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ABSTRACT

In recent years, deep learning (DL) algorithms have gained widespread use in scientific and
engineering fields, promising insights into complex trends within extensive datasets. However,
these models typically lack transparency and interpretability and the quantification of uncertainty
in DL models, especially related to the understanding derived from the quality and quantity of
training data, remains an underexplored research area. This dissertation addresses this gap by
advancing Bayesian uncertainty quantification (UQ) methods in large-scale deep neural networks
(DNNs), specifically constructing Bayesian neural networks (BNNs).

This dissertation proposes two methodological improvements to BNNs: the first is a parameter
subselection procedure that leverages gradient based sensitivity analysis to select only the most
impactful DL parameters for Bayesian inference; the second contribution is a prior selection
methodology that weighs both expert knowledge of the predictive space alongside as well as
desirable regularizing effects in the weight space.

This dissertation goes on to implement Bayesian neural networks and these novel methodologies
in four unique scientific machine learning case studies, two related to physics simulations and two
related to real-world health data. These case studies include: a novel framework for remotely
detecting ice accumulation on helicopter rotor blades and assessing flight performance degrada-
tion; an investigation on the temporal evolution of uncertainty in Bayesian graph convolutional
neural networks when predicting stress response in polycrystalline materials; an investigation of
the uncertainty in the state-of-the-art U-NET model for brain tumor segmentation; and a novel
framework for automatically assessing physical therapy patient performance on balance training
exercises, along with preliminary approaches for future exercise recommendation.

By drawing new insights into model uncertainty across diverse science and engineering ap-
plications, this research aims to provide greater understanding of uncertainty in Bayesian neural
networks, to help mitigate the consequences of model overconfidence, and to provide critical
metrics for decision-making and data collection.
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CHAPTER 1

Introduction

1.1 Opportunities

1.1.1 Scientific Machine Learning

Scientific machine learning (SciML) [1] is an interdisciplinary field that brings together the princi-
ples of machine learning (ML) and scientific computing. The goals of SciML are to develop models
and algorithms that can learn from scientific data and simulations, and to use that knowledge to
improve our understanding of complex systems and make predictions about their behavior [2]. The
targeted scientific applications often involve multiscale and multiphysical dynamics under diverse
sources of uncertainty and noise, and where decisions carry high consequences. As pointed out
in [1], it is therefore critical to strengthen the scale, rigor, robustness, and reliability of SciML
methods.

SciML is particularly useful in scientific domains where traditional modeling and simulation
techniques may be computationally expensive, or where the underlying physical laws are poorly
understood or unknown [3]. In these cases, ML can provide advantages in extracting patterns and
relationships from datasets, and to create predictive models that can be used to guide scientific
inquiry. In particular, deep learning (DL) is a subset of ML that utilizes highly parameterized
deep neural network (DNN) models to learn and express complex, nonlinear interactions. For
example, DL-based models have recently had tremendous success in applications in medical image
segmentation, where DNNs with tens of millions of parameters have been used to parse through
magnetic resonance imaging (MRI) scans containing millions of voxels to section out dangerous
anomalies in just a few seconds [4]. Accuracy is comparable or even superior to a trained radiologist
that might require several hours to complete the same task [4]. This task will be explored more
in Chapter 6. Other DL successes in scientific domains include protein folding [5], molecular
discovery [6], particle physics [7], fluid dynamics [8], solid mechanics [9], material science [10],
and many more. SciML has the potential to transform many scientific domains, however it also
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presents several challenges, including the need for large amounts of high-quality data, for robust
validation and uncertainty quantification, and for interpretability and transparency [3].

It should be noted that within SciML, there is a very active field of research often referred as
physics-informed ML [11, 12, 13] that aims to combine known physical principles with data-driven
constructs. For example, physics-informed neural networks (PINNs) [14] find solution mappings
by injecting loss terms based on violation residual of differential equations and initial boundary
conditions that should obeyed, while neural operators [15] learn from data the rate-of-change of
quantities that can generalize over time. While all of these are exciting research directions, they
are not the focus of this dissertation. Instead, I will work with purely data-driven methods and
investigate their roles in a range of scientific applications.

1.1.2 Uncertainty Quantification

Uncertainty quantification (UQ) is the process of assessing and characterizing uncertainty in sci-
entific models, simulations, and measurements. UQ tasks involve representing and propagating
uncertainties from their sources through the model to produce a range of possible prediction
outcomes, and updating these uncertainties when new evidence (e.g., observation data) becomes
available. This range of outcomes is often represented using probability distributions or other sta-
tistical measures, such as confidence intervals. UQ is a challenging and computationally intensive
task, as it often requires running multiple simulations or models with different inputs or parameters.
However, it is an essential aspect of scientific inquiry, as it allows researchers to understand the
limitations of their models and the range of possible outcomes, so to make more informed decisions
based on these results [16].

Within UQ, sources of uncertainty typically fall within one of two categories, epistemic and
aleatoric uncertainty. Epistemic uncertainty comes from a lack of knowledge. This commonly
comes from a lack of data, and can be reduced as data becomes less sparse. This uncertainty
can also come from modeling assumptions, like unknown or neglected physics. In a data-driven
approach, the type of model used (linear, random forest, deep neural network, etc) and how it is
parameterized comes with limitations and assumptions that induce epistemic uncertainty. Aleatoric
uncertainty comes from random noise or chance that cannot be reduced without a different data
collection process. Sensors, whether analog or digital, have limitations to their accuracy, which is
a type of aleatoric uncertainty. Some physical phenomenon, such as sub-atomic particle motion,
is inherently probabilistic. Other processes, such as the jitter of stock prices on a second by
second basis, is so complex that it becomes effectively random. These too are considered aleatoric
uncertainty. In ML models, aleatoric uncertainty is often present in both features and labels.

In DL, UQ is particularly useful for conveying trust and transparency to otherwise uninter-
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pretable, blackbox models and their predictions. At the minimum, UQ provides a means for the
DL model to indicate when it is confident and when it is not. However, the notion of trust in ML
is highly complex, and enabling uncertainty would still be only a small step towards achieving
trustworthiness. Furthermore, UQ needs to be done carefully, since wrong predictions with low
uncertainty would actually erode trust for the users of the ML model. UQ is also useful for guiding
decision-making based on those predictions [17]. This need is further elevated in science and en-
gineering domains where data can be limited, expensive, and often noisy and indirectly observed.
Uncertainty can be used as an important metric to guide new data collection, such as in the cases of
active learning and experimental design. While differing slightly in flavor, both approaches employ
principles to target new data that explore the model space with high uncertainty or high potential for
uncertainty reduction. Finally, UQ is essential for risk assessment and decision-making. In science
and engineering, model predictions will often lead to real-world implications and consequences,
for example, that involve people’s health and safety. It is thus essential for end-users of these
models to understand both the likelihood of different scenarios that could take place as well of the
consequences of these outcomes [18].

While there are different mathematical frameworks to quantifying uncertainty, we will focus
specifically on Bayesian UQ. By deriving the rules of probability from an extension of symbolic
logic [19], Bayes’ theorem provides a systematic approach to update the distribution of plausible
outcomes through conditioning on data, taking into account their quality and quantity.

Bayesian inference starts by forming a prior probability distribution about the possible values
of model parameters of interest, which may entail physical quantities (e.g., gravitational constant,
Young’s modulus) or abstract variables (e.g., weight parameters of a DNN). In the subjective
Bayesian interpretation, these prior distribution can be formed in an informative manner based on
the existing knowledge of the user. Alternatively, following the objective Bayesian interpretation,
prior distributions can be selected for their ability to regularize a model and induce better gener-
alizability on unseen data. In fact, under uncertain regression conditions, distributions such as the
Laplace distribution and Gaussian distribution are Bayesian analogs to L1 and L2 regularization
in frequentist settings. Other times, priors are selected for their uninformativeness or ability to
not skew the posterior, as in Jeffrey’s prior [20], the maximum entropy prior [21], or in DNN
settings, wide Gaussian priors. How to select priors on DNN weights remains and open question,
and concerns have been raised regarding the misspecification of DNN priors, particularly with the
most common weakly-informative Gaussian priors that are so commonly used [22, 23].

A major component of Bayesian inference that distinguishes it from frequentist methods is this
incorporation of prior information via the prior distribution. In the case of selecting priors on DNN
weights, it poses a challenge due to the lack of interpretability in the abstract weight space. That is
to say that while assigning prior distributions to weights is trivial, understanding the way in which
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these priors encode information, particularly its effect on the output space, is non-trivial.
As more data relevant to that parameters is acquired, a user’s belief state on the value of that

parameter is also updated into the posterior distribution—that is, the conditional distribution of the
parameters given the new data. This Bayesian approach to uncertainty is very powerful, as it not only
follows directly from laws of logic and probability, but it also intuitively mirrors the way that many
humans understand the world—starting with an initial (prior) hypothesis of how things work, and
then updating this hypothesis in light of new information that support or refute different possibilities.
One major challenge of Bayesian UQ is then to calculate this posterior probability distribution or,
more commonly, to sample from it. While sometimes analytical posterior distributions are available,
there is typically not a close-form solution. This necessitates the work of computational Bayes that
focuses on developing and studying numerical methods for performing Bayesian inference.

This thesis will focus on enabling Bayesian UQ for DNN-based models. The Bayesian treatment
of DNNs is also known as Bayesian neural networks (BNNs).

1.2 Background

The thesis will take a two-pronged approach, making advanced in both the algorithmic and appli-
cation sides of Bayesian UQ in SciML. A brief algorithmic background, with a focus on existing
algorithms, is presented below first, followed by short introductions of the science and engineering
application problems to be tackled.

1.2.1 Algorithms for Bayesian Inference

1.2.1.1 Markov Chain Monte Carlo (MCMC)

The workhorse methods for Bayesian inference is perhaps the Markov chain Monte Carlo (MCMC)
class of algorithms. MCMC works by generating a sequence of random samples by constructing a
Markov chain whose equilibrium distribution is the target distribution (which is set to the posterior
distribution in the context of Bayesian inference) [24, 25, 26, 27, 28]. Roughly, this is done by
drawing a new candidate sample based on a proposal distribution, evaluating the target probability
density function (PDF) at the current and candidate samples, and then accepting or rejecting the
proposed candidate based on the ratio in their PDF scores.

One of the key advantages of MCMC methods is that they can be used to sample from general
probability distributions that may be difficult or impractical to sample using traditional methods
such as rejection sampling or importance sampling. Additionally, the target distribution need not
be normalized, eliminating the challenge of dealing with the difficult model evidence (marginal
likelihood) term that arises in Bayes’ theorem. Lastly, MCMC is considered to be an “exact”
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algorithm with ergodic theorems guaranteeing its convergence in the asymptotic (infinite steps)
limit. Despite their advantages, MCMC methods are not without limitations.

One major challenge is ensuring that the Markov chain has sufficiently converged to the de-
sired equilibrium distribution under finite steps, which can be difficult to assess in practice. In
addition, MCMC methods can be computationally intensive, especially when dealing with high-
dimensional parameter spaces. This is partially addressed by using more advanced proposal
distributions that more intelligently explore the target distribution. Whereas early MCMC methods
(e.g., Metropolis-Hastings) use fixed Gaussian proposals that can lead to extremely low accep-
tance rates in high dimensions, modern MCMC (e.g., Metropolis-Adjusted Langevan Dynamics
(MALA) [29], Hamiltonian Monte Carlo (HMC) [30], and No-U-Turn Samplers (NUTS) [31])
have adopted gradient information to guide proposals of new samples with lower rejection rates.
Nevertheless, the number of samples needed to reasonably capture the equilibrium distribution
grows substantially in higher dimensions as a result of the geometric limitation from the “typical
set” [32], making MCMC unsuitable for very large scale inference problems.

1.2.1.2 Variational Inference

Variational inference (VI) [33, 34, 35] adopts a different strategy than MCMC: instead of sampling
from the posterior distribution, VI seeks to directly approximates the posterior in a parametric
form. This entails first selecting a parametric family of distributions, and then optimizing in this
parametric space to find the specific distribution that is closest to the true posterior distribution
according to some distance measure. Most commonly, this measure is the Kullback-Leibler (KL)
divergence from the true posterior to the approximate posterior represented by the variational
distribution. This is sometimes referred to as the ‘reverse’ KL divergence, to distinguish it from
the ‘forward’ KL divergence that is from the approximate posterior to the true posterior. Unless
otherwise specified, the KL divergence used throughout this dissertation will refer to the ‘reverse’
formulation. The KL divergence is typically selected for its computationally tractability and for its
significance in information theory, however other metrics, such as the Wasserstein distance, have
also been explored. The best approximate distribution is when the KL divergence is minimized.
In practice, this KL term can be transformed to the evidence lower bound (ELBO), which can be
estimated efficiently using Monte Carlo sampling.

One of the main advantages of VI is that, by effectively transforming the inference problem
into an optimization one, it is much more scalable to high-dimensional parameter spaces and to
handle complex dependencies. The major drawback of VI is that its approximation capacity is
constrained by the variational family, and it is no longer an exact algorithm like MCMC. For
example, while simple to use, mean-field Gaussian VI are unable to capture correlation and non-
Gaussian structures; however, the variational space can be enriched by advanced parameterizations
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such as normalizing flows. Furthermore, VI does not carry any convergence guarantees, even as
the approximating families become more complex.

1.2.1.3 Stein Variational Gradient Descent

Stein variational gradient descent (SVGD) is a particle-based algorithms used in ML and Bayesian
inference to approximate complex probability distributions, first proposed by [36]. The basic idea
behind SVGD is to transform the target distribution into a set of particles, each of which is updated
using a gradient-based optimization algorithm. The update rule is designed to move the particles
towards regions of high probability density, via the Stein operator, while also encouraging diversity
(variance) among the particles.

A key innovation of SVGD is the use of a kernel function to define a distance metric between the
particles, which is used to compute the gradient of the optimization objective. This allows the al-
gorithm to effectively explore the high-dimensional parameter space and converge to a high-quality
approximation of the target distribution. Importantly, SVGD does not require explicit knowledge of
the target distribution and does not require an explicit variational family of approximate posteriors.

One of the main advantages of SVGD is its ability to scale to large datasets and high-dimensional
models, which can be difficult or impossible to handle using MCMC or VI. In addition, SVGD
can be easily parallelized and can be applied to a wide range of models, including those with
complex dependencies and non-standard distributions. However, the quality of the approximation
depends on the choice of the kernel function, the number of particles used. Like most optimization
algorithms, this algorithm is sensitive to initial conditions and the exact choice of optimizer and may
require careful tuning and parameter selection. One major shortcoming with SVGD is the tendency
for the posterior to “collapse” in high-dimensions [37]. That is to say, without enough particles or
with a poor choice of kernel, the kernel might lack the expressivity to adequately explore both high
and low density regions of the target posterior distribution. As such, particles will clusters around
the mode of the posterior and underestimate posterior variance. While increasing the number of
particles can alleviate this issue, this might not be computationally feasible in very high dimensional
problems.

1.2.1.4 Projected Stein Variational Gradient Descent

Projected SVGD (pSVGD), proposed by [38], advances on the original SVGD algorithm to greatly
alleviate the tendency of posterior collapse. The key innovation of pSVGD is to project the
posterior onto a strategically selected low-dimensional subspace such that the number of particles
is not dwarfed by the number of dimensions. That is, the number of particles per dimension
is effectively increased. The choice of subspace is a likelihood-informed active subspace that is
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most-informed by the data. The complementary inactive subspace is minimally informed by the
data and can be frozen to remain at the prior.

Much more details of these algorithms, including their mathematical formulations, will be
presented in Chapter 2.

1.2.2 Simulation-based Physics Applications

In addition to algorithmic investigations, this thesis also seeks to bridge theory to application,
by implementing and exercising the computational methods on complex problems encountered
in real-world science and engineering. To date, the have been few large-scale implementations
of BNNs, particularly with promising Bayesian inference algorithms such as SVGD and pSVGD.
Recently, [39] demonstrated a deep convolutional autoencoder with 241,164 parameters and 20
SVGD particles for a SciML task of modeling fluid permeability in random porous media. However
there is a large research gap in identifying suitable real-world applications for BNN. There are
also a number of unique, domain-specific adaptions needed to effectively implement BNN in
scientific applications, particularly as an uncertainty-aware surrogate model. Uncertainty is an
important component in physics models, and even more-so in surrogate models. Typically, advanced
physics models are used to aid design and design of physical experiments. Surrogate models are
approximations of higher fidelity models that are designed to be much cheaper to run, but may
lack the accuracy, resolution, or even convergence guarantees of high fidelity numerical modeling
techniques. UQ is also an important tool for guiding additional data collection and is also valuable
for understanding the limitations of surrogate models. This section presents background information
on two BNN applications as a computational physics surrogate models, each of which is developed
further in Chapters 3 and 4.

1.2.2.1 Helicopter Icing Performance Evaluation

In-flight ice formation poses a major danger for rotorcraft (e.g., helicopter) operations, and detection
of ice formation is paramount for operational safety. Direct detection methods such as infrared
thermography [40], optical reflectometry [41] and ultrasonic wave techniques [42] have received
the most scientific interest but have either struggled with implementation on moving parts or with
commercial viability. Indirect methods compare established aircraft states with potentially iced
states to deduce the presence of ice. This work focuses on developing an indirect data-driven
method of mapping acoustic signature to flight performance techniques. I accomplish this mapping
with Bayesian dense neural networks.

In an offline phase of the work, the acoustic signature of glaze and rime ice shapes on an oscil-
lating wing are computed via computational fluid dynamic simulations. In addition, aerodynamic
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performance indicators corresponding to the ice shapes are also monitored. These performance
indicators include the lift, drag, and moment coefficients. These data pairs of high-dimensional
acoustic signatures and performance indicators are well suited for mapping via DNNs. In addition,
the health and safety nature of monitoring icing and its performance impact necessitates a strong
understanding of the model limitations and the degree of uncertainty in its assessments.

A BNN is subsequently trained using pSVGD to create a mapping from the acoustic signature
generated by the iced wings to predict their performance indicators along with quantified uncertainty
that is highly important for time- and safety-critical decision-making scenarios. While the training
is carried out fully offline, usage of the BNN to make predictions can be conducted rapidly online
allowing for an ice detection system that may be used in real-time and in-flight.

DNNs have previously been utilized in identifying rotorcraft based on acoustic signature [43].
DNNs have also been used to diagnose icing based on visual data of airfoils but this approach fails
to directly quantify the impact on flight performance[41, 40]. There is a substantial discrepancy
in flight performance impact between more mild rime ice and more severe glaze ice that is not
accounted for in simply identifying the presence or absence of ice. My approach is the first to
directly assess the impact of ice and the first to do so based on acoustic signature. Furthermore,
mine is the first approach to also provide uncertainty information with these predictions.

This use-case highlights the ability of even a simple, dense neural network to accurately map
high-dimensional aeroacoustic data to flight performance indicators. Furthermore, I was able to
demonstrate the effectiveness of SVGD and pSVGD in quantifying uncertainty in these neural
networks. This uncertainty is valuable in conveying risk and transparency to end users. One line of
future work will focus on adapting the BNN approach to recurrent networks, to allow for real-time
performance evaluation without the need for frequency binning of the aeroacoustic data. Another
line of future work lies in using the uncertainty in the acquisition function of an active learning
framework. This work will be presented in Chapter 3.

1.2.2.2 Polycrystal Stress Response

The material response functions of many real-world materials depend on the microstructure, which
includes variations in the phase and orientation of constituent crystals. To give just one example,
different grades of steel are primarily differentiated by their microstructure. Depending on how the
steel has been tempered, quenched, and the exact ratio of iron to carbon and other trace elements, the
small crystals that make up the grain of the metal might form pearlite, ferrite, cementite, austenite,
and other phases and each crystal takes on a unique spatial orientation. Their exact arrangement
contributes to the unique yield strength, elastic modulus, brittleness, and ductility of the bulk
material and differentiates that particular grade of steel from other grades. While monocrystalline
materials do exist, most metals, alloys, and ceramics, as well as polymers and composite materials
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are made up of a polycrystalline microstructure.
To predict the mean response of a microstructure sample to external loading, homogenization is

necessary for developing subgrid models and exploring structure-property relationships. However,
using the graph induced by the segmentation of microstructural fields to learn response functions
directly can be difficult as this representation does not encode all the information of the full field.

To address this challenge, [44] proposed a DL method based on hidden features on a reduced
graph that utilizes the native discretization and segmentation of the input field. The reduced graph
represents regions as nodes that are associated with features, and a subsequent multi-level graph
convolutional neural network (GCNN) model is used as the basis for analysis. Reducing the graph
before processing it with convolutional layers has several benefits, such as interpretable features
and efficiency on large meshes.

However, one drawback of this approach is that the GCNN only predicts the mean response to
external loading, without capturing the non-negligible variance of the response. In order for the
GCNN surrogate model to be useful for design applications, uncertainty quantification must be
implemented in order to determine the potential for deviation from higher fidelity methods.

The work presented in Chapter 4 investigates scalable Bayesian methods for quantifying the
variance that is innate to the microstructure response predictions. Open questions involve iden-
tifying and evaluating scalable Bayesian inference algorithms for this task as well as evaluating
suitable time marching approaches, such as architectures with long short-term memory (LSTM)
and neural ordinary differential equations (NODEs).

1.2.3 Real-world Health Applications

In addition to investigations centered around building surrogate models for higher fidelity physics
simulations, this thesis also seeks to explore real-world applications in the health sciences. These
real-world applications carry unique challenges. The first is that the data is particularly small and
noisy. Data can be sensitive to sensor accuracy, sensor calibration, and the potential for human error
in data collection. And while physics models typically have a “true” underlying model governed
by known laws of physics, medical data can feature a complexity that is well beyond what can be
modeled using governing equations. As such, any data-driven model that is derived from medical
data typically cannot be compared to a “true” model, in that a “true” model likely does not exist.
Going back to the concept of aleatoric uncertainty presented earlier in the chapter, there is a limit
to what can be known. This makes UQ particularly necessary in the health science domain.

Furthermore, modeling in the health domain is intrinsically linked to the concept of risk. Model
errors and misclassifications in health modeling could lead to improper treatment and even physical
injury. If risk is conceptualized as the intersection of consequences and uncertainty [45], and the
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potential consequences in this domain are innately high, then it is imperative that uncertainties be
well understood.

Of course, understanding all sources of uncertainty in a given domain is challenging. This work
is limited in its scope in that it only tries to address epistemic uncertainty in model parameters and
aleatoric noise in data labels. Other sources of uncertainty such as model misspecification, feature
noise, and sensor accuracy are not considered.

Chapter 6 investigates a Bayesian implementation of the popular U-Net segmentation architec-
ture [4] for the purpose of identifying tumors in MRI scans. Specifically, these scans are mapped to
radiologist-annotated boundaries of the tumors using BNN. The U-Net model also poses a challenge
due to its very large model size, and this challenge is partly addressed by my novel methodological
contribution of partially Bayesian neural networks.

Chapter 7 investigates a Bayesian ML tool for automatically assessing a patients balance ability
in a precision health balance rehabilitation setting. Kinematic information of a balance exercise
from an inertial measurement unit (IMU) sensor is mapped using BNN directly to a rating assigned
by a physical therapist (PT) observing the exercise. With the end goal of this project being to
recommend future exercises to a patient, it is imperative that recommendations be accurate, which
in turn depends strong on the assessment of current exercises. Injury should an exercise be too
difficult and stagnated recovery should an exercise be too easy mean that the consequences of
poor prediction are high. As such, it is again imperative that uncertainty be well understood, and
it forms an important component to advancing to clinical implementation of a balance exercise
recommendation tool.

1.2.3.1 Bayesian Medical Image Segmentation

The work presented in Chapter 6 focuses on the task of segmenting brain tumors in MRI modalities.
Tumors are clusters of cells with abnormal growth patterns can can be either benign (non-cancerous)
or malignant (cancerous). Both can interfere with normal function of the brain, though cancerous
are especially dangerous as they can spread to other tissues and other organs.

Presence of tumors are typically confirmed using magnetic resonance imaging (MRI), which
can produce images of organs inside the body. Different modalities are produced by changing the
pulse and response time of the MRI radiowaves, and also by introducing contrast enhancement
agents. MRI scans are invaluable to planning treatment, as accurately removing the tumor and
avoiding healthy tissue is challenging. Typically, this process is aided by radiologist-annotated
scans indicating the boundaries of the tumor. This is a labor-intensive process and radiologists
require many years of training. In recent years, ML image segmentation algorithms have shown to
be a promising approach for automating this expensive annotation process.

Broadly speaking, image segmentation in the context of ML is the process of automatically
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parsing an image into labeled segments for the purpose of identifying objects and their boundaries
within the image frame. This is of particular value in medical imaging, as it poses a means to
automatically identifying structures of interest in X-ray images, CT scans, and MRI scans. To
date, one of the most successful DL implementations of medical image segmentation is the U-Net
architecture [4]. Through a series of cascading convolutional layers interconnected with a series of
cascading deconvolutional layers, this architecture excels at image-to-image segmentation.

Typically, ML models for segmentation, including U-Net, represent pixels as Bernoulli distribu-
tions (or multinomial distributions in the case of multiclass problems) that express the probability
of the presence of a structure of interest, such as a tumor. While these probabilities can be cal-
ibrated to the incidence of correct / incorrect predicted labels, these AI-based clinical decision
support systems (CDSS) that produce single-valued (i.e. deterministic) predictions do not reflect
the inherent uncertainty in medicine [46], and encourage impressions of “superhuman” ability of
AI [47] without mechanisms to contest these claims [48].

I address some of these shortcomings by adapting the U-Net architecture to represent trainable
weights and biases through mean-field VI (MFVI), using independent Gaussian distributions to ap-
proximate the true posterior. However, even MFVI struggles when the number of DNN parameters
(i.e., the dimension of Bayesian inference) goes to millions. Chapter 5 will thus introduce a new
technique that uses local gradients as a low-cost heuristic to focus MFVI on a subset of the most
impactful weights and biases, thus inducing a ‘partially Bayesian’ neural network (pBNN).

The work in Chapter 6 develops a computationally efficient, Bayesian adaptation of the state-
of-the-art U-Net medical image segmentation architecture. This chapter demonstrates a strong
negative correlation between the normalized gradient of a single layer of weights and the KL
divergence between the push-forward posterior distributions of the partial Bayesian U-Net and
fully Bayesian U-Net. pBNNs identified with this heuristic are able to capture the majority of the
Bayesian uncertainty of a full BNN but with a much smaller memory footprint and with much
lower training times.

1.2.3.2 Precision Health Balance Assessments

Losses of balance and falls are a consistent concern for much of the population, particularly older
adults and those with inner ear disorders [49, 50]. Balance training via physical therapy can be an
effective treatment for poor balance. To date, the most effective physical therapist programs require
in-person supervision from a physical therapist (PT) [51, 52] with remote supervision often lacking
the real-time feedback and personalization [53, 54].

Recent progress has been made in remote supervision by utilizing DL tools to map motion data
collected from patients via inertial measurement units (IMU) to corresponding balance assessments
made by PTs [55, 56]. Such DL tools can provide accurate and near-instantaneous automatic balance
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assessments, which can hasten in-home balance recovery. Furthermore, such tools can leverage
the assessments of multiple PTs, potentially mitigating the biases of individual PTs. Using ML in
physical therapy, like many other fields of medicine, requires great care to ensure that the model can
be trusted and that risk is mitigated to any potential patient. The consequences of poorly assessed
and prescribed exercises can be quite severe and as such, mitigating risk in an ML expert system
requires quantifying the uncertainty of any predictions.

DNNs often fail to sufficiently convey appropriate uncertainty information, which is critical to
both medical professionals and patients alike. I quantify uncertainty in DNN models by performing
Bayesian inference for their weight parameters, i.e., creating BNNs. With parameter dimension
often reaching hundreds of thousands for DNNs, I conduct approximate inference using SVGD.
Parameter dimensionality is further reduced by projected parameters onto Hessian-informed active
subspaces, via projected SVGD. Prior distributions for the DNN weights also tend to be very
abstract, and at times arbitrary. I illustrate that priors on DNN parameters can in fact be used to create
intuitive prior predictions while also inducing prediction-enhancing regularization. Furthermore,
I also explore a hierarchical Bayesian framework, in which the model can learn the quality of data
and carefully weigh the impact of the data on modifying prior.

This use-case highlights the ability to adapt the SVGD-BNN approach to scale to larger and
more complex models. This work is presented in Chapter 7. Furthermore, this work demonstrates
the effectiveness of the intuitive prior heuristic, described in Chapter 5, on noisy, real-world data.
Future work will focus on developing an exercise progression algorithm that makes use of these
exercise assessments to suggest new exercises for a PT patient to work on.

1.3 Thesis Objectives

The main objectives and contributions of this thesis are summarized as follows.

1. Enable large scale Bayesian neural networks
The first objective of this work is to enable large scale BNNs. Part of this will be accomplished
through a substantial literature review to understand current scalable Bayesian inference
algorithms, particularly in the variational and Stein variational classes of algorithms. A
subset of these scalable algorithms will be implemented and validated against state-of-the-art
sampling algorithms, such as Hamiltonian Monte Carlo in order to determine the Bayesian
inference algorithms most well-suited for enabling BNN. This work also seeks to develop
a general purpose approach to rapid scalability of BNN via Bayesian parameter reduction
methods.

2. Develop predictive-informed prior selection
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The second objective is to develop a method for intuitive predictive-informed prior selection.
These methods are particularly valuable for bringing interpretation and rationale for prior
selection for non-physical parameters such as DNN weights. This new approach will combine
the performance-enhancing regularization effects with prior predictive distributions that
accurately encode prior information about the model predictive.

3. Demonstrate real-world applications
The third objective of this dissertation is to identify novel and appropriate applications for
BNN in the domain of science and engineering. This work will adapt BNN architectures
and prior selections for the specific applications outlined above. These include a novel
technique for using acoustic signature of iced rotorcraft airfoils to directly predict their flight
performance indicators via dense neural networks; assessing the time evolution of crystalline
structure strength profiles via graph neural networks; identifying potential tumor sites in MRI
scans through a partially Bayesian U-Net; and assessing precision health balance performance
scores based on kinematic information obtained from non-invasive IMU via convolutional
neural networks.

1.4 Dissertation Overview

This dissertation presents novel approaches to scalability and intuitive prior selection in Bayesian
UQ of DNNs. It further develops these approaches along with domain-specific insights in a number
of science and engineering applications. The organization of these developments follows below, as
well as in Figure 1.1.

Chapter 2 provides background information and a discussion of current approaches to scalable
Bayesian inference, namely the MCMC, variational inference, and Stein classes of algorithms.

Chapter 3 details the implementation of Bayesian dense neural networks via SVGD and pSVGD
algorithms to create a novel rotorcraft ice detection framework based on data collected from high-
fidelity physics simulations. This framework enables rotorcraft to monitor flight performance
metrics impacted by ice accretion as well as model uncertainty in real time.

Chapter 4 takes a similar methodological approach to developing BNNs based on physics
simulation data as chapter 3, but for the purpose of predicting poly-crystalline stress response to
time-evolving forcing functions. SVGD and pSVGD algorithms are demonstrated here to state-of-
the-art GCNN and GRU architectures.

Chapter 5 introduces two novel methodologies for scalability and prior selection, which will be
implemented in Chapter 6 and Chapter 7 respectively. The first methodology is a novel heuristic for
reducing the Bayesian dimensionality of a DNN via targeted inference guided by a gradient-based
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sensitivity index. The second methodology is a novel framework for selecting abstract, high-
dimensional Bayesian parameter priors that encode tangible, low-dimensional predictive priors.

Chapter 6 implements the novel, pBNN heuristic developed in Chapter 5 on the state-of-the-art
U-Net architecture for the purpose of creating a BNN model to identify and segment the presence
of tumors based on multi-modalities of MRI scans.

Chapter 7 implements the novel, intuitive prior selection approach also developed in Chapter 5
for the novel purpose of automatically assessing physical therapy patient balance performance based
on kinematic data collected from a single IMU sensor.

Chapter 8 summarizes key advancements and research themes from the preceding chapters and
includes recommendations for future work in these research areas.

Figure 1.1: Organizational flowchart
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CHAPTER 2

Background

This chapter presents a brief survey of Bayesian inference algorithms and assess their suitability
for applications in Bayesian neural networks (BNNs). Notably, Stein variational gradient descent
(SVGD) and projected Stein variational gradient descent (pSVGD) show particular promise for
BNN implementation. This chapters also conducts several numerical experiments to demonstrate
the performance of these two algorithms and validate their performance against a state-of-the-art
Markov chain Monte Carlo (MCMC) algorithm: Hamiltonian Monte Carlo (HMC).

2.1 Introduction

Bayesian inference algorithms have developed substantially since the introduction of the Metropolis-
Hastings method [24, 25]. However, the “curse of dimensionality” remains inevitable where even
the most modern MCMC algorithms struggle [57]. Furthermore, the state-of-the-art neural network
architectures used for scientific machine learning (SciML) are growing ever larger, with parameter
spaces frequently surpassing millions of dimension. As such, the Bayesian inference algorithms
that enable BNNs must be highly scalable.

The variational inference (VI) class of algorithms re-frames the sampling approach character-
istic of rejection sampling, importance sampling, and MCMC as an optimization problem. Instead
of trying to sample from the true target distribution (the true posterior in this case), an approx-
imate posterior is sought. This approximate posterior takes the form of a parametrized family
of distributions that is otherwise tractable and easy to sample. An optimization problem is then
created where the variation parameters of the approximate distribution can be tuned such that the
discrepancy between the approximate distribution and the true target distribution is minimized.
Several algorithms under VI will be introduced below and adopted in this thesis work for building
BNNs.
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2.2 Background

2.2.1 Neural Networks

A neural network (NN) is a function that maps input 𝑥 to output �̂�, that is–

�̂� = 𝑓 (𝑥) (2.1)

where the hat in �̂� denotes the NN prediction. The architecture of a given NN involves passing
and processing information through successive layers of the network. For example, a densely
connected feed-forward NN is organized into layers of different nodes, where each node performs
calculations on output values from the previous layer before passing the result onto the next layer.
Mathematically, the computation for node 𝑗 in layer ℓ is

𝑎ℓ, 𝑗 = 𝜎ℓ

(∑︁
𝑖

𝑊ℓ,𝑖 𝑗𝑎ℓ−1,𝑖 + 𝑏ℓ, 𝑗

)
(2.2)

where 𝑎ℓ, 𝑗 is the node output, 𝜎ℓ is an activation function (e.g., rectified linear units (ReLU),
sigmoid function, hyperbolic tangent (tanh), etc.), 𝑎ℓ−1,𝑖 is the 𝑖th nodal input (which is the output
from the 𝑖th node in the previous layer), 𝑊ℓ,𝑖 𝑗 is the weight placed on the 𝑖th nodal input, and 𝑏ℓ, 𝑗
is a biasing term. Definitions vary as to what qualifies a neural network to be “deep”, though
generally a DNN consists of two or more hidden layers (i.e., layers that are not the input or output
layer).

Convolutional neural networks (CNNs) build upon this concept of dense neural networks, though
rather than using matrix multiplication, cross-correlation1 is used to produce outputs from input
vectors and weight matrices. Mathematically, the computation for node 𝑗 in layer ℓ is

𝑎ℓ, 𝑗 = 𝜎ℓ

(∑︁
𝑖

𝑊ℓ,𝑖 𝑗 ∗ 𝑎ℓ−1,𝑖 + 𝑏ℓ, 𝑗

)
, (2.3)

where ∗ is the cross-correlation operation. CNNs excel at processing spatially or temporally
correlated feature spaces, such as those found in time-series data, images, and video frames. 1D
(for time-series) and 2D (for flat images) CNNs are most common, though higher order CNNs are
possible.

1Technically, the operation being performed in CNNs is cross-correlation, which is very similar though not identical
to convolution.
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2.2.2 Bayesian Neural Networks

BNNs treat the parameters of a NN, 𝑤, as random variables with associated probability density
functions (PDFs) representing the uncertainty or belief state on 𝑤. When training data become
available, these PDFs are updated via Bayes’ theorem:

𝑝(𝑤 |𝑋𝑇 , 𝑦𝑇 ) =
𝑝(𝑤)𝑝(𝑦𝑇 |𝑋𝑇 , 𝑤)

𝑝(𝑦𝑇 |𝑋𝑇 )
, (2.4)

where 𝑝(𝑤) is the prior PDF on the weight parameters and I also assumed 𝑝(𝑤 |𝑋𝑇 ) = 𝑝(𝑤) (i.e.,
the prior uncertainty should not change from knowing only the input values of the training data),
𝑝(𝑦𝑇 |𝑋𝑇 , 𝑤) is the likelihood function, 𝑝(𝑤 |𝑋𝑇 , 𝑦𝑇 ) is the posterior PDF, and 𝑝(𝑦𝑇 |𝑋𝑇 ) is the
Bayesian evidence. Solving the Bayesian inference problem then entails computing the posterior
𝑝(𝑤 |𝑋𝑇 , 𝑦𝑇 )—that is, our updated uncertainty on 𝑤 given the training dataset (𝑋𝑇 , 𝑦𝑇 ). For ease
of notation, the training dataset will also be interchangeably denoted by D = (𝑋𝑇 , 𝑦𝑇 ).

2.2.3 Prior and Likelihood Functions

Prior distributions are a defining component of Bayesian analysis. Prior distributions are most
typically used to encode an beliefs of a system, before these beliefs are influenced by data. In the
absence of any tangible prior beliefs, many Bayesian statisticians might select priors that have little
to no influence on the posterior distribution, also known as weak priors and uninformative priors,
respectively [21]. Selecting priors for BNNs can be particularly challenging, as the parameter space
can be very abstract and uninterpretable. Many BNN users simply resort to using weak Gaussian
priors without consideration for other distributions [58].

The purpose of the Bayesian likelihood function is to assess the probability of observed data
as a function of the parameters of a given model. The likelihood modifies the prior distribution
in accordance with Bayes’ theorem in order to arrive at the data-informed posterior distribution.
The exact likelihood distribution used to infer parameter distributions for a given statistical model
is often a matter of user selection. Typically for regression-type problems, a normal distribution
is selected to model the discrepancy between the model predictions and observed data. This is
analogous to mean squared error (MSE) in a frequentist setting.

Models demonstrated in this dissertation typically assume additive noise in the form:

𝑦𝑇 = 𝑓 (𝑤, 𝑋𝑇 ) + 𝜎𝜖

For a regression-type problem, this implies a likelihood function based on the normal distribution
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and the error between the model, 𝑓 and the observed training data 𝑋𝑇 and 𝑦𝑇 :

N(0, 𝜎2
𝜖 ; 𝑦𝑇 − 𝑓 (𝑤, 𝑋𝑇 )).

Selection of the noise parameter, 𝜎𝜖 , should be based on observed noise in the data. This value can
be selected directly or can itself be learned through Bayesian or maximum likelihood methods as
part of a hierarchical Bayesian formulation [59].

2.2.4 Hamiltonian Monte Carlo

HMC [60, 61] is a well-known and well-established MCMC sampling method [57]. HMC frames
the sampling of the posterior in terms of Hamiltonian dynamics (HD) of the evolution of the
weights coupled with periodic Metropolis-Hastings (MH) steps [57]. The HD allows the weights
to transition away from the previous accepted state while staying in regions of high posterior
probability due the phase volume-preserving aspects of HD. The usual MH acceptance criterion
can then be applied to these decorrelated samples resulted from HD. The overall algorithm has
some similarity to the thermostatted dynamics of single particle in a high dimensional space.

For HMC, the Hamiltonian is comprised of a potential and a kinetic energy

𝐻 = Φ + 1
2

p ·Mp. (2.5)

The posterior 𝑝(𝜔 | D) is associated with the potential Φ

Φ = − log 𝑝(𝜔 | D) (2.6)

and the (fictitious) momentum p is combined with a selected mass matrix M to form a quadratic
kinetic energy. Choice of form of kinetic energy is relatively free since the main requirement is
that the probability distribution on phase space marginalizes to the target distribution. The choice
of the mass matrix effectively transforms the target parameter space, by changing the constant 𝐻
level sets and the correlation structure of the target distribution.

Computationally, the HD is implemented with a sympletic (reversible, phase volume preserving)
integrator such as leapfrog Verlet

p𝑘 ((𝑛 + 1/2)Δ𝑡) = p𝑘 (𝑛Δ𝑡) −
1
2
Δ𝑡∇Φ(𝜔𝑘 )

𝜔𝑘 ((𝑛 + 1)Δ𝑡) = 𝜔𝑘 (𝑛Δ𝑡) + Δ𝑡M−1p𝑘 ((𝑛 + 1/2)Δ𝑡) (2.7)

p𝑘 ((𝑛 + 1)Δ𝑡) = p𝑘 ((𝑛 + 1/2)Δ𝑡) − 1
2
Δ𝑡∇Φ(𝜔𝑘 ((𝑛 + 1)Δ𝑡)
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which requires the gradient of the log posterior with respect to the weights. The effect of the mass
matrix M is evident from how it enters (2.7), i.e., by transforming p𝑘 and the effect of ∇Φ on
𝜔𝑘 . The pseudo-time step Δ𝑡 is chosen to maintain dynamic stability while promoting efficient
decorrelation of states. Here 𝑘 indexes stages of the HMC algorithm and samples, while 𝑛 indexes
pseudo-time. The momentum provides a stochastic aspect, where the momentum is initialized with
a blend of the momentum of the previous stage of HD and a random component:

p𝑘 (0) = 𝛽p𝑘−1 + (1 − 𝛽)𝜺 with 𝜺 ∼ N(0,M) (2.8)

where 𝛽 is a hyperparameter and p0 = 𝜺 for the first stage.
The MH step is performed every 𝑁 HD steps

𝜔𝑛+1 |𝜔𝑛 =

𝜔𝑛 (𝑁Δ𝑡) with probability 𝛼

𝜔𝑛 (0) else
(2.9)

where
𝛼 = min

(
1,

exp(−𝐻 (𝑁Δ𝑡)
exp(−𝐻 (0))

)
. (2.10)

The MH and the momentum initialization allow the overall chain to jump to new level sets of the
Hamiltonian.

2.2.5 Variational Inference

Conventional Bayesian solutions largely rely on MCMC [25, 26, 27, 28] to sample the posterior
distribution. While MCMC provably converges to the exact posterior that may be highly non-
Gaussian, it converges slowly in high-dimensional settings due to the onset of measure concentration
to the so-called typical set [32]. HMC [62, 31, 32], one of the more scalable MCMC variants, has
been used for Bayesian inference for up to hundreds of parameters, but remains orders of magnitude
short of the large neural networks (as many as millions of parameters) that are becoming common
in SciML applications.

VI [33, 34, 35] provides much better scalability by finding the best approximation to the true
posterior from a parametric family of distributions (e.g., all independent Gaussians), thereby turning
the sampling task into an optimization one:

𝜃∗ = arg min
𝜃

𝐷KL [𝑞(𝑤; 𝜃) ∥ 𝑝(𝑤 |𝑥𝑇 , 𝑦𝑇 )], (2.11)

where 𝑞(𝑤; 𝜃) is the approximating posterior PDF parameterized by 𝜃, and the Kullback-Leibler
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(KL) divergence 𝐷KL quantifies the farness from the true posterior 𝑝(𝑤 |𝑥𝑇 , 𝑦𝑇 ) to 𝑞(𝑤; 𝜃). One
can further show that 𝜃∗ is also the maximizer of the well-known evidence lower bound (ELBO):

𝜃∗ = arg max
𝜃

E𝑞 [ln 𝑝(𝑦𝑇 |𝑥𝑇 , 𝑤) + ln 𝑝(𝑤) − ln 𝑞(𝑤; 𝜃)] = arg max
𝜃

ELBO(𝜃) (2.12)

which can be estimated through Monte Carlo that samples 𝑤 (𝑚) from 𝑞(𝑤; 𝜃):

ELBO(𝜃) ≈ 1
𝑀

𝑀∑︁
𝑚=1

[
log 𝑝

(
𝑦𝑇 |𝑥𝑇 , 𝑤 (𝑚)

)
+ log 𝑝

(
𝑤 (𝑚)

)
− log 𝑞

(
𝑤 (𝑚); 𝜃

)]
. (2.13)

The optimization can be approached leveraging gradient-based algorithms, where gradient with
respect to 𝜃 can be obtained via back-propagation. For example, one recent implementation,
Flipout [63] VI has been demonstrated to provide substantial computational savings for dense,
convolutional, and recurrent neural network architectures. The method injects pseudo-independent
weight perturbations in order to decorrelate gradients, thereby achieving drastically decreased
variance for the ELBO Monte Carlo estimator. It also offers vectorized implementation that allows
one to take advantage of GPU computations.

However even with Flipout, the computational and memory requirements for million-parameters
is still extremely high, if not outright prohibitive. [64] found that for large DNN architectures with
O(107 − 108) parameters, MFVI failed to converge altogether. Therefore, one cannot simply take
Flipout off-the-shelf to build million-dimensional BNNs, additional algorithmic developments are
still needed.

2.2.6 Stein variational gradient descent

A major shortcoming of VI is its ability to balance computational scalability with a flexibility
that can capture both correlation effects and non-Gaussian structures. Mean-field VI (MFVI) is
highly scalable but independence assumptions are questionable in neural networks where abstract
parameters can be highly correlated with one another. Full covariance VI (FCVI) can capture
correlation effects but with poor scalability. SVGD [36] addresses this tradeoff with a particle
based parameterization approach that roughly follows the VI optimization framework. Particles
drawn from an arbitrary starting distribution (though often the prior) are repeatedly transported
via a form of functional gradient descent. This gradient descent approach implicitly minimizes
the KL divergence between the set of particles and the true posterior by leveraging the connection
between the derivative of the KL divergence with Stein’s identity and making use of kernelized
Stein discrepancy techniques. The result is a flexible framework that captures correlation effects
as well as highly non-Gaussian structure. This approach is still somewhat limited by the curse of
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dimensionality, and has a tendency to collapse to the MAP approximation as the dimensionality of
the problem far exceeds the number of particles [37]. While the MAP approximation is still known
to make for good predictive models (without regard to uncertainty), it is still a very low fidelity
approximation to full Bayesian inference and may not provide adequate uncertainty quantification.

Key SVGD update steps are summarized below. For a set of 𝑚 particles {𝑤 (𝑛)
𝑖
}𝑚
𝑖=1 at iteration 𝑛

that approximates 𝑝(𝑤 |𝑥, 𝑦) and positive definite kernel 𝑘 , the particle update steps entail:

𝑤 (𝑛+1) ← 𝑤 (𝑛) − 𝛼𝜙∗(𝑤 (𝑛))

𝜙∗(𝑤𝑖) =
𝑚∑︁
𝑗=1

𝑘 (𝑤𝑖, 𝑤 𝑗 )∇𝑤 𝑗
log 𝑝(𝑤 𝑗 |𝑋, 𝑦) + ∇𝑤 𝑗

𝑘 (𝑤𝑖, 𝑤 𝑗 ). (2.14)

For details of the algorithm derivation, I refer readers to [36].

2.2.7 Projected Stein Variational Gradient Descent

Projected stein variational gradient descent and Newton’s method (pSVGD/pSVN) [65] attempt to
address scalability issues in SVGD. Below I give a brief introduction of its main idea following [65].
The approach makes use of likelihood Hessian information (either via the full backpropagation
second derivative or via the Gauss-Newton first derivative approximation) to identify the low
dimensional active subspace parameters are most informed by the data. Specifically, we are
interested in the basis functions 𝜓𝑖, 𝑖 = 1, 2, ...𝑟 that are the eigenvectors corresponding to the 𝑟
largest eigenvalues of the following generalized eigendecomposition problem:

E[∇2
𝑤𝜂𝑦 (𝑤)]𝜓𝑖 = 𝜆𝑖Γ−1

0 𝜓𝑖 (2.15)

where E[∇2
𝑤𝜂𝑦 (𝑤)] is the average likelihood Hessian and Γ0 is the prior covariance matrix. The

decomposition can be done with randomized numerical linear algebra [66] without explicitly
forming thew average Hessian matrix, which otherwise might be computationally intractable. The
𝑟 leading eigenvectors 𝜓𝑟 can project the parameters into the low dimensional active subspace
where the likelihood is most informative on the prior. Below a certain threshold of eigenvalue,
the components corresponding to the inactive subspace can be assumed to be projections of the
unmodified prior and can be frozen from their prior samples. The SVGD algorithm need only
characterize the posterior distribution in its low dimensional subspace. We start with Bayes’
theorem in the parameter space:

𝑝(𝑤 |𝑥, 𝑦) ∝ 𝑝𝜖 (𝑦 − 𝑓 (𝑤) |𝑥, 𝑤)𝑝(𝑤 |𝑥). (2.16)
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We want to decompose our posterior samples into their active subspace and complimentary com-
ponents

𝑤 = 𝑤𝑟 + 𝑤⊥. (2.17)

First we decompose the prior

𝑝0(𝑤) = 𝑝𝑟 (𝑤𝑟 |𝑥)𝑝⊥(𝑤⊥ |𝑤𝑟 , 𝑥). (2.18)

Meanwhile, in decomposing the likelihood, the complimentary components are, by design, are
considered negligible

𝑝𝜖 (𝑦 − 𝑓 (𝑤) |𝑥) ≈ 𝑝𝜖 (𝑦 − 𝑓 (𝑤𝑟) |𝑥, 𝑤). (2.19)

Bayes’ Theorem with the decomposed prior then becomes

𝑝𝑟 (𝑤 |𝑥, 𝑦) ∝ 𝑝𝜖 (𝑦 − 𝑓 (𝑤𝑟) |𝑥)𝑝𝑟0(𝑤
𝑟 |𝑥)𝑝⊥0 (𝑤

⊥ |𝑤𝑟 , 𝑥). (2.20)

By drawing samples from the prior, the complimentary components of the samples can be frozen
and SVGD applied to the prior and likelihood only in the projected active subspace. The high
dimensional posterior can be reconstructed by projecting the low dimensional posterior back up to
its low rank approximation and recombining it with the frozen complimentary components of the
prior also projected back into the high dimensional space, to get a full rank approximation of the
posterior:

∇𝑧 𝑗 log 𝑝(𝑧 𝑗 |𝑋, 𝑦) = 𝜓𝑟∇𝑤 𝑗
log 𝑝(𝑤 𝑗 |𝑋, 𝑦). (2.21)

pSVGD is particularly powerful when it can exploit intrinsic low-dimensional geometric struc-
ture of the posterior distribution. [65] demonstrated that this low dimensional structure is quite
prominent in the context of discretized partial differential equations (PDEs). The same structure
exists in the data independently of how the spatial or temporal domain is discretized. We expect
similar low dimensional structure to be quite prominent in the context of CNNs for spatio-temporal
data. That is to say that while the number of parameters of the neural network architecture grow
with sampling the sampling frequency of the IMU data, the intrinsic dimensionality of the data (and
thus the model) is much independent of the sampling frequency. Furthermore, the high degree of
correlation and redundancy between neurons allows for further parameter dimensionality reduction,
in much the same way as CNN compression via SVD. By decoupling the dimensionality of the
data from the dimensionality of the neural network parameter space, substantial dimensionality
reduction is possible. In the context of SVGD, this allows the ratio of particles to dimensions to be
much high and in turn would allow for higher fidelity Bayesian inference for a given computational
budget. Furthermore, the truncation of the likelihood Hessian to only the most data informed
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components could serve as a form of model regularization, improving predictive performance by
eliminating components of the parameters that are more likely influenced by data noise rather than
signal.

2.3 Validation of SVGD and pSVGD

This section validates and demonstrates the effectiveness of the SVGD and pSVGD Bayesian
inference algorithms against baseline methods on parameterized, data-driven models with a small
synthetic dataset. These algorithms are first demonstrated on a linear-Gaussian model and compared
against the analytical posterior. Next, the algorithms are demonstrated on a small, dense neural
network modeling the same dataset. With no analytical posterior available, SVGD and pSVGD are
compared against a state-of-the-art MCMC algorithm: HMC.

2.3.1 Data Generation

Synthetic data is generated from the following equations:

𝑦𝑛 ∼ 𝑁 (0, 1)

𝑋𝑡 = sin
( 𝑡𝑦𝑡

2𝜋
− 𝜖𝑛

)
(2.22)

𝑦𝑡 =
2𝜋 arcsin(𝑋𝑡)

𝑇
+ 𝜖𝑛 (2.23)

where 𝑋𝑡 and 𝑦𝑡 are sampled at discrete time steps 𝑡 on the domain [0, 𝑇 = 10]. This data generating
function is selected such that the output space is one dimensional but the input feature space is
dependent on sampling frequency. These temporally correlated features cater well to pSVGD in
particular, as the data generating function is known to have an innate dimensionality independent
of the sampling frequency.

2.3.2 Linear-Gaussian Model

The Gaussian linear model takes the form

𝑦 = 𝜃𝑋 + 𝜖 (2.24)
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Figure 2.1: Visualization of an 10D linear Gaussian model posterior distribution, showing the
mean vector and covariance matrix based on the analytical solution, SVGD numerical inference
(500 particles), and pSVGD numerical inference (500 particles). SVGD and pSVGD converge very
accurately to the analytical solution.

where 𝜃 are the Gaussian random variables that represent the model coefficients and 𝜖 is additive
Gaussian noise. Prior and likelihood functions, shown below, are both independent Gaussian:

𝑝0(𝜃) ∼ 𝑁 (0, 12) (2.25)

𝑝𝜖 (𝑋, 𝑦 |𝜃) ∼ 𝑁 (0, 0.252). (2.26)

Due to conjugate prior, the Bayesian posterior of this linear-Gaussian model is analytically Gaussian:

Σ𝑁 = [Σ−1
0 + 𝑋

𝑇Σ𝜖𝑋]−1

𝜇𝑁 = Σ𝑁 [𝑋𝑇Σ−𝑇𝜖 𝑦 + Σ−1
0 𝜇0] .

With 500 particles, the analytical, SVGD, and pSVGD posteriors for the linear-Gaussian case
are nearly indistinguishable in the plot shown in Figure 2.1. The plot in Figure 2.2 shows the
convergence of the SVGD particles toward the true 11-dimensional Gaussian posterior as the
number of particles is increased. Convergence roughly follows a linear trend on the log-log scale,
consistent with Monte Carlo methods. Figure 2.3 shows the convergence of pSVGD to the true
11-dimensional Gaussian posterior as the projected dimensionality is varied. Figure 2.3 also shows
the effect of the pSVGD truncation value on the KL divergence from the analytical posterior. The
trend closely follows that of the eigenspectrum, giving some intuition that the eigenvalues of the
active subspace can be used to estimate pSVGD approximation error.
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Figure 2.2: KL divergence between the SVGD particles and the true posterior as a function of the
number of particles, line of best fit on the log-log scale shown in black.

Figure 2.3: KL divergence between pSVGD particles and the true posterior as a function of
projected dimensionality, 𝑟, with the number of particles fixed at 128. 𝑟 = 0 is equivalent to using
the prior to approximate the posterior, while 𝑟 = 10 (no truncation) is equivalent to vanilla SVGD.
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Figure 2.4: Visualization of a nonlinear neural network model posterior distribution with 36
trainable parameters, showing the mean vector and covariance matrix based on Hamiltonian Monte
Carlo numerical inference (1M samples), SVGD numerical inference (500 particles), and pSVGD
numerical inference (500 particles).

2.3.3 Dense Neural Network Model

In the second test case, a dense neural network (multi-layer perceptron) take the following form:

𝑎1 = 𝜎(𝑊1𝑋 + 𝑏1)
𝑎2 = 𝜎(𝑊2𝑎1 + 𝑏2)
�̂� = 𝑎2.

Prior and likelihood functions are the same as the linear Gaussian model in Equation (2.25) and
Equation (2.26).

In general, there is no analytical, closed-form posterior available for a dense neural network.
Instead, we show the posterior mean and covariance calculated from 1, 000, 000 samples from
HMC [61]. HMC becomes intractable in very high dimensions but in a smaller dense neural
network allows us to sample very precisely from the posterior distribution. Figure 2.4 illustrates
that, compared to the HMC samples, SVGD begins to show noticeable collapse of the posterior.
Particles are still clustered around the HMC posterior mean, but with a substantially narrower
covariance. pSVGD shows convergence of the mean and covariance diagonal, with some minor
deviation on the covariance off-diagonal elements.
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2.4 Conclusion

This chapter develops the background algorithms and approaches necessary for understanding the
novel contributions later in this work. Neural networks and their Bayesian extensions are outlined in
Section 2.2.1 and Section 2.2.2. Specifics on Bayesian prior and likelihood functions are outlined in
Section 2.2.3. Lastly, a selection of current numerical Bayesian inference algorithms are presented
in Sections 2.2.4 to 2.2.7 along with discussion of their various strengths, weaknesses, and suitability
for enabling BNN. While HMC is one of the most advanced MCMC-type algorithms, its scalability
is unfortunately very limited. Variational inference demonstrates excellent scalability and to date
has been utilized in many BNN implementations, however variational posteriors and mean-field
approximations risk substantial underestimation of posterior variance and may lack flexibility in
BNN. Nevertheless, its scalability is unmatched and this algorithm is used to enable a large scale
BNN implementation in conjunction with my own novel methodological contribution, pBNN, in
Chapter 6. The last two algorithms, SVGD and pSVGD, show promise for their scalability and
flexibility in BNN, however their adoption in the literature has been limited. Section 2.3 presents my
own validation of the SVGD and pSVGD algorithms against analytical solutions (linear Gaussian
case) and HMC solutions (small dense NN case). The results shown in this chapter demonstrate
good conformity between SVGD and pSVGD and analytical / HMC baselines, which is encouraging
for use in the larger applications developed later in this dissertation. Chapter 3 and Chapter 4 go
on to make extensive use of the two Stein algorithms, and Chapter 7 makes use of these Stein
algorithms in conjunction with my own methodological contributions.
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CHAPTER 3

Bayesian Neural Networks for Rotorcraft In-flight Ice
Detection via Computational Aeroacoustics

This work develops a novel ice detection framework specifically suitable for rotorcraft using
computational aeroacoustics and Bayesian neural networks (BNNs). In an offline phase of the
work, the acoustic signature of glaze and rime ice shapes on an oscillating wing are computed.
In addition, the aerodynamic performance indicators corresponding to the ice shapes are also
monitored. These performance indicators include the lift, drag, and moment coefficients. A BNN
is subsequently trained using projected Stein variational gradient descent to create a mapping from
the acoustic signature generated by the iced wings to predict their performance indicators along
with quantified uncertainty that is highly important for time- and safety-critical decision-making
scenarios. While the training is carried out fully offline, usage of the BNN to make predictions
can be conducted rapidly online allowing for an ice detection system that can be used in real-
time and in-flight. The work presented in this chapter is the result of close collaboration with
Myles Morelli, Alberto Guardone, Beckett Zhou, and Xun Huan and is published in Structural
and Multidisciplinary Optimization [67]. While I preserve the majority of the paper to convey
its comprehensive narrative, we acknowledge that in the work presented in this chapter, Morelli
and Guardone were chiefly responsible for the icing modeling, and Zhou for computational fluid
dynamics and aeroacoustics simulations.

3.1 Introduction

Rotorcraft possess the capability to vertically take-off and land, allowing them to operate in chal-
lenging flight conditions where more conventional fixed-wing aircraft cannot. Their operational
environment lends itself to low-level altitudes, and many missions are often towards the boundary
of the flight envelope. Throughout the course of aviation, the requirement for flight in poor weather
conditions and at night has always been a driver for innovation and rotorcraft are no exception.
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In the past, rotorcraft were fair weather vehicles with marginal performance, however, now they
regularly operate in conditions from hot and dry to cold, wet and windy [68]. Cold climates can
potentially leave aircraft susceptible to dangerous icing conditions. In-flight icing encounters can
jeopardise the performance and handling qualities of aircraft and hence pose a serious threat to
flight safety [69, 70]. This threat to flight safety arises as ice accretion can rapidly alter aerody-
namic lifting surfaces such as wings and rotors during flight which are highly sensitive to geometric
modifications. Naturally, establishing a comprehensive understanding of the fundamental physics
of aircraft icing is paramount to ensure the reduction of ice related accidents and the progression
of safety critical technology.

In 2002, Bragg et al. [71] critically assessed aircraft safety during icing conditions and suggested
the introduction of smart icing systems to reduce aircraft accident rates. Their work introduced the
concept that a smart icing system is potentially a better way to manage the ice protection system.
Their work recognised that warning the pilot of ice conditions through the use of ice detection
systems could significantly increase the safety of aircraft to either optimize the use of ice protection
systems or to avoid icing conditions altogether. Over the past two decades, this has led to sustained
technological advancements in ice detection systems.

The methods used for the detection of ice on aircraft can be characterised into either direct
or indirect approaches. Methods that use different kinds of sensors to detect ice accretion on the
airframe or atmospheric conditions symptomatic of icing environments can be characterised by the
direct approach. Methods that rely on a change in response to the aircraft state due to icing can be
characterised by the indirect approach.

Direct methods of sensing ice have received the most scientific interest and promising methods
involve measuring changes in surface properties due to ice accretion. Sensing techniques may
involve the reaction of a signal or electric field to ice. Promising methods will now go on to
be discussed. Direct detection methods which involve the reaction to a signal include surface
generated wave, infrared thermography, optical reflectometry and ultrasonics wave techniques.
Varadan et al. [72] discussed using surface generated Love waves as a mechanism for ice detection.
The method involves using piezoelectric devices for producing Love waves. The waves are then
propagated through the surface, and as ice accretes, the amplitude and velocity of the waves are
altered, which can then be measured. Hongerholt and Rose [42] demonstrated the use of ultrasonic
guided waves for ice detection on the surface of a wing. In principle, ultrasonic guided waves can
be propagated and reflected on the surface of a wing and the attenuated amplitude of the reflected
waves in different mediums can be measured. Zhuge et al. [40] discussed a method of infrared
thermography technique for ice detection. Infrared thermography techniques emit electromagnetic
signals which are reflected by the surface and once received back the signals are analysed for
temperature variations. Bassey and Simpson [41] introduced an advanced method of optical time
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domain reflectometry for ice detection. Optical time-domain reflectometry is used to measure the
dielectric permittivity and volumetric water content on the aircraft surface.

Direct detection methods which involve the reaction of an electric field include capacitive and
impedance techniques. Schlegl et al. [73] discussed using capacitive techniques for sensing ice.
Capacitive techniques monitor the presence of dielectric substances on the surface which change
the capacitance. The working principle relies on the different electrical properties of air, water, and
ice. Roy et al. [74] introduced impedance techniques for ice detection. In principle, the impedance
technique generates an excitation signal which is delivered to electrodes embedded in the surface.
When ice accretes on the electrodes the impedance of the electrodes is affected and by measuring
the changes in voltage ice can be detected.

In the main, ice detection techniques which can be characterised into the direct sub-category
allow for precise information regarding the ice location, thickness, and location. However, a major
drawback of these methods is that most are either commercially unproven due to preliminary testing
not exceeding the laboratory environment, or are unpractical for moving components, making their
implementation on rotorcraft challenging.

Indirect ice detection systems have received renewed interest of late. Irrespective of the indirect
method, all utilize previously established aircraft states to compare against that of the iced state.
The difference between the clean and iced aircraft states then acts as an indicator for icing. Melody
et al. [75] discussed using aircraft dynamics as an indicator for in-flight icing. In principle, using
the aircraft dynamics as an indicator for icing requires identification algorithms to identify aircraft
performance, stability, and control parameters over time, based on measurements of the aircraft state
variables and control input. Deiler and Fezans [76] introduced a performance-based ice detection
methodology. Performance-based identification uses the change in the steady flight state meaning it
can be used prior to reaching dynamic stall conditions and during steady flight conditions contrary
to the aircraft dynamics approach. A major limitation of using either the dynamics or performance
of aircraft for ice detection is that the type, location, and thickness of ice cannot be determined.
Additionally, the detection of ice prior to dynamic stall is fundamental to aircraft safety.

Indirect ice detection methods which involve the use of acoustic noise as an indicator for ice
accretion are particularly relevant for rotorcraft. A characteristic and largely undesirable feature of
rotorcraft is their rotor noise. Rotor noise sources are complex and are a combination of loading
noise, thickness noise, shock noise, blade-vortex interaction noise, and broadband noise. However,
Cheng et al. [77] recognised the strong correlation between the ice-induced surface roughness and
the broadband noise level suggesting rotor acoustics could be a viable technology for rotorcraft ice
detection. Chen et al. [78] further investigated using numerical techniques and an artificial iced
notch and concurred that the acoustics could be potentially used to indicate the formation of ice
on a rotor. Ice detection via means of aircraft acoustics however remains in the early stages of
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research. In the main, a major critique of the literature so far is that the detection of natural ice
shapes is yet to be investigated. The experimental work from Cheng et al. [77] used sandpaper to
represent ice roughness, while the numerical work from Chen et al. [78] used an artificial ice notch
based on the experimental iced surface roughness results of a straight wing from the University of
Illinois, presented by Broeren and Bragg [79]. The first characterisation between glaze and rime
iced noise signals was established by Morelli et al. [80]. Their work utilized numerical techniques
to simulate the accretion of ice on rotors and subsequently the rotor noise signature. The results
highlighted that glaze ice accretion produces noise at a significantly higher frequency caused by
ice induced flow separation. neural networks (NNs) based icing identification has been shown to
be a powerful technique for in-flight ice detection [43]. Meanwhile optimization techniques have
also been used to improve the efficiency of ice protection systems [81]. This work seeks to address
the issue of very few ice detection systems being designed specifically for rotorcraft by developing
a technique which is based on the rotor noise and NNs. While several studies mentioned in the
literature have investigated using noise as an method for ice detection, this is the first work to
establish an approach for developing a system that predicts the aerodynamic performance directly
from observed acoustics. In other words, this work seeks to not simply state whether icing is
present or not, but also predict the severity and consequence of the icing condition through the
aerodynamic performance metrics directly useful for aviation and piloting.

The high rotational speed of rotor blades makes direct ice detection techniques such as infrared
techniques challenging. As a result, indirect ice detection techniques are of particular interest
to rotorcraft. To achieve this goal of developing an acoustic ice detection system for rotorcraft,
this work utilizes numerical techniques to simulate a large dataset of ice shapes. Subsequently,
high-fidelity scale resolving methods are used for the simulation of the flow-field over the ice
dataset. Additionally, this includes monitoring the aerodynamic performance characteristics of the
different ice shapes. The surface pressure fluctuations are then taken from the aerodynamic data
and used by an aeroacoustic solver to predict the far-field noise levels. Finally, a key novelty of
this chapter is to train a ML model to directly map the acoustic noise signal produced from the
ice structures to the performance indicators of the aircraft. In particular, NNs are selected as the
ML model for their expressiveness in capturing complex mappings in a data-driven manner, and
more specifically BNNs that can also provide uncertainty quantification (UQ) in the ML model
and in their predictions. UQ for NNs is a challenging task due to its high-dimensional nature
and often neglected in data-driven modeling. However it is crucial for mission- and safety-critical
settings such as in predicting flight performance under dangerous icing situations—the quality of a
prediction must be understood along with the predicted value. A further contribution of this work
is then to enable UQ for ML leveraging recently developed computational algorithm of projected
Stein variational gradient descent (pSVGD) [82]. An overview of our framework is shown in
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Figure 3.1.
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Figure 3.1: Workflow routes illustrating the physics causation (black solid), traditional inverse
problem route (dashed red), and proposed machine learning model “shortcut” (dotted-dash blue).

Several aspects of this complex problem do however need to be acknowledged. While this
methodology is able to predict the tonal and broadband noise components of iced airfoils. In reality
the noise of an operating helicopter is highly complex with many different components including
engine noise and tail rotor noise which would likely pollute the small differences in noise observed
by an iced rotor. Nevertheless, this is the first step as to understanding if an acoustic ice detection
system using NNs is feasible. To that end, if successful the installation on helicopter in operation
would be possible due to the system being non-intrusive.

In summary, this work develops a framework for rotorcraft icing detection highlighted by the
following key novelty and contributions:

• uses in-flight acoustic measurements to enable prediction of aerodynamic performance for
rotorcraft, who cannot use visual/image observations due to the high blade RPM during
operation;

• enables real-time performance predictions with quantified uncertainty through advanced ML
models of BNNs, using a recently developed pSVGD algorithm;

• uses simulation data that are generated from state-of-the-art physics-based models rather than
empirical models; and

• requires a truly multidisciplinary approach to combine ice formation and growth, turbulent
flow aerodynamics, aeroacoustics, and ML with UQ.

The structure of the remaining chapter is as follows: Section 5.1 introduces the methodology of
the acoustic ice detection and the machine learning using BNNs; Section 4.3 discusses the results of
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the ice prediction, the turbulent flow simulations and acoustic prediction, as well as the training of
the BNN and the design of the ice detection system; Section 3.4 highlights the concluding remarks
of the work.

3.2 Methodology

The development of a technique for real-time, in-flight aeroacoustic ice detection system requires
a highly inter-disciplinary approach. The methodology used for the prediction of in-flight ice
accretion, the simulation of the turbulent iced flow-field and noise prediction, and finally the
machine learning are hereinafter introduced.

3.2.1 Icing Simulation

The PoliMIce ice prediction toolkit is utilized to simulate a large sample of ice shapes required
for the Neural Network. The PoliMIce ice prediction tool is described in detail in Ref. [83]
and will subsequently be summarised. The first stage of the icing framework is to simulate the
aerodynamic flowfield around the region of interest. In this work the SU2 solver is used to compute
the aerodynamic flow field over the wing. The second stage is to simulate the trajectories of
super-cooled water droplets within the flow domain and determine the collection efficiency and
impingement locations. An in-house Lagrangian particle tracking code is utilized due to droplet-
wall interaction behaviour being of importance to model physics such as droplet splashing on
impact. Finally, the PoliMIce icing solver is utilized to predict the rate of ice accretion. The
PoliMIce solver provides state-of-the-art ice prediction models. In particular, the model used in
this work is the local exact solution of the unsteady Stefan problem for the temperature profiles
within the ice layer in glaze conditions [84]. This helps enable the prediction of the ice horns
present during glaze icing conditions. An assessment of the ice prediction capabilities has been
demonstrated at the 1st AIAA Ice Prediction Workshop. In addition, the PoliMIce toolkit has
exhibited its potential for simulating rotorcraft icing [85].

3.2.2 Turbulent Flow Simulation and Noise Prediction

SU2 has been developed with the task of solving partial differential equations (PDE) and constrained
optimization problems on general unstructured meshes. the core of the suite is a Reynolds-
averaged Navier–Stokes (RANS) solver capable of simulating the compressible, turbulent flows
that are representative of many problems in aerospace and mechanical engineering. The finite
volume method (FVM) is applied on arbitrary unstructured meshes using a standard edge-based
data structure on a dual grid with control volumes constructed using a median-dual, vertex-based
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scheme. Several numerical fluxes like Jameson-Schimdt-Turkel (JST), Upwind Roe, and variants
of the AUSM schemes are implemented, and slope limiters enable second-order space integration.
For time discretization SU2 uses a second-order dual time-stepping method with an outer time loop
to march through the physical time, and of an inner loop which is usually a pseudo-time iteration
or a (quasi-)Newton scheme. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the RANS
equations is implemented in SU2 to account for unsteady grid motion, in which the convective
fluxes are adjusted to obtain solutions on arbitrarily moving grids.

In the SU2 suite, of particular relevance to this work are the scale-resolving and acoustic
prediction capabilities. For scale-resolving simulation, the Enhanced Delayed Detached Eddy
Simulation (EDDES) based on the Spalart-Allmaras (SA) turbulence model with a shear-layer
adapted (SLA) sub-grid scale model [86] was used. In addition, to limit the numerical dissipation in
the LES part of the EDDES solver, the inviscid flux is computed using the Simple Low Dissipation
Advection Upstream (SLAU2) scheme [87]. The EDDES-SA solver has been demonstrated to
successfully predict separated flows [88, 89], especially those induced by icing on the wing leading
edge [90]

For aeroacoustic prediction, a solid-surface Ffowcs Williams and Hawkings (FWH) analogy
is used. To that end, Farassat’s Formulation-1A (F1A) [91] has been implemented in the SU2
suite [92, 93] which computes far-field noise from surface pressure fluctuations extracted from a
preceding unsteady EDDES-SA simulation.

3.2.3 Machine Learning Using Bayesian Neural Networks

This section first introduces the classical NN, followed by the BNN that captures the uncertainty
of NN model parameters, and finally the projected Stein variational gradient descent (pSVGD)
algorithm that numerically constructs a BNN.

3.2.3.1 Neural Networks

A NN is a function 𝑓 mapping input feature 𝑥 to output target variable 𝑦. The notation �̂� = 𝑓 (𝑥)
is used, where the hat denotes the predicted value from the NN. For illustration, I focus solely
on densely connected feedforward NNs (also known as multi-layer perceptrons), though more
advanced NN architectures (e.g., convolutional and recurrent NNs) may also be adopted within
this overall ML framework. The hyperparameters that define the NN architecture (e.g. number
of layers, nodes per layer, activation functions, etc.) are selected prior to NN training, and good
hyperparameter choices can be sought systematically through validation or cross-validation. Once
the hyperparameters are chosen, the NN training then focuses on determining the weight and bias
parameters of all NN layers. I denote the collection of all such trainable parameters by 𝜔. Then,
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more explicitly, the prediction under a particular NN parameter setting is written as �̂� = 𝑓 (𝑥;𝜔)
Given 𝑁 training points in the form of input-output pairs (𝑥𝑇 , 𝑦𝑇 ) = {𝑥𝑛, 𝑦𝑛}𝑁𝑛=1, NN training

seeks 𝜔∗ that minimizes a loss function reflecting the degree of mismatch between NN predictions
and the true target values for these training points. In regression problems, for example, the mean
squared error (MSE) loss is often used:

𝜔∗ = arg min
𝜔

{
1
𝑁

𝑁∑︁
𝑛=1
[ 𝑓 (𝑥𝑛;𝜔) − 𝑦𝑛]2

}
. (3.1)

This optimization problem is typically solved via gradient-based algorithms such as stochastic
gradient descent [94, 95] or ADAM [96]. In any case, the solution to 𝜔∗ is single-valued, and
any new prediction made by the trained NN at a new input �̂�𝑛𝑒𝑤 = 𝑓 (𝑥𝑛𝑒𝑤;𝜔∗) would also be
single-valued. No uncertainty information is produced to convey the confidence or quality of these
estimates that would be affected by, for example, how many points were used to train the NN
and how noisy those training points were. Having uncertainty quantification for the model and its
predictions will be particular important to support safety- and mission-critical decision-making,
such as in icing detection.

3.2.3.2 Bayesian Neural Networks

(a) Neural network (b) Bayesian neural network

Figure 3.2: Illustration of a simple NN and BNN, each with an input layer, two hidden layers, and
an output layer. Trainable parameters are depicted in red as deterministic values in the NN, and as
probability distributions in the BNN.

I adopt a probabilistic approach that seeks to produce not just a single-valued prediction, but
a distribution of plausible prediction values. This distinction is demonstrated in Figure 3.2. In
particular, a Bayesian approach is taken, which treats 𝜔 as a random variable with an associated
probability density function (PDF) that reflects the uncertainty in its values. When new training
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data become available, the PDF and therefore uncertainty of 𝜔 is updated via Bayes’ rule:

𝑝(𝜔 | 𝑥𝑇 , 𝑦𝑇 ) =
𝑝(𝑥𝑇 , 𝑦𝑇 | 𝜔)𝑝(𝜔)

𝑝(𝑥𝑇 , 𝑦𝑇 )
=
𝑝(𝑦𝑇 | 𝑥𝑇 , 𝜔)𝑝(𝜔)

𝑝(𝑦𝑇 | 𝑥𝑇 )
(3.2)

where 𝑝(𝜔 | 𝑥𝑇 , 𝑦𝑇 ) is the posterior PDF; 𝑝(𝜔) is the prior PDF on the weight parameters;
𝑝(𝑦𝑇 | 𝑥𝑇 , 𝜔) is the likelihood PDF; 𝑝(𝑦𝑇 | 𝑥𝑇 ) is a normalizing term independent of 𝜔 often
known as the model evidence or marginal likelihood. Solving the Bayesian inference problem then
constitutes computing or characterizing the posterior 𝑝(𝜔 | 𝑥𝑇 , 𝑦𝑇 ) for a given training dataset
(𝑥𝑇 , 𝑦𝑇 ). Once the posterior is available, uncertainty can be propagated to predictions via Monte
Carlo sampling𝜔(𝑖) ∼ 𝑝(𝜔 | 𝑥𝑇 , 𝑦𝑇 ), and correspondingly produce samples of �̂� (𝑖)𝑛𝑒𝑤 = 𝑓 (𝑥𝑛𝑒𝑤;𝜔(𝑖))
that represent the posterior-predictive uncertainty—that is, a distribution of plausible prediction
values—at any new input 𝑥𝑛𝑒𝑤.

Solving for the posterior is extremely difficult for NNs, since 𝜔 can easily reach thousands,
even millions of dimension for large NNs intended to model complex scientific and engineering
processes. While Markov chain Monte Carlo algorithms [97, 27, 26, 98] are typically used for
Bayesian computations for their ability to generate samples from the exact posterior, these methods
do not scale well to such high dimensions in practice. In contrast, variational inference (VI) [35, 99]
formulates an optimization problem that seeks the best approximation to the posterior from within a
class of parameterized distributions in lieu of sampling the posterior. If 𝑞(𝜔; 𝜃) is used to denote the
approximate posterior with 𝜃 representing the parameterization of these approximating distributions
(e.g., if the 𝑞 is from the family of all Gaussian distributions, then 𝜃 is the mean 𝜇 and covariance Σ
of a Gaussian), the VI formulation then seeks 𝜃∗ that minimizes the Kullback-Leibler divergence (a
measure of farness between two distributions) from the true posterior to the approximate posterior:

𝜃∗ = arg min
𝜃

𝐷KL [𝑞(𝜔; 𝜃) ∥ 𝑝(𝜔 | 𝑥𝑇 , 𝑦𝑇 )] . (3.3)

Since an optimization task is only concerned with find the single optimum point, it is more scalable
to higher dimensions than a sampling task that needs to portray the entire landscape of the posterior
distribution. Hence, by converting a sampling task to an optimization one, VI effectively trades off
accuracy of posterior representation for scalability, making it more suitable for BNNs.

3.2.3.3 Projected Stein Variational Gradient Descent

The work in this chapter focuses on two particle-based VI methods: Stein variational gradient
descent (SVGD) [36] and projected Stein variational gradient descent (pSVGD) [82]. With particles
representations, these methods are able to capture correlation and non-Gaussian structures of
distributions that the commonly used mean-field Gaussian VI cannot.
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SVGD is derived by leveraging the relationship between the (functional) gradient of objective
in Eqn. (3.3) to the Stein discrepancy, the latter which can be approximated using a set of particles
(see [36] for a detailed derivation). A gradient-descent procedure can then formed to iteratively
minimize this gradient, as summarized by

𝜔ℓ+1𝑖 ← 𝜔ℓ𝑖 + 𝜖ℓ𝜙∗(𝜔ℓ𝑖 ) (3.4)

where𝜔ℓ
𝑖
, 𝑖 = 1, . . . , 𝑚 is the location of the 𝑖th particle at optimization iteration ℓ, 𝜖ℓ is the learning

rate that can also be adapted with ℓ, and

𝜙∗(𝜔) = 1
𝑀

𝑀∑︁
𝑚=1

[
𝑘 (𝜔ℓ𝑚, 𝜔)∇𝜔ℓ

𝑚
log 𝑝(𝜔ℓ𝑚 | 𝑥𝑇 , 𝑦𝑇 ) + ∇𝜔ℓ

𝑚
𝑘 (𝜔ℓ𝑚, 𝜔)

]
(3.5)

with 𝑘 (·, ·) being a positive definite kernel. Furthermore, the gradient of the true log-posterior in
the above equation can be evaluated via the sum of gradients of log-likelihood and log-prior, since
the gradient of the log-model-evidence with respect to 𝜔 is zero. The overall effect is an iterative
transport of a set of particles to best match the target posterior distribution 𝑝(𝜔 | 𝑥𝑇 , 𝑦𝑇 ). One
observed drawback to SVGD, however, is the tendency for particles to collapse towards the mode
of the distribution as the dimensionality becomes high relative to the number of SVGD particles,
thereby (potentially drastically) under-representing the uncertainty [38].

pSVGD [82] aims to address this issue by projecting parameters into a low-dimensional subspace,
and conducting the particle-based inference in this subspace. This allows inference to take place with
a much higher particle-to-dimension ratio, which can mitigate the posterior collapsing phenomenon
from SVGD. The specific space selected for projection is a likelihood-informed subspace (LIS).
Components with the greatest likelihood-to-prior ratio are identified for inference while components
with a negligible likelihood-to-prior ratio are assumed to be unmodified from the prior and need
not be inferred directly. In other words, work will focus on only the subspace where the data can
make a significant update from prior to posterior. I refer readers to [82] for a detailed derivation,
and present a brief description below.

The LIS is determined by first calculating the average (log) likelihood Hessian−E𝜔
[
∇2
𝜔L

]
where

L = log 𝑝(𝑥𝑇 , 𝑦𝑇 | 𝜔). −∇2
𝜔L can be calculated either directly via back-propagation of the NN to

evaluate the second derivative, or much more inexpensively via the Gauss-Newton approximation
−∇2

𝜔L ≈ −(∇𝜔L∇𝜔L𝑇 ) needing only first derivative information. Next, the following generalized
eigendecomposition problem can be solved:

−E𝜔
[
∇2
𝜔L

]
𝜓𝑖 = 𝜆𝑖Γ

−1𝜓𝑖, 𝑖 = 1, ..., 𝑟 (3.6)
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where 𝜆𝑖 are the 𝑟 leading eigenvalues that represent the relative influence of the likelihood over the
prior, and 𝜓𝑖 are the corresponding eigenvectors. Therefore, eigenvalues below a certain threshold
correspond to components with negligible influence from the prior, leaving the prior effectively
unchanged. These negligible eigen-modes can then be truncated, and the LIS is constructed with the
surviving eigenvectors corresponding to non-negligible eigenvalues. The choice of threshold value
for truncation is application specific. For lower dimensional, mostly linear models, a threshold value
O(1) is sufficient. For larger, more complex models, a lower threshold value may be necessary.
The original authors of pSVGD [82] use a value of 0.01.

With the LIS found, the prior parameters 𝜔0 can be decomposed into the projected component
𝜔𝑟0 and the its compliment 𝜔𝑇0 (subscript 0 indicates that the decomposition is done under the prior
distribution). The compliment 𝜔𝑇0 is then frozen at the prior projection. The projected component
of the parameters will be inferred under the low-dimensional projected variable 𝜒 using the same
iterative procedure in SVGD, where 𝜔𝑟 = Ψ𝑟 𝜒. The original full parameter variable after pSVGD
inference can then be reconstructed at the end:

𝜔ℓ = 𝜔𝑇0 + Ψ
𝑟 𝜒ℓ . (3.7)

Performing Bayesian inference on 𝜒 instead of 𝜔 permits a much lower-dimensional problem.
There is also secondary benefit that by truncating to the 𝑟 components most informed by data, the
compliment components that would otherwise be more amenable to fitting to data noise are now
regularized, further improving predictive performance.

3.3 Results

3.3.1 Ice Prediction

The PoliMIce [83] tool kit is utilized for generating a large dataset of ice shapes which can
subsequently be harnessed by the Neural Network. The icing conditions selected are based on
the experimental work from Shin and Bond [100]. They conducted icing experiments in the Icing
Research Tunnel (IRT) at the NASA Lewis Research Center. Their work studied the repeatability
of ice shapes on a model wing at a range of temperatures varying from 247K to 271K. This work
presents the numerical predictions of four ice shapes at different temperatures during the high-
speed conditions for icing validation. The icing conditions selected are summarised in Table 3.1,
while the ice predictions are presented in Fig. 3.3. The model used in the icing experiments was
a straight wing with NACA0012 profile. The ice accretion simulations are consequently assumed
to be two-dimensional due to the wing model being straight. The wing is set at an angle-of-attack
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of 4◦. The duration which the wing is exposed to icing conditions last for 420s. The wind tunnel
airspeed was approximately 𝑀 = 0.3. As previously mentioned, a range of different temperatures
are investigated. The Liquid Water Content (LWC) and Mean Volume Diameter (MVD) of the
super-cooled water droplets is respectively 0.55 𝑔/𝑚3 and 20 𝜇𝑚. The numerical prediction
shown in Fig. 3.3 are in relatively good agreement with the experimental measurements. The ice
predictions at the lower temperature conditions displayed in Figs 3.3a & 3.3b closely resemble the
ice measurements. There are slightly greater discrepancies when moving to the higher temperatures
as shown in Figs 3.3c & 3.3d. The numerical predictions tend to predict the presence of glaze ice
earlier than the experiments.

Table 3.1: Icing conditions based on the experimental work at the NASA Lewis Icing Research
Center [100].

Run ID
Accretion
Time
[𝑠]

Atmosph.
Pressure
[𝑃𝑎]

Freestream
Velocity
[𝑚/𝑠]

Outside Air
Temperature
[𝐾]

Liquid Water
Content
[𝑔/𝑚3]

Mean Volume
Diameter
[𝜇𝑚]

Rime 1 420 101325 102.82 247.0 0.55 20
Rime 2 420 101325 102.82 262.0 0.55 20
Glaze 1 420 101325 102.82 267.5 0.55 20
Glaze 2 420 101325 102.82 271.0 0.55 20

Proceeding the icing validation assessment, the subsequent goal of this work was to generate
a dataset of ice shapes for the Neural Network. The experimental work from Shin and Bond was
selected with this in mind. In their work they studied the effect of 7 different temperatures on the
ice shape. Due to the Neural Network requiring a significantly larger dataset, this work increments
the temperature by 0.5𝐾 to provide 50 samples. Additionally, ice shapes at a MVD of 40 𝜇𝑚

are simulated to provide 100 samples in total. The icing conditions used for all the samples are
summarised in Table 3.2.

Table 3.2: Test matrix to produce sample of rime and glaze ice shapes.

Accretion
Time
[𝑠]

Atmospheric
Pressure
[𝑃𝑎]

Freestream
Velocity
[𝑚/𝑠]

Outside Air
Temperature
[𝐾]

Liquid Water
Content
[𝑔/𝑚3]

Mean Volume
Diameter
[𝜇𝑚]

420 101325 102.82 246
(+0.5)−−−−→271 0.55 20, 40
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(d) Glaze ice regime 2.

Figure 3.3: Comparison of ice predictions with measurements at different temperatures.
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3.3.2 Mesh Generation

The focus on modelling small scale vortical structures using scale resolving simulations capabilities
in SU2 requires three-dimensional grids. An in-house grid generation software called uhMesh [101]
is utilized to automatically generate a three-dimensional mesh from a two-dimensional ice shape.
This is achieved by extruding the ice shape for 1 chord length in the spanwise direction. The
assumption is that while the ice geometry contains no variation in the spanwise direction, the flow
does due the scale resolving modelling approach. Simulating a fully three-dimensional icing dataset
of this size would be beyond the current hardware capabilities. Additionally, the ice prediction
approach based on Myers’ model [102] would not capture the spanwise variation in the ice shape.
To capture such three-dimensional roughness in the ice shape would require an approach such as
the one suggested by Szilder and Lozowski [103]. However this is would be highly challenging to
mesh in order to determine the aerodynamics and aeroacoustics of the iced wing.

Fig. 3.4 illustrate the mesh generation for the clean wing using this approach. With scale
resolving simulations in mind, a boundary layer with a height of approximately 0.5𝑐 is used to
generate a structured region surrounding the wing. The boundary layer at the wall is resolved to
ensure 𝑦+ < 1 everywhere. The mesh is extruded in the spanwise direction for 1 chord length and
discretized by 150 elements. The total number of elements for each mesh is approximately 16M
with it varying by as much as 500k depending on the ice shape.

(a) Close-up of the mesh surrounding the wing. (b) Isometric view of the surface mesh.

Figure 3.4: Visualisation of automated 3D mesh.
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3.3.3 Turbulent Flow Simulation and Noise Prediction for Different Ice
Shapes

To compare the turbulent flow field and far-field noise features of the clean and iced wings, the clean
NACA0012 airfoil as well as a rime and a glaze iced airfoils associated with Rime 1 and Glaze 2
in Table 3.1 are presented. The scale resolving EDDES-FWH approach outlined in Sec. 3.2.2 is
used to model the fine scale turbulent structures induced by the ice accretion. With ice detection
on rotorcraft in mind, the 1𝑐 section of the wing is subsequently set to pitch around its quarter-
chord to represent the cyclic pitching motion of a rotor blade in forward flight. While this is a
primitive way to model a rotor blade in forward flight, it was a requirement due to rotorcraft icing
simulations requiring fully three-dimensional simulations which are computationally very costly.
The sinusoidal pitching motion of the wing can be described by 𝛼 = 4◦ ± 4◦ and pitching with a
frequency of 6.0 Hz. The mean angle-of-attack is consistent with the icing experiments presented
in Sec. 3.3.1. A time step of Δ𝑡 = 0.05𝐶/𝑈∞ = 0.00025𝑠 is used, which results in 666 time-steps
within each pitching cycle. The flow statistics and acoustics are computed after the 5th pitching
cycle, over 10 pitching cycles.

The instantaneous flow fields at AoA=4.0◦ on the upstroke are visualized by the iso-surfaces of
the Q-criterion colored by nondimensionalized velocity magnitude, as shown on Figure 3.5. The
effect of leading-edge icing is evident. While the clean and rime ice airfoil show mostly attached
flows over the suction side, detached eddies signifying separated flow can clearly be seen in the more
severely iced (glaze ice) airfoil, where the Q-criterion shows more fine-scale, three-dimensional
turbulent structures over the entire suction side. Note that even though the ice shapes are quasi-2D,
the resolved turbulent structures by EDDES are very much three-dimensional, especially in the
glaze ice case where the Kelvin-Helmholtz instability is triggered immediately past the ice horn
and develops quickly into 3D turbulence.

The time histories of the lift, drag, and moment coefficients of the rime and glaze ice wings,
computed using the EDDES-SA simulations are compared on Figure 3.6. In the case of rime ice,
the force and moment coefficients are very similar to those of the clean airfoil. Small differences
between the clean and rime ice only occur at the peaks of the values which are associated with the
maximum and minimum angle-of-attack. On the contrary, the glaze ice airfoil exhibits significantly
deteriorated lift and strongly elevated drag, signifying flow separation over a large portion of the
airfoil suction side. The moment coefficient is also severely effected during the glaze ice regime.

This is confirmed by examining the wall shear stress of the three cases shown on Figure 3.7. Both
clean and rime ice airfoils show trailing edge separation due to the dynamic effect of the upstroke.
Surface noise footprints visualized by the instantaneous wall pressure fluctuation (𝑝′ = 𝑝 − 𝑝)
of the clean, rime and glaze ice airfoil sections are compared in Figure 3.8. The clean and rime
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(a) Clean.

(b) Rime ice regime. (c) Glaze ice regime.

Figure 3.5: Q-criterion iso-surface for the clean and iced wings.
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ice airfoils exhibit similar surface noise footprints. On the other hand, the glaze airfoil exhibits a
highly irregular noise footprint pattern with significant spatial frequency content. One may already
speculate that the far-field noise signature of the glaze ice should be associated with elevated high-
frequency contents. This is confirmed by the far-field noise spectra shown on Figure 3.10 – while
the rime ice airfoil shows a slight increase of high-frequency noise over the clean airfoil, the glaze
airfoil has a significantly elevated noise level over the entire high-frequency range up to the cutoff.
Clearly, the more severe the leading edge ice accretion is, the more elevated the high-frequency
range of the far-field noise tends to be. This can be exploited as a distinguishing feature in a
machine learning model to build a mapping between the far-field noise level and ice shape as well
as the associated aerodynamic performance of the ice airfoil.

3.3.4 Machine Learning Predictions of Aerodynamic Performance Under
Icing Conditions

Following Sec. 3.2.3, BNNs are developed to predict aerodynamic performance metrics from inputs
of acoustic measurements. Specifically, the BNN takes input of a compressed principal component
analysis (PCA) representation of the power spectral density (PSD) of the acoustics time series,
and predict the minimum, mean, and maximum values of the lift, drag, and moment coefficients
over the duration of the time series window. To achieve this, the acoustic time series in the
training dataset is pre-processed by computing the log values of PSD for each data signal covering
the frequency range 17–1000 Hz, and perform a PCA to find and truncate to only the 6 leading
components. All PSDs are then projected into this lower-dimensional representation. All inputs
are then standardized using the mean and standard deviation statistics from across all training data
simulations. For the output variables, I extract from each simulation’s aerodynamic time series the
minimum, maximum, and mean over the time window for𝐶𝐿 ,𝐶𝐷 , and𝐶𝑀 , a total of 9 quantities of
interest (QoIs). Overall, the BNN maps from a 6-dimensional input to a 9-dimensional output. The
precise architecture is shown in Table 3.3, with one hidden layer of 15 neurons leading to a total of
249 model parameters. Small BNN architecture are deliberately selected due to the relatively few
training samples available.

Table 3.3: BNN architecture.

Layer Name No. of Neurons Activation Fcn.
1 input 6 -
2 hidden 15 swish
3 output 9 linear

To set up the BNN, the prior 𝑝(𝑤) from Eqn. (7.4) is chosen to be independent Gaussian 𝑤𝑘 ∼
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N(0, 0.22), and the likelihood 𝑝(𝑦𝑇 | 𝑥𝑇 , 𝑤) is chosen to reflect an additive independent Gaussian
data noise: 𝑦𝑘 = 𝑓 (𝑥𝑘 ;𝑤) + 𝜖𝑘 , 𝜖𝑘 ∼ N(0, 0.22). 600 particles are used to perform SVGD and
pSVGD for our 249-parameter BNN. In order to obtain a robust measure of predictive performance
of the BNN, 5-fold testing is conducted as follows. The overall dataset of 93 simulations is divided
into 5 folds of 18-19 simulations each. Then, 5 BNN models are built where each model is trained
on 4 of these folds and tested on the remainder fold. This allows us to obtain test performance
statistics where each of the 93 data points get a chance to play the role of a testing point.

Figure 3.11 presents both the SVGD and pSVGD BNN predictions, with each panel showing
an aggregated result from the 5 testing scenarios. By using BNNs, uncertainty information is
now available along with predictions, depicted as error bars (± 1 standard deviation) in the plot.
The SVGD and pSVGD results match well overall. pSVGD recovers slightly greater uncertainty
of around 16% across all predictions compared to SVGD which is amenable to underpredicting
uncertainty due to particle collapse. The reduced dimension from pSVGD is about 80% lower
than that of SVGD. While pSVGD uses additional approximation in its eigenvalue truncation, I
believe this truncation error is outweighed by the benefit from a greater particle-to-dimension ratio
resulting from the dimension reduction, leading to an overall more accurate posterior representation
for pSVGD.

In general, rime ice predictions are observed to achieve lower error and lower uncertainty than
glaze ice predictions, which matches our intuition where generally more complex aerodynamic
flows are caused by the more severe glaze icing conditions. These trends are shown in figure 3.12
where histograms of the prediction errors and uncertainty are gathered across all testing scenarios.
Figure 3.13 further presents the posterior predictive distributions for𝐶𝐷 ,𝐶𝐿 , and𝐶𝑀 QoIs between
a specific rime ice case and a specific glaze ice case, illustrating an overall good agreement with the
predictive distributions and the true target values, and the greater uncertainty in predicting under
glaze than rime ice.

3.4 Conclusion and Future Work

This work introduces an original methodology for developing a Bayesian neural network acoustic
ice detection system. The acoustic signatures generated by different iced wings are harnessed to
predict their aerodynamic performance. An inter-disciplinary methodology is adopted to develop
the Bayesian neural network acoustic ice detection system. The PoliMIce toolkit is utilized to
predict a test matrix of iced airfoils. The aerodynamics and aeroacoustics associated with the
iced airfoils are respectively solved in SU2 using high-fidelity EDDES scale resolving simulations
and the FWH-F1A approach. A Bayesian neural network is then trained using projected Stein
variational gradient descent to provide: (1) mapping from observed far-field broadband noise levels
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to predictions of aerodynamic performance indicators; and (2) uncertainty information reflecting the
neural network’s confidence in its predictions. While the icing simulation, aeroacoustic prediction
as well as the construction of Bayesian neural network model all require potentially extensive
computational resources in the offline phase, the prediction of aerodynamic performance indicators
based on measured far-field noise level can be obtained rapidly in the time-critical online phase
in-flight.

46



-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0.4  0.6  0.8  1  1.2  1.4  1.6

C
L

time [s]

clean rime glaze

(a) Lift coefficient

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1

 0.4  0.6  0.8  1  1.2  1.4  1.6

C
D

time [s]

clean rime glaze

(b) Drag coefficient

-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

 0.1

 0.4  0.6  0.8  1  1.2  1.4  1.6

C
M

time [s]

clean rime glaze

(c) Moment coefficient

Figure 3.6: Time histories of lift, drag, and moment coefficients of the clean, rime and glaze ice
airfoils computing using the EDDES-SA simulations
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(a) Clean.

(b) Rime ice regime. (c) Glaze ice regime.

Figure 3.7: Skin friction coefficient, 𝐶𝐹𝑥 , for the clean and iced wings.
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(a) Clean.

(b) Rime ice regime. (c) Glaze ice regime.

Figure 3.8: Instantaneous pressure fluctuations, 𝑝′, for the clean and iced wings.
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Figure 3.9: Time history of the pressure fluctuations, 𝑝′, for the clean and iced wings
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Figure 3.10: Far-field sound spetra of the clean NACA0012, rime and glaze ice airfoil sections,
computed 20C below the center of rotation of the pitching airfoil
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Figure 3.11: Predicted versus true values for all QoIs, using SVGD (top row) and pSVGD (bottom
row). The two sets of results overall match well with each other. More specifically, pSVGD
recovered approximately 16% more of the Bayesian predictive uncertainty relative to its SVGD
counterpart that is amenable to underpredicting uncertainty due to particle collapse. pSVGD also
achieved 80% dimension-reduction of the parameter space compared to SVGD.

Figure 3.12: MSE of the posterior predictive distributions (left) and standard deviation of the
posterior predictive distributions (right) averaged over all QoIs. The predicted QoIs are normalized
to allow direct comparison and averaging.
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Figure 3.13: Comparison of posterior predictive distributions for a test sample of rime ice (top
row) and glaze ice (bottom row) for 𝐶𝐷 (left), 𝐶𝐿 (center), and 𝐶𝑀 (right). Ground truth values are
indicated with arrows.
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CHAPTER 4

Bayesian Graph Convolution Neural Network Models
for Uncertainty Quantification of Time Evolving

Poly-crystalline Stress Response

This chapter develops an investigation into the suitability of SVGD and pSVGD as a means
of Bayesian uncertainty quantification in time-evolving metal polycrystaline stress deformation
response. This type of metal deformation is an important part of metal forming manufacturing
processes as well as vehicle crash analysis. Although the governing physics and associated partial
differential equations are fairly well understood, repeatedly solving such equations in a design
optimization setting would be infeasible. Bayesian graph convolutional neural networks (GCNN)
are subsequently trained as a surrogate model to accelerate this process. The results of these
GCNNs, calculated with recent SVGD and pSVGD algorithms are compared against the workhorse
Bayesian inference algorithm, HMC. Lastly, results are shown on a larger GCNN that would be
intractable with MCMC approaches. The work presented in this chapter was the result of close
collaboration with Xun Huan and Sandia National Lab, specifically Reese Jones, Cosmin Safta,
and Ravi Patel and is in the process of being submitted for peer review. While I preserve the
majority of the paper to convey its comprehensive narrative, I would like to acknowledge that in the
work presented in this chapter, Reese Jones and Cosmin Safta were chiefly responsible generating
training data derived from physical equations and determining the initial GCNN architecture.

4.1 Introduction

The adaptability and effectiveness of neural networks has, in part, helped fuel the growth of scientific
machine learning (SciML). Neural networks have been applied to a wide range of scientific tasks,
including subgrid surrogate models [104, 105, 106, 107], solving partial differential equations
[108, 109, 110], and components of optimal experimental design [111, 112]. SciML neural networks
(NN) typically have at least hundreds of parameters, though often far more, and over-parameterized
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NNs are common [113, 114, 115]. Unfortunately, as a result of this over-parameterization and of
the complex feature relationships that are learned, NNs are typically uninterpretable and are often
treated as “black box” models. Hence, the need for uncertainty quantification (UQ) for NN models
is evident since it builds trust in these highly parameterized but minimally interpretable “black
box” models.

There are a growing number of UQ methods that have been adapted to NN models. With
easily adapted open source implementations, mean-field variational inference (VI) has been widely
applied [116, 117]. VI is an efficient method but is well known to underestimate uncertainty by
its construction due the use of: (a) a multivariate Gaussian surrogate posterior with a diagonal
covariance (on the assumption of parameter independence) and (b) the Kullback-Leibler (KL)
divergence to compare the surrogate and true posteriors which penalizes surrogate probability mass
outside the true posterior. On the other-hand, Hamiltonian Monte Carlo (HMC) is generally seen
as a reference standard for UQ and was applied to NNs as early as 1996 [118]; however, it is
an inherently serial method and relies on long, computationally-expensive Markov chains. Stein
variational gradient descent (SVGD) offers a flexible alternative to traditional VI methods. SVGD
relies on an ensemble of particles with interacting dynamics representing likely models, analogous
to multiple MC chains without handling the deficits of using entirely independent chains. The
projected SVGD variant [119] aims to achieve further efficiency by only evolving the particles in
the subspace of parameters significantly affecting the model output. Details of HMC, VI, SVGD,
and pSVGD are all presented in Chapter 5. Section 5.1 describes the polycrystalline stress exemplar
and the NN architectures used to model it is described. Section 4.3 compares the performance
of SVGD on the exemplar using HMC as a reference and demonstrates its use on an scaled-up
exemplar infeasible for HMC. Lastly this chapter concludes with a summary of findings and a
discussion of potential future work in Section 4.4.

4.2 Methodology

This section develops a methodology for predicting the stress response of polycrystals undergoing
plastic deformation [106], using a GCNN-RNN architecture. The underlying data-generating
models are solutions to conservation equations on a regular domain and have a single quantity-of-
interest (QoI) that evolves in time. This data and the governing physics equations are described
in Section 4.2.1. In the first part of the investigation, architectures used are relatively inexpensive,
both in terms of execution time and number of parameters, to allow for exhaustive investigations.
Later, a larger, expensive GCNN-RNN model is used to demonstrate the projected Stein method.
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4.2.1 Physical System

The deformation response of metal polycrystals underlies the phenomenological plasticity models
that enable metal forming and crash analysis. Polycrystalline aggregates where crystal plasticity
governs the individual grain response are a common target for homogenization, such as [120, 121,
122, 123, 106, 124]. Each polycrystalline sample is a collection of convex sub-regions Ω𝐾 of a
square Ω□, and the number of Ω𝐾 comprising the Ω□ vary sample to sample. Each sub-region
represents an individual crystal in the aggregate. The crystal lattice orientation distinguishes one
crystal from another, which is characterized by the angles 𝜙(X). For this 2D exemplar the angles
were drawn from a uniform distribution,U[0, 2𝜋].

For this exemplar, the average stress �̄�(𝑡) of a sample is the QoI. Crystal plasticity models
[125, 126] are comprised of an algebraic relation mapping recoverable elastic strain to stress and
a set of ordinary differential equations governing the evolution of irrecoverable plastic strain. The
stress 𝝈 is given by

𝝈 = 𝝈(𝝐 𝑒) = C : 𝝐 𝑒 , (4.1)

where C is the 4th order elastic modulus tensor and 𝝐 𝑒 is elastic strain. In each sub-region Ω𝐾 , the
orientation vector 𝜙 rotates C = R(𝜙) ⊠ C from the canonical C. Here ⊠ is the Kronecker product:

R ⊠ [A]𝑖 𝑗 ...e𝑖 ⊗ e 𝑗 ⊗ . . . = [A]𝑖 𝑗 ...Re𝑖 ⊗ Re 𝑗 ⊗ . . . (4.2)

The common face centered cubic (FCC) symmetry was assumed for each crystal, which has three
independent components of the elastic modulus tensor C. Refer to Table 4.1 for all parameter
descriptions and values. In each crystal, plastic flow can occur on any of the 12 FCC slip planes
defined by slip plane normals n𝛼 and slip directions s𝛼, where s𝛼 ⊥ n𝛼. The plastic velocity
gradient, which determines the plastic strain,

L𝑝 = L𝑝 (S) =
∑︁
𝛼

¤𝛾𝛼 (S) s𝛼 ⊗ n𝛼 (4.3)

is governed by slip rates ¤𝛾𝛼 and the rotated dyads s𝛼 ⊗ n𝛼 = R(𝜙) ⊠ s
𝛼
⊗ n𝛼. The slip rate ¤𝛾𝛼

follows a power-law

¤𝛾𝛼 = ¤𝛾0

���� 𝜏𝛼𝑔𝛼
����𝑚−1

𝜏𝛼 , (4.4)

driven by the shear stress 𝜏𝛼 = s𝛼 · Sn𝛼 resolved on slip system 𝛼, while the slip resistance ¤𝑔𝛼
evolves according to [127, 128] :

¤𝑔𝛼 = (𝐻 − 𝑅𝑑𝑔𝛼)
∑︁
𝛼

| ¤𝛾𝛼 | . (4.5)
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Elastic moduli 𝐶11 1.000
𝐶12 0.673
𝐶12 0.617

Hardening modulus 𝐻 0.00174
Initial slip resistance 𝑔𝛼 0.000597
Applied strain rate ¤̄𝜖 1.000
Reference slip rate ¤𝛾0 1.000
Rate sensitivity exponent 𝑚 20
Recovery constant 𝑅𝑑 2.9

Table 4.1: Crystal plasticity parameters representative of steel. All moduli are made dimensionless
by 𝐶11 = 205 GPa and all rates were non-dimensionalized by the the applied strain rate 1𝑠−1. The
maximum strain attained by the simulations was 0.003. Note the moduli [C]𝑖𝑖𝑖𝑖 = 𝐶11, [C]𝑖𝑖 𝑗 𝑗 = 𝐶12,
and [C]𝑖 𝑗𝑖 𝑗 = 𝐶44, where 𝑖 ≠ 𝑗 .

Figure 4.1a shows 3 of the realizations on a 32×32 grid. For each sample the balance of linear
momentum

div𝝈 = 0 (4.6)

is solved for the displacement field, subject to tension at a strain rate of 1/𝑠 effected by minimal
boundary conditions on the domain Ω□, i.e. two parallel boundaries and one corner are constrained.
Figure 4.1b illustrates the inhomogeneities in the stress response (at 0.3% strain in tension), which
are particularly marked at grain boundaries. The overall response of samples reflects the anisotropic
nature of each crystal which share boundaries and, hence, have kinematic constraints on their
deformation. The resulting mean stress �̄�(𝑡) response curves

�̄�(𝑡) = 1
𝑉

∫
Ω

𝝈 d3𝑋 (4.7)

are the QoIs. They vary due to the particular texture 𝜙(X) of the realization, where𝑉 is the volume
of Ω□. In fact, the different crystal textures evoke different effective elastic slopes, yield points and
(post-peak) flow stresses as can be seen in Figure 4.2.

4.2.2 Neural Network Architecture

The general neural network (NN) architecture for this data has been published before [104, 106]
and is depicted in Figure 4.3. The physical inputs are the orientation field 𝜙(X) (Figure 4.3) and
the applied strain f = 𝝐 (𝑡); the output is the mean stress over time y = �̄�(𝑡). The orientation field
𝜙(X) is discretized on a mesh. The discrete values of the texture 𝜙 and the associated cell volume
fractions 𝜈 comprise the cell data X = [𝜙, 𝜈]. The nodal input data X and the adjacency matrix A
for the mesh are fed into a convolutional stack. The graph convolutional neural network (GCNN)
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Figure 4.1: Realizations of the crystal orientation angle 𝜙 (upper row) and the corresponding stress
𝜎 (lower row).

0.0 0.2 0.4 0.6 0.8 1.0
Strain

0.0

0.2

0.4

0.6

0.8

1.0

St
re

ss

Figure 4.2: Normalized stress response curves are shown for different polycrystalline configura-
tional realizations.

layers have the form of the Kipf and Welling GCN [129] with an independent self weight. The
result of this convolutional stack is pooled with global averaging to produce hidden features that
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describe the factors that are salient to the prediction of the mean stress. There is one feature per filter
in the convolutional layers. These features depend only on the initial microstructure as described
by 𝜙(X) and, hence, are time-independent. These features and the time dependent input 𝝐 (𝑡) are
concatenated and fed into a Gated Recurrent Unit (GRU) [130] recurrent neural network. The
output of this layer is fed to a linear dense layer to produce �̄�(𝑡). Figure 4.3 provides a schematic
of the NN model with further details.

A larger version of the model is also investigated in the results section to demonstrate pSVGD
on a model that is intractable to HMC. This GCNN-RNN model operates on 3D data with 2
convolutional layers with 16 filters, 1 post pooling dense layer with swish activation, and 1 dense
output layer. It has 2609 parameters, with 112+528 in the convolutions, 272+17 in the dense layers
and 1680 parameters in the GRU.

ϵ(t) A, X 205 parameters

X = Conv(A, X) 12+36

x = Pool(X)

x = swish(Dense(x)) 20

x = GRU(x) 132

...

σ = Dense(x) 5

σ(t)

Figure 4.3: GCNN-GRU model of the crystal plasticity data, 𝑁𝑤 = 205. The 2 convolutional layers
with 4 filters each and swish activation. The RU has tanh activation and is depicted as unrolled
with a layer per time-step.
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4.2.3 Sampling and Training

This section provides method implementation details and NN training hyper-parameters. Full
details on the HMC, SVGD, and pSVGD approaches are explained in Chapter 5.

Adam optimizer [131] with early stopping is used to find MAP estimates. The optimizer mini-
mizing objective is the negative log likelihood − log 𝜂 with the negative log prior as a regularizer,
ie the negative log posterior. The prior was taken to be normal distribution N(0, 𝜎I) with zero
mean and diagonal covariance 𝜎I with 𝜎 = 1. Likewise, the likelihood taken to be normal with the
data noise estimated as 𝜎 = 0.05 for the crystal plasticity data and 𝜎 = 0.02 for the gas flux data.
All data D = {X, f, y} was normalized to lie in [0, 1].

To boost efficiency of HMC in terms of computational time and memory for the larger datasets,
the gradient evaluation of the likelihood, Equation (2.6), used a random subset of the data that
was resampled every evaluation to estimate the full likelihood. This can be seen as a form of
pseudo-marginal subsampling [132].

The SVGD sampling initialized the 𝑁𝑝 particles with the MAP values with some jitter from a
prior to make them distinct. This implementation of SVGD sampling uses the following Gaussian
kernel:

𝜑(𝜔𝑖, 𝜔 𝑗 ) = exp
(
−1
ℎ
∥𝜔𝑖 − 𝜔 𝑗 ∥2H̃

)
, (4.8)

where H̃ is an approximate Hessian matrix and ℎ is the bandwidth. An adaptive bandwidth
ℎ = 𝑑2/log 𝑁𝑝 was selected, where 𝑑 is the median pair-wise distance between particles. The
projected SVGD used the same initialization and used a tolerance on the eigenvalues of the Hessian
to construct a subspace from its eigenvectors. The Hessian-based reductions were done layer-wise
to prevent disconnected networks.

4.3 Results

In this section, the 2D NN models described in Section 4.2.2 are used to compare SVGD to the
reference standard HMC. Next a larger 3D NN is used to explore the a problem infeasible with
HMC.

In the following, y𝑖 = N(X, f;𝜔𝑖) is referred to as model realizations and (X𝐽 , f𝐽 , y𝐽) as data
samples. Data at particular time steps will be indicated via [y]𝑎.

4.3.1 Comparison of HMC and SVGD

This section compares the UQ provided by SVGD and HMC for the plasticity exemplar. Since
many NN are over-parameterized, two cases are examined: (a) 𝑁𝐷 = 1/2𝑁𝑤 with the number of
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samples being half the number of weights, and (b) 𝑁𝐷 = 2𝑁𝑤 with the number of samples being
twice the number of weights. In this case the number of SVGD particles 𝑁𝑝 = 96 was on par with
the number of weights.

As Figure 4.4 depicts, HMC chains have difficulty mixing (high correlation between successive
samples), likely due to the fungibility of the NN weights. HMC does jump between different
modes but it does so very infrequently. Future analysis might leverage a multistart strategy to get
a multitude of MAPs, each of which can initialize a number of MCMC chains. Figure 4.5 shows
low dimensional representation of the HMC chains, using both T-SNE and spectral embedding
methods. These give insight to that fact that projective algorithms, such as pSVGD, might leverage
such low dimensional latent spaces.

Figure 4.4: HMC chains for the GRU model showing the dynamics for several parameter pairs.
Left frame shows chain samples that start at the same MAP value, with different random number
generator seeds. The right frame shows samples obtained from chains initialized from different
MAP values. Results were thinned out (shown every 103 samples for clarity.

Table 4.2 gives the distance correlation between the weight ensembles by layer. The distance
correlation measures nonlinear correlations and is applicable to sets that are not necessarily equal
size [133, 134]. In terms of standard covariance

𝑑cov(𝑋,𝑌 ) = cov(∥𝑋 − 𝑋′∥, ∥𝑌 − 𝑌 ′∥) − 2 cov(∥𝑋 − 𝑋′∥, ∥𝑌 − 𝑌”∥) (4.9)

the covariance follows. For the GRU all layer parameters are highly correlated, with the correlation
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Figure 4.5: GRU: Low-dimensional embeddings for the HMC chains corresponding to the case
using 𝑁𝑑 = 1/2𝑁𝑤. Results correspond to 4 chains with different RNG seeds, all starting from
the same MAP value (location shown with black circle in some of the plots). Top row shows 2D
and 3D data processed with the T-SNE algorithm; bottom row show results generated via spectral
embedding.

with the output having a slight increasing trend from input convolution (GCNN1) to the pre-output
dense layer. The correlations for NODE on the other hand, show that the graph convolutions are
highly correlated and work together to represent the complex generation behavior while these layers
are only loose correlated with the single parameter (Scale) used in the diffusion component. The
NODE also shows increasing correlation of the layers from input to output with the output layer.

GCNN1 GCNN2 Dense GRU
𝑁𝐷 = 105 GCNN2 0.90–0.94

Dense 0.91–0.92 0.93–0.96
GRU 0.92–0.94 0.97–0.98 0.95–0.98
Output 0.72–0.73 0.78–0.83 0.81–0.85 0.81–0.85

𝑁𝐷 = 420 GCNN2 0.92–0.93
Dense 0.91–0.94 0.93–0.96
GRU 0.91–0.93 0.96–0.97 0.96–0.97
Output 0.58–0.83 0.75–0.85 0.75–0.89 0.78–0.89

Table 4.2: Distance correlation values for the HMC-based inference using the GRU model and
𝑁𝐷 = 105 (top) and 𝑁𝐷 = 420 (bottom) data samples.
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Figure 4.6 show the GCNN-RNN pushforwards for three cases the minimum, median, maximum
MAP discrepancy. The MAP discrepancy is defined in this work as error in MAP PF with respect
to the corresponding data sample:

∥y𝐼 − N(X𝐼 , f𝐼 ;𝜔MAP)∥. (4.10)

The confidence bands of the PFs show some signature of uncertainty growing in time and being
largest where the there is the most variance in the data. The confidence bands also show that the
SVGD appears to be better at cover the data; however, the HMC and SVGD predictions are more
comparable when the whole data ensemble is taken into account.

Figure 4.7 measure the dissimilarity between HMC and SVGD and each with the data. Figure 4.7
The Kolmogorov-Smirnov statistic (KSS) is used to measure the similarity of two CDFs:

KSS(CDF1,CDF2) =
∫ ∞

−∞
| CDF2(𝑦) − CDF1(𝑦) | d𝑦 (4.11)

where the cumulative distribution function (CDF) is approximated with the empirical CDF con-
structed with the push-forward distributions given samples from the HMC chains and Stein VI
particles, respectively. To compare an ensemble of PFs with data, a Heaviside function centered at
the data value 𝑦 is used as the data CDF. These statistics also show the signatures of the variance
of the output features through time. Similarities between the predictions and the data are good
throughout time but are lower (higher scores/stats) in the highly variable, hard to predict regimes.
The highly variable plastic transition in the region of [0.1, 0.4], where the elastic-plastic transition
occurs, is seen in the GRU similarity scores.

Finally Figure 4.8 shows the correlation over time steps .

𝑐𝑎𝑏 = ⟨[Δy(X𝐽 , 𝜔𝑖)]𝑎 [Δy(X𝐽 , 𝜔𝑖)]𝑏⟩𝐾𝑙 with Δy(X, 𝜔𝑖) ≡ y(X, 𝜔𝑖) − y(X, 𝜔MAP) (4.12)

where the average is over weights 𝑖 and inputs 𝐽. The plots show that HMC and SVGD predict
similar covariance structures albeit with some qualitative differences. For the GRU, the HMC
covariance structure is more diagonally dominant, while SVGD appears to be capturing significant
cross correlation in the elastic-plastic transition.

4.3.2 3D Stress Evolution

This section demonstrates SVGD and pSVGD on a model infeasible for HMC due to the size of
the parameter space. As mentioned in section 4.2.2, the architecture used is a larger version of the
GCNN-GRU model with 2609 parameters: 640 in convolution layers, 1680 in GRU, and rest in
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Figure 4.6: RNN: Push-forward distributions for minimum (left), median (middle), maximum
(right) MAP discrepancy for 𝑁𝐷 = 1/2𝑁𝑤; top row shows HMC results and bottom row shows
SVGD results. Note the change in vertical scale from left panels to right.

0.0 0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

0.05 hmc
stein
hmc-stein

Figure 4.7: CPR score for HMC and SVGD and Kolmogorov-Smirnov distance between HMC and
SVGD.

dense layers. SVGD and pSVGD were limited to just 32 particles due to memory constraints on a
single GPU.

Figure 4.9 shows the eigenspectrum of the Hessians of all the layers. Note the large range
and the steep drop off in magnitude. Figure 4.9 also shows profile of reduction for two pSVGD
cases: 3% and 10% reduction in the active weight space. The parameters are primarily eliminated
in the GRU which has the the largest proportion of the weight and also controls the stability of
the time evolution. Figure 4.10 shows the pushforward for the minimum, median and maximum
MAP discrepancy. In this figure shows the bundle of PFs trajectories to illustrate the quality of
the PFs for full SVGD, projected SVGD with 3% reduction, and pSVGD with 10% reduction.
The 3% reduction is visibly similar to the full SVGD results; however, the realizations with 10%
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Figure 4.8: GRU: comparison of posterior distributions over time: compare HMC(left) vs
SVGD(right) for 𝑁𝐷 = 1/2𝑁𝑤 (top), 2𝑁𝑤 (bottom).

weight reduction indicate that the greater reduction is sampling some trajectories that appear to be
marginally stable, which may be incurred by a relatively wide prior.

Figure 4.11 compares the covariance structure of the SVGD and pSVGD with 3% reduction.
The covariance matrices are largely similar. The pSVGD covariance structure show more variance
at the initial state and less in the elastic-plastic transition regime. Figure 4.12 shows the similarity
of the PF distribution with the data as measured by CPRS, and similarity of the PF distributions
with KS. For 𝑁𝐷 = 1000, the full and 3% reduction SVGD are nearly indistinquishable except near
initial state, while both are far from the 10% reduction. Figure 4.12 shows the effect of dataset
size. Clearly the PF predictions become farther from the data with less training data. At the same
time the difference between full and projected SVGD becomes less, as the prior becomes relatively
more influential. Figure 4.14 shows distribution similiarity across multiple (9) MAPs.
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Figure 4.9: 3D GRU: energy per layer and reduction profiles (right). For the reduction profiles, the
three models, full, 17% reduction, and 32% reduction, are shown by stacked bars.

4.4 Conclusion and Future Work

Building upon the successful implementation of SVGD and pSVGD in BNN in Chapter 3, this
chapter develops an implementation of Stein methods to model uncertainty of metal polycrystaline
stress deformation response. Whereas the BNN in Chapter 3 were limited to small, dense neural
networks on frequency-binned data, the BNN in this chapter make full use of advanced GCNN-
RNN to automatically learn features and propagate predictions along with predictive uncertainty
through time. In a number of specific case studies, uncertainty typically grew modestly over time,
but high gradients in the function being approximated typically had a greater influence on the
predictive uncertainty.

In contrast to Chapter 3, pSVGD had difficulty projected down to a lower dimensional subspace
while still producing stable time propagation. Although this algorithm was able to work on the 3D
GCNN-GRU model that was infeasible for HMC, results showed little improvement in posterior
predictions relative to SVGD.

Future work will largely focus on understanding these stability issues. One possible limitation is
the very low number of particles used in the SVGD and pSVGD models. In SVGD, this limitation
would likely lead to some degree posterior collapse, artificially deflated the posterior variance.
However in pSVGD, it also has the effect of limiting the Hessian approximation to the number of
particles. Future research will leverage greater parallel processing of many GPUs.
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Figure 4.10: 3D GRU: PFs for minimum (left), median (center), and maximum (right) MAP
discrepancy for SVGD (top panels) and projected SVGD with 3% (middle panels) and 10% reduction
(bottom panels)

66



Figure 4.11: 3D GRU: covariance of PFs for SVGD and pSVGD with 3% weight reduction
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Figure 4.12: 3D GRU: comparison of full SVGD and projected and data (solid lines) and between
these two ensembles of PFs (dashed lines).
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Figure 4.13: 3D GRU: KSS of full (solid), 3% reduction (dashed) and 10% reduction (dotted)
SVGD with data for 𝑁𝐷 = 10,100,1000 (blue,magenta,red).
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Figure 4.14: 3D GRU: SVGD for an ensemble of MAPs, KSS with data (solid) for each and KSS
of the particular SVGD with ensemble without the particular SVGD samples (dashed).
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CHAPTER 5

Scalability and Informed Priors

While many approaches for Bayesian inference have been proposed, scalability for combating the
curse of dimensionality remains a major challenge. The first section of this chapter introduces a
novel, general-purpose approach, called partially Bayesian neural networks (pBNN), in which a
layer from a neural network is subselected to be Bayesian, in order to reduce the dimensionality
the Bayesian inference problem while still capturing the predictive uncertainty similar to a fully
Bayesian neural network.

Additionally, in formulating BNNs, there remains an open question of how to select priors in the
abstract neural network weight space. The second section of this chapter proposes a novel method
for selecting priors based on favorable regularization effects and applying a final transform layer
in the neural network such that the prior push-forward distribution captures intuitive information
about the physical quantity being predicted.

5.1 Partially Bayesian Neural Networks

This section introduces a novel method to address the scalability challenges of building million-
parameter BNNs, by performing targeted Bayesian inference on a strategically selected portion
of the overall DNN, referred to as a partially Bayesian neural network (pBNN) throughout this
dissertation. This is joint work with Snehal Prabhudesai, and is published in Frontiers in Computer
Science [135].

5.1.1 A Heuristic Procedure for Layer Selection in pBNN

The overall procedure is presented in three main steps (see Figure 5.1): (1) access a deterministic
DNN model, (2) conduct sensitivity analysis (SA) to select a DNN layer for Bayesian inference,
and (3) perform targeted Bayesian inference on the selected layer using Flipout VI to arrive at the
final pBNN. Each step is described below in detail.
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Step 1:
Accessing a Deterministic Model

Step 2:
Sensitivity Analysis for Layer Identification

Step 3:
pBNN with Bayesian Uncertainty in Selected Layer

SI1

SI2

SI3

L1
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L3

x1 x2

y1 y2
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y1 y2
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Figure 5.1: Flowchart to address scalability challenges of BNN by building pBNN: Step (1)
represents a million-parameter deterministic NN. Step (2) Conduct Sensitivity Analysis to identify
the layer that has greatest impact on model output. Step (3) Conduct Bayesian inference on the most
sensitive layer to build pBNN. The resulting pBNN combines the strengths of both deterministic
and Bayesian NNs, allowing scalability.

5.1.1.1 Step 1: Access a Deterministic DNN Model

The first step is to access a deterministic DNN model (i.e. one that is trained by minimizing the loss
in Eqn. 6.1). The purpose of this DNN is to provide an inexpensive and meaningful starting point
for the upcoming SA and layer selection. One scenario is that such a deterministic DNN is already
available from a pre-existing study or another research group, and can simply be inherited. If it
does not exist yet, a new model may be trained in the typical non-Bayesian (frequentist) manner,
which is quite inexpensive relative to a full BNN training procedure.

Since this deterministic DNN will be used to guide the selection of model layer for Bayesian
inference, it must have the same architecture as the DNN that will eventually undergo Bayesian
inference. However, the precise training setup (e.g., choice of loss function, learning rate) for
creating this deterministic DNN is flexible since the goal in the next step is to seek a general sense
of the sensitivity behavior. This flexibility is important in practice, for instance in situations where
a pre-existing deterministic model is available but without information on how it was trained.

5.1.1.2 Step 2: Conduct Sensitivity Analysis to Select a Layer for Bayesian Inference

Next, SA is performed on the deterministic DNN from Step 1 in order to assess the model prediction
behavior as a result of model parameter variation. Gradient-based sensitivity is adopted for its
simplicity, although other types of sensitivity (e.g., sample-variance-based sensitivity) may also

70



be used. Specifically, the partial gradient of model prediction output is taken with respect to the
parameters of the candidate layer being considered (e.g., ℓth layer), which can be calculated easily
from a DNN using only a single pass of back-propagation. Since this partial gradient is a vector,
the L2-norm of the partial gradients are taken to transform them into a scalar metric, though other
norms such as the L1-norm may be used as well. Lastly, to avoid automatic favoring of larger layers
due to simply having more parameters (and therefore more entries contributing to the gradient
vector), the gradient scalar is normalized (divided) by the number of parameters in layer ℓ (𝑁ℓ) to
arrive at the average sensitivity per parameter. my overall Sensitivity Index for layer ℓ is:

SI(ℓ) = 1
𝑁ℓ

������∇𝑤ℓ
�̂�

������
2
. (5.1)

The layer with the highest SI, ℓ∗ = arg maxℓ SI(ℓ), would then induce the largest change in
prediction �̂� (relative to the number of parameters) when its parameters 𝑤ℓ are perturbed. This
layer thus presents as the most critical layer, justifying to focus my resources to capture the Bayesian
uncertainty for layer ℓ∗. Layer ℓ∗ will then undergo Bayesian inference in the next step.

Note that gradient is a local operator and captures sensitivity locally at the optimized parameter
values of the deterministic DNN (i.e. from Eqn. 6.1). To capture sensitivity more globally across
a wider range of possible 𝑤ℓ values, one may also consider averaging the gradient from multiple
locations of 𝑤ℓ, for instance in estimating the prior-expectation of the gradient: E𝑤ℓ

[
1
𝑁ℓ

����∇𝑤ℓ
�̂�
����

2

]
.

However, these global measures are more expensive to compute.

5.1.1.3 Step 3: Perform Targeted Bayesian Inference to Build pBNN

In the last step, targeted Bayesian inference is performed on the identified layer ℓ∗ to build the pBNN.
Formally, 𝑤 is partitioned into two subsets: 𝑤 = {𝑤𝐵, 𝑤𝐷} where 𝑤𝐵 are the DNN parameters
corresponding to layer ℓ∗ that will undergo Bayesian inference, and 𝑤𝐷 consists of all remainder
parameters that are treated deterministically (i.e. not as random variables). This sets up for a pBNN
where only a strategically chosen portion (layer) is Bayesianized.

At this point, 𝑤𝐷 may simply be frozen at the deterministic DNN values 𝑤∗
𝐷

(from Step 1), and
VI is then used to compute the conditional posterior:

𝜃∗𝐵 = arg min
𝜃𝐵

𝐷KL
[
𝑞(𝑤𝐵; 𝜃𝐵) ∥ 𝑝(𝑤𝐵 |𝑤∗𝐷 , 𝑥𝑇 , 𝑦𝑇 )

]
. (5.2)

However, allowing 𝑤𝐷 to change may allow additional improvement in approximating the posterior.
Therefore, it is proposed to jointly optimize 𝑤𝐷 (the deterministic parameters) and 𝜃𝐵 (parameters
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of the variational posterior for the Bayesian DNN parameters)

{𝜃∗𝐵, 𝑤∗𝐷} = arg min
𝜃𝐵,𝑤𝐷

𝐷KL [𝑞(𝑤𝐵; 𝜃𝐵) ∥ 𝑝(𝑤𝐵 |𝑤𝐷 , 𝑥𝑇 , 𝑦𝑇 )] . (5.3)

Lastly, Equation (5.3) is solved numerically using an appropriate VI algorithm.

5.1.2 Demonstration

Before applying the pBNN to the tumor segmentation DNN, this work first demonstrate my frame-
work on a test problem using a small densely-connected DNN with synthetic training data in order
to bring intuitions and insights.

To set up the problem, this work generate 256 synthetic training data points following the
example from [136] with some modifications:

𝑦𝑖 = 𝑥𝑖 + 0.3 sin (2𝜋𝑥 + 𝜖𝑖) + 0.3 sin (4𝜋𝑥 + 𝜖𝑖) + 𝜖𝑖 (5.4)

where 𝜖𝑖 ∼ N(0, 0.022).
I fit the data to a DNN comprised of an input layer, 9 hidden dense layers with swish activation,

and a dense output layer with linear activation (see Table 7.1). The dense layers varied in width
to mimic the varying sizes of convolutional layers encountered in tumor segmentation DNNs. The
DNN has a total of 13, 385 trainable parameters.

Layer Tunable Parameters
Input 0

Dense 1 4
Dense 2 12
Dense 3 40
Dense 4 144
Dense 5 544
Dense 6 2112
Dense 7 8320
Dense 8 2064
Dense 9 136
Output 9

Table 5.1: Architecture of the densely-connected DNN used for the test problem.

In Step 1 of the pBNN procedure, this work produced a deterministic DNN by minimize the
loss in Eqn. 6.1, with the result plotted as the solid orange line in Fig. 5.3. In Step 2, this work
computed the gradient-based SI in Eqn. 5.1 for each of the 10 candidate layers, shown in Fig. 5.2.
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The bar graph indicates generally lower SI for the middle layers compared to those near the input
or output; the lowest SI is at Layer 7, and the highest SI is at Layer 9. Layer 9 is therefore selected
for Bayesianization. In Step 3, this work construct a pBNN by performing Bayesian inference on
Layer 9 using Flipout VI and training all other layers deterministically, following Eqn. 5.3. this
work provide more details of the pBNN implementation and validation below.

Figure 5.2: SI for all layers in the DNN for the test problem. Layer 9 has the highest SI and is
selected for Bayesianization.

My pBNN is implemented using TensorFlow Probability (TFP) [137], where Layer 9 is replaced
with a DenseFlipout layer and all other layers remaining to be Dense. Training is then performed
simultaneously on 𝜃𝐵 and 𝑤𝐷 as in Eqn. 5.3. For the Bayesianized DNN parameters (𝑤𝐵), this
work adopt independent Gaussian priors with a rather wide standard deviation to reflect an initial
uninformative distribution: 𝑝(𝑤𝐵) ∼ N (0, 102). A Gaussian likelihood is also used to depict
independent Gaussian observation noise (𝜎𝜖 = 0.02 to be consistent with the data-generation in
Eqn. 5.4) on the 𝑦 targets:

𝑝(𝑦𝑇 |𝑥𝑇 , 𝑤𝐷 , 𝑤𝐵) =
𝑁𝑇∏
𝑛=1

1
𝜎𝜖
√

2𝜋
exp

[
−1

2

(
𝑦𝑛 − 𝑓 (𝑥𝑛;𝑤𝐷 , 𝑤𝐵)

𝜎𝜖

)2
]
. (5.5)

The variational posteriors are from the family of independent Gaussians 𝑞𝑖 (𝑤𝐵; 𝜃𝐵) ∼ N (𝜇𝑖, 𝜎2
𝑖
),

and so the variational parameters are 𝜃 = {𝜇𝑖, 𝜎𝑖}. I train this pBNN using the Nadam [138]
optimizer for 104 epochs with a learning rate of 10−3 and batch size of 64.

To assess whether the pBNN constructed with SA-selected Layer 9 provides a good approxi-
mation to the uncertainty of the full BNN, this work also train a full BNN where all layers are
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replaced by DenseFlipout layers; the posterior push-forward uncertainty1 of the full BNN is shown
in Fig. 5.3. Furthermore, to investigate the performance of pBNNs if a layer different from Layer
9 were selected, this work construct separate pBNNs where a different layer is Bayesianized.

Since a good pBNN is one that faithfully approximates the uncertainty in the full BNN, this work
measure its performance based on how close the pBNN’s posterior push-forward is to the full BNN’s
posterior push-forward via the KL divergence. Note the caveat that a close posterior push-forward
does not necessarily imply a close posterior in general. However, the posterior pushforward, which
is much lower dimensional than the posterior can act as a proxy to assess the closeness of the overall
Bayesian uncertainty. Following the same reasoning as the SI from Eqn. 5.1, this work normalize
this quantity by multiplying 𝑁ℓ (since lower KL is better), to arrive at my validation metric:

𝐷norm =
𝑁ℓ

𝑁𝑡𝑜𝑡
𝐷KL [ 𝑓 (𝑥;𝑤∗𝐷 , 𝑤partial,𝐵) | | 𝑓 (𝑥;𝑤full))], (5.6)

where 𝑤partial,𝐵 ∼ 𝑞partial(𝑤partial,𝐵; 𝜃∗
𝐵
) are the Bayesianized parameters in the pBNN, and 𝑤full ∼

𝑞full(𝑤full, 𝜃
∗) are the full set of parameters (all Bayesianized) in the full BNN. The 𝐷norm values for

each pBNN are plotted against SI in Figure 5.4, where this work observe a Spearman’s correlation
of 𝑟𝑠 = −0.83 which is considered to be strongly correlated in literature [139]. This supports my
SA-based layer selection strategy, where the layers with high SI will also lead to low 𝐷norm. Lastly,
note that while this work performs this brute-force comparison to validate the effectiveness of my
approach, in practice one would only train the pBNN on the SA-selected layer as described in
Section 5.1.

1Posterior push-forward is 𝑝( 𝑓 (𝑥;𝑤𝐵, 𝑤𝐷) |𝑥, 𝑥𝑇 , 𝑦𝑇 ), which differs from the posterior predictive 𝑝(𝑦 |𝑥, 𝑥𝑇 , 𝑦𝑇 ).
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Figure 5.3: Training data (black dots) overlaid with the determinisitic DNN prediction (solid
orange) and full BNN posterior push-forward uncertainty (solid blue line is the mean, blue shadow
is the 95% credible interval).
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Figure 5.4: Normalized KL divergence from the full BNN posterior push-forward to the different
pBNNs is highly correlated with the SI that is used to select the layer for Bayesianization (Spear-
man’s correlation 𝑟𝑠 = −0.83).
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5.2 Predictive-Informed Prior Selection

Briefly, there are different Bayesian philosophies that emphasize different ways of viewing a prior
distribution. Subjective Bayes adheres to the framework that ones understanding of a system is
inherently subjective and specific each observer. Different observers might have different under-
standings of a system and might select different, but equally valid priors. Objective Bayes takes
issue with this ambiguous interpretation, preferring pragmatic priors with regularizing attributes or
deliberately uninformative priors when no natural prior exists. One challenge of Bayesian inference
on the highly abstract parameter space of a deep neural network is that there is very little intuition
as to what a prior distribution should be, particularly in the subjective sense.

One solution might be to first train the weights of a BNN such that predictive distributions
directly match the desired prior predictive distributions that encode expert opinions or physical
intuition of the trends in a given dataset, however this solution highly nonunique and would likely
induce very poor model performance due to highly atypical regularization. However, from a model
regularization and performance perspective, certain priors can still be useful even if the distributions
are not physically intuitive. Zero-mean Laplace priors, analogous to 𝐿1 regularization in frequentist
settings, is useful encouraging model parsimony. Zero-mean Gaussian priors, analogous to 𝐿2

regularization in frequentist settings, is useful for avoiding model overfitting. When used together
as a joint Laplace-Gaussian distribution, they induce an elastic net regularization. In the literature,
many works on Bayesian neural networks simply assign uninformative Gaussian priors and avoid the
problem of appropriate prior selection altogether, regardless of Objective or Subjective philosophy.

This work proposes a justification for BNN prior selection that incorporates aspects of both
Subjective and Objective philosophies. This prior selection justification is done via a validation or
cross validation scheme, analogous to frequentist regularization parameter tuning. Deterministic
models can be affordably trained via maximum a posteriori (MAP) estimates based on a selection of
different priors along with the likelihood function above. The MAP estimates on model parameters
are then used for producing model predictions on a held-out validation set. Final priors are selected
based on relevant model performance metrics, such as mean squared error, on the validation set.
This is different from the so-called “inverse crime” of choosing a prior based on knowledge of a
posterior distribution. Instead, this can be framed as a selection of hyperpriors in a hierarchical
Bayesian formulation, similar to [140]. However, these hyperpriors are inferred via a maximum
likelihood method, to avoid the additional cost of a fully Bayesian inference are every hierarchical
stage. Following the flow of [140] (with some modified notation), 𝑤 are the parameters of the
neural network model and 𝜎 are the parameters of the prior distributions, for example the scale
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parameters of a zero-mean Gaussian or Laplacian distribution:

𝑤 ∼ 𝑝(𝑤 |𝜎) (5.7)

𝜎 ∼ 𝑝(𝜎). (5.8)

The joint distribution of both the weight prior and scale hyperpriors is therefor

𝑝(𝑤, 𝜎) = 𝑝(𝑤 |𝜎)𝑝(𝜎), (5.9)

and the posterior distribution is therefor

𝑝(𝑤, 𝜎 |D) = 𝑝(𝑤 |𝜎,D)𝑝(𝜎 |D). (5.10)

With this formulation, 𝜎 could be learned via Bayesian inference, though without simplifying
assumptions would be very costly. Instead, I propose using a cross-validation scheme to select the
best hyperprior �̂�

𝑝(𝑤 |𝜎,D)𝑝(𝜎 |D) ≈ 𝑝(𝑤 |�̂�,D). (5.11)

This selection of priors via cross-validation is very similar to the standard approach of selecting
hyperparameters in a frequentist setting.

One problem with this approach is that the priors in the abstract parameter space of the model
might have unforeseen influence on model predictions. This phenomenon is illustrated in Figure 5.5,
where three neural networks, each with identical architectures but different prior distributions yield
very different (likely undesirable) prior predictive distributions.

This can be addressed by using transforms on the model output in order to map outputs from the
untrained “prior model” to a physically intuitive “prior predictive” distribution. These transforms
are calculated by repeatedly sampling a prior distribution of the model and then observing the
output from the final layer with a linear activation function. An empirical PDF can be calculated
for this untransformed output function. From this PDF, the CDF can be calculated. It is then
trivial to use the CDF to transform the prior predictive to a uniform distribution, i.e. 𝑈 (0, 1) and
from here, transforming to an arbitrary prior predictive. This custom prior predictive distribution
might be uninformative– for example a uniform distribution across some finite support prediction
domain. Or the custom prior predictive might be informative– for example a Gaussian distribution
designed to approximate the sample mean and variance of the quantity that we are predicting.
This process yields an intuitive prior prediction while leveraging (and without modifying) the
regularizing properties of the prior distribution on the model parameters. This process is detailed
below in Algorithm 1 and is implemented and further explored in Chapter 7.
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Figure 5.5: Predictive distributions 𝑝( �̃�) are shown for 3 BNN with identical fully-connected
architectures and data but featuring zero-centered Gaussian prior distributions with different scale
parameters.
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Algorithm 1 Pseudo code for the prior selection process
Input : model architecture ℎ with linear output, paired training feature and label pairs {𝑋𝑇 , 𝑦𝑇 },
parameterized priors for prior selection (e.g. 𝜎0 for a zero-mean Gaussian prior, 𝑏0 for a zero-mean
Laplace prior, [𝜎0, 𝜎1, ..., 𝜎𝑘 ]0 and [𝛼0, 𝛼1, ..., 𝛼𝑘 ] for a mixture of 𝑘 zero-mean Gaussian
distributions, etc).
Output : A set of validation or cross-validation performance metrics for each combination of prior
parameters.

for each combination of prior parameters, e.g. instances of 𝜎0, 𝑏0 do :
for iteration 𝑛 of 𝑁 total MC samples do:

Sample 𝑤0,𝑛 ∼ 𝑤0

Propagate 𝑤0,𝑛 through ℎ(𝑤0,𝑛 |𝑋𝑇 , 𝑦𝑇 ) to sample �̃�0,𝑛

end
𝑈 = CDF( [ �̃�0]1:𝑁 ) calculated empirically or by Gaussian approximation of [ �̃�0]1:𝑁

𝑓 (𝑤 |𝑋𝑇 ) = 𝑇 (𝑈 (ℎ(𝑤 |𝑋𝑇 ))), where 𝑇 is a transform ofU(0, 1) to some user-defined prior-predictive
𝑤𝑀𝐴𝑃 = arg min

𝑤

−log𝑝(𝑤 |𝑋𝑇 , 𝑦𝑇 ) train the MAP model with appropriate gradient optimization

�̂�𝑀𝐴𝑃,𝑣𝑎𝑙 = 𝑓 (𝑤𝑀𝐴𝑃,𝑋𝑣𝑎𝑙 ) calculate forward-pass validation predictions
M(𝑦𝑣𝑎𝑙 , �̂�𝑀𝐴𝑃,𝑣𝑎𝑙) assess relevant validation metricsM on label and prediction

end

5.3 Conclusion and Future Work

This chapter introduces the Bayesian inference frameworks and evaluates several algorithmic ap-
proaches to numerical Bayesian inference. MCMC algorithms have historically been the workhorse
of numerical Bayesian inference, but even advanced algorithms such as HMC struggle to scale to
the dimensionality demanded by modern SciML tasks. VI is a more recent algorithm that is well
suited for implementation in BNNs, though it struggles to adequately approximate multi-modal
and non-Gaussian posterior distributions and typically underestimates posterior variance. SVGD
avoids familial approximation and offers greater flexibility; pSVGD expands upon SVGD to provide
greater scalability, particularly with datasets that make consist of spatially or temporally discretized
data. Despite these algorithmic advances, Bayesian inference is far more computationally demand-
ing that traditional maximum likelihood (or sometimes maximum a posteriori) estimates of NN
parameters.

To partially address this issue of computational cost, this chapter introduces a novel heuristic
for subselecting BNN parameters for Bayesian inference and therefor reducing the computational
expense. The relative influence of a given BNN layer, measured via a sensitivity index, is highly
correlated to the similarity that a pBNN based on that layer has to a hypothetical full BNN.
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Furthermore, in the literature there is generally a lack of consensus on how to select highly
abstract prior weight distributions in a BNN. This work does not provide a definitive answer to this
dilemma, but rather provides a novel justification to a prior selection methodology that leverages
Bayesian analogues to frequentist hyperparameter selection that is ubiquitous in the field of deep
learning.

With the pBNN approach, open questions still remain regarding how exactly to choose which
subset of neural network parameters. Choosing a single layer of parameters based on the sensi-
tivity index is a simple and code-friendly approach, but selecting partial layers (even individual
parameters) or multiple layers would likely give greater flexibility to focus computational power
on the most impact parameters. Future work will evaluate whether simple strategies based on the
sensitivity index are sufficient to reasonably predict the faithfulness to the far more computationally
challenging full posterior.

With the predictive-informed weight prior approach, there remain open questions on how this
approach impacts model performance. Furthermore, future research will try to expand the CDF
transform technique beyond 1D transforms, toward a more generalized multidimensional approach.
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CHAPTER 6

Partially Bayesian Neural Networks for Transparent
Medical Imaging AI

This chapter discusses a computationally-efficient UQ approach– partially Bayesian neural net-
works (pBNN)– to segment tumors on MRI scans using state-of-the-art neural architectures. In
pBNN, only a single layer, strategically selected based on gradient-based sensitivity analysis, is
targeted for Bayesian inference. This work illustrates the effectiveness of pBNN in capturing the
full uncertainty for a 7.8-million parameter U-Net. This work also demonstrates how practitioners
and model developers can use the pBNN’s predictions to better understand the model’s capabil-
ities and behavior. The work presented in this chapter was the result of close collaboration with
Snehal Prabhudesai, Dingkun Guo, Arvind Rao, Nikola Banovic, and Xun Huan and is published
in Frontiers in Computer Science [135]. While I preserve the majority of the paper to convey its
comprehensive narrative, I would like to acknowledge that in the work presented in this chapter,
Snehal Prabhudesai was chiefly responsible for providing the background and making the connec-
tion to the medical application domain, interpreting uncertainty maps, and contributed in training
pBNN models and aggregating performance metrics.

6.1 Introduction

Clinical Decision Support Systems (CDSS) based on Artificial Intelligence (AI) are promising
to assist clinicians in providing better patient care in high-stakes medical decision-making [141],
including for brain tumors. AI-based CDSS have shown potential to accurately segment tu-
mors [142, 143], which could aid in treatment planning for patients with glioma [144], a malignant
manifestation of brain tumors [145, 146]. AI models such as Deep Neural Networks (DNNs)
can learn patterns from radiologist-annotated multi-modal Magnetic Resonance Imaging (MRI)
scans for tumor delineation with high accuracy [4]. These optimistic results have contributed to
accelerating approvals from governing agencies such as the U.S. Food and Drug Administration
(FDA) [147], with the goal to integrate them into clinical workflows [148].
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In the domain of radiology, AI-based CDSS have shown potential to assist in treatment planning,
which requires precise segmentation to ensure that the treatment is effective in resecting the bulk
of the tumor, without unnecessarily affecting functional brain areas. Radiologists rely on their
years of training and practice to estimate the extent of tumor location and spread as precisely as
possible. Radiologists delineate the tumor based on its appearance on the MRI, and mark additional
boundaries around it to indicate certainty about their segmentation, or lack thereof [149]. Recently,
researchers have used DNNs [150, 151, 152, 4] to automate tumor segmentation [153] for a large
cohort of patients at a fraction of the time it would take to do it manually.

However, these algorithms do not communicate uncertainty, which remains a key barrier to their
responsible adoption in clinical workflows [154]. AI-based CDSS that produce single-valued (i.e.
deterministic) predictions do not reflect the inherent uncertainty in medicine [46], and encmyage
impressions of “superhuman” ability of AI [47] without mechanisms to contest these claims [48].
This can exacerbate problems with inappropriate trust and reliance on AI-based CDSS [155], with
potential harm to patient health [156]. Despite calls in Transparent and Responsible AI [157, 158]
to quantify [159, 160], report [161, 162, 163] and design for uncertainty [164], little attention
has been dedicated to address uncertainty effects in AI models for healthcare [48, 154]. This
lack of model transparency remains a key barrier to the responsible adoption of AI in clinical
practice [165, 166, 167].

Uncertainty Quantification (UQ) for AI-based CDSS [168] remains challenging due to their high
computational costs [169]. For example, Bayesian analysis [170, 171, 172] provides a principled
and systematic approach to quantify and update the uncertainty of model parameters, but typically
is solved via expensive iterative algorithms such as Markov chain Monte Carlo (MCMC) [25, 26,
27, 28] or variational inference (VI) [33, 34, 35]. While Bayesian methods have been historically
used for UQ in medicine [173], they are difficult to scale for handling e.g., DNNs in AI-based
CDSS that often involve millions of parameters [174, 175, 176].

This work seeks to enable Bayesian UQ for million-parameter DNNs, i.e. to create million-
parameter Bayesian neural networks (BNNs) [136, 177]. This is accomplished by introducing
a low-computation strategy for performing Bayesian inference on a small, strategically chosen
portion (layer) of the entire DNN, thereby creating a partially BNN (pBNN) that approximates the
uncertainty of a full BNN. The Flipout [63] VI algorithm is used to solve the resulting Bayesian
problem on the target layer. Unlike related strategies [178, 179, 180] that solely attempt Bayesian
inference only on the last layer of a DNN, which does not necessarily offer the best uncertainty
representation [181], this approach allows a justified selection on which part of the DNN to
“Bayesianize” guided by sensitivity analysis (SA).

To impart the ability to express uncertainty in tumor segmentation models, pBNN are built
using a state-of-the-art 7.8 million-parameter U-Net architecture [4] proposed for medical image
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segmentation. To empirically validate the approach, a full BNN is trained as a baseline for the
uncertainty approximation discrepancy of the pBNNs to this full BNN. This experiment demon-
strates that the pBNN based on the SA-selected layer is the most efficient in approximating the
full Bayesian uncertainty (per Bayesianized parameter) compared to other layer choices. Results
suggest that the SA-based layer-selection offers an effective and inexpensive way to identify the
best DNN layer to perform Bayesian inference.

The main contribution of this work is to enable Bayesian UQ for million-dimensional medical
DNN models. It features a novel computational method that uses a SA-based DNN layer selection
for targeted Bayesian inference, which is especially useful in scenarios where practitioners and
model developers want to understand the model’s uncertainty but do not have the resources for a
full Bayesian inference on the entire DNN. This work advances future interactions for transparent
and responsible AI that can support the investigation of the uncertainty in DNN models. This work
illustrates one such interaction, through the use of uncertainty maps, to show how clinicians could
be enabled to interpret uncertainty of the tumor segmentation AI.

6.2 Methodology

6.2.1 Bayesian Neural Networks

A DNN takes input 𝑥 and predicts output �̂� and can be written as �̂� = 𝑓 (𝑥;𝑤) where 𝑤 represent all
tunable model parameters of the DNN (e.g., DNN weights and bias). Given 𝑁𝑇 training data points
(𝑥𝑇 , 𝑦𝑇 ) = {𝑥𝑛, 𝑦𝑛}𝑁𝑇

𝑛=1, the DNN is typically trained by finding 𝑤 to minimize a loss function:

𝑤∗ = arg min
𝑤

L(𝑤, 𝑥𝑇 , 𝑦𝑇 ). (6.1)

For example, a popular choice is the least squares loss L(𝑤, 𝑥𝑇 , 𝑦𝑇 ) = 1
𝑁𝑇

∑𝑁𝑇

𝑛=1 [ 𝑓 (𝑥𝑛;𝑤) − 𝑦𝑛]
2.

The optimization is often done with stochastic gradient descent [94, 95]. Once Eqn. (6.1) is
solved, it produces a deterministic DNN that makes single-valued prediction for any new input 𝑥:
�̂� = 𝑓 (𝑥;𝑤∗).

BNN [174, 175, 176, 136, 177], in contrast, treats 𝑤 as random variables with an associated
probability density function (PDF) that represents the uncertainty on𝑤. When training data become
available, these PDFs are updated through Bayes’ rule:

𝑝(𝑤 |𝑥𝑇 , 𝑦𝑇 ) =
𝑝(𝑦𝑇 |𝑥𝑇 , 𝑤)𝑝(𝑤)

𝑝(𝑦𝑇 |𝑥𝑇 )
, (6.2)
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where 𝑝(𝑤) is the prior PDF1, 𝑝(𝑦𝑇 |𝑥𝑇 , 𝑤) is the likelihood PDF, 𝑝(𝑤 |𝑥𝑇 , 𝑦𝑇 ) is the posterior PDF,
and 𝑝(𝑦𝑇 |𝑥𝑇 ) is the marginal likelihood (a PDF-normalization term). The prior thus represents
the uncertainty on 𝑤 before seeing any training data, and the posterior describes the updated
uncertainty after incorporating the training data. Solving the Bayesian inference problem then
entails computing the posterior 𝑝(𝑤 |𝑥𝑇 , 𝑦𝑇 ). Both DNNs and BNNs are further elaborated upon in
Section 2.2.5.

6.2.2 Partially Bayesian Neural Networks

This section presents the main demonstration of the pBNN, applying it to a state-of-the-art DNN
model used for medical image segmentation: the U-Net [4]. Since the goal is to demonstrate the
pBNN framework presented in Section 5.1 and not to develop or justify the choice of architecture,
the U-Net architecture is taken as given.

6.2.2.1 Step 1: Access a Deterministic DNN Model

First, a U-Net model is trained deterministically using the architecture and code published by [182].
As shown in Fig. 6.1, the U-Net comprises of an encoder, decoder, and skip connections. The
encoder module composes of 2D Convolutional layers followed by MaxPooling layers with window
size 2 × 2, and 2D Spatial Dropout layers for regularization. The decoder module is composed
of corresponding Conv2DTranspose layers followed by Concatenate layers. Nested in between the
encoder and decoder is the 2D Upsampling layer with bilinear interpolation. The U-Net has feature
map size set to 32, kernel size 3 × 3, and dropout rate 0.2. For the 2D Convolutional layers, ReLU
activation is used along with He uniform variance scaling initializer, and kernel size is set to 2 × 2.
Overall, this U-Net has a total of 7.8 million tunable parameters.

Training data is taken from the Medical Segmentation Decathlon Challenge Task 01 [183]
consisting of brain MRI scans of patients with glioma. The training set contains of 58,464
2D images (each sized 144 × 144) and a separate validation set contains 6,624 images. Data
augmentation is employed during training to increase data diversity including random choices of
horizontal and vertical flips, ±45◦ rotation, and ±2.5◦ shearing. The ADAM optimizer [184] is run
for 30 epochs used a learning rate 0.001 and a mini-batch size of 128. The training loss function is
a weighted sum of the Dice coefficient [185, 186] and standard Binary Cross Entropy. The training
results are summarized in Table 6.1.

1Note that 𝑝(𝑤 |𝑥𝑇 ) = 𝑝(𝑤), i.e. the prior uncertainty should not change from knowing only the input values of the
training data without their output values.
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Figure 6.1: U-Net architecture with utilizing the naming system of the different tunable layers
considered for the pBNN.

6.2.2.2 Step 2: Conduct Sensitivity Analysis to Select a Layer for Bayesian Inference

Gradient-based SI is computed in Eqn. 5.1 for each candidate layers, shown in Fig. 6.2. In particular,
the layers near the top portion of the encoder carry larger SI. This response gradually decreases
proceeding further into the model, reaching a minimum near the middle, followed by a light rebound
at the decoder layers. The lowest SI occurs at Layer decoder 3a, and the highest SI is at Layer
encoder 1a. Layer encoder 1a is therefore selected for Bayesianization.

6.2.2.3 Step 3: Perform Targeted Bayesian Inference to Build pBNN

A pBNN is first constructed by performing Bayesian inference on encoder 1a using Flipout VI
and training all other layers deterministically, following Eqn. 5.3. This pBNN is implemented
using TensorFlow Probability (TFP) [137] by replacing the 2DConvolution layer of encoder 1a
with tfp.layers.Convolution2DFlipout. Training is then performed simultaneously on 𝜃𝐵
and 𝑤𝐷 as in Eqn. (5.3). For the Bayesianized DNN parameters (𝑤𝐵), independent Gaussian priors

86



Performance Value
Training time 5 hrs
Model size 94.3 Mb
Trainable parameters 7.8 million
Validation accuracy 0.9915
Validation Dice coefficient 0.8508

Table 6.1: Summary of the deterministic U-Net training.

are selected with a rather wide standard deviation to reflect an initial uninformative distribution:
𝑝(𝑤𝐵) ∼ N (0, 102). Since the label for each pixel is binary while the model prediction ranges
[0, 1], binary crossentropy was selected as the natural likelihood function:

𝑝(𝑦𝑇 |𝑥𝑇 , 𝑤𝐷 , 𝑤𝐵) =
𝑁𝑇∏
𝑛=1
[𝑦𝑛 𝑓 (𝑥𝑛;𝑤𝐷 , 𝑤𝐵) + (1 − 𝑦𝑛) (1 − 𝑓 (𝑥𝑛;𝑤𝐷 , 𝑤𝐵))] . (6.3)

The variational posteriors are from the family of independent Gaussians 𝑞𝑖 (𝑤𝐵; 𝜃𝐵) ∼ N (𝜇𝑖, 𝜎2
𝑖
),

and so the variational parameters are 𝜃 = {𝜇𝑖, 𝜎𝑖}. The pBNN is trained using the Nadam [138]
optimizer for 400 epochs with a learning rate of 10−4 and batch size of 196, using 8 GeForce RTX
2080 Ti GPUs in parallel. The ELBO training history of the pBNN is shown in Fig. 6.3 (plot
with encoder 1a emphasized in red). While the plot indicates a small rise around 150 epochs due
to numerical instabilities with the optimization algorithm, overall the curve steadies out by 350
epochs (note that the y-axis is logarithmic which amplifies the lower-value fluctuations) and appears
noticeably flatter compared to the beginning of the optimization.

6.3 Results

This section provides validation for the pBNN procedure by illustrating whether the U-Net pBNN
constructed with SA-selected encoder 1a layer provides a good approximation to the uncertainty of
the full BNN. To achieve this, a full BNN where Bayesian inference is performed on all layers must
be trained as a reference point. Such attempts to obtain the full uncertainty are highly expensive,
and is in fact the original motivation for the new pBNN. To clarify- the full BNN is not needed as a
part of the regular pBNN procedure described in Section 5.1 but solely to validate this methodology.

A full BNN is trained where all 19 layers of the U-Net are Bayesianized, using the full extent
of available computational resources: 2000 epochs using the Nadam [138] optimizer with learning
rate 10−4 and batch size of 196, 94.72 GB of memory, 8 GPUs in parallel, which required 3 days of
continuous computation to arrive at a steadied ELBO. The best-performing model is saved during
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Figure 6.2: SI for all layers in the U-Net used for tumor segmentation. layer 1a has the highest SI
and is selected for Bayesianization.

the training process. Due to the tremendous size of this BNN, expert experience is also relied upon
for randomized initialization parameters and algorithm tuning to arrive at a reasonably converged
full BNN. Additionally, 19 pBNNs are trained, each with one of the 19 layers targeted for Bayesian
inference, but with shorter 400 epochs. The ELBO training history for all models are summarized
in Fig. 6.3, with the pBNN using the SA-selected layer (encoder 1a) emphasized in red. While the
full BNN is trained for significantly longer than the pBNNs, the ELBO is plotted in Figure 6.3 to
around 350 epochs for better readability and comparison. All training curves gradually decrease
and start flattening around 150 epochs, after which noise dominates over any further convergence
trends. The plot suggests that all pBNN models converge reasonably well.

Since a good pBNN is one that faithfully approximates the uncertainty in the full BNN, the pBNN
performance is measured using the normalized KL divergence between the pBNN’s posterior push-
forward to the full BNN’s posterior push-forward, 𝐷norm, defined in Eqn. 5.6.

With each U-Net output being a 144 × 144 pixel values, directly computing the KL divergence
for the joint 144× 144-dimensional posterior push-forward PDF would be very difficult. The com-
putation of 𝐷norm is then further simplified through an independence approximation, breaking the
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Figure 6.3: ΔELBO training history for all models.

144 × 144-dimensional KL into 20,736 pixel-wise one-dimensional KL computations. For a given
prediction image, each pixel’s KL is estimated by first generating 100 samples of the DNN parame-
ters𝑤partial,𝐵 from the optimized variational posterior 𝑞partial(𝑤partial,𝐵; 𝜃∗

𝐵
), combine it with the other

deterministic parameters and evaluate the corresponding pixel predictions 𝑓 (𝑥;𝑤∗
𝐷
, 𝑤partial,𝐵), and

for each pixel fit its 100 samples to a Beta distributions to approximate its posterior push-forward
PDF. Beta distributions are often used to model the uncertainty of Bernoulli distributions and are
suitable for this problem to ensure pixel-wise prediction values reside between [0, 1]. Once the
Beta PDFs are extracted, KL divergence can be calculated analytically. The pixel-wise KL diver-
gence values are then summed to obtain the estimate to the joint PDF’s KL value (since the KL
divergence between two joint PDFs that are independent factors into the sum of KL divergences of
individual marginals). The final 𝐷norm are shown in Fig. 6.4, and they show a correlated, inverse
trend compared to the SI values in Fig. 6.2, supporting that SI is a good inexpensive indicator of
the KL performance metric.

Figure 6.5 shows a scatter plot for all 19 pBNNs the KL divergence (not yet normalized by 𝑁ℓ)
versus 𝑁ℓ the number of parameters of the layer targeted for Bayesian inference; the pBNN with
the SA-selected layer (encoder 1a) is marked in red. Ideally,the layer selected for Bayesianization
would have low KL divergence from the full BNN and small number of layer parameters (i.e.
towards the bottom-left corner). However, these two desirable properties generally conflict and a
tradeoff needs to be made. This can be seen by the Pareto optimality front by the plot’s lower-left
convext hull. In this case, the SA criterion indeed identifies one of the Pareto points in layer
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Figure 6.4: Normalized KL 𝐷norm, for all 19 pBNNs each built with Bayesian inference on one of
the layers in the U-Net.

encoder 1a. The output layer also resides on the Pareto, and would also serve as a reasonable
selection for Bayesianization; indeed, the SI values presented in Fig. 6.2 does show the output layer
to be the runner-up. However it should be noted that the nature of how the two layers are good
choices are different: encoder 1a achieves a lower KL than output layer, but output layer has a
smaller number of parameter.

6.4 Interpreting Uncertainty Maps

Although the main contribution of this work is to provide a scalable method for Bayesian UQ in
large DNNs, this section also illustrates one way that uncertainty information could be used in
practice. Uncertainty maps are a tool that communicates how confident (uncertain) a model is in its
prediction. Fig. 6.6 illustrates these maps for one such example: top row displays the 4 modalities
of an MRI scan; bottom row displays the ground truth, prediction, uncertainty and truth-prediction
discrepancy respectively for the SA-guided pBNN (Section 6.2.2.3).

6.4.0.1 Construction

Descriptions of how to compute and visualize the uncertainty of the pBNN’s prediction for a
specific use case are shown in Figure 6.6. This particular example was selected from the test
dataset because the ground truth indicated a large percent of the pixels belonging to the tumor
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Figure 6.5: Scatter plot of KL divergence sum versus number of parameters in the Bayesian layer.

class (25%). First, 100 samples are drawn from the posterior push-forward distribution of the
trained pBNN for this MRI. The binary prediction map is then calculated from the mean of these
100 samples. The continuous values [0,1] are then mapped to their dominant class (tumor or
non-tumor) with thresholding (value of 0.5).

The uncertainty map is then constructed from the same 100 samples, by computing per-pixel
standard deviation. The range of uncertainty displayed is unique to the image and is not a global
uncertainty measure. The prediction map is then subtracted from the ground truth in order to
visualize the truth-prediction discrepancy map. The negative extreme value (−1) indicates regions
where the model predicts tumor when the tumor is absent in ground truth (false positive, or over-
prediction). The positive extreme value (+1) indicates regions where the model does not predict
tumor when the tumor is present in the ground truth (false negative, or under-prediction).

6.4.0.2 Interpretation

To investigate use-case scenarios on how to interpret and analyse the uncertainty maps shown in
Figure 6.6, preliminary qualitative data is collected from an expert radiological researcher. Note
that this interpretation is not performed by board-certified radiologists, so it only serves as a guiding
example.

Expert interpretation indicated that the pBNN is fairly confident in distinguishing the tumor
core from the background, but is highly uncertain at the boundary regions of the tumor, which is
consistent with manual segmentation [187]. For example, even when a single radiologist performs
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Figure 6.6: Uncertainty map accompanying a prediction made by the pBNN.

multiple segmentations on the same image, the most differences (intra-rater variability) are often
present in the boundary region [188].

In this particular example, the necrosis, enhancing, and non-enhancing parts of the tumor are
surrounded by edema. Since the model predicts the whole tumor and does not perform subclass
recognition, it predicts the edematous region of the tumor. However, since edema has a distinct
contrast in FLAIR, there is a possibility that this FLAIR modality is contributing largely to the
observed uncertainty. This is in line with segmentation by radiologists, which also has the most
uncertainty in FLAIR modality.

Further, comparing the uncertainty map with the truth-prediction discrepancy revealed that the
pBNN is highly uncertain where it under-predicts and had low uncertainty where it over-predicts.
A possible reason for this is in the context of the model’s ability to correctly call out all of the tumor
pixels in the ground truth. For over-prediction, the model covered the tumor region and went beyond
it (which does not count as a “miss”), so the uncertainty is low. Whereas for under-prediction, the
model failed to correctly call out tumor (which counts as a “miss”), thus the uncertainty is high.
One such area of under-prediction is in the lateral ventricle of the right hemisphere. This region
is darker than the rest of the tumor (in FLAIR modality), but is still a part of the tumor due to the
presence of edema.

One possible explanation of this model behavior is that the model has learned to distinguish
tumors based on pixel intensity and contrast. As the algorithm “sees” the lateral ventricle of
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the right hemisphere to be significantly darker than the rest of the tumor, it thinks this is not a
tumor. While this seems like a reasonable mistake for the model to make, a radiologist would
have no problem marking this as a tumor as they have a firm understanding of anatomy. Example
regions of over-prediction are near the middle frontal gyrus and near the necrotic region in the right
hemisphere. This region is craggy, and it seems like the model smoothed over these intricacies to
get a “good enough” prediction.

6.5 Discussion

The results of the empirical validation in Section 6.3 illustrate the effectiveness of the pBNN:
the pBNN where Bayesian inference is performed on the SA-selected layer achieves the lowest
normalized KL divergence—that is, compared to if a different layer were chosen, it provides the
best capturing of the full BNN uncertainty. The three-step pBNN methodology in Section 5.1 is
set up with implementation considerations in mind. Step 1 allows the leveraging of pre-existing
trained DNNs, but also describes the procedure if a new DNN needs to be trained from scratch.
Step 2 assesses and identifies the portion of DNN for Bayesian inference on a layer-by-layer
basis (i.e. keeping “layer” as the unit), since accessing and replacing an entire layer (e.g., from
a Dense layer to DenseFlipout layer) is very convenient in programming infrastructure such as
TensorFlow Probability. Such modifications do not need the user to program new layers, or to
Bayesianize portions of a layer. The gradient-based sensitivity measure adopted is also inexpensive
to compute and can be readily extracted from a deterministic DNN. Step 3 takes advantage of
existing implementations of Bayesian inference algorithms, such as the Flipout VI that can be
specified and used together with non-Bayesian layers.

This method is particularly valuable for high-dimensional problems (e.g., DNNs with millions
of parameters), where performing a full Bayesian inference would be extremely expensive. This
work enables principled approximate Bayesian inference to be scaled up to millions of dimensions.
While other related partial Bayesian strategies compare test error performance [181], this method
explicitly computes closeness to the fully Bayesian model, with the aim of faithfully capturing the
true uncertainty that is justified based on the quality and quantity of training data available. The
overarching goal is provide a transparent quantification of uncertainty in an AI expert system, and
not to only optimize for predictive accuracy.

Section 6.4 illustrates how this computational framework could be used to visually represent
predictive uncertainty. While uncertainty communication is not the primary goal of this work,
these contributions can help advance an understanding of AI limitations and uncertainty in a
clinical healthcare context. A preliminary analysis on these maps demonstrates how a radiologist
might interpret these images. The maps allow one to correlate the model’s mistakes and how
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confidently the model fails. With clinical insights and interpretation, one can also explore the
model’s behavior on specific use cases. For example, model predictions on out-of-distribution
data can be potentially flagged based on uncertainty [189] to caution the radiologist about model’s
reliability in those regions. This would be especially useful for healthcare contexts where models
are highly domain-dependent and localized [190]. Apart from potential to enable flagging of
unreliable cases, this Bayesian framework can allow for construction of an expert-informed pBNN.
It permits a flexible choice for prior and likelihood, potentially allowing practitioners to inject their
specialized knowledge. For more information on this process, one should refer to the branch of
Bayesian statistics called expert knowledge elicitation [191].

While this work produced promising results, limitations still exist. While the analysis of this
approach included brute-force computation of the full BNN as an uncertainty reference point, this
would not be done in practice. Assessing the quality of posterior approximation is a challenge
in general for all BNNs, where inexpensive and effective diagnostics are needed to monitor the
algorithm progress especially for large models. Analyzing ELBO curves is one such approach, but
one cannot know when the ELBO is stuck in a local minimum. Furthermore, the magnitude of
ELBO value does not directly indicate how far the variational approximation is to the true posterior,
since ELBO differs from the KL divergence by an unknown constant (i.e. one should not expect
ELBO does not converge towards zero with more epochs, as one would with mean-squared-error).
This work also does not explore performing Bayesian inference on multiple layers, portions of layers,
or individual weights, which may offer further improvements. Such expansions would require the
development of efficient strategies to optimize SI across various combinations of multiple layers,
and additional benchmarking and validation to assess the tradeoffs between their computational
cost and ability to approximate the full BNN. Despite these limitations, this work demonstrates the
effectiveness of SA-based pBNN to reduce computational cost and memory footprints of Bayesian
UQ of large, million-dimensional DNNs.

6.6 Conclusion and Future Work

The work presented in this chapter proposes a novel approach to compute the Bayesian uncertainty
of million-dimensional DNNs for medical image segmentation. Starting from a deterministic DNN,
gradient-based sensitivity analysis is used to identify a layer to perform Bayesian inference, thereby
creating a partially Bayesian neural network (pBNN) that is computationally much less expensive
to construct than a full BNN. This chapter demonstrated the pBNN method on state-of-the-art
7.8-million parameter U-Net for brain tumor segmentation. This analysis indicated that the pBNN
based on SA-selected layer provided the best approximation to the uncertainty from a full BNN,
compared to other layer choices.
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This methodology enables model developers and practitioners to compute the Bayesian uncer-
tainty for large deep learning models. In a life-critical domain such as healthcare, deep learning
models can have far-reaching impact, but also can make mistakes leading to disastrous conse-
quences. Communicating uncertainty in model predictions help encourage clinicians to engage
with the AI-based DSS with a healthy dose of skepticism and failure-centric mindset. Additionally,
UQ mitigate “super-human” perceptions of AI that can lead to unjustified over-reliance. Thus,
quantifying and communicating uncertainty would allow for safer and responsible deployments of
AI-based CDSS in clinical workflows.

Future work will focus on conducting a large scale evaluation of the impact of uncertainty
communication to radiologists for the task of tumor segmentation. The work presented in this
chapter serves as a preliminary interpretation of these maps and demonstrate the possibility of such
a study. Other future work will seek to understand if these maps can be used as a tool for model
explanation, and whether these maps can be useful alongside conventional metrics. It can also be
a useful tool in reducing alarm and click fatigue, as the model can only predict when absolutely
certain, and refrain from predicting otherwise.
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CHAPTER 7

Bayesian Convolutional Neural Networks with
Intuitive Priors for Precision Health Balance

Assessment

This chapter implements a Bayesian convolutional neural networks for the purpose of automatically
assessing physical therapy balance tasks based on kinematic data collected from a single inertial
measurement unit (IMU). A novel intuitive prior selection approach, as developed in Chapter 5, is
also implemented in this chapter. Uncertainty is found to have a high correlation to error, which has
implications for future data collection and also balance progression algorithms. he work presented
in this chapter was the result of close collaboration with Jamie Ferris, Jenna Wiens, Kathleen
Sienko, and Xun Huan and a manuscript is in the process of being prepared for submission in the
Journal of Machine Learning for Modeling and Computation.

7.1 Introduction

Losses of balance and resultant falls are a chronic concern for large fraction of the general population,
but particularly for older adults and people with vestibular (inner ear) disorders [49, 50]. Such
falls can induce anxiety, fear of injury, and even loss of physical mobility. Balance training via
physical therapy can be an effective treatment for poor balance [192, 193]. Thus far however, the
most effective balance training programs require in-person supervision from a physical therapist
(PT)[51, 52]. Remote supervision from a PT is an option, though it is typically less effective than
in-person treatment; a major benefit to in-person supervision is real-time feedback, and delayed
feedback may hinder rehabilitation [53, 194, 54]. While patients may be asked to self-assess
their balance training performance, these self-assessments may be inaccurate relative to their PT’s
assessment and are particularly prone to overconfidence [195, 196]. This discrepancy can also lead
to hindered rehabilitation or even injury. Furthermore, effective treatment and progression plans are
dependent on the skill and knowledge of one’s particular PT. Different PTs might have dramatically
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different assessments of a patient’s balance and might therefor have divergent treatment plans with
different health and mobility outcomes.

The delayed feedback of remote supervision motivates a need for accurate, real-time balance
exercise assessment. Recent progress has been made on this front by utilizing deep learning
(DL) tools to map motion data collected from patients via inertial measurement units (IMU) to
corresponding balance assessments made by PTs [55, 56]. Such DL tools can provide accurate and
near-instantaneous automatic balance assessments, which can hasten in-home balance recovery.
Furthermore, such tools can leverage the assessments of multiple PTs, potentially mitigating the
biases of individual PTs.

Similar to [55] and [56], I explore using data from a single IMU on the lower back to capture
body sway data to automatically assess balance. By leveraging the unprocessed IMU data, deep
learning methods can automatically learn useful features for the task at hand, thus circumventing
the need for labor-intensive or iterative feature engineering.

However, despite the incredible promise of DL, AI and ML systems have notable shortcomings,
especially in the domain of uncertainty quantification. Traditional ML models often provide point
estimates, lacking the ability to convey the degree of uncertainty associated with their predictions.
Classical approaches such as bootstrapping data and aggregating ensemble models are more typi-
cally used for improving model robustness and getting confidence intervals on model performance
metrics across whole datasets, rather than conveying uncertainty on individual predictions [197].
This limitation can be problematic in critical applications, as it makes it challenging to understand
the model’s confidence and reliability, hindering trust and transparency.

To address the issue of uncertainty quantification and model transparency, Bayesian neural
networks (BNNs) have emerged as a promising solution. BNNs extend traditional neural networks
by treating their weights as random variables and placing probability distributions over them.

Via Bayes’ theorem, a BNN can carefully weigh the quality and quantity of data and update its
understanding, or posterior distribution, on thousands or even millions of neural network parameters
and hyperparameters. This approach allows BNNs to provide not just point predictions but also a
measure of uncertainty in their predictions, which is invaluable for health and safety domains where
data is limited and / or noisy and the consequences of incorrect decisions can be severe. A major
challenge though in implementing BNNs is in characterizing their extremely high dimensional
posteriors distributions.

The gold standard of numerical Bayesian inference is the Markov chain Monte Carlo (MCMC)
class of sampling algorithms [97]. Such algorithms are well studied and often have assymptotic
convergence guarantees for almost any posterior distribution (barring limitation from numerical
precision). However, such algorithms become intractable in the extreme dimensionality cases of
BNNs. Although nearly all Bayesian inference algorithms suffer to some degree from the curse of
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dimensionality, most MCMC algorithms fail to converge in any reasonable amount of time when
dimensionality exceeds thousands of dimensions, let alone tens of millions of parameters in state
of the art predictive models.

Variational inference is a class of algorithms that optimizes the parameters of parameterized
families of distributions to determine the instance of that family, that is the variational posterior, that
best approximates the true posterior [35]. The Kullback-Leibler (KL) divergence is generally the
metric that is selected to measure the discrepancy that is minimized between the true posterior PDF
and the variational posterior PDF. The KL divergence has roots in information theory and is also
very computationally tractable compared to other divergence metrics. Asymptotic convergence is
unfortunately lost with variational inference computational tractability is a major benefit. Works
such as [136] adopt mean-field assumptions in the variation inference formulation (MFVI), which
uses parameterized families of independent Gaussian distributions to describe each parameter and
enable faster convergence speed, at the cost of lower fidelity to the true posterior distribution.

More recently, the Stein Variational Gradient Descent algorithm [198] makes use of particles,
rather than parameterized distribution families, to approximate the true distribution without the
need for explicitly prescribed variational families. This work takes advantage of recent intersections
between active subspace projections and particle-based Stein variational inference algorithms to
conduct Bayesian inference on the parameters of the predictive models, thus yielding BNNs with
both high scalability and high fidelity to the true Bayesian posterior distribution.

The second challenge to successfully implementing BNNs is in selecting Bayesian priors for the
model weights. Selecting appropriate prior distributions is a non-trivial task, as it can significantly
impact the model’s performance and the quality of uncertainty estimates.

In this work, I introduce a novel approach for intuitive prior selection of BNN weights and
demonstrate the implementation of SVGD and pSVGD algorithms for scalable inference of BNN
weights posteriors on the real-world application of assessing balance in older adults. The study
protocol was reviewed and approved under the oversight of the institutional review board IRBMED
with protocol number HUM00086479. Informed consent was received from all individuals.

Using machine learning in physical therapy, like many other fields of medicine, requires great
care to ensure that the model can be trusted and that risk is mitigated to any potential patient.
Within the risk analysis community, risk is often understood as potential consequence weighed by
potential incidence [199]. The consequences of poorly assessed and prescribed exercises can be
quite severe. As such, mitigating risk in an ML expert system requires quantifying the uncertainty
of its predictions.
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ID Age Gender Vestibular Diagnosis?
1 73 Female Yes
2 73 Male No
3 73 Female Yes
4 69 Male No
5 66 Male No
6 23 Male Yes
7 66 Female No
8 76 Male Yes
9 73 Female No

10 65 Male No

Table 7.1: Demographic information for the ten participants. All individuals recruited experienced
balance concerns.

7.2 Methodology

7.2.1 Data

Data was collected from ten participants with balance concerns. Each participant performed 15
exercises, three repetitions each; exercises were randomly selected from 54 unique exercises. Each
repetition had a duration of 30 seconds, though kinematic data was captured for several seconds
before and after this period and was cropped in preprocessing. The 54 unique exercises were
fully described by different combinations of 4 parameters: eye status, head position, stance, and
surface type. These combinations were then one-hot encoded into an 11 dimensional vector for
each exercise.

Each repetition was video recorded from both the front and back perspectives. The side-by-
side videos were then reviewed by 2-5 PTs with specialization in treating patients with balance
disorders. PTs assessed each repetition on a scale of 1-5, with a 1 representing excellent, independent
performance with no sway and a 5 representing substantial sway, where a participant was unable
to maintain position, even with assistance. Along with the PT assessments, self-assessments were
collected from the participants themselves, based on a similar scale, though the language describing
the scale differed slightly from the language given to the PTs. Both self ratings and PT ratings were
stored as 1 dimensional vectors. Self ratings were used as a feature while PT ratings were the label
being mapped to.

During exercises, kinematic data was captured for each patient via a single inertial measurement
unit (IMU), worn on the lower back. The IMU measured body sway relative to gravity in the
pitch (anterior-posterior) and roll (mediolateral) directions, sampled at 100 Hz. The kinematic data
(angular position and angular velocity in both the pitch and roll directions), captured at 100 Hz
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(a)

(b)

Figure 7.1: Top: a static standing exercise rated between 1 and 2 by multiple PTs. Bottom: the
same static standing exercise performed by another subject, rated between 4 and 5 by multiple PTs.

for 30 seconds was thus encoded as a 3001x4 matrix for each repetition of an exercise. Figure 7.1
shows a visualization of this kinematic data and a distinct difference can be seen between the signal
of an exercise rated 1-2 and an exercise rated 4-5.

Throughout the duration of each repetition, any loss of balance that drew safety concerns was
recorded as a ’step-out’. Step-out were further encoded as one of three subcategories: 1) no
assistance required, 2) little assistance required, 3) substantial assistance required. If a step-out
occured, participants were encouraged to finish out a repetition up to the 30 second mark. The
stepout information was one-hot encoded a binary vector with two elements.

The final set of input features were the kinematic data 𝑋kinematic ∈ R3001×4, the step-out data
𝑋step-out ∈ {0, 1}2, exercise encoding 𝑋exercise ∈ {0, 1}11 and the self-rating data 𝑋self-rating ∈ [1, 5].
For simplicity, the set of all features will be denoted 𝑋 for the remainder of the paper. The PT
rating label is denoted as 𝑦 ∈ [1, 5].

The study protocol was reviewed and approved under the oversight of the institutional review
board IRBMED with protocol number HUM00086479. Informed consent was received from all
individuals.
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7.2.2 Neural Networks

A neural network (NN) is a function that maps input 𝑥 to output �̂�, that is–

�̂� = 𝑓 (𝑥) (7.1)

where the hat in �̂� denotes the NN prediction. The architecture of a given NN involves passing
and processing information through successive layers of the network. For example, a densely
connected feed-forward NN is organized into layers of different nodes, where each node performs
calculations on output values from the previous layer before passing the result onto the next layer.
Mathematically, the computation for node 𝑗 in layer ℓ is

𝑎ℓ, 𝑗 = 𝜎ℓ

(∑︁
𝑖

𝑊ℓ,𝑖 𝑗𝑎ℓ−1,𝑖 + 𝑏ℓ, 𝑗

)
(7.2)

where 𝑎ℓ, 𝑗 is the node output, 𝜎ℓ is an activation function (e.g., rectified linear units (ReLU),
sigmoid function, hyperbolic tangent (tanh), etc.), 𝑎ℓ−1,𝑖 is the 𝑖th nodal input (which is the output
from the 𝑖th node in the previous layer), 𝑊ℓ,𝑖 𝑗 is the weight placed on the 𝑖th nodal input, and 𝑏ℓ, 𝑗
is a biasing term. Definitions vary as to what qualifies a neural network to be “deep”, though
generally a DNN consists of two or more hidden layers (i.e., layers that are not the input or output
layer).

Convolutional neural networks (CNNs) build upon this concept of dense neural networks, though
rather than using matrix multiplication, cross-correlation1 is used to produce outputs from input
vectors and weight matrices. Mathematically, the computation for node 𝑗 in layer ℓ is

𝑎ℓ, 𝑗 = 𝜎ℓ

(∑︁
𝑖

𝑊ℓ,𝑖 𝑗 ∗ 𝑎ℓ−1,𝑖 + 𝑏ℓ, 𝑗

)
, (7.3)

where ∗ is the cross-correlation operation. CNNs excel at processing spatially or temporally
correlated feature spaces, such as those found in time-series data, images, and video frames. 1D
(for time-series) and 2D (for flat images) CNNs are most common, though higher order CNNs are
possible.

1technically, the operation being performed in convolutional neural networks is cross-correlation, which is very
similar though not identical to convolution. The term cross-correlation will be used in this paper to describe the
operations performed within convolutional neural networks.

101



7.2.3 Bayesian Neural Networks

BNNs treat the parameters of a NN, 𝜔, as random variables with associated probability density
functions (PDFs) representing the uncertainty or belief state on 𝜔. When training data become
available, these PDFs are updated via Bayes’ theorem:

𝑝(𝜔 |𝑥𝑇 , 𝑦𝑇 ) =
𝑝(𝜔)𝑝(𝑦𝑇 |𝑥𝑇 , 𝜔)

𝑝(𝑦𝑇 |𝑥𝑇 )
, (7.4)

where 𝑝(𝜔) is the prior PDF on the weight parameters and we also assumed 𝑝(𝑤 |𝑥𝑇 ) = 𝑝(𝑤)
(i.e., the prior uncertainty should not change from knowing only the input values of the training
data), 𝑝(𝑦𝑇 |𝑥𝑇 , 𝜔) is the likelihood function, 𝑝(𝑤 |𝑥𝑇 , 𝑦𝑇 ) is the posterior PDF, and 𝑝(𝑦𝑇 |𝑥𝑇 ) is the
Bayesian evidence. Solving the Bayesian inference problem then entails computing the posterior
𝑝(𝑤 |𝑥𝑇 , 𝑦𝑇 )—that is, our updated uncertainty on 𝑤 given the training dataset (𝑥𝑇 , 𝑦𝑇 ).

7.2.4 Likelihood

The purpose of the Bayesian likelihood function is to assess the probability of observed data as
a function of the parameters of a given model. The likelihood modifies the prior distribution in
accordance with Bayes’ theorem in order to arrive at the data-informed posterior distribution.

The exact likelihood distribution used to infer parameter distributions for a given statistical model
is often a matter of user selection. Typically for regression-type problems, a normal distribution
is selected to model the discrepancy between the model predictions and observed data. This is
analogous to mean squared error (MSE) in a frequentist setting.

In our model, we assume additive noise in the form:

𝑦𝑇 = 𝑓 (𝜔, 𝑋𝑇 ) + 𝜎𝜖

Thus, we assume a likelihood function based on the normal distribution and the error between
the model and the observed data:

N(0, 𝜎2
𝜖 ; 𝑦𝑇 − 𝑓 (𝜔, 𝑋𝑇 ))

Selection of the noise parameter, 𝜎𝜖 , should be based on observed noise in the data. Because
each exercise repetition is assessed by more than one PT, we can calculate a normal distribution
that approximates the observed discrepancy between different PT ratings made on identical video
footage of a given exercise.
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7.2.5 Prior Selection

One challenge of Bayesian inference on the highly abstract parameter space of a deep neural network
is that there is very little intuition as to what a prior distribution should look like. However, from
a model regularization and performance perspective, certain priors can still be useful even if the
distributions are not physically intuitive. Zero-mean Laplace priors, analogous to 𝐿1 regularization
in frequentist settings, is useful encouraging model parsimony. Zero-mean Gaussian priors, anal-
ogous to 𝐿2 regularization in frequentist settings, is useful for avoiding model overfitting. When
used together as a joint Laplace-Gaussian distribution, they induce an elastic net regularization.

We propose prior selection via a validation or cross validation scheme, analogous to frequentist
regularization parameter tuning. Deterministic models are affordably trained via maximum apos-
teriori estimates (MAP) based on a selection of different priors along with the likelihood function
above. The MAP estimates on model parameters are then used for producing model predictions on
a held-out validation set. Final priors are selected based on relevant model performance metrics,
such as mean squared error, on the validation set. This is different from the so-called ”inverse
crime” of choosing a prior based on knowledge of a posterior distribution.

7.3 Results

pBNN models were trained using the Nadam [138] optimizer for 400 epochs with a learning rate
of 10−3 and batch size of 128. Computations were done using 8 GeForce RTX 2080 Ti GPUs
in parallel from the University of Michigan Precision Health cluster. This was supported in part
through computational resources and services provided by Advanced Research Computing (ARC),
a division of Information and Technology Services at the University of Michigan.

Figure 7.3 shows posterior predictions (median predictions and along with confidence intervals)
based on SVGD and pSVGD inference algorithms. In this application, we found pSVGD to produce
more accurate median predictions while also producing predictions with greater uncertainty (high
variance). We expect that the improved accuracy is due to the regularizing effect of projecting
onto the likelihood informed subspace, truncating off components that are minimally influenced
by the data. We expect that the greater variance on the predictions is due to the dimensionality
reduction process, which in turn allowed for a higher ratio of number of particles to dimensions of
inferred parameters, as compared to SVGD particles with the same computational budget. Because
SVGD particles are known to underestimate posterior variance and collapse to the posterior mode,
we believe that the higher variance of the pSVGD posterior distributions is a better approximation
to the full Bayesian posterior, as the pSVGD posterior is less collapsed. As such, the greater
variance of the pSVGD particles is indicative of higher fidelity Bayesian inference rather than poor
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Figure 7.2: Illustration of example untransformed and transformed prior predictive distribution.
On the left is the approximately Gaussian prior predictive distribution, created by sampling from
the weight prior distributions and propagating the corresponding predictions through the NN with
a linear output activation. On the right is predictions made from the same prior weight sample, but
with a modified Gaussian CDF as the output activation function. The transformed prior predictive
is now an approximately uniform distribution over the domain of the possible PT ratings. A
uniform prior predictive is an intuitive distribution for this application, though transforming from
the uniform distribution to any other PDF of our choosing would be trivial.

uncertainty quantification. This is supported by the trends shown in Figure 7.4, which shows a
positive correlation between error and predictive uncertainty. Furthermore, the pSVGD approach
shows a lower expected error than the vanilla SVGD approach, indicating pSVGD algorithm is
better calibrated in this exemplar.

7.4 Conclusion and Future Work

Automatic balance assessment tools have the potential to greatly improve the safety and effectiveness
of home balance training programs. Deep neural networks are a promising tool for developing

Model Log Likelihood % ACC within 0.5 % ACC within 1.0
MEAN -4.17 [-4.34, -3.98] 13 [11, 18] 46 [42, 50]
CNN -0.90 [-0.97, -0.84] 63 [60, 65] 93 [91, 94]

BCNN -0.76 [-0.79, -0.73] 68 [66, 70] 96 [94, 96]
pBCNN -0.73 [-0.75, -0.71] 71 [69, 73] 96 [95, 96]

PT -0.71 [-0.73, -0.69] 76 [74, 79] 97 [96, 98]

Table 7.2: Baseline PT performance (PT) is compared against four other data-driven models: Mean
Label Predictor (MEAN); Cross-validated Deterministic CNN (CNN), Bayesian CNN (BCNN),
Projected Bayesian CNN (pBCNN). 95% confidence intervals are calculated from bootstrap re-
sampling the dataset 100 times. Metrics shown for the Bayesian methods are averaged across all
SVGD / pSVGD particles.
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(a) SVGD

(b) pSVGD

Figure 7.3: SVGD and pSVGD posterior predictive distributions for each exercise across all
subjects. Predictions are color coded based on their underlying PT rating. Dots indicate the median
predictions while error bars indicate the 95% credible interval based on the posterior predictive
distributions propagated via SVGD and pSVGD respectively.
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Figure 7.4: Predictive uncertainty, expressed as the standard deviation of the pSVGD posterior
predictive distribution as a function of the error between the posterior predictive mean and the true
label. Spearman 𝐶 = 0.68.

accurate expert systems for assessing balance. However, high quality data for training these models
is limited and expensive to acquire. As such, it is imperative that uncertainty be quantified in a
high fidelity manner in these models, to ensure that models are not dangerously misused.

In this work, I investigated two state of the art algorithms, SVGD and pSVGD, for quantifying
Bayesian uncertainty in DNN expert systems. These DNN architectures were able to map kinematic
information from a single IMU along with an exercise encoding and step-out information to exercise
assessment labels provided by professional PTs with accuracy the exceeded individuals own self
assessments.

The models used in this work were convolutional neural network models featuring 1D time-
series representations and 2D stabiligram representations. Both 1D time-series and 2D stabiligram
representations yield convolutional models whose sizes are tied to the fineness of their discretiza-
tion. The intuition is that both time-series and stabiligram representations have some innate, low
dimensional structure that is independent of the discretization fineness and which can be exploited
by active subspace techniques. I further found that although pSVGD yielded higher uncertainty
bounds, the expected error of the posterior predictive distribution via pSVGD was comparable or
lower than via SVGD. This suggests that in our application, pSVGD was able to better allocate
probability density such that lower uncertainty was more often given to accurate model predictions
while higher uncertainty was more often given to less accurate model predictions.
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This work also made use of a novel predictive informed prior selection methodology. This prior
selection approach leverages a hyperparameter search technique that is common in deep neural
network literature in order too determine Bayesian prior scale parameters on the neural weights
that induce the best predictive performance. However, this weight space is very abstract and
encoding prior beliefs in these weights is a non-trivial task. A final transform is applied to the
output layer in order to maintain prior predictive distributions that still capture physical intuition
and expert opinion, while maintaining the desirable predictive benefits of the priors selected via
hyperparameter search.

There are several limitations to this work. Firstly, the data was collected in a lab environment.
This allowed for physical therapist intervention and correction of any IMU misalignment. These
conditions are not representative of an at-home environment, where a physical therapy patient
would have to manage their own stepouts or even losses of balance. This could impact confidence
or lack thereof in a real world at-home setting.

Secondly, this dataset was relatively small, and thus more complex state-of-the- art deep learning
architectures were not explored. The labels were also provided by a small number of physical
therapists, who in turn showed a non-negligible amount of disagreement on individual exercise
ratings. This would indicate noisy labels, and future work would do well to investigate this aleatoric
noise. Hierarchical Bayesian formulations would be a promising route for automatically learning
this noise as well as general model misspecification. The PT disagreement on individual exercises
also calls into question whether a scalar rating system (1-5) is adequate for assessing a person’s
performance, as opposed to a ratings scale that captures balance across multiple dimensions of
ability.

Lastly, the predictive informed prior selection methodology is currently limited by the ability to
leverage a CDF transform to map the initial prior predictive to the informed prior predictive. Future
work will focus on enabling high dimensional output spaces that may be difficult to accomplish
with multidimensional CDFs. Future work will also focus on further developing conditional prior
predictive distributions, in which the prior predictive can be customized for individual data points,
based on prior belief.
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CHAPTER 8

Conclusion

8.1 Summary

In recent years, development and implementation of deep learning (DL) algorithms have become
ubiquitous in many fields of science and engineering. DL offers a promising approach for detecting
complex trends in increasingly large databases of sensor measurements, physics-based computer
simulations, and survey data, among many others. However, relatively few attempts exist to
rigorously and systematically quantify the uncertainty in DL models, especially those related
to the lack of understanding towards the model stemming from the quality and quantity of the
available training dataset. In some domains, data might be rich enough, and the risks associated
with misclassifications low enough, to not warrant the extra effort to quantify model uncertainty.
However, in many scientific domains, such as those dealing with medical data, healthcare, safety
and early warning devices, and the design of high-cost physical or computational experiments,
the cost of poor machine learning (ML) predictions and false confidence in their appearance of
‘super-human abilities’ can lead to expensive or even dangerous mistakes.

This dissertation advances the state-of-the-art in large-scale Bayesian uncertainty quantification
(UQ) in deep neural networks (DNNs)—that is, to build Bayesian neural networks (BNNs)—and
draws new insights on model uncertainty in several unique science and engineering applications.
Such insights on model uncertainty could help avoid some of the consequences of model overcon-
fidence and by providing important metrics for decision making and new data collection.

Chapter 2 of this dissertation describes the current state-of-the-art of scalable Bayesian uncer-
tainty quantification algorithms, including variational inference, Stein variational gradient descent
(SVGD) and the projected SVGD (pSVGD). Chapter 3 and Chapter 4 demonstrate the implementa-
tion of these state-of-the-art algorithms to conduct Bayesian inference on various architectures of
DNNs built from high-fidelity physics simulations. Chapter 5 presents a novel heuristic for reducing
the Bayesian parameter space to create a ‘partially Bayesian’ model with minimal compromise on
the fidelity of quantified uncertainty; as well as a novel approach for selecting intuitive, domain-

108



informed priors in the high dimensional model parameter space of DNNs.Chapter 6 demonstrates
the implementation of this ‘partially Bayesian neural network’ (pBNN) in an automatic brain tumor
segmentation application and draws insights on this uncertainty that may be of interest to radiol-
ogists, surgeons, and other clinicians. Chapter 7 combines the novel prior selection process with
SVGD and pSVGD in the application of a precision health automatic balance assessment tool.

8.2 Contributions

8.2.1 Methodology

The first major contribution of this dissertation is to help facilitate widespread adoption of rigorous
model UQ in DL models used for high-stakes science and engineering applications. This can and
should be done in addition to other standard practices such as model selection, model validation,
and model calibration that help ensure trustable and generalizable models. I achieved this through
two methodological contributions, both described fully in Chapter 5.

The first methodological contribution is a heuristic for subselecting layers of weights in a DNN
targeted for Bayesian inference, in a process called “partially Bayesian neural networks”. Rather
than performing the expensive task of conducting Bayesian inference on the entire parameter
space of a DNN, one need only select a subset of high impact layers upon which to perform
Bayesian inference that is most “uncertainty perserving”, while using less costly approaches such
as maximum likelihood estimation or maximum a priori estimation for the remaining layers. This
work identified a strong inverse correlation between the sensitivity of a layer, measured through
an index based on the locals gradients of layer parameters, and the divergence between the pBNN
associated with that layer and the much more expensive fully Bayesian DNN.

The general approach of dimensionality reduction is not necessarily unique. One of the first
Bayesian neural network techniques only performed inference on the final layer[118] in order
to remain computationally feasible. Techniques such as [200] and [82] take a dimensionality
reduction approach to Bayesian inference (with MCMC and SVGD respectively) via projections.
My approach more heuristic-driven and less invasive, but is similar in that the dimensionality of
the problem is greatly reduced compared to a hypothetical full BNN problem.

The second methodological contribution entailed developing a process for selecting Bayesian
priors on abstract, high-dimensional DNN weights while preserving model predictive probabil-
ity density functions that encode tangible, domain knowledge. This process also considers that
Bayesian priors serve to not only encode domain knowledge but also serve important functions
in model regularization. This process utilizes standard validation and hyperparameter selection
procedures to test different weight priors and then identifies a final transform layer that ensures
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that these weight priors correspond to a desired predictive prior. This process helps bridge the gap
between two major Bayesian interpretations of priors– one that sees priors as tools for improving
model performance and one that sees priors as a way to encode knowledge or individual opinion of
a system.

The search for better ways of selecting BNN priors is still very much an area of active research.
More recent approaches include hyperpriors [201], wherein the authors use a hierarchical Bayesian
prior formulation to learn prior variances from data. Another promising approach is to learn
functional priors [202], where priors are tuned in order to encode Gaussian process functionals.

Importantly, both the pBNN and the intuitive prior selection approach outlined in Chapter 5
are general purpose and model agnostic, and can be applied to a wide range of neural network
architecture.

8.2.2 BNN for Complex Physics-Based Simulations

The next major contribution of this dissertation is in implementing BNNs via SVGD and pSVGD in
two applications to efficiently map between quantities of interest identified in high-fidelity physics
simulations. The first, described in Chapter 3, develops a novel process for mapping rotorcraft
acoustic signatures and quantities of interest relating to the flight performance of the rotorcraft.
Importantly, this flight performance can deteriorate substantially in the presence of ice accretion.
However, as ice builds up on the leading edge of a rotor, the rotor acoustic signature is also mod-
ified substantially. Advances in high fidelity computational aeroacoustics and computational fluid
dyanamics (CFD) allow accurate simulation of these icing scenarios. BNNs are then implemented
to then map between observed acoustic signals, which can be observed directly with microphone-
type sensors, and flight performance quantities such as coefficients of drag, lift, and moment, and are
not directly observable. Furthermore, BNN can predict these mappings along with valuable model
uncertainty information at a rate compatible with real-time monitoring. This process bypasses the
expensive and intractable process of running CFD analysis iteratively on different icing geometries
in hopes of identifying the geometry responsible for an observed acoustic signature. The second
application, described in Chapter 4, develops a process for using BNN to map a polycrystaline
material and a given force function to the material stress response. This process allows for near
instantaneous predictions of how a complex polycrystaline material would react to a given force.
This has implications for a range of science and engineering applications, where expensive physics
simulations, primarily finite element analysis (FEA), are used to aid in design and validation. The
BNN mapping is substantially faster than FEA and also allows for the consideration of minute
changes in the material microstructure.

In many ways, Chapter 4 builds directly on the advancements made in Chapter 3. Both
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projects utilized time-series data from high fidelity physics experiments and Bayesian inference
was conducted using SVGD and pSVGD algorithms. However, data used in the icing CFD and CAA
dataset were simplified and binned into discrete frequency bins. BNNs were then implemented
exclusively via fully-connected, dense layers. While dense layers achieved good performance on
this small dataset, a larger dataset would likely require a more sophisticated architecture. On the
other hand, Chapter 4 investigated a much larger and complex dataset of poly-crystalline stress
response. Rather than binning into discrete frequencies, the time-series data was processed directly
using GRU layers. Automatic feature detection was further conducted using graph convolutional
layers. These architectures are much more inline with the current state-of-the-art for analyzing
complex time-series data. The size and complexity of this data presented unique challenges that
were not encountered in the helicopter icing dataset, particularly with respect to identifying an
appropriate active subspace for pSVGD.

8.2.3 BNN for Real-World Healthcare Data

Chapter 6 and Chapter 7 diverge from physics simulations and focus on data collected from the
real-world healthcare domain with human expert labels. Data is limited and expensive to acquire,
labels are noisy and conditional on the subjective labeling of different domain experts. Above all,
UQ is an essential component of these expert systems due to the risk of injury or misdiagnosis. Each
of these chapters demonstrated a different novel methodological contribution toward making BNNs
more practical for use in large neural network models. Chapter 6 demonstrates the novel pBNN to
sub-select parameters for Bayesian inference while minimizing divergence from a more expensive,
fully Bayesian neural network. The pBNNs were used to gain useful uncertainty information on
the state-of-the-art U-Net tumor segmentation model. Additional insights were gained on how
physicians and radiologists might use this predictive uncertainty in a clinical setting. Chapter 7
demonstrated a novel approach for transforming expert-informed priors on a BNN output and
encoding this information in the parameter space of a BNN. The BNN was then effectively used
to map directly from kinematic data from a single IMU to ratings provided by professional PTs.
Insight was given on how uncertainty could be used to guide future data collection.

Both applications will require additional research to make use of the predictive uncertainty in
the larger healthcare decision processes, which is elaborated upon in Section 8.3.
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8.3 Limitations and Future Work

8.3.1 Methological Limitations

While this dissertation significantly advances the state-of-the-art in Bayesian uncertainty quan-
tification for deep neural networks (DNNs), it is essential to acknowledge certain limitations that
warrant further consideration and investigation.

Firstly, the claim that Bayesian neural networks (BNNs) are now completely solved would be
overly optimistic. Though the dissertation successfully compares small test problems to reference
solutions, there remains a need for more in-depth discussions and diagnostics, especially in larger
settings. Improved diagnostics are crucial for a better understanding of how accurately uncertainty
is being calculated in comparison to the “true uncertainty”. Identifying the thresholds for under/over
predicting uncertainty is an essential avenue for future research, particularly in complex scenarios.

Moreover, the dissertation touches upon the issue of numerical stability for large systems.
This was particularly evident in the context of active subspace eigenvectors in the GCNN case.
This limitation emphasizes the need for further exploration and development of methodologies
that ensure numerical stability in the face of larger and more intricate systems. [203] introduces
the randomized numerical linear algebra class of algorithms that offer fast, stable, and scalable
methods that would be useful for generating a high quality Hessian decomposition for the purpose
to determining the active subspace. [204] also alludes to randomized methods as being promising
approaches for the Hessian decomposition.

Another limitation pertains to the exclusive focus on uncertainty in the parameters of the DL
model. The dissertation could benefit from extended discussions on model-form uncertainty,
considering the expressiveness of the chosen architecture and potential implications. Additionally,
examining scenarios where incorrect likelihood models are assumed could provide valuable insights
into the broader landscape of uncertainty. [205] provides an excellent introduction to this field of
Bayesian model comparison and appropriately weighing different likelihood models.

Computational resource management poses a practical challenge that demands attention. The
trade-off between the number of particles used in SVGD and the number of training epochs requires
careful consideration. Striking a balance to avoid allocating excessive resources to one aspect over
the other, and developing mechanisms for automatic resource management, stands out as a pertinent
limitation that invites further research.

In summary, the achievements of this dissertation, while notable, prompt the recognition of
several limitations that highlight the complexity and nuances inherent in the field of Bayesian
uncertainty quantification for DNNs. Addressing these limitations will not only refine the existing
methodologies but also pave the way for more robust and applicable solutions in the dynamic
landscape of SciML.
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8.3.2 Active Learning for Model Improvement

In many scientific domains, there are opportunities to collect new data and to adapt data collection
strategies in response to insights gains from previous data collection. However, in selecting new
data to collect, not all data are equally useful. In the context of predictive modeling, not all training
data has the same impact on improving model performance. Active learning is an area of research
that develops strategies for iteratively selecting new data to collect or label, typically with the goal
of maximally improving model performance for a given number of data samples. [206] gives
an extensive survey of different types of active learning, as well as related topics such as semi-
supervised learning and reinforcement learning. Invariably, these active learning meta-strategies
must balance the opposing strategies of exploration and exploitation. That is to say, they must
balance exploring data domains where data is sparse and performance is unknown, and exploiting
data domains where model performance is known to be poor.

Future work to leverage model uncertainty as a metric in quantifying the exploration-exploitation
trade-off is an interesting avenue, approaches such as expected improvement specifically encode
uncertainty in weighing the best candidates for new data collection [207, 208]. For example, an
active learning strategy might exploit selecting data points similar to existing training data that
has high uncertainty An active learning strategy might also explore hypothetical feature sets and
determine which correspond to the greatest uncertainty, and therefore which feature sets are most
worthy of collecting actual data from. This is not a trivial task, as feature sets, particularly high
dimensional image or time-series based features, might not be directly tuneable when selecting
new data collection parameters. Instead, a user would need to select from these data collection
parameters, likely low dimensional, and map to their most likely feature sets. This approach would
likely be quite computationally expensive, but would be worthwhile in situations where new data is
extremely costly to collect and/or opportunities to collect new data are very limited; any insight on
how to collect the most useful data would be worthwhile. In this regard, there will likely be insights
to be gained from the literature of optimal experimental design, a field which shares a similar goal
of maximizing the impact or informativeness of a limited amount of new data.

8.3.3 Decision Boundaries with Uncertainty

In several of the applications that were investigated in this dissertation, DL predictions are just
one part of a larger decision making process. For example, when assessing the flight performance
coefficients of an iced helicopter rotor, there is an implied decision that must be made by the pilot
as to whether the flight performance is too poor or the uncertainty too high to justify flying. Should
the pilot seek an immediate emergency landing or just proceed with caution? At what threshold
does ‘somewhat-uncertain’ become ‘too uncertain’? Similarly, when segmenting an MRI scan for
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the presence of tumors, a natural decision follows of whether to perform an invasive surgery or
not; if surgery, then where along the fuzzy gradient of ‘definitely tumor’ to ‘possibly tumor’ to
‘definitely not tumor’ would a surgeon want to make an incision. When using IMU data to assess
a physical therapy patient’s ability to perform on a given exercise, the natural question raised is
whether they are doing the right exercise and which exercise should they do next? If a model is
highly uncertain about the patient’s current balance performance, how should the progression plan
proceed?

In each of these applications, there is a weighing that needs to be made regarding how to
incorporate model uncertainty into the corresponding decision. Most likely, the end user (whether
pilot or brain surgeon or physical therapy patient) would not be able to make use of a raw probability
density function, as informative as it is. Instead, this probability will likely need to be mapped to
a set of tangible decision boundaries and discrete actions. [209] makes important contributions
toward understanding neural network classification boundaries and investigates some Bayesian
approaches for this problem. This process can draw heavily from the literature of risk analysis.
Recently, [210] investigates approaches for bridging Bayesian probabilistic models with decision
risk.
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[133] Gábor J Székely, Maria L Rizzo, and Nail K Bakirov. Measuring and testing dependence by
correlation of distances. The Annals of Statistics, 35(6):2769, 2007.
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