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EXECUTIVE SUMMARY

In this report we document the development of a state-space dynamicsmodel and control algorithms
that may actively provide autonomous reactivity control of a microreactor. This builds on our
previous work that performed the simulations necessary to obtain coefficients to evaluate the
state-space model.

The purpose of developing the state-space model and control algorithms is to provide a reference
for how well existing control technologies will function given the task of reactivity control of a
microreactor. The basis of the model presented within are the point kinetics equations coupled
with a three-temperature thermal-hydraulics model. We derive the state-space representation of
this model, and associated transfer function. The model is first used to study the reactor stability
analytically through the formalisms of the Bode diagram and root locus method. These results
show that:

• the Holos reactor is linearly stable

• the dynamic response is similar to the zero power reactor transfer function

• when compared with the zero power reactor, the feedback in the Holos reactor makes it less
sensitive to low frequency reactivity oscillations.

The state-space model is next incorporated within a Model Predictive Control (MPC) algorithm
for autonomous control. Several numerical results are presented to demonstrate a single-input–
multiple-output and multiple-input–multiple-output control capability with the MPC. This is done
for several assumed scenarios that incorporate flexible power operation requirements published by
various organizations. Themodel and controller are then extended to include the dynamics of 135Xe.
With the 135Xe dynamics we provide numerical results for daily load following operation that might
be typical for a peaking plant to illustrate the importance of modeling all the essential physics for
this type of operation. Figure EC.1 shows the results of the autonomous control algorithm for daily
load following with explicit treatment of 135Xe poisoning.

We also provide a comparative analysis of several control algorithms with the MPC. In this
comparison, we use several other common control algorithms that have been previously studied
for nuclear reactors. Specifically, we compare proportional-integral-derivative controllers, Linear-
Quadratic regulators, and H∞ controllers to MPC. Numerical comparisons for a particular scenario
show that under ideal conditions each of these controllers can be made to be sufficiently accurate for
the reactivity control problem. However, we make several arguments and provide some additional
numerical results to show the superiority of MPC for this application.

From our results, a few near term activities are proposed to strengthen the analysis presented here.
Additionally, we identify potential future tasks to build on this body of work. These activities
largely focus on continuing to modernize, and advance the complexity of, the MPC algorithm
explored so far. The work performed here will also serve as the basis of a consistent comparison
with the passive reactivity control mechanisms that will be developed later in the project. We
also wish to use the state-space model as a baseline for understanding what level of fidelity and
accuracy this provides when compared to higher-fidelity models that will also be analyzed later in
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this project. Finally, we wish to note some potential synergies with other Microreactor Program
activities where the work performed here could be:

• used to extend the capabilities of the TRANSFORM library and broaden its application.

• leveraged in the MAGNET facility to provide control of the heaters in a way that is tunable
so that the dynamic response of MAGNET and subsequent experimental data will be more
representative of a particular reactor design.

(a) Power and error (b) Control inputs

(c) Temperature and density (d) Reactivity change

Figure EC.1. Simulation Results for Daily Load Following
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1. INTRODUCTION

The overall aim of this project is to investigate and develop passive systems for autonomous control
of High Temperature Gas Reactor (HTGR) special purpose reactors–or microreactors. In previous
work [1], we investigated the reactivity of local temperature perturbations as one mode of physics
for passive control, and variable reflector cross sections as the other.

In this report we document the development of a state-space dynamicsmodel and control algorithms
that may actively provide autonomous reactivity control of a microreactor–here our previous work
provides the necessary coefficients for the state-space model.

The purpose of developing the state-space model and control algorithms is to provide a reference
for how well existing control technologies will function given the task of reactivity control of a
microreactor. These results will be used later in the project as the basis of a consistent comparison
with the passive reactivity control mechanisms that will be developed. We also wish to use the
state-space model as a baseline for understanding what level of fidelity and accuracy this provides
when compared to higher-fidelity models that will be analyzed later in this project.

Many control algorithms exist, and have been applied to nuclear systems for the control of various
components–including reactivity. While they have not been specifically investigated for microre-
actors, they have been investigated for countless other reactor designs. The most notable related
applications are for space fission power systems as these reactor systems share many character-
istics to microreactors; such as requiring a high degree of autonomy and being small in nature.
Although, typically, space fission power systems have a smaller thermal output than microreactors.
Consequently, the application of control algorithms to microreactor dynamics should not pose any
significant additional challenges that have not already been encountered in the application of control
algorithms of various other reactors.

In general, for autonomous control via the use of controllers based on conventional control al-
gorithms and engineering, one requires real-time or faster than real-time methods. There are a
few fundamentally different classes of algorithms that meet this requirement. In some control
strategies, the reference signal of the controlled parameter is analyzed and controlled with some
very general mathematical principles and formulations. A widely used example of this would
be Proportional–Integral–Derivative (PID) controllers. The other class of algorithms use simple,
real-time, models of the system dynamics as the basis of the control algorithm. A widely used,
and state-of-the-art, example of model based control is Model Predictive Control (MPC). For the
model based control approach one typically starts with a system of ordinary differential equations
describing the dynamics of the system. These equations are linearized and transformed into a
state-space representation. The state-space representation of the system dynamics is then used by
the control algorithm and can also be used in conjunction with analytical tools to assess the stability
of the system.

The detailed description, performance, and comparisons of modern control algorithms is the focus
of this report. To begin, we proceed with some background on the reactor design that is the basis
of the work performed here.

1 NE/8887/2020-004-00
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1.1 Background
As a specific use case for an HTGR, we use the reactor design under development by Holos. The
Holos-Quad design is a scaled down HTGR with the core being composed of four SPMs. Each
SPM is effectively an independent closed loop Brayton cycle power conversion unit with a nuclear
heat source in a tube-shell heat exchanger configuration. This effectively eliminates the balance of
plant. In earlier designs of this reactor the four SPMs were configurable so that they will create
a critical reactor. An illustration of the SPM is shown in Fig. 1 A publicly available preliminary

Figure 1. Illustration of an SPM as an Analogue to a Jet Engine

neutronic design of this reactor is described in [2]. The public design is illustrated in Fig. 2a with
all SPMs inserted, and with SPMs separated in Fig. 2b.

(a) Holos-Quad with SPMs together (b) Holos-Quad with SPMs apart

Figure 2. Preliminary Holos-Quad Design
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However, since that time, the design has continued to evolve under the ARPA-EMEITNER program
[3]. A new, proprietary design was developed by the ARPA-E Resource team at Argonne National
Laboratory (ANL) and finalized on April 20th, 2020. This new design was reported in [4, 5]. The
updated core design is the focus of the calculations and analysis of this report. In this reference
design, the SPMs are still physically separated, but fixed in their quadrant, the SPMs are no longer
actuated or moved to change reactivity. Additionally, there exists a central cruciform reflector
between the SPMs for the shutdown control system. The final design with all drums in and out is
pictured in Fig. 3.

(a) Holos-Quad with Drums Out (b) Holos-Quad with Drums In

Figure 3. Preliminary Holos-Quad Control Drum Design

To assess the overall feasibility of the control algorithms, we consider several load following
scenarios. For the power maneuvers considered here, we surveyed the literature for Flexible Power
Operation (FPO) requirements. A summary of these requirements from various sources in terms
of ramp rates and power ranges are given in Table 1 (reproduced from [1]). The various institutes
suggest that the ramp rate should be in the range between 1%%A /min and 20%%A /min for FPO.
Based on this data several contrived load follow sequences are developed to challenge the reactor
dynamics model and control algorithms.

1.2 Organization of this Report
The remainder of this report is organized as follows: first we present the derivation of the state-
space model and give the coefficients used in the analysis. Then, using the same model, we present
a stability analysis, quantify the stability margin, and discuss some limitations of the state-space
model. From our state-space model we next present how this used within the MPC algorithm.
Numerical results are then presented for several load follow scenarios. Here we show the feasibility
of MPC to provide an autonomous control capability, and the importance of including 135Xe in the
state-space representation when considering the daily load follow scenario. In the numerical results

3 NE/8887/2020-004-00
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Table 1. Summary of ramp rate requirements

Category Ramp Rate
(%%A /min)

Power Range
Low / High (%%A )

Note

1 3 - 5 50 - 100 European Utilities Requirements (EUR) [6]
2 20 50 - 100 EUR, emergency [6]
3 5 50 - 100 USA, EPRI, INPO [7]
4 1 75 - 100 Belgium [7]
5 10 20 - 100 Germany, design limit [7]

6
10
5
2

80 - 100
50 - 100
20 - 100

Germany, operational limit [7]

7 10 0 - 100 Pebble Bed Modular Reactor (PBMR) [8]

we also perform a comparative study of various control algorithms as a basis for comparison with
MPC and give some discussion. Finally we summarize our conclusions and note the on-going and
future work of this project.

2. STATE-SPACE REPRESENTATION REACTOR DYNAMICS MODEL

In this report, we aim to develop numerical models for predictive control algorithms. To achieve this
end, very simple computational models are required to meet the real-time calculation requirements.
The numerical model is composed of the point kinetics model and a three-temperature Thermal
Hydraulics/Fluids (TH) model. The models are developed to represent the reactor behavior of the
Holos-quad reactor.

2.1 Reactor Kinetics Model
To model the time-dependent behavior of the reactor, we use the standard point kinetics equations
with 6 delayed groups and component reactivity feedback. These equations are given as:

3=(C)
3C

=
d(C) − V
Λ

=(C) +
<∑
8=1

_8�8 (C), (1)

3�8 (C)
3C

=
V8

Λ
=(C) − _8�8 (C) , 8 = 1, 2, ..., < = 6, (2)

where = is the neutron density; < is the number of delayed groups; d is the reactivity; V is the total
effective delayed neutron fraction; V8 is the 8-th group effective delayed neutron fraction; _8 is the
8-th group effective delayed neutron precursor decay constant; Λ is the generation time; and �8 is
the 8-th group precursor concentration.
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The initial condition of the precursor concentration at steady-state is derived by setting the left side
of Eq. (2) to be zero as follows:

�80 =
V8=0
_8Λ

, 8 = 1, 2, ..., <, (3)

where the subscript 0 denotes the initial steady-state condition.

Using Eq. (3), the normalized point kinetics equations are written as follow:

3=̄(C)
3C

=
d(C) − V
Λ

=̄(C) +
<∑
8=1

V8

Λ
�̄8 (C), (4)

3�̄8 (C)
3C

= _8=̄(C) − _8�̄8 (C) , 8 = 1, 2, ..., <, (5)

where =̄(C)is =(C)/=0, and �̄8 (C) is �8 (C)/�80. The non-dimensional normalized forms facilitate the
stability analysis and use within a control algorithm.

The reactivity feedback model has the components for reactivity due to the control systems and
passive feedback mechanisms. The Holos reactor has two ways to actively control reactivity. One
is through the rotation of some combination of the control drums simultaneously. The other is
by moving one the SPMs, however, as was shown in [9], the reactivity is far too sensitive to this
mechanism, and thus should only be used for transport or emergency shutdown. Further, the design
was modified to eliminate this feature because of the sensitivity. Therefore, in this study, the
control drum is the primary reactivity control mechanism considered. The reactivity model with
the control drum and the various temperature feedback mechanisms is defined as follows:

Xd(C) = U 5 X) 5 (C) + U<X)< (C) + U2X)2 (C) + Xd3 (C), (6)

3Xd3 (C)
3C

= �3/3 (C), (7)

where Xd3 is the reactivity change due to control system (drums); U 5 is the reactivity coefficient
of fuel; U< is the reactivity coefficient of moderator; U2 is the reactivity coefficient of coolant;
and X) 5 (C), X)< (C), and X)2 (C) are the temperature changes of the fuel, moderator, and coolant,
respectively. �3 is the differential reactivity worth of the control drums; and /3 is the velocity of
the control drum.

Eqs. (6) and (7) are derived for the Single-Input and Single-Output (SISO) case which means that
only one type of control mechanism is used for the control of the power level. However, Holos
has 8 control drums that can be adjusted separately. If it is necessary to use multiple-inputs to
maneuver the power, then some additional elements should be added to Eq. (6). Only one control
input is used in the derivations of MPC and the state-space model for simplicity, however, treating
the different drums as multiple inputs/outputs is straightforward.

The kinetics parameters and the reactivity coefficients used in the model are listed in Table 2.
These come from various references which are documented in [9] and also from the calculations
described in [1].

5 NE/8887/2020-004-00
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Table 2. Coefficients of Reactor Dynamics Model

Parameter Value Unit Parameter Value Unit
V 480.10 pcm U 5 -2.875 pcm/K
V1 14.20 pcm U< -3.696 pcm/K
V2 92.40 pcm U2 0.000 pcm/K
V3 78.00 pcm 2 5 977.00 J/kg/K
V4 206.60 pcm 2< 1697.00 J/kg/K
V5 67.10 pcm 22 5188.60 J/kg/K
V6 21.80 pcm < 5 2002.00 kg
Λ 0.00168 s << 11573.00 kg
_1 0.01270 1/s <2 500.00 kg
_2 0.03170 1/s ¤<2 17.50 kg/s
_3 0.11600 1/s ) 5 0 1105 K
_4 0.31100 1/s )<0 1087 K
_5 1.40000 1/s )8=0 864 K
_6 3.87000 1/s )>DC0 1106 K
=0 2.25E+13 m−3  5 < 1.17E+06 W/K
%A 22.00 MW  <2 2.16E+05 W/K
@ 0.96 - - - -

Table 3. Reactivity worth of control drums

# of control
drums

Differential reactivity
worth (pcm/deg)

1 -2.78
2 -7.33
4 -16.11
8 -26.11

2.2 Three-Temperature Thermal-Fluids Model
For the thermal-fluids dynamics, we consider the 3-temperature model of a point reactor–which
should be reasonable for the slow transients studied here. Validation against the Systems Analysis
Module (SAM) code is a future activity. We treat the heat-balance equations of the fuel, moderator
and coolant temperatures separately as:

< 5 2 5
3) 5 (C)
3C

= @%A =̄(C) −  5 <

(
) 5 (C) − )2 (C)

)
, (8)

<<2<
3)< (C)
3C

= (1 − @) %A =̄(C) +  5 <

(
) 5 (C) − )< (C)

)
−  <2 ()< (C) − )2 (C)) , (9)

<222
3)2 (C)
3C

=  <2 ()< (C) − )2 (C)) − 2 ¤<222 ()2 (C) − )8=) , (10)

where %A is the rated power of reactor; the dimensionless parameter @ represents the fraction of
heat deposited in the fuel (the rest being deposited in the moderator); < 5 , <<, and <2 are the
masses of fuel, moderator, and coolant, respectively; ¤<2 is the coolant flow rate; 2 5 , 2<, and 22

NE/8887/2020-004-00
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are the heat capacities of the fuel, moderator, and coolant, respectively;  5 < and  <2 are the heat
transfer coefficients from fuel to moderator, and from moderator to coolant, respectively; and )8= is
the inlet coolant temperature.

The global heat transfer coefficients can be calculated directly based on their physical definitions
with some approximation for the geometry.. However, we used an alternative approach. Using the
steady-state equations, we may express the coefficients as:

 5 < =
@%A

) 5 0 − )<0
, (11)

 <2 =
%A

)<0 − )20
, (12)

where )20 = ()8=0 + )>DC0)/2 is the nominal average coolant temperature.

Using SAM, the steady-state temperatures were calculated, and from this solution the heat transfer
coefficients were calculated based on Eqs. (11) and (12). These values with the remaining thermal-
fluids parameters are also listed in Table 2.

2.3 State-Space Reactor Model Description
We now wish to obtain the reactivity response that couples the reactor kinetics and TH dynamics
equations. To accomplish this, we formulate a time-dependent control problem. This begins with
converting the mathematical models for the normalized point kinetics, reactivity, and thermal-fluids
into a state-space model. The neutron density is first written in the following deviation form:

3X=̄(C)
3C

=
1
Λ
Xd(C) − V

Λ
X=̄(C) +

<∑
8=1

V8

Λ
X�̄8 (C), (13)

where the symbol X indicates the deviation of a variable from an equilibrium value, i.e. G(C) =
G0 + XG(C).
In Eq. (13), =̄0 is omitted since it is equal to 1. Inserting Eq. (6) into Eq. (13) leads to:

3X=̄(C)
3C

= − V
Λ
X=̄(C) +

<∑
8=1

V8

Λ
X�̄8 (C) +

1
Λ

(
U 5 X) 5 (C) + U<X)< (C) + U2X)2 (C) + Xd3 (C)

)
. (14)

In a similar way, the equations for the precursor density, fuel temperature, moderator temperature,
and coolant temperature can be written as follows:

3X�̄8 (C)
3C

= _8X=̄(C) − _8X�̄8 (C), (15)

3X) 5 (C)
3C

=
@%A

< 5 2 5
X=̄(C) −

 5 <

< 5 2 5

(
X) 5 (C) − X)< (C)

)
, (16)

3X)< (C)
3C

=
1 − @
<<2<

%AX=̄(C) +
 5 <

<<2<

(
X) 5 (C) − X)< (C)

)
−  <2

<<2<
(X)< (C) − X)2 (C)) , (17)
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3X)2 (C)
3C

=
 <2

<222
(X)< (C) − X)2 (C)) −

2 ¤<222
<222

X)2 (C). (18)

Neglecting the higher-order terms in Eqs. (14) to (18) (e.g. linearizing the equations), we can now
express them in the following state-space model form:{

¤xc = Acxc + Bcu
y = Ccxc

}
, (19)

where the system matrix, Ac, is

Ac =



− V
Λ

V1
Λ
· · · V<

Λ

U 5

Λ

U<
Λ

U2
Λ

1
Λ

_1 −_1 · · · 0 0 0 0 0
...

...
...

...
...

...
...

...

_< 0 · · · −_< 0 0 0 0
@%A
< 5 2 5

0 · · · 0 −  5 <

< 5 2 5

 5 <

< 5 2 5
0 0

(1−@)%A
<<2<

0 · · · 0  5 <

<<2<
− 5 <+ <2

<<2<

 <2

<<2<
0

0 0 · · · 0 0  <2

<222
− <2+2 ¤<222

<222
0

0 0 · · · 0 0 0 0 0


, (20)

and the state vector, xc, is

xc =
[
X=̄(C) X�̄1(C) · · · X�̄< (C) X) 5 (C) X)< (C) X)2 (C) Xd3 (C)

])
. (21)

The input matrix, Bc, is

Bc =
[

0 0 · · · 0 0 0 0 �3

])
, (22)

and the control vector, u, and output vector, y, are

u = [/3 (C)] , (23)

and
y = [X=̄(C)] , (24)

respectively. Finally the output matrix, Cc, is:

Cc =
[

1 0 · · · 0 0 0 0 0
]
. (25)

Once again, these matrices and vectors are written for a SISO problem. If it is necessary to solve
a multiple-input problem, additional columns and rows should be added to Eqs. (22) and (23),
respectively. Similarly, Eqs. (24) and (25) are defined for a single-output case. A multiple-output
problem can be made by adding additional rows into Eqs. (24) and (25).
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2.4 State-Space Model with 135Xe
In Sections 2.1 and 2.3, the linearized state-space model was developed from the point kinetics
and three-temperature model equations. This is typical in much of the literature for reactor control
analysis as these works tend to consider short time scales where 135Xe dynamics are negligible.
However, the 135Xe buildup is very important for daily load following operation. To account for
this type of load following operation, the 135Xe and 135I models are added as additional terms in the
component reactivity feedback model (Eq. (6)). The first order dynamics of 135Xe are illustrated
by the decay chain shown in Fig. 4.

Figure 4. 135Xe yield

Based on Fig. 4, the 135Xe absorption is proportional to both the 135Xe concentration and the
neutron flux q(C). The differential equations for the 135I and 135Xe concentrations are:

3� (C)
3C

= W�Σ 5 {=0=̄(C) − _� � (C), (26)

3- (C)
3C

= W-Σ 5 {=0=̄(C) + _� � (C) − _-- (C) − f-{=0=̄(C)- (C), (27)

where W� and W- are the fission yields of 135I and 135Xe, respectively; { is the average velocity of
the thermal neutrons; _� and _- are the radioactive decay rates of 135I and 135Xe, respectively; and
f- is the microscopic absorption cross section of 135Xe.

The reactivity model with 135Xe is defined as follows:

Xd(C) = Xd3 (C) + U 5 X) 5 (C) + U<X)< (C) + U2X)2 (C) − Xd- (C)

= Xd3 (C) + U 5 X) 5 (C) + U<X)< (C) + U2X)2 (C) −
f-

Σ0 + ��2 X- (C),
(28)

where d- is the 135Xe reactivity [10]; Σ0 is the macroscopic absorption cross section; and ��2

represents the neutron leakage from the reactor. The term Σ0 + ��2 is therefore, the total loss of
neutrons driven by absorption and leakage. The term −f-/

(
Σ0 + ��2) can be interpreted as the

135Xe coefficient of reactivity. Note that Σ0 + ��2 = aΣ 5 for the critical reactor.

9 NE/8887/2020-004-00
NURAM-2020-006-00



Point Kinetics Model Development
with Model Predictive Control

Inserting Eq. (28) into Eq. (13) leads to:

3X=̄(C)
3C

= − V
Λ
X=̄(C) +

<∑
8=1

V8

Λ
X�̄8 (C) − f-{X- (C)

+ 1
Λ

(
U 5 X) 5 (C) + U<X)< (C) + U2X)2 (C) + Xd3 (C)

)
,

(29)

because the neutron generation time Λ = 1/{
(
Σ0 + ��2) .

The deviation forms of the 135I and 135Xe equations are

3X� (C)
3C

= W�Σ 5 {=0X=̄(C) − _�X� (C), (30)

3X- (C)
3C

=
(
W-Σ 5 − f--0

)
{=0X=̄(C) + _�X� (C) − (_- + f-{=0) X- (C). (31)

Eqs. (30) and (31) have initial values =0 for the neutron population and -0 for the 135Xe concentra-
tion. These parameters are defined as follow:

=0 =
%A

n
=

%A∫
+
^Σ 5 {3+

, (32)

�0 =
W8Σ 5 {=0

_8
, (33)

-0 =
WGf 5 {=0 + _8 �0
_G + fG{=0

, (34)

where ^ is the energy per fission deposited in fuel, and n represents the power per unit neutron
density.

Equations (15) to (18) and (29) to (31) are written in the state-space model form (i.e. Eq. (19)) in
a manner similar to Section 2.3. In this case, the system matrix Ac and the state vector xc are now
defined as follows:

Ac =

− V
Λ

V1
Λ
· · · V<

Λ

U 5

Λ

U<
Λ

U2
Λ

0 −fG{ 1
Λ

_1 −_1 · · · 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...

_< 0 · · · −_< 0 0 0 0 0 0
@%A
< 5 2 5

0 · · · 0 −  5 <

< 5 2 5

 5 <

< 5 2 5
0 0 0 0

(1−@)%A
<<2<

0 · · · 0  5 <

<<2<
− 5 <+ <2

<<2<

 <2

<<2<
0 0 0

0 0 · · · 0 0  <2

<222
− <2+2 ¤<222

<222
0 0 0

W8f 5 {=0 0 · · · 0 0 0 0 −_8 0 0(
WGΣ 5 − fG-0

)
{=0 0 · · · 0 0 0 0 −_8 −_G − fG {=0 0

0 0 · · · 0 0 0 0 0 0 0



,
(35)
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xc =
[
X=̄(C) X�̄1(C) · · · X�̄< (C) X) 5 (C) X)< (C) X)2 (C) X� (C) X- (C) Xd3 (C)

])
. (36)

The input matrix Bc, control vector u, output vector y, and output matrix Cc can be defined in a
similar manner as Section 2.3.

3. STABILITY ANALYSIS OF THE STATE-SPACE MODEL

Prior to developing a control algorithm, the linear stability of the system should be studied. The
reason for this is to characterize the overall physical stability of the system without control. If the
system has inherently unstable points of operation, then the control algorithmmust account for this.
Further, it provides a baseline assessment of the system’s dynamic response without control, and
this allows one to verify that adding a controller does not lead to an unstable system.

The linear stability analysis can be performed by one of several approaches, all yielding the
response of the system to small perturbations around the steady-state equilibrium condition. If
such perturbations decay, and the system returns to an equilibrium condition, the system is linearly
stable. However, if these perturbations grow, the system is said to be linearly unstable.

It is important to note that a system which is linearly unstable, will not necessarily diverge when
small perturbations are applied. This is because when the perturbations grow, nonlinear terms
become significant and can no longer be neglected. In some cases the nonlinear terms can converge
the dynamics into a steady limit cycle, such that the dynamics will show bounded oscillations.
Alternatively, the nonlinear terms can drive the system to an unstable behavior. For our present
scope, we limit our analysis to linear stability. Although later in this section we attempt to quantify
the limits of the validity of the linear stability analysis.

A powerful method to study linear stability is performed in the frequency domain by analyzing the
transfer function of the system. This function, � (B), is defined as the ratio between the output and
the input in the Laplace domain. A graphical representation of the transfer function is typically
illustrated with a Bode diagram. This diagram shows the response of the reactor in terms of its gain
and phase to external perturbations of different frequencies. Bode diagrams are frequently used to
analyze the stability margins of the system. Their primary advantage is the characterization of the
system dynamics over the full frequency domain without having to perform numerous, potentially
expensive, numerical calculations. Additionally, by analyzing the poles of the transfer function,
within the formalism of the root locus method, the linear stability for varying power levels can also
be analyzed.

In this section we derive the closed-loop transfer function and discuss the reactor response and
stability in terms of its Bode diagram and the root locus method.

3.1 Closed-loop Transfer Function
Derivation of the transfer function of linear (or linearized in our case) dynamical systems is
performed in the Laplace domain. To begin, we start from the state-space model derived in
Section 2.3 (Eqs. (19) to (24)) that excludes the 135Xe dynamics. This is done for simplicity; the
derivation will be expanded in the future to include 135Xe.

We apply the Laplace transform on these equations to convert them into the B domain. Recalling
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that L [35 /3C] = B 5 (B) − B0, the system of differential equations are transformed to a system of
algebraic equations that we may then solve analytically. The Laplace transformation of Eqs. (19)
to (24) yields:

BX=̄(B) = − V
Λ
X=̄(B) + Xd(B)

Λ
+

6∑
8=1

_8X�̄8 (B), (37)

BX�̄8 (B) =
V8

Λ
X=̄(B) − _8X�̄8 (B), (38)

< 5 2 5 BX) 5 (B) = @%AX=̄(B) −  5 <X) 5 (B) +  5 <X)< (B), (39)
<<2<BX)< (B) = (1 − @)X%A (B) +  5 <X) 5 (B) − ( 5 < +  <2)X)< (B) +  <2X)2 (B), (40)
<222BX)2 (B) =  <2X)< (B) − ( <2 + 2 ¤<222)X)2 (B), (41)

In the Laplace domain the linear system is represented by the block diagram in Fig. 5. The well

/ (B) = X=̄(B)
Xd(B)

� 5 (B) = U 5
Xd 5 (B)
X=̄(B)

�< (B) = U< Xd< (B)X=̄(B)

Xd4 (B) Xd(B) X=̄(B)

Xd 5 (B)

Xd< (B)

Figure 5. Block diagram of the state-space model with an external reactivity perturbation and
reactivity feedback from the fuel and moderator temperatures.

known zero-power transfer function is derived using Eqs. (37) and (38):

/ (B) = 1
B

(
Λ +

6∑
8=1

V8

B + _8

)−1

. (42)

Using Eqs. (39) to (41) we can find the transfer functions of the fuel and moderator feedback as:

� 5 (B) =
U 5 %A =̄0

�

[
( <2 + 2 ¤<222 + <222B)

(
 5 < + @<<2<B

)
+ @ <2 (2 ¤<222 + <222B)

]
, (43)

�< (B) =
U<%A =̄0
�

[
( <2 + 2 ¤<222 + <222B)

(
 5 < + (1 − @)< 5 2 5 B

) ]
, (44)

where the denominator � is defined as:

� ≡  <2 ( 5 < + < 5 2 5 B) (2 ¤<222 + <222B)

+ ( <2 + 2 ¤<222 + <222B)
(
 5 < (< 5 2 5 B + <<2<B) + < 5 2 5<<2<B

2
)
. (45)
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Based on the block diagram description in Fig. 5, the closed-loop transfer function is:

� (B) = / (B)
1 −

(
� 5 (B) + �< (B)

)
/ (B)

. (46)

As explained above, a graphical representation of the transfer function can be expressed in the
formalism of the Bode diagram. In this method, the function is projected into the frequency
domain by using � (B) → � (8l). The gain and phase of this complex function can now be plotted,
showing the amplitude gain of the system and the phase difference between the input and output
signals, respectively.

Figure 6. Bode diagram of the state-space model for increasing power levels.
Both magnitude (upper panel) and phase (lower panel) depicted.

The Bode diagram of the state-space model is depicted in Fig. 6 for increasing power levels, from
zero up to the nominal power. For zero-power, the familiar zero-power transfer function is obtained,
which shows a monotonically decreasing behaviour in the Bode magnitude plot. Recall that the
response of the system under zero-power conditions is driven solely by the delayed neutrons. Thus,
we observe in this case, that high frequency reactivity oscillations do not lead to any significant gain
in the reactivity output. However, for low frequency reactivity oscillations, there is reactivity gain
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as the multiplication of the system may be increased through super-position of the delayed neutron
emitters from successive reactivity oscillations. Naturally, as power increases, the temperature
reactivity feedback begins to play a role. Since both the fuel and moderator feedback are negative
they dampen the external perturbations. Here this is evident for the low-frequency oscillations
because of the thermal time constants related to the conduction and heat capacity of graphite.

Another interesting observation comes from the phase behavior. For the zero-power reactor, the
phase is always negative. This means that the input reactivity oscillations are lagging behind
the power output. However, when the power level increases, the phase becomes positive for low
frequencies. Here, due to the time scales of the feedback, the power response lags behind the
reactivity input.

The use of the Bode diagram also enables us to study uncertainties regarding the nominal values
used in this study. To explore this, we studied the dependence of the Bode plot to changes of ±50%
in each of the nominal values given in Table 2. For many of the parameters this is an extremely large
range to consider, thus we presume that this range would bound most viable HTR-like microreactor
designs.

Figure 7 illustrates the range in the Bode diagram for changes in U 5 and <<. For the other
coefficients, the overall effect of the ±50% uncertainty did not produce a significant change in
the Bode diagram. As U 5 increases, gain damping is also increased, due to the stronger negative
feedback. Changes in the frequency response are also observed for different values of the moderator
mass (<<). In this respect, the large graphite mass acts as a thermal buffer that delays the reactivity
response of the fuel, hence the moderator mass changes affect the frequency response. The
frequency dependence on << is found to be significantly larger compared to changes in the fuel
mass (< 5 ) or coolant mass (<2). We believe this is explained by the large differences between the
nominal values of these parameters.

(a) U 5 (b) <<

Figure 7. Bode plot for ±50% change in nominal values of (a) U 5 and (b) <<.

3.2 Linear Stability Analysis
In a previous study, a simplified state-space model of an HTR-like microreactor was used to study
linear stability using the Routh-Hurwitz method [11]. The simplified model includes only two
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temperature variables, namely fuel and moderator. The parameter values were based on the Holos-
Quad design. The study showed that the dynamics is linearly stable for a wide range of operational
parameters. In addition, it showed that an unstable dynamics may theoretically occur even when
both reactivity coefficients (fuel and moderator) are negative, however it requires a very small and
nonphysical magnitude of the fuel coefficient of reactivity.

For our present work, we study the linear stability of the three-temperature model. Having derived
the transfer function in the previous subsection, we use a different approach for stability study here,
namely the root locus method. In this method, the poles of the transfer function are depicted in
the Laplace B-plane. If all poles have a negative real part (i.e. located in the negative half-plane),
the system is linearly stable. However, if any of the poles have a positive real value, the system is
linearly unstable. Note that, based on Eq. (46), the poles of the transfer function are the roots of
1 −

(
� 5 (B) + �< (B)

)
/ (B).

The root locus diagram of the state-space model is depicted in Fig. 8 for increasing power levels.
As shown in the figure, there exists more than one pole to the transfer function. However, all poles
have a negative real component. Moreover, the magnitude of the real part increases with power
becoming small; this is attributed to the negative nature of the reactivity feedback mechanisms.
We therefore conclude that the system is linearly stable, and it becomes even more stable as power
increases due to the stabilizing feedback mechanisms.

(a) (b)

Figure 8. Root locus stability diagram, depicted for increasing power levels. The rectangle area in (a)
is magnified in (b).

This result can be compared with a recent stability analysis performed for the Liquid-Salt Very High
Temperature Reactor (LS-VHTR) reactor [12], a prismatic liquid salt-cooled, graphite moderated
high-temperature reactor. In that work, a similar three-temperature state-space model was used,
and the linear stability was also analyzed using the root locus method. The study showed that the
LS-VHTR is also linearly stable for the operational range of parameters. Comparison of the two
root locus diagrams shows that, in both the Holos-Quad and LS-VHTR models, the most positive
pole of the transfer function becomes more negative as the power increases. However, there are
some qualitative differences between the root locus diagrams of the two models; specifically, the
shape of the roots near zero (depicted in Fig. 8b). Since the power of the LS-VHTR reactor is
significantly higher (2.4 GWt) than the microreactor, the mass of graphite and coolant flow rate are
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also significantly higher. We conclude that these differences may be attributed as the cause of the
differences in the root locus diagrams.

3.3 Limitations of the Linearized Model
The derivation of linearized model presented above is based on the assumption that small de-
viations from steady-state are introduced. Accordingly, the high-order terms (X=(C)Xd(C) and
X=(C)X- (C)) are neglected. Through simulations performed in the time-domain that include and
exclude the higher-order terms, it is possible to quantify the effect of neglecting the higher-order
terms. Considering the nonlinear term involving the flux and 135Xe we have:

=(C)- (C) = (=0 + X=(C)) (-0 + X- (C))
= =0-0 + =0X- (C) + -0X=(C) + X=(C)X- (C) (47)

In the linearized model the first term on the RHS is neglected. The last term on the RHS can be
neglected if:

X=(C)X- (C) � min(=0X- (C), -0X=(C)). (48)

When sufficiently large deviations are introduced, this condition will not be valid anymore. To
study the limit of the linear approximation, we studied the dynamic response of the system without
control drums, following a step reactivity insertion. An example is depicted in Fig. 9. Two reactivity
steps, of 10 pcm and 100 pcm, were introduced to a critical reactor at 22 MWth.

As shown in the figure, each model reaches a different peak power. The nonlinear peak power is
higher than the linear. The reason is that the nonlinear term Xd(C)X=(C) in the flux equation is a
growth term (it has a positive sign). When this term is neglected, the growth rate of the flux is
decreased, and accordingly also the peak power.

While the peak power difference for the 10 pcm is very small (< 0.5%), for the 100 pcm case
this difference (∼ 6%) is probably not negligible. In both cases, after about 200 seconds the
power converges to a new equilibrium (following a temperature change), and the two models
agree. However, in terms of the operational and safety performance of the reactor, this type of
under-prediction in the peak power of the transient is likely not acceptable.

The limitation of the linearized model depends on the steady-state power level, as demonstrated in
Fig. 10. Here, the difference in the peak power is shown for various step reactivity insertion values:

X%<0G

%0
=
%=>=;8=40A<0G − %;8=40A<0G

%0
(49)

It can be seen that as power increases, the differences between the models increase. At a power
of 20MWth, a 150 pcm insertion yields a difference above 20%. Even for power levels as low as
1MW, the differences become significant for large enough reactivity insertions.

From this result we might conclude that any practical control algorithm would need to account for
the nonlinear dynamics of the reactor to prevent severe undershoot or overshoot of the power. Con-
sequently, some augmentation to the traditional control methodology may be warranted. However,
as we will see in the next section, the MPC performs quite well in spite of this. Nevertheless, we
recommend considering improving this aspect of the models in future work.
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(a) 10 pcm (b) 100 pcm

Figure 9. Comparison of nonlinear and linearized models following a step reactivity insertion of 10
pcm (left) and 100 pcm (right).

Figure 10. Peak power difference of nonlinear and linearized models, shown for increasing values of
power and reactivity step insertions.

4. AUTONOMOUS CONTROL OF THE HOLOS REACTOR

4.1 Model Predictive Control
To solve the state-space control problem derived in Section 2 we use the MPC algorithm. MPC
is an advanced method to control a process while satisfying a set of constraints [13]. It is based
on an iterative finite-horizon optimization of the system (i.e. trajectory optimization). In the form
presented here we focus on the linear, time-invariant state-space model derived in Section 2.3. To
minimize an error between a desired set-point and predicted output, a control input is computed for
a relatively short time horizon in the future by evaluating a cost function. This calculation is then
repeated at each subsequent instant or time-window.

The basic theory of MPC is described here for completeness. The following derivation of MPC
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is based largely on [14]. The state-space model derived in Eq. (19) is written as the following
time-discretized linear system.

xm(: + 1) = Amxm(:) + Bmu(:), (50)

y(:) = Cmxm(:), (51)
where : is the time step index, and Am, Bm, and Cm are the discrete forms of Ac, Bc, and Cc,
respectively.

Applying a finite difference approximation to Eq. (51), yields

xm(: + 1) − xm(:) = Am (xm(:) − xm(: − 1)) + Bm (u(:) − u(: − 1)) . (52)

Next, we make use of the following simplifying notation

Δ(·) (:) = (·) (:) − (·) (: − 1), (53)

to yield
Δxm(: + 1) = AmΔxm(:) + BmΔu(:). (54)

Note that the input to the state-space model is Δum(:). The next step is to connect Δxm(:) to the
output, ym(:). To do so, a new state variable vector is defined as

x(:) =
[
Δxm(:)) y(:)

])
. (55)

Note that

y(: + 1) − y(:) = Cm (Δxm(: + 1))
= CmAmΔxm(:) + CmBmΔu(:).

(56)

Combining Eqs. (54) and (56) leads to the following discretized state-space model:

x(:+1)︷              ︸︸              ︷[
Δxm(: + 1)

y(: + 1)

]
=

A︷              ︸︸              ︷[
Am o)m

CmAm 1

] x(:)︷         ︸︸         ︷[
Δxm(:)

y(:)

]
+

B︷       ︸︸       ︷[
Bm

CmBm

]
Δu(:), (57)

y(:) =

C︷      ︸︸      ︷[
o)m 1

] [
Δxm(:)

y(:)

]
, (58)

where om =

=1︷              ︸︸              ︷[
0 0 ... 0

]
is the null vector; =1 is the dimension of xm; and A, B, and C are

called the augmented model, that will be used in the design of the predictive control.

Assuming that at the sampling instant :8, where :8 > 0, the state variable vector x(:8) is available
through measurement, then the state x(:8) provides the current plant information. The future
control trajectory is denoted by

Δu(:8), Δu(:8 + 1), ..., Δu(:8 + #2 − 1), (59)
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where #2 is called the control horizon–dictating the number of parameters used to capture the future
control trajectory. With the information given in x(:8), the future state variables are predicted for
#? number of samples, where #? is called the prediction horizon. #? is also the length of the
optimization window. We denote the future state variables as

x(:8 |:8), x(:8 + 1|:8), . . . , x(:8 + #? |:8), (60)

where x(:8 + < |:8) is the predicted state variable at :8 + < with given current plant information
x(:8). The control horizon #2 is chosen to be less than (or equal to) the prediction horizon #?.
It is possible to denote the state-space model for the prediction horizons as follows:

Y = Fx(:8) +�ΔU, (61)

where
Y =

[
y(:8 + 1|:8) · · · y(:8 + #? |:8)

])
, (62)

ΔU =
[
Δu(:8) · · · Δu(:8 + #2 − 1)

])
, (63)

F =


CA
...

CA#?

 , (64)

� =



CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0
...

CA#?−1B CA#?−2B CA#?−3B · · · CA#?−#2B


. (65)

For a given set-point signal (or reference trajectory), the objective of the predictive control system
is to bring the predicted output as close as possible to the set-point signal. It is assumed that the
set-point signal remains constant in the optimization window. This objective is then translated
into an input to find the “best” control parameter vector ΔU such that an error function between
the set-point and the predicted output is minimized. The cost function �, that reflects the control
objective, is defined as follows:

� = (Rs − Y)) (Rs − Y) + ΔU) R̄ΔU, (66)

where the data vector R)
s contains the set-point information A (:8) as follows:

R)
s = R̄sA (:8) =

#?︷               ︸︸               ︷[
1 1 · · · 1

]
A (:8). (67)

In Eq. (66), the first term is linked to the objective of minimizing the errors between the predicted
output Y and the set-point signal Rs. The second term reflects the consideration given to the size
of ΔU when the objective function � is made to be as small as possible. R̄ is a diagonal matrix
in the form that R̄ = A|I#2×#2

(A| ≥ 0) where A| is used as a tuning parameter for the desired
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closed-loop performance. To find the optimal control input that will minimize �, � is expressed as
follows by using Eqs. (61) and (66):

� = (Rs − Fx(:8))) (Rs − Fx(:8)) − 2ΔU)�) (Rs − Fx(:8)) + ΔU)
(
�)� + R̄

)
ΔU. (68)

According to the extreme value theory of functions, when the derivative of � with respect to ΔU
(i.e. m�/mΔU) is zero, the objective function � gets its extreme values. The first derivative of � is

m�

mΔU
= 2�) (Rs − Fx(:8)) + 2

(
�)� + R̄

)
ΔU. (69)

From relation of m�/mΔU = 0, the optimal solution is found as follows:

ΔU =
(
�)� + R̄

)−1
�) (Rs − Fx(:8))

=
(
�)� + R̄

)−1
�)

(
R̄sA (:8) − Fx(:8)

)
,

(70)

where the matrix
(
�)� + R̄

)−1 is called the Hessian matrix in the optimization literature, and(
�)� + R̄

)−1 is assumed to exist.

Although the optimal parameter vector ΔU contains the controls Δu(:8), Δu(:8 + 1), . . . , Δu(:8 +
#2 − 1), with the receding horizon control principle, the first sample of this sequence, i.e. Δu(:8),
is implemented only while ignoring the rest of the sequence. When the next sample period arrives,
the more recent measurement is taken to form the state vector x(:8 + 1) for calculation of the new
sequence of control signal. This procedure is repeated in real time to give the receding horizon
control law.

It should be noted that Eq. (70) is used for an unconstrained problem. However, in nearly all
practical applications there are constraints imposed by the physical system that must be taken into
account. There are several types of constraints frequently encountered in control applications. The
first two types deal with constraints imposed on the control variables u(:) and �u(:). The third
type of constraint deals with the output, y(:), or the state variable, x(:).

4.1.1 MPC with constraints
In our application, three kinds of constraints are applied to the drum rotation s, drum rotation rate
u, and drum rotation acceleration Δu/ΔC. It should be noted that these constraints are assumed
because they have not been determined in the reactor design, yet. In reality, the constraints should
be first based on the mechanical performance of the drum rotation system, and secondarily on
technical specification limits for the operation that should satisfy safety and operational performance
requirements. The numerical values of the constraints are listed in Table 4. An absorber material is
placed on one side of the control drum as depicted in Fig. 3. The reactivity worth of the drum has the
minimum and maximum worth when the drum faces outward and inward directions, respectively.
Therefore, the drum rotation angle is constrained between 0 to 180◦. This is equivalent to assuming
symmetry about the fully inserted position. From [1], this is generally true, although this is not
always the case. Future work will focus on using more complex control algorithms and reactivity
worth curves for the drums. The rotation rate and angular acceleration are constrained within ±1◦/s
and ±1◦/s2, respectively.
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Table 4. Applied constraints to Holos reactor control

Parameters Constraints
Control drum rotation (deg) 0 ≤ s ≤ 180

Control drum rotation rate (deg/s) −1.0 ≤ u ≤ 1.0
Control drum rotation acceleration (deg/s2) −1.0 ≤ Δu/ΔC ≤ 1.0

To incorporate the design constraints into the control problem, it is necessary to translate the
constraints into linear inequalities. The constraints are taken into consideration for each moving
horizon window. Since theMPC problem is formulated and solved in the framework of the receding
horizon control, the constraints on the rate of change are expressed as

Δu<8= ≤ Δu(:8) ≤ Δu<0G , (71)

where the superscripts <8= and <0G denote the minimum and the maximum constraints, respec-
tively.

The constraints are definedwithin the control horizon so that it can be expressed in terms of function
ΔU as follows:

ΔU<8= ≤ ΔU ≤ ΔU<0G , (72)

where ΔU<8= and ΔU<0G are column vectors with #2 elements of Δu<8= and Δu<0G , respectively.

The constraints then need to be decomposed into two parts to reflect the lower and the upper limit.
This is expressed as follows: [

−I
I

]
ΔU ≤

[
−ΔU<8=

ΔU<0G

]
, (73)

where I is the identity matrix, and its size depends on #2 and u.

This procedure also applies to the control input and output constraints. All constraints are expressed
in terms of ΔU. In the case of the manipulated constraints (or control input), it is written as follows:

u(:8)
u(:8 + 1)

...

u(:8 + #2 + 1)


=


I
I
...

I


u(:8 − 1) +


I 0 · · · 0
I I · · · 0
...
...
. . .

...

I I · · · I




Δu(:8)
Δu(:8 + 1)

...

Δu(:8 + #2 − 1)


. (74)

Equation (74) is rewritten in a compact matrix formwith appropriate matricesC1 andC2 as follows:

− [C1u(:8 − 1) + C2ΔU] ≤ −U<8=

[C1u(:8 − 1) + C2ΔU] ≤ U<0G .
(75)

Using Eq. (61), the output constraints are expressed in terms of ΔU as:

Y<8= ≤ Fx(:8) +�ΔU ≤ ΔY<0G . (76)
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Finally, the MPC in the presence of constraints is proposed as finding ΔU that minimizes the
quadratic cost function

� = (Rs − Fx(:8))) (Rs − Fx(:8))

− 2ΔU)�) (Rs − Fx(:8)) + ΔU)
(
�)� + R̄

)
ΔU.

(68 revisited)

Subject to the inequality constraints: 
M1
M2
M3

 ΔU ≤

N1
N2
N3

 , (77)

where the matrices are

M1 =

[
−C2
C2

]
; M2 =

[
−I
I

]
; M3 =

[
−�
�

]
;

N1 =

[
−U<8= + C1u(:8 − 1)
U<0G − C1u(:8 − 1)

]
; N2 =

[
−ΔU<8=

ΔU<0G

]
; N3 =

[
−Y<8= + Fx(:8)
Y<0G − Fx(:8)

]
.

This problem is a representative mathematical optimization problem, where Quadratic Program-
ming (QP) [15] may be used to solve Eq. (68) with the inequalities in Eq. (77). Algorithm 1
summarizes the MPC algorithm described in this section.

Algorithm 1MPC algorithm
1: Construct state-space model in Eq. (19).
2: Convert state-space model to time-discrete model.
3: Determine #2, #?, and R̄.
4: Calculate F and � in Eqs. (64) and (65).
5: for time steps :8 do
6: Set prediction set-point vector Rs.
7: if problem is constrained then
8: Calculate ΔU by minimizing Eq. (68) subject to Eq. (77) through QP.
9: else
10: Calculate ΔU in Eq. (70).
11: end if
12: Choose the first control input Δu(:8) from ΔU.
13: Update state and output vectors x and y using Eqs. (57) and (58).
14: end for

4.2 Numerical Results
In this section, Single-Input and Multiple-Output (SIMO) and Multiple-Input and Multiple-Output
(MIMO) problems are solved to test the MPC controller. The state-space model with the MPC
algorithm is implemented in a test code.
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4.2.1 Single-Input–Multiple-Output Example
The first scenario we consider is depicted, along with the control result, in Fig. 11a. In this contrived
power maneuver we consider the SIMO case. The reference power trajectory is chosen to have a
power ramp rate of ±10%%A /min. The power transition from 5 min to 15 min and from 40 min to
50 min. In this simulation, it is assumed that all control drums are rotated simultaneously.

(a) Power and error (b) Control inputs
Figure 11. Power and control input for SIMO example

(a) Temperature (b) Reactivity change
Figure 12. Temperature and reactivity changes for SIMO example

As shown in Fig. 11a, the MPC controller follows the desired power accurately. There is no
noticeable error between the reference power and calculated power. Fig. 11b shows the rotation and
rotation rate of the control drum. The calculated control actions satisfy both of the given constraints
for rotation and rotation rate.

Fig. 12 presents the evolution of the temperatures and reactivity components during the maneuver.
The temperature overall lags the power trajectory–as predicted by the Bode diagram in Fig. 6.
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There are three passive temperature reactivity feedback mechanisms through the fuel, moderator,
and coolant. However, the reactivity coefficient for the coolant is assumed to be 0.0 in these
calculations. The reactivity feedback from both the fuel and moderator are significant, and this is
because the temperature reactivity coefficients of the fuel and moderator are comparable. This is
shown in Table 2. The temperatures of both materials change significantly during the load follow
maneuver. When the power is changed from 0%%A to 100%%A , the temperature changes of the fuel
and moderator are more than 200 K. The power level reaches 0%%A at 15 min, and about 1000 pcm
of reactivity is required up to this time. However, there are several lasting reactivity perturbations
from the fuel and moderator. The additional external reactivity must be controlled by using the
control drum, or the other control mechanisms, to compensate for the positive reactivities between
15 min and 40 min. The maximum external reactivity required for this maneuver is -1517 pcm at
40 min. From this simulation, it is concluded that it is necessary to have ±1517 pcm of external
reactivity to control the Holos reactor between 0%%A and 100%%A . This means that the 10%%A /min
ramp rate requires a reactivity insertion rate that is at least ∼151.7 pcm/min. The available total
reactivity and the maximum reactivity insertion rate are summarized in Table 5. The maximum
reactivity insertion rate is calculated based on rotation rate constraint, 1◦/s. When all control drums
are used in the reactivity control, there is more than enough margin to follow ±10%%A /min between
0 to 100%%A .

Table 5. Reactivity insertion capability of control drums

# of control
drums

Differential
reactivity worth

(pcm/deg)

Available total
reactivity worth

(pcm)

Maximum reactivity
insertion rate
(pcm/min)

Estimated power
ramp rate
(%%A /min)

1 -2.78 -500 ±167 11.0
2 -7.33 -1319 ±440 29.0
4 -16.11 -2900 ±967 63.7
8 -26.11 -4700 ±1567 103.3

4.2.2 Multiple-Input–Multiple-Output Example
In the SIMO example, it is assumed that all control drums are rotated with a single type of control
input. In practice, this may not be the best way to control the Holos reactor. There is also the
possibility to operate these control drums separately if so desired. If an operator wants to change a
small amount of power or if it is necessary to respond to a very small external disturbance, it would
be better to control reactivity using only one drum instead of rotating all drums simultaneously. By
using a single drum it is possible to control the reactivity, and therefore, the power more precisely.
In other cases, it may be preferred to reduce the number of irradiated control drums because it
could become necessary to replace a drum if the absorber material is depleted significantly during
operation, or it may be desired to shape the core power asymmetrically in some way for other
reasons like continuing operation in a degraded state.

One of the strengths of MPC is that it can easily accommodate a constrained MIMO problem. For
this case the MPC controller could give a solution, if it is necessary, to operate the control drums
separately. In the second numerical example studied, the various power ramp rates are chosen from
1%%A up to 80%%A . Fig. 13a shows the hypothetical power maneuver. The fastest ramp rate of the
surveyed FPO requirements is 20%%A [1]. However, 40%%A and 80 %%A ramp rates are also tested
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to assess the feasibility of the control scheme to perform operations well beyond what is required.

(a) Power and error (b) Control inputs

(c) Temperature (d) Reactivity change
Figure 13. Control inputs and simulation outputs for MIMO example

In this MIMO simulation, two separate control inputs are assumed. One control drum is used
for Drum Group A while four drums are used for Drum Group B. The MPC controller calculates
separate inputs for Group A and Group B. When evaluating the cost function, the weight of Group
B is specified to be 10 times more thanGroup A. This is so that the controller utilizesGroup Amore
than Group B. It should be noted that it is necessary to study the reactivity more–particularly with
high-fidelity models–when this kind of mixed number of control drums are used. The reason for
this is the specific issue relating to a potential drum shadow effect where the sum of the reactivities
from one drum and four drums are not identical to the reactivity worth when five drums are fully
rotated because of this shadowing. Addressing this issue is a part of the future work and will require
nonlinear and/or robust MPC implementations [16, 17, 18]. For now, we consider the coefficients
given in Table 5 to be reasonable.

The simulation results for the MIMO example are shown in Fig. 13. Again, the calculated power
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follows the desired reference power accurately. The error in power is less than 1%%A throughout
the overall time domain. It is confirmed that even an 80%%A /min ramp rate is achievable by using
5 drums. Fig. 13b shows the calculated control inputs for Group A and Group B. The results for
the temperatures and reactivity components are presented in Figs. 13c and 13d. It is observed that
Group A tends to move much more thanGroup B. Of course this was by design, since the weighting
factor for Group B is larger than it is for Group A. We further observe that the MPC controller
uses Group A extensively if the desired power and ramp rate are achievable by using just Group A.
However,Group B is also used whenGroup A reaches a constraint such that no additional reactivity
is available from Group A. This circumstance can be observed clearly between 53 min to 60 min.

This demonstrates that the MPC controller is capable of autonomous operation where the use of
one drum bank is preferred over others. Therefore, we conclude that MPC is a feasible and flexible
control algorithm for microreactor reactivity control capable of determining control solutions for
SIMO as well as MIMO problems. This overall flexibility should be quite useful to enable optimal
autonomous operations under a wide range of various core conditions.

4.2.3 Daily load following example
The simulated time of the two previous examples were 80 min and 90 min, respectively. This time
interval is relatively short so that the 135Xe dynamics may be neglected in these two simulations.
As depicted in Fig. 4, the half-life of 135I, which is the major parent nuclide of 135Xe, is 6.7 hours.
Because of 135Xe’s significant absorption cross section, the 135Xe build-up effect would become
important if the simulation time was longer, i.e. a day or a week.

If we are to consider longer periods of FPO, and modes of operation similar to peaking plants, then
we expect the 135Xe poisoning dynamics to be important physics to model in the controller. This
shall be the case we consider next to determine the importance of modeling 135Xe over longer time
horizons, and to demonstrate that the MPC control strategy is feasible under these conditions as
well.

The peaking power plant is a plant that generally runs only when there is a high demand for
electricity. Our assumed scenario includes being shutdown for 8 hours overnight and then operating
at full power for 16 hours during the day. We use a total simulated time of 5 days (or 120 hours). In
the power transition between 0 to 100%%A , a 20%%A /min of ramp rate is used. The MPC controller
is used for this simulation, and contains the MIMO model. Consequently, similar to the previous
MIMO example, two control inputs are used. We again make use of the grouping where Group A
controls one control drum, and Group B controls 4 drums. For the weights of the cost functions,
we assume a value 4 times larger for Group B than for Group A.

First, we demonstrate the case of the controller where the model used to predict the system behavior
ismissing the 135Xedynamics to assess the effect of importantmissing physics in ourmodel. In other
words, the MPC controller solves the optimization problem through the state-space representation
without 135Xe while the control inputs from the MPC controller are applied to the “actual” reactor
model which does have the 135Xe physics. The power scenario of daily load following example
and simulation results are shown in Fig. 14. As shown in Fig. 14a, there are considerable errors
in the power from the MPC controller without 135Xe. Immediately after the power transitions, the
maximum error is reached, which is approximately 3%%A . In this simulation, the MPC controller
considers all the reactivity feedback is driven by the TH feedback. In fact, only a part of reactivity
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(a) Power and error (b) Control inputs

(c) Temperature and density (d) Reactivity change
Figure 14. Simulation results for peaking power plant scenario with mismatch model

feedback is due to TH in this model, and the remainder is to 135Xe. As a result, the MPC controller
will underestimate the reactivity response of the reactor. This is illustrated in the results in Fig. 14d.

This underestimation of the reactivity results in the power errors observed in Fig. 14a. When the
reactor is power is ramped down, the controller does not rotate the drums in as far as they need
to be (compare Fig. 14b with Fig. 15b). The result is an overshoot of the power when ramping
down. Conversely, When ramping up in power, the controller undershoots the power by not rotating
the drums as far out as they need to be because the controller does not account for the additional
negative reactivity of the 135Xe.

The undershoot on power when ramping up results in the controller to continuously rotate the drums
outward. Approximately 10 hours after reaching the full power, the power error gets flipped, and it
reaches approximately +0.3%%A . This trend can be observed between 48 hours and 54 hours. In
this period, the number density of 135Xe is increasing from the decay of 135I, so the drums should be
rotated outward to decrease the imposed reactivity. The drums are rotated in the correct direction,
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(a) Power and error (b) Control inputs

(c) Temperature and density (d) Reactivity change
Figure 15. Simulation results for peaking power plant scenario

but the rotation rate is slower than it should be due to the absence of 135Xe dynamics in the MPC
controller. As a result, there is a slight overshoot of the power in this period. This demonstration
shows qualitatively how the controller can be expected to behave when physics such as the 135Xe
dynamics, are missing in the state-space model.

The simulation results for the same scenariowhere theMPCcontroller does have the 135Xedynamics
in the state-space model, are shown in Fig. 15. As may be observed in these results, the Holos
reactor with the MPC controller successfully follows the desired power scenario with much less
than 1%%A of power error. The results show that it is possible to follow the peaking power plant
scenario by using 5 control drums. We wish to note here that this simulation is designed to show
the capability to handle a MIMO problem using MPC. For actual operation, we recommended to
control the power using all control drums to reduce local power peaking because 135Xe can cause
spatial oscillations if the control drum effects are localized. While we have not investigated this in
detail yet, we expect that spatially radial 135Xe oscillations are not likely to occur given the small
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radial dimension of the core, and the relatively long mean free path of neutrons in graphite.

Fig. 15b shows that the drums should continuously rotate after reaching 0%%A or 100%%A to
compensate for the reactivity from 135Xe. Effectively, no steady-state condition is reached in this
mode of operation. The temperatures and number densities for the daily load following operation
are shown in Fig. 15c. Relative to the daily time-scale, the temperatures follow quickly to match
the power, while the 135I and 135Xe lag considerably from the power transitions. Due to the delayed
trends of 135I and 135Xe, it is important to have excess reactivity available in the control drums.
The reactivity changes due to the TH feedback, 135Xe, and control drums are shown in Fig. 15d.
Here we observe that the reactivity change from 135Xe is not as severe as the reactivity feedback
from the fuel and moderator temperatures. Although, there is still a few hundred pcm of reactivity
from 135Xe–which is non-trivial. This reactivity can be compensated by continuously moving the
drums even after the power goes equilibrium.

Generally, the 135Xe build-up makes it difficult to restart operation since 135Xe density increases
after shutdown. If there is no way to give enough positive reactivity to the reactor, it is not possible
to increase power until the amount of 135Xe decreases to a certain point through decay. This
phenomenon is well known, and is typically referred to as the 135Xe dead time. The 135Xe density
typically reaches the maximum value after a few hours following shutdown. In the case of the Holos
reactor, the elapsed time to reach peak 135Xe is about 3.7 hours. For the commercial Pressurized
Water Reactor (PWR) it is around 11 hours. This is due to the Holos reactor’s small size, and
considerably lower thermal power. Consequently, the 135Xe does not have as significant of an effect
on the reactor as it does in a PWR. The Holos reactor has a relatively small 135Xe worth which
is ∼1000 pcm at the full power [2]. The peak 135Xe density is about 10% higher than the 135Xe
density at the nominal full power condition. This amount of reactivity can be easily overcome with
the current control drum design. The numerical results in Fig. 15 also support this argument. In
other words, the Holos reactor does not have a significant 135Xe dead-time so it would be capable
of performing this type of load follow for most of its useful life. However, we have yet to quantify
this exactly.

5. COMPARATIVE STUDY OF CONTROL ALGORITHMS

So far in this work we have focused on the use of the MPC controller. As we noted earlier, there
are numerous control algorithms that may be used to control the Holos reactor drums. In this
section, other control algorithms are briefly described. Following this description we provide some
discussion and explanation as to why MPC is selected for Holos reactor control. We then present
numerical results of the various controllers for the same power maneuvers to further support our
preference for MPC.

5.1 Comparisons of Control Algorithms
5.1.1 Proportional-Integral-Derivative
PID is a control loop mechanism employing feedback that is widely used in industrial control
systems and a variety of other applications requiring continuously modulated control [19]. A PID
controller continuously calculates an error value and applies a correction based on proportional,
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integral, and derivative terms (denoted P, I, and D respectively). PID is easy to implement and it
does not require a complicated calculation. Because of the simplicity and generality, PID is used in
many applications. However, it is only suitable for SISO problems. Moreover, the accuracy of PID
is strongly dependent on the tuning of its parameters. Therefore, ensuring well tuned parameters
over a broad range of system conditions is often the problem that must be addressed when adopting
a PID controller.

5.1.2 Linear Quadratic Regulator
A Linear Quadratic Regulator (LQR) is also one of the well-known control methods that provides
optimally controlled feedback gains for a closed-loop system [20]. This enables high performance
of the system while maintaining its stability. In LQR, the system dynamics are described by a set
of linear differential equations, and the cost is described by a quadratic function. The feedback
control law is to minimize the quadratic cost-function. The multiple state variables and outputs
can be readily considered in the system matrices and cost-function. Therefore, the LQR method is
also capable of solving the MIMO problem. Another advantage is that the LQR algorithm reduces
the amount of work done by the control systems engineer to optimize the controller. However, the
tuned parameters of the controller are explicitly related to its accuracy and performance. Thus, if it
is not well tuned, it will not perform well. This again makes this kind of controller less desirable for
systems that might have a wide operational range that cannot be easily represented by the underlying
model. Lastly, the adoption of nonlinear constraints, such as saturation, are generally not easily
handled.

5.1.3 H∞
H-infinity (H∞) is another of the traditional control theories used in various industries [21]. An H∞
controller finds necessary and sufficient conditions for the existence of a state feedback controller
such that the closed-loop system corresponding to this controller is internally stable and satisfies a
prescribed H∞-norm constraint. Similar to the LQR, the H∞ technique has the advantage in that
it is applicable to a MIMO problem. The disadvantages of H∞ techniques include the level of
mathematical understanding needed to apply them successfully and the need for a reasonably good
model of the system to be controlled. The resulting controller is also only optimal with respect
to the prescribed cost function and does not necessarily represent the best controller. Like LQR,
applying nonlinear constraints is generally not well-handled in this method.

Table 6. Summary of control algorithms

PID LQR H∞ MPC

Accuracy Highly depends
on tuning

Depends on
tuning

Depends on
tuning

Depends on
tuning

Easy to tune? Difficult Easy Easy Easy
Able to handle constraints? Not general Not general Not general Yes
Able to handle MIMO? Difficult Yes Yes Yes

Calculation cost Cheap Expensive Expensive The most
expensive

Table 6 summarizes the pros and cons of each algorithm including MPC. In the optimization

NE/8887/2020-004-00
NURAM-2020-006-00

30



Point Kinetics Model Development
with Model Predictive Control

process, it is difficult to have a generally good solution for all cases because it is not clear how to
determine what the optimum is in general. The optimum solution (or system input) would be the
one that has theminimum error from the reference trajectory. However, the optimum solution would
be different depending on the system state and its application. Therefore, it is usually necessary
to use a tuning process in the control algorithms that considers an optimum over the full range of
expected operational conditions.

In all of the controllers considered, tuning parameters are required. This means that it is possible to
acquire similar levels of desired accuracy by using any controllers listed here, if tuning parameters
are well defined. However, the accuracy of PID is quite sensitive so that it is necessary to put more
effort to tune the PID controller’s parameters. In LQR, H∞, and MPC theories, cost functions are
defined in their own way using a mathematical plant model. Then the algorithm finds the optimum
solution to minimize their cost functions. Therefore, LQR, H∞, and MPC controllers are not as
highly sensitive to a plant model once the tuning parameter is well determined. Since PID does not
have a similar process, the control input is totally dependent on the tuning parameter. The tuning
parameter of PID should therefore be adjusted depending on the plant model. The PID can be also
be tuned without having to use linearized model, which is perhaps its one advantage. However,
nonlinear variants of the MPC controller do exist. Ultimately, this downside of PID makes it more
difficult to tune the controller to get a desired performance. Thus, we argue, it would not be practical
to use PID for Holos reactor control. In Section 5.2, this point is discussed more in the context of
the simulation results.

In addition to tuning, MPC has a distinct strength in terms of accuracy compared to LQR and H∞.
MPC has a preview capability such that MPC can be more accurate in particular cases–provided the
predictive model is accurate. As a result, MPC can easily incorporate future reference information
into the control problem so that it is able to improve controller performance. Other controllers
can also have a similar capability if a feed-forward algorithm is implemented into the system loop.
However, some additional steps are necessary to implement this.

Another strength of MPC is that it can readily accommodate constraints on the control input or
states. As described in Table 4, there are constraints due to physical limitations, and these control
inputs or states should not exceed constraints. In this respect, MPC may be implemented with
certain guarantees that would be applicable to safety requirements and representative of the actual
physical asset. Essentially, in MPC the constraint is integrated into the evaluation of the cost
function. In contrast, this is not the case for PID, LQR, and H∞. For these controllers, it is
necessary to adjust the tuning parameters so as not to exceed any constraints. Requiring the tuning
parameters of these controllers to simultaneously ensure certain constraints are met, and optimal
operation occurs, makes the overall tuning process quite a bit more challenging. Therefore, some
degree of expertise is required–especially as the number of constraints grows. As an alternative
way, if the control input is constrained in a system, then it is possible to force the control input to
exist within the constraint when it should not be. When this occurs, it is called input saturation. It
cannot be guaranteed that the system with the controller is stable and optimal when input saturation
occurs [14, 22].

The controller for the Holos reactor should be capable of handling the MIMO problem. In doing
so, greater flexibility of operation is possible. This enables both redundancy in the control system
and the ability to consider more constraints. In Section 4.2, the MIMO problem is demonstrated
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with the MPC controller. As mentioned previously, the LQR and H∞ are also designed to solve
the MIMO problem while considering the interactions between the inputs and outputs. Meaning,
during the set up of the cost function and evaluation of the optimal solution, these controllers take
into account all the interactions between system variables. A PID controller on the other hand,
is not appropriate to use in a MIMO system because the multiple control loops would operate
independently of each other. Therefore, again, the PID controller is not a good choice for our
application.

Our last metric in the comparison of various controllers is the computational cost. In terms of
the calculation cost, PID is the cheapest since it does not require to have a linear system and cost
function minimization process. The PID controller only needs to know the errors of the output
compared to the reference, and to be able to compute derivatives and integrals from this signal.
LQR, H∞, and MPC all must solve an optimization problem with a linear system and model-
based cost function. Therefore, these three controllers are more complicated and computationally
expensive than the PID controller. Moreover, MPC solves the finite time horizon optimization
problem repeatedly for every time step in the time horizon. Meanwhile LQR and H∞ only solve
the optimization problem once for the whole time horizon (or infinite horizon). Therefore, MPC is
the most expensive. The run times for the numerical results of the various controllers compared in
the next section (Section 5.2 are summarized in Table 7, and support these conclusions.

In summary, MPC has many benefits against the other conventional control methods. MPC is
accurate if the tuning parameters are well determined. Tuning the controller is not difficult, and
the parameter is not highly sensitive to the plant model. Therefore, it is easy to get a desired
accuracy using an MPC controller. MPC can also handle constrained MIMO problems easily.
Because of these many advantages, we choose MPC for Holos reactor control. Of course, there is
the downside of MPC that it requires a relatively larger amount of computer resources. In practice,
the elapsed time for solving one scenario in this report is a few seconds on a single-core with
an unoptimized implementation. Therefore, we may justify the relatively higher computational
resource requirements because the calculation of the maneuvers for several hours of operation is
still accomplished in seconds.

5.2 Numerical Results
In this section, the sensitivity of the controllers to the plant model is evaluated. The power scenario
described in the MIMO example (Section 4.2) is used in this test. As discussed in Section 5, only
MPC can handle a constrained problem. For a consistent comparison, the constraint is not used
for all controllers because the constraint usually degrades the overall accuracy. PID, LQR, H∞,
and MPC are tuned based on the system using all control drums for power maneuvering. This case
corresponds to Fig. 16a. All controllers show great accuracy with less than 1%%A deviation from
the desired power. Therefore, it is confirmed that all the controllers tested in this work can have
sufficient accuracy when the controller is tuned properly.

To test the controllers ability to handle differences in the plant model, the number of control drums
is changed to four, two, and one. Recall that all the controllers are tuned to 8 drums. As shown in
Figs. 16b to 16d, the PID controller shows significant oscillation in power output. This means that
the PID tuning parameters should be changed depending on the reactor model as we conjectured.
In practice, the reactor model may change or evolve for many different reasons (e.g. change in the
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(a) Control using eight drums (b) Control using four drums

(c) Control using two drums (d) Control using one drum
Figure 16. Comparison results for using different control algorithms

number of drums used for control, change in the initial power, changes in kinetics parameters, and
TH parameters due to reactor condition change). Therefore, the controller should accommodate
a varying reactor model, and use of a PID controller does not guarantee an accurate result. In
contrast, LQR, H∞, and MPC show consistently accurate results for all four tests. Therefore, the
LQR and H∞ controllers may be considered feasible, however, also recall that constraints were not
used in these simulations and that a comparison of LQR, H∞, and MPC controllers with constraints
is warranted for a more thorough assessment.

Table 7 shows the elapsed time to simulate 4000 seconds of operation with 10ms time steps. As
discussed in Section 5, PID shows the fastest results while MPC shows the slowest result. However,
the elapsed time is just a few seconds. The amount of calculation time is readily acceptable with
today’s computing resources, and therefore MPC meets the real-time requirement for a controller.
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Table 7. Comparison of elapsed time

Control Algorithm Elapsed time (sec)
PID 0.09
LQR 0.16
H∞ 0.17
MPC 1.67

6. CONCLUSIONS AND FUTUREWORK

6.1 Conclusions
In this report, the state-space representation of the point kinetics and three-temperature TH model
was developed for use with an MPC controller to autonomously control the Holos reactor for FPO.
The control drums were used in the models to impose reactivity so that the model with the MPC
controller was able to follow the prescribed power scenarios. To demonstrate FPO, various ranges
of ramp rates and power envelopes were tested. It turns out that the reactor with the MPC controller
successfully followed the desired power scenario. It is also confirmed that the reactor can be
operated with the fastest ramp rate required (i.e. 20%%A /min), and that the controller can perform
power maneuvers well beyond these rates.

We also demonstrated the peaking power plant scenario, which required the incorporation of the
135Xe dynamics into the state-space representation. Under these operational conditions, it was
also confirmed that the Holos reactor could operate in this manner. This test demonstrates the
feasibility of the Holos reactor to be utilized in multiple modes of FPO. It further demonstrated the
ability of the controller to still provide control of the reactor even with important missing physics
in the MPC model. In this case, the controller behaves conservatively, undershooting the desired
power when ramping up, and overshooting the power when ramping down. The magnitude of
the under/over-shoot of the power was approximately 3%%A , which we consider to be significant.
With the “correct” model (the model with 135Xe), the MPC controller meets the desired power well
within 1% error.

Finally, we presented a comparison of several control algorithms that have been applied previously in
nuclear reactor problems. In this comparison, we summarized the basic strengths and weaknesses
of each type of controller. Then results from numerical calculations for different scenarios to
highlight the relative sensitivity of each type of controller to differences in the representation of the
reactor system and the model were presented and discussed. In this comparison, we show that MPC
is the most computationally expensive control method, and that all methods can prescribe accurate
control solutions for FPO provided they are sufficiently tuned. The comparison also revealed that
PID performs considerably more poorly than the other controllers when the system deviates from
that used to tune the controller. From this comparison, overall we recommend the MPC controller
as its computational cost is still well below the real-time calculation requirement, and offers several
advantages such as the inclusion of constraints, nonlinear and time-varying representations, and
robustness (i.e. the control performs well in the presence of noise) that we have not yet explored in
detail.

In addition to these numerical demonstrations, we also studied the stability properties of the reactor
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through the formalisms of the Bode diagram and root locus method. Both analytical techniques
follow from the same state-space representation that can be used in the MPC controller. Thus, there
inherent the same assumptions and limitations. In the Bode diagram, the reactor was observed to
be insensitive to high-frequency reactivity oscillations and to respond in a manner similar to the
zero-power reactor. The Bode diagram also revealed that the Holos reactor is less sensitive to low
frequency reactivity oscillations (i.e. the presence of feedback reduces the gain). The feedback
was also shown to shift the reactivity phase from positive to negative. The root locus method
of evaluating the linear stability of the system showed no poles having a positive real component
meaning that the physical system is linearly stable. Lastly, we compared time domain simulations
of the linearized state-space model and the nonlinear model. This revealed a non-trivial differences
in the predicted peak power following step reactivity insertions when the reactivity insertion was
sufficiently large–in this case sufficiently large means as little as ∼60pcm depending on the initial
power level.

6.2 Future Work
From the work documented in this report, several opportunities for future studies were identified
that will complement what was learned. Some of the shorter term activities that are recommended
to enhance the present results are:

• Due to time constraints we were not able to perform the analytic evaluation of the state-space
model in Sections 3.1 and 3.2 with the 135Xe dynamics. For consistency and completeness,
we wish to study this to ensure it does not significantly affect the present results.

• Another important metric in evaluating a controller is the stability margin. Therefore,
calculation of the stability margin from the Bode diagram for the block diagram in Fig. 5
with and without the controller is desired to further assess the system’s stability with the
controller.

• The control variable assumed here was the drum rotation velocity, however, other choices
exist such as the control drum position. Therefore, we propose comparing control of drum
the velocity versus the drum position as a future activity.

In addition to these activities, there are several logical extensions of the work here that were not
previously considered in the project planning:

• From the comparison between the linear and nonlinear models in Section 3.3, we confirmed
that the nonlinearity of the plant model is important when a large perturbation is introduced
to the reactor. From this work, it is recommended to use adaptive MPC or nonlinear MPC to
minimize the error from linearization–or at the very least better quantify it.

• It was also demonstrated that MPC can handle a MIMO problem and can position drums
differently from one another. This capability would be useful, but it is recommended to
develop analytic models for control drum worth with any combination of drums for better
accuracy. To deal with the analytic models, it is recommended that adaptiveMPC be explored
as it is well suited for this purpose.

• The core represents only one part of the microreactor system. Therefore, we wish to extend
the system dynamics model studied here to include components from the power conversion
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system.

• Themicroreactorwill have additional constraints during operation for thermal andmechanical
limits of the materials and other components, and, in particular, the turbine. Therefore, the
ability of theMPC controller to accommodate these additional constraints should be assessed.

• In the analysis performed here we have presumed we have a high-quality signal for the power
without noting the details of how this signal would be provided. In reality this signal will
contain some noise. Therefore, we propose to also extend the MPC controller to incorporate
Kalman filters as the traditional mechanism for enabling robust MPC [18].

Beyond the short term activities to solidify the work presented here, and the new activities to build
on this work, there are the programmatic tasks already identified within the project. These activities
include:

• the evaluation of higher fidelity transient simulations using the controller developed here;

• comparison of model fidelity on the accuracy of the controller;

• comparison of the MPC controller to the passive reactivity control mechanism.

There also exists some possible synergy across projects in the microreactor program. The ca-
pabilities developed here could be used to provide an extended capability of the TRANSFORM
library [23] to model system dynamics with controllers. Another possible synergy would be
to supply this control framework for use in the Microreactor AGile Non-nuclear Experimental
Testbed (MAGNET) facility [24] to provide control of the heaters during experiments. The coeffi-
cients used here could be easily modified to enable MAGNET to explore the dynamics of several
HTGR designs and collect experimental data that is more representative of a particular reactor
design.
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