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Abstract 

The transformer architecture revolutionized natural language processing (NLP) tasks and gave 

birth to powerful models such as the generative pre-trained (GPT) model, bidirectional encoder 

representation from the transformer (BERT), text-to-text transformer. This thesis dives into this 

unexplored landscape, investigating the potential of transformer-based models for accurately 

predicting future closing prices of stocks. We propose a novel architecture, derived from the 

original transformer, specifically crafted for this task. Our approach involves not only building and 

optimizing this model but also tuning its hyperparameters for each of the four major stock market 

sectors: technology, finance, pharmaceutical, and FMCG (Fast Moving Consumer Goods). By 

carefully tailoring the model to each sector's unique characteristics, we aim to maximize its 

effectiveness and capture nuanced market dynamics. Finally, we put our model to the test, 

evaluating its performance on unseen data against established time series models such as the long-

short-term memory (LSTM) network. This comparative analysis will not only reveal the efficacy 

of our transformer-based approach but also highlight its potential advantages in terms of accuracy 

and interpretability compared to traditional methods. Through this exploration, we hope to 

illuminate a promising new avenue for stock price prediction, offering valuable insights to 

researchers and investors alike. 
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Chapter 1 Time Series Data and Stock Market Data 

This opening chapter explains what time series data is and its important characteristics. It sets the 

foundation for understanding how time-series data works. The second objective of this section is 

to focus on stock market data and the features that enable the prediction of the closing price of 

individual stocks. 

1.1 Time Series Data 

Time series data is a feature measurement at a given timestamp. It is a key component in data 

analysis in many industries. Time series data is useful as it can answer questions about trends, 

patterns, and correlations over time. The ability to see how a feature changes over time is a 

powerful insight into many business operations and equipment. The following are the 

characteristics of time series: 

• Trend: A trend is a gradual shift in a series over time, either up or down. It can be local 

or global, and a series may show both or neither. [1] 

• Seasonal Cycle: A seasonal cycle is a repetitive predictable pattern formed in a period 

inside the time series data. Seasonality cycles are tied to intervals of your series, for 

example, monthly data typically cycles over quarters and years. [1] 

• Non-Seasonal Cycle: A non-seasonal cycle is a repetitive and unpredictable period in the 

time series data. Some time series however show cyclic behavior, but the periodicity of 

the cycle varies over time making it difficult to predict when a high or low will occur. [1] 
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• Pulse and Steps: Pulse refers to temporary shifts in the data, while step denotes 

permanent changes in the data. It's crucial to find plausible explanations when observing 

these changes. [1] 

• Outliers: Shifts in the level of a time series that cannot be explained are referred to as 

outliers. These observations are inconsistent with the remainder of the series and can 

dramatically influence the analysis and, consequently, affect the forecasting ability of the 

time series model. [1] 

Figure 1-1 (next page) showcases the S&P500 closing price decomposition into trend, seasonal 

component, residual component. The x-axis represents the year while the y-axis for trend graph 

represents closing price value, for seasonal component represent movement of stock, for residual 

component shows randomness values in the stock. 

1.2 Stock Market Data 

In the financial market, market data like price, stock volume, and other related data are financial 

instruments reported by a trading venue such as a stock exchange. Market data helps investors and 

traders understand the market and make informed decisions on whether to buy or sell a financial 

instrument like stock. Some of the main examples of financial instruments are stocks, equities, 

fixed-income products, derivatives, and currencies. Each data point that is collected concerning 

stock market data is time-dependent, this implies that at each second there is a new data point 

reflecting a particular stock feature and each data point is a result of all the previous stock market 

data points, the economic condition and market rhymes. Trend analysis enables understanding of 

the long-term movements, and differentiation between the upward slope signifying a bullish 

market and downward movement as a bearish market. While stock market data is a more focused 
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Figure 1-1: Time Series Decomposition using StatsModel Python Package 
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version of the market data in general, it is important to understand that the stock market is a victim 

of similar uncertainty and unpredictability. [2]  

Each country typically has its stock market exchange, responsible for regulating, monitoring, and 

evaluating the traded stocks. Leading examples include the NYSE and NASDAQ in the US and 

the BSE and NSE in India. These exchanges hold a wealth of crucial information about the 

companies listed, including trading data, company profiles, regulatory filings, and market indices. 

Below are some of the information that can be found on stock while trying to model, predict, 

forecast, or decide on how to handle stocks: 

• Ticker Symbol: A short, unique set of letters or letters and numbers (generally 1-4 

characters) used to identify a specific company's stock on an exchange. 

• Opening Price: The first price at which a particular stock trades on an exchange on a given 

trading day. 

• Closing Price: The last price at which a particular stock trades on an exchange on a given 

trading day. 

• High Price: The highest price at which a particular stock trades on an exchange on a given 

trading day. 

• Low Price: The lowest price at which a particular stock trades on an exchange on a given 

trading day.  

• Volume: The total number of shares of a particular stock that have been traded on an 

exchange on a given day. 

• Bid Price: The bid price is the highest price that a buyer is willing to pay for a share of a 

stock at any given time. 
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• Ask Price: Conversely, the ask price is the lowest price that a seller is willing to accept for 

a share of a stock at any given time. 

• Spread: The spread is the difference between the bid price and the ask price.  

Figure 1-2 is a screenshot of the yahoo finance dashboard with real time Apple stock value 

movement. The left side of the dashboard indicates key information such as opening price, 

bid price, ask price, 52 weeks average and so on while the center is a real time graph plotting 

the movement of the Apple stock every second. 

 

 

Figure 1-2: Yahoo Finance Dashboard (Image taken from [27]) 
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Chapter 2 Stock Market Prediction Models 

The stock market prediction model attempts to determine the future value of a company stock or 

other financial instrument through different prediction methodologies. Furthermore, this chapter 

depicts different approaches and techniques to predict stock market closing prices.  

2.1 Types of Prediction Methods: 

The ability of a model or analysis to be able to predict future prices dictates the future decisions 

made by investors and traders on whether to buy or sell a particular stock. The efficient-market 

hypothesis suggests that stock prices reflect all currently available information and any price 

changes that are not based on newly revealed information thus are inherently unpredictable. The 

three main categories of these methods are fundamental analysis, technical analysis, and machine 

learning models. [3]  

• Fundamental Analysis: This strategy analyzes past performance and determines the true 

value of the stock, comparing it with the market value to realize a potential undervaluation 

for long-term investment. [3] 

• Technical Analysis: This strategy primarily depends on analyzing past prices and trends 

to anticipate future stock price movements, making it predominantly used for short-term 

investing. [3] 

• Machine Learning Models: Models such as regression, CNN, RNN, LSTM, and GRUs 

have been able to leverage deep learning to understand stock market data and predict future 

movement. [3] 
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2.2 ARIMA Models 

Autoregressive Integrated Moving Averages (ARIMA) model are used for time series forecasting 

and predictions. Auto-Regressive models or AR models use past stock price data to predict future 

prices while Moving Averages or MA models use past forecasting errors to predict future prices. 

A key component required to apply the ARIMA model on time series data is to have stationary 

data. Data can be called stationary only if the mean and variance are consistent throughout the 

dataset. Most of the real-world time series data are not stationary and hence need to be transformed 

for them to be compatible with these kinds of models. The transformation process is called 

differencing where the dth difference is taken from the series until the data is stationary.  An 

ARIMA model can be expressed using the following notation, ARIMA(p,d,q), where p stands for 

autoregressive order, d stands for the differencing degree and q stands for moving averages order 

[4].  

2.3 Convolutional Neural Networks 

Convolutional neural networks (CNN) (refer figure 2-1) are one of the most prominent models in 

deep learning especially for computer vision tasks. Their ability to capture spatial features and 

extract information has accounted for high accuracy and performance in handling time series data 

tasks. To make CNN compatible with time series data, it is crucial to transform the data into 

batches with a specific window size that contains past information. This helps the model 

understand the temporal context for predicting future values. CNN uses 1D filters across each 

window to extract relevant features, these features are then passed into a pooling layer that helps 
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aggregate the information extracted from the first step. Finally, the pooled information is passed 

into a linear network that processes this information and returns a future value. [5] 

2.4 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) (refer figure 2-2) are made up of many artificial neurons that 

work together to perform tasks that are challenging and complex. The arrangement of the neurons 

in RNN is as input, hidden, and output layers. The RNN first passes the data into the input layer 

which usually consists of a feature extraction layer, the extracted information is passed into the 

hidden layer which consists of a series of linear layers and activation functions, and finally, the 

output is predicted using the output layer. A key distinguishing factor of the RNNs is that the 

model has a self-looping where the hidden layer can remember and use previous inputs for future 

predictions in its memory components. Just like a simple ANN (Artificial Neural Network) which 

uses backpropagation to adjust its weights, for RNN, the model uses a similar approach called 

back-propagation through time or BPTT. BPTT rolls back the output to the previous time step and 

recalculates the error rate. This way, it can identify which hidden state in the sequence is causing 

a significant error and readjust the weight to reduce the error margin. [6]  

Figure 2-1:  CNN's Applied on Time Series Data (Image taken from [28]) 



 9 

 

Figure 2-2: RNN’s Architecture (Image taken from [7]) 

2.5 Long Short-Term Memory Models 

Long short-term memory models or LSTM models (refer figure 2-3) are part of the RNN’s family 

of deep learning models. LSTM’s tackles vanishing gradient problem by introducing gated units 

that selectively retain or discard information depending on the task. There are 3 gates and 1 

memory cell in the LSTM architecture, forget gate, input gate, output gate and candidate memory 

cell respectively. The input gate controls the follow of information within the model. It consists of 

a sigmoid activation function followed by a pointwise multiplication. The forget gate controls the 

flow of information in the candidate memory cell, this is done by using sigmoid activation function 

and pointwise multiplication. The output gate controls the flow of information leaving the model 

at each time step, this is done by sigmoid activation function and pointwise multiplication. The 

working of these gates together makes LSTM well suited for time series tasks as it can learn and 

remember complex temporal patterns and make future predictions.  
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Figure 2-3: LSTM Architecture (Image taken from [8]) 

2.6 Relevant Work 

Several studies have explored various methodologies for predicting stock market closing prices, 

aiming to navigate the inherent uncertainties of financial time series data. Samarawickrama and 

Fernando (2023) investigated RNNs, LSTMs, and gated recurrent units (GRU), for predicting the 

closing price of three Sri Lankan companies. Despite its promise, their study found a multilayer 

perceptron (MLP) outperformed all RNN models. Interestingly, GRUs exhibited higher errors 

compared to other RNN architectures [9]. In contrast, another study by Putu Candra and Ni Luh 

Wiwik (2023) compared the performance of support vector machines (SVMs) and linear 

regression (LR) in predicting daily stock prices for an Indonesian company from 2014 to 2023. 

The analysis based on various training and testing data splits, concluded that LR outperformed 

SVMs where the focus remained on publicly traded companies in the S&P500 [10]. Ravikumar 

and Saraf (2023) explored predicting closing prices using various regression and classification 

algorithms. After extracting additional features like volatility and momentum from historical data, 
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their study found polynomial regression achieving the highest accuracy (91.45%), followed by 

linear regression (82%) and SVM (87%) [11]. These diverse studies highlight the ongoing 

exploration of different approaches for stock price prediction. While RNNs hold promise, MLPs 

and traditional statistical models like LR may offer competitive performance depending on the 

chosen dataset and features. 

Transformer-based architectures have emerged as promising tools for capturing the complex 

dynamics of financial time series. Mirjebreili and Solouki proposed a multi-task transformer 

trained on Iranian stock market data. Their model employed quintuple barrier labeling and a 

custom purge k-fold validation approach to address data imbalance and time-dependency issues. 

While achieving moderate accuracy, their work demonstrates the potential of transformers for 

multi-class stock price prediction [12]. Costa and Machado compared transformers to traditional 

ARIMA and LSTM models for predicting Ibovespa index stock prices. Their transformer 

architecture outperformed both baselines in 60% of the tests, showcasing its ability to capture long-

range dependencies within the data. This study emphasizes the potential of transformers to surpass 

established methods in specific contexts [13]. Yawei Li and Xingua Liu incorporated transformers 

and attention networks to predict stock movements based on tweets and historical prices. Their 

TEANet model leveraged text embeddings and temporal attention to integrate sentiment analysis 

with price data. This approach achieved improved accuracy compared to other models, 

highlighting the value of incorporating additional information sources like social media sentiment 

[14]. Nadeem Malibari and Iyad Katib were the first to apply a transformer architecture for 

predicting future prices on the Saudi Stock Exchange. Their model, inspired by the vision 

transformer, achieved an impressive 90% accuracy, demonstrating the effectiveness of 

transformers in specific emerging markets. This study underscores the need for further research 
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into tailoring transformer models to different market characteristics [15]. Tashreef Muhammad 

and Anika Bintee explored a transformer-based deep learning model for the Bangladesh Stock 

Market. Their study trained separate models for eight companies, achieving varying levels of 

success. This highlights the potential but also the challenges of applying transformers to individual 

stocks, where data availability and model complexity can play a role [16]. Harsimrat Karley 

investigated transformers combined with sentiment analysis for predicting normalized opening 

prices. Their model uses technical indicators and news headlines to capture both quantitative and 

qualitative market signals. This work highlights the potential of transformers to integrate diverse 

data sources for improved prediction [17]. Chaojie Wang and Shuqi Zhang implemented an 

encoder-decoder transformer to predict closing prices for three major international indices. Their 

model achieved competitive performance compared to established benchmarks. [18]. A 

comparative paper was published by Ailing and Muxi discussing the validity of transformers with 

respect to time series data. To establish their claim, a set of simple one-layer linear models are 

compared with different transformers across nine different datasets. The paper showcases that all 

the linear models outperform the transformer models by large margins and this line of research 

needs to be revisited [19].  

In conclusion, these studies reveal the ongoing exploration of transformers for stock price 

prediction. While transformers demonstrate promise, their performance can vary depending on the 

specific market, data characteristics, and chosen architecture. Further research is needed to fully 

understand their potential and limitations in this complex domain. Additionally, combining 

transformers with other approaches like sentiment analysis or technical indicators holds promise 

for further enhancing prediction accuracy. 
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Chapter 3 The Transformer Architecture 

A transformer is a type of neural network architecture that consists of an encoder and a decoder 

working together with attention layers to extract relevant information and output sequence of 

results [20]. Transformers has seen tremendous success with the realm of natural language 

processing tasks especially with respect to machine translation and sentence generation. Below 

subchapters dive deep into the different layers and blocks inside a transformer. 

3.1.1 Tokenization 

Tokenization plays a crucial role in transforming discrete tokens into meaningful representations. 

These vectors act as a bridge between the surface features of language and the underlying semantic 

complexities. Assuming that a huge corpus of text is taken into consideration, this corpus is divided 

into chunks of smaller texts of fixed size and fed into a pretrained or learned model that can convert 

the text into a series of tokens. Some of the tokenization techniques are, word tokenization where 

text is broken down into individual words. Another tokenization method is character tokenization 

breaks down a word into individual characters, this method is effective in tackling problems where 

language does not have clear word boundaries or tasks that require granular analysis. Finally, sub-

word tokenization is a method that finds the grey region between the two previously mentioned 

methods. This method breaks down text into units that might be larger than a single character but 

smaller than a full word [21].  

3.1.2 Word Embedding 

The embedding layer occupies a crucial role in converting discrete word tokens into continuous 

vector representations suitable for further processing within the transformer. After tokenization, 

the tokens need to be represented in a higher dimensional form. There are two ways to achieve 

this, pretrained or learned embeddings. Essentially for the pre-trained embeddings, it performs a 
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lookup operation on a pre-trained weight matrix (the embedding matrix) where each row denotes 

a unique word in the vocabulary and each column corresponds to a specific dimension in the 

embedding space. This process maps the integer indices representing words to dense vectors of 

fixed dimensionality, capturing semantic and syntactic relationships between words in a numerical 

format. Learned embeddings use neural networks that adopt a data-driven approach, directly 

learning word representations from the training data itself. These layers typically utilize 

embedding matrices, learnable weight matrices where each row encodes a unique word's vector 

representation. Through backpropagation and gradient descent, the model refines these vectors, 

optimizing their ability to capture word relationships between each other [22] . 

3.1.3 Positional Encoder 

Figure 3-1: Word Embedding layer (Image taken from [29]) 
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Natural language processing tasks mainly require sequence processing, understanding the relative 

positioning of words is crucial to create more meaningful sentences. In transformers, these 

encodings are done using learned vectors crafted through sine and cosine functions, which function  

as multi-dimensional embeddings within each element's representation. This encoding scheme 

relies on two key properties of sine and cosine waves [20]:  

● Frequency-Based Distinction: Trigonometric functions oscillate uniquely which enhances 

the sensitivity of the model to local and global relationships.  

● Dimensional Orthogonality: Sine and cosine in linear combinations, exhibit orthogonality. 

This makes sure the information encoded is independent and no information leak takes 

place during training.  

Figure 3-2 is taken out of the 2017 paper “Attention is all you need”, where pos are the position, i 

is the ith dimension of the embedded vector, and dmodel represents the model dimension of the 

transformer. That is, each dimension of the positional encoding corresponds to a sinusoid. The 

wavelengths form a geometric progression from 2π to 10000 · 2π.  

3.1.4 Attention Layer 

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio at the ICLR 2015 conference showcased 

the first working attention mechanism [23]. The attention mechanism consists of three main 

matrices: 

Figure 3-2: Positional Encoding Formula (Image taken from [20]) 
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Figure 3-3: Equation of Attention Layer (Image taken from [20]) 

• Queries (Q): These vectors represent the network's current target, often corresponding to a 

specific word or element. 

● Keys (K): Each position in the sequence possesses a unique identifier encoded in the key 

vector.  

● Values (V): These values hold raw information that might be seen during querying.  

Figure 3-3 showcases the scaled dot-product computation formula for calculating attention score 

by using the Query, Key, and Value, the model uses this matrix to find a relationship between the 

Key-Value pair and then uses the query to search for a similar vector. In the context of similarity 

computation, the neural network utilizes a dot-product operation to measure the alignment between 

the query vector and each key vector within the sequence. This process captures the degree of 

association or similarity between the current focus and individual elements in the sequence. To 

address potential instability during training, a scaled relevance scoring mechanism is employed. 

The raw dot product is scaled by the square root of the key vector's dimensionality, thereby 

mitigating the impact of large dimensions, and ensuring manageable gradients for stable training. 

Once the scaled similarly scores are returned, the SoftMax function is applied to convert the values 

into attention weights. This ensures that the attention weights sum up to 1 and represents a 

probability distribution over the key vectors. Finally, these attention weights are multiplied with 

the value matrix which allows the attention mechanism to selectively aggregate information based 
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on relevance, producing contextual representation that captures the most important features of the 

given input [20].  

Multihead Attention (refer figure 3-4) in a transformer model allows capturing different 

relationships between words simultaneously by performing multiple attention operations in 

parallel. This is done by dividing the query, key, and value matrices into multiple heads and 

computing individual attention scores for each head, later concatenated, and linearly transformed 

for output. This mechanism helps diverse patterns and dependencies within an input sequence 

which leads to improved performance.   

3.1.5 Feed Forward Layer 

In a Transformer architecture, the feed-forward network (FFN) adds two vital functionalities, non-

linear transformation, and feature enrichment. This is achieved by using a series of non-linear 

activation functions and linear layers. Non-linear activation functions (e.g., ReLU), inject non-

linearity into the network, allowing it to capture intricate patterns and interactions beyond the 

Figure 3-4: Multi-Head Attention Mechanism (Image taken from [20]) 
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capabilities of attention alone, similarly, feature enrichment is also achieved by transforming the 

attention-derived representation through non-linear activation functions and linear layers. FFNs 

can lead to the creation of new features, the modulation of existing ones, and ultimately a richer 

understanding of the sequence. 

3.1.6 Output Layer 

The output layer consists of mainly 2 layers, a linear layer and a SoftMax layer. The linear 

network, at its core, is a single layer of interconnected neurons. The final hidden state vector 

generated by the decoder, which encapsulates the processed input sequence, and project it onto a 

probability distribution for each possible output token. This distribution represents the model's 

confidence in each potential output, allowing it to account for uncertainty in situations where 

clear predictions are not always possible. The linear layer will project the final output vector in 

the dimension of the vocabulary size used for the model. The output of the linear layer is then 

fed into a SoftMax layer to extract the raw probability distribution of the output vector. This 

distribution conveys the model's confidence in each potential output, not just as a number but as 

a percentage ranging from 0 to 1. This information is then utilized in various ways depending on 

the specific task [20]. Figure 3-5 is a snippet of the original transformer block diagram with 

encoder network on the left and decoder network on the right. 

3.2 Types of Transformers 

Transformers are known for their heavy use of computational resources and slow training times. 

As a result, this has led to the introduction of encoder only models or decoder only models. This 

section an explanation of the advantages and disadvantages of each of these models are provided. 
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Figure 3-5: Block Diagram of the Original Transformer (Image taken from [20]) 

3.2.1 Encoder Only Models 

Transformer encoder only models (refer figure 3-6) are a specialized form of the transformer where 

the decoder part of the transformer does not exist. This modification is done to offer advantages 

over the original architecture. One prominent advantage is computational efficiency. By removing 

the decoder, the computational load decreases and makes them better for use cases where resources 

for training are limited. Another advantage of encoder only models is that due to the absence of 

the decoder, there is more transparency in the interpretability of the model and the processing of 
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the data. The model performs extremely well for feature extraction tasks and to understand 

incoming data. Despite such advantages, they have their own set of limitations. One notable 

drawback is the inability of the model to produce sequences as the decoder part is held responses 

to for such generation in the traditional tasks. One of the most successful encoder only models is 

the BERT model released by Google [24]. 

3.2.2 Decoder Only Models 

Decoder only models (refer figure 3-7) are a specialized version of the transformer such that the 

encoder part of the original transformer is missing from the architecture. This approach offers 

different advantages over the original architecture such as reduced computational complexity and 

cost. By excluding the encoder, the model becomes lightweight and has faster inference during the 

production of the model in real-time applications. However, due to the missing presence of the 

encoder, the decoder lacks in understanding or extracting features of the data and needs assistance  

Figure 3-6:  Block Diagram for Encoder Only Models (Image taken from [20]) 
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Figure 3-7: Block Diagram for Decoder Only Models (Image taken from [20]) 

to process such data.  Decoder only models are most used where the primary objective is sequence 

generation such as text generation, image captioning, etc. One of the most successful decoder only 

models is are GPT model created by OpenAI [25]. 

3.3 Proposed Time Series Transformer 

The proposed time series transformer takes inspiration from encoder only models. The encoder 

block is coupled with a projection block, and positional encoding block at the start to represent the  
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 data in higher dimensions. Secondly, the output of the encoder block is fed into an output block 

which is expected to predict future closing price of different stocks.  

3.3.1 Input Projection Block 

The input project block is the first layer in the time series transformer model. The layer consists 

of 2 linear layers and a single activation function called exponential linear unit (ELU). The 

combination of linear layers and ELU activation function helps project the data to the required 

dimension while learning data relationships and complexities. ELU activation function tackles 

the problem of dying ReLU by allowing negative values, this helps prevent neurons from 

Figure 3-8: Block Diagram of Input Projection Block 
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becoming inactive during training [26] . In figure 3-8 (previous page), the data is first introduced 

into the block with a shape of batch size x window size x 1, passed onto an activation function 

(ELU), projected into a hidden dimension, and finally converted to a shape of batch size x 

window size x model dimension. 

 

Figure 3-9: Block Diagram for Encoder Block 
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3.3.2 Encoder Block 

The encoder block consists of an attention layer and a feed-forward network. The data that is 

projected using the input projection block and positionally encoded will be fed into the attention 

layer first. The attention layer applies the scaled dot product mechanism and returns the attention 

scores for each input. This information is passed forward into the feed-forward network, where 

non-linear transformation and feature enrichment take place. With the introduction of residual 

connections and layer normalization, these techniques help address gradient vanishing/exploding 

problems and improve the rain stability of deep networks. In figure 3-9 (previous page), the input 

projection block passes the data of shape batch size x window size x model dimension into the 

attention layer and feed forward layer. Finally, the output data is of shape batch size x window size 

x model dimension.  

Figure 3-10: Block Diagram for Output Block 



 25 

3.3.3 Output Block 

The output layer is the final block in the time series transformer consisting of an average pooling 

layer and a linear layer. The global average pooling layer calculates the average value of each 

feature map across all spatial dimensions (width and height) of the attention scores. This reduces 

the feature maps to a single vector for each channel, capturing the overall significance of that 

feature in the matrix. In figure 3-10 (Previous Page), the output layer receives data of shape batch 

size x window size x model dimension. This data is then pooled together and passed into a linear 

layer that predicts T+1 future price of the stock. The final output shape of this block is batch size 

x 1.  

3.4 Time Series Transformer 

The time series transformer (figure 3-11) took inspiration from the encoder only models and 

consists of only four blocks, input projection block, positional encoding block, encoder block, and 

output block. The input projection block acts like the word embedding layer and projects the 

information in a higher dimension which helps the model extract key relationships and information 

about the input data. This is followed by a positional encoding block that uses the sine-cosine value 

to encode the data with positional information. The encoder takes this data and passes the data 

through an attention layer and feed-forward network. The output of the encoder block consists of 

data that highlights key information and relationships about the input. Finally, the output block 

takes the data and aggregates the information using an average pooling layer and uses a linear layer 

to understand the information after aggregation to predict future T+1 closing prices for a particular 

stock.   
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Figure 3-11: Block Diagram of Time Series Transformer 
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Chapter 4 Model Training and Testing 

This chapter explores key steps in building the time series transformer model. First, the collection 

of data takes place followed by transforming the data to be ready for time-series transformer. This 

is followed by introducing the model configuration and using those exact parameters to train the 

transformer model for each stock in each sector. Lastly, training and testing of the time series 

transformer along with relevant graphs showing the output. 

4.1 Data Acquisition 

The Yahoo Finance API is a free available tool that can be leveraged to extract real-time stock 

market prices of most listed stocks across the globe. Yahoo Finance returns information on 

different periods, for example hourly, daily, weekly, monthly, and yearly. Depending on the task, 

Yahoo Finance returns information such as closing price, opening price, high price, low price, and 

volume. It is important to make sure that the information of the stock is reliable and consistent as 

missing values or incorrect values could hinder the learning or accuracy of the model.  

4.2 Data Transformation 

The data that is extracted using Yahoo Finance needs to be transformed so that it is compatible 

with the time series transformer. This is achieved using the sliding window technique.  For our 

time series transformer, it is important to have input data and target data called X and Y 

respectively. The data extracted is in the form data shape x 1 and needs to be transformed into X 

shape batch size x window size x 1 and Y shape batch size x 1. This is achieved by using an 

iterative sliding window mechanism on the data. In the first iteration, data points from 0 to T+1 

are sliced and split into X and Y datasets. The split takes place such that 0 to T data points are 

copied to X and (T+1) the data point is copied to Y. In the second iteration, the sliding window 

shifts n data points ahead (for this project n =1) and performs similar steps as above. Each time 
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the X and Y-sliced data is extracted, it is then stacked over each other to form a batch. This iterative 

process lets the final output of X and Y have a shape Batch size x Window Size x 1 and Batch size 

x 1 respectively. This means that for each batch size, there is a window size W with data points T 

that match a singular closing data point in Y for T+1. Figure 4-1 is the pseudocode for the iterative 

sliding window technique applied to the data in our thesis. 

4.3 Model Configuration 

The model configuration is an important aspect of training as it gives you leverage and control 

over how well the model performs in that task. In this thesis, all the model parameters are fixed 

except for model dimension and window size which were selected using cross-validation. These 

values change depending on the sector that the stock is found in (more information can be found 

in Appendix A). It is important to know that these parameters help reduce the loss of the model 

and increase the accuracy of predictions. The transformer model has many configurations possible 

due to its large variety of model parameters. They are: - 

1. d_model: -This parameter defines the model dimension. This parameter changes depending 

on the sector the data is from. 

Figure 4-1: Pseudocode for Sliding Window Technique 
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2. nheads: - This parameter specifies the number of heads in the attention layer. The number 

of heads is fixed to 8.  

3. num_layers: - This parameter specifies the number of encoders in the transformer. 

architecture. The number of encoder layers is fixed to 2. 

4. Max_seq_length: - This parameter belongs in the positional encoder layer and specifies the 

maximum length of the input data that the model should be able to encode. The sequence 

length that can be positionally encoded is set to 500.  

5. pl_input_dim: - This parameter belongs in the input projection layer that helps specify the 

last dimension in the input sequence. The dimension is fixed to 1 for training and testing. 

6. pl_hidden_dim: - This parameter controls the hidden dimension in the input projection 

layer. The dimension is fixed to 128 for training and testing. 

7. pl_output_dim: - This parameter controls the output dimension in the input projection layer 

which usually matches the model dimension of the transformer. 

8. dim_feedforward: - This parameter controls the dimension of the feed-forward network 

that is found in the encoder layer. The dimension is fixed to 2048 for training and testing. 

9. output_dim: - This parameter controls the final output dimension in the output layer. 

Usually, this is set to 1 (Closing Price). The dimension is fixed to 1 for training and testing. 

10. dropout: - This parameter controls the added dropout layer in all the layers to make sure 

the model does not over-train. The dropout layer is set to 0.01. 

11. learning_rate: - This parameter controls the tuning in the optimization algorithm used in 

the model by defining the size of the steps taken to reach the lowest loss. The learning rate 

is set to 0.0001. 

 



 30 

 

12. Adam Optimizer: - It is an iterative optimization algorithm used to minimize the loss 

function during the training of neural networks. Adam is considered a combination of 

RMSprop and Stochastic Gradient Descent with momentum. 

4.4 Model Training 

Model training is an iterative process of feeding data to a machine learning algorithm to help it 

learn and improve its ability to perform a specific task, in this case predicting the future closing 

price values of individual stocks. Each of the stock market sectors has their specific window sizes 

and model dimensions which maximizes the model accuracy and reduces loss. I used Google 

Collab for model training using an T4 TPU which has 16GB of DDR4 RAM (Nvidia Tesla GPU), 

201 GB of SSD Storage, and 12.7GB of System RAM.  

The training data remains the same as the data chosen during the cross-validation tests. This ranges 

from 1st January 2017 to 2nd February 2023 and returns 1530 data points for the model to train with 

each individual stock. The training data is then batched and resized using sliding window 

technique.  

 

Figure 4-2: Apple Training Graph using Time Series Transformer 
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Figure 4-3: Time Series Transformer and LSTM model Predicting the Apple Stock Closing Price 

Figure 4-2 (refer previous page) is an example of the time series transformer MSE loss graph for 

Apple Stock. The x-axis showcases the number of epochs the model ran for while the y-axis 

depicts the loss value at each epoch. It is seen that after epoch 50 the MSE values converge to 

zero (other stock training graph can be found Appendix B).  

4.5 Model Testing 

After training the model in a particular stock using the training dataset, it is crucial to see how well 

the model has learned the data, understood dependencies, and found relationships such that it can 

achieve similar results with unseen data. For testing, the data period starts from 1st February 2023 

to 31st December 2023. This includes 230 data points for the model to predict.  Each of the 

individual data points is also predicted using a baseline LSTM model which gives a visual 

understanding of how well the time series transformer predicts the data as compared to an LSTM 

model and vice versa. This process is repeated for all 20 different stocks that were extracted from 

4 different sectors. Figure 4-3 plots the closing price values that are predicted by the time series 

transformer (dotted yellow), LSTM Model (dotted green) and actual closing price of Apple stock 

(red). The x-axis represents each timestamp, and the y-axis represents the closing price of the stock 

(other prediction comparison graphs can be found on Appendix C).   
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Chapter 5 Results and Discussions 

In short, this thesis envisages a choice of an LSTM model as the baseline model. Five different 

stocks from four different sectors have been used. This gives the model a total of 20 different 

stocks to train and predict individually. The training data consists of closing price values of each 

stock from 1st January 2017 to 2nd February 2023 while the testing data had values from 2nd 

February 2023 to 31st December 2023.  

5.1.1 Results Table 

Tables 1-4 provide a comparative analysis of RMSE values achieved during the testing of time 

series transformers and LSTM models for various stocks, alongside recorded training times. 

Additionally, green highlighted cells denote stocks where significance has been established at a 

95% confidence level (see Appendix C for details) and Bold indicating lower RMSE values. 

Ticker Transformer 

(RMSE) 

LSTM  

(RMSE) 

Training Time 

Transformer  

(Seconds) 

Training Time 

LSTM 

(Seconds) 

Technology Sector 

AAPL 2.73179 3.05637 71.63179 11.83203 

GOOGL 2.26627 2.22430 74.94701 8.95759 

IBM 1.38770 1.35420 72.5052 8.94904 

AMZN 2.47154 2.51771 73.80354 10.23931 

HPQ 0.45323 0.47398 75.09602 9.98877 
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Table 1: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the Technology Sector 

Ticker Transformer 

(RMSE) 

LSTM  

(RMSE) 

Training Time 

Transformer  

(Seconds) 

Training Time 

LSTM 

(Seconds) 

Finance Sector 

JPM 1.85619 1.87050 13.36561 9.89305 

BAC 0.50232 0.50837 12.88519 9.83190 

COF 1.95182 1.97675 13.06328 9.69739 

WF 0.73531 0.75214 13.06232 9.56277 

AXP 2.39368 2.45006 13.06951 9.47508 

Table 2: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the Financial Sector. 

Ticker Transformer 

(RMSE) 

LSTM  

(RMSE) 

Training Time 

Transformer  

(Seconds) 

Training Time 

LSTM 

(Seconds) 

Pharmaceutical Sector 

JNJ 1.709663 1.63408 17.91004 8.89433 

PFE 0.52091 0.52505 17.12886 11.09893 

MRK 1.51717 1.35821 17.19714 10.80851 

ABT 1.32592 1.37367 17.60171 8.92115 

AMGN 3.42139 3.3555 17.65434 8.86070 

Table 3: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the Pharmaceutical 

Sector. 
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Ticker Transformer 

(RMSE) 

LSTM  

(RMSE) 

Training Time 

Transformer  

(Seconds) 

Training Time 

LSTM 

(Seconds) 

FMCG Sector 

PG 1.38487 1.36692 17.28249 9.68173 

PEP 1.74527 2.05813 17.35069 9.64310 

NSRGF 1.24706 1.25348 17.62932 9.61233 

UL 0.46956 0.45560 17.49177 9.62335 

CL 0.71232 0.71074 19.49887 9.63754 

Table 4: RMSE & Training Time Values for Time Series Transformer and LSTM Model for the FMCG Sector. 

5.2 Results  

One of the key objectives of the thesis is to design a transformer that can be used for stock market 

prediction and performance analysis. Creating a time series transformer model that took inspiration 

from the transformer-encoder only model and replacing certain blocks such word embedding layer 

with an input project layer and adding an output layer at the end of the encoder layer gave way to 

the time series transformer to predict time series data. The model learns and successfully predicts 

20 different stocks closing price by fine-tuning hyperparameters such as window size and model 

dimension.  

The time series transformer and baseline LSTM are compared against each other yielding 

interesting results. According to the RMSE comparison, time series transformer achieved lower 

values than the LSTM model for 12 out of 20 stocks. By employing a 95% confidence interval on 

both the models, the ranges overlap with one another. However, using paired z-test, 7 out of the 

20 stocks were able to establish statistical significance in performance at the 95% confidence level. 
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With respect to training time, LSTM have better training speeds as compared to time series 

transformers. In the technology stock transformers took 3 times as much time to train as compared 

to LSTM models, similarly for other sectors, time series transformers took 1.2 times as much time 

as to train a LSTM Model.  

From the above results, time series transformers can perform similarly to LSTM and given the 

right parameters even outperforming them in certain areas. Due to the training time taken and 

various model parameters, the trade-off between time series transformer and LSTM is important 

to note for further evaluation. This contradicts the paper published by Ailing and Muxi [19] which 

debates the validity and line of research for transformer in time series data (refer section 2.6).  

5.3 Future Scope 

A key objective is to showcase the ability of a transformer to perform time series tasks, specifically 

closing price prediction for stocks. To extend our research, we would first compare our model with 

some more industry standard models such as polynomial regression models, Multilayer perceptron, 

and RNN’s. This may provide additional information on the performance of the time series 

transformer. We also suggest incorporating the model to accept features such as volume of stock 

traded, daily stock volatility and even stock sentiment measures to help introduce more 

information within the model for more accurate predictions. Finally, as transformer models are 

known for their ability to generalize on large data, creating a large stock market model would help 

predict long range future stock closing price values for different stocks using a single model. 
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Appendix A: Hyperparameter Tunning 

A.1: Window Size Selection 

The window size is an important hyperparameter, it determines the number of past data points to 

be fed into the time series transformer for it to be able to predict future closing prices for a stock. 

Hence choosing the right window size is crucial as a narrow window size might miss out on 

important information while a larger window size might introduce irrelevant information that 

could potentially ruin predictions. It is also important to note that increasing the window size will 

also increase the model complexity and training times. 

In this thesis, we used 17 different window sizes from 1 to 80 to help us understand how well the 

training and testing of the model. With the help of K-fold cross-validation, we split the original 

training dataset into 3 folds and for each iteration, 2 of the folds are concatenated together to form 

a new training dataset, and the remaining 1-fold is used for testing.  The RMSE and MSE values 

achieved from each iteration are averaged out and then plotted on a graph for representation. It can 

be seen from the below image that as the window size increases, the model keeps achieving lower 

RMSE and MSE values but for the test RMSE and MSE, window size 6 achieved the lowest RMSE 

test value. 

Window sizes selection: [ 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80]. 

Below figure A-1 showcases the RMSE and MSE values obtained from cross-validation of the 

training data and testing data. The x-axis in the graph represents the window size of each model 

and the y-axis represents the MSE/RMSE Loss for 3-fold cross-validation.  
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Figure A-1: RMSE and MSE values for training and testing dataset using k-fold 

A.2: Model Dimension Selection 

The model dimensionality (d_model) captures how information flows across the model 

architecture. Higher model dimensions help capture intricate details about the input which could 

lead to improved model performance while, a lower model dimension helps in focusing on 

important features that could lead to faster training and inference times. From the above 17 window 

sizes, selecting 8 window sizes (3, 4, 5, 6, 10, 15, 20, 30) and coupling them with 6 different model 

dimensions (16, 32, 64, 128, 256, 512) helps to plot different RMSE values for different 

configurations and select the lowest amongst those values.  
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Figure A-2 is a graphical representation of the RMSE values achieved during three-fold cross 

validation of various model dimensions. This has been achieved using time series transformer 

model for Apple, Google, IBM, and Amazon (from top to bottom). The x-axis of the graph 

represents model dimension, and the y-axis represents the average RMSE values achieved by each 

model dimension for the test fold dataset. Each of the curves for model dimensions are given a 

unique color for identification purposes. In the first figure, Apple stock achieves the lowest RMSE 

value with a window size of 6 and model dimension size of 128. In the second figure, Google stock 

achieves the lowest RMSE value with window size 3 and model dimension 64. In the third figure, 

IBM stock achieves the lowest RMSE value with window size 3 and model dimension 128. In the 

fourth figure, Amazon stock achieves the lowest RMSE values with window size 3 and model 

dimension 64. This leads to the conclusion that the ideal window size for the technology sector 

should be 3 and model dimension 64. However, using a window size of 4 and model dimension of 

512, the model achieves lower RMSE values with the testing data with regards to overall 

technology stocks. 

Figure A-3 is a graphical representation of the RMSE values achieved during three-fold cross 

validation of various model dimensions. This has been achieved using time series transformer 

model for JP Morgan, Bank of America, Capital One Finance, Well Fargo (from top to bottom). 

The x-axis of the graph represents model dimension, and the y-axis represents the average RMSE 

values achieved by each model dimension for the test fold dataset. Each of the curves for model 

dimensions are given a unique color for identification purposes. In the first figure, JP Morgan stock 

achieves the lowest RMSE value with a window size of 3 and model dimension size of 64. In the 

second figure, Bank of America stock achieves the lowest RMSE value with window size 3 and 

model dimension 64. In the third figure, capital one finance stock achieves the lowest RMSE value 
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with window size 6 and model dimension 128. In the fourth figure, Well Fargo stock achieves the 

lowest RMSE values with window size 15 and model dimension 128. This leads to the conclusion 

that the ideal window size for the finance sector should be 3 and model dimension 64.  

Figure A-4 is a graphical representation of the RMSE values achieved during three-fold cross 

validation of various model dimensions. This has been achieved using time series transformer 

model for Johnson & Johnson, Pfizer, Merck, and Abbott Labs (from top to bottom). The x-axis 

of the graph represents model dimension, and the y-axis represents the average RMSE values 

achieved by each model dimension for the test fold dataset. Each of the curves for model 

dimensions are given a unique color for identification purposes. In the first figure, Johnson & 

Johnson stock achieves the lowest RMSE value with a window size of 5 and model dimension size 

of 32. In the second figure, Pfizer stock achieves the lowest RMSE value with window size 3 and 

model dimension 64. In the third figure, Merck stock achieves the lowest RMSE value with 

window size 3 and model dimension 512. In the fourth figure, Abbott labs stock achieves the 

lowest RMSE values with window size 3 and model dimension 512. It can be stated empirically 

that a common ground of window size 3 and model dimension 128 for the pharmaceutical sector 

is evident. This is primarily due to similarity in achieving low RMSE values across all four stocks. 

Figure A-5 is a graphical representation of the RMSE values achieved during three-fold cross 

validation of various model dimensions. This has been achieved using time series transformer 

model for P&G, Pepsi, Nestle, and Unilever (from top to bottom). The x-axis of the graph 

represents model dimension, and the y-axis represents the average RMSE values achieved by each 

model dimension for the test fold dataset. Each of the curves for model dimensions are given a 

unique color for identification purposes. In the first figure, P&G stock achieves the lowest RMSE 

value with a window size of 4 and model dimension size of 128. In the second figure, Pepsi stock 
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achieves the lowest RMSE value with window size 3 and model dimension 64. In the third figure, 

Nestle stock achieves the lowest RMSE value with window size 6 and model dimension 64. In the 

fourth figure, Unilever stock achieves the lowest RMSE values with window size 4 and model 

dimension 64. It can be stated empirically that a common ground of window size 3 and model 

dimension 128 for the FMCG sector is evident. This is primarily due to similarity in achieving low 

RMSE values across all four stocks. 
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Figure A-2: Model Dimension RMSE Graphs on the Test Dataset using K-fold for Technology Sector Stocks: Apple, 

Google, IBM, and Amazon (Top to Bottom). 
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Figure A-3: Model Dimension RMSE Graphs on the Test Dataset using K-fold for Financial Sector Stocks: JP 

Morgan, Bank of America, Capital One Finance and Well Fargo (Top to Bottom). 
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Figure A-4: Model Dimension RMSE Graphs on the Test Dataset using K-fold for Pharmaceutical Sector Stocks: 

Johnson and Johnson, Pfizer, Merck and, Abbott Labs (Top to Bottom). 
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Figure A-5: Model Dimension RMSE Graphs on the Test Dataset using K-fold for FMCG Sector Stock: P&G, Pepsi, 

Nestle and Unilever (Top to Bottom). 

. 
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Appendix B: Model Training Graphs 

Time series transformer model training is an iterative process of feeding data to a machine learning 

algorithm to help it learn and improve its ability to perform a specific task, in this case, predict the 

future closing price values of individual stocks. After hyperparameter tuning, each of the four 

sectors has a predefined window size and model dimension size which is used for training and 

testing.  

• Technology sector: window size 4 and model dimension 512. 

• Finance sector: window size 3 and model dimension 64. 

• Pharmaceutical sector: window size 3 and model dimension 128. 

• FMCG sector: window size 3 and model dimension 128. 

Figure B-6, B-7, B-8, B-9 is a graphical plot depicting the training losses recorded by the time 

series transformer model for all the stocks in the four sectors. All the graphs converge close to 

zero after the 50th epoch. This indicates the model being able to learn, capture and reproduce 

better predictions after each epoch. Each x-axis in these graphs represents the number of epochs 

done to train the model while each of the y-axis represents the MSE loss achieved for each epoch 

during training. 
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Figure B-6: Training graph for Technology Sector Stock: Apple, Google, IBM, Amazon, HP (Top to Bottom) 
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Figure B-7: Training Graphs for Financial Sector Stocks: JP Morgan, Bank of America, Capital One Finance, Well 

Fargo and American Express (Top to Bottom). 
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Figure B-8: Training Graphs for Pharmaceutical Sector Stocks: Johnson and Johnson, Pfizer, Merck, Abbott Labs 

and Amgen (Top to Bottom). 
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Figure B-9: Training Graphs for FMCG Sector Stock: P&G, Pepsi, Nestle, Unilever, Colgate (Top to Bottom). 
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Appendix C: Time Series Transformer Vs LSTM Model Prediction Graphs 

The LSTM model leveraged similar configurations to remove any discrepancy between the results. 

PyTorch and python were instrumental in creating the baseline LSTM. With just 3 simple layers 

added to the LSTM model class, LSTM Layer, Dropout Layer and Linear Layer.  

• LSTM Layer: The input data (x) is passed through the LSTM module, which processes the 

sequence and captures temporal dependencies. 

• Dropout: The Dropout layer is applied to the LSTM output (out) with the specified dropout 

rate. This technique helps mitigate overfitting by randomly setting a portion of the 

activations to zero during training. 

• Fully Connected Layer: The final step involves feeding the processed output from the 

previous layer (out) into a fully connected layer with a single neuron. This layer maps the 

hidden representation from the LSTM to the desired output size. 

The LSTM model is configured with the following specifications: 

• input_size = 1 

• hidden_size = 512 

• num_layers = 2 

• output_size = 1 

• dropout_rate =0.5 

• learning rate = 0.001 
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A 95% Confidence interval is calculated on both time series transformer and LSTM Model to 

extract a lower and upper limit for RMSE Values. From table 5 -8, using 95% confidence 

interval we could not establish any statistically significant evidence between the two models as 

they have overlapping confidence intervals.  

Ticker Name Transformer Model LSTM Benchmark Model 

Technology Stock 

AAPL [2.43192, 2.88332] [2.76592, 3.23546] 

GOOGL [1.81623, 2.66567] [1.82584, 2.59021] 

IBM [1.34461, 1.71947] [1.148851, 1.50997] 

AMZN [2.0986, 2.75172] [2.12215, 2.79123] 

HPQ [0.39939, 0.53895] [0.39678, 0.53930] 

Table 5: 95% Confidence Interval for Technology Sector 

Ticker Name Transformer Model LSTM Benchmark Model 

Technology Stock 

JPM [1.56427, 2.14689] [1.54177, 2.14619] 

BAC [0.43584, 0.56191] [0.43618, 0.57208] 

COF [1.73827, 2.15780] [1.73538, 2.17447] 

WF [0.35988, 0.44454] [0.37501, 0.45506] 

AXP [2.16447, 2.71827] [2.16781, 2.70700] 

Table 6: 95% Confidence Interval for Finance Sector 
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Ticker Name Transformer Model LSTM Benchmark Model 

Technology Stock 

JNJ [1.37621, 1.98114] [1.29465, 1.92131] 

PFE [0.46405, 0.61602] [0.45775, 0.60005] 

MRK [1.24147, 1.48677] [1.17266, 1.44375] 

ABT [1.54052, 1.05254] [1.06666, 1.54477] 

AMGN [3.00707, 3.75275] [2.94412, 3.76176] 

Table 7: 95% Confidence Interval for Pharmaceutical Sector 

Ticker Name Transformer Model LSTM Benchmark Model 

Technology Stock 

PG [1.19235, 1.53796] [1.17193, 1.51487] 

PEP [1.47598, 1.95971] [1.58020, 2.06253] 

NSRGF [1.10465, 1.37216] [1.10871, 1.36207] 

UL [0.43497, 0.57334] [0.37617, 0.528932] 

CL [0.62417, 0.79225] [0.62389, 0.78917] 

Table 8: 95% Confidence Interval for FMCG Sector. 

A paired Z-test has been applied on both models to check for any statistical significance between 

time series transfosixrmer and LSTM model. Table 9-12 showcases the paired z-test values for 

all 20 stocks at a 95% confidence level. 7 out of the 20 stocks were able to reject null hypothesis 

and provide statistical significance. 
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Paired Z-Test Scores 

Ticker Score 

AAPL -2.77120 

GOOGL -2.64613 

IBM -3.74566 

AMZN -3.18168 

HPQ -3.88885 

Table 9: Paired Z-Test Values for Technology Sector 

Paired Z-Test Scores 

Ticker Score 

JPM -0.12057 

BAC -0.019616 

COF -0.29197 

WF 0.05240 

AXP 2.45037 

Table 10: Paired Z-Test Values for Financial Sector 

Paired Z-Test Scores 

Ticker Score 

JNJ 0.34524 

PFE 0.269179 

MRK 2.6275 

ABT -0.16304 

AMGN 0.64755 

Table 11: Paired Z-Test Values for Pharmaceutical Sector 
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Paired Z-Test Scores 

Ticker Score 

PG 0.15217 

PEP -0.16167 

NSGRY 0.046835 

UL 0.675734 

CL 0.07914 

Table 12: Paired Z-Test Values for FMCG Sector 

Figure C-10 showcases 5 different graphs in the technology sector which compare the time series 

transformer model predictions (dotted yellow), LSTM model predictions (dotted green) and 

actual stock closing price(red). The x-axis represents each timestamp in the testing data and y 

axis represents the actual closing price of the stock.  

Figure C-11 showcases 5 different graphs in the finance sector which compare the time series 

transformer model predictions (dotted yellow), LSTM model predictions (dotted green) and 

actual stock closing price(red). The x-axis represents each timestamp in the testing data and y 

axis represents the actual closing price of the stock.  

Figure C-12 showcases 5 different graphs in the pharmaceutical sector which compares the time 

series transformer model predictions (dotted yellow), LSTM model predictions (dotted green) 

and actual stock closing price(red). The x-axis represents each timestamp in the testing data and 

y axis represents the actual closing price of the stock.  

Figure C-13 showcases 5 different graphs in the FMCG sector which compare the time series 

transformer model predictions (dotted yellow), LSTM model predictions (dotted green) and 

actual stock closing price(red). The x-axis represents each timestamp in the testing data and y 

axis represents the actual closing price of the stock. 
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Figure C-10: Actual Closing Price VS Time Series Predictions VS LSTM Predictions for Technology Sector Stocks: 

Apple, Google, IBM, Amazon, and HP (Top to Bottom). 
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Figure C-11: Actual Closing Price VS Time Series Predictions VS LSTM Predictions for Financial Sector Stocks: 

JP Morgan, Bank of America, Capital One Finance, Well Fargo, and American Express (Top to Bottom).  
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Figure C-12: Actual Closing Price VS Time Series Predictions VS LSTM Predictions for Pharmaceutical Sector 

Stocks: Johnson and Johnson, Pfizer, Merck, Abbott Labs, and Amgen Labs (Top to Bottom).  
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Figure C-13:Actual Closing Price VS Time Series Predictions VS LSTM Predictions for FMCG Sector Stocks: 

P&G, Pepsi, Nestle, Unilever and Colgate (Top to Bottom).  
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