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ABSTRACT

Machine learning models are being heavily deployed in critical environments such as health-

care, transportation, and surveillance. However, most models still fall short in jointly satis-

fying different trustworthiness requirements, namely being simultaneously private, fair, and

robust, while maintaining acceptable model accuracy. This work aims to bridge the gap

between the trustworthiness objectives of machine learning models by proposing a unified

framework to develop and assess holistically trustworthy models. We empirically confirm the

existence of a four-dimensional trade-off among utility, privacy, fairness, and robustness and

assess how pronounced the trade-off is for each subset of objectives. We further propose and

evaluate different algorithms and loss functions in the context of generating a high quality

multi-dimensional Pareto frontier.

xi



CHAPTER 1

Introduction

Motivation: The field of Machine Learning (ML) has pushed the limits of Artificial Intel-

ligence (AI), exceeding human expectations on what we previously thought achievable by

computers. While some ML models have been deployed in low-risk environments like e-mail

spam filtering or commercial chatbots, others are being used in critical and high-stakes set-

tings. Today’s ML models are behind applications ranging from self-driving vehicles [42] and

credit loan approvals [65] to patient diagnosis [31] and recidivism risk prediction [62].

In recent years, ML models such as Convolutional Neural Networks (CNN) and Large Lan-

guage Models (LLM) have reached impressive performance in terms of accuracy. However,

they still fall short on other socially salient requirements, hindering their trustworthiness

for high-stakes decisions [69, 17]. For example, while facial recognition models are widely

deployed in surveillance systems, research has proven the elevated risk of misidentification

for women and people of color [39] which is particularly concerning when used by law en-

forcement. This points to a larger problem: the growing gap between highly accurate ML

and trustworthy ML satisfying wide-ranging objectives across robustness, privacy, trans-

parency and fairness. For an ML model to be trusted by users, it must satisfy the following

desiderata:

• Utility: Models have to be highly accurate to be useful on a given task. Various novel

architectures and algorithms have been developed to ensure well performing models

across application domains when evaluated via test-time accuracy.

• Robustness: At train-time, the training data needs to be clean of any adversarial

condemnations that could be realized via data poisoning attacks [8]. At test-time,

models shouldn’t be easily fooled by slightly modifying their input through adversarial

examples [21], or fall victim of adversarial approximation of their decision boundary

via model extraction attacks [60].

• Privacy: When trained on confidential or privacy sensitive data, models shouldn’t
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expose their training data via attacks such as membership inference [56], attribute

inference [26], training point inference [9] and model inversion [19]. In addition, the

model itself might be proprietary for the ML owner emphasizing the need to protect

against model extraction attacks with implications on model privacy.

• Fairness: Models shouldn’t discriminate against protected attributes of individuals:

decision-making at inference time shouldn’t be biased against a particular demographic

attribute such as race, gender, or religion.

• Interpretability: In most high-stake applications where model decision impacts peo-

ple’s lives, models should be transparent regarding their decision-making process to

inform their user or other stakeholders (e.g., regulators) the reasoning behind their

output as opposed to being treated like a black-box system.

Given the evolving nature of the science and public discourse around trustworthy ML, the

above list of trustworthiness objectives is by no means exhaustive. However, most critical

usage of ML sits at the intersection of two or more of the aforementioned objectives. For

example, in the context of automating patient diagnosis in a hospital, ML models shouldn’t

exhibit accuracy discrepancies for different demographics [53]. They should also remain

private with respect to the training data (medical records are confidential information),

robust against data perturbation, and transparent in their decision-making for a domain

expert to intervene on demand. As additional examples, we provide below a summary of

high-stakes applications with respect to the ML trustworthiness goals described earlier.

Domain Task Utility Robustness Privacy Fairness Interpretability
Healthcare Patient diagnosis ✓ ✓ ✓ ✓ ✓
Education Teacher substitute ✓ ✓ ✓ ✓

Transportation Self-driving vehicles ✓ ✓ ✓
Criminal Justice Risk of recidivism ✓ ✓ ✓ ✓
Surveillance Facial Recognition ✓ ✓ ✓ ✓ ✓
Chatbots Conversing ✓ ✓ ✓ ✓ ✓

Table 1.1: Desirable ML trustworthiness objectives for tasks in high-stakes applications

The need for machine learning to jointly satisfy multi-dimensional trustworthiness across

different settings emphasize the urgency for approaches that reconcile the different objec-

tives. Achieving trustworthy ML requires research dedicated to producing holistically op-

timal models with respect to the desiderata enumerated above as opposed to accuracy in

isolation.

Previous Work and Limitations: Even though the public might require models to

satisfy all the aforementioned properties, research still mostly focused on each objective
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separately. Since achieving each objective alone is in itself a long-standing challenge, little

effort has been dedicated to studying their intersectionality let alone resolve them holistically.

Research has attempted reconciling at most three objectives, namely utility, data privacy and

fairness in [71] or utility, data privacy and test-time robustness in [70]. This motivates our

present work to study and reconcile four of the desiderata of trustworthy ML. Towards this

goal, this work focuses on the intersectionality of utility, test-time robustness, data privacy

and fairness.

Approach Overview: This work develops a unified systematic framework to reconcile

and assess the four trustworthiness objectives of utility, privacy, robustness and fairness,

in an efficient and scalable manner through evaluating the quality of the Pareto optimal

models produced. While we aim to train models satisfying all four objectives, our frame-

work provides practitioners the freedom to modify the number of trustworthiness dimensions

considered without significantly modifying our high-level approach. In order to satisfy the

different desiderata of machine learning systems, we propose different algorithms to generate

holistically trustworthy ML models, allowing us to select the Pareto-optimal models and

approximate the Pareto front of the multi-objective problem. The Pareto front is a direct

manifestation of the multi-faceted trade-off across the objectives: it provides us with a con-

crete way to visualize and establish the achievable compromise given the inherent constraints

of the problem, i.e., model architecture, dataset, algorithm, objectives, etc.

Evaluation Highlights: We empirically compare the quality of the Pareto frontier

generated through different algorithms and loss functions across the objective space. As

such, our experiments confirm previous research on the nature of the multi-faceted trade-

off. Since our research tackles four-dimensional objectives, our approach provides a novel

method to compare the degree of trade-off among subset of lower-dimensional objective

spaces. For example, we show that the Utility-Robustness-Privacy and Robustness-Fairness-

Privacy trade-off is significantly more pronounced than the Utility-Fairness-Privacy trade-

off for the dataset we considered. Our findings further demonstrate that applying Multi-

Objective Optimization (MOO) algorithms in the context of machine learning outperforms

plain ERM regularization, providing a direction for future research since the intersectionality

of MOO and ML trustworthiness is still left mostly unexplored.

Contributions: Towards comprehensive assessment of ML trustworthiness, this work

makes the following contributions:

1. We introduce the first work that tackles the four-dimensional trade-off of utility, pri-

vacy, fairness and robustness for generating holistically trustworthy ML models.

2. Our approach proposes a novel framework that treats the four dimensions of machine
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learning trustworthiness in the context of a multi-objective optimization.

3. We propose surrogate loss functions to regularize the model’s natural loss with robust-

ness and fairness metrics in a differentially private manner.

4. Our work is the first to apply differential privacy and include robustness metrics in

MOO algorithms such as multi-step gradient descent and Pareto front learning.

5. We provide experimental results that capture the shape of the trade-off across different

objectives and obtain a set of Pareto-optimal models.

Thesis Organization: The rest of this thesis is organized as follows. Chapter 2 intro-

duces ML preliminaries and an in-depth background discussion on various ML trustworthi-

ness objectives as well as the state of the art frameworks for MOO. We cover related works

and position this work with respect to existing literature in Chapter 3. Our main approach

to resolving the different ML trustworthiness objectives is described in Chapter 4. The eval-

uation of our approach on different datasets is provided in Chapter 5. Finally, Chapter 6

concludes this work and provides future direction for further research. Some mathematical

equations and algorithms are defined in Appendices A and B respectively as a reference for

the reader.
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CHAPTER 2

Background

2.1 Machine Learning Setting

We will consider a supervised machine learning model θ trained on a classification task:

X → Y where X ∈ Rd is the feature space of the input and Y ∈ Rk corresponds to the

probability distribution overK class labels or the one-hot encoded ground truth. In addition,

a training sample has a sensitive attribute s ∈ S which may or may not be contained in the

input space X . The samples (x, y) follow an underlying data distribution D. Without loss of

generality, since s and y are categorical variables, we will denote S = [S] = {1, 2, ..., S} and
Y = [K] = {1, 2, ..., K}. We will also make use of the predicted label ŷ = arg max

(
f(x)

)
.

Traditional training algorithms aim to produce a predictor fθ : X → Y , parameterized

by θ, with minimal risk as measured by some non-negative loss function L : Y × Y → R+.

For classification tasks, the Cross-Entropy loss [54] is conventionally used to evaluate the

model’s performance defined as LCE

(
f(x), y

)
= − log f(x)k with k as the true label. The

risk of a predictor fθ is measured by the expectancy of the loss: E(x,y)∼D[L(f(x), y)]. Since

the underlying probability distribution D is unknown, we resort to calculating the empirical

risk which relies on the empirical expectation Ê with respect to the training data. Empirical

Risk Minimization [68] refers to the training algorithm which produces model parameters

that minimize the empirical risk and can be written as:

θ̂ = arg min
θ

Ê(x,y)∼D

[
L(fθ(x), y)

]
(2.1)

While ERM often succeeds in finding the optimal parameters to achieve high accuracy,

it falls short in satisfying other objectives. Notably, it fails to consider real-world ML trust-

worthiness objectives throughout the training stage of the model or after deployment such

as robustness against adversarial manipulations, privacy of the training samples and fair

decision-making. This renders ML trustworthiness questionable particularly when deployed
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in high-stakes real-world settings. Next, we describe these trustworthiness objectives based

on current state of the art.

2.2 Robustness

A large body of research has shown that ML models such as deep neural networks (DNNs)

are vulnerable to adversarial manipulation attacks such as adversarial examples [28], training

data poisoning [8], and model extraction [60]. There exists two main forms of robustness in

the context of machine learning: train-time and test-time. The former indicates resilience of

the model against perturbation on the dataset at train-time. This type of robustness provides

a defense against data poisoning attacks [8], where an adversary intentionally worsens the

model’s performance by inserting maliciously crafted input into the training dataset, e.g.

backdoor attacks. In contrast, test-time robustness ensures that the model isn’t susceptible

to data perturbation at inference time, i.e. adversarial attacks [21].

In this work, we focus on robustness against the widely studied adversarial example

attack1. This type of attack fools the model by adding small calibrated noise δ, also called

adversarial perturbation, from a perturbation set ∆ to the input x which generates its

adversarial version x′ = x + δ. We constrain the amount of manipulation that the attacker

is allowed to make on the input by forcing x′ to be close to x, i.e., the set ∆ has to represent

acceptable “imperceptible” noise. Typically, the set ∆ is defined as the ℓp-norm ball: ∆ =

Bp(δ, r) = {δ | ||δ||p ≤ r}. This restriction ensures that the distance between the adversarial

example x′ and its benign counterpart x does not exceed a perturbation budget r: x′ ∈
Bp(x, r). Note that the ℓp-norm Ball is defined as Bp(x, r) = {x′ ∈ Rd| ||x′ − x||p ≤ r} and

the ℓp-norm is defined as ||δ||p =
(∑

i

|δi|p
)1/p

for 1 ≤ p <∞ [33]. For p =∞, the ℓ∞ norm

is defined as the maximum perturbation allowed on any feature: ||δ||p = maxi |δi|.
As such, a successful untargeted adversarial attack crafts a perturbation δ ∈ ∆ that

modifies the predicted label: f(x + δ) ̸= f(x). A targeted adversarial example intends

to fool the model into misclassifying the input as a different label y′: f(x + δ) = ŷ′ with

ŷ′ ̸= ŷ. Multiple versions of adversarial attacks have been developed to date, and they can be

classified at a high-level as white-box or black-box approaches. The former has access to the

model parameters and crafts adversarial examples with the use of the model’s gradients while

the latter doesn’t have access to the internal workings of the model and have to fool the model

through the sole use of its queries’ output. Our threat model will be limited to untargeted

white-box attacks for the rest of this work. One of the simplest yet effective methods to

1We will use the term robustness to refer exclusively to test-time robustness for the rest of this paper
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generate adversarial examples is the Fast Gradient Sign Method (FGSM) [22] which modifies

the original input by stepping along the direction of the loss function’s gradient with respect

to the input. It is formalized as follows:

x′ = x+ δ · sign(∇xL(f(x), y)) (2.2)

Kurakin et al. [32] proposed an iterative FGSM method called Projected Gradient Descent

(PGD) which iterates over the gradient of the loss while clipping the perturbation at each

iteration. The equation to generate the adversarial input at the ith iteration is the following:

x′
i = Clipx,δ

{
x′
i−1 + α · sign(∇xL(f(x

′
i−1), y))

}
(2.3)

α corresponds to the step size at each iteration and the procedure starts with the original

input x′
0 = x.

Defenses aimed at making ML models robust against adversarial examples have taken

multiple avenues broadly focused on model hardening (e.g., via regularization, pertur-

bation or distillation), input pre-processing (e.g., via data transformation or de-noising)

and adversarial training. Regardless of the specifics, these defenses intend to produce

a model with high accuracy on both natural and adversarial inputs. We formally de-

fine the robust classification error under the threat model of δ-bounded perturbations as

Rrob(f) = E(x,y)∼D1{∃x′ ∈ B(x, r)|ŷ ̸= y} as opposed to the natural classification error

Rnat(f) = E(x,y)∼D1{ŷ ̸= y} [73].
Adversarial Training: Finding a model robust to adversarial example attacks reduces

to training it on adversarial rather than original data which produces the variant of ERM

defined in Equation (2.4) by Madry et al. [36].

θ̂ = arg min
θ

Ê(x,y)∼D

[
max

||α||p≤r
L(fθ(x+ α), y)

]
(2.4)

Lipschitz Continuity: Alternatively to the robust definition in Equation (2.4), nu-

merous research has been dedicated to study the relationship between Lipschitzness and

robustness [29, 48, 72]. Formally, a function f : X → Y is globally Lipschitz continuous if

there exists ℓ ≥ 0 such that

||f(x1)− f(x2)|| ≤ ℓ ||x1 − x2|| ∀x1, x2 ∈ X (2.5)

The smallest ℓ for which Equation (2.5) holds is called the Lipschitz constant of f . This

constant constitutes an upper bound on the degree to which the output of f changes with
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respect to the change on the input space. Achieving small Lipschitz continuity has been

proven to produce robust classifiers [64], because Equation (2.5) provides a bound on the

sensitivity of a model to small perturbations of the data. However, calculating the Lips-

chitz constant has proven to be computationally hard and intractable for large DNNs. This

persuaded researchers to provide estimates for the local Lipschitz constant to be used as

a proxy for the sensitivity of the model to adversarial input. One such proxy is TRadeoff-

inspired Adversarial DEfense via Surrogate-loss minimization (TRADES) which incorporates

the Kullback–Leibler (KL) divergence of the output defined in Equation (A.1) as a regular-

ization term [73]. This allows the training algorithm to limit the sensitivity of the model to

slight perturbations. The corresponding ERM variant is formalized as:

θ̂ = arg min
θ

Ê(x,y)∼D

[
L(fθ(x), y) + β · max

||α||p≤r
DKL(fθ(x+ α), fθ(x))

]
(2.6)

Conflicting research has emerged on the relationship between robustness and accuracy.

Tsipras et al. [63] showed that robustness might be incompatible with natural accuracy.

Given a simple binary classification setting, the authors prove the nonexistence of a robust

and accurate model: increasing robustness degrades accuracy on the prediction task. Sur-

prisingly, this is due to the characteristic of the underlying data distribution as opposed to

the size of the dataset which goes against the popular assumption that robust and accurate

models can be achieved by collecting more data. They also argue that robust classifiers

learn fundamentally different feature representations than standard classifiers. In particu-

lar, robustness pushes models to learn higher quality representations aligning with salient

data characteristics and human perception which highlights the benefits of incorporating

robustness even at the cost of accuracy.

On the other hand, Yang et al. [72] argue the opposite: the trade-off between accuracy

and robustness isn’t inherent and reconciling them should be achievable if the classes can

be separated with finite margins. Their approach is based on rounding the function to be

locally Lipschitz around the data, limiting its sensitivity to perturbation while remaining

accurate due to the class-separable nature of the data distribution.

2.3 Privacy

Early research attempted to define data privacy in the realm of statistical databases2 as

a guarantee that query-based access to the database doesn’t reveal any information about

an individual that could not be learned without access to the query responses [10]. This

2ML models can be thought of as an interactive database
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“nothing is learned” principle is analogous to the notion of semantic security in cryptosystems

which states that nothing new should be learned about the plaintext whether or not the

ciphertext is known to the adversary. While semantically secure cryptosystems have been

widely developed, Dwork rigorously proved that data privacy under the former definition is

unachievable because of the presence of auxiliary information [14]. For example, an analysis

showing that smoking causes cancer coupled with the auxiliary information that Tom is a

smoker reveals that that Tom is at high risk for cancer. Surprisingly, the unintentional effect

on Tom’s privacy resulting from publishing the study holds whether he participated in the

original study or not. In addition, attempts to anonymize or remove personally identifiable

information from the data are still vulnerable to linkage attacks which pose the risk of

re-indentification for participating individuals.

Differential Privacy: In contrast, the notion of Differential Privacy (DP) was intro-

duced to remedy the challenges mentioned above, namely resistance to auxiliary information,

linkage attacks, and resilience to post-processing. Differential privacy ensures that nothing

new will be learned about an individual whether or not they participate in a study3, i.e. the

individual will not be affected by providing their data.

Formally, differential privacy is defined as a property for a randomized algorithm M

stating that the following inequality holds for any two neighboring4 datasets D and D′ and

for any event S ⊆ Range(M):

P[M(D) ∈ S] ≤ eϵP[M(D′) ∈ S] + δ (2.7)

As such, M is said to be (ϵ, δ)-DP [15]. The inequality above limits the extent to which

an individual data point affects the model’s behavior. The parameter ϵ (called the privacy

budget) imposes an upper bound on the influence of a single record while the δ parameter5

(called the failure probability) allows for a slight relaxation of the inequality. It is desired for

a model to achieve a low ϵ bound as that would result in low privacy leakage of individual’s

data.

In the context of ML training, differential privacy can be achieved through Differentially

Private - Stochastic Gradient Descent (DP-SGD): a modified version of Stochastic Gradient

Descent (SGD) [1]. DP-SGD limits privacy leakage through (1) gradient clipping and (2)

random noising. Per sample gradients are clipped to a maximum bound C to limit the

sensitivity of each record’s gradients which prevents individual records from contributing

too much to the model’s parameters. After clipping the gradients, Gaussian noise following

3For ML models participating means being part of the training data
4Neighboring conventionally means differing in one record
5Not to be confused with the noise δ of adversarial examples
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the normal distribution N (0, σ2C2I) is added to enforce some randomness on top of the

sample’s gradients. Equation (2.8) calculates the new batch gradients used in DP-SGD with

group size6 L and noise ξ ∼ N (0, I) at iteration t. The pseudo-code of the algorithm is

present in Appendix B.

g̃t ←
1

L

∑
(x,y)∈Lt

clipc

(
∇L
(
fθ(x), y

))
+

σC

L
ξ (2.8)

Typically, the noise added to the gradients considerably hurts the accuracy of the model

which poses a significant barrier against the wide deployment of differentially private learning

[59]. De et al. [11] remedy this problem by performing various types of data and model

modifications, namely: group normalization, increased batch size, weight standardization,

data augmentation, and parameter averaging. Their method succeeded in increasing the

accuracy by 10% for a DP-SGD model trained on CIFAR-10. In particular, they perform

K-fold data augmentation in a differentially private way by averaging the gradients of the

augmented data before clipping it. Since this approach doesn’t increase the sensitivity of

the gradient per training sample, it doesn’t incur any additional privacy cost. Their method

is formalized as:

g̃t ←
1

L

∑
(x,y)∈Lt

clipc

( 1

K

∑
j∈Ki

∇L
(
fθ(xj), y

))
+

σC

L
ξ (2.9)

2.4 Fairness

Fairness in the context of ML aims to ensure that a sensitive attribute7 doesn’t influence

the model’s prediction. Because of the pervasive nature of bias within the training data

and the data processing pipeline, the elimination of sensitive attributes doesn’t necessarily

lead to a fair model. This is because of the red-lining effect [6]: the presence of other

features highly correlated with the sensitive attribute allows the model to learn spurious

correlations. For example, if a bank has historically excluded marginalized communities

from loan approvals, removing explicit racial information from the dataset will not necessarily

make it less biased. If postal codes are highly correlated with ethnicity, the model might

learn these spurious correlations and base its predictions on unfair criteria. This highlights

the need for discrimination-aware classification where sensitive attributes are known for

each sample during training and a fairness constraint is imposed on the model to ensure

6In DP, a group (or lot) is a training batch with additional Poisson sampling which randomly picks
samples for training

7Examples include gender, race, religion, etc...
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discrimination-free decision making.

Fairness can be imposed on ML models through pre-processing, in-processing or post-

processing schemas. Pre-processing approaches attempt to eliminate any underlying dis-

crimination within the dataset before training the model, e.g., removing class imbalances

through undersampling. Post-processing methods impose discrimination-free classification

at inference time, e.g., rejecting a query if answering it might violate a set fairness guarantee

[71]. Our work will mainly focus on in-processing schemes which aim to significantly reduce

discrimination during the training stage of the model. This is conventionally done by adding

a fairness regularizer or changing the objective function [38, 12]. Multiple loss functions

have been introduced to capture the degree of discrimination of a model with respect to a

sensitive attribute, namely the difference of demographic parity, the difference of equality

of opportunity and the demographic parity loss. We will first provide the definition of the

fairness metrics for binary classification y ∈ {−1, 1}, where the positive label is regarded as

the “desirable outcome.”

Demographic Parity: A classifier f satisfies demographic parity if the probability of

the outcome for a sample is independent of the value of the sensitive attribute:

P[Ŷ = 1|S = s] = P[Ŷ = 1|S ̸= s]

Difference of Demographic Parity (DDP): the difference between the expected

values of the demographic parity over the probability distribution:

DDP (f) = E[1Ŷ=1|S = s]− E[1Ŷ=1|S ̸= s] (2.10)

Equality of Opportunity is satisfied when the probability of a true positive remains

the same regardless of the sensitive attribute:

P[Ŷ = 1|S = s, y = 1] = P[Ŷ = 1|S ̸= s, y = 1]

Similarly to DDP, Difference of Equality of Opportunity (DEO) is defined as the

difference in the expected values:

DEO(f) = E[1Ŷ=1|S = s, Y = 1]− E[1Ŷ=1|S ̸= s, Y = 1] (2.11)

Padh et al. [44] proposed a differentiable hyperbolic tangent relaxation of the above

definitions to more accurately approximate their true values. Particularly, they use the

11



following equations:

D̂DP (f) =
1

ns

∑
S=s

t(c, f(x))− 1

N − ns

∑
S ̸=s

t(c, f(x)) (2.12)

D̂EO(f) =
1

ns

∑
S=s,Y=1

t(c, f(x))− 1

N − ns

∑
S ̸=s,Y=1

t(c, f(x)) (2.13)

where n is the total number of samples in the batch, ns is the number of samples with

sensitive attribute s and t(c, x) = tanh(c ·max(0, x)). The above loss functions have been

conventionally used to impose an additional fairness constraint on the training algorithm

in a multi objective framework as opposed to being added to the natural loss to regularize

ERM [44, 51].

Subgroup Fairness: Alternatively, Oneto et al. [43] frame fairness as a multi-task learn-

ing problem by dividing the population into subgroups based on the sensitive attribute and

minimizing the average loss per subgroup as opposed to the average loss of the entire batch.

This approach has the benefit that the model is trained to remain highly accurate for each

subgroup as opposed to averaging its performance on the entire batch.

Yaghini et al. [71] extended the Equation of the difference of demographic parity (2.10)

for multi-label classification by proposing to condition the demographic disparity by the

class label and sensitive attribute. Accordingly, demographic disparity Γ(s, k) is defined

as the difference between the probability of predicting label k for a sample with sensitive

attribute s and the probability of predicting k for any other subgroup: Γ(s, k) = P[ŷ =

k|S = s]−P[ŷ = k|S ̸= s]. The demographic disparity is estimated in practice by taking the

empirical expectation of the above probabilities:

Γ̂(s, k) =
|{Ŷ = k, S = s}|
|{S = s}

− |{Ŷ = k, S ̸= s}|
|{S ̸= s}

A model is said to satisfy γ-bounded demographic parity (γ-DemParity) if Γ(s, k) ≤ γ

for all class labels k and sensitive attributes s. This leads to the natural definition of a

Demographic Parity Fairness Regularizer (DPFR)8 defined as the maximum demographic

disparity:

DPFR(θ) = max
k

max
s

Γ̂(s, k)

= max
k

max
s

{
|{Ŷ = k, S = s}|
|{S = s}

− |{Ŷ = k, S ̸= s}|
|{S ̸= s}

} (2.14)

8It is also referred to as the Demographic Parity Loss
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The above loss functions can be added to the natural loss to produce a regularized form

of ERM that accounts for discrimination. When privacy is an objective that we aim to

simultaneously achieve without further consuming from the privacy budget, the fairness loss

can be computed over a public dataset as opposed to over every training batch. This method

doesn’t incur any additional privacy budget consumption while training.

Research studying the effect of imposing fairness on model accuracy has empirically shown

the existence of a trade-off between the two: imposing bias mitigation strategies on a model

might compromise its accuracy [45]. This led numerous research to frame the problem of

obtaining a fair and accurate model as a multi-objective optimization problem where they

consider a fairness loss9 as one of the objectives to be minimized [67, 44, 51].

2.5 Multi Objective Optimization in ML

Recent research has developed new approaches to solving multi-task learning in Deep Neural

Networks (DNN) by framing it as a MOO problem [52, 34]. Each task’s objective t is

represented by a loss function Lt : Yt × Yt → R+. As such, we obtain a vector of per task

losses to be minimized:

minθL(θ) = (L1(θ),L2(θ), ...,Lm(θ))
T (2.15)

Equation (2.15) requires an MOO algorithm to minimize across its objectives in order

to learn the tasks jointly. However, the tasks usually conflict with each other, preventing a

single optimal solution. Instead, we obtain a set of dominant solutions called Pareto optimal

representing the degree of trade-off achieved across the objectives.

Pareto Dominance: A solution θa dominates another solution θb if Li(θa) ≤ Li(θb) for

all objectives i and L(θa) ̸= L(θb), i.e., there exists one task where the inequality is strict.

Pareto Optimality: A solution θ∗ is said to be Pareto optimal if there exists no other

solution θ that dominates θ∗. The set of Pareto optimal solutions is called the Pareto set P .
Pareto Front: The m-dimensional manifold of the Pareto set in the objective space is

called the Pareto front F = {L(θ) ∈ Rm
+ |θ ∈ P}.

The Pareto front represents the ultimate trade-off of the objectives allowing practition-

ers to examine the achievable compromise under the different constraints of the problem

and compare it with the desirable solutions sought. For example, when two loss functions

are conflicting, producing solutions on the Pareto front is more tractable than finding one

solution minimizing both losses (as that solution usually doesn’t exist).

9Typically DDP, DEO or difference in false positive rates
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The main approaches that have been developed to solve Equation (2.15) for DNNs fall

under three categories: linear scalarization, gradient-based approaches, and Pareto front

learning.

2.5.1 Linear Scalarization

The most common approach to solve an MOO problem is through linear scalarization which

reduces the problem to a single objective optimization by performing a weighted sum of each

objective. Given a weight vector w ∈ Rm
+ , the new surrogate loss obtained can be expressed

as:

L(θ) =
m∑
i=1

wiLi(θ) (2.16)

where wi is the weight assigned to task i. Note that the weights have to be set a priori

before optimization and their specific values highly influence the convergence of the model.

In addition, this method only converges to the convex part of the Pareto front and is unable

to find solutions on the concave part of it [34]. Theorem (1) proves that the solutions found

using Equation (2.16) under risk minimization are Pareto optimal.

Theorem 1. Let w ∈ Rm
+ any preference vector, L the vector of losses, and θ∗w the solution

of the following equation which applies risk minimization on the surrogate loss:

θ∗w = arg min
θ

E(x,y)∼D

[ m∑
i=1

wiLi(fθ(x), y)
]

Then θ∗w is Pareto optimal.

Proof. We will adopt a proof by contradiction. Assume that the solution of the equation in

Theorem 1 (θ∗w) isn’t Pareto optimal. This implies that there exists another solution θ′ which

dominates θ∗w, i.e., Li(θ
′) ≤ Li(θ

∗
w) for all objectives i and L(θ′) ̸= L(θ∗w). Therefore, for any

vector w ∈ Rm
+ , it should hold that

∑m
i=1 wiLi(θ

′) <
∑m

i=1 wiLi(θ
∗
w) which is a contradiction

of our original assumption that θ∗w is a solution of equation (1).

However, the loss functions of DNNs are non-convex with respect to the model parame-

ters θ and the empirical expectation is used since the true distribution is unknown. As such,

solutions to the above equation only yields approximate solutions θ̂ which form an approx-

imation to the Pareto set P̂ . This in turn requires training multiple models with random

preference vectors r to discover the Pareto front, making it intractable at the scale of a DNN

as the number of objectives increase. Despite its limitations, linear scalarization serves as a

foundational technique in MOO, providing a starting point for more advanced schemes.
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Figure 2.1: Pareto MTL decomposes the objective space into different preference vectors ui

and finds one Pareto solution inside the preference region [34].

2.5.2 Gradient-based Methods

To overcome the limitation of linear scalarization, researchers have attempted to reach Pareto

optimal models by first calculating the separate gradients of each loss function Li before

solving an optimization problem aiming at finding the final gradient to use for the batch.

Early research has applied the Multiple Gradient Descent Algorithm (MGDA) [16] to train

DNNs on multiple tasks at once [52]. However, this early approach failed to produce models

on the entire Pareto front and instead converges to a specific region of the front regardless

of the number of iterations of the algorithm.

To resolve this problem, Lin et al. [34] introduced their Pareto MTL algorithm which

trains a set of models and modifies its behavior according to pre-selected nr preference rays

ri as shown in Figure 2.1. The rays divide the objective space into different regions of the

Pareto front. Accordingly, the algorithm trains nr different models θi to converge to the

region of the Pareto front specified by the ray ri. The algorithm is able to produce a diverse

set of Pareto-optimal models representing different trade-offs on the objective space.

Lin et al. [34] also proved that gradient-based methods are equivalent to an adaptive

linear scalarization of the loss vector. In other words, the method they developed reduces to

performing a weighted sum of the losses with dynamically varying weights at each iteration

according to the gradients calculated.

Further research has focused on improving the efficiency of the multiple gradient descent

approach to obtain models converging closer to the preference rays. For example, Mahapatra

and Rajan [37] developed the Exact Pareto Optimal (EPO) search algorithm. Their approach

combines gradient descent with controlled ascent to traverse the Pareto front and obtain
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models closest to the given preference vector regardless of their initialization.

2.5.3 Pareto Front Learning

Pareto Front Learning (PFL) has emerged as a recent approach to estimate the entire Pareto

front with a single model conditioned on the preference vector. Effectively, this approach

expands the input space to include the preference vectors: X × Rm
+ → Y . In practice, this

is done by concatenating the input x with a vector r and training the model on this joint

feature space. The model effectively conditions its behavior on the given preference ray,

allowing for users to specify their preference at decision-time as opposed to fixing one model

per preference vector at train-time. After training, the Pareto front is estimated by running

the model on the same input with different preference rays.

Ruchte and Grabocka [51] developed a Conditioned One-Shot Multi-Objective Search

(COSMOS) algorithm to train a conditioned model on the preference vectors. During train-

ing, the preference rays are sampled from a Dirichlet distribution with parameter α to ensure

their elements are positive and sum up to one. The authors also used a novel loss function

that consists of a weighted sum of the loss and preference vectors regularized with a penalty

term. The penalty term corresponds to maximizing the cosine similarity between the loss

vector and the preference ray, effectively decreasing the angle between them and forcing the

solutions obtained to be well-spread across the objectives.

θ∗ = arg min
θ

Er∼Dir(α);(x,y)∼D

[
r · L(θ)− λ

r · L(θ)
||r|| · ||L(θ)||

]
(2.17)

In addition, Hoang et al. [25] developed their Pareto Hypernetworks with Hypervolume

Indicator (PHN-HVI) algorithm to learn the Pareto front using multi-sampled hypernet-

works. The model trained is a hypernetwork representing multiple solutions for different

preference rays. The model is further enhanced using hypervolume maximization to improve

the quality of the solutions by making them more diverse and spread out.

MOO Method Number of Models Pareto Front Region Example
Linear Scalarization ≥ nr Convex part Weighted Sum
Gradient-Based = nr All Pareto MTL, EPO

Pareto Front Learning 1 All COSMOS, PHN-HVI

Table 2.1: Comparative summary of multi-objective optimization methods
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CHAPTER 3

Related Work

Going beyond fulfilling accuracy and one trustworthiness objective, prior work has focused

on at most two objectives to examine how they fair against the accuracy of the model and

other objectives. In this chapter, we review related work that studied the interplay (tension)

between a pair of trustworthiness objectives.

In fact, developing a unified approach to achieve trustworthiness objectives described in

Chapter 2 has thus-far proven to be challenging for researchers and practitioners. The com-

plex interplay of different countermeasures and trustworthiness pitfalls produce unintended

and often surprising consequences on the ML model. Hence, most research still focuses on

each objective individually, and we have yet to witness considerable progress on training and

deploying holistically trustworthy models in high-stakes applications.

Duddu et al. [13] conjectured that the unintended interactions among the objectives and

their countermeasures boil down to two properties of ML models: overfitting and memoriza-

tion. The authors study how different ML defenses affect diverse ML risks through their

influence on generalization error (as a proxy for overfitting) and memorization of training

data points. For example, adversarial training as a robustness countermeasure favors a model

with a smoother decision boundary which increases the generalization gap and thus decreases

accuracy [50, 13].

Additionally, Gittens et al. [20] argue for the use of causal models to learn the direct causal

relationships between different features and the label in order to achieve trustworthiness.

Causal ML permits reasoning on top of the true causal links as opposed to any spurious

ones, making them ideal for modeling anti-discriminatory and robust behavior.

3.1 Privacy vs. Fairness

Numerous research has studied the impact of implementing differential privacy on the dis-

criminatory behavior of a model. In effect, it has been empirically shown that the gradient
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noising process of DP increases the demographic disparity of the model. Bagdasarya et al.

[3] concluded that underrepresented classes tend to lose more accuracy than the dominant

class. The authors described this disproportionate impact on the minority group as “the

poor becoming poorer.” They conjecture that DP-SGD amplifies the model’s bias towards

the most represented group in the training data distribution. For instance, models trained

with DP-SGD for gender and age classification of facial images exhibit larger performance

discrepancy with higher accuracy on light-skinned faces over dark-skinned ones compared to

a non-DP setting.

Tran et al. [61] formally proved why the noise addition and gradient clipping process of

DP-SGD cause discriminatory behavior. The authors attributed unfairness in differentially

private models to the average gradient norms of the demographic groups, the clipping bound

and the Hessian loss. In fact, demographics with large input norms result in large gradient

norms leading the privately trained model to disproportionately favor their loss over that of

the underrepresented groups.

Yaghini et al. [71] developed different training algorithms to incorporate fairness con-

straints within differentially private learning. In particular, they propose two algorithms

that combine fairness and privacy. In FairPATE, they combine demographic parity with

Private Aggregation of Teacher Ensembles (PATE) [46] while in FairDP-SGD they combine

demographic parity with DP-SGD. Their loss function included the DPFR defined in Equa-

tion (2.14) applied on a public dataset to limit demographic disparity without increasing the

privacy budget. Their algorithm also implemented a post-processing mechanism to ensure

γ-DemParity at inference time. They were able to guarantee a set demographic disparity

budget by disregarding queries that would violate this guarantee at inference-time. As such,

they introduced the query coverage of the model during testing as an additional metric to

represent the accuracy-fairness trade-off: ensuring a higher fairness guarantee results in an-

swering fewer queries. Their FairDP-SGD algorithm uses the following equation to compute

the model’s gradients for batch B:

1

B

∑
x∈B

clipc

(
∇θ

[
L
(
fθ(x), y

)
+ λDPFR(θpublic)

])
+

σC

B
ξ (3.1)

By modifying the hyper-parameters of their algorithm (λ and σ), they are able to establish

the Pareto front of utility, privacy and fairness by training different models representing

different trade-offs.
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3.2 Robustness vs. Privacy

While a theoretical trade-off hasn’t been established yet, research has empirically found

an inhibiting relationship between data privacy and robustness. One one hand, multiple

research studying the effect of implementing differential privacy on adversarial robustness

has found that DP models are more prone to adversarial examples than their non-private

counterparts. Tursynbek et al. [66] experimentally showed that DP-trained models exhibit

higher error on FGSM and PGD generated adversarial examples. Interestingly, this gap

grows wider as the noise multiplier increases, i.e., models with a lower privacy budget tend

to be more vulnerable to adversarial examples. They attributed this trade-off to the fact

that the decision boundary of DP models possess a higher curvature leading to fragmented

decision regions which makes it easier to find adversarial perturbations to fool the model.

Boenisch et al. [5] corroborated the previous findings and expanded it to a broader range of

attacks: they empirically showed that an increase in privacy reduces adversarial robustness

among all attacks considered.

On the other hand, research has attempted to establish the impact of adversarially ro-

bust models on privacy leakage. Song et al. [58] assessed the success rate of Membership

Inference Attack (MIA) on six different forms of adversarially trained models. They showed

that adversarial training indeed makes the model more susceptible to MIA compared to a

naturally trained model (between 2× to 4.5× more vulnerable on popular image datasets).

The authors also demonstrated that the MIA success rate increases as the model becomes

more adversarially robust. In addition, they proposed novel attacks for inferring member-

ship that exploits the nature of training for robust models. The authors suggest the use

of temperature scaling and regularization (like parameter norm penalties and dropout) as

countermeasures to reduce the risk of MIA for robust models.

However, Hayes [23] argues for the lack of an inherent privacy-robustness trade-off: it

is merely due to the degree of overfitting robust models exhibit rather than a fundamental

limitation of both objectives. The author theoretically shows that robust models are capable

of overfitting more or less than a standard model depending on the perturbation size and

the size of the training dataset. As such, Hayes empirically shows that robust models are

capable of being more secure against MIA as long as their generalization gap is smaller than

standard models.

Hayes et al. [24] studied the difficulties for a model to satisfy differential privacy and

be robust. They showed that the size of adversarial perturbation and the clipping norm

of DP jointly increase the curvature of the loss landscape which hurts the generalization

performance of the model. Phan et al. [49] developed their StoBatch algorithm to achieve
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DP and robustness by implementing DP adversarial examples with ensemble and distributed

training to achieve tight privacy bounds.

Wu et al. [70] proposed an approach to reconcile certified robustness with differential

privacy. They wrap the TRADES loss function with differential privacy (by clipping and

noising) and incorporate adversarial smoothing for certified robustness. Hence, their loss

equation for a batch B becomes the following:

1

B

∑
x∈B

clipc

(
∇θ

[
L
(
fθ(x), y

)
+ β max

||α||p≤r
DKL

(
fθ(x+ α), fθ(x)

)])
+

σC

B
ξ (3.2)

3.3 Robustness vs. Fairness

Nanda et al. [41] defined the notion of robustness bias which ensures that all subgroups

of a dataset are equally robust. In other words, different demographics shouldn’t be more

vulnerable to adversarial example attacks than others. A model satisfying low robustness

bias exhibit a similar curvature in its decision boundary across different subgroups. The

authors observe that the phenomenon of robustness bias is common across different model

architectures and dataset, emphasizing the need for explicitly considering the robustness gap

among groups during training.

Orthogonal to the notion of group fairness, multiple research has studied the discrepancy

in accuracy and robustness of adversarially trained models with respect to the class labels

(as opposed to separate sensitive attributes) [35, 27, 4]. For example, while an adversarially

trained model might exhibit high overall accuracy and robustness, its performance per-class

may vary wildly, causing some class labels to be more vulnerable and leading to a false sense

of security. Surprisingly this holds true even if the data doesn’t have any class imbalances

and every label is equally represented. Though interesting, our work will be limited to the

group notion of fairness as it relates to sensitive attributes rather than equal performance

under adversarial settings across class labels.

3.4 Privacy vs. Interpretability

Before the advent of ML explanation methods, ML models such as DNNs have been mostly

treated as black-boxes. End users are completely unaware of the ‘reasoning’ behind the

model’s prediction and must take them at face value. Considering that models are being used

in high-stakes environments, ML developers face considerable pressure from both the public

and governmental agencies to provide explanation frameworks on top of model predictions.

However, this need for transparency within the decision-making process of the model seems to
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result in privacy leakage of the training samples. In fact, Shokri et al. [55] empirically showed

that an adversary can take advantage of model explanations to infer information about the

training data. The authors argue that backpropagation-based explanation methods expose

statistical information regarding the decision boundaries of the input, which in turn enables

an adversary to determine whether or not a data-point is a member of the model’s training

data. They also confirmed previous findings on privacy and fairness by showing that minority

classes in the dataset are at higher risk of membership inference attacks via explanation

methods. Patel et al. [47] proposed to reconcile the trade-off between data privacy and

model transparency by developing an adaptive differentially private explanation algorithm.

In Table 3.1, we provide a summary of the multi-faceted interplay among countermeasures

(rows) and trustworthiness objectives (columns). We denote with a red dot  the existence

of research showing a theoretical or empirical trade-off between the two objectives and with

a green dot  research arguing that the objectives don’t directly conflict. As shown below,

most research has found a conflicting relationship between implementing a countermeasure

for one area of trustworthiness and its effect on other areas.

Countermeasure or Objective Accuracy Robustness Data Privacy Fairness

Adversarial Training  [63]  [72]  [36]  [58]  [23]  [41, 35, 27, 4]
Differential Privacy  [59]  [66, 5]  [15]  [3, 18, 71]
Fairness Constraints  [45]   [57]  [7]  [38, 45]

Table 3.1: Interplay of countermeasures and trustworthiness goals
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CHAPTER 4

Approach

In Chapters 2 and 3, we established the complex interplay among the different ML trust-

worthiness objectives, i.e., most research has found a theoretical and/or empirical trade-off

across different trustworthiness requirements. However, we also observe the following gaps

that previous work on ML trustworthiness has either overlooked or under-explored:

• Most research in the area has studied the nature of the interaction between the trust-

worthiness objectives rather than aim to develop a unified framework to solve them

jointly.

• Research has attempted to reconcile at most three objectives: utility, privacy and

fairness in [71] and utility, privacy and robustness in [70].

• Research reconciling the different objectives has mostly relied on ERM regularization

[71, 70, 73].

• Limited research has attempted to study the Pareto front with respect to the different

loss functions and objectives (we are only aware of [71] which plotted the frontier of

utility, privacy and fairness).

To fill the aforementioned gaps, we propose an approach to reconcile four trustworthiness

objectives, namely utility, privacy, test-time robustness, and fairness. We do so in a simple,

scalable, and efficient manner by restricting our approach to SGD-based algorithms (as

opposed to ensemble methods) which scale at most linearly with the number of Pareto-

optimal models needed. In addition, since our algorithms only rely on the choice of loss

functions used, it provides a simple plug and play for practitioners wanting to incorporate

less or more objectives by modifying the number and nature of loss functions utilized. In

order to mitigate the challenges faced by plain ERM regularization1, we leverage algorithms

1Hyperparameters set a priori, no systematic way to establish a diverse Pareto front, etc.
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developed by the MOO literature to study their influence on the Pareto front generated. Our

novel approach consists of reconciling trustworthiness objectives within the existing methods

developed in the MOO-MTL literature.

4.1 Setup

In order to achieve and maintain trustworthiness throughout training, we propose to assign a

loss function or regularization penalty for each objective. The loss functions made available

for each dimension are listed below:

1. Utility: LNat

For the objective of natural accuracy, we use the conventional classification loss:, i.e.,

the cross-entropy (LCE) with respect to the ground truth label defined in Section 2.1.

2. Robustness: LRob

In order for the trained model to remain robust against small perturbation of the input,

we employ two main robustness mechanism for adversarial training. Let x′ denote the

adversarial version of x, we can either compute the KL divergence DKL

(
f(x′), f(x)

)
used in Equation (2.6) or the Madry loss, also known as the adversarial loss, LAdv =

LCE

(
f(x′), y

)
used in Equation (2.4).

3. Fairness: LFair

Multiple losses can be used to mitigate unwanted bias against a demographic, namely

the hyperbolic tangent relaxation of the DDP in Equation (2.12), its DEO version in

Equation (2.13) and DPFR in Equation (2.14).

4. Privacy: ϵ

As opposed to the other objectives, differential privacy will be wrapped on top of

the final loss by clipping its gradient and adding random Gaussian noise. The noise

multiplier σ and clipping norm C directly influence the total privacy budget ϵ.

The extensive list of losses above provide us with a proxy to measure the list of ML

trustworthiness objectives outlined in Chapter 1. Additionally, our approach offers ML

practitioners the freedom to pick any combination of loss functions more suitable for their

business needs, and domain experts can leverage their subject matter expertise to inform

the choice. We further insist on the dynamic nature of the above list: emerging research

often develops novel loss variants to satisfy various requirements. Our approach can be

customized with specific implementations of loss functions. At a high-level, we will provide
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two frameworks for reconciling the trustworthiness objectives above: ERM regularization

and MOO algorithms, which we describe next.

4.2 ERM Regularization

A natural first-cut approach to combine the different loss functions is to produce a regular-

ized variant of the ERM algorithm defined in Equation (2.1) to incorporate robustness and

fairness metrics. The loss function will be regularized as follows:

L(θ) = LNat(θ) + λRobLRob(θ) + λFairLFair(θ) (4.1)

While modifying the hyperparameter values allows great freedom on the degree of regular-

ization for each objective, it should be done carefully to avoid breaking the DP budget. For

example, if the adversarial loss is used for robustness, calculating the gradient of both the

benign and perturbed input might result in privacy leakage of the training sample. Cohen

et al. [70] remedy this problem by averaging the losses first before clipping the gradient,

bounding the sensitivity of the sample thus preserving differential privacy2. Therefore, if

we need to incorporate the Madry loss with the natural loss in Equation (4.1) we would

have to compute the average of LNat(θ) and LAdv(θ) before clipping the gradients in order

to preserve differential privacy. As such, ML practitioners have to ensure that their choice

of hyperparameters doesn’t accidentally break the DP guarantee.

In particular, we propose combining the loss functions used in Equation (3.1) and Equa-

tion (3.2) to satisfy utility, robustness, fairness, and privacy. The loss makes use of the KL

divergence as a robustness metric and DPFR as a fairness regularizer3:

L(x, y) = LCE(fθ(x), y) + βDKL(fθ(x
′), fθ(x)) + λDPFR(θ) (4.2)

In addition, we compute the gradients of the above loss function in a differentially private

manner to obtain our novel Differentially Private - Robust and Fair Learning (DP-RFL)

algorithm. Its pseudo-code is provided in Program 4.1.

2Their approach draws similarity with the data augmentation in private learning developed in [11] and
defined in Equation (2.9)

3We renamed the hyperparameters for consistency with their use in their original paper
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Require: Model parameters θ, loss function ℓ, learning rate ηt, noise multiplier σ, group

size B, clipping norm C, fairness regularizer λ

1: for t ∈ [T ] do

2: Sample mini-batch Bt with sampling probability B/N

3: for i ∈ Bt do

4: Compute perturbed input x′
i

5: Compute gt(xi)← ∇θ

(
LCE

(
fθ(xi), yi

)
+ βDKL

(
fθ(x

′
i), fθ(xi)

)
+ λDPFR(θ)

)
6: end for

7: g̃t(xi)← gt(xi)/max(1, ||gt(xi)||2
C

)

8: g̃t ← 1
|Lt|(

∑
i g̃t(xi) +N (0, σ2C2I))

9: θ ← θ − ηtg̃t

10: ϵ← PrivacyAccountant(θ, σ, C)

11: end for=0

Program 4.1: DP-RFL: Differentially Private-Robust and Fair Learning

The hyperparameters β and λ in Equation (4.2) as well as the noise multiplier σ for

DP-SGD provide the ML practitioner with control over the scale associated with each trust-

worthiness objective during training. Its disadvantage is that the relationship between the

hyperparameters (β, λ) and the true objectives (robustness and fairness) aren’t one-to-one,

i.e., increasing one hyperparameter value doesn’t necessarily translate into prioritizing the

corresponding objective. For example, increasing the value of β too much will generate

weak decision boundaries, rendering the model useless and thus not robust. In addition,

the hyperparameters need to be set a priori and don’t allow dynamic shifting of priorities

during training. In turn, this forces practitioners to decide on the hyperparameter values

which often proves to be a difficult task even for experienced professionals. The choice of

hyperparameters can be subjective and require domain expertise or sensitivity analysis to

determine how their values appropriately reflect subjective preference per objective. Addi-

tionally, hyperparameter tuning doesn’t provide us with a feasible alternative as it is both

time consuming and resource intensive.

4.3 Multi-Objective Optimization

Considering the established multi-faceted trade-off imposed on the different objectives, it is

natural to frame our goal of producing trustworthy ML as a multi-objective optimization

problem. The challenge is that most MOO frameworks for training a DNN have been conven-

tionally developed for multi-task learning which entails a model architecture with separate
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shared and task-specific parameters [52]. As an example of MTL, models have been devel-

oped to simultaneously predict two partially overlapping digits in the muti-MNIST dataset,

requiring a model with two separate final layer for each task (predicting left and right digits).

As such, the model has to optimize the shared parameters for both tasks and fine-tune the

task-specific parameters for their corresponding task.

In contrast to MTL, the quest for trustworthy ML inherently entails a single task, i.e., pre-

dicting the class label, with the additional requirement of simultaneously satisfying multiple

trustworthiness objectives. In this context, the model cannot employ task-specific parame-

ters per objective but rather rely on all of its parameters to jointly satisfy the objectives.

Limited effort has been dedicated to applying MOO for satisfying different objectives within

a single task. Although research has studied the application of MOO on accuracy and fair-

ness [44, 51], we aren’t aware of any that incorporated robustness. This challenge raises the

question: can the MTL-MOO frameworks be efficiently adopted for ML trust-

worthiness? In what follows, we provide details of our approach for applying the MOO

frameworks discussed in Section 2.5 for the problem of trustworthy ML.

Before discussing the technicalities of the different MOO algorithms, we have to choose a

vector of the losses to be minimized in accordance with Equation (2.15). As such, we have

the freedom of selecting different combinations of loss functions mentioned in Section 4.1.

We provide a generic three-dimensional vector of the per-objective losses to capture utility,

robustness, and fairness4 below:

L =

Lnat

Lrob

Lfair

 (4.3)

Regardless of the specific loss function utilized above, we need to take into consideration ϵ

in order to include the privacy budget within the final list of objectives to be minimized.

O =


Lnat

Lrob

Lfair

ϵ

 (4.4)

Keeping with our loss selection in Equation (4.2), we have the option of utilizing the following

4Data privacy being satisfied as a wrapper around gradient calculation
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loss vector.

LNat KL DP =

 LNat

(
fθ(x), y

)
DKL

(
fθ(x

′), fθ(x)
)

DPFR(θ)

 (4.5)

However, we don’t limit ourselves with the loss vector above nor its fixed dimensionality

and further propose novel loss combinations to capture ML trustworthiness in the context

of MOO. This approach will allow us to evaluate different loss vectors implemented across

trustworthiness metrics and MOO methods.

For example, we can start by replacing the second elemend of Vector (4.5) by the Madry

loss to obtain the following vector:

LNat Adv DP =

LNat

(
fθ(x), y

)
LAdv

(
fθ(x

′), y
)

DPFR(θ)

 (4.6)

Unlike ERM regularization where we have to make sure that the hyperparameters don’t

break the differential privacy guarantee, MOO methods compute a weighted average of the

loss vector before the gradient calculation of backpropagation (and thus before clipping). As

such, as long as each sample is equally represented, the final surrogate loss L is computed as

their weighted average which limits the sensitivity per-batch, providing us with a guarantee

that L doesn’t incur more privacy leakage compared to only considering the natural loss in

plain DP-SGD. For instance, when using both LNat and LAdv, the surrogate loss will be their

weighted average5 which doesn’t incur additional privacy budget consumption compared to

only considering the natural loss. As for the fairness loss, we limit its calculation on a public

dataset in accordance with previous work [71].

Furthermore, we are able to remove the natural loss of the loss vector (4.6) to produce

LAdv DP without reducing the number of trustworthiness objectives considered. In fact,

Zhang et al. [73] decomposed the robust error as the sum of the natural error and the

boundary error:

Rrob(f) = Rnat(f) +Rbdy(f) (4.7)

By taking the Madry loss and the KL divergence as a proxy for the robust and boundary

errors respectively, we are able to reduce the first two elements of Equation (4.5) as the

Madry loss. In other words, the classification loss on adversarial data can capture both the

natural error on the data (utility) and sensitivity to adversarial perturbation (smoothness),

5The weights are positive and sum up to 1
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effectively reducing the dimensionality of Equation (4.5) to two dimensions.

LAdv DP =

(
LAdv

(
fθ(x

′), y
)

DPFR(θ)

)
(4.8)

Similarly, we introduce a demographically partitioned natural loss by dividing the batch by

the sensitive attribute before computing the per-group natural loss.

LDPL =

L
1
nat

...

Ls
nat

 (4.9)

While the above definition provides us with a simple way to contrast the performance of

the model across different demographics, it assumes that the selected batch provides us with

fairness metrics representative of the population. It also doesn’t exhibit a natural trade-off:

while unfair models tend to perform better for certain demographics, this doesn’t necessarily

translate into a conflicting relationship among the natural loss across the demographics (a

model performing better for one group doesn’t have to perform worse on another). We will

study the effectiveness of this loss vector in the next section. In addition, we append either

the KL divergence or the Madry loss to the above vector to represent the robustness objective

and obtain LKL DPL or LAdv DPL, respectively.

While different weights might be assigned to the losses in Equation (4.3) before or during

training, the privacy budget ϵ doesn’t offer the luxury of being manipulated dynamically.

Instead, ϵ is fully determined by the noise multiplier σ and the number of epochs. Since

ϵ gradually increases at each epoch, we propose running the model on a large number of

epochs while saving its parameters and evaluating its objectives in Equation (4.4) at the end

of each epoch. This approach allows us to choose a lower privacy budget ϵ by reverting to

a model generated at an earlier epoch instead of retraining the model from scratch with a

new value of σ.

We will discuss the methodology we follow to apply the MOO frameworks defined in

Chapter 2 to achieve the desiderata we outlined previously in Chapter 1. For the rest of this

section, we will refer to the number of preference rays desired as nr.

4.3.1 Linear Scalarization

We generate nr preference rays R either uniformly across a 2-dimensional circle or randomly

for higher dimensions. We assign a total of nr models for each ray and train them for e

epochs. The surrogate loss of each model mi corresponds to a weighted sum of the loss
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vector L with the model’s respective ray ri. In total, we obtain nr · e model checkpoints

across the different preference vectors and training epochs.

L(θ) = R · L(θ) (4.10)

L(θ) = r1LNat(θ) + r2LRob(θ) + r3LFair(θ) (4.11)

We note that the above formula is similar to the one in Equation (4.2) except for the fact that

the rays ri sum up to 1 and are positive. This requirement provides us with a systematic way

to generate models at a particular region of the Pareto front without considering any potential

privacy leakage: we are able to scale the weights ri within the range (0, 1) rather than deal

with hyperparameters in the range (0,∞). Moreover, instead of setting the hyperparameters

a priori and train one model, we train separate models for each preference vector, allowing

us to obtain a representative set of Pareto optimal models.

4.3.2 Gradient-based Methods

While gradient-based approaches for multi-gradient descent have been conventionally used

for MTL, we propose applying the algorithm for the problem of generating holistically trust-

worthy ML models. However, since the weights W are generated dynamically according to

the per-loss gradients, naively applying them for our problem will violate the DP guarantee.

Accordingly, we make use of the post-processing property of DP and perform our compu-

tation on top of the private gradients instead of the original ones. Since the gradients are

clipped and noised, the sensitivity of the sample is bounded as required for the sampled

gaussian mechanism of DP-SGD [40] and differential privacy remains preserved. Let F (.)

be the gradient based approach used (e.g., Pareto MTL, EPO), we compute the dynamic

weights wi at every iteration from the per-objective private gradients as follows.

∇θL̃ =

 clipc(∇θLnat) +
σC
B
ξ1

clipc(∇θLrob) +
σC
B
ξ2

clipc(∇θLfair) +
σC
B
ξ3



W = F (∇θL̃)

L(θ) = W · L(θ) = w1Lnat(θ) + w2Lrob(θ) + w3Lfair(θ)
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4.3.3 Pareto Front Learning

For PFL we require a model with input space X ×Rm
+ which we achieve by upsampling the

original data to contain multiple channels for each weight. As opposed to other methods we

train a single model for e epochs, resulting in e model checkpoints. The COSMOS method

relies on weights sampled randomly from a Dirichlet distribution with parameter α and a

cosine similarity term to decrease the angle with the preference ray. The loss function is

defined below

L(θ) = r · L(θ)− λ
r · L(θ)

||r|| · ||L(θ)||
with r ∼ Dir (α) (4.12)

Since ML trustworthiness doesn’t have per-task parameters, Pareto front learning methods

will struggle to learn multiple trustworthiness trade-offs at once. Hence, we train multiple

models each with different hyperparameters α and λ to provide us with a higher quality

Pareto front6.

6For our experiments, we only trained two models using COSMOS which is significantly less than the
nr = 10 models trained for the other methods
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CHAPTER 5

Evaluation

Our evaluation is guided by the following research questions:

• RQ1: Given that research is often conflicting regarding the existence of a direct con-

flicting relationship between two objectives, e.g., whether the accuracy-robustness or

robustness-privacy trade-off is inherent (as shown in Table 3.1), to what extent can we

empirically study the nature of the multi-faceted relationship across trustworthiness

objectives?

• RQ2: If trustworthiness objectives appear to be mutually conflicting, how pronounced

is this trade-off when comparing any subset of our original objectives?

• RQ3: Can Multi-Objective Optimization frameworks developed for Multi-Task Learn-

ing be efficiently adopted for ML trustworthiness? If so, how do the different algorithms

fair against each other in achieving holistically trustworthy models?

• RQ4: How does the combination of different loss functions impact the final Pareto

front generated?

• RQ5: What is the best training algorithm applied to machine learning trustworthiness

that produces a diverse set of optimal solutions?

5.1 Datasets

We will conduct our experiments on the Colored MNIST dataset. The dataset has been

developed by Arjovsky et al. [2] for their invariant risk minimization algorithm. It consists

of the original MNIST images expanded into two color channels: red and green1. The image

pixels are present in one of the channels while the other has its value set to zero. The

1Unlike the original paper, we stay consistent with the digit label (no label flipping)
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training, validation and testing dataset have different proportions of red and green images

representing different environments, e.g., data acquired from different sources, data drift,

etc. The dataset contains 50,000 images for training and 10,000 for validation and testing

each. We further consider 512 images from the training split as public data to be used for

calculating the fairness loss.

We present the configuration of our experiments below, including the dataset and model

architecture.

Dataset Class Label K Sensitive Attribute S Architecture # Parameters σ
ColorMNIST [2] Digit 10 Color 2 CNN (Table 5.2) 431,580 0.8

Table 5.1: Datasets and architecture used

5.2 Metrics

In addition to the value of the losses introduced previously, we also make use of the metrics

below:

1. Validation accuracy: Utility is evaluated as the benign accuracy of our model on a

validation dataset Anat =
1
n

∑n
i=1 1(fθ(xi) = yi).

2. Adversarial validation accuracy: Robustness is measured by the accuracy on

adversarial data from a validation dataset Arob = 1
n

∑n
i=1 1(fθ(x

′
i) = yi) where

x′
i is the adversarial perturbation of xi (approximated with PGD), i.e., x′

i =

arg max
xadv∈B(x,ϵ)

L
(
fθ(xadv), y

)
.

3. Local Lipschitzness: We estimate the local Lipschitzness of the model using the

empirical formula derived in [29] as a proxy for the sensitivity of the model for small

perturbations.

4. Demographic Parity Loss: We compute the average DPFR per batch on a vali-

dation dataset. DPFR corresponds to the maximum demographic disparity across all

predicted labels and sensitive features, and it is used as a proxy for evaluating the

degree of fairness of the model DPFR(θ) = max
s,ŷ

Γ̂(s, ŷ).

5. Privacy budget: We compute the privacy budget ϵ spent while training for a fixed

δ ≪ 1/n.
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6. Hypervolume: In order to evaluate the different pareto fronts generated by an MOO

method, we compute the hypervolume of the Pareto front with the point (3,3,3) as

reference for the three dimensional objectives of natural, adversarial and fairness losses

respectively.

5.3 Experimental Setup

We use a simple LeNet model architecture as shown in Table 5.2 for the Colored MNIST

dataset adapted from [71]. We also note that when applying the COSMOS approach [51],

we have to upsample the image input to add the preference ray as a feature for the model

to learn. This is done through transposed convolutions which increase the number of input

channels in the first convolutional layer of the model by the dimensionality of the objective

space (i.e., the number of elements in the preference ray).

Layer Dimensions
Conv2D 2 × 20 × 5 × 1
Relu

MaxPooling 2 × 1
Conv2D 20 × 50 × 5 × 1
Relu

MaxPooling 2 × 1
Flatten

Fully Connected 800 × 500
Relu

Fully Connected 500 × 10
Sigmoid

Table 5.2: ColorMNIST CNN Architecture

As for the hyper-parameters of the experiment, we train the model with an initial learning

rate of 0.006 for 20 epochs and a batch size of 128. We further make use of an exponential

learning rate decay of 0.95 at every third epoch. As for the DP-SGD algorithm parameters,

we use a clipping norm of 1.2 and the noise multiplier σ is calculated before training to

ensure a privacy budget ϵ of 2 for the last epoch2. For adversarial training, we perform

10-iteration PGD perturbation with a step size of 0.01 and an adversarial budget of 0.1 on

the ℓ∞ norm. For the MOO framework, we employ 10 preference rays to approximate the

Pareto front of an approach. To remain fair across the comparison, we also train 10 different

models with the ERM regularization approach with hyperparameter values ranging from 0.5

2Its value is approximately 0.79
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to 5 for both β and λ. Furthermore, when we implement the COSMOS algorithm, we make

use of different values for α and λ for the Dirichlet distribution and cosine term respectively.

Specifically we use α = [1.7, 1.2, 0.5] with λ = 0.9 and α = [0.8, 0.8, 0.8] with λ = 0.5 when

training for the LNat KL DP loss vector.

5.4 Results

We will first evaluate the two-dimensional Pareto front generated through private training.

Afterwards, we will consider the three-dimensional Pareto front which will allow us to eval-

uate the different loss vectors proposed in Chapter 4. Finally, we display the Pareto front

generated in the four dimensional objective space and compare the methods we previously

proposed across different metrics.

5.4.1 Influence of Private Training on Trustworthiness

We will start with evaluating the influence of differentially private training (through

DP-SGD) on different trustworthiness domains. Since we fixed the noise multiplier and

gradient norm on all the experiments, the privacy budget ϵ can be regarded as a proxy for

the training epoch where the user can achieve a higher privacy guarantee by stopping at an

earlier epoch. We will contrast how the different methods proposed in Chapter 4 fair against

each other: how optimal is the Pareto front generated by adopting ERM regularization or

one of the MOO algorithms? In order to fairly compare the methods in this section, we

use the same combination of loss functions, namely natural loss, KL divergence and DPFR,

except for the Pareto MTL approach which only uses the Madry loss and DPFR as the

algorithm only works for two dimensions.

Our experiments displayed in Figure 5.1 back up our previous motivation to expand our

algorithm beyond ERM regularization as it performs poorly compared to the other MOO

algorithms (RQ3). In particular, Linear Scalarization and EPO are able to achieve a more

optimal front closer to the origin and provide a diverse set of Pareto optimal solutions.

Furthermore, Figure 5.2 shows that the results hold when considering the trade-off across

different pairs of objectives. When plotting the natural loss against the KL divergence, the

ERM approach performs better than the others at the early stages of training. However, it

fails to converge properly by the end of training, achieving a minimal natural loss of around

1.6 as opposed to the loss of 1.55 achieved by other approaches. We conjecture that this

performance is due to the fact that ERM regularization doesn’t provide us with a systemic

approach to evaluate different regions in the Pareto front: the hyperparameters have a wide
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Figure 5.1: Privacy-X Pareto front

range of possible values with no proper way to set them such that the model converges

towards a specific point on the Pareto front. MOO frameworks on the other hand provide

us with a systemic approach to train different models on the regions of the Pareto front: the

weights are set in a manner to optimize convergence towards a given preference ray.

Takeaways: Our findings emphasize the need to apply MOO algorithms in the context

of holistic ML trustworthiness as opposed to plain ERM regularization. Since MOO

frameworks are developed with the assumption of conflicting objectives, it makes sense

for their performance to be superior over ERM.

5.4.2 Loss Vector Evaluation

In order to evaluate the losses properly, we fix the MOO training framework to be the Linear

Scalarization algorithm before diving into the comparison of the other approaches. We move

to comparing the performance of the model when it is trained according to the different

loss vectors defined previously in Chapter 4. Note that while the specific loss functions
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Figure 5.2: Two-Objective Pareto front under private training

used during training differ, the model is evaluated on the same list of metrics3 (Section 5.2)

at the end of each epoch. This allows us to compare different models across an extensive

list of metrics even if they weren’t explicitly part of the training objectives. For example,

a robust model trained on the LNat KL DP vector will be evaluated on the Madry loss too

in order to comprehensively assess its level of robustness. In addition, while some of the

models are trained on three loss functions, we will plot a two-dimensional scatter plot, which

effectively projects the Pareto front onto two dimensions. This projection doesn’t guarantee

that the Pareto front has a smooth curvature leading us to only select the Pareto optimal

models for the two dimensions considered. However, our experiments show that the projected

Pareto front remains in a“good” shape permitting a useful analysis. We will plot the three-

dimensional Pareto front later in the section. Some of the models considered are only trained

on three objectives rather than four4, we include them in our figures in order to compare

them to the other models incorporating all trustworthiness domains.

3the metrics also include all the loss functions mentioned previously
4utility, privacy and robustness or utility, privacy and fairness
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Utility-Robustness-Privacy: We will first study the utility-robustness-privacy trade-off

achieved by the different loss functions. As shown in Figure 5.4, the model that isn’t explicitly

trained for robustness shows an increase in its sensitivity across its decision boundary as the

natural loss and privacy budget increase. However, when a robust loss is included within

the training algorithm, the model learns to remain insensitive to small perturbations. Note

that in the early epochs, the model has a low KL divergence because it hasn’t yet converged

to a useful model so its decision boundaries are still very smooth which isn’t a reflection of

its true robustness. At every further epoch, the KL divergence remains stable across the

different models in the same region of the Pareto front.

Figure 5.3: Utility-Robustness-Privacy Pareto front for a 3-objective trained model

In figure 5.4, we evaluate different losses used to capture the four trustworthiness objec-

tives on the Utility-Robustness-Privacy trade-off. On the y-axis, we display the KL diver-

gence in the top row and the Madry loss in the middle row. Note how the Pareto front

gradually moves closer to the origin (more accurate and robust) as we train the model for

more epochs (less private). Our result also indicates that using either the KL divergence

or the Madry loss represent good proxies for robustness: a model trained with LNat KL DP

still produces a good Pareto front when evaluated on the Madry loss and vice versa with

LNat Adv DP . We also note how the below graphs compare to the right plot in Figure 5.3

that is only trained on LNat KL, the range of KL divergence spanned slightly increases from

a minimum of 0.02 to 0.025, indicating the challenge of becoming more robust when addi-

tional fairness constraints are imposed on the training process. The bottom row displays the

respective Pareto fronts when the model is trained using LAdv DP . While theoretically this

loss should capture utility and robustness within its LAdv component, the model struggles to

establish a properly diverse Pareto front, especially when plotting the natural loss against its

adversarial version (bottom right plot in Figure 5.4). This highlights the need to explicitly
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Figure 5.4: Utility-Robustness-Privacy Pareto front for a 4-objective trained model

consider the natural loss within the training objectives as opposed to combine it with its

robust form.

Utility-Fairness-Privacy: We will start with plotting the Pareto front of a private model

trained solely on accuracy and fairness (without robustness) and contrast its performance

when robustness is added. As shown in figure 5.5, more Pareto optimal models (with respect

to the natural loss and demographic disparity) are generated when the loss only captures
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accuracy and fairness: increasing the dimensionality of the objectives reduces the quality

of the Pareto front projected on the two dimensions of utility and fairness. However, the

optimal models generated remain consistent with their achieved range: DDP value around

0.3 (except for the LAdv DP -trained model which seem to exhibit a far wider range).

It is also interesting to note the difference in the Pareto fronts generated for Utility-

Robustness-Privacy in Figure 5.4 versus Utility-Fairness-Privacy in Figure 5.5: the former

seems more pronounced and diverse than the latter (RQ2). Our experiments show that

accuracy and robustness exhibit a higher degree of “conflict” than accuracy and fairness.

Intuitively, this makes sense particularly for the Colored MNIST dataset: we expect an

accurate model to completely disregard the color of the image and only rely on other features

for digit prediction. The same can’t be argued for utility and robustness as multiple research

has shown an empirical and theoretical conflict for a model to be both accurate and resilient

to adversarial attacks [63].

Figure 5.5: Utility-Fairness-Privacy Pareto front

Robustness-Fairness-Privacy: Keeping with our prior analysis, we will briefly evaluate

the Robustness-Fairness-Privacy Pareto front. The experiments confirm previous findings
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on the inherent trade-off between robustness and fairness: robust models seem to exhibit

performance discrepancy across different demographics and labels [41, 35, 27]. Our results

further demonstrate the potential of models to converge closer to the origin (more robust

and fair) at the expense of privacy. Unlike the Utility-Fairness-Privacy Pareto front in

Figure 5.5, our experiments show a diverse set of Pareto-optimal models for the Robustness-

Fairness-Privacy front. Robustness and fairness seem to exhibit a more pronounced trade-off

than accuracy and fairness. Hence, our work confirms in the context of private learning

what multiple research has shown for non-private training: adversarial training has the

unintentional effect of worsening the model’s performance with respect to fairness measures

(RQ2) [27, 57].

Figure 5.6: Robustness-Fairness-Privacy Pareto front
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Takeaways: The above experiments allow us to empirically compare different combina-

tions of loss functions for developing holistically trustworthy ML (RQ4). Accordingly, we

favor the use of LNat Adv DP or LNat KL DP loss vector as it generated a wide and diverse

Pareto optimal set across different metrics. Even though the LAdv DP appealed to us as it

reduced the dimensionality of the objective space while representing all our trustworthiness

goals, this reduction comes at the cost of generating a well-shaped Pareto front particularly

for the utility objective.

5.4.3 Four-Objective Pareto Front

We will now evaluate the Pareto front generated for all four trustworthiness dimensions:

utility, fairness, robustness and privacy. To properly visualize it, we plot the natural loss,

adversarial loss and DPFR in the x, y and z axis respectively. The privacy budget epsilon

will correspond to the color of the scatter points. We also plot a cone pointing towards the

origin to provide the relative direction of the diferent axis. We provide two views of the same

scatter plot in Figure 5.7. The figure shows us the set of Pareto optimal models generated by

all our methods with respect to the natural loss, adversarial loss, demographic disparity and

differential privacy. As can be seen, the models converge to lower values of the former three

losses at the expense of privacy leakage (RQ1). Interestingly, while the different methods

start with a wide ranging set of initial models, they all converge in a similar direction and

aggregate close to each other in the direction of the origin. We further divide this Pareto

front by method in Figure 5.8 which highlights how MOO algorithms (Linear Scalarization,

EPO and COSMOS) achieve a wider Pareto frontier closer to the origin than ERM and

Pareto MTL.

Figure 5.7: Utility-Robustness-Fairness-Privacy Pareto front - alternative view of the same
plot
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Figure 5.8: Utility-Robustness-Fairness-Privacy Pareto front per method

We provide a summary table of the metrics achieved across the different methods in Table

5.3. Note that all the methods are (2, 10−5)-DP after 20 epochs. While we provide the best

metric achieved for each sample in the table, this shouldn’t be mistaken as the existence of a

single model achieving all of them. Rather, it provides us with a way to assess the range of

values taken by the entire Pareto optimal set. Additionally, we compute the hypervolume of

the entire Pareto set. This serves as an indicator of the quality of the Pareto front generated

by a specific method: a Pareto front with a higher hypervolume implies an algorithm that

is able to produce a diverse set of Pareto optimal models close to the origin. Table 5.3

shows that Linear Scalarization and COSMOS outperform other approaches in the context

of producing holistically trustworthy ML models (RQ5).

Method Accuracy PGD Accuracy Natural Loss Madry Loss KL Div. Lipschitzness DPFR Hypervolume
ERM 89.52 55.08 1.5934 1.7849 0.0128 0.0096 0.1674 4.8414
Scalarization 92.76 61.35 1.5462 1.7078 0.0133 0.0100 0.0880 5.4696
Pareto MTL 86.49 56.51 1.6088 1.7544 0.0190 0.0142 0.0909 5.0409
EPO 91.75 59.00 1.5597 1.7443 0.0091 0.0068 0.1606 5.1322
COSMOS 89.33 57.10 1.5760 1.7324 0.0181 0.0135 0.0918 5.2481

Table 5.3: Performance Comparison of the Methods

Takeaways: We empirically found that MOO algorithms have the capacity to produce a

diverse and representative Pareto front in the context of four-dimensional trustworthiness

objectives. While the initial models generated are wide-ranging, they all converge in the

same direction (towards the origin) to achieve higher accuracy, robustness and fairness at

the expense of privacy. We further show that the Linear Scalarization approach was able

to produce a Pareto front with the largest hypervolume compared to the other methods.
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5.5 Limitations and Discussion

While our experiments provide us with valuable insights into how various algorithms fair in

the context of producing trustworthy ML, they need to be replicated on larger datasets to

confirm the findings, e.g., UTKFace [74] and CheXpert [30]. Evaluation on larger datasets

and more complex model architectures would allow us to confirm the feasibility of our ap-

proach and further evaluate the quality of the Pareto front generated across different methods

and loss vectors.

We also acknowledge that we only employed in-processing fairness schemes to reduce dis-

crimination throughout the training process. However, this doesn’t provide us with a precise

fairness guarantee at inference time. In order to do that, we would have to develop a post-

processing algorithm to analyze a query’s prediction and determine whether answering it

would violate the fairness guarantee [71]. Moreover, we provide robustness through adver-

sarial training as opposed to randomized smoothing which would ensure certified robustness.

Since smoothing would require a separate parent model and only provides an ℓ2-norm guar-

antee, we favored the use of adversarial training for its simplicity and strength regardless of

the norm chosen.
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CHAPTER 6

Conclusion and Future Work

In conclusion, we have dedicated this work towards developing a holistic framework for

assessing and evaluating trustworthy models in the face of conflicting objectives. Our work

contributes to future research in developing trustworthy models to be deployed, especially

since machine learning continues to be used in high-stakes environments. We used the

notion of Pareto front in comparing multi-objective solutions as it provides us with valuable

insight into the achievable trade-off across the different constraints. We further presented an

extensive evaluation across the objective space of different losses utilized as well as different

training algorithms. Moreover, we empirically showed that applying algorithms specifically

designed for MOO generally outperforms plain ERM regularization.

Accordingly, we encourage future work to continue evaluating and enhancing holistic ma-

chine learning trustworthiness in the context of MOO. While the intersectionality of MOO

frameworks and ML trustworthiness has been left mostly unexplored by the research com-

munity, it provided our work with a systematic way to develop Pareto optimal solutions and

assess the quality of the models generated. Future research should also attempt to increase

the efficiency of our approach by incorporating various novel defenses for each domain in a

joint manner, e.g., certified robustness, ensemble learning, PATE [46], and post-processing

fairness guarantee. We also encourage the research community to incorporate additional

trustworthiness requirements on top of the ones we considered, e.g., robustness against data

poisoning, machine learning interpretability, etc.
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APPENDIX A

Mathematical Equations

KL Divergence:

The KL divergence between two probability density functions P and Q defined over the

sample space X is defined as:

DKL(P ||Q) =
∑
x∈X

[
P (x) · log

(P (x)

Q(x)

)]
(A.1)

While the KL divergence isn’t a distance metric (it doesn’t satisfy the symmetry property

nor the triangle inequality), it is conventionally used as a form of measure of how different

two distributions p and Q are.
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APPENDIX B

Algorithms

Require: θ

for t ∈ [T ] do

Sample mini-batch Lt with sampling probability L/N {Poisson sampling}
for i ∈ Lt do

Compute gt(xi)← ∇θℓ
(
fθ(xi), yi

)
{Compute gradient}

end for

g̃t(xi)← gt(xi)/max(1, ||gt(xi)||2
C

) {Clip gradients}
g̃t ← 1

|Lt|(
∑

i g̃t(xi) +N (0, σ2C2I)) {Add Gaussian noise}
θ ← θ − ηtg̃t {Gradient Descent}

end for=0

Program B.1: DP-SGD

Require: θ

for t ∈ [T ] do

Sample mini-batch Lt with sampling probability L/N

for i ∈ Lt do

Compute gt(xi)← ∇θ

(
ℓ
(
fθ(xi), yi

)
+ λDPFR(θ,Dpublic)

)
end for

g̃t(xi)← gt(xi)/max(1, ||gt(xi)||2
C

)

g̃t ← 1
|Lt|(

∑
i g̃t(xi) +N (0, σ2C2I))

θ ← θ − ηtg̃t

end for=0

Program B.2: Fair DP-SGD
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pernot. Label-only membership inference attacks. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pages 1964–1974. PMLR, 2021.

[10] T. Dalenius. Towards a methodology for statistical disclosure control. Statistik Tidskrift,
15(429-444):2–1, 1977.

[11] Soham De, Leonard Berrada, Jamie Hayes, Samuel L. Smith, and Borja Balle. Un-
locking high-accuracy differentially private image classification through scale. CoRR,
abs/2204.13650, 2022.

[12] Michele Donini, Luca Oneto, Shai Ben-David, John Shawe-Taylor, and Massimiliano
Pontil. Empirical risk minimization under fairness constraints. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-
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