
Report No. CSS24-12
March 11, 2024

A SIMPLE MODEL OF A 
VACUUM-TUBING SYSTEM 
FOR COLLECTING MAPLE SAP

Spencer M. Checkoway



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

A Simple Model of a Vacuum-Tubing System for 
Collecting Maple Sap 

by 
Spencer M. Checkoway 

 
 
 

Center for Sustainable Systems 
University of Michigan 

March 2024 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 
 

Introduction 

To produce maple syrup, one must first collect the sap from the tree. Traditionally, maple 
trees were tapped with spiles that had a bucket attached to capture the sap as it flowed out. 
However, research and advances in technology have given rise to a more efficient method of sap 
extraction: vacuum-tubing systems. This technique of sap extraction leverages the physics that 
allows for sap flow in the first place, creating larger yields from the tree throughout the season. 
Sap exudation is caused by the freeze thaw cycle that takes place in the early spring season. The 
xylem from a maple tree contains sap (a byproduct of photosynthesis) and gas bubbles, and acts 
as a pipeline for transporting water throughout the tree.1 When temperatures drop below 
freezing, there is a negative pressure in the tree relative to the atmosphere, which draws water in 
from the roots.2 When a thaw occurs, there is a positive pressure in the tree and the gas expands 
in the xylem. This expansion coupled with an osmotic sugar concentration gradient causes sap to 
flow out from the fibers.3 When one taps into the xylem, there is a larger wound for the sap to 
flow out of, and more sap can escape from the tree. By attaching a tubing system to the tap, and 
removing air, one can increase this pressure gradient between the tree and the tap hole, which 
both increases the range of temperatures sap will flow, and the flow rate of sap during those 
runs.4 

The following model was created to estimate a conservative yet realistic vacuum tubing 
model for sugarmakers of varying sizes, for the purpose of assessing the energy and emissions 
impacts of the entire production process. The methods are adapted from The New York State 
Maple Tubing and Vacuum Notebook (NYS Notebook) out of the Cornell University Extension 
Cooperative.5 Their methods were altered to create a tubing model for different producer 
archetypes (characterizations of the industry based on production scale), meaning they are 
modeled without sugarbush data. Below is a breakdown of the assumptions made when modeling 
these archetypes, and the physical principles that underlie them. While producers may be able to 
use this as a tool to optimize a tubing network, this model is primarily used to estimate the 
amount and diameter of tubing used at different production scales. 

Methods 

To set up a general model of a vacuum-tubing system, some assumptions need to be 
made about the physical characteristics of the sugarbush (e.g., slope, spatial density of tappable 
trees, and acreage). Initial decisions were made with the guidance of the NYS Notebook, which 
were then modified to reflect a system with a single collection point and multiple independent 
lines. In the guide, all parameters are established in terms of acres (two-dimensional), however 
all branches of tubing are linear (one-dimensional) and independent of one another (individual 
lines stemming from the lone collection point). In practice, the NYS Notebook method estimates 
the number of trees a mainline serves per acre as an average, which holds independently for each 
acre. However, trying to visualize the scaling of a network of linear objects (tubing) in two-
dimensional space lends itself to configurations that could use more tubing than one would 
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reasonably expect. Figure 1 illustrates this issue, as each plot is scaled as one acre. As you try to 
access the area at the top end of the one-acre plot in Figure 1, a new line must run that length 
each time. This redundancy leads to more lines, each of which serve fewer trees when the 
sugarbush is longer than it is wide (lm2 < lm1). The most realistic model of a network of 
independent lines is to have each mainline serve as many trees as possible, rather than many 
repetitive (parallel) branches. 
 

  
Figure 1 Scaling problem for mainline tubing in variable spatial plots. xm represents the distance between mainlines, which is 

constant between the two plots (as it is based on the density of tappable trees). lm1 and lm2 represent the length of mainline 
serving the trees within the sugarbush. The dotted horizontal lines are assumed to be zero as all lines would run parallel and 

close together in this configuration. 

The distance between mainlines (xm) is constant between the two plots because it is based on the 
density of tappable trees in the sugarbush (see equation 5). Comparing the two plots in Figure 1, 
we can calculate the total amount of tubing by using eqn. 1:  
 

𝑁𝑁 ∗ (𝑙𝑙𝑚𝑚) + ∑ 𝑖𝑖 ∗ (𝑁𝑁
𝑖𝑖=1 𝑥𝑥𝑚𝑚) (eqn. 1) 

 
Notice that the discrete sum in eqn. 1 highlights the redundancy of tubing when the sugarbush is 
not a square, causing the right side of Figure 1 to use more than two times the amount of tubing 
per tap. In order to balance the length of mainline tubing with the number of lines, the sugarbush 
is approximated as a square. 

Now that we have made this assumption, we can calculate the amount of mainline tubing 
per acre. A modified version1 of how the NYS Notebook arrives at the mainline tubing per acre 

 
1 The NYS Notebook leverages that one knows the length of the mainline and is trying to figure out tappable trees 
per acre. 
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is by taking the square footage of an acre, dividing it by the assumed number of tappable trees 
per acre (100-120 being a good estimate), and taking the square root of this fraction to get the 
total linear distance of tappable trees in a one-acre area (eqn. 2):6 

 

𝑓𝑓𝑓𝑓.  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

  (𝑒𝑒𝑒𝑒𝑒𝑒. 2) 

In theory, multiplying this number by the total acreage gives you the total length of tubing. 
However, as we have highlighted in Figure 1, density is an intensive quantity, meaning it does 
not scale with the size of the operation; doubling the acreage does not double the density of 
tappable trees but rather just the total number of tappable trees. So, as the operation gets bigger 
than one acre, the total amount of mainline tubing would increase, but the number of trees each 
mainline serves would remain the same (as would the diameter necessary to accommodate the 
volumetric flow of sap in each mainline), which is unrealistic. Going back to our approximation 
of the sugarbush as a square, this means that as we scale up the operation, it must increase 
equally in both dimensions to maintain shape. You would need to increase the diameter of these 
mainlines because the total volume of sap that they are moving is larger, and the length of each 
mainline would be longer (resulting in more frictional head loss).7,8  

A more practical model assumes that you connect more trees to a mainline on the way to 
the fixed collection point, meaning you have fewer mainlines, with each serving more trees (see 
Figure 2).  

 

 
Figure 2 Different plausible configurations of a tubing system from most ordered (single-line) to most variable (branched). 

Figure derived from Figure 3.2 in NYS Notebook.9 

The left-hand of Figure 2 illustrates this concept, where a large mainline acts as a highway, with 
each smaller mainline acting as an artery to that highway, and the laterals (not pictured) as 
capillaries. While this approach limits the amount of tubing, most sugarbushes are not as 
symmetrical as we have approximated, making a branched configuration more likely when 
sugarbush topography and shape are variable. To approximate the extra tubing needed for a 
branched layout, multi-line collection for a square shaped plot gives a conservative estimate 

 
 

Single Line Multi Line Branched
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while employing the symmetry we have used up to this point. To scale a multi-line system with 
the acreage growing in a square shape, we can apply the correction to eqn. 2 shown in eqn. 3: 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

= �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

× 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 (𝑒𝑒𝑒𝑒𝑒𝑒. 3) 

 
The result leverages the intensive property of the density of tappable trees, meaning the 
denominator will not change, but the total square footage will. Notice that the units of the results 
now change to being in units of tubing per width, as the square root of the square feet of total 
acreage equals the length and width of our square sugarbush. We now know how much tubing 
there is across the width (x-direction) of the sugarbush and can calculate the number of mainlines 
as a function of the distance between tappable trees in the lengthwise direction (y-direction) as 
well.  

Using the information above we can also make decisions about the lateral lines. Research 
from UVM and Cornell Extension have found that 5/16” lateral tubing yields the best results 
overall, as it limits bacterial growth more than a 7/16” lateral and allows more flow than a 
3/16”.6,10 Additionally, research has shown that six taps per lateral leads to the highest 
productivity per tap. The average length of a six-tap lateral can be calculated by first figuring out 
the number of laterals per mainline and the average distance between mainlines. To calculate the 
number of laterals per mainline, you can round down the product of the number of tappable trees 
per acre and the square root of the number of acres (eqn. 4). This will give you the number of 
taps along a given length, with that length being for the mainline. 
 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

= 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

× �𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)  (𝑒𝑒𝑒𝑒𝑒𝑒. 4) 

 
Now that we know how many taps there are per main line and taking the conservative estimate 
of one tap per tappable tree,2 one can calculate how many laterals per mainline by dividing this 
number by six taps per lateral. Knowing how many taps per acre and the number of acres also 
gives us the total estimated number of taps, so we can calculate how many mainlines one would 
need to fulfill this. Because the number of laterals, taps, and mainlines are whole numbers, the 
rounding will lead to slightly fewer taps than initially calculated as a function of tap density. This 
provides a slightly more realistic result, as it is unlikely that there would be a uniform tappable 
tree density across the whole sugarbush. Knowing the length of one side of a square sugarbush is 
the square root of the number of total acres and dividing this number by the number of mainlines 
leads us to the average distance between mainlines (eqn. 5). This number can be used to calculate 
the average length of a lateral line. 
 

 
2 Exudation productivity may decrease per tap when more taps are added to a tree, making calculations regarding 
production harder to quantify. 
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𝐴𝐴𝐴𝐴𝐴𝐴. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ =  �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ × 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙× 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

× � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

− 0.5� (𝑒𝑒𝑒𝑒𝑒𝑒. 5) 

 
The reason there is an extra 0.5 subtracted from the number of taps per lateral is that if a 
mainline is to run through any given area, it will split the distance between two tappable trees.6 
Thus, the distance from the mainline to the first tree averages half the distance between tappable 
trees. Now we have an intuition of the number of mainlines, the number of lateral lines, the 
density of tappable trees, the size of the sugarbush, the number of taps, the diameter of the lateral 
lines, and the average distance between mainline tubing. Next, we will focus on sizing mainline 
tubing to accommodate vacuum and estimating the resulting increase in yield. 

Sizing Vacuum 

Knowing the physical characteristics of the sugarbush allows for the proper sizing of 
tubing and vacuum to reduce losses along the lines. In a single wet line system, maple sap comes 
out of the tubing in a configuration that is approximated by open channel flow, meaning the 
pump is rarefying a layer of air above the sap, creating a vacuum.11 Below the layer of air is 
liquid sap, which is flowing based on gravity and the pressure differential between the tree and 
the outflow. The most rigorous modeling of a complex tubing system such as this would include 
analytical solutions to the Navier-Stokes equations using computational fluid dynamics.12 
However, the goal of this model is to estimate the vacuum pump and tubing sizes necessary to 
facilitate laminar, stratified flow in the system. Starting with our anticipated outcome (we are 
trying to attain a specific pressure at the tap), some assumptions can be made about the flow to 
calculate a system that would facilitate such solutions. The main characteristics the system 
should have include: 

 
1. The ability to handle average flow, which can be approximated as steady for the 

purposes of design. 
2. The shape of the tubing limits flow in the radial and azimuthal directions  
3. The flow is fully developed and can be approximated as a fluid moving between a 

stationary plate and a non-stationary plate moving in the direction of flow. 
4. The no slip condition is obeyed at the bottom of each fluid layer. 
5. Shear stress is equal at the boundary of the liquid and the gas. 

 
From these outcomes, three of the four conditions needed to simplify the Navier-Stokes 
equations into the Hagen-Poiseuille equations are met.13 The last condition is that the flow be 
axisymmetric. Because we simplified the cross section of the flow as being between two parallel 
plates, we can extend this assumption into three dimensions, where the shear along the boundary 
obeys the no slip condition for the liquid in contact with the gas and the tubing. This 
configuration would allow for two-dimensional shear (albeit at different strengths) in cylindrical 
coordinates, leading to a developed flow that can be approximated as axisymmetric. A simplified 
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system can then be constructed using Hagen-Poiseuille to estimate flow rates based on pressure 
(eqn. 6): 
 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 =
𝛥𝛥𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝛱𝛱𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜

4

8𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜
 (𝑒𝑒𝑒𝑒𝑒𝑒. 6) 

 
(where Qsap is the flow rate of sap, Rtap hole is the radius of the tap hole, Ltap hole is the depth of the 
tap hole, µsap is the dynamic viscosity of sap,14 and ΔPtree-tubing is the pressure gradient between 
the tree and the tubing system). The length of the tap hole was assumed to be 2 inches. The only 
unknown in this equation is the internal pressure of the tree, which varies by hour, day, season, 
and year depending on the ambient conditions. Based on experimental results of productivity 
increases from the addition of a vacuum, the highlighted band in Figure 3 represents the most 
likely average tree internal pressure throughout the day. Because flow rate is proportional to tree 
internal pressure, average pressure gives the average flow of sap through the system.  
 

 
Figure 3 Changes in sap flow based on pressure differential between the tree and tap hole at different vacuum levels. Changes 
are measured as a percentage with respect to flow at atmospheric conditions. Vacuum is measured on inches hg removed from 

the tubing (making 0 “hg atmospheric conditions). 

 The question then becomes: why not max out on vacuum to yield the highest results? As 
per the guidance of the NYS Notebook, the economics of vacuum pump sizing plays a role in 
this decision. The marginal benefit you might get from producing more syrup may be offset by 
the energy costs of running the pump, as well as the upfront capital investment in a larger pump. 
A best practice rule of thumb is to size the pump to achieve 15” Hg vacuum at the tap. While 
many pumps are rated for 29-29.9” Hg, losses along the line from both friction and leakage (1.5 
cfm per lead to a reduction in vacuum at the most distal tap).11 Determining these losses 
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mathematically will help to determine the length for each mainline diameter for each size of 
operation.  

We can again assume ideal system conditions to size the system. Setting 15” Hg (50% air 
removal) as the target pressure at the tap, we can select a pump that matches the size rating of the 
system. The Becker catalog15 was used to select pumps within the range of taps at a given size. 
The rate of air removal was also factored to ensure that the capacity of the pump would be 
enough to hold vacuum over the lines including expected connector losses. For every 100 taps, 
one can expect 1-1.5 cfm of air leakage into the system.11 For smaller sugarbushes, this number 
is closer to 1 and for larger sugarbushes, this number is closer to 1.5; (for medium sized 
sugarbushes, we chose 1.25 cfm leakage).11 Taking leakage losses into account, we allocated the 
rest of the pump’s capacity and evenly distributed it among the lines, representing the flow rate 
of air at the tap. Knowing the flow rate of air and the specifications of the lateral lines from the 
previous section, we can leverage this information to calculate line loss along the lateral. This 
pressure drop was used in the Hazen-Williams head loss equation3 (eqn. 7) to determine what the 
change in pressure is across the mainline only:  

 
 

H = 10.583𝐿𝐿𝑄𝑄1.85

𝐶𝐶1.85𝑑𝑑4.87  (𝑒𝑒𝑒𝑒𝑒𝑒. 7) 
 

Once the frictional losses [H] are known along the mainline (a function of length [L], flow rate 
[Q], material [C], and diameter [d]) we can iterate by allocating the total vacuum from the pump 
proportional to the cross-sectional area, as more air would be removed from larger tubing 
diameters. The derivation below shows the process of obtaining the pressure losses from each 
step in the tubing line.  

Pressure Derivation: 

By setting up the parameters of the sugarbush as square in dimension and uniform in 
slope, the critical path can be defined as the longest line from pump to tap (see Figure 4). 
 

 
3 Hazen-Williams head loss is an empirical formula. The SI version of the formula was used in calculations. For the 
coefficient of friction (C) for LDPE, the high-end estimate of 140 was used.16 
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Figure 4 Map of critical path for a multi-line mainline configuration. X represents the collection point (1), (2) represents the 
mainline lateral junction, and (3) represents the tap hole at the most distal node from the collector. Note that the amount of 

mainline tubing vs. lateral line tubing is not to scale. 

  
If the allowable drop in pressure is satisfied for the critical path, it is satisfied for all the other 
lines in an ideal system. The pressure loss along this path from the tap to the collector is 
calculated as:  
 
 

𝛥𝛥𝑃𝑃1→3 = 8𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡

𝛱𝛱𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
4 + 8𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎,𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝛱𝛱𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
4 = 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 (𝑒𝑒𝑒𝑒𝑒𝑒. 8) 

 
(where P is the pressure, R is the radius, µ is the dynamic viscosity, Q is the flow rate, and L is 
the length). The only unknown in eqn. 8 is the radius of the mainline (R mainline). The flow rate of 
air determined by the pump is split proportional to the cross-sectional area of the mainlines. 
However, the conditions of the system do not significantly alter density, as the associated 
expansion between the lateral line and the mainline is minor and no heat is flowing into or out of 
the system. Therefore, we can justify using the volumetric flow rate continuity equation over the 
mass flow rate (eqn. 9): 

 
𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

# 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
− (𝑄𝑄𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
× # 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
) (𝑒𝑒𝑒𝑒𝑒𝑒. 9) 

 
(where Qair, tap is the flow rate of air at the tap, Qpump is the flow rate of air out of the tubing 
supplied by the pump, and Qleakage is the flow rate of air into the tubing). The number of junctions 
is the number of places a leakage could occur. We can further simplify the model of this system 
to approximate all laterals connecting at one junction, instead of at different points along the 
mainline. By modeling the system in this way, one junction incorporates the losses that would be 
incurred across all laterals of a given mainline. Even though there is a change in size (and a 
corresponding expansion minor loss) when the lateral connects to the mainline at an individual 
node, there needs to be enough space to accommodate all the air outflows for the system, making 

1

2

3
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the continuity at an individual point a decent approximation for the physical behavior across the 
whole length of the mainline.  

Eqn. 8 can also be expressed as the sum of the pressure drop from the pump to the 
junction of the lateral and mainline (1→2 in Figure 4), and the pressure drop from the junction to 
the tap (2→3 in Figure 4). Then, the lateral line from 2→3 can be rewritten as eqn. 10: 

 
𝛥𝛥𝑃𝑃2→3 = 𝛥𝛥𝑃𝑃1→3 − 𝛥𝛥𝑃𝑃1→2 (𝑒𝑒𝑒𝑒𝑒𝑒. 10) 

 
We already allocated the junctions of the lateral lines and their subsequent losses (leakage rate) 
to the mainline section of the system (1→2).  This means that at point two in the diagram above, 
there should only be pressure losses attributable to friction. All the guiding assumptions for 
Hagen-Poiseuille also allow for the use of the Bernoulli equation17 (eqn. 11): 

 
 

𝑃𝑃3
𝛾𝛾𝑎𝑎𝑎𝑎𝑎𝑎

+ 𝑧𝑧3 +
�
𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡

𝐴𝐴 �
2

2𝑔𝑔
= 𝑃𝑃2

𝛾𝛾𝑎𝑎𝑎𝑎𝑎𝑎
+ 𝑧𝑧2 +

�
𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎,𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝐴𝐴 �
2

2𝑔𝑔
+ 10.67 �𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

1.852

𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
1.852  𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

4.8704        (𝑒𝑒𝑒𝑒𝑒𝑒. 11) 

 
(where P is the pressure at a specific point denoted by the subscript, z is the elevation in units of 
distance, g is gravitational acceleration, and γ is the specific weight of the substance—density 
times gravitational acceleration). Attributing continuity between the flow rates, we can relate the 
change in slope, change in pressure, and the Hazen-Williams head loss formulation to determine 
the change in pressure across the lateral (eqn. 6).  

 

𝛥𝛥𝑃𝑃2→3 = 10.67 �𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎.𝑡𝑡𝑡𝑡𝑡𝑡�
1.852

𝛾𝛾𝑎𝑎𝑎𝑎𝑟𝑟
𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

1.852  𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
4.8704 − 𝛥𝛥𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑒𝑒𝑒𝑒𝑒𝑒. 12) 

 
This will allow us to accurately gauge losses across the mainline only, as we already know the 
specifications of the lateral line. Relating (eqn. 8), (eqn. 10), and (eqn. 12), we get: 

 

𝛥𝛥𝑃𝑃1→2 = 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 − (10.67 �𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡�
1.852

𝛾𝛾𝑎𝑎𝑎𝑎𝑎𝑎
𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

1.852  𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
4.8704 − 𝛥𝛥𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 (𝑒𝑒𝑒𝑒𝑒𝑒. 13) 

 
Reapplying Bernoulli across this section of mainline from point 1 to point 2, we can see the 
relation in equation 13 equals: 

 

𝛥𝛥𝑃𝑃1→2 = 10.67 �𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
1.852

𝛾𝛾𝑎𝑎𝑎𝑎𝑎𝑎
𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

1.852  𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
4.8704 − 𝛥𝛥𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  (𝑒𝑒𝑒𝑒𝑒𝑒. 14) 

 
Note that the flow rate has changed from (eqn. 12) and is now Qpump, so as not to double count 
the leakage from the laterals. Additionally, the change in height between the ends of the mainline 
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is also reflected in (eqn. 14) as well as the new diameter, dmainline. Choosing a starting value for 
the mainline equal to that of the lateral, one can now iterate like the Hardy-Cross method, to 
arrive at the correct diameter for each individual mainline. Because the vacuum flow rate is 
proportional to the cross-sectional area of air passing through the pipe for each mainline, the 
larger mainline diameters will command a larger share of the total volumetric flow.6 Once the 
difference between iterative terms has converged at a critically small difference (<0.02%), the 
cross-sectional area allocated for air in each pipe has been optimized for the simple system and 
the best tubing diameter is now known. 

Two Phase Flow 

Now, the cross-sectional area for sap needs to be considered to correctly size the tubing 
for holding vacuum pressure.11 The ratio of gas velocities to liquid velocities can determine the 
type of flow regime that sap will behave as within the tubing. We can best approximate this as a 
2-phase flow (See Figure 5).18  

 
Figure 5 Sketches of flow regimes for two-phase flow in a horizontal pipe. Source: Weisman, J. Two-phase flow patterns. 

Chapter 15 in Handbook of Fluids in Motion, Cheremisinoff N.P., Gupta R. 1983, Ann Arbor Science Publishers. Source Credit18 

 
 

As a gas moves over a liquid, its speed dictates the surface effects of the sap flow.19 If there are 
large enough ripples along the surface, creating slug or dispersed bubble flow, there will be a 
blockage in the gas flow stream and reduce the effectiveness of the vacuum. Thus, the proper 
sizing of the sap area will help allow for the stratified or wavy flow necessary to optimize the 
vacuum set up. Again, the assumption that the cross-sectional area of sap, and therefore air, will 
remain constant will serve as a decent approximation in estimating the flow, as the hope is that 
perfectly stratified flow will occur in the ideal case. Remember that this is a simplified version of 
a tubing system at ambient conditions, so line maintenance issues, sharp bends in the tubing, and 
changes in the homeostasis of the system would alter these cross-sectional areas and cause more 
turbulent flow of both air and sap than the laminar assumption. 
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 The length and radius of the tap hole are determined by the tapping guidelines set out by 
research at Cornell University, stating that 5/16” tap diameters and 2” bore length should be used 
for best practice. Here we can use the same approximation that all the laterals join at a single 
point and that the flow does not deform to determine the area. Using an engineering flow regime 
chart, we can determine the sap cross-sectional area that satisfies the range of proportions which 
fall within the stratified and wave flow regimes (see Figure 6). 
 

Figure 6 A flow regime map for the flow of an air/water mixture in a horizontal, 2.5cm diameter pipe at 25◦C and 1bar. Solid 
lines and points are experimental observations of the transition conditions while the hatched zones represent theoretical 

predictions. Source: Mandhane, J.M., Gregory, G.A. and Aziz, K.A. (1974). A flow pattern map for gas-liquid flow in horizontal 
pipes. Int. J. Multiphase Flow Source Credit18  

 
 
Taking the pump flow rate and dividing it by the air flow cross-sectional area found above, we 
can get the gas volumetric flux. Similarly, taking the flow rate out of the tree from (eqn. 9), and 
multiplying it by the number of laterals, we can find the max flow rate (all the sap from all the 
taps along the single mainline).  
 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 =
𝛥𝛥𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝛱𝛱𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜

4

8𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
   (𝑒𝑒𝑒𝑒𝑒𝑒. 15) 

 
Note that we are using L lateral instead L tap like in equation 6. This choice was a result of the 
simplification of all the leakage coming from a single point at the end of the mainline junction. 
Because we assumed that only Bernoulli applied along this line, the effective length of the tap 
hole is the length of the lateral serving it.  

Using the range of liquid fluxes allowed, we can solve for the liquid cross-sectional area. 
By adding the air and sap cross-sectional areas, we can now find the area of each section of 
mainline tubing in the system. The last step is to account for the fact that the system is not ideal. 
The nominal pipe size found in the ideal system calculations can be sized up to best approximate 
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variable system conditions that would have to be met (including peak flow), as the calculations 
above are for ideal average flow. 

Conclusion 

 The modeling effort above is a simplified version of reality and can be used as an 
auxiliary model to help benchmark system productivity, and total material used in the sugarbush. 
The main assumptions can be broken into three parts: sugarbush characteristics, system 
configuration, and fluid mechanics. The assumptions made about the sugarbush were used to 
simplify symmetry and uniformity for setting up a tubing system. Once the characteristics of the 
sugarbush were determined, the system was assumed to consist of mainlines connected to a 
central receiver (the pump). The configuration of the system led to simplifications regarding 
head loss, with uniform leakages, no significant bends, and minor losses from fittings or taps. 
Once this simplification was made, the flow could be best approximated by Hagen-Poiseuille and 
Bernoulli as the system was modeled as two disjoint pieces (sap and air) with different flow 
rates. For a more rigorous solution, one could solve the Navier-Stokes equations for all the pipes 
and use the Hardy-Cross method to calculate flow rate. However, for the purposes of assessing 
the sustainability of a tubing system or its performance, this simple model allows for realistic yet 
conservative assumptions of vacuum size, tubing diameter, and tubing length. 
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