
A Transformer Architecture for Time-Series Data Applied to Stock-Market Closing-Price

Prediction

by

Rohit Kuruvilla Sanjay

A dissertation submitted in partial fulfillment

 of the requirements for the degree of

Master of Science

(Artificial Intelligence)

in the University of Michigan-Dearborn

2024

Master’s Thesis Committee:

Associate Professor, Luis Ortiz, Chair

Associate Professor, Mohamed Abouelenien

 Assistant Professor, Srijita Das

Rohit Kuruvilla Sanjay

rohitsan@umich.edu

© Rohit Kuruvilla Sanjay 2024

 ii

Dedication

With profound emotion and deep gratitude, I dedicate my thesis to the divine guidance of God

Almighty, whose boundless favor, grace, wisdom, and strength carried me through every phase of

this journey. To my beloved parents, Mr., and Mrs. Sanjay, I extend my heartfelt thanks for their

constant support, motivation, and inspirational guidance throughout the thesis process. I am also

immensely grateful to my dear sisters, whose unwavering encouragement and steadfast presence

kept me focused amidst the challenges.

My heartfelt appreciation goes to my esteemed advisor, Dr. Luis Ortiz, whose guidance, and

dedication were pivotal in the success of this thesis. I also wish to acknowledge Dr. Jin Lu for

igniting my passion for the chosen topic.

To the friends I've made at the University of Michigan Dearborn and to my cherished friends back

home in Dubai, I offer my sincere gratitude. Your support, camaraderie, and encouragement have

been invaluable, sustaining me through every obstacle and milestone of this remarkable journey.

 iii

Acknowledgments

This thesis would not have been possible without the support and guidance of my advisor Dr. Luis

Ortiz; I am forever grateful for your help and contribution. I want to thank my family and friends

for their constant support and inspiration for pushing me to do better. A special thanks to Dr. Jin

Lu for instilling the desire to pursue a master’s thesis.

 iv

Table of Contents

Dedication ... ii

Acknowledgments.. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures ... vii

List of Appendices ... ix

Abstract ... x

Chapter 1 Time Series Data and Stock Market Data .. 1

1.1 Time Series Data ... 1

1.2 Stock Market Data ... 2

Chapter 2 Stock Market Prediction Models .. 6

2.1 Types of Prediction Methods: ... 6

2.2 ARIMA Models ... 7

2.3 Convolutional Neural Networks .. 7

2.4 Recurrent Neural Networks ... 8

2.5 Long Short-Term Memory Models ... 9

2.6 Relevant Work ... 10

Chapter 3 The Transformer Architecture .. 13

3.1.1 Tokenization ... 13

3.1.2 Word Embedding.. 13

3.1.3 Positional Encoder .. 14

3.1.4 Attention Layer ... 15

3.1.5 Feed Forward Layer ... 17

 v

3.1.6 Output Layer ... 18

3.2 Types of Transformers .. 18

3.2.1 Encoder Only Models ... 19

3.2.2 Decoder Only Models... 20

3.3 Proposed Time Series Transformer ... 21

3.3.1 Input Projection Block .. 22

3.3.2 Encoder Block .. 24

3.3.3 Output Block .. 25

3.4 Time Series Transformer ... 25

Chapter 4 Model Training and Testing ... 27

4.1 Data Acquisition .. 27

4.2 Data Transformation ... 27

4.3 Model Configuration ... 28

4.4 Model Training .. 30

4.5 Model Testing ... 31

Chapter 5 Results and Discussions ... 32

5.1.1 Results Table .. 32

5.2 Results ... 34

5.3 Future Scope .. 35

Appendices .. 36

References ... 60

 vi

List of Tables

Table 1: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the

Technology Sector .. 33

Table 2: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the

Financial Sector. ... 33

Table 3: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the

Pharmaceutical Sector. .. 33

Table 4: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the

FMCG Sector. ... 34

Table 5: 95% Confidence Interval for Technology Sector ... 52

Table 6: 95% Confidence Interval for Finance Sector .. 52

Table 7: 95% Confidence Interval for Pharmaceutical Sector .. 53

Table 8: 95% Confidence Interval for FMCG Sector. .. 53

Table 9: Paired Z-Test Values for Technology Sector ... 54

Table 10: Paired Z-Test Values for Financial Sector.. 54

Table 11: Paired Z-Test Values for Pharmaceutical Sector .. 54

Table 12: Paired Z-Test Values for FMCG Sector ... 55

 vii

List of Figures

Figure 1-1: Time Series Decomposition using StatsModel Python Package 3

Figure 1-2: Yahoo Finance Dashboard (Image taken from [27]) ... 5

Figure 2-1: CNN's Applied on Time Series Data (Image taken from [28]) 8

Figure 2-2: RNN’s Architecture (Image taken from [7]) .. 9

Figure 2-3: LSTM Architecture (Image taken from [8]) .. 10

Figure 3-1: Word Embedding layer (Image taken from [29]) .. 14

Figure 3-2: Positional Encoding Formula (Image taken from [20]) ... 15

Figure 3-3: Equation of Attention Layer (Image taken from [20]) ... 16

Figure 3-4: Multi-Head Attention Mechanism (Image taken from [20]) 17

Figure 3-5: Block Diagram of the Original Transformer (Image taken from [20]) 19

Figure 3-6: Block Diagram for Encoder Only Models (Image taken from [20]) 20

Figure 3-7: Block Diagram for Decoder Only Models (Image taken from [20]) 21

Figure 3-8: Block Diagram of Input Projection Block ... 22

Figure 3-9: Block Diagram for Encoder Block ... 23

Figure 3-10: Block Diagram for Output Block ... 24

Figure 3-11: Block Diagram of Time Series Transformer.. 26

Figure 4-1: Pseudocode for Sliding Window Technique .. 28

Figure 4-2: Apple Training Graph using Time Series Transformer ... 30

Figure 4-3: Time Series Transformer and LSTM model Predicting the Apple Stock Closing Price

... 31

Figure A-1: RMSE and MSE values for training and testing dataset using k-fold 38

 viii

Figure A-2: Model Dimension RMSE Graphs on the Test Dataset using K-fold for Technology

Sector Stocks: Apple, Google, IBM, and Amazon (Top to Bottom). ... 42

Figure A-3: Model Dimension RMSE Graphs on the Test Dataset using K-fold for Financial

Sector Stocks: JP Morgan, Bank of America, Capital One Finance and Well Fargo (Top to

Bottom). .. 43

Figure A-4: Model Dimension RMSE Graphs on the Test Dataset using K-fold for

Pharmaceutical Sector Stocks: Johnson and Johnson, Pfizer, Merck and, Abbott Labs (Top to

Bottom). .. 44

Figure A-5: Model Dimension RMSE Graphs on the Test Dataset using K-fold for FMCG Sector

Stock: P&G, Pepsi, Nestle and Unilever (Top to Bottom). .. 45

Figure B-6: Training graph for Technology Sector Stock: Apple, Google, IBM, Amazon, HP

(Top to Bottom) .. 47

Figure B-7: Training Graphs for Financial Sector Stocks: JP Morgan, Bank of America, Capital

One Finance, Well Fargo and American Express (Top to Bottom). ... 48

Figure B-8: Training Graphs for Pharmaceutical Sector Stocks: Johnson and Johnson, Pfizer,

Merck, Abbott Labs and Amgen (Top to Bottom). .. 49

Figure B-9: Training Graphs for FMCG Sector Stock: P&G, Pepsi, Nestle, Unilever, Colgate

(Top to Bottom). ... 50

Figure C-10: Actual Closing Price VS Time Series Predictions VS LSTM Predictions for

Technology Sector Stocks: Apple, Google, IBM, Amazon, and HP (Top to Bottom). 56

Figure C-11: Actual Closing Price VS Time Series Predictions VS LSTM Predictions for

Financial Sector Stocks: JP Morgan, Bank of America, Capital One Finance, Well Fargo, and

American Express (Top to Bottom). ... 57

Figure C-12: Actual Closing Price VS Time Series Predictions VS LSTM Predictions for

Pharmaceutical Sector Stocks: Johnson and Johnson, Pfizer, Merck, Abbott Labs, and Amgen

Labs (Top to Bottom).. 58

Figure C-13:Actual Closing Price VS Time Series Predictions VS LSTM Predictions for FMCG

Sector Stocks: P&G, Pepsi, Nestle, Unilever and Colgate (Top to Bottom). 59

 ix

List of Appendices

Appendix A: Hyperparameter Tuning .. 37

A.1: Window Size Selection…………………………………………………………………..37

A.2: Model Dimension Selection…………………………………………………...................38

Appendix B: Model Training Graphs ... 46

Appendix C: Time Series Transformer Vs LSTM Model Prediction Graphs 51

 x

Abstract

The transformer architecture revolutionized natural language processing (NLP) tasks and gave

birth to powerful models such as the generative pre-trained (GPT) model, bidirectional encoder

representation from the transformer (BERT), text-to-text transformer. This thesis dives into this

unexplored landscape, investigating the potential of transformer-based models for accurately

predicting future closing prices of stocks. We propose a novel architecture, derived from the

original transformer, specifically crafted for this task. Our approach involves not only building and

optimizing this model but also tuning its hyperparameters for each of the four major stock market

sectors: technology, finance, pharmaceutical, and FMCG (Fast Moving Consumer Goods). By

carefully tailoring the model to each sector's unique characteristics, we aim to maximize its

effectiveness and capture nuanced market dynamics. Finally, we put our model to the test,

evaluating its performance on unseen data against established time series models such as the long-

short-term memory (LSTM) network. This comparative analysis will not only reveal the efficacy

of our transformer-based approach but also highlight its potential advantages in terms of accuracy

and interpretability compared to traditional methods. Through this exploration, we hope to

illuminate a promising new avenue for stock price prediction, offering valuable insights to

researchers and investors alike.

 1

Chapter 1 Time Series Data and Stock Market Data

This opening chapter explains what time series data is and its important characteristics. It sets the

foundation for understanding how time-series data works. The second objective of this section is

to focus on stock market data and the features that enable the prediction of the closing price of

individual stocks.

1.1 Time Series Data

Time series data is a feature measurement at a given timestamp. It is a key component in data

analysis in many industries. Time series data is useful as it can answer questions about trends,

patterns, and correlations over time. The ability to see how a feature changes over time is a

powerful insight into many business operations and equipment. The following are the

characteristics of time series:

• Trend: A trend is a gradual shift in a series over time, either up or down. It can be local

or global, and a series may show both or neither. [1]

• Seasonal Cycle: A seasonal cycle is a repetitive predictable pattern formed in a period

inside the time series data. Seasonality cycles are tied to intervals of your series, for

example, monthly data typically cycles over quarters and years. [1]

• Non-Seasonal Cycle: A non-seasonal cycle is a repetitive and unpredictable period in the

time series data. Some time series however show cyclic behavior, but the periodicity of

the cycle varies over time making it difficult to predict when a high or low will occur. [1]

 2

• Pulse and Steps: Pulse refers to temporary shifts in the data, while step denotes

permanent changes in the data. It's crucial to find plausible explanations when observing

these changes. [1]

• Outliers: Shifts in the level of a time series that cannot be explained are referred to as

outliers. These observations are inconsistent with the remainder of the series and can

dramatically influence the analysis and, consequently, affect the forecasting ability of the

time series model. [1]

Figure 1-1 (next page) showcases the S&P500 closing price decomposition into trend, seasonal

component, residual component. The x-axis represents the year while the y-axis for trend graph

represents closing price value, for seasonal component represent movement of stock, for residual

component shows randomness values in the stock.

1.2 Stock Market Data

In the financial market, market data like price, stock volume, and other related data are financial

instruments reported by a trading venue such as a stock exchange. Market data helps investors and

traders understand the market and make informed decisions on whether to buy or sell a financial

instrument like stock. Some of the main examples of financial instruments are stocks, equities,

fixed-income products, derivatives, and currencies. Each data point that is collected concerning

stock market data is time-dependent, this implies that at each second there is a new data point

reflecting a particular stock feature and each data point is a result of all the previous stock market

data points, the economic condition and market rhymes. Trend analysis enables understanding of

the long-term movements, and differentiation between the upward slope signifying a bullish

market and downward movement as a bearish market. While stock market data is a more focused

 3

Figure 1-1: Time Series Decomposition using StatsModel Python Package

 4

version of the market data in general, it is important to understand that the stock market is a victim

of similar uncertainty and unpredictability. [2]

Each country typically has its stock market exchange, responsible for regulating, monitoring, and

evaluating the traded stocks. Leading examples include the NYSE and NASDAQ in the US and

the BSE and NSE in India. These exchanges hold a wealth of crucial information about the

companies listed, including trading data, company profiles, regulatory filings, and market indices.

Below are some of the information that can be found on stock while trying to model, predict,

forecast, or decide on how to handle stocks:

• Ticker Symbol: A short, unique set of letters or letters and numbers (generally 1-4

characters) used to identify a specific company's stock on an exchange.

• Opening Price: The first price at which a particular stock trades on an exchange on a given

trading day.

• Closing Price: The last price at which a particular stock trades on an exchange on a given

trading day.

• High Price: The highest price at which a particular stock trades on an exchange on a given

trading day.

• Low Price: The lowest price at which a particular stock trades on an exchange on a given

trading day.

• Volume: The total number of shares of a particular stock that have been traded on an

exchange on a given day.

• Bid Price: The bid price is the highest price that a buyer is willing to pay for a share of a

stock at any given time.

 5

• Ask Price: Conversely, the ask price is the lowest price that a seller is willing to accept for

a share of a stock at any given time.

• Spread: The spread is the difference between the bid price and the ask price.

Figure 1-2 is a screenshot of the yahoo finance dashboard with real time Apple stock value

movement. The left side of the dashboard indicates key information such as opening price,

bid price, ask price, 52 weeks average and so on while the center is a real time graph plotting

the movement of the Apple stock every second.

Figure 1-2: Yahoo Finance Dashboard (Image taken from [27])

 6

Chapter 2 Stock Market Prediction Models

The stock market prediction model attempts to determine the future value of a company stock or

other financial instrument through different prediction methodologies. Furthermore, this chapter

depicts different approaches and techniques to predict stock market closing prices.

2.1 Types of Prediction Methods:

The ability of a model or analysis to be able to predict future prices dictates the future decisions

made by investors and traders on whether to buy or sell a particular stock. The efficient-market

hypothesis suggests that stock prices reflect all currently available information and any price

changes that are not based on newly revealed information thus are inherently unpredictable. The

three main categories of these methods are fundamental analysis, technical analysis, and machine

learning models. [3]

• Fundamental Analysis: This strategy analyzes past performance and determines the true

value of the stock, comparing it with the market value to realize a potential undervaluation

for long-term investment. [3]

• Technical Analysis: This strategy primarily depends on analyzing past prices and trends

to anticipate future stock price movements, making it predominantly used for short-term

investing. [3]

• Machine Learning Models: Models such as regression, CNN, RNN, LSTM, and GRUs

have been able to leverage deep learning to understand stock market data and predict future

movement. [3]

 7

2.2 ARIMA Models

Autoregressive Integrated Moving Averages (ARIMA) model are used for time series forecasting

and predictions. Auto-Regressive models or AR models use past stock price data to predict future

prices while Moving Averages or MA models use past forecasting errors to predict future prices.

A key component required to apply the ARIMA model on time series data is to have stationary

data. Data can be called stationary only if the mean and variance are consistent throughout the

dataset. Most of the real-world time series data are not stationary and hence need to be transformed

for them to be compatible with these kinds of models. The transformation process is called

differencing where the dth difference is taken from the series until the data is stationary. An

ARIMA model can be expressed using the following notation, ARIMA(p,d,q), where p stands for

autoregressive order, d stands for the differencing degree and q stands for moving averages order

[4].

2.3 Convolutional Neural Networks

Convolutional neural networks (CNN) (refer figure 2-1) are one of the most prominent models in

deep learning especially for computer vision tasks. Their ability to capture spatial features and

extract information has accounted for high accuracy and performance in handling time series data

tasks. To make CNN compatible with time series data, it is crucial to transform the data into

batches with a specific window size that contains past information. This helps the model

understand the temporal context for predicting future values. CNN uses 1D filters across each

window to extract relevant features, these features are then passed into a pooling layer that helps

 8

aggregate the information extracted from the first step. Finally, the pooled information is passed

into a linear network that processes this information and returns a future value. [5]

2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) (refer figure 2-2) are made up of many artificial neurons that

work together to perform tasks that are challenging and complex. The arrangement of the neurons

in RNN is as input, hidden, and output layers. The RNN first passes the data into the input layer

which usually consists of a feature extraction layer, the extracted information is passed into the

hidden layer which consists of a series of linear layers and activation functions, and finally, the

output is predicted using the output layer. A key distinguishing factor of the RNNs is that the

model has a self-looping where the hidden layer can remember and use previous inputs for future

predictions in its memory components. Just like a simple ANN (Artificial Neural Network) which

uses backpropagation to adjust its weights, for RNN, the model uses a similar approach called

back-propagation through time or BPTT. BPTT rolls back the output to the previous time step and

recalculates the error rate. This way, it can identify which hidden state in the sequence is causing

a significant error and readjust the weight to reduce the error margin. [6]

Figure 2-1: CNN's Applied on Time Series Data (Image taken from [28])

 9

Figure 2-2: RNN’s Architecture (Image taken from [7])

2.5 Long Short-Term Memory Models

Long short-term memory models or LSTM models (refer figure 2-3) are part of the RNN’s family

of deep learning models. LSTM’s tackles vanishing gradient problem by introducing gated units

that selectively retain or discard information depending on the task. There are 3 gates and 1

memory cell in the LSTM architecture, forget gate, input gate, output gate and candidate memory

cell respectively. The input gate controls the follow of information within the model. It consists of

a sigmoid activation function followed by a pointwise multiplication. The forget gate controls the

flow of information in the candidate memory cell, this is done by using sigmoid activation function

and pointwise multiplication. The output gate controls the flow of information leaving the model

at each time step, this is done by sigmoid activation function and pointwise multiplication. The

working of these gates together makes LSTM well suited for time series tasks as it can learn and

remember complex temporal patterns and make future predictions.

 10

Figure 2-3: LSTM Architecture (Image taken from [8])

2.6 Relevant Work

Several studies have explored various methodologies for predicting stock market closing prices,

aiming to navigate the inherent uncertainties of financial time series data. Samarawickrama and

Fernando (2023) investigated RNNs, LSTMs, and gated recurrent units (GRU), for predicting the

closing price of three Sri Lankan companies. Despite its promise, their study found a multilayer

perceptron (MLP) outperformed all RNN models. Interestingly, GRUs exhibited higher errors

compared to other RNN architectures [9]. In contrast, another study by Putu Candra and Ni Luh

Wiwik (2023) compared the performance of support vector machines (SVMs) and linear

regression (LR) in predicting daily stock prices for an Indonesian company from 2014 to 2023.

The analysis based on various training and testing data splits, concluded that LR outperformed

SVMs where the focus remained on publicly traded companies in the S&P500 [10]. Ravikumar

and Saraf (2023) explored predicting closing prices using various regression and classification

algorithms. After extracting additional features like volatility and momentum from historical data,

 11

their study found polynomial regression achieving the highest accuracy (91.45%), followed by

linear regression (82%) and SVM (87%) [11]. These diverse studies highlight the ongoing

exploration of different approaches for stock price prediction. While RNNs hold promise, MLPs

and traditional statistical models like LR may offer competitive performance depending on the

chosen dataset and features.

Transformer-based architectures have emerged as promising tools for capturing the complex

dynamics of financial time series. Mirjebreili and Solouki proposed a multi-task transformer

trained on Iranian stock market data. Their model employed quintuple barrier labeling and a

custom purge k-fold validation approach to address data imbalance and time-dependency issues.

While achieving moderate accuracy, their work demonstrates the potential of transformers for

multi-class stock price prediction [12]. Costa and Machado compared transformers to traditional

ARIMA and LSTM models for predicting Ibovespa index stock prices. Their transformer

architecture outperformed both baselines in 60% of the tests, showcasing its ability to capture long-

range dependencies within the data. This study emphasizes the potential of transformers to surpass

established methods in specific contexts [13]. Yawei Li and Xingua Liu incorporated transformers

and attention networks to predict stock movements based on tweets and historical prices. Their

TEANet model leveraged text embeddings and temporal attention to integrate sentiment analysis

with price data. This approach achieved improved accuracy compared to other models,

highlighting the value of incorporating additional information sources like social media sentiment

[14]. Nadeem Malibari and Iyad Katib were the first to apply a transformer architecture for

predicting future prices on the Saudi Stock Exchange. Their model, inspired by the vision

transformer, achieved an impressive 90% accuracy, demonstrating the effectiveness of

transformers in specific emerging markets. This study underscores the need for further research

 12

into tailoring transformer models to different market characteristics [15]. Tashreef Muhammad

and Anika Bintee explored a transformer-based deep learning model for the Bangladesh Stock

Market. Their study trained separate models for eight companies, achieving varying levels of

success. This highlights the potential but also the challenges of applying transformers to individual

stocks, where data availability and model complexity can play a role [16]. Harsimrat Karley

investigated transformers combined with sentiment analysis for predicting normalized opening

prices. Their model uses technical indicators and news headlines to capture both quantitative and

qualitative market signals. This work highlights the potential of transformers to integrate diverse

data sources for improved prediction [17]. Chaojie Wang and Shuqi Zhang implemented an

encoder-decoder transformer to predict closing prices for three major international indices. Their

model achieved competitive performance compared to established benchmarks. [18]. A

comparative paper was published by Ailing and Muxi discussing the validity of transformers with

respect to time series data. To establish their claim, a set of simple one-layer linear models are

compared with different transformers across nine different datasets. The paper showcases that all

the linear models outperform the transformer models by large margins and this line of research

needs to be revisited [19].

In conclusion, these studies reveal the ongoing exploration of transformers for stock price

prediction. While transformers demonstrate promise, their performance can vary depending on the

specific market, data characteristics, and chosen architecture. Further research is needed to fully

understand their potential and limitations in this complex domain. Additionally, combining

transformers with other approaches like sentiment analysis or technical indicators holds promise

for further enhancing prediction accuracy.

 13

Chapter 3 The Transformer Architecture

A transformer is a type of neural network architecture that consists of an encoder and a decoder

working together with attention layers to extract relevant information and output sequence of

results [20]. Transformers has seen tremendous success with the realm of natural language

processing tasks especially with respect to machine translation and sentence generation. Below

subchapters dive deep into the different layers and blocks inside a transformer.

3.1.1 Tokenization

Tokenization plays a crucial role in transforming discrete tokens into meaningful representations.

These vectors act as a bridge between the surface features of language and the underlying semantic

complexities. Assuming that a huge corpus of text is taken into consideration, this corpus is divided

into chunks of smaller texts of fixed size and fed into a pretrained or learned model that can convert

the text into a series of tokens. Some of the tokenization techniques are, word tokenization where

text is broken down into individual words. Another tokenization method is character tokenization

breaks down a word into individual characters, this method is effective in tackling problems where

language does not have clear word boundaries or tasks that require granular analysis. Finally, sub-

word tokenization is a method that finds the grey region between the two previously mentioned

methods. This method breaks down text into units that might be larger than a single character but

smaller than a full word [21].

3.1.2 Word Embedding

The embedding layer occupies a crucial role in converting discrete word tokens into continuous

vector representations suitable for further processing within the transformer. After tokenization,

the tokens need to be represented in a higher dimensional form. There are two ways to achieve

this, pretrained or learned embeddings. Essentially for the pre-trained embeddings, it performs a

 14

lookup operation on a pre-trained weight matrix (the embedding matrix) where each row denotes

a unique word in the vocabulary and each column corresponds to a specific dimension in the

embedding space. This process maps the integer indices representing words to dense vectors of

fixed dimensionality, capturing semantic and syntactic relationships between words in a numerical

format. Learned embeddings use neural networks that adopt a data-driven approach, directly

learning word representations from the training data itself. These layers typically utilize

embedding matrices, learnable weight matrices where each row encodes a unique word's vector

representation. Through backpropagation and gradient descent, the model refines these vectors,

optimizing their ability to capture word relationships between each other [22] .

3.1.3 Positional Encoder

Figure 3-1: Word Embedding layer (Image taken from [29])

 15

Natural language processing tasks mainly require sequence processing, understanding the relative

positioning of words is crucial to create more meaningful sentences. In transformers, these

encodings are done using learned vectors crafted through sine and cosine functions, which function

as multi-dimensional embeddings within each element's representation. This encoding scheme

relies on two key properties of sine and cosine waves [20]:

● Frequency-Based Distinction: Trigonometric functions oscillate uniquely which enhances

the sensitivity of the model to local and global relationships.

● Dimensional Orthogonality: Sine and cosine in linear combinations, exhibit orthogonality.

This makes sure the information encoded is independent and no information leak takes

place during training.

Figure 3-2 is taken out of the 2017 paper “Attention is all you need”, where pos are the position, i

is the ith dimension of the embedded vector, and dmodel represents the model dimension of the

transformer. That is, each dimension of the positional encoding corresponds to a sinusoid. The

wavelengths form a geometric progression from 2π to 10000 · 2π.

3.1.4 Attention Layer

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio at the ICLR 2015 conference showcased

the first working attention mechanism [23]. The attention mechanism consists of three main

matrices:

Figure 3-2: Positional Encoding Formula (Image taken from [20])

 16

Figure 3-3: Equation of Attention Layer (Image taken from [20])

• Queries (Q): These vectors represent the network's current target, often corresponding to a

specific word or element.

● Keys (K): Each position in the sequence possesses a unique identifier encoded in the key

vector.

● Values (V): These values hold raw information that might be seen during querying.

Figure 3-3 showcases the scaled dot-product computation formula for calculating attention score

by using the Query, Key, and Value, the model uses this matrix to find a relationship between the

Key-Value pair and then uses the query to search for a similar vector. In the context of similarity

computation, the neural network utilizes a dot-product operation to measure the alignment between

the query vector and each key vector within the sequence. This process captures the degree of

association or similarity between the current focus and individual elements in the sequence. To

address potential instability during training, a scaled relevance scoring mechanism is employed.

The raw dot product is scaled by the square root of the key vector's dimensionality, thereby

mitigating the impact of large dimensions, and ensuring manageable gradients for stable training.

Once the scaled similarly scores are returned, the SoftMax function is applied to convert the values

into attention weights. This ensures that the attention weights sum up to 1 and represents a

probability distribution over the key vectors. Finally, these attention weights are multiplied with

the value matrix which allows the attention mechanism to selectively aggregate information based

 17

on relevance, producing contextual representation that captures the most important features of the

given input [20].

Multihead Attention (refer figure 3-4) in a transformer model allows capturing different

relationships between words simultaneously by performing multiple attention operations in

parallel. This is done by dividing the query, key, and value matrices into multiple heads and

computing individual attention scores for each head, later concatenated, and linearly transformed

for output. This mechanism helps diverse patterns and dependencies within an input sequence

which leads to improved performance.

3.1.5 Feed Forward Layer

In a Transformer architecture, the feed-forward network (FFN) adds two vital functionalities, non-

linear transformation, and feature enrichment. This is achieved by using a series of non-linear

activation functions and linear layers. Non-linear activation functions (e.g., ReLU), inject non-

linearity into the network, allowing it to capture intricate patterns and interactions beyond the

Figure 3-4: Multi-Head Attention Mechanism (Image taken from [20])

 18

capabilities of attention alone, similarly, feature enrichment is also achieved by transforming the

attention-derived representation through non-linear activation functions and linear layers. FFNs

can lead to the creation of new features, the modulation of existing ones, and ultimately a richer

understanding of the sequence.

3.1.6 Output Layer

The output layer consists of mainly 2 layers, a linear layer and a SoftMax layer. The linear

network, at its core, is a single layer of interconnected neurons. The final hidden state vector

generated by the decoder, which encapsulates the processed input sequence, and project it onto a

probability distribution for each possible output token. This distribution represents the model's

confidence in each potential output, allowing it to account for uncertainty in situations where

clear predictions are not always possible. The linear layer will project the final output vector in

the dimension of the vocabulary size used for the model. The output of the linear layer is then

fed into a SoftMax layer to extract the raw probability distribution of the output vector. This

distribution conveys the model's confidence in each potential output, not just as a number but as

a percentage ranging from 0 to 1. This information is then utilized in various ways depending on

the specific task [20]. Figure 3-5 is a snippet of the original transformer block diagram with

encoder network on the left and decoder network on the right.

3.2 Types of Transformers

Transformers are known for their heavy use of computational resources and slow training times.

As a result, this has led to the introduction of encoder only models or decoder only models. This

section an explanation of the advantages and disadvantages of each of these models are provided.

 19

Figure 3-5: Block Diagram of the Original Transformer (Image taken from [20])

3.2.1 Encoder Only Models

Transformer encoder only models (refer figure 3-6) are a specialized form of the transformer where

the decoder part of the transformer does not exist. This modification is done to offer advantages

over the original architecture. One prominent advantage is computational efficiency. By removing

the decoder, the computational load decreases and makes them better for use cases where resources

for training are limited. Another advantage of encoder only models is that due to the absence of

the decoder, there is more transparency in the interpretability of the model and the processing of

 20

the data. The model performs extremely well for feature extraction tasks and to understand

incoming data. Despite such advantages, they have their own set of limitations. One notable

drawback is the inability of the model to produce sequences as the decoder part is held responses

to for such generation in the traditional tasks. One of the most successful encoder only models is

the BERT model released by Google [24].

3.2.2 Decoder Only Models

Decoder only models (refer figure 3-7) are a specialized version of the transformer such that the

encoder part of the original transformer is missing from the architecture. This approach offers

different advantages over the original architecture such as reduced computational complexity and

cost. By excluding the encoder, the model becomes lightweight and has faster inference during the

production of the model in real-time applications. However, due to the missing presence of the

encoder, the decoder lacks in understanding or extracting features of the data and needs assistance

Figure 3-6: Block Diagram for Encoder Only Models (Image taken from [20])

 21

Figure 3-7: Block Diagram for Decoder Only Models (Image taken from [20])

to process such data. Decoder only models are most used where the primary objective is sequence

generation such as text generation, image captioning, etc. One of the most successful decoder only

models is are GPT model created by OpenAI [25].

3.3 Proposed Time Series Transformer

The proposed time series transformer takes inspiration from encoder only models. The encoder

block is coupled with a projection block, and positional encoding block at the start to represent the

 22

 data in higher dimensions. Secondly, the output of the encoder block is fed into an output block

which is expected to predict future closing price of different stocks.

3.3.1 Input Projection Block

The input project block is the first layer in the time series transformer model. The layer consists

of 2 linear layers and a single activation function called exponential linear unit (ELU). The

combination of linear layers and ELU activation function helps project the data to the required

dimension while learning data relationships and complexities. ELU activation function tackles

the problem of dying ReLU by allowing negative values, this helps prevent neurons from

Figure 3-8: Block Diagram of Input Projection Block

 23

becoming inactive during training [26] . In figure 3-8 (previous page), the data is first introduced

into the block with a shape of batch size x window size x 1, passed onto an activation function

(ELU), projected into a hidden dimension, and finally converted to a shape of batch size x

window size x model dimension.

Figure 3-9: Block Diagram for Encoder Block

 24

3.3.2 Encoder Block

The encoder block consists of an attention layer and a feed-forward network. The data that is

projected using the input projection block and positionally encoded will be fed into the attention

layer first. The attention layer applies the scaled dot product mechanism and returns the attention

scores for each input. This information is passed forward into the feed-forward network, where

non-linear transformation and feature enrichment take place. With the introduction of residual

connections and layer normalization, these techniques help address gradient vanishing/exploding

problems and improve the rain stability of deep networks. In figure 3-9 (previous page), the input

projection block passes the data of shape batch size x window size x model dimension into the

attention layer and feed forward layer. Finally, the output data is of shape batch size x window size

x model dimension.

Figure 3-10: Block Diagram for Output Block

 25

3.3.3 Output Block

The output layer is the final block in the time series transformer consisting of an average pooling

layer and a linear layer. The global average pooling layer calculates the average value of each

feature map across all spatial dimensions (width and height) of the attention scores. This reduces

the feature maps to a single vector for each channel, capturing the overall significance of that

feature in the matrix. In figure 3-10 (Previous Page), the output layer receives data of shape batch

size x window size x model dimension. This data is then pooled together and passed into a linear

layer that predicts T+1 future price of the stock. The final output shape of this block is batch size

x 1.

3.4 Time Series Transformer

The time series transformer (figure 3-11) took inspiration from the encoder only models and

consists of only four blocks, input projection block, positional encoding block, encoder block, and

output block. The input projection block acts like the word embedding layer and projects the

information in a higher dimension which helps the model extract key relationships and information

about the input data. This is followed by a positional encoding block that uses the sine-cosine value

to encode the data with positional information. The encoder takes this data and passes the data

through an attention layer and feed-forward network. The output of the encoder block consists of

data that highlights key information and relationships about the input. Finally, the output block

takes the data and aggregates the information using an average pooling layer and uses a linear layer

to understand the information after aggregation to predict future T+1 closing prices for a particular

stock.

 26

Figure 3-11: Block Diagram of Time Series Transformer

 27

Chapter 4 Model Training and Testing

This chapter explores key steps in building the time series transformer model. First, the collection

of data takes place followed by transforming the data to be ready for time-series transformer. This

is followed by introducing the model configuration and using those exact parameters to train the

transformer model for each stock in each sector. Lastly, training and testing of the time series

transformer along with relevant graphs showing the output.

4.1 Data Acquisition

The Yahoo Finance API is a free available tool that can be leveraged to extract real-time stock

market prices of most listed stocks across the globe. Yahoo Finance returns information on

different periods, for example hourly, daily, weekly, monthly, and yearly. Depending on the task,

Yahoo Finance returns information such as closing price, opening price, high price, low price, and

volume. It is important to make sure that the information of the stock is reliable and consistent as

missing values or incorrect values could hinder the learning or accuracy of the model.

4.2 Data Transformation

The data that is extracted using Yahoo Finance needs to be transformed so that it is compatible

with the time series transformer. This is achieved using the sliding window technique. For our

time series transformer, it is important to have input data and target data called X and Y

respectively. The data extracted is in the form data shape x 1 and needs to be transformed into X

shape batch size x window size x 1 and Y shape batch size x 1. This is achieved by using an

iterative sliding window mechanism on the data. In the first iteration, data points from 0 to T+1

are sliced and split into X and Y datasets. The split takes place such that 0 to T data points are

copied to X and (T+1) the data point is copied to Y. In the second iteration, the sliding window

shifts n data points ahead (for this project n =1) and performs similar steps as above. Each time

 28

the X and Y-sliced data is extracted, it is then stacked over each other to form a batch. This iterative

process lets the final output of X and Y have a shape Batch size x Window Size x 1 and Batch size

x 1 respectively. This means that for each batch size, there is a window size W with data points T

that match a singular closing data point in Y for T+1. Figure 4-1 is the pseudocode for the iterative

sliding window technique applied to the data in our thesis.

4.3 Model Configuration

The model configuration is an important aspect of training as it gives you leverage and control

over how well the model performs in that task. In this thesis, all the model parameters are fixed

except for model dimension and window size which were selected using cross-validation. These

values change depending on the sector that the stock is found in (more information can be found

in Appendix A). It is important to know that these parameters help reduce the loss of the model

and increase the accuracy of predictions. The transformer model has many configurations possible

due to its large variety of model parameters. They are: -

1. d_model: -This parameter defines the model dimension. This parameter changes depending

on the sector the data is from.

Figure 4-1: Pseudocode for Sliding Window Technique

 29

2. nheads: - This parameter specifies the number of heads in the attention layer. The number

of heads is fixed to 8.

3. num_layers: - This parameter specifies the number of encoders in the transformer.

architecture. The number of encoder layers is fixed to 2.

4. Max_seq_length: - This parameter belongs in the positional encoder layer and specifies the

maximum length of the input data that the model should be able to encode. The sequence

length that can be positionally encoded is set to 500.

5. pl_input_dim: - This parameter belongs in the input projection layer that helps specify the

last dimension in the input sequence. The dimension is fixed to 1 for training and testing.

6. pl_hidden_dim: - This parameter controls the hidden dimension in the input projection

layer. The dimension is fixed to 128 for training and testing.

7. pl_output_dim: - This parameter controls the output dimension in the input projection layer

which usually matches the model dimension of the transformer.

8. dim_feedforward: - This parameter controls the dimension of the feed-forward network

that is found in the encoder layer. The dimension is fixed to 2048 for training and testing.

9. output_dim: - This parameter controls the final output dimension in the output layer.

Usually, this is set to 1 (Closing Price). The dimension is fixed to 1 for training and testing.

10. dropout: - This parameter controls the added dropout layer in all the layers to make sure

the model does not over-train. The dropout layer is set to 0.01.

11. learning_rate: - This parameter controls the tuning in the optimization algorithm used in

the model by defining the size of the steps taken to reach the lowest loss. The learning rate

is set to 0.0001.

 30

12. Adam Optimizer: - It is an iterative optimization algorithm used to minimize the loss

function during the training of neural networks. Adam is considered a combination of

RMSprop and Stochastic Gradient Descent with momentum.

4.4 Model Training

Model training is an iterative process of feeding data to a machine learning algorithm to help it

learn and improve its ability to perform a specific task, in this case predicting the future closing

price values of individual stocks. Each of the stock market sectors has their specific window sizes

and model dimensions which maximizes the model accuracy and reduces loss. I used Google

Collab for model training using an T4 TPU which has 16GB of DDR4 RAM (Nvidia Tesla GPU),

201 GB of SSD Storage, and 12.7GB of System RAM.

The training data remains the same as the data chosen during the cross-validation tests. This ranges

from 1st January 2017 to 2nd February 2023 and returns 1530 data points for the model to train with

each individual stock. The training data is then batched and resized using sliding window

technique.

Figure 4-2: Apple Training Graph using Time Series Transformer

 31

Figure 4-3: Time Series Transformer and LSTM model Predicting the Apple Stock Closing Price

Figure 4-2 (refer previous page) is an example of the time series transformer MSE loss graph for

Apple Stock. The x-axis showcases the number of epochs the model ran for while the y-axis

depicts the loss value at each epoch. It is seen that after epoch 50 the MSE values converge to

zero (other stock training graph can be found Appendix B).

4.5 Model Testing

After training the model in a particular stock using the training dataset, it is crucial to see how well

the model has learned the data, understood dependencies, and found relationships such that it can

achieve similar results with unseen data. For testing, the data period starts from 1st February 2023

to 31st December 2023. This includes 230 data points for the model to predict. Each of the

individual data points is also predicted using a baseline LSTM model which gives a visual

understanding of how well the time series transformer predicts the data as compared to an LSTM

model and vice versa. This process is repeated for all 20 different stocks that were extracted from

4 different sectors. Figure 4-3 plots the closing price values that are predicted by the time series

transformer (dotted yellow), LSTM Model (dotted green) and actual closing price of Apple stock

(red). The x-axis represents each timestamp, and the y-axis represents the closing price of the stock

(other prediction comparison graphs can be found on Appendix C).

 32

Chapter 5 Results and Discussions

In short, this thesis envisages a choice of an LSTM model as the baseline model. Five different

stocks from four different sectors have been used. This gives the model a total of 20 different

stocks to train and predict individually. The training data consists of closing price values of each

stock from 1st January 2017 to 2nd February 2023 while the testing data had values from 2nd

February 2023 to 31st December 2023.

5.1.1 Results Table

Tables 1-4 provide a comparative analysis of RMSE values achieved during the testing of time

series transformers and LSTM models for various stocks, alongside recorded training times.

Additionally, green highlighted cells denote stocks where significance has been established at a

95% confidence level (see Appendix C for details) and Bold indicating lower RMSE values.

Ticker Transformer

(RMSE)

LSTM

(RMSE)

Training Time

Transformer

(Seconds)

Training Time

LSTM

(Seconds)

Technology Sector

AAPL 2.73179 3.05637 71.63179 11.83203

GOOGL 2.26627 2.22430 74.94701 8.95759

IBM 1.38770 1.35420 72.5052 8.94904

AMZN 2.47154 2.51771 73.80354 10.23931

HPQ 0.45323 0.47398 75.09602 9.98877

 33

Table 1: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the Technology Sector

Ticker Transformer

(RMSE)

LSTM

(RMSE)

Training Time

Transformer

(Seconds)

Training Time

LSTM

(Seconds)

Finance Sector

JPM 1.85619 1.87050 13.36561 9.89305

BAC 0.50232 0.50837 12.88519 9.83190

COF 1.95182 1.97675 13.06328 9.69739

WF 0.73531 0.75214 13.06232 9.56277

AXP 2.39368 2.45006 13.06951 9.47508

Table 2: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the Financial Sector.

Ticker Transformer

(RMSE)

LSTM

(RMSE)

Training Time

Transformer

(Seconds)

Training Time

LSTM

(Seconds)

Pharmaceutical Sector

JNJ 1.709663 1.63408 17.91004 8.89433

PFE 0.52091 0.52505 17.12886 11.09893

MRK 1.51717 1.35821 17.19714 10.80851

ABT 1.32592 1.37367 17.60171 8.92115

AMGN 3.42139 3.3555 17.65434 8.86070

Table 3: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the Pharmaceutical

Sector.

 34

Ticker Transformer

(RMSE)

LSTM

(RMSE)

Training Time

Transformer

(Seconds)

Training Time

LSTM

(Seconds)

FMCG Sector

PG 1.38487 1.36692 17.28249 9.68173

PEP 1.74527 2.05813 17.35069 9.64310

NSRGF 1.24706 1.25348 17.62932 9.61233

UL 0.46956 0.45560 17.49177 9.62335

CL 0.71232 0.71074 19.49887 9.63754

Table 4: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the FMCG Sector.

5.2 Results

One of the key objectives of the thesis is to design a transformer that can be used for stock market

prediction and performance analysis. Creating a time series transformer model that took inspiration

from the transformer-encoder only model and replacing certain blocks such word embedding layer

with an input project layer and adding an output layer at the end of the encoder layer gave way to

the time series transformer to predict time series data. The model learns and successfully predicts

20 different stocks closing price by fine-tuning hyperparameters such as window size and model

dimension.

The time series transformer and baseline LSTM are compared against each other yielding

interesting results. According to the RMSE comparison, time series transformer achieved lower

values than the LSTM model for 12 out of 20 stocks. By employing a 95% confidence interval on

both the models, the ranges overlap with one another. However, using paired z-test, 7 out of the

20 stocks were able to establish statistical significance in performance at the 95% confidence level.

 35

With respect to training time, LSTM have better training speeds as compared to time series

transformers. In the technology stock transformers took 3 times as much time to train as compared

to LSTM models, similarly for other sectors, time series transformers took 1.2 times as much time

as to train a LSTM Model.

From the above results, time series transformers can perform similarly to LSTM and given the

right parameters even outperforming them in certain areas. Due to the training time taken and

various model parameters, the trade-off between time series transformer and LSTM is important

to note for further evaluation. This contradicts the paper published by Ailing and Muxi [19] which

debates the validity and line of research for transformer in time series data (refer section 2.6).

5.3 Future Scope

A key objective is to showcase the ability of a transformer to perform time series tasks, specifically

closing price prediction for stocks. To extend our research, we would first compare our model with

some more industry standard models such as polynomial regression models, Multilayer perceptron,

and RNN’s. This may provide additional information on the performance of the time series

transformer. We also suggest incorporating the model to accept features such as volume of stock

traded, daily stock volatility and even stock sentiment measures to help introduce more

information within the model for more accurate predictions. Finally, as transformer models are

known for their ability to generalize on large data, creating a large stock market model would help

predict long range future stock closing price values for different stocks using a single model.

 36

Appendices

 37

Appendix A: Hyperparameter Tunning

A.1: Window Size Selection

The window size is an important hyperparameter, it determines the number of past data points to

be fed into the time series transformer for it to be able to predict future closing prices for a stock.

Hence choosing the right window size is crucial as a narrow window size might miss out on

important information while a larger window size might introduce irrelevant information that

could potentially ruin predictions. It is also important to note that increasing the window size will

also increase the model complexity and training times.

In this thesis, we used 17 different window sizes from 1 to 80 to help us understand how well the

training and testing of the model. With the help of K-fold cross-validation, we split the original

training dataset into 3 folds and for each iteration, 2 of the folds are concatenated together to form

a new training dataset, and the remaining 1-fold is used for testing. The RMSE and MSE values

achieved from each iteration are averaged out and then plotted on a graph for representation. It can

be seen from the below image that as the window size increases, the model keeps achieving lower

RMSE and MSE values but for the test RMSE and MSE, window size 6 achieved the lowest RMSE

test value.

Window sizes selection: [1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80].

Below figure A-1 showcases the RMSE and MSE values obtained from cross-validation of the

training data and testing data. The x-axis in the graph represents the window size of each model

and the y-axis represents the MSE/RMSE Loss for 3-fold cross-validation.

 38

Figure A-1: RMSE and MSE values for training and testing dataset using k-fold

A.2: Model Dimension Selection

The model dimensionality (d_model) captures how information flows across the model

architecture. Higher model dimensions help capture intricate details about the input which could

lead to improved model performance while, a lower model dimension helps in focusing on

important features that could lead to faster training and inference times. From the above 17 window

sizes, selecting 8 window sizes (3, 4, 5, 6, 10, 15, 20, 30) and coupling them with 6 different model

dimensions (16, 32, 64, 128, 256, 512) helps to plot different RMSE values for different

configurations and select the lowest amongst those values.

 39

Figure A-2 is a graphical representation of the RMSE values achieved during three-fold cross

validation of various model dimensions. This has been achieved using time series transformer

model for Apple, Google, IBM, and Amazon (from top to bottom). The x-axis of the graph

represents model dimension, and the y-axis represents the average RMSE values achieved by each

model dimension for the test fold dataset. Each of the curves for model dimensions are given a

unique color for identification purposes. In the first figure, Apple stock achieves the lowest RMSE

value with a window size of 6 and model dimension size of 128. In the second figure, Google stock

achieves the lowest RMSE value with window size 3 and model dimension 64. In the third figure,

IBM stock achieves the lowest RMSE value with window size 3 and model dimension 128. In the

fourth figure, Amazon stock achieves the lowest RMSE values with window size 3 and model

dimension 64. This leads to the conclusion that the ideal window size for the technology sector

should be 3 and model dimension 64. However, using a window size of 4 and model dimension of

512, the model achieves lower RMSE values with the testing data with regards to overall

technology stocks.

Figure A-3 is a graphical representation of the RMSE values achieved during three-fold cross

validation of various model dimensions. This has been achieved using time series transformer

model for JP Morgan, Bank of America, Capital One Finance, Well Fargo (from top to bottom).

The x-axis of the graph represents model dimension, and the y-axis represents the average RMSE

values achieved by each model dimension for the test fold dataset. Each of the curves for model

dimensions are given a unique color for identification purposes. In the first figure, JP Morgan stock

achieves the lowest RMSE value with a window size of 3 and model dimension size of 64. In the

second figure, Bank of America stock achieves the lowest RMSE value with window size 3 and

model dimension 64. In the third figure, capital one finance stock achieves the lowest RMSE value

 40

with window size 6 and model dimension 128. In the fourth figure, Well Fargo stock achieves the

lowest RMSE values with window size 15 and model dimension 128. This leads to the conclusion

that the ideal window size for the finance sector should be 3 and model dimension 64.

Figure A-4 is a graphical representation of the RMSE values achieved during three-fold cross

validation of various model dimensions. This has been achieved using time series transformer

model for Johnson & Johnson, Pfizer, Merck, and Abbott Labs (from top to bottom). The x-axis

of the graph represents model dimension, and the y-axis represents the average RMSE values

achieved by each model dimension for the test fold dataset. Each of the curves for model

dimensions are given a unique color for identification purposes. In the first figure, Johnson &

Johnson stock achieves the lowest RMSE value with a window size of 5 and model dimension size

of 32. In the second figure, Pfizer stock achieves the lowest RMSE value with window size 3 and

model dimension 64. In the third figure, Merck stock achieves the lowest RMSE value with

window size 3 and model dimension 512. In the fourth figure, Abbott labs stock achieves the

lowest RMSE values with window size 3 and model dimension 512. It can be stated empirically

that a common ground of window size 3 and model dimension 128 for the pharmaceutical sector

is evident. This is primarily due to similarity in achieving low RMSE values across all four stocks.

Figure A-5 is a graphical representation of the RMSE values achieved during three-fold cross

validation of various model dimensions. This has been achieved using time series transformer

model for P&G, Pepsi, Nestle, and Unilever (from top to bottom). The x-axis of the graph

represents model dimension, and the y-axis represents the average RMSE values achieved by each

model dimension for the test fold dataset. Each of the curves for model dimensions are given a

unique color for identification purposes. In the first figure, P&G stock achieves the lowest RMSE

value with a window size of 4 and model dimension size of 128. In the second figure, Pepsi stock

 41

achieves the lowest RMSE value with window size 3 and model dimension 64. In the third figure,

Nestle stock achieves the lowest RMSE value with window size 6 and model dimension 64. In the

fourth figure, Unilever stock achieves the lowest RMSE values with window size 4 and model

dimension 64. It can be stated empirically that a common ground of window size 3 and model

dimension 128 for the FMCG sector is evident. This is primarily due to similarity in achieving low

RMSE values across all four stocks.

 42

Figure A-2: Model Dimension RMSE Graphs on the Test Dataset using K-fold for Technology Sector Stocks: Apple,

Google, IBM, and Amazon (Top to Bottom).

 43

Figure A-3: Model Dimension RMSE Graphs on the Test Dataset using K-fold for Financial Sector Stocks: JP

Morgan, Bank of America, Capital One Finance and Well Fargo (Top to Bottom).

 44

Figure A-4: Model Dimension RMSE Graphs on the Test Dataset using K-fold for Pharmaceutical Sector Stocks:

Johnson and Johnson, Pfizer, Merck and, Abbott Labs (Top to Bottom).

 45

Figure A-5: Model Dimension RMSE Graphs on the Test Dataset using K-fold for FMCG Sector Stock: P&G, Pepsi,

Nestle and Unilever (Top to Bottom).

.

 46

Appendix B: Model Training Graphs

Time series transformer model training is an iterative process of feeding data to a machine learning

algorithm to help it learn and improve its ability to perform a specific task, in this case, predict the

future closing price values of individual stocks. After hyperparameter tuning, each of the four

sectors has a predefined window size and model dimension size which is used for training and

testing.

• Technology sector: window size 4 and model dimension 512.

• Finance sector: window size 3 and model dimension 64.

• Pharmaceutical sector: window size 3 and model dimension 128.

• FMCG sector: window size 3 and model dimension 128.

Figure B-6, B-7, B-8, B-9 is a graphical plot depicting the training losses recorded by the time

series transformer model for all the stocks in the four sectors. All the graphs converge close to

zero after the 50th epoch. This indicates the model being able to learn, capture and reproduce

better predictions after each epoch. Each x-axis in these graphs represents the number of epochs

done to train the model while each of the y-axis represents the MSE loss achieved for each epoch

during training.

 47

Figure B-6: Training graph for Technology Sector Stock: Apple, Google, IBM, Amazon, HP (Top to Bottom)

 48

Figure B-7: Training Graphs for Financial Sector Stocks: JP Morgan, Bank of America, Capital One Finance, Well

Fargo and American Express (Top to Bottom).

 49

Figure B-8: Training Graphs for Pharmaceutical Sector Stocks: Johnson and Johnson, Pfizer, Merck, Abbott Labs

and Amgen (Top to Bottom).

 50

Figure B-9: Training Graphs for FMCG Sector Stock: P&G, Pepsi, Nestle, Unilever, Colgate (Top to Bottom).

 51

Appendix C: Time Series Transformer Vs LSTM Model Prediction Graphs

The LSTM model leveraged similar configurations to remove any discrepancy between the results.

PyTorch and python were instrumental in creating the baseline LSTM. With just 3 simple layers

added to the LSTM model class, LSTM Layer, Dropout Layer and Linear Layer.

• LSTM Layer: The input data (x) is passed through the LSTM module, which processes the

sequence and captures temporal dependencies.

• Dropout: The Dropout layer is applied to the LSTM output (out) with the specified dropout

rate. This technique helps mitigate overfitting by randomly setting a portion of the

activations to zero during training.

• Fully Connected Layer: The final step involves feeding the processed output from the

previous layer (out) into a fully connected layer with a single neuron. This layer maps the

hidden representation from the LSTM to the desired output size.

The LSTM model is configured with the following specifications:

• input_size = 1

• hidden_size = 512

• num_layers = 2

• output_size = 1

• dropout_rate =0.5

• learning rate = 0.001

 52

A 95% Confidence interval is calculated on both time series transformer and LSTM Model to

extract a lower and upper limit for RMSE Values. From table 5 -8, using 95% confidence

interval we could not establish any statistically significant evidence between the two models as

they have overlapping confidence intervals.

Ticker Name Transformer Model LSTM Benchmark Model

Technology Stock

AAPL [2.43192, 2.88332] [2.76592, 3.23546]

GOOGL [1.81623, 2.66567] [1.82584, 2.59021]

IBM [1.34461, 1.71947] [1.148851, 1.50997]

AMZN [2.0986, 2.75172] [2.12215, 2.79123]

HPQ [0.39939, 0.53895] [0.39678, 0.53930]

Table 5: 95% Confidence Interval for Technology Sector

Ticker Name Transformer Model LSTM Benchmark Model

Technology Stock

JPM [1.56427, 2.14689] [1.54177, 2.14619]

BAC [0.43584, 0.56191] [0.43618, 0.57208]

COF [1.73827, 2.15780] [1.73538, 2.17447]

WF [0.35988, 0.44454] [0.37501, 0.45506]

AXP [2.16447, 2.71827] [2.16781, 2.70700]

Table 6: 95% Confidence Interval for Finance Sector

 53

Ticker Name Transformer Model LSTM Benchmark Model

Technology Stock

JNJ [1.37621, 1.98114] [1.29465, 1.92131]

PFE [0.46405, 0.61602] [0.45775, 0.60005]

MRK [1.24147, 1.48677] [1.17266, 1.44375]

ABT [1.54052, 1.05254] [1.06666, 1.54477]

AMGN [3.00707, 3.75275] [2.94412, 3.76176]

Table 7: 95% Confidence Interval for Pharmaceutical Sector

Ticker Name Transformer Model LSTM Benchmark Model

Technology Stock

PG [1.19235, 1.53796] [1.17193, 1.51487]

PEP [1.47598, 1.95971] [1.58020, 2.06253]

NSRGF [1.10465, 1.37216] [1.10871, 1.36207]

UL [0.43497, 0.57334] [0.37617, 0.528932]

CL [0.62417, 0.79225] [0.62389, 0.78917]

Table 8: 95% Confidence Interval for FMCG Sector.

A paired Z-test has been applied on both models to check for any statistical significance between

time series transfosixrmer and LSTM model. Table 9-12 showcases the paired z-test values for

all 20 stocks at a 95% confidence level. 7 out of the 20 stocks were able to reject null hypothesis

and provide statistical significance.

 54

Paired Z-Test Scores

Ticker Score

AAPL -2.77120

GOOGL -2.64613

IBM -3.74566

AMZN -3.18168

HPQ -3.88885

Table 9: Paired Z-Test Values for Technology Sector

Paired Z-Test Scores

Ticker Score

JPM -0.12057

BAC -0.019616

COF -0.29197

WF 0.05240

AXP 2.45037

Table 10: Paired Z-Test Values for Financial Sector

Paired Z-Test Scores

Ticker Score

JNJ 0.34524

PFE 0.269179

MRK 2.6275

ABT -0.16304

AMGN 0.64755

Table 11: Paired Z-Test Values for Pharmaceutical Sector

 55

Paired Z-Test Scores

Ticker Score

PG 0.15217

PEP -0.16167

NSGRY 0.046835

UL 0.675734

CL 0.07914

Table 12: Paired Z-Test Values for FMCG Sector

Figure C-10 showcases 5 different graphs in the technology sector which compare the time series

transformer model predictions (dotted yellow), LSTM model predictions (dotted green) and

actual stock closing price(red). The x-axis represents each timestamp in the testing data and y

axis represents the actual closing price of the stock.

Figure C-11 showcases 5 different graphs in the finance sector which compare the time series

transformer model predictions (dotted yellow), LSTM model predictions (dotted green) and

actual stock closing price(red). The x-axis represents each timestamp in the testing data and y

axis represents the actual closing price of the stock.

Figure C-12 showcases 5 different graphs in the pharmaceutical sector which compares the time

series transformer model predictions (dotted yellow), LSTM model predictions (dotted green)

and actual stock closing price(red). The x-axis represents each timestamp in the testing data and

y axis represents the actual closing price of the stock.

Figure C-13 showcases 5 different graphs in the FMCG sector which compare the time series

transformer model predictions (dotted yellow), LSTM model predictions (dotted green) and

actual stock closing price(red). The x-axis represents each timestamp in the testing data and y

axis represents the actual closing price of the stock.

 56

Figure C-10: Actual Closing Price VS Time Series Predictions VS LSTM Predictions for Technology Sector Stocks:

Apple, Google, IBM, Amazon, and HP (Top to Bottom).

 57

Figure C-11: Actual Closing Price VS Time Series Predictions VS LSTM Predictions for Financial Sector Stocks:

JP Morgan, Bank of America, Capital One Finance, Well Fargo, and American Express (Top to Bottom).

 58

Figure C-12: Actual Closing Price VS Time Series Predictions VS LSTM Predictions for Pharmaceutical Sector

Stocks: Johnson and Johnson, Pfizer, Merck, Abbott Labs, and Amgen Labs (Top to Bottom).

 59

Figure C-13:Actual Closing Price VS Time Series Predictions VS LSTM Predictions for FMCG Sector Stocks:

P&G, Pepsi, Nestle, Unilever and Colgate (Top to Bottom).

 60

References

[1] IBM, "Characteristics of time series," 17 08 2021. [Online]. Available:

https://www.ibm.com/docs/hu/spss-modeler/saas?topic=data-characteristics-time-series

[accessed: 2023-12-15].

[2] A. HAYES, "How Does the Stock Market Work?," Investopedia, 23 12 2023. [Online].

Available: https://www.investopedia.com/articles/investing/082614/how-stock-market-

works.asp. [Accessed 2 02 2024].

[3] Wikipedia, "Stock Market Prediction," Wikipedia, 24 12 2006. [Online]. Available:

https://en.wikipedia.org/wiki/Stock_market_prediction#:~:text=the%20present%20value.-

,Prediction%20methods,(charting)%20and%20machine%20learning.. [Accessed 18 12

2023].

[4] M. Xie b and S. L. Ho, "The use of ARIMA models for reliability forecasting and

analysis," Computers & Industrial Engineering, vol. 35, no. 1-2, pp. 213-216, 1998.

[5] H. He and S. Chen, "Stock Prediction Using Convolutional Neural Network," International

Conference on Artificial Intelligence Applications and Technologies, 2018.

[6] Y. Zhu, "Stock price prediction using the RNN model," International Conference on

Applied Physics and Computing, 2020.

 61

[7] A. Mittal, "Understanding RNN and LSTM," Medium, 19 10 2018. [Online]. Available:

https://aditi-mittal.medium.com/understanding-rnn-and-lstm-f7cdf6dfc14e. [Accessed 24

01 2024].

[8] O. Calzone, "An Intuitive Explanation of LSTM," Medium, 21 02 2022. [Online].

Available: https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-

a035eb6ab42c. [Accessed 24 01 2024].

[9] P. Samarawickrama and I. Fernando, "A Recurrent Neural Network Approach in

Predicting," International Conference on Industrial and Information Systems, 2017.

[10] P. C. Purnama, N. L. Wiwik, W. A. Surya Darma and P. A. Eka , "Comparison of Support

Vector Machine (SVM) and Linear Regression (LR) for Stock Price Prediction,"

International Conference on Informatics and Computing (ICIC), 2023.

[11] P. Saraf and S. Ravikumar, "Prediction of Stock Prices using Machine Learning

(Regression, Classification) Algorithms," International Conference for Emerging

Technology (INCET), 2020.

[12] M. Sabokrou, H. Soltanalizadeh, A. Solouki and S. M. Mirjebreili, "Multi-Task

Transformer for Stock Market Trend Prediction," International eConference on Computer

and Knowledge Engineering, vol. 12, no. 12, 2022.

[13] L. D. Costa and A. Machado, "Prediction of Stock Price Time Series using Transformers,"

ANAIS DO BRAZILIAN WORKSHOP ON ARTIFICIAL INTELLIGENCE IN FINANCE,

2023.

[14] Q. Zhang, X. Liu, S. Lv and Y. Li, "Incorporating Transformers and Attention Networks

for Stock Movement Prediction," Complexity, p. 10, 2022.

 62

[15] N. Malibari, I. Katib and R. Mehmood, "Predicting Stock Closing Prices in Emerging

Markets with Transformer Neural Networks," International Journal of Advanced Computer

Science and Applications, vol. 12, no. 12, 2021.

[16] M. S. Alam, S. . I. Khan, M. Ibrahim, M. M. Muhu, M. Ahsan, A. B. Aftab and T.

Muhammad, "Transformer-Based Deep Learning Model for Stock Price Prediction: A Case

Study on Bangladesh Stock Market," International Journal of Computational Intelligence

and Applications, vol. 22, no. 1, 2022.

[17] N. Bagherzadeh, Y. Qiao and H. Kaeley, "Support for Stock Trend Prediction Using

Transformers and Sentiment Analysis," in The International Institute of Social and

Economic Sciences, London, 2023.

[18] Q. Zhang, S. Zhang, Y. Chen and C. Wang, "Stock market index prediction using deep

Transformer model," Expert Systems with Applications, vol. 208, 2022.

[19] Q. Xu, L. Zhang, M. Chen and A. Zeng, "Are Transformers Effective for Time Series

Forecasting?," The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23),

2023.

[20] I. Polosukhin, Ł. Kaiser, A. Gomez, L. Jones, J. Uszkoreit, N. Parmar, N. Shazeer and A.

Vaswani, "Attention Is All You Need," 31st Conference on Neural Information Processing

Systems, 2017.

[21] G. Lokare, "Preparing Text Data for Transformers: Tokenization, Mapping and Padding,"

Medium, 10 02 2023. [Online]. Available: https://medium.com/@lokaregns/preparing-text-

data-for-transformers-tokenization-mapping-and-padding-9fbfbce28028. [Accessed 5 02

2024].

 63

[22] A. Lopardo, "Word2Vec to Transformers," Medium, 07 01 2020. [Online]. Available:

https://towardsdatascience.com/word2vec-to-transformers-caf5a3daa08a. [Accessed 12 03

2024].

[23] Y. Bengio, K. Cho and D. Bahdanau, "Neural Machine Translation by Jointly Learning to

Align and Translate," International Conference on Learning Representations, 2015.

[24] B. T, "Transformer Architectures for Dummies - Part 1 (Encoder Only Models)," Linkedin

Articles, 23 12 2023. [Online]. Available: https://www.linkedin.com/pulse/transformers-

architectures-dummies-part-1-encoder-only-bhaskar-t-

jr94c/?trackingId=UoonxqlMST2xflVTMiYdmA%3D%3D. [Accessed 01 03 2024].

[25] B. T, "Transformer Architectures for Dummies - Part 2 (Decoder Only Architectures),"

LinkedIn Articles, 02 01 2024. [Online]. Available:

https://www.linkedin.com/pulse/transformer-architectures-dummies-part-2-decoder-only-

bhaskar-t-hj9xc/. [Accessed 01 03 2024].

[26] S. Hochreiter, . T. Unterthiner and D.-A. Clevert, "Fast and Accurate Deep Network

Learning by Exponential Linear Units (ELUs)," International Conference on Learning

Representations, 2016.

[27] Yahoo, "Yahoo Finance," Yahoo, [Online]. Available:

https://finance.yahoo.com/quote/AAPL?.tsrc=fin-srch. [Accessed 23 01 2024].

[28] M. Granat, "How to Use Convolutional Neural Networks for Time Series Classification,"

Towards Data Science, 04 10 2019. [Online]. Available:

https://towardsdatascience.com/how-to-use-convolutional-neural-networks-for-time-series-

classification-56b1b0a07a57. [Accessed 24 01 2024].

 64

[29] M. . Z. Mulla, "Word Embeddings in Natural Language Processing | NLP," Medium , 28

06 2020. [Online]. Available: https://medium.com/@zeeshanmulla/word-embeddings-in-

natural-language-processing-nlp-5be7d6fb1d73. [Accessed 24 01 2024].

