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Abstract
Escherichia coli contamination poses a significant water quality challenge, especially in
recreational water settings, with adverse health effects particularly pronounced in socially
vulnerable communities. Despite regional studies, a comprehensive national understanding of
spatial-temporal variations in E. coli health risks remains a challenge, and the association
between social vulnerability and E. coli exposure in recreational waters is understudied. Utilizing
a continuous E. coli time series from national stream data spanning 1987-2022, we conducted a
guantitative microbial risk assessment (QMRA) to evaluate E. coli exposures during water-related
recreational activities across the U.S. We employed the Mann-Kendall trend test to analyze
monotonic trend patterns in E. coli infection probabilities. Our findings pinpoint E. coli risk
exposure hotspots, predominantly in the Midwest and West regions, notably in Wisconsin,
Minnesota, lowa, Missouri, and Oregon. Regional disparities in social vulnerability are closely
associated with elevated E. coli health risks across various dimensions. Of the 406 sampling sites
assessed, 76 showed an increasing trend in E. coli infectious probability, while 107 exhibited a
decreasing trend. Regions with increasing health burdens are predominantly vulnerable in the
Southeast and Southwest, while decreasing health burdens are observed in the Northeast. This
research offers novel insights into E. coli health risk dynamics in U.S. streams, informing the
formulation of targeted public health interventions and environmental management strategies to

enhance water safety during recreational activities.
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Chapter 1: Introduction



1. Introduction

1.1 E. coli Exposure

As one of the most important fecal indicator bacteria (FIB), Escherichia coli (E. coli) contamination
is an essential water quality issue. E. coli commonly inhabits the gastrointestinal tract of warm-
blooded animals, including humans and livestock such as cattle and poultry (Hart et al., 1993). E.
coli in surface water primarily emanates from point source pollution, e.g., direct discharge of
human domestic sewage, or from non-point source pollution, e.g., combined sewer overflow
pollution or stormwater runoff from livestock pastures (Tousi et al., 2021). While most E. coli
strains are harmless, certain strains can engender health risks when introduced into contaminated
water, thereby amplifying the potential hazards associated with irrigated food, drinking water, and
water-based recreational activities (Rodrigues et al., 2016). Given the close association between
health risks and the presence of E. coli, an epidemiological study by the United States
Environmental Protection Agency (1986) recommended a maximum surface water E. coli
threshold of 126 CFU/100 mL, determined as the geometric mean of a minimum of five samples,
with no individual sample exceeding 235 CFU/100 mL (EPA, 2012). Recreational water contact
is a major exposure pathway of E. coli; and the above study reported swimmers experienced
higher rates of gastrointestinal risk when compared to non-swimmers as the exposure of FIB.
Numerous studies have highlighted the significant health risks associated with E. coli in water
environments, including those related to sewage treatment systems and the global burden of
disease caused by intermittent water supplies (Bivins et al., 2017; Boehm et al., 2018). Also,
Machdar analyzed the relationship between poor drinking water quality in a low-income
community with health burden in Ghana (Machdar et al., 2013). Goh assessed the additional
health burden of E. coli from surface water with land use, including residential, urban, parkland
and agricultural regions from 2014 to 2016 in Singapore (Goh et al., 2023). However, most
literature focused on isolated geographical areas or time frames, providing only a limited
understanding of the broader trends and long-term impacts of E. coli across the U.S. (Jacob et
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al., 2015; O’Flaherty et al., 2019). Critical research has revealed links between E. coli and health
risks in U.S. water recreation environments, particularly in the Great Lakes area (Corsi et al.,
2016), and have investigated the relationship between water quality and gastrointestinal diseases
following exposure to recreational water (Dorevitch et al., 2015). Similar regional studies have
highlighted levels of E. coli exceeding safe thresholds for recreational waters in the Upper Oconee
Watershed in Northeast Georgia (Cho et al., 2018), and have reported on significant challenges
in predicting recreational water safety using E. coli as an indicator in New Jersey’s Passaic and
Pompton rivers (Rossi et al., 2020). But to the best of our knowledge, there is no comprehensive

national research on the spatial and temporal variations of E. coli health risk.

1.2 Quantitative microbial risk assessment (QMRA)

Quantitative microbial risk assessment (QMRA) is a mathematical framework for quantifying the
illness risk due to microbial pathogens (Goh et al., 2023; Pasalari et al., 2022). In the U.S., QMRA
has increasingly been applied to address water quality-related health issues. This includes
assessing public safety in recreational water areas, the effectiveness of wastewater treatment,
and risks associated with reuse of water for agricultural purposes, and further proposing strategies
to protect water safety (Brouwer et al., 2018; Goh et al., 2023; Machdar et al., 2013; Masciopinto
et al., 2020). Specifically, QMRA has been widely used in E. coli risk analysis, such as how E.
coli in recreational waters, wastewater systems, and drinking water leads to public health issues
(Beaudequin et al., 2015; Brouwer et al., 2018; Machdar et al., 2013). Increasing research also
attempts to combine QMRA with other risk assessment methods like Bayesian networks to better
understand the dynamics of E. coli in micro-water ecosystems (Beaudequin et al., 2015). A recent
study also estimated stream E. coli health risk via QMRA across Nepal to better manage sporadic
nationwide diarrheal outbreaks by analyzing the spatial differences of infectious probability in
2017 (Uprety et al., 2020). The waterborne disease through drinking water systems in rural
Colombia has been analyzed through QMRA by using secondary water quality data and survey
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approach in 2015 to 2017 (Barragan et al., 2021). However, current applications of QMRA for
analyzing E. colirisk are either primarily based on smaller spatial scales of water environment or
considering broader geographic areas without long term changes of waterborne diseases (Abia
et al., 2016; Bivins et al., 2017). There is limited understanding regarding the dynamic health
burden of stream E. coli on large time scales and on broad spatial scales in the recreational water
environment by integrating QMRA. Also, no study uses trend analysis for displaying the long-term
changes of E. coli exposure burden nationwide. As a result, finding the increasing or decreasing
patterns of E. coli health burden could help health policy makers and water quality management

to formulate and evaluate mitigation plans for targeted regions.

1.3 Social Vulnerability with Waterborne Diseases Health Burden

Social vulnerability is a systematic way to assess potential damage to communities from natural
hazards and anthropogenic events (Perles Rosello et al., 2009). In contaminated aquifers, social
vulnerability can measure how the waterborne diseases outbreak has adverse health effects to
the community (Uzcategui-Salazar & Lillo, 2023). Studies have shown the social vulnerability of
polluted groundwater environment by arsenic in Ganga-Brahmaputra-Meghna Basin, indicating
the importance of poverty, unemployment, social instability, and disabilities in adaptive capacity
to mitigate the effects caused by contaminated indicators (Biswas et al., 2022). Social vulnerability
of diarrheal diseases led by E. coli suggested the distances to water bodies and local finances of
communities are key factors to alleviate the negative disease outbreaks effects in tropical West
Africa (Robert et al., 2021). Social vulnerability has also been used in different environmental
hazards. The approaches incorporate factors of social vulnerability by assigning weighting and
rating values to describe and map the groundwater vulnerability (Orellana-Macias & Perles
Roselld, 2022; Perles Rosell6 et al., 2009). Ho combined the subjective and objective
environmental factor measurements together to map the environmental vulnerability in Hong
Kong (Ho et al., 2019). The same social vulnerability index system compared to the Centers for
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Disease Control Social Vulnerability Index (CDC SVI, simply SVI) for managing the epidemic in
India showed the relationship between social vulnerability and Covid19 positive cases (Acharya
& Porwal, 2020).

Reviewing the revealed works in this field shows that lack of research has considered the long-
term trend of E. coli health burden and its association with social vulnerability at national scale.
So, the first goal of this study is to use QMRA as a health risk evaluation method to investigate
the spatial differences of dynamic E. coli exposures in local rivers and streams for recreational
use across the U.S. The second goal is to conduct a trend analysis to evaluate potential increasing
or decreasing patterns of stream E. coli waterborne disease burden across the U.S. The third goal
aims to find regional differences of E. coli infectious probability by Social Vulnerability Index.
Specifically, we implemented four analytical steps(1) obtain national stream E. coli data from a
public database for modeling the continuous E. coli concentration from 1987 to 2022; (2) measure
the annual risk levels of E. coli exposure during water-related recreational activities; (3) analyze
the trend changes of annual E. coli health burden within 5 geographical regions, including
Northeast, Southeast, Midwest, Southwest, and West; and (4) identify which regions’ social
vulnerability is low by E. coli waterborne diseases risk level. Based on this, we then suggest public
health interventions and environmental management strategies to the high risk and high

vulnerability regions to better mitigate the adverse effects on residents’ health.
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2.Method

2.1 E. coli Sampling Sites Selection

We acquired a comprehensive dataset for E. coli sites and discharge stations from the U.S. Water
Quality Portal. The discharge data was obtained together with E. coli concentration data to
interpolate a complete time series from sparse E. coli concentration data. Initially, the acquisition
of E. coli sites and discharge stations was implemented by the ‘dataRetrieval’ package in R. The
inclusion criterion for E. coli sites was a minimum of 100 data records since 1987 (Hirsch et al.,
2010), resulting in 2,903 sites. Concurrently, discharge stations were obtained from the GAGES
Il dataset on the USGS website, assembling a dataset of 9,322 discharge stations.

Then, we matched the E. coli and discharge stations to facilitate data interpolation. The initial
pairing was executed based on unique USGS_IDs, resulting in 173 matched pairs. Further
refinement was implemented by assigning HUC12_IDs and creating 1 km buffer zones around
sites. If the station is located within the buffer of the site, shares the same HUC12_ID as the site,
and is the closest station to the site, then the discharge station is considered a match for this E.
coli site, matching an additional 529 pairs. Combining both matching approaches, a total of 624
pairs of E. coli sites and discharge stations were identified.

Based on the matched pairs of discharge stations and E. coli sites, we retrieved data using the
‘EGRET package in R. Rigorous cleaning procedures were applied to ensure the quality and
integrity of the dataset. Specifically, we included pairs where the E. coli site possesses a minimum
of 100 data records spanning a period of a decade or more, resulting in a refined dataset
comprising 506 pairs. Subsequent filtering ensured that the time range of the E. coli data at a
given site was entirely covered by the corresponding station’s discharge data, ultimately yielding

a final dataset comprising 452 pairs of E. coli sites and discharge stations in 31 states in the U.S.

2.2 Generating Continuous Time Series of E. coli Concentration



We used Weighted Regressions on Time, Discharge, and Season (WRTDS), a method for
estimating daily water-quality data sets, to generate continuous E. coli time series (Hirsch et al.,
2010). WRTDS is commonly used to characterize the status and trends in concentration and flux
of pollutant indicators. This method is distinguished by its ability to construct a highly flexible
statistical representation of expected concentration values for each day within the period of record.
Utilizing this representation, the WRTDS method generates four essential daily time series for the
given period. These include daily concentration, daily flux, flow-normalized daily concentration,
and flow-normalized daily flux. The outcome is a comprehensive set of time-dependent metrics
that facilitates a nuanced understanding of E. coli dynamics, allowing for the characterization of
concentration and flux trends over the designated time frame. The WRTDS weighted regression
model is estimated as follows (Eq. 1):

In(c) = By + B1q + BoT + B3sin(2nT) + Pycos(2nT) + € D
where

¢ is concentration, in m/l,

B are the regression coefficients,

q is In(Q) where Q is daily mean discharge, in m3/s,
T s time, in decimal years, and

e is the error (unexplained variation).

2.3 Quantitative Microbial Risk Assessment

We used Quantitative Microbial Risk Assessment (QMRA) to estimate the annual health risk
associated with stream water E. coli exposure by evaluating the likelihood of E. coli infections due
to recreational water activity exposure. Hazard identification is the first step in QMRA. This
procedure aims to determine the pathogen of interest. In this study, we used E. coli as the
infectious agent. Since not all E. coli strains are harmful, we used the pathogenic strain E. coli

0157:H7 to be the indicator in QMRA analysis. E. coli O157:H7 is a strain of E. coli bacteria that
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can cause severe foodborne illness in humans (Pang et al., 2017). It produces a toxin called Shiga
toxin, which can lead to complications such as bloody diarrhea, kidney failure, and even death in
some cases. The ratio to estimate the overall E. coli O157:H7 from the observed E. coli
concentration is 0.08 (Machdar et al., 2013). The concentration of E. coli in the water environment
is often right-skewed (Corradini et al., 2001). Using a log-normal distribution for E. coli can
accommodate the skewness and ensure the output is positive in the process of QMRA (Goh et
al., 2023). We used the annual continuous E. coli data generated from WRTDS to represent long-
term bacteria concentrations from different locations and approximate it with log-normal
distribution.

Exposure assessment is the second step in QMRA, which estimates the amount of exposure
between humans and contamination. It was presumed that exposure to the harmful strains in
recreational water predominantly occurred through ingesting water while swimming. We
estimated the volume of water ingested by adults during a swimming session using a triangular
distribution, with the highest likelihood at 16 mL, a minimum of 5 mL, and a maximum of 53 mL
(Dufour et al., 2006). Then, given a known dose of a pathogen, we could estimate the infectious
probability of the responses in dose-response analysis. For E. coli, the commonly used dose-
response model is beta-Poisson model. By combining this ingestion rate with the bacteria
concentrations in the water surfaces, we calculated the distribution of exposed doses (Eq.2):

Dorai = lora1 X C (2)

Here, D,,, represents the ingested dose of E. coli, where I,,.,, represents the volume of
freshwater consumed in milliliters (mL) by individuals and C is the concentration of E. coli in the
freshwater in colony-forming units per milliliter (CFU/mL). Subsequently, the likelihood of E. coli-
related infections was calculated by integrating dose-response analysis and exposure

assessment (Eq.3):

Ping(s.coty = 1 = [1+ (o) (2 = D] 3)

11



In this equation, Py, coui) represents the probability of infection stemming from E. coli exposure;

dose is the quantity of ingested E. coli organisms in CFU; the median infective dose. We set the
median infective dose N5, at 2.11 x 108 CFU, representing the threshold at which half of the
population becomes infected (L et al., 1971). Additionally, the slope parameter a« was established
at 0.155 (Haas et al., 2014). It is important to note that this equation assumes all infections
eventually result in a detected illness.

Monte Carlo simulation was employed to predict the likelihood of E. coli-related infections. This
method involves exploring various combinations of variables within defined ranges or distributions,
allowing for consideration of both variability and uncertainty effects (Bivins et al., 2017). In this
study, a Monte Carlo simulation consisting of 10,000 trials was implemented using the mc2d
package in RStudio software (version 4.2.1). Mean values of infection likelihood from each of the

10,000 simulations were used for further trend analysis.

2.4 Trend Analysis

To analyze the non-normally distributed time series health burden for temporal tendencies, we
employ Mann-Kendall trend test. The purpose of this approach is to find if there exists a
potential monotonic increasing or decreasing pattern of the health burden of each sampling site.
This test is used because of its characteristic that no assumptions are needed about the
sampling dataset (Kendall, 2015). The null hypothesis of this test is that there is no trend in the
population from the sampling dataset and the records are independent and identically
distributed. The MK statistics quantifies any trend which is present by testing whether the time
series lies in the confidence interval defined for the null hypothesis of the significance level
(Kumar et al., 2023).

The likelihood of E. coli infection for 452 sampling sites are respectively included in the trend

analysis. As the constraints of our data, there are missing values in the recorded years from
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1987 to 2022, which lead to the different start time and end time of each site for trend analysis.

In this study, “trend” package is employed in RStudio software (version 4.2.1).

2.5 Social Vulnerability Index

Social Vulnerability Index is an open access data from Centers for Disease Control and
Prevention and Agency for Toxic Substances and Disease Registry. It contains 4 themes of social
vulnerability, including socioeconomic status, household characteristics, racial and minority status,
and housing type and transportation. Socioeconomic status include population below 150%
poverty, unemployed population, housing cost burden, population with no high school diploma,
and population with no health insurance. Household characteristics contain a population of aged
65 older, population of aged 17 younger, civilian with a disability, single-parent households, and
English language proficiency. Racial and minority status include all the population of different
races. Housing type and transportation describes the multi-unit structures, mobile homes,
crowding, population of no vehicle, and group quarters. Here, we use the SVI 2020 product to
see how different themes perform on the health burden of E. coli by region because SVI 2020
includes more comprehensive variables of minority and household characteristics, compared to
previous products. Also, due to the different start and end year of our health burden records,
selecting SVI 2020 could include more effective records of infectious probability in our limited data.
To best preserve the health burden availability in time series, we selected the average annual risk
from 2015 to 2019. With the infectious likelihood of E. coli in 452 sampling sites, we selected the
census tract where the site is located through spatial selection approach in ArcGIS Pro 2.7. If a
census tract has more than two sites, we calculate the average health burden to represent the
health risk for that tract. After relocating the sampling sites to the census tract, 406 census tracts

are selected.
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3. Results and Discussion

3.1 E. coli Risk Level by Concentration and by Infectious Rate

Figure 1 delineates the dispersion of E. coli health risks level across the U.S. based on EPA
recommended concentration threshold, revealing significant regional variances. We define
below 126 CFU 100/ml as the low risk level, below 236 CFU 100/ml as the moderate risk level,
and above 236 CFU 100/ml as the high-risk level. Not all states have valid recorded water
quality data of E. coli available, which is why some states were not considered in our health risk
assessment procedure. For instance, California, Nevada, Michigan lacked data. High E. coli risk
level regions were mainly located in the Midwest, especially Minnesota lowa, Wisconsin, and
Missouri. Meanwhile, in the West region, Oregon and Colorado also have high risk level
sampling sites. Most sites were presented in medium risk level by E. coli concentration, except
for the Midwest region, Virginia and Massachusetts have dense moderate risk level sampling
sites. Low risk regions are mainly located in the Southeast and the Southwest, particularly in
Florida, Georgia and Texas. The distributions present unbalanced risk level patterns across the
U.S., with notable hotspots in the Midwest and the South for higher stream E. coli concentration.
Figure 2 displays the dispersion of health risks estimation results from 1987 to 2022 via QMRA
across the U.S. Figure 1(a) shows the mean value of each site from the 10,000 stimulations in
the Monte Carlo process, while Figure 1(b) represents the average infection likelihood of all
sample sites within the state. High E. coli exposure regions were mainly located in the Midwest,
South, and Northwest. Most sites were safe since the infectious probability was low enough,
between 0.000001 to 0.000088 overall. The low-risk states were Oregon, Arkansas, and
Oklahoma. The medium-high infectious probability regions were in the Midwest and South. For
the Midwest, the states of lowa, Kansas, Missouri, and South Dakota had a medium-high risk
tendency. lowa had a dense medium-high infectious probability towards E. coli, which centered
around 0.000089 to 0.000681 in value. Missouri showed an instate North-South disparity,
displaying medium-high risk near lowa. In the South, Texas, Maryland, Tennessee, and Georgia
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had medium-high health burden sample sites too. In Texas, most high-risk regions were in the
South, while others were scattered in low-risk regions. Though the total number of sample sites
in Maryland, Georgia, and Tennessee were not as high as in other states, the calculated health
burden was displayed as medium high. The distributions present unbalanced risk patterns
across the U.S., with notable hotspots in the Midwest and the South for higher health burdens.
These two risk maps show two different approaches to measure E. coli health burden nationwide.
There exists a high-risk level by the bacteria concentration but low infectious probability or vice
versa. This is potentially because the health burden from 1987 to 2022 is generated through
Monte Carlo simulations and we use the mean from the percentiles of this output. Though the
concentration is the mean from this time span, the concentration of each site is a specific value
to categorize the risk levels rather than an interval. Meanwhile, the infectious probability is
generated based on the simulated concentration of E. coli by WRTDS. The function of infectious
rate is different from the concentration. Acknowledging these differences, the discernible trends
emphasize a potential interplay between geographical, environmental, and socio-economic
factors, as certain regions exhibit consistently different risk levels across the varying

measurements.
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Figure 1. Spatial distribution of the E. coli risk level on a granular level for sample sites in the

United States
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Figure 2. Spatial distribution of the E. coli infection likelihood (a) on a granular level for sample

sites, and (b) on a state-level average for the United States.

3.2 The Association between Social Vulnerability and Health Burden by Regions

The analysis of regional disparities in social vulnerability reveals a cle

elevated health risks due to E. coli contamination and heightened levels of social vulnerability
across various dimensions, emphasizing the need for targeted mitigation strategies in both

median and high-risk regions. Figure 3 delineates the regional differences in health risk levels
across four dimensions of social vulnerability. A discernible trend is present in the regions with

elevated health risks correspondingly exhibit heightened levels of social vulnerability.
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Meanwhile, in some regions with median health risk levels, social vulnerability remains
pronounced, such as the Northeast.

Among the various dimensions of social vulnerability assessed, socioeconomic status and
household characteristics stand out for their evident association with elevated health burdens
and heightened social vulnerability. This trend is particularly prominent in the Southwest, West,
and Midwest regions, highlighting the critical need for interventions tailored to address these
vulnerabilities. Furthermore, when examining racial status, housing type and transportation
vulnerability, the Southwest region emerges as particularly vulnerable. The data suggest that E.
coli burden issues may disproportionately affect local minority populations and poor housing
status in this region, pointing towards environmental challenges that warrant focused attention

and remedial actions.
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Figure 3. Social vulnerability by health risk levels in 5 regions in the U.S. From upper left to lower
right there are four different themes of SVI including socioeconomic status, household

characteristics, racial and ethnic minority status, and housing type and transportation.

3.3 Trend of E. coli Infectious Rate

Based on the results of the Mann-Kendall trend test, it was observed that out of the total 406
sampling sites assessed, 76 exhibited an increasing trend in E. coli levels, while 107
demonstrated a decreasing trend. The remaining sites did not show any significant temporal trend.
On a national scale, the health risks associated with E. coli contamination generally manifest a
decreasing trend. However, it is noteworthy that certain regions within the country display an
opposing trend, indicating localized variations in water quality. Figure 4 displays the spatial
distribution of the trend statuses across the sampling sites. Sampling sites exhibiting an
increasing trend are predominantly situated in the Midwest region. Additionally, a subset of these
sites is dispersed across several states, notably including Florida. In contrast, the sites with a
decreasing trend are primarily located in the Southwest, and Oregon. States that encompass a
notable number of sampling sites demonstrating both increasing and decreasing trends include
Texas and Virginia. This dual trend suggests spatial heterogeneity in E. coli contamination levels
within these states, warranting further investigation into the underlying factors influencing water
quality variations.

Our analysis reveals an overlap between high-risk E. coli communities characterized by high
social vulnerability. A notable observation from our study is the lag effect associated with health
exposure (Martin et al., 2017). Even in areas with relatively low vulnerability, there exists a
potential risk of increased health burden from E. coli. This delay in awareness and response
mechanisms implies that communities may be unaware of escalating health risks until it reaches
a critical threshold. Conversely, heightened awareness of E. coli contamination in an area does
not necessarily correlate with an immediate increase in vulnerability. This interaction between
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awareness and vulnerability emphasizes the complexity of addressing health risks and
necessitates proactive surveillance and public health interventions to address potential outbreaks
in advance. Furthermore, the risk of E. coli contamination in stream water is also influenced by
other indicators, which is shaped by a myriad of factors including anthropogenic activities,
upstream conditions, and climatic variables. While anthropogenic factors contribute significantly
to water quality degradation, natural factors such as upstream conditions and climate play a
pivotal role in determining water quality. Importantly, these natural factors affect communities

uniformly and do not disproportionately impact minority groups.

Trend
O No trend
O Increasing

@ Decreasing

0 250 500 km

Figure 4. Spatial distribution of the E. coli health burden trend status on a granular level for

sample sites in the United States

21



3.4 The Association between Trend of E. coli Infectious Rate and Social Vulnerability by
Regions

The analysis of E. coli health burden trends reveals varying degrees of social vulnerability across
regions, with distinct patterns in how vulnerability manifests across different themes of SVI. To
explore potential relationships between trend and SVI, we use box plots to delineate the
increasing and decreasing patterns in four themes of SVI by 5 regions. For the Midwest region,
the increasing trend group is more vulnerable than the decreasing trend group in household
characteristics and housing type and transportation, whereas less vulnerable in socioeconomic
status and minority status. For the Northeast region, the decreasing trend group is considerably
more vulnerable than the increasing trend group in four aspects of social vulnerability. In the
Southeast and Southwest, vulnerability is more severe in the increasing category compared to
the decreasing category, except for minority status for the Southwest. In the West, the social
vulnerability in four themes of the rising group and the falling group are basically the same.
These findings underscore the intricate relationships between E. coli health burden trends and
social vulnerabilities across different regions. The disparities observed highlight the need for
region-specific interventions that address both environmental and social determinants of health.
The heightened health risk trend observed in certain regions, particularly in the Midwest
simultaneously emphasizes the multifaceted social vulnerability aspects. This may relate to the
non-point source pollution from the dense agricultural practice. This indicates that it is urgent for
local governments to mitigate the E. coli exposure, especially for those vulnerable populations,
such as the younger and the older populations. Addressing these disparities requires a holistic
approach that integrates environmental remediation with targeted social interventions to ensure

equitable health outcomes across all communities.
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Figure 5. Social vulnerability index by trend in 5 regions in the United States. From top to bottom,
the themes of SVI are socioeconomic status, household characteristics, racial and ethnic status,

and housing type and transportation.
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4. Study Limitations

The major limitation of this study is the absence of water quality data in some states. Insufficient
number of sample sites within each state lead to the corresponding health risks being
underreported. Besides, because the sample sites of E. coli data and sample sites of discharge
data need to be matched in the pre-process of WRTDS, the total number of useful sites are
reduced during any matching process. Hence, there is potential bias in E. coli health risk analysis
for some states. For instance, Virginia and Texas had over 70 sample site collections to analyze
the risk, while states such as Ohio only have one sampling site to be analyzed in QMRA.
Therefore, we cannot cover the overall population health risks among all the state streams.

Our study is based on the assumption that people engaging in recreational water activity are
therefore exposed to the infectious risk E. coli, predominantly through ingestion. This assumption
may oversimplify the complexities of water-related recreational activities, as individuals may be
exposed to microbial contaminants through multiple routes, such as inhalation and dermal contact.
Also, for the QMRA process, the existing dose-response relationships may not adequately reflect
the infectivity of E. coli as recently suggested by Goh (Goh et al., 2023). And we used a triangle
distribution of ingestion water volume based on exposure scenarios articulated in the previous
study (Dufour et al., 2006). This probability distribution is not likely to represent all water
consumption behavior during the water-related recreational activity. Factors such as activity
intensity, duration, and personal preference in water may vary differently among individuals,

leading to potential inaccuracies in the estimating exposure levels (Boehm et al., 2018).
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5.Conclusion

In summary, this study used epidemiological and statistical methods to analyze the spatial
distribution patterns of E. coli infectious probability of local surface water for recreational water
activity use. We proposed a framework to integrate modeled E. coli concentration with a QMRA
approach at national scale in the United States. Specifically, we used continuous E. coli modeled
data to represent the concentration of pathogen distribution of each sample site with WRTDS.
This allowed each site to have its own infectious probability associated with the concentration of
a reference pathogen. Then, we integrated exposure assessment and existing dose-response
relationship for E. coli by QMRA. Furthermore, our study analyzed the health burden trend of E.
coli through Mann-Kendall test to find if there are significant increasing or decreasing patterns for
each sampling site.

The results highlighted the long-term trend patterns from 1987 to 2022 in national scale. Different
patterns of health burden by SVI were displayed across the Midwest, Southwest, Southeast, West
and Northeast regions. The overall trend of infectious probability is decreasing across the states.
However, a particular region like Midwest faces the increasing health burden by E. coli
contamination with the high social vulnerability in local communities. In the specific aspects of
vulnerability, socioeconomic status and household characteristics are evident in association with
the heightened infectious risks in the Midwest, Southeast and Southwest. Ultimately, our results
can provide the foundation for a comprehensive risk framework for policy makers and
management to mitigate water health inequity problems. Further research should focus on health
equity issues in hotspot regions by elucidating the relationship between high health burden and

socio-economic factors.
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