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EXECUTIVE SUMMARY

In this report we present the methodology and sensitivities of a novel simulation capability that
couples state-of-the-art control algorithms with high-fidelity reactor physics simulation tools.

The summary of the contributions of this report are:

• Development of a novel simulation capability that combines state-of-the-art control algo-
rithms with high-fidelity reactor physics simulations

• 3D multiphysics transient load follow simulations of an High-Temperature Gas-Cooled Re-
actor (HTGR) microreactor (Fig. EC.1)

• Detailed sensitivity analysis of parameters affecting controller performance

Figure EC.1. 3D microreactor load-follow simulation results

This report provides a review our representative HTGR-like microreactor, and previously developed
Model Predictive Control (MPC) based autonomous control algorithm for the reactivity control
system. We then give an overview of the high-fidelity simulation techniques and the developments
necessary to perform load-follow transient simulations. A detailed description of the reduced
order reactor model and corresponding state-space model for the controller then follows. The MPC
formulation and closed loop controller structure is described where adaptive MPC is used to capture
the nonlinear effects inherent in the point reactor model, and observer is developed to enable the
coupling between the controller and high-fidelity simulation tool. An “off the shelf” optimization
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library for Operator Splitting solver for Quadratic Program (OSQP) is used to solve the control
optimization problem.

Through several numerical experiments, we observe that the MPC and point reactor state-space
model provide excellent control of the reactivity control system where tracking errors between
the core power and set point are within 0.234%, with control inputs remaining within constraints.
Transient load-follow results from a 3D high-fidelity multiphysics reactor simulation coupled with
the MPC controller to calculate rod position are shown in Fig. EC.1.

Extensive sensitivity tests are also performed to gain insights into the performance of the controller
in terms of some of its tuning parameters, and accuracy of key reactor physics quantities needed
in the state-space model. Overall, the sensitivities of the parameters evaluated revealed that the
controller is quite robust. Most parameters would need to differ by more than an order of magnitude
to significantly degrade the controller performance. The two largest sensitivities identified are the
accuracy of the constraints applied to the controller, and accuracy of the control drum worth curves.
A reduction of the constraints to 10% of their nominal value increased the maximum tracking error
to 8%, while having control drum reactivity worths off by ±60% demonstrated the controller can
become saturated and provide highly oscillatory control inputs (although it was still able to provide
an accurate control solution).

Typical technical specifications for zero power physics testing and measurement of reactivity worth
require significantly tighter agreement than 60% between the calculated design values and measured
values. Further, a detailed understanding of reactivity control system drive constraints is necessary
for the final safety analysis report to satisfy licensing requirements. Therefore, we conclude that
current regulatory procedures for the design and operation of reactors should ensure sufficient
performance of an MPC controller (excluding risks due to failure modes of the controller which is
beyond the scope of this report).

We also include as an appendix a draft of a journal article we plan to submit based on the work
documented in this report.
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1. INTRODUCTION

This project aims to characterize the dynamic behavior of High-Temperature Gas-Cooled Reactor
(HTGR) like specialized purpose reactors (e.g., microreactors) and examine the feasibility of
component design for passive system control. Additionally, we consider traditional control systems
as a point of comparison. The focus of this report within the overall project is to develop and
demonstrate the integration of state-of-the-art control algorithms with high-fidelity simulation
tools for the analysis of load follow operational transients. We pursue this objective as it represents
a novel capability for high-fidelity simulation tools, and provides some value to analysts and
designers in assessing relationships between instrumentation and control systems and the reactor
design.

In prior milestones of this project and related work [3, 4], we explored the use of Model Predictive
Control (MPC), to evaluate the feasibility of the reactor design in terms of its controllability through
the usual reactivity control systems. However, in this previous work we employed simplified point
dynamic models due to an absence of physical plant data and high-fidelity codes capable of
representing the dynamic behavior of microreactors effectively. While point reactor dynamics
models can deliver acceptable results once they are properly established, they rely on a significant
amount of approximations in capturing reactor behavior.

Therefore, in this work, we utilize the high-fidelity reactor analysis code PROTEUS, developed by
Argonne National Laboratory (ANL), as a stand-in for a physical reference plant model to couple
to the previously developed control algorithms. With the application of this high-fidelity reactor
analysis code, we anticipate depicting more realistic reactor behavior, and, thus, a better assessment
of the controller’s performance.

1.1 Background of Holos Quad Reactor
As a specific use case for an HTGR, we use the reactor design under development by HolosGen.
The Holos-Quad design is a scaled-down HTGR with the core being composed of four Subcritical
Power Modules (SPM). Each SPM is effectively an independent closed-loop Brayton cycle power

Figure 1. Full-scale Holos-Quad (Gen 2+) subcritical power modules [1, 2]
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conversion unit with a nuclear heat source in a tube-shell heat exchanger configuration. This design
effectively eliminates the balance of the plant. In earlier designs of this reactor, the four SPMs were
configurable so that they will create a critical reactor. An illustration of the Holos-Quad SPMs is
shown in Fig. 1.

The design has continued to evolve under the Department of Energy Advanced Research Project
Agency-Energy (ARPA-E) MEITNER program. A new, proprietary design was developed by the
ARPA-E Resource team at ANL. The new design was reported in [1]. The updated core design is
the focus of the calculations and analysis of this report.

1.2 Organization of this Report
The remainder of this report is structured as follows: Firstly, we first present the approximated core
model used in our simulations, that is based on the Holos Quad reactor. Secondly, we outline the
methodology used to represent the MPC plant model using PROTEUS. Subsequently, we introduce
the methodology and the reduced-order model used in the MPC controller. In the numerical
results section, we assess the performance of the MPC controller and present an extensive range of
sensitivity tests to verify this code system. Finally, we discuss our numerical results and provide
conclusions to this report.

2. HTGR MODEL

This milestone aims to develop and apply the MPC algorithm for HTGR-like microreactors. The
Holos-Quad microreactor is one of the proper candidates for this purpose. The microreactor is a
Gen-IV microreactor proposed by HolosGen LLC [2]. The radial layout of the Holos-Quad (Gen
2+) is presented in Fig. 2a [1]. The design is an HTGR type, but the reactor has distinctive features
such as the SPM and control drums. The rotating control drums located in the radial reflector
region are used for load-follow operation. We define unit-cell of the reactor as a 3x3 groups pins
as shown in Fig. 2b. In each unit-cell, there are 5 fuel compacts and 3 helium coolant channels,
and 1 burnable absorber.

Our initial intent with this milestone was to simulate the Holos-Quad microreactor with the high-

(a) Radial layout (b) Unit-cell

Figure 2. Holos-Quad (Gen 2+) model [1]
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fidelity reactor analysis code PROTEUS [5]. However, a separate project to develop PROTEUS
for Holos-Quad analysis is ongoing and some features were not yet ready for use in the context of
this work. Additionally, the full core Holos-Quad model in PROTEUS still presents challenges for
computational resources. Therefore, we decided to modify the Holos-Quad model to be smaller and
simpler as the primary purpose of this work is to establish, demonstrate, and assess a high-fidelity
transient simulation capability integrated with MPC for microreactor load-follow analysis.

Figs. 3a and 3b present the simplified microreactor model and its unit-cell model, respectively.
Table 1 compares some design parameters of the Holos-Quad and the simplified microreactor.
The simplified microreactor makes use of quarter symmetry in the geometry, and assumes quarter
symmetry in the drum operation. The simplified model reduces the core size compared with the
Holos-Quad while preserving the linear power density. The control drum has 90 deg of absorber
material. In the quarter core, there are two control drums instead of 5, but only one drum is
manipulated in the load follow scenarios analyzed in this work to further simplify the problem. In
other words, the absorber of one control drum is toward the core peripheral region while the other
control drum may rotate to reach a desired power level.

(a) Radial layout (b) Unit-cell

Figure 3. Simplified microreactor model

Table 1. Comparison between Holos-Quad and simplified model

Parameter Holos-Quad
(Gen 2+)

Simplified
Microreactor

Power (MW) 22.00 2.42
# of fuel compacts 2300 480

Active core height (cm) 380 200
Power density (W/m) 2517 2517
# of coolant channels 1528 288

Core coolant mass flow rate (g/s) 21896 3085
Inlet temperature (K) 863 863

Estimated outlet temperature (K) 1123 1014
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3. METHODOLOGY AND TOOL

This section describes the methodologies and computational tools to simulate the load-follow of
the simplified microreactor.

3.1 High-Fidelity Model with PROTEUS
3.1.1 Neutronics solver
The PROTEUS code [6] developed by ANL is a high-fidelity neutron transport code based on
unstructured finite element meshes that allow users to model complex and unconventional geometry
reactor problems like microreactors and Gen-IV reactors. PROTEUS has several methods for
performing teh transport calculation. In this work, the MOCEX solver is used which uses 2D MOC
radially and the discontinuous Galerkin finite element method axially with extruded geometry [6].
The transient fixed source problem solver makes use of the isotropic approximation of the angular
flux time derivative–which is quite common in thermal reactor transient analysis. The transport
solution is accelerated by the consistent Coarse Mesh Finite Difference (CMFD) [7]. A 6 energy
group cross section library in the ISOTXS format was generated by solving the whole-core Holos-
Quad reactor with the Serpent Monte Carlo code for individual materials in the reactor. The cross
sections are parameterized as function of temperature between 600 K and 1800 K. While this may
not provide realistic predictions, of the actual core cross sections, it is more than sufficient for the
capability demonstrated in this report, and subsequent sensitivity analysis.

3.1.2 Thermal Hydraulics/Fluids feedback solver for HTGR
It is necessary to consider the Thermal Hydraulics/Fluids (TH) feedback properly for load-follow
simulations. There has been other research coupling PROTEUS and SAM using the MOOSE-
based wrapper for the molten salt reactor [8]. Since the coupling of PROTEUS and SAM requires
significant efforts and computational time, a Simplified Thermal Hydraulics/Fluids (STH) solver
for the HTGR was implemented in this work. The STH solver assumes four regions including
fuel compact/graphite moderator/cladding/helium coolant. The coolant channels in each unit cell
Figs. 2b and 3b are merged into one coolant channel. The STH solver also assumes the single-phase
flow in an axial flow channel under constant pressure. The governing equation for one coolant
channel is

𝜕𝜌

𝜕𝑡
+ 𝜕𝜌𝑣
𝜕𝑧

= 0 , (1)

𝜕𝜌ℎ

𝜕𝑡
+ 𝜕𝜌ℎ𝑣

𝜕𝑧
= 𝑞 𝑓

𝑛 𝑓

𝑛𝑐
+ 𝑞𝑐 = 𝑞 , (2)

where 𝜌 is the density; 𝑣 is the velocity; 𝑡 is the time; 𝑧 is the axial coordinate; ℎ is the enthalpy.
𝑞 𝑓 is the power density per fuel compact; 𝑛 𝑓 is the number of fuel compact per unit cell; 𝑛𝑐 is the
number of coolant channel per unit cell; 𝑞𝑐 is the heat deposited in the coolant; and 𝑞 is the total
heat source.

The fuel compact, moderator, and cladding in each unit cell are individually homogenized and
transformed to an equivalent cylindrical geometry such as Fig. 4.
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Figure 4. STH solver cylindrical geometry

The STH solver solves the radial heat transfer equation in the 1D cylindrical coordinate:

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
=
𝜕

𝜕𝑥
𝑘 (𝑇) 𝜕𝑇

𝜕𝑥
+ 𝑞 , (3)

where 𝑐𝑝 is the heat capacity; 𝑇 is the temperature; and 𝑘 is the thermal conductivity. The boundary
condition is applied at the cladding wall as follows:

𝑞′′ = −𝑘 𝜕𝑇
𝜕𝑥

����
𝑤

= ℎ𝑤 (𝑇𝑤 − 𝑇𝑏) , (4)

where 𝑞′′ is the heat flux; ℎ𝑤 is the heat transfer coefficient at the surface; 𝑇𝑤 is the wall temperature;
and 𝑇𝑏 is the coolant temperature. Eq. (3) is defined in each region of the geometry so that a system
of equations is made for the geometry. The system of equations is solved with the finite difference
method. Since the unit cell geometry is approximated to the cylindrical coordinate, the accuracy
may be degraded. However, the thermal conductivity and heat transfer coefficients can be chosen
such that they preserve the desired temperature of each region at the steady-state condition for some
more rigorous method. The desired temperature may come from a solver using a higher-order
method as the finite element.

3.1.3 Control drum modeling
The microreactor has multiple control drums and the power level is controlled by the control drums
that may rotate continuously in space while the mesh is discrete. This situation can result in
significant numerical error effects as the material discontinuity of the absorber moves through the
mesh and becomes aligned or homogenized. A possible solution to this is to remesh the problem
as the drum moves, however this is non-trivial to accomplish, and often not necessary. It is much
simpler to enforce a unified mesh between the previous and current time steps. Doing so greatly
simplifies the treatment of the flux or source from the previous time step in solving the transient
fixed source equation. As a result, to correctly model the drums, an effective material or cross
section should be calculated for the mesh which is partially spanned by the absorber material.
Simply homogenizing it based on volume fraction may lead to significant error and cause the
so-called control rod or drum cusping issue. To minimize the drum cusping issue, the control drum
is divided into 96 angular sectors. However, this mesh discretization was still not sufficient. As
shown in the Fig. 5, the volume weighting method causes a cusping effect in the eigenvalue as a
function of the control drum rotation. The drum cusping behavior does not represent a realistic
situation and it makes the reactivity control difficult since the drum differential worth does not have
a monotonic slope.
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(a) Eigenvalue from 150 to 270 deg (b) Zoomed in

Figure 5. Eigenvalue as a function of control drum rotation with different methods

(a) Eigenvalue vs. volume fraction of ab-
sorber

(b) Eigenvalue vs. adjusted volume fraction
of absorber

(c) Decusping function

Figure 6. Control drum decusping function

To reduce the cusping effect, a homogenization correction factor has been generated and used in
this work. The way to generate the correction factor is similar to Pressurized Water Reactor (PWR)
applications [9]. First, 15 eigenvalue calculations were performed with different lengths of control
drum absorbers from 90 deg to 93.75 deg. In this calculation, the starting point of the absorber
was fixed and only the length was changed. The volume weighting homogenization was used when
calculating cross section of the mesh which is partially spanned by the absorber. Recall that the
control drum geometry has 96 azimuthally divided pieces so each segment has 3.75 deg. Fig. 6a
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shows the eigenvalue as a function of volume fraction. In the figure, 0.0 of volume fraction means
the length of absorber is 90 deg while 1.0 means the length of absorber is 93.75 deg. Ideally, the
eigenvalue should follow the linear shape. Based on the assumption that the eigenvalue should
vary linearly, the adjusted volume fractions were calculated as Fig. 6b. Additional eigenvalue
calculations were not necessary to calculate the adjust volume fraction. Instead, the x-axis was
shifted so that eigenvalues can be located on the ideal line. Fig. 6c shows the adjust volume fraction
as a function of the volume fraction of absorber. This function is used to calculate the effective
volume fraction for homogenization of the drum absorber “tip” when the absorber material partially
spans a mesh. The function is used for both sides of the absorber arc. With this drum decusping
function, the eigenvalue changes smoothly as shown in Fig. 5. This approach has limitations in that
the function may not cover other cases than this problem or changes in the control drum design,
however it is sufficient for our simulation of a single design here. A more general method may
need additional research but the decusping function made in this work behaves well (e.g. agrees
with non-homogenized case and provides monotonic reactivity worth curve) for the simplified
microreactor.

3.2 Controller
This section describes the methodology of the controller. In this work, the MPC is used for
the controller. Since the MPC relies on the mathematical model, it is necessary to set up rea-
sonable models. Section 3.2.1 describes reduced order models for neutronics and TH feedback.
Section 3.2.2 describe how to define the state-space equation from the reduced order models.
Section 3.2.3 describes the theroy of MPC.

3.2.1 Reduced order models
The neutron kinetics is represented by the point kinetics equations with normalized forms:

𝑑𝑛̄(𝑡)
𝑑𝑡

=
𝜌(𝑡) − 𝛽𝑡

Λ
𝑛̄(𝑡) +

∑6
𝑖=1 𝜆𝑖𝑐𝑖 (𝑡)

Λ
, (5)

𝑑𝑐𝑖 (𝑡)
𝑑𝑡

= 𝜆𝑖𝑛̄(𝑡) − 𝜆𝑖𝑐𝑖 (𝑡) , 𝑖 = 1 . . . 6 , (6)

where 𝑛̄(𝑡) is the normalized neutron density at time 𝑡; 𝜌(𝑡) is the reactivity; 𝛽𝑡 is the total delayed
neutron fraction; Λ is the neutron generation time; 𝜆𝑖 is the delayed neutron time constant for 𝑖-th
group; and 𝑐𝑖 (𝑡) is the normalized precursor density for 𝑖-th group.

Since the plant model represented by PROTEUS has the TH feedback, it is better to have the lumped
TH feedback model for a reduced order model for a more accurate MPC prediction. The lumped
TH model has three temperatures for the fuel, graphite moderator, and helium coolant:

𝑚 𝑓 𝑐𝑝, 𝑓
𝑑𝑇 𝑓 (𝑡)
𝑑𝑡

= 𝑞 𝑓 𝑃𝑟 𝑛̄(𝑡) − 𝐾 𝑓→𝑚

(
𝑇 𝑓 (𝑡) − 𝑇𝑚 (𝑡)

)
, (7)

𝑚𝑚𝑐𝑝,𝑚
𝑑𝑇𝑚 (𝑡)
𝑑𝑡

= (1 − 𝑞 𝑓 )𝑃𝑟 𝑛̄(𝑡) + 𝐾 𝑓→𝑚

(
𝑇 𝑓 (𝑡) − 𝑇𝑚 (𝑡)

)
− 𝐾𝑚→𝑐 (𝑇𝑚 (𝑡) − 𝑇𝑐 (𝑡)) , (8)

𝑚𝑐𝑐𝑝,𝑐
𝑑𝑇𝑐 (𝑡)
𝑑𝑡

= 𝐾𝑚→𝑐 (𝑇𝑚 (𝑡) − 𝑇𝑐 (𝑡)) − 𝐾𝑐 (𝑇𝑐 (𝑡) − 𝑇𝑖𝑛) , (9)

7
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where subscripts 𝑓 , 𝑚, and 𝑐 denote the fuel, moderator, and coolant, respectively; 𝑚𝑥 is the mass
of material 𝑥; 𝑐𝑝,𝑥 is the heat capacity; 𝑇𝑥 (𝑡) is the temperature; 𝑞 𝑓 is the fraction of heat generated
from fuel; 𝑃𝑟 is the rated power; 𝐾𝑥→𝑦 is the heat transfer coefficient from material 𝑥 to 𝑦; and 𝑇𝑖𝑛
is the inlet coolant temperature.

The rotation of the control drum is also one of the state variables. The following is the equation for
the control drum:

𝑑𝐷1(𝑡)
𝑑𝑡

= 𝑉1(𝑡) , (10)

where 𝐷1(𝑡) is the position of control drum; and 𝑉1(𝑡) is the velocity of the drum. The controller
determines the velocity.

The reactivity model has the reactivity feedback from temperature, and the reactivity change from
control drum:

𝜌(𝑡) = 𝜌𝑏 + 𝛼 𝑓 (𝑡)𝑇 𝑓 (𝑡) + 𝛼𝑚 (𝑡)𝑇𝑚 (𝑡) + 𝛼𝑐 (𝑡)𝑇𝑐 (𝑡) +𝑊1(𝑡)𝐷1(𝑡) , (11)

where 𝜌𝑏 is the base reactivity; 𝛼𝑥 (𝑡) is the temperature coefficient of the material 𝑥; and 𝑊1(𝑡) is
the differential reactivity worth of the control drum.

The values of the coefficients of these equations are given later in Section 4 for the specific
Holos-like mini-core model described in Section 2.

These equations for the reduced order models can be written in a system of equations as follows:

¤x = f (x(𝑡), u(𝑡)) , (12)

where x(𝑡) and u(𝑡) are the state vector and input vector, respectively. x(𝑡) contains the state
variables introduced above, and it is defined as follows:

x(𝑡) =
[
𝑥1 . . . 𝑥𝑁𝑥

]𝑇
=
[
𝑛̄(𝑡) 𝑐1(𝑡) . . . 𝑐6(𝑡) 𝑇 𝑓 (𝑡) 𝑇𝑚 (𝑡) 𝑇𝑐 (𝑡) 𝐷1(𝑡)

]𝑇
,

(13)

where 𝑁𝑥 is the number of state variables.

For simplicity, we assume a single input case for the system therefore 𝑁𝑢 is 1 here. With this
assumption u(𝑡) is

u(𝑡) =
[
𝑢1 . . . 𝑢𝑁𝑢

]𝑇
=
[
𝑉1(𝑡)

]𝑇
. (14)

The system of equations, f, is defined as follows:

8



Transient PROTEUS Simulations with MPC

f (x(𝑡), u(𝑡)) =
[
𝑓1 . . . 𝑓𝑁𝑥

]𝑇
=
[
𝑓𝑛̄ 𝑓𝑐1 . . . 𝑓𝑐6 𝑓𝑇 𝑓

𝑓𝑇𝑚 𝑓𝑇𝑐 𝑓𝐷1

]𝑇
=

[
𝑑𝑛̄(𝑡)
𝑑𝑡

𝑑𝑐1 (𝑡)
𝑑𝑡

. . .
𝑑𝑐6 (𝑡)
𝑑𝑡

𝑑𝑇 𝑓 (𝑡)
𝑑𝑡

𝑑𝑇𝑚 (𝑡)
𝑑𝑡

𝑑𝑇𝑐 (𝑡)
𝑑𝑡

𝑑𝐷1 (𝑡)
𝑑𝑡

]𝑇 . (15)

This form may be helpful for the linearization of the equations.

3.2.2 State-space representation
State space representation is a mathematical model of a physical system expressed as a function of
input, output, and state variables related by first-order differential equations or difference equations.
All system variables may be represented by a linear combination of the state variable and system
inputs by the ordinary differential equations.

It is useful to define the state-space model based on the linearization of the nonlinear equations.
The state-space model is used in the control theory; typically to make future predictions about the
plant state. The state-space model is defined as follows:

¤x𝑠 (𝑡) = A𝑠x𝑠 (𝑡) + B𝑠u𝑠 (𝑡)
y𝑠 (𝑡) = C𝑠x𝑠 (𝑡) ,

(16)

where A𝑠 is the system matrix with dimensions 𝑁𝑥 × 𝑁𝑥; B𝑠 is the input matrix with dimensions
𝑁𝑥 × 𝑁𝑢; and C𝑠 is the output matrix with dimensions 𝑁𝑦 × 𝑁𝑥 . x𝑠 (𝑡), u𝑠 (𝑡), and y𝑠 (𝑡) are the
state vector, input vector, and output vector of state-space model, respectively. The column vectors,
x𝑠 (𝑡), u𝑠 (𝑡), and y𝑠 (𝑡) have length 𝑁𝑥 , 𝑁𝑢, and 𝑁𝑦, respectively.

In the state-space representation, it is inherently assumed that x𝑠 (𝑡), u𝑠 (𝑡), and y𝑠 (𝑡) are the
differences from nominal condition where the linearization is done. In other words, the vectors are
defined as follow:

x𝑠 (𝑡) = x(𝑡) − x(𝑡𝑛)
u𝑠 (𝑡) = u(𝑡) − u(𝑡𝑛)
y𝑠 (𝑡) = y(𝑡) − y(𝑡𝑛) ,

(17)

where 𝑡𝑛 is the time at the nominal condition where the linearization is done.

An arbitrary function 𝑔(𝑧) can be linearly approximated at a nominal state 𝑧𝑛 as follows:

𝑔(𝑧) − 𝑔(𝑧𝑛) ≈
𝑑𝑔(𝑧𝑛)
𝑑𝑧

(𝑧 − 𝑧𝑛) . (18)

The accuracy of this approximation depends primarily on the assumption that 𝑧 is “close enough”
to 𝑧𝑛 such that 𝑔(𝑧) behaves linearly.

9
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Similarly, Eq. (12) is approximated at nominal time 𝑡𝑛 as follows:

¤x(𝑡) − ¤x(𝑡𝑛) = A𝑠 (x(𝑡) − x(𝑡𝑛)) + B𝑠 (u(𝑡) − u(𝑡𝑛)) , (19)

where

A𝑠 =
𝜕f
𝜕x

����
𝑡=𝑡𝑛

=

[
𝜕f
𝜕𝑥1

. . . 𝜕f
𝜕𝑥𝑁𝑥

] ���
𝑡=𝑡𝑛

=


𝜕 𝑓1
𝜕𝑥1

. . .
𝜕 𝑓1
𝜕𝑥𝑁𝑥

...
. . .

...
𝜕 𝑓𝑁𝑥

𝜕𝑥1
. . .

𝜕 𝑓𝑁𝑥

𝜕𝑥𝑁𝑥


��������
𝑡=𝑡𝑛

, (20)

B𝑠 =
𝜕f
𝜕u

����
𝑡=𝑡𝑛

=

[
𝜕f
𝜕𝑢1

. . . 𝜕f
𝜕𝑢𝑁𝑢

] ���
𝑡=𝑡𝑛

=


𝜕 𝑓1
𝜕𝑢1

. . .
𝜕 𝑓1
𝜕𝑢𝑁𝑢

...
. . .

...
𝜕 𝑓𝑁𝑥

𝜕𝑢1
. . .

𝜕 𝑓𝑁𝑥

𝜕𝑢𝑁𝑢


��������
𝑡=𝑡𝑛

. (21)

Eq. (19) is the same form as Eq. (16). In many cases, 𝑡𝑛 is the time at the initial steady-state,
namely 𝑡𝑛 = 0. The linearization process can be done either by the analytical method or the
numerical method. In the following section (Section 3.2.3), the state-space model generated at the
initial steady-state condition is used for the controller algorithm. Later in section Section 3.2.4 this
assumptionis relaxed.

3.2.3 Model Predictive Control
To solve the state-space control problem, we use the MPC algorithm. MPC is an advanced method
to control a process while satisfying a set of constraints [10]. It is based on an iterative finite-horizon
optimization of the system (i.e. trajectory optimization). In the form presented here we focus on
the linear, time-invariant state-space model for simplicity and clarity. However, there are several
variations on MPC, and these can typically be distinguished in how the state space is represented
or how the cost function is formulated.

To minimize an error between a desired set-point and predicted output, a control input is computed
for a relatively short time horizon in the future by evaluating a cost function. This calculation is
then repeated at each subsequent instant or time-window.

The basic theory of MPC is described here for completeness. The following derivation of MPC
is based largely on [11]. The state-space model is written as the following time-discretized linear
system.

x𝑑 (𝑘 + 1) = A𝑑x𝑑 (𝑘) + B𝑑u𝑑 (𝑘), (22)

y𝑑 (𝑘) = C𝑑x𝑑 (𝑘) , (23)

where 𝑘 is the time step index, and A𝑑 , B𝑑 , and C𝑑 are the discrete forms of A𝑠, B𝑠, and C𝑠,
respectively. These discretized matrices are defined with Tayler expansions as follow:

A𝑑 =

∞∑︁
𝑙=0

1
𝑙!
(A𝑠Δ𝑡)𝑙 , (24)

10
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B𝑑 =

[ ∞∑︁
𝑙=1

1
𝑙!

A𝑙−1
𝑠 Δ𝑡𝑙

]
B𝑠 , (25)

C𝑑 = C𝑠 , (26)

where Δ𝑡 is the time difference between step 𝑘 and 𝑘 + 1.

Applying a finite difference approximation to Eq. (23) yields

x𝑑 (𝑘 + 1) − x𝑑 (𝑘) = A𝑑 (x𝑑 (𝑘) − x𝑑 (𝑘 − 1)) + B𝑑 (u(𝑘) − u(𝑘 − 1)) . (27)

Next, we make use of the following simplifying notation

Δ(·) (𝑘) = (·) (𝑘) − (·) (𝑘 − 1) , (28)
to yield

Δx𝑑 (𝑘 + 1) = A𝑑Δx𝑑 (𝑘) + B𝑑Δu(𝑘) . (29)

Note that the input to the state-space model is Δu𝑑 (𝑘). The advantage of using Eq. (29) is that
the mismatch between the plant model and the reduced-order model can be canceled, assuming the
mismatch varies little between step 𝑘 and 𝑘 + 1. The next step is to relate Δx𝑑 (𝑘) to the output,
y𝑑 (𝑘). To do so, a new state variable vector is defined as

x𝑎 (𝑘) =
[
Δx𝑑 (𝑘)𝑇 y(𝑘)

]𝑇
. (30)

This results in the following expressions

y(𝑘 + 1) − y(𝑘) = C𝑑 (Δx𝑑 (𝑘 + 1))
= C𝑑A𝑑Δx𝑑 (𝑘) + C𝑑B𝑑Δu(𝑘) .

(31)

Combining Eqs. (29) and (31) leads to the following discretized state-space model:

x𝑎 (𝑘+1)︷          ︸︸          ︷[
Δx𝑑 (𝑘 + 1)
y𝑑 (𝑘 + 1)

]
=

A𝑎︷                 ︸︸                 ︷[
A𝑑 O𝑁𝑥×𝑁𝑜

C𝑑A𝑑 I𝑁𝑜×𝑁𝑜

] x𝑎 (𝑘)︷     ︸︸     ︷[
Δx𝑑 (𝑘)
y𝑑 (𝑘)

]
+

B𝑎︷   ︸︸   ︷[
B𝑑

C𝑑B𝑑

] Δu𝑎 (𝑘)︷   ︸︸   ︷
Δu𝑑 (𝑘), (32)

y𝑎 (𝑘) =

C𝑎︷     ︸︸     ︷[
O𝑇 I𝑜

] x𝑎 (𝑘)︷     ︸︸     ︷[
Δx𝑑 (𝑘)
y𝑑 (𝑘)

]
, (33)

where O𝑁𝑥×𝑁𝑜
is the zero matrix with dimension 𝑁𝑥 × 𝑁𝑜; and I𝑁𝑜×𝑁𝑜

is the identity matrix with
dimension 𝑁𝑜 × 𝑁𝑜. A𝑎, B𝑎, and C𝑎 are called the augmented model which are used in the design
of the predictive control.

11
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Assuming that at the sampling instant 𝑘 , where 𝑘 > 0, some values of the the state variable vector
x(𝑘) are available through measurement, then the state x(𝑘) provides the current plant information.
The future control trajectory is denoted by

Δu𝑎 (𝑘), Δu𝑎 (𝑘 + 1) . . . Δu𝑎 (𝑘 + 𝑁𝑐 − 1), (34)

where 𝑁𝑐 is called the control horizon—this dictates the number of time steps into the future for
which the control action is simulated for the optimization. With the information given in x(𝑘), the
future state variables are predicted for 𝑁𝑝 number of time steps into the future, where 𝑁𝑝 is called
the prediction horizon. 𝑁𝑝 is also the length of the optimization window. We denote the future
state variables as

x𝑎 (𝑘 |𝑘), x𝑎 (𝑘 + 1|𝑘) . . . x𝑎 (𝑘 + 𝑁𝑝 |𝑘), (35)

where x(𝑘 +𝑚 |𝑘) is the predicted state variable at 𝑘 +𝑚 with given current plant information x(𝑘).
The control horizon 𝑁𝑐 is chosen to be less than (or equal to) the prediction horizon 𝑁𝑝.

The state-space model for the prediction horizon is denoted as follows:

Y = Fx𝑎 (𝑘) +𝚽ΔU, (36)

where
Y =

[
y𝑎 (𝑘 + 1|𝑘)𝑇 . . . y𝑎 (𝑘 + 𝑁𝑝 |𝑘)𝑇

]𝑇
, (37)

ΔU =
[
Δu𝑎 (𝑘)𝑇 . . . Δu𝑎 (𝑘 + 𝑁𝑐 − 1)𝑇

]𝑇
, (38)

F =


C𝑎A𝑎

...

C𝑎A𝑁𝑝

𝑎

 , (39)

𝚽 =



C𝑎B𝑎 0 0 · · · 0
C𝑎A𝑎B𝑎 C𝑎B𝑎 0 · · · 0
C𝑎A2

𝑎B𝑎 C𝑎A𝑎B𝑎 C𝑎B𝑎 · · · 0
...

C𝑎A𝑁𝑝−1
𝑎 B𝑎 C𝑎A𝑁𝑝−2

𝑎 B𝑎 C𝑎A𝑁𝑝−3
𝑎 B𝑎 · · · C𝑎A𝑁𝑝−𝑁𝑐

𝑎 B𝑎


. (40)

For a given set-point signal (or reference trajectory), the objective of the predictive control system
is to bring the predicted output as close as possible to the set-point signal. One of the advantages
of MPC is that it can use a preview capability for the set-point signal. If an application allows
anticipating the signal, the MPC controller with signal previewing can improve reference tracking.
This objective is then translated into an input to find the “best” control parameter vector ΔU such
that an error function between the set-point and the predicted output is minimized. The cost function
𝐽, which reflects the control objective, is defined as follows:

𝐽 = (R − Y)𝑇 (R − Y) + ΔU𝑇W𝑢ΔU + U𝑇W𝑣U . (41)

12



Transient PROTEUS Simulations with MPC

In Eq. (41), the first term is linked to the objective of minimizing the errors between the predicted
output Y and the set-point signal R. Since this is a product with the transpose it is essentially like
the normal equations in the least squares method, so this term is minimizing the 𝐿2-norm of the
error in trajectory.

The vector R contains the set-point information as follows:

R =
[
r(𝑘)𝑇 r(𝑘 + 1)𝑇 . . . r(𝑘 + 𝑁𝑝 − 1)𝑇

]𝑇
, (42)

r(𝑘) =
[
𝑟1(𝑘) 𝑟2(𝑘) . . . 𝑟𝑁𝑜

(𝑘)
]𝑇

, (43)

where 𝑟1(𝑘) to 𝑟𝑁𝑜
(𝑘) are the set-point signals corresponding to output vector. If an application

does not allow previewing the set-point signals for some reason, r(𝑘) can then be used for the rest
of the prediction horizon.

The second term reflects the consideration given to the size of ΔU. This term essentially allows one
to minimize the control “effort”. W𝑢 is a diagonal matrix in the form that W𝑢 = 𝑤𝑢I𝑁𝑐×𝑁𝑐

(𝑤𝑢 ≥ 0)
where 𝑤𝑢 is used as a weighting parameter for the desired closed-loop performance.

The third term also reflects the consideration to minimize the control effort but the third term is to
reduce u𝑎 instead of 𝚫u𝑎. This means that we desire a control action that is not very oscillatory
or “jerky”–just as we do want to avoid large (in magnitude control actions), like rotation 1 control
drum a significant distance, we also want to avoid solutions that unnecessarily move the control
drums back and forth.

U is defined as follows:

U =
[
u𝑎 (𝑘)𝑇 . . . u𝑎 (𝑘 + 𝑁𝑐 − 1)𝑇

]𝑇
= C1u𝑎 (𝑘 − 1) + C2ΔU ,

(44)

where C1 = 1𝑁𝑐×1 ⊗ I𝑁𝑢×𝑁𝑢
; 1𝑁𝑐×1 is the 1-vector with dimension 𝑁𝑐 × 1; C2 = T ⊗ I𝑁𝑢×𝑁𝑢

; and T
is the lower triangle with all non-zero elements are 1 and dimension 𝑁𝑐 × 𝑁𝑐. W𝑣 in the third term
is a diagonal matrix in the form that W𝑣 = 𝑤𝑣I𝑁𝑐×𝑁𝑐

which 𝑤𝑢 is used as a weighting parameter.

The cost function is next rewritten as a function of ΔU based on the simplification from Eq. (29).
This form also facilitates solution by quadratic programming.

𝐽 = ΔU𝑇HΔU + 2ΔU𝑇L + 𝑐 , (45)

where
H = 𝚽𝑇𝚽 + W𝑢 + C𝑇

2 W𝑣C2 , (46)

L = 𝚽𝑇 (Fx𝑎 (𝑘) − R) + C𝑇
2 W𝑣C1u𝑎 (𝑘 − 1) , (47)

and 𝑐 is the remainder which is not multiplied to ΔU. The remainder, 𝑐, is not used when solving
the quadratic programming problem.

One of the other advantages of MPC is that design constraints can be considered in the optimization
problem. To incorporate the design constraints into the control problem, it is necessary to translate
the constraints into linear inequalities. The constraints are taken into consideration for each moving
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horizon window. Since the MPC problem is formulated and solved in the framework of the receding
horizon control, the constraints on the rate of change are expressed as

Δu𝑚𝑖𝑛 ≤ Δu𝑎 (𝑘) ≤ Δu𝑚𝑎𝑥 , (48)

where the superscripts 𝑚𝑖𝑛 and 𝑚𝑎𝑥 denote the minimum and the maximum constraints, respec-
tively. The constraints are defined within the control horizon so that it can be expressed in terms of
function ΔU as follows:

ΔU𝑚𝑖𝑛 ≤ ΔU ≤ ΔU𝑚𝑎𝑥 , (49)

where ΔU𝑚𝑖𝑛 and ΔU𝑚𝑎𝑥 are column vectors with 𝑁𝑐 elements of Δu𝑚𝑖𝑛 and Δu𝑚𝑎𝑥 , respectively.

The constraints then need to be decomposed into two parts to reflect the lower and the upper limit.
This is expressed as follows:

[
−C1
C1

]
ΔU ≤

[
−ΔU𝑚𝑖𝑛

ΔU𝑚𝑎𝑥

]
, (50)

where I is the identity matrix, and its size depends on 𝑁𝑐 and u.

This procedure also applies to the control input and output constraints. All constraints are expressed
in terms of ΔU. The constraints for the velocity, which U defined in Eq. (51), is written as follows:

U𝑚𝑖𝑛 ≤ C1u𝑎 (𝑘 − 1) + C2ΔU ≤ U𝑚𝑎𝑥 . (51)

Using Eq. (36), the output constraints are expressed in terms of ΔU as:

Y𝑚𝑖𝑛 ≤ Fx(𝑘) +𝚽ΔU ≤ Y𝑚𝑎𝑥 . (52)

Finally, the MPC in the presence of constraints is proposed as finding ΔU that minimizes the
quadratic cost function

𝐽 = ΔU𝑇HΔU + 2ΔU𝑇L + 𝑐 , (45 revisited)

subject to the inequality constraints:

MΔU ≤ N , (53)

where
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M =



−C2
C2
−C1
C1
−𝚽
𝚽


; N =



−U𝑚𝑖𝑛 + C1u(𝑘 − 1)
U𝑚𝑎𝑥 − C1u(𝑘 − 1)

−ΔU𝑚𝑖𝑛

ΔU𝑚𝑎𝑥

−Y𝑚𝑖𝑛 + Fx(𝑘)
Y𝑚𝑎𝑥 − Fx(𝑘)


. (54)

To solve this quadratic programming problem, the Operator Splitting solver for Quadratic Program
(OSQP) solver is used [12]. The OSQP solver is a numerical optimization package for solving
convex quadratic programs. The solver is very efficient and accurate for these kinds of convex
quadratic programming problems. The OSQP solver is not applicable to the more complicated
nonlinear optimization problem for nonlinear MPC. However, the optimization problem with a
nonlinear model can be handled with the adaptive MPC which is not much different from the standard
MPC. In adaptive MPC the state-space model is updated during simulation by re-linearizing the
nonlinear model every time step. A detailed description of the algorithm is presented next in
Section 3.2.4.

Figure 7. Calculation flow with standard MPC

Although the optimal parameter vector ΔU contains the controls Δu𝑎 (𝑘), Δu𝑎 (𝑘 + 1), . . . , Δu𝑎 (𝑘 +
𝑁𝑐 − 1), with the receding horizon control principle, the first sample of this sequence, i.e. Δu(𝑘),
is implemented only while ignoring the rest of the sequence. When the next sample period arrives,
the more recent measurement is taken to form the state vector x(𝑘 + 1) for calculation of the new
sequence of control signal. This procedure is repeated in real time to give the receding horizon
control law. Fig. 7 presents the calculation flow of the standard MPC.

3.2.4 Adaptive MPC
The theory of MPC is presented in Section 3.2.3. The standard MPC described in Section 3.2.3 is
based on the state-space model which is linearized or defined at a particular time such as an initial
steady-state condition. However, the reduced order model described in Section 3.2.1 is not linear.
Ignoring the nonlinearity of the reduced order model then, may degrade the accuracy of reference
tracking. Applying nonlinear MPC [13] may resolve the issue. However, the nonlinear MPC
is computationally expensive and a nonlinear constraint is rarely necessary for many applications.
Therefore, this work uses the adaptive MPC [14]. The adaptive MPC controller adjusts its prediction
model at run time to compensate for nonlinear or time-varying characteristics. Figs. 7 and 8 present
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the calculation flow with the standard MPC and the adaptive MPC.

Figure 8. Calculation flow with adaptive MPC

The only difference between the standard MPC and the adaptive MPC is that the state-space model
is “re-linearized” during the simulation in the adaptive MPC. To do this, the reduced order model
defined in Eq. (12) needs to be solved during the simulation as well as the plant model and the state-
space model. The state-space model is updated every time step or as needed by using the exact same
process in Section 3.2.2. The MPC problem is updated repeatedly with the updated state-space
model. Compared to the standard MPC, the adaptive MPC requires additional calculations to solve
the reduced order model and repetitive setup of the state-space model and MPC problem. However,
in our application, the overhead is negligible and is readily manageable with modern computing
power while the accuracy of the adaptive MPC may be comparable to that of the nonlinear MPC
as long as the linearization is repeated with a short time interval. Therefore, the adaptive MPC can
be a good trade-off between the standard MPC and the nonlinear MPC.

3.2.5 Model mismatch and observer
The MPC optimization is conducted based on the reduced order state-space model. It is nearly
impossible to directly use the plant model or a high-fidelity model in the MPC optimization due to
the complexity and computational cost. Instead, the reduced order model is used as described in
Section 3.2.1. The issue is that the reduced order model also approximates the plant or high-fidelity
model. It means that the solutions from the plant model and the reduced order model are different.
Therefore, there should be a process to correct the difference. This is done by an observer.

Before explaining the observer, it is necessary to mention the measurement. It is necessary to
consider which state variable can be obtained from the plant or high-fidelity model. In practice,
it is not feasible to measure some or all state variables (e.g. the delayed neutron precursors and
core-averaged temperature for each material cannot be directly measured). The power level or
relative neutron density (i.e. 𝑛̄) can usually be indirectly measured in the real plant through in-core
or ex-core neutron detectors. In this sense, it is assumed that only the power level or relative neutron
density is obtained from the plant model in the simulation and the observer is used to correct the
neutron density. We note that some other properties, like core average coolant temperature and inlet
or outlet temperatures can also be measured–but for the current work on a single-output problem,
these are not used.

The measurement correction process done by the observer is quite straightforward. Once the
measurement is obtained from the plant or high-fidelity model, the output vector, y𝑑 (𝑘) in Eqs. (32)
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and (33) is corrected as follows:

y′𝑑 (𝑘) = y𝑑 (𝑘) + K (ỹ(𝑘) − y𝑑 (𝑘)) (55)

where y′
𝑑
(𝑘) is the corrected output vector; ỹ(𝑘) is the output vector from the plant; and K is the

observer matrix with dimension 𝑁𝑜 × 𝑁𝑜. When the optimization problem is a single output case
and only power can be measured from the plant, the K would be 11×1. What the observer is doing
is simply replacing the output from the state-space model with measurable output from the plant.
The corrected output vector, y′

𝑑
(𝑘), is then used in the subsequent MPC optimization instead of

y𝑑 (𝑘).
An additional correction is necessary for the adaptive MPC since the adaptive MPC algorithm
solves the reduced order model separately and the measurement correction needs to be applied to
the reduced order model as well. The observer for the state-space model simply corrects the output
vector. However, only updating the neutron density in Eq. (12) may lead to an unphysical neutron
time derivative since the corrected neutron density is not calculated from the reduced order model.
Consequently, there is no guarantee of neutron balance between time steps. Thus, an additional
calculation to preserve the time derivative of neutron density is necessary to resolve the issue. In
other words, the following relation must also be satisfied:

𝑑𝑛̄(𝑡)
𝑑𝑡

=
𝑑𝑛̄′(𝑡)
𝑑𝑡

, (56)

where 𝑛̄′(𝑡) is the corrected neutron density which is the same as the neutron density of the plant
model. To preserve the time derivative with the corrected neutron density, an additional parameter
is needed. This is handled by updating the base reactivity. Using Eq. (5), the above equation is
written as following:

𝜌(𝑡) − 𝛽𝑡
Λ

𝑛̄(𝑡) +
∑6
𝑖=1 𝜆𝑖𝑐𝑖 (𝑡)

Λ
=
𝜌′(𝑡) − 𝛽𝑡

Λ
𝑛̄′(𝑡) +

∑6
𝑖=1 𝜆𝑖𝑐𝑖 (𝑡)

Λ
, (57)

where 𝜌′(𝑡) is the corrected reactivity corresponding to 𝑛̄′(𝑡) and it is defined as a function of
corrected and uncorrected neutron densities:

𝜌′(𝑡) = (𝜌(𝑡) − 𝛽𝑡)
𝑛̄(𝑡)
𝑛̄′(𝑡) + 𝛽𝑡 . (58)

The correction on the reactivity may be assumed so that the base reactivity, 𝜌𝑏, is updated to have
𝜌′(𝑡). The updated neutron density and the reactivity are then used in the subsequent time steps.

17



Transient PROTEUS Simulations with MPC

4. NUMERICAL RESULTS

4.1 3D microreactor Results

Table 2. Applied constraints to Holos reactor control

Parameters Constraints
Control drum rotation (deg) 0 ≤ s ≤ 360

Control drum rotation rate (deg/s) −0.36 ≤ u ≤ 0.36
Control drum rotation acceleration (deg/s2) −0.36 ≤ Δu/Δ𝑡 ≤ 0.36

In this section, the load-follow simulation results for the HTGR-type microreactor described in
Section 2 are presented. As mentioned in Section 3.2.3, one of the advantages of the MPC is an
ability to consider constraints in the optimization problem. Three kinds of constraints are applied
to the drum rotation rate u, and drum rotation acceleration Δu/Δ𝑡. It should be noted that these
constraints are assumed because they have not been determined in the reactor design, yet. The
numerical values of the constraints are listed in Table 2. There is no specific constraint for the control
drum rotation since the drum can rotate over 0 degree or 360 degree. The constraints for u andΔu/Δ𝑡
are simply chosen to have±0.1%/s and±0.1%/s2, respectively. These constraints are corresponding
to ±0.36 deg/s and ±0.36 deg/s2, respectively. In reality, the constraints should be first based on the
mechanical performance of the drum rotation system, and secondarily on technical specification
limits for the operation that should satisfy safety and operational performance requirements.

Table 3. Parameters used in the reduced order model simulation

Parameter Value Unit Parameter Value Unit
𝛽 0.01181 - Λ 2.627E-5 s
𝛽1 0.00041 - 𝜆1 0.01334 1/s
𝛽2 0.00213 - 𝜆2 0.03274 1/s
𝛽3 0.00204 - 𝜆3 0.12078 1/s
𝛽4 0.00457 - 𝜆4 0.30278 1/s
𝛽5 0.00187 - 𝜆5 0.84949 1/s
𝛽6 0.00078 - 𝜆6 2.85300 1/s
𝛼 𝑓 -4.0 pcm/K 𝑐 𝑓 977.0 J/kg/K
𝛼𝑚 -0.2 pcm/K 𝑐𝑚 1697.0 J/kg/K
𝛼𝑐 0.0 pcm/K 𝑐𝑐 5190.0 J/kg/K
𝑊1 -33.3 pcm/deg - - -

Table 4. Power level setpoint

Time period (sec) Description for power level
0 - 5 Maintain 100%

5 - 245 Decrease to 20% with ramp rate of -20%/min
245 - 1800 Maintain 20%

1800 - 2040 Increase to 20% with ramp rate to 20%/min
2040 - 3600 Maintain 100%

18



Transient PROTEUS Simulations with MPC

Table 3 presents parameters used in the reduced order model. The delayed neutron fraction and the
delayed neutron time constants were extracted from the 6-group cross section library of PROTEUS.
A typical generation time for thermal reactors is used. Therefore, the point kinetics parameters
are not necessarily accurate. Unfortunately, the feature to generate the point kinetics parameters
in PROTEUS was not available for this work. Nevertheless, these assumptions and their validity
do not preclude the development and assessment of the coupling of high-fidelity simulations with
control algorithms.

In Section 4.2, the sensitivity test results are presented to determine the effect of these parameters.
The temperature coefficients and control drum differential worth were determined from a series of
2D core simulations.

Fig. 9 presents the results for the 3D microreactor load follow simulation. The prescribed power
scenario is given in Table 4, and starts at 100%, decreases to 20%, and then increases back to
100%. The ramp rate between 100% and 20% power is ±20%/min which is the fastest ramp
rate requirement identified in [3]. As depicted in Fig. 8, the plant is represented by PROTEUS
coupled with STH. The adaptive MPC is used for the simulation. A one second time step is used
for exchanging information between the PROTEUS simulation and MPC controller. The initial
position of the control drum is 180 deg. This means the center of the control drum absorber faces
south as shown in Fig. 3a. In the simulation, 40 computing cores were used.

Figure 9. 3D microreactor load-follow simulation results

The objective of the controller is to compute the control inputs so that the core power matches
the setpoint while minimizing control costs, and being regulated within the given constraints. The
calculated power with the MPC controller is very accurate. The RMS tracking error over the entire
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simulation is 0.027%. The maximum tracking error is 0.234%. The core-averaged temperature
is also calculated for the fuel, moderator, cladding, and coolant. The temperature changes much
more slowly than power. This is expected given the slow thermal time constants of graphite. The
power level decreases to 20% and maintains the level between 4 min and 30 min. In this period, the
MPC controller needs to keep solving the optimization problem to compensate for the temperature
feedback effect by adding negative reactivity with the control drum. Therefore, during this same
period, the control drum keeps rotating. Similar behavior is repeated when the power increases
back to 100% but with opposite direction of rotation. During the load-follow simulation, the control
drum rotates between 180 deg and 203 deg.

To determine the cost for input control, RMS velocity and RMS acceleration are calculated and
shown in Fig. 9. The RMS velocity and RMS acceleration are 2.22E-2 deg/s and 5.55E-3 deg/s2,
respectively. It is not straightforward to determine whether these costs are large or small in and
of themselves, but this provides some metric for a relative comparison. Consequently, the same
parameters are calculated for several other 2D core simulations and then compared to each other in
the next section.

4.2 Sensitivity Tests
Some amount of error in the reduced order model is acceptable and handled by the observer which
corrects the model error by incorporating power data (e.g., a measurement) from the “plant” (the
PROTEUS simulation). However, it is still necessary to have a sufficiently accurate surrogate
model so that the controller can produce an accurate adn stable simulation result. In this section,
sensitivity tests are performed to determine which parameters in the state space representation
are most important to the overall accuracy of the controller. As mentioned in Section 4.1, some
parameters were assumed since PROTEUS does not have a feature to calculate them online.
However, the load-follow result for the 3D microreactor was very accurate.

4.2.1 2D core vs. 3D core
To minimize the computational resources of the sensitivity study, all sensitivity tests are performed
with a 2D core model. The 2D core has the same design and radial size as the 3D core, however
the axial boundary condition at the top and bottom surface of the core is now reflective. Therefore,
only one axial plan is necessary to simulate the core model. Fig. 10 shows the 2D core simulation
results. Table 5 shows the tracking error and control cost for the 2D and 3D reactor simulations.
This comparison is made to confirm that the 2D core model has similar behavior as the 3D core
so that we have some confidence in the validity of our conclusions from the subsequent sensitivity
tests.

Table 5. 2D and 3D simulation results summary

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
3D core simulation 0.027 0.234 1.09 1.09
2D core simulation 0.017 0.170 1.00 1.00

Table 5 presents the comparison between the 2D and 3D core simulation. Both 2D and 3D core
simulations have a similar level of accuracy. The 2D core has a smaller tracking error, i.e., the
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Figure 10. 2D microreactor load-follow simulation results

maximum error is 0.17%. The normalized control cost in Table 5 indicates the RMS velocity and
RMS acceleration of the control drum over the entire simulation but these are normalized by the
costs of 2D core simulation. The normalization is performed since it is not straightforward to
determine whether the control costs are expensive or not based on the absolute values. Therefore,
relative or normalized control costs are calculated and presented. The 3D core simulation shows

(a) At 1 sec (b) At 1900 sec

Figure 11. 2D core flux distribution
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about 9% higher control costs for both control drum velocity and acceleration than those of the
2D core. This is likely explained by the control drums not having a uniform worth axially along
their length, as the worth near the axial boundaries should be reduced since neutrons are able to
leak and reflect back in these areas. Moreover, the reduced order model may approximate the 2D
core model more accurately since the control drum differential worth and temperature reactivity
coefficients were generated based on the 2D core simulation. These are the reasons why the 2D
core load follow results can be observed to have higher accuracy and lower control cost than those
of the 3D core simulation. However, these differences are not significant and it can be assumed
that the 2D core load follow simulation has a similar behavior as the 3D core. Therefore, the 2D
core model is used for the rest of the sensitivity tests.

Fig. 11 displays the flux distribution from the 2D core simulation at 1 and 1900 seconds. In the
figure, it can be observed that the flux is significantly reduced due to the control drum. As the 3D
core utilizes an extruded geometry derived from the 2D core geometry, the flux distribution of the
3D core is expected to be similar to that of the 2D core.

4.2.2 Adaptive MPC vs. Standard MPC
In Sections 4.1 and 4.2.1, the results are based on the adaptive MPC controller. As discussed in
Section 3.2.4, the adaptive MPC can consider the nonlinear characteristics of the reduced order
model without the need to invoke nonlinear optimization methods. The impact of considering the
nonlinearity can be determined by comparing it to the standard MPC case. Fig. 12 shows the results
with the standard MPC controller. Table 6 summarizes the accuracy and control costs.

Figure 12. 2D microreactor load-follow simulation results with standard MPC

Table 6. Comparison between adaptive MPC and standard MPC

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
Adaptive MPC (Base case) 0.017 0.170 1.00 1.00

Standard MPC 0.180 1.196 0.89 0.40

The standard MPC has less accurate results compared with the adaptive MPC. The RMS tracking
error is 0.18% and the maximum error is 1.196%. The difference may be acceptable but there is
clear accuracy degradation due to the methodology of the controller. The main difference comes
from the time-varying components of the matrix A𝑠 in the state-space equations (i.e. Eq. (16)).
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Fig. 13 shows the time-varying components of A𝑠 which is calculated from the adaptive MPC.
Four elements from the adaptive MPC highly depend on time and vary significantly. These terms
are essentially the nonlinear terms of the point reactor model. Especially, 𝑑𝑓𝑛̄/𝑑𝑇 𝑓 , 𝑑𝑓𝑛̄/𝑑𝑇𝑚, and
𝑑𝑓𝑛̄/𝑑𝐷1 have upto 80% differences compared to those at the initial condition. On the other hand,
the state-space model of the standard MPC is generated at the initial steady state and does not vary
during the simulation. It means the standard MPC overestimates the magnitude of 𝑑𝑓𝑛̄/𝑑𝑇𝑚, and
𝑑𝑓𝑛̄/𝑑𝐷1 between 4 min and 30 min. According to the power difference in Fig. 12, once a tracking
error is calculated for any reason, the tracking error does not shrink rapidly. The controller needs to
calculate more aggressive control inputs to eliminate the tracking error. However, the standard MPC
controller is unable to do so since it overestimated 𝑑𝑓𝑛̄/𝑑𝐷1. The normalized control costs of the
standard MPC are smaller than those of the adaptive MPC due to the same reasons—overestimated
𝑑𝑓𝑛̄/𝑑𝐷1. If the state-space model is linearized at low power, then the controller may overshoot
the control input due to underestimated 𝑑𝑓𝑛̄/𝑑𝐷1, and the power may oscillate—-this result is not
presented only inferred.

Figure 13. Time-varying components of matrix A𝑠 from adaptive MPC

4.2.3 Prediction and control horizons
The MPC computes the optimal control inputs within the prediction and control horizons, but only
the first control input is actually implemented in the plant model. The calculations made by the
MPC controller are aimed at minimizing the tracking error throughout the entire prediction horizon.
However, merely enhancing the number of horizons does not always ensure improved accuracy. On
the contrary, utilizing a small number of horizons does not guarantee superior accuracy either, as
it may potentially compute an aggressive input focusing solely on the immediate time frame.

Figs. 14 and 15 and Table 7 depict the simulation results corresponding with varying numbers of
horizons. While all instances demonstrate reasonable accuracy and stability, minute discrepancies
merit further examination. With smaller numbers of horizons as depicted in Fig. 14, the overall
tracking accuracy sees a slight enhancement compared to the base case. As anticipated, a larger
maximum error of 0.213% is evident—this is likely due to the more aggressive inputs calculated
by taking into account immediate timing rather than a wider time window, resulting in higher
normalized control costs.
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Figure 14. 2D core simulation results with 𝑁𝑝 = 2 and 𝑁𝑐 = 1 time step(s)

Figure 15. 2D core simulation results with 𝑁𝑝 = 8 and 𝑁𝑐 = 4 time steps

Table 7. Comparison with different prediction and control horizons

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
𝑁𝑝 = 2, 𝑁𝑐 = 1 0.016 0.213 1.00 1.18

𝑁𝑝 = 4, 𝑁𝑐 = 2 (Base case) 0.017 0.170 1.00 1.00
𝑁𝑝 = 8, 𝑁𝑐 = 4 0.045 0.370 0.95 0.51

Conversely, the case with the higher number of horizons, shown in Fig. 15, employs a reduced
control cost through minimizing control input and overshooting to achieve the desired power. The
modification in reactivity resultant from control drum rotation is immediate, while the reactor also
exhibits several delayed responses. This scenario tends to rotate the control drum more slowly due
to the delayed effect’s contribution to power alteration. Even though most of the power change
occurs instantly, cases with extended horizons experience a larger RMS error of about 0.045%.
These results suggest that it is crucial to leverage a specific time period in the optimization problem
to obtain stable and accurate results.

4.2.4 Cost function weight
For the cost function given in Eq. (41), there are two weighting factors involved. These factors
within W𝑣 and W𝑢 serve to manipulate the significance of the cost of control inputs. It is generally
the case that a smaller weight allows for the use of a more aggressive control input to attain greater
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accuracy. Taking into consideration that these weights do not have an identifiable physical unit
makes it challenging to intuitively assess what the magnitude of the weights used should be. In this
section the weight factor is modified to be 0.1 and 10 times that of the base case.

Figure 16. 2D core simulation results with 10 times smaller control input weights

Figure 17. 2D core simulation results with 10 times larger control input weights

Table 8. Comparison with different prediction and control horizons

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
Weights ×0.1 0.017 0.201 1.37 7.31

Base case 0.017 0.170 1.00 1.00
Weights ×10 0.053 0.318 0.96 0.56

When using a smaller weight for control as depicted in Fig. 16, it leads to a much higher cost for
control inputs with minor changes in the tracking error. Conversely, utilizing a larger weight in a
simulation as shown in Fig. 17 reduces accuracy while reducing the costs for the control inputs.
The MPC controller, when operating with a smaller weight, tends to compute aggressive control
inputs, which may cause a degree of oscillation in the control inputs and system.

The choice of the number of horizons and control input weights is not absolute, considering the
varying objectives. However, in this work, the authors have opted to use the number of horizons
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and weights adopted in the base case for the remaining studies. This decision appears to achieve a
satisfactory balance between the accuracy of the simulation and the incurred control input costs.

Determination of the weights and 𝑁𝑝 and 𝑁𝑐 represent factors that must be tuned in the MPC
controller. From these results we see that while they do have some effect, the overall effects on the
result are not significant.

4.2.5 Control input constraints
An advantage of the MPC controller is its capability to consider constraints while determining an
optimal control input. These constraints are typically due to mechanical or physical limitations. In
the base case simulation, neither the control drum velocity nor acceleration hits the constraints as
defined in Table 2. The reactivity worth of control drum is large enough to manage the power for
this simulation, implying that minor and slow rotation of the drums is sufficient to accomplish the
objective. In this section, the performance of the MPC controller is further analyzed by modifying
the constraints.

Figure 18. 2D core simulation results with 10 times smaller control input constraints

Table 9. Comparison with 10 times smaller input constraints

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
Base case 0.017 0.170 1.00 1.00

Constraints ×0.1 1.014 8.286 0.78 0.41

Since the base case does not hit the constraints, only stricter or smaller constraints are tested. Fig. 18
exhibits the simulation results with constraints reduced by a factor of 10. The figure illustrates that
the control drum velocity and acceleration are regulated within ±0.036 deg/s and ±0.036 deg/s2,
respectively. These stricter constraints hinder the use of quicker or more aggressive actions, thus
reducing the power prediction accuracy. The maximum power tracking error is 8.286%, which is a
marked increase compared to the base case results. Strict constraints tend to degrade the controller’s
accuracy. In such scenarios, it is preferable to utilize the control drums more to ensure sufficient
reactivity worth with small and slow rotation. Results such as this demonstrate the usefulness of
the simulation capability here because if better results from the controller are not achievable with
the system constraints, this indicates that the controlled system should be redesigned. Further a
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simulation capability can determine what controlled system design points or operating envelope
should be.

4.2.6 Control drum reactivity worth
A wide range of the control drum reactivity worth is tested for the 2D microreactor load-follow
simulation in this section. The reactivity worth varies from−60% to 60% compared to the reference
value listed in Table 3. The tracking error and normalized control cost are summarized in Table 10.
The tracking error increases as the drum worth moves away from the base case. As mentioned in
Section 4.2.2, the larger drum worth (i.e. 𝑑𝑓𝑛̄/𝑑𝐷1) makes the controller undershoot the control
input causing smaller control cost but larger tracking error. Conversely, as the drum worth becomes
smaller, the larger control cost is limits performance of the controller. Essentially, this means the
controller with a sufficiently small drum worth may overshoot the reference trajectory such that the
system and control action exhibit increasingly oscillatory behavior. This situation is clearly shown
in Fig. 19. The control inputs with the 60% smaller drum worth hit the constraints many times
while the power and control input oscillate. If the constraints are not used, the simulation may
diverge due to the aggressive control inputs. This result also indicates estimated limits for how
accurate the control rod worth must be for the state-space model. We conclude that being within
30% of the actual drum worth would allow for a sufficiently performant controller.

Table 10. Comparisons with different control drum reactivity worths

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
Drum worth −60% 0.106 0.790 4.90 37.87
Drum worth −30% 0.022 0.326 1.00 1.48

Base case 0.017 0.170 1.00 1.00
Drum worth +30% 0.031 0.172 1.00 0.88
Drum worth +60% 0.049 0.226 0.99 0.80

Position-dependent drum worth 0.019 0.166 1.00 1.03

Figure 19. 2D core simulation results with 60% lower control drum reactivity worth

An additional comparison is made for the position-dependent control drum worth. As presented
in Fig. 5a, the control drum worth may vary depending on the position. The results with the
position-dependent drum worth is also listed in Table 10. The tracking error and the control costs
are not much different from those of the base case which uses the constant control drum worth. We
note that this a conclusion based on this result would be flawed. This is because the control drum
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Figure 20. 2D core simulation results with 60% higher control drum reactivity worth

differential worth is fairly flat in the operation range which is 180 - 205 deg. As shown in Fig. 5a,
the slope of the reactivity between the ranges is monotonic. If the control drum is initially located
in a different rotation (such as 220 deg), the position-dependent worth may be essential to have
accurate and stable results.

In this section, the sensitivity test results with different control drum reactivity worths are presented.
The simulation results show that it is important to have an accurate estimate of the control drum
worth to have accurate and stable simulation results. However, the controller with ±30% error in
the control drum worth still predicts fairly accurate and stable results. The ±30% of error in the
control drum worth is a quite large margin therefore the MPC controller is reasonably robust.

4.2.7 Point kinetics parameters
A range of values in the point kinetics parameters are tested in this section. The purpose of this
study is to gain some insight into how accurate the coefficients in the state-space representation
must be compared to the real system. As mentioned in Section 4.1, the point kinetics parameters
may have some error since the parameters were not calculated from homogenization by weighting
solutions from PROTEUS transport calculation. Instead, medium values or typical values were
chosen for the reduced order model. In reality, these parameters can be determined during startup
physics testing, but will change to some degree as the reactor operates. Therefore, in practice, it
may be difficult to calculate the point kinetics parameters for every configuration and condition of
the real reactor. Consequently, we assume that the point kinetics parameters used in the controller
will generally have some amount of error. As a result, it is important to check how much the MPC
controller is sensitive to the selection of the point kinetics parameters. Tables 11 to 13 summarize
the sensitivity test results for the delayed neutron fractions, decay constants, and generation time,
respectively.

Table 11. Comparisons with different delayed neutron fractions

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
𝛽𝑖 −60% 0.046 0.375 0.99 0.62
𝛽𝑖 −30% 0.020 0.145 1.00 0.84
Base case 0.017 0.170 1.00 1.00
𝛽𝑖 +30% 0.019 0.267 1.00 1.24
𝛽𝑖 +60% 0.027 0.403 1.24 2.78
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Figure 21. 2D core simulation results with 60% lower 𝛽𝑖

Figure 22. 2D core simulation results with 60% higher 𝛽𝑖

Figs. 21 and 22 present the simulation results for 60% lower and higher 𝛽𝑖 cases, respectively. The
control cost and the tracking error increase as 𝛽𝑖 increase. This means that the reduced order model
underestimates the effect of the prompt neutron so that the MPC controller overshoots the control
input to compensate for the underestimated prompt neutron effect. On the contrary, the reduced
order model overestimates the effect of the prompt neutron as the 𝛽𝑖 decreases. The MPC controller
undershoots the control inputs in this case. The small 𝛽𝑖 reduces the control cost but it increases
the tracking error.

Table 12. Comparisons with different decay constants

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
𝜆𝑖 −60% 0.032 0.224 1.03 1.36
𝜆𝑖 −30% 0.021 0.176 1.01 1.11
Base case 0.017 0.170 1.00 1.00
𝜆𝑖 +30% 0.016 0.165 1.00 0.94
𝜆𝑖 +60% 0.017 0.160 0.99 0.88
𝜆𝑖 +90% 0.019 0.155 0.99 0.84

Table 12 summarizes the sensitivity results for the decay constant. The decreased 𝜆𝑖 means the
delayed neutron has a longer half-life so that the effect of the prompt neutron is underestimated.
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The MPC controller overshoots the control input due to the underestimated prompt neutron effect.
When using 30% increased 𝜆𝑖, the simulation results appear to have better accuracy in terms of
the RMS tracking error, and use less amount of control cost. This result is likely interpreted that
increasing 𝜆𝑖 makes the overall reduced order model be more accurate than the equations with the
base parameters since not all parameters used in the reduced order model are accurate. However,
the RMS tracking error increases again if the 𝜆𝑖 is increased by 60% and 90%. Thus, we conclude
that the 30% increase in 𝜆𝑖 merely provides some easier controllability in the dynamics (it becomes
easier to control since the dynamics are “slower”). However, the 𝜆𝑖 are fairly well known, and only
change by fissionable isotope, thus these parameters will generally have less error than others.

Figure 23. 2D core simulation results with 60% lower 𝜆𝑖

Figure 24. 2D core simulation results with 60% higher 𝜆𝑖

Changing the prompt neutron generation time is observed to make little difference in the control
result. The results are summarized in Table 13. There are very small difference between these
simulations so that the results in the table have the same value depending on cases. The neutron
time derivative in Eq. (5) shows that Λ exists at the denominator of the entire right hand side
equations. Therefore, all 𝜕 𝑓𝑛̄/𝜕𝑥 (i.e. 𝜕 𝑓𝑛̄/𝜕𝑛̄ ... 𝜕 𝑓𝑛̄/𝜕𝐷1) change with the same fraction (30% or
−30%) when Λ changes in the sensitivity test. If the temperature feedback or the drum reactivity
worth in Eq. (11) have more complicated form rather than the simple linear equation, the sensitivity
results per Λ may be different.

Generally, we would expect the control system to be insensitive to Λ as it influences the fastest
dynamics in the system and its effect decays away quickly with time. Should the reactivity insertions
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Table 13. Comparisons with different generation time

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
Λ −30% 0.017 0.170 1.00 1.00
Base case 0.017 0.170 1.00 1.00
Λ +30% 0.017 0.170 1.00 1.00

become much closer to $1, this parameter would matter quite significantly, but for small reactivity
insertions over long time periods, the physics of the prompt neutron generation time become
“instantaneous” over a broad range of values (likely ± an order of magnitude).

4.2.8 Temperature reactivity coefficients
The sensitivity results for the temperature reactivity coefficients are summarized in Table 14. Since
the reacitivty feedback effect from the temperature change is very slow compared to neutronics, all
cases have almost identical control costs. As presented in Fig. 10, the temperature changes much
more slowly than the power or neutron density. A large control cost is usually used when prompt
action is required to reduce the power error. There is only a slight difference in the performance of
the controller depending on the reactivity coefficients. When the reduced order model has smaller
reactivity coefficients such as Fig. 25, the calculated power tends to change more slowly than the
setpoint power. Note that the difference in the plot is calculated by Calculated − Setpoint. Due
to the underestimated temperature coefficient, the required control input is also underestimated.
In other words, the change in temperature introduces negative reactivity, so the control input is

Table 14. Comparisons with different temperature coefficients

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
𝛼 𝑓 , 𝛼𝑚 −60% 0.048 0.294 1.00 1.00
𝛼 𝑓 , 𝛼𝑚 −30% 0.030 0.221 1.00 1.00

Base case 0.017 0.170 1.00 1.00
𝛼 𝑓 , 𝛼𝑚 +30% 0.019 0.170 1.00 1.00
𝛼 𝑓 , 𝛼𝑚 +60% 0.035 0.186 1.00 1.00

Figure 25. 2D core simulation results with 60% lower 𝛼 𝑓 and 𝛼𝑚
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Figure 26. 2D core simulation results with 60% higher 𝛼 𝑓 and 𝛼𝑚

underestimated if the negative reactivity is not sufficiently accounted for. On the other hand, the
required control input is overestimated when using the overestimated temperature coefficients as
shown in Fig. 26. The calculated power with the 60% larger temperature coefficient tends to go
ahead of the setpoint power.

In summary, the temperature coefficients have a significant margin for achieving accurate load
follow results. The control cost is even less sensitive to variations in temperature coefficients,
primarily because the rate of temperature change tends to be slower compared to the power.

4.2.9 Heat capacity
The sensitivity results for the heat capacity are summarized in Table 15. Changing the heat capacity
or the mass leads to the same results since both heat capacity and the mass appear together on the
left hand side of Eqs. (7) to (9). Therefore, additional sensitivity test on the mass is not performed.
It can be assumed that changing the mass has the same effect as changing heat capacity. Similar to
the sensitivity test on the temperature coefficients in Section 4.2.8, the temperature changes slower
than the power or neutron density. Therefore, the control cost does not have a big impact according
to the choice of the heat capacity as shown in Table 15. The error in the heat capacity primarily
influences the speed of temperature change depending on the value as shown in Figs. 27 and 28.
In the figures, ROM indicates temperatures calculated from the reduced order model. However,
±30% perturbed heat capacity or mass, again do not make the temperature feedback effect as fast
as the neutronics so that tracking error does not have significant impact from the heat capacity or
mass.

In other words, the 𝑚𝑐𝑝 terms of the thermal problem in the HTGR are so much slower than the
delayed neutrons that relatively large changes in their values such as 30% are not sufficient to change

Table 15. Comparisons with different heat capacity

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
𝑐𝑝, 𝑓 , 𝑐𝑝,𝑚, 𝑐𝑝,𝑐 −30% 0.020 0.171 1.00 1.00

Base case 0.017 0.170 1.00 1.00
𝑐𝑝, 𝑓 , 𝑐𝑝,𝑚, 𝑐𝑝,𝑐 +30% 0.022 0.192 1.00 1.00
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Figure 27. 2D core simulation results with 30% lower heat capacity

Figure 28. 2D core simulation results with 30% higher heat capacity
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the time scales between the thermal dynamics and neutron dynamics in any meaningful way. 30%
difference in “far away” is still “far away”.

4.2.10 Ramp rate and power level
A wide range of ramp rates and different scenarios are tested in this section. It is expected that
a slow transient scenario is easier to calculate the control input for than a fast transient scenario.
Table 16 presents the sensitivity results with 5%/min ramp rate to 30%/min ramp rate including the
base case (20%/min ramp rate). Figs. 29 to 31 show the detailed simulation results. As expected,
the simulation results have a higher tracking error when using the faster ramp rates however the
overall change in error is less than 0.1%. For the 5%/min of ramp rate case, the maximum tracking
error is only 0.097% and the normalized control cost for the acceleration is only 32% of the base
case. On the other hand, the case with 30%/min ramp rate has 0.384% of maximum tracking error
and 63% higher control costs than that of the base case. From the sensitivity test on the ramp rate,

Table 16. Comparisons with different scenario

Tracking difference (%) Normalized control costDescription RMS Max Velocity Acceleration
Ramp rate 5%/min 0.012 0.097 0.61 0.32
Ramp rate 10%/min 0.014 0.112 0.75 0.54

Ramp rate 20%/min (Base case) 0.017 0.170 1.00 1.00
Ramp rate 30%/min 0.021 0.384 1.27 1.63

Power 100%→140%→100% 0.015 0.140 0.40 0.24

Figure 29. 2D core simulation results with 5% ramp rate
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Figure 30. 2D core simulation results with 10% ramp rate

Figure 31. 2D core simulation results with 30% ramp rate
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it is concluded that the MPC controller can calculate accurate control inputs to follow the setpoint
for essentially the whole range of required or allowable ramp rates.

Figure 32. 2D core simulation results with maximum 140% power level

Another scenario considering an uprated power is also simulated and presented in Fig. 32. The
scenario has 100% power initially, increases the power to 140%, and then comes back to the original
power. This test case illustrates the potential of this analysis capability to be used to assess the
control system performance for a potential future power uprate. In this simulation, it is confirmed
that the code system does work properly at the higher power. The control drum is rotated out to
introduce positive reactivity from the control drum in order to raise the power level. From the
simulation results, it is also confirmed that the control drum decusping function works well in
the other direction as well. There is no noticeable difference in the tracking error or the control
cost compared to that of the base case. The simulation has accurate results and does not have a
significant overhead on the control cost.

4.3 Discussion on Numerical Results
In Section Section 4, we demonstrate the load-follow simulation for a 3D microreactor similar to the
HTGR. The MPC controller predicts highly accurate control inputs, thus enabling the prescribed
power to be followed precisely. The RMS error is 0.027%, and the maximum error reported is
0.234% for the nominal operating case.

A potential concern with the MPC controller involves its need for a model that represents the
plant to a sufficient level of accuracy. Obtaining a highly accurate reduced-order model may be
impractical, given the inherent and inevitable presence of model error and uncertainty in model
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parameters. Therefore, a series of sensitivity tests were performed on the MPC method and model
parameters, as described in Section Section 4.2.

The sensitivity tests confirm that the MPC controller is generally robust, and allows for a consider-
able margin when selecting parameters for inclusion in the reduced order model. Even with an error
range as much as ±60% in the point kinetics parameters, temperature reactivity coefficients, and
lumped TH models, the maximum tracking error remains below 0.5%. The control drum reactivity
worth exhibits the most sensitivity compared to other variables—this is expected. For instance,
a simulation with a 60% decrease in control drum worth results in significant oscillation in the
control inputs, and saturates the controller (inputs are limited by constraints). However, simulations
with control drum worth values ranging from 30% lower to 60% higher showed accurate results
and resulted in a maximum tracking error of less than 0.326%.

The sensitivity test demonstrates that overshooting in the control input can negatively impact the
precision and stability of simulation. The MPC controller exceeds the control input when parameters
such as underestimated control drum worth, overestimated decay constant 𝛽𝑖, and underestimated
decay constant 𝜆𝑖 are used. Temperature-based parameters, like the temperature reactivity coef-
ficient and heat capacity, could also produce similar effects. However, these parameters are less
sensitive than others due to the slow rate of the temperature change relative to the power or neutron
density. While undershooting the control input can diminish tracking accuracy, it does not cause
significant solution oscillation.

5. CONCLUSIONS

This report presents the development and assessment of a new simulation capability that combines
the MPC controller with high-fidelity simulation for autonomous load follow operation of a HTGR
type microreactor. The high fidelity neutronics code, PROTEUS, is used to emulate the actual
plant model, making the “plant” simulation more realistic in the absence of a physical system. The
simplified TH and control drum decusping method have both been implemented in PROTEUS. A
reduced order model, based on the point kinetics equation and lumped TH models, was also derived
and incorporated in the MPC controller. The adaptive MPC controller is deployed for computing
the control input to adhere to the given power scenario. This adaptive MPC sequentially linearizes
the nonlinear reduced order model for use in the MPC optimization problem, thereby enhancing
accuracy of the controller for nonlinear systems.

In the assessment of numerical results, the PROTEUS/MPC code system is evaluated for the load
follow operation of a 3D microreactor with a ramp rate at 20%/min of the nominal power. The
simulation reveals that the error in the tracking power is under 0.234%, while the control inputs
remain within the established constraints. For further verification, extensive sensitivity tests have
been performed by adjusting parameters used in the MPC controller and reduced order model. The
conclusions drawn confirm that the MPC controller offers a sizable margin for adjusting parameter
values, thus validating the feasibility of autonomous control with the MPC controller. For additional
verification, a comprehensive series of sensitivity tests was conducted by modifying parameters
within the MPC controller and the reduced order model. The results of these tests confirm that
the MPC controller allows a significant range of flexibility or uncertainty in the parameters. This
flexibility provides robust assurance of the autonomous control feasibility via the MPC controller.
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Lastly, we identify a few ways in which such a capability may add value to reactor designers.
With being able to simulate the controller comapred with high fidelity simulation, analysts can gain
confidence that a particularly controller is sufficiently robust compared with best estimate simulation
methods in the absense of physical systems and experimental data. Further, this capability can be
used to identify design flaws for targets, particularly as it relates to the choice of control drum drive
motors and reactivity worth curves. This simulation capability also presents a tool to assess system
and controller performance for design or operating scenarios that may happen such as after a power
uprate or some other significant design change.

Future areas of research related to this can include considering other transient scenarios, expanding
the simulation model to include the balance of plant system components, development of a multiple-
input, multiple-output control problem, introduction of noise, control of a different variable (e.g.
core average temperature inestead of core power)
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Abstract1

This paper presents the application of a Model Predictive Control (MPC) controller for the2

autonomous load follow operation of a High-Temperature Gas-Cooled Reactor (HTGR) type3

microreactor. Utilizing the high fidelity neutronics code, PROTEUS, to serve as the actual4

plant model, the study enhances the reliability of the simulation. The Simplified Thermal Hy-5

draulics/Fluids (STH) solver and control drum decusping methods have been incorporated into6

PROTEUS. The work also develops a reduced-order model, based on the point kinetics equation7

and lumped TH models, for integration into the MPC controller. An adaptive MPC is utilized8

to compute the control input required to adhere to a given power scenario; it enhances accu-9

racy by sequentially linearizing the nonlinear reduced-order model for optimization. Numerical10

results from the PROTEUS/MPC code system for a 3D microreactor’s load-follow operation at11

a 20% maximum ramp rate show that the tracking power error is minimal (under 0.234%), and12

the control inputs stay within predetermined constraints. Additional in-depth sensitivity tests13

on the parameters used in the MPC controller and reduced-order model verify the robustnesss14

and flexibility of the MPC controller.15

16

Keywords: Model predictive control, load follow, transient, microreactor, high-fidelity simula-17

tion18

I Introduction19

As the global demands on nuclear energy output continue to rise, so does the necessity for more20

advanced, robust, and efficient methods of controlling and managing nuclear reactors. The move21

∗Corresponding author, e-mail: bkochuna@umich.edu
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towards more autonomous control systems such as Model Predictive Control (MPC) has emerged22

as a key area of interest within the field of nuclear reactor operation, holding vast potential to23

revolutionize safety, performance and operational efficiency.24

MPC, a control strategy known for efficiently handling multi-input and multi-output systems, has25

seen increasing application within the fields of the nuclear engineering as well as process industry26

due to its capacity to predict and optimize system performance. Leveraging a model of the system27

to predict future behavior, MPC allows for advanced planning and adjustments, thereby enhancing28

the safety, efficiency, and reliability of nuclear power plants operation.29

Given the advantages of MPC, significant efforts have been dedicated to implementing MPC in30

nuclear reactor applications. Na, Shin, and Kim [1] employed the MPC methodology to design an31

automatic controller for thermal power control during load follow operations in Pressurized Water32

Reactor (PWR). Point models, specifically nonlinear point kinetics equations, and lumped thermal33

hydraulic balance equations, represented the reactor and its systems. In a similar vein, Wang et al.34

[2] utilized the MPC method for PWR core power control, demonstrating the superior performance35

of MPC in comparison to Proportional–Integral–Derivative (PID) controllers. Eliasi, Menhaj, and36

Davilu [3], on the other hand, employed a robust nonlinear MPC technique for PWR applications,37

incorporating additional constraints to manage Xenon oscillation within a predefined range. In38

relatively recent work, Naimi et al. [4] enhanced the traditional MPC’s performance by integrating39

intelligent feedback linearization and a dynamic neural network to address the nonlinearity of40

reactor models.41

There have been numerous applications of MPC to nuclear power plants. However, to the best42

of the authors’ knowledge, no previous research has demonstrated a real plant model as a high-43

fidelity neutron transport simulation with multiphysics coupling, particularly with respect to Gen-44

IV microreactors. Historically, plant models have most commonly been depicted by nonlinear or45

linear point dynamics models.46

In this research, a High-Temperature Gas-Cooled Reactor (HTGR)-type microreactor is modeled47

using multiphysics transient simulations. A high-fidelity neutron transport code, PROTEUS [5],48

is coupled to an adaptive MPC controller to achieve this. The MPC controller is employed to49

ascertain the optimized control drum rotation for load-following operations. The outcomes of this50

paper offer a more realistic and dependable depiction of load-following results.51

Section II presents the reactor model employed in this work, while Section III presents the method-52

ologies implemented in PROTEUS and the MPC controller. Some of the preliminary results for53

load-following operations using the PROTEUS/MPC procedure can be found in Section IV. It’s54

worth noting that this research is an extension of the authors’ previous work [6].55

II HTGR Model56

The authors hold a particular interest in HTGR-type microreactors, with the Holos-Quad microre-57

actor being an ideal candidate for in-depth study. A Gen-IV microreactor concept proposed by58

HolosGen LLC [7], the radial layout of Holos-Quad (Gen 2+) is illustrated in Fig. 1a [8].59

Although the design is fundamentally HTGR type, the reactor has unique features, such as Sub-60
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critical Power Modules (SPMs) and control drums. These rotating control drums are strategically61

located in the radial reflector region and are employed for load-follow operation. As depicted in62

Fig. 1b, a unit-cell is defined as a 3x3 pin array. Each unit-cell contains five fuel compacts, three63

helium coolant channels, and one burnable absorber.64

(a) Radial layout (b) Unit-cell

Figure 1: Holos-Quad (Gen 2+) model [8]

(a) Radial layout (b) Unit-cell

Figure 2: Simplified microreactor model

Table 1: Comparison between Holos-Quad and simplified model

Parameter
Holos-Quad
(Gen 2+)

Simplified
Microreactor

Power (MW) 22.00 2.42
# of fuel compacts 2300 480

Active core height (cm) 380 200
Power density (W/m) 2517 2517
# of coolant channels 1528 288

Core coolant mass flow rate (g/s) 21896 3085
Inlet temperature (K) 863 863

Estimated outlet temperature (K) 1123 1014
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While the Holos-Quad microreactor is suitable for the focus of this research, its size combined with65

a long-running transient presents a notable challenge for computational resources. Consequently,66

we have decided to modify the Holos-Quad model into a simplified, yet representative model.67

The modified microreactor model and its unit-cell model are visually represented in Figs. 2a and 2b.68

In Table 1, we compare some design parameters between the Holos-Quad and the simplified mi-69

croreactor.70

The restructured model presumes quarter symmetry and is smaller in size than the Holos-Quad71

while maintaining the linear power density. The control drum has a 90-degree arc of absorber72

material. Although there are two control drums in the quarter core, only one will be operational in73

this work to facilitate problem simplification. Stated differently, one control drum’s absorber faces74

the core peripheral region, while the other control drum can rotate as needed to reach the desired75

power level.76

III Methodology77

The objective of our study is to develop a control strategy and demonstrate the load-follow operation78

performance of the Holos-Quad microreactor design. To accomplish this, we employ the PROTEUS79

code for high-fidelity, multiphysics calculations in order to best represent an actual plant operation.80

For the load follow operation, the MPC controller calculates the control input, namely the control81

drum rotation, for every time step. The subsequent subsections provide detailed descriptions of the82

individual components incorporated in the calculation.83

III.A Plant Model – PROTEUS84

III.A.1 Neutronics solver85

The PROTEUS code [5] developed by Argonne National Laboratory (ANL) is a high-fidelity neu-86

tron transport code based on unstructured finite element meshes that allow users to model complex87

and unconventional geometry in reactor problems like microreactors and Gen-IV reactors. PRO-88

TEUS has several methods for the transport calculation. In this work the MOCEX solver, which89

uses 2D MOC radially and the discontinuous Galerkin finite element method axially with extruded90

geometry [5], is used. The transient fixed source problem solver is used by relying on the isotropic91

approximation of the angular flux time derivative. The transport solution is accelerated by the con-92

sistent Coarse Mesh Finite Difference (CMFD) [9]. The study uses a 6 energy group macroscopic93

cross-section library, formulated in ISOTXS format, and was generated from a Serpent Monte Carlo94

simulation.95

III.A.1 Thermal Hydraulics/Fluids feedback solver for HTGR96

To ensure reliable load-follow simulation, it is important to accurately incorporate Thermal Hy-97

draulics/Fluids (TH) feedback. A prior research study coupled PROTEUS and Systems Analysis98
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Module (SAM) using a MOOSE-based wrapper for a molten salt reactor [10]. However, coupling99

PROTEUS and SAM requires significant effort and computational time, hence this study imple-100

ments Simplified Thermal Hydraulics/Fluids (STH) solver for HTGR101

The STH solver divides the system into four regions - fuel compact, graphite moderator, cladding,102

and helium coolant. The coolant channels in each unit cell, as presented in Figs. 1b and 2b, are103

consolidated into a single coolant channel. The solver assumes single-phase flow in an axial flow104

channel subject to constant pressure. The governing equation for one coolant channel is as follows:105

∂ρ

∂t
+

∂ρv

∂z
= 0 , (1)

∂ρh

∂t
+

∂ρhv

∂z
= qf

nf

nc
+ qc = q , (2)

where ρ is the density; v is the velocity; t is the time; z is the axial coordinate; h is the enthalpy.106

qf is the power density per fuel compact; nf is the number of fuel compact per unit cell; nc is the107

number of coolant channel per unit cell; qc is the heat deposited in the coolant; and q is the total108

heat source.109

The fuel compact, moderator, and cladding in each unit cell are individually homogenized and110

made to cylindrical geometry such as Fig. 3.111

Figure 3: STH solver cylindrical geometry

The STH solver solves the radial heat transfer equation in the 1D cylindrical coordinate:112

ρcp
∂T

∂t
=

∂

∂x
k(T )

∂T

∂x
+ q , (3)

where cp is the heat capacity; T is the temperature; and k is the thermal conductivity. The113

boundary condition is applied at the cladding wall as follows:114

q′′ = −k
∂T

∂x

∣∣∣∣
w

= hw(Tw − Tb) (4)

where q′′ is the heat flux; hw is the heat transfer coefficient at the surface; Tw is the wall temperature;115

and Tb is the coolant temperature. Eq. (3) is defined in each region of the geometry so that a system116
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of equations is made for the geometry. The system of equations is solved with the finite difference117

method. Since the unit cell geometry is approximated to the cylindrical coordinate, the accuracy118

may be degraded. The thermal conductivity and heat transfer coefficient can be tuned to preserve119

the desired temperature of each region at the steady-state condition. The desired temperature may120

come from a solver using a higher-order method as the finite element.121

III.A.1 Control drum modeling122

The thermal power level of a microreactor is controlled by the control drums that may rotate123

continuously in space. In the computational model, the mesh is finite, and it is generally quite124

difficult to change the mesh during the transient simulation. Therefore, we calculate an effective125

material or cross section for the mesh that is partially spanned by the absorber material. Simply126

homogenizing it based on volume fraction may lead to significant error and cause the so-called127

control rod or drum cusping issues. To mitigate the drum cusping issue, the control drum was128

divided into 96 sectors, however, this discretization was still not sufficient to completely eliminate129

the cusping effect. As shown in the Fig. 4, the volume weighting method causes a “cusping” effect130

in the eigenvalue as a function of the control drum rotation. The drum cusping behavior does131

not represent a realistic situation. Futhermore, it makes the reactivity control difficult since the132

differential reactivity worth does not have a monotonic slope.133

(a) Eigenvalue from 150 to 270
deg

(b) Eigenvalue from 180 to 210
deg (Zoomed in)

Figure 4: Eigenvalue as a function of control drum rotation with different methods

(a) Eigenvalue vs. volume frac-
tion of absorber

(b) Eigenvalue vs. adjusted vol-
ume fraction of absorber

(c) Control drum decusping
function

Figure 5: Control drum decusping function

To reduce the cusping effect, a homogenization correction factor has been generated and used in this134
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work. The way to generate the correction factor is similar to that in [11], but with consideration135

of the control drum geometry. First, 15 eigenvalue calculations were performed with different arc136

lengths of control drum absorbers from 90 deg to 93.75 deg. In this calculation, the starting point137

of the absorber was fixed and only the length was changed. The volume weighting homogenization138

was used when calculating cross section of the mesh which is partially spanned by the absorber.139

Recall that the control drum geometry has 96 azimuthal sectors so each sector is 3.75 deg. Fig. 5a140

shows the eigenvalue as a function of the volume fraction. In the figure, a 0 of volume fraction141

means the length of absorber is 90 deg while 1 means the length of absorber is 93.75 deg. Based142

on the assumption that the eigenvalue should vary linearly, the adjusted volume fractions were143

calculated as Fig. 5b. Additional eigenvalue calculations are not necessary to calculate the volume144

adjustment fraction. Instead, the x-axis was shifted to locate eigenvalues on the ideal line. Fig. 5c145

shows the adjusted or effective volume fraction as a function of the model volume fraction. This146

function is used to calculate the effective volume fraction when absorber material spans a mesh147

partially. Even though the calculation is based on perturbing the volume fraction of one side of the148

absorber, the function is used for both sides of the absorber. With this drum decusping function,149

the eigenvalue changes smoothly as shown in Fig. 4. The function was made based on series of150

2D core calculations, however, it turned out that the same function behaved well for a 3D core151

simulation as well. This approach has limitations in that this function is not general, nevertheless152

the procedure may be repeated for any particular reactor configuration. A more general method153

may need additional research but the decusping function behaves well for the microreactor.154

III.B Reduced Order Models and MPC Controller155

This section describes the methodology of the controller. In this work, the MPC is used for the156

controller. Since the MPC relies on the mathematical model, it is necessary to set up reason-157

able models. Section III.B.2 describes reduced order models for neutronics and TH feedback.158

Section III.B.2 describe how to define the state-space equation from the reduced order models.159

Section III.B.2 describes the theroy of MPC.160

III.B.2 Reduced order models161

The neutron kinetics is represented by the point kinetics equations with normalized forms:162

dn̄(t)

dt
=

ρ(t)− βt
Λ

n̄(t) +

∑6
i=1 λic̄i(t)

Λ
, (5)

163

dc̄i(t)

dt
= λin̄(t)− λic̄i(t) , i = 1 . . . 6 , (6)

where n̄(t) is the normalized neutron density at time t; ρ(t) is the reactivity; βt is the total delayed164

neutron fraction; Λ is the neutron generation time; λi is the delayed neutron time constant for i-th165

group; and c̄i(t) is the normalized precursor density for i-th group.166

Since the plant model represented by PROTEUS has the TH feedback, it is better to have the167

lumped TH feedback model for a reduced order model for more accurate MPC prediction. The168

lumped TH model has three temperatures for the fuel, graphite moderator, and helium coolant:169
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mfcp,f
dTf (t)

dt
= qfPrn̄(t)−Kf→m (Tf (t)− Tm(t)) , (7)

170

mmcp,m
dTm(t)

dt
= (1− qf )Prn̄(t) +Kf→m (Tf (t)− Tm(t))−Km→c (Tm(t)− Tc(t)) , (8)

171

mccp,c
dTc(t)

dt
= Km→c (Tm(t)− Tc(t))−Kc (Tc(t)− Tin) , (9)

where subscripts f , m, and c denote the fuel, moderator, and coolant, respectively; mx is the mass172

of material x; cp,x is the heat capacity; Tx(t) is the temperature; qf is the fraction of heat generated173

from fuel; Pr is the rated power; Kx→y is the heat transfer coefficient from material x to y; and Tin174

is the inlet coolant temperature.175

The rotation of the control drum is also one of the state variables. The following is the equation176

for the control drum:177

dD1(t)

dt
= V1(t) , (10)

where D1(t) is the position of control drum; and V1(t) is the velocity of the drum. The controller178

determines the velocity.179

The reactivity model has the reactivity feedback from temperature, and the reactivity change from180

control drum:181

ρ(t) = ρb + αf (t)Tf (t) + αm(t)Tm(t) + αc(t)Tc(t) +W1(t)D1(t) , (11)

where ρb is the base reactivity; αx(t) is the temperature coefficient of the material x; and W1(t) is182

the differential reactivity worth of the control drum.183

These equations for the reduced order models can be written in a system of equations as follows:184

ẋ = f(x(t),u(t)) , (12)

where x(t) and u(t) are the state vector and input vector, respectively. x(t) contains the state185

variables introduced above, and it is defined as follows:186

x(t) =
[
x1 . . . xNx

]T

=
[
n̄(t) c̄1(t) . . . c̄6(t) Tf (t) Tm(t) Tc(t) D1(t)

]T
,

(13)

where Nx is the number of state variables.187

For simplicity, we assume a single input case for the system therefore Nu is 1 here. With this188

assumption u(t) is189

8



u(t) =
[
u1 . . . uNu

]T
=

[
V1(t)

]T
. (14)

The system of equations, f , is defined as follows:190

f(x(t),u(t)) =
[
f1 . . . fNx

]T

=
[
fn̄ fc̄1 . . . fc̄6 fTf

fTm fTc fD1

]T

=
[
dn̄(t)
dt

dc̄1(t)
dt . . . dc̄6(t)

dt
dTf (t)

dt
dTm(t)

dt
dTc(t)
dt

dD1(t)
dt

]T
. (15)

This form may be helpful for the linearization of the equations.191

For extended periods of load-follow operation, the impact of the Xenon effect is crucial. Xenon,192

which builds up over several hours, carries substantial reactivity worth [12]. Regrettably, PRO-193

TEUS does not possess functionality that allows modeling of Xenon for transient simulations.194

Consequently, it was not possible to include the Xenon model in the reduced order model either.195

III.B.2 State-space representation196

State space representation is a mathematical model of a physical system expressed as a function of197

input, output, and state variables related by first-order differential equations or difference equations.198

All system variables may be represented by a linear combination of the state variable and system199

inputs by the ordinary differential equations.200

It is useful to define the state-space model based on the linearization of the nonlinear equation.201

The state-space model is used in the control theory. The state-space model is defined as follows:202

ẋs(t) = Asxs(t) +Bsus(t)

ys(t) = Csxs(t) ,
(16)

where As is the system matrix with dimensions Nx ×Nx; Bs is the input matrix with dimensions203

Nx × Nu; and Cs is the output matrix with dimensions Ny × Nx. xs(t), us(t), and ys(t) are204

the state vector, input vector, and output vector of state-space model, respectively. The column205

vectors, xs(t), us(t), and ys(t) have length Nx, Nu, and Ny, respectively.206

In the state-space representation, it is inherently assumed that xs(t), us(t), and ys(t) are the207

differences from nominal condition where the linearization is done. In other words, the vectors are208

defined as follow:209

xs(t) = x(t)− x(tn)

us(t) = u(t)− u(tn)

ys(t) = y(t)− y(tn) ,

(17)
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where tn is the time at the nominal condition where the linearization is done.210

An arbitrary function g(z) can be linearly approximated at a nominal state zn as follows:211

g(z)− g(zn) ≈
dg(zn)

dz
(z − zn) . (18)

Similarly, Eq. (12) is approximated at nominal time tn as follows:212

ẋ(t)− ẋ(tn) = As(x(t)− x(tn)) +Bs(u(t)− u(tn)) . (19)

where213

As =
∂f

∂x

∣∣∣∣
t=tn

=
[

∂f
∂x1

. . . ∂f
∂xNx

]∣∣∣
t=tn

=




∂f1
∂x1

. . . ∂f1
∂xNx

...
. . .

...
∂fNx
∂x1

. . .
∂fNx
∂xNx




∣∣∣∣∣∣∣∣
t=tn

, (20)

214

Bs =
∂f

∂u

∣∣∣∣
t=tn

=
[

∂f
∂u1

. . . ∂f
∂uNu

]∣∣∣
t=tn

=




∂f1
∂u1

. . . ∂f1
∂uNu

...
. . .

...
∂fNx
∂u1

. . .
∂fNx
∂uNu




∣∣∣∣∣∣∣∣
t=tn

. (21)

Eq. (19) is the same form as Eq. (16). In many cases, tn is time at an initial steady-state, namely215

tn = 0. The linearization process can be done either by the analytical method or the numerical216

method. In the following sections, the state-space model generated at the initial steady-state217

condition is used for the controller algorithm.218

III.B.2 Model Predictive Control219

The state-space control problem is solved using the MPC algorithm, a sophisticated technique220

for process control that complies with a set of constraints [13]. The technique is based on an221

iterative optimization over a finite horizon for the system, essentially a trajectory optimization.222

For the purposes of this research, we concentrate on the linear, time-invariant state-space model.223

To minimize the discrepancy between a desired set-point and the predicted output, the control224

input is computed for a comparatively short time horizon by evaluating a cost function. This225

computation is consequently repeated at each ensuing time window.226

For completeness, the basic theory of the MPC method is detailed below. The subsequent derivation227

of the MPC is primarily referenced from [14], presented here to ensure thorough understanding228

within the context of this work. The state-space model is outlined as follows, featuring a time-229

discretized linear system.230

xd(k + 1) = Adxd(k) +Bdud(k), (22)
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231

yd(k) = Cdxd(k) , (23)

where k is the time step index, and Ad, Bd, and Cd are the discrete forms of As, Bs, and Cs,232

respectively. These discretized matrices are defined with Tayler expansions as follow:233

Ad =

∞∑

l=0

1

l!
(As∆t)l , (24)

Bd =

[ ∞∑

l=1

1

l!
Al−1

s ∆tl

]
Bs , (25)

Cd = Cs , (26)

where ∆t is the time difference between step k and k + 1.234

Applying a finite difference approximation to Eq. (23) yields235

xd(k + 1)− xd(k) = Ad (xd(k)− xd(k − 1)) +Bd (u(k)− u(k − 1)) . (27)

Next, we make use of the following simplifying notation236

∆(·)(k) = (·)(k)− (·)(k − 1) , (28)

to yield237

∆xd(k + 1) = Ad∆xd(k) +Bd∆u(k) . (29)

Note that the input to the state-space model is ∆ud(k). The next step is to connect ∆xd(k) to the238

output, yd(k). To do so, a new state variable vector is defined as239

xa(k) =
[
∆xd(k)

T y(k)
]T

. (30)

Note that240

y(k + 1)− y(k) = Cd (∆xd(k + 1))

= CdAd∆xd(k) +CdBd∆u(k) .
(31)

Combining Eqs. (29) and (31) leads to the following discretized state-space model:241

xa(k+1)︷ ︸︸ ︷[
∆xd(k + 1)
yd(k + 1)

]
=

Aa︷ ︸︸ ︷[
Ad ONx×No

CdAd INo×No

]
xa(k)︷ ︸︸ ︷[

∆xd(k)
yd(k)

]
+

Ba︷ ︸︸ ︷[
Bd

CdBd

] ∆ua(k)︷ ︸︸ ︷
∆ud(k), (32)

ya(k) =

Ca︷ ︸︸ ︷[
OT Io

]
xa(k)︷ ︸︸ ︷[

∆xd(k)
yd(k)

]
(33)
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where ONx×No is the zero matrix with dimension Nx ×No; and INo×No is the identity matrix with242

dimension No × No. Aa, Ba, and Ca are called the augmented model which will be used in the243

design of the predictive control.244

Assuming that at the sampling instant k, where k > 0, the state variable vector x(k) is available245

through measurement, then the state x(k) provides the current plant information. The future246

control trajectory is denoted by247

∆ua(k), ∆ua(k + 1) . . . ∆ua(k +Nc − 1), (34)

where Nc is called the control horizon – dictating the number of parameters used to capture248

the future control trajectory. With the information given in x(k), the future state variables are249

predicted for Np number of samples, where Np is called the prediction horizon. Np is also the length250

of the optimization window. We denote the future state variables as251

xa(k|k), xa(k + 1|k) . . . xa(k +Np|k), (35)

where x(k + m|k) is the predicted state variable at k + m with given current plant information252

x(k). The control horizon Nc is chosen to be less than (or equal to) the prediction horizon Np.253

The state-space model for the prediction horizons can be denoted as follows:254

Y = Fxa(k) +Φ∆U, (36)

where255

Y =
[
ya(k + 1|k)T . . . ya(k +Np|k)T

]T
, (37)

256

∆U =
[
∆ua(k)

T . . . ∆ua(k +Nc − 1)T
]T

, (38)
257

F =



CaAa

...

CaA
Np
a


 , (39)

258

Φ =




CaBa 0 0 · · · 0
CaAaBa CaBa 0 · · · 0
CaA

2
aBa CaAaBa CaBa · · · 0
...

CaA
Np−1
a Ba CaA

Np−2
a Ba CaA

Np−3
a Ba · · · CaA

Np−Nc
a Ba




. (40)

For a given set-point signal (or reference trajectory), the objective of the predictive control system259

is to bring the predicted output as close as possible to the set-point signal. One of the advantages260

of MPC is that MPC can uses preview capability for set-point signal. If an application allows261

anticipating the signal, the MPC controller with signal previewing can improve reference tracking.262

This objective is then translated into an input to find the “best” control parameter vector ∆U263

such that an error function between the set-point and the predicted output is minimized. The cost264

function J , which reflects the control objective, is defined as follows:265

J = (R−Y)T (R−Y) + ∆UTWu∆U+UTWvU . (41)
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In Eq. (41), the first term is linked to the objective of minimizing the errors between the predicted266

output Y and the set-point signal R. The vector R contains the set-point information as follows:267

R =
[
r(k)T r(k + 1)T . . . r(k +Np − 1)T

]T
, (42)

268

r(k) =
[
r1(k) r2(k) . . . rNo(k)

]T
, (43)

where r1(k) to rNo(k) are the set-point signals corresponding to output vector. If an application269

does not allow previewing the set-point signals for some reason, r(k) can then be used for the rest270

of the prediction horizon.271

The second term reflects the consideration given to the size of ∆U. This term reflects the considera-272

tion to minimize the control effort. Wu is a diagonal matrix in the form thatWu = wuINc×Nc (wu ≥273

0) where wu is used as a weighting parameter for the desired closed-loop performance.274

The third term also reflects the consideration to minimize the control effort but the third term is275

to reduce ua instead of ∆ua. U is defined as follows:276

U =
[
ua(k)

T . . . ua(k +Nc − 1)T
]T

= C1ua(k − 1) +C2∆U ,
(44)

where C1 = 1Nc×1 ⊗ INu×Nu ; 1Nc×1 is the 1-vector with dimension Nc × 1; C2 = T ⊗ INu×Nu ;277

and T is the lower triangle with all non-zero elements are 1 and dimension Nc × Nc. Wv in the278

third term is a diagonal matrix in the form that Wv = wvINc×Nc which wu is used as a weighting279

parameter.280

The cost function is rewritten as a function of ∆U as follows:281

J = ∆UTH∆U+ 2∆UTL+ c , (45)

where282

H = ΦTΦ+Wu +CT
2 WvC2 , (46)

283

L = ΦT (Fxa(k)−R) +CT
2 WvC1ua(k − 1) , (47)

and c is the remainder which is not multiplied to ∆U. The remainder, c, is not used when solving284

the quadratic programming problem.285

One of the other advantages of MPC is that design constraints can be considered in the optimization.286

To incorporate the design constraints into the control problem, it is necessary to translate the287

constraints into linear inequalities. The constraints are taken into consideration for each moving288

horizon window. Since the MPC problem is formulated and solved in the framework of the receding289

horizon control, the constraints on the rate of change are expressed as290

∆umin ≤ ∆ua(k) ≤ ∆umax, (48)

where the superscripts min and max denote the minimum and the maximum constraints, respec-291

tively. The constraints are defined within the control horizon so that it can be expressed in terms292

of function ∆U as follows:293

∆Umin ≤ ∆U ≤ ∆Umax, (49)

where ∆Umin and ∆Umax are column vectors with Nc elements of ∆umin and ∆umax, respectively.294
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The constraints then need to be decomposed into two parts to reflect the lower and the upper limit.295

This is expressed as follows:296 [
−C1

C1

]
∆U ≤

[
−∆Umin

∆Umax

]
, (50)

where I is the identity matrix, and its size depends on Nc and u.297

This procedure also applies to the control input and output constraints. All constraints are ex-298

pressed in terms of ∆U. The constraints for the velocity, which U defined in Eq. (51), is written299

as follows:300

Umin ≤ C1ua(k − 1) +C2∆U ≤ Umax . (51)

Using Eq. (36), the output constraints are expressed in terms of ∆U as:301

Ymin ≤ Fx(k) +Φ∆U ≤ Ymax. (52)

Finally, the MPC in the presence of constraints is proposed as finding ∆U that minimizes the302

quadratic cost function303

J = ∆UTH∆U+ 2∆UTL+ c , (45 revisited)

subject to the inequality constraints:304

M∆U ≤ N , (53)

where305

M =




−C2

C2

−C1

C1

−Φ
Φ



; N =




−Umin +C1u(k − 1)
Umax −C1u(k − 1)

−∆Umin

∆Umax

−Ymin + Fx(k)
Ymax − Fx(k)



. (54)

To solve this quadratic programming problem, the Operator Splitting solver for Quadratic Programs306

(OSQP) solver is used [15]. The OSQP solver is a numerical optimization package for solving convex307

quadratic programs. The solver is very efficient and accurate for these kind of convex quadratic308

programming problems. The OSQP solver is not applicable to the more complicated nonlinear309

optimization problem for nonlinear MPC. However, the optimization problem with a nonlinear310

model can be handled with the adaptive MPC which is not much different from the standard MPC311

but the state-space model is updated during simulation by linearizing the nonlinear model every312

time step. A detailed algorithm is presented in Section III.B.2.313

Although the optimal parameter vector ∆U contains the controls ∆ua(k), ∆ua(k+1), . . . , ∆ua(k+314

Nc − 1), with the receding horizon control principle, the first sample of this sequence, i.e. ∆u(k),315

14



is implemented only while ignoring the rest of the sequence. When the next sample period arrives,316

the more recent measurement is taken to form the state vector x(k + 1) for calculation of the new317

sequence of control signal. This procedure is repeated in real time to give the receding horizon318

control law. Fig. 6 presents the calculation flow of the standard MPC.319

Figure 6: Calculation flow with standard MPC

III.B.2 Adaptive MPC320

The theory of MPC is presented in Section III.B.2. The standard MPC described in Section III.B.2321

is based on the state-space model which is linearized or defined at a particular time such as an322

initial steady-state condition. However, the reduced order model described in Section III.B.2 is323

not necessary to be linear. Ignoring the nonlinearity of the reduced order model may degrade the324

accuracy of reference tracking. Applying nonlinear MPC [16] may resolve the issue. However,325

the nonlinear MPC is computationally expensive and a nonlinear constraint is rarely necessary for326

many applications. Therefore, this work uses the adaptive MPC [17]. The adaptive MPC controller327

adjusts its prediction model at run time to compensate for nonlinear or time-varying characteristics.328

Figs. 6 and 7 present the calculation flow with the standard MPC and the adaptive MPC.329

Figure 7: Calculation flow with adaptive MPC

The only different thing between the standard MPC and the adaptive MPC is that the state-space330

model is linearized during the simulation in the adaptive MPC. To do this, the reduced order model331

defined in Eq. (12) needs to be solved during the simulation as well as the plant model and the state-332

space model. The state-space model is updated every time step or as needed by using the exact same333

process in Section III.B.2. The MPC problem is updated repeatedly with the updated state-space334
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model. Compared to the standard MPC, the adaptive MPC requires additional calculations in335

solving the reduced order model and repetitive setups of the state-space model and MPC problem.336

However, the overhead is negligible and is readily manageable with modern computing power while337

the accuracy of the adaptive MPC may be comparable to that of the nonlinear MPC as long as the338

linearization is repeated with a short time interval. Therefore, the adaptive MPC can be a good339

trade-off between the standard MPC and the nonlinear MPC.340

III.B.2 Model mismatch and observer341

The MPC optimization is conducted based on the reduced order model. It is nearly impossible to342

directly use the plant model or a high-fidelity model in the MPC optimization due to the complexity343

and computational cost. Instead, the reduced order model is used as described in Section III.B.2.344

The issue is that the reduced order model also approximates the plant or high-fidelity model. It345

means that the solutions from the plant model and the reduced order model are different. Therefore,346

there should be a process to correct the difference. This is done by an observer.347

Before explaining the observer, it is necessary to mention the measurement. It is necessary to348

consider which state variable can be obtained from the plant or high-fidelity model. In practice, it349

is not feasible to measure some state variables (e.g. the delay neutron precursors and core-averaged350

temperature for each material). The power level or relative neutron density (i.e. n̄) may be the351

only parameter that can be obtained from the real plant. In this sense, it is assumed that only the352

power level or relative neutron density is obtained from the plant model in the simulation and the353

observer is used to correct the neutron density.354

The measurement correction process done by the observer is quite straightforward. Once the355

measurement is obtained from the plant or high-fidelity model, the output vector, yd(k) in Eqs. (32)356

and (33) is corrected as follows:357

y′
d(k) = yd(k) +K (ỹ(k)− yd(k)) (55)

where y′
d(k) is the corrected output vector; ỹ(k) is the output vector from the plant; and K is the358

observer matrix with dimension No ×No. When the optimization problem is a single output case359

and the only power can be measured from the plant, the K would be 11×1. What the observer360

is doing is simply replacing the output from the state-space model with measurable output from361

the plant. The corrected output vector, y′
d(k), is then used in the subsequent MPC optimization362

instead of yd(k).363

An additional correction is necessary for the adaptive MPC since the adaptive MPC algorithm364

solves the reduced order model separately and the measurement correction needs to be done to the365

reduced order model as well. The observer for the state-space model simply corrects the output366

vector. However, simply updating the neutron density in Eq. (12) may lead to an unphysical367

neutron time derivative. The corrected neutron density is not calculated from the reduced order368

model so the neutron balance is not necessary to meet. An additional calculation to preserve the369

time derivative of neutron density is necessary to resolve the issue. In other words, the following370

relation needs to meet:371

dn̄(t)

dt
=

dn̄′(t)
dt

, (56)

where n̄′(t) is the corrected neutron density which is the same as the neutron density of the plant372
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model. To preserve the time derivative with the corrected neutron density, an additional parameter373

is needed or some variables are needed to be modified. This will be handled by updating the base374

reactivity. Using Eq. (5), the above equation is written in following:375

ρ(t)− βt
Λ

n̄(t) +

∑6
i=1 λic̄i(t)

Λ
=

ρ′(t)− βt
Λ

n̄′(t) +

∑6
i=1 λic̄i(t)

Λ
, (57)

where ρ′(t) is the corrected reactivity corresponding to n̄′(t) and it is defined as a function of376

corrected and uncorrected neutron densities:377

ρ′(t) = (ρ(t)− βt)
n̄(t)

n̄′(t)
+ βt . (58)

The correction on the reactivity may be assumed that the base reactivity, ρb, is updated to have378

ρ′(t). The updated neutron density and the reactivity are used in the subsequent calculations.379

IV Numerical Results380

IV.A 3D microreactor results381

In this section, the load-follow simulation results for the HTGR-type microreactor described in382

Section II are presented. As mentioned in Section III.B.2, one of the advantages of the MPC is an383

ability to consider constraints in the optimization problem. Three kinds of constraints are applied384

to the drum rotation rate u, and drum rotation acceleration ∆u/∆t. It should be noted that these385

constraints are assumed because they have not been determined in the reactor design, yet. The386

numerical values of the constraints are listed in Table 2. There is no specific constraint for the387

control drum rotation since the drum can rotate over 0 degree or 360 degree. The constraints for u388

and ∆u/∆t are simply chosen to have ±0.1%/s and ±0.1%/s2, respectively. These constraints are389

corresponding to ±0.36 deg/s and ±0.36 deg/s2, respectively. In reality, the constraints should be390

first based on the mechanical performance of the drum rotation system, and secondarily on tech-391

nical specification limits for the operation that should satisfy safety and operational performance392

requirements.393

Table 2: Applied constraints to microreactor control

Parameters Constraints
Control drum rotation (deg) 0 ≤ s ≤ 360

Control drum rotation rate (deg/s) −0.36 ≤ u ≤ 0.36
Control drum rotation acceleration (deg/s2) −0.36 ≤ ∆u/∆t ≤ 0.36

Table 3 presents parameters used in the reduced order model. The delayed neutron fraction and the394

delayed neutron time constants were extracted from the 6-group cross section library of PROTEUS.395

A typical generation time for thermal reactor was used. Therefore, the point kinetics parameters are396

not necessary to be accurate. The feature to generate the point kinetics parameters in PROTEUS397

is not ready to use yet. In Section IV.B, the sensitivity test results are presented to determine the398

effect of these parameters. The temperature coefficients and control drum differential worth were399

determined from a series of 2D core simulations.400
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Table 3: Parameters used in the reduced order model simulation

Parameter Value Unit Parameter Value Unit
β 0.01181 - Λ 2.627E-5 s
β1 0.00041 - λ1 0.01334 1/s
β2 0.00213 - λ2 0.03274 1/s
β3 0.00204 - λ3 0.12078 1/s
β4 0.00457 - λ4 0.30278 1/s
β5 0.00187 - λ5 0.84949 1/s
β6 0.00078 - λ6 2.85300 1/s
αf -4.0 pcm/K cf 977.0 J/kg/K
αm -0.2 pcm/K cm 1697.0 J/kg/K
αc 0.0 pcm/K cc 5190.0 J/kg/K
W1 -33.3 pcm/deg - - -

Table 4: Power level setpoint

Time period (sec) Description for power level
0 - 5 Maintain 100%
5 - 245 Decrease to 20% with ramp rate of -20%/min

245 - 1800 Maintain 20%
1800 - 2040 Increase to 20% with ramp rate to 20%/min
2040 - 3600 Maintain 100%

Figure 8: 3D microreactor load-follow simulation results
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Table 4 present the results for the 3D microreactor load follow simulation. The prescribed power401

scenario starts at 100%, decreases to 20%, and then increases back to 100%. The ramp rate between402

100% and 20% power is ±20%/min which is the fastest ramp rate requirement for nuclear reactors403

[18]. As depicted in Fig. 7, the plant is represented by PROTEUS coupled with STH. The adaptive404

MPC is used for the simulation. One second of the time interval is used for both PROTEUS405

simulation and MPC control. The initial position of the control drum is 180 deg which the center406

of the control drum absorber faces south as shown in the Fig. 2a. In the simulation, 40 computing407

cores were used.408

The objective of the controller is to predict control inputs to have accurate power compared to409

setpoint while minimizing control costs and being regulated within the given constraints. Fig. 8410

presents the load-follow simulation results. The prescribed power scenario starts at 100%, decreases411

to 20%, and then increases back to 100%. The calculated power with the MPC controller is very412

accurate. The RMS tracking error over the entire simulation is 0.027%. The maximum tracking413

error is 0.234%. The core-averaged temperature is also calculated for fuel, moderator, cladding,414

and coolant. The temperature changes very slowly than power. The power level decreases to 20%415

and maintains the level between 4 min and 30 min. In this period, the MPC controller needs to416

keep solving the optimization problem to compensate for the temperature feedback effect by adding417

negative reactivity with the control drum. In the same period, the control drum keeps rotating.418

Similar behavior is repeated when the power increases back to 100% but with opposit direction.419

During the load-follow simulation, the control drum rotates between 180 deg and 203 deg.420

To determine the cost for input control, RMS velocity and RMS acceleration are calculated and421

shown in the figure. The RMS velocity and RMS acceleration are 2.22E-2 deg/s and 5.55E-3 deg/s2,422

respectively. It is not straightforward to determine whether these costs are large or small. The423

same parameters are calculated for several other 2D core simulations and then compared to each424

other in the next section.425

IV.B Sensitivity Test426

This section presents the sensitivtiy test results on numerous parameters including the MPC427

method, control drum worth, kinetics parameters, TH parameters, ramp rate and the different428

scenario. Table 5 summarizes the tracking error and the noramlized control cost. The normalized429

control cost indicates the RMS velocity and RMS acceleration of the control drum over the entire430

simulation but these are normalized by the costs of 2D core simulation. The normalization is per-431

formed since it is not straightforward to determine whether the control costs are expensive or not432

based on the absolute values. Therefore, relative or normalized control costs are calculated and433

presented.434
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Table 5: Summary of sensivitiy test based on 2D simulation

Tracking difference (%) Normalized control cost
Description

RMS Max Velocity Acceleration
3D core simulation 0.027 0.234 1.09 1.09

2D core simulation (Base case) 0.017 0.170 1.00 1.00
Standard MPC 0.180 1.196 0.89 0.40

Drum worth −60% 0.106 0.790 4.90 37.87
Drum worth −30% 0.022 0.326 1.00 1.48
Drum worth +30% 0.031 0.172 1.00 0.88
Drum worth +60% 0.049 0.226 0.99 0.80

Position-dependent drum worth 0.019 0.166 1.00 1.03
βi −60% 0.046 0.375 0.99 0.62
βi +60% 0.027 0.403 1.24 2.78
λi −60% 0.032 0.224 1.03 1.36
λi +60% 0.017 0.160 0.99 0.88
λi +90% 0.019 0.155 0.99 0.84
Λ −30% 0.017 0.170 1.00 1.00
Λ +30% 0.017 0.170 1.00 1.00

αf , αm −60% 0.048 0.294 1.00 1.00
αf , αm −30% 0.030 0.221 1.00 1.00
αf , αm +30% 0.019 0.170 1.00 1.00
αf , αm +60% 0.035 0.186 1.00 1.00

cp,f , cp,m, cp,c −30% 0.020 0.171 1.00 1.00
cp,f , cp,m, cp,c +30% 0.022 0.192 1.00 1.00
Ramp rate 5%/min 0.012 0.097 0.61 0.32
Ramp rate 30%/min 0.021 0.384 1.27 1.63

Power 100%→140%→100% 0.015 0.140 0.40 0.24

IV.B.2 2D core simulation435

For fast running, all sensitivity tests are performed with a 2D core model. The 2D core has the436

same design and the same size but only the boundary condition at the top and bottom surface of437

the core is reflective. Therefore, only one axial plan is necessary to simulate the core model. Fig. 9438

shows the 2D core simulation results. This comparison is made to confirm that the 2D core model439

can show similar behavior as the 3D core so that the subsequent sensitivity test still represents the440

situation of the 3D core.441
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Figure 9: 2D microreactor load-follow simulation results

Table 5 also presents the comparison between the 2D and 3D core simulation. Both 2D and 3D442

core simulations have a similar level of accuracy. The 2D core has a smaller tracking error, i.e.,443

the maximum error is 0.17%. The normalized control cost in Table 5 indicates the RMS velocity444

and RMS acceleration of the control drum over the entire simulation but these are normalized by445

the costs of 2D core simulation. The normalization is performed since it is not straightforward to446

determine whether the control costs are expensive or not based on the absolute values. Therefore,447

relative or normalized control costs are calculated and presented. The 3D core simulation shows448

about 9% higher control costs for both control drum velocity and acceleration than those of the449

2D core. It may be more difficult to approximate the plant by the reduced order model since450

the 3D core may have a more heterogeneous flux profile. In addition, the reduced order model451

may approximate the 2D core model more accurately since the control drum differential worth and452

temperature reactivity coefficients were generated based on the 2D core simulation. These are the453

reasons why the 2D core load follow results have higher accuracy and lower control cost than those454

of the 3D core simulation. However, these differences are not significant and it can be assumed455

that the 2D core load follow simulation has a similar behavior as the 3D core. Therefore, the 2D456

core model is used for the rest of the sensitivity tests.457

IV.B.2 Adaptive MPC vs. Standard MPC458

In Sections IV.A and IV.B.2, the results are based on the adaptive MPC controller. As discussed459

in Section III.B.2, the adaptive MPC can consider the nonlinear characteristics of the reduced460

order model. The impact of considering the nonlinearity can be determined by comparing it to the461
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standard MPC case. Fig. 10 shows the results with the standard MPC controller.462

Figure 10: 2D microreactor load-follow simulation results with standard MPC

The standard MPC has less accurate results than the adaptive MPC results. The RMS tracking463

error is 0.18% and the maximum error is 1.196%. The difference may be acceptable but there464

is accuracy degradation due to the methodology in the controller. The main difference comes465

from the time-varying components of the matrix As in the state-space equations (i.e. Eq. (16)).466

Fig. 11 shows the time-varying components of As which is calculated from the adaptive MPC. Four467

elements from the adaptive MPC highly depend on time and vary significantly. Especially, dfn̄/dTf ,468

dfn̄/dTm, and dfn̄/dD1 have upto 80% differences compared to those at the initial condition. On469

the other hand, the state-space model of the standard MPC is generated at the initial steady state470

and does not vary during the simulation. It means the standard MPC overestimates the magnitude471

of dfn̄/dTm, and dfn̄/dD1 between 4 min and 30 min. According to the power difference in Fig. 10,472

once a tracking error is calculated for some reason, the tracking error does not shrink rapidly. The473

controller needs to calculate more aggressive control input to eliminate the tracking error. However,474

the controller cannot do it due to the overestimated dfn̄/dD1. The normalized control costs of the475

standard MPC are smaller than those of the adaptive MPC due to the same reasons – overestimated476

dfn̄/dD1. If the state-space model is linearized at low power, then the controller may overshoot477

the control input due to underestimated dfn̄/dD1, and the power may oscillate – this result is not478

presented but it can be guessed.479
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Figure 11: Time-varying components of matrix As from adaptive MPC

IV.B.2 Control drum reactivity worth480

A wide range of the control drum reactivity worth is tested for the 2D microreactor load-follow481

simulation in this section. The reactivity worth varies from −60% to 60% compared to the reference482

value listed in Table 3. The tracking error increases as the drum worth moves away from the base483

case. As mentioned in Section IV.B.2, the larger drum worth (i.e. dfn̄/dD1) makes the controller484

undershoot the control input causing smaller control cost but larger tracking error. On the other485

hand, as the drum worth becomes smaller, the larger control cost is spent. It means the controller486

with the small drum worth may overshoot the control input so that the solution may oscillate in487

a severe case. This situation is clearly shown in Fig. 12. The control inputs with the 60% smaller488

drum worth hit the constraints a lot of times while the power and control input oscillate. If the489

constraints are not used, the simulation may diverge due to the aggressive control inputs.490

An additional comparison is made for the position-dependent control drum worth. As presented in491

Fig. 4a, the control drum worth may vary depending on the position. The tracking error and the492

control costs are not much different from those of the base case which uses the constant control493

drum worth. This is because the control drum differential worth is fairly flat in the operation range494

which is 180 - 205 deg. As shown in Fig. 4a, the slope of the reactivity between the ranges is495

monotonic. If the control drum is initially located in a different rotation (such as 220 deg), the496

position-dependent worth may be essential to have accurate and stable results.497

In this section, the sensitivity test results with different control drum reactivity worths are pre-498

sented. The simulation results show that it is important to have an accurate estimate of the control499

drum worth to have accurate and stable simulation results. However, the controller with ±30%500

error in the control drum worth still predicts pretty accurate and stable results. The ±30% of501

error in the control drum worth is a quite large margin therefore the MPC controller is reasonably502

robust.503
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Figure 12: 2D core simulation results with 60% lower control drum reactivity worth

IV.B.2 Point kinetics parameters504

A various range of point kinetics parameters is tested in this section. As mentioned in Section IV.A,505

the point kinetics parameters may have some error since the parameters were not calculated from506

homogenization by weighting solutions from PROTEUS transport calculation. Instead, medium507

values or typical values were chosen for the reduced order model. In practice, it may be difficult508

to calculate the point kinetics parameters for every configuration and condition of the real reactor.509

The point kinetics parameters used in the controller may have some amount of error. Therefore,510

it is important to check how much the MPC controller is sensitive to the selection of the point511

kinetics parameters.512

The control cost and the tracking error increase as βi increase. This means that the reduced order513

model underestimates the effect of the prompt neutron so that the MPC controller overshoots the514

control input to compensate for the underestimated prompt neutron effect. On the contrary, the515

reduced order model overestimates the effect of the prompt neutron as the βi decreases. The MPC516

controller undershoots the control inputs in this case. The small βi reduces the control cost but it517

increases the tracking error.518

The decreased λi means the deleted neutron has a longer half-life so that the effect of the prompt519

neutron is underestimated. The MPC controller overshoots the control input due to the underesti-520

mated prompt neutron effect. When using 30% increased λi, the simulation results look like to have521

better accuracy in terms of RMS tracking error, and use less amount of control cost. This result is522

likely interpreted that increasing λi makes the overall reduced order model be more accurate than523

the equations with the base parameters since not all parameters used in the reduced order model524

are accurate. However, the RMS tracking error increases again if the λi is increased by 60% and525

90%.526

Changing the prompt neutron generation time does not make any noticeable difference. There are527

very small difference between these simulations so that the results in the table have the same value528

depending on cases. The neutron time derivative in Eq. (5) shows that Λ exists at the denominator529

of the entire right hand side equations. Therefore, all ∂fn̄/∂x (i.e. ∂fn̄/∂n̄ ... ∂fn̄/∂D1) change530

with the same fraction (30% or −30%) when Λ changes in the sensitivity test. If the temperature531

feedback or the drum reactivity worth in Eq. (11) have more complicated form rather than the532

simple linear equation, the sensitivity results per Λ may be different.533
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IV.B.2 Temperature reactivity coefficients and heat capacity534

The control cost and tracking accuracy do not have significant impact from choosing the temper-535

ature related parameters such as temperature reactivity coefficients and heat capacity is relatively536

small since the reactivity feedback effect from the temperature change is very slow compared to537

neutronics. As shown in Fig. 9, the temperature changes relativelty slowely than the power level.538

Changing the heat capacity and the mass makes the same results since both heat capacity and the539

mass are multiplied to the left hand side of Eqs. (7) to (9). Therefore, additional sensitivity test540

on the mass is not performed. It can be assumed that changing the mass has the same effect as541

changing heat capacity.542

IV.B.2 Ramp rate and power level543

A wide range of ramp rates and different scenarios are tested in this section. It is expected that a544

slow transient scenario is easier to calculate the control input for the controller than a fast transient545

scenario since the slow transient scenario has smooth power change. Table 5 presents the sensitivity546

results with 5%/min ramp rate to 30%/min ramp rate including the base case. Figs. 13 and 14547

show the detailed simulation results. As expected, the simulation results have a higher tracking548

error when using the fast ramp rate. For the 5%/min of ramp rate case, the maximum tracking549

error is only 0.097% and the normalized control cost for the acceleration is only 32% of the base550

case. On the other hand, the case with 30%/min ramp rate has 0.384% of maximum tracking error551

and 63% higher control costs than that of the base case. From the sensitivity test on the ramp552

rate, it is concluded that the MPC controller can calculate accurate control inputs to follow the553

setpoint for a wide range of ramp rates.554
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Figure 13: 2D core simulation results with 5% ramp rate

Figure 14: 2D core simulation results with 30% ramp rate
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A different scenario with uprating power is also simulated and presented in Fig. 15. The scenario555

has 100% power initially, increases the power to 140%, and then comes back to the original power.556

In this simulation, it is confirmed that the code system does work properly even for a higher power.557

The control drum needs to rotate in the other direction to reduce the negative reactivity from the558

control drum in order to raise the power level. From the simulation results, it is also confirmed559

that the control drum decusping function works well in the other direction as well. There is no560

noticeable difference in the tracking error or the control cost compared to that of the base case.561

The simulation has accurate results and does not have a significant overhead on the control cost.562

Figure 15: 2D core simulation results with maximum 140% power level

IV.C Discussion on Numerical Results563

In Section Section IV, we demonstrate the load-follow simulation for a 3D microreactor similar to the564

HTGR. The MPC controller predicts highly accurate control inputs, thus enabling the prescribed565

power to be followed precisely. The RMS error is 0.027%, and the maximum error reported is566

0.234%.567

A potential concern with the MPC controller involves its need for a model that represents the568

plant. Obtaining a highly accurate reduced-order model may be impractical, given the inherent569

and inevitable presence of model error. Therefore, a series of sensitivity tests were performed on570

the MPC methods and model parameters, as described in Section Section IV.B.571

The sensitivity tests confirm that the MPC controller allows for a considerable margin when se-572

lecting parameters for inclusion in the reduced order model. Even with an error range as much as573
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±60% in the point kinetics parameters, temperature reactivity coefficients, and lumped TH models,574

the maximum tracking error remains below 0.5%. The control drum reactivity worth exhibits more575

sensitivity than the other variables. For instance, a simulation with a 60% decrease in control drum576

worth results in significant oscillation in the control inputs, which strike constraints. However, sim-577

ulations with control drum worth values ranging from 30% lower to 60% higher showed accurate578

results, as seen in a maximum tracking error less than 0.326%.579

The sensitivity test demonstrates that overshooting in the control input can negatively impact580

the precision and stability of simulation. The MPC controller exceeds the control input when581

parameters such as underestimated control drum worth, overestimated decay constant βi, and un-582

derestimated decay constant λi are used. Temperature-based parameters, like the temperature583

reactivity coefficient and heat capacity, could also produce similar effects. However, these parame-584

ters are less sensitive than others due to the slow rate of temperature change relative to the power585

or neutron density. While undershooting the control input can diminish tracking accuracy, it does586

not cause significant solution oscillation.587

V Conclusion588

This paper presents the practicality of an MPC controller for autonomous load follow operation589

of a HTGR type microreactor. The high fidelity neutronics code, PROTEUS, is used to emulate590

the actual plant model, making the simulation more reliable. The simplified TH and control drum591

decusping method have both been implemented in PROTEUS. A reduced order model, based on the592

point kinetics equation and lumped TH models, has been established and incorporated in the MPC593

controller. The adaptive MPC controller is deployed for computing the control input to adhere to594

the given power scenario. This adaptive MPC sequentially linearizes the nonlinear reduced order595

model and utilizes it for optimization, thereby enhancing accuracy.596

In the assessment of numerical results, the PROTEUS/MPC code system is evaluated for the load597

follow operation of a 3D microreactor with a ramp rate at 20% of the maximum. The simulation598

reveals that the error in the tracking power is under 0.234%, while the control inputs remain599

within the established constraints. For further verification, extensive sensitivity tests have been600

performed by adjusting parameters used in the MPC controller and reduced order model. The601

conclusion drawn confirms that the MPC controller offers a sizable margin for adjusting parameters,602

thus validating the feasibility of autonomous control with the MPC controller. For additional603

verificaiton, a comprehensive series of sensitivity tests was conducted by modifying parameters604

within the MPC controller and the reduced order model. The results of these tests confirm that605

the MPC controller allows a significant range of flexibility for parameter adjustment. This flexibility606

provides robust assurance of the autonomous control feasibility via the MPC controller.607
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