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Abstract

Lake Erie's water environment has been a growing concern due to its severe water eutrophication
problems which primarily caused by the accumulation of nutrients, particularly phosphorus, from both
point and nonpoint source pollutants originating from the Maumee River Watershed (MRW). Despite
global studies on the watershed's nutrient dynamics, the complex interactions between land use and
land cover (LULC), agricultural conservation practices (ACPs), and their effects on the water environment
remain inadequately understood within the MRW. In our study, we designed seven future scenarios
involving LULC and ACPs to explore their impacts on the MRW. We employed the Land Change Modeler
(LCM) and SWAT+ (Soil and Water Assessment Tool_Plus) to simulate future scenarios of LULC changes
and to model the hydrological conditions of the watershed from 2046 to 2065, respectively. ACPs were
set up in SWAT+, and we also incorporated meteorological data under the RCP8.5 scenario as future
climatic conditions. We selected four hydrological parameters—streamflow (Q), Total Suspended Solids
(TSS), Soluble Reactive Phosphorus (SRP), and Total Phosphorus (TP)—to analyze the impacts of various
LULC and ACP scenarios on MRW. Our research found that ACP scenarios have a more significant impact
on MRW's streamflow and water quality, but the effects of LULC changes are also non-negligible. We
further analyzed the impacts of different LULC scenarios on the MRW's water environment in greater
depth, both temporally and spatially, and found that different LULCs have more pronounced effects at
the spatial scale. Although different LULC scenarios can mitigate impacts to varying degrees in different
areas, our study also identified that the most significant LULC types on the water environment are open
spaces and agricultural lands. Therefore, we suggest that the ideal future development model for MRW
should involve managing open spaces reasonably and reducing fertilizer input in agricultural lands, while
moderately increasing the proportion of open spaces and medium to high-intensity urban land in
urbanized areas and reducing the area of agricultural land in the watershed. This model would
effectively improve MRW's streamflow and water quality while accommodating agricultural, economic,
and population growth needs.
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Chapter 1: Introduction



The water environment issues caused by high nutrient loading and streamflow have brought
serious ecological and human health problems to Lake Erie, one of the Great Lakes in the U.S.
Among the most critical are the harmful algae blooms (HABs), primarily sourced from
phosphorus (P) and sediment loading (Liu et al., 2019; Xu et al., 2018; Scavia et al., 2023;
Michalak et al., 2013; Motew et al., 2019; Olaoye et al., 2021). Numerous studies indicate that
the Maumee River Watershed (MRW), with over 70% agricultural land use, is the primary
contributor to Lake Erie's nutrient loadings (Kast et al., 2021; Maccoux et al., 2016; Cousino et
al., 2015). These agricultural lands, acting as nonpoint source pollution, contribute significantly
to the watershed's Total Phosphorus(TP), Soluble Reactive Phosphorus (SRP) and Total
Suspended Solids (TSS), ultimately leading to HABs. Agricultural Conservation Practices (ACPs)
have been continuously studied in this watershed as crucial mechanisms for reducing nonpoint
source nutrient and sediment transport, highlighting their potential for mitigating HABs
(Michalak et al., 2013; Bosch et al., 2013). Relevant research indicates that ACPs, including No
Tillage, Conventional Tillage, Tile Drainage, Cover Crops, and Nutrient Management, can
effectively reduce levels of SRP, TP and TSS (Kalcic et al., 2016; Kast et al., 2021; Daloglu et al.,
2012; Rittenburg et al., 2015). However, research also indicates that some common practices,
like Buffer Strips and Grassed Waterways, may have minimal effects on reducing nutrient levels
(Smith et al., 2015; Dodd and Sharpley, 2016). Nevertheless, these conclusions can vary due to
the precision and variability of model input data. Furthermore, research demonstrates that
certain subbasins within the MRW exhibit significant concentrations of urbanization, and future
rational urban planning could mitigate water environmental issues to some extent.

Land use and land cover (LULC) changes are among the significant factors that directly impact
hydrological processes, water environments, and socio-economic activities (Malede et al., 2022;
Peraza-Castro et al., 2018). These changes, often driven by human activities such as population
growth and changes in production and living patterns, manifest in forms such as urban
expansion, degradation of agriculture and pasture, and industrialization, which in turn affect
the water environment (Malede et al., 2022; Wang and Kalin, 2018). Studies have shown that
these impacts are mostly negative. For example, rapid urbanization can lead to increased
surface runoff and evapotranspiration due to the increase in impervious surfaces, while the
expansion of agricultural and pasture lands can accelerate the enrichment of water bodies with
nutrients through the input of more fertilizers, pesticides, and other chemical components,
with P being the most significant (Gong et al., 2019; Fan and Shibata, 2015). However, research
also indicates that the impact of LULC on the water environment is spatially and temporally
heterogeneous. For instance, regions with similar land type compositions may have different
impacts on the water environment due to their locations within a watershed and differences in
human activities (de Mello et al., 2018; Wilson, 2015). Moreover, the distance between
different LULC types and water bodies can also affect nutrient inputs into water quality (Huang



et al., 2019). On the temporal scale, LULC is subject to the influences of natural processes and
human behaviors, adding greater uncertainty to water issues (Serpa et al., 2017; Sharannya et
al., 2021). Despite the MRW being predominantly an agricultural watershed, it also contains
many high-intensity urban areas, including Perrysburg, Defiance, Fort Wayne, and large areas of
pasture in the northwest. However, the impact of these LULC types on surface runoff and
nutrient loadings, particularly P, has historically been understudied. Therefore, in this study, we
innovatively explore the spatial and temporal variations of these less-studied LULC types on
watershed streamflow and P loading at the scale of Landscape Units (LSU), where LSU is a
refined classification unit in the SWAT+ (Soil and Water Assessment Tool Plus), considered as a
collection of multiple Hydrological Response Units (HRUs) (Chawanda et al., 2020).

In contrast to the research focused on ACPs within the agricultural lands of MRW, other
watershed studies have placed more emphasis on a broader range of LULC classifications, such
as urban, forest, wetlands, and farmlands (Khoshnood Motlagh et al., 2021; Zhao et al., 2023).
These studies primarily examine the impacts of LULC changes on the aquatic environment by
comparing carefully designed LULC scenarios. Such scenarios are often created based on
historical trends of LULC changes and regional development goals for the future. The
fundamental findings suggest that reductions in forests, wetlands, and farmlands can
beneficially reduce surface runoff and nutrient loadings in water to varying degrees, while
increased urbanization tends to deteriorate water quality and increase surface runoff (Pandey
et al., 2023; Ren et al., 2014; Carle et al., 2005). In terms of research methodologies, some
studies utilize remote sensing satellite imagery to extract LULC information and employ
algorithms to deduce LULC evolution, whereas a greater number of studies simulate spatial
changes in complex systems using LULC models like Dyna-CLUE and Land Change Modeler
(LCM) (Lin et al., 2021; Malede et al., 2022; Shrestha et al., 2018; Fan and Shibata, 2015). The
LCM model was chosen for our study because of its greater dynamic predictive ability and
spatial simulation accuracy compared to other models, particularly in urban growth and
environmental protection areas. Past research has seldom analyzed the historical changes in
MRW!'s LULC, including urban land, nor explored the impacts of various future LULC changes
scenarios on the aquatic environment. Therefore, to address the gap in MRW research
concerning a wider array of LULC types, we utilized LCM to analyze past LULC changes and
designed several future LULC scenarios for 2046. These scenarios examined the effects of
varying degrees of urbanization, agricultural, and pasture conservation on watershed
streamflow and water quality improvement.

In addition to LULC changes, climate change has been confirmed as another key issue leading to
water environment problems (Greenough et al., 2001; Moore et al., 2008). This is primarily due
to climate change impacting the hydrological cycle through altering future precipitation spatial



and temporal distributions, water temperature, evapotranspiration, and water stratification,
etc (Yuan et al., 2020; Giorgi et al., 2019; Arnell, 2004; Kundzewicz et al., 2010). For instance,
regarding HABs, higher water temperatures and increased precipitation can accelerate the
concentration of water pollutants including nutrients, thus intensifying the production of HABs
(Barruffa et al., 2021; Carstensen et al., 2023; Wells et al., 2020; Paerl et al., 2011). Research on
the impact of climate change on the MRW mainly utilizes General Circulation Models (GCMs),
the hydrological model SWAT, and statistical models related to HABs to analyze the effects of
climate change on HABs, with GCMs widely used for predicting future climate and driving
hydrological models (Cousino et al., 2015; Culbertson, 2016; Culbertson, A. M., 2015; Kalcic et
al., 2019). These studies suggest that future climate may reduce nutrient loadings thus the scale
of HABs, even though increased water temperature may mitigate this effect (Scavia et al.,
2021). However, in MRW, few studies comprehensively consider and compare the impact of
future climate, LULC, and ACPs on the water environment, even though such impacts, especially
the combined and synergistic effects of climate change and LULC, have been demonstrated in
other watersheds (Karlsson et al., 2016; Kundu et al., 2017; Rahman et al., 2015).

Considering the above research gaps, our research question is: In the future, what are the
mitigation effects of LULC and ACPs scenarios on streamflow and water quality issues in the
MRW? The main research objectives include: 1) to investigate the effects of future LULC and
ACPs on the water environment of MRW separately; 2) to investigate the differences among
various LSUs’ hydrological performance under different LULC and ACP scenarios and which
scenario performs better.



Chapter 2: Material and Method



2.1 Study Area

Our study area is the Maumee River Watershed, located in northwest Ohio (Figure 1). It spans
Ohio, Indiana, and Michigan, extending from 40° 23’ to 42° 5' N latitude, and between 83° 20’
and 85° 15’ W longitude (Verma et al., 2015). Originating near Fort Wayne, Indiana, it stretches
over 130 miles to Lake Erie, covering a total area of approximately 6,330.1449 square miles, as
measured at the USGS gauging station in Waterville, Ohio (Station #04193500) (Verma et al.,
2015; Scavia et al., 2021). The MRW is the largest contributor of P to the western basin of Lake
Erie, with about 88% of its TP loading coming from nonpoint sources, primarily agriculture (Kast
et al., 2021; Maccoux et al., 2016).

The watershed is predominantly composed of agricultural lands, urban areas, pastures, and
forests, with agricultural land making up more than 70% of the area, primarily rotating between
soybeans, corn, and winter wheat. Urban areas, pastures, and forests account for
approximately 11%, 6%, and 6% of the LULC, respectively (Yuan et al., 2020; Culbertson et al.,
2016). The largest urban areas within the watershed are Toledo and Fort Wayne, with other
urban areas scattered throughout the watershed. Pastures are mainly concentrated in the
northwest part of the watershed. The overall terrain of the watershed is flat, and the soil type is
mainly clay, with tile drainage commonly used in agriculture to address issues with natural
drainage (Muenich et al., 2016; Cipoletti et al., 2019). To mitigate the high nutrient loadings
from agriculture, since the 1990s, many farms have adopted ACPs to reduce nutrient loads in
the watershed, including conservation tillage, vegetative buffer strips, nutrient management,
and cover crops (Culbertson et al., 2016).
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Figure 1. Study Area and Subregions: The map displays the location of Maumee River Watershed
(MRW) and its location in relation to Lake Erie. MRW crosses Indiana, Ohio, Michigan, and the LULC map
has a total of 15 LULC categories based on the National Land Cover Database (NLCD).



2.2 Study Framework
Our study primarily considers two change drivers—LULC changes and ACPs—and their impact

on the water environment of the MRW (Figure 2). We have selected four indicators to
represent MRW's streamflow and water quality: surface runoff for streamflow, and SRP, TSS,
and TP for water quality. We utilize the LCM to simulate and predict future LULC change
scenarios, while different LSUs are delineated using SWAT+. In SWAT+, we set up different ACP
scenarios and input future climate data. Ultimately, by integrating both models, we aim to
analyze and compare the effects of different future LULC scenarios and ACP scenarios on
MRW's streamflow and water quality at the LSU scale.

Change Drivers Maumee River Watershed

Streamflow (Q)
LULC Change
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Figure 2. Study Framework: The diagram illustrates our overall research framework, focusing on the
impact of two change drivers—LULC changes, ACPs—on streamflow (Q) and water quality indicators
such as Total Suspended Solids (TSS), Soluble Reactive Phosphorus (SRP), and Total Phosphorus (TP)
within the MRW. This framework is utilized to study the effects of various future LULC and ACP scenarios
on MRW's streamflow and water quality.

2.3. LULC & Land Change Modeler

2.3.1 LULC Scenarios

We designed eight scenarios, including a baseline scenario, to explore effective measures that
could mitigate water environmental issues. Among these, the S1-S5 are future LULC change
scenarios (Table 1), primarily aimed at investigating future land planning and development
strategies, set mainly in the LCM. The specific settings of the model are determined through a
Markov matrix, which reflects the probability of one LULC type transitioning to another. We
adjust these probabilities to achieve the desired scenario settings. Whereas our baseline
scenario SO keeps the LULC of 2016 unchanged to 2046 to enable comparisons with other
scenarios.



Among the five LULC scenarios, the first is the Historical LULC Development scenario (S1), which
maintains the LULC transition probabilities observed from 2011 to 2016 to predict LULC in 2046.
S2 and S3 relate to urban development, with S2 serving as a Low Intensity Development
scenario. It aims to reduce the future area of medium and high-intensity urban lands by limiting
the transition from barren land, open space, and low intensity to medium and high intensity. In
contrast, S3 encourages transitions from barren land, open space, and low intensity to medium
and high intensity, thus increasing the future area of medium and high-intensity urban lands. S2
and S3 primarily explore the impact of urban development models of varying intensities on the
MRW!'s water environment. Scenarios S4 and S5 are the Pasture Protection and Agriculture
Protection scenarios, respectively. Given the existing proportion of pasture in the MRW, S4
aims to explore the mitigating effects on the water environment of future strategies that limit
the transition of urban land types, including open, low, medium, and high intensity, to pasture.
Similar in design strategy to S4, S5 aims to protect the agricultural land, which accounts for the

highest LULC proportion in the MRW.

Table 1 Descriptions and Settings for Future LULC Scenarios

Name Description Setting
SO Baseline Suppose the LULC of 2016 Use the 2016 LULC map as the
unchanged future map
S1 Historical Maintain the historic trend of Maintain preliminary LULC transfer
LULC LULC changes from 2011 to 2016 | possibility
Development to predict the 2046 LULC
S2 Low Intensity Encourage the development of Reduce the transition possibility
Development Open Space & Low Intensity from Barren, Open, Low to Medium,
High by 50%
S3 Compacted Encourage the development of Increase the transition possibility
Development Medium & High Intensity from Barren, Open, Low to Medium,
High by 50%
S4 Pasture Limit the transition from Pasture Set the transition possibility from
Protection to urban developed areas Pasture to Open, Low, Medium,
High to 0%
S5 | Agriculture Limit the transition from Set the transition possibility from
Protection Agriculture to urban developed Agriculture to Open, Low, Medium,




areas High to 0%

2.3.2 Land Change Modeler Basics

The Land Change Modeler (LCM) developed by IDRISI Selva is a software designed to assess
LULC changes and to predict future LULC scenarios accurately (Anand et al., 2018). Besides, it is
extensively used for evaluating practical applications and measures related to LULC in the
future as well (Mas et al., 2014; Remondi et al., 2016; Olmedo et al., 2015; Wilson and Weng,
2011). LCM employs the CA_Markov model integrated within IDRISI for LULC modeling, where
CA (Cellular Automata) operates on a grid of cells, using rules based on the state of neighboring
cells to infer changes over time in LULC for each cell. This approach is suitable for simulating
more complex spatial processes (Gumindoga et al., 2014; Hand, 2005). The Markov chain
models predict the likelihood of each LULC type transitioning to another by analyzing the
process of change between two LULC maps, thereby estimating future LULC for a specific year
(Anand et al., 2018; Zhao et al., 2023).

2.3.3 Land Change Modeler Setting

We conducted predictions of LULC at the county scale since SWAT+ operates with land
classification at the subbasin or LSU level, a hydrological classification approach we believe is
not applicable to the realm of urban planning. Therefore, we performed future LULC
simulations and predictions for the more than thirty counties covering the total area of MRW,
including scenarios of future LULC. Our LULC map inputs are derived from the National Land
Cover Database (NLCD), selecting maps from the years 2011, 2016, and 2021. The 2011 and
2016 maps serve as input for the LCM, while the 2021 map is used for model validation (Table
2). The study area encompasses 15 LULC types as defined by the NLCD, which include Water,
Open Space, Low Intensity, Medium Intensity, High Intensity, Barren Land, Deciduous Forest,
Evergreen Forest, Mixed Forest, Shrub, Grassland, Pasture, Agriculture (Cultivated Crops),
Woody Wetlands, and Emergent Herbaceous Wetlands. Additional model inputs include Basis
Road Layers from OpenStreetMap (OSM) and Digital Elevation Models (DEM) from the USGS
National Elevation Dataset (NED) at a 30m resolution.

In our research, we applied the Weighted Normalized Likelihood (WNL) method within LCM,
which is particularly effective for modeling a large number of transitions simultaneously due to
the diverse LULC types in our study area (Eastman et al., 2019). Although the Multi-Layer
Perceptron (MLP) method is commonly used for its ability to model complex non-linear



relationships, it was not adopted in our study due to its limitation of modeling a maximum of
nine LULC transitions (Mishra et al., 2014; Mirici et al., 2018). The WNL method involves
treating each LULC transition type as a sub-model for training, with our driving variables
including evidence likelihood of LULC changes, distance from road, slope, and population
density data (Table 2). The evidence likelihood of LULC changes is generated by LCM
calculations, while distance from road and slope are processed using spatial analysis tools in
ArcGIS Pro, and population density data are sourced from the Humanitarian Data Exchange

(HDX).

Table 2 LCM Input Data and Driving Variables

(a) Three basic types of inputs for LCM and their data sources

Input Data

Data Source

LULC Maps

NLCD LULC map for the year 2011,
2016, 2021

Basis Road Layers

Open Street Map (OSM)

DEM

USGS NED (30m)

(b) Four driving variables used for training sub-models in LCM and their data sources.

Driving Variables

Data Source

Evidence Likelihood of LULC
Change

Transition potential Map
manipulated by LCM

Distance From Road

“Euclidean Distance” by ArcGIS

Slope

“Slope" by ArcGIS

Human Population

Humanitarian Data Exchange

2.3.4 LCM Validation

In addition to the accuracy reports after each model training inherent in the LCM, we employed

Kappa Statistics for the validation of our model inputs and predictive capability. Kappa

Statistics, based on the confusion matrix, measures the spatial consistency between predicted
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and actual LULC maps and is widely used in the validation process of LCM models (Tariq et al.,
2022; Mehrabi et al., 2019). The confusion matrix is an effective method for measuring the
accuracy of classified remote sensing images (Leta et al., 2021; Morales-Barquero et al., 2019).
Typically, a Kappa Statistic value above 0.8 is considered indicative of good model predictive
accuracy.

Under the same model settings, we predicted the 2021 LULC map based on the 2011 and 2016
LULC maps. Subsequently, we randomly selected 100,000 points on the predicted 2021 LULC
and the actual 2021 LULC maps at identical locations. A confusion matrix was constructed using
the LULC types represented by these 10,000 points to calculate the Kappa Statistics.

2.4 Agricultural Conservation Practices Scenarios

Besides the five LULC scenarios, the other two scenarios represent common and practical ACPs
in the watershed, focusing on the effectiveness of adopting protective measures on agricultural
land in the future (Table 3). S6 is the No Tillage Enforcement scenario, because no-tillage has
been proven to be an effective agricultural measure in the MRW for significantly reducing
nutrient loadings. Its mechanism of action mainly involves reducing soil disturbance to leave
crop residue on the fields, substantially reducing nutrient content in soil sediment (Bosch et al.,
2014; Smith et al., 2015; Yuan and Koropeckyj-Cox, 2022). Therefore, we converted 50% of
fields from conventional tillage and 50% from reduced tillage to no-tillage to enhance the
efficacy of no-tillage. The data and definitions for conventional tillage, reduced tillage, and no-
tillage are based on the Operational Tillage Information System (OpTIS). Additionally, research
indicates that farm fertilizer is the primary source of P contributing to Lake Erie, accounting for
up to 75% (as of 2014 data) (Scavia et al., 2016). Thus, S7 aims to reduce nutrient input through
a 50% reduction in P fertilizer application. By analyzing and comparing these two types of
scenarios with another five LULC scenarios, our goal is to determine which approach may be
more effective in mitigating water environmental issues in the future.

Table 3 Descriptions and Settings for Future ACPs Scenarios

Name Description Setting
S6 | NoTillage Low Soil Disturbance to Change 50% of
Enforcement | leave crop residue on the Conventional Tillage &
fields to heavily reduce 50% Reduced Tillage
nutrient in soil sediment Fields to No-Tillage

11



S7 | P Fertilizer Reduce nutrient input Reduce P fertilizer
Reduction through fertilizer reduction | input rate by 50%

2.5 Future Climate

Our future climate settings are based on Version 4 of Community Climate System Model
(CCSM4), which has been shown by related studies in the MRW to perform better compared to
other climate models and is one of the most widely applied climate models (Kalcic et al., 2019;
Yuan et al., 2020; Culbertson et al., 2016). We selected temperature (Tmax, Tmin) and
precipitation (Prcp) data under the RCP8.5 scenario, while other climate data including solar
radiation, relative humidity, and wind speed were generated in the SWAT+ weather generator.
Among the four pathways used for climate modeling (the others being RCP2.6, RCP4.5, and
RCP6.0), RCP8.5 can be understood as a high greenhouse gas emissions pathway,
corresponding to higher temperatures and more significant climate change (Schwalm et al.;
Riahi et al.). Since it does not include any specific climate mitigation targets, it can serve as a
baseline scenario for future climate (Riahi et al.; Xin et al.). We selected climate data for a total
of 12 stations under the RCP8.5 scenario for the years 2046-2065 as the climate data input for
SWAT+ and applied it in the simulation of each future LULC and ACPs scenario.

2.6 SWAT+

SWAT+ is a time-continuous, semi-distributed hydrological model that represents a significant
update to the SWAT model, which has been proven effective and comprehensive over the past
twenty years (Bieger et al., 2017; Chawanda et al., 2020). Tests and existing studies indicate
that its hydrological simulation results are comparable to SWAT and have greater flexibility in
the spatial representation of interactions and processes within watersheds (Bieger et al., 2020;
Wou et al., 2020). SWAT+ introduces the concept of LSUs, which are finer subdivisions on
subbasins based on channel thresholds (Chawanda, 2020). LSUs can be further divided into
Hydrologic Response Units (HRUs), similar to the classification in SWAT, referring to units within
each subbasin with unique land use, soil, and slope characteristics. LSUs enable SWAT+ to
better simulate landscape position, overland routing, and floodplain processes. Additionally,
SWAT+'s advantages include more flexible adjustments of land use and management variables,
more flexible settings of spatial interactions within the watershed, and rapid calibration, etc
(Bieger et al., 2017; Wu et al., 2020; Kiprotich et al., 2021; Nkwasa et al., 2020).

Our lab has set up and calibrated the MRW's SWAT+ model. The R-squared values for Q, TSS,
SRP, and TP are 0.89, 0.66, 0.72, and 0.81, respectively, indicating good calibration results.

12



Regarding the six future LULC scenarios (SO-S5), we merged the county-level 2046 LULC maps
for each scenario and clipped them with the MRW boundaries to produce LULC maps of the
watershed for different future scenarios. Subsequently, we re-inputted the new maps into
SWAT+ and combined them with future climate data to simulate the hydrology of the MRW for
the 2046-2065 period. The two ACPs scenarios are based on the LULC map of scenario S1, with
the settings for agricultural practices completed in SWAT+. We compared the simulation results
of these eight future scenarios and conducted hydrological analysis at the LSU scale.

13



Chapter 3: Results and Discussion

14



3.1 Historic LULC Changes

We initially utilized the LCM to analyze the LULC changes during the periods 2011-2016 and
2016-2021 (Figure 3). Our analysis focused on LULC categories relevant to our future LULC
scenarios, including those related to urban development: open space, barren land, low
intensity, medium intensity, and high intensity, as well as pasture and agriculture. From the first
two diagrams showing the net change in LULC area, we observed an overall trend over the
decade of decreasing open space, pasture, and agriculture, alongside increasing low intensity,
medium intensity, and high intensity areas. This phenomenon indicates a continuous
urbanization process within the MRW. However, it is noteworthy that when comparing the area
changes and the magnitude of changes between the two periods, the rate of decrease in open
space and pastureland has slowed, the rate of increase in low-intensity land has risen slightly,
and the rate of growth in medium- and high-intensity urban land has slowed. This might
suggest a deceleration in the urbanization rate of the MRW, or potentially a shift from medium
and high-intensity development patterns towards a low-intensity development pattern.
Furthermore, barren land experienced a reduction followed by an increase, but given the
previous analysis, we consider this change insufficient to represent the urbanization process of
the MRW. Moreover, its small base number might also likely be the reason for its highest
growth rate during 2016-2021.
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Figure 3. Net Change of LULC during 2011-2016 and 2016-2021: The diagram shows the net changes in
LULC for two historical periods. Top left: Net change in LULC area from 2011 to 2016 (in acres); Top
right: Net change in LULC area from 2016 to 2021 (in acres); Bottom left: Percentage of net change in
LULC area from 2011 to 2016 (in %); Bottom right: Percentage of net change in LULC area from 2016 to
2021 (in %).

3.2 Land Change Modeler Validation

The confusion matrix displayed the distribution of values for each LULC classification in the
predicted versus actual 2021 LULC map, based on a random selection of 100,000 points (Table
4). Overall, the model's predictions were relatively accurate, as evidenced by the values along
the diagonal (excluding N/A) being in the top 10% (highlighted in pink), indicating the number
of points with spatial consistency across the two LULC maps. Furthermore, the accuracy column
on the far right revealed that nearly all LULC categories had an accuracy higher than 90%, with
most even exceeding 95%. In terms of the total distribution of points across various LULC
categories, it was evident that the MRW's 2021 LULC predominantly consisted of agricultural
land, deciduous forests, various urban lands, and pasture (highlighted in orange), with other
LULC categories covering significantly smaller areas. The calculation of Kappa statistics at 0.979,
significantly above 0.8, supported the reliability of the LCM validation process.

The prediction accuracy for each LULC category shows that Water and Shrub have the lowest
accuracies, at 89.61% and 81.54%, respectively. The accuracy for Water is close to 90%, which is
considered a good level. The lower accuracy for Shrub is attributed to its relatively small area,
with only 65 points involved in the validation process, where slight differences can lead to
larger errors. Additionally, the validation results regarding the proportion of various LULC
categories align with previous research (Yuan et al., 2020; Culbertson et al., 2016), indicating
that the land pattern and development mode in the MRW have not significantly changed over
the past 20 years.
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Table 4 Confusion Matrix of LCM Validation:

Actual Classification
Classes  |N/A |WA |os |1,| |MI ||u |B/\ |[)F ||-:|-‘ |Ml-' |sn IGR IPA |AG |ww |F.IIW Total  [Accuracy
N/A 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100.00%
WA 0 1277 0 1 1 1 3 8 1 0 1 5 3 6 21 97 1425 [89.61%
0s 0 0 6089 58 121 11 0 0 0 0 0 0 0 0 0 0 6279 [96.97%
LI 0 0 0 5680 39 28 0 0 0 0 0 0 0 0 0 0 5747  [98.83%
MI 0 0 0 0 3757 4 0 0 0 0 0 1 0 0 0 0 3762 |99.87%
E HI 0 0 0 0 0 1655 0 1 0 0 0 0 0 0 0 0 1656 |99.94%
§ BA 0 0 0 0 1 0 243 0 0 0 1 5 0 2 1 3 253 [96.05%
E DF 0 1 7 3 2 6 0 9770 0 3 % 2 14 17 0 3 9880  [98.89%
8 EF 0 0 0 0 0 0 0 0 18 0 0 2 0 0 0 0 186 [98.92%
E MF 0 3 0 0 0 0 0 0 1 845 0 0 1 1 0 0 851 [99.29%
% SH 0 0 0 0 1 0 0 2 0 0 53 0 4 5 0 0 65 81.54%
£ |or 0 1 0 0 0 1 0 1 1 1 0 292 3 1 0 1 302 [96.69%
PA 0 3 23 44 93 33 0 11 0 0 3 4 5385 68 4 2 5693 [94.59%
AG o ¢ 15 14 50 25 0 4 1 b} 4 8 5 57077 8 13 57228 [99.74%
wwW 0 13 3 3 1 0 0 3 0 0 0 2 0 1 5834 2 5862 [99.52%
EHW o 1 0 0 0 3 0 0 0 0 0 0 13 1 26 752|796 |9447%
Total 15 1301 6137 5803 4066 1767 246 9800 188 851 84 348 5428 57179 5894 893 100000
Accuracy [100.00% 98.16% 99.22% 97.88% 9240% 93.66% 98.78% 99.69% 97.87% 99.29% 63.10% 8391% 9921% 99.82% 98.98% 84.21%

Note: The table displays the correspondence between predicted and actual values for 100,000 randomly
distributed points in the 2021 LULC map. From the table, we can deduce the prediction accuracy for each LULC
classification. In the table, pink highlights the top 10% highest values within these LULC classifications, orange from
dark to light correspond to the total number of each LULC classification from high to low, and blue from dark to
light represent the prediction accuracy of each LULC classification from low to high. (The abbreviations for LULC
classifications are as follows: N/A: Null Value; Water: WA; Open Space: OS; Low Intensity: LI; Medium Intensity: Ml;
High Intensity: HI; Barren Land: BA; Deciduous Forest: DF; Evergreen Forest: EF; Mixed Forest: MF; Shrub: SH;
Grassland: GR; Pasture: PA; Agriculture: AG; Woody Wetlands: WW; Emergent Herbaceous Wetlands: EHW.)

3.3 Scenario Results & Discussion
3.3.1 Future LULC change under alternative scenarios

Figure 4 displays the net area changes of seven LULC types in the future five LULC scenarios
compared to 2016, which is the LULC in SO. It is confirmed that the future development pattern
of LULC involves a decrease in open space, pasture, and agriculture, and an increase in low
intensity, medium intensity, and high intensity, with the changes in barren land being
inconspicuous. This is consistent with historical trends. Among these changes, the variations in
medium intensity, open space, and pasture are more pronounced. For S1, over the next 30
years, medium intensity is expected to increase by 33,022 acres, while open space and pasture
are forecasted to decrease by 20,680 and 26,609 acres, respectively. The changes in the other
three LULC types are relatively minor, with low intensity and high intensity increasing by 12,145
and 10,447 acres, respectively, and agriculture decreasing by 11,234 acres.

Comparing these five scenarios, it is found that in S2, compared to 2016, open space decreases

by 10,720 acres, and medium intensity and high intensity increase by 19,931 and 8,523 acres,
respectively. In contrast to S1, open space increases by 8,730 acres, while medium and high
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intensity decrease by 13,091 and 1,924 acres, respectively. This indicates that encouraging a
low-intensity urban development model effectively protects open space in the future, while
reducing the urbanization process of medium and high intensity. Moreover, compared to S1,
pasture also increases by 4,194 acres in S2, thereby to some extent reducing the development
of pasture. Changes in low intensity, barren land, and agriculture in S2 are not significant.

The results of S3 are almost the opposite of S2, with open space decreasing by 30,515 acres,
and medium intensity and high intensity increasing by 19,937 and 12,598 acres, respectively.
Compared to S1, open space decreases by 9,835 acres, and medium and high intensity increase
by 14,695 and 2,151 acres, respectively, indicating that urbanization is further intensified under
this scenario, aligning with the scenario's setup. Additionally, in S3, pasture and agriculture
decreased by 30,785 and 13,389 acres, respectively, compared to S1, further decreasing by
4,176 and 2,155 acres.

Compared to 2016, in S4, open space, pasture, and agriculture decrease by 21,222, 26,060, and
11,182 acres, respectively, while low intensity, medium intensity, and high intensity increase by
12,408, 33,101, and 10,115 acres, respectively. The LULC changes in S4 are only slightly
different from those in S2, indicating that the scenarios have essentially identical LULC changes.
Thus, it is inferred that the scenario protecting pasture might not have a significant effect on
mitigating water environmental issues at the watershed scale, but it cannot be excluded that
this effect may be more significant at the subbasin or LSU scale.

S5, as an agricultural protection scenario, is the only one among the five scenarios where
agriculture is expected to increase in the future, by 707 acres. Compared to S1, this scenario
sees an additional 11,941 acres of agricultural land. Regarding urban LULC, in S5, open space
decreases by 24,611 acres, while low intensity, medium intensity, and high intensity increase by
8,743, 30,837, and 8,492 acres, respectively. Compared to S1, the significant changes include
decreases in open space, low intensity, and high intensity by 3,931, 3,402, and 1,955 acres,
respectively.
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Figure 4. LULC Net Change of Five LULC Scenarios Compared with 2016: The five diagrams, arranged
from left to right and top to bottom, sequentially display the net changes of seven LULC types in the S1,
S2, 53, 54, and S5 scenarios compared to the year 2016.

The reasons behind the future LULC outcomes can primarily be attributed to two factors: the
area proportions of various LULCs and the configuration mechanisms of the LCM. Given that the
urban LULC proportion in the MRW is not particularly high, especially when compared to the
highly urbanized Rouge River Watershed, there are no cities within MRW that exhibit
exceptionally high levels of urbanization (Selzer and Bureau, 2008; Cipoletti et al., 2019).
Although there are regions around MRW with relatively higher urbanization levels, such as
Toledo, MRW only covers a small portion of these urban areas. Consequently, within MRW's
urban LULC types, medium intensity has the highest proportion, and the most direct
manifestation of urbanization in MRW is likely the increase in medium intensity areas, with
open space being the primary source of this transformation. This explains why among the seven
LULC categories, the changes in open space and medium intensity are very significant, while
high intensity does not show particularly noticeable changes across the scenarios. The results
for S2 and S3 are consistent with the LCM model settings, where S2 primarily reduces the
transition from open space, low intensity, and barren land to medium and high intensity,
effectively slowing down the urbanization process and preserving open space compared to S1.
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In contrast, S3 increases such transitions, hence significantly exacerbating urbanization. The less
desirable results for S4 could likely be due to the smaller proportional area and uneven
distribution of pasture. Similarly, S5, due to the extremely high proportion of agricultural land,
shows more significant effects. It's important to note that these diagrams only reflect the net
change in overall LULC, so more pronounced changes might be present at the subbasin and LSU
levels. Additionally, since the total area simulated at the county scale exceeds the MRW area,
some regions are clipped in the process of generating the final watershed LULC map, which is
another source of error.

3.3.2 Water Quantity and Quality Outcomes of Future Scenarios at Watershed Level

We calculated the differences in mitigation effects on Q, TSS, SRP, and TP among seven future
scenarios (51-S7) compared to the baseline scenario (S0) as depicted in Figure 5. Each scenario's
boxplot in the figure reflects the collection of percent changes in mitigation effects for Q, TSS,
SRP, and TP across 290 LSUs. Regarding Q, we found that the results for S1-S7 were similar,
with ranges approximately from -1.0% to 1.5%, and the median slightly above 0. This suggests a
slight and consistent increase in Q across the seven future scenarios. Notably, S1 and the two
ACPs scenarios (S6 and S7), which all utilized the same 2046 LULC map, displayed nearly
identical performances on Q. This indicates that enhancing no-tillage and reducing P fertilizer
has negligible effects on surface runoff. Despite studies indicating that no tillage can reduce
streamflow to some extent due to less soil disturbance thus enhancing the soil's infiltration
capacity (Dick et al., 1989; DelLaune and Sij, 2012; Merten et al., 2015), the results in MRW,
particularly for S6, were not significant. We attribute this primarily to the soil texture, as the
low porosity of clay soils results in lower infiltration rates, thus the mitigation effect on Q is not
pronounced (Uusitalo et al., 2000; Tan et al., 2002). S7 merely reduced soil nutrient inputs
without altering the soil's physicochemical properties, hence its negligible impact on Q.
However, there are slight differences in Q among the LULC scenarios (S1-S5), most notably, S3
showed a slight increase in Q compared to S1, while S2 showed a slight decrease. This can be
primarily attributed to changes in LULC. Specifically, S3 significantly increased medium to high-
intensity urban development areas, thus greatly increasing impervious surfaces such as
concrete and asphalt, which in turn significantly increases the aggregation and velocity of
surface runoff, thereby increasing Q, especially during rainfall (Chen et al., 2017; White and
Greer, 2006; Olivera and DeFee, 2007). Conversely, the substantial reduction in urban density in
S2 thus had better mitigation effects on Q, which also explains why all S1-S7 scenarios exhibit a
slight increase in Q, as urbanized areas have increased overall compared to 2016 (Figure 4).
However, the variation in urban areas did not result in significant changes in Q, likely due to the
low proportion of urban areas in MRW.

20



The performance of S1-S7 on TSS showed more variability than Q (Figure 5). Overall, the
mitigation effects ranged from -10% to 15%, with medians fluctuating around zero. ACP
scenarios S6 and S7 performed similarly to S1, possibly because streamflow has not changed
significantly, thus preventing the release of TSS from the soil (Hongbing et al., 2009; Poudel et
al., 2010; Kamali et al., 2017). On the other hand, reduced soil disturbance, coupled with fine-
textured soil, likely resulted in TSS being largely retained within the soil (Wang et al., 2014;
Uusitalo et al., 2000; Carver et al., 2022). In the LULU scenarios (S1-S5), S2 and S5 had lower
median TSS compared to S1, while S3 showed a slight increase. Additionally, except for S3,
which showed an increased range, the other three scenarios showed a reduced range
compared to S1. Despite the correlation between Q and TSS, as surface runoff carries TSS from
agricultural fields, impermeable surfaces, and atmospheric deposition (Zhao et al., 2022;
Charters et al., 2021), the results for S2 and S3 indicated that their Q and TSS trends do not
align, with S2 showing an increase and S3 a decrease in median values. This may be due to S2
having increased open spaces, thereby caused more exposed soil and enhancing erosion,
ultimately increasing TSS (Yazdi et al., 2021), while S3's decrease in open spaces leads to a slight
reduction in TSS. For S4 and S5, although grazing activities intensify soil erosion and thus
increase TSS content in runoff, and agricultural fields are inherently able to generate some TSS,
MRW has historically implemented numerous BMPs on them to reduce TSS production
(Amorim et al., 2020; Shigei et al., 2020; Chen et al., 2021). Therefore, TSS also decreased in S4
and S5, with S4 showing a less pronounced reduction mainly due to the relatively low
proportion of pasture compared to agricultural land.

Regarding SRP and TP, we found a consistent trend across S1-S7, but the change in SRP was
notably greater than that in TP (Figure 5). This indicates that future scenarios may result in little
change in particulate phosphorus (PP), as TP is primarily composed of SRP and PP. Given the
agriculture-based nature of MRW's LULC and the same settings of land management practices
across scenarios, the impact of Q on PP was not significant across the watershed (Kamali et al.,
2017; Uusitalo et al., 2000). A comparison across the seven scenarios revealed that S6's SRP and
TP significantly increased, while S7 showed a significant decrease. This suggests that enhancing
no-tillage substantially increases SRP and TP content in the water environment due to less soil
disturbance, thereby retaining more residue on the agricultural field surface, which eventually
enters the water (Muenich et al., 2016; Macrae et al., 2023). In contrast, S7 reduced P inputs at
the source, thus significantly decreasing SRP and TP levels. Additionally, the results for SRP and
TP in S6 and S7 did not align with changes in Q, indicating that in MRW, the impact of Q on SRP
and TP is not as significant as that of ACPs. Comparing the five LULC scenarios, their results for
SRP and TP showed little difference from each other but were substantially different from Q
and TSS. This is mainly due to the large amount of P produced by agricultural land in MRW.
Compared to S1, S2 and S5 showed a slight increase in SRP and TP, while S3 showed a slight
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decrease. This is likely due to the increase in open spaces in S2 leading to an increase in P, while
the decrease in agricultural land in S3 led to a decrease in P, and S5 showed an increase due to
increased agricultural land (Ahn and Mitsch, 2002; Rowland et al., 2019; Jarvie et al., 2017). S4
and S1 showed very similar performances in SRP and TP, likely due to the minimal difference in
their LULC (Figure 4).

Overall, S1-S7 had no significant differences in the mitigation effects on Q and TSS, while ACP
scenarios had a very apparent impact on water quality regarding SRP and TP. Therefore, we can
conclude that the impact of ACPs on water quality is much more significant than that of LULC in
MRW. Among the five LULC scenarios, S3 showed the best water quality mitigation effects,
although it slightly increased the risk of urban flooding, while S2 showed the opposite effect.
However, the essence mainly depends on the protective effectiveness of different scenarios on
agricultural land. Besides, Figure 5 showed some outliers for each scenario, indicating that each
scenario had some hydrological performances that did not align with LULC changes. We believe
there are two main reasons for these deviations: one is model integration, that the LULC
changes at the LSU level do not completely align with those at the county level. The other is
that our focus is on results at water surface level, and underground hydrological performances
may differ from surface results.
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Figure 5. Change of Mitigation Effects For Future Scenarios over SO: Four boxplots sequentially display
the percentage change in mitigation effects for future scenarios (S1-S7) compared to SO in terms of Q,
TSS, SRP, and TP. Top left: Change in mitigation effects for S1-S7 compared to SO for Q; Top right:
Change in mitigation effects for S1-S7 compared to SO for TSS; Bottom left: Change in mitigation effects
for S1-S7 compared to SO for SRP; Bottom right: Change in mitigation effects for $1-S7 compared to SO
for TP.

3.3.3 Monthly Mitigation Effects Across Future LULC Scenarios

To better explore the impact of LULC on streamflow and water quality in the MRW, we
analyzed the performance of scenarios S1-S5 in terms of Q, TSS, SRP, and TP on a monthly scale
during the period from 2046 to 2065 (Figure 6). SO was not considered because S1-S5 are LULC
scenarios that envision the trend of different LULC types in the future. Figure 6 showed the
monthly differences in Q, TSS, SRP, and TP for the average future of each month, and monthly
climate data variations were also included. Overall, we observed that the trends of Q, TSS, SRP,
and TP throughout the year were generally similar across scenarios, with a noticeable decrease
from June to September and a gradual increase from October to January. Q and TSS, SRP, TP
generally showed a decreasing trend from February to May, but there were some variations,
specifically a noticeable decrease in TSS, SRP, and TP in March and April. The overall trends in
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Q, TSS, SRP, and TP are likely due to seasonal climatic changes and nutrient dynamics in the
MRW (Moog and Whiting, 2002; Gildow et al., 2016; Culbertson et al., 2016). There is a clear
correlation between Q and weather, with a significant increase in surface runoff from October
to January due to increased precipitation and lower temperatures. Although precipitation
increases from February to July in the MRW, the rise in temperature causes more snowmelt,
increasing Q in February and March, while the warming starting in April directly leads to
increased transpiration (Wang et al., 2023).

Regarding TSS, SRP, and TP, their variations are to some extent correlated with Q. This is mainly
because an increase in surface runoff intensifies the erosion of land around rivers and carries
more pollutants produced by urban areas, thereby increasing the levels of TSS, SRP, and TP in
the water (Gnecco et al., 2005; El Kateb et al., 2013; Tibebe and Bewket, 2011). Higher
streamflow also stirs up sediments settled at the bottom of water bodies, increasing
concentrations of TSS and phosphorus (Du et al., 2022; Zanon et al., 2020). Additionally, more
precipitation also washes pollutants from farmlands and urban surfaces into the runoff (Yang et
al., 2021). The noticeable decrease in TSS, SRP, and TP in March and April is mainly attributed to
agricultural activities. Some regional soil tilling transfers surface nutrients into deeper soil
layers, reducing nutrient loss by surface runoff. The growth of crops also reduces levels of SRP,
TP, TSS mainly through crop absorption, root stabilization of soil which reduces erosion and
nutrient transport and serving as ground cover to lessen the erosion of rain and runoff (KC,
2021; Richards et al., 2010; Bosch et al., 2014).

Comparison of S1-S5 shows almost no significant differences among these scenarios. The slight
differences mainly reflect an increase in SRP and TP in S2 and a decrease in SRP and TP in S3
and S5, consistent with previous conclusions. Thus, aside from the overall similar trend on a
temporal scale among the different LULC scenarios in the watershed, there are no significant
month-by-month differences among them. This also indicates that changes in different LULCs
do not significantly differ in their mitigation effects on MRW seasonally.
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Figure 6. Comparison of Average Mitigation Effects across Urban Scenarios ($1-S5) by Month: The bar
chart shows the difference in average monthly mitigation effects between 52-S5 and S1 for the years

2046-2065. The line graph displays the average monthly climate data changes for the same period,

where the red dashed lines represent the average monthly temperatures (°C), and the blue line
represents the average monthly precipitation (mm). (a) Difference in Q (mm) on average each month

between S2-S5 and S1; (b) Difference in TSS (kg) on average each month between S2-S5 and S1; (c)

Difference in SRP (kg) on average each month between S2-S5 and S1; (d) Difference in TP (kg) on
average each month between S2-S5 and S1.

3.3.4 Water Quantity and Quality Outcomes of Future Scenarios at LSU Level
To better explore the spatial scale impacts of LULC changes on Q, TSS, SRP, and TP, we
compared the mitigation effects of S2, S3, S4, and S5 against S1 across different regions of the

MRW. Figure 7(a) showed the spatial differences in Q for the LULC scenarios, where purple

indicates areas with better mitigation effects compared to S1, and red indicates worse areas.

We found that S2 had the most purple areas while S3 and S5 had relatively higher red areas.

This is mainly attributed to the correlation between four types of urban LULC and Q, where an

increase in open space leads to a decrease in Q, an increase in medium and high-intensity urban
land leads to an increase in Q, and low-intensity urban land has a negligible impact on Q (Figure
8). Although this correlation is not pronounced in MRW, possibly due to the overall small urban
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area, as scatter plots also involve some LSUs predominantly agricultural land. Based on this
correlation, S1 is the most effective in mitigating Q since it significantly protects open space. S3,
which promotes the development of medium and high-intensity LULC, is not effective in
mitigating Q. S5, despite reducing some medium and high-intensity urban land, also reduces
some open space, thus its mitigation effect on Q is not significant. S4, having a similar LULC
pattern to S1, shows many blank areas in the figure, and some LSUs in the northwest part of the
watershed with a higher proportion of pasture show certain mitigation effects on Q compared
to other scenarios due to the preservation of pasture area. Additionally, the mitigation effects
of S2 and S3 on Q are inconsistent in the major urban areas of Toledo in the northeast and Fort
Wayne in the west of MRW, indicating that S2 is likely very effective in mitigating Q in heavily
urbanized areas. This mitigation is presumed to be partly through reducing medium and high-
intensity urban land to decrease the urban heat island effect thus reducing rainfall intensity
(Zhao et al., 2014; Steensen et al., 2022) and partly by promoting runoff infiltration in open
spaces to reduce streamflow (Franzen et al., 2020).

Figure 7(b) shows the distribution of differences in TSS mitigation effects of S2-S5 compared to
S1, where blue indicates areas with better mitigation effects, and brown indicates worse areas.
It is observed that S2 has better TSS mitigation effects in urban areas, while its mitigation
effects are not ideal in the central agricultural regions. S3 shows better mitigation effects in
some central areas but does not effectively mitigate TSS in urban areas. S4's mitigation effects
on TSS are primarily evident in the northwest part of the watershed. Combined with previous
analysis, S5 not only mitigates the total amount of TSS but also has a broader distribution range
of this effect. Additionally, we find that there is still some correlation between Q and TSS in
urban areas like the northeast and west of MRW, as Q can wash off urban surfaces and carry
away a significant amount of TSS. However, this correlation is not evident in less urbanized
areas, such as some central LSUs in S2 and S3, where even if Q decreased, TSS increased. This is
mainly because S1 and S2, while adjusting urbanization in urban areas, also increase various
types of urban land in non-urbanized areas, thus leading to an increase in TSS. While S1, mainly
due to significant increase in open space, does not show good mitigation effects on TSS in
central areas. S5, although increasing agricultural land, benefits from MRW's long-standing
ACPs, thus the increase in agricultural land does not lead to an increase in TSS (Fraker et al.,
2023; Tuppad et al., 2010; Barrett, 2008).

Figure 7(c) and Figure 7(d) show the distribution of differences in SRP and TP mitigation effects
of S2-S5 compared to S1, where blue indicates areas with better mitigation effects, and orange
and red indicate worse areas. Additionally, the correlation between various LULC changes and
SRP was analyzed across 290 LSUs (Figure 9). From Figure 7, it is evident that S2's SRP and TP
exhibit poorer mitigation effects across most of the watershed, possibly due to the reduction in
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medium to high-intensity urban areas, which are negatively correlated with SRP as
demonstrated in Figure 9. Moreover, although there is no direct correlation between open
spaces and SRP, studies indicate that an increase in open spaces, which not only intensifies soil
erosion but also increases SRP and TP levels if vegetation management measures are not
effectively applied (Toland et al., 2012; Brezonik and Stadelmann, 2002). The increase in open
space in urban areas also leads to streamflow carrying more PP, resulting in some urban areas
in the northeast and west of MRW having a significantly lower mitigation effect on TP
compared to SRP (Brezonik and Stadelmann, 2002; Chow and Yusop, 2014). In contrast, S3
appears to be the most effective scenario among the five LULC scenarios in reducing SRP and
TP. This is partly because, compared to S1, S3 does not significantly increase open space and,
compared to other scenarios, S3 also reduces agricultural land. Given the strong positive
correlation between agricultural land and SRP (Figure 9), the reduction in agricultural land in S3
directly leads to a decrease in SRP. While ACPs can effectively reduce nutrients produced by
agriculture, the inevitable application of manure and fertilizers in agricultural activities, as well
as soil disturbance from tillage practices, still increases P outputs (Sohoulande et al., 2023;
Gildow et al., 2016; Moore et al., 2005; Anderson et al., 2020). This also explains why many
areas in S5 show poor mitigation effects on SRP and TP. Comparing the distribution of SRP and
TP, it is not difficult to observe that the mitigation effects on TP are significantly less than SRP in
most areas. One reason is that the extensive application of manure and fertilizers on
agricultural land and pasture is likely causing most of the P in the soil to be bound to soil
particles (DelLaune et al., 2006; Walling et al., 2008). Therefore, S4, due to protecting pasture in
the northwest part of MRW, shows significantly worse mitigation effects on TP compared to
SRP in that area. Similarly, the extensive farmland in the central part of S5 also results in less-
than-ideal mitigation effects on TP.

Overall, the spatial distribution differences of the five LULC scenarios are more pronounced
than the temporal and quantitative differences. Besides the certain connection between Q and
TSS, SRP, TP, the LULC properties of each scenario seem to be more important. From the
results, S2 is more effective in mitigating Q, S5 is more effective in mitigating TSS, and S3 is
more effective in mitigating SRP and TP. However, the focus areas of different scenarios also
vary, for example, S2 shows better TSS mitigation effects in the Fort Wayne area in the west of
MRW compared to S5, S3 shows better mitigation effects on Q in the northwest part of MRW.
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(d
Figure 7. Spatial Distribution of Mitigation Effects of Four Urban Scenarios (5S1-S4) over SO: The
diagrams separately show the spatial variation in the differences in Q, TSS, SRP, and TP between 52-S5
and S1. The blue hues represent areas where the water environment has improved in $2-S5 compared
to S1, and the red hues indicate areas where the water environment has worsened. (a) Spatial variation
in the mitigation effects on Q between S1-54 and SO; (b) Spatial variation in the mitigation effects on TSS
between S1-S4 and SO; (c) Spatial variation in the mitigation effects on SRP between S2-S5 and S1; (d)
Spatial variation in the mitigation effects on TP between S2-S5 and S1.
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Figure 8. Scatterplots of percentage change in Q with urban LULCs for S2 Compared to S1: The four
scatterplots sequentially display the correlation between the percentage changes in Q and the changes

in four types of urban LULCs (open space, low intensity, medium intensity, and high intensity) for S2
compared to S1.
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Figure 9. Diagrams of Correlation between SRP and LULCs: Five diagrams sequentially show the
changes in five types of LULC (open space, low intensity, medium & high intensity, pasture, agriculture)
compared to SO and the changes in SRP. Solid lines represent correlations with a p-value less than 0.05,
which is statistically significant, while dashed lines indicate no statistical significance. Here, we combine
medium intensity and high intensity because these two LULC categories exhibit strong collinearity in
multiple regression analysis.

3.4 Implications

Combining ACPs with LULC scenarios, reducing the application of P fertilizers on agricultural
lands is a critical strategy for alleviating water quality issues in the MRW. Furthermore, from a
temporal perspective, the accumulation of TSS, SRP, and TP primarily occurs from winter to
early spring. Therefore, implementing winter cover crops to mitigate nutrient loadings during
the winter season is essential. In terms of LULC, moderately increasing open spaces can reduce

29



streamflow to some extent. If further strategies such as community gardens, stormwater
management, and ecological diversity restoration are applied to open spaces, it can significantly
enhance the interception of streamflow and TSS (Xue et al., 2017; Gédmez et al., 2013).
Regarding SRP and TP, which significantly impact water quality, especially in relation to HABs,
increasing the area of various urban LULCs while decreasing agricultural land seems to be an
effective strategy. Specifically, this could involve increasing open space and low-intensity areas
in suburban regions or adding medium to high-intensity urban areas in highly urbanized areas.
However, this increase must be moderate, as excessive urbanization could lead to more point-
source pollution. This relatively centralized urban development model facilitates concentrated
energy use and centralized pollution management.

Additionally, in urbanized areas, encouraging the construction of green infrastructures such as
green roofs, rain gardens, and permeable pavements can help absorb and filter runoff, thereby
reducing the phosphorus loadings that reach water bodies. These strategies collectively
represent a comprehensive approach to managing land use and environmental conservation to
protect water quality in the MRW. Therefore, the future development patterns of the
watershed could follow several basic directions: 1) appropriately increase development
intensity in highly urbanized areas to meet the growing economic and population demands; 2)
in less urbanized areas, appropriately increase open spaces with appropriate management
practices ; 3) combine actual agricultural production needs with measures such as returning
farmland to forests or water bodies. Of course, these strategies are essentially based on the
specific LULC conditions and policies of different regions.

3.5 Limitations

Given the complex mechanisms of LULC changes, our study possesses several limitations.
Firstly, our scenario settings for future LULC are based on trends over the past decade, focusing
primarily on the most significantly changing LULC types such as urban areas, pasture, and
agricultural land. Other LULC types like forests, shrubs, and water were maintained with their
existing transition probabilities without explicit scenario incorporation. Additionally, the
scenario design is not closely integrated with local policies. Secondly, in the integration process
of the LCM and SWAT+ models, discrepancies arise as county boundaries do not align perfectly
with LSUs. Therefore, LULC changes at the LSU scale may not fully reflect county-level LULC
transitions. Analytically, our study concentrates solely on surface aspects of Q, TSS, SRP, and TP,
omitting subsurface hydrological conditions. Moreover, given that the LULC and hydrological
changes across the 290 LSUs do not follow a uniform pattern, our analysis could only globally
evaluate their performance under different scenarios at temporal and spatial scales. Other
limitations include minor nutrient inputs involved in urban LULCs and changes in point-source
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pollution resulting from urban LULC alterations, which were not considered in our model
settings. Additionally, inherent inaccuracies in model algorithms and input data contribute
further to the study's limitations.
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Chapter 4: Conclusion
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LULC scenarios have definite mitigation effects on the water environment of MRW, with
particularly noticeable effects on Q. Among these, the low-intensity development scenario S2
shows the best mitigation effects. In terms of water quality, ACPs Scenarios demonstrate more
distinct performances compared to LULC scenarios, with S7—which reduces phosphorus
fertilizer—showing the best mitigation effects on P. However, the performance of the five LULC
scenarios on P is similar, with the compacted development scenario S3, which encourages the
development of medium and high-intensity, performing the best. Regarding TSS, we conclude
that the agriculture protection scenario S5 shows slightly better mitigation effects. We also
observe that the overall differences of the five LULC scenarios in their mitigation effects on
water environment are less pronounced in terms of quantity and time compared to spatial
scales. Concerning LULC categories, open space and agricultural land have the most significant
impacts on the water environment in the watershed. Therefore, to meet agricultural and
economic needs, appropriately increasing the development intensity of highly urbanized areas
and open spaces in urban and suburban areas, while reducing some agricultural areas, can
effectively mitigate future water environmental issues in the MRW. However, these strategies
are all based on reducing fertilizer input from agricultural land and implementing reasonable
management practices for open spaces. Nonetheless, the overall planning of the watershed
down to the scale of different counties should also take into account the specific LULC types
and patterns as well as relevant policies of each county, with a targeted analysis for specific
issues.

33



Reference:

1. Liu, Y., Wang, R., Guo, T., Engel, B. A., Flanagan, D. C,, Lee, J. G., ... & Wallace, C. W. (2019). Evaluating
efficiencies and cost-effectiveness of best management practices in improving agricultural water quality using
integrated SWAT and cost evaluation tool. Journal of Hydrology, 577, 123965.

2. Xu, H., Brown, D. G., Moore, M. R., & Currie, W. S. (2018). Optimizing spatial land management to balance water
quality and economic returns in a Lake Erie watershed. Ecological Economics, 145, 104-114.

3. Scavia, D., Wang, Y. C., & Obenour, D. R. (2023). Advancing freshwater ecological forecasts: Harmful algal
blooms in Lake Erie. Science of the Total Environment, 856, 158959.

4. Michalak, A. M., Anderson, E. J., Beletsky, D., Boland, S., Bosch, N. S., Bridgeman, T. B., ... & Zagorski, M. A.
(2013). Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with
expected future conditions. Proceedings of the National Academy of Sciences, 110(16), 6448-6452.

5. Motew, M., Chen, X., Carpenter, S. R., Booth, E. G., Seifert, J., Qiu, J., ... & Kucharik, C. J. (2019). Comparing the
effects of climate and land use on surface water quality using future watershed scenarios. Science of the total
environment, 693, 133484.

6. Olaoye, I. A., Confesor Jr, R. B., & Ortiz, J. D. (2021). Effect of projected land use and climate change on water
quality of Old Woman Creek Watershed, Ohio. Hydrology, 8(2), 62.

7. Kast, J. B., Apostel, A. M., Kalcic, M. M., Muenich, R. L., Dagnew, A,, Long, C. M., ... & Martin, J. F. (2021). Source
contribution to phosphorus loads from the Maumee River watershed to Lake Erie. Journal of Environmental
Management, 279, 111803.

8. Maccoux, M. J., Dove, A., Backus, S. M., & Dolan, D. M. (2016). Total and soluble reactive phosphorus loadings to
Lake Erie: A detailed accounting by year, basin, country, and tributary. Journal of Great Lakes Research, 42(6),
1151-1165.

9. Cousino, L. K., Becker, R. H., & Zmijewski, K. A. (2015). Modeling the effects of climate change on water,
sediment, and nutrient yields from the Maumee River watershed. Journal of Hydrology: Regional Studies, 4, 762-
775.

10. Bosch, N. S., Allan, J. D., Selegean, J. P., & Scavia, D. (2013). Scenario-testing of agricultural best management
practices in Lake Erie watersheds. Journal of Great Lakes Research, 39(3), 429-436.

11. Kalcic, M. M., Kirchhoff, C., Bosch, N., Muenich, R. L., Murray, M., Griffith Gardner, J., & Scavia, D. (2016).
Engaging stakeholders to define feasible and desirable agricultural conservation in western Lake Erie watersheds.
Environmental Science & Technology, 50(15), 8135-8145.

12. Daloglu, I., Cho, K. H., & Scavia, D. (2012). Evaluating causes of trends in long-term dissolved reactive
phosphorus loads to Lake Erie. Environmental science & technology, 46(19), 10660-10666.

13. Rittenburg, R. A., Squires, A. L., Boll, J., Brooks, E. S., Easton, Z. M., & Steenhuis, T. S. (2015). Agricultural BMP
effectiveness and dominant hydrological flow paths: concepts and a review. JAWRA Journal of the American Water
Resources Association, 51(2), 305-329.

14. Martin, J. F., Kalcic, M. M., Aloysius, N., Apostel, A. M., Brooker, M. R., Evenson, G., ... & Wang, Y. C. (2021).
Evaluating management options to reduce Lake Erie algal blooms using an ensemble of watershed models. Journal
of Environmental Management, 280, 111710.

15. Smith, D. R., Francesconi, W., Livingston, S. J., & Huang, C. H. (2015). Phosphorus losses from monitored fields
with conservation practices in the Lake Erie Basin, USA. Ambio, 44, 319-331.

16. Dodd, R. J., & Sharpley, A. N. (2016). Conservation practice effectiveness and adoption: Unintended
consequences and implications for sustainable phosphorus management. Nutrient cycling in agroecosystems, 104,
373-392.

17. Malede, D. A., Alamirew, T., & Andualem, T. G. (2022). Integrated and individual impacts of land use land cover
and climate changes on hydrological flows over Birr River Watershed, Abbay Basin, Ethiopia. Water, 15(1), 166.
18. Peraza-Castro, M., Ruiz-Romera, E., Meaurio, M., Sauvage, S., & Sdnchez-Pérez, J. M. (2018). Modelling the
impact of climate and land cover change on hydrology and water quality in a forest watershed in the Basque
Country (Northern Spain). Ecological engineering, 122, 315-326.

19. Wang, R., & Kalin, L. (2018). Combined and synergistic effects of climate change and urbanization on water
quality in the Wolf Bay watershed, southern Alabama. Journal of Environmental Sciences, 64, 107-121.

20. Gong, X., Bian, J.,, Wang, Y., Jia, Z., & Wan, H. (2019). Evaluating and predicting the effects of land use changes
on water quality using SWAT and CA—Markov models. Water resources management, 33, 4923-4938.

34



21. Fan, M., & Shibata, H. (2015). Simulation of watershed hydrology and stream water quality under land use and
climate change scenarios in Teshio River watershed, northern Japan. Ecological indicators, 50, 79-89.

22. Liu, R., Wang, Q., Xu, F., Men, C., & Guo, L. (2017). Impacts of manure application on SWAT model outputs in
the Xiangxi River watershed. Journal of hydrology, 555, 479-488.

23. de Mello, K., Valente, R. A., Randhir, T. O., dos Santos, A. C. A., & Vettorazzi, C. A. (2018). Effects of land use
and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone.
Catena, 167, 130-138.

24. Wilson, C. 0. (2015). Land use/land cover water quality nexus: quantifying anthropogenic influences on surface
water quality. Environmental monitoring and assessment, 187, 1-23.

25. Huang, W., Mao, J., Zhu, D., & Lin, C. (2019). Impacts of land use and land cover on water quality at multiple
buffer-zone scales in a Lakeside City. Water, 12(1), 47.

26. Chen, X., Zhou, W., Pickett, S. T., Li, W., & Han, L. (2016). Spatial-temporal variations of water quality and its
relationship to land use and land cover in Beijing, China. International Journal of Environmental Research and
Public Health, 13(5), 449.

27.Serpa, D., Nunes, J. P., Keizer, J. J., & Abrantes, N. (2017). Impacts of climate and land use changes on the water
quality of a small Mediterranean catchment with intensive viticulture. Environmental pollution, 224, 454-465.

28. Sharannya, T. M., Venkatesh, K., Mudbhatkal, A., Dineshkumar, M., & Mahesha, A. (2021). Effects of land use
and climate change on water scarcity in rivers of the Western Ghats of India. Environmental Monitoring and
Assessment, 193(12), 820.

29. Risal, A., Parajuli, P. B., Dash, P., Ouyang, Y., & Linhoss, A. (2020). Sensitivity of hydrology and water quality to
variation in land use and land cover data. Agricultural Water Management, 241, 106366.

30. Chawanda, C. J., Arnold, J., Thiery, W., & van Griensven, A. (2020). Mass balance calibration and reservoir
representations for large-scale hydrological impact studies using SWAT+. Climatic Change, 163, 1307-1327.

31. Khoshnood Motlagh, S., Sadoddin, A., Haghnegahdar, A., Razavi, S., Salmanmahiny, A., & Ghorbani, K. (2021).
Analysis and prediction of land cover changes using the land change modeler (LCM) in a semiarid river basin, Iran.
Land Degradation & Development, 32(10), 3092-3105.

32. Zhao, Y., Rong, Y., Liu, Y., Lin, T., Kong, L., Dai, Q., & Wang, R. (2023). Investigating Urban Flooding and Nutrient
Export under Different Urban Development Scenarios in the Rouge River Watershed in Michigan, USA. Land,
12(12), 2163.

33. Shrestha, S., Bhatta, B., Shrestha, M., & Shrestha, P. K. (2018). Integrated assessment of the climate and
landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Science of the Total
Environment, 643, 1610-1622.

34.Lin, Y., Zhang, T., Ye, Q., Cai, J., Wu, C., Syed, A. K., & Li, J. (2021). Long-term remote sensing monitoring on
LUCC around Chaohu Lake with new information of algal bloom and flood submerging. International Journal of
Applied Earth Observation and Geoinformation, 102, 102413.

35. Fan, M., & Shibata, H. (2015). Simulation of watershed hydrology and stream water quality under land use and
climate change scenarios in Teshio River watershed, northern Japan. Ecological indicators, 50, 79-89.

36. Pandey, S., Kumari, N., & Al Nawajish, S. (2023). Land use land cover (LULC) and surface water quality
assessment in and around selected dams of Jharkhand using water quality index (WQI) and Geographic
Information System (GIS). Journal of the Geological Society of India, 99(2), 205-218.

37.Ren, L., Cui, E., & Sun, H. (2014). Temporal and spatial variations in the relationship between urbanization and
water quality. Environmental science and pollution Research, 21, 13646-13655.

38. Carle, M. V., Halpin, P. N., & Stow, C. A. (2005). Patterns of watershed urbanization and impacts on water
quality 1. JAWRA Journal of the American Water Resources Association, 41(3), 693-708.

39. Yuan, S., Quiring, S. M., Kalcic, M. M., Apostel, A. M., Evenson, G. R., & Kujawa, H. A. (2020). Optimizing climate
model selection for hydrological modeling: A case study in the Maumee River basin using the SWAT. Journal of
Hydrology, 588, 125064.

40. Giorgi, F., Raffaele, F., & Coppola, E. (2019). The response of precipitation characteristics to global warming
from climate projections. Earth System Dynamics, 10(1), 73-89.

41. Montaldo, N., & Oren, R. (2018). Changing seasonal rainfall distribution with climate directs contrasting
impacts at evapotranspiration and water yield in the western Mediterranean region. Earth's future, 6(6), 841-856.
42. Arnell, N. W. (2004). Climate change and global water resources: SRES emissions and socio-economic scenarios.
Global environmental change, 14(1), 31-52.

35



43. Kundzewicz, Z. W., & Krysanova, V. (2010). Climate change and stream water quality in the multi-factor
context: An editorial comment. Climatic change, 103(3), 353-362.

44, Barruffa, A. S., Sposito, V., & Faggian, R. (2021). Climate change and cyanobacteria harmful algae blooms:
Adaptation practices for developing countries. Marine and Freshwater Research, 72(12), 1722-1734.

45, Carstensen, M. V., Molina-Navarro, E., Hashemi, F., Kronvang, B., & Bieger, K. (2023). Modelling the impact of
the Nordic Bioeconomy Pathways and climate change on water quantity and quality in a Danish River Basin.
Catena, 222, 106795.

46. Wells, M. L., Karlson, B., Wulff, A., Kudela, R., Trick, C., Asnaghi, V., ... & Trainer, V. L. (2020). Future HAB
science: Directions and challenges in a changing climate. Harmful algae, 91, 101632.

47. Paerl, H. W, Hall, N. S., & Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world
experiencing anthropogenic and climatic-induced change. Science of the total environment, 409(10), 1739-1745.
48. Greenough, G., McGeehin, M., Bernard, S. M., Trtanj, J., Riad, J., & Engelberg, D. (2001). The potential impacts
of climate variability and change on health impacts of extreme weather events in the United States. Environmental
health perspectives, 109(suppl 2), 191-198.

49. Moore, S. K., Trainer, V. L., Mantua, N. J., Parker, M. S., Laws, E. A., Backer, L. C., & Fleming, L. E. (2008,
November). Impacts of climate variability and future climate change on harmful algal blooms and human health. In
Environmental health (Vol. 7, pp. 1-12). BioMed Central.

50. Culbertson, A. M., Martin, J. F., Aloysius, N., & Ludsin, S. A. (2016). Anticipated impacts of climate change on
21st century Maumee River discharge and nutrient loads. Journal of Great Lakes Research, 42(6), 1332-1342.

51. Cousino, L. K., Becker, R. H., & Zmijewski, K. A. (2015). Modeling the effects of climate change on water,
sediment, and nutrient yields from the Maumee River watershed. Journal of Hydrology: Regional Studies, 4, 762-
775.

52.Xin, X., Zhang, L., Zhang, J., Wu, T., & Fang, Y. (2013). Climate change projections over East Asia with
BCC_CSM1.1 climate model under RCP scenarios. Journal of the Meteorological Society of Japan. Ser. I, 91(4), 413-
429.

53. Culbertson, A. M. (2015). Effects of climate change on Maumee River basin hydrology and nutrient runoff
(Master's thesis, The Ohio State University).

54. Kalcic, M. M., Muenich, R. L., Basile, S., Steiner, A. L., Kirchhoff, C., & Scavia, D. (2019). Climate change and
nutrient loading in the western Lake Erie basin: warming can counteract a wetter future. Environmental Science &
Technology, 53(13), 7543-7550.

55. Scavia, D., Wang, Y. C., Obenour, D. R., Apostel, A., Basile, S. J., Kalcic, M. M., ... & Steiner, A. L. (2021).
Quantifying uncertainty cascading from climate, watershed, and lake models in harmful algal bloom predictions.
Science of the Total Environment, 759, 143487.

56. Karlsson, I. B., Sonnenborg, T. O., Refsgaard, J. C., Trolle, D., Bgrgesen, C. D., Olesen, J. E,, ... & Jensen, K. H.
(2016). Combined effects of climate models, hydrological model structures and land use scenarios on hydrological
impacts of climate change. Journal of Hydrology, 535, 301-317.

57. Kundu, S., Khare, D., & Mondal, A. (2017). Individual and combined impacts of future climate and land use
changes on the water balance. Ecological Engineering, 105, 42-57.

58. Rahman, K., da Silva, A. G., Tejeda, E. M., Gobiet, A., Beniston, M., & Lehmann, A. (2015). An independent and
combined effect analysis of land use and climate change in the upper Rhone River watershed, Switzerland. Applied
geography, 63, 264-272.

59. Verma, S., Bhattarai, R., Bosch, N. S., Cooke, R. C., Kalita, P. K., & Markus, M. (2015). Climate change impacts on
flow, sediment and nutrient export in a Great Lakes watershed using SWAT. CLEAN-Soil, Air, Water, 43(11), 1464-
1474.

60. Muenich, R. L., Kalcic, M., & Scavia, D. (2016). Evaluating the impact of legacy P and agricultural conservation
practices on nutrient loads from the Maumee River Watershed. Environmental Science & Technology, 50(15),
8146-8154.

61. Kast, J. B., Apostel, A. M., Kalcic, M. M., Muenich, R. L., Dagnew, A., Long, C. M., ... & Martin, J. F. (2021). Source
contribution to phosphorus loads from the Maumee River watershed to Lake Erie. Journal of Environmental
Management, 279, 111803.

62. Cipoletti, N., Jorgenson, Z. G., Banda, J. A., Hummel, S. L., Kohno, S., & Schoenfuss, H. L. (2019). Land use
contributions to adverse biological effects in a complex agricultural and urban watershed: A case study of the
Maumee River. Environmental toxicology and chemistry, 38(5), 1035-1051.

36



63. Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., ... & Rafaj, P. (2011). RCP 8.5—A scenario of
comparatively high greenhouse gas emissions. Climatic Change, 109, 33-57.

64. Anand, J., Gosain, A. K., & Khosa, R. (2018). Prediction of land use changes based on Land Change Modeler and
attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Science of
the total environment, 644, 503-519.

65. Mas, J. F., Kolb, M., Paegelow, M., Olmedo, M. T. C., & Houet, T. (2014). Inductive pattern-based land use/cover
change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94-111.

66. Remondi, F., Burlando, P., & Vollmer, D. (2016). Exploring the hydrological impact of increasing urbanisation on
a tropical river catchment of the metropolitan Jakarta, Indonesia. Sustainable Cities and Society, 20, 210-221.

67. Olmedo, M. T. C., Pontius Jr, R. G., Paegelow, M., & Mas, J. F. (2015). Comparison of simulation models in terms
of quantity and allocation of land change. Environmental Modelling & Software, 69, 214-221.

68. Wilson, C. 0., & Weng, Q. (2011). Simulating the impacts of future land use and climate changes on surface
water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, lllinois. Science of the Total
Environment, 409(20), 4387-4405.

69. Gumindoga, W., Rientjes, T., Shekede, M. D., Rwasoka, D. T., Nhapi, |., & Haile, A. T. (2014). Hydrological
impacts of urbanization of two catchments in Harare, Zimbabwe. Remote sensing, 6(12), 12544-12574.

70. Hand, C. (2005). Simple cellular automata on a spreadsheet. Comput. High. Educ. Econ. Rev, 17.

71. Eastman, J. R., Crema, S. C., Rush, H. R., & Zhang, K. (2019). A weighted normalized likelihood procedure for
empirical land change modeling. Modeling Earth Systems and Environment, 5, 985-996.

72. Mishra, V. N., Rai, P. K., & Mohan, K. (2014). Prediction of land use changes based on land change modeler
(LCM) using remote sensing: A case study of Muzaffarpur (Bihar), India. Journal of the Geographical Institute"
Jovan Cvijic", SASA, 64(1), 111-127.

73. Mirici, M. E., Berberoglu, S., Akin, A., & Satir, O. (2018). Land use/cover change modelling in a Mediterranean
rural landscape using multi-layer perceptron and Markov chain (MLP-MC). Applied Ecology & Environmental
Research, 16(1).

74. Leta, M. K., Demissie, T. A., & Tranckner, J. (2021). Modeling and prediction of land use land cover change
dynamics based on land change modeler (Lcm) in nashe watershed, upper blue nile basin, Ethiopia. Sustainability,
13(7), 3740.

75. Morales-Barquero, L., Lyons, M. B., Phinn, S. R., & Roelfsema, C. M. (2019). Trends in remote sensing accuracy
assessment approaches in the context of natural resources. Remote Sensing, 11(19), 2305.

76. Tariq, A., Yan, J., & Mumtaz, F. (2022). Land change modeler and CA-Markov chain analysis for land use land
cover change using satellite data of Peshawar, Pakistan. Physics and Chemistry of the Earth, Parts A/B/C, 128,
103286.

77. Mehrabi, A., Khabazi, M., Almodaresi, S. A., Nohesara, M., & Derakhshani, R. (2019). Land use changes
monitoring over 30 years and prediction of future changes using multi-temporal Landsat imagery and the land
change modeler tools in Rafsanjan city (Iran). Sustainable Development of Mountain Territories, 11(1), 39.

78. Bosch, N. S., Evans, M. A,, Scavia, D., & Allan, J. D. (2014). Interacting effects of climate change and agricultural
BMPs on nutrient runoff entering Lake Erie. Journal of Great Lakes Research, 40(3), 581-589.

79. Smith, D. R., Francesconi, W., Livingston, S. J., & Huang, C. H. (2015). Phosphorus losses from monitored fields
with conservation practices in the Lake Erie Basin, USA. Ambio, 44, 319-331.

80. Yuan, Y., & Koropeckyj-Cox, L. (2022). SWAT model application for evaluating agricultural conservation practice
effectiveness in reducing phosphorous loss from the Western Lake Erie Basin. Journal of Environmental
Management, 302, 114000.

81. Scavia, D., Kalcic, M., Muenich, R. L., Aloysius, N., Arnold, J., Boles, C., ... & Martin, J. (2016). Informing Lake Erie
agriculture nutrient management via scenario evaluation. University of Michigan: Ann Arbor, MI, USA.

82. Culbertson, A. M., Martin, J. F., Aloysius, N., & Ludsin, S. A. (2016). Anticipated impacts of climate change on
21st century Maumee River discharge and nutrient loads. Journal of Great Lakes Research, 42(6), 1332-1342.

83. Schwalm, C. R., Glendon, S., & Duffy, P. B. (2020). RCP8.5 tracks cumulative CO2 emissions. Proceedings of the
National Academy of Sciences, 117(33), 19656-19657.

84. Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., ... & Srinivasan, R. (2017).
Introduction to SWAT+, a completely restructured version of the soil and water assessment tool. JAWRA Journal of
the American Water Resources Association, 53(1), 115-130.

37



85. Chawanda, C. J., Arnold, J., Thiery, W., & van Griensven, A. (2020). Mass balance calibration and reservoir
representations for large-scale hydrological impact studies using SWAT+. Climatic Change, 163, 1307-1327.

86. Wu, J.,, Yen, H., Arnold, J. G, Yang, Y. E., Cai, X., White, M. J., ... & Srinivasan, R. (2020). Development of
reservoir operation functions in SWAT+ for national environmental assessments. Journal of Hydrology, 583,
124556.

87. Kiprotich, P., Wei, X., Zhang, Z., Ngigi, T., Qiu, F., & Wang, L. (2021). Assessing the impact of land use and
climate change on surface runoff response using gridded observations and SWAT+. Hydrology, 8(1), 48.

88. Nkwasa, A., Chawanda, C. J., Msigwa, A., Komakech, H. C., Verbeiren, B., & van Griensven, A. (2020). How can
we represent seasonal land use dynamics in SWAT and SWAT+ models for African cultivated catchments?. Water,
12(6), 1541.

89. Selzer, M. D., & Bureau, W. (2008). The Michigan Department of Environmental Quality Biennial Remedial
Action Plan Update for the Rouge River Area of Concern. Michigan Department of Environmental Quality, Water
Bureau. Lansing, MI.

90. Cipoletti, N., Jorgenson, Z. G., Banda, J. A., Hummel, S. L., Kohno, S., & Schoenfuss, H. L. (2019). Land use
contributions to adverse biological effects in a complex agricultural and urban watershed: A case study of the
Maumee River. Environmental Toxicology and Chemistry, 38(5), 1035-1051.

91. Dick, W. A., Roseberg, R. J., McCoy, E. L., Haghiri, F., & Edwards, W. M. (1989). Surface hydrologic response of
soils to no-tillage. Soil Science Society of America Journal, 53(5), 1520-1526.

92. Delaune, P. B., & Sij, J. W. (2012). Impact of tillage on runoff in long term no-till wheat systems. Soil and Tillage
Research, 124, 32-35.

93. Merten, G. H., Aradjo, A. G., Biscaia, R. C. M., Barbosa, G. M. C., & Conte, O. (2015). No-till surface runoff and
soil losses in southern Brazil. Soil and Tillage Research, 152, 85-93.

94. Uusitalo, R., Yli-Halla, M., & Turtola, E. (2000). Suspended soil as a source of potentially bioavailable
phosphorus in surface runoff waters from clay soils. Water research, 34(9), 2477-2482.

95. Tan, C. S., Drury, C. F., Gaynor, J. D., Welacky, T. W., & Reynolds, W. D. (2002). Effect of tillage and water table
control on evapotranspiration, surface runoff, tile drainage and soil water content under maize on a clay loam soil.
Agricultural Water Management, 54(3), 173-188.

96. Chen, J., Theller, L., Gitau, M. W., Engel, B. A., & Harbor, J. M. (2017). Urbanization impacts on surface runoff of
the contiguous United States. Journal of environmental management, 187, 470-481.

97. White, M. D., & Greer, K. A. (2006). The effects of watershed urbanization on the stream hydrology and
riparian vegetation of Los Penasquitos Creek, California. Landscape and urban Planning, 74(2), 125-138.

98. Olivera, F., & DeFee, B. B. (2007). Urbanization and Its effect on runoff in the Whiteoak Bayou Watershed,
Texas 1. JAWRA Journal of the American Water Resources Association, 43(1), 170-182.

99. Hongbing, L. U. O., Lin, L. U. O,, Huang, G., Ping, L. I. U., Jingxian, L. ., Sheng, H. U., ... & Huang, X. (2009). Total
pollution effect of urban surface runoff. Journal of Environmental Sciences, 21(9), 1186-1193.

100. Poudel, D. D., Jeong, C. Y., & DeRamus, A. (2010). Surface run-off water quality from agricultural lands and
residential areas. Outlook on agriculture, 39(2), 95-105.

101. Kamali, M., Delkash, M., & Tajrishy, M. (2017). Evaluation of permeable pavement responses to urban surface
runoff. Journal of Environmental Management, 187, 43-53.

102. Wang, Q., Lu, C.,, Li, H., He, J., Sarker, K. K., Rasaily, R. G., ... & Mchugh, A. D. J. (2014). The effects of no-tillage
with subsoiling on soil properties and maize yield: 12-Year experiment on alkaline soils of Northeast China. Soil and
Tillage Research, 137, 43-49.

103. Carver, R. E., Nelson, N. O., Roozeboom, K. L., Kluitenberg, G. J., Tomlinson, P. J., Kang, Q., & Abel, D. S. (2022).
Cover crop and phosphorus fertilizer management impacts on surface water quality from a no-till corn-soybean
rotation. Journal of Environmental Management, 301, 113818.

104. Zhao, H., Ma, Y., Fang, J., Hu, L., & Li, X. (2022). Particle size distribution and total suspended solid
concentrations in urban surface runoff. Science of The Total Environment, 815, 152533.

105. Charters, F. J., Cochrane, T. A., & O'Sullivan, A. D. (2021). The influence of urban surface type and
characteristics on runoff water quality. Science of The Total Environment, 755, 142470.

106. Yazdi, M. N., Sample, D. J., Scott, D., Wang, X., & Ketabchy, M. (2021). The effects of land use characteristics
on urban stormwater quality and watershed pollutant loads. Science of The Total Environment, 773, 145358.

38



107. Amorim, H. C., Ashworth, A. J., Moore Jr, P. A., Wienhold, B. J., Savin, M. C., Owens, P. R., ... & Xu, S. (2020).
Soil quality indices following long-term conservation pasture management practices. Agriculture, ecosystems &
environment, 301, 107060.

108. Shigei, M., Ahrens, L., Hazaymeh, A., & Dalahmeh, S. S. (2020). Per-and polyfluoroalkyl substances in water
and soil in wastewater-irrigated farmland in Jordan. Science of the total environment, 716, 137057.

109. Chen, X, Li, X., Gu, L., Zheng, X., Wang, G., & Li, L. (2021). Increasing Snow—Soil Interface Temperature in
Farmland of Northeast China from 1979 to 2018. Agriculture, 11(9), 878.

110. Uusitalo, R., Turtola, E., Kauppila, T., & Lilja, T. (2001). Particulate phosphorus and sediment in surface runoff
and drainflow from clayey soils. Journal of Environmental Quality, 30(2), 589-595.

111. Muenich, R. L., Kalcic, M., & Scavia, D. (2016). Evaluating the impact of legacy P and agricultural conservation
practices on nutrient loads from the Maumee River Watershed. Environmental Science & Technology, 50(15),
8146-8154.

112. Macrae, M. L., Plach, J. M., Carlow, R,, Little, C., Jarvie, H. P., McKague, K., ... & Joosse, P. (2023). Trade-offs in
nutrient and sediment losses in tile drainage from no-till versus conventional conservation-till cropping systems
(Vol. 52, No. 5, pp. 1011-1023).

113. Ahn, C., & Mitsch, W. J. (2002). Scaling considerations of mesocosm wetlands in simulating large created
freshwater marshes. Ecological Engineering, 18(3), 327-342.

114. Rowland, F. E., Stow, C. A., Johengen, T. H., Burtner, A. M., Palladino, D., Gossiaux, D. C,, ... & Ruberg, S.
(2019). Recent patterns in Lake Erie phosphorus and chlorophyll a concentrations in response to changing loads.
Environmental Science & Technology, 54(2), 835-841.

115. Jarvie, H. P., Johnson, L. T., Sharpley, A. N., Smith, D. R., Baker, D. B., Bruulsema, T. W., & Confesor, R. (2017).
Increased soluble phosphorus loads to Lake Erie: Unintended consequences of conservation practices?. Journal of
Environmental Quality, 46(1), 123-132.

116. Moog, D. B., & Whiting, P. J. (2002). Climatic and agricultural contributions to changing loads in two
watersheds in Ohio. Journal of environmental quality, 31(1), 83-89.

117. Gildow, M., Aloysius, N., Gebremariam, S., & Martin, J. (2016). Fertilizer placement and application timing as
strategies to reduce phosphorus loading to Lake Erie. Journal of Great Lakes Research, 42(6), 1281-1288.

118. Wang, R., Ma, Y., Zhao, G., Zhou, Y., Shehab, I., & Burton, A. (2023). Investigating water quality sensitivity to
climate variability and its influencing factors in four Lake Erie watersheds. Journal of Environmental Management,
325, 116449.

119. Culbertson, A. M., Martin, J. F., Aloysius, N., & Ludsin, S. A. (2016). Anticipated impacts of climate change on
21st century Maumee River discharge and nutrient loads. Journal of Great Lakes Research, 42(6), 1332-1342.

120. KC, K. (2021). Monitoring of cover cropping practices and their impacts on agricultural productivity and water
quality in the Maumee River watershed using remote sensing (Master's thesis, The Ohio State University).

121. Richards, R. P., Baker, D. B., Crumrine, J. P., & Stearns, A. M. (2010). Unusually large loads in 2007 from the
Maumee and Sandusky Rivers, tributaries to Lake Erie. Journal of Soil and Water Conservation, 65(6), 450-462.
122. Bosch, N. S., Evans, M. A,, Scavia, D., & Allan, J. D. (2014). Interacting effects of climate change and
agricultural BMPs on nutrient runoff entering Lake Erie. Journal of Great Lakes Research, 40(3), 581-589.

123. Gnecco, |., Berretta, C., Lanza, L. G., & La Barbera, P. (2005). Storm water pollution in the urban environment
of Genoa, Italy. Atmospheric research, 77(1-4), 60-73.

124. El Kateb, H., Zhang, H., Zhang, P., & Mosandl, R. (2013). Soil erosion and surface runoff on different vegetation
covers and slope gradients: A field experiment in Southern Shaanxi Province, China. Catena, 105, 1-10.

125. Du, X., Jian, J., Du, C., & Stewart, R. D. (2022). Conservation management decreases surface runoff and soil
erosion. International Soil and Water Conservation Research, 10(2), 188-196.

126. Tibebe, D., & Bewket, W. (2011). Surface runoff and soil erosion estimation using the SWAT model in the
Keleta watershed, Ethiopia. Land Degradation & Development, 22(6), 551-564.

127. Zanon, J. A, Favaretto, N., Goularte, G. D., Dieckow, J., & Barth, G. (2020). Manure application at long-term in
no-till: Effects on runoff, sediment and nutrients losses in high rainfall events. Agricultural Water Management,
228, 105908.

128. Yang, L., Li, J., Zhou, K., Feng, P., & Dong, L. (2021). The effects of surface pollution on urban river water
quality under rainfall events in Wuqing district, Tianjin, China. Journal of Cleaner Production, 293, 126136.

129. Zhao, L., Lee, X., Smith, R. B., & Oleson, K. (2014). Strong contributions of local background climate to urban
heat islands. Nature, 511(7508), 216-219.

39



130. Steensen, B. M., Marelle, L., Hodnebrog, @., & Myhre, G. (2022). Future urban heat island influence on
precipitation. Climate Dynamics, 58(11), 3393-3403.

131. Liu, Y., Li, T., & Yu, L. (2020). Urban heat island mitigation and hydrology performance of innovative
permeable pavement: A pilot-scale study. Journal of Cleaner Production, 244, 118938.

132. Franzen, S. E., Farahani, M. A., & Goodwell, A. E. (2020). Information flows: Characterizing precipitation-
streamflow dependencies in the Colorado headwaters with an information theory approach. Water Resources
Research, 56(10), e2019WR026133.

133. Tuppad, P., Santhi, C., & Srinivasan, R. (2010). Assessing BMP effectiveness: multiprocedure analysis of
observed water quality data. Environmental monitoring and assessment, 170, 315-329.

134. Fassman, E. (2012). Stormwater BMP treatment performance variability for sediment and heavy metals.
Separation and Purification Technology, 84, 95-103.

135. Barrett, M. E. (2008). Comparison of BMP performance using the international BMP database. Journal of
irrigation and drainage engineering, 134(5), 556-561.

136. Fraker, M. E., Aloysius, N. R., Martin, J. F., Keitzer, S. C., Dippold, D. A., Yen, H., ... & Ludsin, S. A. (2023).
Agricultural conservation practices could help offset climate change impacts on cyanobacterial harmful algal
blooms in Lake Erie. Journal of Great Lakes Research, 49(1), 209-219.

137. Kamrath, B., & Yuan, Y. (2023). Streamflow duration curve to explain nutrient export in Midwestern USA
watersheds: Implication for water quality achievements. Journal of Environmental Management, 336, 117598.
138. Toland, D. C., Haggard, B. E., & Boyer, M. E. (2012). Evaluation of nutrient concentrations in runoff water from
green roofs, conventional roofs, and urban streams. Transactions of the ASABE, 55(1), 99-106.

139. Brezonik, P. L., & Stadelmann, T. H. (2002). Analysis and predictive models of stormwater runoff volumes,
loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA. Water
research, 36(7), 1743-1757.

140. Chow, M. F., & Yusop, Z. (2014). Characterization and source identification of stormwater runoff in tropical
urban catchments. Water science and technology, 69(2), 244-252.

141. Sohoulande, C. D., Szogi, A. A., Stone, K. C., Sigua, G. C., Martin, J. H., Shumaker, P. D., & Bauer, P. J. (2023).
Evaluation of phosphorus runoff from sandy soils under conservation tillage with surface broadcasted recovered
phosphates. Journal of Environmental Management, 328, 117005.

142. McFarland, A. M., & Hauck, L. M. (1999). Relating agricultural land uses to in-stream stormwater quality (Vol.
28, No. 3, pp. 836-844). American Society of Agronomy, Crop Science Society of America, and Soil Science Society
of America.

143. Moore, P. A, Formica, S. J., Van Epps, M. A. T. T., & Delaune, P. B. (2005). Effect of pasture renovation on
nutrient runoff from pastures fertilized with manure. In Livestock Environment VII, 18-20 May 2005, Beijing, China
(p. 301). American Society of Agricultural and Biological Engineers.

144. Anderson, K. R., Moore Jr, P. A, Pilon, C., Martin, J. W., Pote, D. H., Owens, P. R,, ... & Delaune, P. B. (2020).
Long-term effects of grazing management and buffer strips on phosphorus runoff from pastures fertilized with
poultry litter (Vol. 49, No. 1, pp. 85-96).

145. Delaune, P. B., Moore Jr, P. A,, Carman, D. K., Sharpley, A. N., Haggard, B. E., & Daniel, T. C. (2004).
Development of a phosphorus index for pastures fertilized with poultry litter—Factors affecting phosphorus
runoff. Journal of Environmental Quality, 33(6), 2183-2191.

146. Uusitalo, R., Turtola, E., Puustinen, M., Paasonen-Kivekas, M., & Uusi-Kdampp4, J. (2003). Contribution of
particulate phosphorus to runoff phosphorus bioavailability. Journal of Environmental Quality, 32(6), 2007-2016.
147. Ellison, M. E., & Brett, M. T. (2006). Particulate phosphorus bioavailability as a function of stream flow and
land cover. Water research, 40(6), 1258-1268.

148. Walling, D. E., Collins, A. L., & Stroud, R. W. (2008). Tracing suspended sediment and particulate phosphorus
sources in catchments. Journal of Hydrology, 350(3-4), 274-289.

149. Xue, F., Gou, Z., & Lau, S. (2017). The green open space development model and associated use behaviors in
dense urban settings: Lessons from Hong Kong and Singapore. Urban Design International, 22, 287-302.

150. Gémez, F., Cueva, A. P., Valcuende, M., & Matzarakis, A. (2013). Research on ecological design to enhance
comfort in open spaces of a city (Valencia, Spain). Utility of the physiological equivalent temperature (PET).
Ecological engineering, 57, 27-39.

40



