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Abstract

Background: The noise in digital breast tomosynthesis (DBT) includes x-ray
quantum noise and detector readout noise. The total radiation dose of a DBT
scan is kept at about the level of a digital mammogram but the detector noise is
increased due to acquisition of multiple projections. The high noise can degrade
the detectability of subtle lesions, specifically microcalcifications (MCs).
Purpose: We previously developed a deep-learning-based denoiser to improve
the image quality of DBT. In the current study, we conducted an observer per-
formance study with breast radiologists to investigate the feasibility of using
deep-learning-based denoising to improve the detection of MCs in DBT.
Methods: We have a modular breast phantom set containing seven 1-cm-thick
heterogeneous 50% adipose/50% fibroglandular slabs custom-made by CIRS,
Inc. (Norfolk, VA). We made six 5-cm-thick breast phantoms embedded with
144 simulated MC clusters of four nominal speck sizes (0.125-0.150, 0.150—
0.180,0.180-0.212,0.212—-0.250 mm) at random locations. The phantoms were
imaged with a GE Pristina DBT system using the automatic standard (STD)
mode. The phantoms were also imaged with the STD+ mode that increased the
average glandular dose by 54% to be used as a reference condition for com-
parison of radiologists’ reading. Our previously trained and validated denoiser
was deployed to the STD images to obtain a denoised DBT set (dnSTD).
Seven breast radiologists participated as readers to detect the MCs in the
DBT volumes of the six phantoms under the three conditions (STD, STD+,
dnSTD), totaling 18 DBT volumes. Each radiologist read all the 18 DBT vol-
umes sequentially, which were arranged in a different order for each reader in a
counter-balanced manner to minimize any potential reading order effects. They
marked the location of each detected MC cluster and provided a conspicuity
rating and their confidence level for the perceived cluster. The visual grading
characteristics (VGC) analysis was used to compare the conspicuity ratings and
the confidence levels of the radiologists for the detection of MCs.

Results: The average sensitivities over all MC speck sizes were 65.3%, 73.2%,
and 72.3%, respectively, for the radiologists reading the STD, dnSTD,and STD+
volumes. The sensitivity for dnSTD was significantly higher than that for STD
(p < 0.005, two-tailed Wilcoxon signed rank test) and comparable to that for
STD+. The average false positive rates were 3.9 + 4.6,2.8 + 3.7,and 2.7 + 3.9
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marks per DBT volume, respectively, for reading the STD, dnSTD, and STD+
images but the difference between dnSTD and STD or STD+ did not reach
statistical significance. The overall conspicuity ratings and confidence levels by
VGC analysis for dnSTD were significantly higher than those for both STD and
STD+ (p < 0.001). The critical alpha value for significance was adjusted to be
0.025 with Bonferroni correction.

Conclusions: This observer study using breast phantom images showed that
deep-learning-based denoising has the potential to improve the detection of
MCs in noisy DBT images and increase radiologists’ confidence in differentiating
noise from MCs without increasing radiation dose. Further studies are needed
to evaluate the generalizability of these results to the wide range of DBTs from

KEYWORDS

1 | INTRODUCTION

Digital breast tomosynthesis (DBT) has become a com-
monly available breast cancer screening modality since
it was approved for clinical use about a decade ago.
A meta-analysis including 17 studies showed that the
cancer detection rates increased by using DBT in
combination with digital mammogram (DM), while the
recall rates reduced in the United States but increased
in Europe, as compared to DM alone in screening.’
Another meta-analysis including 11 studies showed that
the improved cancer detection rates could mainly be
attributed to invasive cancers. The detection of in situ
cancers on average did not increase significantly and
about half of the reviewed studies actually observed
a decrease’ Bahl et al® showed that in situ can-
cers contributed to a substantially smaller proportion
of the screen-detected cancers when screening with
DBT + DM compared to DM alone and the reduction
in the proportion of in situ cancers sustained over the
5 years that they analyzed*

Ductal carcinoma in situ (DCIS) often manifests as
microcalcifications (MCs) alone and the detection of
some subtle invasive cancers is aided when there are
associated MCs. Detection of MCs in DBT is more chal-
lenging than in DM because many more images have
to be read in a DBT volume than in a two-dimensional
(2D) DM image for each breast compression view. The
reported detection sensitivity of MCs in DBT varied,
probably due to the different physical characteristics
among the manufacturers’ DBT systems, factors that
affect the image quality, and importantly, the different
degrees of subtlety of the MC cases that might be
evaluated in the studies®'? Using DM in combina-
tion with DBT would allow radiologists to maintain their
sensitivity for detecting MCs, but it increases the radi-
ation to the patient. Replacing DM with a synthetic
DM-like mammogram (SM) can eliminate the additional
dose. The SM technology generally is implemented with
computer-aided detection and image processing tech-

human subjects and patient populations in clinical settings.

deep learning denoising, digital breast tomosynthesis, microcalcifications, observer study

niques to enhance suspicious lesions.>~'® The noise
in DBT can reduce the detectability of MCs and also
contribute to pseudocalcifications on the SM due to
over-enhancement.!” The detection of MCs on DM
and SM was compared previously.!”~2" Other studies
showed that DCIS detection rate in DBT + SM was lower
compared to DBT + DM or DM alone.'®22724 A two-
center study showed that the screen-detected DCIS rate
was lower with DBT + SM relative to DBT + DM in one
center but higher in the other, and the overall rate did
not show significant difference?® A multi-center, multi-
reader study'® and a recent study of community-based
screening®® showed that the percentages of DCIS and
cancers manifested as MCs among the detected can-
cers were significantly lower with DBT + SM than with
DM alone. Although the reduction in DCIS detection
often did not reach statistical significance in many of
these studies, the overall trend may not be negligible.
Conventional approach to alleviating the noise prob-
lem is to use imaging techniques at higher dose?’ or
reduce the noise with smoothing filtering. Several stud-
ies investigated the use of conventional filters to reduce
noise in DBT images and reported various degrees of
success.?®-33 The recent advances of machine learn-
ing technologies spur the development of deep learning
(DL)-based techniques for improving the image quality
of medical images. Some studies showed that DL-based
denoising could effectively reduce noise in low dose
computed tomography (CT),2*-6 while other studies did
not find DL-based denoising to be effective in some
nuclear medicine applications.2’~3° The image charac-
teristics of MCs in DBT are very different from lesions
in CT or nuclear medicine images. The major challenge
is that subtle MCs cannot be easily distinguished from
noise. Several studies have attempted to develop DL-
based denoising for DBT**° Badal et al. evaluated
three DCNN models for denoising DBT projections and
reported that the detectability of mass was not affected
but the slight blurring of the images by the DCNNs
reduced the detectability of MC cluster’® We have

85U8017 SUOWILIOD 8AITe1D) 8 edldde a3 Aq pausenob afe sajonre VO ‘8sn JO s 10} Akeiq1 78Ul UO A8]IM UO (SUORIPUOD-PUR-SLUBH D" A8 | 1M AeIq 1 BU1|UO//:SANY) SUOTIPUOD Pue SWis | 8U) 88S *[7202/20/ST] Uo Ariqiauluo Aeim ‘Ariqi ueBiydin JO Aisienlun Aq 6579T dw/z00T 0T/I0p/W0 A8 | 1mAseiq Ul uo"widee//sdny wouy pepeojumod ‘0T ‘€202 ‘60ZvELYZ



DEEP LEARNING DENOISING OF BREAST TOMOSYNTHESIS

FIGURE 1 Modular breast phantom set with 1-cm-thick slabs of
heterogeneous distribution of breast-tissue-equivalent material
simulating a nominal 50% adipose/50% fibroglandular composition
(custom-made by CIRS, Inc.).

investigated a DL-based approach to denoising recon-
structed DBT images and demonstrated its feasibility
of enhancing MCs based on the contrast-to-noise ratio
and sharpness measures and a task-based detectabil-
ity index.*” However, these image quality measures only
analyze individual MCs without taking into account the
detectability of MC clusters in a search task. The goal of
this study is to evaluate the effects of DL-based denois-
ing on radiologists’ detection of MC clusters in breast
phantom DBTs and, as a secondary analysis, examine
the dependence of the effects of the denoiser on MC
speck sizes.

2 | MATERIALS AND METHODS

2.1 | Breast phantoms

We have a modular breast phantom set contain-
ing seven 1-cm-thick breast-tissue-equivalent slabs of
nominal 50% adipose/50% fibroglandular composition
custom-made by CIRS, Inc. (Norfolk, VA). The semi-
circular shaped slabs were approximately 20 cm in
diameter and had random heterogeneous patterns to
simulate breast tissue structures, as shown in Figure 1.
We constructed six different 5-cm-thick breast phan-
toms by stacking five slabs from the seven slabs in
different orders such that the order of any two adja-
cent slabs in one phantom would not be repeated in
another phantom. Glass beads (Whitehouse Scientific
Ltd.) of four nominal speck size ranges (0.125-0.150,
0.150-0.180, 0.180-0.212, and 0.212-0.250 mm) were
used to form simulated MC clusters for each speck size.
These glass beads were chosen because glass beads
are used in the ACR phantom for digital mammography
(model 086, CIRS, Inc.) to simulate calcification specks
and the four chosen nominal size ranges for our phan-
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toms covered the four smaller sizes of the six speck
groups in the ACR phantom. Twenty-four clusters, six of
each speck size were mixed and sandwiched between
the slabs at random locations in each phantom. Table 1
shows the number of breast phantoms and the num-
ber of simulated clusters of each speck size in each
phantom.

2.2 | DBT imaging

The six breast phantoms were imaged with a GE Pristina
DBT system (GE Healthcare, Waukesha, WI). Each
phantom was compressed to an average thickness of
50.3 mm (range: 50.0-50.9 mm) at a compression force
of about 8 daN. The automatic exposure modes, stan-
dard (STD) and STD+, available in the DBT system
were used to consecutively image the phantom under
the same compression. The STD mode is the routine
clinical technique for patient imaging. The STD+ mode
was included in this study to provide a reference con-
dition for comparison of radiologists’ reading whether
the denoised STD images could match those acquired
at a clinically practical higher dose level. The system
used a fixed target/filter (Rh/Ag) and 34 kV technique for
breasts thicker than about 40 mm.For the STD mode, the
average mAs was 33.1 (range: 31.5-34.2 mAs) and the
average glandular dose (AGD) was 1.34 mGy (range:
1.31-1.36 mGy). For the STD+ mode, the average mAs
was 54.2 (range: 48.9-57.2 mAs) and the AGD was
2.07 mGy (range: 1.91-2.15 mGy). The AGD of STD+
was about 54% higher than that of the STD. All DBTs
were reconstructed by the GE proprietary reconstruc-
tion software provided with the Pristina system at a pixel
size of 0.1 mm x 0.1 mm and 1-mm spacing.

2.3 | Deep learning-based denoiser

We previously developed a deep convolution neural net-
work (DCNN)-based 2D denoiser for reducing noise
in reconstructed DBT images. Details of our study
including the methodology and the experiments that
we conducted for training, validation, and testing of the
denoise have been published*” A brief summary is
given below.

As illustrated in Figure 2, the denoiser is designed
based on a generative adversarial network (GAN) that
is composed of a generator and a discriminator, both
are DCNNs with trainable weights. We therefore refer
to our denoising GAN as DNGAN. The DCNN architec-
ture of the generator contained 10 convolutional layers,
each with 32 filters of 3 x 3 kernels, and used rectified
linear units (ReLU) between the layers. The discrimina-
tor used a VGG-net backbone but a reduced number of
downsampling blocks to adapt to the small input patch
size used for training the denoiser. It contained a total
of six convolutional layers, three 2 x 2 max pooling
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TABLE 1 The test DBT volumes (6 volumes x 3 reading conditions) used in the observer study

dnSTD
STD (denoised STD+ mode

Reading conditions mode STD) (reference)
Number of DBT volumes 6 6 6
Number of simulated MC clusters of each speck size embedded in each of the ~ 0.125-0.150 mm 6 6 6
DBT volumes 0.150-0.180 mm 6 6 6
0.180-0.212 mm 6 6 6
0.212-0.250 mm 6 6 6
Total number of simulated MC clusters embedded in the set of six DBT 144 144 144

volumes

Note: Twenty-four simulated MC clusters (=4 x 6 of each speck size) were mixed and sandwiched between the slabs at random locations in each phantom, resulting
in a total of 144 (=24 x 6) simulated MC clusters under each reading condition to be detected by radiologists. Two other DBT volumes used in the observer training

session is not listed here.

Denoised LD image

DCNN DCNN Adversarial
Denoiser Discriminator loss
Low dose
(LD) image v
2| MSE loss +>
High dose (HD) image

FIGURE 2 A schematic of the Wasserstein GAN-based adversarial training of the denoiser DNGAN. Note that the discriminator and the
target high dose (HD) images are needed only during training. After training, the DNGAN with the frozen trained weights can standalone and be

deployed to reduce noise of an input low dose (LD) image.

layers, and one fully connected layer. The number of
filters in each convolutional layer in the discriminator
ranged from 32 to 128, each of 3 x 3 kernel.

The DNGAN training required a large set of low-
dose/high-dose (LD/HD) image pairs as input and target
output images*’ We used image pairs having a patch
size of 32 x 32 pixels. The denoiser training was guided
by minimizing a training loss function, which was com-
posed of the mean squared error (MSE) loss, Lysg, and
the adversarial loss, L gy,

argénin LMSE (G) + /1adv . Ladv (G)

where G was the denoiser. The MSE loss com-
pared the pixel-wise difference between the denoised
image patches and the corresponding HD target image
patches. The adversarial loss was derived from training
the discriminator that assessed the similarity between
the distributions of the denoised low-dose images and
the target high-dose images. The MSE loss contributed
to image smoothness while the adversarial loss con-
tributed to preserving the high frequency image texture.

The Wasserstein GAN-based adversarial training in
which the generator and the discriminator were trained
alternately was adopted to constrain the degree of
smoothing and maintain the sharpness of the denoised
DBT images’’ The parameter, 1,4, that weighted the
two training loss terms was chosen experimentally to
further balance between noise smoothing and image
structure fidelity. After training and validation, the trained
generator with its frozen weights can be deployed as a
denoiser to reduce noise in an input noisy DBT image
while maintaining its structural details. As the denoiser
is fully convolutional, it can be applied to a full size DBT
image during deployment. The details of the specific
DCNN structures, the adversarial training and param-
eter selection process can be found in our previous
paper*’

The DNGAN training requires pairs of LD/HD images
but pairs of LD/HD human DBT images under the
same compression are not available. As described
previously,*” we conducted an extensive study to train
the DNGAN denoiser using DBT images of digital breast
phantoms or physical phantoms and validate the robust-
ness of the trained denoisers by deploying them to
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independent digital phantom, physical phantom, and
human subject DBT images, as summarized below.

For training with digital phantom images, we gener-
ated twenty-five heterogeneous dense (34% glandular
volume fraction) 4.5-cm-thick digital phantoms using the
VICTRE breast model*® We then used the CATSim
(GE Global Research) simulation packages to model the
Pristina DBT system in terms of target/filter and scan
geometry. Pairs of LD/HD DBT images of each digital
breast phantom were acquired with the virtual Pristina
system over a wide range of dose levels (LD at 24 mAs,
HD at 72, 120, 360 mAs and noiseless). All simulated
DBTs were reconstructed with the simultaneous alge-
braic reconstruction technique (SART).*° About 200 000
pairs of 32 x 32-pixel 2D image patches were extracted
randomly from the set of reconstructed DBT volumes for
each LD/HD condition to study the effects of the dose
level of the HD target output on denoiser performance.

For training with physical phantom images, we
acquired LD/HD image pairs of eight physical breast
phantoms with a clinical GE Pristina system. The LD
images were acquired at the STD mode (Rh/Ag 34 kVp,
31.4 mAs on average) and the HD images at about four
times STD (manually set at Rh/Ag 34 kVp, 125 mAs).
All DBT volumes were reconstructed with the GE recon-
struction algorithm on the Pristina system and also with
the SART. A total of 400 000 LD/HD pairs of 32 x 32-
pixel 2D image patches were extracted randomly from
each set of reconstructed DBT volumes for training.

For validation and testing, the denoiser trained with
the training set from each of the different paired LD/HD
image sources and reconstruction algorithms, described
above, was deployed to an independent physical phan-
tom DBT volume containing a total of 236 simulated
MCs of size 0.150-0.180 mm, 227 of 0.180-0.212 mm,
and 159 of 0.212-0.250 mm. The coordinates of the
individual MCs were manually marked for analysis. The
contrast-to-noise ratio (CNR), the full width at half max-
imum, and a task-based detectability index (d’) from
the nonprewhitening matched filter model observer with
eye filter of the individual MCs were quantified and
then averaged over all MCs of each size range as per-
formance measures. The corresponding performance
measures of the various trained denoisers were com-
pared among the LD, HD, and denoised LD images to
validate the generalizability of the DNGAN denoiser to
unseen DBT images. In addition, the CNRs of 301 real
MCs in human subject DBTs with and without DL denois-
ing were compared. The noise power spectra of the LD,
HD, and denoised LD images were compared on digi-
tal phantom DBT images to evaluate the effects of the
denoisers trained with different weights of the adversar-
ial loss, L,q4,, and at various dose levels of the target
HD images on image texture and high frequency struc-
tures. The image quality of the denoised DBT images for
physical phantoms and human subjects were also com-
pared visually for the different denoisers. The results of

MEDICAL PHYSICS !

the previous study indicated that either of the training
approaches using digital phantom or physical phantom
images could train a DNGAN that can effectively reduce
noise while preserving the structural details in noisy
DBT images of both phantoms and human subjects.*’

In the current study, we used the DNGAN trained with
physical phantom images acquired with a GE Pristina
DBT system and validated in the previous study;*’
as described above. The validated DNGAN denoiser
was applied, without retraining, to a new test set of
reconstructed DBT images acquired specifically for the
observer study, as described in Section 2.2. Note that the
denoiser, once trained, does not require the HD images
when it is applied to unseen test images. The STD+
image set was included only as a reference condition
for comparison of radiologists’ reading performance in
the current study.

2.4 | Observer study
We conducted a multi-reader multi-case observer per-
formance study to compare the detection of MC clusters
in DBT images obtained from three conditions: STD
images, STD+ images, and DNGAN-denoised images
(dnSTD). Each of the conditions had six DBT volumes,
totaling 18 volumes (=3 conditions x 6 volumes per con-
dition). Seven MQSA-certified radiologists experienced
in mammography (2—34 years, median: 13 years) par-
ticipated as observers. Each observer read all 18 DBT
volumes sequentially that were arranged in an order
that was different from any other observers’ sequences.
The three conditions of the same breast phantom were
mixed in the sequence but separated as far apart as
possible. No washout period was needed because there
were too many background patterns and MC locations
to memorize. The observer was blinded to the condi-
tion of the DBT volume being read. The DBT volumes
was ordered in a counter-balanced manner such that
the DBT of a given condition being read first, second, or
last was balanced when averaged over all volumes and
all readers to avoid biases due to reading order effects.>°
The DBT volume was displayed on a 21” 5M-pixel
(2048 x 2560) LCD display monitor (model EIZO SMD
21500 D Contrast ratio 800:1, maximum luminance
750 cd/mm?) calibrated with the DICOM grayscale stan-
dard display function. An in-house developed graphical
user interface was used to display the DBT volume,
which allowed the observer to adjust the contrast and
brightness, scroll through the volume, and pan and zoom
the images as needed. The observer could mark a
detected MC cluster with a box, provide a conspicuity
rating of the cluster (10-point scale: 1 = subtle, 10 = obvi-
ous) and their confidence level (10-point scale: 1 = low,
10 = high) that the marked region contained an MC clus-
ter. Multiple regions could be marked in a single DBT
volume and each with its own ratings. No time limit was
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imposed for the reading. Each observer could read at
their own pace and search for MCs in their preferred
way. They were asked to use the same search method
and keep their own relative rating scales consistently
over the entire reading experiment. The user interface
automatically recorded the time that a detected location
was marked so that the average time per mark could
be estimated for each condition and each observer. The
observers were free to separate the reading into multi-
ple sessions and all observers finished the entire set in
two or three sessions.

Each observer underwent a training session before
reading the test DBT volumes. They were shown DBT
volumes of training phantoms, different from the test
phantoms, on the display monitor and marked the
detected MC clusters to be familiarized with the func-
tions of the graphical user interface and the rating
scales. After they marked the potential MC clusters
in a training volume, a corresponding high dose vol-
ume superimposed with the ground truth locations was
shown side by side for the observers to review their true
positive, false positive, and false negative detections and
learned the appearance of the MC clusters of various
speck sizes. They were informed that each DBT vol-
ume contained a large number of MC clusters of various
degrees of subtlety but the number of clusters in a given
volume or at a given depth was not disclosed. The true
locations of the clusters in the DBT volumes of the test
set were never shown to the observers.

2.5 | Data analysis

We estimated radiologists’ sensitivity for detecting the
simulated MC clusters of each speck size in all DBT
volumes. The differences in the average detection sen-
sitivity with all speck sizes together were compared
between two pairs of the image conditions, dnSTD
versus STD and dnSTD versus STD+, read by the radi-
ologists. The false positive (FP) rate, defined as the
average number of FP marks per DBT volume, was cal-
culated for each radiologist and the average FP rate over
all radiologists derived. The statistical significance of the
difference between the paired conditions was estimated
by the two-tailed Wilcoxon’s signed rank test.

For the confidence levels and conspicuity ratings, we
performed the multiple-reader multiple-case visual grad-
ing characteristics (VGC) analysis to compare the paired
conditions®'-%3 The VGC analysis is a non-parametric
rank-invariant statistical method for comparing image
quality of two conditions (or modalities).>’-°? The dif-
ferences in the rating data under the two conditions
by the observers for a specific image quality indicator
such as the conspicuity of a structure are analyzed in
a way similar to differentiating the two classes in the
receiver operating characteristic analysis, resulting in a
VGC curve. The area under the VGC curve (AUC ) is a

measure of the difference between the two conditions.
An AUC,4. of 0.5 shows that there is no difference in
the specific image quality indicator being rated under
the two conditions. The difference is considered statis-
tically significant if the 95% confidence interval for the
estimated AUC, 4. does not cover 0.5. We performed the
VGC analysis using the fully-crossed, multiple-reader
multiple-case software developed and validated by Bath
et al 5253

With the comparison of two paired reading conditions
(dnSTD vs.STD and dnSTD vs. STD+), the critical alpha
level for estimation of significance would be adjusted
by a factor of 2 to 0.025 according to the Bonferroni
method. A p-value of less than 0.025 was considered
statistically significant.

As a secondary analysis, we compared the average
detection sensitivity, the MC conspicuity rating and the
radiologists’ confidence level for each of the speck sizes.
The purpose of this analysis was to examine the trends,
if any, of the effects of speck size on the DL-based
denoiser performance, which may provide useful infor-
mation to guide future research efforts. No statistical
significance test was applied because the subgroup
analysis was not intended to influence the main goal of
the current study.

3 | RESULTS

Figure 3 shows a DBT image of one of the breast phan-
toms. Figure 4 shows close-up views of a simulated MC
cluster of each nominal speck size for the three image
conditions. The dnSTD images show that the parenchy-
mal structures are well preserved and less noisy than
those in the STD and STD+ images.

The radiologists’ sensitivities of detecting the simu-
lated grouped MCs averaged over all speck sizes were
65.3%, 73.2%, and 72.3%, respectively, for the STD,
dnSTD, and STD+ conditions. The average sensitivity
for dnSTD was significantly higher than that for STD
(p < 0.005, two-tailed Wilcoxon signed rank test), and
was comparable to that of STD+. The average FP rates
were 3.9 + 4.6, 2.8 + 3.7, and 2.7 + 3.9 marks per
DBT volume, respectively, for reading the STD, dnSTD,
and STD+ images, but none of the differences reach
statistical significance.

Table 2 shows the AUC, 4 values from the VGC anal-
ysis. The comparison indicated that the radiologists’
conspicuity ratings and confidence levels for MC detec-
tion in the dnSTD images were significantly higher than
those in the STD+ and STD images (p < 0.001).

The average sensitivities of detecting the simulated
MC clusters of each speck size for the seven radi-
ologists are shown in Table 3. Figure 5(a) compares
the detection sensitivities averaged over the seven radi-
ologists for each speck size under the three image
conditions. The average sensitivities for the dnSTD and
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(a) STD

FIGURE 3
three conditions: (a) STD, (b) denoised STD, (c) STD+.

TABLE 2 Multiple-reader multiple-case visual grading
characteristics (VGC) analysis comparing radiologists’ conspicuity
ratings and confidence levels for the detection of the simulated
grouped MCs of all speck sizes between pairs of the image
conditions.

Comparison dnSTD > STD dnSTD > STD+

Conspicuity rating 0.646 (0.612,0.684) 0.542 (0.513,0.571)

p-value <0.0001* <0.0001*
Confidence level 0.643 (0.610,0.679) 0.542 (0.512,0.571)
p-value <0.0001* 0.001*

Note: The conspicuity ratings and confidence ratings for dnSTD are significantly
higher than those for STD+ and STD. The values shown are AUC, 4 (95% confi-
dence intervals). The p-value shows the statistical significance of the difference
from AUC,4; = 0.5. The asterisk * indicates statistical significance at an adjusted
critical alpha value of 0.025.

STD+ images were consistently higher than those for
the STD images.

The average conspicuity ratings and confidence lev-
els by the radiologists for each speck size are shown
in Tables 4 and 5, respectively. Figure 5(b) compares
the average conspicuity ratings under the three image
conditions. The trends of the average conspicuity rat-
ings and the confidence levels are consistent with that
observed for the sensitivity. The clusters in both the
dnSTD and the STD+ images had higher conspicuity
and confidence ratings than those in the STD images.
In addition, the clusters of three of the four speck sizes

(b) dnSTD

(c) STD+

Example of a digital breast tomosynthesis (DBT) image of a breast phantom with simulated grouped microcalcifications for the

in the dnSTD images had higher average conspicuity
and confidence ratings than those in the STD+ images,
which was also observed for the average sensitivities.
The relative quality of the dnSTD, STD+, and STD
images can be seen in the examples in Figure 4.

The average reading time per mark reading the
dnSTD images was reduced slightly by 7.5% compared
to reading the STD images, and was essentially the
same as that reading the STD+ images.

4 | DISCUSSION

This study indicated that the deep-learning-based
denoiser could reduce the noise in DBT images
acquired with a STD technique such that the detection
sensitivity of MCs in dnSTD could increase significantly
from that in STD to a level comparable to that in STD+.
The increased sensitivity in the dnSTD images could
be attributed to the improved contrast-to-noise ratio
of MCs and therefore their conspicuity in the DBT
images.*’ More importantly, the higher conspicuity also
significantly increased the radiologists’ confidence level
in distinguishing grouped MCs from noise. The average
FP detection rate in dnSTD was reduced substantially,
although not statistically significant, by about 28%
(=2.8/3.9) relative to STD and became comparable to
that in STD+ (2.8 vs. 2.7). The improvement in the
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STD+

-

FIGURE 4 Examples of simulated grouped microcalcifications of four speck sizes: (a)—(c) 0.125-0.150 mm, (d)—(f) 0.150—0.180 mm,
(g)—(i) 0.180-0.212 mm, (j)—(I) 0.212—-0.250 mm. The image conditions are: (left column) STD, (middle column) denoised STD, (right column)
STD+. Each of the image in (a)—(l) is 20 mm x 20 mm in size.
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TABLE 3 Radiologists’ sensitivity of detecting the simulated grouped MCs for each nominal speck size

Average false positives
0.125-0.150 mm 0.150-0.180 mm 0.180-0.212 mm 0.212-0.250 mm per volume

:i':ZCK STD dnSTD STD+ STD dnSTD STD+ STD dnSTD STD+ STD dnSTD STD+ STD dnSTD STD+
R1 56% 2.8% 83% 50.0% 75.0% 83.3% 94.4% 97.2% 97.2% 91.7% 100%  100% 0.83 0.50 0.17
R2 0.0% 13.9% 0.0% 75.0% 88.9% 91.7% 91.7% 100% 100% 94.4% 100% 100% 0.83 1.17 0.33
R3 83% 11.1% 11.1% 472% 77.8% 77.8% 69.4% 86.1% 86.1% 77.8% 944% 86.1% 7.00 2.83 5.33
R4 56% 25.0% 13.9% 86.1% 94.4% 100% 100% 94.4% 100% 100% 97.2% 100% 0.33 1.33 0.17
R5 222% 44.4% 25.0% 91.7% 94.4% 100% 97.2% 97.2% 94.4% 944% 100% 100% 12.83 11.00 10.50
R6 16.7% 11.1% 13.9% 94.4% 94.4% 100% 100% 100% 100% 100% 100%  100% 1.00 1.33 0.50
R7 28% 5.6% 0.0% 44.4% 55.6% 55.6% 80.6% 91.7% 83.3% 86.1% 97.2% 97.2%  4.17 1.33 1.83

Mean 87% 16.3% 10.3% 69.8% 829% 86.9% 90.5% 952% 94.4% 92.1% 98.4% 97.6% 3.86 2.79 2.69
StdDev  7.9% 14.3% 8.7% 221% 14.6% 16.4% 11.4% 5.0% 7.0% 7.9% 22% 5.2% 4.64 3.69 3.91

Note: The mean of dnSTD was higher than that of STD or STD+ for all paired comparisons except for dnSTD < STD+ at speck size of 0.150-0.180 mm. Statistical
significance was not estimated for this secondary subgroup analysis.

120% 10
uSTD uSTD
0,
fu0% mSTD+ 2s mSTD+
Z = dnSTD E = dnSTD
E 80% >
£ S5 6
< 2
$ 60% a
% :
?!P o 4
o 40% g
< o
S
20% ﬁ ﬁ < i
0% i 0
0.125-0.150 0.150-0.180 0.180-0.212 0.212-0.250 0.125-0.150 0.150-0.180 0.180-0.212 0.212-0.250
Speck size (mm) Speck size (mm)
(a) (b)

FIGURE 5 (a) Average sensitivities for detecting the simulated microcalcification (MC) clusters and (b) average conspicuity ratings for the
detected clusters of each speck size. The error bars represent one standard deviation. In each group of bars, left to right: STD, STD+, dnSTD.

TABLE 4 Radiologists’ conspicuity ratings (10-point scale: 1 = low, 10 = high) on the detected simulated grouped MCs for each nominal
speck size

Speck 0.125-0.150 mm 0.150-0.180 mm 0.180-0.212 mm 0.212-0.250 mm

size STD dnSTD STD+ STD dnSTD STD+ STD dnSTD STD+ STD dnSTD STD+
R1 2.50 6.00 3.33 4.11 5.74 5.83 5.18 7.03 7.03 6.58 8.39 7.78
R2 1.00 1.00 1.00 2.33 3.69 3.73 3.58 6.81 5.97 7.12 8.75 7.64
R3 2.67 2.50 2.75 4.24 3.86 5.54 4.68 6.23 6.68 7.14 8.50 7.52
R4 1.00 1.1 1.00 2.06 4.09 3.33 3.28 6.71 5.50 5.50 8.43 7.08
R5 3.13 2.56 3.89 5.06 7.03 7.47 6.20 8.66 8.38 7.41 9.61 8.89
R6 1.67 1.75 2.20 3.00 3.82 3.83 3.86 5.78 5.06 5.39 7.75 6.17
R7 2.00 4.50 1.00 3.69 5.30 5.75 5.69 7.15 7.07 7.39 8.86 7.91
Mean 1.99 277 217 3.50 4.79 5.07 4.64 6.91 6.53 6.65 8.61 7.57
Std Dev 0.82 1.85 1.21 1.08 1.27 1.49 1.1 0.91 1.12 0.87 0.57 0.83

Note: The mean of dnSTD was higher than that of STD or STD+ for all paired comparisons except for dnSTD < STD+ at speck size of 0.150-0.180 mm. Statistical
significance was not estimated for this secondary subgroup analysis.
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TABLE 5 Radiologists’ confidence levels (10-point scale: 1 = low, 10 = high) on the detected simulated grouped MCs for each nominal
speck size

Speck 0.125-0.150 mm 0.150-0.180 mm 0.180-0.212 mm 0.212-0.250 mm

size STD dnSTD STD+ STD dnSTD STD+ STD dnSTD STD+ STD dnSTD STD+
R1 3.00 6.00 4.33 4.61 6.41 6.43 5.97 7.03 7.03 6.97 8.06 7.64
R2 1.00 1.40 1.00 2.63 4.25 4.55 4.36 6.81 6.44 7.56 8.75 7.83
R3 2.67 3.00 2.75 4.59 4.21 5.50 5.20 6.58 6.68 7.1 8.18 7.52
R4 1.00 1.11 1.00 1.77 3.47 2.75 2.81 5.79 4.58 4.67 7.74 6.08
R5 3.50 3.06 3.78 5.21 6.97 7.31 6.43 8.54 8.06 7.44 9.58 8.89
R6 1.67 1.75 2.00 2.97 3.76 3.94 3.94 5.64 5.08 5.50 7.53 5.94
R7 2.00 4.00 1.00 3.44 5.20 5.30 5.24 7.09 6.80 7.16 8.83 7.80
Mean 212 2.90 227 3.60 4.90 5.11 4.85 6.78 6.38 6.63 8.38 7.39
Std Dev 0.98 1.71 1.39 1.24 1.35 1.53 1.24 0.96 1.18 1.10 0.71 1.04

Note: The mean of dnSTD was higher than that of STD or STD+ for all paired comparisons except for dnSTD < STD+ at speck size of 0.150-0.180 mm. Statistical

significance was not estimated for this secondary subgroup analysis.

detection performance was achieved without an
increase in the radiation dose or reading time.

The DL denoiser used in the observer study was
trained with physical phantom image pairs acquired in
STD mode as LD and four times the dose of STD as HD
target in our previous study*’ We included STD+ mode
in radiologists’reading as a reference condition to evalu-
ate whether the performance in dnSTD could match that
from a clinically practical STD+ dose level, which was
only 54% higher than that of STD. The results showed
that radiologists’ sensitivity in reading the dnSTD images
was only marginally better than that in reading STD+
images although the MC conspicuity ratings in dnSTD
were significantly higher than those in STD+. This may
reflect the fact that human’s visual search task is not
only affected by the conspicuity of the target signals but
also by other factors involved in signal detection.

The detection of MCs in DBT images is a time-
consuming but critically important task for radiologists
because subtle MCs are difficult to distinguish from
noise but may be the only finding of malignancy. Studies
of DBT for improving breast cancer detection predomi-
nantly focused on invasive cancers most of which man-
ifested as masses or architectural distortion. However,
some invasive cancers are mammographically detected
by MCs alone or subtle soft tissue findings associ-
ated with MCs. DCIS manifests primarily as MCs and
is pre-invasive. An ACRIN study found that a substan-
tial proportion of DCIS (7.5% and 13.4%, respectively)
can progress to invasive cancer even after surgical exci-
sion regardless whether it was low grade or high grade
at diagnosis.>* Another study showed that 26% of the
low-grade and 31% of the high-grade DCIS in a surveil-
lance group (excision with margin clearance < 1 mm)
recurred as invasive cancer within 10 years®® In a
population-based study, the screen-detected DCIS rate
was found to be significantly associated with a reduc-
tion in the screen-detected invasive interval cancer rate
in subsequent years>® These studies indicate that early

detection of DCIS is important to reduce the chance
that DCIS progresses into invasive cancer. Although
there is concern of overdiagnosis, primarily among older
women, early detection is still the key step that will
offer the patient and the physician opportunity to make
informed decision on management options.

We used breast phantoms in this preliminary study.
The advantages are that we could acquire the higher-
dose STD+ image as a reference condition in the
observer study without radiation to human subjects, and
that we could simulate MC clusters with a specific range
of speck sizes and analyze the dependence of the
detection sensitivity on speck size. The results showed
that radiologists’ sensitivity in reading dnSTD images
was consistently higher than reading STD images for all
speck sizes. The relative gain was the largest, reaching
about a factor of two, for the smallest speck size (0.125—-
0.150 mm) included in this study. The sensitivity was
gained together with a decrease in the FP rate. The trend
indicates that DL denoising is promising for increasing
the differentiation between subtle MCs and noise and
may potentially improve the early detection of breast
cancer in DBT while reducing recalls and diagnostic
workup of false detections. However, the absolute perfor-
mance of the current denoiser on enhancing such subtle
MCs is still low and further improvement is needed.

To use radiologists’ time efficiently, we enriched each
DBT volume with a large number of MC clusters, which
was different from clinical DBT volumes that only occa-
sionally contain MC clusters. In addition, the study
radiologists could focus on searching for MCs in the
breast phantoms without paying attention to other types
of breast lesions. Both factors could affect radiologists’
search task and may optimistically bias the detection
sensitivity for MCs compared to reading patient DBTs
in clinical settings. However, it may be expected that the
relative ranking of the image conditions would be less
impacted because all conditions were potentially biased
in a similar way.
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We used the STD and STD+ modes available on a
clinical DBT system to generate the low dose images
and the higher dose reference condition in the observer
study. The overall detection sensitivity in dnSTD was
significantly higher than that in the routine STD mode
and comparable to that in the STD+ mode. The VGC
analysis indicated that the overall conspicuity of MCs
and the radiologists’ confidence ratings in the dnSTD
images were significantly higher than those in the STD
and STD+ images. The DL denoising approach could
therefore save at least 54% of the radiation dose if the
detection performance at the level of STD+ is desired.
A follow up study of interest will be to evaluate if a
lower dose technique than the STD mode may be used
while DL denoising can still improve the MC detectabil-
ity to a desired level. In addition, DBT systems from
other manufacturers have been designed to operate
with imaging techniques that deliver higher average
glandular dose than those of the STD mode at similar
breast thicknesses.®’ It is of interest to train DL denois-
ers to reduce noise and enhance MC detectability for
the different manufacturers’ systems, and to investigate
whether DL denoising may enable these systems to
use lower dose imaging techniques while maintaining, or
improving, their image quality and performance. Reduc-
ing radiation dose to patients is an important application
of denoising in medical imaging.

We applied DL denoising to the reconstructed DBT
images. We did not generate synthetic mammograms
from the denoised DBT volume because the synthetic
mammogram technology is proprietary and vendor-
dependent. How the DL denoising affects the quality of
synthetic mammograms will likely depend on the imag-
ing processing and machine vision methods used for
synthesizing the 2D image. Although it is expected that
the synthetic mammograms may also be benefitted from
reducing noise in the DBT volume, future studies will be
needed to evaluate the effects.

There are limitations in the current study. First, due
to the limited availability of radiologists’ time, we had to
limit the variables in one observer study. We used breast
phantoms of the same composition and same thickness
so that the noise level varied only within a narrow range.
Whether the improvement by denoising can be gener-
alized to DBTs of a wide range of imaging properties
will need to be investigated in future studies. Second,
the DBT images were acquired with a single manufac-
turer’'s system and the dose levels used were selected
by the automatic exposure control. Further study is
needed to evaluate to what extent the improvement in
MC detectability or dose reduction can be accomplished
with DL denoising for different manufacturers’ imaging
systems. Third, the observer study was conducted using
breast phantoms embedded with simulated MC clusters
such that the search task of the radiologists might be dif-
ferent from that in clinical practice as discussed above. A
future follow-up study by collecting a large set of human

MEDICAL PHYSICS

subject DBT containing subtle MCs will be needed to
further validate the effectiveness of DL denoising for
DBT.

5 | CONCLUSION

This observer study with breast phantom images
demonstrates that deep-learning-based denoising has
the potential to improve radiologists’ sensitivity in detect-
ing MCs in DBT and their confidence in differentiating
noise from MCss without increasing the imaging dose
or reading time. Future studies are needed to evaluate
the generalizability of these results to the wide range of
DBTs from human subjects and patient populations in
clinical settings.
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