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Abstract 

Sounds in our everyday environment play a crucial role in guiding our perception 

and behaviors. The ability to effectively process these sounds—perceive them, 

contextualize their meaning, and subsequently harness this information to adapt our 

behaviors—is an intricate yet fundamental process. Consider, for instance, the familiar 

experience of recognizing a friend's voice in a bustling crowd, or the moment when a 

sudden car horn prompts a swift response to ensure safety. These everyday scenarios 

underscore the significance of auditory perception, which is known to rely on the auditory 

cortex within the auditory system. The auditory cortex, a higher-level brain region in the 

auditory pathway, performs a multifaceted role in processing sounds, beyond the mere 

analysis of their acoustic features. It is essential for processing spectrotemporally rich 

sounds like human speech or animal vocalizations, which carry ethological relevance, 

and contributes to our ability to engage in sound-guided behavior and decision-making. 

However, how the auditory cortex brings together all the moving parts in our acoustic 

environment to facilitate a stable auditory perception across contextual variations and 

time, is still an enigma. This dissertation tackles this challenge by examining neural 

mechanisms in the auditory cortex at two distinct temporal scales, and its functioning 

under baseline conditions and in behavioral contexts, providing comprehensive insights 

into the functioning of the auditory cortex in real-world contexts.  



 xiii 

The first study in this dissertation addresses the long-term stability of auditory 

cortical sound representations, comparing the processing of complex sounds like animal 

vocalizations, with that of simple sounds like pure tones. By recording the sound-evoked 

neural responses in the auditory cortex using two-photon calcium imaging, this study 

provides evidence for the distinction in longitudinal sound representations in the auditory 

cortex based on the acoustic structure and salience of the auditory inputs. The second 

study moves to investigate auditory cortical mechanisms in a behavioral context. In this 

study, I adapted the classical appetitive trace conditioning paradigm to train mice in 

predicting the time to reward, using a sound cue. By combining electrophysiology, 

chemogenetic and pharmacological interventions, this study establishes the causal and 

functional role of auditory cortex and its downstream connection to the posterior striatum 

in sound-triggered interval timekeeping, at a 1-second temporal resolution. Collectively, 

these studies offer insights about how neural representations in the auditory cortex can 

simultaneously encode for auditory and relevant non-auditory information like timing, 

which are necessary for shaping our consequent actions and behaviors. This work makes 

an essential contribution to the literature on the various auditory cortical mechanisms 

aiding in auditory perception but also underscores the importance of recognizing the 

auditory cortex as a region with broader functions beyond primary auditory processing.  
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Chapter 1 : Introduction 

Processing the array of sounds that envelop our world – from twittering of birds to 

meaningful conversations and the lively music of concerts – requires more than just 

hearing. It involves recognizing where these sounds come from, understanding their 

meaning, and reacting appropriately. For instance, being able to recognize familiar voices 

in a crowded room makes social interactions smoother or the sound of a car honking 

warns us of our surroundings and ensures our safety. Without such a stable and reliable 

perception of sounds in our daily environment, our lives would be quite challenging. 

Impaired ability to process speech and other complex sounds has been observed in 

several patients with schizophrenia and autism and have been further linked with irregular 

cognitive function (F. R. Lin et al., 2013; L. Liu et al., 2016; Peelle & Wingfield, 2016; 

Uchida et al., 2019). Moreover, noise-induced, and age-related hearing loss are 

considered global public health issues especially due to their detrimental effect on 

cognition in over 20% of the global population (Bisogno et al., 2021; F. R. Lin et al., 2013; 

Natarajan et al., 2023; Uchida et al., 2019). Therefore, this ability, known as auditory 

perception, is a fundamental part of how we experience the world around us, shaping our 

interactions and helping us make sense of what we hear.  

The neural mechanisms of the auditory system aid in achieving robust auditory 

perception by extracting enormous amounts of information from all the different types of 

sounds we encounter in our daily lives. Sound representations in the early stations of the 
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auditory pathway like the cochlear nucleus, medial geniculate body and the inferior 

colliculus have been well-described. It is known that these regions are highly specialized 

in detecting spectro-temporal features of the sound like intensity, pitch, and frequency 

(Casseday et al., 2002; Davis, 2005; Marsh et al., 2006; Rhode & Smith, 1986; Rouiller 

et al., 1983), aid in sound localization (Shackleton et al., 2003), and put together 

topographic maps of physical attributes of the incoming sounds (Davis et al., 2003; 

Eggermont, 2001; Ehret & Schreiner, 2005; King & Moore, 1991; Ress & 

Chandrasekaran, 2013; Stiebler & Ehret, 1985). Nonetheless, a disparity exists between 

these early sound representations, primarily based on the sound waveform's physical 

characteristics, and perceptual representations, which are intricately tied to real-world 

entities often referred to as "auditory objects" (Bizley & Cohen, 2013; Griffiths & Warren, 

2004; Nelken et al., 2003, 2014; Nelken & Bar-Yosef, 2009; Sutter & Shamma, 2011). 

Representation of these “auditory objects” is believed to be achieved through the diverse 

characteristics of the neural activity in the auditory cortex (Nelken, 2004; Sutter & 

Shamma, 2011; Winkler et al., 2009). However, there are many aspects of how the 

auditory cortex facilitates auditory perception that are yet to be explored. This dissertation 

will address neural mechanisms in the auditory cortex that facilitate auditory perception 

through two distinct studies – one aimed at understanding how real-world complex 

sounds like speech are represented in the auditory cortex across time and the other, 

investigating the auditory cortical neural mechanisms underlying a sound-triggered time 

prediction behavior, essential for our daily activities.   
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1.1 Auditory cortex 

The auditory cortex (AC) is a key region involved in higher-level auditory 

processing and integration, necessary for formation of “auditory objects” (Bizley & Cohen, 

2013; Griffiths & Warren, 2004; Nelken et al., 2014; Nelken & Bar-Yosef, 2009). Most 

studies in the auditory system have focused on comprehending how simple stimuli like 

pure tones, clicks and noise bursts, which are the fundamental elements of any sound, 

are represented neuronally (For example, Read et al., 2002; Nelken et al., 2004; Bizley 

et al., 2005). Individual neurons in all regions of the auditory pathway are typically most 

sensitive to one component frequency, known as the characteristic or the best frequency, 

in the incoming sound signal. In AC, pure tones evoke robust frequency-specific neuronal 

responses (Hromádka et al., 2008). Many studies in bats, cats and nonhuman primates 

have shown that individual AC neurons respond to multiple frequencies which are often 

harmonically related (Kadia & Wang, 2003; Sadagopan & Wang, 2009; Suga et al., 1983; 

Sutter & Schreiner, 1991; X. Wang, 2013). These findings suggest that AC neurons are 

a necessary component of circuits involved in processing harmonic patterns in speech or 

sounds from musical instruments.  

Studies using simple sounds have also given us an essential understanding of the 

local and tonotopic sound representations in AC. For instance, rats trained on an 

appetitive classical conditioning paradigm with a pure tone as the conditioning stimulus, 

changed the frequency selectivity of individual AC neurons to that of the conditioning 

stimulus frequency (Bakin & Weinberger, 1990) and enlarged the representation of the 

conditioning sound frequency in the global tonotopic map of AC (Polley et al., 2006; 

Recanzone et al., 1993). Some studies used repeated stimulation of auditory cortical 
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neurons with pure tones over days in different stages of cortical development to modulate 

the auditory cortical tonotopic map and understand the extent of its experience-dependent 

plasticity (Froemke et al., 2007; Recanzone et al., 1993; Zhang et al., 2001; Zhou et al., 

2011). To characterize sound-evoked AC neuronal firing patterns, AC neurons in 

marmoset monkeys were tonically driven with a preferred sound stimulus that had a 

defined frequency, modulation frequency and intensity, and were compared against AC 

firing patterns to a non-preferred tonic stimulation (X. Wang et al., 2005). It was seen that 

preferred stimuli evoke a sustained firing pattern over the stimulus duration in AC, 

compared to AC responses to the non-preferred stimulus, emphasizing the selective 

representation of sounds in AC (X. Wang et al., 2005). All these studies elucidate a lot of 

characteristic properties of AC neuronal activity in response to sounds but are limited in 

expanding upon the role of AC in processing complex sounds such as speech and animal 

vocalizations, which carry ethological relevance.  

1.2 Complex sound processing in AC 

Early studies in AC were shaped by stimulating this region with sound elements 

ubiquitous in our daily lives like human speech and animal sounds, especially in presence 

of background noise, famously known as the “cocktail party problem”. Amongst these 

numerous studies, one particular study provided some of the earliest evidence that 

neurons in the AC encode for sounds according to their meaning rather than just their 

structural elements (Wollberg & Newman, 1972). In this study, individual neuronal activity 

in the AC of squirrel monkeys was recorded in response to modified recordings of 

species-specific vocalizations and it was shown that, in addition to producing discrete 

neural responses to each individual vocalization, AC neuronal response to the 
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subsequent vocalization interacted with that of the previous vocalization, suggesting that 

AC encodes for the temporal patterns of the vocalizations and analyses complex auditory 

signals (Wollberg & Newman, 1972).  

Following these early studies that provided the foundation for studying AC 

responses to complex sounds, researchers asked the fundamental question of how AC 

is involved in this process. Over the decades, both causal  (Butler et al., 1957; Goldberg 

& Neff, 1961; Ohl et al., 1999) and physiological evidence for this has been found in AC. 

Mongolian gerbils trained to discriminate between two complex sounds showed an 

impairment in this discrimination ability following bilateral lesioning of AC, compared to 

another group of gerbils which were able to retain their ability to discriminate between two 

pure tones after bilateral ablation of AC (Ohl). Once the causal role of AC was established 

in complex sound processing, extensive research has been done to show that neural 

representations of complex sounds in AC are unique and are not a linear combination of 

its responses to the component frequencies that make up the complex sounds (Atencio 

et al., 2012; Kim et al., 2020; Sadagopan & Wang, 2009; Town et al., 2018). For instance, 

it was found that 26% of AC neurons in awake marmoset monkeys were not responsive 

to pure tones (Sadagopan & Wang, 2008) but were highly selective for complex sound 

features (Sadagopan & Wang, 2009). Using two tone pips as stimuli, it was seen that 

these non-tone responsive neurons exhibited a nonlinear combination sensitivity to the 

spectral and temporal characteristics of the sounds rather than the individual tone pips 

themselves (Sadagopan & Wang, 2009).  

A recent study mapped the neural discriminability to communication sounds in 

guinea pigs along the various regions of the auditory pathway including the cochlear 
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nucleus, inferior colliculus, auditory thalamus and the primary auditory cortex (Souffi et 

al., 2020). Compared to the earlier stations of the auditory pathway, AC neural ensembles 

showed a reduced discrimination ability of vocalizations (Souffi et al., 2020), emphasizing 

the previous finding that neural responses in AC encode for information beyond the 

features of the incoming sounds (Chechik & Nelken, 2012). Importantly, this study also 

showed that representations in AC were invariant to the background noise during 

communication sounds. Invariance of AC sound representations to sound level, pitch, 

timbre and spatial location has been demonstrated by studies in songbirds (Bilimoria et 

al, 2008), rodents (Carruthers et al., 2015; Klein et al., 2006; Sadagopan & Wang, 2008; 

Schneider & Woolley, 2013) and ferrets (Bizley et al., 2009, 2013). It has also been shown 

that some AC neurons selectively respond to the background sounds, allowing for sound 

source segregation (Bar-Yosef & Nelken, 2007). Such invariance of sound 

representations has been the key to what is known as “perceptual constancy”, where one 

is able to identify sound features despite variation in sensory input. This perceptual ability 

was addressed by neural recordings in ferret AC, which were proficient in identifying the 

sound identity across variations in acoustic features of the sound (Town et al., 2018). AC 

responses encoded the sound identity, while also representing task-irrelevant sound 

features, influencing the animals’ behavioral performance accuracy. These invariant 

sound representations in AC are key to our ability to identify the same sound across 

variations in our environment.   

1.2.1 In behavioral contexts 

. A fundamental role of AC is to process sounds to drive behavior. Natural sounds 

that animals encounter in their environment, are particularly important in developing 
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experiences over animals’ lifetime and consequently shaping their behaviors. Ultrasonic 

vocalizations emitted by rodents in different contexts have been shown to be crucial for 

various behaviors. For example, mouse pup calls are selectively recognized and 

behaviorally relevant to mothers and not to non-naïve virgin female mice (Ehret, 1987; 

Ehret & Haack, 1982; Ehret & Koch, 1989). Single unit and LFP recordings in the AC of 

mothers show a pup call-evoked sustained inhibition compared to AC responses seen in 

virgin females, suggesting that auditory cortical plasticity allows for enhanced detection 

of pup calls in mothers (Galindo-Leon et al., 2009; F. G. Lin et al., 2013). On the other 

hand, rats produce vocalizations at different frequencies in appetitive and aversive 

situations and attract social interactions with juvenile rats only in appetitive conditions 

(Brudzynski, 2013). There are numerous examples of stereotyped vocalizations produced 

by songbirds to attract mates and warn others of dangers (Doupe & Kuhl, 1999). Recent 

studies showed that the ability to identify complex sounds from musical instruments 

depends on the subject’s ability to distinguish the rise and fall in sound intensity and time, 

which were encoded in AC neural responses in humans (Cutting & Rosner, 1974) and in 

mice (Deneux et al., 2016). Such a vast array of literature implicates how AC is important 

for detecting and processing frequency modulations and patterns of structural harmonics 

that are an essential part of vocalizations in animals and human speech (Kuchibhotla & 

Bathellier, 2018). 

While these findings emphasize how AC is important for shaping behavior using 

sound cues, how AC is involved in auditory-driven behaviors is perplexing. Multiple 

studies have addressed this by distinctly suggesting that while AC is required for 

perceptual learning of auditory-instructed behaviors, it is not required for processing other 
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auditory aspects of the task. For instance, inactivation of AC in ferrets did not impair their 

ability to localize sounds but influenced the accuracy of sound localization following a 

period of monoaural sensory deprivation (Bajo et al., 2019). It has been established by 

numerous studies that AC is not required for discrimination between two simple sounds 

like pure tones (Ohl et al., 1999). However, through focal optogenetic perturbation of AC 

activity, a recent study showed that while AC is dispensable for discrimination of dissimilar 

tones in mice, it is necessary for context-dependent sound discrimination requiring 

temporal integration (Ceballo et al., 2019). Further, many studies have characterized the 

role of AC in sound-guided decision-making tasks in which the sound representation in 

AC indicates the choice made by the subjects (Aizenberg & Geffen, 2013; Bathellier et 

al., 2012; Fritz et al., 2003, 2005; Kuchibhotla & Bathellier, 2018). All these findings 

suggest that plasticity of AC responses is crucial for learning and facilitating adaptation 

following any hearing-related problems (Bajo et al., 2019) and more importantly, highlight 

how the functional role of AC is highly dependent on the behavioral context and could 

potentially extend beyond its role in processing sound-related information. 

1.2.2 Study 1: How are complex real-life sounds represented in AC across time? 

Evidence from all these studies strongly supports the unique and significant role 

of AC in processing behaviorally relevant sounds, which are spectrotemporally complex. 

To support reliable auditory perception that is consistent across time, the ability to 

recognize complex sounds and their associated meaning is expected to rely on their 

stable neural representations across time. At the same time, it is known that AC response 

properties undergo rapid and robust experience-dependent functional plasticity (Atiani et 

al., 2009; David et al., 2012; Fritz et al., 2003; Polley et al., 2013). Therefore, a key 
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question that remains to be addressed is whether AC forms a stable representation of 

complex sounds across days. Hence, I hypothesized that auditory cortical representations 

of complex sounds are more stable across days than those of sounds that lack 

spectrotemporal structure such as pure tones. Testing this hypothesis requires recording 

the responses of the same AC neurons across days, which poses a technical challenge. 

Previous studies have limited their neural recordings to short periods of time (minutes to 

hours) or have recorded different forms of population-mean signals across days (Galván 

et al., 2001; Kisley & Gerstein, 2001), which could be distinct from findings at single 

neuron-level. One study recorded multiunit activity of AC receptive fields in ferrets and 

found that 73% of the receptive exhibited stability over the course of minutes to hours 

(Elhilali et al., 2007) but acquiring reliable recording from the same neurons across days 

using electrophysiology is highly challenging. In vivo two-photon calcium imaging offers 

precise spatial localization of individual neurons and allows for recording the activity of 

the same neurons across days. Therefore, to quantify the degree of longitudinal stability 

of auditory cortical representations of complex sounds and pure tones, in Study 1, I 

carried out two-photon calcium imaging of identified excitatory neuronal ensembles in 

layers 2/3 of AC in awake head-fixed mice across days.  

1.3 Predicting auditory-driven future events is essential for auditory perception 

Predictive coding theory postulates that AC’s ability to predict and explain sensory 

experiences extends beyond mere sound processing. It entails the iterative refinement of 

predictions and their comparison with incoming sounds at varying levels of the auditory 

pathway to reduce prediction errors and to construct a stable neural representation that 

underlies auditory perception (Kumar et al., 2011). Most of our initial evidence for 
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predictive coding in AC is a product of human studies using mismatch negativity (MMN) 

tasks and animal studies examining stimulus specific adaptation (SSA). SSA is 

considered the “single-cell analog of MMN” (Khouri & Nelken, 2015), showing enhanced 

responses to surprise or deviant sounds in a repeated sequence of same sounds 

(Heilbron & Chait, 2018; Ulanovsky et al., 2003). Along with encoding for the unfamiliar 

sound in a sequence, the reduced representation of the repeated stimuli during SSA, 

shows the influence of stimulus history on AC activity (Rubin et al., 2016; Ulanovsky et 

al., 2004). It has also been shown that an omitted sound at the end of a repetitive 

sequence of sound stimulation evokes an expectation-based response in AC, further 

driving home the modulation of AC neural activity by stimulus history. Apart from sounds, 

actions predictive of upcoming salient sound stimuli are known to weaken AC responses 

to the sound, especially when the sounds are self-generated (Reznik et al., 2021; 

Rummell et al., 2016). These retrospective representations of prediction based on 

previous sensory or motor experiences in AC make a strong case for AC in predicting 

upcoming future events and guide adaptive behavior.   

1.3.1 Study 2: How does the auditory corticostriatal pathway support sound-

triggered reward time prediction?  

A crucial behavioral sequence that we perform daily is to use sounds to determine 

our next steps. An example of one such behavioral sequence is to use sound cues to 

estimate and predict time intervals to the upcoming actions effectively. For example, the 

distinct sound of a phone notification prompts us whether we need to answer it 

immediately or later, while the sound of an approaching vehicle signals when it is safe to 

cross the street. However, the neural mechanisms that underlie this ability to use sounds 
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to reliably estimate seconds-long time intervals to future salient events, and use these 

estimates for guiding appropriate action, are not well understood. In the auditory pathway, 

a key candidate brain region for encoding sound-triggered timing is AC, due to its 

established role in behavior- and decision-making- dependent sound processing 

(Bathellier et al., 2012; Francis et al., 2018; Fritz et al., 2003, 2005; King & Schnupp, 

2007; Kuchibhotla & Bathellier, 2018; Nelken et al., 2014; Town et al., 2018). Numerous 

studies have demonstrated retrospective coding of the degree to which a sound deviates 

from expectation in the auditory cortex (Audette et al., 2022; Huang et al., 2023; J. Li et 

al., 2017; Singer et al., 2018; Ulanovsky et al., 2003), as outlined above. However, much 

less is known about the existence of prospective coding of anticipated time from a sound 

to a subsequent event. Two studies in AC addressed aspects of such prospective coding 

from a sound stimulus to a following sound stimulus which predicts reward (Jaramillo & 

Zador, 2011) or from the sound stimulus generated from an action such as a lever press 

to initiate reward delivery (Cook et al., 2022). But it remains unknown whether and how 

the auditory cortex is involved in sound-triggered predictive timing of future salient events 

on the timescale of seconds. Using a combination of behavioral monitoring, 

electrophysiological recording, pharmacological and chemogenetic inactivation 

techniques, I investigated the neural mechanisms underlying sound-triggered prediction 

of time to consequent reward, in Study 2.  

Together, the findings from both these studies advance our understanding of two 

distinct neurophysiological mechanisms underlying auditory driven behaviors, and further 

underscore how the role of auditory cortex is unique and multifaceted, to achieve reliable 

auditory perception. Note that results of study 1 have already been published (Suri & 
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Rothschild, 2022) and findings from study 2 is in preparation to be submitted as a 

manuscript (Suri et al, 2023).  



           13 

Chapter 2 : Enhanced Stability of Complex Sound Representations Relative to 
Simple Sounds in the Auditory Cortex 

2.1 Abstract 

Typical everyday sounds, such as those of speech or running water, are 

spectrotemporally complex. The ability to recognize complex sounds (CxS) and their 

associated meaning is presumed to rely on their stable neural representations across 

time. The auditory cortex is critical for processing of CxS, yet little is known of the degree 

of stability of auditory cortical representations of CxS across days. Previous studies have 

shown that the auditory cortex represents CxS identity with a substantial degree of 

invariance to basic sound attributes such as frequency. We therefore hypothesized that 

auditory cortical representations of CxS are more stable across days than those of sounds 

that lack spectrotemporal structure such as pure tones (PTs). To test this hypothesis, we 

recorded responses of identified L2/3 auditory cortical excitatory neurons to both PTs and 

CxS across days using two-photon calcium imaging in awake mice. Auditory cortical 

neurons showed significant daily changes of responses to both types of sounds, yet 

responses to CxS exhibited significantly lower rates of daily change than those of PTs. 

Furthermore, daily changes in response profiles to PTs tended to be more stimulus-

specific, reflecting changes in sound selectivity, as compared to changes of CxS 

responses. Lastly, the enhanced stability of responses to CxS was evident across longer 

time intervals as well. Together, these results suggest that spectrotemporally CxS are 
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more stably represented in the auditory cortex across time than PTs. These findings 

support the role of the auditory cortex in representing CxS identity across time. 

2.2 Introduction 

Everyday sounds such human speech, animal vocalizations, the sound of running 

water or rustling of leaves, are spectrotemporally complex (Doupe & Kuhl, 1999; Ehret & 

Haack, 1982; Gygi et al., 2007). A key brain region involved in the perception of 

spectrotemporally complex sounds is the auditory cortex (AC) (Bizley et al., 2009; Griffiths 

et al., 2004; King et al., 2018b; Maor et al., 2020; Nelken, 2004, 2008; Nelken & Bar-

Yosef, 2009; Rauschecker, 1998). For example, AC lesions result in a more profound 

impairment in processing CxS in comparison to PTs and other simple sounds in both 

humans (Griffiths, 2003; Kaga et al., 1997) and animal models (Harrington et al., 2001; 

Ohl et al., 1999; Rybalko et al., 2006). Responses of AC neurons to CxS can often not be 

predicted from a linear combination of responses to the PT components of the CxS 

(Angeloni & Geffen, 2018; Atencio et al., 2008; Barbour & Wang, 2003; Harper et al., 

2016; Mizrahi et al., 2014; Nelken et al., 1999; Sadagopan & Wang, 2009; Schreiner et 

al., 2011; Schwartz et al., 2020; X. Wang et al., 2005). Furthermore, studies using a range 

of approaches have shown that AC responses to CxS represent sound “identity” with a 

substantial invariance to its frequency components and other acoustic parameters 

(Blackwell et al., 2016; Carruthers et al., 2015; Chechik & Nelken, 2012; Harpaz et al., 

2021; Nelken et al., 2003, 2014; Town et al., 2018). While these studies suggest an 

important role of the AC in representing the identity and meaning of CxS, to what degree 

these representations are stable across time remains unknown.  
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To support the ability to recognize sensory stimuli and their associated meaning, 

the neural representations of the stimuli are expected to be stable across time (Lütcke et 

al., 2013; Schoonover et al., 2021). At the large-scale spatial resolution, the 

representation of tone frequency across the AC tonotopic map is indeed generally stable 

in adulthood in the absence of instructive learning or manipulation of the acoustic 

environment (W. Guo et al., 2012; Merzenich et al., 1976). At the single-cell level, 

receptive fields of most auditory cortical neurons have been found to be stable across up 

to 2 hours of recording, though a minority of neurons exhibited significant changes within 

this timeframe (Elhilali et al., 2007a). However, whether AC sound representations are 

stable across days and whether the representations of CxS and PTs are similarly stable, 

remains unknown. Given the suggested involvement of AC in representing CxS identity, 

we hypothesized that CxS would be more stably represented in the AC across time as 

compared to PTs. Here, we tested this hypothesis by recording the responses of identified 

L2/3 AC excitatory neurons to both PTs and CxS across days in awake mice using two-

photon calcium imaging.  

2.3 Materials and Methods 

All animal procedures were performed in accordance with the University of 

Michigan animal care committee’s regulations. 

2.3.1 Animals 

We used 13 (10 males, 3 females, 8-15 weeks old) Thy1-GCaMP6f mice 

(C57BL/6J-Tg (Thy1-GCaMP6f) GP5.17Dkim/J, Jax number: 025393) which express the 

GCaMP6f calcium indicator in excitatory pyramidal neurons (Dana et al., 2014). Mice 



           16 

were housed under a reverse 12h light/12h dark cycle, with lights on at 8:30pm and off at 

8:30am. Experiments were conducted between 11am and 4pm and each animal was 

imaged around the same time of day across all days of data collection so that the time 

gap between consecutive imaging days was ~24 hours. 

2.3.2 Surgical procedure 

All surgeries were performed on mice anesthetized using ketamine (100mg/kg, 

i.p.) and xylazine (10mg/kg, i.p.). Anesthetized mice were placed in a stereotaxic frame 

(Kopf 514 Instruments, CA, USA), and an anti-inflammatory drug (Carprofen, 5mg/kg, 

subcutaneous injection) and a local anesthetic (lidocaine, subcutaneous injection) were 

administered. A craniotomy was performed over the right primary AC (AP: -3.1 mm; ML:  

4.6 mm lateral from midline (Supplementary Figure 2.1) using a 3mm biopsy punch 

(Integra Inc) and a 3mm diameter round glass cranial window was secured over this 

craniotomy. A custom-made lightweight (<1 gr) titanium head bar was attached to the left 

side of the skull using dental cement and cyanoacrylate glue to allow for head-fixed 

imaging. During the surgery, body temperature was maintained at 38ᵒC and the depth of 

anesthesia was regularly assessed by checking pinch withdrawal reflex. Mice were 

treated with Carprofen for 48 hours post surgically and allowed to recover for a week.  

2.3.3 Two-photon calcium imaging  

Mice were first habituated to the imaging setup and the sound protocols for 3 days. 

During the 3-day habituation period, the animals were exposed to the same PT and CxS 

stimuli as during imaging days 1-5 while being head-fixed in the same setup under the 
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two-photon microscope while being positioned on a circular treadmill (without imaging). 

Each stimulus was presented 30-35 times in total across the 3-day habituation period. 

During imaging, the objective of the microscope was placed perpendicular to the 

surface of the cranial window to access the AC. Imaging was carried out using an Ultima 

IV two-photon microscope (Bruker) through water immersion objectives (Nikon, 40X, NA 

= 0.65 (n= 2 mice) and a 16X, NA = 0.8 (n = 8 mice)) and a pulsed laser was used to 

provide excitation at 940nm (MaiTai eHP DeepSee by Spectra Physics). Data was 

collected using galvanometric (“galvo”) scanning of 256X256 pixel images at 3 

frames/second. We conducted a separate set of recordings from the same neurons using 

galvo scanning and faster resonant scanning at 60 frames/second (averaging every 4 

frames to yield 15 frames/sec) and found that responsiveness, response magnitude and 

trial-to-trial consistency were not underestimated by the slower galvo imaging sample rate 

(Supplementary Figure 2.2). During the period of habituation, focal planes with a high 

yield of neurons were determined in L2/3 (imaged at depths of 150-330µm (Meng et al., 

2017)). The overlying blood vessel patterns and position with respect to the cortical 

surface were noted for these identified focal planes and were used to image the same 

focal planes across five consecutive days of the experiment.  

2.3.4 Auditory stimuli 

Stimuli were generated at a sampling rate of 97.6 kHz using MATLAB and 

presented to the animal using an SA1 speaker amplifier, ED1 speaker driver and a multi-

field magnetic speaker (MF1) positioned ~10cm in front of the animal, all by Tucker-Davis 

Technologies (TDT). Acoustic stimuli consisted of two protocols: PTs consisted of 8 pure 
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tone stimuli at 2-32 kHz (Figure 2.1D), while CxS consisted of 8 sounds, including 4 

animal vocalizations (cricket, macaque, chiffchaff, water shrew) and 4 environmental 

sounds (glass, thump, scratch and water, Figure 2.1D). The CxS had significantly higher 

frequency bandwidth, spectral entropy, and spectrotemporal modulation as compared to 

the PTs (Figure 2.1C). The duration of each sound was 500 ms (padded with silence for 

some of the CxS) and sound intensity was 65-70 dB SPL. In a given imaging session for 

each focal plane, each sound within a protocol was repeated 10 times in a pseudorandom 

order with an inter-stimulus interval of 1.5 ± 0.3 seconds. The order of the sound protocols 

was shuffled across experiments.  

Frequency bandwidth, spectral entropy, and spectrotemporal modulation were 

quantified for all sounds as attributes of sound complexity. Occupied frequency bandwidth 

quantifies the range of frequencies a sound is composed of and was calculated as the 

difference in frequency between the points where the integrated power crosses 0.5% and 

99.5% of the total power in the spectrum. Spectral entropy of a sound quantifies how 

distributed its frequency content is and was calculated as the Shannon entropy of the 

normalized power distribution of the sound. Spectrogram autocorrelation of each sound 

measures the similarity of the frequency content of a sound across time bins and was 

calculated by temporally binning each spectrogram into 20 equally sized time bins 

(excluding brief periods of silence at the end of some sounds), resulting in column vectors 

that represent the power distribution of the sound at every time bin. We then calculated 

the Pearson correlations between all vectors and averaged these correlations values. 

Thus, the spectrogram autocorrelation of each sound inversely represents the degree of 
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spectro-temporal modulation. The ‘Spectrotemporal modulation index’ was defined as 1-

spectrogram autocorrelation. 

2.3.5 Data analysis  

2.3.5.1 Preprocessing  

Imaging data was run through the open-source Suite2p software package 

(Pachitariu et al., 2016) to correct for movement and neuropil signal, and to select 

neuronal regions of interest (ROI). To ensure reliable physiological measurements, we 

required that in any given imaging session, detected cell bodies show a compactness > 

0.8 and that their ΔF/F trace shows a skewness > 1.1 and clear transients (the 

experimenter was blind to sound responsiveness during the cell inclusion phase). A small 

minority of responses occurring during locomotion were excluded from all analyses 

(Supplementary Figure 2.3). All further analysis was done on the data preprocessed and 

output from Suite2p using custom-written MATLAB scripts (MathWorks, 2019a).  

To identify the same neurons across imaging sessions, the average across-frames 

fluorescence image (with Suite2p’s median-filtering image enhancement) of each focal 

plane was used. The average fluorescence images of the same focal plane were then 

manually matched for same neurons across days. We confirmed cell matching using fully 

automated image registration (MATLAB command: imregcorr) and calculation of 

structural similarity index (MATLAB command: ssim) of the cell bodies across days and 

found >95% agreement (Supplementary Figure 2.4). 
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2.3.5.2 Two-photon imaging data analysis 

The relative change in fluorescence (ΔF/F) was defined for each neuron in a given 

imaging session as (F(t) -F0)/F0, where F(t) is the raw fluorescence signal of the cell at 

time t, and F0 is the median of the raw fluorescence signal across the session. The 

response magnitude of a given neuron to a sound was defined as the across-trials 

average ΔF/F within 0-1.5 s from sound onset. Responsiveness of a given neuron to each 

stimulus was determined using a bootstrap analysis. Specifically, the difference between 

the sound response magnitude across trials and the mean pre-stim response magnitude 

(mean ΔF/F during in the pre-stim windows (-1.5 to 0 s) of all sounds in the protocol) was 

compared to a distribution of similar differences resulting from 1000 random shuffles of 

the sound responses and pre-stim responses. The neuron was considered responsive to 

a given stimulus if the difference between the real sound response and mean pre-stim 

magnitude was larger than 97.5% of the shuffled differences and if the sound response 

magnitude was at least 10% greater than the pre-stim magnitude. On a given day, a 

neuron was considered sound responsive if it was responsive to at least one stimulus on 

that day (with Bonferroni correction for the number of stimuli).  

To allow pooling changes in daily responses across neurons with different 

response magnitudes, the responses of each neuron to all stimuli across the two days of 

comparison were z-scored prior to further analysis and statistical testing. For each 

comparison, a neuronal response to a given stimulus was included if the neuron was 

sound responsive on at least one of the days of comparison.  
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The significance of a change in response magnitude of a given neuron to a specific 

sound was quantified using a shuffle test. Specifically, the difference in mean response 

magnitudes between days was determined to be significant if the difference was larger 

than 95% of the simulated differences generated from the random shuffling of trials across 

the days of comparison (nShuffles = 1000) and in addition the magnitude of change was 

at least 10%. Using this method, we computed the significance of changes across 4 one-

day intervals (Day 1  Day 2; Day 2  Day 3; Day 3  Day 4; Day 4  Day 5), 3 two-

day intervals (Day 1  Day 3; Day 2  4; Day 3  Day 5), 2 three-day intervals (Day 1 

 4; Day 2  Day 5) and 1 four-day interval (Day 1  Day5).  

The percentage of significant change in daily neuronal responses to a stimulus 

was calculated by: 

(Number of sound responses that showed a significant change) ∗ 100
Total number of  significant responses

 

A neuron was determined to show significant change across days if it showed a 

significant change in response to at least one stimulus (after Bonferroni correction for the 

number of stimuli). The fraction of neurons across all pairs of consecutive days showing 

a significant change was calculated by:  

Number of neurons that showed a significant change
Total number of sound responsive neurons

 

For a given neuron, we computed the average Euclidean Distance between its 

response profiles (magnitude of responses across stimuli) across pairs of days using the 

following equation: 
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�(𝑥𝑥1 − 𝑦𝑦1)2 + (𝑥𝑥2 − 𝑦𝑦2)2+. . . +(𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛)2 

where xi equals the neuron’s response to stimulus i on the first day and yi equals 

the neuron’s response to stimulus i on the second day.  

To test for stimulus-specificity of response change, we tested whether the day of 

recording (1 or 2) significantly interacted with the stimulus identity in determining 

response magnitude using a two-way ANOVA with interaction. The ANOVA output was 

used to compute the effect size (ω2) of the interaction term. 

To test whether there is a significant difference between multi-day or multi-stimuli 

proportions across CxS and PTs (Figure 2.1F and Figure 2.4), we used a bootstrap 

analysis. Specifically, for each category across CxS and PTs (e.g., “1-day” in Figure 

2.4A), we derived a distribution of 10,000 randomly simulated PTs proportions given the 

probability of the corresponding CxS category. The p-value was calculated as the fraction 

of “CxS-simulated” PTs probabilities that were equal to or higher than the real PTs 

probabilities across categories.  

2.3.5.3 Statistical tests  

We used statistical tests at a p<0.05 significance level and α = 0.05 for all 

comparisons unless otherwise indicated (Table1). 

2.4 Results 

To quantify the degree of stability of auditory cortical representations of PTs and 

CxS, we carried out two-photon calcium imaging of identified excitatory neuronal 
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ensembles in L2/3 of the AC (Supplementary Figure 2.1) in 10 awake head-fixed Thy1-

GCaMP6f mice across days. As the degree of sound novelty influences response 

magnitude in AC (Heilbron & Chait, 2018; Kato et al., 2015; Nelken, 2014; Parras et al., 

2017; Ulanovsky et al., 2003, 2004), we familiarized the mice to the experimental sound 

protocols for three consecutive days while being head-fixed under the two-photon 

microscope before data acquisition commenced (Figure 2.1A). During this habituation 

period, in each animal, three optical focal planes were chosen and registered with respect 

to the overlying blood vessel pattern to allow for repeated imaging of the same neurons 

across days (Figure 2.1B).  

From day 1 to day 5 of the experiment, we imaged the daily responses of the same 

neuronal ensembles to 8 PTs of varying frequencies and 8 CxS. The CxS consisted of 

animal vocalizations and environmental sounds that broadly overlapped in frequency 

content with the PTs, while having significantly higher frequency bandwidth, spectral 

entropy, and spectrotemporal modulation (Figure 2.1C,D, see Methods). As expected, 

AC neurons responded to both PTs and CxS with sound-triggered transients in relative 

change in fluorescence (ΔF/F, Figure 2.1E). We first compared the degree of overall 

sound-evoked responsiveness to CxS and PTs across the population. We found that 

response magnitudes to PTs and CxS were not significantly different (Figure 2.1F) and 

that the rate of responsive neurons to PTs and CxS were also not significantly different 

(Figure 2.1G). Thus, our chosen set of PTs and CxS evoked similar magnitudes and rates 

of responses among L2/3 AC excitatory neurons. Responsiveness, response magnitude 

and trial-to-trial consistency were not underestimated by our imaging sample rate 

(Supplementary Figure 2.2). 
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Figure 2.1: Imaging responses of identified L2/3 auditory cortical excitatory neurons to pure tones 
and complex sounds across days (A) An illustration of the experimental timeline. (B) Top: Example two-
photon micrographs from L2/3 of the auditory cortex in an awake mouse from two consecutive days. Scale 
bar = 60 µm. Colored circles identify example individual neurons matched across two consecutive days. 
Extended Data Figure 1.1 shows the histological verification of the imaging location. See Extended Data 
Figure 1.4 for validation of neuron matching across days. Bottom: ΔF/F traces of the neurons marked in the 
micrographs during a pure tone protocol. Gray lines indicate the stimuli. Scale bar: 10 seconds, 1ΔF/F (C) 
Comparison of spectrotemporal features of the CxS and PT. From left to right: occupied bandwidth (**p = 
0.00015, Mann-Whitney U test), spectral entropy (***p = 0.00015 Mann-Whitney U test), and 
spectrotemporal modulation index (***p = 0.00015, Mann-Whitney U test). (D)Spectrograms of the sound 
stimuli presented in the complex sounds (Left) and pure tone (Right) protocols. The identity of the complex 
sounds and the frequency of the pure tones are labeled at the bottom of panel ‘G’ (E) Responses of a 
representative neuron to complex sounds and pure tones (the stimuli correspond to panel ‘D’ column-wise) 
across two consecutive days (first day in red and second day in blue). Shaded area marks the mean ± SEM 
across trials. The gray bar below each response indicates the stimulus time (0.5s). Scale bar: 1s, 1 ΔF/F. 
The cell body of the neuron as imaged in the two days is highlighted on the right. Supplementary Figure 2.2 
validates that responses included in the study were not underestimated due to sampling rate and 
Supplementary Figure 2.3 shows the distribution of the number of trials included in the data. (F) Average 
sound response magnitude (mean ΔF/F across all trials over the stimulus window) across all days of imaging 
in response to complex sounds and pure tones (the stimuli correspond to panels ‘D’-‘G’ column-wise). Error 
bars indicate mean ± SEM. Number of neurons across all pairs of consecutive days (with repetitions): CXS: 
557, PTs: 587, p = 0.98 (Two-way ANOVA). (G) Percentage of sound responsive neurons recorded across 
all days of imaging in response to complex sounds and pure tones (the stimuli correspond to panels ‘D’-‘G’ 
column-wise). Number of neurons across all pairs of consecutive days (with repetitions): CXS: 557, PTs: 
587, p = 0.875 (bootstrap test, see Methods, Table 1). Sound stimuli for each are indicated below: 8 complex 
sounds and 8 pure tone frequencies (Hz). 



           25 

We next quantified the degree of stability of these neuronal responses by 

comparing responses of identified neurons across pairs of consecutive days. The 

identical variation in daily experimental and physiological conditions for PTs and CxS 

allowed us to compare the relative degrees of change in responses between the two 

sound protocols. We observed that while most responses of individual AC neurons 

showed stability across days, some displayed significant daily variation (Figure 2.2A). To 

measure changes in sound responses we first focused on responses of individual 

neurons to individual stimuli across pairs of consecutive days and restricted our analyses 

to responses that were significant in at least one of the two days. Across this population, 

we found that while the majority of responses were stable across days, 22% (114/518) of 

significant responses to PTs showed a significant change in response magnitude across 

successive days (Figure 2.2B). These results suggest that underlying a generally stable 

representation, responses of AC neurons to PTs show a moderate degree of daily 

dynamics. Interestingly, however, only 12.15% (66/543) of significant responses to CxS 

showed a significant change in magnitude across the same time interval (Figure 2.2B). 

This proportion of daily response change to CxS was significantly lower than that of PTs 

(Figure 2.2B), suggesting that AC responses to CxS are more stable than to PTs across 

days. The degree of stability of CxS with well-defined spectral centroids at <10 KHz 

(Cricket, Chiffchaff and Macaque) did not significantly differ from those of more distributed 

spectra (Glass, Shrew, Thump, Scratch and Water) (12.36% vs. 12.05%, respectively, p 

= 0.92, Chi square test for proportions). 

As a complementary approach, we quantified a similar measure at the single-

neuron rather than single-stimulus level. To this end, we calculated the fraction of sound-
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responsive neurons that exhibited a significant change in response magnitude to at least 

one of the eight PTs or CxS for each pair of consecutive days. Consistent with our findings 

at the single-stimulus level, we found that the fraction of neurons showing a significant 

change in response to CxS was significantly lower than to PTs (Figure 2.2C).  
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Figure 2.2: Auditory cortical responses to complex sounds are more stable than to pure tones 
across days (A) Responses of two representative neurons to complex sounds (Rows 1 and 2) and pure 
tones (Rows 3 and 4) across two consecutive days (first day in red and second day in blue). Shaded area 
marks the mean ± SEM across trials. Gray bars indicate the stimulus time. Stars indicate significant 
response changes (see Methods). Scale bar: 1s. The cell bodies of the imaged neurons are shown on the 
right. Rows 1 and 3 show neuronal responses that were stable from one day to the next and rows 2 and 4 
show neuronal responses that changed from one day to the next. (B) Percentage of significant changes in 
response to complex sounds and pure tones across pairs of consecutive days. CXS: 12.15% (66/543), PTs: 
22.01% (114/518),***p = 1.91x10-5 (Chi-square test). (C) Fraction of neurons that show a significant change 
in response to at least one stimulus across pairs of consecutive days. CXS: 0.14 (34/241), PTs: 0.23 
(59/256), *p = 0.011 (Chi-square test). (D) Average Euclidean distance between the response profile of a 
neuron (to either CXS or PTs) from one day to the next day, *p = 0.046 (two-sided t-test). Extended Data 
Figure 2.1 shows the relationship between a neuron’s changes in responsiveness to CxS and PT.  
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To quantify stability/plasticity of sound responses at the level of response profiles 

across stimuli, we computed for each neuron the Euclidean distance between its 

response profile (to either PTs or CxS) on one day and that of the next day. A larger 

Euclidean distance reflected a higher degree of response change across stimuli. 

Consistent with the findings above, we found that the Euclidean distance between daily 

response profiles to PTs was significantly higher than to CxS (Figure 2.2D). There was 

no significant correlation between the Euclidean Distance of the same neurons to PTs 

and CxS (Supplementary Figure 2.5A) and changes in responses to CxS were not 

significantly more strongly correlated with changes in frequency-overlapping PT as 

compared to frequency-non-overlapping PT (Supplementary Figure 2.5B). Together, 

these findings across varying quantification methods indicate that AC neuronal responses 

to CxS are more stable than to PTs across consecutive days.  
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A change in the response profile of a neuron across days may include a change in 

response gain, manifesting as similar changes in response magnitude across stimuli, or 

it may be stimulus-specific, reflecting a change in the neuronal sound selectivity (Figure 

2.3A). To test whether changes in responses to PTs and CxS differed in the nature of 

change, we compared the degree of stimulus-specificity of response change for each of 

the stimuli classes. We tested for each neuron’s responses, whether there was a 

significant interaction between the day of recording and the different stimuli. A significant 

day/stimulus interaction indicates that responses to the different stimuli were differentially 

modulated across days, reflecting stimulus-specificity in response change. We found that 

a significantly higher proportion of neurons showed stimulus specificity in daily changes 

in responsiveness to PTs as compared to CxS (Figure 2.3B). Further, the strength of the 

day/stimulus interaction was significantly higher for PTs than CxS (Figure 2.3C). These 

findings indicate that in addition to showing higher overall rates of daily change in 

responsiveness, the changes in responses to PTs were more stimulus specific, and 

therefore reflected a higher degree of change in sound selectivity, in comparison to CxS. 

Finally, we investigated how the rates of change across pairs of days relate to rates 

of change across longer durations. To this end, we quantified the changes in 

responsiveness in a similar manner across intervals of 1-4 days. We found that the degree 

of response plasticity increased with increasing time interval between days for both CxS 

Figure 2.3: Daily plasticity in responses to pure tones is more stimulus-specific than to complex 
sounds. (A)Responses of two representative neurons to CxS (Row 1) and PTs (Row 2) across two 
consecutive days, showing stimulus-specific changes. Shaded area marks the mean ± SEM across trials. 
Gray bars indicate stimulus timing. Stars indicate significant response changes. Scale bar: 1s, 2 ΔF/F. The 
cell bodies of the imaged neurons are shown on the right. (B)Proportion of neurons across all pairs of 
consecutive days showing a significant day/stimulus interaction, computed via two-way ANOVA. CXS: 
14.9% (36/241) neurons, PTs = 21.1% (54/256), *p = 0.037 (Z-test for proportions) (C) Distributions of the 
effect size (ω2) indicating the strength of the interaction between day and stimulus for CXS (gray) and PTs 
(black) for each neuron across all consecutive days. **p =0.0039 (Mann-Whitney U Test) 
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and PTs (Figure 2.4A, B). Moreover, the elevated rates of change in responses to PTs as 

compared to CxS that were observed across pairs of days also manifested across these 

intervals (Figure 2.4A). The fraction of neurons showing a significant change to at least 

one stimulus showed a similar trend, though did not reach significance (Figure 2.4B). 

Lastly, the Euclidean distance between the PTs response profiles were significantly 

higher than those of CxS across these intervals (Figure 2.4C). Consistent with our 

previous results, this suggests that AC representations of CxS are more stable compared 

to PTs over a range of daily time intervals.  

 

2.5 Discussion  

In this study, we used two-photon calcium imaging to record the degree of stability 

and plasticity of sound-evoked responses of L2/3 AC excitatory neurons to PTs and CxS 

across days. We found that most responses to both PTs and CxS were stable, with a 

Figure 2.4: Auditory cortical responses to complex sounds are more stable than to pure tones 
across multiple days. (A) Percentage of significant change in daily neuronal response to a given stimulus 
in the CxS (gray bars) and PTs (white bars) protocol across varying daily intervals. **p = 0.0015 (bootstrap 
test, see Methods). (B)Fraction of neurons significantly changing in response to at least one stimulus in the 
CxS (gray bars) and PTs protocol (white bars) across varying daily intervals. p = 0.1084 (bootstrap test, 
see Methods). (C) Average Euclidean distance between responses of a neuron for CXS (gray bars) and 
PTs (white bars) across varying daily intervals. *p = 0.015 (Two-way ANOVA). 
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moderate but significant degree of change across pairs of consecutive days. Importantly, 

we report that responses to CxS exhibited significantly enhanced stability across days as 

compared to PTs. Furthermore, the structure of response profiles to PTs exhibited larger 

degrees of change than to CxS across days, as evidenced by a higher degree of stimulus-

specific changes. Finally, we found that the enhanced degree of stability in CxS 

representations generalizes to longer daily time intervals.  

Our findings of a significant degree of ongoing daily changes in auditory cortical 

representations of both CxS and PTs add to a number of recent studies describing 

“representational drift” in other sensory modalities (Deitch et al., 2021; Pérez-Ortega et 

al., 2021; Peron et al., 2015; Ranson, 2017; Rule et al., 2019; Schoonover et al., 2021). 

Together, these studies point to a potential common principle, by which despite the well-

established link between perception and cortical function (Bergman, 1990; Ceballo et al., 

2019; Chait et al., 2010; Chapuis & Wilson, 2012; Frégnac & Bathellier, 2015; Kuchibhotla 

& Bathellier, 2018; Lee & Rothschild, 2021; Leopold, 2012), a stable sensory perception 

does not rely on fixed cortical sensory representations. Instead, representational 

dynamics may reflect a general principle of cortical function. Indeed, the locally 

heterogeneous organization of AC L2/3 ensembles has been suggested to be well suited 

to support rapid synaptic reorganization in response to changing environmental 

conditions (Bandyopadhyay et al., 2010; Bathellier et al., 2012; Francis et al., 2018; 

Kanold et al., 2014; Kato et al., 2015; J. Liu et al., 2019; J. Liu & Kanold, 2021; Maor et 

al., 2016; Rothschild et al., 2013, 2010; Rothschild & Mizrahi, 2015). Whether sound 

representations in the thalamorecipient L4 are more stable than those in L2/3 remains for 

future studies. 
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While auditory cortical representations of both classes of sounds exhibited 

significant degrees of daily change, representations of CxS were significantly more stable 

as compared to PTs across varying quantification methods. These findings likely result 

from the differences in the acoustic properties of these stimuli. In particular, CxS are 

decomposed into narrow frequency channels at the cochlea and reconstructing their 

wideband frequency contents throughout the auditory pathway requires re-integration 

across frequency channels. In contrast, a pure tone evokes responses in a narrower 

channel throughout the auditory system. If daily variation in responses is at least partly 

independent in different frequency channels, integration across frequency bands as 

needed to represent CxS may “average out” some of this variation as compared to that 

of a PTs. Thus, spectrotemporal integration may give rise to enhanced longitudinal 

stability of CxS in the AC. Future studies could directly test this possibility by, for example, 

measuring the stability of representations of noise with systematically varying bandwidth. 

An alternative acoustic property that may determine the degree of AC stability is based 

on temporal rather than spectral integration. In particular, temporal modulations in the 

complex sounds may "reset" neuronal responses multiple times within a stimulus, such 

that the enhanced degree of overall stability is due to temporal averaging of per-

modulation fluctuations. This possibility could be tested using sequences of amplitude-

modulated tones, which have temporal modulation without spectral bandwidth. 

Beyond the higher degrees of change in responses to PTs as compared to CxS, 

we also found that PT response changes were more stimulus-specific than those of CxS. 

These findings suggest that changes in responses to CxS tended to be shaped more by 

global gain factors while changes in responses to PTs tended to reflect stimulus-tuning 
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changes to a larger degree. If changes to CxS are correlated with changes to the tones 

that make up the CxS, this finding may be influenced by the frequency overlap between 

CxS, which is not the case for PTs. Although our finding that responses to CxS do not 

significantly change as to their frequency-overlapping tones (Supplementary Figure 2.5) 

argues against this possibility, the experiments described above could directly test it.  

Beyond the acoustic differences between CxS and PTs, a combination of evolution 

and previous experience may also have contributed to enhanced stability of AC 

representations of CxS as compared to PTs. Future studies may test this hypothesis by 

comparing the degree of AC stability to sounds with similar spectrotemporal complexity 

but varying ethological relevance. 

Our findings raise the question of whether enhanced stability of AC representations 

of CxS are linked with enhanced perceptual stability of these sounds. As the AC is 

important for sound perception in both humans (Griffiths, 2003; Kaga et al., 1997) and 

animal models (Ceballo et al., 2019; Frégnac & Bathellier, 2015; Harrington et al., 2001; 

Kuchibhotla & Bathellier, 2018; Ohl et al., 1999; Rybalko et al., 2006), it is tempting to 

speculate based on our findings that behavioral measures of perceptual stability, such as 

sound recognition across days, would be higher for CxS as compared to PTs. Testing this 

speculation may have important implications as PTs are not just widely used in auditory 

research but are also the standard in studies using classical conditioning and other 

learning paradigms. 
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2.6 Supplementary Figures and Table 

 

 

 

 

 

 

 

 

  Supplementary Figure 2.1 Histological verification of imaging location. Representative images of 
coronal brain sections from 3 animals used in this study. Following the completion of the experiments, mice 
were killed with an overdose of xylazine (10mg/kg, i.p.) and the imaging cranial window was removed. 
Using a nanoFil needle (Hamilton), we injected 1µl of Dil Tracer (D282 Invitrogen) into the site of imaging 
identified by blood vessel patterns and covered the brain surface for 5 minutes to maximize labeling and 
prevent fluorescence loss caused by the perfusion during tissue fixation with 4% PFA. The extracted brains 
were kept in PFA for 3 days and then transferred to 30% sucrose solution for another 3-4 day before 
cryosectioning. The brains were sliced in 50µm thickness sections and preserved with Fluoroshield 
mounting medium with DAPI (Abcam). Recording site confirmation was done by imaging tissue sections 
positive for GCaMP, DAPI, and Dil fluorescence. Dil fluorescence trace from brain sections were cross-
referenced with the Allen Mouse Common Coordinate Framework using the NeuroInfo software (MBF 
Bioscience). The location of the cranial window is indicated on each brain slice and the specific site of 
imaging is marked by DiI in yellow. Scale bar: 1000µm. 
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Supplementary Figure 2.2 Comparison of auditory cortical responses to CxS and PT in galvo and 
resonant scanning modes. (A) Responses of three representative neurons in galvo (in maroon) and in 
resonant (in green) scanning modes to CxS and PT stimuli (corresponding stimuli are indicated at the 
bottom of the panel). Shaded area marks the mean ± SEM across trials. The gray bar below each response 
indicates the stimulus time (0.5s). Scale bar: 1s. The cell body of the neuron as imaged in the two scanning 
modes is highlighted on the right. (B)Average sound response magnitude (mean ΔF/F across all trials over 
the stimulus window) across both imaging modes in response to complex sounds (Stimuli #s 1-8) and pure 
tones (Stimuli #s 9-16). Error bars indicate mean ± SEM. Each focal plane was imaged in galvo and 
resonant scanning modes alternatingly twice and all pairs of consecutive imaging sessions were included 
in the comparison between galvo and resonant scanning modes. Number of neurons across all pairs of 
scanning modes (with repetitions): Galvo: 576, Resonant: 540, p = 0.044 (Two-way ANOVA). In a separate 
analysis, we found that the likelihood of a neuron to be responsive to a specific CxS and a specific PT using 
resonant scanning was 7.74% (41/530) and 7.24% (38/525), respectively. Using galvo scanning these 
values were slightly higher, at 9.23% (53/574) and 10.44% (55/527), respectively, suggesting that 
significant responses were not underestimated by the use of galvo scanning. (C) Correlation of individual 
responsive neurons’ response magnitude (mean ΔF/F across all trials over the stimulus window) to 
individual stimuli (both CxS and PT included) in galvo and resonant scanning modes.  Neurons were 
matched across scanning modes using an automated MATLAB algorithm 
(https://github.com/ransona/ROIMatchPub) and then validated by visual inspection. Dashed grey line 
represents the diagonal. Correlation coefficient = 0.5, p = 2.36x10-14 (Pearson’s correlation). (D) Distribution 
of the difference in response magnitude between galvo and resonant scanning modes across neurons and 
stimuli (corresponding to the difference between the X and Y values of the points in ‘C). p = 1.6x10-6 

(Wilcoxon Signed Rank test). (E) Distributions of the trial-by-trial variance in response magnitude to given 
stimuli in galvo (maroon) and in resonant (green) scanning modes. p = 0.09 (Mann Whitney U test). 
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Supplementary Figure 2.3 Distribution of number of trials included per stimulus across the 
dataset following trial exclusion due to locomotion. 
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Supplementary Figure 2.4. Validation of neuron matching across days using image similarity 
analysis. (A) Cell bodies of neurons matched across a pair of consecutive days. Square dimensions = 
39x39 pixels. (B)An example image similarity matrix corresponding to the cell bodies shown in A from a 
single focal plane, depicting the similarity for each neuron on day 1 compared against all neurons on day 
2. Neurons manually matched have the same index assigned on each day. Color bar indicates the image 
similarity values. Following image registration, image similarity was calculated using the MATLAB structural 
similarity index (SSIM) for every pair of cell body across consecutive days (see Methods). (C)Distribution 
of normalized image similarity of manually matched neurons. The image similarity values for each neuron 
was divided by the maximum value across all its comparisons to yield the normalized image similarity value 
for each neuron. (D) Distribution of the percentage of neurons that showed the highest similarity rank to its 
manually matched neuron.  
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Supplementary Figure 2.5. Relationship between a neuron’s changes in responsiveness to CxS and 
PT. (A) Correlation of the average Euclidean distance of a neuron’s response profile from one day to the 
next for CxS and PT. r =-0.037, p = 0.74 (Pearson’s correlation test). (B) Correlation of the change in 
response magnitude for each responsive neuron to CxS with changes in response magnitude to PTs that 
had overlapping frequencies with the CxS: left; r = 0.168, p = 10-6 (Pearson’s correlation test) and with PT 
stimuli that had minimal overlapping frequencies with CxS: right; r= 0.149, p = 10-5 (Pearson’s correlation 
test). The correlations did not significantly differ (p = 0.341, Fisher’s z test). PTs with frequency overlap with 
the CxS were determined as the 3-4 PT frequencies that maximally overlapped with the power spectrum of 
the CxS. 
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2.6.1 Table 1: Summary of statistical tests used in the study 

Figure Data Structure Type of test Statistical data 

1C Non-normal Mann-Whitney U test Fig 1.1 A: Ranksum = 36 , p = 

0.00015 

Fig 1.1 B: Ranksum = 36, p = 

0.00015 

Fig 1.1 C: Ranksum = 100, p = 

0.00015 

1E Normal distribution 

with two factors  
Two-way ANOVA F1: F = 0, df = 1, p = 0.98 

F2: F = 6.86, df = 7, p <0.0001 

1F Non-normal Bootstrap test 

(described above) 
10,000 randomly simulated 

proportions for one group (PT), 

given the probability of the other 

group (CxS).  

p = 0.875 

2B & 

2C 
Non-normal Chi-square test for 

proportions and 

confirmed by Fisher’s 

exact test 

Fig. 2B: CXS = 12.15%(66/543), 

PTs = 22.01%(114/518), Chi2 

statistic = 18.27, p = 1.91e-5, 

Fisher’s exact test: Odds ratio = 

49.03%, CI = [35.22%, 68.26%] 

 

Fig. 2C: CXS = 0.14 (34/241), 

PTs = 0.23 (59/256), Chi2 

statistic = 6.52, p = 0.011,  
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Fisher’s exact test: Odds ratio 

=0.55, CI = [0.3445, 0.8730] 

2D Normal distribution Two-sided t-test t = -2.0023, p = 0.046, df = 495, 

sd = 0.51,CI = [-0.1809, -0.0017] 

3B Non-normal Z-test for proportions Z value = -1.7811, p = 0.037 

3C Non-normal Mann-Whitney U test Z value = -2.8857, p = 0.0039 

4A & 

4B 
Non-normal Bootstrap test 

(described above) 
10,000 randomly simulated 

proportions for one group (PT), 

given the probability of the other 

group (CxS) computed for each 

sub category 

Fig 4A: p = 0.0015 

Fig 4B: p = 0.1084 

4C Normal distribution 

with two factors 
Two-way ANOVA 

with interaction 
F1: F = 9.52, df = 3, p < 0.001 

F2: F = 5.89, df =1, p = 0.015 

F1*F2: F = 0.1, df = 3, p = 0.961 
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Chapter 3 : A Cortico-Striatal Circuit for Sound-Triggered Prediction of Reward 
Timing 

3.1 Abstract 

A crucial aspect of auditory perception is the ability to use sound cues to predict 

future events and to time actions accordingly. For example, distinct smartphone 

notification sounds reflect a call that needs to be answered within a few seconds, or a text 

that can be read later; the sound of an approaching vehicle signals when it is safe to cross 

the street. Other animals similarly use sounds to plan, time and execute behaviors such 

as hunting, evading predation and tending to offspring. However, the neural mechanisms 

that underlie sound-guided prediction of upcoming salient event timing are not well 

understood. To address this gap, we employed an appetitive sound-triggered reward time 

prediction behavior in head-fixed mice. We find that mice trained on this task reliably 

estimate the time from a sound cue to upcoming reward on the scale of a few seconds, 

as demonstrated by learning-dependent well-timed increases in reward-predictive licking. 

Moreover, mice showed a dramatic impairment in their ability to use sound to predict 

delayed reward when the auditory cortex was inactivated, demonstrating its causal 

involvement. To identify the neurophysiological signatures of auditory cortical reward- 

timing prediction, we recorded local field potentials during learning and performance of 

this behavior and found that the magnitude of auditory cortical responses to the sound 

prospectively encoded the duration of the anticipated sound-reward time interval. Next, 

we explored how and where these sound-triggered time interval prediction signals 
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propagate from the auditory cortex to time and initiate consequent action. We targeted 

the monosynaptic projections from the auditory cortex to the posterior striatum and found 

that chemogenetic inactivation of these projections impairs animal’s ability to predict 

sound-triggered delayed reward. Simultaneous neural recordings in the auditory cortex 

and posterior striatum during task performance revealed coordination of neural activity 

across these regions during the sound cue predicting the time interval to reward. 

Collectively, our findings identify an auditory cortical-striatal circuit supporting sound-

triggered timing-prediction behaviors. 

3.2 Introduction 

In everyday life, sounds often predict forthcoming events, allowing for planning and 

execution of appropriate behavioral responses. Consider, for instance, the confidence 

with which we step out of an elevator's open doors a few seconds after its chime, even 

without looking up from our phone. Or how the conclusion of a friend's sentence 

determines the opportune moment for our response (Benichov et al., 2016; Levinson, 

2016; Stivers et al., 2009). Similarly, we rely on distinct phone notification sounds to 

determine whether it is a call that we need to answer within a few seconds, or a text 

message that we can read a bit later. Likewise, animals rely on sound cues to gauge how 

swiftly they should vocalize in response to a conspecific call (Benichov & Vallentin, 2020), 

evade a predator (Z. Li et al., 2021), hone in on prey (Surlykke & Moss, 2000) or approach 

a needy offspring (Dunlap et al., 2020; Ehret, 2005). These and other examples in 

everyday life require humans and other animals to utilize sounds to predict and precisely 

time subsequent salient events and to initiate appropriate behavioral responses within the 

scale of seconds (Mazzucato, 2022).  
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The ability to use sounds to predict when future events will occur and consequently 

when to initiate appropriate action relies on a number of neural processing stages (Bueti, 

2011; Buhusi & Meck, 2005; Wiener, Matell, et al., 2011). First, the sound must be 

detected, processed, and recognized. Second, the predicted amount of time from the 

sound to the future event is evaluated. And finally, action is initiated when the elapsed 

time matches the anticipated appropriate time to act. Neural signatures underlying the 

first stage of this process, namely sound processing and recognition, have been 

extensively identified in the auditory pathway, and in particular in the auditory cortex (For 

example, Suri & Rothschild, 2022; Bernal & Ardila, 2016; Geissler & Ehret, 2004; Jasmin 

et al., 2019; King et al., 2018; King & Schnupp, 2007; Read et al., 2002; Zatorre et al., 

2002). Considerably less is known about the second stage, and specifically where and 

how the brain encodes the predicted amount of time from the sound to a future event. 

Traditional models of time perception have suggested the existence of a “centralized 

clock” in the brain (also referred to as the “Internal clock model”) (Hinton & Meck, 1997; 

Leow & Grahn, 2014; Treisman, 1963; Wearden, 2005). According to this model, the role 

of sensory regions is to detect the relevant sensory stimulus and communicate this 

information to higher-order centralized-clock brain regions, where a continuous 

representation of elapsed time is maintained (Buhusi & Meck, 2005; Hinton & Meck, 1997; 

Leow & Grahn, 2014; Treisman, 1963). This model proposes that the centralized clock is 

similarly able to estimate time based on cues from varying modalities, arriving via distinct 

pathways from the various sensory regions and hence, is “amodal” (Bueti, 2011; Wiener, 

Matell, et al., 2011). Different studies have implicated a number of brain regions as 

hosting such centralized clocks, including the nucleus accumbens (Kurti & Matell, 2011), 
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caudoputamen (Matell et al., 2003), ventral tegmental area (Fiorillo et al., 2008), 

substantia nigra compacta (Meck, 2006), dorsal striatum (Jones & Jahanshahi, 2011; 

Meck, 2006; Wiener, Lohoff, et al., 2011) and the medial prefrontal cortex (Jones & 

Jahanshahi, 2011; Ning et al., 2022; Tunes et al., 2022).  

However, the universality of this model has been challenged by studies showing 

that in addition to a centralized clock, there exist sensory-specific timing mechanisms, 

and that these are located within early sensory cortical regions (Bueti, 2011; Buhusi & 

Meck, 2005; Wiener et al., 2011). Early support for this suggestion came from studies 

demonstrating that the ability to estimate time from a sensory cue depends on the 

modality of that cue (For example - Hussain Shuler and Bear, 2006; Bueti et al., 2008). 

Furthermore, recent studies have identified signatures of time estimation within sensory 

cortices. For example, in vivo neural recordings in the primary visual cortex of rodents 

show various neural response forms which represent the time interval between the visual 

stimulus and the anticipated reward (Chubykin et al., 2013; Hussain Shuler & Bear, 2006; 

Namboodiri et al., 2015). A recent study further showed that this reward timing 

representation is modulated by an intracortical network of inhibitory interneurons in the 

visual cortex (Monk et al., 2020).  

In the auditory pathway, a key candidate brain region for encoding sound-triggered 

timing is the auditory cortex (AC), due to its established role in behavior- and decision-

making- dependent sound processing (Bathellier et al., 2012; Francis et al., 2018; Fritz et 

al., 2003, 2005; King & Schnupp, 2007; Lee & Rothschild, 2021; Nelken et al., 2014; Town 

et al., 2018; Vivaldo et al., 2023). Numerous studies have demonstrated retrospective 

coding of the degree to which a sound deviates from expectation in AC (Heilbron & Chait, 
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2018; Khouri & Nelken, 2015; Rubin et al., 2016; Taaseh et al., 2011; Ulanovsky et al., 

2003, 2004; Yaron et al., 2012). However, much less is known about the existence of 

prospective coding of anticipated time from a sound to a subsequent event. In one study, 

auditory cortical responses to a tone series varied depending on whether a subsequent 

target sound was expected early (300-450ms) or late (1300-1500ms) within the series 

(Jaramillo & Zador, 2011). However, this study did not test whether AC encodes 

expectation of non-auditory cues or whether a continuous representation of predicted time 

is encoded. In a recent study, mice were trained on a self-paced action timing task, in 

which lever pressing caused reward delivery after 30 seconds. Optogenetic stimulation 

and inactivation of the secondary AC implicated its responses to the sound of lever press 

as being causally involved in timing reward-preparatory action (Cook et al., 2022). 

However, this study did not test whether and how AC is involved in encoding varying 

sound-reward time intervals, in particular on the scale of seconds. Thus, it remains 

unclear whether and how AC is involved in sound-triggered predictive timing of future 

salient events on the timescale of seconds.  

The final step of sound-dependent prediction of imminent events requires initiation 

of appropriate action once the anticipated time from sound to action has elapsed. To carry 

this out, the neural information assimilated in the first two stages of this process needs to 

be sent to downstream brain regions to induce consequent action timing and initiation. 

Previous studies have implicated a number of brain regions that mediate sound-triggered 

action initiation, including the striatum (Guo et al., 2018; Matell et al., 2003; Tunes et al., 

2022), the medial prefrontal cortex (Tunes et al., 2022; Yumoto et al., 2011) and the 

supplementary motor area (Mita et al., 2009; Wiener, Matell, et al., 2011). Anatomically, 
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the most prominent candidate brain region to receive sound-triggered time keeping 

signals from AC and participate in converting this information to action, is the posterior 

tail of the dorsal striatum (hereafter referred to as the posterior striatum). The posterior 

striatum (pStr) receives monosynaptic projections from AC (Bertero et al., 2020; Huang 

et al., 2023; Znamenskiy & Zador, 2013), and these projections are known to be causally 

involved in auditory-guided decision making tasks (Znamenskiy & Zador, 2013) and 

auditory associative learning tasks (Huang et al., 2023). Moreover, pStr itself responds to 

auditory stimulation (Guo et al., 2018, 2019) and has been shown to play a key role in 

various stimulus-driven time keeping behaviors (Matell et al., 2003; Tunes et al., 2022). 

However, whether and how information about sound-triggered time interval estimation 

arriving from AC engages pStr remains unknown. To collectively address these gaps, we 

investigated the causal and functional role of the auditory cortical-striatal circuit in sound-

triggered prediction of time to consequent reward. 

3.3 Materials and Methods 

All animal procedures were in accordance with the NIH Guide for the Care and 

Use of Laboratory Animals and approved by the University of Michigan Institutional 

Animal Care and Use Committee. 

3.3.1 Animals 

We used 56 (38 males, 18 females, 8-16 weeks of age) C57BL/6J mice (Jax 

number: 000664). Mice were individually housed under a reverse 12h light/12h dark cycle, 

with lights on at 8:30 pm and off at 8:30 am, and had access to ad libitum food, water, 
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and enrichment. During the behavioral training period, mice were on water restriction and 

given 2-5ml of water each day.  

3.3.2 Surgical procedure 

All surgeries were performed on mice anesthetized using isoflurane (1.5-2% 

vol/vol). Anesthetized mice were placed in a stereotaxic frame (Kopf 514 Instruments, 

CA, USA), and an anti-inflammatory drug (Carprofen, 5mg/kg, subcutaneous injection) 

and a local anesthetic (lidocaine, subcutaneous injection) were administered. A custom-

made lightweight (<1 gr) titanium head bar was attached to the back of the skull using 

dental cement and cyanoacrylate glue to allow for head-fixed behavior. During the 

surgery, body temperature was maintained at 38ᵒC, and the depth of anesthesia was 

regularly assessed by checking the pinch withdrawal reflex. A small craniotomy was 

performed over target coordinates relative to the bregma (AC: -2.7mm posterior, +4.3mm 

from midline, -0.55mm ventral, 0° angle; pStr: -1.7mm posterior, +3.35mm from midline, 

-2.8mm ventral, 0° angle).  

To chemogenetically target the neural projections from AC to pStr and for 

pharmacological inactivation experiments using muscimol, custom-made cannulae (25-

gauge tubing) or guide cannulas (Plastics One) were placed at the surface of the brain in 

these craniotomies at the target regions and secured to the skull using dental cement. 

Dummy cannulae were inserted into these cannulae to prevent outside debris from 

entering the cannula.  

Mice were treated with Carprofen for 48 hours post-surgically and were allowed to 

recover for a week.  
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3.3.3 Electrophysiological recordings 

Tungsten wire electrodes (two 50 μm wires bundle) with < 50kΩ of impedance 

were used to acquire local field potential (LFP) responses in AC and pStr. Electrodes 

were dipped in DiI dye (Invitrogen, Catalog # 22885) before insertion. The ground screw 

was positioned over the cerebellum (2.0 mm posterior to lambda, 3.5 mm from midline). 

Electrodes were unilaterally implanted into AC and pStr on the right hemisphere, 

(distance between the two electrodes within a region was <50 μm, distance between 

electrode arrays in AC and pStr was ~2.67 mm). LFP signals were acquired using a 

Tucker-Davis Technologies (TDT) acquisition system and Synapse Lite Software. The 

output bioelectrical signal was digitized, sampled at 6 kHz, and bandpass filtered in 0.5-

300Hz for LFP recordings. All data acquired was saved for offline data processing. 

3.3.4 Virus injections 

Viral vectors were acquired from Addgene to inactivate the anterograde projections 

from AC to pStr chemogenetically. To achieve projection specificity in C57BL/6J WT mice, 

we used an established dual viral approach as shown in Figure 5A.  We bilaterally injected 

Cre-dependent DREADD viral vector (Roth, 2016): AAV5-hSyn-DIO-hM4D(Gi)-mCherry 

(2.4E+13 vg/ml, 350nl, Addgene catalog # 44362) or AAV5-hSyn-DIO-mCherry (2.6E+13 

vg/ml, 350nl, Addgene catalog # 50459) into the AC and a retrograde Cre viral vector: 

pENN/AAVrg-hSyn-Cre-WPRE-hGH (1.8E+13 vg/ml, 200nl, Addgene catalog #105553) 

into the pStr. The infusions were done using a 32-gauge injection needle (customed-

length per infusion site) or through thin internal cannulas (Plastics One) inserted into the 

implanted cannulae in the brain, connected to a 10 μl Hamilton syringe at a rate of 

50nl/min.  
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3.3.5 Drug administration  

3.3.5.1 Muscimol infusions 

Mildly sedated mice were bilaterally infused with 0.5µg/µl muscimol (BODIPY 

TMR-X fluorophore-conjugated, ThermoFisher, Catalog Number – M23400) dissolved in 

phosphate-buffered saline (PBS) and 1.5% DMSO or PBS with 1.5% DMSO as a control 

(Volume per hemisphere = AC: 750nl (Aizenberg et al., 2015; Sun et al., 2022), pStr: 

360nl (L. Guo et al., 2018)) at a rate of 150nl/min, into cannulae implanted in target sites. 

The infusions were done via custom-made injectors or thin internal cannulas (Plastics 

One) as previously described.  

3.3.5.2 CNO injections 

5mg Clozapine-N-Oxide (CNO) (HelloBio) was diluted in 0.9% saline solution. All 

animals in the chemogenetic inactivation experiments were first injected with saline 

(5mg/kg, i.p.) as a control and then were injected with the prepared CNO (5mg/kg, i.p.) 

solution the following day, to chemogenetically inactivate the projections from AC to pStr.  

3.3.6 Behavior 

All our behavioral setups were custom built and controlled by an Arduino (Arduino 

Uno board with an Adafruit Music Maker shield) circuit. Behavioral data acquired through 

the Arduino IDE software was saved in text files for analysis. Videos of animal behavior 

were acquired using Logitech C920 HD Pro camera on the LogiCapture software and 

using the Angetube 1080p web camera on the Bandicam software, under red light 

conditions.  
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3.3.6.1 Paradigm 

Mice were trained on an appetitive sound-triggered reward time prediction task. In 

this task, mice on water restriction were head-fixed inside a tube to reduce movement-

related artifacts, presented a sound cue from a speaker (4Ω, 3W magnetic speakers, 

placed ~10cm away from the animal’s head on the left) and trained to consume a water 

reward from a reward port placed close to its mouth. A trial constituted a 1.5s long sound 

cue and a water reward delivery separated by a fixed time interval (0.5-5s), with 

randomized inter-trial intervals in the range of 2-6s (Figure 3.1A, Trial block). The sound 

cue was a sequence of three 0.5s long pure tones (8kHz, 12kHz, 16kHz; 5ms rise/fall 

time) generated at a 25kHz sampling rate using MATLAB (Mathworks 2019a). 

3.3.6.2 Training 

Water-restricted mice were handled and habituated to the experimental setup for 

~7 days. In this period, mice were head fixed and trained to lick the reward port through 

which a water reward was delivered randomly at 3-10s intervals without any sound cue. 

The reward port consisted of a metal tube that delivered a fixed amount of water (~3ul) 

each trial, connected to a capacitance-based lick detector that allowed recording 

individual lick times. Mice were also familiarized with the sound cue used in behavioral 

training over the last 3 days of habituation through random sound presentations (~50 

times across all 3 days) at 3-10s intervals without any reward delivery.  

Habituated mice started training on trials with a fixed time interval of 1.5s from 

sound termination time to reward, with 150-250 trials per daily training session. After 7-

10 days of training, catch trials in which reward was withheld were randomly introduced 

15-20% of the trials/session. Once the animal learnt to predict reward time at 1.5s interval, 
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it was then trained to use the same sound to predict a different interval of time between 

sound and reward (sound-reward interval). We trained each animal to predict timed 

reward using the same sound cue at four sound-reward intervals – 0.5s, 1.5s, 2.5s and 

5s and always trained them to learn the time intervals in this order – 1.5s  2.5s  5s  

0.5s (Figure 3.1A).  

To identify whether mice predicted the sound-reward interval duration from sound 

onset or sound termination, we tested a subset of mice trained to predict reward at 1.5s 

from sound cue, to use a shorter duration sound cue to predict reward. On this testing 

day, we randomly interspersed 35% of the trials with 1s long sound cue (a sequence of 

8kHz and 12kHz pure tones, each 0.5s long, with 5ms rise/fall time) to deliver reward at 

the same time interval – short sound trials (Figure 3.3A), along with standard 1.5s long 

sound cue trials.  

3.3.6.3 Behavioral training for the pharmacological inactivation experiments  

In these experiments, we used a GABA-A receptor agonist, muscimol, to inactivate 

AC or pStr to establish their causal role in sound-triggered reward time prediction task. 

Each of these experiments consisted of two different cohorts of mice. One cohort of 

animals were trained to predict timed reward at 1.5s from sound termination (Figures 3.2, 

3.5, and 3.6; 1.5s Delay task) and another cohort of animals were trained on an alternative 

version of the task where reward immediately followed the sound cue (Figures 3.2, 3.5, 

and 3.6; No-Delay task).  
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3.3.6.4 Behavioral training for acquiring electrophysiological recordings in AC 

and pStr 

Mice implanted with wire electrodes underwent the same habituation protocol as 

described above. In this habituation phase, these mice were habituated to cables plugged 

to the electrode connectors on their head implants and trained to lick the reward port to 

consume the water reward. The reward port for these experiments was a tube fitted with 

an IR sensor to detect licks through beam breaks. Following habituation, they were 

trained on the previously described sound-triggered reward time prediction task on the 4 

different time intervals between sound and reward in the order 1.5s  2.5s  5s  0.5s, 

while their LFP responses in AC and pStr were recorded throughout each daily training 

session. LFP responses were monitored for movement using video recording and periods 

of movement were eliminated prior to analysis.  

3.3.6.5 Behavioral training for chemogenetic inactivation of AC-pStr projections 

experiments 

We used chemogenetic inactivation of anterograde projections from AC to pStr to 

identify their role in sound-triggered reward time prediction task. Animals in these 

experiments started by learning to predict timed reward at 1.5s from sound (1.5s Delay 

task) and then underwent chemogenetic AC-pStr projection inactivation with CNO 

injection to test for effect on behavioral performance. After a 4-day washout period, a 

subset of these same animals underwent training to predict sound-guided timed reward 

at 5s interval (5s Delay task) and chemogenetic inactivation with CNO injection to test for 

behavioral effect to predict timed reward at 5s from sound. Following another 4-day 
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washout period, these animals trained and underwent chemogenetic manipulation on the 

No-Delay task (Figure 3.5A, Task timeline).  

In a subset of animals in which DREADDs were expressed in the AC-pStr 

projections, we also simultaneously recorded LFP responses in pStr using tungsten wire 

electrodes, while they trained on the 1.5s Delay and No-Delay tasks.  

3.3.7 Data analysis  

All analyses were done using custom-written MATLAB (Mathworks 2022a) scripts 

unless otherwise mentioned.  

3.3.7.1 Behavioral data analysis 

To quantify the animal’s ability to predict reward at a fixed time interval from a 

sound cue, we extracted individual lick times per trial and averaged these licks across 

trials for each daily training session to get a predictive licking response curve. To measure 

learning, we computed the slope of this predictive licking response curve (MATLAB 

command: polyfit, degree 1) in the predictive lick period, which was defined differently for 

rewarded and catch trials. For rewarded trials, the predictive lick period was defined as 

the time from sound termination to 100ms prior to reward delivery time for each sound-

reward interval. Contrastingly, we used a more conservative definition of the predictive 

lick period for catch trials, using the period from 200ms prior to sound termination to the 

time at which reward was expected for the 0.5s interval, for all the sound-reward intervals. 

We used this slope measure in catch trials to ascertain when the animals had learnt to 

consistently predict reward within each sound-reward time interval. We compared the 

slopes of the predictive licking curve for catch trials across training days for each sound-
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reward interval and picked those days for which the slope value crossed the slope 

threshold (mean + 3*standard deviation of slope values across all training days per 

sound-reward interval). Amongst the training days that satisfied this criterion, the day with 

maximum slope value was chosen as the “best” behavior day for each sound-reward 

interval per animal. Additionally, we computed the full width at half maxima of the 

predictive licking response curve over the predictive lick period defined above for catch 

trials to estimate the precision of the animal’s ability to predictive lick for each sound-

reward interval (Supplementary Figure 3.1).  

We determined the effect of muscimol and chemogenetic inactivation on 

behavioral performance by comparing the predictive lick responses in catch trials on 

control training day (PBS infusion for pharmacological inactivation experiments or saline 

injections (i.p.) for chemogenetic inactivation experiments) to the predictive lick responses 

on the manipulation day (muscimol (MUS) infusion for pharmacological inactivation 

experiments or CNO injections (i.p.) for chemogenetic inactivation experiments) using this 

formula –  

log𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙 𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟 (𝑃𝑃𝑃𝑃𝑃𝑃)

= log
𝐴𝐴𝑃𝑃𝑙𝑙.𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑙𝑙𝑎𝑎 [# 𝑟𝑟𝑜𝑜 𝑙𝑙𝑃𝑃𝑃𝑃𝑙𝑙𝑎𝑎 𝑃𝑃𝑙𝑙 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑃𝑃𝑃𝑃𝑙𝑙 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃 − 𝐵𝐵𝑟𝑟𝑎𝑎𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃)]𝑟𝑟𝑙𝑙 𝑃𝑃𝐵𝐵𝑃𝑃 𝑟𝑟𝑃𝑃 𝑃𝑃𝑟𝑟𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃 
𝐴𝐴𝑃𝑃𝑙𝑙.𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑙𝑙𝑎𝑎 [# 𝑟𝑟𝑜𝑜 𝑙𝑙𝑃𝑃𝑃𝑃𝑙𝑙 𝑃𝑃𝑙𝑙 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑃𝑃𝑃𝑃𝑙𝑙 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃 − 𝐵𝐵𝑟𝑟𝑎𝑎𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃)] 𝑟𝑟𝑙𝑙 𝑀𝑀𝑀𝑀𝑃𝑃 𝑟𝑟𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶

 

Where, baseline period = sound onset time – 750ms to sound onset time, and  

predictive lick period for delay tasks = reward time – 250ms to reward time + 500ms 

for no-delay task = sound onset time + 750ms.  
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To check whether animals’ ability to lick for reward changed based on sound 

termination time or not, we compared their predictive lick responses in standard and short 

sound trials using a variation of the PLR described above –  

𝑙𝑙𝑟𝑟𝑙𝑙 𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑟𝑟𝑃𝑃 𝑃𝑃𝑃𝑃𝑟𝑟𝑙𝑙𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃 𝑃𝑃𝑎𝑎. 𝑃𝑃ℎ𝑟𝑟𝑃𝑃𝑃𝑃 𝑃𝑃𝑟𝑟𝑆𝑆𝑙𝑙𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑙𝑙𝑎𝑎 

= log

𝐴𝐴𝑃𝑃𝑙𝑙.𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑙𝑙𝑎𝑎 [# 𝑟𝑟𝑜𝑜 𝑙𝑙𝑃𝑃𝑃𝑃𝑙𝑙𝑎𝑎 𝑃𝑃𝑙𝑙 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑃𝑃𝑃𝑃𝑙𝑙 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃 − 𝐵𝐵𝑟𝑟𝑎𝑎𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃)] 
𝑜𝑜𝑟𝑟𝑃𝑃 [𝑃𝑃𝑆𝑆𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴𝑃𝑃𝑆𝑆 𝑆𝑆𝑃𝑃𝑇𝑇𝐴𝐴𝑃𝑃𝑃𝑃] + 𝑜𝑜𝑟𝑟𝑃𝑃 [𝑃𝑃𝑆𝑆𝐶𝐶𝑃𝑃𝑆𝑆 𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶𝑆𝑆 𝑆𝑆𝑃𝑃𝑇𝑇𝐴𝐴𝑃𝑃𝑃𝑃]

𝐴𝐴𝑃𝑃𝑙𝑙.𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑙𝑙𝑎𝑎 [# 𝑟𝑟𝑜𝑜 𝑙𝑙𝑃𝑃𝑃𝑃𝑙𝑙𝑎𝑎 𝑃𝑃𝑙𝑙 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑃𝑃𝑃𝑃𝑙𝑙 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃 − 𝐵𝐵𝑟𝑟𝑎𝑎𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃)] 
𝑜𝑜𝑟𝑟𝑃𝑃 [𝑃𝑃𝑆𝑆𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴𝑃𝑃𝑆𝑆 𝑆𝑆𝑃𝑃𝑇𝑇𝐴𝐴𝑃𝑃𝑃𝑃] − 𝑜𝑜𝑟𝑟𝑃𝑃 [𝑃𝑃𝑆𝑆𝐶𝐶𝑃𝑃𝑆𝑆 𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶𝑆𝑆 𝑆𝑆𝑃𝑃𝑇𝑇𝐴𝐴𝑃𝑃𝑃𝑃]

 

Where, baseline period = sound onset time – 750ms to sound onset time, and  

predictive lick period = sound offset time to reward time-100s 

3.3.7.2 Electrophysiological data processing and analysis 

Acquired electrophysiological data was extracted using TDTBin2mat script 

(provided by TDT) and organized to synchronize it with lick response times for each 

session across sound-reward intervals per animal. Using slopes of the predictive lick 

response curve of catch trials, the “best” behavior day was determined for each sound-

reward interval per animal, as described above. Trials in each training session with no 

licks in the 200ms period from sound onset or in the 500ms period from sound offset 

(hereafter referred to as no-lick trials) were extracted and further analysis was carried out 

only on these no-lick trials on the “best” behavior days for each sound-reward interval 

across animals. Session-wise LFP signals for AC and pStr were filtered for movement-

related artifacts by eliminating any signal above a threshold of mean LFP signal for the 

session + 3*standard deviation of the session LFP signal and then were z-scored for each 

session prior to analysis.  
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To analyze sound-evoked LFP responses, trial-wise LFP activity in AC and pStr 

were aligned to the sound onset and baseline-corrected by subtracting its average during 

the 10ms period from sound onset for computing the onset response magnitude (similar 

to (Taaseh et al., 2011)) or from sound offset for computing the offset response 

magnitude. Response magnitude was defined as the amplitude of the maximum trough 

(most negative) in the 40ms period from sound onset/offset for each no-lick trial per 

session. Response magnitudes were averaged across trials per session and normalized 

to the average response magnitude of the shortest sound-reward time interval (0.5s) 

session per animal. Normalized response magnitudes were combined across animals per 

sound-reward interval and compared using the Kruskal-Wallis test (MATLAB command: 

kruskalwallis), with a post-hoc Tukey-Kramer test to determine individual group 

differences (MATLAB command: multcompare applied on the kruskalwallis output).  

To compare the pStr onset response magnitudes in saline and CNO conditions, 

we averaged the response magnitudes across trials and tested for significant differences 

per animal between the conditions using the Wilcoxon rank-sum test (MATLAB command: 

ranksum). These average response magnitudes were then normalized to average of the 

saline condition to determine the population-level trends for the 1.5 Delay and No-Delay 

tasks.   

We examined the coordination in AC and pStr LFP activity during sound by 

computing the trial-by-trial correlation of sound onset response magnitudes in AC and 

pStr (MATLAB command: corrcoef). Significant correlation coefficients across animals 

were combined per sound-reward interval and compared across intervals using the 

Kruskal-Wallis test (MATLAB command: kruskalwallis), with a post-hoc Tukey-Kramer 
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test to determine individual group differences (MATLAB command: multcompare applied 

on the kruskalwallis output).  

To determine the temporal relationship of AC and pStr LFP responses during 

sound-triggered reward time prediction behavior, we ran a cross-correlation analysis of 

the LFP responses in AC and pStr for each session (MATLAB command: xcorr, using the 

“normalized” model, maxlag = ±100ms) over a 2s period from 0.5s prior to sound onset 

to sound termination time. By shuffling the identity of AC and pStr traces per session and 

computing their cross-correlation coefficients, we simulated chance cross correlation 

coefficients between AC and pStr sound responses (Number of iterations = 100). We 

generated difference traces by calculating the difference in average cross correlation 

coefficients between real and simulated data, and then determined the time which these 

difference traces peaked giving us the time lag between AC and pStr sound responses 

per training session. We calculated the median of this peak time of difference traces 

across all animals and sound-reward intervals and compared this median against 0s 

using the Wilcoxon signed rank test (MATLAB command: signrank).  

3.3.7.3 Statistical tests  

We used statistical tests at a p<0.05 significance level and α = 0.05 for all 

comparisons unless otherwise indicated.  

3.3.8 Histology 

Mice were euthanized with an overdose of isoflurane (5%) or carbon dioxide (2%) 

and perfused transcardially with PBS (0.9%), followed by 10% paraformaldehyde (PFA). 

The brain tissue was removed and fixed in 10% PFA for 72 hours. For cryoprotection, the 
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brain tissue was transferred to 30% sucrose solution for 3-4 days before sectioning. 

Coronal sections (50µm thickness) were obtained in a cryostat (Leica) and kept in PBS 

at 4°C before mounting. All sections were mounted in glass slides and covered with 

Fluoroshield mounting medium with DAPI (Abcam, USA). Images of brain sections were 

acquired using a fluorescent microscope (Zeiss) equipped with an apotome and the 

ZenPro software.  

For all histological validations, brain sections were imaged with a 10x objective, 

examined for cell nuclei labeled with DAPI (470 nm), and saved as both multichannel and 

individual fluorophore channels composite tiff images. Histological validation was done 

by overlaying brain sections over slice images from the Allen Institute’s 10 μm voxel 2017 

version from the Allen Mouse Brain Common Coordinate Framework (Q. Wang et al., 

2020). Histological validation was used as an inclusion criterion for all behavioral, 

electrophysiological, and chemogenetic experiments.   

3.3.8.1 Tungsten electrode tracks verification 

Electrode tracks were identified by DiI (565 nm) or DiO (550 nm) labeling. Images 

with DiI or DiO labeling and electrode tracks were saved and further analyzed with the 

open-source SHARP-Track toolkit (Shamash et al., 2018). Verified electrode tip 

coordinates were compared to the coordinate range showing the projections from AC to 

pStr shown in the Allen Mouse Brain Connectivity Atlas (Allen Mouse Brain Connectivity 

Atlas, connectivity.brain-map.org/projection/experiment/146858006).  
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3.3.8.2 Reconstruction of virus expression  

The procedure for reconstructing viral expression volumes was similar to electrode 

track reconstruction. However, the regions defined in each slice are two-dimensional, and 

the volume is delineated at the 3D projection of all the combined sections showing virus 

expression. AP, ML, and DV coordinates from all sections with positive mCherry 

expression were again compared to the range of AC-pStr projections shown in the Allen 

Mouse Brain Connectivity Atlas (Allen Mouse Brain Connectivity Atlas, connectivity.brain-

map.org/projection/experiment/146858006). Animals showing mCherry cell body 

expression outside AC areas and mCherry axonal expression outside pStr were not 

included.  

3.3.8.3 Muscimol infusion  

To verify the muscimol diffusion within the target areas, brain slices were examined 

for BODYPY-TmX (BDP-T, 573 nm) labeling.  Brain sections showing positive BDP-T 

labeling were saved per animal. Further comparison with the reference Allen Atlas and 

3D projection showed the AP and ML coordinates with muscimol diffusion. Clear hit into 

AC or pStr was considered a diffusion only within the target areas. For pStr experiments, 

animals with muscimol diffusion up to rostral striatal areas (anterior to -1.2mm from 

bregma) were not included.  

3.4 Results 

3.4.1 Mice use sound to predict reward time with 1-second temporal resolution 

To investigate the role of auditory cortical-striatal neural mechanisms underlying 

sound-triggered reward timing prediction, we employed an appetitive sound-guided trace 
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conditioning task in water-restricted mice. Following habituation to head fixation, 8 mice 

underwent training sessions of 150-200 trials each, in which each trial was initiated with 

a 1.5s long sound stimulus (composed of a sequence of three pure tones), followed by a 

fixed delay period and then delivery of water reward (Figure 1A). Trials were separated 

by inter-trial intervals which randomly varied between 2-6s in duration. All animals started 

behavioral training sessions with a fixed delay period of 1.5s between the sound cue 

termination and reward (“sound-reward time interval”). After 7-10 days of training, we 

introduced randomly interspersed 10-20% catch trials, in which the reward was withheld. 

Mice expressed learning of the sound-reward contingency by increasing their lick rate 

before the anticipated reward time (“Predictive licking”, Figure 1B, left) and by licking 

before and during the time of anticipated reward in the catch trials (Figure 1B, right).  

To determine whether predictive licking reflects a reliable estimation of anticipated 

reward time, the same mice then went on to train on the same paradigm but with different 

sound-reward time intervals. We posited that if mice can reliably estimate time on the 

scale of seconds and use these estimates to guide their behavior, the timing of predictive 

licking would vary with the duration of the sound-reward interval. To test this, once 

animals showed reliable performance on the task with the 1.5s sound-reward interval (as 

evidenced by reliable predictive licking) they relearned versions of this task with a 2.5s, 

5s and 0.5s sound-reward time intervals, in this order (Figure 1A, Behavior Timeline). For 

each animal, we compared the slopes of their predictive licking curves on their “best” 

behavior days of each of these sound-reward time intervals (see Methods). We computed 

the slopes of the predictive licking curves for rewarded and catch trials separately (see 

Methods). We found that the predictive licking slopes varied with the duration of the 
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sound-reward interval (Figure 1C). Across animals, the average slope of the predictive 

licking curves significantly varied as a function of the sound-reward interval duration, with 

the shortest interval duration (0.5s) inducing the steepest slope of predictive licking, 

followed by 1.5s, 2.5s and 5s (Figure 1D, Kruskal-Wallis test for multiple comparisons, p 

= 0.0011 for rewarded trials, p = 0.0064 for catch trials). We also quantified the precision 

of predictive licking for each of the sound-reward intervals by computing the full width at 

half maxima of the predictive licking curve for catch trials and found that mice are able to 

predict the shorter intervals with higher precision compared to the longer intervals 

(Supplementary Figure 1, Kruskal-Wallis test for multiple comparisons, p = 3.85x10-6). 

These results show that mice can estimate time intervals on the scale of 0.5-5s with at 

least 1-s temporal resolution and use these estimates to predict the time of expected 

reward following a sound.  
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3.4.2 The auditory cortex is required for sound-triggered delayed reward 

prediction 

The auditory cortex (AC) plays an important role in predictive and behavior- 

dependent sound processing (Bathellier et al., 2012; Francis et al., 2018; Heilbron & 

Chait, 2018; Kuchibhotla & Bathellier, 2018; Kuchibhotla et al., 2017; J. Li et al., 2017; 

Okada et al., 2018). Since our task requires mice to use the sound to time their behavior, 

we hypothesized that the AC is necessary for successful performance of this task. To test 

this hypothesis, we measured the influence of bilateral AC inactivation using the GABA-

A receptor agonist muscimol on trained animals’ ability to predict reward at a 1.5s sound-

reward time interval. Muscimol labeling was histologically validated at the end of each 

experiment and only animals with selective targeting in AC were included (Figure 2A). AC 

inactivation resulted in an overall reduction in the ability to predictively lick for reward as 

compared to infusion of inert PBS as a control (Figure 2B). An impaired ability to 

predictively lick for reward following muscimol infusion was consistently observed in all 

our animals (N=8, p<0.05 for each mouse, Wilcoxon rank-sum test). To rule out the 

Figure 3.1 Mice predict reward timing using a sound cue. A. An illustration of the behavioral setup for 
sound-triggered reward time prediction task, components of a trial block and the experimental timeline for 
behavioral training.  B. Top: Peri-sound lick raster of an example behavioral session from a trained animal 
performing on rewarded (left) and catch (right) trials within the session. Bottom: Average peri-sound lick 
rate response curve (solid line denotes mean, shaded area represents SEM across trials) for the example 
behavioral session above for rewarded (left) and catch (right) trials. Shaded pink region represents the 1.5s 
long sound period. Solid and dotted orange lines represent when reward was given in rewarded trials and 
expected in catch trials. Black ticks represent licks. C. Average peri-sound lick rate response curves (solid 
line denotes mean, shaded area represents SEM across trials) of an example animal trained to perform on 
the four different sound-reward intervals represented by different colors. Left: Rewarded trials; Right: Catch 
trials. Shaded pink region represents the 1.5s long sound period. Solid and dotted lines represent when 
reward was given in rewarded trials and expected in catch trials for each of the sound-reward interval. D. 
Average estimated slope of predictive licking response curves for each of the four sound-reward intervals 
across all animals (N = 8) for rewarded trials (left,**p=0.0064, Kruskal-Wallis test) and for catch trials (right, 
**p =0.0011, Kruskal-Wallis test). Error bars represent mean ± SEM across animals.  
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possibility that reduced predictive licking reflects a simple impairment in sound 

processing, we trained another cohort of mice on a variation of the task, in which reward 

was delivered immediately following sound onset (No-Delay Task). Mice trained on the 

No-Delay task showed evidence for sound-reward association by consistently licking in 

response to the sound during catch trials, when no reward was delivered (Figure 2C, 

right). Interestingly, this form of predictive licking following the No-Delay sound-reward 

association was unaffected by AC inactivation (N=8, p>0.05 for each mouse, Wilcoxon 

rank-sum test; Figure 2C). To directly compare the influence of AC inactivation on 

prediction of delayed and immediate reward, we calculated the log of the ratio of predictive 

licking in PBS and muscimol (“log PLR”) for each of the task versions. Thus, larger log 

PLR values indicate a greater influence of AC inactivation on predictive licking. Using this 

metric, we found that AC inactivation had a significantly more detrimental effect on sound-

guided prediction of 1.5 s-delayed reward than on immediate reward (p=0.000156, 

Wilcoxon rank-sum test, Figure 2D). These findings demonstrate that the AC is causally 

involved in sound-triggered time-delayed reward prediction. 
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Figure 3.2: AC is required for sound-triggered delayed reward prediction. A. Top: An illustration of the 
cannula implanted in AC for muscimol infusion. Right: Histological verification of bilateral muscimol infusion 
into AC. The brain slice acquired from an example animal is overlaid with the corresponding coronal section 
from the Allen Mouse Brain Atlas (see Methods). The cannula tracks are indicated by the green dotted line 
on the brain slice and the site of muscimol infusion is seen in orange. Markers on the right indicate the 
depth at which muscimol was infused in the left and right hemispheres. Scale bar: 1000µm. Bottom: 
Behavioral timeline for mice that underwent training on the 1.5s Delay task. B. Average peri-sound lick rate 
response curves (solid line denotes mean, shaded area represents SEM across trials) of an example animal 
trained to predict reward at 1.5s sound-reward interval when infused with PBS (orange) and muscimol 
(MUS, black) in AC for rewarded trials (left) and catch trials (right). Shaded pink region represents the sound 
period. Solid and dotted orange lines represent when reward was given in rewarded trials and expected in 
catch trials. ***p=0.0007 (Wilcoxon rank-sum test) denotes the significant difference in predictive licking 
compared to baseline for catch trials on PBS and MUS conditions. C. Average peri-sound lick rate response 
curves (solid line denotes mean, shaded area represents SEM across trials) of an example animal trained 
on the No-Delay task when infused with PBS (light blue) and muscimol (MUS, black) in AC for rewarded 
trials (left) and catch trials (right). Shaded pink region represents the 1.5s long sound period. Solid and 
dotted blue lines represent when reward was given in rewarded trials and expected in catch trials. n.s. 
(p=0.939, Wilcoxon rank-sum test) denotes the not significant difference in predictive licking between catch 
trials on PBS and MUS in the No-Delay task. D. Significant difference in average log predictive licking ratio 
(log PLR) between No-Delay (N = 8) and 1.5s Delay (N = 8) cohorts (***p =0.000156, Wilcoxon rank-sum 
test). Error bars represent mean ± SEM across animals. Open circles indicate the PLR for each animal in 
the No-Delay (blue) and 1.5s Delay cohorts. 
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3.4.3 Mice predict reward timing from sound onset 

Having established that mice can use the sound cue to predict the timing of reward 

across varying sound-reward time intervals and that this behavior causally involves the 

auditory cortex, we next asked whether this behavior reflects time estimation from sound 

onset or from sound termination (Figure 3A). To this end, we compared the predictive lick 

pattern under the standard paradigm of a 1.5s-long sound and 1.5s-long sound-reward 

interval, to a similar paradigm in which the sound duration was cropped by 0.5s, to a 

duration of 1s. We argued that if mice use sound onset to predict reward timing, their 

predictive lick pattern would be unaffected by a shorter sound duration, whereas if mice 

use sound termination to predict reward timing, predictive licking will start earlier in the 

trials with the shorter sound cue. To test this, we trained a cohort of 8 mice to predict 

reward at a 1.5s sound-reward interval and then introduced them to a training session 

with 35% short sound trials (Figure 3A). All our animals showed similar behavioral 

responses on short sound and standard sound trials, with almost identical predictive 

licking curves (Figure 3B). Across animals, the slopes for the predictive licking curves 

were not significantly different between the two types of trials (Figure 3C, Wilcoxon rank-

sum test, p = 0.96), and the average log PLR for standard sound to short sound trials was 

not significantly different from 0 (See Methods, Figure 3D, Wilcoxon signed rank test 

compared against 0, p = 0.12). These results suggest that mice primarily use the sound 

onset to estimate the amount of time from sound to reward.  
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Figure 3.3: Mice predict reward timing from sound onset. A. An illustration of the trial designs. B. 
Average peri-sound lick rate response curves (solid line denotes mean, shaded area represents SEM 
across trials) of an example animal trained on the Standard Trials (ST, orange) and Short Sound Trials 
(SST, navy blue). Dashed lines indicate the sound termination times for ST (orange) and SST (blue) trials. 
Solid black line represents when reward was given. Comparison of the predictive licking between ST and 
SST trials compared to baseline yields p = 0.9 (Wilcoxon rank sum test). C. Average estimated slope of the 
predictive licking curves for ST (orange) and SST (navy blue) across animals (N = 8, p = 96, Wilcoxon rank 
sum test). Error bars represent mean ± SEM across animals. Lines connecting filled squares represent the 
estimate slope values for each animal in ST and SST. D. Average log predictive licking ratio (log PLR for 
SST) across animals is not significantly different from 0 (N = 8, p = 0.12, Wilcoxon signed rank test 
compared against 0). Error bars represent mean ± SEM across animals. Open circles represent the PLR 
for each animal. 

 

3.4.4 AC sound responses encode predicted time-to-reward 

A prominent model for the neural processing underlying sound-triggered time 

predictions suggests that following sound coding in the auditory pathway, downstream 
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brain regions encode the anticipated time interval from the sound to subsequent events 

(Buhusi & Meck, 2005; Hinton & Meck, 1997; Leow & Grahn, 2014; Treisman, 1963). 

Alternatively, given the established role of the AC in predictive coding, the predicted time 

from sound to reward may already be reflected in the AC response to the sound itself. To 

test this possibility, we recorded local field potential (LFP) activity in the AC of the right 

hemisphere in 8 mice, as they were trained to predict timed reward using sound at the 

four different sound-reward intervals in the order described previously. We histologically 

verified the position of these electrodes at the end of the experiments (Figure 4A). Similar 

to our findings in the first cohort (Figure 1), animals in this cohort also changed the rate 

of their predictive licking curves according to the duration of the sound-reward intervals, 

with the slope increasing with increased interval durations for both rewarded and catch 

trials (Figure 4B and C, p = 0.0000544 for rewarded trials and p = 0.00012 for catch trials; 

Kruskal-Wallis test for group differences). We similarly identified the best behavior 

performance day of each sound-reward interval for analysis and excluded trials in which 

the animal moved or in which the animal licked in the 200 ms period from sound onset to 

avoid a contribution of motor activity to the sound response magnitude (Schneider et al., 

2014; Vivaldo et al., 2023; Whitton et al., 2014). We then quantified the magnitude of the 

AC responses to the sound for each of the interval durations per animal. As our behavioral 

results showed that mice use the sound onset to estimate the time to reward, we focused 

on the responses to sound onset. Interestingly, we found that AC responses (to the same 

sound) increased in magnitude with increasing sound-reward intervals (Figure 4D). 

Across animals, the average normalized sound response magnitude was significantly 

different across interval durations (p=1.9x10-35, Kruskal-Wallis test), with the response 
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magnitude increasing as a function of the time interval from sound to reward (Figure 4E). 

We also quantified the magnitude of responses to the sound offset for each of the interval 

durations per animal and found that these offset responses did not significantly change 

in magnitude across sound-reward intervals (p = 0.263, Kruskal-Wallis test, Figure 4F 

and G). Together, these results indicate that AC neural responses to the sound onset 

encodes, beyond the sound itself, the predicted time from sound to reward.  

 

 

 

 

 

 

 

 

 

  Figure 3.4: Auditory cortical sound responses encode predicted time to reward. A. Left: An illustration 
of the electrodes implanted in right AC. Right: Histological verification of electrode position in AC of the right 
hemisphere. The brain slice acquired from an example animal is overlaid with the corresponding coronal 
section from the Allen Mouse Brain Atlas (see Methods). The electrode track is indicated by the green dotted 
line on the brain slice and the markers on the right indicate the depth at which the electrode was implanted 
in the right hemisphere. Scale bar: 500µm. B. Average peri-sound lick rate response curves (solid line 
denotes mean, shaded area represents SEM across trials) of an example animal trained to perform on the 
four different sound-reward intervals represented by different colors. Left: Rewarded trials; Right: Catch 
trials. Shaded pink region represents the 1.5s long sound period. Solid and dotted lines represent when 
reward was given in rewarded trials and expected in catch trials for each of the sound-reward interval. C. 
Average estimated slope of predictive licking response curves for each of the four sound-reward intervals 
across all animals (N = 8) for rewarded trials (left,***p=0.000054, Kruskal-Wallis test) and for catch trials 
(right, ***p =0.00012, Kruskal-Wallis test). Error bars represent mean ± SEM across animals. D. Normalized 
average AC LFP (solid line denotes mean, shaded area represents SEM across no-lick trials) recorded in 
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response to the sound onset from an example animal trained on the four different sound-reward intervals 
(represented by the different colors). The shaded pink region represents the period from sound onset as 
shown in the illustration above. E. Average onset response magnitude computed across animals (N = 8) 
for each of the sound-reward intervals. Error bars represent mean ± SEM across animals. Comparison 
across sound-reward intervals yields ***p = 1.9x10-35 (Kruskal-Wallis test). F. Normalized average AC LFP 
(solid line denotes mean, shaded area represents SEM across no-lick trials) recorded in response to the 
sound offset from an example animal trained on the four different sound-reward intervals (represented by 
the different colors). The shaded yellow region represents the period from sound offset as shown in the 
illustration above. G. Average offset response magnitude computed across animals (N = 8) for each of the 
sound-reward intervals. Error bars represent mean ± SEM across animals. Comparison across sound-
reward intervals yields p = 0.263 (Kruskal-Wallis test). 

3.4.5 Auditory cortical projections to posterior striatum are causally involved in 

sound-guided prediction of delayed reward 

For successful sound-triggered reward timing prediction, animals need to translate 

their prediction of reward time into motor action, which in the current task is licking. While 

our data suggests that the AC is involved in sound-triggered reward timing prediction, we 

hypothesized that this behavior and its translation into motor action would further depend 

on the posterior striatum (pStr). The pStr is a key candidate brain region to support this 

function, as it receives strong monosynaptic projections from the AC (Bertero et al., 2020; 

Huang et al., 2023; Znamenskiy & Zador, 2013) as well as from the thalamic medial 

geniculate body (Huerta-Ocampo et al., 2014; LeDoux et al., 1991; Smeal et al., 2008) 

and is involved in sound processing and sound-guided behaviors (Huang et al., 2023; 

Znamenskiy & Zador, 2013). Moreover, pStr itself is known to be involved in appetitive 

auditory frequency discrimination tasks (Guo et al., 2018, 2019). Hence, we investigated 

the role of auditory cortical projections to the pStr in sound-triggered reward time 

prediction.  

To address this, we chemogenetically inactivated the projections from AC to pStr 

in animals trained to predict timed reward using a sound cue. Using a dual virus approach, 

we bilaterally injected and expressed a Cre-dependent DREADD viral vector, AAV-hSyn-
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DIO-hM4D(Gi)-mCherry, in the AC of mice in the experimental group, (or AAV-hSyn-DIO-

mCherry in the control group), and a retrograde-CRE viral vector (pENN/AAVrg-hSyn-

Cre-WPRE-hGH) in the pStr. This approach allowed us to specifically target the 

projections from the AC to pStr for chemogenetic inactivation. The expression of these 

viruses was histologically validated at the end of the experiments and only those with 

targeted virus expression in AC cell bodies and pStr axonal projections were included 

(Figure 5B).  

Mice were trained to reliably predict sound-guided reward at a 1.5s sound-reward 

interval. They were then injected with saline (i.p.) as a control and their behavioral 

performance was recorded 30 minutes after the injection. 24 hrs later, we injected them 

with CNO (5mg/kg, i.p.) and after 30 min again recorded their behavioral performance 

(Figure 5A). Chemogenetic silencing of the AC-pStr projections in the mice of the 

experimental group significantly reduced their ability to predict reward at 1.5s (Figure 5C). 

We observed this significant effect in all mice in the experimental group (p<0.05 for each 

mouse, Wilcoxon rank-sum test). In contrast, none of the mice in the control group 

showed a significant change in predictive licking following CNO injection compared to 

their performance with saline injection (Figure 5F, p>0.05 for each mouse, Wilcoxon rank-

sum test). These findings demonstrate that the AC-pStr projection is necessary for sound-

triggered prediction of delayed reward.  

Following a 4-day CNO-washout period, we trained a subset of these mice in the 

experimental and control groups to use the same sound cue to predict reward at a 5s 

interval from sound (Figure 5A). We chemogenetically inactivated the AC-pStr projections 

again and found that all mice in the experimental group showed poor reward prediction 
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at 5s interval following CNO injection compared to their performance with saline injection 

on the previous day (Supplementary Figure 2A, p<0.05 for each mouse, Wilcoxon rank-

sum test). In contrast, mice in the control group did not show an impairment in their ability 

to predict timed reward at 5s from saline to CNO behavioral sessions (Supplementary 

Figure 2B, p>0.05 for each mouse, Wilcoxon rank-sum test).  

To verify that chemogenetic inactivation of AC-pStr projections does not impair 

animals’ ability to process sounds and form sound-reward associations, we trained all 

mice in the experimental and control groups on the No-Delay task following another 4-

day CNO washout period and followed the same manipulation protocol above (Figure 

5A). Mice in both these groups did not show an impairment in their ability to lick for reward 

immediately following sound in the catch trials (Figure 5D and G).  

At a population-level, we quantified the effect of the AC-pStr projection inactivation 

on behavior using the log PLR for Saline to CNO days (see Methods), such that higher 

values indicate a reduction in animals’ ability to reliably predict the time-to-reward from 

sound. We found that the average log PLR was significantly higher for the 1.5 s sound-

reward delay compared to the No-Delay (Figure 5E, p=0.0019, Wilcoxon rank-sum test). 

These ratios did not significantly differ between the 1.5s and 5s delays (Supplementary 

Figure 2C, p =0.808, Wilcoxon rank-sum test). In contrast, mice in the control group 

showed no significant difference in the average log PLR across No-Delay, 1.5s and 5s 

delays (Figure 5H, Supplementary Figure 2D, p=0.1774, Kruskal-Wallis test). These 

findings further establish the causal involvement of the AC-pStr projections in animals’ 

ability to predict delayed reward using a sound cue.    
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3.4.6 The posterior striatum is involved in sound-guided reward time prediction  

We next asked whether the target region of these AC-pStr projections, pStr itself, 

is a necessary component of the neural circuitry supporting sound-guided reward 

prediction behavior. Mice were bilaterally implanted with cannulae into their pStr (Figure 

3.6A). We compared their ability to predict reward at 1.5s with muscimol infusion to that 

with PBS infusion on a day prior and found that inactivation of pStr reduced animals’ 

ability to predict the time-delayed reward (Figure 3.6B, p<0.05, Wilcoxon rank-sum test). 

Similar to the previous inactivation experiments, we trained another cohort of mice on the 

No-Delay task and compared their behavioral performances following PBS and muscimol 

infusion into pStr. Inactivation of pStr using muscimol did not change animals’ behavior 

on the No-Delay task (Figure 3.6C, p>0.05, Wilcoxon rank-sum test), confirming that there 

was no impairment in animals’ ability to process sounds or lick for reward. Across animals, 

the average log PLR for PBS to muscimol days for the 1.5s Delay task was significantly 

higher than that of the No-Delay task (Figure 3.6D, p = 0.0079, Wilcoxon rank-sum test). 

Figure 3.5 AC to pStr projections are causally involved in sound-triggered delayed reward prediction. 
A. Left: An illustration of cannulas implanted in bilateral AC and pStr for virus injections. Right: Behavioral 
timeline for chemogenetic inactivation experiments. B. Histological verification of selective virus expression in 
the projections from AC to pStr. The brain slice acquired from an example animal is overlaid with the 
corresponding coronal section from the Allen Mouse Brain Atlas for both and AC and pStr (see Methods). Left: 
Virus injection tracks in pStr and AC denoted by green dotted line on the brain slice and the markers on the 
right indicate the depth at which the electrode was implanted in the right hemisphere. Scale bar: 500µm Right: 
Magnified images of DREADD virus expression in pStr axons (I) and AC cell bodies (II). Scale bar: 50µm. C. 
to F. Average peri-sound lick rate response curves (solid line denotes mean, shaded area represents SEM 
across trials) of an example animal trained to predict reward at either 1.5s sound-reward interval (C and E) or 
at no delay (D and F) when injected with saline (orange or light blue) and CNO (black) for rewarded trials (left) 
and catch trials (right). Shaded pink region represents the 1.5s long sound period. Solid and dotted orange or 
light blue lines represent when reward was given in rewarded trials and expected in catch trials. Left column 
represents animals from the experimental group and right column represents animals from the control group. 
G. and H. Average log Predictive Licking Ratio (log PLR) across animals trained on the 1.5s Delay and No-
Delay tasks in the experimental group (left, N = 8) and in the control group (right, N=6). Lines connecting the 
circles represent the log PLR for each animal when trained on the 1.5s Delay and No-Delay tasks. The average 
log PLR for experimental group animals was significantly higher for 1.5s Delay task than No-Delay task (**p = 
0.0019, Wilcoxon rank-sum test) and was not significantly different for the control group animals (p = 0.366, 
Wilcoxon rank-sum test). 
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Overall, these findings show that pStr is also required for successful sound-guided reward 

prediction behavior.  

  

Figure 3.6 pStr is causally involved in sound-triggered delayed reward prediction. A. Histological 
verification of muscimol labeling in bilateral pStr in a representative animal’s brain slice. The brain slice 
acquired from an example animal is overlaid with the corresponding coronal section from the Allen Mouse 
Brain Atlas (see Methods). The cannula tracks are indicated by the green dotted line on the brain slice and 
the site of muscimol infusion is seen in orange. Markers on the right indicate the depth at which muscimol 
was infused in the left and right hemispheres. Scale bar: 1000µm. B. Average peri-sound lick rate response 
curves (solid line denotes mean, shaded area represents SEM across trials) of an example animal trained 
to predict reward at 1.5s sound-reward interval when infused with PBS (orange) and muscimol (MUS, black) 
in pStr for rewarded trials (left) and catch trials (right). Shaded pink region represents the 1.5s long sound 
period. Solid and dotted orange lines represent when reward was given in rewarded trials and expected in 
catch trials. ***p=0.000007(Wilcoxon rank-sum test) denotes the significant difference in predictive licking 
between catch trials on PBS and MUS. C. Average peri-sound lick rate response curves (solid line denotes 
mean, shaded area represents SEM across trials) of an example animal trained on the No-Delay task when 
infused with PBS (light blue) and muscimol (MUS, black) in pStr for rewarded trials (left) and catch trials 
(right). Shaded pink region represents the 1.5s long sound period. Solid and dotted blue lines represent 
when reward was given in rewarded trials and expected in catch trials. n.s. (p=0.3, Wilcoxon rank-sum test) 
denotes the not significant difference in predictive licking between catch trials on PBS and MUS in the No-
Delay task. D. Significant difference in average log predictive licking ratio (log PLR) between No-Delay (N 
= 5) and 1.5s Delay (N = 5) cohorts (**p =0.0079, Wilcoxon rank-sum test). Error bars represent mean ± 
SEM across animals. Open circles indicate the PLR for each animal in the No-Delay (blue) and 1.5s Delay 
cohorts.  
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3.4.7 Coordination of sound-evoked responses in AC and pStr during sound-

triggered reward time prediction 

To determine the activity patterns in pStr and to test whether the AC and pStr 

activity is coordinated during sound-triggered reward time prediction behavior, we 

simultaneously recorded LFP activity in AC and pStr as animals learnt to predict sound-

triggered reward timing at the four sound-reward time intervals (Figure 7A). Like we did 

for analyzing AC responses, we eliminated trials with movement and included only trials 

with no licks in the first 200ms from sound onset for the best behavior days on each 

sound-reward interval. As expected from previous studies (Guo et al., 2018, 2019), we 

found robust sound responses in pStr, albeit of lower magnitude than in the AC. When 

we compared the average pStr sound responses across all four sound-reward intervals, 

we found that pStr responses also tended to increase with sound-reward interval duration 

(Figure 7B). However, at the population level, we noticed that while the pStr response 

magnitude was significantly different across sound-reward intervals (Figure 7C, p = 

8.96x10-6, Kruskal-Wallis test), the pair-wise comparison of the response magnitude 

across all pairs of sound-reward intervals did not yield significant differences, unlike 

responses in the AC.  

Next, we asked whether neural activity across the two brain regions was 

coordinated during sound-guided reward time prediction behavior. We found that AC and 

pStr LFP response magnitudes showed a significant positive trial-by-trial correlation for 

each behavioral session (Figure 7D) and the average correlation coefficients across 

animals did not significantly differ across sound-reward intervals (Figure 7E, p = 0.99, 
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Kruskal-Wallis test). These results suggest the existence of strong coordination across 

the AC and pStr during sound processing within our task.  

pStr receives direct projections from the AC, but both the pStr and AC receive 

direct projections from the medial geniculate body (Chen et al., 2019; Huerta-Ocampo et 

al., 2014; Hunnicutt et al., 2016; Smeal et al., 2008). We next sought to test to what extent 

this anatomical projection pattern is reflected in the temporal relationship of AC and pStr 

sound-evoked responses. To this end, we calculated trial-wise cross-correlations of LFP 

responses in AC and pStr over a 2 s sound period, from 0.5s prior to sound onset till 

sound termination (Figure 7F and G). The trial-averaged cross-correlation showed a clear 

peak at 0 lag, indicating strong synchrony in activity across the brain regions, as expected 

from the shared common input from the MGB (Figure 7G, black trace). However, we 

noticed that the shape of these average cross-correlation curves was not symmetric 

around 0. To test this, we compared them to cross-correlations generated after randomly 

shuffling the AC/pStr identity of the traces (see Methods). This form of shuffling generated 

cross correlations with no temporal directionality across the brain regions by design 

(Figure 7G, red trace). In comparison to these shuffled cross-correlations, the real cross 

correlations showed higher values at positive lags, indicating a temporal lead of AC 

relative to pStr (Figure 7G). To quantify this, we calculated the difference traces of the 

real and shuffled cross correlations (Figure 7H). Across the data, the median peak time 

of these difference traces was 38 ms and was significantly different from 0 s (Figure 7I, 

Wilcoxon signed rank test, p = 0.0084). Further, these peak times of difference traces 

were not significantly different across sound-reward intervals (Figure 7J, p = 0.94, 

Kruskal-Wallis test). This positive median peak time indicates that in addition to the no-
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lag synchrony across these brain regions, AC leads pStr during the sound predicting the 

time to reward in our task.   
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Figure 3.7: Coordination of LFP activity across AC and pStr during sound-triggered reward time 
prediction. A. Left: Illustration of electrode implanted in right AC and pStr. Right: Histological verification 
of electrode positions in AC (left) and pStr (right). The brain slice acquired from an example animal is 
overlaid with the corresponding coronal section from the Allen Mouse Brain Atlas (see Methods). The 
electrode tracks are indicated by the green dotted line on the brain slices and the markers in the middle 
indicate the depth at which the electrode was implanted in the right hemisphere. Scale bar: 500µm. B. 
Normalized average pStr LFP (solid line denotes mean, shaded area represents SEM across no-lick trials) 
recorded in response to the sound onset from an example animal trained on the four different sound-reward 
intervals (represented by the different colors). The shaded pink region represents the period from sound 
onset. C. Average pStr onset response magnitude computed across animals (N = 8) for each of the sound-
reward intervals. Error bars represent mean ± SEM across animals. Comparison across sound-reward 
intervals yields ***p = 8.96x10-6 (Kruskal-Wallis test). D. Scatter plot of the trial-wise correlation between 
AC and pStr onset response magnitudes for each of the sound-reward intervals for an example animal. 
Filled circles of different colors represent the trial-wise onset response magnitudes and the solid lines 
represent the linear fits for each of the sound-reward intervals. Pearson correlation coefficients for each of 
the sound-reward intervals was positive and significant: 0.5s interval (red): r = 0.582, p<0.001; 1.5s interval 
(orange): r = 0.673, p<0.001; 2.5s interval (purple): r = 0.673, p<0.001; 5s interval (green): r = 0.561, 
p<0.001. E. The average correlation coefficients across animals across sound-reward intervals are not 
significantly different (p = 0.99, Kruskal-Wallis test). F. Heat map representing the trial-wise cross-
correlation of AC and pStr sound-evoked LFP responses for an example animal trained on an 0.5s sound-
reward interval behavioral session. Time axis is set such that it denotes AC leading on the positive side and 
pStr leading on the negative side. Color bar indicates the cross-correlation coefficients. G. Average cross 
correlation of AC and pStr sound evoked LFP responses across trials for the behavioral session shown 
above is indicated in black. The dotted red line shows the average of the shuffled cross correlation 
computed from randomized AC and pStr sound evoked LFP responses from the session. H. The solid black 
line shows the difference trace between the real and shuffled average cross correlation in panel G. This 
cross-correlation difference trace has a peak at 0.03s as indicated by the dotted black line. I. The average 
of the peak times of the cross-correlation difference traces computed across all animals and across all 
sound-reward intervals is significantly greater than 0s (**p= 0.0084, Wilcoxon signed rank test). J. Average 
peak times of the cross-correlation difference traces across all animals was not significantly different across 
sound-reward intervals (p = 0.94, Kruskal-Wallis test).  

  



 80 

3.5 Discussion 

In this study, we established a novel behavioral paradigm based on an extension 

of the classical appetitive trace-conditioning task to assess sound-triggered reward time 

prediction in mice. Using this behavioral paradigm, we found that mice can use a sound 

cue to reliably predict time intervals to reward at a 1-second temporal resolution and that 

the ability to predict delayed reward is dependent on AC. We further found that mice use 

the sound onset to estimate the time to reward and that the AC LFP responses to sound 

onset predicted the amount of time to reward. As a downstream pathway to non-auditory 

brain areas, we found that the neural projections from AC to pStr, as well as the pStr 

itself, are necessary for sound-triggered delayed reward prediction. Sound responses in 

pStr also varied based on the time to reward. Finally, using simultaneous recordings in 

AC and pStr during performance of this task, we found strong coordination of neural 

activity across these brain regions, with synchronous, as well as AC-leading components 

of cross-correlation. Together, our findings identify AC-pStr mechanisms for sound-

triggered prediction of reward timing.  

Decades of research has yielded several competing models for how the brain 

represents time. The most explored theory underlying the timing mechanisms in animals 

and humans assumes the existence of an internal clock based on neural counting (Fung 

et al., 2021; Hinton & Meck, 1997; Leow & Grahn, 2014; Treisman, 1963; Wearden, 

2005). According to this theory, higher order “centralized” clock brain regions receive 

inputs from various modalities and maintain a representation of time. On the other hand, 

parallel work in this domain supports the existence of multiple timing mechanisms 

distributed across different brain regions and circuits that are engaged based on the task 
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design, sensory modality used, and the temporal resolution of the task (Bueti, 2011; 

Jazayeri & Shadlen, 2015; Tallot & Doyère, 2020; Matell, et al., 2011). Our findings that 

sound-triggered reward time prediction ability in mice at a 1-second temporal resolution 

is dependent on AC, strongly supports the distributed modality-specific timing model. By 

pharmacologically inactivating AC, we show an impairment in this ability to predict 

delayed reward time based on a sound cue. Further, we found that the magnitude of AC 

responses to the sound cue in this task encode and maintain a neural representation of 

the time from the sound onset to reward. These results provide evidence for an auditory-

modality specific timing mechanism for sound-triggered time estimation to an imminent 

salient event.  

Previous studies have identified different forms of neurophysiological signatures 

of interval timing across various brain regions (Tallot & Doyère, 2020). A group of studies 

in rodent visual cortex (Hussain Shuler & Bear, 2006; Namboodiri et al., 2015), basal 

amygdala (Pendyam et al., 2013) and basal ganglia (Hikosaka et al., 1989) have found 

coding of interval timing via sustained increase or decrease in spiking activity from cue 

onset till upcoming salient event (reward or foot shock). Other studies, primarily in the 

prefrontal cortex (PFC) and dorsal striatum, have found gradual firing rate ramping up as 

the expectation of the animal for an upcoming salient stimulus increases (Armony et al., 

1998; Matell et al., 2003; Narayanan & Laubach, 2009). Another set of studies have found 

encoding of time intervals by phasic increases in neural activity at the time of anticipated 

reward in neurons in the PFC (Yumoto et al., 2011), dopaminergic neurons in the ventral 

tegmental area (Fiorillo et al., 2008) and in the visual cortex (Hussain Shuler & Bear, 

2006). A common factor across most of these studies is that the amount of time to the 
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salient event is encoded separately from the sensory stimulus that triggers its anticipation. 

In contrast, we find that the magnitude of the AC responses to the sound itself also encode 

the anticipated time to reward. Thus, the cue and the reward-timing prediction associated 

with it are jointly coded in the AC. This form of integration between sound and the 

temporal expectation associated with it is consistent with a previous study, in which the 

AC responses to a tone were found to be different when rats expected a target sound to 

be presented either immediately after the tone or about 1 second later (Jaramillo & Zador, 

2011). Our findings extend and generalize these results to demonstrate the existence of 

timing prediction of non-auditory cues within the AC, and that interval timing duration is 

represented in a continuous manner within the scale of 0.5-5s.  

To investigate how the auditory corticostriatal projections are involved in sound-

triggered time estimation behavior, we used chemogenetic inactivation to establish the 

necessity of the anterograde projections from AC to pStr in this task. We acquired 

simultaneous LFP recordings from AC and pStr to show that neural activity in these 

regions is temporally synchronized during the sound cue predicting the interval timing to 

reward. The activity in AC and pStr was highly synchronized at 0s lag, which is consistent 

with the common input received by both these regions from the medial geniculate body 

(MGB) (Chen et al., 2019; Huerta-Ocampo et al., 2014; Hunnicutt et al., 2016; Smeal et 

al., 2008). In the context of our task, this would suggest that the sound-triggered reward 

timing encoded in AC and in pStr could be simultaneously and differentially modulated by 

the neural inputs from MGB. In addition to the direct projections from MGB, pStr receives 

strong monosynaptic projections from AC (Znamenskiy and Zador, 2013; Xiong et al., 

2015; Huang et al., 2023). This is consistent with our finding that in addition to the 
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synchronous activity across these brain regions, a second component of the cross-

correlograms points at AC leading the pStr by 38ms on average. Our LFP recordings in 

AC and pStr provided a quantification of the overall functional and temporal 

communication patterns across the AC and pStr. Future studies using single unit 

recordings with cell-type specificity could elucidate how these phenomena are 

represented at the local ensemble level.  

While sound-triggered action timing on the scale of seconds is important for many 

everyday behaviors, it is a particularly critical ability in humans for verbal communication. 

In verbal communication, humans use incoming speech sounds to predict when and what 

sounds are expected to follow (Heinks-Maldonado et al., 2005, 2006; Nixon & 

Tomaschek, 2021; Tremblay et al., 2013). Furthermore, the sequential nature of speech 

sounds helps arrange incoming information in a temporal structure and this ability is 

impaired when there are hearing deficits (Füllgrabe, 2013; Grose & Mamo, 2010; Helfer 

& Jesse, 2021; Ozmeral et al., 2016; Tallal et al., 1995). Deaf or hard of hearing children 

face challenges in sequential time perception, which impairs their storytelling ability, a key 

cognitive development factor (Eden & Leibovitz-Ganon, 2022). In comparison, children 

with postlingual cochlear implants exhibit greater improvements in time perception and 

consequently, their storytelling ability, emphasizing the role of hearing acquisition in 

sound-guided temporal processing. Other research involving children with mild hearing 

loss have showcased the benefits of interventions on time sequencing and storytelling 

(Ingber & Eden, 2011). These studies collectively underscore the critical role of sound-

guided timekeeping in developing and maintaining language-related skills and highlight 
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the need to further study the neural mechanisms underlying these processes to develop 

tailored support for individuals with hearing impairments. 
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3.6 Supplementary Figures 

 

 

 

 

 

 

 

  

Supplementary Figure 3.1: Precision of predictive licking ability across sound-reward intervals. The 
average full-width at half maxima of the predictive licking curves across animals was significantly different 
across sound-reward intervals (***p = 3.85x10-6, Kruskal-Wallis test). 
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Supplementary Figure 3.2. Effect of chemogenetic inactivation of AC to pStr projections on the 5s 
Delay task. A. and B. Average peri-sound lick rate response curves (solid line denotes mean, shaded area 
represents SEM across trials) of an example animal trained to predict reward at 5s sound-reward interval 
when injected with saline (green) and CNO (black) for rewarded trials (left) and catch trials (right). Shaded 
pink region represents the 1.5s long sound period. Solid and dotted green lines represent when reward was 
given in rewarded trials and expected in catch trials. Left column represents animal from the experimental 
group and right column represents animals from the control group. C. and D. Average log Predictive Licking 
Ratio (log PLR) across animals trained on the 1.5s Delay, 5s Delay and No-Delay tasks in the experimental 
group and in the control group reiterated from Fig. 5E and H. Lines connecting the circles represent the 
PLR for each animal when trained on the 1.5s Delay, 5s Delay and No-Delay tasks. The average PLR for 
experimental group animals was significantly higher for 5s Delay task than No-Delay task (**p = 0.004, 
Wilcoxon rank-sum test) and was not significantly different for the control group animals (p = 0.167, 
Wilcoxon rank-sum test).  
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Supplementary Figure 3.3  Histological verification of targeting AC to pStr projections and change 
in pStr LFP responses following chemogenetic inactivation of these projections. A. Histological 
validation of electrode position in pStr and chemogenetic virus expression in AC to pStr projections. I. 
Electrode position in pStr is denoted by the green dotted lines. II. and III. Representation of the virus 
injection tracks in AC and pStr. IV. and V. are magnified images from II and III showing axons in pStr and 
cell bodies in AC. B.and D. Normalized average pStr LFP (solid line denotes mean, shaded area represents 
SEM across no-lick trials) recorded in response to the sound onset from an example animal trained on the 
1.5s Delay task (left) and on the No-Delay task (right) with saline (orange/light blue) and CNO (black) 
injections. The shaded pink region represents the period from sound onset. C. and E.  Comparison of the 
normalized average pStr onset response magnitude computed across animals (N = 3) for the 1.5s Delay 
task (Fig C) and for the No-Delay task (Fig E) on saline and CNO conditions. Error bars represent mean ± 
SEM across animals. Comparison between saline and CNO conditions yields *p<0.05 (Wilcoxon rank-sum 
test) for each animal when trained on the 1.5s Delay task and was not significantly different when trained 
on the No-Delay task. 
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Chapter 4 : Discussion 

4.1 Summary 

Understanding day-to-day sounds in our environment like speech or music, 

requires recognition and integration of acoustic features of the sound over a range of time 

periods, along with the context in which they occur. Addressing how our auditory system 

facilitates such robust auditory perception has been a fundamental question of research. 

As the major higher level sound processing region in the auditory pathway, the auditory 

cortex (AC) has been extensively studied to investigate its role in auditory perception and 

it has been shown that AC, unlike other primary sensory cortices like the visual cortex, is 

not a simple detector of acoustic features of the incoming sound signals but also 

integrates information about the context and behavior (Kuchibhotla & Bathellier, 2018; 

Nelken et al., 2003, 2014; Nelken & Bar-Yosef, 2009; Sutter & Shamma, 2011; Town et 

al., 2018). Various neurophysiological signatures have been identified in AC to support 

its multidimensional role in auditory perception.  

This dissertation outlines two distinct auditory cortical neural mechanisms 

underlying auditory driven behaviors -  

In study 1, I found that AC neuronal representations of behaviorally relevant 

complex sounds are more stable than that of simple stimuli like pure tones. These results 

demonstrate that sounds with a distinct identity and potential meaning are more stably 

represented in AC across time.   
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In study 2, I used an appetitive sound-triggered reward time prediction task to 

establish that mice can use a sound cue to predict time intervals at 1-second temporal 

resolution, and that this behavior is dependent on AC. I also found that AC LFP responses 

encode for the interval duration from sound onset to reward in this task and coordinate 

this information with the posterior striatum, a downstream non-auditory region. These 

findings provide the first evidence of AC encoding for information about the sensory cue 

and timing, a non-auditory component, simultaneously and make an essential contribution 

about the role of AC in processing aspects beyond the auditory stimuli.  

Together, both these studies provide novel evidence that sound representations in 

AC carry information about sound-guided predictive coding, behavioral context, and 

subsequent actions, and further our understanding of the role of AC in achieving stable 

and highly robust auditory perception. 

4.2 Multifaceted role of AC 

The findings outlined in this dissertation challenges the notion that AC is only 

involved in simple computations about the incoming sounds while suggesting that AC 

could be involved in encoding for sounds and all sound-related non-auditory information 

necessary for achieving a stable auditory perception. As it has been theorized in past 

works, this dissertation allows us to further ask questions about the distinctive function of 

the primary AC in the auditory pathway and about how the primary AC is not equivalent 

to other primary sensory cortices like the primary visual cortex. Moreover, given the 

diversity and the range of functions that AC has been implicated in, it would not be 
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farfetched to speculate whether AC performs the role of a higher-order associative region 

like the prefrontal cortex or the hippocampus. 

4.2.1 Exploring the link between AC representational stability and perception 

Stability of perception and behavior necessitates some form of neuronal 

representational stability.  The highly dynamic cortical activity in response to sensory 

inputs, which is also known to change over time, influences how such a representational 

stability can exist. Such changes in neural representations, also referred to as the 

“representational drift”, has been observed in olfactory bulb (Schoonover et al., 2021), 

visual (Deitch et al., 2021; Pérez-Ortega et al., 2021; Ranson, 2017), somatosensory 

(Pancholi et al., 2023; Peron et al., 2015), auditory (Aschauer et al., 2022), motor (Rokni 

et al., 2007) and hippocampal (Ziv et al., 2013) regions. Many of these studies show a 

significant proportion of neurons responding similarly across time, while others contribute 

to the necessary plasticity required for adapting to changes in the environment. Recently, 

a study in the mouse vibrissal somatosensory cortex showed that greater neural stability 

was associated with stimulus response during a perceptual learning task, indicating that 

representational stability of a stimulus evolves not only with time but is strongly influenced 

by the behavioral relevance of the stimulus to the animal (Pancholi et al., 2023). The 

findings in my study 1 provide evidence for existence of representational stability in the 

auditory modality but also suggest that such a representational stability could be 

correlated with behavioral salience as well, since AC responses are more stable across 

days to complex sounds compared to pure tones.  

Previous studies have shown that there is more to AC than processing a sound’s 

acoustic structure (Kuchibhotla & Bathellier, 2018; Nelken et al., 2003, 2014; Nelken & 



 92 

Bar-Yosef, 2009; Sutter & Shamma, 2011; Town et al., 2018). Consistent with these 

studies, results from both my studies showed that AC representation of spectrotemporally 

complex sounds and in a behavioral context could be modulated by their ethological 

relevance. This ethological relevance may either be innate through evolution or gained 

significance through behavioral conditioning. These findings underscore the need to 

investigate AC neural mechanisms using complex sounds and contexts that extend 

beyond the conventional use of simple auditory stimuli such as pure tones. This 

expansion is vital because the long-term stability of sound representations in AC may be 

directly linked to its capacity to maintain perceptual stability (Lütcke et al., 2013; Sutter & 

Shamma, 2011). For example, electrophysiological recordings from the mouse AC have 

revealed that the ability to discriminate between complex sounds improves over time, 

while the discriminability between pure tones remains unchanged (Maor et al., 2020). 

Similarly, studies involving non-human primates and human subjects have shown that AC 

representation of meaningful vocalizations is retained longer than that of non-vocalization 

complex sounds (Ng et al., 2009). Building on these studies and the findings from study 

1, it can be inferred that enhanced stability of AC representations of complex sounds 

compared to pure tones would predict better behavioral performance on learning and 

memory tasks using complex sounds rather than pure tones. For example, performance 

on an auditory recognition task with long time intervals (e.g. hours or days) between 

sound presentations would be expected to be better for complex sounds compared to 

pure tones. Whether this is indeed the case, and whether neuronal representational 

stability and memory-related behavioral performance are indeed linked remains to be 

addressed.  
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Another way in which future studies may attempt to identify whether longitudinal 

stability of AC sound representations is associated with the ethological relevance of the 

sound is by comparing AC sound responses to pure tones, ethologically relevant complex 

sounds and to wideband, ethological irrelevant sounds like tone clouds (Bigelow et al., 

2019; Chen et al., 2019; Francis et al., 2018; Gilday & Mizrahi, 2023; M. Wang et al., 

2020; Znamenskiy & Zador, 2013). If a similar degree of daily plasticity is observed 

between tone clouds and pure tones, it would suggest that the ethological relevance of 

the sound is the modulating factor for maintaining representational stability in AC, thereby 

implicating it in the preservation of perceptual stability. 

4.2.2  AC representations encoding predictive non-auditory information  

Cortical representations of prediction have largely focused on retrospective coding 

of sensory information. The most intensively studied phenomenon of stimulus-specific 

adaptation (SSA), in which neuronal responses to familiar repeated stimuli are reduced 

while responses to rare, deviant ones are enhanced (Ulanovsky et al., 2003, 2004), is a 

good example of such predictive coding. This phenomenon of expectation-induced 

reduction in neural responses have also been observed in the visual cortex (Summerfield 

& De Lange, 2014) and somatosensory cortex (Musall et al., 2017). Most importantly for 

this dissertation, temporal expectation of a salient sound cue is known to evoke an 

enhanced response in AC neurons. This representation of temporal expectation has been 

suggested to cause improvement in associated behavioral responses in rodents and 

humans (Jaramillo & Zador, 2011; Stefanics et al., 2010). Other studies have shown the 

salient sensory consequences of an action like a lever press have also been encoded in 

AC (Cook et al., 2022). While these studies have given us insights about AC 
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representation of predictive coding based on sensory experiences or actions, findings in 

study 2 of this dissertation, provides evidence for prospective predictive coding of future 

salient event based on a sound cue in AC. I show that AC responses are able to 

simultaneously encode for sound and reward timing, with the AC sound onset-response 

magnitude increasing with sound-reward interval duration. A potential explanation for this 

trend could be based on an already known mechanism in AC, which tells us that AC 

responses are smaller in magnitude to more predictable and reliable sounds compared 

to its responses to surprise, deviant sounds (Ulanovsky et al., 2003, 2004). Based on my 

results that animals’ show higher precision in predicting shorter interval durations 

(Supplementary Figure 3.1), this would suggest that the sound cue associated with the 

shorter interval durations would be more predictable and reliable and hence, evoke a 

smaller response in AC compared to the responses to the sound associated with the 

longer intervals, which are known to have less precision in behavioral prediction.  

As past work has shown that AC responses encode for non-auditory aspects like 

sound-associated movement (Henschke et al., 2021; Schneider et al., 2014; Vivaldo et 

al., 2023), arousal (P. A. Lin et al., 2019; Schwartz et al., 2020), and other sensory stimuli 

(Bizley et al., 2007; Cohen et al., 2011; Ghazanfar et al., 2005; Gilday & Mizrahi, 2023; 

Kayser et al., 2005), the simultaneous encoding of cue and predicted reward timing in AC 

LFP responses in this study adds another dimensionality to AC’s ability to represent 

information beyond auditory stimuli. However, we are yet to determine whether this ability 

of sound-triggered prediction of reward timing in AC extends beyond the temporal scale 

of few seconds and how it interacts with AC encoding of other non-auditory components. 

For instance, in the context of my task, attention/alertness of the animal to the sound and 
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other cues in its environment could very well influence how AC LFP responses encode 

the interval duration from sound to upcoming reward and consequently, the behavioral 

performance on the task.  Moreover, as described above, the influence of ethological 

relevance of the sounds guiding such behaviors could also modulate the precision of 

timing incorporated in these predictive representations in AC. One way to test this would 

be to estimate the attention of the animal by recording its pupil diameter (P. A. Lin et al., 

2019; Schwartz et al., 2020) during performance on this task across varying sound-

reward intervals and checking if the change in pupil size varies within the different 

components of the trial, including the sound, the interval period, and the reward and 

whether this variation is correlated with different interval durations.  

4.3 Technical considerations  

Both studies conducted within this dissertation represent significant steps in 

comprehending the neural mechanisms within AC through distinctive approaches. Two-

photon calcium imaging allows for cell-type specific recording of the same neurons over 

long periods of time with spatial precision (Grienberger & Konnerth, 2012; Stosiek et al., 

2003; Svoboda & Yasuda, 2006). Importantly, this technique has been used to address 

the long-term stability of neural representations in sensory cortices like visual cortex 

(Deitch et al., 2021; Ranson, 2017), olfactory bulb (Schoonover et al., 2021), and 

somatosensory cortex (Peron et al., 2015) and in the hippocampus (Ziv et al., 2013). In 

Study 1, I harnessed two-photon calcium imaging to monitor the activity of individual 

excitatory neurons in the AC, focusing on their responses to complex sounds and pure 

tones across days. This allowed me to compare representation of sounds in AC based 

on their ethological relevance and acoustic structure under baseline conditions across 
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days. However, this study only reflects the beginning of how we can exploit this tool to 

record cell-type specific activity under baseline and experimental conditions to 

understand local network dynamics. One question to ask would be how the excitatory and 

inhibitory neurons across cortical layers of AC interact to achieve the intracortical network 

dynamics required to facilitate auditory behaviors. A recent study targeted excitatory and 

PV-expressing interneurons in the dorsal auditory field using two-photon calcium imaging 

and showed how activity of these neurons are differentially modulated by locomotion 

(Henschke et al., 2021). Further, with the advent of cortical layer-specific neuronal 

targeting using two-photon microscopy (Clayton et al., 2021; Romero et al., 2020; 

Tischbirek et al., 2019), it would be much easier to understand how representations are 

modulated by the neurons in different cortical layers and the neural inputs they receive 

from other regions.  

In contrast to this approach, in study 2, I acquired LFP recordings to examine AC 

and pStr responses to behaviorally relevant sounds over much shorter intervals, spanning 

seconds. In the context of this study, it was imperative that I recorded neural activity using 

a technique with high temporal resolution and that which allowed me to compare activity 

in AC and pStr simultaneously within the same hemisphere. In vivo electrophysiology 

provided these advantages over two-photon calcium imaging and hence, was more 

suitable for the purpose of this study. Moreover, previous studies particularly implicated 

LFP neural signatures like oscillations and coherence when multiple brain regions 

communicated and coordinated to facilitate interval timekeeping (Buhusi & Meck, 2005; 

Tallot & Doyère, 2020; Treisman, 1963). While LFP recordings in AC and pStr certainly 

gave us essential insights about their role in sound-triggered prediction of reward timing, 
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acquiring single-unit activity from both these regions, as the next step, would enable us 

to test how neural responses in these regions are modulated by different aspects of the 

sound to timed action sequence of behavior.  

In addition to using two key neurophysiological recording techniques, Study 2 also 

chemogenetically targeted the anterograde projections from AC to pStr while 

simultaneously acquiring LFP recordings from both these brain regions. The results from 

the specific experiment employing these techniques, established the causal and 

functional consequences of inactivating AC to pStr projections on sound-triggered reward 

timing task. But this was only explored in a subset of animals using chemogenetics, a 

global inactivation approach, with effects lasting for longer periods of time. To determine 

how neural information is integrated and communicated from AC to pStr during this task 

would require using a combination of optogenetic inactivation of these projections and 

single unit recordings in AC and pStr, such as optrodes (For example, Weible et al., 2014; 

Guo et al., 2015; O’sullivan et al., 2019). This would allow for inactivating the 

communication from AC to pStr during specific parts of the trials and examining when 

during the trial is the information about timing in AC, translated to inform the initiation of 

the consequent action in pStr. Such studies have been conducted in mice to understand 

the encoding of short-term auditory memory in AC (Yu et al., 2021).  

4.4 Conclusion 

The diverse approaches utilized in this dissertation, along with their distinct 

outcomes, not only underscore the vast expanse of research opportunities within the 

realm of auditory perception but also highlight the profound enigma that AC continues to 
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represent in this landscape. Applying similar disparate methods to address AC 

neurophysiological mechanisms that integrate and interpret complex sounds in various 

behavioral contexts, could provide a more comprehensive understanding of how they can 

be modulated to help patients with hearing impairments and patients with motor-related 

disorders with consequential speech and communication difficulties like dysarthria and 

apraxia (Kent, 2000). These insights may prove invaluable in developing invasive and 

non-invasive therapeutic interventions for patients who struggle with planning and 

sequencing speech sounds (Kent, 2000; Maas et al., 2008; Strand, 1995), and more 

importantly, for patients who have impaired cognitive abilities due to age-related hearing 

deficits (Jafari et al., 2021; Uchida et al., 2019). Therefore, the culmination of these 

studies not only enriches our understanding of AC functioning but also paves the way for 

diverse applications, particularly in areas aimed at enhancing human communication and 

overcoming auditory challenges. 
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