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ABSTRACT

Path planning is crucial for the navigation of autonomous vehicles, yet these vehicles face

challenges in complex and real-world environments. Although a global view may be provided,

it is likely to be outdated, necessitating the reliance of Unmanned Ground Vehicles (UGVs)

on real-time local information. This reliance on partial information, without considering

the global context, can lead to UGVs getting stuck in local minima. Obstacles beyond

the known or locally-sensed areas can result in inaccurate predictions of local minima. This

thesis focuses on proactively predicting these local minima using Dynamic Bayesian filtering,

based on the detected obstacles in the local view and the global goal. This approach aims

to enhance the autonomous navigation of self-driving vehicles by allowing them to predict

potential pitfalls before they get stuck.

vi



CHAPTER 1

Introduction

Autonomous vehicles are becoming increasingly prevalent on our city streets, and their

underlying technology also has military applications in the realm of Unmanned Ground

Vehicles (UGVs). Recent urban incidents have highlighted the challenges of navigating in

real, complex, and unknown environments, as these “self-driving” cars often grapple with

and can get stuck in anomalous traffic scenarios [19]. Significant concerns arise with an

over-reliance on autonomy in complex terrains. Such complex settings contrast sharply with

global navigation, which leans heavily on pre-mapped and stable environments [3]. However,

local path planning techniques such as the Vector Field Histogram (VFH), and Dynamic

Window Approach (DWA) have gained prominence for their capacity to respond in real-

time to unforeseen obstacles within the sensory range [12]. Studies underscore how UGVs

employ techniques such as Artificial Potential Fields (APF) to create obstacle-free paths,

attributing positive “charges” to distant goals and negative ones to nearby obstacles, thus

providing a computationally efficient and practical solution for many navigation scenarios

[6, 16, 18]. While a UGV can autonomously generate a path using the APF, it faces three

significant challenges: becoming trapped in local minima when confronted with an obstacle,

difficulty navigating between obstacles, and experiencing undesirable oscillations [2, 9, 15].

Among these challenges, encountering local minima may particularly lead to a failed mission,

as the UGV halts its navigation before reaching the goal position. Therefore, predicting the

local minima is increasingly important for UGV navigation.
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To predict the local minima, some studies have assumed a well-defined environment, such

as fully mapped or convex settings [7, 11]. While these methods can identify the local minima,

practical applications require not only the assumption of a known environment but also the

preprocessing stage: dilation of obstacles and transformation to convex-shaped obstacles

[14]. This stage entails the transformation of non-convex terrain into simplified and convex

shapes, which might result in distortion of the environment. In contrast, other research

has focused on adapting to non-convex environments, which are more closely aligned with

the complexity of real environments [15, 16]. To predict local minima, these studies have

concentrated on specific shapes, such as triangular or U-shaped, which can be challenging to

apply in a general context. Moreover, their prediction of the local minima might be incorrect

since undiscovered obstacles in unknown areas can lead to incorrect predictions.

Navigating in an off-road environment, the UGV faces significant challenges in recognizing

the surrounding environment [10]. We assume that the UGV relies on a sensor that pro-

vides values indicating distance to obstacles such as rocks, fallen logs, and bushes, without

discerning their semantic meanings. Therefore, the UGV can only differentiate between free

space, where it can maneuver, and obstacles, which it considers impassable. This limited

perception framework lays the groundwork for our study, aiming to predict the occurrence

of local minima in advance within an environment that is only partially known. Given that

the UGV is aware of its current position and the goal, we also assume that it navigates

towards the goal using its local view and a fixed step size within an APF field. There exist

an attractive force (F⃗att) towards the goal and repulsive forces (F⃗rep) from locally observed

obstacles. For prediction, we have defined a state transition model that uses raw sensor data

which indicates obstacle positions or free space within the sensor range. We also consider the

uncertainty of the information in its current state to refine the prediction. We demonstrate

the superiority of our methodology by comparing its prediction results with those from other

methods in two common situations where local minima arise (see Figure 1.1).

In sum, the contributions of this thesis are (i) a novel method that estimates the proba-
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Figure 1.1: Two common situations where local minima in artificial potential fields arise.

bility of the UGV becoming trapped in local minima and (ii) outperforms existing models

in predicting local minima in APF. A brief background of previous work done in APF local

path planning is discussed in Chapter 2. The proposed method for local minima prediction,

the simulation setup, and the results are detailed in Chapter 3. Finally, the discussion and

conclusion are provided in Chapters 4 and 5, respectively.
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CHAPTER 2

Background

2.1 Artificial Potential Field (APF)

The Artificial Potential Field (APF) algorithm operates by considering the sum of virtual

forces generated by external elements, such as the goal position or obstacles, to determine

the motion of a UGV [5]. The UGV computes an F⃗att from the goal position, as well as F⃗rep

from nearby obstacles.

F⃗att(t) = ξ(X(t)−Xg)

F⃗rep(t) =

S(t)∑
i=1

η
1

|| ⃗di(t)||2

(
1

|| ⃗di(t)||
− 1

ρ0

)
⃗di(t)

|| ⃗di(t)||
(2.1)

where X(t) is the UGV’s current position at time t, Xg is the goal position, ρ0 is the sensor

range, S(t) is the set of discovered obstacles in sensor range at time t, ⃗di(t) is the vector from

UGV to the ith obstacle in S(t), ξ is the coefficient of F⃗att(t), and η is the coefficient of F⃗rep(t).

These virtual forces enable the UGV to reach the goal position by steering it away from

obstacles, thereby preventing collisions. The magnitude and direction of these forces depend

on the locations of both the goal position and the obstacles. By combining these forces, the

UGV is guided away from obstacles while maintaining a safe distance. However, the APF
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algorithm faces a local minima challenge that occurs when the forces F⃗att and F⃗rep sum to

zero.

Various methodologies have been reported to predict local minima. However, previous

research has limitations in predicting local minima since it requires a known or restricted

environment that may not be realistic. Some research has implemented harmonic poten-

tials based on the principle that potential flows in incompressible fluids adhere to Laplace’s

equation [4, 7, 8]. Other research has focused on predicting local minima in fully known

or convex environments. Several groups created a convex potential field environment and

defined the navigation function to avoid local minima [11, 14, 17]. One research found that

there is one unique attractor at the goal location and one local minimum point associated

with each obstacle among the stationary points in known convex sphere worlds [1]. In con-

trast, recent research has focused on non-convex environments, which resemble complex and

realistic settings. One recent research predicted the local minima from the U-shaped obsta-

cle by using the shape of a LiDAR sensor’s range or from the triangular shape by using the

horizon of a LiDAR sensor [15, 16]. However, this method is difficult to generalize for all

shapes and real-world environments and fails to account for unknown areas when updating

the prediction since the prediction in local path planning will become more accurate as more

information becomes available.

2.2 Discrete Time Control

The APF method simplifies the control problem by translating complex environmental

interactions into straightforward force vectors. Therefore, the state of the UGV at time

t is X(t) = [xt, yt]. We assumed the UGV is moving on a plane where the UGV’s

elevation is constant. At each time t, the UGV moves a distance ∆ in the direction of

F⃗tot(t) = F⃗att(t)− F⃗rep(t)), as defined in Eq. (2.1).

5



Algorithm 1 Artificial Potential Field

Definitions:
Xg: the goal position (known)
Local Info.(t): the local information indicating distance to obstacles in sensor range
S(t): the set of obstacles (O1, . . . , Ok) in Local Info.(t)
Oi: the ith obstacle in S(t)
Pi: the set of occupied points which shapes Oi

ρ0: the radius of the sensor range

Start: Given Xg, X(t), and Local.Info(t)

while ∥Xg −X(t)∥ > 0.1 do
Sense the Local Info.(t)
for j = 0 to 99 do

dθj =

{
ρθj if obstacle exists

ρ0 otherwise

zjt =

{
1 if dθj < ρ0

0 if dθj = ρ0
end for

Mapping the binary values to Observation zt = [z0t , z
1
t , . . . , z

99
t ]T

Let D = {dθj}
for i = 1 to k do

Let Pi = min
j

D

Add to Pi surrounding points dθj±1... where zjt = 1
Set D ← D\Pi

end for

Compute F⃗tot(t)

F⃗att(t), F⃗rep(t) according to equation (2.1)

F⃗tot(t) = F⃗att(t) + F⃗rep(t)

Move to next position X(t+ 1)

X(t+ 1) = X(t) + ∆× F⃗tot(t)

∥F⃗tot(t)∥

end while

6



Figure 2.1: UGV Navigation in APF (A Bird’s-Eye View).

xt+1 = xt + cos

(
tan−1

(
F⃗tot,y

F⃗tot,x

))
×∆

yt+1 = yt + sin

(
tan−1

(
F⃗tot,y

F⃗tot,x

))
×∆ (2.2)
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CHAPTER 3

Local Minima Prediction

3.1 Introduction

In the APF framework, the UGV can get stuck in a local minimum and be unable to

move toward its goal autonomously, as the total force vector F⃗tot(t) may become zero when

the UGV is following the Algorithm 1.

Definition 1 (Local Minimum (Xlm)) The local minimum (Xlm) is a position where the

attractive force (F⃗att(t)) and the repulsive force (F⃗rep(t)) are balanced out i.e. the total force

vector F⃗tot(t) is zero.

A necessary condition for a local minimum to exist is that F⃗att(t) and F⃗rep(t) are parallel.

If the UGV moves along F⃗tot(t) towards the goal, it may encounter a minimum point where

the forces are equal and opposite (but non-zero). However, as the UGV moves along F⃗tot(t), it

is able to sense further and could encounter another obstacle that would add to the repulsive

force (see Obstacle II in Figure 2.1). Newly identified obstacles will break the parallelism,

so local minima may not exist as predicted in previous steps. Therefore, the presence of

obstacles in unknown areas is important to consider when predicting a local minimum. In

this paper, we assume the UGV is moving toward its goal with a sensor oriented in the UGV’s

heading direction and navigating an environment with unknown obstacles on its path. At

each time step t, it can sense an area in front of it, identifying obstacles within a defined
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radius. Using this Local.Info and the location/direction of obstacles, it can compute F⃗rep(t).

If F⃗att(t) and F⃗rep(t) are parallel, then the proposed method of estimating a local minimum

is invoked.

In this chapter, we propose a novel approach for predicting local minima during navigation

in APF by using Dynamic Bayesian filtering. In Section 3.2, we introduce the conditions

where the local minimum occurs in APF. In addition, we explain how the area information

can be described based on the sensing area observed by the UGV. Moreover, we demonstrate

how the belief of a local minimum can be recursively updated using this area information. In

the following sections, we explain the simulation environment that we constructed for UGV

local path planning within APF. We also demonstrate the superiority of our methodology by

comparing its prediction results with those from two other previous methods in two common

situations where local minima arise.

3.2 Methodology

As the UGV traverses along the APF, if no further obstacles are detected, the local

minimum will either be predicted in advance, or eventally reached. In this case, the higher-

level planning algorithm can attempt an avoidance maneuver. If more obstacles are detected,

the parallelism of the attractive and repulsive vectors could be broken, and a local minimum

will not occur, and the UGV can continue traversing towards the goal along the APF.

Definition 2 (Sensing Area (SA(X))) An area equivalent to Local info.(t) when the

UGV is positioned at X(t) (See Figure 2.1).

Definition 3 (Area Definitions) In the case when the attractive and repulsive forces are

parallel, three distinct areas are defined in relation to the UGV’s navigation and obstacle

detection capabilities:

• Area of Interest (AOI): An area that encompasses from RA(Xt0)(= SA(Xt0)) to

SA(Xlm) (i.e.
⋃Xlm

X=Xt0
SA(X)).

9



Figure 3.1: AOI, RA(Xt0), and UA(Xt0) Figures.

• Recognized Area (RA(Xt)): An area in AOI that is recognized by the UGV up to

time t (i.e.
⋃Xt

X=Xt0
SA(X)).

• Unknown Area (UA(Xt)): An area within AOI that has not been recognized by the

UGV at time t.

To clarify which areas are known or unknown at time t, we categorize the area around the

UGV into three distinct zones: the Area of Interest (AOI), the Recognized Area (RA(Xt)),

and the Unknown Area (UA(Xt)). First, the AOI is identified after F⃗att(t) and F⃗rep(t) are

parallel at time t0, indicating that a local minimum is likely to appear within the AOI.

Second, the RA(Xt) is the area within which the UGV can detect obstacles and free spaces

for maneuvering up to time t, and it increases as the UGV moves forward. Lastly, the

UA(Xt) is an area within the AOI that the UGV cannot recognize at time t, and it decreases

over time after t0. In the UA(Xt), undiscovered obstacles may cause the UGV to encounter

local minima sooner or allow it to maneuver toward the goal without encountering the initial

local minima within a few steps.

In Algorithm 2, we can identify the initial Xlm, where F⃗tot(t) is predicted to be zero in

RA(Xt0) if no other obstacles are encountered. Moreover, by dividing the line between the

UGV and the initial Xlm, we can generate potential points, denoted as Group A. The points

10



Algorithm 2 Local Minima Prediction

Assume F⃗att(t) and F⃗rep(t) are parallel at time t0, when the UGV is at Xt0

(Initialization Step, see Figure 3.1)

RA(Xt0)← Local Info.(t0)
Xlm ← the projected point where Ftot = 0
SA(Xlm)← UGV could observe from Xlm

AOI ← RA(Xt0) ∪ SA(Xlm)
Generate Group A
Define initial belief belt0(Xlm)

(Recursive Step)

while belt(Xlm) < γ do

1. Prediction Step:

Update b̄el(Xlm) by multiplying state transition probability (Definition 4)

2. Correction Step:

Refine bel(Xlm) by multiplying observation likelihood (Definition 5)

3. Normalization Step:

Adjust bel(Xlm) by multiplying normalization factor ν

if bel(Xlm) < γ at time t then
t← t+ 1
UGV move one step to X(t+ 1) along F⃗tot

else
break

end if

end while

Report: ”UGV is likely to get stuck in Xlm with γ × 100% confidence level.”

11



outside Group A, which lie between the obstacle and the initial local minimum, represent

points where the UGV cannot maneuver within the APF field, as F⃗rep(t) from the obstacles

outweighs F⃗att(t). However, Group A comprises points between the initial local minimum

and the UGV, including the local minimum itself, where the UGV may be able to maneuver

within the APF field since F⃗att(t) exceeds F⃗rep(t). These points are likely to become local

minima unless the UGV encounters undetected obstacles that change the direction of F⃗rep(t)

in the UA(Xt). Therefore, we can define the initial belief (belt0(Xlm)), which represents the

probability that the initial Xlm could be the local minimum among the points in Group A.

belt0(Xlm) =
1

|Group A|
(3.1)

where |Group A| is the number of points in Group A. As noted in Chapter 4, there may be

other ways to define this initial belief.

3.2.1 Dynamic Bayesian Filtering

In Dynamic Bayesian filtering [13], the filtering process involves three sequential steps:

prediction, correction, and normalization under the Markov Assumption (Assumption 1).

The prediction step uses the system’s prediction model to forecast the subsequent state by

incorporating the state transition probabilities and the prior belief from the previous time

step. In the correction step, the prediction is refined with the latest observations zt (i.e. the

UGV perceives a local minimum as such in RA(Xt)) by computing the likelihood of the new

observation given the predicted state, resulting in a corrected posterior belief. Finally, the

normalization step adjusts the posterior belief so that the sum of the probabilities equals

one, thus maintaining a valid probability distribution (see Appendix).

Assumption 1 (Markov Assumption) Given a sequence of observations z1, z2, . . . , zn

and Xlm, the observation zn is conditionally independent of all previous observations

12



z1, z2, . . . , zn−1 given Xlm. Or equivalently we can state:

p(Xlm|z1, . . . , zn) =
p(zn|Xlm)p(Xlm|z1, . . . , zn−1)

p(zn|z1, . . . , zn−1)

= ηnp(zn|Xlm)p(Xlm|z1, . . . , zn−1)

= η1:n

n∏
i=1

p(zi|Xlm)p(Xlm)

where η1:n is defined as the product of normalization constants η1η2 · · · ηn, ensuring that

probabilities sum to one.

3.2.2 Prediction Step

Definition 4 (State Transition Probability) The state transition probability, denoted

by P (X t
lm | X t−1

lm , z1:t−1, u1:t), represents the probability of the status (being a local minimum)

of Xlm at time t given its status at time t − 1, the sequence of all observations up to

time t − 1, and the sequence of all inputs up to time t. The input ut indicates that the

UGV follows the total force F⃗tot(t) with a step size ∆. Under the Markov Assumption,

P (X t
lm | X t−1

lm , z1:t−1, u1:t) is equivalent to P (X t
lm | X t−1

lm , ut).

We can predict whether the UGV will become stuck at the initial Xlm based on data

points within the sensor’s range, which indicates the presence of obstacles or free space. We

use the angle of occupied points which refers to the ratio of the number of occupied points

(represented by red dots in Figure 3.2) to the total number of sensor points. A higher ratio

suggests that obstacles are present nearby the UGV, increasing the likelihood that the UGV

will become trapped at the initial Xlm.

13



Figure 3.2: Occupied Points Angle.

P (X t
lm|X t−1

lm , ut) =
α

π
(3.2)

where α is the angle of occupied points in SA(X).

3.2.3 Correction Step

Definition 5 (Observation Likelihood) The observation likelihood, denoted by

P (zt|X t
lm, z1:t−1, u1:t), represents the probability of observing the state X t

lm given the

expected local minima point (X t
lm), the observations (z1:t−1) and the inputs (u1:t). This

likelihood can be interpreted as the information that the UGV possesses in AOI at time t.

Under the Markov Assumption, P (zt|X t
lm, z1:t−1, u1:t) is equivalent to P (zt|X t

lm).

P (zt | X t
lm = Local Min) =

RA(Xt)

AOI
(3.3)

14



During the correction step, the prediction b̄elt(Xlm) is refined using the recent observation

zt. This refinement involves leveraging the area information that the UGV perceives in AOI

in order to identify a local minimum, i.e. the ratio of RA(Xt) to AOI. This process leads

b̄elt(Xlm) to an updated posterior belief by multiplying with observation likelihood which

represents the probability of the new observation based on the predicted state X t
lm. This

adjustment ensures that the belief becomes more accurate by incorporating newly acquired

information.

3.2.4 Normalization

In the normalization step, the posterior belief is adjusted to ensure that the total

probabilities sum to one, thereby preserving a valid probability distribution. Here, ν

represents the normalization factor.

ν =
1

belt(Xlm = not Local Min) + belt(Xlm = Local Min)
(3.4)

After the normalization process, the normalized belief belt(Xlm = Local Min) is obtained.

We use a predefined threshold γ to determine when the UGV should halt its navigation to

avoid getting stuck in Xlm. If belt(Xlm = Local Min) exceeds γ, it implies that the UGV

has a confidence level corresponding to γ × 100% that Xlm is a local minimum and is likely

to get stuck within a short number of steps. The estimated number of steps before the UGV

reaches Xlm can be calculated by dividing the distance.
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Figure 3.3: Two Occupancy Simulation Environments

3.3 Simulation Environment

Our novel approach was implemented in MATLAB to evaluate its effectiveness. A simu-

lation was created to implement a UGV (represented by an orange box) navigating through

an APF field towards a goal location (represented by a green circle). Simulations were con-

ducted in two common scenarios of local minima occurrence for UGVs: Case 1) the UGV

is blocked by a long, wall-shaped obstacle and Case 2) the UGV is unable to find a path

due to the effects of repulsive forces (see Figure 3.3). We conducted our simulation using a

3D occupancy map that reflects the real-world environment in three dimensions. For sensor

representation, we used the rayIntersection function, which provides binary results indicat-

ing whether the space is occupied or free in a 3D Occupancy Map, and the distance to the

obstacles if they exist.
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Figure 3.4: Two Comparision Methods. (Method I: Left Figure, Method II: Right Figure)

3.4 Results

3.4.1 Comparison Methods

We compared our methodology with two recent research studies focused on non-convex

environments within partially known settings (see Figure 3.4). Method I, to which we com-

pared, predicts the local minimum by examining the distance between adjacent points in the

free space in Lidar data. If, within the analyzed range, there is no passage for the robot to

navigate through, then the algorithm identifies a local minimum [15]. On the other hand,

Method II predicts the local minimum by checking the horizon distance along the extended

line of F⃗tot from the robot’s position to the nearest obstacle. If the horizon distance λhorizon is

less than half of the Lidar’s range λstagnation, the algorithm indicates a local minimum predic-

tion [16]. We evaluated whether their algorithms activated in two common local minimum

scenarios (see Figure 3.3) and assessed how far in advance they could predict the local min-

imum (see Table 3.1). Both methods failed to stop in advance or to predict the occurrence

of a local minimum. The UGV halts its navigation when it encounters the local minimum

at the 108th step in Case 1 and at the 63rd step in Case 2, as defined in Definition 1.
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Table 3.1: Results: Comparison Methods

Case 1: a long, wall-shaped obstacle

Metrics Method I Method II

paused time step 108 108

local min prediction X X

Case 2: a hallway between two obstacles

Metrics Method I Method II

paused time step 63 63

local min prediction X X

3.4.2 A Novel Dynamic Bayesian Filtering Method

Our simulations were conducted under the threshold γ = 0.85. If belt(Xlm = Local Min)

exceeds γ, it indicates that the initial Xlm is likely to become a local minimum with a

probability of 0.85. Our novel approach can predict the local minimum in advance in both

scenarios, not only identifying the location of the local minimum but also the number of steps

remaining before the UGV reaches the predicted local minimum. In Case 1, our approach

can halt the UGV at the 100th step with an 89% confidence level. In addition, in Case 2,

the UGV halts its navigation at the 54th step with a 90% confidence level (see Table 3.2).

Our earlier prediction of the local minimum enabled the UGV to generate more efficient

path planning for subsequent studies, thereby minimizing the total path length to the goal

position or reducing the energy consumed for navigation.
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Figure 3.5: Belief in Local Minimum: Two Cases.

Table 3.2: Results: A Novel Approach

Case 1: a long, wall-shaped obstacle

Metrics A Novel Approach

paused time step 100

post belief minima 0.8908

Case 2: a hallway between two obstacles

Metrics A Novel Approach

paused time step 54

post belief minima 0.9021
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CHAPTER 4

Discussion

4.1 Contributions and Implications

The goal of this thesis was to propose a novel methodology for predicting local minima

in local path planning for UGVs. The results demonstrate that our methodology success-

fully calculates the probability of local minima occurrence, with its accuracy progressively

improving over time. This approach offers significant advantages over previously reported

methods, particularly in terms of handling uncertainties in unknown environments. First,

the UGV can generate local path plans based on raw sensor data. By considering factors

such as obstacles, sensor range, and angle, we convert this local information into the prob-

ability of the UGV becoming entrapped in local minima. Second, the UGV can update the

belief distribution of local minima according to its situational awareness at each time step,

which is related to the amount of information the UGV has at each time step. Finally, the

new methodology introduced in this paper enables dynamic updates of probabilities without

relying on fixed parameters, thereby deriving accurate belief distributions. The UGV can

recursively update its state transition probabilities and observation likelihoods based on its

current state and local information.
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4.2 Limitations and Future Work

A limitation of our study is that our proposed approach to overcome expected local

minima has not been fully developed yet. Predicting and then overcoming local minima

are crucial steps in path planning because avoiding and bypassing these minima allows us

to achieve the objectives of path planning, such as minimizing the overall trajectory or

enhancing energy efficiency. Second, although our simulation represents the environment

navigated by the UGV in off-road or wilderness settings, it has not been validated with

a UGV in real-world environments. Third, to apply this algorithm to a UGV in a real-

world environment, we need to integrate the kinematic vehicle model, which accounts for

the vehicle’s motion. Fourth, the initial belief of a local minimum, which we assumed to

follow a uniform distribution, could instead adhere to other distributions with a higher initial

probability that reflects the complexity of the environment. Lastly, for time series analysis

to be applicable in real-world scenarios, we assumed that observations at each time step are

independent, in accordance with the Markov Assumption. However, in real settings, the

observation at time t can be correlated with both previous and future time steps.

Future research should focus on employing this novel methodology to prevent the UGV

from being trapped in local minima. To overcome the local minimum, we will propose re-

questing the intervention of a human operator. The UGV can significantly benefit from

human intervention since a human operator possesses adaptive and holistic reasoning abili-

ties, influenced by their experiences and knowledge across multiple domains. First, human

intervention is requested when belt(Xlm = Local Min) exceeds the threshold (γ), with the

predicted positions of local minima being provided. Second, the human operator can be

asked to place waypoints, which serve as intermediate goal positions to offset F⃗rep(t) nearby.

The human operator can observe the local information where the UGV is located and is

likely to get stuck in local minima. Leveraging their knowledge and experience, the hu-

man operator provides waypoints that enable the UGV to navigate through areas previously

perceived as impassable by the UGV during the local minima prediction stage.
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CHAPTER 5

Conclusion

This thesis proposes a novel methodology for predicting local minima based on Dynamic

Bayesian Filtering. The advantage of this methodology lies in the UGV’s ability to use raw

sensor data to predict local minima, while also taking into account the uncertainty due to the

unknown area of information in its current state. The results demonstrate that, compared

to previous studies, our methodology enables the UGV to predict local minima in advance.

Furthermore, the state transition probability from an initial local minimum point enables the

UGV to predict subsequent local minima in advance. This not only enhances the post-belief

of a local minimum but also allows the UGV to stop earlier with greater confidence. Future

work will explore methods for overcoming local minima with human intervention.

22



APPENDIX A

Dynamic Bayesian Filtering

In this section, the local minimum is denoted by δ.

A.1 Prediction Step

1.b̄elt(Xlm = ¬δ)

= {belt−1(Xlm = ¬δ)× P (Xt
lm = ¬δ|Xt−1

lm = ¬δ, ut)}+ {belt−1(Xlm = δ)× P (Xt
lm = ¬δ|Xt−1

lm = δ, ut)}

= belt−1(Xlm = ¬δ)× π − α

π

2.b̄elt(Xlm = δ)

= {belt−1(Xlm = ¬δ)× P (Xt
lm = δ|Xt−1

lm = ¬δ, ut)}+ {belt−1(Xlm = δ)× P (Xt
lm = δ|Xt−1

lm = δ, ut)}

= belt−1(Xlm = ¬δ)× α

π
+ belt−1(Xlm = δ)
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A.2 Correction Step

1.belt(Xlm = ¬δ)

= b̄elt(Xlm = ¬δ)× P (zt|Xlm = ¬δ)

= b̄elt(Xlm = ¬δ)× UA(Xt)

AOI

2.belt(Xlm = δ)

= b̄elt(Xlm = δ)× P (zt|Xlm = δ)

= b̄elt(Xlm = δ)× RA(Xt)

AOI

A.3 Normalization Step

1.belt(Xlm = ¬δ) = belt(Xlm = ¬δ)× ν

2.belt(Xlm = δ) = belt(Xlm = δ)× ν
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