interface states derived from Dirac 1, where it is learned that interface states that 

meet specified performance metrics are achievable over a wide frequency bandwidth that 

comprises a subset of the Dirac 1 frequencies. These findings offer new insights into frequency 

tunability that may be leveraged in future studies concerning Dirac dispersions and the QVHE in 

locally resonant EMs. Further exploration of the achievable operating region illuminates how 

circuit parameters can be utilized to tune the displacement field of a waveguide by tailoring the 

localization and shape of the interface state. The operating region is used as a framework to study 

the role of electromechanical coupling in topological wave propagation for the first time. Results 
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indicate that increased electromechanical coupling enhances the frequency range and achievable 

interface mode localization of the interface states. Lattice reconfiguration is also investigated as a 

method to tailor the topological properties of the proposed metamaterial. Analysis of a triangular 

lattice obtained through shorting circuits reveals that a second Dirac point (Dirac 2) can be 

achieved in a high-frequency range that extends beyond the operating region for Dirac 1 interface 

states. Boundary states and additional interface states are shown to be obtainable from Dirac 2, 

and numerical simulations illustrate how these states can be exploited to achieve exceptional 

guided elastic wave phenomena.  

The outcomes from this chapter provide fundamental insights into the influence of locally 

resonant elements, electromechanical coupling, and lattice reconfiguration in adaptive TMs 

exhibiting the QVHE, presenting a basis for further exploration. The proposed TM may be 

employed to achieve subwavelength elastic wave control that is robust to practical considerations 

(e.g., sharp waveguide corners or lattice imperfections) and adaptive in real-time to shifting 

operating requirements and external conditions. These beneficial features could be harnessed to 

improve performance and expand functionalities in a range of engineering applications requiring 

adaptive and robust elastic wave control, such as vibration mitigation systems, wave 

filters/multiplexers, and energy harvesters.  

 

Note:  The reused content (text, figures, and tables) in Chapter 2 and Appendix A is reproduced 

from [235] under the CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/
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Chapter 3. 3D Metastable Metamaterial 

A 2D TM with exceptional tunability is presented in Chapter 2. Building from the knowledge 

gained from Chapter 2, the next step is to incorporate tunability into 3D TMs, which open the door 

to new wave control possibilities and are more challenging to design and realize when compared 

to 2D TMs. In Chapter 3, we address this opportunity and advance the state of the art by proposing 

a programmable first-order 3D TM that can be tuned adaptively via carefully designed 

metastability. A metastable switching methodology is developed that enables the synthesis of 

multiple unique topological states in a 3D mechanical metastructure. By taking advantage of the 

adaptivity of the proposed metamaterial, the path of 2D topological surface states is on-demand 

controlled for the first time, a bilayer-locked topological state is discovered, and 3D elastic wave 

networks with advanced filtering and splitting capabilities are realized. The findings presented in 

this chapter offer new insight into how topology can be used to control the flow of energy in 3D 

elastic structures. Furthermore, the advanced functionalities of the proposed TM could be 

harnessed to create intelligent and robust devices for various purposes, such as mechanologic, 

vibration mitigation, energy harvesting, and remote sensing.  

3.1 Introduction  

 Most studies concerning topological phases in mechanical systems have focused on confining 

elastic waves through 0D point states in 1D structures [83,130,132–137] and 1D edge states in 2D 

structures [83,116,238–240,147,148,154,162,168,172,236,237]. Topological states in 3D 

structures are more difficult to obtain due to fabrication complexities, computational resource 

requirements, and unwanted mode conversion or coupling that result from a dense band structure. 

Recently, researchers have overcome these challenges to achieve 2D topological surface states in 

3D mechanical structures through elastic analogues of Weyl semimetals [26,75,184–187] or the 

QVHE [131]. Extraordinary wave control capabilities have been achieved in 3D TMs, including 

robust elastic wave propagation along planar waveguides in multiple spatial directions and the 

introduction of the layer degree-of-freedom (DOF) to obtain layer-polarized (i.e., layer-selective) 

energy transmission.   



 56 

 While the 3D TMs studied thus far show great promise, these structures are not changeable 

after fabrication, limiting their potential capabilities and making them susceptible to reduced 

performance under variable environmental and operating conditions. The development of an 

adaptive 3D TM would address this research gap and enable the investigation of unexplored 

topological transport phenomena. The research presented in this chapter advances the state of the 

art by proposing a reconfigurable 3D TM that can tailor the spatial path of elastic wave propagation 

and select from various topological states through metastability (metastability is the coexistence 

of several internal stable states given a constant global topology [215]). A metastable geometry 

and switching methodology are crafted to achieve on-demand tunability of 2D topological surface 

states in a 3D mechanical structure for the first time. The reconfigurability of the proposed platform 

is harnessed to efficiently investigate beyond the previously established topological states and 

uncover a “bilayer-locked” state that is confined to two layers of a multi-layered structure. 

Moreover, tunable 3D topological wave networks with advanced (compared to their 2D 

predecessors [115,155,241]) elastic wave splitting and filtering capabilities are created by 

connecting multiple topological states and exploiting the additional layer DOF. 

 

Fig 3.1. (a) Schematic of the proposed 3D EM, a dashed black box encloses the unit cell. (b) Schematic of the proposed 

3D EM unit cell comprised of an aluminum thin plate (gray), two silicone rubber interconnecting rods (purple), and 

12 point masses (orange). A blacked dashed box encloses a single bistable element, with a detail view provided. 
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3.2 Concept and theoretical model 

3.2.1 Proposed EM overview  

The proposed EM is a multi-layered 3D structure that consists of aluminum thin plates with 

thickness ℎ𝑝 connected by silicone rubber cylindrical rods with height ℎ𝑟 and radius 𝑟𝑟 (Fig 3.1). 

A schematic of the EM unit cell is given in Fig 3.1b, where �⃑�1 = 𝑎𝑖̂, �⃑�2 = 𝑎(cos 𝜋 3⁄ 𝑖̂ +

sin 𝜋 3⁄ 𝑗̂), and �⃑�3 = ℎ�̂� are the lattice basis vectors, 𝑎 is the in-plane (𝑥-𝑦 plane) lattice constant, 

and ℎ is the out-of-plane (𝑧 direction) lattice constant. Taking inspiration from previous work with 

a 2D EM [236], elliptical holes are cut into the thin plate and bistable elements are embedded 

within them to provide the structure with metastability (see detail view, Fig 3.1b). The elliptical 

holes are oriented to satisfy the 𝐷6ℎ symmetry required for the QVHE. The geometric dimensions 

of the internal elements are chosen such that two symmetric stable states are obtained in the force-

displacement relation (see Section 3.2.3 for details on the unit cell design). Point masses (orange 

in Fig 3.1b) are placed on the top and bottom surfaces of each bistable element to create a locally 

resonant in-plane bandgap. This in-plane bandgap is paired with careful design of the 

interconnecting rod stiffness to adjust the band structure such that a full (i.e., covering all elastic 

wave polarizations) bandgap can be achieved in the target frequency range for topological states 

(see topological bandgap design methodology in Section 3.3). The geometry is discretized and 

numerical simulations are conducted using the commercial FE solver COMSOL Multiphysics (see 

Section 3.2.2 for information on the FE model). 

3.2.2 Theoretical model 

The COMSOL Multiphysics Solid Mechanics Module is used to discretize the continuous 3D 

solid and carry out numerical FE simulations. Small amplitude displacement, negligible damping, 

and perfect adhesion at all component interfaces are all assumed. Table 3.1 contains all geometric 

parameter values used in the presented research and Table 3.2 contains all relevant material 

properties.   

 Numerical FE simulations are used to solve the system governing equations for the band 

structure (i.e., perform an eigenfrequency study) and dynamic response (i.e., perform a frequency 

domain study). The governing equations for wave motion in a linear elastic medium are [25]:  
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𝜌(𝒓)�̈�𝑖 = ∑ {
𝜕

𝜕𝑥𝑖
(𝜆(𝒓)

𝜕𝑢𝑗

𝜕𝑥𝑗
) + 

𝜕

𝜕𝑥𝑗
[𝜇(𝒓) (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)]} for 𝑖 = 1,2,3 

3

𝑗=1

(3.1) 

where 𝑖, 𝑗 = 1,2,3 correspond to the coordinates 𝑥,𝑦,𝑧, 𝒓 = (𝑥, 𝑦, 𝑧) is a position vector, 𝜌(𝒓) is 

material density, 𝒖(𝒓) = [𝑢, 𝑣, 𝑤]𝑇 is the displacement vector, and 𝜆(𝒓) and 𝜇(𝒓) are elastic 

constants. 

For the band structure, a harmonic plane wave solution is used, and a single unit cell is analyzed 

with Floquet-Bloch periodic boundary conditions. A solution of the form 𝒖(𝒓; 𝑡) =

�̃�(𝒓)𝑒𝑖(𝒌 ∙𝒓)𝑒𝑖𝜔𝑡 is assumed, where 𝑡 is time, 𝜔 is the temporal frequency, 𝒌 = {𝑘𝑥, 𝑘𝑦, 𝑘𝑧} is the 

Bloch wave vector, and �̃�(𝒓) is the Bloch displacement vector (which has the same periodicity as 

the structure). For band structure calculations, the Bloch wave vector 𝑘 = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧 ) is swept 

through reciprocal space (see a schematic of reciprocal space in Fig 3.3a), and the corresponding 

frequencies are calculated.  

3.2.3 3D EM design methodology  

The internal bistable elements grant the system with adaptivity, as lattice configurations can 

be altered by “switching” between metastable states (note: metastability is defined as the 

coexistence of several internal stable states given a constant global topology [215]). These  

Table 3.1. Geometric dimensions 

Symbol Parameter  Value 

𝑎 In-plane lattice constant 86.6 mm 

ℎ Out-of-plane lattice constant 10 mm 

ℎ𝑝 Thickness of thin plate 2 mm 

ℎ𝑟 Height of rod segment 4 mm 

𝑟𝑟 Radius of rod segment 2 mm 

𝐿1 Elliptical hole major axis 

length 

30 mm 

𝐿2 Elliptical hole minor axis 

length 

13.4 mm 

𝑤 Width of curved beams  0.75 mm 

𝑤𝑐 

ℎ𝑎 

𝐷 

Width of interconnecting clamp 

Curved beam initial apex 

height 

Distance between curved 

beams 

2 mm 

5 mm 

5 mm 

𝐿 Curved beam span 13.4 mm 
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Table 3.2. Material properties 

Symbol Parameter  Value 

𝐸𝑝 Elastic modulus: aluminum plate 70 GPa 

𝜌𝑝 Mass density: aluminum plate 2700 kg/m3 

𝜈𝑝 Poisson’s ratio: aluminum plate 0.33 

𝐸𝑟 Elastic modulus: silicone rubber 

rod 

50 MPa 

𝜌𝑟 Mass density: silicone rubber rod 1000 kg/m3 

𝜈𝑟 Poisson’s ratio: silicone rubber 

rod 

0.48 

𝑚𝑝𝑚 Mass of applied point masses 0.05 kg 

internal bistable elements are made up of two curved beams of span 𝐿 and width 𝑤 defined by the 

local shape function 𝑦 = ℎ/2 (1-cos 2𝜋𝑥/𝐿), where ℎ𝑎 is the initial apex height (see Fig 3.1 for 

full detail). The two beams are separated by a distance 𝐷 and connected in parallel by a clamp of 

width 𝑤𝑐 to ensure that the influence of higher-order beam modes is suppressed [242]. Geometric 

dimensions are selected such that two roughly symmetric stable states are created. The beam ends 

are assumed to be fixed, and there is no induced pre-stress in the “as-fabricated” (stable state 1) 

stable configuration because the curved beams are directly fabricated into this stable state. Some 

internal stress will exist in the other stable configuration, stable state 2.  

The theoretical model proposed in [242,243] is used for all calculations. Key elements of the 

theoretical model are provided here; please refer to [242,243] for a full derivation. A normalized 

displacement is defined as �̅� =
𝑑

ℎ𝑎
  and normalized force as �̅� =

𝐹𝐿3

2𝐸𝑝𝐼ℎ𝑎
, where 𝐼 is the initial 

moment of the curved beam, 𝑑 is the lateral displacement (in the 𝑦 direction in Fig 3.1), and 𝐹 is 

an applied force (dimensional). Calculations for the force-displacement curve include two 

components of the normalized force, �̅�1 and �̅�3:   

�̅�1 =
3𝜋4𝑄2

2
�̅� (�̅� −

3

2
+ √

1

4
−

4

3𝑄2) (�̅� −
3

2
− √

1

4
−

4

3𝑄2)

�̅�3 = 8𝜋4 − 6𝜋4�̅� 

(3.2)

where 𝑄 =
ℎ𝑎

𝑤
 is a geometry constant that must be greater than 2.31 to ensure bistability (in this 

case, 𝑄 = 6.7). The final force-displacement curve (Fig 3.2) is a piece-wise combination of �̅�1 and 

�̅�3 (Fig 3.2 and Eq. 3.3): 

�̅� = {
�̅�1  𝑓𝑜𝑟 �̅�1 < �̅� < �̅�2 

�̅�3 𝑓𝑜𝑟 �̅� < �̅�1  𝑎𝑛𝑑 �̅� > �̅�2 
(3.3) 
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Fig 3.2. Normalized force-displacement (�̅�-�̅�) relation for the bistable internal elements. Stars mark stable states at �̅� 

= 0 (stable state 1) and �̅� = 1.97 (stable state 2). Circles mark intersections of �̅�1 and �̅�3 at �̅�1 = 0.06 and �̅�2 = 1.94. 

where �̅�1 = 0.06 and �̅�2 = 1.94 are the intersection points of the �̅�1 and �̅�3 curves. The two stable 

states (i.e., this system is bistable) occur at �̅� = 0 (stable state 1) and �̅� = 1.97 (stable state 2, both 

stable states are marked with stars in Fig 3.2). For all COMSOL FE simulations, the displacement 

of the two stable states is treated as symmetric about �̅� = 1 when the bistable elements are 

“switched” back and forth to alter lattice configurations. For this analysis, the internal stress of the 

structure in stable state 2 is not considered. Physical implementation is outside the scope of this 

study, and artificial switching is used to change between bistable states for all theoretical modeling. 

A switch between stable states could be physically realized in practice using stimuli-responsive 

actuators. Electromagnetic [244], electrothermal [242], or electrostatic [242] actuators could be 

used to tune the internal bistable elements. The geometry-induced bistability of the internal beam 

elements is advantageous for manufacturing (e.g., 3D printing), because hinges, latches, or residual 

pre-stress (these are all commonly used methods for achieving bistability that are difficult to 

implement in 3D structures) are not required as part of the fabrication process.  
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Point masses: 

Twelve point masses with mass 𝑚𝑝𝑚 = 0.05 kg are added to the unit cell at the top and bottom 

surfaces of the six bistable elements (two point masses per bistable element, see orange points in 

Fig 3.1). The influence of the point masses is measured by calculating a mass ratio metric:  

𝑚𝑟𝑎𝑡𝑖𝑜 =
𝑚𝑝𝑚

𝑚𝑝𝑙𝑎𝑡𝑒 + 4𝑚𝑟𝑜𝑑

(3.4) 

where 𝑚𝑝𝑙𝑎𝑡𝑒 is the mass of the aluminum plate in one unit cell and 𝑚𝑟𝑜𝑑 is the mass of one 

interconnecting rod segment. For this study, a magnitude of 𝑚𝑟𝑎𝑡𝑖𝑜 equal to 2 is selected to help 

create a full (i.e., covering all mode polarizations) topological bandgap in the targeted frequency 

regime for topological states (see more discussion in Section 3.3 Fig 3.3 and Fig 3.4). In addition, 

the mass ratio must be large enough to create a sufficiently large mass redistribution when a 

“switch” of the bistable elements occurs, such that a Dirac nodal line degeneracy can be lifted (see 

further discussion in Section 3.3).  

 

Interconnecting rods: 

The interconnecting rod geometry and material are selected to ensure that a full topological 

bandgap can be achieved from a Dirac nodal line degeneracy. A parameter study indicated that a 

high interconnecting rod stiffness would be disadvantageous, and thus thin cylindrical silicone 

rubber (see material properties in Table 3.2) rods were chosen. See further discussion in Section 

3.3 and Fig 3.5.  

3.3 Unit cell analysis for 2D surface states using the elastic analog of the QVHE 

The adaptivity of topological states is achieved by changing between the stable states of the 

bistable internal elements to adjust lattice symmetries (i.e., switching between metastable states, 

previously used to tune elastic wave propagation in 1D and 2D systems [80,215,236,245]). Two 

lattices (“Type A” and “Type B”) with 𝐷3ℎ symmetry are created by switching the bistable 

elements as shown in Fig 3.3b. The band structures for these lattices contain an identical full 

bandgap (Fig 3.3d). The topological nontriviality of this bandgap (i.e., topological bandgap) is 

uncovered through calculation of a topological invariant, the valley Chern number 𝐶𝑣 (see Section 

3.3.2). Equal and opposite calculated values of 𝐶𝑣 indicate that the Type A and Type B lattices are 

topologically distinct. By the bulk-boundary correspondence [86,91,228] for a 3D system, a 2D 
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Fig 3.3. (a) Direct lattice for the Type 0 switching configuration of the proposed 3D EM. The reciprocal unit cell is 

shown to the right, with the IBZ outlined in light blue. (b) Type A and Type B switching configurations, and their 

corresponding mode shapes at the 𝐾 point for the bands that border the bandgap (where marked by ■ and ▲). (c) 

Band structure for the 3D EM in the Type 0 configuration. The two-fold Dirac nodal line is enclosed in a dotted red 

box. Colormap indicates the mode polarization using the metric 𝛱. Blue modes are primarily in-plane modes; black 

modes are primarily out-of-plane modes. 𝑘𝑥 − 𝑘𝑦 and 𝑘𝑦 − 𝑘𝑧 projections are shown below, with the Dirac 

degeneracy marked by an orange dot and line, respectively. (d) Band structure for the 3D EM in the Type A or B 

configuration (identical for both). The full topological bandgap is marked by gray shading, while the blue arrows mark 

the partial bandgap for in-plane modes. The inset contains a mode shape evaluated at the 𝐾 point at the lower boundary 

of the partial bandgap (see ★). 

topologically protected surface state is predicted to exist at the interface between the Type A and 

Type B lattices. 

3.3.1 Methodology for a full topological bandgap 

To investigate the wave propagation characteristics of the proposed 3D EM and achieve the 

elastic analog of the QVHE, a unit cell analysis is undertaken, where the band structure of the unit 

cell in different metastable switching configurations is evaluated. Under switching configuration 

Type 0, where all six of the internal bistable elements are switched to the “out” position (i.e., they 
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are switched to the stable state furthest from the adjacent interconnecting rod) (Fig 3.3a), the EM 

lattice contains 𝐷6ℎ symmetry, and a two-fold Dirac nodal line degeneracy is obtained along the 

𝐾-𝐻 line of high symmetry in the band structure (the IBZ used for band structure calculations is 

shown in blue in Fig 3.3a, and the Dirac Degeneracy is enclosed in the dotted red box in Fig 3.3c). 

This Dirac degeneracy is protected by the 𝐷6ℎ lattice symmetry and time-reversal symmetry [91]. 

A dimensionless polarization metric Π is defined and measured for each individual mode:   

Π =
∭ |�̅�|2

𝑉𝑈
𝑑𝑉

∭ |�̅�|2 + |�̅�|2 + |�̅�|2
𝑉𝑈

𝑑𝑉
(3.5) 

where 𝑉𝑈 is the volume of the unit cell, and 𝑢, 𝑣, and 𝑤 are the displacement components in the 

𝑥, 𝑦, and 𝑧 directions, respectively. Thus, a Π~0 (blue points in Fig 3.3c) indicates a predominantly 

in-plane modal displacement and a Π~1 (black points in Fig 3.3c) indicates an out-of-plane mode 

polarization. The Dirac degeneracy is comprised of out-of-plane polarized modes. To better 

visualize this Dirac degeneracy, the band structure is projected over the 𝑘𝑥 − 𝑘𝑦 and 𝑘𝑦 − 𝑘𝑧 

planes near the 𝐾 point in reciprocal space. The 𝑘𝑥 − 𝑘𝑦 projection reveals a Dirac cone (Fig 3.3c 

bottom left, Dirac point is orange dot), and the 𝑘𝑦 − 𝑘𝑧 projection shows the Dirac degeneracy 

stretched into a two-fold nodal line (Fig 3.3c bottom right, orange line). To split the Dirac 

degeneracy and obtain a topological bandgap, three of the bistable elements are switched to the 

“in” position to break in-plane SIS and reduce the lattice symmetry from 𝐷6ℎ to 𝐷3ℎ. The band 

structure is identical regardless of whether the three bistable elements on the right side (“Type A”) 

or the left side (“Type B”) are switched inward (see Fig 3.3b for unit cell schematics). This band 

structure is shown in Fig 3.3d, where the gray shading indicates a full topological bandgap (from 

2901 Hz to 3041 Hz) that is opened from the Dirac degeneracy. The mechanism that enables the 

opening of this topological bandgap is the redistribution of mass within the unit cell that occurs 

during metastable switching. As previously discussed in [236] for a 2D metamaterial, the mass 

ratio (𝑚𝑟𝑎𝑡𝑖𝑜 ) must be carefully selected to ensure that there is a large enough mass redistribution 

to open a topological bandgap. In addition, the 𝑚𝑟𝑎𝑡𝑖𝑜 is critical to the topological bandgap being 

full (covering all mode polarizations) in nature, a difficult characteristic to achieve in 3D EMs due 

to their inherently dense band structure. The 𝑚𝑟𝑎𝑡𝑖𝑜 = 2 shown here leads to a partial bandgap of 

in-plane modes from 1895 Hz to 5297 Hz (as indicated by the blue arrows in Fig 3.3d). This in-

plane partial bandgap enables the formation of the full topological bandgap from 2901 Hz to 3041 
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Hz because it ensures that no in-plane modes (blue modes in Fig 3.3d) cross into the frequency 

range near the Dirac degeneracy. Further analysis reveals that an in-plane mode with displacement 

localized to three of the internal bistable elements is present at the lower boundary of the in-plane 

partial bandgap (see inset in Fig 3.3d for the mode shape corresponding to ★), suggesting that this 

bandgap emerges due to a local resonance mechanism. Since this is a locally resonant bandgap, 

the magnitude of 𝑚𝑟𝑎𝑡𝑖𝑜 should govern the size of this bandgap. Fig 3.4 contains band structures 

for different 𝑚𝑟𝑎𝑡𝑖𝑜 values (𝑚𝑟𝑎𝑡𝑖𝑜 = 2, 1.5, 1, and 0.75 in Fig 3.4a, Fig 3.4b, Fig 3.4c, and Fig 

3.4d, respectively) confirming that the in-plane bandgap shrinks as 𝑚𝑟𝑎𝑡𝑖𝑜 is reduced. These results 

demonstrate how 𝑚𝑟𝑎𝑡𝑖𝑜 must be selected to be large enough, such that unwanted mode coupling 

or conversion (which may distort localized topological states) with in-plane modes does not occur 

(see an example of unwanted mode coupling in Fig 3.4d, where blue in-plane modes interact with 

the Dirac degeneracy). 

Investigating beyond the mratio parameter, a band structure analysis is undertaken to evaluate 

how the stiffness of the interconnecting rods may also play a critical role in the obtainment of a 

topological bandgap. Fig 3.5a contains the Dirac nodal line (Type 0 switching configuration, left 

column of Fig 3.5) and topological bandgap (Type A/B switching configuration, right column of 

Fig 3.5) for the 3D EM with the parameters and materials described in Table 3.1 and Table 3.2 

(notably, the elastic modulus of the rod material, Er = 50 MPa). In a parameter study, the axial 

stiffness of the rods (kaxial−r = ArEr/hr) is increased by selecting two values of higher Er (Er = 

100 and 1000 MPa, for Fig 3.5b and Fig 3.5c, respectively). The enhancement in axial stiffness 

(which aligns with z) leads to a dramatic steepening (i.e., a larger slope and group velocity) of the 

Dirac nodal line along the K-H direction (which aligns with kz). This dramatically increased slope 

can be qualitatively observed by comparing the frequency difference between the two orange 

circles placed at the K and H points in the Type 0 band structures (left column) shown in Fig 3.5a, 

Fig 3.5b, and Fig 3.5c. This characteristic of the band structure for increased Er inhibits the opening 

of a topological bandgap when the metastable elements are switched from the Type 0 to the Type 

A/B configurations, as can be seen in Fig 3.5b and Fig 3.5c (of the Type A/B band structures in 

the right column, only in Fig 3.5a can a topological bandgap be opened from the Dirac degeneracy, 

as indicated by the gray shading). Thus, care must be taken to select the dimensions and material 

of the interconnecting rods to achieve a sufficiently low stiffness value that enables the opening of 

a topological bandgap. 
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Fig 3.4. Band structure for the proposed 3D EM with various 𝑚𝑟𝑎𝑡𝑖𝑜 values: (a) 𝑚𝑟𝑎𝑡𝑖𝑜 = 2, (b) 𝑚𝑟𝑎𝑡𝑖𝑜 = 1.5, (c) 𝑚𝑟𝑎𝑡𝑖𝑜 

= 1, and (d) 𝑚𝑟𝑎𝑡𝑖𝑜 = 0.75 showing in-plane partial bandgaps of 2.5 kHz to 4.3 kHz, 2.8 kHz to 4.3 kHz, 3.2 kHz to 

4.3 kHz, and 3.9 kHz to 4.4 kHz, respectively (in-plane bandgaps are indicated by blue arrows and grey shading). The 

two-fold Dirac nodal line is enclosed in a dotted red box. Colormap indicates the mode polarization using the metric 

𝛱. Blue modes are primarily in-plane modes; black modes are primarily out-of-plane polarized. 

3.3.2 Band inversion and topological invariant calculations for the QVHE: 

The topological nature of the full bandgap described in Fig 3.3d is investigated by examining 

the bands that border it in the context of the QVHE [86]. Switching configurations Type A and 

Type B (Fig 3.3b) have identical band structures containing a full topological bandgap (Fig 3.3d). 

The topological properties of these bands are quantified by calculation of the topological invariant 

for the QVHE, the valley Chern number 𝐶𝑣−𝑝, defined as: 

𝐶𝑣−𝑝 =
1

2𝜋
∬ 𝐵𝑝(𝑘)𝑑2𝑘

𝑣

(3.6) 

𝐵𝑝(𝑘) = 𝛻𝑘 × 𝐴𝑝(𝑘) (3.7) 

𝐴𝑝(𝑘) = 〈𝑢𝑝(𝑘)|𝑖𝛻𝑘|𝑢𝑝(𝑘)〉 (3.8) 
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Fig 3.5. (a) Band structures for the Type 0 (left column) and Type A/B (right column) switching configurations for 

𝐸𝑟  = 50 MPa. The degenerate eigenmodes at the 𝐾 and 𝐻 points are indicated with orange circles (left). The full 

topological bandgap is indicated by the gray shading (right). The band structures for the Type 0 (left) and Type A/B 

(right) configurations are shown for (b) 𝐸𝑟  = 100 MPa and (c) 𝐸𝑟  = 1000 MPa. Note that in (b) and (c), the increased 

𝐸𝑟  prevents the opening of a full topological bandgap from the Dirac degeneracy. 
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where 𝐴𝑝(𝑘) is the Berry Connection, 𝐵𝑝(𝑘) is the Berry Curvature, 𝛻𝑘 = (
𝜕

𝜕𝑘𝑥
,

𝜕

𝜕𝑘𝑦
) is a 

differential operator, 𝑢𝑝(𝑘) are the eigenvectors associated with the 𝑝th band (where 𝑝 = 1 refers 

to the band defining the lower limit of the bandgap and 𝑝 = 2 refers to the band defining the upper 

limit), and the subscript 𝑣 denotes that the integral is taken at the 𝐾 valley in reciprocal space 

[153,167,227]. To complete the calculations, the eigenvectors are normalized according to:          

⟨𝑢𝑝(𝑘)|𝑢𝑝(𝑘)⟩ = ∭ 𝑢𝑝
∗ (𝑘)𝑢𝑝(𝑘)𝑑𝑉

𝑉𝑈
≈ ∑ 𝑉𝑝𝑡(𝑢𝑝𝑡

∗ 𝑢𝑝𝑡 + 𝑣𝑝𝑡
∗ 𝑣𝑝𝑡 + 𝑤𝑝𝑡

∗ 𝑤𝑝𝑡)𝑁𝑝𝑡𝑠
= 1 (3.9) 

where 𝑉𝑝𝑡 is equal to the approximate volume calculated using the COMSOL variable 𝑚𝑒𝑠ℎ𝑣𝑜𝑙, 

𝑁𝑝𝑡𝑠 is the number of extracted Gauss points, and 𝑢𝑝𝑡, 𝑣𝑝𝑡, and 𝑤𝑝𝑡 correspond to the 𝑥, 𝑦, and 𝑧 

deflection components of the eigenvector at each specific Gauss point. The Berry Connection is 

approximated as:     

𝐴𝑝(𝑘) = 𝑖 ∭ [(𝑢∗ 𝜕𝑢

𝜕𝑘𝑥
+ 𝑣∗ 𝜕𝑣

𝜕𝑘𝑥
+ 𝑤∗ 𝜕𝑤

𝜕𝑘𝑥
) 𝑖̂ + (𝑢∗ 𝜕𝑢

𝜕𝑘𝑦
+ 𝑣∗ 𝜕𝑣

𝜕𝑘𝑦
+ 𝑤∗ 𝜕𝑤

𝜕𝑘𝑦
) 𝑗̂] 𝑑𝑉

𝑉𝑈
≅

∑ 𝑉𝑝𝑡 [(𝑢𝑝𝑡
∗ 𝜕𝑢𝑝𝑡

𝜕𝑘𝑥
+ 𝑣𝑝𝑡

∗ 𝜕𝑣𝑝𝑡

𝜕𝑘𝑥
+ 𝑤𝑝𝑡

∗ 𝜕𝑤𝑝𝑡

𝜕𝑘𝑥
) 𝑖̂ + (𝑢𝑝𝑡

∗ 𝜕𝑢𝑝𝑡

𝜕𝑘𝑦
+ 𝑣𝑝𝑡

∗ 𝜕𝑣𝑝𝑡

𝜕𝑘𝑦
+ 𝑤𝑝𝑡

∗ 𝜕𝑤𝑝𝑡

𝜕𝑘𝑦
) 𝑗̂ ]  𝑁𝑝𝑡𝑠

= 𝐴𝑘𝑥
𝑖̂ +

𝐴𝑘𝑦
𝑗̂ (3.10)  

For the Type A lattice, 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐴

 = -0.06 and 𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐴

 = 0.06; while for the Type B lattice, 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐵

 

= 0.06 and 𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐵

 = -0.06. These values are less than the idealized value of 𝐶𝑣 = 0.5 (but still 

provide a form of topological protection [157,175]) due to the large magnitude of the symmetry 

breaking that is incurred when the lattice is switched from Type 0 to Type A/B. One method to 

increase these 𝐶𝑣 values would be to reduce the magnitude of the displacement that occurs when 

the bistable elements are switched by decreasing the initial apex height of the curved beams ℎ𝑎. 

For the 𝐶𝑣−𝑝 values reported here (where |𝐶𝑣−𝑝| = 0.06), the Berry curvature 𝐵𝑝(𝑘) used for 

calculations is shown in Fig 3.6, displaying localized 𝐵𝑝(𝑘) at the 𝐾 valley for the considered 

bands and configurations. As illustrated by the 𝐶𝑣−𝑝 values, 𝐵𝑝(𝑘) is equal and opposite for Type 

A (𝐵𝑝
𝑇𝑦𝑝𝑒 𝐴

, Fig 3.6a and Fig 3.6b) and Type B (𝐵𝑝
𝑇𝑦𝑝𝑒 𝐵

, Fig 3.6c and Fig 3.6d) lattices. The 

nontrivial and opposite values of 𝐶𝑣−𝑝 indicate that the bands contain a topological characteristic 

(in terms of the QVHE) and that a band inversion exists between the Type A and Type B lattices. 

This band inversion is visualized by observing the equal and opposite nature of the eigenvectors 

(i.e., mode shapes) evaluated at the 𝐾 point for bands 𝑝 = 1 and 𝑝 = 2 [see bottom of Fig 3.3b]. 

This band inversion, along with the associated 𝐶𝑣−𝑝 values, shows that the Type A and Type B 
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lattices are topologically distinct. By applying the bulk-boundary correspondence [86,91,228] to 

this 3D system, a topologically protected 2D surface state is predicted to exist at the interface 

between the topologically distinct Type A and Type B lattices.  

3.4 On-demand reconfigurable 2D topological surface states 

3.4.1 Supercell dispersion analysis 

To investigate the presence of topological surface states, a supercell is constructed from four 

Type A unit cells connected to four Type B unit cells at an interface (see schematics in Fig 3.7a, 

Fig 3.7b, and Fig 3.7c). The interface is categorized as Type I (blue surface in Fig 3.7b) or Type 

II (red surface in Fig 3.7c) depending on the switching configuration of the connected unit cells 

(B-A or A-B at the interface). Periodic and low-reflecting boundary conditions are applied to the 

supercell where indicated in the schematic (Fig 3.7a). The band structure for the supercell is 

numerically calculated for each configuration by varying the wave vector along the surface BZ 

projected onto the 𝑘𝑦−𝑠 − 𝑘𝑧−𝑠 plane (see one-half of the surface BZ in Fig 3.7a). A localization 

metric Λ is defined for each eigenmode to quantify the confinement of the total displacement 𝑑 =

√|𝑢|2 + |𝑣|2 + |𝑤|2 (where 𝑢, 𝑣, 𝑤 are displacements in the 𝑥, 𝑦, and 𝑧 directions, respectively) 

at the interface as Λ = ∭ 𝑑2
𝑉𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

 𝑑𝑉 ∭ 𝑑2
𝑉𝑆

𝑑𝑉⁄ , where 𝑉𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 is the total volume of the 

two unit cells connected at the interface and 𝑉𝑆 is the volume of the entire supercell. The supercell 

band structure is plotted in Fig 3.7d, with results from Type I and Type II configurations 

superimposed. Two interface states (red bands) are shown within the topological bandgap 

(highlighted by gray shading), one for each interface type. Representative mode shapes for the 

Type I (at �̃�, marked by the star at 3060 Hz) and Type II (at �̃�, marked by the square at 2950 Hz) 

interface states with highly localized displacement (Λ = 0.99) are displayed in Fig 3.7d. These 

interface modes are dominated by out-of-plane displacement 𝑤 (i.e., out-of-plane modes). To give 

a more comprehensive view of the topological states, the band structure is plotted for the entire 

projected surface BZ in Fig 3.7e (for a Type I interface) and Fig 3.7f (for a Type II interface). 

3.4.2 Full-scale numerical simulations of on-demand tunable 2D topological surface states  

Full-scale simulations are conducted to illustrate how these interface states can be activated to 

achieve adaptive topological wave propagation. A 3D metastructure is built from an 8x8x8 lattice 
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Fig 3.6.  Berry Curvature 𝐵𝑝(𝑘) for the Type A lattice: (a) band 1 (𝐵1
𝑇𝑦𝑝𝑒 𝐴

) and (b) band 2 (𝐵2
𝑇𝑦𝑝𝑒 𝐴

). 𝐵𝑝(𝑘) for the 

Type B lattice: (c) band 1 (𝐵1
𝑇𝑦𝑝𝑒 𝐵

) and (d) band 2 (𝐵2
𝑇𝑦𝑝𝑒 𝐵

). The colormaps indicate the magnitude of 𝐵𝑝(𝑘).   

of unit cells, and metastable switching is implemented to select three different paths for a Type I 

interface (straight line, 120° “sharp” corner, and zigzag, Configurations 1-3 in Fig 3.8a). A 

harmonic input with out-of-plane displacement is placed at the third and fourth layers of the 

metastructure (where marked by the black star in Fig 3.8a) and is chosen at a frequency (𝑓𝑒 = 2950 

Hz) that excites the Type I interface state. To minimize backscattering at the edges of the domain, 

low-reflecting boundary conditions are applied to the boundaries perpendicular to the 𝑥-𝑦 plane.  

FE simulations are performed to obtain the steady-state displacement (𝑑) fields. Results in Fig 

3.8b illustrate how displacement is localized at the 2D interfaces (surfaces) in Configurations 1-3, 

with confined wave propagation travelling along all eight layers (layers 1-8 are marked as L1-L8, 

this naming convention holds throughout this chapter). Furthermore, the path of the 2D topological 
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Fig 3.7. (a) Schematic of the supercell used for band structure calculations, with periodic and low-reflecting boundary 

conditions applied at the surfaces/directions that are indicated. Reciprocal space, where the light blue outline indicates 

one-half of the surface BZ projected onto the 𝑘𝑦−𝑠 − 𝑘𝑧−𝑠 plane. Schematics for the proposed EM for a supercell with 

a (b) Type I and (c) Type II interfaces. (d) Band structure for supercells (both Type I and Type II interface 

configurations are superimposed). Topological bandgap is marked by gray shading. Colormap indicates confinement 

of mode displacement at the interface, with red indicating interface modes (𝛬 ≈1) and black indicating bulk modes (if 

outside topological bandgap and 𝛬 < 1) or boundary modes (if inside topological bandgap and 𝛬 ≈ 0). Mode shapes 

for Type I (purple star) and Type II (purple square) interfaces are at the bottom. (e) Band structure for the entire 

projected surface BZ for the supercell with a Type I interface. (f) Band structure for the entire projected surface BZ 

for the supercell with a Type II interface. 
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Fig 3.8. (a) 3D metastructure built from 8x8x8 unit cells and a schematic of three waveguide configurations used for 

full-scale modeling, where the input is marked by a black star. (b) Reconfigurable topological wave propagation 

illustrated by steady-state displacements for Configurations 1-3. Independent layer responses are marked by L1-L8, 

with L1 being the bottom layer. 

surface state is reconfigured by the strategic switching of metastable states (Fig 3.8a and Fig 3.8b), 

demonstrating on-line tunability of elastic waveguides in the 3D topological EM. Layer-polarized 

topological states 
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3.5 Layer-polarized topological states  

The flexibility of the proposed EM is used to investigate additional topological states that 

exploit the layer DOF available in 3D periodic systems. A topological state with layer-polarized 

behavior is constructed by using a band folding methodology (to create layer pseudospin 

[121,131,246,247]) that involves stacking two unit cells in the 𝑧 direction to form a bilayer unit 

cell (Fig 3.9). The same techniques employed to analyze the 2D topological surface states in 

Sections 3.3 (unit cell dispersion analysis) and 3.4.1 (supercell dispersion analysis) are employed 

to investigate the layer-polarized topological states (see Sections 3.5.1 and 3.5.2, respectively). 

Layer-polarized topological wave propagation is then shown using numerical simulations of a full-

scale 3D metastructure (Section 3.5.3).   

3.5.1 Unit cell dispersion analysis for layer-polarized topological states  

Two unit cells with a Type 0 switching configuration (see the definition of Type 0 

configuration in Section 3.3, Fig 3.3a) are stacked in the 𝑧 direction to form a “bilayer” unit cell 

(Fig 3.9a). This creates a band folding effect, where the two bands that form the Dirac degeneracy 

for the monolayer unit cell in Section 3.3 (see Dirac degeneracy in Fig 3.3c) are folded into four 

bands [247] that create a nodal ring along the 𝐾-𝐻 line of symmetry (enclosed in orange box in 

Fig 3.9a). This nodal ring narrows as the wave vector is varied away from 𝐾 to form a four-fold 

Dirac degeneracy at 𝐻. For a full picture of the degeneracy, the band structure is projected over 

the 𝑘𝑥 − 𝑘𝑦 and 𝑘𝑦 − 𝑘𝑧 planes near 𝐻. The 𝑘𝑥 − 𝑘𝑦 projection reveals a double Dirac cone (Fig 

3.9c left, Dirac point is orange dot), and the 𝑘𝑦 − 𝑘𝑧 projection shows the four-fold Dirac 

degeneracy at the 𝐻 point (Fig 3.9c right, orange dot). This four-fold Dirac degeneracy is protected 

by 𝐷6ℎ symmetry, where both in-plane (referring to the 𝑥-𝑦 plane) SIS and out-of-plane (referring 

to the 𝑧 direction) mirror symmetry are intact. To break this degeneracy and obtain a topological 

bandgap, two bilayer switching configurations (denoted as Type C and Type D) made up of one 

Type A monolayer and one Type B monolayer are devised (see schematics in Fig 3.9b and Fig 

3.9e). Both Type C and Type D configurations contain glide symmetry. In these switching 

configurations, the 𝐷6ℎ symmetry has been reduced to 𝐷3 symmetry, where both in-plane SIS and 

out-of-plane mirror symmetry are broken. As seen in the Type C/Type D band structure (the band 

structure is identical for both configurations, see Fig 3.9b and Fig 3.9d), two two-fold degenerate 

states are formed that border a full topological bandgap (marked with gray shading). These two- 
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Fig 3.9. (a) Schematic of the bilayer unit cell comprised of two Type 0 monolayer unit cells stacked in the 𝑧 direction. 

Band structure for this configuration is shown below, with a four-fold Dirac degeneracy at 𝐻 enclosed in an orange 

box. The projection of the band structure over the 𝑘𝑥 − 𝑘𝑦 and 𝑘𝑦 − 𝑘𝑧 planes near 𝐻 is shown in (c). (b) Schematic 

for the bilayer unit cell in the Type D switching configuration (Type A over Type B). Band structure for the 3D EM 

in Type C or D configuration (identical for both) is shown below. The full topological bandgap is marked by gray 

shading. The projection of the band structure over the 𝑘𝑥 − 𝑘𝑦  and 𝑘𝑦 − 𝑘𝑧 planes near 𝐻 is shown in (d). (e) Diagram 

of the Type C (left) and Type D (right) bilayer unit cell switching configurations. Below are mode shapes at the 𝐻 

point for the bands that border the bandgap (as marked in (b) by ■ and ▲), indicating a band inversion between the 

Type C and Type D lattices. 

fold degenerate states are used to create layer pseudospins that can be harnessed to obtain layer-

polarized behavior [100,246,247].  
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The topological nature of the full bandgap described in Fig 3.9b is investigated by examining 

the topology of the doubly degenerate bands that border it. The valley Chern numbers 𝐶𝑣−𝑝 (where 

𝑝 indicates the band number) for the two bands that border the bandgap from below (as marked by 

the ▲ in Fig 3.9b) are calculated as described in Section 3.3.2 (see Eqs. 3.6-3.10). To properly 

obtain the pseudospin-valley Chern number 𝐶𝑠𝑣
𝐿   [247,248], the valley Chern numbers are 

calculated at 𝐻 (𝐶𝐻−1 and 𝐶𝐻−2) and 𝐻′ (𝐶𝐻′−1 and 𝐶𝐻′−2). The layer-polarized topological 

invariant 𝐶𝑠𝑣
𝐿  is calculated as [247,248]:  

𝐶𝑠𝑣
𝐿 = (𝐶𝐻−2 − 𝐶𝐻′−2 − 𝐶𝐻−1 + 𝐶𝐻′−1) 2⁄ (3.11) 

For a Type D lattice, 𝐶𝑠𝑣
𝐿  = -0.14 (see the 𝐵

𝐻/𝐻′−𝑝

𝑇𝑦𝑝𝑒 𝐷
 used for these calculations in Fig 3.10), 

whereas for a Type C lattice, 𝐶𝑠𝑣
𝐿  = 0.14. These nontrivial 𝐶𝑠𝑣

𝐿  values indicate a pseudospin-derived 

and layer-polarized topological characteristic. In addition, the equal and opposite nature of 𝐶𝑠𝑣
𝐿  for 

the Type C and Type D lattices indicates that these lattice configurations are topologically distinct 

and that a band inversion exists between them (this band inversion can be visualized by observing 

the inverted Type C and Type D eigenvectors in Fig 3.9e). Two layer-polarized topological states 

with opposite group velocities are predicted to exist at an interface between the Type C and Type 

D lattice types [100,247].   

3.5.2 Supercell dispersion analysis for layer-polarized topological states 

Type C and Type D lattices are connected at an interface in a supercell constructed from eight 

bilayer unit cells (see a detailed schematic in Fig 3.11a). The interface, identified here as a “Type 

III-1” interface, is comprised of a Type II interface on the lower layer (“L1”) and a Type I interface 

on the upper layer (“L2”). Calculation of the band structure (Fig 3.11b) reveals two layer-polarized 

topological interface states that emerge in the topological bandgap (the two localized interface 

states are the red bands that cross into the topological bandgap, which is represented by gray 

shading). To illustrate the layer-polarized (i.e., layer-dependent) behavior, eigenvectors (mode 

shapes) extracted from each of the two topological states are shown in Fig 3.11c. Each of the two 

modes has displacement that is confined at the interface on one of the two supercell layers (L2 for 

the mode calculated at 2937 Hz, L1 for the mode calculated at 3064 Hz). Aligning with the 

interface geometry, these mode shapes can be described as having a Type I interface state on the 

top layer (for the 2937 Hz mode) or a Type II interface state on the bottom layer (for the 3064 Hz  
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Fig 3.10. (a) Berry Curvature 𝐵𝑝(𝑘) for the Type D lattice: (a) band 1 near 𝐻 (𝐵𝐻−1
𝑇𝑦𝑝𝑒 𝐷

), (b) band 2 near 𝐻 (𝐵𝐻−2
𝑇𝑦𝑝𝑒 𝐷

), 

(c) band 1 near 𝐻′ (𝐵
𝐻′−1

𝑇𝑦𝑝𝑒 𝐷
), (b) band 2 near 𝐻′ (𝐵

𝐻′−2

𝑇𝑦𝑝𝑒 𝐷
). The colormaps indicate the magnitude of 𝐵𝑝(𝑘).   

mode). 

In addition to the Type III-1 interface, metastable switching can be used to adjust the supercell 

such that a “Type III-2” interface is created. A supercell with a Type III-2 interface is the reflection 

of a supercell with a Type III-1 interface in the 𝑧 direction (see schematic in Fig 3.11a). Thus, the 

Type III-2 interface consists of a Type I interface on the lower layer (L1) and a Type II interface 

on the upper layer (L2). The band structure is identical to that of a Type III-1 interface (Fig 3.11b), 

but the layer polarizations (the layer polarizations for Type III-1 supercell are shown in Fig 3.11c) 

are interchanged.  
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Fig 3.11. (a) Schematic of the bilayer supercell in metastable switching configurations with a Type III-1 (top) or Type 

III-2 (bottom) interface. (b) Band structure for the proposed EM for a supercell with a Type III-1 interface (note: Type 

III-2 band structure is identical). The colormap indicates the mode localization with metric 𝛬. Red modes are localized 

to the interface (𝛬 ≈ 1), while black modes are bulk modes (if outside topological bandgap and 𝛬 < 1) or boundary 

modes (if inside topological bandgap and 𝛬 ≈0). Representative mode shapes for the topological interface states (at 

�̃�) are shown in (c). (d) 3D metastructure built from 8x8x9 unit cells and a schematic of the waveguide configuration 

used for full-scale modeling, where the input is marked by a black star. (e) Layer-polarized topological wave 

propagation illustrated by steady-state displacement that is confined to four specific layers (outlined with dashed black 

lines). Independent layer responses are marked by L1-L9, with L1 being the bottom layer. 

3.5.3 Full-scale numerical simulations for layer-polarized topological wave propagation in a 3D 

metastructure 

Full-scale simulations are conducted to illustrate how the layer-polarized interface states can 

be activated to achieve layer-dependent topological wave propagation. A 3D metastructure is built 

from an 8x8x9 pattern of unit cells, and metastable switching is implemented to create a Type III-

1 interface (Fig 3.11d). For this interface configuration, a harmonic input is placed at the eighth 

layer (L8) of the metastructure (where marked by the black star in Fig 3.11d) and is chosen at a 

frequency (𝑓𝑒 = 2915 Hz) that excites the lower frequency interface state from Fig 3.11c. To 
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minimize backscattering at the edges of the domain, low-reflecting boundary conditions are 

applied to the boundaries perpendicular to the 𝑥-𝑦 plane. FE simulations are performed to obtain 

the steady-state displacement (𝑑) field. Results in Fig. 11e illustrate how displacement is localized 

along the L2, L4, L6, and L8 layers, with minimal wave transmission on L1, L3, L5, L7, and L9. 

Thus, metastable switching can be used in the proposed 3D EM to achieve layer-dependent 

topological wave transmission. 

3.6 Bilayer-locked topological states 

The layer-polarized states are used as building blocks to create a novel bilayer-locked 

topological state. A supercell composed of an eight-layer stack (8x1x8 unit cells) is constructed 

by placing four layers with a Type III-2 interface on top of four layers with a Type III-1 interface, 

creating a Type IV interface parallel to the �̅�-s -�̅�-s plane (Fig 3.12a). Periodic boundary conditions 

are applied in the �̅�-s direction and the band structure of the supercell is evaluated, revealing eight 

interface states in the topological bandgap (bandgap is shaded in gray, interface bands are red in 

Fig 3.12a), an identical number to the number of layers (eight) in the stack (see Appendix B.1 for 

a full description of the eight topological states). Six of these interface states are defined as 

“monolayer” states, where modal displacement is confined to one specific layer (see two examples 

of monolayer interface states on L2 and L7 in Fig 3.12a). The remaining two interface states 

contain localized displacement at the two layers (L4 and L5) bordering the Type IV interface, 

forming “bilayer-locked” states (see an example of a bilayer-locked state in Fig 3.12a). These 

bilayer-locked states arise due to the coupling of two layer-polarized topological interface states 

on adjacent layers of the mechanical structure (the example in Fig 3.12a is formed from adjacent 

Type I interface states that are embedded into layer-polarized lattices). The 3D metastructure in 

Fig 3.8 is reconfigured to support bilayer-locked states, with dynamic response for a 2950 Hz 

excitation that is positioned on L4 and L5 shown in Fig 3.12b. Note that topological wave 

propagation is confined to reconfigurable waveguides in two specifically targeted layers (L4 and 

L5) of the eight-layer structure, illuminating a new capability for 3D mechanical systems. 

Comprehensive diagrams of the 3D metastructure with a tunable bilayer-locked state are found in 

Appendix B.1. 
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Fig 3.12. (a) Schematic (isometric and front views) of an eight-layer stack supercell, consisting of a four-layer Type 

III-2 interface stacked onto a four-layer Type III-1 interface, creating a Type IV interface. Band structure for the 

supercell with bilayer-locked and monolayer modes. Topological bandgap is marked by gray shading. Colormap 

indicates confinement of mode displacement at the interface, with red indicating interface modes (𝛬 ≈1) and black 

indicating bulk modes (if outside topological bandgap and 𝛬 < 1) or boundary modes (if inside topological bandgap 

and 𝛬 ≈ 0). Two bilayer-locked modes and six monolayer modes exist within the topological bandgap. One example 

of a bilayer-locked mode and two examples of monolayer modes are displayed to the right of the band structure. (b) 

Adaptive topological wave propagation of bilayer-locked state in 3D metastructure (straight line and sharp corner), 

calculated from full-scale numerical simulations. 

3.7 Advanced 3D elastic wave networks 

The exceptional features of the topological states obtained with the proposed EM are integrated 

together to create advanced 3D topological wave networks. An elastic wave layer converter is 

constructed in a 3D metastructure comprised of 8x12x8 unit cells with sections defined as S1, S2, 

and S3 to delineate different metastable switching configurations (Fig 3.13a). S1 contains a 

harmonic excitation at L2 and L3 and a Type I interface on L1-L4, S2 contains a Type I interface 

on L1-L8, and S3 contains a Type I interface on L5-L8 (see Fig 3.13a for a schematic, where Type 

I interfaces are marked with blue surfaces). Type II interfaces exist at the boundaries of S1-S2 and 

S2-S3 in L5-L8 and L1-L4, respectively (red surfaces, Fig 3.13a). By selecting an excitation 

frequency (𝑓𝑒 = 2920 Hz) that solely activates the Type I topological surface state (Fig 3.7b), wave 

energy is converted from the bottom four layers to the top four layers as it passes in a straight line 

from S1 to S3 (see “Layer Conversion” steady-state displacement in Fig 3.13a). If the excitation 

frequency is chosen such that both Type I and Type II interface states are activated (𝑓𝑒 = 3020 Hz), 

a wave splitting behavior is generated in addition to the layer conversion, and a portion of the wave 

energy is diverted (along the Type II interfaces) from the original straight-line interface (see “Wave 
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Splitting” in Fig 3.13a). These findings, along with other network functionalities shown in 

Appendix B.2, reveal how frequency-dependent wave splitting behavior can be obtained from 2D 

topological states in 3D structures.  

 The 3D metastructure in Fig 3.13a is reconfigured to support topological surface states and 

bilayer-locked states arranged into a “wave-focusing gate.” In this setup, S1 and S3 contain a Type 

I interface on L1-L8, S2 contains the switching configuration required for a bilayer-locked state 

(Fig 3.12a), and various monolayer Type I and Type II interfaces exist at the borders of S1-S2 and 

S2-S3 (see schematic in Fig 3.13b). If an input frequency is selected such that both the Type I 

interface and bilayer-locked states are excited (𝑓𝑒 = 2950 Hz), wave energy passes from L1-L8 in 

S1 though a “funnel” that focuses energy on L4-L5 of S2 to L1-L8 on S3 (“ON” in Fig 3.13b). For 

an input frequency that is outside of the range for the bilayer-locked state (but still activates the 

Type I interface state, 𝑓𝑒 = 3000 Hz), the wave can no longer propagate through S2, turning “OFF” 

the flow of wave energy and trapping it in S1 (“OFF” in Fig 3.13b). More complicated layer-

dependent transport can be achieved by selecting a frequency that excites various interface states 

(see Appendix B.2). The results indicate that the bilayer-locked state can be interfaced with other 

topological states to control elastic waves in exotic ways.  

3.8  Conclusions and discussion  

The research presented in this chapter advances the state of the art through the development of 

a metastable EM that enables tunable topological wave control in a 3D mechanical structure. A 

comprehensive design methodology is established by investigating the critical features of bistable 

curved beam dimensions, interlayer coupling (i.e., the stiffness of the interconnecting rods, 𝐸𝑟), 

and locally resonant mass ratio 𝑚𝑟𝑎𝑡𝑖𝑜. Several metastable switching methodologies are generated 

to manipulate the spatial path of wave propagation on-demand and select between three topological 

states (2D surface, layer-polarized, and bilayer-locked). By harnessing the reconfigurability of the 

EM, the bilayer-locked topological state is uncovered, where elastic wave energy is trapped in two 

targeted layers of a multilayered structure. Programmable 3D topological wave networks that 

partition, divert, and focus energy in a layer- and frequency-dependent fashion are created, 

exploiting the added dimensionality and the multitude of topological states present in the 3D 

structure to extend beyond the capabilities of 2D elastic wave networks [115,155,241]. Overall, 

the research outcomes presented in this chapter will pave the way for the future development of 
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Fig 3.13. (a) Layer converter schematic and steady-state displacement (side view and layer views) for excitation 

located at the star. Type I interfaces are marked in blue and Type II interfaces are marked in red. Steady-state 

displacement results illustrate layer conversion (𝑓𝑒 = 2920 Hz) and wave splitting (𝑓𝑒 = 3020 Hz) behavior (b) Wave-

focusing gate schematic and steady-state displacement (side view and layer views) for excitation located at the star. 

Steady-state displacement results show a wave-focusing behavior that can act as a frequency-dependent ON/OFF gate. 

adaptive topological states in 3D mechanical [90–93] systems and inspire further studies in the 

adjacent fields of topological photonics [99,100] and acoustics [91,97,98]. The exceptional ability 

of the proposed EM to control the flow of energy in 3D structures may find application in the 

future development of logic elements, splitters, and filters for artificial mechanical structures that 

contain intrinsic “intelligence” [12,249,250] and enable enhanced performance in contemporary 

engineering applications such as vibration mitigation [104], energy harvesting [105,106,251], and 

on-chip transduction [27,109,110,252].  
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Note: The reused content (text, figures, and tables) in Chapter 3 and Appendix B is reproduced 

from [253] with written permission from the publisher.
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Chapter 4. 3D Multimodal Locally Resonant Metamaterial 

The outcomes from the theoretical investigation reported in Chapter 3 include the discovery of 

innovative wave control capabilities that are unlocked by the added dimensionality available in 3D 

TMs. These outcomes point toward a promising potential for manipulating elastic waves using 3D 

TMs. Chapter 4 delves deeper into this potential and expands upon the insights gleaned from 

Chapter 3 through the investigation of a novel 3D TM that achieves additional 3D elastic wave 

control behaviors and is experimentally realized and tested. In Chapter 4, we advance the state of 

the art through the synthesis and experimental realization of a first-order 3D TM that exploits 

multimodal local resonance to enable low-frequency (i.e., few Hz to 20 kHz) elastic wave control 

over multiple distinct frequency bands. The proposed 3D TM is geometrically configured to create 

multimodal local resonators whose frequency characteristics govern the emergence of four unique 

low-frequency topological states. Numerical simulations uncover how these topological states can 

be employed to achieve polarization-, frequency-, and layer-dependent wave manipulation in 3D 

mechanical structures. An experimental study results in the attainment of complete wave fields 

that illustrate 2D topological waveguides and multi-polarized wave control in a physical testbed. 

The outcomes from this chapter provide insight that will aid future research on 3D TMs and reveal 

the applicability of the proposed metamaterial for wave control applications. 

4.1 Introduction  

While 3D TMs have exhibited the potential to surpass what is possible in 1D and 2D TMs, 

research gaps exist that inhibit their successful implementation in practice. Despite numerous 

theoretical studies [26,75,184,187,188,253], there is very little experimental evidence of elastic 

wave control in 3D TMs [131], due to the challenges associated with the fabrication and testing of 

intricate 3D mechanical architectures. Furthermore, despite previous studies demonstrating 

multiband operation in 2D TMs [254–259], the 3D TMs established thus far are constrained to 

function in a single frequency band. This single-band characteristic limits the working bandwidth 

and information-carrying capacity of 3D TMs, reducing their suitability for multiband wave-based 

applications such as lasers [209], filters [210], resonators [211], on-chip circuits [212], isolators 
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[213,214], and wireless networks [260]. Finally, the previously developed 3D TMs largely 

function in a high-frequency regime (i.e., the ultrasonic range: 20 kHz to ~1 GHz), resulting in a 

lack of 3D mechanical platforms that accomplish low-frequency topological wave manipulation.   

This research addresses the aforementioned gaps and advances the state of the art through the 

synthesis and experimental realization of a novel 3D TM that harnesses multimodal local 

resonance for low-frequency and multiband elastic wave control. The geometry of the proposed 

TM is configured to obtain four distinct low-frequency (<6 kHz) topological states derived from 

multimodal local resonances that can be tailored without changing the lattice constant. Rich 

polarization-dependent behavior is encoded into the metamaterial by taking advantage of the 

multiple unique polarizations of the resonant topological modes. Dispersion analyses and full-scale 

response simulations illustrate how these topological states emerge through the QVHE and can be 

exploited to obtain frequency- and layer-dependent elastic waveguides in 3D structures. Moreover, 

a comprehensive experimental investigation validates the theoretical predictions and produces the 

first measurements of complete elastic wave fields and multi-polarized elastic waveguides in a 3D 

TM. The findings presented within this chapter establish a foundation for further experimental 

research on 3D TMs and illuminate the multifaceted features of the proposed metamaterial that 

would be valuable for vibration engineering applications. 

4.2 Concept and theoretical model 

The proposed TM is a 3D periodic structure with aluminum interconnecting rods (for 

interconnection in the 𝑧 direction, with radius 𝑟𝑟 = 0.93 mm, 𝐸𝑟 = 69 GPa, 𝜌𝑟 = 2700 kg⸱m-3, 𝜈𝑟 = 

0.33) and two resonators in the unit cell (Fig 4.1a,b). The schematic for the unit cell is given in Fig 

4.1b, where 𝑎 = 50 mm is the in-plane (𝑥-𝑦) lattice constant, ℎ𝑜 = 25 mm is the out-of-plane (𝑧) 

lattice constant, and �⃑�1 = 𝑎�̂�, �⃑�2 = 𝑎(1/2�̂� + √3/2�̂�), and �⃑�3 = ℎ𝑜�̂� are the lattice basis vectors. 

The resonators are created using cylindrical steel masses (𝐸𝑚 = 200 GPa, 𝜌𝑚 = 8000 kg⸱m-3, 𝜈𝑚 = 

0.30) of radius 𝑟𝑚 = 7.0 mm and baseline height ℎ𝑚 = 14.3 mm that are attached to aluminum 

spring ligaments (𝐸𝑙 = 69 GPa, 𝜌𝑙 = 2700 kg⸱m-3, 𝜈𝑙 = 0.33) of height ℎ𝑙 = 1.5 mm and width 𝑤𝑙1,𝑙2 

= 1.5 mm through a circular (𝑟𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 = 𝑟𝑚 = 7.0 mm) aluminum platform. Each resonator mass 

is comprised of two sub-masses that have heights defined as ℎ𝑚1 =
ℎ𝑚

2
(1 − 𝛼) and ℎ𝑚2 =

ℎ𝑚

2
(1 + 𝛼), where 𝛼 is the mass height perturbation parameter.  
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The local resonance phenomenon, which enables wave control near the natural frequencies of 

the resonators [60], is exploited to obtain multiband and low-frequency wave dispersion 

characteristics through the design of the resonant elements. A reticular (i.e., mesh-like) lattice 

geometry is created from the spring ligaments and steel is selected as the material for the resonant 

masses to obtain a large mass ratio 𝛾 =
𝑚𝑚

𝑚𝑙+𝑚𝑟 
 within a reasonable volumetric envelope, where 

𝑚𝑚 is the cumulative mass of the steel masses, 𝑚𝑙 is the cumulative mass of the aluminum 

ligaments, and 𝑚𝑟 is the cumulative mass of the aluminum interconnecting rods. A mass ratio 

value that is greater than unity (𝛾 = 13.9 with the baseline design parameters) is deliberately 

attained to ensure that the resonant masses provide a significant impact on the dynamic response 

of the proposed metamaterial. Previous works have shown that the magnitude of the mass ratio, 

which governs the relative influence of the resonant elements on the system response, plays a 

crucial role for achieving broad low-frequency bandgaps [60,61] and effective topological wave 

propagation [83,261] in locally resonant mechanical metamaterials. Furthermore, previous 

research has revealed that multimodal resonances can be harnesses to create multiple low-

frequency bandgaps in mechanical metamaterials [214,262,263]. In the proposed 3D TM, the large 

mass ratio and relative compliance of the mesh-like aluminum lattice structure facilitate the 

achievement of multiple low-frequency out-of-plane and in-plane translational and torsional 

resonances. This rich set of resonances opens opportunities for multi-polarized and multiband 

response in a low-frequency regime.  

The interconnecting rods create a structural coupling between the 2D layers that contain the 

mass-spring resonators (Fig 4.1a,b), providing a mechanism for elastic waves to propagate along 

the z-direction in the 3D structure. The geometry and material properties of the interconnecting 

rods may be used to modify the wave propagation characteristics of the metamaterial. The 

metamaterial lattice is arranged into a honeycomb pattern in the 𝑥-𝑦 plane such that it contains 

𝐷6ℎ lattice symmetry (see the top view in the lower panel of Fig 4.1a), which is used to acquire 

nontrivial topological features through the QVHE [151–153,163]. A detailed numerical analysis 

of the design considerations outlined in this section is provided in Section 4.3. 

4.3 Unit cell dispersion and multimodal resonance effect 

The wave dispersion characteristics of the unit cell are analyzed first to investigate the 

topological characteristics and unique wave propagation features of the proposed metamaterial. 
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As shown in Fig 4.1c, a unit cell with equivalent mass heights (𝛼 = 0) is designated as a Type 0 

lattice. The band structure is calculated using the commercial FE solver COMSOL Multiphysics 

(see Appendix C.1 for further details on the simulation methods). The 𝐷6ℎ symmetry present in 

the Type 0 lattice leads to four distinct Dirac nodal line degeneracies appearing along the K-H line 

in the band structure across a wide frequency range (Fig 4.1c) [86,91,151]. These Dirac 

degeneracies are labeled as D1, D2, D3, and D4 in order of lowest to highest frequency, 𝑓𝑑−𝐷1 = 

0.37 kHz, 𝑓𝑑−𝐷2 = 1.41 kHz, 𝑓𝑑−𝐷3 = 3.66 kHz, and 𝑓𝑑−𝐷4 = 4.76 kHz, which is computed at the 

midpoint of the K-H line. A polarization parameter Π =
∭ |𝑤|2

𝑉𝑈
𝑑𝑉

∭ |𝑢|2+|𝑣|2+|𝑤|2
𝑉𝑈

𝑑𝑉
 is defined and 

measured for each mode in the band structure, where 𝑉𝑈 is the volume of the unit cell, and 𝑢, 𝑣, 

and 𝑤 are the displacement components in the 𝑥, 𝑦, and 𝑧 directions, respectively. The Dirac 

degeneracies in Fig 4.1c each contain different polarizations, with D1 being predominantly out-

of-plane polarized (Π≈1, yellow in Fig 4.1c), D2 having a hybrid polarization (Π=0.5, green in Fig 

4.1c), and D3/D4 containing in-plane polarized displacements (Π≈0, blue in Fig 4.1c). To follow 

the requirements of the QVHE [151–153,163], the 𝐷6ℎ symmetry is reduced to 𝐷3ℎ symmetry by 

perturbing the mass heights from the baseline configuration (𝛼 ≠ 0). The lattice is designated as 

Type A for 𝛼 < 0 or Type B for 𝛼 > 0 (Fig 4.1d). Calculation of the band structure for the cases of 

𝛼 = ±0.11 reveals that this reduction in symmetry splits the Dirac degeneracies and leads to 

bandgaps opening along the K-H line (Fig 4.1d, note that the Type A and Type B band structures 

are superimposed, as they are identical for |𝛼| = 0.11). For the case of |𝛼| = 0.11, partial bandgaps 

are obtained from the Dirac degeneracies D2, D3, and D4 that cover the frequency ranges of 𝑓 = 

1.3 to 1.5 kHz, 𝑓 = 3.5 to 3.8 kHz, and 𝑓 = 4.5 to 5.1 kHz, respectively. The split D2, D3, and D4 

degeneracies and the frequency ranges of the partial bandgaps that are opened from them are 

represented with gray shading in Fig 4.1d. A partial bandgap may also be opened from D1 if the 

mass perturbation |𝛼| is increased further (see the evolution of all four bandgaps with respect to 

|𝛼| and a D1 topological state for |𝛼| = 0.40 in Appendix C.2). While the bandgaps are incomplete 

(i.e., they do not cover the entire B of reciprocal space), previous works have demonstrated that 

complete bandgaps are not strictly required for effective topological wave control using the QVHE 

[156,173,235], so long as there is no coupling between the non-topological bands that cross 

through the partial bandgaps and the topological bands of interest. Further discussion clarifying 
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why the partial nature of the bandgaps does not inhibit the construction of topological waveguides 

in the proposed metamaterial is included in later sections.    

The topological nature of the D2, D3, and D4 bandgaps is evaluated by computing the valley 

Chern number 𝐶𝑣−𝑝 =
1

2𝜋
∬ 𝐵𝑝(𝑘)𝑑2𝑘

𝑣
 for the bands bordering each bandgap, where 𝐵𝑝(𝑘) is the 

Berry curvature, 𝑝 = 1 refers to the band delineating the low-frequency bandgap boundary, and 𝑝 

= 2 refers to the band delineating the high-frequency bandgap boundary (see Appendix C.3 for 

more details on the 𝐶𝑣−𝑝 calculations). The resulting 𝐶𝑣−𝑝 are 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐴

 = 0.11, 𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐴

 = -0.09, 

𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐵

 = -0.11, 𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐵

 = 0.09 for the D2 bandgap; 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐴

 = -0.14, 𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐴

 = 0.17, 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐵

 = 

0.15, 𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐵

 = -0.18 for the D3 bandgap; and 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐴

 = 0.25, 𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐴

 = -0.30, 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐵

 = -0.26, 

𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐵

 = 0.30 for the D4 bandgap. The nonzero 𝐶𝑣−𝑝 values reveal the topological characteristic 

for each bandgap, while the equal and inverted 𝐶𝑣−𝑝 calculated for the Type A and Type B 

configurations indicate that they are topologically distinct. These nontrivial 𝐶𝑣−𝑝 magnitudes 

confirm that topological protection is present in the metamaterial. However, they are less than the 

idealized |𝐶𝑣−𝑝| = 0.5 due to the large amplitude of the perturbation to the mass height 

[157,175,229,235]. Previous research has shown that a 0 <|𝐶𝑣−𝑝| < 0.5 does endow a sufficient 

level of topological protection for wave propagation and indicates that the amplitude of the mass 

perturbation |𝛼| could be reduced to increase |𝐶𝑣−𝑝| if necessary [157,175,229,235]. While 

calculations shown in Appendix C.2 demonstrate that the bandgaps could be further broadened by 

increasing |𝛼|, |𝛼| = 0.11 is selected for the presented results to conserve the calculated |𝐶𝑣−𝑝| 

values. In practice, the tradeoff between bandgap width and |𝐶𝑣−𝑝| must be considered when 

specifying |𝛼|. 

Further analysis of the unit cell dispersion uncovers the multimodal resonant characteristic of 

the proposed 3D metamaterial and elucidates how this feature enables low-frequency topological 

bandgaps over multiple frequency bands. The mode shapes for the bands bordering each of the 

four topological bandgaps in the |𝛼|=0.11 case are shown in Fig 4.1e. All of these mode shapes 

contain displacement that is largely confined to the resonator masses, a distinguishing 

characteristic of the local resonance mechanism for bandgap formation [60,177]. Furthermore, 

each set of modes displays a distinct resonant behavior: out-of-plane translational for D1 (Π≈1), 

hybrid torsional for D2 (Π=0.6), in-plane torsional for D3 (Π≈0), and in-plane translational for D4 
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Fig 4.1. (a) A schematic of the 3D TM. (b) Isometric and top views of the metamaterial unit cell. (c) The band structure 

for the Type 0 lattice (𝛼 = 0). The four Dirac nodal line degeneracies are indicated by the dotted red boxes. The 

colorbar indicates the mode polarization quantified by the parameter 𝛱. (d) The band structure for the Type A/B (𝛼 = 

-0.11/0.11) lattices. The band structures for Type A and Type B lattices are identical and superimposed. The three 

split Dirac degeneracies are marked by gray shading. (e) The mode shapes (taken along 𝐾-𝐻) for the bands that border 

the four (D1, D2, D3, and D4) topological bandgaps in the |𝛼|=0.11 case, illustrating multimodal resonance.   

(Π≈0), illustrating how the engineered multimodal resonance of the proposed metamaterial is the 

source of the four distinct topological bandgaps (see Appendix C.4 for further details on these 

modes). 

A parameter study is conducted to study the influence of the multimodal resonator design on 

the Dirac degeneracies D1-D4 presented in Fig 4.1c for the 𝛼=0 case. Results from this parameter 

study (shown in Fig 4.2) illustrate how the respective frequencies 𝑓𝑑−𝐷1, 𝑓𝑑−𝐷2, 𝑓𝑑−𝐷3, and 𝑓𝑑−𝐷4 

of the four Dirac degeneracies can be tailored by adjusting the frequency characteristics of the 

resonators. Fig 4.2a reveals that the Dirac frequencies have an inverse relationship with the 

resonator mass, which is adjusted using the mass height parameter ℎ𝑚. By increasing the resonator 

mass height, the Dirac frequencies for D1-D4 can be dramatically reduced, and the four 

degeneracies can be spectrally separated from extraneous high-frequency modes that would make 
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it difficult to construct topological bandgaps (and furthermore, effective topological waveguides 

within those bandgaps). The lowest frequency of the extraneous modes is 6.5 kHz for all ℎ𝑚 (i.e., 

it is not effected by ℎ𝑚) and is marked by the horizontal dashed red line in Fig 4.2a. These modes 

are dominated by displacements of the outer aluminum ligaments (with width 𝑤𝑙2 in Fig 4.1b) and 

interconnecting rods that contain a hybrid polarization (Π≈0.65, see an example mode in the inset 

of Fig 4.2a), and are thus referred to as ligament/rod modes. For the given system parameters, a 

minimum mass height of ℎ𝑚 = 8.0 mm, (corresponding to a mass ratio of 𝛾 = 7.8) is required to 

ensure that all four 𝑓𝑑 are below the 6.5 kHz threshold. The mass height of ℎ𝑚 = 14.3 mm (marked 

by the vertical dashed black line in Fig 4.2a, corresponding to 𝛾 = 13.9) is selected in this study to 

ensure that the Dirac degeneracies, and thus the topological bandgaps that are opened from them, 

are well isolated from the ligament/rod modes. Further details on how interaction with the 

ligament/rod modes can inhibit the formation of topological bandgaps/waveguides and how these 

undesirable modes can be separated from the Dirac degeneracies are given in Appendix C.5. By 

employing the local resonance mechanism to isolate the Dirac dispersions in this way, the proposed 

metamaterial unclutters the intrinsically dense band structure of 3D EMs, which has often impeded 

low-frequency and multiband topological wave control in previous investigations.  

In contrast to the inverse relationship with the resonant mass, the Dirac frequencies exhibit a 

direct relationship to the stiffness of the resonator spring, which is modified through the ligament 

width 𝑤𝑙1 (Fig 4.2b). Notably, the 𝑓𝑑 for D3 (𝑓𝑑−𝐷3) is the most affected by increasing 𝑤𝑙1 from 

1 mm to 3 mm (168% increase in 𝑓𝑑−𝐷3, compared to 37% for 𝑓𝑑−𝐷1, 66% for 𝑓𝑑−𝐷2, and 77% for 

𝑓𝑑−𝐷4). This large shift in 𝑓𝑑−𝐷3 is due to the heightened sensitivity of the in-plane torsional mode 

to 𝑤𝑙1, compared to the other three sets of modes presented in Fig 4.1e. The cause of this greater 

sensitivity can be clarified by treating the spring ligaments as idealized cantilevered beams of 

length 𝐿𝑙. Under this assumption, the bending stiffness for the D1 mode is 𝑆𝐷1 =
3𝑤𝑙1ℎ𝑙

3

4𝐿𝑙
3  [264], 

while for D3 𝑆𝐷3 =
3ℎ𝑙𝑤𝑙1

3

4𝐿𝑙
3  [264], explaining the dramatically enhanced influence of 𝑤𝑙1 on the 

frequency 𝑓𝑑−𝐷3 of the D3 degeneracy when compared with 𝑓𝑑−𝐷1. These findings show how the 

unique stiffness mechanisms for each of the four resonant modes in the multimodal design can be 

exploited to tune the Dirac frequencies (and thus topological bandgap frequencies) for D1, D2, 

D3, and D4 relative to each other. In selecting a proper 𝑤𝑙1, care must be taken to ensure that all 

four Dirac degeneracies remain below the dashed red line in Fig 4.2b, which indicates the lower  
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Fig 4.2. Parameter study illustrating the effect of the (a) mass height ℎ𝑚 and (b) spring ligament width 𝑤𝑙1 on the 

Dirac nodal line frequency 𝑓𝑑, which is taken at the midpoint between 𝐾 and 𝐻 for each D1-D4 (𝑓𝑑−𝐷1, 𝑓𝑑−𝐷2, 𝑓𝑑−𝐷3, 

and 𝑓𝑑−𝐷4). All presented values are for the Type 0 lattice configuration (𝛼 = 0). The insets show the unit cell 

geometries for the minimum and maximum specified values of ℎ𝑚 and 𝑤𝑙1. The vertical dashed black lines indicate 

the specified ℎ𝑚 and 𝑤𝑙1 for all presented results in this chapter. The dashed red lines indicate the minimum frequency 

of the ligament/rod modes. 

frequency boundary of the ligament/rod modes. For the 𝑤𝑙1 = 1.5 mm chosen in this study 

(indicated by the vertical dashed black line in Fig 4.2b), the Dirac degeneracies 𝑓𝑑−𝐷1, 𝑓𝑑−𝐷2, 

𝑓𝑑−𝐷3, and 𝑓𝑑−𝐷4 are well removed from the ligament/rod modes. Apart from establishing the 

design considerations of the proposed metamaterial, the results of the presented unit cell parameter 

studies illuminate how the multimodal resonance of the 3D metamaterial enables topological 

bandgaps at low frequencies that can be controlled without needing to alter the lattice constants 𝑎 

or ℎ𝑜, a significant advantage for volume-constrained applications.  

4.4 Supercell analysis for 2D topological states 

To obtain 2D topological states, an eight-unit supercell is constructed that consists of four Type 

A unit cells connected to four Type B unit cells at a Type I interface (Fig 4.3a). Floquet periodic 

boundary conditions are applied along the 𝑦 − 𝑠 and 𝑧 − 𝑠 directions, while the left and right 

boundaries are left free. According to the bulk-boundary correspondence [86,91], 2D topological 

states with displacement localized at the interface (i.e., interface states) are expected to emerge 

within the topological bandgaps, since the Type A and Type B lattices are topologically distinct. 

The band structure for the supercell is calculated along the surface BZ projected onto the 𝑘𝑦−𝑠 −
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𝑘𝑧−𝑠 plane (Fig 4.3b,c). A localization parameter Λ𝑖 = ∭ 𝑑2
𝑉𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

 𝑑𝑉 ∭ 𝑑2
𝑉𝑆

𝑑𝑉⁄  (where 

𝑉𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 is the volume of the two unit cells at the interface and 𝑉𝑆 is the total volume of the 

supercell) is defined to measure the confinement of the total displacement 𝑑 =

√|𝑢|2 + |𝑣|2 + |𝑤|2 at the interface for each eigenmode. Thus, interface modes have Λ𝑖≈1 

(represented by the red bands in the band structure) and bulk modes have Λ𝑖≈0 (represented by the 

black bands in the band structure). As shown in Fig 4.3c, topological interface states emerge within 

the D2, D3, and D4 partial bandgaps, satisfying the bulk-boundary correspondence. Representative 

mode shapes for each topological interface state are shown at the bottom of Fig 4.3c, illustrating 

hybrid torsional (found over a frequency range of 1.3 to 1.5 kHz), in-plane torsional (3.6 to 3.8 

kHz), and in-plane translational (4.4 to 5.4 kHz) modes with displacement fields that match the 

unit cell resonant modes for D2, D3, and D4 displayed in Fig 4.1e. Similarly, a supercell is 

constructed from eight Type B unit cells, and the resulting band structure is shown in Fig 4.3d. 

The band structure for the Type B supercell is nearly identical to that of the supercell with the 

Type I interface. A localization parameter Λ𝑏 = ∭ 𝑑2
𝑉𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

 𝑑𝑉 ∭ 𝑑2
𝑉𝑆

𝑑𝑉⁄  (where 𝑉𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

is the volume of the unit cells at the two supercell boundaries) is defined to measure the modal 

displacement contained at the boundaries of the Type B supercell. Hybrid torsional, in-plane 

torsional, and in-plane translational topological states are uncovered with displacements that are 

trapped at the left boundary of the supercell (Λ𝑏≈1, Fig 4.3d). Similar observations of topological 

boundary states that emerge due to a topological transition at the boundary of a lattice are reported 

in several previous works and predicted by the bulk-boundary correspondence 

[86,91,133,167,173,235,236]. These topological boundary states emerge within the D2, D3, and 

D4 topological bandgaps and align with the frequency ranges for the interface states reported in 

Fig 4.3c. The findings gleaned from this supercell analysis reveal that the multimodal resonance 

of the proposed metamaterial facilitates the achievement of multiband topological interface and 

surface states. 

Further inspection of the band structures in Fig 4.3c,d reveals that there are bulk modes that 

cross through the gray D2, D3, and D4 partial bandgaps. While care must be taken to excite the 

D3 topological interface state without activating the coexisting bulk modes (e.g., by specifically 

exciting the structure at the location of maximum displacement amplitude for the D3 topological 

state, see Section 4.5), the bulk modes that cross through the D2 and D4 partial bandgaps near Γ̃ 
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contain polarizations that preclude unwanted interactions with the topological states (see more 

details in Appendix C.6). Another important feature of the supercell band structure is the sharp 

notch (with a steep slope) that is observed in the hybrid torsional (1.3 to 1.5 kHz) topological states 

for the −Z̃ − Γ̃ and Γ̃ − Z̃ directions. Since this steep slope (i.e., large group velocity) occurs near 

Γ̃ and the band is flat for the rest of the −Z̃ − Γ̃ − Z̃ wavenumber region, this indicates that the 

interconnecting rods undergo quasi-rigid body (or very long wavelength) motion that transmits 

wave energy along the 𝑧 direction (see Appendix Figure C.18). In contrast, the two in-plane 

topological states are flat (i.e., zero group velocity) and/or gapped for the entire −Z̃ − Γ̃ − Z̃  

 

Fig 4.3. (a) Schematic of an eight-unit supercell with a Type I interface indicated by the blue planar surface. (b) The 

reciprocal space, with one-half of the surface BZ projected onto the 𝑘𝑦−𝑠 − 𝑘𝑧−𝑠 plane outlined in light blue. (c) The 

band diagram for the supercell presented in (a). The red bands (𝛬𝑖≈1) are interface modes and the black bands (𝛬𝑖≈0) 

are bulk modes. Representative mode shapes for the hybrid torsional (purple star), in-plane torsional (purple circle), 

and in-plane translational (purple square) topological interface states are shown at the bottom. (d) The schematic and 

band diagram for a supercell comprised of eight Type B unit cells. The red bands (𝛬𝑏≈1) are boundary modes and the 

black bands (𝛬𝑏≈0) are bulk modes. Representative mode shapes for the topological boundary states are shown at the 

bottom. 
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wavenumber region, and thus do not transmit wave energy along 𝑧. As is shown and discussed in 

Appendix C.6, this dichotomy in 𝑧 direction transport behavior occurs because the hybrid torsional 

modes couple with the motion of the interconnecting rods, while the in-plane torsional and in-

plane translational resonant modes do not. This distinction in 𝑧 direction response for the three 

different topological states opens the door to polarization- and layer-dependent wave control 

functionality in full-scale 3D structures. 

4.5 Topological waveguides in full-scale 3D metastructures 

Full-scale FE simulations are conducted to investigate the elastic wave control capabilities of 

the metamaterial in finite 3D metastructures (a metastructure is defined in this chapter as a 

mechanical structure with finite boundary conditions that is created from the metamaterial). A 3D 

metastructure is constructed from an 8x8x6 tessellation of the metamaterial unit cell (Fig 4.4a). 

The four corners at the base of the metastructure are fixed and all other boundaries are left free. 

Two different elastic waveguides are created in the metastructure by specifying the distribution of 

Type A and Type B unit cells. The V-shaped waveguide (blue shading in the middle schematic in 

Fig 4.4a) is created from the topological boundary states, while the Z-shaped waveguide (blue 

shading in the right schematic in Fig 4.4a) is generated by connecting the topological boundary 

and interface states in series. A harmonic excitation is placed on all six metastructure layers (L1-

L6) at one end of the waveguide. The excitation polarization and frequency are selected to activate 

each of the three unique topological states: out-of-plane at 1.3 kHz for the hybrid torsional state, 

in-plane at 3.6 kHz for the in-plane torsional state, and in-plane at 4.9 kHz for the in-plane 

translational state. The resulting steady-state displacement fields (Fig 4.4b) reveal a dynamic 

vibration response that follows the designated 2D waveguides and is polarized according to the 

corresponding topological state (Π=0.6 for the hybrid torsional waveguides and Π≈0 for the in-

plane waveguides). The degree of waveguide localization, as quantified by 

Λ= ∭ 𝑑
𝑉𝑤𝑎𝑣𝑒𝑔𝑢𝑖𝑑𝑒

 𝑑𝑉 ∭ 𝑑
𝑉𝑎𝑙𝑙

𝑑𝑉⁄  (where 𝑉𝑤𝑎𝑣𝑒𝑔𝑢𝑖𝑑𝑒 is the volume of the waveguide region, as 

defined by the unit cells adjacent to the specified waveguide route, and 𝑉𝑎𝑙𝑙 is the volume of the 

entire 3D metastructure) varies for the three different topological states. At the given frequencies, 

the hybrid torsional waveguides both have Λ = 0.7, the in-plane torsional waveguides both have 

Λ= 0.6, and the in-plane translational waveguides have Λ = 0.4 and Λ = 0.5. These topological 

waveguides exhibit unconventional polarization- and frequency-dependent behaviors. For  
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Fig 4.4. (a) Schematic of a full-scale 3D metastructure constructed from an 8x8x6 pattern of the metamaterial unit cell 

(left) and illustrations of V-shaped (middle) and Z-shaped (right) waveguides. The distribution of Type A and Type 

B unit cells is denoted by the letters “A” and “B.” (b) Steady-state displacement fields illustrating waveguides for all-

layer (L1-L6) input excitations of 1.3 kHz (hybrid torsional), 3.6 kHz (in-plane torsional), and 4.9 kHz (in-plane 

translational). (c) Wave attenuation when an out-of-plane excitation is used in the frequency ranges of the in-plane 

topological states. (d) Steady-state displacement fields illustrating layer-locked waveguiding for two-layer (L1 and 

L4) input excitations of 1.4 kHz (hybrid torsional), 3.6 kHz (in-plane torsional), and 4.9 kHz (in-plane translational). 

For a two-layer input of 1.3 kHz, the hybrid torsional state exhibits wave transmission across all six layers. 

example, if an out-of-plane excitation is applied in the frequency range for an in-plane topological 

state, the wave is attenuated by the topological bandgap and will not propagate beyond the input 

location (Fig 4.4c). Moreover, if the input excitation is provided on layers 1 and 4 (L1 and L4) of 

the metastructure, the in-plane topological states display layer-locked wave propagation (Fig 4.4d). 

The dynamic response is locked to L1 and L4 and there is no transfer of wave energy along the 𝑧 

direction, which aligns with the supercell band structure for these two topological states. In the 

case of the hybrid torsional state, the waves propagate along all six layers for a two-layer input 

with a frequency of 1.3 kHz and undergo layer-locked transport if the two-layer input frequency 

is increased to 1.4 kHz (Fig 4.4d). This frequency-selective behavior is explained by examining 
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the supercell band structure, which predicts that the waves will propagate in the 𝑧 direction for 

1.28 to 1.33 kHz and exhibit more layer-locked behavior from 1.33 to 1.46 kHz due to the shape 

of the band over −Z̃ − Γ̃ − Z̃ (Fig 4.3c,d, see more detail in Appendix C.6). These results 

illuminate how the multimodal topological states of the 3D metamaterial can be harnessed for 

polarization-, frequency-, and layer-dependent wave control in finite 3D metastructures. As shown 

in Appendix C.7, this multimodal mechanism can also be exploited in a 2D TM, underscoring the 

generalizability of the proposed concept.  

4.6 Experimental realization 

An experimental investigation is undertaken to validate the theoretical predictions and 

implement the proposed 3D metamaterial in a practical setting. The experimental testbed is a 3D 

metastructure made up of a 4x4x4 tessellation of the Type B metamaterial unit cell (Fig 4.5a, see 

Appendix C.8 for a detailed description of the fabrication and experimental testing). A supercell 

analysis (for a four-unit supercell) reveals a topological boundary state with a hybrid torsional 

polarization that emerges in the frequency range of 1.3 to 1.5 kHz (Fig 4.5b). This boundary state 

is employed to design a V-shaped waveguide in the 3D metastructure, as indicated by the blue 

shading in the schematic located in the top right corner of Fig 4.5c. A periodic chirp vibration input 

with a bandwidth of 0 to 5 kHz is provided at the middle two layers (L2 and L3) of the 

metastructure where indicated in Fig 4.5c. The excitation is provided by a piezoelectric (lead 

zirconate titanate, or PZT) actuator pair that provides a harmonic bending displacement in the 𝑧 

direction. A scanning laser Doppler vibrometer (SLDV, Polytec PSV-500) is used to acquire non-

contact measurements for the out-of-plane velocity magnitude 𝑣𝑜𝑝 = |�̇�|, which only requires the 

use of a single laser. The measurements are obtained for all four layers L1-L4 of the metastructure 

by guiding the laser in between the gaps in the layers closest to the vibrometer head. An out-of-

plane velocity 𝑣𝑜𝑝 field taken at 𝑓𝑚1 = 1.3 kHz illustrates the successful confinement of the 

dynamic response within the designated 2D waveguide and closely aligns with FE simulations 

(Fig 4.5c). The frequency response is gathered for a point inside the waveguide (Point A in Fig 

4.5c) and a point outside the waveguide (Point B in Fig 4.5c) on each of the four layers. The 

frequency response displayed in Fig 4.5d reveals that there is a wide frequency range (indicated 

by gray shading, from 1.26 kHz to 1.47 kHz) where the out-of-plane velocity 𝑣𝑜𝑝 taken at the point 

inside the waveguide (Point A, results represented by solid lines) is significantly higher than the 
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velocity at the point outside the waveguide (Point B, results represented by dashed lines) for all 

four layers (see Appendix C.9 for additional frequency response data). Observation of multiple 

velocity fields for L4, which are shown in Fig 4.5e, confirm that the desired waveguiding behavior 

is occurring across the frequency range identified in Fig 4.5d. These results represent a clear 

advancement, in that this is the first time that full-field dynamic response information illustrating 

 

 

Fig 4.5. (a) The experimental testbed with an inset showing detail for a unit cell. (b) A topological boundary state with 

hybrid torsional polarization that is found in the band structure of a four-unit supercell. (c) Experimentally measured 

out-of-plane velocity field (left) and FE simulated displacement field (right) for the 3D metastructure obtained at 𝑓𝑚1 

= 1.3 kHz. For clarity, both the full-scale and layer views of the simulated displacement field are shown. The schematic 

of the 3D metastructure testbed is given in the top right, where the blue shading represents the V-shaped waveguide. 

(d) The experimentally measured out-of-plane velocity (𝑣𝑜𝑝) for Point A (solid lines) and Point B (dashed lines) on 

each of the four layers. The frequency range for effective waveguiding is marked by the gray shading. (e) 

Experimentally measured out-of-plane velocity fields for L4 that illustrate the topological waveguide across a wide 

frequency range. A bulk response is demonstrated at 1.54 kHz. 
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a 2D topological waveguide has been experimentally acquired for vibrations in a 3D mechanical 

structure.  

The in-plane torsional and in-plane translational topological states are also experimentally 

characterized in the 3D metastructure. An in-plane torsional state (shown at the bottom of Fig 4.6a) 

is used to construct a waveguide that follows the two planar boundaries identified by the red 

shading in Fig 4.6a. A piezo-stack actuator is utilized to apply an in-plane periodic chirp (with a 

bandwidth of 0 to 10 kHz) excitation to L4 of the structure. The in-plane velocity components �̇� 

and �̇� are measured using a 3D SLDV (Polytec PSV QTec 3D) and the total in-plane velocity 

magnitude is calculated as 𝑣𝑖𝑝 = √|�̇�|2 + |�̇�|2. The in-plane measurements require the use of three 

lasers, and thus the only surface accessible for measurement is L4, the layer closest to the 3D 

SLDV head. The velocity field measured at 𝑓𝑚2 = 3.7 kHz shows that the dynamic response 

follows the waveguide created by the in-plane torsional state and matches FE simulations (Fig 

4.6b). The frequency response measured for a point inside the waveguide and a point outside the 

waveguide (see the schematic in Fig 4.6a) reveals that waveguiding behavior occurs over the 

frequency range of 3.5 to 3.8 kHz (Fig 4.6c), which is enclosed within the bandwidth (3.5 to 3.7 

kHz) of the in-plane torsional state. The same experimental approach is followed for the in-plane 

translational topological state. A waveguide is constructed to follow the blue surfaces in Fig 4.6d 

and experimental measurements illustrate waveguiding at 𝑓𝑚3 = 4.4 kHz (Fig 4.6e). Results 

displayed in Fig 4.6f indicate that the wave field follows the prescribed path over a frequency 

range of 4.3 to 4.9 kHz, which overlaps with the bandwidth (4.4 to 5.3 kHz) of the in-plane 

translational state reported in Fig 4.6d. To complement the frequency response calculations, the 

in-plane velocity fields for multiple different frequencies are displayed in Fig 4.6g, illustrating in-

plane waveguiding behavior across the bandwidths identified in Fig 4.6c,f. The experimental 

velocity fields for the in-plane waveguides shown in Fig 4.6b,e,g reveal less localized dynamic 

response (the majority of the response in these cases is confined within two unit cells of the 

boundary, as indicated by the dashed lines in Fig 4.6g) than the hybrid torsional waveguide 

reported in Fig 4.5c,e (the majority of the response in the hybrid torsional case is confined within 

one unit cell of the boundary, as indicated by the dashed lines in Fig 4.5e). This relatively reduced 

confinement is a consequence of the in-plane topological states being less localized than the hybrid 

torsional state, as can be seen by comparing the mode shapes of the three topological states in Fig 

4.5b, Fig 4.6a, and Fig 4.6d. Furthermore, these differences are in agreement with the FE 



 97 

simulations presented in Fig 4.4b, where the hybrid torsional state enables better waveguiding 

performance (Λ=0.7) than the two in-plane topological states (Λ = 0.4-0.6). Despite this 

comparatively lower localization, the results displayed in Fig 4.6 do illustrate the experimental 

realization of in-plane polarized elastic wave control that follows waveguides constructed in the 

3D metastructure. Altogether, the outcomes from this experimental study advance beyond the 

previous research on 3D TMs, which has overwhelmingly concentrated on the theoretical  

 

Fig 4.6. (a) (top) A schematic of the 3D metastructure testbed where the red shading represents the path of a V-shaped 

waveguide. (bottom) A topological boundary state with an in-plane torsional polarization that is found in the band 

structure of a four-unit supercell. (b) Experimentally measured in-plane velocity field and FE simulated displacement 

field for L4 of the 3D metastructure obtained at 𝑓𝑚2 = 3.7 kHz. (c) The experimentally measured in-plane velocity 

(𝑣𝑖𝑝) for a Point Inside and a Point Outside the waveguide on L4. The frequency range for effective waveguiding is 

marked by the gray shading. (d) (top) A schematic of the 3D metastructure testbed where the blue shading represents 

the path of a V-shaped waveguide. (bottom) A topological boundary state with an in-plane translational polarization 

that is found in the band structure of a four-unit supercell. (e) Experimentally measured in-plane velocity field and FE 

simulated displacement field for L4 of the 3D metastructure obtained at 𝑓𝑚3 = 4.4 kHz. (f) The experimentally 

measured in-plane velocity (𝑣𝑖𝑝) for a Point Inside and a Point Outside the waveguide on L4. The frequency range for 

effective waveguiding is marked by the gray shading. See Appendix C.9 for the transmission ratio plots that 

accompany (c) and (f).  (g) Experimentally measured in-plane velocity fields for L4 that illustrate the in-plane 

topological waveguides across a wide frequency range. A bulk response is demonstrated at 4.12 kHz.  
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investigation of a single topological state [26,75,131,184,187,188,253], to attain experimental 

wave fields of topological waveguides with multiple (i.e., three: hybrid torsional, in-plane 

torsional, and in-plane translational) distinct polarizations and frequency bandwidths.   

4.7 Conclusions and discussion 

The research presented in this chapter advances the state of the art through the creation of a 

3D TM that exploits multimodal local resonance to enable low-frequency and multiband elastic 

wave manipulation. A band structure analysis reveals four topological states that emerge in distinct 

frequency regions that are associated with out-of-plane translational, hybrid torsional, in-plane 

torsional, and in-plane translational resonances. A parameter study is used to develop a deeper 

understanding of the connection between the frequency range for each topological state and the 

fundamental characteristics of the respective resonant modes (i.e., the mass and stiffness for each 

mode). This parametric analysis illuminates how the topological states can be attained over a broad 

bandwidth and at low frequencies (e.g., all below 6 kHz) by adjusting the mass and stiffness 

properties of the local resonators, without needing to increase the metamaterial volume. Finite 

element simulations of full-scale 3D metastructures uncover how the topological states can be 

employed to achieve 2D planar and layer-locked waveguides with complex frequency- and 

polarization-dependent behaviors. To complement the theoretical findings, experiments are 

conducted to validate the numerical predictions and establish a benchmark for the experimental 

investigation of topological phenomena in 3D mechanical structures. The experimental 

advancements reported in this chapter include the attainment of complete wave fields that 

unequivocally illustrate 2D topological waveguides and the measurement of multi-polarized wave 

control in a 3D structure. These outcomes may inspire future experimental research on wave 

control and topological physics in 3D mechanical systems. In contrast to 3D topological photonic 

metamaterials [100], which generally operate in the microwave frequency regime, the 3D TM 

described in this chapter is constructed from traditional load-bearing materials and can operate at 

frequencies (<10 kHz) that are relevant to structural applications. The multifaceted capabilities of 

the proposed 3D metamaterial could help to improve performance in engineering applications that 

involve low-frequency and multiband elastic wave control, such as vibration energy harvesters and 

mitigation systems [104–108,213,214]. Moreover, the rich 3D, multiband, frequency-dependent, 

and polarization-dependent features of the metamaterial could be utilized to construct information-
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dense phononic circuitry (i.e., elastic wave-based, with information-density derived from the three 

distinct elastic wave polarizations: two quasi-shear and one quasi-longitudinal) for mechanical 

computers, wave filters, and on-chip devices [50,109–112,114]. For example, the proposed 

metamaterial may be used as the building block of 3D phononic circuits with multiple working 

channels that route waves in a layer-dependent fashion based on the polarization and frequency of 

external inputs. In order to harness the full potential of the proposed metamaterial in practical 

applications, future endeavors may entail two primary aspects: a design optimization aimed at 

achieving complete topological bandgaps and enhancing wave localization in the waveguides, and 

an exploration of advanced manufacturing methods (e.g., multi-material 3D printing [265]) to 

facilitate efficient production and testing of geometries featuring complex 3D waveguide paths. 

 

Note:  The reused content (text, figures, and tables) in Chapter 4 and Appendix C is reproduced 

from [266] under the CC BY 4.0 license.  

https://creativecommons.org/licenses/by/4.0/
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Chapter 5. 2D Higher-Order Locally Resonant Metamaterial 

A novel methodology is synthesized in Chapter 4 that utilizes multimodal resonance to attain 

multifunctional elastic wave control capabilities spanning multiple frequency bands. As the 

insights gleaned in Chapter 4 are obtained through the study of the first-order TM, a compelling 

next step entails the harnessing of multimodal resonance in a HOTM. In Chapter 5, we explore 

this opportunity and advance the state of the art by creating a novel 2D HOTM that exploits higher-

order topological phases and multimodal resonance to obtain multiband 0D corner states. The 2D 

HOTM is a thin plate with embedded resonators that are geometrically configured to enable 

bending and torsional resonances in low-frequency regimes. The distance between the resonant 

masses is modulated to obtain higher-order topological physics by emulating the 2D SSH model. 

Dispersion analyses for the 2D HOTM expose four distinct topological bandgaps that materialize 

due to the multi-resonant nature of the metamaterial and facilitate the formation of four gapped 1D 

edge states. An eigenfrequency study illuminates in-gap 0D corner states that emerge concurrently 

with the gapped edge states in each of the topological bandgaps, and dynamic response simulations 

uncover efficient wave confinement across several frequency bands. Further analysis reveals that 

the multiband corner states contain a diverse set of localization, coupling, and symmetry traits. 

The intriguing characteristics of these multiband states are harnessed to create frequency-

dependent wave-based logic elements and explore elastic wave control in fractal TMs for the first 

time. The research findings presented in this chapter illuminate the potential of higher-order 

mechanical structures for information processing and fractal topological physics. Furthermore, the 

outcomes illustrate how the novel 2D HOTM is a promising platform for elastic wave trapping, 

harvesting, and sensing in practical applications.   

5.1 Introduction 

The 2D HOTMs studied thus far (see Section 1.2.2) enable the manipulation of elastic waves 

through coexisting gapped 1D edge states and in-gap 0D corner states, surpassing the capabilities 

of their first-order TM predecessors. Nevertheless, the previously studied 2D HOTMs are 

predominantly limited to operating in a single frequency band (i.e., one specific mode of 
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operation), a drawback that curtails their working bandwidth, information-carrying capacity, and 

suitability for many practical applications. To address this research gap and advance the state of 

the art, this research proposes a novel 2D HOTM that harnesses multimodal local resonance and 

higher-order topological phases to achieve 0D corner states across multiple frequency bands. The 

proposed 2D HOTM is a thin plate with periodically embedded spring-mass resonators that are 

designed to facilitate bending and torsional resonances in separate frequency ranges. To obtain 0D 

corner states, the resonators are arranged into a 𝐶4-symmetric lattice, and the coupling between 

them is modulated to emulate the 2D SSH model. Band structure and eigenfrequency studies 

uncover coexisting in-gap 0D corner states and gapped 1D edge states that emerge in four different 

topological bandgaps. A further examination reveals unique localization, coupling, and symmetry 

characteristics for each topological state and illuminates how they can be tailored through lattice 

reconfiguration. Frequency response simulations illustrate how elastic waves can be highly 

confined by the topological states when the 2D HOTM is subjected to dynamic excitations. The 

diverse attributes of the higher-order corner states in this HOTM platform are then exploited to 

achieve enhanced wave-based information processing and explore nontrivial topology in fractal 

mechanical lattices for the first time. The findings discussed in this chapter illuminate several 

elastic wave manipulation capabilities of the proposed 2D HOTM that would be beneficial in wave 

control applications. Moreover, these outcomes illustrate the promise of HOTMs for elastic wave-

based information processing and open the door to future research on higher-order topological 

phases in fractal EMs.   

5.2 2D higher-order topological metamaterial description 

The 2D HOTM is comprised of an aluminum (𝐸𝑝 = 70 GPa, 𝜌𝑝 = 2700 kg⸱m-3, 𝜈𝑝 = 0.33) thin 

plate of thickness ℎ𝑝 = 2.0 mm that has surface-mounted steel (𝐸𝑚 = 200 GPa, 𝜌𝑚 = 7850 kg⸱m-3, 

𝜈𝑚 = 0.30) masses. A schematic of the 2D HOTM is shown in Fig 5.1a, where the aluminum plate 

is light gray and the steel masses are dark gray. Incomplete right triangles are cut into the aluminum 

substrate to create right triangular platforms of side length 𝑠𝑚 = 17.1 mm, spring ligaments of 

width 𝑤𝑙 = 2.5 mm, and connector ligaments of with 𝑤𝑐 = 5.0 mm. A resonator site is defined as 

being contained within a square inclusion of side length 𝑠ℎ = 23.0 mm, where the triangular 

platforms act as the resonator mass and the ligaments act as the resonator stiffness (see the detail 

view of one resonator site in Fig 5.1a). There are two platforms in one resonator site, linked by the 
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connector ligaments and separated by a relief distance 𝑤𝑟 = 5.0 mm. The steel masses, which are 

right triangular prisms of side length 𝑠𝑚 = 17.1 mm and height ℎ𝑚 = 10 mm, are affixed on both 

sides of the substrate’s triangular platforms to add extra mass. The 2D HOTM lattice is defined by 

the basis vectors �⃑�1 = 𝑎�̂� and �⃑�2 = 𝑎�̂�, where 𝑎 = 100 mm is the lattice constant for the unit cell  

 

Fig 5.1. Description of the 2D HOTM and unit cell analysis. (a) Schematic of the 2D HOTM in a Type B lattice 

configuration, including a detail view of one resonator site. The aluminum substrate is light gray and the steel masses 

are dark gray. (b) Schematics and band structures for Type 0 and Type A/B lattices. The colormap indicates the mode 

polarization per the parameter 𝛱. The four topological bandgaps are marked with gray shading and labeled I, II, III, 

and IV. (c) The mode shapes taken at 𝑀 for the bands bordering the four topological bandgaps, illustrating the bending 

and torsional resonances. The out-of-plane displacement (𝑤) fields are presented.  
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(top and isometric views of the unit cell are given on the right side of Fig 5.1a). There are four 

resonator sites in the unit cell, each defined to be a distance 𝑑 =  𝛽
𝑎

√2
 along a 45° angle from the 

unit cell center, where 𝛽 is a spatial parameter used to define the location of the resonators. The 

resonator sites are geometrically designed, oriented, and patterned into a lattice arrangement that 

enforces 𝐶4 symmetry to achieve 𝐶𝑛-protected corner modes by emulating the 2D SSH model 

[267–269]. Moreover, the resonator design enables bending (about the long spring ligaments of 

width 𝑤𝑙) and torsional (about the short connector ligaments of width 𝑤𝑐) resonances that couple 

with the flexural vibrations of the host plate. This multimodal resonance is prescribed to unlock 

multiband functionality in the 2D HOTM. 

5.3 Unit cell band structure and multimodal resonance effect 

A unit cell analysis is conducted to investigate the wave dispersion characteristics of the 2D 

HOTM. The 2D HOTM is defined as having a Type 0 lattice configuration for 𝛽 = 0.5 and 𝑑 = 

𝑎

2√2
, where the resonators are located at the center of the four quadrants of the unit cell, as displayed 

on the left side in Fig 5.1b. The band structure for the Type 0 lattice is evaluated using the 

commercial FE solver COMSOL Multiphysics (see Appendix D.1 for a complete overview of the 

theoretical methods) and plotted in Fig 5.1b. A polarization parameter Π =
∭ |𝑤|2

𝑉𝑈
𝑑𝑉

∭ |𝑢|2+|𝑣|2+|𝑤|2
𝑉𝑈

𝑑𝑉
 is 

measured for each band and represented by a colormap in the band structure, where 𝑉𝑈 is the 

volume of the unit cell, and 𝑢, 𝑣, and 𝑤 are the displacement components in the 𝑥, 𝑦, and 𝑧 

directions, respectively. For the Type 0 lattice, there are four separate two-fold line degeneracies 

along X − M as a result of the 𝐶4 symmetry, band folding, and equivalent inter- and intra-cell 

couplings between resonators (the couplings are determined by the inter- and intra-cell distances 

between neighboring resonators) [270]. These four degeneracies are split into two sets: a lower-

frequency set of modes that are more out-of-plane (𝑧 direction) polarized (yellow, 𝑓 ≈ 200 and 400 

Hz, and Π = 0.85-0.99 in Fig 5.1b) and a higher-frequency set with a hybrid polarization (light 

blue, 𝑓 ≈ 665 and 703 Hz, and Π = 0.38-0.46 in Fig 5.1b). All four degeneracies are located in a 

low-frequency (<1 kHz) regime.  

To break the degeneracies in accordance with the 2D SSH model [206,270–272], the inter- and 

intra-cell couplings are mistuned by adjusting the resonator distance 𝑑 so that the resonators are 

no longer equidistant from the center and outer corners of the unit cell. A Type A lattice is defined 
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as having 𝛽 < 0.5 (𝑑 < 
𝑎

2√2
) and the intra-cell coupling is greater than the inter-cell coupling. In 

contrast, a Type B lattice has 𝛽 > 0.5 (𝑑 > 
𝑎

2√2
) and a larger inter-cell coupling than intra-cell 

coupling (see schematics for Type A and Type B unit cells in Fig 5.1b). The band structure for a 

Type A lattice with 𝛽 = 0.25 (𝑑 = 
𝑎

4√2
) is superimposed with the band structure for a Type B lattice 

with 𝛽 = 0.75 (𝑑 = 
3𝑎

4√2
) and shown on the right side of Fig 5.1b (note that the two band structures 

are identical). The degeneracies are broken, and four bandgaps emerge from them that encompass 

the frequency ranges of 𝑓Gap I = 186 Hz to 223 Hz, 𝑓Gap II = 377 Hz to 511 Hz, 𝑓Gap III = 608 Hz to 

710 Hz, and 𝑓Gap IV = 710 Hz to 768 Hz (all bandgaps are shaded in gray in Fig 5.1b). It is worth 

noting that there are purely in-plane modes (blue dots for Π ≈ 0 near Γ) that cross the bandgaps, 

but these modes do not couple with the out-of-plane and hybrid modes that are the focus of this 

investigation, and as will be shown in the proceeding sections, do not impede the attainment of 

higher-order topological states. The mode shapes are evaluated at the M point for each of the bands 

bordering the bandgaps, whose out-of-plane displacement (𝑤) profiles give insight into the origin 

of the bandgaps [43,60,177] (Fig 5.1c). These mode shapes reveal multimodal behaviors for the 

resonators of the 2D HOTM, indicating that bandgaps I and II are opened due to bending 

resonances of the spring ligaments (𝑤𝑙), while bandgaps III and IV are derived from torsional 

resonances, where the resonators exhibit a torsional motion centered on the connector ligaments 

(𝑤𝑐). The band structure findings illuminate how the multimodal resonance of the proposed 2D 

HOTM unlocks multiple distinct bandgaps. As was done in Chapter 4, the frequencies of these 

bandgaps could be adjusted lower (i.e., into a deep subwavelength/low-frequency regime) by 

tuning the stiffness and mass characteristics of the multimodal resonators without increasing the 

lattice constant 𝑎 (e.g., using the ℎ𝑚, 𝑤𝑐, 𝑤𝑙 parameters). Two additional line degeneracies appear 

at 289 and 291 Hz (see the green bands for Type 0, Π = 0.55 in Fig 5.1b) that are related to torsional 

modes centered on the spring ligaments (𝑤𝑙). However, a bandgap is not opened from these 

degeneracies with the selected system parameters for Type A/Type B lattices, and they do not 

impact the formation of bandgaps I-IV. These extra bands are ignored for the forthcoming analysis, 

but do indicate the potential to exploit additional resonant modes in the 2D HOTM.  

Despite having identical band structures, the Type A and Type B lattices of the 2D HOTM are 

topologically distinct. The higher-order topology of the 2D HOTM is 𝐶𝑛-symmetry (𝑛 = 4 in this 

case) protected and can be characterized by calculating the topological indices, bulk polarizations, 
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and corner charges (i.e., the relevant topological invariants) of the Type A and Type B lattices 

[88,196,269,272,273]. The topological index 𝜒(4) for a 𝐶4-symmetric HOTI is:  

𝜒(4) = ([𝑋1
(2)

], [𝑀1
(4)

], [𝑀2
(4)

]) =  (#𝑋1
(2)

− #𝛤1
(2)

, #𝑀1
(4)

− #𝛤1
(4)

, #𝑀2
(4)

− #𝛤2
(4)

) (5.1) 

where #Π𝑝
(𝑛)

 (Π = Γ, X,M denote the high-symmetry points in reciprocal space) is the number of  

 

Fig 5.2. Phase profiles of the eigenmodes for bands 1-8, in order of lowest to highest frequency. Bands 1-4 are the 

lower-frequency bending modes and bands 5-8 are the higher-frequency torsional (about the connector ligaments) 

modes. The phase profiles are calculated at each of the high-symmetry points (𝛤, 𝑋,𝑀) for the Type A (left column) 

and Type B (right column) lattice configurations. The 𝐶𝑛 rotation eigenvalues are labeled below each phase profile.  
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bands with 𝐶𝑛 rotation eigenvalue Π𝑝
(𝑛)

= 𝑒2𝜋𝑖(𝑝−1) 𝑛⁄  (𝑝 = 1,….,𝑛) below the bandgap under 

consideration [196,269,272,273]. If 𝜒(4) is zero (nonzero), the metamaterial domain is trivial 

(nontrivial). The bulk polarization can be defined as [196]:   

𝑃𝑥 = 𝑃𝑦 =
1

2
([X1

(2)
])  mod 1 (5.2) 

Moreover, the fractional corner charge 𝑄 that characterizes the higher-order band topology in a 

2𝜋/𝑛 sector is quantified as [196]: 

𝑄 =
1

4
([X1

(2)
] + 2[M1

(4)
] + 3[M2

(4)
])  mod 1 (5.3) 

Eqs. 5.1-5.3 are calculated for bandgaps I, II, III, and IV for both the Type A (𝛽 = 0.25) and Type 

B (𝛽 = 0.75) lattice configurations presented in Fig 5.1b (see Appendix D.2 for complete details 

on all topological invariant calculations). The phase profiles for the eigenmodes below the 

bandgaps in question are displayed in Fig 5.2, where bands 1-4 are the profiles for the lower-

frequency bending eigenmodes and bands 5-8 are the profiles for the higher-frequency torsional 

(about the connector ligaments) eigenmodes. To solve Eqs. 5.1-5.3, the relevant 𝐶𝑛 rotation 

eigenvalues are evaluated and labeled for each eigenmode in Fig 5.2. For the Type A lattice, the 

calculations for bandgaps I, II, III, and IV all yield the same result: 𝜒(4)= (0,0,0), 𝑃𝑥 = 𝑃𝑦  = 0, 𝑄 

= 0, indicating that the bandgaps are topologically trivial. For the Type B lattice, the calculations 

for bandgap 1 are 𝜒(4)= (-1, -1, 0), 𝑃𝑥 = 𝑃𝑦  = ½, and 𝑄 = ¼, with the nonzero values indicating 

that bandgap I for the Type B lattice is topologically nontrivial. Similarly, the results for bandgaps 

II, III, and IV in the Type B lattice are: 𝜒(4)= (1, -1, 0), 𝑃𝑥 = 𝑃𝑦  = ½, and 𝑄 = ¾, 𝜒(4)= (-1, 1, 0), 

𝑃𝑥 = 𝑃𝑦  = ½, and 𝑄 = ¼, and 𝜒(4)= (1, 1, 0), 𝑃𝑥 = 𝑃𝑦  = ½, and 𝑄 = ¾, respectively, illuminating 

how these bandgaps are also topologically nontrivial. These results suggest that the 2D HOTM 

successfully emulates the 2D SSH model, where lattices with greater inter-cell coupling are 

topologically nontrivial while those with greater intra-cell coupling are topologically trivial 

[88,268,274,275]. The topologically distinct nature of the Type A and Type B lattices indicates 

that a band inversion exists between them (see Appendix Figure D.24 and Appendix D.2 for further 

details on the band inversion). According to the higher-order band topology, coexisting gapped 

edge and in-gap corner states are expected to materialize at the interface of the topologically 

distinct Type A and Type B lattices [88,100].  
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5.4 Supercell analysis for multiband 1D topological states 

 

Fig 5.3. Supercell analysis for multiband edge states in the 2D HOTM. (a) A schematic of the supercell, where the 

interface between Type A and Type B sublattices is marked by the dashed black line. Below is the band structure, 

with the four topological bandgaps (I, II, III, and IV) uncovered in the unit cell analysis shaded in gray. Within the 

bandgaps, the red bands are topological edge states (𝛬≈1) and the black bands are boundary states (𝛬≈0). All other 

bands in the band structure are bulk bands (0<𝛬<1). The total displacement (𝑑) fields of the Edge state I, II, III, and 

IV eigenmodes are also included. (b) The out-of-plane displacement (𝑤) fields for each of the four edge states, 

illustrating the bending (Edge states I and II) and torsional (Edge states III and IV) eigenmodes.  

A six-unit supercell is constructed to explore the emergence of topological 1D edge states in 

the 2D HOTM. To create the supercell, three Type A unit cells are adjoined with three Type B unit 

cells at an interface (see the schematic at the top of Fig 5.3a, where the dashed line represents the 

interface). Low-reflecting boundary conditions are applied to the left and right edges (in the 𝑥 

direction), and Floquet periodic boundary conditions are applied along the 𝑦 direction. To detect 

topological edge states, a localization parameter is defined as Λ = ∭ 𝑑2
𝑉𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

 𝑑𝑉 ∭ 𝑑2
𝑉𝑆

𝑑𝑉⁄ , 

where 𝑉𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 is the volume of the two adjacent unit cells at the interface, 𝑉𝑆 is the total supercell 

volume, and 𝑑 = √|𝑢|2 + |𝑣|2 + |𝑤|2 is the total displacement. Evaluation of the supercell band 

structure (Fig 5.3a) reveals that 1D edge states appear in each of the four topological bandgaps (I, 
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II, III, and IV) identified in the unit cell analysis (the bandgaps are marked with gray shading in 

Fig 5.3a). The mode shapes for these edge states, which are labeled as Edge states I, II, III, and IV 

in Fig 5.3a, illustrate wave fields that are confined at the topological interface. This interface 

confinement is quantified as Λ≈1 and is indicated by the red bands in the band structure. The black 

bands that cross into or reside within bandgaps II, III, and IV contain wave fields that are highly 

localized to the left and right (in the 𝑥) boundaries of the supercell, resulting in Λ≈0. In practice, 

these so-called boundary states can be adjusted or suppressed by selecting the proper boundary 

conditions and are unlikely to couple with topological edge and corner states (e.g., Section 2.5.3 

and [173]), as will be shown in the following sections. Further examination of the edge state 

eigenmodes is conducted by evaluating the out-of-plane displacement 𝑤 for each. The out-of-plane 

wave fields shown in Fig 5.3b illuminate how the multiband edge states originate from the 

multimodal resonances of the 2D HOTM (see Fig 5.1c and Section 5.3); Edge states I and II 

contain bending resonances, and Edge states III and IV contain torsional resonances. Critically, all 

four topological edge states are gapped (i.e., they do not completely cross the topological bandgap 

they reside within; see Fig 5.3a), leaving the opportunity for easily identifiable topological corner 

states to emerge in the remaining bandgap frequency range.  

5.5 Emergence of multiband topological corner states  

An eigenfrequency study is conducted to investigate the emergence of multiband topological 

0D corner states in the 2D HOTM. A full-scale structure with an interface between Type A and 

Type B domains is constructed from a 12 x 12 tessellation of unit cells (Fig 5.4a). In this 

configuration, a 6 x 6 lattice of Type B unit cells is enclosed within a Type A lattice to create a 

topological interface that has monomer corners, i.e., where there is a single resonator site at each 

of the four corners of the interface between the two sublattices (see a monomer corner in the inset 

of Fig 5.4a). Low-reflecting boundary conditions are applied to all four external boundaries of the 

Type A domain. The eigenfrequency spectra calculated for this structure are shown for frequency 

ranges that include bandgaps I, II, and III/IV in Fig 5.4b, Fig 5.4c, and Fig 5.4d, respectively. In 

these figures, the bandgaps are indicated by the light gray shading, while the 0D corner states are 

marked with red points, 1D edge states with blue points, and bulk states with black points. The 

localization of the edge and corner states is quantified by the parameters 𝛾𝑒𝑑𝑔𝑒 and 𝛾𝑐𝑜𝑟𝑛𝑒𝑟, which  

measure the average localization from all eigenmodes associated with each edge or corner state 
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Fig 5.4. Eigenfrequency study for the full-scale structure with monomer corners. (a) Schematic of the full-scale 

structure with the Type B domain enclosed within the Type A domain, with the inset showing a monomer corner. 

Eigenfrequency spectra for topological (b) bandgap I, (c) bandgap II, and (d) bandgaps III and IV. The corner states 

are marked in red, edge states in blue, and bulk states in black. The bandgaps are indicated by the light gray shading. 

Eigenmodes illustrating the total displacement (𝑑) fields for each of the edge states and corner states are also provided.  

according to: 

𝛾𝑒𝑑𝑔𝑒 =
1

𝑁𝑒𝑑𝑔𝑒
∑ ∭𝑑𝑖

2

𝑉𝑒𝑑𝑔𝑒

 𝑑𝑉 ∭𝑑𝑖
2

𝑉𝑡

𝑑𝑉⁄

𝑁𝑒𝑑𝑔𝑒

𝑖=1

 (5.4) 
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𝛾𝑐𝑜𝑟𝑛𝑒𝑟 =
1

𝑁𝑐𝑜𝑟𝑛𝑒𝑟
∑ ∭ 𝑑𝑖

2

𝑉𝑐𝑜𝑟𝑛𝑒𝑟

 𝑑𝑉 ∭𝑑𝑖
2

𝑉𝑡

𝑑𝑉⁄

𝑁𝑐𝑜𝑟𝑛𝑒𝑟

𝑖=1

 (5.5) 

where 𝑁𝑒𝑑𝑔𝑒 is the number of edge eigenstates, 𝑁𝑐𝑜𝑟𝑛𝑒𝑟 is the number of corner eigenstates, 𝑉𝑒𝑑𝑔𝑒 

is the volume of the 40 edge resonator masses, 𝑉𝑐𝑜𝑟𝑛𝑒𝑟 is the volume of the four corner resonator 

masses, and 𝑉𝑡 is the total volume of all 576 resonator masses in the structure. As shown in Fig 

5.4b, eight edge eigenstates and four corner eigenstates emerge within bandgap I, referred to as 

Corner states M-I (225-227 Hz, 𝛾𝑐𝑜𝑟𝑛𝑒𝑟 = 0.05) and Edge state I (194-204 Hz, 𝛾𝑒𝑑𝑔𝑒 = 0.24). 

Eigenmodes that demonstrate the wave confinement at the interface for the edge and corner states 

are shown on the right side of Fig 5.4b. The eigenmodes for Corner states M-I include a monopole 

mode, two dipole modes, and a quadrupole mode (see more details in Appendix D.3), an indication 

of evanescent coupling (an overlap between decaying fields of neighboring corner states) between 

the corner modes that has been observed in previous investigations [271,272,276]. For bandgap II, 

there are four corner modes (Corner states M-II, 379-380 Hz, 𝛾𝑐𝑜𝑟𝑛𝑒𝑟 = 0.06) and 20 edge modes 

(Edge state 2, 436-475 Hz, 𝛾𝑒𝑑𝑔𝑒 = 0.57) that appear (Fig 5.4c). Unlike Corner states M-I, Corner 

states M-II are decoupled from each other (i.e., each corner state is localized at one specific corner), 

as there are no interactions between their evanescent wave fields [271]. Likewise, four highly 

localized and decoupled corner eigenstates (Corner state M-III, 670-673 Hz, 𝛾𝑐𝑜𝑟𝑛𝑒𝑟 = 0.39) and 

20 edge eigenstates (Edge state III, 615-626 Hz, 𝛾𝑒𝑑𝑔𝑒 = 0.57) emerge in bandgap III, and 20 edge 

eigenstates emerge in bandgap IV (Edge state IV, 721-730 Hz, 𝛾𝑒𝑑𝑔𝑒 = 0.68), as displayed in Fig 

5.4d. Apart from differing levels of localization and coupling, Corner states M-I, M-II, and M-III 

contain distinct symmetry characteristics. As is explained in Appendix D.3, Corner states M-I and 

M-II are symmetric about the corner’s angular bisector. On the other hand, Corner state M-III is 

asymmetric in relation to the bisector, because the orientation of the resonator defines the direction 

of the torsional resonance to be perpendicular to the angular bisector.  

The eigenfrequency spectrum is also calculated for an inverted scheme, where the Type A 

domain is embedded within the Type B domain to create a lattice with trimer corners (Fig 5.5a). 

Edge state I (191-209 Hz, 𝛾𝑒𝑑𝑔𝑒 = 0.28) once again emerges in bandgap I; however, there are no 

longer corner states in this bandgap (Fig 5.5b). Edge state II is found in bandgap II (20 eigenmodes, 

436-475 Hz, 𝛾𝑒𝑑𝑔𝑒 = 0.52), and two sets of four corner modes are also uncovered: Corner states 

T-IIA from 379-380 Hz with 𝛾𝑐𝑜𝑟𝑛𝑒𝑟 = 0.18 and T-IIB from 459-465 Hz with 𝛾𝑐𝑜𝑟𝑛𝑒𝑟 = 0.21  
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Fig 5.5. Eigenfrequency study for the full-scale structure with trimer corners. (a) Schematic of the full-scale structure 

with the Type A domain enclosed within the Type B domain, with the inset showing a trimer corner. Eigenfrequency 

spectra for topological (b) bandgap I, (c) bandgap II, and (d) bandgaps III and IV. The corner states are marked in red, 

edge states in blue, and bulk states in black. The bandgaps are indicated by the light gray shading. Eigenmodes 

illustrating the total displacement (𝑑) fields for each of the edge states and corner states are also provided. 

(Fig 5.5c). Intriguingly, Corner states T-IIB are embedded with the Edge state II modes, leading 

to a multipolar coupling between the corners and interactions between corner and edge wave 

phenomena (see the eigenmodes in Fig 5.5c and Appendix D.3). Edge state III (20 eigenmodes, 

615-626 Hz, 𝛾𝑒𝑑𝑔𝑒 = 0.54) and two sets of four corner modes (Corner states T-IIIA and TIII-B, at 
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634-636 Hz and 675-676 Hz, with 𝛾𝑐𝑜𝑟𝑛𝑒𝑟 = 0.46 and 𝛾𝑐𝑜𝑟𝑛𝑒𝑟 = 0.61, respectively) with decoupled 

and highly localized energy confinement are found in bandgap III (Fig 5.5d). Furthermore, Edge 

state IV (20 eigenmodes, 721-730 Hz, 𝛾𝑒𝑑𝑔𝑒 = 0.66) and a set of four well-confined corner states 

(Corner states T-IV, 745-747 Hz, 𝛾𝑐𝑜𝑟𝑛𝑒𝑟 = 0.68) are found in bandgap IV (Fig 5.5d). The trimer 

corners present in this lattice configuration unlock a diverse set of different corner state wave fields 

(Fig 5.5b,c,d and Appendix D.3) with symmetric (T-IIB, T-IIIB) or asymmetric (T-IIA, T-IIIA, T-

IV) displacements and cases where two (T-IIA, T-IIIB) or three (T-IIB, T-IIIA, and T-IV) 

resonator sites are activated. The edge states reported in the trimer lattice case are identical in 

displacement profile and frequency to those reported in the monomer lattice case, since the 

dimerized resonators that form the 1D interfaces between sublattices are the same in both 

configurations. For this reason, the edge states are labeled Edge states I, II, III, and IV for both 

lattice cases. The eigenfrequency results for both lattice configurations illuminate how the 

multimodal resonance of the 2D HOTM enables the achievement of multiband topological corner 

states with a rich variety of wave symmetry, localization, and coupling characteristics (see more 

details on the corner states in Appendix D.3). In total, there are eight unique corner states and four 

unique edge states that are identified, each with their own distinctive features. The intriguing 

characteristics of the topological states identified in this eigenfrequency study could open the door 

for switchable and frequency-selective wave control functionalities that can be engineered through 

resonator and lattice design, as will be discussed in the following sections.  

FE simulations are conducted to investigate how the corner and edge states can be utilized for 

elastic wave and vibration control in dynamic systems. A harmonic excitation is applied to the 

monomer and trimer lattices, and the frequency response is measured within the bulk, at an edge, 

and at a corner, where indicated in Fig 5.6a for the monomer case and Fig 5.7a for the trimer case. 

For the monomer lattice configuration, the frequency response displayed in Fig 5.6b,c,d,e 

illustrates the successful confinement of wave energy within Edge states I, II, III, and IV and 

Corner states M-I, M-II, and M-III, with frequencies and displacement distributions that align with 

the eigenstates reported in Fig 5.4b,c,d. For the multipolar Corner state M-I, there are three peaks 

in the frequency response that correspond to the monopolar, quadrupolar, and one dipolar mode; 

the other dipolar mode is not activated by this excitation (Fig 5.6b). In contrast, the M-II and M-

III corner states each have a singular peak because there is no coupling between the displacement 

fields at neighboring corners, and only the corner state (bottom left corner in Fig 5.6a) nearest to  
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Fig 5.6. Schematic of the full-scale plate in the monomer lattice configuration, with locations marked for the excitation 

(green star) and measurements of the bulk (yellow triangle), edge (purple square), and corner (blue circle) dynamic 

response. Normalized frequency response for Bandgaps I (b), II (c), III (d), and IV (e), with the insets showing 

displacement fields of edge, corner, and bulk states at specific frequency values. The displacement is normalized 

according to the maximum value calculated at the bulk, corner, and edge positions in the respective frequency ranges.  

the chosen excitation is activated (Fig 5.6c,d). For the trimer lattice case, Edge states I, II, III, and 

IV and Corner states T-IIA, T-IIB, T-IIIA, T-IIIB, and T-IV all effectively confine the dynamic 

wave response (see the frequency response in Fig 5.7b,c,d,e) per the frequency and spatial 

characteristics of the eigenstates reported in Fig 5.5b,c,d. For both lattice cases, these results reveal 

how the edge and corner states of the 2D HOTM can be harnessed to achieve 0D and 1D  
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Fig 5.7. Schematic of the full-scale plate in the trimer lattice configuration, with locations marked for the excitation 

(green star) and measurements of the bulk (yellow triangle), edge (purple square), and corner (blue circle) dynamic 

response. Normalized frequency response for Bandgaps I (b), II (c), III (d), and IV (e), with the insets showing 

displacement fields of edge, corner, and bulk states at specific frequency values. The displacement is normalized 

according to the maximum value calculated at the bulk, corner, and edge positions in the respective frequency ranges. 

waveguides with localized dynamic response in multiple frequency bands. Additional analysis 

suggests that these highly confined corner states will not be destroyed by the introduction of 

damping into the system, which is unavoidable in practical settings (Appendix D.3).  
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5.6 Multiband corner states for multifunctional wave-based computing 

The diverse features of the topological corner states in the 2D HOTM can be exploited to 

achieve multifunctional wave-based computing. In Fig 5.8a, two harmonic excitations are placed 

symmetrically about the angular bisector of the bottom left corner (labeled QT and marked with a 

blue circle in the schematic) in a trimer lattice. The phases of excitation A (yellow star) and 

excitation B (purple star) are 𝜃0 and 𝜃0 + 𝜃, respectively, where 𝜃0 is the baseline phase and 𝜃 is 

a phase offset between the two inputs. To measure the variation in dynamic response over a range 

of 𝜃, the absolute magnitude of the out-of-plane displacement |𝑤| is normalized by its maximum 

value over all 𝜃 for a given excitation frequency 𝑓: normalized |𝑤| = |𝑤(𝜃)|/Max{|𝑤(𝜃)|}|𝑓. This 

normalized |𝑤| is calculated at QT for excitation frequencies that excite each of the trimer corner 

states: 𝑓 = 380.0 Hz for T-IIA, 𝑓 = 635.9 Hz for T-IIIA, 𝑓 = 676.4 Hz for T-IIIB, and 𝑓 = 746.6 

Hz for T-IV (T-IIB is omitted from this study due to its interactions with Edge state II) and the 

phase offset 𝜃 varied from 0 to 2𝜋 (Fig 5.8a). The normalized |𝑤| reaches a maximum at 𝜃 = 𝜋 for 

the corner states with asymmetric wave fields (T-IIA, T-IIIA, and T-IV) due to constructive 

interactions between the out-of-phase inputs and the asymmetric eigenmode shapes. On the other 

hand, the normalized |𝑤| for the corner state with a symmetric wave field (T-IIIB) reaches a 

maximum at  𝜃 = 0, 2𝜋, as constructive interactions occur between the in-phase inputs and 

symmetric eigenmode shapes. For an in-phase excitation pair, the asymmetric T-IIA, T-IIIA, and 

T-IV corner states are all suppressed, and for an out-of-phase excitation pair, the symmetric T-IIIB 

corner state is suppressed. The suppressed corner states have a normalized |𝑤| ≤ 0.036, indicating 

a significant attenuation of dynamic response, which can be visualized by the wave field shown in 

the inset at the bottom of Fig 5.8a. An analysis of the monomer lattice case, with a corner labeled 

QM, yields similar outcomes (Fig 5.8b). For an in-phase (𝜃 = 0, 2𝜋) excitation A and B pair, the 

symmetric corner states M-I and M-II are activated, while for an out-of-phase excitation pair (𝜃 = 

𝜋), the asymmetric corner state M-III is triggered. A dynamic response suppression of normalized 

|𝑤| ≤ 0.017 is achieved for the in-phase (out-of-phase) excitation of asymmetric (symmetric) 

corner states (bottom of Fig 5.8b). These results reveal how the diverse symmetry properties of 

the topological corner states in the 2D HOTM can be exploited to amplify or suppress response 

based on the frequency and displacement profiles of external excitations. This is a useful 

functionality that can be harnessed for computing operations by treating the wave response as a 

binary bit. Previous works have shown the potential of mechanical (i.e., analog) computing that  
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Fig 5.8. Wave-based computing with the 2D HOTM. Schematics and normalized |𝑤| as a function of the phase offset 

𝜃 for the (a) trimer and (b) monomer lattices. The excitations A and B have a baseline phase of 𝜃0 and are located 

where indicated by the yellow and purple stars. The displacement response is measured at corner 𝑄𝑇  or 𝑄𝑀, where 

marked by the blue circles. The insets show the out-of-plane displacement |𝑤| fields calculated for each excitation 

frequency 𝑓, scaled to 𝑀𝑎𝑥{|𝑤(𝜃)|}|𝑓. (c) A frequency-dependent logic gate constructed from the trimer lattice 

configuration by exciting the T-IIIA and T-IIIB corner states. The output threshold delineating 0 and 1 bits is marked 

by the horizontal dashed line. Truth tables are given for the OR and XOR logic operations.  
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uses elastic waves as bits [277–279]; however, utilizing the unique features of topological corner 

states for wave-based computing operations has only been explored in a single-band photonic 

metamaterial [280].  

A simple example of how the multiband corner states of the 2D HOTM can be valuable for 

wave-based computing is presented here, with the construction of a frequency-dependent logic 

gate using the trimer lattice from Fig 5.8a. A threshold of |𝑤| = 1 𝜇m is set to be the delineation 

between a 0 bit and a 1 bit for the output, an active(inactive) excitation is a 1(0) bit for the inputs 

(A and B), and the phase offset for the inputs is chosen to be 𝜃 = 𝜋 (i.e., this is an out-of-phase 

excitation pair). For an excitation with 𝑓 = 635.9 Hz, the asymmetric T-IIIA corner mode creates 

an OR gate, meaning the output QOR is 1 if either A or B or both A and B are 1 (the truth table and 

measured |𝑤| are shown on the left side of Fig 5.8c). Alternatively, if the excitation frequency is 

changed to 𝑓 = 676.4 Hz, the symmetric T-IIIB mode creates an XOR gate, where the output QXOR 

is 1 if either excitation A or B, but not both, are active (the truth table and measured |𝑤| are shown 

on the right side of Fig 5.8c). This case study illustrates how the diverse multiband corner states 

of the novel 2D HOTM can be exploited to construct and switch between two unique (in this case, 

OR and XOR) logic operations in a frequency-dependent fashion. The investigation presented in 

Fig 5.8 suggests that the capabilities of the 2D HOTM could be valuable for multichannel and 

multifunctional information processing. Further investigations may involve constructing all seven 

of the fundamental logic elements (XOR and OR gates are two of the seven fundamental logic 

elements [281]) and cascading them together to accomplish more sophisticated computing tasks.  

5.7 Higher-order topological states in a fractal TM 

The unit cell geometry of the 2D HOTM (Fig 5.1a) is used to synthesize and explore higher-

order topological phases in fractal mechanical lattices for the first time. Recently, topological 

phases have been derived and theoretically investigated in fractal quantum systems [282–291]. In 

a fractal crystal, the crystal lattice exhibits a non-integer dimension and contains self-similarity 

across multiple scales [292,293]. This non-integer dimension can be quantified as the Hausdorff 

dimension 𝑑ℎ [294]:  

𝑑ℎ =
log(𝑆)

log(𝐿)
(5.6) 
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where 𝐿 is a linear scaling and 𝑆 is the resulting characteristic size of an object. Unlike 

conventional integer-dimensional systems (i.e., 1D, 2D, and 3D), fractals do not have a well-

defined internal “bulk”. Due to this lack of a clear bulk, fractals have a rich set of internal and 

external boundaries that suggest the possibility of unconventional topological wave control 

capabilities. While fractal topological phases have been predicted in condensed matter physics 

[282–291], practical macroscale platforms and a fundamental understanding of fractal topological 

phases in classical wave systems are still lacking. Initial investigations on photonic [295,296] and 

acoustic [297–299] systems have illuminated intriguing features (e.g., faster wave speed, higher-

order topological phases, and wave control along myriad internal/external boundaries) in fractal 

topological lattices. Despite the established potential of fractal topological phases, they have yet 

to be explored in TMs that control vibrations and elastic waves. The research presented in this 

section seeks to address this unexplored opportunity.  

To create a fractal HOTM, The 2D HOTM unit cell presented in Section 5.2 (Fig 5.1a) is 

tessellated into two configurations that have a fractal patterning of the metamaterial resonators. 

The fractal lattice depicted in Fig 5.9a,b is known as a Sierpiński Carpet, which has a Hausdorff 

dimension of 𝑑ℎ = 1.89 (𝑆 = 8 for 𝐿 = 3 in Eq. 5.6). For the 2D HOTM, topological interfaces that 

host topological states exist at the four corners and four edges that make up the large square border 

between the Type A and Type B subdomains (Fig 5.4a and Fig 5.5a). Beyond these eight external 

interfaces, the 1.89D fractal HOTM adds numerous internal interfaces (36 edges and 36 corners) 

along one medium and eight small square subdomain borders, each of which may host additional 

topological states. All small, medium, and large square Type A/Type B subdomain borders are 

marked with dashed lines in the schematics of Fig 5.9a,b. To investigate the emergence of 

topological states in the fractal HOTM, the eigenfrequency spectra are calculated for Configuration 

1 (Fig 5.9a) and Configuration 2 (Fig 5.9b) and plotted in Fig 5.9c and Fig 5.9d, respectively. The 

four exterior boundaries of the Configuration 1 and Configuration 2 structures are fixed for this 

analysis. The frequency range under investigation is selected to encompass bandgaps III and IV 

from the 2D HOTM, due to the high degree of localization exhibited by the torsional topological 

corner states (see Section 5.5 and Appendix D.3). As revealed in Fig 5.9c and Fig 5.9d, a 

significant number of topological edge (marked with blue points) and corner states (marked with 

points of various colors) appear in the frequency ranges of bandgaps III and IV for both 

Configuration 1 and Configuration 2. All bulk (i.e., eigenmodes that are not localized at a  
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Fig 5.9. An investigation of higher-order topological states in fractal lattices. Schematics and top views of (a) 

Configuration 1 and (b) Configuration 2 of the fractal HOTM. The two unique configurations of fractal lattices are 

created by patterning the Type A (orange) and Type B (gray) subdomains to create 1.89D Sierpiński Carpets. The 

borders (i.e., topological interfaces) between Type A and Type B subdomains are marked by dashed lines. There are 

eight small square subdomain borders, one medium square subdomain border, and one large square subdomain border. 

The four edges of the plate that make up the exterior boundary are fixed, as indicated by the slanted lines. The insets 

show a monomer corner, a dimer resonator pair, and a trimer corner for each lattice configuration. The eigenfrequency 

spectra for (c) Configuration 1 and (d) Configuration 2. The bulk and boundary states are indicated with black points, 

the topological edge states with blue points, and the topological corner states with points of various colors.  

topological interface or fixed boundary) and boundary (i.e., eigenmodes that are localized at a 

fixed boundary) modes are indicated by the black points. A more detailed discussion on the bulk 

and boundary states for this fractal HOTM, all of which do not adversely affect the appearance of 

topological states, is provided in Appendix D.4. The topological edge and corner states are 

categorized into distinct classes and labeled according to the spectral clusters in which they appear. 

The quantity and spatial location of topological states in the fractal HOTM lattices can be predicted 
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by the arrangement of the metamaterial resonators [297]. For configuration 1 (Fig 5.9a): 

𝑁𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑟𝑛𝑒𝑟𝑠 = 3𝑁3 = 12,  𝑁𝑒𝑑𝑔𝑒 = 2𝑁2 = 80, 𝑁𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑟𝑛𝑒𝑟𝑠 = 𝑁1 = 36, where 𝑁1, 𝑁2, 𝑁3 are 

the number of monomer corners (i.e., a corner with one resonator), dimer resonator pairs, and 

trimer corners (i.e., a corner with three resonators) located at the Type A/Type B subdomain 

interfaces, 𝑁𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑟𝑛𝑒𝑟𝑠 is the number of topological corner states with wave energy confined 

to the corners of the external (i.e., large) square subdomain borders, 𝑁𝑒𝑑𝑔𝑒 is the number of 

topological edge states, and 𝑁𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑟𝑛𝑒𝑟𝑠 is the number of topological corner states with wave 

energy confined to the corners of the internal (i.e., eight small and one medium) square subdomain 

borders. When the Type A and Type B subdomains are exchanged to create Configuration 2 (Fig 

5.9b): 𝑁𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑟𝑛𝑒𝑟𝑠 = 𝑁1 = 4,  𝑁𝑒𝑑𝑔𝑒 = 2𝑁2 = 80, 𝑁𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑟𝑛𝑒𝑟𝑠 = 3𝑁3 = 108. Between 

Configurations 1 and 2, the quantity and frequencies of the edge states are unchanged, since the 

number and arrangement of the dimer resonator pairs remain constant. However, the total number 

of corner states is increased from 48 in Configuration 1 to 112 in Configuration 2 due to the 

interchange of trimer and monomer corners between the two configurations (𝑁1 = 36 and 𝑁3 = 4 

for Configuration 1; 𝑁1 = 4 and 𝑁3 = 36 for Configuration 2). These results illuminate how the 

introduction of fractal geometry significantly increases the quantity of topological corner states 

(160 total topological corner states) when compared to the 16 total corner states uncovered in 

bandgaps III and IV for the traditional 2D HOTM (Section 5.5). Moreover, this analysis shows 

how the placement of the monomer and trimer corners can be engineered to alter the quantity of 

topological corner states, change topological corner state frequencies, and tailor the location of 

confined wave energy within the fractal mechanical structure. These outcomes suggest 

generalizability, in that the arrangement of monomer and trimer corners could be prescribed to 

achieve desired topological corner state properties (e.g., number, frequency, and location) in other 

fractal metamaterial geometries.  

Representative mode shapes for each class of topological states are provided in Fig 5.10a for 

Configuration 1 and Fig 5.10b for Configuration 2. For Configuration 1, an exemplar bulk mode 

at 603 Hz exhibits a delocalized displacement field (Fig 5.10a). The exemplar topological edge 

modes evaluated at 624, 625, 728, and 730 Hz illuminate wave fields that are highly localized 

along inner and outer edge interfaces (Fig 5.10a). Furthermore, a diverse collection of corner states 

appears in the eigenspectrum of Configuration 1. The four C1-I-A (634 Hz in Fig 5.10a) and four 

C1-I-B (747 Hz in Fig 5.10a) corner states have displacement that is well confined to the four 
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corners of the large square subdomain interfaces. The eight C1-II-A (661 Hz in Fig 5.10a) and 

eight C1-II-B (685 Hz in Fig 5.10a) corner states have wave fields that are localized to the corners 

of the eight small square subdomain interfaces. The 24 C1-III (671, 672, and 675 Hz in Fig 5.10a) 

corner states exhibit energy confinement at the corners of all three sets (eight small, one medium, 

and one large) of square subdomain interfaces. In the case of Configuration 2, the topological edge 

states (620, 621, 729, 730 Hz in Fig 5.10b) are virtually unchanged in frequency and displacement 

field profile, and the bulk modes (605 Hz in Fig 5.10b) cover the same frequency ranges (Fig 5.9d). 

On the other hand, the eigenfrequencies for Configuration 2 contain a different array of topological 

corner states when compared to Configuration 1 due to the interchange of the trimer and monomer 

corners. For Configuration 2, 36 C2-I-A (632, 636, and 639 Hz in Fig 5.10b) and 36 C2-I-B (742, 

744, 746, and 749 Hz in Fig 5.10b) corner states emerge that trap wave energy at the corners of 

the nine (eight small and one medium) internal square subdomain interfaces. Moreover, 40 C2-II 

(672, 672, 676, and 682 Hz in Fig 5.10b) corner states emerge with displacement localized at the 

corners of all small, medium, and large subdomain interfaces. The rich hierarchy of topological 

edge and corner states displayed in Fig 5.10 underscores how the distinctive geometry of the fractal 

HOTM enables the manipulation of elastic waves across numerous dimensions, locations, and 

frequencies.  

Further analysis of the corner states uncovers intriguing coupling and symmetry 

characteristics. Select eigenmodes for the corner states of Configurations 1 and 2 are presented in 

Fig 5.11a and Fig 5.11b, where the insets (which depict out-of-plane displacement 𝑤) provide 

insight into the symmetries of the mode shapes. The displacement fields for C1-II-A, C1-III, and 

C1-II-B (661, 671, and 685 Hz in Fig 5.11a) reveal that the corner states confined at the eight small 

square subdomain interfaces exhibit multipolar behavior, because the close proximity of the four 

monomer corners leads to the evanescent coupling of their respective deformations (see a 

discussion on multipolar corner states in Section 5.5). The eight C1-II-A (661 Hz in Fig 5.11a) 

states are monopolar, the 16 C1-III (671 Hz in Fig 5.11a) states localized to the small square 

subdomain interfaces are dipolar, and the eight C1-II-B (685 Hz in Fig 5.11a) states are 

quadrupolar. Identical observations are made for the trimer corner states located at the eight small 

square subdomain interfaces for Configuration 2. In that case, The 32 C2-I-A, 32 C2-II, and 32 

C2-I-B corner states that are localized at the small square interfaces each contain sets of eight 

monopolar (636, 672, and 742 Hz in Fig 5.11b), eight quadrupolar (639, 682, and 749 Hz in 
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Fig 5.10. Exemplar bulk, edge, and corner eigenmodes for the fractal HOTM in (a) Configuration 1 and (b) 

Configuration 2 that illustrate the wave confinement of the topological states. A larger total displacement 𝑑 is indicated 

by increasing brightness. 
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Fig 5.11. Eigenmodes for the corner states of the fractal HOTM in (a) Configuration 1 and (b) Configuration 2. For 

the full-scale results, a larger total displacement 𝑑 is indicated by increasing brightness. Insets of the out-of-plane 

displacements 𝑤 are included to elucidate the symmetry characteristics of each mode.  
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Fig 5.11b), and 16 dipolar (632, 676, and 746 Hz in Fig 5.11b) eigenmodes. On the other hand, 

the corner states (C1-I-A, C1-III, C1-I-B, C2-I-A, C2-II, and C2-I-B) located at the medium and 

large square subdomain interfaces do not exhibit multipolar behavior due to the larger distance 

between the corners (634, 672, 675, 747 Hz in Configuration 1, Fig 5.11a; 632, 672, 676, and 744 

Hz in Configuration 2, Fig 5.11b).  

Apart from multipolar coupling, a pattern is detected in the coupling between the monomer 

and trimer corner states of the fractal HOTM. The C1-III and C2-II classes of corner states each 

contain eigenmodes with wave localization at both monomer and trimer corners (Fig 5.11a,b). The 

trimer corner states in both the C1-III and C2-II classes have symmetric eigenmodes about the 

angular bisector (675 Hz in Fig 5.11a and 672, 676, 682 Hz in Fig 5.11b). In contrast, the C1-I-A, 

CI-I-B, C2-I-A, and C2-I-B trimer corner states have asymmetric eigenmodes (634 and 747 Hz in 

Fig 5.11a and 632, 636, 639, 742, 744, 746, and 749 Hz in Fig 5.11b) and do not couple with any 

monomer corner states (i.e., there are no monomer corner states in the C1-I-A, CI-I-B, C2-I-A, 

and C2-I-B classes). These outcomes reveal that the symmetric trimer corner states of the fractal 

HOTM couple with monomer corner states that emerge in the same frequency range, while the 

asymmetric trimer corner states do not couple to monomer corner states and are thus spectrally 

isolated. The understanding of the monomer-trimer and multipolar couplings of the corner states 

in the fractal HOTM could be leveraged to create elastic waveguides with prescribed displacement 

symmetries that are confined at multiple (or singular) spatial locations.  

5.8 Conclusions and discussion 

The research presented in this chapter advances the state of the art through the synthesis and 

exploration of a novel 2D HOTM that harnesses multimodal local resonance to enable higher-

order topological corner states in multiple frequency bands. A band structure investigation 

uncovers four low-frequency (<1 kHz) topological bandgaps that are derived from bending and 

torsional resonances and the adjustment of intra- and inter-cell resonator couplings according to 

the 2D SSH model. A supercell study reveals four gapped 1D edge states that appear within the 

topological bandgaps, two of which have bending local resonances and two of which have torsional 

local resonances. Calculation of the eigenspectra for full-scale structures illuminates the 

emergence of a rich collection of eight 0D corner states across the four topological bandgaps. The 

multiband corner states have a diverse set of displacement field characteristics (localization, 
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symmetry, and number of activated masses), exhibit multipolar or decoupled behavior, and have 

frequency-selective capabilities that are controllable through lattice design (e.g., prescribing 

monomer or trimer corners). Dynamic response simulations illustrate how vibrations and elastic 

waves can be effectively confined by the topological edge and corner states of the 2D HOTM. The 

outcomes from this research reveal how multimodal resonance can be exploited to attain 

topological 0D corner states across multiple frequency regimes. The distinctive characteristics of 

the hierarchy of topological states achieved in the 2D HOTM may unlock multifunctional and 

multichannel wave focusing for energy harvesting, sensing, and signal processing applications. As 

an example, a frequency-dependent logic gate is constructed from the 2D HOTM. The frequency-

dependent gate switches between OR and XOR logic operations based on the wave excitation 

frequency by selecting between two unique corner states, illustrating the potential usefulness of 

the 2D HOTM for wave-based computing. The capabilities of the 2D HOTM platform are also 

leveraged to construct the first fractal HOTM that controls vibrations and elastic waves. An 

eigenfrequency analysis uncovers corner and edge states that trap wave energy at the myriad corner 

and edge boundaries of a 1.89D Sierpiński carpet. The fractal HOTM unlocks 160 corner states in 

two topological bandgaps, surpassing the 16 that materialize in the same bandgaps of the 2D 

HOTM. This study provides insight into the attainment of higher-order topological states in fractal 

TMs that localize elastic waves across various dimensions, locations, and frequencies, opening the 

door for future research of topological phases in mechanical metamaterials with fractal 

architectures. 
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Chapter 6. Scholarly Contributions, Broader Impacts, and Future 

Opportunities 

6.1 Summary of scholarly contributions 

This dissertation advances the state of the art through the synthesis of a new class of advanced 

TMs that achieve exceptional control over elastic wave propagation in mechanical structures. As 

part of the development of these advanced TMs, innovative methodologies that harness 

comprehensive adaptivity, local resonance, higher-order topological phases, and 3D mechanical 

architectures are created and explored. The TMs established within this dissertation exhibit wave 

control that is on-demand tunable (i.e., responsive), broadband, multiband, subwavelength (i.e., 

easily integrated into volume-constrained and low-frequency applications), and multidimensional 

(i.e., wave control is attained across a hierarchy of 0D, 1D, 2D, and layer-dependent topological 

states). In addition to yielding sophisticated elastic wave control capabilities, new insight is 

uncovered on the interactions between topological and elastic wave physics. The TMs generated 

in this dissertation are shown in Fig 6.1a and a visual overview of the scholarly contributions is 

given in Fig 6.1b,c,d (note that the four symbols in Fig 6.1 indicate the connection between each 

of the TMs and the scholarly contributions). The primary contributions of this dissertation are 

summarized below:  

 

 New electromechanical and metastable design methodologies are uncovered that enable 

the realization of 2D and 3D TMs with multiple on-demand tunable characteristics (Fig 

6.1b): Investigations uncover system parameters that govern the on-demand tunability of 

the TMs and reveal the true attainable range of adaptive functionality. In Chapter 2, 

concurrent adaptivity of the frequency, path, and shape of 1D topological edge states is 

realized through the creation of a 2D TM with resonant piezoelectric circuitry. Using a 

semi-analytical tool (dispersion relation derived from the PWE method), an achievable 

operating region for locally resonant topological states is derived, and its physical  
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Fig 6.1.  A summary of the scholarly contributions. (a) The advanced class of novel TMs synthesized in this 

dissertation. (b) TMs that employ resonant circuit tuning and metastable switching to enable comprehensive on-

demand tunability (i.e., responsiveness). (c) TMs that harness innovative realizations of local resonance to achieve 

broadband, multiband, and subwavelength (i.e., easily integrated) wave control. (d) TMs that exploit the rich 

dimensionality of 3D mechanical architectures for new wave control functionalities.    
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explanation is obtained. A systematic analysis reveals how resonant circuitry, 

electromechanical coupling, and lattice reconfiguration can be exploited to increase the 

tunable frequency range, enhance achievable mode localization, and switch between 

multiple unique topological states. In Chapter 3, a 3D metastable TM is developed that 

enables wave path tunability and on-demand selection between several multidimensional 

(2D surface, layer-polarized, and mono/bilayer-locked) topological states, establishing the 

first on-line programmable 3D TM. Wave control functionality that exceeds what is 

achievable in 2D TMs is demonstrated by switching between and connecting these 

multidimensional topological states within adaptive 3D metastructures. These 

contributions are published in [235,253].  

 

 Novel 2D tunable TM, 3D TM, and 2D HOTM are created that harness local resonance 

to operate in subwavelength, multiband, and broadband frequency regimes (Fig 6.1c): 

In Chapter 2, locally resonant LC circuits are used in the tunable 2D piezoelectric TM to 

attain subwavelength topological states and adjust the frequency of topological wave 

propagation over a broad frequency range. Lattice reconfiguration (through the strategic 

shorting of circuits) is used to uncover a set of topological states in an additional discrete 

frequency region, facilitating multiband wave control. In Chapter 4, a 3D TM is created 

that achieves low-frequency and multiband wave control by utilizing multimodal local 

resonance. Four low-frequency (<6 kHz) topological states are attained through four 

locally resonant modes (out-of-plane translational, hybrid torsional, in-plane torsional, and 

in-plane translational) that can be adjusted without changing the lattice constant. 

Parametric studies are used to uncover critical system parameters and predict the frequency 

ranges of the four distinct low-frequency topological states that emerge from the careful 

design of embedded spring-mass resonators. These insights inspire the synthesis of a novel 

2D HOTM in Chapter 5, where multimodal resonance and higher-order topological phases 

are exploited to achieve a hierarchy of multiband topological states in a low-frequency (<1 

kHz) regime. Bending and torsional resonances are engineered in the 2D HOTM to achieve 

a set of eight 0D corner states and four 1D edge states that exhibit a wide variety of 

displacement field characteristics (wave localization, displacement symmetries, corner 

mode couplings, and number of activated resonators). The unconventional wave control 
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capabilities of the 2D HOTM are harnessed to construct multifunctional wave-based logic 

gates and attain higher-order topological states in fractal TMs for the first time. These 

contributions are published in [235,266]. The contributions from Chapter 5 will be 

published in a journal publication that is in preparation.   

 

 The rich dimensionality of 3D mechanical architectures is exploited to create 3D TMs 

that unlock unprecedented wave control functionality through 2D surface, polarization-

dependent, and layer-dependent topological states (Fig 6.1d): The programmable 3D TM 

presented in Chapter 3 enables the discovery of a novel bilayer-locked topological state 

where elastic wave energy is trapped in two layers of a multilayered (eight total layers) 3D 

metastructure. A supercell analysis reveals that the bilayer-locked state, which contains a 

strong coupling between the displacement on adjacent layers (layers 4 and 5), is 

accompanied by monolayer-locked states on all other layers (layers 1,2,3,6,7, and 8). A 

design methodology is created that would generalize these results such that bilayer- and 

monolayer-locked states could be achieved on any targeted layers of multilayered 3D 

metastructures. The 3D TM in Chapter 3 is also used for the construction of sophisticated 

3D elastic wave networks (wave layer converter, wave focuser, wave splitter) with 

frequency- and layer-dependent wave conversion that is achieved through the interaction 

of several unique multidimensional (2D surface, layer-polarized, and mono/bilayer-locked) 

topological states. These 3D elastic wave networks harness additional dimensionality to 

exceed the capabilities of their 2D predecessors [115,155,241]. The 3D TM synthesized in 

Chapter 4 achieves rich polarization-dependent and frequency-dependent wave control in 

2D planar and layer-locked topological waveguides. Depending on the frequency and 

polarization characteristics of a vibration input, elastic waves can be routed along different 

layers and directions in a full-scale 3D structure. The experimental investigation of this 

novel metamaterial results in the first measurements of complete wave fields for 2D 

topological waveguides and multi-polarized topological waveguides in a 3D mechanical 

structure. These contributions are published in [253,266]. 
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6.2 Broader impacts and opportunities for future research  

As described in Section 6.1, the contributions of this thesis research include enhanced elastic 

wave control functionality in mechanical systems and new fundamental knowledge in topological 

and elastic wave physics. The exceptional capabilities of the TMs developed in this dissertation 

will have a profound impact on many contemporary engineering applications, such as vibration 

mitigation devices, energy harvesters, sensors, and information processors (see some examples in 

Fig 6.2a), that serve critical functions in numerous industries (e.g., energy generation [15], 

manufacturing [16,17], transportation [18], civil infrastructure [19,20], and aerospace/defense 

[21–23]). The new fundamental knowledge gained within this research will advance the field of 

EMs and, more broadly, provide inspiration in the fields of condensed matter physics [86–89], 

acoustics [97,98], and electromagnetics/photonics [99–102] (Fig 6.2b). The TMs and novel 

physical insights defined herein may also help to form the building blocks of the next generation 

of mechanical structures, including artificial structures with embodied “intelligence” 

[12,249,250,300]. This section includes an overview of the broader impacts of this dissertation 

research and suggests promising opportunities for future research directions.   

6.2.1 Advanced elastic wave control in contemporary engineering applications  

The advanced TMs developed in this thesis research enable robust (i.e., with minimal losses 

when exposed to manufacturing- or wear-related imperfections) and tunable control of elastic 

waves across a hierarchy of dimensions, nearly arbitrary directions, and broad/multiple frequency 

regimes (that are at low frequencies, <20 kHz, relevant to many structural applications). These 

properties could be very useful in many classical engineering applications that require the ability 

to control the flow of vibrations and elastic waves but suffer performance degradation due to a 

lack of robustness, functionality, and/or range of operation. For example, vibration mitigation 

devices may benefit from the ability to reroute vibrational energy (e.g., away from critical 

electronics and towards sacrificial dissipative elements, see the top left panel in Fig 6.2a) and 

operate over a wide and adjustable frequency bandwidth in a subwavelength manner [2,301]. 

These characteristics of the piezoelectric 2D TM developed in Chapter 2 may be used to enhance 

performance and create more compact vibration mitigation materials for structural systems such 

as aircraft, vehicles, and industrial machinery. Vibration mitigation systems may also find new 

functionality by using 3D TMs. By using 3D TMs such as those devised in Chapter 3 and Chapter 
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4, vibration mitigation systems can be designed to selectively absorb wave energy in specific 

regions of a system, while converting or transmitting energy in others (e.g., the wave layer 

converter in Fig 3.13 and Appendix Figure B.9 or the frequency-dependent layer-locked behavior 

in Fig 4.4). The TMs developed within this thesis may also be employed in vibration energy 

harvesting systems [29,30,217,302] where tunable, broadband, and multiband functionality would 

be beneficial. The piezoelectric 2D TM (which is already composed of commonly used energy 

harvesting components: piezoelectric plates) from Chapter 2 could be used to guide vibrational 

energy to harvesting elements in a lossless and adaptive manner. The ability to adjust on-demand 

to external input frequency or location changes would greatly enhance the performance as it would 

facilitate efficient operation in practical environments. The TMs in this thesis also could have 

potential applications in structural health monitoring (SHM) systems for non-destructive 

evaluation (NDE) of civil infrastructure, energy pipelines, and sea/air/spacecraft [303–306]. The 

TMs developed in Chapter 5 harness higher-order topological physics in a way that can obtain 

signals across multiple bands that are highly localized and have a high signal-to-noise ratio, which 

are signal properties that may be of great benefit in many SHM/NDE techniques (see a basic 

schematic of how the 2D HOTM described in Chapter 5 can be used for SHM/NDE and vibration 

energy harvesting in the top right panel of Fig 6.2a).   

The elastic wave capabilities of the advanced TMs described in this thesis research may also 

be of benefit in many of the modern engineering applications that are presently being developed 

and realized. With the dramatic expansion of interconnected networks of devices that can sense 

and compute (those found in smart homes, connected vehicles, wearables, manufacturing 

equipment, healthcare, farming, civil infrastructure, environmental monitoring, transportation and 

logistics, 5G networks, and more), known colloquially as the “Internet of Things” [307–309], the 

progress of on-chip communications and other critical information processing components (i.e., 

integrated circuitry) has become a top research priority. Owing to their many advantageous 

attributes (e.g., having high information density, low losses, and low susceptibility to noise, see 

Section 1.1.1), EMs are a promising platform to create the wave splitters, filters, and 

processing/logic elements that make up integrated circuitry. In other words, integrated phononic 

circuitry can be built from EMs by using elastic phonons as the information carrier, replacing the 

electrons used in conventional electrical circuits (see [27,109–112] for some examples of phononic 

circuitry). TMs such as those developed in this thesis research may provide high efficiency and  
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Fig 6.2. Broader impacts of the novel class of TMs synthesized in this dissertation. The images of the TMs from this 

dissertation are enclosed in dashed black lines. (a) Examples of ways the novel TMs can enhance performance in 

engineering applications, including vibration mitigation, energy harvesting, sensing/NDE, and integrated phononic 

circuitry. The image of the 3D “stacked-chip” electrical circuit is reused from [310] under license CC BY 4.0. (b) The 

TMs and fundamental insight gained from this dissertation may inspire future research in the fields of topological 

mechanics, acoustics, photonics, and condensed matter physics. The quantum material image is reused from [311] 

with written permission from the publisher. The topological mechanics image is reused from [75] under license CC 

BY 4.0. The topological photonics image is reused from [312] with written permission from the publisher. The 

topological acoustics image is reused from [247] under license CC BY 4.0. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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unique functionality for integrated phononic circuit devices due to their remarkable wave control 

characteristics. Since the TMs synthesized in this thesis rely on symmetry to obtain their intriguing 

properties, the insight gained from this research is applicable at multiple scales (from on-chip 

phononic circuits to macro-scale phononic circuits) and frequencies (from low to high, Hz to 

MHz). An example of a macro-scale phonic circuit element is provided in Section 5.6, where the 

multiband topological states of the 2D HOTM are employed to create wave-based logic gates that 

can adapt to certain spatial and frequency properties of an external input. Furthermore, recent 

developments in the field of semiconductors indicate a new wave of 3D circuit devices. In an effort 

to increase computing power and alleviate manufacturing limitations, semiconductor 

manufacturers have created and continue to develop 3D “stacked-chip” systems, which enable 

more efficient on-chip communications by reducing the interconnect distance when compared to 

traditional 2D integrated circuit chips [310,313–315]. The 3D TMs synthesized in this dissertation 

are capable of harnessing this 3D interconnect concept in 3D phononic circuits. The 

multidimensional and multi-polarized topological states observed in the 3D TMs developed in 

Chapter 3 and Chapter 4 of this thesis could be used to build complex elastic wave networks, such 

as those described in Section 3.7, that provide innovative and efficient ways to route energy and 

information in communications systems (e.g., see the bottom panel of Fig 6.2a). 3D TMs, such as 

the TM fabricated and experimentally analyzed in Chapter 4, may also prove to be easy-to-test 

(i.e., relatively inexpensive and easy to measure and adjust when compared to semiconductor 

manufacturing and testing) macroscale platforms for 3D interconnect methodologies, an advantage 

that could support the creation of novel 3D electrical interconnect architectures in traditional 

semiconductor devices.   

6.2.2 Innovative topological physics for mechanics (elastic wave), acoustics, photonics/ 

electromagnetics, and condensed matter physics  

This thesis research uncovers new fundamental knowledge on the interactions between 

topological physics and elastic wave physics. This new understanding could be exploited in future 

fundamental research and the development of application-oriented devices in the fields of 

topological mechanics [90–96], acoustics [97,98], photonics/electromagnetics [99–102], and 

condensed matter physics [86–89] (Fig 6.2b). Chapter 3 and Chapter 4 illuminate the ability to 

project 2D topological valley physics (i.e., QVHE) into 3D layered structures and manipulate the 
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layer configurations and interlayer coupling to achieve bilayer- and monolayer-locked topological 

states. In those chapters, new insight is gained concerning the interactions of 2D surface, layer-

polarized, and layer-locked states, and novel elastic wave networks are constructed from their 

interconnection. The outcomes from these research studies could be leveraged to create and study 

innovative 3D topological materials in the adjacent fields of acoustics, photonics, and condensed 

matter physics. In Chapter 2, an “achievable operating region” for topologically protected elastic 

wave propagation is explored, and its bounds are defined based on minimally acceptable 

topological invariant and bandgap magnitudes. The limitations (specifically, on the frequency 

range and achievable wave localization) of adaptive topological states are studied in the context of 

a locally resonant system, and the critical system properties of short circuit band dispersion, circuit 

resonator frequency, and electromechanical coupling are identified. Takeaways from this chapter 

could be leveraged in the synthesis of other tunable classical wave (i.e., elastic, acoustic, and 

photonic/electromagnetic) systems that are constructed via analogies to topological phases in 

condensed matter physics. For on-demand tunable systems in each of these fields, a map of the 

true adjustable range (e.g., frequency range or mode localization range) would facilitate more 

efficient design and better integration in practical applications. More fundamentally, derivation of 

these achievable operating regions in future works would provide a deeper understanding of the 

interactions and constraints imposed by the mechanics (or acoustics or 

photonics/electromagnetics) of a system when creating analogies to topological phases. The 

investigations outlined in Chapter 2, Chapter 4, and Chapter 5 also uncover new information on 

the role of local resonance in TMs, illuminating how multimodal local resonance can be leveraged 

to obtain first-order and higher-order topological phases with distinct frequencies and polarizations 

in 2D and 3D systems. Apart from the clear relevance to topological mechanics, many of these 

outcomes could be employed in the design of resonant topological acoustic and photonic crystals. 

Finally, the first evidence of nontrivial topology in fractal mechanical lattices is uncovered in 

Chapter 5, where practical macroscale platforms are created that may inspire future investigations 

on topological phases in fractal architectures, which are yet to be explored in mechanical systems 

(outside of this work, to the best of our knowledge). Future research would focus on uncovering 

generalizable rules and establishing a deeper understanding of the physics that governs the 

emergence of topological states in fractal mechanical lattices.  
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The physical platforms and theoretical investigations described within this dissertation have 

created a deeper understanding of multidimensional (0D, 1D, 2D, and layer-dependent) 

topological states and how they interact with each other. These outcomes provide a foundation for 

future research exploring unique topological phases and how they interface with each other in 

classical wave (e.g., elastic, acoustic, and photonic/electromagnetic) physics. Recently, 

researchers have created an automated algorithm that identifies topological electronic materials, 

finding 8,056 topologically nontrivial materials with numerous unique topological invariants and 

bulk/boundary transport phenomena [316]. In addition, topological electronic materials have 

previously been classified according to their topological phase signatures [317,318], and recent 

works have endeavored to map each topological electronic material to classical wave analogs in 

passive metamaterials [319,320]. In future research, machine learning (which has already been 

shown to be an effective tool for designing and analyzing metamaterials [321–323]) could be used 

to investigate how the previously mapped topological electronic materials can be manipulated in 

classical wave systems to uncover new hierarchies of multidimensional topological states and 

achieve advanced functional goals (i.e., how to take a topological electronic material and adjust its 

intrinsic properties in a classical wave system to achieve bulk/boundary waveguides along a 

hierarchy of desired dimensions and within a targeted frequency range). Furthermore, 

multidimensional topological phases from multiple unique candidate electronic materials could be 

strategically interfaced in mechanical testbeds (i.e., by creating TMs that interface multiple unique 

topological phases, as was done with the 3D TM in Chapter 3 of this dissertation) to achieve and 

understand rich new wave transport behaviors using machine learning and/or advanced 

evolutionary algorithms (e.g., the evolutionary pipeline defined in [324]). Such a methodology 

could feasibly be generalized for the investigation of unconventional topological electronic 

materials in classical wave systems, such as materials with aperiodicity (e.g., fractals, see Section 

5.7 of this dissertation) or unconventional BZs that exhibit projective symmetries (e.g., a symmetry 

about a glide plane or screw axis that cannot be described by a combination of translations and 

rotations), including the recently developed Möbius insulators [325–327].  

6.2.3 Next-generation mechanical structures and systems with physical intelligence  

Significant research attention is currently being directed at the development of physical 

systems with embodied “intelligence” that emulates the intelligence possessed by humans 
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[50,249,250,328]. Systems with intelligence have the capability to perceive (e.g., sense), process 

(e.g., compute and decision-make), and store information (e.g., learn or retain memory), such that 

they can adapt their configuration/behaviors (e.g., actuate) based on a changing external 

environment. Many modern engineering systems achieve intelligent behaviors using integrated 

electronics and digital computers, which can be computationally expensive/inefficient, 

cumbersome to embed, and vulnerable to extreme environments and cyberattacks. To address 

these shortcomings, systems with physical intelligence (PI) have the features of intelligence 

directly embodied within their physical components [50,249,250,328]. Recent studies have 

unveiled mechanical structures and robotic systems that exhibit some form of embodied PI 

[52,329–334], creating a new paradigm that advances beyond mechanical systems with more 

traditional electronically embedded intelligent features. EMs have emerged as a promising 

building block in the quest for mechanical systems with embodied PI due to the many features of 

EMs that are advantageous for actuation (e.g., intriguing mechanical properties), sensing (e.g., 

single-sensor vibration identification and frequency-sensitive response), computation (e.g., wave-

based phononic computing), and memory (e.g., non-volatile long-term memory) 

[12,27,338,44,49,51,54,110,335–337]. TMs, in particular, have recently been shown to make 

analog computation more robust to structural imperfections [114], and future research could 

further capitalize on the advantages and capabilities of advanced TMs (such as those developed in 

this thesis) in PI systems. Building upon the results in [114], where a 1D TM was used, more 

advanced 2D and 3D structural systems could be synthesized with robust and adaptive wave-based 

computing functionalities using innovative 2D/3D TMs such as those described in this dissertation. 

This robust functionality could extend all the way to quantum computing, where higher-order 

topological states have emerged as a potential route to enable and stabilize quantum computations 

[88,128]. As shown and discussed in Sections 3.7, 4.5, 5.6, and 6.2.1, advanced TMs can be used 

to create wave networks that have the potential to function as phononic processing circuits, 

essentially embodying computations and decision-making directly within mechanical structures 

(and thus minimizing the need for electronics). In the next step toward achieving PI, future research 

could involve the investigation of more sophisticated (beyond the logic gates and networks 

described in Sections 3.7, 4.5, 5.6; e.g., by building and interconnecting multiple logic elements 

to achieve more complex logic) wave-based computing capabilities in TMs. Another prospective 

line of study could investigate how to utilize TM-enabled wave-based computing as a foundation 



 137 

that unlocks and integrates sensing, actuation, and memory in mechanical structures. For example, 

one could envision a mechanical structure that can direct its own shape change and property 

tailoring in response to an external vibration input based on logic computations that are processed 

using robust TM-enabled phononic circuitry that is integrated within its design (an intriguing 

recent work demonstrated a non-topological 1D EM example of this idea [339]). The combination 

of the novel methodologies and advanced TMs developed in this dissertation with the emerging 

exploration of PI offers an exciting future research opportunity involving the pursuit of next-

generation mechanical structures that can autonomously and intelligently operate in various 

sophisticated technological applications.
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Appendix A: Supplemental Information for Chapter 2 

Appendix A.1: Matrices for eigenvalue problem calculations 

The classical eigenvalue problem is defined as: ([𝐊] − 𝜆[𝐌])[𝒖] = 0 (Eq. 2.13) within Section 

2.2.3. Below is the explicit definition of the matrices defined in Eq. 2.13 of Section 2.2.3 and used 

for computation of the dispersion relation:  
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𝑀21 = −𝑎2

[
 
 
 
 
 |𝑘 + 𝐺|1

2
∬𝑒−𝑖𝑎(𝑘+𝐺)1 ∙𝑟𝑑2𝑟

𝐷1

⋯ |𝑘 + 𝐺|𝑁2
2
∬𝑒−𝑖𝑎(𝑘+𝐺)

𝑁2  ∙𝑟𝑑2𝑟

𝐷1

|𝑘 + 𝐺|1
2
∬𝑒−𝑖𝑎(𝑘+𝐺)1 ∙𝑟𝑑2𝑟

𝐷2

⋯ |𝑘 + 𝐺|𝑁2
2
∬𝑒−𝑖𝑎(𝑘+𝐺)

𝑁2  ∙𝑟𝑑2𝑟

𝐷2 ]
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Appendix A.2: Negative capacitance series connection 

 

Appendix Figure A.1. Schematic of a single resonant circuit with negative capacitor connected in series.  

 

In Section 2.2.4, the parallel connection for negative capacitance is chosen as a method to 

enhance electromechanical coupling. In the derivation contained in this section, it is shown that 

enhanced electromechanical coupling can also be achieved for a negative capacitance connected 

in series.   

Dimensional governing equations for the metamaterial with resonant circuits connected to a 

negative capacitance in series (these are derived using the same methods used to derive Eqs 2.2 

and 2.3 in Chapter 2): 

𝐷𝑇∇̅4�̅�(�̅�, 𝑡) + ∑
𝜃2

𝐶𝑝,𝑗
∇̅2�̅�𝑗(�̅�)∬ ∇̅2�̅�(�̅�, 𝑡)𝑑2�̅�

�̅�𝑗

𝑁𝑒

𝑗=1

− ∑
𝜃2

𝐶𝑝,𝑗(1 − 𝛾𝑗)
∇̅2�̅�𝑗(�̅�)∬ ∇̅2�̅�(�̅�, 𝑡) 𝑑2�̅�

�̅�𝑗

𝑁𝑒

𝑗=1

+

𝑚
𝜕2�̅�(�̅�, 𝑡)

𝜕𝑡2
− 𝜃 ∑

𝐶𝑇,𝑗

𝐶𝑝,𝑗
∇̅2�̅�𝑗(𝑡)�̅�𝑗(�̅�) = 0

𝑁𝑒

𝑗=1

(𝐴. 1)
 

𝐿𝑗𝐶𝑇,𝑗

𝜕2�̅�𝑗(𝑡)

𝜕𝑡2
+ �̅�𝑗(𝑡) +

𝜃

1 − 𝛾𝑗
 ∬𝐿𝑗

𝜕2

𝜕𝑡2
∇̅2�̅�(�̅�, 𝑡) 𝑑2�̅�

�̅�𝑗

= 0,   𝑗 = 1… .𝑁𝑒 electrode pairs  (𝐴. 2) 

𝐶𝑇,𝑗 is the total capacitance and 𝛾𝑗 is the series negative capacitance factor for the 𝑗th circuit, and 

all other parameters are explicitly defined in Chapter 2. 𝐶𝑇,𝑗 and 𝛾𝑗 are further defined below:  

𝐶𝑇,𝑗 = (
1

𝐶𝑝,𝑗
−

1

𝐶𝑁,𝑗
)

−1

 

𝛾𝑗 =
𝐶𝑝,𝑗

𝐶𝑁,𝑗

(𝐴. 3) 
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To maintain stability, 𝛾𝑗 < 1. The governing equations are nondimensionalized to generalize 

results, with the following nondimensional variables:  

𝑤 =
�̅�

𝑎
𝑣𝑗 =

1

𝑎

𝐶𝑝,𝑗

𝜃
�̅�𝑗 𝜏 = √

1

𝐿𝑗𝐶𝑝,𝑗
𝑡 (𝐴. 4) 

A harmonic response is assumed at frequency 𝜔, and nondimensional variables are substituted as 

such:   

�̅�(�̅�, 𝑡) =  �̅�(�̅�)𝑒𝑖𝜔𝑡 = 𝑤𝑎𝑒𝑖𝜔√𝐿𝑗𝐶𝑝,𝑗𝜏

�̅�𝑗(𝑡) =  �̅�𝑗𝑒
𝑖𝜔𝑡 =

𝜃𝑎

𝐶𝑝,𝑗
𝑣𝑗𝑒

𝑖𝜔√𝐿𝑗𝐶𝑝,𝑗𝜏
(𝐴. 5) 

Finally, the PWE method is applied to obtain the dispersion relation: 

 

(𝑎4|𝑘 + 𝐺|4 − Ω2 + 𝑎4|𝑘 + 𝐺|4𝜗 ∑
𝐴𝑒,𝑗

𝐴𝑐
(1 −

1

1 − 𝛾𝑗
)

𝑁𝑒

𝑗=1

)𝑊(𝐺) +

∑
𝜗

1 − 𝛾𝑗

𝑎2

𝐴𝑐
 
𝑎2

𝐴𝑒,𝑗
𝑎2|𝑘 + 𝐺|2 ∬𝑣𝑗𝑒

𝑖𝑎(𝑘+𝐺)∙𝑟𝑑2𝑟 =

𝐷𝑗

𝑁𝑒

𝑗=1

0

(𝐴. 6) 

(
Ω𝑡,𝑗

2 (1 − 𝛾𝑗)

(1 − (−1)𝑗𝛽)
− Ω2)𝑣𝑗 + Ω2𝑎2 ∑𝑊(𝐺)|𝑘 + 𝐺|2 ∬𝑒−𝑖𝑎(𝑘+𝐺) ∙𝑟𝑑2𝑟 =

𝐷𝑗𝐺

0

𝑗 = 1… .𝑁𝑒 electrode pairs

(𝐴. 7) 

As seen in Eq. A.6, for the series configuration, the effective electromechanical coupling can be 

enhanced according to:   

𝜗𝑒𝑓𝑓 =
𝜗

1 − 𝛾
 (𝐴. 8) 

Therefore, the effective coupling can be significantly enhanced by careful selection of 𝛾. Per Eq. 

A.7, the effective tuning frequency of resonant circuits with a series-connected negative capacitor 

is:  

Ω𝑡−𝑒𝑓𝑓
2 = Ω𝑡

2(1 − 𝛾) (𝐴. 9) 

Thus, as 𝛾 approaches unity, the electromechanical coupling present in the system is enhanced, 

while the effective tuning frequency is shifted to a lower value (as opposed to higher for parallel 

connection), which may be advantageous for applications that must function at exceptionally low 

frequencies.  
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As shown in the derivation, connection of the negative capacitance in series effectively 

augments the inherent capacitance contained in a resonant circuit (𝐶𝑇 = (1/𝐶𝑝 − 1/𝐶𝑁)
−1

) and 

thus reduces the magnitude of inductance required to attain a specific tuning frequency. A 

drawback of connecting the negative capacitor in series is that the magnitude of the negative 

capacitance must be larger (when compared to parallel operation) to maintain stability (𝛾 < 1 

versus 𝜉 < 1). While the practical advantages and disadvantages of parallel and series connection 

of negative capacitance circuitry must be considered for each specific application, the same 

outcome of an enhanced electromechanical coupling is obtainable in either configuration.  
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Appendix A.3: COMSOL Multiphysics model for FE simulations 

A.3.1: COMSOL FE model schematic and description 

Appendix Figure A.2. Isometric (a) and top (b) views of COMSOL geometry for unit cell dispersion analysis. All 

dimensions and materials are specified to match those utilized in the PWE model (see Table 2.1 in Chapter 2). The 

top view (b) contains distinctions for the different circuit conditions that are specified at the surface of the 

metamaterial. The gray area is at short circuit (v = 0), the orange area is at open circuit (i=0), and the purple area is 

the electrode surfaces that are connected to external circuitry. The open circuit (orange) area is not explicitly included 

in the PWE derivation, but is included in the COMSOL FE model to prevent the occurrence of a voltage discontinuity.  

The low-reflecting boundary is a feature that is built into the COMSOL Structural Mechanics 

module, and is used in multiple sections of this dissertation in full-scale finite element simulations 

that model the dynamic response to an input excitation. The intention of the low-reflection 

boundary is to create a boundary where waves can pass through without reflection. This is 

accomplished within COMSOL by creating an impedance match (for both longitudinal and shear 

waves) using the material data of the domain adjacent to the boundary [340]. Put simply, this 

boundary condition imposes a force proportional to velocity on the boundary, as described by the 

following equation: 

𝜎 ∙ 𝒏 = −𝜌𝑐𝑙 (
𝜕𝒖

𝜕𝑡
∙ 𝒏)𝒏 − 𝜌𝑐𝑠 (

𝜕𝒖

𝜕𝑡
∙ 𝒕) 𝒕 (𝐴. 10) 

where 𝜎 is Cauchy stress, 𝑡 is time, 𝒖 is the displacement field vector, 𝜌 is the material density, 𝑐𝑙 

and 𝑐𝑠 are the wave speeds for the longitudinal and shear waves in the material, and 𝒏 and 𝒕 are 

the unit normal and tangent vectors at the boundary [340].  
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A.3.2: FE Result- Unit Cell Dispersion Diagram with Mode Polarization   

The band structure obtained from the FE model includes modes dominated by in-plane (i.e., 

�̅�-�̅� plane, perpendicular to the thickness of the plate) or out-of-plane (i.e., flexural, 𝑧̅ direction) 

displacement, which are referred to in this study as in-plane and out-of-plane polarized modes. A 

polarization parameter Π is defined to quantify the polarization for each individual mode as:  

 

Π =
∭ |�̅�|2

𝑉𝑈
𝑑𝑉

∭ |�̅�|2 + |�̅�|2 + |�̅�|2
𝑉𝑈

𝑑𝑉
(𝐴. 11) 

where 𝑉𝑈 is the volume of the unit cell, and �̅�, �̅�, and �̅� are the displacement components in the 

�̅�, �̅�, and 𝑧̅ directions, respectively. For an in-plane polarized mode, Π is close to 0. On the other 

hand, Π is close to 1 for an out-of-plane mode. The unit cell band structure generated from 

COMSOL as shown in Fig 2.2 of Section 2.3 (with 𝛽 = 0 and Ω𝑡−𝑒𝑓𝑓 = 16.0) is displayed in 

Appendix Figure A.3 with the polarization of each mode indicated by a colormap for Π. Flexural 

(out-of-plane) modes are indicated by light yellow circles, while in-plane modes are indicated by 

dark blue circles. It is observed that the in-plane modes obtained near Γ do not hybridize or couple 

Appendix Figure A.3. Dispersion diagram for unit cell with 𝛽 = 0 and 𝛺𝑡−𝑒𝑓𝑓  = 

16.0 computed from the COMSOL FE model. The colormap indicates the 

polarization of the modal displacement through the polarization parameter 𝛱. 

Light yellow shading indicates modes dominated by out-of-plane (flexural) 

displacement (𝛱 ≈ 1). Dark blue shading indicates modes dominated by in-plane 

(𝛱 ≈ 0) displacement. 
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directly to the out-of-plane modes of interest in this investigation (the three light yellow bands), 

as there are no observable interactions between the in-plane and out-of-plane bands in the 

presented frequency range. As shown in previous studies [66,156] and in Section 2.3 of this 

dissertation, the presence of in-plane modes that are decoupled from the relevant out-of-plane 

modes does not inhibit the obtainment of topologically-protected flexural waves.  
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Appendix A.4: Frequency tunability of the Dirac point for cases of extreme 

electromechanical coupling 

 

Appendix Figure A.4. Dirac frequency 𝛺𝐷𝑖𝑟𝑎𝑐  as a function of circuit tuning frequency 𝛺𝑡−𝑒𝑓𝑓  for extreme 𝜗𝑒𝑓𝑓 . The 

upper limiting frequency (𝛺𝑙𝑖𝑚𝑖𝑡) of 17.55 is indicated by a dotted black line. 𝛺𝑙𝑖𝑚𝑖𝑡  is unchanged, even for extremely 

small (𝜗𝑒𝑓𝑓  = 0.05) or large (𝜗𝑒𝑓𝑓  = 422) effective coupling values. 
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Appendix A.5: Electromechanical coupling study- band structure analysis 

 

Appendix Figure A.5. (a) Band structure for 𝜗𝑒𝑓𝑓  = 0.42 (solid black lines) and 𝜗𝑒𝑓𝑓  = 2 (dash-dot blue lines) with 

𝛽 = 0 and 𝛺𝑡−𝑒𝑓𝑓  selected such that 𝛺𝐷𝑖𝑟𝑎𝑐  = 10.4. (b) Band structure for 𝜗𝑒𝑓𝑓  = 0.42 (solid and dashed black lines) 

and 𝜗𝑒𝑓𝑓  = 2 (dash-dot blue lines) with various inductance perturbations |𝛽| to open the Dirac point located at 𝛺𝐷𝑖𝑟𝑎𝑐  

= 10.4. (c) Band structure for 𝜗𝑒𝑓𝑓 = 0.42 (solid black lines) and 𝜗𝑒𝑓𝑓  = 2 (dash-dot blue lines) with 𝛽 = 0 and 𝛺𝑡−𝑒𝑓𝑓  

selected such that 𝛺𝐷𝑖𝑟𝑎𝑐  = 5.9. (d) Band structure for 𝜗𝑒𝑓𝑓  = 0.42 (solid and dashed black lines) and 𝜗𝑒𝑓𝑓  = 2 (dash-

dot blue lines) with various |𝛽| to open the Dirac point located at 𝛺𝐷𝑖𝑟𝑎𝑐  = 5.9. 

Appendix Figure A.5 contains band diagrams that illustrate how increased electromechanical 

coupling “shapes” the dispersion curves in a way that is beneficial to the topological properties of 

the metamaterial. In Appendix Figure A.5a, a Dirac point is formed at Ω𝐷𝑖𝑟𝑎𝑐 = 10.4 for cases 

where 𝜗𝑒𝑓𝑓 = 0.42 (solid black lines) and 𝜗𝑒𝑓𝑓 = 2 (dash-dot blue lines). Analysis of the band 

structure reveals that the locally resonant bandgap that opens between the second and third bands 

due to the connected resonant circuitry is significantly larger for the 𝜗𝑒𝑓𝑓 = 2 case (bandgap spans 

Ω = 11.1 to Ω = 14.0) than it is for the 𝜗𝑒𝑓𝑓 = 0.42 case (bandgap spans Ω = 10.7 to Ω = 11.7). Due 

to the larger separation between bands in the case with larger coupling, the influence of the third 
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band and other higher order bands on the |𝐶𝑣| calculations is reduced, and a greater localization of 

the Berry curvature is possible at the 𝐾 point. Thus, the valley Chern number |𝐶𝑣| is anticipated to 

be larger after applying a lattice perturbation (𝛽) and breaking the Dirac point. This hypothesis is 

supported by previous investigations that discussed how separation of the two dispersion curves 

that create the Dirac point from other bands may lead to a larger 𝐶𝑣 [83,159].  

Apart from creating a greater separation between bands, higher electromechanical coupling 

also alters the shape of the second band in a manner that is conducive to a larger |𝐶𝑣|. From further 

examination of Appendix Figure A.5a, the difference between Ω𝐷𝑖𝑟𝑎𝑐 and Ω calculated at the Γ 

point (Ω(Γ)) for the second band is larger for the 𝜗𝑒𝑓𝑓 = 2 case (Ω(Γ) − Ω𝐷𝑖𝑟𝑎𝑐 = 0.8) than it is for 

the 𝜗𝑒𝑓𝑓 = 0.42 case (Ω(Γ) − Ω𝐷𝑖𝑟𝑎𝑐 = 0.3). Therefore, when an inductance perturbation (|𝛽|) is 

applied, the second band of the 𝜗𝑒𝑓𝑓 = 0.42 case tends to “flatten out” (i.e., Ω is the same value for 

all points in IBZ of reciprocal space: Γ − 𝑀 − 𝐾 − Γ) for a smaller value of |𝛽|, when compared 

to the higher coupling case. The “flattening” of the second band leads to a more rapid 

delocalization of the Berry curvature, as the dispersion surfaces are no longer Dirac cone-like. This 

phenomenon is illustrated in Appendix Figure A.5b. If an identical |𝛽| of 0.05 is applied to both 

coupling cases, the resulting |𝐶𝑣| is 0.3 for the high coupling case (band structure in dash-dot blue 

lines) and |𝐶𝑣| = 0.2 for the lower coupling case (dashed black lines). It is observed that the second 

band has become “flat” for the lower coupling case, and a delocalization of the Berry curvature 

has followed (as indicated by the lower |𝐶𝑣| value). To obtain a |𝐶𝑣| = 0.3 for the lower coupling 

case, |𝛽| must be reduced by half, from 0.05 to 0.025 (solid black lines).  

To support the generality of these results across the entire Dirac frequency range, the analysis 

conducted for 𝜗𝑒𝑓𝑓 = 0.42 (solid black lines) and 𝜗𝑒𝑓𝑓 = 2 (dash-dot blue lines) with Ω𝐷𝑖𝑟𝑎𝑐 = 10.4 

is repeated at a lower Dirac frequency. For Ω𝐷𝑖𝑟𝑎𝑐 = 5.9, the band structures for both coupling 

cases with 𝛽 = 0 and |𝛽| ≠ 0 are given in Appendix Figure A.5c, and Appendix Figure A.5d. Once 

again, a larger band separation is observed in Appendix Figure A.5c for the higher coupling case. 

In Appendix Figure A.5d it can be seen that the “flattening” of the second band leads to a |𝐶𝑣| = 

0.12 for the lower coupling case with |𝛽| = 0.014 , compared to a |𝐶𝑣| = 0.30 for the higher coupling 

case subjected to the same |𝛽|. To obtain a |𝐶𝑣 | = 0.3 for the lower coupling case, |𝛽| must be 

reduced dramatically, from 0.014 to 0.005 (solid black lines).  
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Appendix A.6: Deep subwavelength (low-frequency) topological wave propagation 

 

Appendix Figure A.6. (a) Schematics for thin plate metastructures with straight and Z-shaped Type I lattice interfaces 

(enclosed in black lines). A harmonic out-of-plane point excitation is applied where indicated by the black arrow. 

Negative capacitance circuity is connected such that 𝜗𝑒𝑓𝑓  = 2 in all cases. (b) Steady-state displacement fields for |𝛽| 

= 0.014, 𝛺𝐷𝑖𝑟𝑎𝑐  = 5.9, and 𝛺𝑒 = 5.9. (c) Steady-state displacement fields for |𝛽| = 0.060, 𝛺𝐷𝑖𝑟𝑎𝑐  = 5.9, and 𝛺𝑒 = 5.9. 

For steady-state response, the out-of-plane displacement amplitude is indicated by the color intensity. The results 

illuminate how wave propagation can become delocalized at sharp corners for a |𝛽| that is specified as too small or 

too large.   
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 FE simulations are conducted to evaluate the excitation of topological interface states at low 

(deep subwavelength) frequencies. Geometric, material, and negative capacitance (𝜉 = 0.79) 

parameters are selected to match the case presented in Fig 2.9c of Chapter 2, where 𝜗𝑒𝑓𝑓 = 2, 

Ω𝐷𝑖𝑟𝑎𝑐 = 5.9, and Ω𝑒 = 5.9. Appendix Figure A.6 shows steady-state displacement fields for large 

(|𝛽| = 0.060) and small inductance perturbation (|𝛽| = 0.014) parameters. For |𝛽| = 0.014, which is 

within the achievable operating region (see ⬟ in Fig 2.8b of Chapter 2), the flexural response is 

guided without a significant reduction in amplitude along the straight interface path (Appendix 

Figure A.6b). The flexural response is also steered along the waveguide for the Z-shaped interface 

route. However, significant amplitude reduction is observed at each of the sharp corners, due to 

energy leakage into the bulk. Thus, the specified |𝛽| (and corresponding band inversion and 

topological bandgap) is not large enough to achieve sufficient displacement localization in this 

case, as observed in [175]. For |𝛽| = 0.060, the flexural response is guided along the interfaces 

(Appendix Figure A.6c). However, there is a significant reduction in amplitude along the Z-shaped 

interface at the sharp corners (Appendix Figure A.6c). This occurs because the magnitude of the 

lattice perturbation is too large, causing a rapid delocalization of the Berry curvature (|𝐶𝑣|= 0.005). 

Due to the nearly trivial topological properties of the interface state (as indicated by the low |𝐶𝑣| 

value), unwanted delocalization and scattering occurs due to the disorder introduced at the sharp 

corners.   

These two cases, paired with the results shown in Chapter 2 for |𝛽| = 0.032 (successful 

waveguiding along multiple sharp corners, see Fig 2.9c), illustrate that within this low frequency 

region, a |𝛽| must be selected that achieves sufficient interface state localization (cannot specify 

|𝛽| too low) but does not completely sacrifice the nontrivial topological characteristics of the lattice 

(cannot specify |𝛽| too large). In a practical implementation, the adaptivity of the proposed 

metamaterial could provide an avenue to evaluate which |𝛽| provides the best performance through 

on-line tuning.     
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Appendix A.7: Finite strip dispersion analysis for Type II interface: antisymmetric Dirac 2 

(high-frequency) interface state 

 

Appendix Figure A.7. Band structure for a finite strip (|𝛽| = 0.70, 𝛺𝑡−𝑒𝑓𝑓  = 28.0, 𝜗𝑒𝑓𝑓  = 2) with a Type II interface. 

Dark red shading indicates localized interface states (𝛬 ≈ 1) and white shading indicates boundary states (𝛬 ≈ 0). The 

rectangular gray shaded region indicates a frequency range where no bulk modes exist. Below the band structure, an 

antisymmetric mode shape that is calculated from the interface state at 𝛺 = 15.8 with a localized displacement (𝛬 = 

0.91) is shown.
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Appendix B: Supplemental Information for Chapter 3 

Appendix B.1: Bilayer-locked topological states 

 

 

Appendix Figure B.8. (a) Schematic (isometric and front views) of an eight-layer stack supercell, consisting of a 

four-layer Type III-2 interface stacked onto a four-layer Type III-1 interface, creating a Type IV interface. (b) Band 

structure for the eight-layer supercell. Topological bandgap is marked by gray shading. Colormap indicates 

confinement of mode displacement at the interface, with red indicating interface modes (𝛬 ≈1) and black indicating 

bulk modes (if outside topological bandgap and 𝛬 < 1) or boundary modes (if inside topological bandgap and 𝛬 ≈ 0). 

Two bilayer-locked modes and six monolayer modes exist within the topological bandgap. Displacement is localized 

at an interface on the layers indicated under the “Disp. Loc.” heading (e.g., for the mode with displacement localized 

to layer 1, “L1” is indicated to the right of the mode shape). The two L4-L5 modes are the bilayer-locked states, while 

the other six (L1, L2, L3, L6, L7, and L8) are monolayer states. (c) Schematic, side view, isometric view, and layer 

view of topological wave propagation of a bilayer-locked state in a 3D metastructure. The excitation location is marked 

by a black star. 

The schematic of the eight-layer supercell used to investigate the bilayer-locked states is given 

in Appendix Figure B.8. Four layers with a Type III-2 interface are stacked onto four layers with 

a Type III-1 interface (see the schematic for Type III-1 and Type III-2 interfaces in Fig 3.11a). The 

band structure for this supercell is numerically calculated using FE simulations, revealing eight 

layer-polarized topological interface states (Appendix Figure B.8b). There are eight of these 

topological states because this eight-layer stack is comprised of four bilayer supercells (see Fig 

3.11a), which are shown in Section 3.5.2 to have two topological states each (i.e., for each layer 
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with a unique interface in the supercell, there is one topological state, which is predicted by the 

bulk-boundary correspondence [86,91]). Six of the topological states contain a displacement 

amplitude that is mostly localized at the interface on one specific layer. Mode shapes for these six 

“monolayer” states are given in Appendix Figure B.8b, where they are labeled with the layer 

number where their displacement is localized (L1, L2, L3, L6, L7, and L8). The monolayer states 

occur in pairs (L3 and L6, L2 and L7, L1 and L8, see Fig. S11(b)) on layers that are symmetric 

about the 𝑥-s – 𝑦-s plane. The two other topological states contain displacement that is confined 

at the interface on two adjacent layers, L4 and L5. Mode shapes for these “bilayer-locked” states 

are marked with “L4-L5” in Appendix Figure B.8b. These bilayer-locked states arise due to the 

coupling of two layer-polarized topological interface states on adjacent layers of the mechanical 

structure (the bilayer-locked states in Appendix Figure B.8b are formed from adjacent Type I 

interface states that are embedded into layer-polarized lattices, as can be seen from the schematic 

in Appendix Figure B.8a). The monolayer state pairings also contain a small amount of 

displacement coupling, but modal displacement is still confined primarily to one of the two layers, 

and this coupling is dramatically reduced for layers further from the 𝑥-s – 𝑦-s plane (i.e., the 

displacement of the L1 and L8 modes is nearly completely decoupled, see Appendix Figure B.8b). 

 The knowledge of these eight topological states, and their layer-dependent behavior, could be 

harnessed to achieve various advanced waveguiding capabilities. Several of these capabilities are 

discussed in Appendix B.2 and Section 3.7. In this Appendix B.1, comprehensive diagrams 

describing the 3D metastructure and switching methodology used to achieve bilayer-locked 

topological wave propagation in Section 3.6 are provided in Appendix Figure B.8c. In Appendix 

Figure B.8c, the top schematic is a diagram of the switching methodology implemented for the 3D 

metastructure (which is an 8x8x8 lattice of unit cells). An excitation is applied where marked by 

the black star, at a frequency (𝑓𝑒 = 2950 Hz) and location (on L4 and L5) that selectively excites 

one of the bilayer-locked states. To successfully activate the bilayer-locked state, care must be 

taken in specifying the input excitation to be at or near the interface on L4 and L5. To minimize 

backscattering at the edges of the domain, low-reflecting boundary conditions are applied to the 

boundaries perpendicular to the 𝑥-𝑦 plane. Below the switching schematic in Appendix Figure 

B.8c are three separate views (isometric, side, and layer view, respectively) of the displacement 

field that are obtained under the specified excitation. Wave propagation is confined to the interface 

on L4 and L5, with negligible displacement on all other layers.  
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Appendix B.2: Advanced 3D elastic wave networks 

Extraordinary control over the flow of elastic waves can be achieved by constructing elastic 

wave networks from the topological surface, layer-polarized, and bilayer-locked states of the 

proposed 3D EM. Networks with layer conversion and wave splitting capabilities are presented in 

the Section 3.7 (Fig 3.13). Further details on these wave networks and illustrations of the wave 

control capabilities of the proposed 3D EM are provided here with three additional cases: surface 

state wave splitter, reconfigurable layer converter, and multi-state wave splitter.  

Surface State Wave Splitter:  

 The 3D metastructure comprised of an 8x8x8 lattice of unit cells from Fig 3.8 in Section 3.4 is 

reconfigured, such that a Type I interface (marked by blue shading in the schematic) exists for a 

straight line configuration (Configuration 1 in Fig 3.8) on L1-L4 and a 120° sharp corner 

configuration (Configuration 2 in Fig 3.8) on L5-L8 (see schematic in Appendix Figure B.9a). A 

harmonic excitation is chosen at 2950 Hz (to excite the Type I interface state) and placed on L3 

and L4 (where marked by the black star in Appendix Figure B.9a). Results in Appendix Figure 

B.9b showing the steady-state displacement (𝑑) of the metastructure indicate that topological wave 

propagation is split into two pathways. The wave propagates along the straight line path for L1-

L4, while “turning” along the sharp corner for L5-L8. Therefore, a single topological 2D surface 

state can be split into two surface states with unique paths by using the reconfigurability of the 3D 

EM. This basic phenomenon could be used as a building block for more complicated wave filters 

or energy splitter networks. 

Reconfigurable Layer Converter:  

 An elastic wave layer converter is created in a 3D metastructure made from an 8x12x8 lattice 

of unit cells. The layer converter has sections defined as S1, S2, and S3 to delineate different 

metastable switching configurations (left side of Appendix Figure B.9c, Appendix Figure B.9d, 

and Appendix Figure B.9e). In the example presented in the Section 3.7, the switching 

configurations of S1, S2, and S3 are selected such that topological wave propagation flows from 

L1-L4 in S1 to L5-L8 in S3 (see schematic on the left side of Appendix Figure B.9d), given an 

excitation on L1-L4 in S1 that excites the Type I interface states present in the structure (𝑓𝑒 = 2920 

Hz; see side view, iso views, and layer view of the steady-state displacement field 𝑑 on the right 

side of Appendix Figure B.9d). If the 2920 Hz input excitation is placed on metastructure layers 

that do not contain a Type I interface (e.g., L5-L8 in S1), the displacement rapidly attenuates due 
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to the topological bandgap, and there is no wave propagation from S1 to S2/S3 (Appendix Figure 

B.9e). Thus, the layer conversion only occurs if the input is located on the correct input layer(s). 

If the metastable switching configuration of the layer converter is inverted (see schematic on the 

left side of Appendix Figure B.9c), a 3D metastructure is created that converts an input on L5-L8 

in S1 to wave propagation on L1-L4 in S3 (see the steady-state displacement field for 𝑓𝑒 = 2920 

Hz on the right side of Appendix Figure B.9c). This result demonstrates how the direction of the 

layer converter may be programmed on-demand by harnessing the metastable switching 

capabilities of the 3D EM.  

Multi-State Wave Splitter:  

 The combination of 2D topological surface states and layer-dependent behavior in the “wave-

focusing gate” from Section 3.7 (see a schematic on the left side of Appendix Figure B.9f) can be 

used to create a complex multi-directional wave splitter. Given an input excitation with a frequency 

of 𝑓𝑒= 2910 Hz in S1, the Type I surface state is excited in S1 and S3, along with the bilayer-

locked state (on L4-L5) and L2 and L7 monolayer states (see Section 3.6 and Appendix B.1 for 

further information on bilayer-locked and monolayer states) in S2 (Appendix Figure B.9f). In 

addition, at the connections between S1-S2 and S2-S3, there exists layer-dependent Type I and 

Type II interfaces (on L1, L3, L6, and L8), which have been previously shown to enable layer-

polarized wave propagation [121]. These layer-dependent Type I interface states are also activated 

by 𝑓𝑒= 2910 Hz (but not the Type II layer-dependent states, see Section 3.5.2 for detail), resulting 

in complex and multi-directional wave splitting behavior (Appendix Figure B.9f). This intricate 

wave-splitting behavior could be harnessed to create elastic wave networks with numerous exotic 

functionalities by exploiting the combination of 2D surface, layer-polarized, bilayer-locked, and 

monolayer topological states that are achievable in the proposed 3D EM.  
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Appendix Figure B.9: (a) Schematic of the surface state wave splitter. The excitation location is marked by a black 

star. (b) Side view, isometric views (From above and below), and layer view of topological wave propagation in the 

surface state wave splitter. Schematic and steady-state displacement fields for (c-e) reconfigurable layer converter and 

(f) multi-state wave splitter. In all schematics (left side, a-f), Type I interfaces are indicated by blue shading and Type 

II interfaces by red shading. S1, S2, and S3 are sections of the 3D metastructure with specified metastable switching 

configurations. L1-L8 are the eight layers of the metastructure, with L1 being the bottommost layer. For all 

configurations in this figure (a-f), low-reflecting boundary conditions are applied to the boundaries perpendicular to 

the 𝑥-𝑦 plane.
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Appendix C: Supplemental Information for Chapter 4 

Appendix C.1: Description of finite element simulation methods 

The COMSOL Multiphysics Solid Mechanics Module is used for all band structure and dynamic 

response calculations. Appendix Figure C.10 contains a schematic of the unit cell used in the FE 

numerical simulations. The interconnecting rods are attached to the aluminum spring ligaments 

via hollow cylinders that approximate the nylon coupling nuts used in the experiments (ℎ𝑛𝑢𝑡 = 1.6 

mm, 𝑟𝑛𝑢𝑡−𝑜𝑢𝑡𝑒𝑟 = 2.4 mm, 𝜌𝑛𝑢𝑡 = 1140 kg⸱m-3, 𝜈𝑛𝑢𝑡 = 0.42, and 𝐸𝑛𝑢𝑡 = 2.41 GPa). The FE 

simulations are used to solve the governing equations for wave motion in a linear medium, 

represented as [25]:  

𝜌(𝒓)�̈�𝑖 = ∑{
𝜕

𝜕𝑥𝑖
(𝜆(𝒓)

𝜕𝑢𝑗

𝜕𝑥𝑗
) + 

𝜕

𝜕𝑥𝑗
[𝜇(𝒓) (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)]} for 𝑖 = 1,2,3 

3

𝑗=1

(𝐶. 1) 

where 𝒓 = (𝑥, 𝑦, 𝑧) is a position vector, 𝜌(𝒓) is material density, 𝒖(𝒓) = [𝑢, 𝑣, 𝑤]𝑇 is the 

displacement vector, 𝜇(𝒓) and 𝜆(𝒓)are elastic constants, and 𝑖, 𝑗 = 1,2,3 correspond to the 

coordinates 𝑥,𝑦,𝑧. Floquet-Bloch periodic boundary conditions are applied and a harmonic plane 

wave solution is used to calculate the band structure for the unit cell. A solution of the form 

𝒖(𝒓; 𝑡) = �̃�(𝒓)𝑒𝑖(𝒌 ∙𝒓)𝑒𝑖𝜔𝑡 is assumed, where 𝒌 = {𝑘𝑥, 𝑘𝑦, 𝑘𝑧} is the Bloch wave vector, �̃�(𝒓) is 

the Bloch displacement vector, 𝑡 is time, and 𝜔 is the temporal frequency. To construct the band 

structure, the eigenfrequencies are calculated for 𝒌 that is swept along the boundaries of the IBZ.  

 

Appendix Figure C.10: COMSOL model for the metamaterial unit cell used in FE simulations. 
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Appendix C.2: Unit cell analysis of topological bandgaps 

 

 

Appendix Figure C.11: (a) Evolution of the D1, D2, D3, and D4 partial bandgaps as a function of the mass 

perturbation magnitude |𝛼|. Open circles and crosses denote the lower and upper boundaries of the bandgaps opened 

from the four Dirac degeneracies. The D1, D2, D3, and D4 bandgaps are represented by the yellow, cyan, purple, and 

orange shaded regions, respectively. (b) Band structure for the large mass perturbation (|𝛼| = 0.40) case. The 

topological partial bandgap opened from the Dirac degeneracy D1 is marked with gray shading. The mode shapes for 

the bands bordering the bandgap illustrate the out-of-plane translational displacements of the resonators (𝛱≈1). (c) An 

interface mode that emerges within the D1 topological bandgap with displacement confined at the interface between 

the Type A and Type B segments in an eight-unit supercell. 
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Appendix C.3: Berry curvature and valley Chern number 

The topological invariant, or the valley Chern number 𝐶𝑣−𝑝, is calculated for each of the bands 

bordering the topological bandgaps that emerge from D2, D3, and D4 (Fig 4.1d). 𝐶𝑣−𝑝 is calculated 

as [153,227]:  

𝐴𝑝(𝑘) = 〈𝑢𝑝(𝑘)|𝑖𝛻𝑘|𝑢𝑝(𝑘)〉 (𝐶. 2) 

𝐵𝑝(𝑘) = 𝛻𝑘 × 𝐴𝑝(𝑘) (𝐶. 3) 

𝐶𝑣−𝑝 =
1

2𝜋
∬ 𝐵𝑝(𝑘)𝑑2𝑘

𝑣

(𝐶. 4) 

where 𝐴𝑝(𝑘) is the Berry Connection, 𝐵𝑝(𝑘) is the Berry Curvature,  𝛻𝑘 = (
𝜕

𝜕𝑘𝑥
,

𝜕

𝜕𝑘𝑦
) is a 

differential operator, 𝑢𝑝(𝑘) are the eigenvectors associated with the pth band (where 𝑝 = 1 refers 

to the band delineating the low-frequency bandgap boundary and 𝑝 = 2 refers to the band 

delineating the high-frequency bandgap boundary), and the subscript v denotes that the integral is 

taken around the K or H valley in reciprocal space. The eigenvectors are extracted using COMSOL 

with MATLAB. To ensure smoothness in the phase ambiguity over 𝑘𝑥-𝑘𝑦, the eigenvectors are 

processed by a gauge transformation |𝑢𝑝(𝑘)⟩ → 𝑒𝑖𝜃(𝑝)(𝑘)|𝑢(𝑘)⟩, where 𝜃(𝑝)(𝑘) = ∠𝑤(𝑝)(𝑟𝑟𝑒𝑓, 𝑘) 

is a reference phase calculated at an rref with non-vanishing 𝑤(𝑝)(𝑟𝑟𝑒𝑓 , 𝑘) [341,342]. The 

eigenvectors are then normalized according to:   

⟨𝑢𝑝(𝑘)|𝑢𝑝(𝑘)⟩ = ∭𝑢𝑝
∗ (𝑘)𝑢𝑝(𝑘)𝑑𝑉

𝑉𝑈

≈ ∑ 𝑉𝑝𝑡(𝑢𝑝𝑡
∗ 𝑢𝑝𝑡 + 𝑣𝑝𝑡

∗ 𝑣𝑝𝑡 + 𝑤𝑝𝑡
∗ 𝑤𝑝𝑡)

𝑁𝑝𝑡𝑠

= 1 (𝐶. 5) 

where 𝑁𝑝𝑡𝑠 is the number of considered Gauss points, 𝑉𝑝𝑡 is equal to the approximate volume 

around each Gauss point calculated in COMSOL, and 𝑢𝑝𝑡, 𝑣𝑝𝑡, and 𝑤𝑝𝑡 are the 𝑥, 𝑦, and 𝑧 

components of the eigenvector at each Gauss point. Eq. C.2 is evaluated as:  

𝐴𝑝(𝑘) = 𝑖 ∭ [(𝑢∗ 𝜕𝑢

𝜕𝑘𝑥
+ 𝑣∗ 𝜕𝑣

𝜕𝑘𝑥
+ 𝑤∗ 𝜕𝑤

𝜕𝑘𝑥
) 𝑖̂ + (𝑢∗ 𝜕𝑢

𝜕𝑘𝑦
+ 𝑣∗ 𝜕𝑣

𝜕𝑘𝑦
+ 𝑤∗ 𝜕𝑤

𝜕𝑘𝑦
) 𝑗̂] 𝑑𝑉

𝑉𝑈
≅

∑ 𝑉𝑝𝑡 [(𝑢𝑝𝑡
∗ 𝜕𝑢𝑝𝑡

𝜕𝑘𝑥
+ 𝑣𝑝𝑡

∗ 𝜕𝑣𝑝𝑡

𝜕𝑘𝑥
+ 𝑤𝑝𝑡

∗ 𝜕𝑤𝑝𝑡

𝜕𝑘𝑥
) 𝑖̂ + (𝑢𝑝𝑡

∗ 𝜕𝑢𝑝𝑡

𝜕𝑘𝑦
+ 𝑣𝑝𝑡

∗ 𝜕𝑣𝑝𝑡

𝜕𝑘𝑦
+ 𝑤𝑝𝑡

∗ 𝜕𝑤𝑝𝑡

𝜕𝑘𝑦
) 𝑗̂ ]  𝑁𝑝𝑡𝑠

= 𝐴𝑘𝑥
𝑖̂ +

𝐴𝑘𝑦
𝑗̂ 

    (𝐶. 6) 
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MATLAB is then used to evaluate Eqs. C.2-C.6, with the calculated 𝐶𝑣−𝑝 values listed in Appendix 

Table C.1 and the calculated 𝐵𝑝(𝑘) shown in Appendix Figure C.12, Appendix Figure C.13, and 

Appendix Figure C.14.  

Appendix Table C.1: Valley Chern numbers calculated for D2, D3, and D4 

Valley Chern 

Number 

D2 D3 D4 

𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐴

 0.11 -0.14 0.25 

𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐴

 -0.09 0.17 -0.30 

𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐵

 -0.11 0.15 -0.26 

𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐵

 0.09 -0.18 0.30 

 

 

Appendix Figure C.12. Berry Curvature 𝐵𝑝(𝑘) evaluated for the bands bordering the topological bandgap that 

emerges from D2. (a) 𝐵𝑝(𝑘) for band 1 (𝐵1
𝑇𝑦𝑝𝑒 𝐴

) and band 2 (𝐵2
𝑇𝑦𝑝𝑒 𝐴

) of the Type A lattice. (b) 𝐵𝑝(𝑘) for band 1 

(𝐵1
𝑇𝑦𝑝𝑒 𝐵

) and band 2 (𝐵2
𝑇𝑦𝑝𝑒 𝐵

) of the Type B lattice. The colorbars indicate the magnitude of 𝐵𝑝(𝑘). The opposite 

𝐵𝑝(𝑘) values illustrate the band inversion between Type A and Type B lattices.   
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Appendix Figure C.13. Berry Curvature 𝐵𝑝(𝑘) evaluated for the bands bordering the topological bandgap that 

emerges from D3. (a) 𝐵𝑝(𝑘) for band 1 (𝐵1
𝑇𝑦𝑝𝑒 𝐴

) and band 2 (𝐵2
𝑇𝑦𝑝𝑒 𝐴

) of the Type A lattice. (b) 𝐵𝑝(𝑘) for band 1 

(𝐵1
𝑇𝑦𝑝𝑒 𝐵

) and band 2 (𝐵2
𝑇𝑦𝑝𝑒 𝐵

) of the Type B lattice. The colorbars indicate the magnitude of 𝐵𝑝(𝑘). The opposite 

𝐵𝑝(𝑘) values illustrate the band inversion between Type A and Type B lattices.   
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Appendix Figure C.14. Berry Curvature 𝐵𝑝(𝑘) evaluated for the bands bordering the topological bandgap that 

emerges from D4. (a) 𝐵𝑝(𝑘) for band 1 (𝐵1
𝑇𝑦𝑝𝑒 𝐴

) and band 2 (𝐵2
𝑇𝑦𝑝𝑒 𝐴

) of the Type A lattice. (b) 𝐵𝑝(𝑘) for band 1 

(𝐵1
𝑇𝑦𝑝𝑒 𝐵

) and band 2 (𝐵2
𝑇𝑦𝑝𝑒 𝐵

) of the Type B lattice. The colorbars indicate the magnitude of 𝐵𝑝(𝑘). The opposite 

𝐵𝑝(𝑘) values illustrate the band inversion between Type A and Type B lattices.   
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Appendix C.4: Mode shapes illustrating multimodal resonance 

 

 

Appendix Figure C.15. Selected mode shapes for the bands bordering the four topological bandgaps that emerge 

when |𝛼| = 0.11, illustrating the four primary resonant modes of the metamaterial: (a) D4: in-plane (𝑥-𝑦) translational 

at 5.0 kHz (𝛱≈0), (b) D3: in-plane (𝑥-𝑦) twisting at 3.5 kHz (𝛱≈0), (c) D2: rocking at 1.5 kHz (𝛱=0.6), and (d) D1: 

out-of-plane translational at 0.36 kHz (𝛱≈1). Both isometric and top views are provided. These mode shapes are taken 

for a wave vector 𝑘 specified at the midpoint of the 𝐾-𝐻 line in the reciprocal unit cell. 
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Appendix C.5: Design considerations for Dirac frequency separation from ligament/rod 

modes 

 

Appendix Figure C.16. Band structure for the 𝛼 = 0 case with (a) ℎ𝑚 = 0 mm (no mass), (b) ℎ𝑚 = 4 mm, and (c) ℎ𝑚 

= 12 mm. The Dirac degeneracies are enclosed in dotted red boxes. These plots illustrate how increasing the resonator 

mass lowers the frequency 𝑓𝑑 of the D1, D2, D3, and D4 (𝑓𝑑−𝐷1, 𝑓𝑑−𝐷2, 𝑓𝑑−𝐷3, and 𝑓𝑑−𝐷4) degeneracies and separates 

them from the ligament/rod modes that exist above 6.5 kHz. The horizontal red dashed line indicates the frequency 

(6.5 kHz) where the undesirable ligament/rod modes emerge that may interact with the topological bands and inhibit 

the successful formation of topological bandgaps and waveguides. The insets illustrate how these modes are dominated 

by the displacements of the aluminum ligaments and interconnecting rods. For the ℎ𝑚 = 0 mm (no mass) scenario in 

a), only D1 and D2 are visible at frequencies less than 12 kHz, and the band structure is heavily contaminated with 

modes that would make it difficult to open topological bandgaps. This dense band structure is a common feature of 

3D EMs, and makes the realization of low-frequency and multiband topological states in 3D structures challenging. 

Conversely, for a higher value of ℎ𝑚 = 12 mm, all four degeneracies D1-D4 are well separated from the ligament/rod 

modes in the frequency domain (i.e., 𝑓𝑑−𝐷1, 𝑓𝑑−𝐷2, 𝑓𝑑−𝐷3, and 𝑓𝑑−𝐷4 are all well below the red dashed line) and are 

thus not susceptible to interactions with them. 
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Appendix Figure C.17. Analysis establishing the design criteria for the out-of-plane lattice constant ℎ0, which defines 

the height of the interconnecting rods. (a) Band structure for 𝛼 = 0 and ℎ0 = 20 mm. The Dirac degeneracies are 

enclosed in dotted red boxes and the horizontal red dashed line indicates the lowest frequency of the ligament/rod 

modes. For this case, the ligament/rod modes emerge at 7.20 kHz, well distanced from the D3 and D4 Dirac 

degeneracies that are located at 𝑓𝑑−𝐷3 = 3.66 kHz, and 𝑓𝑑−𝐷4 = 4.76 kHz. (b) The ligament/rod mode frequencies are 

evaluated as a function of ℎ0. As ℎ0 is increased, the mass of the interconnecting rods increases and the lateral stiffness 

descreases, leading to a reduction in the ligament/rod mode frequency boundary. For ℎ0 ≥ 35 mm, the ligament/rod 

modes overlap with 𝑓𝑑−𝐷3 and  𝑓𝑑−𝐷4 . The band structures for |𝛼| = 0.11 are calculated with (c) ℎ0 = 35 mm and d) 

ℎ0 = 45 mm. These band structures provide examples of why overlap of the topological bands with the ligament/rod 

modes is detrimental to the formation of topological bandgaps. The negative effects of this scenario are twofold: (i) 

the topological bandgaps are destroyed by the ligament/rod mode band crossing and (ii) the topological properties, as 

quantified by valley Chern number calculations (see Appendix C.3), are contaminated. An out-of-plane lattice constant 

of ℎ0 = 25 mm is chosen in Chapter 4 to ensure that no undesired band crossing occurs and provide sufficent 

mechanical clearance for |𝛼| up to a value of |𝛼| = 0.50.  
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Appendix C.6: Supercell band structure analysis   

 

Appendix Figure C.18. (a) The band structure for the supercell with a Type I interface presented in Fig 4.3a of 

Chapter 4. (b) The band structure for the supercell constructed from all Type B unit cells presented in Fig 4.3d of 

Chapter 4. In a) and b), the blue bands (𝛱≈0) are in-plane modes, the yellow bands (𝛱≈1) are out-of-plane modes, and 

the green bands (𝛱≈0.5) are modes with mixed polarization. The bulk modes that pass through the D2 (1.3 to 1.5 kHz) 

and D4 (4.5 to 5.1 kHz) bandgaps contain different polarizations than the respective topological states that exist in 

each of the bandgaps and do not visibly interact (e.g., veering or modal energy exchange) with them. These 

characteristics limit the possibility of unwanted mode hybridization or coupling of bulk modes with the topological 

states. (c) A mode shape taken at �̃� (see the purple square in d) that illustrates the quasi-rigid body motion of the 

interconnecting rods. (d) Demonstration of how the supercell (eight-unit supercell with Type I interface) band structure 

can be tailored by adjusting the elastic modulus of the interconnecting rods 𝐸𝑟 . For aluminum rods (𝐸𝑟  = 69 GPa), 

wave energy transmission in the 𝑧 direction is limited to the long wavelength regime for a frequency range of 1.28 to 

1.33 kHz. Above 1.33 kHz, the �̃�-𝑍 directional bandgap leads to layer-locked wave propagation (e.g., given a 1.4 kHz 

excitation in Fig 4.4). On the other hand, for rods made from a rubber-like material (𝐸𝑟  = 0.069 GPa), the frequency 

range of 𝑧 direction transmission shrinks to 1.28 to 1.30 kHz and the portion of the band with nonzero group velocity 

extends beyond the long wavelength regime. (e) A comparison of the supercell modes for the D2 hybrid torsional, D3 

in-plane torsional, and D4 in-plane translational topological states. All mode shapes are evaluated at �̃�. The mode 

shapes illustrate how the D2 hybrid torsional state transmits energy in the 𝑧 direction by coupling the hybrid torsional 

resonant mode with the motion of the interconnecting rods. The D3 and D4 in-plane resonances do not couple well 

with the interconnecting rods (which show negligible displacement in those cases) and as a result do not propagate 

elastic waves in the 𝑧 direction, creating layer-dependent behavior.    
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Appendix C.7: 2D multimodal topological metamaterial theory and experiments    

The concept discussed in Chapter 4 is generalizable to 2D systems as well. A theoretical study 

(Appendix Figure C.19) and experiments (Appendix Figure C.20) are undertaken to show 

multimodal and multiband topological wave control in a 2D topological metamaterial. The 2D 

topological metamaterial is synthesized using the same parameters as the 3D topological 

metamaterial from Chapter 4, minus the hex nuts and interconnecting rods.  

 

 

Appendix Figure C.19. Theoretical investigation of the 2D topological metamaterial. (a) Unit cell analysis. (b) 

Supercell study. (c) Full-scale simulations of topological wave control. 
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Appendix Figure C.20. Experimental investigation of wave control in the 2D topological metamaterial. (a) A 

schematic of the experimental setup. (b) Experimentally measured out-of-plane velocity magnitudes (𝑣𝑜𝑝) for the 

frequency range of the hybrid torsional 2 topological waveguide. (c) Experimentally measured out-of-plane 

transmission ratio for the hybrid torsional 2 topological waveguide, where the input location is treated as the reference. 

(d) Steady-state wave fields illustrating topological waveguiding achieved by activating the hybrid torsional 1 and 

hybrid torsional 2 topological states illustrated in Appendix Figure C.19b. The experimental results reveal successful 

confinement of the dynamic response into the designated waveguide and agree with the theoretical predictions 

displayed in Appendix Figure C.19c. 
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Appendix C.8: Fabrication and experimental testing  

Fabrication: The experimental testbed was constructed as an assembly of multiple components 

Appendix Figure C.21a). The hexagonal pattern was waterjet (OMAX) cut into four separate 1.5 

mm thick aluminum (6061 alloy) sheets to create substrate layers with spring ligaments (i.e., to 

create the resonator springs). To form the resonator masses, cylinders with a diameter of 7 mm 

and two distinct height dimensions (7.9 mm for Mass 1 and 6.4 mm for Mass 2 in Appendix Figure 

C.21a) were waterjet cut from low-carbon (1018 cold-finished) steel bars. The masses were glued 

to the aluminum substrate using steel-reinforced epoxy (Permatex® Steel Weld Epoxy). 

Aluminum threaded interconnecting rods (2-56 threads, 102 mm length) and nylon 6/6 hex nuts 

were used to connect the four aluminum layers and form the 3D metastructure. To maintain the 

correct spacing between layers, rectangular spacers were 3D printed using the Formlabs Form 3 

photopolymer printer and used to align the layers during assembly. For testing, the four outermost 

(i.e., farthest from the center) interconnecting rods were fastened to a base fixture (Fig 4.5 in 

Chapter 4). 

Experimental testing: STEMiNC piezoelectric ceramic (lead zirconate titanate, PZT) disc 

transducers (with a radius of 5 mm and a thickness of 0.4 mm) were glued (MG Chemicals 8331-

14G Silver Conductive Epoxy) to the metastructure in a bimorph configuration to provide a 

flexural (𝑧 direction, out-of-plane) excitation (Appendix Figure C.21b). For the in-plane actuation, 

piezoelectric stack actuators (PICMA® P-882.11) were attached to the structure using Endevco 

Accelerometer Mounting Wax (Appendix Figure C.21b). A schematic of the entire experimental 

setup is given in Appendix Figure C.21c. A Polytec PSV-500 scanning laser Doppler vibrometer 

(SLDV) was used to acquire the out-of-plane measurements. Since only one laser was required for 

out-of-plane velocity (�̇�) measurements, the laser was guided through the gaps in the layers closest 

to the vibrometer head to reach all four layers, such that a full wave field could be acquired for the 

entire 3D structure. For the out-of-plane testing, a 90V (using a voltage amplifier) periodic chirp 

with a bandwidth of 0 to 5 kHz was sent to the PZT transducers. For the in-plane measurements, 

a 4V periodic chirp with a bandwidth of 0 to 10 kHz was sent as an input to the piezoelectric stack 

actuator and the Polytec PSV QTec 3D SLDV was used to measure all three velocity components 

(�̇�, �̇�, �̇�). Since three lasers were required in this case, the only layer available for measurements 

was the top layer, L4. All measurement data was post-processed using the Polytec Data 

Acquisition Center and MATLAB.  
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Appendix Figure C.21. (a) Components of the 3D metastructure assembly. (b) The out-of-plane and in-plane piezo-

actuators. (c) A schematic of the experimental setup. In-plane measurements require the use of all three lasers, out-of-

plane measurements only require the use of one laser. 
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Appendix C.9: Experimental frequency response    

 

Appendix Figure C.22. Experimentally measured transmission ratio (left column) and out-of-plane velocity 

magnitude 𝑣𝑜𝑝 (right column) for (a) L4, (b) L3, (c) L2, and (d) L1 of the 3D metastructure. (e) Transmission ratio for 

the in-plane twisting (left) and in-plane translational (right) experimental measurements. All transmission ratios are 

defined using the relevant PZT input location as the reference. The frequency ranges where the wave field is trapped 

in the designated waveguide are indicated by gray shading.
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Appendix D: Supplemental Information for Chapter 5 

Appendix D.1: Description of finite element simulation methods 

All band structure and dynamic response calculations are conducted with the COMSOL 

Multiphysics Solid Mechanics Module. The unit cell used for numerical simulations is shown in 

Appendix Figure D.23. The governing equations for wave motion in a linear medium are [25]:  

𝜌(𝑟)�̈�𝑖 = ∑{
𝜕

𝜕𝑥𝑖
(𝜆(𝑟)

𝜕𝑢𝑗

𝜕𝑥𝑗
) + 

𝜕

𝜕𝑥𝑗
[𝜇(𝑟) (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)]} for 𝑖 = 1,2,3 

3

𝑗=1

(𝐷. 1) 

where 𝑟 = (𝑥, 𝑦, 𝑧) is a position vector, 𝜌(𝑟) is material density, 𝑢(𝑟) = [𝑢, 𝑣, 𝑤]𝑇 is the 

displacement vector, 𝜇(𝑟) and 𝜆(𝑟)are elastic constants, and 𝑖, 𝑗 = 1,2,3 correspond to the 

coordinates 𝑥,𝑦,𝑧. To calculate the band structure, Floquet-Bloch periodic boundary conditions 

are applied to the four unit cell boundaries and a harmonic plane wave solution of the form 

𝑢(𝑟; 𝑡) = �̃�(𝑟)𝑒𝑖(𝑘 ∙𝑟)𝑒𝑖𝜔𝑡 is assumed, where 𝑘 = {𝑘𝑥, 𝑘𝑦, 𝑘𝑧} is the Bloch wave vector, �̃�(𝑟) is 

the Bloch displacement vector, 𝑡 is time, and 𝜔 is the temporal frequency. The band structure is 

produced by calculating the eigenfrequencies for 𝑘 that is swept along the boundaries of the IBZ 

(Γ → X → M → Γ), which is shaded in light blue in Fig 5.1a.  

 

Appendix Figure D.23: COMSOL model of the 2D HOTM for FE calculations.  
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Appendix D.2: Higher-order topological index calculations and the band inversion   

 Eqs. 5.1-5.3 in Section 5.3 require the calculation of 𝐶𝑛 rotation eigenvalues Π𝑝
(𝑛)

=

𝑒2𝜋𝑖(𝑝−1) 𝑛⁄  (𝑝 = 1,….,𝑛) at the high-symmetry points. For a lattice with 𝐶4 symmetry, the pertinent 

𝐶𝑛 rotation eigenvalues are [196]:  

Π1
(2)

= 𝑒0 = 1 → Δ𝜙 = 0 (𝐷. 2)  

Π1
(4)

= 𝑒0 = 1 → Δ𝜙 = 0 (𝐷. 3)  

Π2
(4)

= 𝑒
𝜋

2
𝑖 = 𝑖 → Δ𝜙 =

𝜋

2
 (𝐷. 4)  

where the phase difference is defined as Δ𝜙 = 𝜙𝑃∗ − 𝜙𝑃, 𝑃 is any point in the unit cell, and 𝑃∗ is 

the point that overlays point 𝑃 after a 2𝜋/𝑛 rotation. The phase difference for each band is obtained 

from the eigenmode phase profiles, which are displayed in Fig 5.2 for the bending (bands 1-4 in 

Fig 5.2) and torsional (centered on the connector ligaments, bands 5-8 in Fig 5.2) bands. The phase 

profiles for the torsional modes centered on the spring ligaments (bands exist over ~260-300 Hz) 

are omitted from Fig 5.2, but are also required and accounted for in the 𝐶𝑛 rotation eigenvalue 

calculations for bandgaps II, III, and IV. The 𝐶𝑛 rotation eigenvalues obtained for each of the four 

bandgaps (I-IV) are shown in Appendix Table D.1. The resulting topological indices, bulk 

polarizations, and corner charges are found in Appendix Table D.2.  

 

Appendix Table D.1: 𝐶𝑛 rotation eigenvalues at high-symmetry points of Type A and Type B 

lattice configurations for the 2D HOTM 

 Bandgap I Bandgap II Bandgap III Bandgap IV 

 𝑪𝒏 Rot. 

Eigenvalue 

Type 

A 

Type 

B 

Type 

A 

Type 

B 

Type 

A 

Type 

B 

Type 

A 

Type 

B 

#𝛤1
(2) 1 1 3 3 5 5 5 5 

#𝛤1
(4) 1 1 2 2 2 2 2 2 

#𝛤2
(4) 0 0 2 2 2 2 3 3 

#𝑋1
(2) 1 0 3 4 5 4 5 6 

#𝑀1
(4) 1 0 2 1 2 3 2 3 

#𝑀2
(4) 0 0 2 2 2 2 3 3 
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Appendix Table D.2: The topological indices, bulk polarizations, and corner charges for the 2D 

HOTM.  

 Type A (𝜷 = 0.25) Type B (𝜷 = 0.75) 

Bandgap 𝜒(4) 𝑃𝑥 = 𝑃𝑦 𝑄 𝜒(4) 𝑃𝑥 = 𝑃𝑦 𝑄 

I (0,0,0) 0 0 (-1,-1,0) ½ ¼ 

II (0,0,0) 0 0 (1,-1,0) ½ ¾ 

III (0,0,0) 0 0 (-1,1,0) ½ ¼  

IV (0,0,0) 0 0 (1,1,0) ½ ¾ 

 

 

Appendix Figure D.24. A description of the band inversion that occurs between the Type A and Type B domains. 

The left and right panels contain the band structures for the Type A and Type B lattices, with the “+” and “-“ labels 

representing positive and negative eigenmode parities, respectively. The parity exchange at 𝑋 for both sets of bands 

(1-4: bending and bands 5-8: torsional) is displayed in the middle panel.  

The band inversion between Type A and Type B lattices can be visualized by analyzing the 

parity symmetries of the eigenmodes. While the Type A and Type B lattices may have identical 

band structures, a parity exchange occurs at the X point of high-symmetry for bands 1-8, as 

illustrated in the middle panel of Appendix Figure D.24. This parity exchange is an indicator of a 

topological transition between trivial (Type A lattice) and nontrivial (Type B lattice) topological 

phases.   
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Appendix D.3: Coupling and symmetries of multiband topological corner states 

The corner states from Fig 5.4 and Fig 5.5 have an assortment of displacement field 

characteristics. These characteristics are elucidated through an analysis of the out-of-plane (𝑤) 

wave fields for each eigenmode (Appendix Figure D.25). The wave fields for the monomer corner 

states (Appendix Figure D.25a,b,c) and the trimer corner states (Appendix Figure D.25d,e,f,g,h) 

are evaluated for (1) their symmetry about an angular bisector, (2) the number of active resonant 

sites, (3) the level of wave localization at the corner, and (4) the presence of multipolar coupling. 

The attribution of these features to each of the eight corner states identified in Chapter 5.5 is 

tabulated in Appendix Table D.3.  

 The results listed in Appendix Table D.3 indicate that there are four symmetric and four 

asymmetric corner states in the 2D HOTM, where symmetry is judged about the bisecting black 

dashed line superimposed onto each eigenmode in Appendix Figure D.25. For the five trimer 

corner states, there are three that involve activation of all three resonators (T-IIB, T-IIIA, and T-

IV) and two that involve the activation of two resonators (T-IIA and T-IIIB). Furthermore, 

inspection of the two trimer corner states with asymmetric displacements and all three resonators 

active reveals distinctive wave fields (T-IIIA and T-IV, Appendix Figure D.25f,h). The 

localization of the corner states is quantified by the parameter 𝛾𝑐𝑜𝑟𝑛𝑒𝑟 (Eqs. 5.4 and 5.5 in Section 

5.5). The 𝛾𝑐𝑜𝑟𝑛𝑒𝑟 values in Appendix Table D.3 vary over a range of 0.05 to 0.68, quantifying the 

diverse localization characteristics that are qualitatively recognizable upon inspection of the eight 

corner states in Appendix Figure D.25, Fig 5.4, and Fig 5.5. In general, the torsional corner states 

M-III, T-IIIA, T-IIIB, and T-IV exhibit higher localization than the bending corner states M-II, T-

IIA, and T-IIB. This is due to the torsional resonant mode being more decoupled from the plate 

substrate (and thus, more decoupled from other resonators), when compared to the bending 

resonant mode (see Fig 5.1c in Chapter 5). It is also noted that the low localization of Corner state 

M-I and the influence of the coexisting Edge state II for Corner state T-IIB facilitate multipolar 

coupling in those corner state displacement profiles. For Corner state M-I, a monopolar mode (top 

left in Appendix Figure D.25a), two dipolar modes (top right and bottom right in Appendix Figure 

D.25), and one quadrupolar mode (bottom left in Appendix Figure D.25) emerge due to the 

interactions between the evanescent wave fields emanating from the four corners of the lattice 

[276]. For Corner state T-IIB, the multipolar phenomenon is a result of the coexisting Edge state 

II, which creates a coupling between the four corners of the lattice. All other corner states do not  
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Appendix Figure D.25. Corner state out-of-plane (𝑤) wave fields calculated in the eigenfrequency study. (a)-(c) 

Eigenmodes for the monomer corner lattice configuration. (d)-(h) Eigenmodes for the trimer corner lattice 

configuration. The inset shows a zoomed-in view of the displacement field for the corner state. The black dashed line 

in the inset is the angular bisector for the corner that is used for symmetry evaluations.  
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Appendix Table D.3: Summary of the corner state eigenmode characteristics 

 Corner 

State 

Symmetry (about 

bisector) 

# of active 

resonators/ # of 

total resonators 

𝜸𝒄𝒐𝒓𝒏𝒆𝒓 Multipolar 

coupling 

M-I Symmetric 1/1 0.05 Yes 

M-II Symmetric 1/1 0.06 No 

M-III Asymmetric 1/1 0.39 No 

T-IIA Asymmetric 2/3 0.18 No 

T-IIB Symmetric 3/3 0.21 Yes 

T-IIIA Asymmetric 3/3 0.46 No 

T-IIIB Symmetric 2/3 0.61 No 

T-IV Asymmetric 3/3 0.68 No 

 

have multipolar behavior or inter-corner coupling present. As shown in [271], the inter-corner 

coupling and obtainment of multipolar behaviors can be adjusted by modulating the distance 

between the corners in the lattice; e.g., by making the inner domain larger or smaller. 
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Appendix D.3: Damping in the 2D HOTM  

 

Appendix Figure D.26.  An investigation of the effect of damping on the frequency response of the 2D HOTM. The 

out-of-plane displacement amplitude |𝑤| is normalized according to the maximum value calculated at resonance (746.6 

Hz) for the T-IV Corner state in the no damping case (𝜂 = 0%). Insets show the displacement fields with successful 

wave confinement for the cases of 𝜂 = 0.1% and 𝜂 = 0.01%.  

 A case study is used to illustrate the effect of damping on the corner state response. For Corner 

State T-IV, the dynamic response tends to infinity at 𝑓 = 746.6 Hz when there is no damping 

present in the system (Appendix Figure D.26). An isotropic loss factor 𝜂 is introduced to 

incorporate damping into the system. When damping is present, the peak response is predictably 

and dramatically reduced (𝜂 = 0.01% and 𝜂 = 0.1% in the plot on the left side of Appendix Figure 

D.26). However, the corner state retains wave localization at the corner site (see insets in Appendix 

Figure D.26). These results suggest that damping, which is unavoidable in a practical setting, does 

not destroy the topological corner state. An experimental investigation will be needed to further 

characterize damping and its effects on the 2D HOTM.  
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Appendix D.4: Boundary and in-plane bulk modes of the fractal HOTM 

 

 
 

Appendix Figure D.27. An exemplar boundary mode (735 Hz) and an exemplar in-plane bulk mode (743 Hz) for the 

fractal HOTM in Configuration 1. These modes do not couple with or inhibit the emergence of topological edge and 

corner states. The boundary states (left panel, 735 Hz) do not strongly interfere with topological states because they 

exist in a frequency range (734-740 Hz) with separation from all topological states. The in-plane (𝛱 ≈ 0) bulk state 

(right panel, 743 Hz) arises because, as mentioned in Section 5.3, in-plane bands do cross through topological 

bandgaps III and IV. However, these purely in-plane modes not directly interact with the torsional topological states.  
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