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Abstract 
 

The prevalence of global obesity has rapidly risen over the past several decades. 

Management of obesity and its co-morbidities place an immense burden on patients 

and healthcare systems. Clinical studies show an association between mid-life obesity 

and late-life cognitive impairment and dementia, and childhood obesity is associated 

with cognitive deficits as well. A better understanding of mechanisms mediating 

cognitive dysfunction in obesity across the lifespan will be critical for developing 

appropriate therapeutic interventions.  

Rodent models of high-diet diet (HFD)-induced obesity demonstrate HFD 

induced inflammation in the hippocampus, a brain region involved in declarative 

memory. The immune response contributes to complications of obesity and may play a 

role in obesity-associated hippocampal-dependent cognitive impairment. Hippocampal 

microglia, the resident innate immune cells of the central nervous system, are activated 

in obese mice, and are proposed to contribute to cognitive deficits by excessive pruning 

of neuronal dendritic spines. Mechanisms responsible for this microglial activation are 

unclear. The goal of this dissertation was to determine the temporal progression and 

distinct activation phenotype of hippocampal microglia and to identify potential 

mechanisms mediating activation, focusing on young, adolescent mice. 

To address this goal, we proposed four aims. For Aim 1, we fed adolescent mice 

control or HFD longitudinally for 2 wk, 1 mo, or 3 mo and used three-dimensional 
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morphology measures to quantify microglial morphology as an indicator of activation 

state. HFD feeding induced obesity and metabolic dysfunction, which both increased in 

severity over time. Unexpectedly, in the hippocampal CA1 region, HFD did not alter 

microglia morphology metrics at any duration of diet, suggesting that effects on 

activation state may be subtle. Given potentially subtle effects, and because microglia 

manifest a heterogenous population of cells, we moved beyond morphology measures 

for Aim 2 and performed single-cell RNA-sequencing to investigate the activation 

phenotype of hippocampal microglia after 1 mo and 3 mo of control or HFD. Our work, 

to our knowledge, is the first scRNA-seq study of microglia in obesity, and 

transcriptomics revealed that HFD feeding alters intercellular immune signaling among 

microglia and dysregulates endoplasmic reticulum homeostasis.  

To investigate the effect of age, in Aim 3 we determined the impact of HFD on 

cognitive function and hippocampal inflammation in young and middle-aged mice. We 

found that obese mice are cognitively impaired using the fear conditioning task, which 

measures associative learning, and that older age exacerbates performance deficits in 

this task. Our final set of ongoing experiments in Aim 4 seek to determine the role of 

endoplasmic reticulum stress in microglial activation in obesity. 

In summary, our data demonstrate that diet-induced obesity in young mice alters 

the hippocampal microglial transcriptome but does not change microglial morphology in 

the CA1 region. We identified endoplasmic reticulum dysregulation as a potential 

mechanism mediating the microglia response. Future work is required to determine 

whether a potential ER stress response plays a protective or injurious role in microglial 

activation and subsequent cognitive impairment. Further, we found that older obese 
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mice display more severe cognitive deficits, suggesting that young age may protect 

against pathology. This dissertation builds a foundation to better understand critical 

periods across the lifespan for tackling cognitive deficits in obesity. 
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Chapter 1 Introduction 

1.1 Obesity and its complications throughout the lifespan 

The prevalence of obesity in the United States (US) and globally has grown over 

the past several decades, reaching pandemic levels 1. According to the World Health 

Organization, obesity prevalence in 2016 was three times that of 1975 2. This uptrend in 

obesity continues and affects both adults and children. The predicted trajectory of 

obesity rates in the US suggests that 48.9% of adults will be obese by the year 2030 3. 

A 2017-18 survey found that 19.3% of US children were obese 4. Globally, the World 

Obesity Atlas predicts that one billion people and 13% of children and adolescents will 

be obese by 2030 5. Overweight and obesity occur on a spectrum with overweight 

defined as a BMI over 25, obesity a BMI over 30, and morbid obesity a BMI over 35 

(www.cdc.gov). A complex interplay of genetic predisposition and environmental factors 

contribute to the development of obesity 1,6. Which factors are driving the global obesity 

pandemic are debated, but include the advent of the western diet, high in sugar and fat, 

and modernization, which is associated with a sedentary lifestyle 1,7. While addressing 

the root cause of obesity would help to reverse and prevent the growing global burden, 

worldwide campaigns targeting obesity have largely failed 1,8. Therefore, the 

complications of obesity must be understood and mitigated as the world faces the 

predicted trajectory of overweight and obesity. 

Obesity increases the risk for multiple systemic complications at the individual 

level, that place a significant burden on both healthcare systems and national 
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economies. Obesity is associated with chronic, low-grade systemic inflammation as well 

as metabolic dysfunction, both of which negatively impact multiple organ systems. The 

metabolic dysfunction associated with obesity can progress to prediabetes and type 2 

diabetes, which confers additional risk for complications, some of which is independent 

of the obesity-associated risk. Systemic complications of obesity include increased risk 

for cardiovascular disease, renal disease, cancer, and stroke 9,10. Further, quality of life 

in adults and children is diminished 11,12, and obesity negatively impacts mental health 

13,14. Complications of the central nervous system beyond stroke and psychiatric 

pathology, include an increased risk for cognitive impairment and dementia 15–17. In 

particular, obesity in middle-age is associated with dementia later in life 17–20, and 

central abdominal obesity is especially predictive of this risk 15 (Figure 1.115,17–23).  

Obesity also negatively impacts cognition in children 24. Given the high rates of 

childhood obesity and potential complications, it is crucial to understand how being 

overweight or obese can impact the developing brain and its subsequent function 

throughout the lifespan. One study found that abdominal fat is associated with poorer 

hippocampal dependent memory in overweight and obese children 22, and increased 

adiposity is also associated with deficits in cognitive control and academic achievement 

21. Obesity is also associated with structural brain changes in adolescents 25. A 

systematic review reports clear relationships between childhood obesity and deficits in 

executive function and attention, and contradictory results on the association with 

memory and learning impairment 24. More research is needed to fully understand the  
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Figure 1.1 Summary of effects of obesity on cognitive function across the lifespan. 

Review of associations reported in clinical studies between obesity, BMI, or adiposity and cognitive 
function in childhood (left), and dementia in mid-life (center) and late-life (right) individuals. Overall, 
studies of obesity in children demonstrate deficits in multiple cognitive domains. A focus on dementia and 
Alzheimer’s disease risk later in life reveals an association between mid-life obesity and dementia late in 
life. Obesity in late life his associated with decreased risk for dementia and Alzheimer’s disease. 
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effects of being overweight or obese on childhood and adolescent brain development 

and function. What is clear is that negative effects on the brain are not limited to 

adulthood dementia risk. Therefore, studies, such as the work presented in this doctoral 

thesis, must investigate the impact of obesity in the context of the young brain to begin 

to develop strategies to prevent or reverse consequent pathology and adverse health 

outcomes.  

1.2 The economics of obesity 

Given the numerous complications across organ systems, and on mental health 

and cognitive performance, it is unsurprising that a large economic burden accompanies 

the obesity pandemic. According to a 2018 report by the Milken Institute, 1.72 trillion US 

dollars was spent in the US on chronic diseases resulting from overweight and obesity 

in 2016 10. This price tag made up 47.1% of the cost of chronic diseases 10. Over 100 

billion of this 1.72 trillion US dollars was spent on Alzheimer’s disease and vascular 

dementia. The prevalence of childhood obesity will contribute to a generation of adults 

with potential life-long chronic sequelae, further growing this healthcare and economic 

burden. Currently treatment of dementia is limited to pharmacologic and lifestyle 

interventions for management of symptoms, and no therapy effectively addresses the 

underlying pathology. Even less is available for managing central nervous system 

(CNS) consequences of childhood obesity, as the deficits themselves are not well 

understood or recognized. For this reason, it is critical to understand the pathological 

drivers of obesity-induced cognitive deficits throughout the lifespan, so that targeted 

therapies and lifestyle interventions can be developed. 
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1.3 Inflammation and its role in obesity related pathology: systemic and CNS 

The immune system response may serve as one critical driver of CNS 

complications associated with obesity, as inflammation is a known consequence of and 

contributor to obesity associated pathology. Obesity induces inflammation throughout 

the body in both humans and animal models, characterized by increased pro-

inflammatory cytokines as well as tissue recruitment and activation of immune cells 26–

30. While innate immune cells, including macrophages, are well-studied actors in this 

inflammatory response, cells of the adaptive immune system, such as T cells and B 

cells, have also been implicated in the response 26,27,29. Adipose tissue inflammation 

and its role in contributing to metabolic dysfunction in obesity is well established 26,29. In 

obesity, macrophages are recruited to adipose tissue where they make up the largest 

proportion of stromal immune cells 26. The macrophage activation state in adipose 

tissue shifts to a pro-inflammatory phenotype in obesity 26,27.  

Numerous mouse studies, including those using transgenic knock-outs of 

inflammatory genes, have demonstrated that inflammation, particularly driven by 

macrophages, contributes to the development of insulin resistance and metabolic 

dysfunction in obesity 27,29,31–33. Although human obesity findings on adipose tissue 

macrophages do not align exactly with murine findings 34, evidence consistently 

demonstrates adipose tissue inflammation. Macrophages are activated in human 

adipose tissue 35, and BMI positively correlates with adipose expression of the pro-

inflammatory cytokine tumor necrosis factor alpha (TNF-a) 36. Further, obesity results in 

systemic inflammation in humans, including increased circulating cytokines 28  and 

complement protein C3, which correlates with insulin resistance 37.  
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Inflammation is not limited to adipose tissue and occurs in multiple organ 

systems, including skeletal muscle, liver, and the CNS 29. In the brain of rodent models 

of diet-induced obesity, inflammatory sequalae depend on region and temporal 

progression of high-fat diet (HFD) feeding or obesity. Although the mechanisms 

responsible for brain inflammation are not well characterized, evidence suggests both a 

local inflammatory response from resident glial cells 38,39, as well as infiltration of 

immune cells from the systemic circulation 40. An acute inflammatory response to HFD 

feeding has been identified in the hypothalamus, hippocampus 41, and amygdala 42. In 

the hypothalamus 39, where the blood-brain barrier has increased permeability, HFD 

elevates expression of pro-inflammatory genes such as TNF-a within 1 day of feeding 

43, and treatment with enteric gavage of saturated fatty acids results in microglial 

activation within a few days 39. In the hippocampus, a brain region involved in learning 

and declarative memory, inflammation also occurs acutely. In the hippocampus of rats 

fed HFD for only three days, expression of the inflammasome protein nod-like receptor 

pyrin domain containing 3 (NLRP3) is elevated 44. Another study showed elevated 

protein levels of pro-inflammatory cytokines TNF-a and interleukin 1 beta (IL-1b) in the 

hippocampus of mice fed a HFD for three, seven, and ten days 41.  

Studies have also addressed the effects of chronic HFD feeding in the CNS. This 

paradigm results in the development of obesity and also induces hippocampal 

inflammation, characterized by elevated pro-inflammatory cytokines and morphological 

activation of microglia, the macrophage-like resident innate immune cells of the CNS. 

Examining a longer-term HFD feeding from P21 to P60 in adolescent mice, Vinuesa et 

al. similarly identified elevation of TNF-a  and IL-1b mRNA in the hippocampus of HFD-
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fed mice. Further, they found that the HFD-fed mice displayed altered ionized calcium 

binding adaptor molecule 1 (Iba1)+ microglial morphology with larger cell soma area 45. 

In a longer-term feeding paradigm of three months of HFD, Hao et al. detected elevated 

hippocampal IL-1b protein, but not after one or two months HFD 46. Additionally, they 

found that three months HFD induces an activated hippocampal microglial morphology, 

which can be reversed by dietary switch to a low-fat diet 46. As the resident innate 

immune cells of the CNS, microglia play a role in mediating neuroinflammation in 

response to HFD and obesity, and this role will be examined in detail in subsequent 

sections 1.6 and 1.7. 

 

1.4  Microglia in the healthy developing and adult brain 

As immune cells, microglia are responsible for responding to pathogens and 

tissue injury, but it is now understood that they play numerous roles beyond the immune 

response 47,48. Microglia are hematopoietic derived cells that originate in the yolk sac in 

embryogenesis and migrate to the CNS in mice 49,50. Glial cells, which include microglia, 

oligodendrocytes, and astrocytes, are considered the supporting cells of the brain. 

Microglia utilize their extensive branching processes to surveil their environment, they 

respond to secreted cytokines and neurotransmitters via cell surface receptors 51–53, and 

they also take part in contact-dependent communication with neurons 54. Functionally, 

microglia are involved in development and maintenance of brain homeostasis during 

organismal development and adulthood. In the developing brain, microglia serve a 

variety of regulatory functions that contribute to neuronal development. Microglia can 
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induce neuronal death and clear apoptotic neurons during developmental programmed 

cell death, and promote neuronal survival, proliferation, and differentiation 55,56.  

Microglia not only regulate the neuronal cell population, but also contribute to 

synaptic wiring during development 55,56. They prune developing synapses in an activity-

dependent manner, including in the hippocampus 47,57. Interestingly, the microglial 

contribution to neuronal function is not limited to development but continues into 

adulthood. In adulthood, microglia also modulate synaptic plasticity 58–60. In the adult 

neurogenic niche of the hippocampal dentate gyrus subgranular zone, microglia are 

responsible for phagocytosing apoptotic cells derived from neural precursors 61. Given 

the proposed function of synaptic plasticity in learning and memory 62–64, and the role of 

adult neurogenesis in cognitive function 65, microglia are poised to contribute to 

cognitive health throughout the lifespan. Indeed, partial pharmacological microglial 

depletion in young and aged rats reduces hippocampal synaptic transmission and 

impairs hippocampal-dependent cognitive function in both age groups 66. Because 

microglia play an essential role in neuronal and synaptic development and maintenance 

of homeostasis in adulthood, it is not surprising that they are implicated in responding to 

and driving neuropathology in CNS disease states. 

 

1.5 Microglia in Alzheimer’s disease 

Microglia are implicated in disease pathology of neurodegenerative diseases, 

including Alzheimer’s disease (AD) 67, amyotrophic lateral sclerosis (ALS) 68, and 

Parkinson’s disease 69. Extensive investigation of the role of microglia in 

neurodegenerative disease pathology has revealed complex and context-dependent 
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functions in both mitigating and driving pathology 67,70. For decades, studies of 

mechanisms mediating AD focused on neurons and neurotoxicity driven by amyloid 

beta and tau protein aggregate pathology. However, recent focus has shifted to the 

contribution of microglia, in part due to the discovery of human AD risk allele variants in 

genes expressed by microglia, including within the gene encoding triggering receptor 

expressed on myeloid cells 2 (TREM2) 67,70–72. Research on microglial function in 

mouse models of AD demonstrates that microglia can be both protective and 

detrimental over the course of disease progression 73,74. Both in vitro and in vivo studies 

have begun to elucidate the function of microglial TREM2 sensing in AD, and the 

consequence of the TREM2 R47H allele variant. TREM2 directly binds amyloid beta 

oligomers, and TREM2 signaling mediates microglial degradation of amyloid beta in 

vitro 75. TREM2 R47H is thought to be a loss-of-function variant 76, and microglia from 

AD patients with this allele variant display greater inflammatory phenotypes than 

microglia from wild type TREM2 samples  77. Studies utilizing genetic manipulation of 

the TREM2 gene in mouse models of AD generally demonstrate a protective function 

for microglial TREM2, although some studies contradict this role 67,70,74. As highlighted 

in a recent review by Leng and Edison (2020), TREM2 deficiency in two separate 

mouse models of AD yield conflicting outcomes 74,78,79. In the 5XFAD AD mouse model, 

TREM2 deficiency results in increased amyloid beta burden and reduced microglia 

association with plaques 78, along with increased damage to neurons 80. In contrast, 

TREM2 deficiency in the APP/PS1 AD mouse model yields decreased hippocampal 

amyloid beta load 79.  
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Ambiguity regarding whether microglia drive pathology or protect against disease 

progression is not limited to studies of TREM2. In addition to their established protective 

role of surrounding and containing amyloid plaques, and clearing amyloid beta 67, 

microglia can contribute to AD pathology by secreting proinflammatory and neurotoxic 

mediators such as cytokines and reactive oxygen species 74. Further, they engage in 

aberrant and excessive complement-mediated synaptic pruning, which is suggested to 

reflect a re-activation of a developmental program 81. Contradictory findings on the role 

of microglia in AD are likely affected by context-dependent factors such as differences 

in mouse models (e.g., amyloid or tau pathology) or stage of disease, leaving many 

questions unanswered 70,73,74. Further complicating translation of findings in mouse 

models to the treatment of human AD are differences in human and mouse microglial 

genes 74. While the understanding of microglial function in AD remains an active area of 

ongoing research, the existing data could yield insights into mechanisms of microglia 

mediated cognitive dysfunction in other disease states, such as in obesity.  

 

1.6 Microglia in obesity: hypothalamus, amygdala, and cortex 

As discussed earlier, acute HFD or chronic obesity induce inflammation in 

multiple brain regions including the hypothalamus, amygdala, cortex, and hippocampus, 

and this inflammatory response is characterized by microglial activation (overview in 

Figure 1.2, A-C). The role of microglia in hypothalamic neuronal injury and subsequent 

systemic metabolic dysfunction in response to HFD is well established 82,83. The 

hypothalamus is a region of the brain responsible for maintaining systemic homeostasis, 

including metabolic homeostasis, and distinct regions of the hypothalamus have 
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enhanced blood-brain barrier permeability and are exposed to components of the 

systemic circulation 84. In a series of fundamental studies, Valdearcos et al. 

demonstrated that microglia play a pivotal role in the hypothalamic response to 

saturated fatty acids (SFAs). First, they showed that SFA-enriched HFD causes SFA 

accumulation in the mediobasal hypothalamus, alongside microglial pro-inflammatory 

activation, characterized by increased cell counts and cell size, elevated TNF-a co-

localization, and increased pro-inflammatory mediator expression 39. Further, using 

enteric short-term administration of SFAs, they found that SFAs alone induce this 

microglial activation along with neuronal stress, measured by expression of heat-shock 

protein 72 39. Next, they demonstrated that depletion of microglia via diphtheria toxin 

treatment reduces inflammation and neuronal stress in response to SFAs, suggesting a 

harmful role for microglia in response to saturated fatty acids 39. Further, when microglia 

were pharmacologically depleted using a colony-stimulating factor 1 receptor (CSF1R) 

antagonist, not only were neuronal responses to leptin, a hormone that mediates 

satiety, restored, but HFD-fed mice also had decreased consumption of chow. In a later 

study, these same investigators utilized a microglial-specific knock-out of the master 

pro-inflammatory transcription factor nuclear factor-kappa B (NF-κB) to demonstrate 

that NF-κB mediated microglial signaling contributes to microgliosis, hyperphagia, and 

obesity in a model of HFD-induced obesity 85. Similar research by another group using 

an antimitotic agent to prevent microglial proliferation also demonstrated reduced HFD 

chow consumption, weight gain, and adiposity, alongside decreases in microglial TNF-a 

expression in the arcuate nucleus of the hypothalamus 86.  
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Figure 1.2  Effects of HFD and obesity on microglia in the brain.  

Overview of literature for HFD-induced microglial activation in (A) the hypothalamus, (B) the amygdala, 
and (C) the cortex. In the hypothalamus, saturated fatty acids (SFA) and high-fat diet (HFD) induce an 
inflammatory microglial activation state, contributing to feeding behaviors and obesity. (B) In the 
amygdala, 3 days of HFD induces cognitive deficits in aged mice and exacerbates the effect of aging on 
microglia. (C) In the cortex, data is lacking, but changes in microglial morphology have been identified. 
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Microglial mitochondrial function plays a potential role in mediating these 

responses to HFD. The mitochondrial uncoupling protein 2 (UCP2) mRNA is transiently 

upregulated in microglia after three days of HFD, and microglia-specific UCP2 knockout 

not only restores mitochondrial morphology and reduces microglial activation in the 

arcuate nucleus, but also inhibits obesity in HFD-fed mice 87. Intriguingly, microglia 

themselves express the leptin receptor, and microglial-specific leptin receptor deficiency 

in mice fed a standard control chow induces microglial morphological activation in the 

paraventricular nucleus, increases food consumption and weight gain, and alters 

hypothalamic neuronal circuitry 88. Collectively, these studies suggest that hypothalamic 

microglia play a pivotal role in sensing nutrient status, and they negatively impact 

neuronal function and contribute to obesity in the setting of HFD. 

In the amygdala, a brain region that regulates fear and emotional responses, the 

microglial response to HFD and obesity is less well characterized. Multiple studies led 

by the Barrientos laboratory have investigated the differential effects of HFD on 

hippocampal versus amygdalar cognitive deficits, inflammation, and microglial activation 

in both young and aged rats. They find that three days of HFD impairs amygdala-

dependent long-term auditory cued fear memory in aged rats relative to control fed 

animals, and elevates levels of the pro-inflammatory cytokine IL-1b 42. Long-term cued 

fear memory deficits were not observed in young HFD mice. Gene expression of major 

histocompatibility complex class II (MHCII), Iba1, and cluster of differentiation molecule 

11b (Cd11b), which are associated with microglial activation, increased with age but not 

HFD in the amygdala. However, when microglia were isolated from the amygdala of 

young and aged rats, expression of MHCII and C-X3-C motif chemokine receptor 1 
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(CX3CR1) were elevated in microglia in both young and aged HFD animals relative to 

controls 89. In a follow-up study, this same group demonstrated that three days of HFD 

in aged rats exacerbates aging-associated microglial priming, characterized by 

decreased morphological ramification, in the amygdala, and decreases microglial 

phagocytosis ex vivo 90. While these three-day studies demonstrate that the amygdala 

is not shielded from the effects of SFA-enriched HFD, they do not investigate microglial 

activation over time, or with chronic obesity, and the contribution of microglial activation 

to amygdalar function remains unclear.  

Short-term HFD and obesity induce deficits in multiple cognitive domains, driven 

by pathology in brain regions beyond the amygdala. Rats fed HFD for eight weeks 

demonstrate deficits in cognitive function dependent on the prefrontal and perirhinal 

cortices 91. In addition to cognitive impairment, these rats have decreased dendritic 

spine density and decreased synaptic proteins in the aforementioned cortical regions, 

suggesting synaptic dysfunction. Further, obesity reduced prefrontal cortical volumes 

and increased microglial process length. The effect of obesity on the hippocampal 

microglial response and subsequent effects on hippocampal-dependent cognitive 

function will be examined in the following section.  

 

1.7 Hippocampal microglia in obesity: what is known? 

As mentioned in the opening section, obesity is associated with an increased risk 

for developing dementia in humans 15,18. The hippocampus, a limbic structure involved 

in learning and memory, is particularly affected in dementias, such as AD, the most 

common type of dementia. Given the role of the hippocampus in AD pathology 92, 
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researchers have asked how obesity impacts hippocampal function. Indeed, murine 

models of HFD-induced obesity demonstrate cognitive deficits in hippocampal-

dependent function. Hippocampal microglial pro-inflammatory activation is present in 

these cognitively impaired models of obesity, suggesting a potential role for microglia in 

disease pathology. Findings on the effects of HFD and obesity on hippocampal-

dependent cognition and microglial activation in multiple hippocampal subregions, 

including the dentate gyrus and cornu ammonis 1 (CA1), will be reviewed here 

(summary in Figure 1.3). 

We, and others, have shown that mice fed a SFA-enriched HFD for several 

months develop obesity and have deficits in hippocampal-dependent memory. Using 

the novel-object recognition task, we found that HFD-fed mice begun diet at four weeks 

of age (i.e., adolescence) have deficits in short-term memory after two, six, and 24 

weeks of diet 93. Additionally, Morris water maze testing performed at the study endpoint 

demonstrated that obese mice have impaired long-term memory after 24 weeks of HFD. 

One experimental group was switched from HFD back to control chow after 16 weeks of 

HFD, rescuing both the short-term and long-term hippocampal-dependent memory 

deficits. In line with these findings, a study in six week old mice fed HFD for three 

months demonstrated impaired hippocampal-dependent function in spatial memory 

using the Y-maze task and also in the novel object recognition task 94. Further, 

hippocampal IL-1b protein was elevated after three months HFD, but not after one or 

two months. The number of hippocampal dentate gyrus microglia, identified by 

immunostaining for Iba1, with morphology characteristic of activated microglia increased 

in obese mice. The authors defined activated microglia as those with ‘simple’ branching  
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Figure 1.3  Hippocampal microglia are activated in rodent models of diet-induced obesity.  

In the hippocampus, microglial activation has been reported after chronic HFD using measures of 
morphology and measures of MHCII and CD68 surface markers. Upregulation of inflammasome 
expression and ER stress proteins also occurs in response to HFD in the hippocampus. Evidence 
suggests that microglia likely excessively prune neuronal synapses, contributing to hippocampal-
dependent cognitive dysfunction. 
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patterns, i.e., one to two primary processes, versus ‘complex’ cells, with three or more 

primary processes. Additionally, HFD-fed mice had an increase in percentage of simple 

microglia co-staining for major histocompatibility complex II (MHC-II), an antigen 

presentation protein used as a marker of activation. HFD-feeding decreased dendritic 

spine density, decreased staining for the synaptic protein post-synaptic density protein 

95 (PSD95) and altered microglial spatial relationships with PSD95 in the molecular 

layer of the dentate gyrus. Further, isolated microglia from HFD-fed mice demonstrated 

increased uptake of synaptosomes in vitro, suggesting that HFD microglia are 

potentially phagocytosing synaptic spines. HFD feeding during adolescence in slightly 

younger mice, P21 to P60 (age three weeks to ~ two months), similarly causes 

impairments in the novel object location recognition task, a measure of hippocampal-

dependent spatial memory 95. Additionally, in this study, HFD reduced hippocampal 

neurogenesis in the subgranular zone of the dentate gyrus, and altered Iba1+ microglia 

by increasing the area covered by cell somas in the hilus and CA1 stratum radiatum of 

the hippocampus 95. Although the total hippocampal PSD95 protein levels and the CA1 

neuronal dendritic spine density were not affected by HFD, HFD did reduce mature 

dendritic spines. 

In older eight week old mice, fed HFD for 12 weeks, Cope et al. identified 

hippocampal deficits using the object location task and the Barnes maze task to test 

spatial memory and learning 38. Again, obesity reduced dendritic spine density, both in 

dentate gyrus and CA1 neurons. However, immature, newborn neurons in the dentate 

gyrus were not reduced by obesity in this study. Obesity activated microglia in both the 

dentate gyrus molecular layer and the CA1 stratum radiatum, with microglia activation 
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defined based on the following parameters: decreased primary process number, 

increased cell body area, and increased cluster of differentiation 68 (CD68) co-

expression. Further, Cope et al., utilized pharmacological inhibition of microglial 

activation and microglial phagocytosis to demonstrate that microglia contribute to 

cognitive deficits, likely by phagocytosing synaptic spines. The aforementioned studies 

were performed in male mice, and it is important to note that sex differences have been 

identified in obesity induced hippocampal pathology and associated microglial activation 

96.  

Studies of acute HFD feeding have also demonstrated hippocampal-dependent 

cognitive deficits. However, results are mixed, with some experimental designs only 

yielding inflammation and deficits after chronic feeding. For example, as discussed 

above, Hao et al. did not find elevated hippocampal IL-1b after one or two months of 

HFD 46, and Cope et al. found no difference between HFD and control mice in cognition 

after only two weeks diet 38. Contrary to these findings, deficits in episodic, spatial, and 

contextual memory occur in adult mice 12 weeks of age, after a single day of HFD 97. 

HFD feeding for three days in rats impairs hippocampal dependent long-term contextual 

memory in aged, but not young, animals 42. Although some studies report elevated 

protein or mRNA levels of inflammatory mediators with acute HFD feeding 41,42,44, 

reports of acute microglial activation in the hippocampus are lacking. It is likely that the 

animal model, age, and diet formulation play a role in these contradictory outcomes. 

While there is strong evidence for hippocampal microglial activation, defined by 

morphology changes and co-expression of inflammatory phenotypic markers, after 

chronic HFD, the mechanisms mediating this activation remain poorly understood. 
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1.8 Potential mechanisms of hippocampal microglial activation 

Although acute HFD induces a pro-inflammatory activation state in hypothalamic 

microglia, the evolution of hippocampal microglial activation is unclear. Because 

immune cells are poised to respond acutely and adapt with chronic stimulation, it is 

possible that hippocampal microglia become activated earlier in response to HFD, prior 

to the development of obesity. The permeability of the blood brain barrier in the 

hypothalamus may mediate more acute exposure to the systemic circulation compared 

to the hippocampus, however, acute hippocampal inflammation in response to HFD is 

reported in some studies 41,42,44. Further, elevated saturated fatty acid and decreased 

monounsaturated fatty acid content of neutral lipids in the hippocampus occurs after 

only three days HFD in rats, suggesting that the hippocampus is not protected from 

systemic fatty acid perturbations 89. A variety of local and systemic signals may mediate 

acute and/or chronic, sustained microglial activation 98. Existing data suggest a pro-

inflammatory microglial activation state in obesity, however, it is possible that some 

subtypes of microglia manifest a protective phenotype over the course of systemic 

challenge, as occurs in other CNS disease 73. 

Systemic circulatory signals that may stimulate a microglial response include 

nutrients, such as saturated fatty acids, or inflammatory mediators, including circulating 

cytokines or recruited immune cells 40,98. Palmitate, the most abundant saturated fatty 

acid in humans, is not only increased in the cerebrospinal fluid (CSF) of overweight and 

obese humans with mild cognitive impairment, but CSF palmitate concentrations 

inversely correlate with cognitive function 99. Palmitate activates the toll-like receptor 4 
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(TLR4) innate immune pro-inflammatory signaling cascade 100. In microglia, palmitate 

stimulates a pro-inflammatory phenotype characterized by increased IL-1b expression 

following lipopolysaccharide priming in vitro 101. Microglia are the resident macrophage-

like cell type of the CNS, and peripheral macrophage activation in obesity may provide 

insight into mechanisms mediating microglial activation. In macrophages, SFAs activate 

the inositol requiring enzyme 1 (IRE1a)-X-box binding protein 1 (XBP1) endoplasmic 

reticulum (ER) stress response, yielding a downstream inflammatory response 102. 

IRE1a activation also promotes insulin resistance, secondary to IRE1a-mediated 

phosphorylation of c-Jun N-terminal kinase (JNK) and insulin receptor substrate 1 

(IRS1) 103,104.  IRE1a activity in macrophages has been to shown to alter the 

macrophage activation phenotype in a mouse model of obesity 105. Thus, the ER serves 

an immunometabolic function, whereby metabolic dysregulation triggers ER stress, 

which then contributes to inflammation in obesity 106,107. The ER stress response may 

play a role in microglial activation, as it does in peripheral macrophages. 

Saturated fatty acids stimulate the macrophage nod-like receptor pyrin domain 

containing 3 (NLRP3) inflammasome via activation of the endoplasmic reticulum stress 

response 102, and peripheral NLRP3 and downstream IL-1b signaling may contribute to 

CNS microglial activation. Inflammasome activation promotes insulin resistance in 

obesity 108,109. NLRP3 knockout mice are protected from obesity induced hippocampal-

dependent cognitive impairment 110. Visceral adipose tissue (VAT) NLRP3 contributes 

to this impairment 110. Transplantation of VAT from obese WT, but not from obese 

NLRP3 KO, mice into lean mice induces cognitive deficits and microglial activation 110. 

Further, an inducible CX3CR1 IL-b receptor knockout mouse confirms that IL-b 
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signaling in microglia contributes to these effects. IL-1b cytokine signaling from the 

systemic circulation thus represents a potential mediator of hippocampal microglial 

activation in obesity. In addition to systemic cytokine stimulation, peripheral immune cell 

infiltration 40,111 may contribute to microglial activation in obesity. Indeed, the blood-brain 

barrier is disrupted in obesity, allowing for greater systemic exposure, including to the 

hippocampus 112, and increased peripheral cell trafficking occurs in obesity 40. In 

addition to direct activation by nutrient or inflammatory signals, microglia could respond 

to signals of neuronal stress. The complex interplay between the systemic circulatory 

signals, local CNS cells, and microglial activation remains to be elucidated. 

 

1.9 Overview of aims 

HFD effects on the acute hippocampal microglial response, and the progression 

of activation over time, are largely unexplored, including in younger animal models. 

Further, mechanisms mediating hippocampal microglial activation in obesity remain 

unclear. Thus, in this dissertation project we aimed to, (1), identify effects of acute and 

chronic HFD on hippocampal microglial pro-inflammatory activation by quantifying 

morphological measures of activation with an emphasis on adolescent animals. 

Expanding beyond morphological measures, we (2), defined the effects of HFD on 

microglial activation using single-cell RNA-seq on animals fed a HFD for 12 weeks 

starting at five weeks age, simulating adolescent obesity. Single-cell sequencing 

enabled us to interrogate the heterogenous population of microglial subtypes and to 

determine the effects of HFD on microglial inflammatory signaling at the level of the 

transcriptome. We (3) next investigated the impact of age on obesity-induced 
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hippocampal inflammation and cognitive impairment, and are currently (4) determining 

the role of endoplasmic reticulum stress in microglial activation. These aims are 

reviewed in Figures 1.4 through 1.7. 
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Figure 1.4  Aim 1.  

For the first aim, we sought to identify effects of HFD longitudinally on hippocampal microglial pro-
inflammatory activation by quantifying morphological measures of activation, with an emphasis on 
adolescent animals. To address this aim, we started mice on control or HFD at 5 wk of age using a 
longitudinal paradigm of 2 wk, 1mo, and 3 mo of feeding. We quantified microglial morphology measures 
using metrics in three-dimensions to infer activation state. 
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Figure 1.5  Aim 2.  

Expanding beyond morphological measures, we defined the effects of HFD on microglial activation using 
single-cell RNA-seq on animals fed a HFD for 12 wk starting at 5 wk age, simulating adolescent obesity. 
Single-cell sequencing allowed us to interrogate microglial heterogeneity and to determine how HFD 
alters the microglial transcriptome. 
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Figure 1.6  Aim 3.  

We next investigated the impact of age on obesity-induced hippocampal inflammation and cognitive 
impairment. Young (5 wk of age) and mature adult (1 yr of age) mice were fed control or HFD for 14 wk 
and underwent cognitive testing using the fear condition task, which measures associative learning. 
NanoString gene expression profiling and ELISAs were performed to determine the impact of age on 
inflammatory response to HFD. 
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Figure 1.7  Aim 4.  

The goal of this ongoing and future work is to determine the role of endoplasmic reticulum stress in 
microglial activation. To address this aim, we performed preliminary in vitro studies to determine whether 
the saturated fatty acid (SFA) palmitate activates the microglial IRE1a -XBP1 endoplasmic reticulum 
stress response. We also tested insulin responsiveness, because insulin resistance can occur 
downstream of IRE1a activation. In vivo studies using a transgenic reporter of XBP1 splicing will 
determine if HFD induces the IRE1a/XBP1 pathway in microglia, and if activation of this pathway 
associates with measures of inflammatory activation. Future directions include inhibition of this ER stress 
response to determine its role in microglial activation and cognitive impairment in obesity. 

 

 

 

 

 

 

 



 27 

1.10 Bibliography 

1.  Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 
2019 155. 2019;15(5):288-298. doi:10.1038/s41574-019-0176-8 

2.  Obesity and overweight. Accessed March 8, 2022. https://www.who.int/news-
room/fact-sheets/detail/obesity-and-overweight 

3.  Ward ZJ, Bleich SN, Cradock AL, et al. Projected U.S. state-level prevalence of 
adult obesity and severe obesity. N Engl J Med. 2019;381(25):2440-2450. 
doi:10.1056/NEJMsa1909301 

4.  The State of Childhood Obesity - Helping All Children Grow Up Healthy. 
Accessed April 1, 2021. https://stateofchildhoodobesity.org/ 

5.  Policy Makers | World Obesity Day. Accessed July 10, 2022. 
https://www.worldobesityday.org/policy-makers 

6.  Causes of Obesity | Overweight & Obesity | CDC. Accessed August 6, 2022. 
https://www.cdc.gov/obesity/basics/causes.html?CDC_AA_refVal=https%3A%2F
%2Fwww.cdc.gov%2Fobesity%2Fadult%2Fcauses.html 

7.  Davis RAH, Plaisance EP, Allison DB. Complementary Hypotheses on 
Contributors to the Obesity Epidemic. Obesity. 2018;26(1):17-21. 
doi:10.1002/OBY.22071 

8.  Roberto CA, Swinburn B, Hawkes C, et al. Patchy progress on obesity prevention: 
emerging examples, entrenched barriers, and new thinking. Lancet. 
2015;385(9985):2400-2409. doi:10.1016/S0140-6736(14)61744-X 

9.  Hruby A, Manson JAE, Qi L, et al. Determinants and consequences of obesity. 
Am J Public Health. 2016;106(9):1656-1662. doi:10.2105/AJPH.2016.303326 

10.  Hugh Waters B, Graf M. AMERICA’S OBESITY CRISIS THE HEALTH AND 
ECONOMIC COSTS OF EXCESS WEIGHT. Published online 2018. 

11.  Friedlander SL, Larkin EK, Rosen CL, Palermo TM, Redline S. Decreased Quality 
of Life Associated With Obesity in School-aged Children. Arch Pediatr Adolesc 
Med. 2003;157(12):1206-1211. doi:10.1001/ARCHPEDI.157.12.1206 

12.  Stephenson J, Smith CM, Kearns B, Haywood A, Bissell P. The association 
between obesity and quality of life: a retrospective analysis of a large-scale 
population-based cohort study. BMC Public Health. 2021;21(1):1-9. 
doi:10.1186/S12889-021-12009-8/TABLES/5 

13.  Scott K, Bruffaerts R, Simon G, et al. (No Title). Int J Obes. 2008;32:192-200. 
doi:10.1038/sj.ijo.0803701 

14.  Luppino FS, De Wit LM, Bouvy PF, et al. Overweight, obesity, and depression: a 
systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry. 
2010;67(3):220-229. doi:10.1001/ARCHGENPSYCHIATRY.2010.2 



 28 

15.  Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe 
K. Central obesity and increased risk of dementia more than three decades later. 
Neurology. 2008;71(14):1057-1064. doi:10.1212/01.wnl.0000306313.89165.ef 

16.  Callaghan BC, Reynolds EL, Banerjee M, et al. The prevalence and determinants 
of cognitive deficits and traditional diabetic complications in the severely obese. 
Diabetes Care. 2020;43(3):683-690. doi:10.2337/dc19-1642 

17.  Fitzpatrick AL, Kuller LH, Lopez OL, et al. Midlife and late-life obesity and the risk 
of dementia: Cardiovascular health study. Arch Neurol. 2009;66(3):336-342. 
doi:10.1001/archneurol.2008.582 

18.  Pedditizi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late 
life for the development of dementia: a systematic review and meta-analysis of 
longitudinal studies. Age Ageing. 2016;45(1):14-21. doi:10.1093/AGEING/AFV151 

19.  Karlsson IK, Gatz M, Arpawong TE, Dahl Aslan AK, Reynolds CA. The dynamic 
association between body mass index and cognition from midlife through late-life, 
and the effect of sex and genetic influences. Sci Reports 2021 111. 2021;11(1):1-
15. doi:10.1038/s41598-021-86667-4 

20.  Li J, Joshi P, Ang TFA, et al. Mid- to Late-Life Body Mass Index and Dementia 
Risk: 38 Years of Follow-up of the Framingham Study. Am J Epidemiol. 
2021;190(12):2503-2510. doi:10.1093/AJE/KWAB096 

21.  Kamijo K, Khan NA, Pontifex MB, et al. The relation of adiposity to cognitive 
control and scholastic achievement in preadolescent children. Obesity (Silver 
Spring). 2012;20(12):2406-2411. doi:10.1038/OBY.2012.112 

22.  Khan NA, Baym CL, Monti JM, et al. Central adiposity is negatively associated 
with hippocampal-dependent relational memory among overweight and obese 
children. J Pediatr. 2015;166(2):302-308.e1. doi:10.1016/J.JPEDS.2014.10.008 

23.  Hughes TF, Borenstein AR, Schofield E, Wu Y, Larson EB. Association between 
late-life body mass index and dementia. Neurology. 2009;72(20):1741-1746. 
doi:10.1212/WNL.0B013E3181A60A58 

24.  Liang J, Matheson BE, Kaye WH, Boutelle KN. Neurocognitive correlates of 
obesity and obesity-related behaviors in children and adolescents. Int J Obes 
2014 384. 2013;38(4):494-506. doi:10.1038/ijo.2013.142 

25.  Yau PL, Kang EH, Javier DC, Convit A. Preliminary Evidence of Cognitive and 
Brain Abnormalities in Uncomplicated Adolescent Obesity. Obesity (Silver 
Spring). 2014;22(8):1865. doi:10.1002/OBY.20801 

26.  Mclaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive 
immunity in obesity-associated metabolic disease. J Clin Invest. 2017;127(1):5-
13. doi:10.1172/JCI88876 

27.  Lumeng CN. Innate immune activation in obesity. Mol Aspects Med. 
2013;34(1):12-29. doi:10.1016/J.MAM.2012.10.002 



 29 

28.  Schmidt FM, Weschenfelder J, Sander C, et al. Inflammatory Cytokines in 
General and Central Obesity and Modulating Effects of Physical Activity. PLoS 
One. 2015;10(3):121971. doi:10.1371/JOURNAL.PONE.0121971 

29.  Wu H, Ballantyne CM. Metabolic Inflammation and Insulin Resistance in Obesity. 
Circ Res. Published online 2020:1549-1564. 
doi:10.1161/CIRCRESAHA.119.315896/FORMAT/EPUB 

30.  Rohm T V., Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, 
and related disorders. Immunity. 2022;55(1):31-55. 
doi:10.1016/J.IMMUNI.2021.12.013 

31.  Mamane Y, Chan CC, Lavallee G, et al. The C3a Anaphylatoxin Receptor Is a 
Key Mediator of Insulin Resistance and Functions by Modulating Adipose Tissue 
Macrophage Infiltration and Activation. Diabetes. 2009;58(9):2006-2017. 
doi:10.2337/DB09-0323 

32.  Shin KC, Hwang I, Choe SS, et al. Macrophage VLDLR mediates obesity-induced 
insulin resistance with adipose tissue inflammation. Nat Commun 2017 81. 
2017;8(1):1-14. doi:10.1038/s41467-017-01232-w 

33.  Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and 
metabolic effects of high-fat feeding. J Clin Invest. 2006;116(1):115. 
doi:10.1172/JCI24335 

34.  Blaszczak AM, Jalilvand A, Hsueh WA. Adipocytes, Innate Immunity and Obesity: 
A Mini-Review. Front Immunol. 2021;12:1778. 
doi:10.3389/FIMMU.2021.650768/BIBTEX 

35.  Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. 
Obesity is associated with macrophage accumulation in adipose tissue. J Clin 
Invest. 2003;112(12):1796-1808. doi:10.1172/JCI19246 

36.  Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The 
expression of tumor necrosis factor in human adipose tissue. Regulation by 
obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest. 
1995;95(5):2111-2119. doi:10.1172/JCI117899 

37.  van Greevenbroek MMJ, Jacobs M, van der Kallen CJH, et al. The cross-
sectional association between insulin resistance and circulating complement C3 is 
partly explained by plasma alanine aminotransferase, independent of central 
obesity and general inflammation (the CODAM study). Eur J Clin Invest. 
2011;41(4):372-379. doi:10.1111/J.1365-2362.2010.02418.X 

38.  Cope EC, LaMarca EA, Monari PK, et al. Microglia Play an Active Role in 
Obesity-Associated Cognitive Decline. J Neurosci. 2018;38(41):8889-8904. 
doi:10.1523/JNEUROSCI.0789-18.2018 

39.  Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK. 
Microglia Dictate the Impact of Saturated Fat Consumption on Hypothalamic 
Inflammation and Neuronal Function. Cell Rep. 2014;9(6):2124-2138. 



 30 

doi:10.1016/j.celrep.2014.11.018 

40.  Buckman LB, Hasty AH, Flaherty DK, et al. Obesity induced by a high-fat diet is 
associated with increased immune cell entry into the central nervous system. 
Brain Behav Immun. 2014;35:33-42. doi:10.1016/J.BBI.2013.06.007 

41.  Nakandakari SCBR, Muñoz VR, Kuga GK, et al. Short-term high-fat diet 
modulates several inflammatory, ER stress, and apoptosis markers in the 
hippocampus of young mice. Brain Behav Immun. 2019;79:284-293. 
doi:10.1016/j.bbi.2019.02.016 

42.  Spencer SJ, D’Angelo H, Soch A, Watkins LR, Maier SF, Barrientos RM. High-fat 
diet and aging interact to produce neuroinflammation and impair hippocampal- 
and amygdalar-dependent memory. Neurobiol Aging. 2017;58:88-101. 
doi:10.1016/J.NEUROBIOLAGING.2017.06.014 

43.  Thaler JP, Yi CX, Schur EA, et al. Obesity is associated with hypothalamic injury 
in rodents and humans. J Clin Invest. 2012;122(1):153-162. 
doi:10.1172/JCI59660 

44.  Sobesky JL, D’Angelo HM, Weber MD, et al. Glucocorticoids Mediate Short-Term 
High-Fat Diet Induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, 
and the Danger Signal HMGB1. eNeuro. 2016;3(4):ENEURO.0113-16.2016. 
doi:10.1523/ENEURO.0113-16.2016 

45.  Vinuesa A, Bentivegna M, Calfa G, et al. Early Exposure to a High-Fat Diet 
Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like 
Extracellular Vesicles. Mol Neurobiol. 2019;56(7):5075-5094. 
doi:10.1007/s12035-018-1435-8 

46.  Hao S, Dey A, Yu X, Stranahan AM. Dietary obesity reversibly induces synaptic 
stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun. 
2016;51:230-239. doi:10.1016/j.bbi.2015.08.023 

47.  Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia Sculpt Postnatal Neural 
Circuits in an Activity and Complement-Dependent Manner. Neuron. 
2012;74(4):691-705. doi:10.1016/J.NEURON.2012.03.026 

48.  Wright-Jin EC, Gutmann DH. Microglia as Dynamic Cellular Mediators of Brain 
Function. Trends Mol Med. 2019;25(11):967-979. 
doi:10.1016/J.MOLMED.2019.08.013 

49.  Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult 
microglia derive from primitive macrophages. Science (80- ). 2010;330(6005):841-
845. doi:10.1126/SCIENCE.1194637/SUPPL_FILE/GINHOUX.SOM.PDF 

50.  Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. 
Nat Rev Immunol. Published online 2011. doi:10.1038/nri3086 

51.  Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly 
dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314-
1318. doi:10.1126/SCIENCE.1110647 



 31 

52.  El Ali A, Rivest S. Microglia ontology and signaling. Front Cell Dev Biol. 
2016;4(JUN):72. doi:10.3389/FCELL.2016.00072/BIBTEX 

53.  Marinelli S, Basilico B, Marrone MC, Ragozzino D. Microglia-neuron crosstalk: 
Signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol. 
2019;94:138-151. doi:10.1016/J.SEMCDB.2019.05.017 

54.  Cserép C, Pósfai B, Dénes Á. Shaping Neuronal Fate: Functional Heterogeneity 
of Direct Microglia-Neuron Interactions. Neuron. 2021;109(2):222-240. 
doi:10.1016/J.NEURON.2020.11.007 

55.  Mosser CA, Baptista S, Arnoux I, Audinat E. Microglia in CNS development: 
Shaping the brain for the future. Prog Neurobiol. 2017;149-150:1-20. 
doi:10.1016/j.pneurobio.2017.01.002 

56.  Schafer DP, Stevens B. Microglia Function in Central Nervous System 
Development and Plasticity. Cold Spring Harb Perspect Biol. 2015;7(10):a020545. 
doi:10.1101/CSHPERSPECT.A020545 

57.  Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is 
necessary for normal brain development. Science (80- ). 2011;333(6048):1456-
1458. doi:10.1126/SCIENCE.1202529/SUPPL_FILE/PAOLICELLI.SOM.PDF 

58.  Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B. Microglia: Dynamic Mediators 
of Synapse Development and Plasticity. Trends Immunol. 2015;36(10):605-613. 
doi:10.1016/j.it.2015.08.008 

59.  Parkhurst CN, Yang G, Ninan I, et al. Microglia Promote Learning-Dependent 
Synapse Formation through Brain-Derived Neurotrophic Factor. Cell. 
2013;155:1596-1609. doi:10.1016/j.cell.2013.11.030 

60.  Nguyen PT, Dorman LC, Pan S, et al. Microglial Remodeling of the Extracellular 
Matrix Promotes Synapse Plasticity. Cell. 2020;182(2):388-403.e15. 
doi:10.1016/J.CELL.2020.05.050 

61.  Sierra A, Encinas JM, Deudero JJP, et al. Microglia Shape Adult Hippocampal 
Neurogenesis through Apoptosis-Coupled Phagocytosis. Cell Stem Cell. 
2010;7(4):483-495. doi:10.1016/j.stem.2010.08.014 

62.  Humeau Y, Choquet D. The next generation of approaches to investigate the link 
between synaptic plasticity and learning. Nat Neurosci 2019 2210. 
2019;22(10):1536-1543. doi:10.1038/s41593-019-0480-6 

63.  Amtul Z, Atta-Ur-Rahman. Neural plasticity and memory: Molecular mechanism. 
Rev Neurosci. 2015;26(3):253-268. doi:10.1515/REVNEURO-2014-
0075/ASSET/GRAPHIC/REVNEURO-2014-0075_FIG2.JPG 

64.  Basu J, Siegelbaum SA. The Corticohippocampal Circuit, Synaptic Plasticity, and 
Memory. Cold Spring Harb Perspect Biol. 2015;7(11):a021733. 
doi:10.1101/CSHPERSPECT.A021733 

65.  Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH. Regulation and 



 32 

function of adult neurogenesis: from genes to cognition. Physiol Rev. 
2014;94(4):991-1026. 
doi:10.1152/PHYSREV.00004.2014/ASSET/IMAGES/LARGE/Z9J004142701000
7.JPEG 

66.  Yegla B, Boles J, Kumar | Ashok, Foster TC. Partial microglial depletion is 
associated with impaired hippocampal synaptic and cognitive function in young 
and aged rats. Published online 2021. doi:10.1002/glia.23975 

67.  Hansen D V, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 
2018;217(2):459-472. doi:10.1083/jcb.201709069 

68.  Geloso MC, Corvino V, Marchese E, Serrano A, Michetti F, D’Ambrosi N. The 
Dual Role of Microglia in ALS: Mechanisms and Therapeutic Approaches. Front 
Aging Neurosci. 2017;9(JUL). doi:10.3389/FNAGI.2017.00242 

69.  Lecours C, Bordeleau M, Cantin L, Parent M, di Paolo T, Tremblay MÈ. Microglial 
Implication in Parkinson’s Disease: Loss of Beneficial Physiological Roles or Gain 
of Inflammatory Functions? Front Cell Neurosci. 2018;12. 
doi:10.3389/FNCEL.2018.00282 

70.  Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. 
Nat Rev Immunol. 2018;18(4):225-242. doi:10.1038/NRI.2017.125 

71.  Jonsson T, Stefansson H, Steinberg S, et al. Variant of TREM2 Associated with 
the Risk of Alzheimer’s Disease. N Engl J Med. 2013;368(2):107-116. 
doi:10.1056/NEJMoa1211103 

72.  Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N 
Engl J Med. 2013;368(2):117-127. doi:10.1056/NEJMoa1211851 

73.  Onuska KM. The Dual Role of Microglia in the Progression of Alzheimer’s 
Disease. J Neurosci. 2020;40(8):1608-1610. doi:10.1523/JNEUROSCI.2594-
19.2020 

74.  Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer 
disease: where do we go from here? Nat Rev Neurol 2020 173. 2020;17(3):157-
172. doi:10.1038/s41582-020-00435-y 

75.  Chen X, Zhu B, Wu X, et al. TREM2 Is a Receptor for β-Amyloid that Mediates 
Microglial Function. Neuron. 2018;97(5):1023-1031.e7. 
doi:10.1016/j.neuron.2018.01.031 

76.  Sudom A, Talreja S, Danao J, et al. Molecular basis for the loss-of-function effects 
of the Alzheimer’s disease–associated R47H variant of the immune receptor 
TREM2. J Biol Chem. 2018;293(32):12634-12646. 
doi:10.1074/JBC.RA118.002352 

77.  Sayed FA, Kodama L, Fan L, et al. AD-linked R47H-TREM2 mutation induces 
disease-enhancing microglial states via AKT hyperactivation. Sci Transl Med. 
2021;13(622):eabe3947. doi:10.1126/SCITRANSLMED.ABE3947 



 33 

78.  Wang Y, Cella M, Mallinson K, et al. TREM2 lipid sensing sustains the microglial 
response in an Alzheimer’s disease model. Cell. 2015;160(6):1061-1071. 
doi:10.1016/j.cell.2015.01.049 

79.  Jay TR, Miller CM, Cheng PJ, et al. TREM2 deficiency eliminates TREM2+ 
inflammatory macrophages and ameliorates pathology in Alzheimer’s disease 
mouse models. J Exp Med. 2015;212(3):287-295. doi:10.1084/JEM.20142322 

80.  Wang Y, Ulland TK, Ulrich JD, et al. TREM2-mediated early microglial response 
limits diffusion and toxicity of amyloid plaques. J Exp Med. 2016;213(5):667-675. 
doi:10.1084/JEM.20151948 

81.  Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia 
mediate early synapse loss in Alzheimer mouse models. Science (80- ). 
2016;352(6286):712-716. 
doi:10.1126/SCIENCE.AAD8373/SUPPL_FILE/HONG.SM.PDF 

82.  Folick A, Cheang RT, Valdearcos M, Koliwad SK. Metabolic factors in the 
regulation of hypothalamic innate immune responses in obesity. Exp Mol Med. 
2022;54(4):393-402. doi:10.1038/s12276-021-00666-z 

83.  Valdearcos M, Myers MG, Koliwad SK. Hypothalamic microglia as potential 
regulators of metabolic physiology. Nat Metab 2019 13. 2019;1(3):314-320. 
doi:10.1038/s42255-019-0040-0 

84.  Haddad-Tóvolli R, Dragano NRV, Ramalho AFS, Velloso LA. Development and 
function of the blood-brain barrier in the context of metabolic control. Front 
Neurosci. 2017;11(APR):224. doi:10.3389/FNINS.2017.00224/BIBTEX 

85.  Valdearcos M, Douglass JD, Robblee MM, et al. Microglial Inflammatory Signaling 
Orchestrates the Hypothalamic Immune Response to Dietary Excess and 
Mediates Obesity Susceptibility. Cell Metab. 2017;26(1):185-197.e3. 
doi:10.1016/j.cmet.2017.05.015 

86.  André C, Quevedo OG, Rey C, et al. Inhibiting Microglia Expansion Prevents Diet-
Induced Hypothalamic and Peripheral Inflammation. Diabetes. 2016;66(4):908-
919. doi:10.2337/DB16-0586 

87.  Kim JD, Yoon NA, Jin S, Diano S. Microglial UCP2 Mediates Inflammation and 
Obesity Induced by High-Fat Feeding. Cell Metab. 2019;30(5):952-962.e5. 
doi:10.1016/j.cmet.2019.08.010 

88.  Gao Y, Vidal-Itriago A, Milanova I, et al. Deficiency of leptin receptor in myeloid 
cells disrupts hypothalamic metabolic circuits and causes body weight increase. 
Mol Metab. 2018;7:155-160. doi:10.1016/J.MOLMET.2017.11.003 

89.  Butler MJ, Cole RM, Deems NP, Belury MA, Barrientos RM. Fatty food, fatty 
acids, and microglial priming in the adult and aged hippocampus and amygdala. 
Brain Behav Immun. 2020;89:145-158. doi:10.1016/J.BBI.2020.06.010 

90.  Spencer SJ, Basri B, Sominsky L, et al. High-fat diet worsens the impact of aging 
on microglial function and morphology in a region-specific manner. Neurobiol 



 34 

Aging. 2019;74:121-134. doi:10.1016/J.NEUROBIOLAGING.2018.10.018 

91.  Bocarsly ME, Fasolino M, Kane GA, et al. Obesity diminishes synaptic markers, 
alters Microglial morphology, and impairs cognitive function. Proc Natl Acad Sci U 
S A. 2015;112(51):15731-15736. 
doi:10.1073/PNAS.1511593112/SUPPL_FILE/PNAS.1511593112.SAPP.PDF 

92.  Maruszak A, Thuret S. Why looking at the whole hippocampus is not enough-a 
critical role for anteroposterior axis, subfield and activation analyses to enhance 
predictive value of hippocampal changes for Alzheimer’s disease diagnosis. Front 
Cell Neurosci. 2014;8(MAR):95. doi:10.3389/FNCEL.2014.00095/BIBTEX 

93.  Sims-Robinson C, Bakeman A, Bruno E, et al. Dietary reversal ameliorates short- 
and long-term memory deficits induced by high-fat diet early in life. PLoS One. 
2016;11(9). doi:10.1371/journal.pone.0163883 

94.  Hao S, Dey A, Yu X, Stranahan AM. Dietary obesity reversibly induces synaptic 
stripping by microglia and impairs hippocampal plasticity HHS Public Access. 
doi:10.1016/j.bbi.2015.08.023 

95.  Vinuesa A, Bentivegna M, Calfa G, et al. Early Exposure to a High-Fat Diet 
Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like 
Extracellular Vesicles. Mol Neurobiol. Published online November 24, 2018:1-20. 
doi:10.1007/s12035-018-1435-8 

96.  Robison LS, Albert NM, Camargo LA, et al. High-Fat Diet-Induced Obesity 
Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. 
eNeuro. 2020;7(1):391-410. doi:10.1523/ENEURO.0391-19.2019 

97.  McLean FH, Grant C, Morris AC, et al. Rapid and reversible impairment of 
episodic memory by a high-fat diet in mice. Sci Rep. 2018;8(1). 
doi:10.1038/s41598-018-30265-4 

98.  Alexaki VI. cells The Impact of Obesity on Microglial Function: Immune, Metabolic 
and Endocrine Perspectives. Published online 2021. doi:10.3390/cells10071584 

99.  Melo HM, Seixas da Silva G da S, Sant’Ana MR, et al. Palmitate Is Increased in 
the Cerebrospinal Fluid of Humans with Obesity and Induces Memory Impairment 
in Mice via Pro-inflammatory TNF-α. Cell Rep. 2020;30(7):2180-2194.e8. 
doi:10.1016/j.celrep.2020.01.072 

100.  Nicholas DA, Zhang K, Hung C, et al. Palmitic acid is a toll-like receptor 4 ligand 
that induces human dendritic cell secretion of IL-1β. PLoS One. 2017;12(5). 
doi:10.1371/JOURNAL.PONE.0176793 

101.  Tracy LM, Bergqvist F, Ivanova E V., Jacobsen KT, Iverfeldt K. Exposure to the 
Saturated Free Fatty Acid Palmitate Alters BV-2 Microglia Inflammatory 
Response. J Mol Neurosci. 2013;51(3):805-812. doi:10.1007/s12031-013-0068-7 

102.  Robblee MM, Kim CC, Abate JP, et al. Saturated Fatty Acids Engage an IRE1α-
Dependent Pathway to Activate the NLRP3 Inflammasome in Myeloid Cells. Cell 
Rep. 2016;14(11):2611-2623. doi:10.1016/j.celrep.2016.02.053 



 35 

103.  Salvadó L, Palomer X, Barroso E, Vá Zquez-Carrera M. Targeting endoplasmic 
reticulum stress in insulin resistance. doi:10.1016/j.tem.2015.05.007 

104.  Zcan UO¨, Cao Q, Yilmaz E, et al. Endoplasmic Reticulum Stress Links Obesity, 
Insulin Action, and Type 2 Diabetes. Accessed April 4, 2021. 
http://science.sciencemag.org/ 

105.  Shan B, Wang X, Wu Y, et al. The metabolic ER stress sensor IRE1α suppresses 
alternative activation of macrophages and impairs energy expenditure in obesity. 
Nat Immunol 2017 185. 2017;18(5):519-529. doi:10.1038/ni.3709 

106.  Hotamisligil GS. Endoplasmic Reticulum Stress and the Inflammatory Basis of 
Metabolic Disease. Cell. 2010;140(6):900-917. doi:10.1016/J.CELL.2010.02.034 

107.  Hummasti S, Hotamisligil GS. Endoplasmic reticulum stress and inflammation in 
obesity and diabetes. Circ Res. 2010;107(5):579-591. 
doi:10.1161/CIRCRESAHA.110.225698/FORMAT/EPUB 

108.  Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome 
activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408-415. 
doi:10.1038/ni.2022 

109.  Vandanmagsar B, Youm Y-H, Ravussin A, et al. The NLRP3 inflammasome 
instigates obesity-induced inflammation and insulin resistance. Nat Med. 
2011;17(2):179-188. doi:10.1038/nm.2279 

110.  Guo DH, Yamamoto M, Hernandez CM, Khodadadi H, Baban B, Stranahan AM. 
Visceral adipose NLRP3 impairs cognition in obesity via IL-1R1 on CX3CR1+ 
cells. J Clin Invest. 2020;130(4):1961-1976. doi:10.1172/JCI126078 

111.  Butler MJ. The role of Western diets and obesity in peripheral immune cell 
recruitment and inflammation in the central nervous system. Brain, Behav Immun 
- Heal. 2021;16:100298. doi:10.1016/J.BBIH.2021.100298 

112.  Salameh TS, Mortell WG, Logsdon AF, Butterfield DA, Banks WA. Disruption of 
the hippocampal and hypothalamic blood-brain barrier in a diet-induced obese 
model of type II diabetes: Prevention and treatment by the mitochondrial carbonic 
anhydrase inhibitor, topiramate. Fluids Barriers CNS. 2019;16(1):1-17. 
doi:10.1186/S12987-018-0121-6/FIGURES/7 

 

 
 
 

 
 



 36 

Chapter 2 Longitudinal Evolution of Hippocampal Microglial Activation in a 
Murine Model of Adolescent Obesity  

2.1 Abstract  

The global human population faces an obesity pandemic, affecting both children 

and adults. Clinical studies establish midlife obesity as a risk factor for dementia, and 

studies in children demonstrate cognitive deficits in varying domains. The precise 

mechanism of obesity-induced cognitive impairment remains incompletely understood 

but may involve activation of microglia, the resident innate immune cells of the brain. 

Activated microglia are proposed to contribute to cognitive impairment by phagocytosing 

neuronal synaptic spines. Thus, targeting microglial activation could constitute a 

potential therapeutic avenue. However, the progression of microglial activation over 

time from acute to chronic exposure to obesogenic diets remains unclear, including in 

youth. High-fat diet (HFD) rodent models, which develop metabolic dysfunction and 

cognitive impairment mirroring humans, offer an opportunity to investigate evolution in 

microglial activation during adolescent brain development. We investigated 

hippocampal microglial activation longitudinally by cellular morphology following acute 

(2 weeks), intermediate (1 month [mo]), and chronic (3 mo) HFD beginning at 5 weeks 

of age. We found that HFD did not significantly alter microglial morphology in the CA1 

region of the hippocampus.  
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2.2 Introduction 

The global prevalence of obesity has dramatically increased in the past several 

decades 1,2. Alongside obesity comes the burden of numerous systemic complications 

that arise from obesity and associated metabolic dysfunction. In the central nervous 

system, obesity increases the risk of stroke, psychiatric disease, and dementia 3–6. 

Indeed, several clinical studies demonstrate that midlife obesity predisposes individuals 

to cognitive impairment and dementia in later life 5,7,8. Unfortunately, the rising obesity 

rates are not limited to adults, as childhood obesity is also on the rise 9,10. Given that the 

developing brain manifests a unique and especially plastic physiological state 11 

compared to the adult brain, the effect of obesity on cognition may be distinct in different 

phases of the lifespan. Several investigations demonstrate that obesity adversely 

impacts cognitive performance in children 12–14. Unfortunately, mechanisms mediating 

obesity-induced cognitive deficits are poorly understood. To develop preventative 

strategies, or therapeutics to reverse or slow cognitive deficits, we must better 

understand these mechanisms. Further, we must elucidate how age interacts with the 

effects of obesity on the brain, to appropriately target interventions to the developing, 

adult, or aging brain. 

In the brain, the hippocampus plays a role in learning and memory, and the 

hippocampus is particularly affected by pathology in Alzheimer’s disease 15, the most 

common type of dementia. Hippocampal cognitive deficits associated with human 

obesity are mirrored in animal models of obesity. Rodents fed a high-fat diet (HFD) 

enriched in saturated-fatty acids develop obesity and exhibit hippocampal-dependent 

cognitive impairment 16,17. Rodent models have facilitated investigations into the 
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pathophysiology of obesity-induced cognitive impairment. The presence of systemic 

inflammation in obesity is a well-studied phenomenon, and inflammation has been 

implicated in driving complications such as insulin resistance and cardiovascular 

disease 18–21. An inflammatory response to HFD also occurs in the brain, where 

microglia, the macrophage-like innate immune cells of the central nervous system, take 

on a pro-inflammatory activation state 16,17,22. Like other complications of obesity, 

evidence suggests that the immune response may play a role in driving the pathology 

responsible for cognitive deficits 

The role of HFD induced hypothalamic microglial activation in mediating eating 

behaviors and obesity has been well characterized 22–25. Like in the hypothalamus, 

studies report that HFD activates hippocampal microglia in animal models. However, 

many questions remain regarding the role of microglial activation in obesity-induced 

hippocampal-dependent cognitive impairment. Acute HFD ingestion of only a few days 

activates innate immune inflammatory pathways in the hippocampus, including 

upregulated hippocampal pro-inflammatory cytokines and NLRP3 inflammasome 

expression 26,27. Longer-term HFD feeding, including in young adolescent mice 28, has 

been shown to activate microglia in the hippocampus 16,17, and microglial activation 

contributes to cognitive impairment 16.  

Whether hippocampal microglia become activated earlier on, and how this activation 

may change over time is not clear. An understanding of obesity-induced temporal 

changes in hippocampal microglia can shed insight into disease mechanisms and 

suggest possible windows for therapeutic intervention. Microglia are a heterogenous 

population of cells 29, manifesting a range of phenotypic states depending on context. 
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Research has relied heavily on measures of morphology to indicate activation state, 

because morphology can transition from ramified (homeostatic morphology), to other 

states including hyper-ramified, hypo-ramified, or amoeboid in response to stimuli 30,31. 

The highly ramified, complex processes in homeostatic microglia characteristically 

retract when microglia are reacting to a pathological insult 30,32. In addition to de-

ramification 33, cell somas increase in size in reactive microglia 34. Herein, we 

investigated hippocampal microglial activation longitudinally in young animals through 

changes in cellular morphology following a paradigm of subacute (2 weeks), 

intermediate (1 month), and chronic (3 months) HFD beginning at 5 weeks of age. 

Employing an adapted 3D Morph protocol 35, we analyzed the three-dimensional 

morphology of individual microglia in a relatively high throughput manner, characterizing 

over 1,800 cells. We found that HFD induced obesity and metabolic dysfunction after 

only 2 weeks HFD, both of which increased in severity over time by 3 months. Our 

results show that despite metabolic impairment, HFD-fed mice do not display 

hippocampal microglial morphological differences compared to control-fed mice. These 

findings suggest that the effect of obesity on hippocampal microglia may be subtle in 

young, adolescent mice, and that more sensitive techniques than morphology measures 

alone are required to define the impact on microglial activation.  

 

2.3 Results 

2.3.1 HFD induces obesity and systemic metabolic dysfunction  
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Herein, we employed our HFD-induced mouse model of obesity 36,37 and 

cognitive impairment 38, which mirrors obesity and associated cognitive impairment in 

humans. In this model, wild-type mice fed HFD, a diet enriched in saturated fatty acids, 

develop obesity, glucose intolerance, dyslipidemia, and hyperinsulinemia. Mice aged 5 

weeks (wk), were fed HFD or control diet for 2 wk (subacute), 1 mo (intermediate), and 

3 mo (chronic) (Fig 2.1A). As anticipated, HFD mice weighed significantly more than 

their control-fed counterparts at all durations of diet (Fig 2.1B). Subacute 2-wk HFD 

duration already increased the weight of mice versus control diet (P=0.0013, Sidak’s 

multiple comparisons test for mixed effects model). At all time points, HFD also induced 

glucose tolerance deficits, characterized by elevated peak glucose following glucose 

bolus challenge (Fig 2.2A). Although HFD mice were glucose intolerant within 2 wk, 

they did not develop hyperinsulinemia until 3 mo had elapsed (P<0.0001, Sidak’s 

multiple comparisons test for ordinary two-way ANOVA) (Fig 2.2B). We also noted that 

HFD induced dyslipidemia in mice, evidenced by elevated levels of both total 

cholesterol (P<0.0001, Sidak’s multiple comparisons test for ordinary two-way ANOVA) 

and high-density lipoprotein (HDL) (P<0.0001, Sidak’s multiple comparisons test for 

ordinary two-way ANOVA) after 3 mo (Fig 2.2D-E).  

 

2.3.2 HFD does not significantly alter hippocampal microglial volumes  

Next, to determine whether HFD affects hippocampal microglial activation over 

time, we quantified three-dimensional (3-D) cellular morphology measures as indicators 

of activation state. Under homeostatic conditions, microglia surveil their environment by 

extending highly branched processes; however, in response to pathological conditions,  
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Figure 2.1  HFD induces obesity in adolescent mice. 

(A) Study scheme: 5-wk old mice were fed high-fat diet (HFD) or control standard diet (ctrl) for 2 wk, 1 
mo, and 3 mo. At each terminal point, brains were collected for microglial morphology and plasma for 
measures of metabolic health. (B) Longitudinal body weight for control (blue, circles) and HFD (green, 
squares) mice from baseline to study termination for 2 wk, 1 mo, and 3 mo cohorts combined. **P<0.01, 
****P<0.0001 by Sidak’s multiple comparisons test for mixed effects model; n=21 per group at 0 and 2 wk, 
n=14 per group at 4 wk, and n=7 per group at 12 wk. 
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Figure 2.2  HFD induces systemic metabolic dysfunction at as early as 2 weeks. 

(A) Baseline and terminal glucose tolerance tests (GTTs) for control and HFD mice at 0 wk, 2 wk, 1 mo, 
and 3 mo of diet. Glucose levels were measured from one drop of tail blood at 0, 15, 30, 60, and 120 
minutes (min) after a bolus of 1 g glucose/1 kg body weight. Values exceeding the upper threshold of the 
glucometer were set at that threshold, 750 mg/dl. Terminal fasting plasma (B) insulin, (C) total cholesterol, 
(D) high density lipoprotein (HDL) for control and HFD mice at 2 wk, 1 mo, and 3 mo terminal time points. 
*P<0.05, ***P<0.001, ****P<0.0001 by Sidak’s multiple comparisons test for repeated measures two-way 
ANOVA for GTTs and Sidak’s multiple comparisons test for ordinary two-way ANOVA for insulin, 
cholesterol, and HDL; n=21 mice per group for baseline GTT, n=19-21 per group for 2 wk GTT, n=14 per 
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group for 1 mo GTT, and n=7 per group for 3 mo GTT; n=7 per group for total cholesterol and HDL and 
n=6-7 per group for insulin. Error bars represent mean ± standard deviation. 

 

microglia shift their morphology by retracting processes, reducing branching, and 

covering less territory 30,33,35. The microglial marker ionized calcium binding adaptor 

molecule 1 (Iba1) was used for immunohistochemistry to identify microglia. Brain 

sections were imaged by confocal microscopy and 3-D z-stacks of the hippocampus 

were analyzed using a modified 3D-Morph protocol 35, which relies on methods such as 

convex hull analysis and skeletonization to measure territorial volume, cell volume, 

ramification complexity, number of endpoints per cell, number of branchpoints per cell, 

and average, minimum, and maximum branch length for every individual cell.  We 

analyzed microglia in the CA1 region (three z-stacks per animal; Fig 2.3A) of the 

hippocampus, focusing on the stratum radiatum, where effects of obesity on microglial 

morphology have been reported 16,28.  

Territorial volume comprises the 3-D space occupied by the microglia itself and 

the space trapped within extended microglia processes, outlined by a polygonal convex 

hull. Cell volume is the volume of the cell itself, and complexity is measured using the 

ramification index, which is the ratio of territorial volume to cell volume. There were no 

differences in territorial volume or cell volume between HFD and control microglia at any 

duration of diet (by nested t-test Fig 2.3B-C). As expected, given that the ramification 

index is a ratio of territorial volume to cell volume, there were also no differences in 

complexity between HFD and control microglia (Fig 2.3D).  
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2.3.3 HFD does not induce de-ramification in CA1 hippocampal microglia 

Next, the 3D-Morph pipeline skeletonizes each individual cell and counts 

endpoints, branchpoints, and branch lengths (Fig 2.4A). The number of branchpoints 

and endpoints would be expected to decrease if microglia are manifesting a reactive or 

pro-inflammatory state. We found that number of endpoints per cell (Fig 2.4B) and 

number of branchpoints per cell (Fig 2.4C) did not differ between control and HFD 

microglia at 2 wk, 1 mo, or 3 mos (by nested t-test). Additionally, the average branch 

length per cell (Fig 2.4D) as well as the minimum (Fig 2.5A) and maximum (Fig 2.5B) 

did not differ by diet group at any time point (by nested t-test).  

2.3.4 Hippocampal CA1 microglia decrease in size from adolescence to adulthood 

There were no detected differences in microglial morphology between HFD and 

control microglia when compared at each duration of diet, but we next wanted to 

determine whether there was an effect of time or time by diet interaction on morphology. 

We, therefore, performed linear mixed effects regression modeling 36. We found that cell 

volume decreased in the HFD group from 2 wk to 3 mo (P=0.0318) (Fig 2.6A). 

However, there was no significant difference in this reduction between HFD and control, 

suggesting that microglial volume reduces over time independent of diet. Additionally, 

this model demonstrated a significant reduction in minimum branch length in HFD 

versus control microglia at 2 wk (P=0.0472) (Fig 2.6B). Aligning with the within time 

point comparisons by nested t-test above, the majority of the comparisons 

demonstrated non-significant differences (data not shown). 
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Figure 2.3  HFD does not alter microglial territory or volume in the hippocampal CA1 region of 
adolescent mice. 

(A) Representative images of 3-D rendering of z-stacks for Iba1-stained microglia in the hippocampal CA1 
for control (left) and high-fat diet (HFD) mice. Hoescht nuclear fluorescence signal in blue and Iba1 signal 
in red. Red channel represents pre-processed z-stacks for extraction of intact microglia cells. (B) Full cell 
territory for control (blue) and HFD (green) microglia at 2 wk (left), 1 mo (center), and 3 mo (right). Cell 
territory is the three-dimensional space encompassed within a polygon surrounding the outermost 
branches of the cell. Each point represents a single cell and individual animals are plotted along the x-
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axis. (C) Cell volume for control and HFD microglia at 2 wk (left), 1 mo (center), and 3 mo (right). Cell 
volume is the volume of the cell body and branches of the cell itself, and is calculated by scaling image 
voxels to micron units. (D) Cell complexity measured by the ramification index (ratio of cell territory to cell 
volume) for control and HFD microglia at 2 wk (left), 1 mo (center), and 3 mo (right). No significant 
differences in HFD versus control group by nested t-test. n=5-7 mice per group, three CA1 z-stacks 
analyzed per mouse, 39 to 75 microglia analyzed per mouse. Error bars represent mean ± standard 
deviation. 
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Figure 2.4  HFD does not alter microglial ramification in the CA1 of adolescent mice. 

(A) Example of skeletonization (center) from Iba1 stained 3-D microglia (left). Running the 3DMorph 
pipeline in MATLAB yields endpoints per cell and branchpoints per cell (right). (B) Endpoints per cell for 
control (blue) and HFD (green) microglia at 2 wk (left), 1 mo (center), and 3 mo (right). Each point 
represents a value for a single cell and individual animals are plotted along the x-axis. (C) Branchpoints 
per cell for control (blue) and HFD (green) microglia at 2 wk (left), 1 mo (center), and 3 mo (right). (D) 
Average branch length per cell for control (blue) and HFD (green) microglia at 2 wk (left), 1 mo (center), 
and 3 mo (right). No significant differences in HFD versus control group by nested t-test. n=5-7 mice per 
group, three CA1 z-stacks analyzed per mouse. Error bars represent mean ± standard deviation. 
 

 

Figure 2.5  HFD does not alter microglial minimum or maximum branch length. 

Minimum (A) and maximum (B) branch length per cell for control (blue) and HFD (green) microglia at 2 wk 
(left), 1 mo (center), and 3 mo (right). Each point represents a value for a single cell and individual 
animals are plotted along the x-axis. No significant differences in HFD versus control group by nested t-
test. n=5-7 mice per group, three CA1 z-stacks analyzed per mouse. Error bars represent mean ± 
standard deviation. 
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Figure 2.6  Linear mixed effects model results of cell volume and minimum branch length. 

(A) Boxplot of cell volume at 2 wk (left), 1 mo (center), and 3 mo (right) and (B) boxplot of minimum 
branch length at 2 wk (left), 1 mo (center), and 3 mo (right). The boxplots display 5 summary statistics: 
The box represents the 25th percentile, median, and 75th percentile of the data. The whispers extend to 
1.5 times the interquartile range (IQR) above the 75th percentile and below the 25th percentile, where 
IQR = 75th percentile - 25th percentile. Data Points beyond 1.5 times the IQR are plotted individually. 
Each datapoint represents the mean value across cell measurements for each animal individually. Control 
in blue and HFD in green. 
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2.3.5 Microglial morphological measures associate with metabolic function 

By examining each cell morphology measures plotted by animal on the x-axis 

(Figs 2.3B-D, 2.4B-D, and 2.5A-B), we noticed a considerable degree of variation 

between animals, even within the same diet group (Fig 2.3B-D, Fig 2.4B-D, and Fig 

2.5A-B). Although we did not find differences between HFD and control morphology 

measures in the aggregate data based on the means of each experimental group, we 

asked whether measures of metabolic function might associate with morphology. We, 

therefore, again used a linear mixed effects regression model 36 to examine the 

association between each morphology measure (cell territory, cell volume, complexity, 

number of endpoints, number of branchpoints, average branch length, minimum branch 

length, and maximum branch length) and terminal measures of metabolic health 

(weight, plasma insulin, plasma cholesterol, plasma HDL). Significant associations 

included an association between decreased cell volume (Fig 2.7A) and decreased cell 

territory (Fig 2.7B) with increased cholesterol in the HFD group. The association 

between cholesterol and cell volume/cell territory was not significantly different between 

HFD and control groups, suggesting that the relationship between cholesterol and these 

outcomes was not unique to specific ranges of actual cholesterol levels, high (HFD 

group) or normal (control group). 
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Figure 2.7  Association between cholesterol and cell volume or cell territory.  

(A) Scatterplot of terminal cholesterol (x-axis) and cell volume (y-axis), across all time points, and (B) 
scatterplot of terminal cholesterol (x-axis) and full cell territory (y-axis), across all time points. Each 
datapoint represents the mean value across cell measurements for each animal individually. Plotted line 
represents results from a linear regression model fit between each outcome and cholesterol, stratified by 
diet. Shaded area represents a 95% confidence interval corresponding to the fitted linear regression line.  
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2.4 Discussion 

Activated microglia are proposed to contribute to obesity-induced cognitive 

impairment by aberrantly over phagocytosing dendritic spines 16. However, evolution 

and drivers of hippocampal microglial activation in obesity remain unknown. Immune 

responses occur in acute and chronic phases, so investigating the evolution of 

microglial activation in obesity is critical both for generating insight into potential disease 

mechanisms, and for suggesting optimal windows for intervention. Indeed, studies in 

HFD rodent models have reported acute pro-inflammatory responses in the 

hippocampus 27,39 and activation of microglia after long-term exposure to HFD 16,17. 

However, studies of microglial activation have generally reported only a single time 

point following intermediate to chronic HFD, e.g., after diet duration of 6 wk 28, 3 mo 

16,17, and even longer 40. Reports examining hippocampal microglial activation at acute 

time points, e.g., a few days to a couple of weeks, are sparse 41,42. Here, to address this 

gap, we assessed hippocampal microglial activation longitudinally, using metrics of 3-D 

cellular morphology as indicators of activation state. We followed a paradigm of 2 wk, 1 

mo, and 3 mo of HFD duration to model subacute, intermediate, and chronic exposure, 

respectively starting in mice at 5 wk of age, and continuing throughout adolescence. 

Using our HFD model, we found that HFD did not significantly alter any measure of 

hippocampal CA1 region microglial morphology at any duration of diet examined in the 

current study. 

We found that mice developed obesity and progressively poorer metabolism. 

HFD caused obesity in mice, characterized by weight gain. Metabolic dysfunction 

became gradually worse with time; by 3 mo of diet, HFD mice exhibited 



 52 

hyperinsulinemia, elevated total cholesterol, and elevated HDL. These observations 

align with our previous work 37,43,44 and work by others 45–48, including after acute HFD 

exposure. Indeed, only 3 days of HFD already impairs glucose homeostasis in mice 

without changes to body weight or adipocyte size 49. This model robustly and 

consistently develops obesity along with other features of metabolic dysfunction 

reflective of obese humans.  

Next, we examined the influence of HFD on microglia morphology in the 

hippocampus. We focused on the CA1 stratum radiatum, where microglial morphology 

changes have been reported in HFD-fed mice 16,28. We found that HFD, at early and 

chronic durations of diet, did not alter territorial volume, cell volume, or complexity of 

microglia in the hippocampal CA1 region. Further, we detected no differences in number 

of endpoints or branchpoints per cell, or in branch lengths. No reports, to our 

knowledge, demonstrate hippocampal microglial activation in response to HFD after 

durations of diet as short as 2 wk. Our findings at the more chronic time points of 1 mo 

and 3 mo diet parallel a study that reported no effect of prolonged HFD on hippocampal 

microglial morphology 50. However, they do not align with other reports of HFD-induced 

hippocampal microglial morphological activation 16,17,28,51.  

Due to the unique physiology of the developing, adolescent brain 52, we expected 

that age of diet onset may play a critical role in microglial responses. Thus, we 

compared our results to studies using a diet-induced obesity model in more similarly 

aged, adolescent mice. In mice started on diet at 6 wk of age and fed for 3 mo, obesity 

increased the number of ‘simple’ microglia, with 1 or 2 primary processes, and 

increased the proportion of ‘simple’ microglia co-staining for MHCII in the dentate gyrus, 



 53 

17. Perhaps the difference in hippocampal region examined (dentate gyrus versus CA1) 

could help explain the differences between this study and our results reported here, 

although morphological measures of activation occurred in both the dentate gyrus and 

CA1 in the study of 8 wk old mice described above 16. In a study of adolescent mice 

begun at 3 wk age and fed HFD until around 2 mo age, the researchers found 

morphological activation of CA1 stratum radiatum and dentate gyrus hilus microglia by 

quantifying an increase in area covered by cell somas 28. In an earlier study they found 

that HFD administered for 4 mo starting at 4 wk age also increased Iba1+ cell soma 

area in the stratum radiatum and hilus 51. It is difficult to directly compare these results 

to our findings in the CA1 region, given that metrics for morphological activation 

differed. We are currently quantifying cell soma volume in the CA1, which will allow us a 

more direct comparison to the metric of cell soma area.  

Although not directly comparable to our adolescent paradigm, beginning diet at 5 

wk age, reports on hippocampal microglia morphology in mice started on diet at 8 wk of 

age and fed for 12 to 24 wk, demonstrate mixed findings and our results parallel one 

such study. A study feeding HFD for 24 wk did not alter CA1, CA3, or dentate gyrus 

microglial morphology, based on measures including skeleton length, soma area, 

convex hull area, and cell perimeter 50. However, in another study, 12 weeks of HFD 

increases the activation score of microglia in the dentate gyrus and CA1 stratum 

radiatum 16. The activation measure in this study represented a score of morphology 

metrics (primary process counts, cell body area) and CD68 co-expression (marker of 

phagocytic activity) 16. At 8 wk (2 mo) of age, mice from these two studies were further 
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through adolescence at the initiation of HFD, as 3 mo is considered the beginning of 

mature adulthood in mice. 

Differences in morphology metrics (soma area versus branching patterns) may 

contribute to the differences in findings. Variation in results using morphological 

measures of activation might also suggest the limitation of relying heavily on 

morphology to infer microglial phenotype state, and the need to supplement with 

additional approaches such as transcriptomics, particularly if changes in phenotype are 

subtle. While the differences in choice of morphology metrics reported in studies may 

help explain variability in conclusions, it is also likely that changes in hippocampal 

microglia morphology are subtle in the young, adolescent age group. The immune 

system becomes dysfunctional in the normal aging process 53,54, and microglia might be 

more susceptible to diet-induced perturbations in older animals. For example, when 

aged and young rats were fed HFD for only 3 days, HFD impaired hippocampal and 

amygdalar dependent cognition and elevated MHCII expression in hippocampi in old, 

but not young animals 42. In a follow-up study the research group found an effect of 

advanced age on microglial morphology, but no additional effect of HFD after 3 days 41. 

In summary, our findings raise important questions regarding the nature of obesity-

induced hippocampal microglial activation that require further study. Future work is 

needed to clarify the hippocampal microglial response to HFD, and a particular focus on 

the impact of age and technical approach are required to elucidate effects on the 

microglial activation phenotype that might prove subtle in nature. 
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2.5 Methods 

2.5.1 Animals and study design 

Wild-type C57BL/6J male mice aged 4 wk (Jackson Laboratory, cat# 000664) 

were housed in cages with littermates in a specific-pathogen-free facility kept at 20 ± 2 

°C with a 12/12-h light/dark maintained by the Unit for Laboratory Animal Medicine 

(ULAM) at the University of Michigan. ULAM veterinary staff monitored the health of the 

animals daily. When mice had acclimated for 1 wk following arrival to the facility, i.e., 

were 5 wk of age, they were randomized to two dietary groups, control and HFD, for 

three possible regimen durations, 2 wk, 4 wk (1 mo), and 12 wk (3 mo). Thus, the study 

comprised 6 groups of 7 mice each, for a total of 42 animals. Diets were provided ad 

libitum along with free access to water. Control diet comprised 10% kcal derived from 

fat (Research Diets, cat# D12450J), and HFD was composed of 60% kcal derived from 

fat (Research Diets, cat# D12492). Animals were sacrificed at study termination at 2 wk, 

1 mo, and 3 mo by intraperitoneal pentobarbital injection (Fatal-Plus, Vortech 

Pharmaceuticals) followed by perfusion with phosphate buffered saline. The study and 

all procedures (see sections below) were approved by the University of Michigan’s 

Institutional Animal Care and Use Committee (IACUC; protocol numbers PRO00010039 

and PRO00010247).  

 

2.5.2 Metabolic phenotyping 

Metabolic phenotyping included baseline, longitudinal, and terminal body 

weights, and baseline and terminal glucose tolerance tests, and were performed as 
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previously described 37. Terminal plasma insulin, total cholesterol, HDL, and 

triglycerides were measured. Baseline glucose tolerance tests (GTTs) were performed 

just prior to diet initiation for all animals, i.e., when aged 5 wk. Terminal GTTs were 

performed at study termination just prior to sacrifice at 2 wk, 1 mo, and 3 mo. For GTTs, 

mice were fasted for a minimum of 4 hours (h) and administered an intraperitoneal 

injection of 1 g glucose /kg body mass in normal saline. Blood glucose levels were 

measured by glucometer (AlphaTrak, Abbott Laboratories) from one drop of tail blood at 

baseline and 15, 30, 60, and 120 minutes (min) after glucose injection. Terminal plasma 

insulin (ELISA), total cholesterol, HDL, and triglycerides (lipid profiles measured on the 

Randox RX Daytona+) were quantified following established protocols by the Michigan 

Diabetes Research Center Chemistry Laboratory. 

 

2.5.3 Microglial immunohistochemistry 

One brain hemisphere from each mouse was dissected at study termination at 2 

wk, 1 mo, and 3 mo just following sacrifice. Brain hemispheres were fixed in 4% 

paraformaldehyde for ~ 48 h followed by serial 10%, 20%, and 30% sucrose for ~24 h 

at each concentration. Hemibrains were sectioned to 45 µm thickness and floating 

sections were stained by immunohistochemistry in rabbit anti-Iba1 (1:1000; Wako, cat# 

019-19741) at 4 °C overnight. Next, sections were incubated in goat-anti rabbit 

secondary antibody (1:2000, Alexa fluor Plus 594; Invitrogen, cat# A32740) for 2 h at 

room temperature followed by a Hoechst nuclear stain (1 mg/ml; Sigma-Aldrich, cat# 

861405) for 8 min. Sections were mounted using ProLong Gold Antifade Mountant 

(Thermo Fisher Scientific, cat# P36930). 
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2.5.4 Microglial morphological analysis 

Iba1-stained sections were imaged and z-stacks captured using a 40X objective 

with oil immersion on a Nikon A1 confocal microscope. Z-stacks 27 µm in thickness 

were pre-processed using Imaris Software (Oxford Instruments). Intact microglia 

(containing overlap of nuclear staining with Iba1 staining) were identified via the surface 

rendering tool and a mask was generated to isolate their fluorescence signal from the 

raw data and exclude branches not associated with cell somas. Cells with somas within 

the CA1 pyramidal layer were deleted prior to MATLAB processing. Pre-processed z-

stacks were saved as open microscopy environment TIF files, which were analyzed by 

an adapted 3DMorph script using MATLAB 35. Cells touching the X-Y border of the z-

stack were eliminated as partial cells. Partial cells on the edge of the z-stack were 

included, but required to have nuclear Hoescht signal overlapping with Iba1 

fluorescence. Results were then curated manually to eliminate objects misidentified as 

cells (or cell objects containing 2 nuclei) from the final dataset. The CA1 regions of the 

hippocampus from each animal was analyzed by 3 consecutive images centered 

around the stratum radiatum of CA1. A total of 35 to 75 cells per animal at each time 

point were included in the final analysis for a total of 1,857 cells analyzed. Cells that 

3DMorph failed to skeletonize in MATLAB were included in territorial volume, cell 

volume, and complexity results, but excluded from branch and endpoint results. 

 

2.5.5 Statistical methods 
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Statistical analyses were performed in Prism (GraphPad) and R software version 

4.1.1. Body weights were analyzed by mixed effects model, GTTs by two-way ANOVA 

with repeated measures, insulin, cholesterol, HDL, and triglycerides by ordinary two-

way ANOVA, all with Sidak’s multiple comparisons test. Linear mixed effects models 

with random animal-specific intercepts were used to determine the association between 

microglial cell morphology measures, treatment group (HFD vs control), duration of diet 

(2 weeks, 1 month, 3 months), and individual terminal metabolic factors (weight, 

cholesterol, HDL, insulin, triglycerides). The mixed effects models were fit using the 

lmerTest package in R and model parameter estimates were determined using the 

maximum likelihood method 55. T-tests performed using Satterthwaite’s degrees of 

freedom method were evaluated to assess differences in morphology measurements 

between treatment groups and diet duration groups. To visually confirm assumptions of 

normality, histograms were used. 
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Chapter 3 Single-cell RNA Sequencing Identifies Hippocampal Microglial 
Dysregulation in Diet-induced Obesity  

3.1 Abstract 

Obesity is a growing global concern in adults and youth along with a parallel rise 

in associated complications, including cognitive impairment. Obesity induces brain 

inflammation and activates microglia, which contribute to cognitive impairment likely by 

aberrantly phagocytosing synaptic spines. Local and systemic signals, such as 

inflammatory cytokines and metabolites likely participate in obesity-induced microglial 

activation. However, the precise mechanisms mediating microglial activation during 

obesity remain incompletely understood. Herein, we leveraged our mouse model of 

high-fat diet (HFD)-induced obesity, which mirrors human obesity, and develops 

hippocampal-dependent cognitive impairment. We assessed hippocampal microglial 

activation by morphological and single-cell transcriptomic analysis to evaluate this 

heterogeneous, functionally diverse, and dynamic class of cells over time after 1 and 3 

months of HFD. HFD altered cell-to-cell communication, particularly immune modulation 

and cellular adhesion signaling, and induced a differential gene expression signature of 

protein processing in the endoplasmic reticulum in a time-dependent manner. 

 

3.2 Introduction 

The global prevalence of obesity continues to rise. The World Health 
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Organization estimates that global obesity rates tripled from 1975 to 2016, including an 

increase from 4% to 16% of overweight or obese children and teens ([WHO 2021]). This 

steep rise is concerning as the complications of obesity place an immense strain on 

patients and healthcare systems. Obesity is associated with cognitive impairment and 

structural brain changes in adults 2,3 and children and adolescents 4–6. Midlife obesity 

also raises the risk of future dementia 7,8. Currently, dementia management is limited to 

pharmacological and lifestyle interventions, which address only symptoms, not disease 

pathology. There is a critical need to understand the mechanisms underlying obesity-

associated cognitive impairment across the lifespan. Obesity activates microglia, the 

resident macrophage-like central nervous system (CNS) immune cells, which contribute 

to this impairment 9, and thus constitute a potential target for intervention. 

In the healthy developing and adult hippocampus, a limbic brain structure 

involved in memory and learning, microglia serve a variety of homeostatic roles, 

including regulating synaptic function 10,11. Consequently, changes in microglial 

inflammatory status can lead to pathological states, which may impact cognition. Murine 

models of diet-induced obesity exhibit hippocampal inflammation after both acute 12,13 

and chronic periods of high-fat diet (HFD) feeding 9,14,15. Indeed, obese mice suffer from 

hippocampal-dependent cognitive deficits 9,14,16, along with hippocampal microglial 

morphology changes characteristic of pro-inflammatory activation after chronic HFD 9,14.  

Microglia are thought to contribute to cognitive impairment in obesity by 

aberrantly phagocytosing synaptic spines 9. Obesity increases brain inflammation and 

levels of hippocampal pro-inflammatory cytokines 17, e.g.  interleukin 1 beta (IL-1β) 14 

and tumor necrosis factor alpha (TNFα) 18. Inflammatory cytokines may activate 
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microglia 19, along with a variety of other local or systemic signals such as dysregulated 

metabolites 20, e.g. saturated fatty acids from HFD. Additionally, endoplasmic reticulum 

(ER) stress drives peripheral macrophage activation in obesity 21. We 22, and others 12, 

have shown that obesity induces hippocampal ER stress, which may similarly activate 

microglia as in peripheral macrophages. Moreover, obesity increases peripheral 

immune cell recruitment 23, and impairs blood-brain barrier function, facilitating entry of 

systemic inflammatory mediators 24. 

The impact of activated microglia on neuronal dysfunction and subsequent 

systemic metabolism and obesity has been well defined in the hypothalamus 25–27. 

However, less is understood about microglial activation in the hippocampus, and the 

precise mechanisms mediating this activation are unknown. Further, there is a need to 

address microglial heterogeneity, as a class of functionally diverse cells, as well as 

clarify the evolution of microglial activation over time to determine the appropriate 

temporal window for intervention. Currently, existing studies in the obesity field are 

limited by bulk hippocampal tissue analysis, which likely masks microglial-specific 

findings. By harnessing the power of single-cell RNA sequencing (scRNA-seq), we, for 

the first time, characterize the hippocampal microglial transcriptomic landscape at fine-

grained single-cell resolution in the context of diet-induced obesity. We identified 

obesity-associated dysregulated inflammatory pathways in microglia after 1 or 3 months 

(mo) of HFD in wild-type C57B/L6J mice as they transitioned from adolescence to 

adulthood. Additionally, we leveraged our single-cell dataset to investigate the dynamic 

immune cell-to-cell interplay, which is crucial for understanding subtle differences in 

microglial behavior in obesity. Our characterization of microglial activation states 
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provides the foundation necessary to elucidate the role of microglia in hippocampal 

pathology in obesity.  

 

3.3 Results 

3.3.1 HFD induces obesity but not early hippocampal microglial morphological 

activation 

To determine the effect of obesity on hippocampal microglial activation, we 

utilized our previously established mouse model of diet-induced obesity 28. We fed 5-wk-

old male C57BL/6J mice (n=10/group) either a 60% HFD enriched with saturated fatty 

acids or a control diet containing 10% fat (Figure 3.1A). To determine time-dependent 

changes in microglia in response to HFD, mice were divided into two cohorts and fed for 

1 mo or 3 mo. At the study endpoints, we isolated hippocampal microglia and performed 

scRNA-seq. HFD fed mice were heavier than control fed mice as early as after 2 wk of 

diet (Figure 3.1B). After 1 mo and 3 mo, HFD mice had deficits in glucose homeostasis 

versus control mice, characterized by elevated peak blood glucose levels upon glucose 

challenge, alongside a delayed return to baseline (Figure 3.1C). Baseline, i.e., at 5 wk 

of age, GTTs were indistinguishable between HFD and control groups (Figure 3.2A). 

Although glucose homeostasis was disrupted after 1 mo of HFD, fasting plasma insulin 

did not increase in HFD mice relative to controls until 3 mo (Figure 3.1D; P=0.0003), 

recapitulating hyperinsulinemia in humans with chronic obesity.  

We also examined basic plasma lipid profiles for cholesterol, triglycerides, 

phospholipids, and non-esterified fatty acids (NEFAs). Total plasma cholesterol was 

elevated in HFD mice after 1 mo and 3 mo diet (Figure 3.1E; P=0.0474, P=0.0021,  
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Figure 3.1 HFD induces obesity and dyslipidemia in mice.  

(A) Study design. Wild-type C57BL/6J mice aged 5 weeks were randomized to a high-fat diet (HFD) or 
control standard diet (ctrl). After 1 month (mo) or 3 (mo) of diet, HFD and control mice were sacrificed for 
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microglial isolation and metabolic phenotyping (n=10 per diet per time point). (B) Longitudinal body mass; 
from 0 to 4 wk (i.e., 1 mo time point) n=20 per diet per time point (HFD, green; ctrl, blue); from 5 wk 
onward, n=10 per diet (HFD, green; ctrl, blue). $P<0.05, $$P<0.01, $$$P<0.001, for HFD versus ctrl 1 mo 
cohort; *P<0.05, ***P<0.001, ****P<0.0001 for HFD versus ctrl 3 mo cohort; Sidak’s multiple comparisons 
test for repeated measures two-way ANOVA. (C) Glucose tolerance test (GTT); left panel for HFD (n=20; 
light green) versus control (n=20; light blue) at 1 mo (triangles); right panel for HFD (n=10; dark green) 
versus control (n=10; dark blue) at 3 mo (circles). Measures above the glucometer’s upper threshold were 
set to the threshold, 750 mg/dl. Plasma (D) insulin, (E) cholesterol, and (F) phospholipids; top panels for 
HFD (n=10; light green) versus control (n=7; light blue) at 1 mo (triangles); bottom panels for HFD (n=10; 
dark green) versus control (n=9; dark blue) at 3 mo (circles). C to F, *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001 for HFD versus control, by Sidak’s multiple comparisons test for repeated measures two-
way ANOVA for GTTs, by Welch’s t-test for insulin, cholesterol, and phospholipids, except for insulin 3 mo 
by Mann-Whitney test as data were not normally distributed.  
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Figure 3.2 Metabolic parameters in HFD and control mice.  

(A) Baseline glucose tolerance test (GTT) for HFD (1 mo and 3 mo combined; n=20; dark grey) versus 
control (ctrl; 1 mo and 3 mo combined; n=20; light grey) mice. Plasma (B) triglycerides (TGs) and (C) non-
esterified fatty acids (NEFAs); left panels for HFD (n=10; light green) versus control (n=7; light blue) at 1 
mo (triangles); right panels for HFD (n=10; dark green) versus control (n=9; dark blue) at 3 mo (circles). 
No significant difference between HFD and control in (A) by Sidak’s multiple comparisons test for 
repeated measures two-way ANOVA for GTT, and in (B,C) by Welch’s t-test except for NEFA 1 mo and 
triglycerides 3 mo by Mann-Whitney test as data were not normally distributed. 
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respectively) and phospholipids after 3 mo (Figure 3.1F; P=0.0096). Diet did not affect 

triglyceride (Figure 3.2B) or NEFA (Figure 3.2C) levels. Collectively, these metabolic 

data demonstrate that HFD mice are obese and develop systemic metabolic dysfunction 

after just 1 mo (e.g., glucose intolerance, elevated cholesterol), which becomes more 

severe after 3 mo (i.e., hyperinsulinemia, elevated phospholipids). 

We previously reported hippocampal dependent cognitive deficits in short-term 

memory in a mouse model after 2 wk, 6 wk, and 24 wk of HFD using a novel object 

recognition task 16. Obesity activates hippocampal microglia, assessed by 

morphological activation 9,14 after 3 mo of chronic HFD feeding. To address if 

hippocampal microglial changes occur earlier, like cognitive deficits, we quantified 3-

dimensional (3D) microglial morphology after 1 mo. Homeostatic microglia display 

complex branching patterns to surveil their environment, but environmental challenges 

trigger morphology shifts, characterized by smaller territorial volume and simpler 

branching patterns.  

We performed 3D analyses on tissue sections stained by immunohistochemistry 

for the microglial marker ionized calcium binding adaptor molecule 1 (Iba1) using a 

modified 3D-Morph protocol 29. 3D z-stack images of hippocampal tissue sections were 

acquired by confocal microscopy. After pre-processing in Imaris, images were run 

through 3D-Morph in MATLAB to measure territorial volume, cell volume, and branching 

parameters based on convex hull analyses and skeletonization 29 (representative cells, 

Figure 3.3A-B). After 1 mo diet, microglia in the CA1 region of the hippocampus from 

HFD-fed mice were not morphologically distinct from control microglia. Territorial 

volume (P=0.16), the 3D space taken up by the cell body and all its branches, cell  
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Figure 3.3  Obesity does not alter hippocampal microglial morphology at 1 mo.  

(A) Representative 3D Morph29 analysis for a control microglia from the hippocampal CA1 region, 
confocal microscopy (left), skeletonization (center), and branchpoints (right). (B) Representative 3D 
Morph analysis for a HFD microglia from the hippocampal CA1 region. Sections were stained for 
microglial Iba1 (594 nm, red channel) and with Hoechst nuclear staining (blue channel). Scale bar is 30 
µm. Microglial (C) territorial volume, (D) cell volume, (E) ramification index, and (F) branchpoint number 
per cell; left panels for control (ctrl; n=3 animals, 3 images/animal; blue) versus HFD (n=4 animals, 3 
images/animal; green), each circle represents an individual cell. There were no significant differences in 
HFD versus control by linear mixed effects models with random animal-specific intercepts with t-test. 
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volume (P=0.26), defined as the volume of the soma and branches themselves, and 

ramification index (P=0.52), defined as the territorial volume divided by the cell volume, 

did not differ by diet. There was also no difference in the number of endpoints (P=0.42) 

and branchpoints (P=0.08); however, there was a trend towards fewer branchpoints per 

cell in HFD microglia. 

 

3.3.2 Microglial heterogeneity remains constant in HFD and control mice  

Next, we investigated the microglial single-cell transcriptome to understand how 

hippocampal microglia are activated to contribute to obesity associated cognitive 

impairment. To characterize transcriptomic heterogeneity of the microglial landscape, 

we performed scRNA-seq on microglia isolated from the hippocampi of HFD and control 

mice (n=6/group) after 1 mo and 3 mo (Figure 3.4A). We performed a papain enzymatic 

digestion followed by serial trituration to prepare a single cell suspension from the 

hippocampus. We enriched for microglia by applying a 40% Percoll centrifugation to our 

cells and collecting the cell pellet, and further purified by fluorescence activated cell 

sorting (FACS). We sorted CD11b+/CD45low double positive cells, representing 

microglia, rather than CD11b+/CD45high cell surface markers, which represent 

macrophages. Sorted cells were sequenced on the 10X Chromium platform and RNA 

reads were quality filtered before mapping to the mouse reference genome. We used 

CellRanger Count to prepare sample files, which were read into Seurat. Cells were 

excluded from downstream analysis based on criteria outlined in the Methods (section 

3.5). In total, 4,555 HFD and 4,945 control cells were included in analysis at 1 mo, and 

1,292 HFD and 1,255 control cells at 3 mo. To determine the success of FACS, we  
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Figure 3.4   Isolated cells cluster into eleven distinct populations.  

(A) Diagram of microglial isolation protocol. (B) Uniform Manifold Approximation and Projection (UMAP) 
shows 11clusters, which represent homeostatic microglia 1 (HMG1), HMG2, HMG3, macrophages (Mac), 
uMG (uknown, functionally undescribed), inflammatory microglia (InflamMG), proliferating microglia 
(ProlifMG), neurons (Neuro), interferon-related microglia (IfnMG), neutrophils (Neu), and monocytes 
(Mono). (D) Dot plot of markers used to assign cluster identity. Dot size represents the percentage of cells 
from a given cluster expressing the marker, dot color represents average expression relative to all other 
clusters. (E) UMAP plots by markers that differentiated various clusters, InflamMG by chemokine Ccl4 (C-
C motif chemokine ligand 4), IfnMG by interferon-induced Ifit2 (interferon induced protein with 
tetratricopeptide repeats 2), ProlifMG by DNA topoisomerase Top2a (DNA topoisomerase II alpha), and 
macrophages by immunomodulating Mrc1 (mannose receptor C-type 1). (F) UMAP plots with expression 
of microglial (Cx3cr1, CX3C chemokine receptor 1; P2ry12, purinergic receptor P2Y12; Tmem119, 



 75 

transmembrane protein 119) versus astrocytic (Gfap, glial fibrillary acidic protein) markers shows a 
relatively pure microglia isolation. UMAP plot for another microglial marker, Aif1 (allograft inflammatory 
factor 1), the gene encoding Iba1 protein, is shown in Figure 3.5. 
 

examined expression of the CD11b gene, Itgam, and the CD45 gene, Ptprc, which were 

expressed by most cells, suggesting a successful cell sort (Figure 3.5A).  

Next, we performed principal component analysis to reduce data dimensionality 

and then analyzed and visualized clusters using Uniform Manifold Approximation and 

Projection (UMAP). We identified eleven cell clusters (Figure 3.4B), which were 

characterized by cell-specific markers found using the FindAllMarkers function in Seurat 

(Figure 3.4C). We reviewed previously published data sets and leveraged the 

CellMarker and PanglaoDB databases to assign cell type identities to each cluster. As 

anticipated, most clusters, seven out of eleven, were microglial subtypes, of which three 

were homeostatic microglia (HMG), HMG1, 2, 3. The remaining microglial subtypes 

were inflammatory microglia (InflamMG, expressing C-C motif chemokine ligand 4 

[Ccl4] and Ccl3, Figure 3.4D), interferon-related microglia (IfnMG, expressing interferon 

induced protein with tetratricopeptide repeats 2 [Ifit2] and Ifit3, Figure 3.4D), 

proliferating microglia (ProlifMG, expressing DNA topoisomerase II alpha [Top2a], 

Figure 3.4D, and marker of proliferation Ki-67 [Mki67]), and a functionally undescribed 

subtype labeled “uMG” for ‘undescribed microglia’ (Table 3.1).  

In addition to the microglia subtypes, we also identified macrophages (Mac, 

expressing mannose receptor C-type 1 [Mrc1], Figure 3.4D), monocytes (Mono, 

expressing C-C motif chemokine receptor 2 [Ccr2] and lymphocyte antigen 6 complex, 

locus C2 [Ly6c2], UMAP not shown, features in Figure 3.4C), neutrophils (Neu, 

expressing S100 calcium binding protein A8 [S100a8] and S100a9, UMAP not shown,  
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Figure 3.5  UMAP shows purity of microglial isolation and successful FACS sort.  

(A) UMAP plots of gene expression for antigens used in FACS sorting, CD11b and CD45. Almost all cells 
express Itgam (integrin subunit alpha M; left panel), the gene encoding CD11b (cluster of differentiation 
11b), and Ptprc (protein tyrosine phosphatase receptor type C; right panel), the gene encoding CD45. (B) 
UMAP plot with expression of Aif1 (allograft inflammatory factor 1), the gene encoding Iba1 protein, a 
microglial marker. (C) UMAP plot with expression of Rbfox3 (RNA binding fox-1 homolog 3; left panel), 
the gene encoding NeuN protein, a neuronal marker, and for Olig2 (oligodendrocyte transcription factor 2; 
right panel), an oligodendrocyte marker. 
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Table 3.1  Cluster-specific marker genes.  

Gene markers used to cluster cells into homeostatic microglia (HMG), HMG1, 2, and 3, inflammatory 
microglia (InflamMG), interferon-related (IfnMG,), proliferating microglia (ProlifMG), functionally 
undescribed microglia (uMG), macrophages (Mac), monocytes (Mono), neutrophils (Neu), and neurons 
(Neuro). Entries arranged by nominal P-value. Adjusted P-value (Padj) based on Bonferroni correction 
using all features in the dataset. FC, fold-change; pct.1, percentage of cells where the feature is detected 
in the first group; pct.2, percentage of cells where the feature is detected in the second group. Only the 
top 10 genes for each cluster are listed below; the complete dataset will be available at the time of 
publication or upon request. 

Gene Cluster P-value avg Log2FC pct.1 pct.2 Padj 
Rps4x HMG1 0.00E+00 0.859 1.000 0.956 0.00E+00 
Rpl39 HMG1 0.00E+00 0.831 1.000 0.962 0.00E+00 
Rpl21 HMG1 0.00E+00 0.825 1.000 0.962 0.00E+00 
Rps21 HMG1 0.00E+00 0.825 1.000 0.965 0.00E+00 
Rps3a1 HMG1 0.00E+00 0.824 1.000 0.956 0.00E+00 
Rpl30 HMG1 0.00E+00 0.824 1.000 0.961 0.00E+00 
Rps7 HMG1 0.00E+00 0.813 1.000 0.941 0.00E+00 
Rpl37a HMG1 0.00E+00 0.801 1.000 0.965 0.00E+00 
Rps15a HMG1 0.00E+00 0.799 1.000 0.950 0.00E+00 
Fau HMG1 0.00E+00 0.797 1.000 0.976 0.00E+00 
  

            

P2ry12 HMG2 2.28E-178 0.387 1.000 0.962 7.36E-174 
Cx3cr1 HMG2 4.08E-158 0.328 1.000 0.980 1.32E-153 
Selplg HMG2 1.73E-138 0.330 1.000 0.943 5.59E-134 
Tmem119 HMG2 7.58E-119 0.336 0.997 0.890 2.45E-114 
Sparc1 HMG2 2.06E-118 0.332 1.000 0.933 6.66E-114 
Hexb HMG2 4.14E-118 0.290 1.000 0.987 1.34E-113 
Slc2a5 HMG2 5.78E-100 0.333 0.921 0.732 1.86E-95 
Cd164 HMG2 7.10E-93 0.280 0.989 0.905 2.29E-88 
P2ry13 HMG2 5.56E-92 0.284 0.995 0.890 1.79E-87 
Gpr34 HMG2 7.11E-92 0.278 0.999 0.939 2.30E-87 
Gene Cluster P-value avg Log2FC pct.1 pct.2 Padj 

P2ry121 HMG3 0.00E+00 0.679 1.000 0.963 0.00E+00 
Rhob1 HMG3 0.00E+00 0.666 0.986 0.876 0.00E+00 
Tgfbr1 HMG3 0.00E+00 0.616 0.999 0.931 0.00E+00 
Hexb1 HMG3 0.00E+00 0.435 1.000 0.987 0.00E+00 
Arhgap5 HMG3 1.65E-298 0.600 0.995 0.903 5.34E-294 
Gpr341 HMG3 4.81E-282 0.542 1.000 0.941 1.55E-277 
P2ry131 HMG3 1.41E-279 0.591 0.993 0.894 4.55E-275 
Selplg1 HMG3 9.46E-273 0.486 1.000 0.945 3.05E-268 
Mef2a HMG3 5.48E-272 0.518 0.991 0.937 1.77E-267 
Nrip1 HMG3 2.72E-256 0.631 0.952 0.822 8.78E-252 
Gene Cluster P-value avg Log2FC pct.1 pct.2 Padj 

Itgax InflamMG 6.91E-307 0.660 0.365 0.034 2.23E-302 
Cd9 InflamMG 5.54E-270 1.424 1.000 0.907 1.79E-265 
Cst7 InflamMG 4.75E-257 1.084 0.487 0.081 1.53E-252 
Lpl InflamMG 8.56E-251 1.355 0.466 0.075 2.76E-246 
Ctsz InflamMG 3.52E-243 1.119 1.000 0.951 1.14E-238 
Cd63 InflamMG 9.55E-243 1.825 0.983 0.748 3.08E-238 
Gas2l3 InflamMG 1.12E-240 0.636 0.293 0.028 3.63E-236 
Ctsb InflamMG 2.98E-240 1.152 1.000 0.976 9.62E-236 
Csf1 InflamMG 5.74E-223 1.249 0.464 0.085 1.85E-218 
Lgals3 InflamMG 7.05E-199 0.843 0.239 0.022 2.28E-194 
Gene Cluster P-value avg Log2FC pct.1 pct.2 Padj 

Ifit2 IfnMG 6.67E-225 1.760 0.525 0.022 2.15E-220 
Ifit3 IfnMG 1.74E-203 2.496 0.673 0.042 5.62E-199 
Ifit3b IfnMG 6.88E-203 1.362 0.386 0.012 2.22E-198 
Usp18 IfnMG 1.48E-174 1.124 0.495 0.025 4.77E-170 
Ifit1 IfnMG 2.51E-151 1.157 0.317 0.011 8.10E-147 
Rtp4 IfnMG 8.18E-151 1.535 0.802 0.082 2.64E-146 
Irf7 IfnMG 1.63E-138 0.773 0.376 0.018 5.25E-134 
Oasl2 IfnMG 6.75E-115 1.219 0.475 0.036 2.18E-110 
Isg15 IfnMG 1.04E-109 1.699 0.535 0.049 3.36E-105 
Rsad2 IfnMG 1.09E-93 0.672 0.248 0.011 3.52E-89 
Gene Cluster P-value avg Log2FC pct.1 pct.2 Padj 

Mki67 ProlifMG 0.00E+00 2.181 0.264 0.004 0.00E+00 
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Nusap1 ProlifMG 0.00E+00 1.242 0.214 0.002 0.00E+00 
Birc5 ProlifMG 0.00E+00 1.162 0.242 0.003 0.00E+00 
Pbk ProlifMG 0.00E+00 1.140 0.220 0.001 0.00E+00 
Tpx2 ProlifMG 0.00E+00 0.967 0.242 0.004 0.00E+00 
Knl1 ProlifMG 0.00E+00 0.900 0.220 0.001 0.00E+00 
Lockd ProlifMG 0.00E+00 0.731 0.220 0.002 0.00E+00 
Nuf2 ProlifMG 0.00E+00 0.707 0.264 0.003 0.00E+00 
Aspm ProlifMG 0.00E+00 0.649 0.165 0.001 0.00E+00 
Fignl1 ProlifMG 0.00E+00 0.590 0.341 0.006 0.00E+00 
Gene Cluster P-value avg Log2FC pct.1 pct.2 Padj 

mt-Cytb uMG 5.15E-225 1.991 0.982 0.997 1.66E-220 
mt-Atp6 uMG 4.93E-222 1.975 0.982 0.997 1.59E-217 
mt-Nd4 uMG 1.79E-214 1.964 0.967 0.993 5.79E-210 
mt-Nd2 uMG 3.01E-213 2.074 0.958 0.989 9.71E-209 
mt-Nd1 uMG 4.00E-213 2.021 0.956 0.991 1.29E-208 
mt-Co3 uMG 4.93E-210 1.914 0.982 0.998 1.59E-205 
mt-Co2 uMG 1.12E-205 1.902 0.977 0.996 3.61E-201 
Malat11 uMG 1.48E-198 1.084 0.998 0.994 4.77E-194 
mt-Co1 uMG 3.03E-180 1.739 0.979 0.997 9.79E-176 
Ivns1abp1 uMG 1.65E-106 1.237 0.866 0.952 5.33E-102 
Gene Cluster P-value avg Log2FC pct.1 pct.2 Padj 

Apoe Mac 0.00E+00 5.384 0.998 0.760 0.00E+00 
Pf4 Mac 0.00E+00 5.062 0.949 0.108 0.00E+00 
Mrc1 Mac 0.00E+00 4.890 0.965 0.149 0.00E+00 
Wfdc17 Mac 0.00E+00 4.144 0.798 0.074 0.00E+00 
Ms4a7 Mac 0.00E+00 4.013 0.932 0.034 0.00E+00 
Dab2 Mac 0.00E+00 3.984 0.959 0.185 0.00E+00 
Lyz2 Mac 0.00E+00 3.910 0.995 0.773 0.00E+00 
F13a1 Mac 0.00E+00 3.770 0.883 0.035 0.00E+00 
Cd163 Mac 0.00E+00 3.285 0.684 0.018 0.00E+00 
Pla2g7 Mac 0.00E+00 2.895 0.849 0.032 0.00E+00 
Gene Cluster P-value avg Log2FC pct.1 pct.2 Padj 

S100a4 Mono 0.00E+00 4.131 0.795 0.028 0.00E+00 
S100a6 Mono 0.00E+00 3.921 0.880 0.027 0.00E+00 
Ahnak1 Mono 0.00E+00 3.332 0.932 0.020 0.00E+00 
Vim Mono 0.00E+00 2.910 0.855 0.027 0.00E+00 
Ly6c2 Mono 0.00E+00 2.716 0.308 0.004 0.00E+00 
Lgals31 Mono 0.00E+00 2.557 0.821 0.026 0.00E+00 
Gzmb Mono 0.00E+00 2.539 0.145 0.000 0.00E+00 
Napsa Mono 0.00E+00 2.454 0.829 0.004 0.00E+00 
Anxa2 Mono 0.00E+00 2.304 0.897 0.024 0.00E+00 
Itgal Mono 0.00E+00 2.264 0.641 0.012 0.00E+00 
Gene Cluster P-value avg Log2FC pct.1 pct.2 Padj 

Retnlg Neu 0.00E+00 6.026 0.960 0.009 0.00E+00 
Il1b1 Neu 0.00E+00 5.448 0.949 0.022 0.00E+00 
S100a61 Neu 0.00E+00 5.355 0.970 0.028 0.00E+00 
Slpi Neu 0.00E+00 4.685 0.919 0.005 0.00E+00 
Cxcr2 Neu 0.00E+00 4.184 0.960 0.005 0.00E+00 
Dusp1 Neu 0.00E+00 3.890 0.909 0.018 0.00E+00 
Mmp9 Neu 0.00E+00 3.859 0.939 0.005 0.00E+00 
Ifitm1 Neu 0.00E+00 3.822 0.677 0.006 0.00E+00 
Lcn2 Neu 0.00E+00 3.812 0.606 0.006 0.00E+00 
Wfdc21 Neu 0.00E+00 3.692 0.717 0.003 0.00E+00 
Gene Cluster P-value avg Log2FC pct.1 pct.2 Padj 

Cpe Neuro 1.96E-134 1.251 0.368 0.026 6.34E-130 
Slc1a2 Neuro 1.65E-116 2.127 0.349 0.027 5.32E-112 
Ptprz1 Neuro 1.93E-115 0.801 0.112 0.002 6.24E-111 
Ddn Neuro 2.68E-106 0.792 0.184 0.008 8.64E-102 
Mt3 Neuro 2.80E-105 1.832 0.441 0.050 9.03E-101 
Sparcl1 Neuro 1.96E-103 1.646 0.250 0.015 6.34E-99 
Clu Neuro 3.78E-92 1.344 0.204 0.011 1.22E-87 
Sptbn2 Neuro 1.08E-90 0.432 0.105 0.003 3.48E-86 
Cnih2 Neuro 4.01E-74 0.373 0.105 0.003 1.29E-69 
Pcsk1n Neuro 1.26E-69 0.591 0.145 0.007 4.06E-65 
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features in Figure 3.4C), and neurons (Neuro, expressing calcium/calmodulin 

dependent protein kinase II alpha [Camk2a] and microtubule associated protein 2 

[Map2], UMAP not shown, features in Figure 3.4C). Most sequenced cells expressed 

microglial markers Cx3cr1, P2ry12 (Figure 3.4E), and Aif1 (gene coding for Iba1; 

Figure 3.5B) and the microglial-specific gene Tmem119 (Figure 3.4E), as expected, 

since we enriched for microglia. Further, the analyzed cells expressed only low levels of 

the astrocyte specific gene Gfap (Figure 3.4E) neuronal specific gene Rbfox3, and 

oligodendrocyte specific gene Olig2 (Figure 3.5C). 

All seven microglial and four additional cell type clusters were present in both 

HFD and control groups (Figure 3.6A), and at both 1 mo and 3 mo. Although all cell 

clusters were represented in all experimental groups, we assessed the proportion of 

each cell cluster by diet or age. Cluster proportions were similar between HFD and 

control groups at 1 mo and 3 mo (Figure 3.6B). In all experimental groups, the largest 

proportion of cells comprised homeostatic microglia, HMG1, 2, and 3 at both 1 mo (HFD 

77.8% versus control 76.9%) and 3 mo (HFD 69.4% versus control 65.3%). 

Macrophages were the second most abundant cell type after HMGs at 1 mo (HFD 7.1% 

versus control 7.5%) and 3 mo (HFD 12.2% versus control 12.4%). Other microglial 

subtypes (uMG, InflamMG, ProlifMG, and IfnMG) ranged from 0.8% to 8.6% of all cells 

in HFD and control conditions at 1 mo and 3 mo.   

 

3.3.3 Obesity dysregulates microglial inflammatory cell-to-cell signaling  

Microglia are immune cells that constantly survey the CNS environment and 

respond to external signals 30–32. Thus, we examined the effect of obesity on cell-to-cell  
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Figure 3.6  Microglial heterogeneity remains constant in HFD versus control mice.  

(A) UMAP of HFD versus control (ctrl) at both time points. (B) Top panel: Circle chart of all 11 cell types 
by percentage at 1 mo for HFD (left) versus control (right). Bottom panel: Circle chart of all 12 cell types 
by percentage at 3 mo for HFD (left) versus control (right).  
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communication within our single-cell dataset. To do so, we utilized CellChat 33, a tool 

that leverages a database of over 2,000 ligand and receptor pairs and scRNA-seq data 

to infer intercellular communication. We first looked at information flow of intercellular 

signaling pathways in HFD and control conditions at 1 mo and 3 mo (Figures 3.7A, 

3.7D), which is based on a summation of probabilities of pathway communication for all 

cell type pairs. For each pathway, CellChat also identifies the ligand-receptor gene pairs 

contributing to pathway signaling, which is visualized in circle plots of cell types that 

send and receive signals for the given pathway (Figures 3.7B-C, 3.7E-F).  

Information flow at the 1 mo time point was higher in 23 pathways in HFD versus 

control cells and 12 pathways in control versus HFD cells (Figure 3.7A). In some 

instances, signaling pathways were only detected in cells of one diet group, e.g., type-1 

interferon (IFN-I) signaling at 1 mo in HFD cells. The pathways with microglia-to-

microglia signaling that were elevated in HFD at 1 mo fell into a few broad categories. 

‘CDH’, ‘ICAM1,’ ‘PECAM1’, ‘HSPG, and ‘CD200’  ligands are cell surface glycoproteins 

with various immune regulatory roles, including cellular adhesion 34, T-cell co-

stimulation 35, microglial pro-inflammatory activation 36–38, as well as inhibition of 

microglial activation in the case of CD200 39. The ‘IFN-I’ ligand is a cytokine involved in 

canonical pro-inflammatory signaling. ‘EGF’, ‘GRN’, and ‘TGFb’ ligands are growth 

factors, and loss of microglial progranulin and granulin signaling has been extensively 

studied in frontotemporal dementia 40 and neurodegeneration 41. Finally, the ‘SEMA6’ 

ligand is a transmembrane protein with a known role in axon guidance 42. 

‘HSPG’ and ‘IFN-I’ were the sole pathways driven by microglia-to-microglia 

signaling with information flow turned on in HFD cells at 1 mo (Figures 3.7B-C). For  
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Figure 3.7  Cell-to-cell communication analyses reveal HFD specific intercellular communication 
pathways.  

(A) Information flow charts at 1 mo for HFD (blue) versus control (ctrl; red) generated by CellChat. Teal 
bars represent information flow in HFD cells, red bars represent information flow in control cells. Signaling 
pathways in teal text have significantly higher information flow in HFD cells relative to control, signaling 
pathways in red text have significantly higher information flow in control cells, and signaling pathways in 
black text are not significantly different between groups; vertical dashed lines represent information flow 
equal in both HFD and control. (B-C) Circle plots of cellular signaling interactions (top) and their top 
contributing ligand-receptor (L-R) pairs (bottom) for pathway networks involving (B) HSPG for HFD at 1 
mo and (C) IFN-I for HFD at 1 mo. Dots in circle plots represent cell populations with color codes 
matching UMAP clusters; strokes represent communication between distinct cell populations and loops 
represent signaling within cell populations. Stroke and loop colors reflect the cluster sending the signal, 
and thickness reflects strength of the signaling pair. (D) Information flow chart at 3 mo for HFD (blue) 
versus control (ctrl; red). (E-F) Circle plots (top) and top contributing L-R pairs (bottom) for pathway 
networks involving (E) IL6 for HFD at 3 mo and (F) PDGF for HFD at 3 mo. 

 

 

 



 83 

‘HSPG’ signaling, InflamMG signaled to HMG3, HMG2, and ProlifMG, with autocrine 

signaling to itself, and IfnMG cells signaled to InflamMG and ProlifMG (Figure 3.7B; 

top). Signaling was mediated between the ligand heparan sulfate proteoglycan 2 

(Hspg2) and its receptor, dystroglycan 1 (Dag1) (Figure 3.7B; bottom). The interferon 

(‘IFN-I’) signaling pathway network in HFD cells at 1 mo was more complex and 

involved connections among multiple cell types, including non-microglia cells. ‘IFN-I’ 

signaling originated from ProlifMG, Mac, Mono, IfnMG, InflamMG, HMG3, HMG2, and 

HMG1) (Figure 3.7C). Since we enriched for microglia using CD11b+/CD45low FACS, 

the non-microglial immune cells we isolated may comprise a biased sampling of the true 

populations. Due to this potential bias and the likelihood that they do not represent the 

full diversity of monocytes, neutrophils, macrophages, and neurons, it is difficult to draw 

firm conclusions regarding signaling networks involving these cell types as the senders 

and/or receivers. However, we can determine that IFN-I signaling involves a dynamic 

interplay between multiple cell types, highlighting the value of cell-to-cell communication 

analysis in the context of microglial mediated pathology. 

Information flow at the 3 mo time point was higher in 27 pathways in HFD versus 

control cells and 10 pathways in control versus HFD cells (Figure 3.7D). Again, in some 

cases, signaling pathways were only detected in cells of one diet group, e.g., ‘IL6’ 

signaling at 3 mo in HFD cells. At 3 mo, HFD turned on microglia-to-microglia signaling 

of ‘IL6’, ‘PDGF’ (Figures 3.7E-F), ‘KIT’, ‘VISTA’ (Figure 3.8A), ‘HSPG’, and ‘LAMININ’ 

pathways. The pathways elevated in HFD cells relative to controls containing microglia-

to-microglia network signaling included ‘CD86’, ‘ICOS’, ‘CD200’, ‘SEMA6’, ‘PROS’, 

‘CD48’, ‘CADM’ (Figure 3.8B-C), ‘TGFb’, and ‘GRN’. Like at 1 mo, signaling pathways  



 84 

 

Figure 3.8  Cell-to-cell communication analyses.  

Circle plots of cellular signaling interactions (top) and their top contributing ligand-receptor (L-R) pairs 
(bottom) for pathway networks involving (A) VISTA for HFD at 3 mo, (B) CADM for control (Ctrl) at 3 mo, 
(C) CADM for HFD at 3 mo. Dots in circle plots represent cell populations with color codes matching 
UMAP clusters; strokes represent communication between distinct cell populations and loops represent 
signaling within cell populations. Stroke and loop colors reflect the cluster sending the signal, thickness 
reflects strength of the signaling pair. 
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ligands included growth factors, e.g., ‘PDGF’, ‘KIT’, ‘TGFb’, and ‘GRN’, and 

glycoproteins with immunomodulatory functions, e.g., ‘HSPG’ and ‘CD200’. ‘IL6’ and 

‘KIT’ ligands are cytokines, and other ligands are cell surface immunomodulatory 

antigens, e.g., ‘CD86’, ‘ICOS’, ‘CD48’, and ‘VISTA’. IL-6, a cytokine with context-

dependent pro- or anti-inflammatory effects 43, was expressed by IfnMG and its receptor 

by HMG2 and HMG3 (Figure 3.7E). We found obesity turned on PDGF signaling at 3 

mo (Figure 3.7F). Several microglia subtypes (InflamMG, HMG1, HMG2, HMG3, 

ProlifMG, IfnMG, uMG) expressed the platelet derived growth factor (PDGF) ligand and 

signaled to other microglia, as well as to macrophages, neutrophils, monocytes, and 

neurons. PDGF is a mitogen with well-studied roles in development and wound healing, 

yet has detrimental effects in various disease contexts, such as cancer and 

atherosclerosis 44,45.   

 

3.3.4 Obesity dysregulates microglial ER homeostasis  

The results from CellChat yielded insight into the effects of obesity on microglial 

cell-to-cell communication. However, we were also interested in the dysregulated 

intracellular processes to identify potential drivers of an activated state. To accomplish 

this goal, we performed differentially expressed gene (DEG) analysis for all microglia 

types combined in HFD versus control using DESeq2. There were 89 DEGs after 1 mo 

HFD, and 46 DEGs after 3 mo (adjusted P-value <0.05) (Figure 3.9A, Table 3.2). To 

identify the biological significance of these DEGs, we performed Kyoto Encyclopedia of 

Genes and Genomes (KEGG) enrichment analysis (Figure 3.9B). Five pathways were 

identified at 1 mo; ‘ribosome’ and ‘Covid-19’ contained the same genes, which were all  
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Figure 3.9  HFD dysregulates protein processing in the ER across microglial subtypes.  

(A) Volcano plots of differentially expressed genes (DEGs) in HFD versus control (ctrl) at 1 mo (left) and 3 
mo (right) for all microglia subtypes combined with top 20 annotated DEGs. Significant DEGs above the 
horizontal red line based on P-adjusted <0.05, blue dots represent significantly downregulated in HFD, 
red dots represent significantly upregulated in HFD. FC, fold-change. (B) KEGG pathway analysis of 
DEGs in HFD versus control at 1 mo (top) and 3 mo (bottom). Dot color represents -log10(P-value) from 
least significant (light pink) to most significant (red); dot size represents gene number, the number of 
significant DEGs in the KEGG pathway; rich factor represents the fraction of significant DEGs among all 
genes in the KEGG pathway. (C) WGCNA modules by color, turquoise, yellow, brown, green, blue, with 
number of genes assigned to each module (column 1), and corresponding heatmap of median module 
expression by condition. The grey module comprises genes not clustered into a co-expression module.  
Significant differences in expression of genes in modules between experimental groups by Kruskal-
Wallis, *P<0.05, **P<0.01. (D) Boxplots of yellow and brown module expression. Significant differences 
by Kruskal-Wallis, *P<0.05, **P<0.01. (E) KEGG pathway analysis of genes in HFD versus control from 
the yellow (left) and brown (right) modules. Bar color represents -log10(P-value) from least significant 
(light pink) to most significant (red); bar length represents the number of genes in the KEGG pathway, 
annotated with a number; rich factor represents the fraction of genes among all genes in the KEGG 
pathway. 
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Table 3.2  Microglia DEGs.  

Differentially expressed genes (DEGs) of all microglia clusters combined from HFD versus control mice at 
1 mo (white) and 3 mo (grey) meeting the criteria of nominal P-value>0.05. Entries arranged by nominal 
P-value. Adjusted P-value based on Bonferroni correction using all features in the dataset. FC, fold-
change; pct.1, percentage of cells where the feature is detected in the first group; pct.2, percentage of 
cells where the feature is detected in the second group. Only the top 50 genes for each timepoint are 
included below; the complete dataset will be available at the time of publication or upon request. 

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj 
Mt1 1.12E-40 -0.36863 0.564 0.692 3.63E-36 
Gm10076 9.99E-38 -0.30252 0.528 0.651 3.22E-33 
Hspa8 6.32E-28 0.162455 0.936 0.917 2.04E-23 
G530011O06Rik 2.82E-25 -0.26056 0.477 0.584 9.09E-21 
Rpl3 3.14E-20 -0.19781 0.934 0.947 1.01E-15 
Dnaja1 5.11E-17 0.123507 0.697 0.646 1.65E-12 
Rbm3 2.85E-16 -0.19676 0.509 0.605 9.19E-12 
Hsp90b1 1.19E-15 -0.18333 0.975 0.98 3.83E-11 
Rplp0 1.86E-14 -0.17252 0.932 0.946 6.02E-10 
Rpl10 2.70E-14 -0.1699 0.964 0.971 8.73E-10 
Ubb 7.56E-14 -0.15925 0.958 0.966 2.44E-09 
Pdia6 1.70E-13 -0.18534 0.842 0.876 5.48E-09 
Actg1 2.11E-13 -0.18381 0.898 0.93 6.82E-09 
Rps16 1.42E-12 -0.1581 0.96 0.969 4.60E-08 
Rpl11 1.54E-12 -0.15044 0.964 0.974 4.97E-08 
Rpl19 3.53E-12 -0.15649 0.962 0.97 1.14E-07 
Rplp2 7.75E-12 -0.15791 0.961 0.97 2.50E-07 
Eef1a1 1.34E-11 -0.14966 0.983 0.989 4.31E-07 
H3f3b 1.43E-11 -0.16161 0.945 0.955 4.61E-07 
Rpl32 2.40E-11 -0.1626 0.968 0.974 7.75E-07 
Trem2 7.97E-11 -0.13733 0.975 0.982 2.57E-06 
Lamtor4 8.24E-11 -0.15449 0.695 0.748 2.66E-06 
Zeb2os 8.65E-11 -0.15022 0.506 0.571 2.79E-06 
Rack1 1.21E-10 -0.15145 0.927 0.936 3.89E-06 
Fcer1g 1.48E-10 -0.12497 0.983 0.985 4.78E-06 
Rps20 1.62E-10 -0.16168 0.963 0.963 5.24E-06 
Rps7 1.91E-10 -0.15009 0.96 0.969 6.16E-06 
Eef1b2 4.82E-10 -0.15831 0.918 0.922 1.56E-05 
Rps9 5.30E-10 -0.14391 0.971 0.975 1.71E-05 
Naca 1.38E-09 -0.14461 0.908 0.918 4.45E-05 
Zeb2 1.43E-09 0.088121 0.927 0.905 4.63E-05 
Gapdh 1.46E-09 -0.15731 0.898 0.918 4.72E-05 
Fau 1.51E-09 -0.14693 0.983 0.987 4.89E-05 
Rpsa 1.61E-09 -0.15303 0.946 0.95 5.21E-05 
Rps18 1.62E-09 -0.15134 0.944 0.946 5.21E-05 
Fam91a1 1.66E-09 0.083871 0.752 0.728 5.35E-05 
Hpgd 1.73E-09 0.067212 0.917 0.908 5.60E-05 
Rpl5 1.99E-09 -0.14716 0.96 0.962 6.43E-05 
Uba52 2.11E-09 -0.14924 0.936 0.942 6.82E-05 
Rpl8 2.24E-09 -0.1339 0.94 0.951 7.22E-05 
Rpl12 2.34E-09 -0.14569 0.942 0.952 7.56E-05 
Fth1 2.98E-09 -0.14554 0.981 0.986 9.63E-05 
Rpl21 3.10E-09 -0.13779 0.973 0.98 0.0001 
Rpl17 3.35E-09 -0.14847 0.963 0.971 0.000108 
Rpl35 3.76E-09 -0.16315 0.946 0.949 0.000121 
Rpl15 3.79E-09 -0.1365 0.943 0.95 0.000122 
Calr 3.88E-09 -0.15554 0.954 0.959 0.000125 
Ppib 4.68E-09 -0.13976 0.937 0.945 0.000151 
Rpl30 4.70E-09 -0.1398 0.972 0.978 0.000152 
Rps5 6.94E-09 -0.14728 0.939 0.947 0.000224 
Gene p_val avg_log2FC pct.1 pct.2 p_val_adj 

Rbm39 1.45E-15 0.439514 0.954 0.913 4.68E-11 
Rbm3 1.85E-13 0.367636 0.712 0.608 5.97E-09 
C1qa 9.92E-13 0.267721 0.992 0.985 3.20E-08 
Hpgd 1.03E-12 0.333976 0.933 0.868 3.31E-08 
Cst3 3.90E-12 0.20993 1 1 1.26E-07 
mt-Atp6 6.00E-12 0.039408 0.999 1 1.94E-07 
mt-Co2 3.03E-11 0.026206 1 0.997 9.77E-07 
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Gm42418 3.25E-11 -0.02227 1 1 1.05E-06 
mt-Nd2 2.42E-10 -0.00951 0.996 0.997 7.83E-06 
mt-Cytb 3.09E-10 0.029253 0.998 0.999 9.98E-06 
Nars 5.28E-10 0.296505 0.913 0.84 1.71E-05 
C1qb 5.61E-10 0.230102 0.992 0.983 1.81E-05 
Psap 2.68E-09 0.250591 0.985 0.97 8.65E-05 
Rpl10 3.63E-09 0.241252 0.966 0.935 0.000117 
Cd81 4.01E-09 0.256155 0.976 0.949 0.00013 
Mtdh 5.08E-09 0.269967 0.966 0.931 0.000164 
Rnaset2a 1.19E-08 0.244693 0.945 0.888 0.000384 
mt-Co3 1.21E-08 0.038341 0.999 0.998 0.000391 
Rplp1 2.26E-08 0.216809 0.979 0.958 0.000729 
Ctss 2.28E-08 0.21476 0.994 0.99 0.000737 
Laptm4a 4.13E-08 0.237581 0.948 0.924 0.001334 
Itm2b 5.90E-08 0.194612 0.991 0.976 0.001905 
Hsp90ab1 6.83E-08 -0.08903 0.96 0.937 0.002204 
Trem2 1.07E-07 0.24371 0.981 0.964 0.003449 
mt-Nd4 1.44E-07 0.054547 0.996 0.995 0.004657 
Ighm 1.76E-07 0.279486 0.845 0.779 0.005675 
Laptm5 2.23E-07 0.220742 0.986 0.964 0.007194 
Ptgs1 2.61E-07 0.263238 0.968 0.952 0.008423 
Siglech 3.40E-07 0.261664 0.991 0.985 0.010975 
mt-Nd1 3.42E-07 0.045724 0.994 0.999 0.011038 
Fth1 3.48E-07 0.234793 0.979 0.961 0.011248 
Tpm3 4.65E-07 0.256175 0.961 0.932 0.015004 
Tpt1 4.67E-07 0.233878 0.977 0.951 0.015091 
AY036118 4.72E-07 -0.09499 0.971 0.955 0.015231 
Txnip 4.82E-07 0.289599 0.882 0.815 0.015571 
P4ha1 5.15E-07 -0.11377 0.822 0.81 0.01662 
Ltc4s 5.55E-07 0.254251 0.951 0.905 0.017924 
Clic1 5.89E-07 0.238995 0.954 0.923 0.01902 
Tmem50a 5.91E-07 0.221639 0.954 0.9 0.019096 
mt-Co1 5.96E-07 0.066076 0.999 0.999 0.019251 
Tra2b 6.54E-07 0.261272 0.83 0.72 0.021102 
Rapgef6 7.41E-07 0.305789 0.717 0.605 0.023925 
Cfl1 7.80E-07 0.223134 0.947 0.901 0.025176 
Abhd12 8.28E-07 0.240939 0.962 0.921 0.026743 
Rps23 9.79E-07 0.208066 0.966 0.944 0.031613 
Cx3cr1 1.28E-06 0.244314 0.998 0.993 0.041441 
Rpl7a 1.68E-06 0.210422 0.954 0.906 0.054168 
Cd37 2.44E-06 0.256471 0.948 0.914 0.078924 
Btg1 2.78E-06 0.263299 0.882 0.802 0.089777 
Rpl18a 3.93E-06 0.204247 0.967 0.948 0.127018 
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ribosomal and included Rpl3, Rplp0, Rpl10, Rps16, Rpl11, among others. ‘Protein 

processing in the endoplasmic reticulum’ (ER) contained Hspa8, Dnaja1, Hsp90b1, 

Pdia6, Calr, Hspa5, and Dnajb1. ‘Mitophagy-animal’ and ‘antigen processing and 

presentation’ contained only three genes each. Performing KEGG analysis for 3 mo was 

less informative, due to few DEGs, only 46, KEGG enrichment analysis at 3 mo yielded 

‘lysosome,’ ‘Covid-19,’ ‘pertussis,’ ‘alcoholic liver disease,’ ‘ribosome,’ ‘arachidonic acid 

metabolism,’ ‘antigen processing and presentation,’ ‘complement and coagulation 

cascades,’ and ‘chagas disease.’ However, there were no more than five genes in each 

KEGG pathway, including C1qa and C1qb complement genes, which were present in 

five of the nine pathways. 

Next, we identified DEGs in HFD versus control for each of the 11 cell types at 

both 1 mo and 3 mo. Overall, few DEGs (adjusted P-value <0.05) were identified, with 0 

DEGs for most comparisons (Table 3.3). DEGs for HFD versus control were identified 

for HMG1 (18 DEGs), HMG2 (8 DEGs), HMG3 (8 DEGs), and Mac (3 DEGs) at 1 mo. 

At 3 mo, DEGs were identified for HMG1 (1 DEGs), HMG2 (8 DEGs), and HMG3 (1 

DEG). For both the cluster specific and all microglia combined analyses, there were 

more DEGs at 1 mo than 3 mo. The cluster specific analysis detected DEGs in HFD 

versus control only in HMG populations and macrophages. Although there were too few 

genes to perform KEGG on cluster specific DEGs, we found again, that protein 

processing in the ER genes were represented. At 1 mo, ER related DEGs included 

Hspa8, Hsp90b1, and Dnaja1 for HMG1, Hspa8 and Calr for HMG2, and Hspa8, 

Dnaja1, and Pdia6 for HMG3. The DEGs in the macrophage group were H3f3b, Ucp2, 

and Gm10076. At 3 mo, Hsp90ab1 and Hsp90aa1 were DEGs in HMG2. 
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Table 3.3  Cluster-specific DEGs.  

(A) Summary of the number of significant differentially expressed genes (DEGs) in each cell cluster in 
HFD versus control mice at 1 mo (white) and 3 mo (grey). (B) DEGs in each cell cluster in HFD versus 
control mice at 1 mo (white) and 3 mo (grey) meeting the criteria of adjusted P-value (Padj)>0.05 based 
on Bonferroni correction using all features in the dataset. FC, fold-change; pct.1, percentage of cells 
where the feature is detected in the first group; pct.2, percentage of cells where the feature is detected in 
the second group. HMG1, 2, 3, homeostatic microglia 1, 2, 3; InflamMG, inflammatory microglia; IfnMG, 
interferon-related; ProlifMG, proliferating microglia; uMG, functionally undescribed microglia; Mac, 
macrophages; Mono, monocytes; Neu, neutrophils; Neuro, neurons. 

3.3A       
Cluster 1 mo 3 mo     

HMG1 18 1     
HMG2 8 8     
HMG3 8 1     
InflamMG 0 0     
IfnMG 0 0     
ProlifMG 0 0     
Mono 0 0     
Neuro 0 0     
Neu 0 0     
Mac 3 0     
uMG 0 0     

       

3.3B       
Cluster, time point Gene P-value avg Log2FC pct.1 pct.2 Padj 

HMG1, 1 mo Hspa8 1.29E-13 0.149 0.975 0.955 4.17E-09 
HMG1, 1 mo Gm10076 2.27E-13 -0.294 0.694 0.819 7.33E-09 
HMG1, 1 mo Mt1 1.70E-12 -0.329 0.653 0.766 5.50E-08 
HMG1, 1 mo Rbm39 1.90E-11 0.121 0.959 0.943 6.13E-07 
HMG1, 1 mo Actg1 5.17E-11 -0.247 0.936 0.968 1.67E-06 
HMG1, 1 mo G530011O06Rik 3.57E-10 -0.255 0.469 0.570 1.15E-05 
HMG1, 1 mo Rpl3 6.86E-10 -0.174 0.996 0.999 2.22E-05 
HMG1, 1 mo H3f3b 1.82E-08 -0.211 0.986 0.992 5.86E-04 
HMG1, 1 mo AY036118 2.68E-08 0.159 0.935 0.925 8.64E-04 
HMG1, 1 mo Pmepa1 3.81E-08 -0.250 0.959 0.962 1.23E-03 
HMG1, 1 mo Arid1a 5.13E-08 0.116 0.804 0.754 1.66E-03 
HMG1, 1 mo Hpgd 7.94E-08 0.082 0.958 0.955 2.56E-03 
HMG1, 1 mo Hsp90b1 9.66E-08 -0.204 0.997 0.999 3.12E-03 
HMG1, 1 mo Ubb 1.50E-07 -0.191 0.998 0.999 4.83E-03 
HMG1, 1 mo Dnaja1 2.12E-07 0.113 0.730 0.687 6.83E-03 
HMG1, 1 mo Wdr44 4.68E-07 0.120 0.493 0.425 1.51E-02 
HMG1, 1 mo Rbm3 4.98E-07 -0.193 0.605 0.687 1.61E-02 
HMG1, 1 mo Cirbp 1.52E-06 -0.186 0.321 0.402 4.91E-02 
HMG1, 3 mo Rbm3 1.17E-06 0.428 0.796 0.698 3.77E-02 
HMG2, 1 mo G530011O06Rik 4.89E-22 -0.417 0.486 0.636 1.58E-17 
HMG2, 1 mo Hspa8 1.11E-16 0.191 0.971 0.937 3.59E-12 
HMG2, 1 mo Mt1 1.73E-12 -0.350 0.585 0.706 5.59E-08 
HMG2, 1 mo Gm10076 3.81E-11 -0.292 0.513 0.625 1.23E-06 
HMG2, 1 mo Rbm3 3.68E-09 -0.241 0.517 0.640 1.19E-04 
HMG2, 1 mo Calr 7.08E-07 -0.213 0.986 0.987 2.28E-02 
HMG2, 1 mo Pmepa1 7.88E-07 -0.222 0.963 0.979 2.54E-02 
HMG2, 1 mo I830077J02Rik 1.26E-06 -0.199 0.496 0.601 4.07E-02 
HMG2, 3 mo Rbm39 8.62E-18 0.470 0.985 0.951 2.78E-13 
HMG2, 3 mo Hsp90ab1 1.68E-15 -0.216 0.989 0.995 5.43E-11 
HMG2, 3 mo Hsp90aa1 7.59E-08 -0.178 0.899 0.922 2.45E-03 
HMG2, 3 mo Rbm3 1.34E-07 0.348 0.746 0.650 4.31E-03 
HMG2, 3 mo Rapgef6 5.14E-07 0.370 0.788 0.689 1.66E-02 
HMG2, 3 mo Arid5b 1.06E-06 0.377 0.626 0.496 3.41E-02 
HMG2, 3 mo C1qa 1.24E-06 0.219 1.000 1.000 3.99E-02 
HMG2, 3 mo Nars 1.45E-06 0.309 0.969 0.927 4.69E-02 
HMG3, 1 mo Mt1 1.04E-23 -0.412 0.460 0.619 3.36E-19 
HMG3, 1 mo Hspa8 9.12E-20 0.285 0.978 0.956 2.95E-15 
HMG3, 1 mo Dnaja1 3.55E-13 0.251 0.730 0.607 1.15E-08 
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HMG3, 1 mo Zeb2 1.31E-07 0.169 0.939 0.924 4.22E-03 
HMG3, 1 mo Ywhah 3.70E-07 0.141 0.958 0.938 1.19E-02 
HMG3, 1 mo Gm10076 6.65E-07 -0.170 0.431 0.524 2.15E-02 
HMG3, 1 mo Fam91a1 1.20E-06 0.149 0.805 0.775 3.86E-02 
HMG3, 1 mo Pdia6 1.25E-06 -0.158 0.876 0.914 4.03E-02 
HMG3, 3 mo Rbm39 8.62E-18 0.470 0.985 0.951 2.78E-13 
HMG3, 3 mo Hsp90ab1 1.68E-15 -0.216 0.989 0.995 5.43E-11 
HMG3, 3 mo Hsp90aa1 7.59E-08 -0.178 0.899 0.922 2.45E-03 
HMG3, 3 mo Rbm3 1.34E-07 0.348 0.746 0.650 4.31E-03 
HMG3, 3 mo Rapgef6 5.14E-07 0.370 0.788 0.689 1.66E-02 
HMG3, 3 mo Arid5b 1.06E-06 0.377 0.626 0.496 3.41E-02 
HMG3, 3 mo C1qa 1.24E-06 0.219 1.000 1.000 3.99E-02 
HMG3, 3 mo Nars 1.45E-06 0.309 0.969 0.927 4.69E-02 
Mac, 1 mo H3f3b 8.30E-13 -0.595 0.929 0.927 2.68E-08 
Mac, 1 mo Ucp2 1.67E-09 -0.647 0.851 0.889 5.39E-05 
Mac, 1 mo Gm10076 8.78E-08 -0.538 0.447 0.639 2.83E-03 
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Due to the similarity among UMAP clustered HMG subtypes, and because most 

cluster specific DEGs were identified in HMGs, we next considered the three  

homeostatic microglia subtypes as a single cluster and performed DESeq2 analysis. We 

identified 96 DEGs at 1 mo and 12 DEGs at 3 mo in all three homeostatic microglia 

subtypes combined (Table 3.4). KEGG analysis at 1 mo in this subset of HMGs again 

showed enrichment in ‘ribosome,’ ‘covid-19,’ and ‘protein processing in the endoplasmic 

reticulum,’ as well as in ‘prostate cancer’ and ‘salmonella infection.’ Homeostatic 

microglia make up the largest proportion of all microglia, so it is expected that HMG 

DEGs reflect the DEGs for the combined microglia analysis. 

Since few DEGs were identified between HFD and control groups, we 

implemented an additional approach to examine differences between groups and infer 

potential biological significance. We performed weighted gene co-expression network 

analysis (WGCNA), an unsupervised correlation analysis, to identify co-expressed gene 

modules across all samples, including genes for all cell types. Analysis of 1 mo and 3 

mo samples yielded five co-expression modules and 1 module of genes (grey module) 

that were not assigned to a co-expression module (Figure 3.9C; module dendrogram, 

Figure 3.10A). Four modules, turquoise, yellow, brown, and green, differed significantly 

between HFD and control groups. The turquoise module, containing 867 genes, had 

reduced expression in HFD at 1 mo (P=0.0087), the yellow module, containing 241 

genes, had elevated expression in HFD at 1 mo (P=0.041) and 3 mo (P=0.026), the 

brown module, containing 331 genes, had elevated expression in HFD after 1 mo 

(P=0.0022), and the green module, containing 198 genes, had reduced expression in 

HFD at 3 mo (P=0.041) (Figure 3.9D; Figure 3.10B). We next performed KEGG  
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Table 3.4  HMG DEGs.  

Differentially expressed genes (DEGs) of all homeostatic microglia (HMG) clusters combined from HFD 
versus control mice at 1 mo (white) and 3 mo (grey) meeting the criteria of nominal P-value>0.05. Entries 
arranged by nominal P-value. Adjusted P-value (Padj) based on Bonferroni correction using all features in 
the dataset. FC, fold-change; pct.1, percentage of cells where the feature is detected in the first group; 
pct.2, percentage of cells where the feature is detected in the second group. Only the top 50 genes are 
included below; the complete dataset will be available at the time of publication or upon request. 

HFD versus control at 1 month HFD versus control at 3 month 

Gene P-
value 

avg 
Log2FC 

pct.
1 

pct.
2 Padj Gene P-

value 
avg 

Log2FC 
pct.

1 
pct.

2 Padj 

Hspa8 9.60E-
52 0.207 0.97

5 
0.95

0 
3.10E-

47 Rbm39 2.01E-
19 0.452 0.97

1 
0.93

2 
6.50E-

15 

Mt1 5.84E-
43 -0.377 0.56

7 
0.70

4 
1.89E-

38 
Hsp90a
b1 

3.32E-
19 -0.136 0.99

0 
0.99

4 
1.07E-

14 

Gm10076 4.90E-
33 -0.303 0.54

9 
0.67

3 
1.58E-

28 P4ha1 3.05E-
12 -0.160 0.85

2 
0.87

4 
9.83E-

08 
G530011O06
Rik 

1.60E-
27 -0.272 0.49

2 
0.60

6 
5.15E-

23 Rbm3 4.08E-
12 0.363 0.72

8 
0.64

1 
1.32E-

07 

Dnaja1 1.73E-
21 0.138 0.72

2 
0.66

4 
5.58E-

17 
Hsp90a
a1 

1.20E-
11 -0.135 0.88

7 
0.90

9 
3.88E-

07 

Rbm3 5.02E-
20 -0.211 0.51

5 
0.61

7 
1.62E-

15 
Gm4241
8 

7.10E-
08 -0.088 1.00

0 
1.00

0 
2.29E-

03 

Rpl3 8.69E-
18 -0.207 0.97

2 
0.98

0 
2.81E-

13 Fth1 2.44E-
07 0.262 1.00

0 
0.99

9 
7.87E-

03 

Rbm39 1.15E-
14 0.071 0.96

1 
0.94

9 
3.72E-

10 
AY0361
18 

4.50E-
07 -0.137 0.99

6 
0.99

5 
1.45E-

02 

Dleu2 1.27E-
14 0.131 0.73

7 
0.68

8 
4.09E-

10 Hspa8 6.28E-
07 -0.024 0.98

4 
0.97

7 
2.03E-

02 

Actg1 2.00E-
14 -0.188 0.93

5 
0.96

4 
6.47E-

10 Lars2 7.10E-
07 -0.092 0.96

8 
0.97

3 
2.29E-

02 

Fam91a1 1.78E-
13 0.089 0.78

9 
0.75

9 
5.76E-

09 Rapgef6 1.18E-
06 0.324 0.74

7 
0.63

7 
3.81E-

02 

Zeb2 6.57E-
13 0.078 0.93

8 
0.91

7 
2.12E-

08 Cbfa2t3 1.43E-
06 0.298 0.54

6 
0.44

9 
4.61E-

02 

Hpgd 1.63E-
12 0.060 0.95

9 
0.94

7 
5.26E-

08 Arid5b 2.66E-
06 0.309 0.57

9 
0.47

2 
8.57E-

02 

Serinc3 2.99E-
12 -0.005 1.00

0 
1.00

0 
9.66E-

08 Slc6a6 2.76E-
06 0.285 0.71

8 
0.62

1 
8.92E-

02 

AY036118 4.14E-
12 0.101 0.91

4 
0.89

6 
1.34E-

07 Hpgd 3.21E-
06 0.289 0.97

0 
0.94

8 
1.04E-

01 

Arid1a 4.29E-
12 0.077 0.82

2 
0.79

1 
1.39E-

07 Fus 1.08E-
05 0.334 0.94

5 
0.89

3 
3.49E-

01 

Ubb 8.92E-
12 -0.160 0.99

3 
0.99

6 
2.88E-

07 Fkbp5 1.82E-
05 0.260 0.46

3 
0.33

9 
5.87E-

01 

Rpl10 1.00E-
11 -0.176 0.99

8 
0.99

8 
3.24E-

07 Rbm25 2.12E-
05 0.295 0.89

8 
0.85

1 
6.85E-

01 

Rplp0 1.14E-
11 -0.176 0.97

0 
0.98

0 
3.69E-

07 
Gm4728
3 

2.56E-
05 0.252 0.39

7 
0.26

7 
8.27E-

01 

Gls 2.48E-
11 0.096 0.46

2 
0.41

7 
8.01E-

07 Ttc14 2.94E-
05 0.280 0.67

7 
0.61

2 
9.50E-

01 

Dynll1 3.65E-
11 0.079 0.64

4 
0.60

8 
1.18E-

06 Pfkl 4.27E-
05 -0.125 0.25

8 
0.33

4 
1.00E+

00 

Btg1 8.38E-
11 0.070 0.84

0 
0.83

4 
2.70E-

06 Nars 4.39E-
05 0.263 0.94

6 
0.90

1 
1.00E+

00 

Hsp90b1 8.69E-
11 -0.160 0.99

8 
0.99

9 
2.81E-

06 Chsy1 4.80E-
05 -0.107 0.52

5 
0.56

1 
1.00E+

00 

Pdia6 1.21E-
10 -0.173 0.87

3 
0.90

4 
3.92E-

06 Srsf3 7.19E-
05 0.255 0.91

1 
0.84

9 
1.00E+

00 

Cirbp 1.59E-
10 -0.154 0.31

6 
0.39

6 
5.14E-

06 Acox3 7.74E-
05 0.233 0.59

2 
0.47

0 
1.00E+

00 

Rhob 3.83E-
10 0.054 0.97

2 
0.97

0 
1.24E-

05 Slc38a2 1.06E-
04 0.261 0.71

8 
0.60

4 
1.00E+

00 

Rps20 4.38E-
10 -0.172 0.99

7 
0.99

6 
1.41E-

05 Abcg1 1.37E-
04 0.249 0.66

5 
0.60

5 
1.00E+

00 
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Rplp2 7.19E-
10 -0.167 0.99

6 
0.99

9 
2.32E-

05 mt-Nd2 1.50E-
04 -0.003 0.99

9 
1.00

0 
1.00E+

00 

Dnajb1 7.95E-
10 0.088 0.38

3 
0.33

2 
2.57E-

05 H3f3b 1.54E-
04 0.008 0.99

2 
0.98

8 
1.00E+

00 

H3f3b 8.32E-
10 -0.160 0.98

3 
0.98

9 
2.68E-

05 Tspo 1.57E-
04 0.219 0.53

7 
0.42

7 
1.00E+

00 

Eef1a1 1.58E-
09 -0.157 1.00

0 
1.00

0 
5.10E-

05 Tcf25 1.62E-
04 0.244 0.76

5 
0.69

3 
1.00E+

00 

Rpl32 1.76E-
09 -0.170 0.99

7 
0.99

9 
5.68E-

05 Ccnt2 1.66E-
04 0.225 0.61

9 
0.53

3 
1.00E+

00 

Zeb2os 1.87E-
09 -0.148 0.53

1 
0.59

4 
6.04E-

05 Arrb2 1.83E-
04 0.242 0.83

1 
0.77

7 
1.00E+

00 

Rps9 1.90E-
09 -0.158 0.99

9 
0.99

9 
6.14E-

05 Pabpn1 1.94E-
04 0.215 0.50

2 
0.39

5 
1.00E+

00 

Slc15a4 1.95E-
09 0.089 0.41

2 
0.35

4 
6.29E-

05 Brox 1.95E-
04 0.216 0.54

7 
0.43

7 
1.00E+

00 

Rps16 2.10E-
09 -0.164 0.99

7 
0.99

7 
6.80E-

05 Atf7ip 2.02E-
04 0.258 0.67

0 
0.60

2 
1.00E+

00 

Lamtor4 2.24E-
09 -0.153 0.73

0 
0.78

2 
7.24E-

05 Mtr 2.18E-
04 0.219 0.52

1 
0.42

9 
1.00E+

00 

Rack1 2.98E-
09 -0.162 0.96

3 
0.97

0 
9.62E-

05 Pcyox1 2.59E-
04 0.221 0.44

0 
0.33

8 
1.00E+

00 

Ywhah 4.82E-
09 0.037 0.94

3 
0.93

1 
1.56E-

04 Rcsd1 2.88E-
04 0.237 0.67

7 
0.58

9 
1.00E+

00 

Rpl19 5.65E-
09 -0.159 0.99

4 
0.99

8 
1.82E-

04 Arpc5l 3.10E-
04 0.217 0.53

5 
0.46

2 
1.00E+

00 

Rpl11 8.22E-
09 -0.155 0.99

7 
0.99

9 
2.65E-

04 
Hsp90b
1 

3.30E-
04 0.025 1.00

0 
0.99

9 
1.00E+

00 

Maf 8.57E-
09 0.034 0.99

4 
0.99

2 
2.77E-

04 Psmd7 3.65E-
04 0.222 0.56

7 
0.47

8 
1.00E+

00 

Marcks 1.55E-
08 -0.003 1.00

0 
0.99

9 
4.99E-

04 Snrnp70 3.67E-
04 0.271 0.91

0 
0.83

8 
1.00E+

00 

Mat2a 1.71E-
08 0.072 0.57

4 
0.54

3 
5.52E-

04 Actg1 4.08E-
04 0.005 0.97

4 
0.96

6 
1.00E+

00 

Zfp36l2 1.92E-
08 0.054 0.85

1 
0.83

4 
6.21E-

04 Zfp207 4.32E-
04 0.221 0.62

5 
0.53

2 
1.00E+

00 

Ep300 2.59E-
08 0.066 0.70

2 
0.65

9 
8.36E-

04 Srsf11 4.44E-
04 0.243 0.76

2 
0.69

1 
1.00E+

00 

Fau 2.78E-
08 -0.156 1.00

0 
1.00

0 
8.98E-

04 Ccng2 5.22E-
04 0.234 0.63

5 
0.54

8 
1.00E+

00 

Eef1b2 2.99E-
08 -0.169 0.96

2 
0.95

8 
9.64E-

04 Rpl10 5.25E-
04 0.194 1.00

0 
0.99

8 
1.00E+

00 

Nrip1 2.99E-
08 0.055 0.92

1 
0.91

0 
9.65E-

04 
Tmem63
a 

5.39E-
04 0.220 0.64

3 
0.59

4 
1.00E+

00 
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Figure 3.10  WGCNA modules.  

(A) WGCNA cluster dendrogram arranges genes from all cell types into 6 modules: grey, turquoise, 
yellow, brown, green, blue. (B) Significant differences in expression of genes in turquoise and green 
modules between experimental groups by Kruskal-Wallis, *P<0.05, **P<0.01. (C) KEGG pathway 
analysis of genes in HFD versus control from the turquoise (left) and green (right) modules. Bar color 
represents -log10(P-value) from least significant (light pink) to most significant (red); bar length represents 
the number of genes in the KEGG pathway, annotated with a number; rich factor represents the fraction 
of genes among all genes in the KEGG pathway. 
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enrichment analysis on each module. The yellow module was enriched for genes in a 

variety of biological pathways, including ‘Alzheimer’s disease’, containing the genes 

Psenen, Ndufb5, Atp5o, Gnaq, Ndufs8, Ndufa5, Mapk3, Ndufs4, Atp5g3, Ppp3r1, and 

Psen1 (Table 3.5), and ‘B cell receptor signaling pathway’ (Figure 3.9E). The brown 

module was enriched for ‘protein processing in the endoplasmic reticulum,’ containing 

Hspa8, Nfe2l2, Selenos, P4hb, Dnaja1, Ssr1, Edem1, Man1c1, Eif2s1, Ube2j1, Erlec1, 

and Dnajb1 (Table 3.5). The turquoise module was most significantly enriched in 

‘ribosome’ and ‘oxidative phosphorylation’ genes, and the green module in ‘protein 

processing in the endoplasmic reticulum’ genes (Figure 3.10C-D). 

 

3.4 Discussion  

Rates of obesity are climbing ([WHO 2021]), alongside rises in associated 

complications, such as cognitive impairment 2,8. Thus, there is a need to understand the 

pathophysiology of cognitive deficits secondary to obesity to intervene. Through their 

contribution to cognitive impairment in obesity 9, microglia serve as a potential 

therapeutic target, although the mechanisms of microglial activation in this context 

remain incompletely understood. In this study, we used scRNA-seq to determine the 

effect of obesity over time on the hippocampal microglial transcriptome. scRNA-seq 

allowed us to probe the heterogeneity of microglial populations and identify unique 

cellular processes and inflammatory pathways that are dysregulated in obesity. We, for 

the first time in the adolescent and adult C57BL/6J hippocampus, identified seven 

microglial subtypes, along with three other immune cell types and neurons. All cell types 

were present in HFD and control groups at 1 mo and 3 mo diet, and diet did not affect  
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Table 3.5  WGCNA module gene enrichment.  

Unsupervised weighted gene co-expression network analysis (WGCNA) of 1 mo and 3 mo samples 
identified two significant modules, yellow and brown. KEGG pathway analysis shown in table of yellow 
(top) and brown (bottom) module. Padj, adjusted P-value. ‘Annot,’ KEGG pathway identification number; 
‘Annotated,’ number of genes annotated in KEGG pathway; ‘Significant,’ number of genes in the module 
that are represented in the KEGG term annotation; ‘Gene,’ gene names for each significant gene. 

Yellow module     

Annot Term Annotated Signifi
cant P-value Padj Gene 

5010 Alzheimer's 
disease 178 11 2.88E-05 3.45E-03 

Psenen, Ndufb5, Atp5o, Gnaq, Ndufs8, 
Ndufa5, Mapk3, Ndufs4, Atp5g3, Ppp3r1, 
Psen1 

4662 

B cell 
receptor 
signaling 
pathway 

76 7 7.49E-05 4.50E-03 Fcgr2b, Pik3ap1, Vav1, Mapk3, Nfatc1, 
Bcl10, Ppp3r1 

3040 Spliceosome 133 8 4.54E-04 1.74E-02 Hnrnpk, Srsf3, Prpf40a, Pcbp1, Snu13, 
Srsf6, Snrnp27, Cdc40 

190 
Oxidative 
phosphorylati
on 

138 8 5.81E-04 1.74E-02 Atp6v1e1, Ndufb5, Atp5o, Ndufs8, 
Ndufa5, Atp6v0d1, Ndufs4, Atp5g3 

5016 Huntington's 
disease 188 9 1.05E-03 2.53E-02 Ndufb5, Atp5o, Gnaq, Ndufs8, Ndufa5, 

Ap2b1, Ndufs4, Atp5g3, Hdac1 

4720 Long-term 
potentiation 69 5 2.48E-03 4.29E-02 Camk2d, Gnaq, Mapk3, Prkacb, Ppp3r1 

4145 Phagosome 173 8 2.50E-03 4.29E-02 Ctsl, Calr, Fcgr1, Fcgr2b, Ncf2, 
Atp6v1e1, Atp6v0d1, Eea1 

3018 RNA 
degradation 74 5 3.37E-03 5.00E-02 Btg2, Cnot4, Cnot6l, Cnot3, Dhx36 

4660 

T cell 
receptor 
signaling 
pathway 

109 6 3.75E-03 5.00E-02 Vav1, Mapk3, Nfatc1, Bcl10, Pdk1, 
Ppp3r1 

3060 Protein 
export 29 3 7.11E-03 8.46E-02 Sec11c, Sec11a, Spcs3 

4666 
Fc gamma 
R-mediated 
phagocytosis 

90 5 7.75E-03 8.46E-02 Fcgr1, Fcgr2b, Arpc5, Vav1, Mapk3 

5012 Parkinson's 
disease 139 6 1.20E-02 1.20E-01 Ndufb5, Atp5o, Ndufs8, Ndufa5, Ndufs4, 

Atp5g3 

4114 Oocyte 
meiosis 112 5 1.87E-02 1.73E-01 Camk2d, Ywhaq, Mapk3, Prkacb, Ppp3r1 

4380 
Osteoclast 
differentiatio
n 

118 5 2.29E-02 1.89E-01 Fcgr1, Fcgr2b, Ncf2, Mapk3, Nfatc1 

3050 Proteasome 45 3 2.36E-02 1.89E-01 Psma6, Psmd1, Psmd7 

4810 
Regulation of 
actin 
cytoskeleton 

215 7 2.81E-02 2.11E-01 Pfn1, Nckap1l, Arpc5, Myl12a, Gna13, 
Vav1, Mapk3 

4330 
Notch 
signaling 
pathway 

50 3 3.10E-02 2.19E-01 Psenen, Hdac1, Psen1 

4722 
Neurotrophin 
signaling 
pathway 

131 5 3.40E-02 2.26E-01 Camk2d, Ywhaq, Mapk3, Pdk1, Psen1 

4912 
GnRH 
signaling 
pathway 

99 4 4.70E-02 2.77E-01 Camk2d, Gnaq, Mapk3, Prkacb 

4916 Melanogene
sis 100 4 4.85E-02 2.77E-01 Camk2d, Gnaq, Mapk3, Prkacb 

       
Brown module     

Annot Term Annotated Signifi
cant P-value Padj Gene 
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4141 

Protein 
processing in 
endoplasmic 
reticulum 

166 12 3.58E-05 4.37E-03 
Hspa8, Nfe2l2, Selenos, P4hb, Dnaja1, 
Ssr1, Edem1, Man1c1, Eif2s1, Ube2j1, 
Erlec1, Dnajb1 

4142 Lysosome 122 9 3.04E-04 1.86E-02 Lgmn, Ctsa, Atp6v0b, Gns, Tpp1, Arsb, 
Ppt1, Npc1, Ap1g1 

3013 RNA 
transport 164 10 6.51E-04 2.65E-02 Eif4g2, Eif3a, Acin1, Eif1b, Ube2i, Eif2s1, 

Ranbp2, Upf2, Eif3d, Eif3b 

3040 Spliceosome 133 8 2.48E-03 7.58E-02 Hspa8, Srsf5, Hnrnpu, Srsf7, Hnrnpm, 
Acin1, Tra2a, Cdc5l 

4310 
Wnt 
signaling 
pathway 

153 8 5.84E-03 1.41E-01 Rac1, Ppp3ca, Csnk1a1, Csnk1e, 
Rock1, Ep300, Apc, Cacybp 

4962 

Vasopressin-
regulated 
water 
reabsorption 

43 4 6.96E-03 1.41E-01 Arhgdib, Dynll1, Creb1, Rab5a 

4520 Adherens 
junction 74 5 1.01E-02 1.75E-01 Actg1, Rac1, Ptpn6, Ep300, Ctnna1 

5012 Parkinson's 
disease 139 7 1.19E-02 1.81E-01 Vdac2, Ndufb3, Slc25a4, Sdhc, Ube2j1, 

Ndufa8, Ppid 

4114 Oocyte 
meiosis 112 6 1.47E-02 1.99E-01 Ywhae, Ywhah, Ppp3ca, Ywhab, 

Ppp1cc, Pttg1 

4380 
Osteoclast 
differentiatio
n 

118 6 1.86E-02 2.09E-01 Csf1r, Rac1, Ppp3ca, Ifnar2, Creb1, Akt1 

5016 Huntington's 
disease 188 8 1.88E-02 2.09E-01 Vdac2, Ndufb3, Ep300, Slc25a4, Creb1, 

Sdhc, Ndufa8, Ppid 

4110 Cell cycle 125 6 2.39E-02 2.24E-01 Ywhae, Ywhah, Ywhab, Ep300, Cdk6, 
Pttg1 

4650 
Natural killer 
cell mediated 
cytotoxicity 

125 6 2.39E-02 2.24E-01 Rac1, Ppp3ca, Ptpn6, Ifnar2, Pak1, Hcst 

5210 Colorectal 
cancer 65 4 2.83E-02 2.38E-01 Rac1, Apc, Akt1, Appl1 

4722 
Neurotrophin 
signaling 
pathway 

131 6 2.93E-02 2.38E-01 Ywhae, Ywhah, Rac1, Arhgdib, Ywhab, 
Akt1 

4120 
Ubiquitin 
mediated 
proteolysis 

138 6 3.64E-02 2.69E-01 Ube2b, Ube2i, Trip12, Ube2k, Ube2q1, 
Ube2j1 

5211 Renal cell 
carcinoma 71 4 3.75E-02 2.69E-01 Rac1, Ep300, Pak1, Akt1 

4662 

B cell 
receptor 
signaling 
pathway 

76 4 4.63E-02 3.14E-01 Rac1, Ppp3ca, Ptpn6, Akt1 

       
Turquoise module     

Annot Term Annotated Signifi
cant P-value Padj Gene 

3010 Ribosome 112 84 3.23E-81 6.04E-79 

Rps29,Rplp1,Fau,Rps24,Rps21,Rpl39,R
ps27,Rpl35a,Rpl37a,Rpl37,Rps12,Rpl30,
Rps27a,Rpl23,Rps8,Rps28,Rpl21,Rps4x
,Rps9,Rps11,Rpl41,Rps23,Rps3a1,Rpl1
0,Rpl34,Rpl26,Rpl32,Rps15a,Rpl18a,Rpl
p2,Rps14,Rpl38,Rpl17,Rpl27a,Rpl9,Rps
16,Rpl6,Rps7,Rpl19,Rps20,Rpl11,Rpl13
a,Rps25,Rpl28,Rpl13,Rps10,Rps3,Rpl35
,Rpl7,Rps15,Rpl5,Rpl36,Rps13,Rpl24,Rp
l23a,Rps19,Rpl22,Rpl27,Rps26,Rpsa,Rp
s18,Rpl12,Uba52,Rpl18,Rpl3,Rps5,Rps6
,Rplp0,Rpl15,Rpl36a,Rpl8,Rpl14,Rpl29,R
ps17,Rpl10a,Rpl7a,Rpl31,Rpl4,Rpl36al,
Rps2,Rpl22l1,Rps27l,Rps27rt,Rsl24d1 

190 
Oxidative 
phosphorylati
on 

138 46 4.84E-23 4.53E-21 

Atp6v0c,Atp5e,Cox4i1,Atp5g2,Cox6c,Uq
crh,Ndufa4,Cox8a,Cox6b1,Cox7a2l,Atp5l
,Atp5h,Atp5j2,Ndufa3,Cox7a2,Atp6v1g1,
Ndufa2,Uqcrb,Atp5b,Ndufa13,Ndufa7,Uq
cr11,Atp5k,Atp5c1,Uqcrq,Cox7b,Atp5g1,
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Ndufa1,Cox17,Ndufb11,Ndufb4,Ndufa6,
Ndufc1,Ndufv3,Cox6a1,Ndufs7,Atp6v0a1
,Cox5b,Uqcrc2,Ndufs5,Ndufa11,Atp5d,S
dhb,Ndufs6,Ndufb8,Ndufv2 

5012 Parkinson's 
disease 139 43 3.75E-20 2.34E-18 

Ubb,Atp5e,Cox4i1,Atp5g2,Cox6c,Uqcrh,
Slc25a5,Ndufa4,Cox8a,Cox6b1,Cox7a2l,
Atp5h,Ndufa3,Cox7a2,Ndufa2,Uqcrb,Atp
5b,Ndufa13,Ndufa7,Uqcr11,Atp5c1,Uqcr
q,Cox7b,Atp5g1,Park7,Ndufa1,Ube2l3,N
dufb11,Ndufb4,Ndufa6,Ndufc1,Ndufv3,C
ox6a1,Ndufs7,Cox5b,Uqcrc2,Ndufs5,Ndu
fa11,Atp5d,Sdhb,Ndufs6,Ndufb8,Ndufv2 

5010 Alzheimer's 
disease 178 44 1.85E-16 8.66E-15 

Gapdh,Atp5e,Cox4i1,Atp5g2,Cox6c,Uqcr
h,Ndufa4,Cox8a,Cox6b1,Cox7a2l,Atp5h,
Ndufa3,Cox7a2,Ndufa2,Uqcrb,Atp5b,Nd
ufa13,Ndufa7,Uqcr11,Atp5c1,Uqcrq,Cox
7b,Gsk3b,Atp5g1,Ndufa1,Atp2a2,Ndufb1
1,Ndufb4,Ndufa6,Ndufc1,Ndufv3,Cox6a1
,Ndufs7,Cox5b,Uqcrc2,Ndufs5,Ndufa11,
Atp5d,Sdhb,Ndufs6,Ndufb8,Mapk1,Aph1
a,Ndufv2 

5016 Huntington's 
disease 188 45 3.08E-16 1.15E-14 

Atp5e,Cox4i1,Atp5g2,Cox6c,Uqcrh,Slc25
a5,Ndufa4,Cox8a,Cox6b1,Cox7a2l,Atp5
h,Ndufa3,Cox7a2,Ndufa2,Uqcrb,Atp5b,N
dufa13,Ndufa7,Uqcr11,Atp5c1,Uqcrq,Co
x7b,Atp5g1,Ndufa1,Ndufb11,Crebbp,Ndu
fb4,Ndufa6,Ndufc1,Ndufv3,Cox6a1,Nduf
s7,Cox5b,Uqcrc2,Ndufs5,Ndufa11,Atp5d,
Sdhb,Ndufs6,Ndufb8,Trp53,Sp1,Creb3l2,
Ndufv2,Polr2f 

3050 Proteasome 45 12 9.44E-06 0.000286
6 

Pomp,Psme1,Psma3,Psmb1,Psma2,Ps
mc3,Psmb2,Psmc6,Psme2,Psma5,Psmd
8,Psmb9 

4260 
Cardiac 
muscle 
contraction 

77 16 1.07E-05 0.000286
6 

Cox4i1,Cox6c,Uqcrh,Cox8a,Cox6b1,Cox
7a2l,Cox7a2,Uqcrb,Uqcr11,Uqcrq,Cox7b
,Atp2a2,Cox6a1,Slc8a1,Cox5b,Uqcrc2 

4666 
Fc gamma 
R-mediated 
phagocytosis 

90 15 0.000284
7 

0.006655
8 

Cdc42,Lyn,Cfl1,Arpc3,Arpc4,Ncf1,Pik3r1,
Pik3cg,Syk,Pld1,Pla2g4a,Plcg2,Mapk1,
Was,Arpc5l 

5140 Leishmaniasi
s 64 12 0.000377

9 
0.007852

6 

Cyba,Ifngr1,Itgb1,Ncf1,H2-
DMa,Ifngr2,Nfkb1,Mapk14,H2-
DMb1,Mapk1,Jun,Tlr4 

4810 
Regulation of 
actin 
cytoskeleton 

215 26 0.000508
9 

0.009517
2 

Tmsb4x,Actb,Cdc42,Cfl1,Ssh2,Arpc3,Brk
1,Itgb1,Arpc4,Itga6,Pik3r1,Pip4k2a,Myl1
2b,Myh9,Rdx,Pik3cg,Nras,Itgav,Gna12,P
pp1cb,Mapk1,Itgb3,Itga9,Was,Arpc5l,Act
n4 

4380 
Osteoclast 
differentiatio
n 

118 17 0.000675
8 

0.011488
2 

Tyrobp,Trem2,Cyba,Ifngr1,Ncf1,Pik3r1,Pi
k3cg,Spi1,Ifngr2,Nfkb1,Syk,Mapk14,Plcg
2,Cyld,Mapk1,Itgb3,Jun 

3060 Protein 
export 29 7 0.001372

3 
0.021384

6 
Hspa5,Sec62,Sec61g,Spcs1,Srp14,Srp9
,Srp19 

4662 

B cell 
receptor 
signaling 
pathway 

76 12 0.001848
8 

0.026593
7 Lyn,Pik3r1,Pik3cg,Gsk3b,Nras,Nfkb1,Sy

k,Dapp1,Plcg2,Nfat5,Mapk1,Jun 

3040 Spliceosome 133 17 0.002585
4 

0.034532
9 

Ddx5,Sf3b1,Snrpg,Sf3b2,Hnrnpa1,Snrpe
,Cwc15,Lsm6,Zmat2,Dhx15,Snrpd2,Snrp
f,Rbm22,Ddx42,Bcas2,Slu7,Sf3b3 

5100 

Bacterial 
invasion of 
epithelial 
cells 

71 11 0.003297
6 

0.038541
1 Actb,Cdc42,Arpc3,Itgb1,Arpc4,Pik3r1,Hcl

s1,Cbl,Pik3cg,Was,Arpc5l 

5211 Renal cell 
carcinoma 71 11 0.003297

6 
0.038541

1 
Cdc42,Rap1b,Pik3r1,Elob,Rbx1,Pik3cg,
Nras,Crebbp,Hif1a,Mapk1,Jun 

5145 Toxoplasmos
is 127 16 0.003955

4 
0.042360

7 

Gnai2,Ifngr1,Itgb1,Itga6,Pik3r1,H2-
DMa,Pik3cg,Xiap,Ifngr2,Nfkb1,Mapk14,P
la2g4a,Stat3,H2-DMb1,Mapk1,Tlr4 
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4150 
mTOR 
signaling 
pathway 

53 9 0.004077
5 

0.042360
7 Rps6,Pik3r1,Pik3cg,Hif1a,Ulk2,Eif4e2,Ca

b39,Mapk1,Rictor 

5412 

Arrhythmoge
nic right 
ventricular 
cardiomyopa
thy (ARVC) 

74 11 0.004575 0.045027
4 Actb,Itgb1,Itga6,Atp2a2,Itgav,Slc8a1,Tcf

7l2,Itgb3,Itga9,Emd,Actn4 

5221 
Acute 
myeloid 
leukemia 

57 9 0.006687
6 

0.062529
4 Pik3r1,Pik3cg,Nras,Spi1,Nfkb1,Runx1,Tc

f7l2,Stat3,Mapk1 

4120 
Ubiquitin 
mediated 
proteolysis 

138 16 0.008829
2 

0.075691
8 

Herc2,Elob,Rbx1,Cbl,Ube2d3,Rnf7,Ube2
l3,Itch,Xiap,Cul1,Ube3a,Anapc13,Klhl9,H
erc1,Pias1,Ube4a 

5212 Pancreatic 
cancer 70 10 0.008904

9 
0.075691

8 
Cdc42,Pik3r1,Pik3cg,Nfkb1,Ralbp1,Pld1,
Stat3,Mapk1,Trp53,Rala 

5213 Endometrial 
cancer 52 8 0.012049

4 0.097967 Pik3r1,Pik3cg,Gsk3b,Pten,Nras,Tcf7l2,M
apk1,Trp53 

4142 Lysosome 122 14 0.015040
1 

0.117187
3 

Ctsd,Ctsz,Npc2,Cd68,Cd164,Atp6v0c,As
ah1,Gm2a,Pla2g15,Scarb2,Gusb,Fuca1,
Atp6v0a1,Ap3d1 

5142 

Chagas 
disease 
(American 
trypanosomi
asis) 

100 12 0.016974
9 

0.126972
1 Gnai2,Ifngr1,Gnas,Pik3r1,Pik3cg,Ifngr2,

Nfkb1,Mapk14,Mapk1,Ppp2r1a,Jun,Tlr4 

5215 Prostate 
cancer 89 11 0.0178 0.128023

1 
Pik3r1,Pik3cg,Gsk3b,Pten,Nras,Crebbp,
Nfkb1,Tcf7l2,Mapk1,Trp53,Creb3l2 

4664 
Fc epsilon RI 
signaling 
pathway 

80 10 0.021668
9 

0.150077
5 Fcer1g,Lyn,Pik3r1,Pik3cg,Nras,Syk,Map

k14,Pla2g4a,Plcg2,Mapk1 

4722 
Neurotrophin 
signaling 
pathway 

131 14 0.026365
4 0.176083 

Cdc42,Ywhaz,Rap1b,Pik3r1,Pik3cg,Gsk
3b,Nras,Nfkb1,Sh2b3,Mapk14,Plcg2,Ma
pk1,Trp53,Jun 

4670 
Leukocyte 
transendothe
lial migration 

120 13 0.028711
4 0.185139 

Actb,Cdc42,Cyba,Gnai2,Itgb1,Ncf1,Rap1
b,Pik3r1,Myl12b,Pik3cg,Mapk14,Plcg2,A
ctn4 

4510 Focal 
adhesion 200 19 0.032958

8 
0.200668

6 

Actb,Cdc42,Tln1,Itgb1,Itga6,Rap1b,Pik3r
1,Myl12b,Pik3cg,Gsk3b,Pten,Xiap,Itgav,
Ppp1cb,Mapk1,Itgb3,Itga9,Jun,Actn4 

5222 Small cell 
lung cancer 86 10 0.033892

7 
0.200668

6 
Itgb1,Itga6,Pik3r1,Pik3cg,Pten,Xiap,Itgav
,Nfkb1,Pias1,Trp53 

5200 Pathways in 
cancer 324 28 0.034339 0.200668

6 

Cdc42,Itgb1,Itga6,Pik3r1,Elob,Rbx1,Cbl,
Pik3cg,Gsk3b,Pten,Xiap,Nras,Crebbp,Itg
av,Hif1a,Spi1,Nfkb1,Runx1,Stk4,Ralbp1,
Tcf7l2,Plcg2,Stat3,Pias1,Mapk1,Trp53,J
un,Rala 

4370 
VEGF 
signaling 
pathway 

76 9 0.038820
4 0.219982 Cdc42,Pik3r1,Pik3cg,Nras,Mapk14,Pla2g

4a,Plcg2,Nfat5,Mapk1 

5414 
Dilated 
cardiomyopa
thy 

89 10 0.041533
4 

0.228021
6 Actb,Gnas,Itgb1,Itga6,Atp2a2,Itgav,Slc8

a1,Itgb3,Itga9,Emd 

5223 
Non-small 
cell lung 
cancer 

54 7 0.042677
8 

0.228021
6 Pik3r1,Pik3cg,Nras,Stk4,Plcg2,Mapk1,Tr

p53        
Green module     

Annot Term Annotated 
Signifi
cant P-value Padj Gene 

4141 

Protein 
processing in 
endoplasmic 
reticulum 

166 12 3.76E-07 4.40E-05 Hsp90b1,Hsp90ab1,Pdia3,Canx,Pdia6,H
sp90aa1,Pdia4,Ube2d2a,Derl2,Atf4,Sec6
1a1,Sar1a 

4914 

Progesteron
e-mediated 
oocyte 
maturation 

87 7 6.11E-05 0.003021
4 Hsp90ab1,Hsp90aa1,Rps6ka1,Adcy7,Kr

as,Rps6ka3,Gnai3 

4142 Lysosome 122 8 7.75E-05 0.003021
4 

Laptm5,Psap,Lamp1,Man2b1,Ctsh,Clta,
Aga,Naga 
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3040 Spliceosome 133 8 0.000142
3 

0.003817
5 

Rbm25,Hnrnpc,Sf3b6,Snrpd3,Sf3b5,Srsf
1,Phf5a,Lsm3 

4145 Phagosome 173 9 0.000163
1 

0.003817
5 

Fcgr3,Canx,Lamp1,Itgb2,Stx7,Tuba1a,At
p6v1c1,Atp6v1d,Sec61a1 

5215 Prostate 
cancer 89 6 0.000553

2 
0.010787

8 
Hsp90b1,Hsp90ab1,Hsp90aa1,Ccnd1,At
f4,Kras 

4720 Long-term 
potentiation 69 5 0.001180

9 
0.019738

4 Rps6ka1,Ppp1ca,Atf4,Kras,Rps6ka3 

4621 

NOD-like 
receptor 
signaling 
pathway 

57 4 0.004210
5 

0.061578
8 

Hsp90b1,Hsp90ab1,Hsp90aa1,Naip2 

4114 Oocyte 
meiosis 112 5 0.009574 0.124462

2 Rps6ka1,Ppp1ca,Adcy7,Ywhag,Rps6ka3 

4612 

Antigen 
processing 
and 
presentation 

78 4 0.012659
8 

0.148119
8 

Hsp90ab1,Pdia3,Canx,Hsp90aa1 

511 Other glycan 
degradation 17 2 0.016258

2 
0.170779

7 Man2b1,Aga 

4722 
Neurotrophin 
signaling 
pathway 

131 5 0.017920
7 

0.170779
7 Rps6ka1,Atf4,Ywhag,Kras,Rps6ka3 

4540 Gap junction 88 4 0.018975
5 

0.170779
7 Tuba1a,Adcy7,Kras,Gnai3 

4150 
mTOR 
signaling 
pathway 

53 3 0.023455
2 

0.196018
5 Rps6ka1,Eif4e,Rps6ka3 

4912 
GnRH 
signaling 
pathway 

99 4 0.027852
5 

0.217249
1 Atf4,Adcy7,Kras,Cacna1d 

4966 
Collecting 
duct acid 
secretion 

27 2 0.038942
1 

0.284764
1 Atp6v1c1,Atp6v1d 

3060 Protein 
export 29 2 0.044380

1 
0.305439

8 Spcs2,Sec61a1 

5216 Thyroid 
cancer 30 2 0.047198

9 
0.306792

6 Ccnd1,Kras 
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cell type proportion. Conversely, cell-to-cell communication analysis revealed a 

functionally diverse set of signaling pathways, which differed significantly between diet 

groups. In particular, HFD dysregulated microglial signaling involved in immune 

modulation. DEG analysis along with KEGG pathway enrichment revealed a signature 

of dysregulated ER genes in HFD microglia, which was independently confirmed by a 

separate WGNCA analysis.  

We studied the effect of obesity on microglial activation in our established mouse 

model of diet-induced obesity 28, which displays hippocampal-dependent cognitive 

impairment 16. HFD mice were heavier than their control counterparts after only 2 wk of 

diet and went on to develop progressive metabolic dysfunction, including 

hyperinsulinemia and dyslipidemia, as occurs in human obesity. Since we expected that 

the immune response would evolve over time, we assessed morphological activation 

early on at 1 mo. We found that HFD did not alter microglial morphology in the 

hippocampal CA1 region at 1 mo. This finding is not unexpected at 1 mo, since 

previously published studies showed HFD-induced morphological activation of 

microglia, quantified in part by fewer primary cell processes, occurs later at 3 mo in the 

hippocampal dentate gyrus and CA1 9,14. Although there was no significant difference in 

branchpoints per cell between groups, there was a trend towards fewer branchpoints in 

HFD microglia. Further studies are required to determine whether this trend might 

represent the start of ramification reduction, which then continues over time.    

Although we did not observe hippocampal microglial morphological activation, 

scRNA-seq enabled us to investigate early transcriptomic changes across diverse 

microglial subtypes. No studies, to our knowledge, had examined hippocampal 
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microglial heterogeneity in obesity, and no microglial scRNA-seq studies have focused 

on the healthy hippocampus in the C57BL/6J mouse. Thus, we performed scRNA-seq 

on microglia isolated from the hippocampi of obese and lean mice after 1 mo and 3 mo. 

We sought to determine the effect of obesity on microglial activation and its temporal 

evolution at the transcriptomic level. In our sequenced CD11b+/CD45low cells, we 

identified seven microglial subtypes as well as small populations of monocytes, 

macrophages, neutrophils, and neurons. In addition to three homeostatic populations, 

other microglia subtypes included inflammatory microglia, interferon-related microglia, 

proliferative microglia, and a cluster with unknown function, which we termed uMG. As 

far as we are aware, this uMG cluster has not been previously described. It is 

characterized by upregulation of mitochondrial genes, and perhaps represents a dying 

subset, as seen in other scRNA-seq data 46.  

We found that diet did not affect the cluster proportions. Homeostatic microglia 

comprised the largest cell population in all experimental groups. In line with our results, 

microglial scRNA-seq studies have similarly demonstrated that homeostatic microglia 

are the largest clusters in both healthy and disease contexts in the adolescent and adult 

brain 47–49.  The presence of the smaller clusters, InflamMG, IfnMG, ProlifMG, and uMG, 

is not uniform in the literature, and differs with various factors, including age, brain 

region, disease state, and study design or perhaps power. We found an InflamMG 

(Ccl4/3 expressing) population, which has also been identified in small clusters in the 

healthy cortex at 2 mo and 4 mo and as a larger microglial percentage in a model of 

infectious disease 49. This inflammatory population, as well as an interferon-related 

population like our IfnMG cluster (Ifit3 expressing), are prevalent in the whole brain with 
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aging 47. A proliferative microglia cluster like our ProlifMG (Top2a, Mki67 expressing) 

are present in the healthy adult brain 50, prevalent in the early developing brain 47 and 

found in the cortex of an HIV infection model 49. The lack of activated morphology at 1 

mo aligns with our transcriptomic findings; HFD did not alter the proportion of InflamMG 

and IfnMG and homeostatic microglia dominated all experimental groups. The apparent 

trending increase in peripheral immune cell types (monocytes, neutrophils) in HFD 

versus control samples at 3 mo could potentially reflect obesity-induced recruitment of 

immune cells to the brain 23. 

Our identified populations are unlikely an artifact of processing-associated ex 

vivo activation, because they have been identified with transcriptional inhibition, which 

we employed, in the roughly 3 mo old mouse brain 50. Marsh et al. showed that 

transcriptional inhibition prevented a processing-associated cluster, which has appeared 

in other microglial scRNA-seq 51. Overall, we showed, for the first time, that 

hippocampal microglia in the healthy adolescent and adult hippocampus are mostly 

homeostatic microglia, with small populations of inflammatory, proliferative, and 

interferon-related microglia. Future work is needed to determine whether young age 

and/or the chronic, low-grade nature of obesity-induced inflammation may have 

protected against changes in inflammatory microglia proportions, which are seen in 

microglial scRNA-seq studies in aging 47 and overt transgenic models of disease 49. 

Immune cells function by sensing and responding to their environment, so cell-to-

cell communication is an integral part of microglial function 52. Obesity disrupts the 

inflammatory milieu in the brain 23,24, so we asked whether obesity alters intercellular 

microglial signaling. Thus, we next examined whether diet impacted cell-to-cell 
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interactions in the hippocampus by employing CellChat to infer intercellular 

communication among microglia. Of the signaling that differed by diet, the pathways 

driving microglia-to-microglia communication serve a diverse set of biological functions, 

many implicated in immune modulation of microglia or other immune cell types. These 

pathways contained glycoproteins with known immunomodulatory roles (e.g., ‘HSPG,’ 

‘ICAM1) 35–38, growth factors (e.g., ‘TGFb,’ ‘PDGF’), and immune antigens (e.g., ‘CD86’, 

‘ICOS’, ‘CD48’, and ‘VISTA’). Several pathways contained proteins with known pro-

inflammatory (e.g., ‘HSPG,’ ‘IFN-I,’ ‘IL6’) or anti-inflammatory properties (e.g., ‘VISTA,’ 

‘CD200,’ ‘IL6’). Heparan sulfate proteoglycans (HSPGs) are immunomodulators 38 with 

pro-inflammatory effects on microglia. HSPGs stimulate tumor necrosis factor alpha 

cytokine production 37	and are involved in the microglial lipopolysaccharide-induced toll-

like receptor 4 response 53. V-domain immunoglobulin-containing suppressor of T-cell 

activation (Vista), plays an immune checkpoint role as a negative regulator of T-cells, 

and is involved in other myeloid cell functions, such as phagocytosis, but its role in 

microglia is not well characterized 54. Both Vista and cell adhesion molecule 1 (Cadm1), 

the ligand and receptor for ‘CADM’ signaling, are differentially expressed in Alzheimer’s 

disease-associated microglia 48,54.  

Further studies are needed to understand the role of these signaling pathways in 

modulating microglial behavior in obesity. HFD upregulated more microglial immune 

and inflammatory signaling at 3 mo versus 1 mo, which supports the hypothesis that 

chronic HFD enhances immune responses to obesity. HFD pathways associated with 

homeostatic and protective microglia (e.g., ‘GRN,’ ‘TGFb,’ ‘CD200’) 39,40,55 might reflect 

a failed attempt to maintain homeostasis under conditions of stress during obesity. 
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Regarding the involvement of signaling pathways related to adhesion molecules, it is 

possible to speculate these changes may reflect microglial migration as a component of 

the inflammatory response. Overall, the changes in intercellular microglia-to-microglia 

signaling revealed by CellChat suggest microglia respond early to an immune 

challenge, which ramps up over time, leading to a condition of chronic inflammation. 

Next, we examined the effect of HFD on intracellular processes in hippocampal 

microglia by DEG analyses with KEGG enrichment. DEGs between HFD and control 

microglia at 1 mo were enriched in ribosome and protein processing in the ER KEGG 

pathways. We identified very few cell cluster specific DEGs, but heat shock proteins 

related to the protein processing in the ER pathway were dysregulated in HFD 

homeostatic microglia, particularly at 1 mo. There were so few DEGs overall at 3 mo 

that we could not infer much biological pathway significance from KEGG enrichment in 

HFD versus control microglia. However, at 3 mo, complement genes (C1qa, C1qb) were 

upregulated and among the top 20 most significant DEGs in HFD versus control 

microglia. Microglia upregulate C1q in response to insult such as ischemic injury 56 or in 

a model of Alzheimer’s disease 57. The complement cascade’s canonical role is in 

immune response, but complement is also involved in microglial mediated synaptic 

pruning in brain development 58. Hippocampal microglia are thought to excessively 

prune synapses in obesity 9, so it is possible that complement proteins contribute to this 

aberrant pruning. In support of this hypothesis, microglia contribute to aberrant 

complement mediated synaptic pruning in Alzheimer’s disease 57. HFD at 3 mo also 

upregulated genes such as Trem2, an Alzheimer’s disease associated microglia gene 
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48,59, as well as genes encoding enzymes for processing pro-inflammatory arachidonic 

acid derived mediators, prostaglandins (Hpgd, Ptgs1) and leukotrienes (Ltc4s).  

Microglia DEG fold-changes were low, but relatively consistent with chronic 

challenge 60, including chronic HFD 61. Since there were few total DEGs, we also 

performed WGNCA on all cells, which identified five gene co-expression modules, four 

of which differed by diet. KEGG analysis of the brown module, elevated at 1 mo in HFD 

versus control, and the green module, reduced at 3 mo in HFD, identified genes 

enriched in protein processing in the ER. The turquoise module, reduced at 1 mo in 

HFD, was enriched in ribosome genes, and the yellow module, elevated at 1 mo and 3 

mo in HFD versus control, identified genes enriched in Alzheimer’s disease and B cell 

receptor signaling pathways. Overall, gene expression in HFD microglia was 

characterized by an earlier ER response signature at 1 mo, followed by a more 

inflammatory signature at 3 mo.  

Our DEG and WGNCA findings closely align with published bulk RNA-seq data 

of microglia after 8 wk of HFD 61. The study found only 77 DEGs that differed in HFD 

versus control whole brain microglia and an upregulated WGNCA module containing 

heat shock protein genes, such as Hspa8, Dnaja1, Dnajb1 61, which were identified by 

our study. We also previously found that chronic HFD after 20 wk induces hippocampal 

ER stress, enhancing expression of heat shock protein 5 and a member of the 

canonical inositol requiring enzyme 1 ER stress response, spliced x-box binding protein 

1 62. The link between ER stress and inflammation is a well-studied phenomenon in 

obesity 63,64. Saturated fatty acids 65,66 activate the macrophage ER stress response, 

which contributes to a pro-inflammatory phenotype in obesity 21. The heat shock 
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proteins upregulated in our study at 1 mo, e.g., Hspa8, Dnaja1, and Dnajb1, are protein 

folding chaperones and co-chaperones, which work to maintain ER homeostasis. 

Brykczynska et al. 61 proposed that the increase in microglial ER heat shock proteins 

after 8 wk HFD might be a protective mechanism. By examining DEGs, we identified an 

inflammatory gene expression signature later at 3 mo, which aligns with enhanced 

immunomodulatory intercellular microglia-to-microglia driven signaling by CellChat. This 

inflammatory gene expression signature was characterized by HFD upregulated 

microglial genes, e.g., C1qa, C1qb, Trem2, Hpgd, Ptgs1, and Ltc4s.  Possibly, an early 

microglial ER heat shock protein response combats increased burden, which, if 

misfolded protein aggregates accumulate, may transition to an ER stress response 

capable of inducing inflammation.  

Additional investigations are required to elucidate the mechanistic underpinnings 

in the evolving microglial response in obesity, which our findings suggest may be 

characterized by an earlier ER response, followed by a more chronic inflammatory 

state. Possibly obesity stressors trigger an adaptive ER response in attempt to maintain 

homeostatic function at 1 mo, which evolves to a more activated state by 3 mo. Indeed, 

rats pretreated with a mild ER stress inducer are protected from lipopolysaccharide-

induced cognitive impairment and microglial pro-inflammatory activation, suggesting 

that mild ER stress may mitigate hippocampal sequela of inflammatory challenge 67. 

Alternatively, obesity may trigger a cascade of processes with increased demand on the 

ER, followed by an injurious ER stress response, which activates inflammatory 

pathways, as occurs in macrophages in obesity 21. ER stress has been implicated in 

microglial mediated inflammation in other disease contexts 68. Further studies that 
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manipulate microglial ER stress are needed to determine whether it mitigates or 

contributes to microglial pro-inflammatory activation in obesity. Moreover, our findings 

indicate potential therapeutic targets for microglia-mediated cognitive impairment 

secondary to obesity. Targeting complement 57 and prostaglandin 69 in microglia or 

macrophages slows synapse loss and cognitive decline in aging and Alzheimer’s 

disease models and may additionally constitute promising approaches in obesity-

induced cognitive impairment. 

In summary, we used morphological and scRNA-seq analyses to determine the 

effects of obesity on hippocampal microglial activation in mice transitioning from 

adolescence to adulthood. We found that HFD did not alter hippocampal CA1 microglial 

morphology after just 1 mo. We demonstrated, for the first time, the microglial 

landscape of the healthy adolescent and adult hippocampus in the C57BL/6J mouse. 

Although diet did not affect cluster proportions, HFD dysregulated intercellular 

inflammatory signaling pathways, an effect which was more pronounced at 3 mo. 

Analysis of gene expression revealed a microglial signature of dysregulated 

endoplasmic reticulum protein processing and ribosome pathways at 1 mo, which 

transitioned into an inflammatory response at 3 mo. Identifying these obesity-induced 

microglial intercellular and intracellular pathways sets the foundation for further studies 

to elucidate mechanisms of microglial mediated cognitive deficits in obesity. 

 

3.5 Methods  

3.5.1 Animals and study design 
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C57BL/6J mice were obtained (Jackson Laboratory, catalog # 000664) at 4 

weeks (wk) of age (n=40) and housed in a specific-pathogen-free facility at the Unit for 

Laboratory Animal Medicine (ULAM) at the University of Michigan. Mice were housed in 

cages with littermates on paper bedding at 20 ± 2 °C and a 12/12-h light/dark cycle and 

were monitored daily by ULAM staff. Mice were acclimated for 1 wk, and at 5 wk of age 

were randomized to four groups: Control 1 month (mo) and 3 mo and HFD 1 mo and 3 

mo (Figure 3.1A). Control diet (10% fat, 70% carbohydrates, 20% protein; Research 

Diets, catalog # D12450J) or HFD (60% fat, 20% carbohydrates, 20% protein; Research 

Diets, catalog # D12492) were provided ad libitum, and mice also had free access to 

water. 

Mice were weighed weekly, except at weeks 6 and 9. Baseline glucose tolerance 

tests (GTTs) were performed for all animals at 5 wk of age. 1 mo control and HFD mice 

had GTTs at the 1 mo endpoint; 3 mo control and HFD mice had GTTs at both 1 mo 

and 3 mo endpoints. For GTTs, mice were fasted for 4 hours (h), and blood glucose 

levels were measured from one drop of tail blood using a glucometer (AlphaTrak, Abbott 

Laboratories) at baseline and at 15, 30, 60, and 120 minutes (min) after intraperitoneal 

injection of 1 g/kg body mass glucose in normal saline. Additional metabolic 

phenotyping included terminal plasma insulin, cholesterol, triglycerides, phospholipids, 

and non-esterified fatty acids performed by the Mouse Metabolic Phenotyping Center at 

the University of Cincinnati. All procedures were approved by the University of 

Michigan’s Institutional Animal Care and Use Committee (IACUC; PRO00008116, 

approved 2 May 2018). 
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3.5.2 Microglial isolation, sorting, and scRNA-seq 

Mice were euthanized using an IACUC approved protocol. Mice were injected 

with intraperitoneal pentobarbital (Fatal-Plus, Vortech Pharmaceuticals) and perfused 

with Hanks' balanced salt solution (HBSS; Thermo Fisher, catalog # 14175-145) 

supplemented with the transcription inhibitors actinomycin D (5 µg/ml; Sigma, catalog # 

A1410) and triptolide (10 µM; Sigma, catalog # T3652 or Cayman Chemical #11973), an 

approach described by Marsh et al.50 All subsequent microglial isolation steps were 

performed on ice or at 4 °C when possible and in a laminar flow hood or biological 

safety cabinet. Transcription inhibitors and ice were used to minimize processing-

associated microglial activation to preserve an in-vivo transcriptional state. Hippocampi 

were dissected from HFD and control mice (n=6/group) and minced on ice. A single cell 

suspension was prepared by a papain enzymatic digestion at 37 °C followed by 

trituration (1 mg/ml; Worthington catalog # LS003119) in Hibernate A -Calcium -

Magnesium (BrainBits, catalog # HACAMG) media with Glutamax (~0.5 nM; Gibco, 

catalog # 35050061). Transcription inhibitors actinomycin D, triptolide, and anisomycin 

(27.1 µg/ml; Sigma, catalog # A9789) were used until the end of the enzymatic digestion 

step.  

Digested tissue was serially triturated at room temperature with a fire-polished 

pipette twice followed by a smaller diameter salinized ~0.5 mm fire polished pipette 

twice (BrainBits, catalog # FPP). The cell suspension was passed through a wet 70 µm 

strainer on ice and then pelleted. Microglia were enriched by resuspending in 40% 

Percoll and centrifuging at 500g for 30 min at room temperature. The cell pellet was 

washed in ice-cold HBSS, centrifuged for 10 min at 300g at 4 °C, and resuspended in 
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ice-cold flow sorting buffer (1X PBS [phosphate buffered saline], 2% fetal bovine serum, 

1 mM ethylenediaminetetraacetic acid). Cells were moved to a 96-well plate, blocked 

with TruStain FcX™ (anti-mouse CD16/32) (Biolegend, catalog # 101320) for 30 min on 

ice, and then incubated with APC-CD45 (Biolegend, catalog # 103112) and APC-Cy7-

CD11b (Biolegend, catalog # 101226) at 1:50 in the presence of 1 µg/100 µl TotalSeq-B 

anti-mouse Hashtag antibodies (Biolegend, catalog #s 155831, 155833, 155835) for 30 

min on ice.  

After staining, cells were washed with 200 µl ice-cold flow sorting buffer for 10 

min at 4 °C and resuspended for flow sorting on the Sony MA900 Cell Sorter by the 

University of Michigan Flow Cytometry Core. Tagged control and HFD samples were 

combined on 10X chips to mitigate batch effects. scRNA-seq was performed by the 

Advanced Genomics Core at the University of Michigan using the 10X Genomics 

Chromium system (10X Genomics): An automated counter (Countess II, Thermo 

Fisher) was used to quantify cells/µl. The single cell suspension was then diluted to a 

final concentration ranging from 700 to 1000 cells/µl. Using the Chromium Controller, 3’ 

libraries of single cells were created leveraging 3’ V3.1 chemistry using NextGEM Chip 

G reagents, according to the manufacturer’s protocol (all from 10X Genomics). The 

quality of the final library was evaluated by Tapestation 4200 (Agilent) and Kapa qPCR 

(Roche) was used to quantify libraries. Pooled libraries were sequenced using 150 bp 

paired-end format (Illumina NovaSeq 6000). De-multiplexed Fastq files were generated 

(Bcl2fastq2 Conversion Software, Illumina) and reads were aligned and counted 

(CellRanger Pipeline, 10X Genomics).  

 



 113 

3.5.3 scRNA-seq data alignment and sample aggregating 

Low-quality reads were filtered out (quality less than Q30). Reads were then 

mapped to the GRCm38 mouse reference genome (CellRanger Pipeline 70 version 

4.0.0, 10X Genomics). The individual sample output files from CellRanger Count were 

read into Seurat v3 71. The hashtag oligo (HTO) 72 raw counts of each cell were 

normalized using a centered log ratio transformation across cells. Cells were then 

demultiplexed by using the HTODemux function in Seurat, 71 and droplets with two cells 

(doublets), more than two cells, or no cell (empty droplet) were subsequently removed. 

Cells were excluded from downstream analysis based on filtering by the following 

criteria: unique molecular identifier counts per cell <200, gene count per cell >7500, and 

the fraction of transcripts mapped to mitochondrial genes >25%. Count data were then 

normalized using the NormalizeData function in Seurat with the default setting. 

 

3.5.4 Dimension reduction, clustering, and visualization  

Principal component analysis (PCA) was performed based on the top 2,000 most 

variable genes. The optimal principal component (PC) number was selected based on 

the point where the percent change in variation in consecutive PCs was lower than 

0.1%. Then, Uniform Manifold Approximation and Projection (UMAP) was performed on 

the PCs to visualize cells, and graph-based clustering was performed on the PCA-

reduced data.  
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3.5.5 Cell type annotation and differential expression analysis  

To assign a cell type identity to each cluster, the cluster gene markers were 

identified using the FindAllMarkers function in Seurat. Cell types were assigned based 

on the cluster gene markers using the CellMarker 73 and PanglaoDB 74 databases and 

information available in the relevant literature. DESeq2 75 was used to identify 

differentially expressed genes (DEGs) between control and HFD cells for all microglia 

cell types combined and for each cell type separately. Genes were considered 

differentially expressed if the adjusted P-value was lower than 0.05. Kyoto Encyclopedia 

of Genes and Genomes (KEGG) enrichment was performed using the richR package 

(https://github.com/hurlab/richR) and an adjusted P-value < 0.05 was chosen as the 

cutoff value to select significant KEGG pathways.  

 

3.5.6 Cell-to-cell communication 

CellChat 33 was used to examine communication among cells. CellChat uses 

network analysis and pattern recognition to predict major signaling inputs to cells and 

signaling outputs from cells. CellChat also predicts how these cells and input and output 

signals coordinate. First, the software identified the significant ligand-receptor pairs 

across cell clusters, which were classified into signaling pathways. Next, it predicted 

incoming signals to specific cell clusters and outgoing signals from specific cell clusters. 

The global communication pattern was also predicted by pattern recognition 

approaches. Signaling pathways were then organized by similarity measures and 

manifold learning from topological perspectives. Finally, CellChat calculated the 
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communication probability of a signaling pathway by summarizing the probabilities of its 

associated ligand-receptor pairs.  

 

3.5.7 Weighted gene co-expression network analysis 

Weighted gene co-expression network analysis (WGCNA) 76 was performed to 

build signed co-expression networks using the WGCNA R package. The co-expression 

network was built using the top 3,000 most variable genes selected using the “mostVar” 

function from the transcripTools R package. Batch correction was done using the 

“ComBat” function from the sva R package. Soft power 6 was chosen by WGCNA’s 

“pickSoftThreshold” function to calculate the adjacency matrix.  

 

3.5.8 Immunohistochemistry and microglial morphology analysis  

One brain hemisphere from each mouse was dissected at the time of sacrifice 

and fixed in 4% paraformaldehyde for ~48 h. Each brain was then placed in 10% 

sucrose for ~24 h, followed by 20% sucrose for ~24 h, and 30% sucrose for a minimum 

of 24 h. Sections (50 µm) were cut on a cryostat and immunohistochemistry was 

performed on floating tissue. Sections were stained with rabbit anti-Iba1 (1:1000; Wako, 

catalog # 019-19741) at 4 °C overnight, followed by goat-anti rabbit Alexa fluor Plus 594 

secondary antibody (1:2000; Invitrogen, catalog # A32740) for 2 h at room temperature 

followed by a Hoechst nuclear stain for 8 min. Z-stack images were acquired at 40X 

objective with oil immersion on a Leica Stellaris 8 Falcon Confocal Microscope. Z-stacks 

(25.5 µm) were pre-processed using Imaris Software (Oxford Instruments). The surface 
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rendering tool was used to identify intact microglial cells, and a mask was created and 

manually edited to extract the fluorescent signal of full intact cells from the raw data, 

while eliminating cell branches not associated with cell somas. An open microscopy 

environment TIF file was then run through an adapted 3DMorph script using MATLAB 

29. Objects misidentified as cells and misrepresented cells were manually removed from 

the final data set. For each animal (HFD n=4, control n=3), 3 CA1 images were 

analyzed, and a total of 34 to 46 cells per animal were included in the final analysis. 

 

3.5.9 Quantification and statistical analysis 

Statistical analyses of mouse metabolic phenotyping was performed in Prism 9. 

For HFD versus control comparisons within timepoints, normality was tested using the 

Shapiro-Wilk test. Welch’s t-test was performed to detect differences between groups 

for data with normal distributions, and the Mann-Whitney test performed for non-

normally distributed data. For repeated measurements (GTTs, body mass) 2-way 

ANOVA was performed. For microglia morphology measures, linear mixed effects 

models with random animal-specific intercepts were used to detect differences between 

diet groups. The lmerTest package in R v4.1.1 was used to fit the mixed effects models 

and model parameter estimates were determined using the maximum likelihood method 

77. T-tests calculated using Satterthwaite’s degrees of freedom method were performed 

to assess differences in morphology measurements between diet groups. Histograms 

provided visual confirmation of assumptions of normality. The significance cutoff for all 

comparisons was P<0.05. 
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Chapter 4 Obesity-induced Neuroinflammation and Cognitive Impairment in Adult 
Versus Aged Mice  

4.1 Abstract 

Obesity rates are increasing worldwide. Obesity leads to many complications, 

including predisposing individuals to the development of cognitive impairment as they 

age. Immune dysregulation, including inflammaging (characterized by increased 

circulating cytokine levels) and immunosenescence (declining immune system function), 

commonly occur in obesity and aging and may impact cognitive impairment. As such, 

immune system changes across the lifespan may impact the effects of obesity on 

neuroinflammation and associated cognitive impairment.  However, the role of age in 

obesity-induced neuroinflammation and cognitive impairment is unclear. To further 

define this putative relationship, the current study examined metabolic and 

neuroinflammatory profiles, along with cognitive changes using a high-fat diet (HFD) 

mouse model of obesity. First, HFD promoted age-related changes in hippocampal 

gene expression. Given this early HFD-induced aging phenotype, we fed HFD to young 

and middle-aged mice to determine the effect of age on inflammatory responses, 

metabolic profile, and cognitive function. As anticipated, HFD caused a dysmetabolic 

phenotype in both age groups. However, older age exacerbated HFD cognitive and 

neuroinflammatory changes, with a bi-directional regulation of hippocampal 

inflammatory gene expression. Collectively, these data indicate that HFD promotes an 

early aging phenotype in the brain suggestive of inflammaging and immunosenescence. 
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Furthermore, age significantly compounded the impact on cognitive outcomes and on 

the regulation of neuroinflammatory programs in the brain 

 

4.2 Introduction 

The obesity crisis is reaching pandemic levels 1. According to the World Health 

Organization, in 2016 over 109 billion adults worldwide were overweight or obese. Not 

only does obesity significantly impact quality of life 2–4, it promotes a multitude of 

systemic complications. Obesity leads to comorbidities including type 2 diabetes, 

cardiovascular disease, cancer, stroke, and cognitive impairment 1,5–7. Further, obesity 

is a risk factor for aging associated dementias, including Alzheimer’s disease and 

Alzheimer’s disease related dementias. Studies demonstrate that mid-life obesity in 

particular is a risk factor for developing dementia later in life 5,8. However, obesity can 

occur throughout the lifespan, and its effects on cognition during adolescence and 

throughout adulthood are unclear. The impact of age on obesity-induced cognitive 

impairment requires better clarification. Further, the mechanistic link between obesity 

and cognitive impairment remains poorly characterized.  

Immune dysregulation is a hallmark of both obesity 9 and Alzheimer’s disease 10, 

and contributes to obesity induced cognitive impairment 11,12. Obesity is associated with 

systemic 13 and central nervous system (CNS) inflammation, including in the 

hippocampus 11,12,14, a brain region contributing to learning and memory affected by 

Alzheimer’s disease 15. While it is evident that immune responses contribute to obesity-

induced cognitive impairment, differential effects of age on this interaction are unclear. 

The immune system is profoundly impacted by aging, and effects of aging on both 
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innate and adaptive immune function have been extensively studied 16–18. The aged 

immune system has reduced ability to effectively mount a response to challenge, a 

phenomenon termed ‘immunosenescence’ 18. Yet, the innate arm of the immune system 

becomes aberrantly overactive, leading to chronic low level systemic inflammation, 

termed ‘inflammaging’ 16,17,19.  Due to these age-dependent changes in immune 

responses, age likely impacts the role of neuroinflammation in obesity-induced cognitive 

impairment. 

Adolescent and adult murine models of diet-induced obesity demonstrate 

cognitive impairment 12,20,21, including increased anxiety-like behavior 22,23.  Equivalent 

studies in aged mice are lacking; some evidence suggests that obesity worsens age-

related cognitive decline 24, while other studies show that consuming a high-fat diet 

(HFD) does not affect baseline aging deficits 23. However, it is established that HFD 

promotes the aging process in the CNS. Not only does HFD accelerate Alzheimer’s 

disease pathology and associated cognitive impairment 25–27, but it also exacerbates 

neuroinflammation and microglial aging in the healthy brain 28,29. Given this effect of 

HFD on CNS age-related inflammation, alongside the established role of the immune 

system in obesity-induced cognitive impairment, this study investigated potential 

differential effects of age on hippocampal neuroinflammation and cognitive function in 

obesity.  

Herein, we initially employed our established model of HFD-induced obesity 

throughout adolescence and into adulthood to determine the effect of obesity on 

hippocampal transcriptomics. We found that obesity during earlier periods of the 

lifespan induced an ‘early-aging’ hippocampal phenotype. Therefore, we then used this 
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same model in young adult and middle-aged mice to determine the impact of age on 

obesity-induced neuroinflammation and associated cognitive impairment. We found that 

age exacerbated HFD effects on some metabolic parameters. However, age 

significantly impacted HFD effects on fear conditioning. Further, age differentially 

affected hippocampal inflammatory gene expression, indicating that age plays an 

important role in the regulation of inflammatory responses in obesity. 

 

4.3 Results 

4.3.1 Obesity promotes a premature aging transcriptomic signature in the 

hippocampus 

First, our established mouse model of diet-induced obesity and cognitive decline 

20,30,31 was used to determine the effect of chronic obesity on the hippocampal 

transcriptome in adolescent mice maturing into young adulthood. Hippocampi from a 

previously published study 30 using C57BL/6 mice (n=8-9 per group) fed HFD or SD 

from 5 week (wk) of age until either 16 or 24 wk of age (Figure 4.1A; cohort 1) were 

processed for RNA-sequencing (RNA-seq). Hippocampal gene expression analysis 

identified 886 differentially expressed genes (DEGs; adjusted P-value <0.05) between 

HFD and SD at 16 wk age, and 111 genes between HFD and SD at 24 wk (Table 4.1). 

Interestingly, HFD mice had similar gene expression at both ages, indicating that HFD-

related changes likely occur early and are persistent. Next, Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment analysis was performed to infer 

potential biological significance of the DEGs. The identified DEGs between HFD and SD  
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Figure 4.1  Obesity promotes a premature aging transcriptomic signature in the hippocampus.  

(A) Study paradigm for cohort 1: mice aged 5 wk were fed high-fat diet (HFD) or standard diet (SD) for 11 
wk (final age 16 wk) or 19 wk (final age 24 wk) and hippocampi were analyzed by RNA-sequencing. (B) 
Bar plot of KEGG enrichment analysis of differentially expressed genes (DEGs) in HFD 16 wk versus SD 
16 wk. (C) Bar plot of KEGG enrichment analysis of DEGs in SD 24 wk versus SD 16 wk DEGs. (D) Venn 
diagram of overlapping DEGs (adjusted P-value<0.05) in HFD 16 wk versus SD 16 wk comparison 
(yellow) with SD 24 wk versus SD 16 wk comparison (light blue). (E) Bar plot of KEGG enrichment 
analysis of the 273 overlapping DEGs from (D). For (B), (C), and (E), bar color represents -log10(Padj), 
number to the right of the bar represents number of DEGs in the KEGG pathway, and bar length along 
the x-axis, ‘% in genome,’ represents the fraction of DEGs relative to all KEGG pathway genes. 



 128 

Table 4.1  Longitudinal hippocampal differentially expressed genes (DEGs) in high-fat diet (HFD) 
versus standard diet (SD).  

DEGs (adjusted P-value<0.05) from hippocampal RNA-sequencing from cohort 1; HFD versus SD at 16 
wk age, i.e., after 11 wk of diet (HFDvsSD16wk_DEG; sheet 1), HFD versus SD at 24 wk age i.e., after 19 
wk of diet (HFDvsSD24wk_DEG; sheet 3), HFD at 24 wk age versus HFD at 16 wk age 
(HFD24wk_vs_HFD16wk_DEG; sheet 4), and SD at 24 wk age versus SD at 16 wk age 
(SD24wk_vs_SD16wk_DEG; sheet 2). Only the top 20 DEGs for each comparison are included below; 
the complete dataset will be available at the time of publication or upon request. 

  Gene Name baseMean log2FoldChange lfcSE stat pvalue padj 

HFD vs SD 
16 wk 

Bcorl1 1257.842 0.483792 0.092361 5.238067 1.62E-07 0.002068 
8430427H17Rik 3089.025 0.363976 0.074098 4.912096 9.01E-07 0.002872 
Chsy1 806.6382 0.282045 0.057064 4.942634 7.71E-07 0.002872 
Vprbp 1837.717 0.300465 0.06069 4.950845 7.39E-07 0.002872 
Neurl1b 2848.53 0.557649 0.115966 4.808743 1.52E-06 0.003024 
Sos1 3721.088 0.286577 0.059567 4.810969 1.50E-06 0.003024 
Yy1 2311.748 0.273283 0.057043 4.790864 1.66E-06 0.003024 
H2afz 1898.542 -0.3077 0.064642 -4.76004 1.94E-06 0.003084 
Cbfa2t3 2184.016 0.661251 0.141132 4.685323 2.80E-06 0.003871 
Fam126a 1563.839 0.297775 0.06398 4.654209 3.25E-06 0.003871 
Fktn 2121.238 0.32121 0.069097 4.648696 3.34E-06 0.003871 
Elovl6 3401.399 0.240276 0.05196 4.624274 3.76E-06 0.003993 
Ccser2 6670.338 0.190984 0.041898 4.558308 5.16E-06 0.005056 
Rpl10a 2048.479 -0.33502 0.073971 -4.52899 5.93E-06 0.005396 
Kdm2a 4894.105 0.272722 0.060997 4.47108 7.78E-06 0.0062 
N4bp1 3068.535 0.297929 0.066621 4.472023 7.75E-06 0.0062 
Cox7c 1423.063 -0.41568 0.094114 -4.41678 1.00E-05 0.006721 
Ifnar1 2242.115 0.18099 0.040846 4.431082 9.38E-06 0.006721 
Rpl32 4207.976 -0.41814 0.094448 -4.42722 9.55E-06 0.006721 
Ankrd11 12501.18 0.344385 0.078567 4.383329 1.17E-05 0.006834 

SD 24 wk vs 
SD 16 wk 

Nfya 1015.686 0.455303 0.073451 6.198719 5.69E-10 9.12E-06 
Elovl6 3401.399 0.291211 0.050374 5.780923 7.43E-09 5.95E-05 
Mlec 7501.257 0.376343 0.066197 5.685227 1.31E-08 6.97E-05 
Lcn2 64.58255 -4.83509 0.898711 -5.38003 7.45E-08 0.000298 
Cox7c 1423.063 -0.4745 0.091334 -5.19514 2.05E-07 0.000469 
Mir3091 8.542845 -1.79933 0.347577 -5.17679 2.26E-07 0.000469 
Phf23 1644.169 0.227955 0.044093 5.169829 2.34E-07 0.000469 
Tab2 3897.14 0.214211 0.041162 5.204037 1.95E-07 0.000469 
2610524H06Rik 385.3625 -0.40705 0.081058 -5.02178 5.12E-07 0.000581 
Ankib1 3234.375 0.235848 0.046981 5.020106 5.16E-07 0.000581 
Gm561 375.4641 -0.46951 0.093355 -5.02922 4.92E-07 0.000581 
Lars 2221 -0.2258 0.044642 -5.05802 4.24E-07 0.000581 
Mtmr4 4501.578 0.274359 0.054625 5.02261 5.10E-07 0.000581 
Nab1 1648.047 0.249803 0.04908 5.089684 3.59E-07 0.000581 
Snap29 1404.932 0.223004 0.044511 5.010124 5.44E-07 0.000581 
Ppm1f 3873.479 0.265356 0.05337 4.972057 6.62E-07 0.000663 
Rbl2 2960.98 0.211742 0.043324 4.887357 1.02E-06 0.000963 
Pkp4 17020.92 0.243454 0.049983 4.870793 1.11E-06 0.000989 
Fndc3b 1217.026 0.442273 0.09162 4.827249 1.38E-06 0.001167 
Fktn 2121.238 0.322476 0.067039 4.810272 1.51E-06 0.001207 

HFD vs SD  
24 wk 

Creld2 618.2393 -0.65419 0.102665 -6.37211 1.86E-10 3.29E-06 
Xbp1 3291.223 -0.37372 0.068866 -5.42678 5.74E-08 0.000507 
Manf 2043.642 -0.46682 0.094055 -4.96329 6.93E-07 0.003535 
Sh3rf2 93.85328 -4.18006 0.846997 -4.93515 8.01E-07 0.003535 
Pdia4 2749.252 -0.51323 0.111292 -4.61158 4.00E-06 0.012536 
Rrbp1 2609.963 -0.34589 0.075221 -4.59826 4.26E-06 0.012536 
Bfsp2 193.5877 -0.78131 0.175412 -4.45415 8.42E-06 0.016202 
Dnajc3 4110.762 -0.36651 0.084791 -4.3225 1.54E-05 0.016202 
Fam46a 398.6578 -0.51925 0.119993 -4.32736 1.51E-05 0.016202 
Hspb1 148.0451 -0.93889 0.217493 -4.31686 1.58E-05 0.016202 
Klhl31 8.713686 -1.89323 0.439529 -4.3074 1.65E-05 0.016202 
Nexn 155.895 -2.31003 0.535165 -4.31648 1.59E-05 0.016202 
Parp12 462.937 -0.34423 0.077554 -4.43862 9.05E-06 0.016202 
Scarna9 8.56995 1.816351 0.408096 4.45079 8.56E-06 0.016202 
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Sdf2l1 631.4646 -0.66616 0.150331 -4.43132 9.37E-06 0.016202 
Serpinh1 808.752 -0.65527 0.150708 -4.3479 1.37E-05 0.016202 
Slc16a6 692.5536 -0.71079 0.162875 -4.36403 1.28E-05 0.016202 
Sntg1 1538.537 0.322648 0.074432 4.334778 1.46E-05 0.016202 
Tmem179b 133.8246 -0.40496 0.094356 -4.29179 1.77E-05 0.016469 
Iqgap1 1458.886 -0.52556 0.123446 -4.25737 2.07E-05 0.018259 

HFD 24 wk vs  
HFD 16 wk 

Acss2 2364.382 -0.17651 0.033256 -5.30766 1.11E-07 0.001186 
Samd3 29.51401 3.603186 0.678277 5.312266 1.08E-07 0.001186 
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in 16 wk young adult mice were enriched in pathways related to metabolism (e.g., 

‘oxidative phosphorylation,’ ‘non-alcoholic fatty liver disease’) and neurodegenerative 

disease (e.g., ‘Parkinson disease,’ ‘Alzheimer disease’) (Figure 4.1B, top 10 pathways).  

There was also an effect of age on the hippocampal transcriptome. In SD mice, 

age (24 wk versus 16 wk) affected 729 genes. KEGG pathway analysis of age-related 

DEGs identified enrichment of pathways related to metabolic dysfunction (e.g., 

‘oxidative phosphorylation,’ and ‘diabetic cardiomyopathy’) and neurodegenerative 

disease (e.g., ‘Parkinson disease’ and ‘Huntington disease’) (Figure 4.1C, top 10 

enriched pathways). Because the KEGG pathways identified for HFD versus SD DEGs 

at 16 wk mirrored those for the age-associated DEG set in young versus mature adult 

SD mice, the impact of HFD on age related gene expression was assessed. Indeed, 

273 genes overlapped between the 16 wk HFD versus SD DEGs and the SD 24 versus 

16 wk DEGs (Figure 4.1D). KEGG pathway analysis for these 273 genes revealed 

enrichment similar to the diet- and age-dependent DEGs, including ‘ribosome,’ 

‘oxidative phosphorylation,’ and ‘Parkinson disease’ (Figure 4.1E, top ten enriched 

pathways).  

 

4.3.2 HFD induces obesity and metabolic dysfunction in adult and aged mice 

Since obesity induced this premature aging hippocampal phenotype, we next 

investigated diet-induced obesity in young and aged mice to determine the effect of age 

on obesity-induced neuroinflammation and cognitive impairment (cohort 2). Young  
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Figure 4.2  HFD induces obesity and metabolic dysfunction in adult and aged mice.  

(A) Study design for cohort 2: mice aged 5 wk and 1 yr were fed high-fat diet (HFD) or standard diet (SD) 
for 14 wk; SD adult in teal, HFD adult in red, SD aged in blue, and HFD aged in orange. (B) Terminal 
body weights at study endpoint, ***P<0.001, ****P<0.0001 by Tukey’s multiple comparisons test for 
ordinary one-way ANOVA. (C) Terminal body composition by percent lean and fat mass, **P<0.01, 
***P<0.001, ****P<0.0001 by Dunn’s or Tukey’s multiple comparisons test for Kruskal-Wallis for non-
normally distributed lean mass and for ordinary one-way ANOVA for fat mass. (D) Terminal glucose 
tolerance test, P<0.05 by Tukey’s multiple comparisons test for repeated measures two-way ANOVA (*, 
#, $, ^; shown in legend); area under the curve for each experimental group, ****P<0.0001 by Tukey’s 
multiple comparisons test for ordinary one-way ANOVA. n=10 per group for all measures. Data are 
presented as mean ± standard deviation. 
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(henceforth labeled ‘adult’) and middle-aged (labeled ‘aged’) mice were fed HFD or SD 

for 14 wk (Figure 4.2A). HFD mice had significantly higher terminal body weights than 

their SD counterparts, regardless of age (adult HFD versus adult SD and aged HFD 

versus aged SD; P<0.0001, one-way ANOVA) (Figure 4.2B). Further, older age was 

associated with increased body weight, regardless of diet (adult SD versus aged SD, 

P<0.001; adult HFD versus aged HFD, P<0.0001). Next, we measured terminal body 

composition, as percent lean and percent fat. Relative to their SD counterparts, both 

adult and aged HFD mice had lower percentage of lean body mass (adult HFD versus 

adult SD, P<0.0001; aged HFD versus aged SD, P=0.006, one-way ANOVA) and a 

higher percentage of fat mass (adult HFD versus adult SD, P<0.0001; aged HFD versus 

aged SD, P<0.0001) (Figure 4.2C). Further, aged SD mice had a higher percentage 

body fat than adult SD mice (P=0.0001), but there was no difference in percent fat 

between the adult and aged HFD groups. Terminal glucose tolerance tests were then 

performed to determine the effect of HFD on glucose homeostasis in adult and aged 

mice (Figure 4.2D). Both adult and aged HFD mice showed an impaired response to 

glucose challenge compared to SD counterparts, demonstrated by higher peak blood 

glucose levels at 15 min post glucose bolus and increased area under the curve (AUC). 

Older age was associated with a worse response to glucose challenge in both SD and 

HFD animals (AUC, adult SD versus aged SD, P<0.0001; adult HFD versus aged HFD, 

P<0.0001, one-way ANOVA). 

Next, to further define the differential effect of obesity on the metabolic health of 

adult versus aged mice, we terminal epididymal adipocyte hypertrophy and fasting 

plasma insulin concentrations (Figure 4.3), and hepatic pathology (Figure 4.4) to  
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Figure 4.3  Terminal adipocyte hypertrophy and plasma insulin.  

(A) Adipocyte size-frequency distribution in adult SD (teal), adult HFD (red), aged SD (blue), aged HFD 
(orange) in cohort 2. Data are presented as the percentage of total adipocytes per binned adipocyte 
(μm2). Adipocyte areas were placed into 250 μm2 bins for analysis/representation. Bars represent mean ± 
standard error of the mean. Significant differences (P<0.05) between groups is per bin is represented by 
characters, * represents differences between adult SD and adult HFD mice, # represents differences 
between aged SD and aged HFD mice, ^ represents differences between adult SD and aged SD mice, 
and $ represents differences between adult HFD and aged HFD mice by two-way ANOVA, n=8-10 per 
group. (B) Fasting plasma insulin for cohort 2 mice; adult SD (teal), adult HFD (red), aged SD (blue), aged 
HFD (orange), ***P<0.001 by Dunn’s multiple comparisons test for Kruskal-Wallis test, n=9-10 per group. 
Error bars represent mean ± standard deviation. 
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Figure 4.4  Terminal liver pathology.  

(A) Representative images of adipose tissue stained with hematoxylin and eosin for adult SD (top left), 
adult HFD (top right), aged SD (bottom left) and aged HFD (bottom right) for cohort 2; 10X objective, 
scale bars are 300 µm. Kleiner scoring 32–34 of non-alcoholic fatty liver disease (NAFLD) components 
(B) steatosis (0-3), (C) lobular inflammation (0-3), and (D) summed NAFLD activity score (NAS; 0-8). NAS 
is a summation of steatosis, lobular inflammation, and ballooning degeneration (all measures for the latter 
were zero; data not shown). (E) Droplet counts for droplets within an area of 100-1000 µm2, normalized to 
tissue area mm2. *P<0.05, **P<0.01, ***P<0.001 by Dunn’s multiple comparisons test for Kruskal-Wallis 
test, error bars represent mean with standard deviation for (B)-(E). 
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assess the effect in multiple organs. HFD reduced the proportion of small adipocytes in 

both adult and aged mice (Figure 4.3A). Age also affected the distribution of adipocyte 

size in controls, with a lower proportion of small adipocytes in aged SD mice versus 

adult SD animals. However, older age did not compound the effects of HFD on 

adipocyte hypertrophy, suggesting a potential obesity ‘ceiling effect’ in response to 

HFD. HFD elevated plasma insulin concentrations in adults (P=0.0007, Kruskal-Wallis), 

but in HFD aged mice the increase relative to SD mice did not reach statistical 

significance (P=0.296) (Figure 4.3B). Kleiner scoring 32–34 for non-alcoholic fatty liver 

disease (NAFLD) pathology demonstrated that HFD increased steatosis in both adult 

(P=0.0004, Kruskal-Wallis) and aged (P=0.039) mice, but corresponding increases in 

lobular inflammation did not reach statistical significance (Figure 4.4B,C). Further, the 

NAFLD activity score, a summation of steatosis, lobular inflammation, and ballooning 

degeneration, was higher in HFD relative to SD in both adult (P=0.0051, Kruskal-Wallis) 

and aged (P=0.0197) mice (Figure 4.4D). In addition to Kleiner scoring, macrosteatosis 

was quantified by droplet counts, demonstrating that HFD increased counts in both 

adult (P=0.0021, Kruskal-Wallis) and aged (P=0.042) mice (Figure 4.4E). 

 

4.3.3 HFD increases plasma but not hippocampal inflammatory cytokines 

To examine possible differences in inflammatory cytokine and chemokine 

production due to HFD in adult and aged mice, plasma and hippocampi were assessed 

via ELISA (Figure 4.5 and Figure 4.6; cohort 2). In plasma, there were elevated 

concentrations of the pro-inflammatory chemokine monocyte chemoattractant protein-1 

(MCP-1) in aged HFD mice relative to aged SD animals (Figure 4.5B; P=0.0235, one-  
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Figure 4.5  Terminal plasma cytokines.  

Cohort 2 plasma cytokine protein concentrations via enzyme-linked immunosorbent assay (ELISA) for (A) 
TNF-α and (B) MCP-1; n=7-9 per group. For all bar plots, adult SD (teal), adult HFD (red), aged SD 
(blue), aged HFD (orange); *P<0.05 by one-way ANOVA; error bars represent mean ± standard deviation. 
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Figure 4.6  Terminal hippocampal cytokines.  

Cohort 2 hippocampal cytokine protein concentrations via enzyme-linked immunosorbent assay (ELISA). 
Concentrations normalized to tissue lysate total protein for (A) TNF-α, (B) MCP-1, (C) IL-6, (D) IL-1β, (E) 
IFN-γ, and (F) IL-10; n=7-8 per group. For all bar plots, adult SD (teal), adult HFD (red), aged SD (blue), 
aged HFD (orange); *P<0.05 by one-way ANOVA; error bars represent mean ± standard deviation. 
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way ANOVA). Adult HFD and adult SD mice had similar plasma MCP-1 levels. Tumor 

necrosis factor alpha (TNF-α) plasma concentrations tended to be higher in HFD mice 

of both ages, although this did not reach statistical significance (Figure 4.5A). There 

were no differences in any of the measured hippocampal cytokines across the groups 

(Figure 4.6A-F).  

 

4.3.4 HFD alters fear responses, particularly in aged mice 

To assess the impact of HFD and aging on cognition, associative learning was 

evaluated using a Pavlovian fear conditioning paradigm (Figure 4.7 and Figure 4.8; 

cohort 2). After a baseline period and three tone-shock pairings in the conditioning 

chambers on day 1, mice were returned to the same chambers on day 2. Freezing was 

then measured as an index of associative memory between the chamber and the 

aversive foot shock.  During the first 5 minutes in the training context on day 2, all mice 

exhibited robust freezing (Figure 4.7A; P<0.0001, 3-way RM ANOVA). However, HFD 

mice froze more than SD mice, regardless of age (P=0.0001, 3-way RM ANOVA). When 

placed in a novel context and exposed to the same tone used during training but in the 

absence of a foot-shock on day 5, all mice froze significantly more when compared to 

freezing during the pre-tone baseline period (Figure 4.7B; P<0.0001, 3-way RM 

ANOVA). Additionally, a main effect of diet was observed, where HFD mice froze more 

compared to SD mice (P=0.0054, 3-way RM ANOVA). When analyzing tone data, there 

was a compounding effect of age on diet, where aged HFD mice froze more compared 

to aged SD mice (P=0.0141, 1-way ANOVA). On days 2 through 4 when mice were 

returned to the original training context for 30 minutes/day (Figure 4.7C), HFD mice  
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Figure 4.7  HFD increases fear responses, particularly in aged mice.  

Aged HFD mice exhibit deficits in extinction learning. (A) Context test. Compared to baseline all mice 
displayed significant levels of freezing when returned to the training context on day 2 (3-way RM ANOVA; 
main effect of training F (1, 36) = 315.7; ₸, p<0.0001). Freezing levels appeared to be modulated by diet 
(3-way RM ANOVA; main effect of diet F (1, 36) = 18.8; ‡, p<0.0001) which was driven by the 
segregation of the two diet groups regardless of age at 24 hrs (1-way ANOVA F (3, 36) = 6.096, 
p=0.0018). (B) Tone test. Mice were placed in a novel context and after a 180 sec baseline period were 
exposed to the same tone used during training (the last 30 sec of baseline and first 30 sec of tone are 
presented. A 3-way repeated measures ANOVA revealed a main effect of training (F (1, 36) = 147.5 ₸, 
p<0.0001). Freezing levels appeared to be modulated by diet (3-way RM ANOVA; main effect of diet F (1, 
36) = 18.8; ‡, p=0.0054) but this effect was not specific to group, although when freezing in response to 
tone was analyzed, there was a significant difference between mice in the Aged SD group and the Aged 
HFD group (1-way ANOVA F (3, 36) = 3.593, P=0.0228 followed by Tukey post hoc comparison: adjusted 
p=0.0141). (C) Extinction training. On days 2, 3 and 4 mice were returned to the original training context 
and freezing was measured for 30 minutes (presented here in 5 min bins). Across all three days there 
was a reduction in freezing in response to repeated context exposure (3-way RM ANOVA main effect of 
training:  Day 2 F (1, 36) = 157.2, ₸, p<0.0001; Day 3: F (1, 36) = 14.17; ₸, p=0.0006; Day 4 F (1, 36) = 
11.84; ₸, p=0.0015) which was likely influenced by diet (3-way RM ANOVA main effect of diet: Day 2 F (1, 
36) = 22.46, ‡, p<0.0001; Day 3: F (1, 36) = 14.02; ‡, p=0.0006; Day 4 F (1, 36) = 10.63; ‡, p=0.0024) 
and age (3-way RM ANOVA main effect of age: Day 2 F (1, 36) = 4.963, †, p=0.0322; Day 3: F (1, 36) = 
6.750; †, p=0.0135; Day 4 F (1, 36) = 16.03; † p=0.0003). This was especially evident on Day 2 where a 
training x diet x age interaction was observed (F (1, 36) = 4.963, p=0.0322). To more directly examine the 
effectiveness of extinction training a 1-way ANOVA was used to analyze freezing levels recorded in the 
final bin on each day. Across all three days there was a main effect of group (Day 2: F (3, 36) = 12.69, 
p<0.0001; Day 3: F (3, 36) = 7.524, p=0.0005; Day 4: F (3, 36) = 5.530 P=0.0032). This effect appears to 
be a function of mice in the Aged HFD group which exhibited significantly more freezing as compared to 
the other 3 groups (Tukey’s multiple comparisons test *** p<0.001, * p<0.05). All data are presented as 
mean ± SEM.   
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Figure 4.8  Fear conditioning training. 

Fear conditioning paradigm. n=10 per group for all experimental groups. 
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initially displayed higher levels of freezing (Bin 1 in Figure 4.7C is the Day 2 data 

presented in Figure 4.7A). During the 30 min of extinction training on day 2, a main 

effect of extinction training was observed (P<0.0001, 3-way RM ANOVA). There were 

also main effects of both diet and age on extinction freezing, where HFD mice froze 

more compared to SD mice and aged mice froze more compared to adults (Figure 

4.7C; P values dependent upon day and Bin and are detailed in figure legend). 

Furthermore, aged HFD mice froze more than all other groups, particularly for the final 

bin of each day (Day 2, P<0.0001; Day 3, P=0.0005; Day 4, P=0.0032; 1-way ANOVA).  

 

4.3.5 Age determines hippocampal transcriptomic inflammatory response to HFD 

Hippocampal inflammatory gene expression profiling by NanoString nCounter assay 

revealed a differential effect of diet dependent upon age (Figure 4.9; cohort 2). A 

pattern of relative gene expression emerged for many of the DEGs due to age and diet 

(n=32, P<0.05), with HFD-induced increased expression in adults versus SD adults, but 

decreased expression in aged HFD mice relative to age-matched SD controls. 

Specifically, HFD in adult animals frequently increased expression of inflammatory 

genes with a significant increase in 18% of DEGs. Age increased gene expression even 

further, with aged SD animals exhibiting significantly higher expression in 60% of 

inflammatory DEGs. However, HFD in aged animals decreased the mean expression of 

many of these same genes, with significant decrease in 60% of DEGs. These results 

indicate bi-directional effects from HFD; HFD increased expression of inflammatory 

genes in adults, but decreased expression in aged mice relative to age-matched SD 

controls. Of these genes, many were related to either lymphocyte differentiation or 
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function (Table 4.2). Additionally, a large proportion were also involved in chemotaxis or 

inflammation, and innate immune cell activation or pattern recognition. Genes of interest 

within these broad functions included C-X-C motif chemokine 11 (CxCl11), zinc finger 

E-box-binding homeobox 1 (Zeb1), and interferon regulatory factor-4 (Irf4). Altogether, 

these data indicate that HFD impacts expression of genes involved in immune cell 

recruitment, activation, and function, in an age-dependent manner.  
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Figure 4.9  Age determines hippocampal transcriptomic response to obesity.  

Heat map of hippocampal gene expression counts measured by NanoString nCounter for differentially 
expressed genes (diet*age interaction by mixed-effects model, P-value<0.05); adult standard diet (SD; 
teal, first column), adult high-fat diet (HFD; red, second column), aged SD (blue, third column), and aged 
HFD (orange, fourth column). Genes (rows) were hierarchically clustered, while columns include animals 
ordered by replicate number (n=7-8 per group). Color represents relative expression levels of normalized 
counts for each gene across all samples from low expression (blue) to high expression (red).  
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Table 4.2  Hippocampal gene expression characterization after 14 wk of high-fat diet (HFD) versus 
standard diet (SD).  

Hippocampal inflammatory gene expression by NanoString for cohort 2; adult SD (n=8), adult HFD (n=8), 
aged SD (n=7), and aged HFD (n=7) mice. Genes with a significant interaction between diet and age are 
shown. Data are expressed as mean counts and clustered into broad gene functions, with a summary of 
individual gene functions. * Indicates P<0.05 SD versus HFD within the same age group, and $ indicates 
P<0.05 adult versus aged within the same dietary group. 

Gene SD 
adult 

HFD 
adult 

SD 
aged 

HFD 
aged 

Broad 
function Function 

Btnl2 8.0 10.3$ 9.6 6.8 

T-
cells/lym
phocytes 

Immunoregulatory major histocompatibility complex II 
transmembrane protein involved in immune surveillance by 
negatively regulating T-cells. 

Cd1d1 4.4 4.4 6.8*$ 4.7 Invovlved in T-cell receptor binding (particularly of lipids), 
differentiation, activation, and proliferation. 

Cd274 6.1 8$ 8.8* 5.1 Inhibitory ligand for T-cells and B-cells. 

Cd3eap 4.3 4.3 6.8*$ 4.5 Has a role in RNA binding and one isoform is a component of the T-
cell receptor complex. 

Cxcl11 7.2 10.9 23.3*
$ 13.6 Antimicrobial chemokine superfamily chemotactic for activated T-

cells. 
Foxp3 4.1 6.0 6.8$ 5.6 Transcriptional regulator of regulatory T-cells. 

Il13 5.7 9.3 14.4*
$ 8.6 

Th2 cell produced immunoregulatory cytokine with roles in B-cell 
maturation and differentiation, and downregulation of macrophage 
activity. 

IL6ra 9.9 11.4 15.1* 10.6 Part of the interleukin-6 (IL-6) receptor complex, which is critical for 
T-helper 17 cell differentiation and Il-6 signaling. 

Il9 14.9 20.6*
$ 15.8 14.5 Regulatory cytokine for hematopoietic cells which promotes 

proliferation as well as supporting helper T-cell growth. 
Pdcd1lg
2 7.7 6.1 10.0 11.8$ Co-stimulatory ligand involved in the negative regulation of activated 

T-cells. 

Tnfrsf4 28.2 32.6 50.3$ 42.5$ 
Receptor which interacts with TRAF2/5 to activate NF-kappaB and 
may have a roles in CD4+ T-cell responses and T-cell mediated B-
cell proliferation/differentiation. 

Xcl1 2965.
9*$ 

2381.
4 

2367.
1 

2261.
3 

Antimicrobial chemokine which is chemotactic for T-cells and may 
have a role in promoting self-tolerance. 

Ccl12 12.2 12.7$ 10.7* 5.7 

Chemota
xis/inflam

mation 

Chemotactic cytokine for monocytes and basophils. 

Ccl4 20.7 25.9 35.2$ 27.2 Inflammatory and chemokinetic monokine produced by CD8+ T-cells 
that acts as a major HIV-suppressive factor. 

Cd97 3.8 5.4 6.3$ 5.5 G protein-coupled receptor involved in cellular adhesion as well as 
recruitment/migration and activation of leukocytes. 

Ifna2 4.0 4.6 7*$ 4.3 Type I interferon family antiviral cytokine which decreases 
proliferation and has immunomodulatory properties. 

Il25 5.0 5.2 6.8* 4.3 Proinflammatory cytokine that can activate NF-kappaB activation.  

Itgb1 12.9 18.7* 22$ 19.0 An integrin family members (beta subunit) involved in cell adhesion. 

Ltb4r2 7.6 9.9$ 9.8* 6.1 
Predicted functions; assist G protein-coupled peptide receptor and 
leukotriene B4 receptor activity, and assist granulocyte and 
macrophage chemotaxis. 

Smad3 5.6 6.2 8.5*$ 5.1 
Part of the transforming growth factor-beta signaling pathway 
involved in genetic regulation and cell proliferation, it also plays a role 
in monocyte chemotaxis. 

Zeb1 88.7 90.7 125*
$ 102.9 Zinc finger transcription factor involved in repression of interleukin 2 

gene expression and positively impacts neuronal differentiation.  

Cxcr2 7.1 8.5 10.1* 6.3 

Innate 
immunity 

Interleukin 8 receptor which also binds to CXCL1 to promote 
neutrophil migration and activation, and may play a role in 
oligodendrocyte precursor positioning. 

Ikbkg 12.0 17.1* 18.7 16.4 
Inhibitor of kappaB kinase (IKK) complex regulatory subunit which is 
critical for IRF3 activation and is involved in antiviral responses via 
TLR3- and IFIH1. 

Il4ra 4.0 4.4 5.3*$ 4.4 Predicted functions; upregulation of chemokine production and 
macrophage activation. 

Irf4 11.9 16.9* 18.2$ 16.1 Lymphocyte transcription factor that regulates toll-like-receptor (TLR) 
signaling and has a role in differentiation of CD8(+) dendritic cells. 
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Klrc2 4.4 4.6 6* 3.9 Calcium-dependent lectin that aids in the regulation of natural killer 
cells, and may aid in the response of natural killer cells to viruses. 

Nod2 31.1 35.5 46$ 39.5 
Leukocyte protein in the Nod1/Apaf-1 family which plays a role in 
intracellular bacterial lipopolysaccharides (LPS) and ssRNA 
recognition. 

Tlr3 8.4 9.8 18.7*
$ 13.2 Dendritic intracellular receptor involved in viral dsRNA responses, 

primarily via NFκβ. 

Xcr1 8.5 13.5* 12.3 9.1 Dendritic chemokine receptor that may have a role in antigen cross-
presentation to NK cells or CD8 T-cells.  

Alas1 7.8 10.6 16.7*
$ 13.0 

Other 

Mitochondrial enzyme involved in the regulation of iron-
protoporphyrin biosynthesis.  

Fcgrt 6.1 6.9 14.9*
$ 9.4 Monomeric immunoglobulin G (IgG) receptor which also protects IgG 

from degradation. 
Nox3 5.2 5.3 7.4*$ 4.9 NADPH oxidases in the NOX family involved in gravity perception. 

* indicates p<0.05 SD vs HFD within the same age group, $ indicates p<0.05 adult vs aged within the same dietary group  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 146 

4.4 Discussion 

Immune dysregulation is a common feature in obesity and aging, which contributes to 

pathological CNS changes, including cognitive impairment. Here, in a mouse model of 

obesity and cognitive impairment 20,31, HFD promoted a premature hippocampal aging 

signature and led us to examine differential effects of HFD with age. Age exacerbated 

HFD effects on cognition, as well as body weight and glucose tolerance. However, most 

metabolic phenotyping parameters (body composition, plasma insulin, adipocyte 

hypertrophy, NAFLD liver pathology) appeared to reach a ‘ceiling’ where HFD produced 

similar effects in both adult and aged mice. Additionally, HFD induced bi-directional 

hippocampal inflammatory gene expression changes; increased in adults but decreased 

in aged animals. Overall, our data indicate that age plays an important role in obesity-

induced hippocampal inflammatory response and cognitive impairment. 

Here, HFD promoted a premature hippocampal aging phenotype. Many DEGs in 

16 wk old HFD versus SD were also DEGs arising from aging (SD mice, 24 wk vs 16 

wk). These overlapping genes were enriched in pathways related to metabolism, 

ribosome, oxidative phosphorylation, and neurodegenerative diseases, including 

Alzheimer’s Disease. In the brain, ribosome and oxidative phosphorylation pathways 

are aging signatures in multiple cell types 43. Our findings align with existing studies 

exploring consequences of obesity and metabolic dysfunction during aging, i.e. 

inflammaging, cellular senescence, and genomic damage 19,44. Others have similarly 

shown that obesity induces an aging phenotype 45, particularly in adipose 46. Both 

classically dysregulated during aging, immune function and metabolism are intrinsically 

linked. For example, saturated fatty acids activate pattern recognition receptors 47,48, 



 147 

creating a pro-inflammatory state. In turn, this directly impacts insulin signaling, 

promoting insulin resistance 48,49. 

Regardless of age, HFD mice had greater fat mass and lower lean mass, fewer 

small adipocytes, and increased liver steatosis, macrosteatosis, and NAFLD score. 

Although not significant, aged HFD mice also had higher plasma insulin concentrations. 

We 20,30,31 and others 50,51 have shown that HFD consistently causes obesity, 

dysregulated glucose metabolism, liver pathology, and adipocyte hypertrophy. 

Interestingly, for weight and glucose tolerance, age compounded dietary effects; HFD 

and age worsened the metabolic phenotype relative to adult controls, and HFD aged 

mice displayed the most severe phenotype. However, for all other parameters, aged 

and adult HFD mice were similar, possibly due to a ‘ceiling effect’ with HFD, which older 

age could not worsen past a certain point.  

Chronic HFD impairs cognition in mice 20,51. To examine the impact of age, we 

assessed cognitive function by training mice to associate a context and tone with a foot-

shock. All mice were capable of learning and remembering this relationship. However, 

HFD mice, particularly aged HFD mice, exhibited higher levels of freezing when 

returned to the training context but in the absence of the tone. As the levels of freezing 

in response to the tone were similar between groups, this enhanced freezing is likely not 

due to a generalized increase in fear. While aged HFD mice exhibited extinction 

learning, their freezing levels remained elevated compared to all other groups. This 

deficit appears to be specific to extinction learning and are consistent with others 

suggesting that inflammation within the hippocampus 52 and increased cytokine levels 53 

produce similar impairments in fear extinction. 
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Few studies have assessed cognitive effects of HFD in an age dependent 

manner. In rats 54, similar to here, age exacerbated negative cognitive outcomes in 

animals fed HFD for 3 days. However, aged HFD rats froze less compared to their SD 

counterparts 54, whereas HFD increased freezing here. In mice, there are conflicting 

results regarding HFD and age on cognitive function 23,24.  One study reported age 

worsened HFD learning deficits assessed by elevated plus maze 24. However, another 

study showed increased anxiety in adults due to HFD, and spatial cognitive deficits due 

to age, which diet did not affect 23. These conflicting results may be due to multiple 

factors, e.g., different age of diet initiation, diet duration, model system, cognitive testing 

modalities. Normal age-related cognitive changes also could mask subtle HFD effects in 

older mice. Additionally, behavioral testing is susceptible to variability from multiple 

factors, such as season, lighting, and light-dark cycles 55,56. 

To investigate underlying neuroinflammatory changes contributing to fear 

conditioning deficits, we measured hippocampal cytokines and inflammatory gene 

expression. While many report increased hippocampal inflammatory cytokines in 

response to age or HFD 12,14,57, we found no changes, which is aligned with another 

study 58. Failure to detect differences may be due to the high degree of regulation for 

maintaining homeostasis or inherent individual variation in inflammatory measures. 

Immune challenge with lipopolysaccharide robustly increases cytokine production, 

which is impacted by age and HFD 59. Thus, although we detected no differences in 

baseline hippocampal cytokines, immune challenge might reveal differential responses.  

Many classic aging hallmarks, including inflammaging and senescence 60–63, are 

also associated with obesity and metabolic dysfunction 19,44. Here, HFD induced a 
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premature aging phenotype by hippocampal RNA-seq. Similarly, hippocampal 

inflammatory gene expression was age and diet dependent. Specifically, HFD 

upregulated inflammatory gene expression in adults. Age further increased expression, 

but HFD had the opposite effect in aged mice, decreasing expression of many of the 

same inflammatory DEGs. Broadly, DEGs fell into categories related to lymphocyte 

differentiation or function, chemotaxis or inflammation, and innate immune cell 

activation or pattern recognition. Furthermore, several DEGs of interest were identified; 

C-X-C motif chemokine 11 (CxCl11), Zinc finger E-box-binding homeobox 1 (Zeb1), and 

interferon regulatory factor-4 (Irf4).  

CxCl11 is a chemokine involved in lymphocyte differentiation or function, which 

attracts activated T-cells 64. CxCl11 brain levels increase in response to trauma 65 and 

in neurological diseases 6667. Inflammaging and immunosenescence 68 impact 

lymphocyte differentiation or function, especially T-cell function, and CxCl11 levels rise 

in parallel with senescent T-cells in hypertensive patients 69. The second gene of 

interest, Zeb1, is involved in chemotaxis or inflammation 70 71, both cornerstones 16–19,72 

of inflammaging and immunosenescence. Zeb1 may regulate adipocyte differentiation in 

obesity 73,74, and plays a role in insulin resistance in adipose tissue 73 and apoptosis in 

pancreatic beta cell during diabetes 75. Furthermore, Zeb1 regulates IL-2, which 

activates natural killer cells, whose numbers and function decrease with age 76.  

The innate immune system is the first line of defense against injury, insult, or 

infection, and participates in inflammaging and immunosenescence upon continued 

activation 68. Irf4, a key player in innate immunity 77, was the final identified gene of 

interest. Irf4 helps regulate PGC-1α, a metabolic co-factor that promotes fatty acid 
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oxidation, mitochondrial biogenesis, and brown fat differentiation 78. Irf4 is expressed by 

multiple brain cell types, including neurons and microglia, and plays a protective role in 

response to stroke 79,80. Furthermore, and similar to our results, ischemia was 

associated with a lower IRF4 expression in aged vs younger animals 81, indicating an 

age-dependent response to insult or injury.  

Our study has limitations. First, fear conditioning experiments may be impacted 

by known hearing loss in aged C57BL/6 mice, which may affect their ability to perform 

the task. However, the 28 kHz, 85 dB tone used can likely be sensed via vibration. This, 

combined with similar performances between SD adult and SD aged animals indicates 

hearing loss likely did not prevent mice from generating fear memory. Secondly, this 

study used only male animals. Sex is an important variable in metabolic, immune, and 

cognitive studies 58,82,83. Given the differences observed here, future studies are vital to 

understand the impact of sex on mechanisms leading to cognitive impairment in obesity 

and metabolic dysfunction. 

Overall, our data demonstrate that age significantly impacts the effects of HFD 

on hippocampal inflammatory responses and cognitive phenotype, with older aged 

associated with worse outcomes. HFD-induced metabolic dysfunction is also impacted 

by age but to a lesser extent, with a potential ‘ceiling effect’ for some parameters. 

Hippocampal gene expression supports an age-dependent regulation, indicating that 

HFD promotes an early aging phenotype. 
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4.5 Methods 

4.5.1 Animals and experimental design 

Experiments were performed on two cohorts of mice. Cohort 1 comprised young 

C57BL/6J males, 5 weeks (wk) of age (strain # 000664; Jackson Laboratory, Bar 

Harbor, ME), whose peripheral metabolic data and neurological tissues were analyzed 

in a previously published study 30. Cohort 1 animals were fed ad libitum 10% fat 

standard diet or 60% high-fat diet (standard diet, SD, D12450B; high-fat diet, HFD, 

D12492; Research diets, New Brunswick, NJ), and used in this study only to obtain 

hippocampal tissue for RNA-seq analysis. Cohort 2 included C57BL/6J males at both 5 

wk of age (strain # 000664; Jackson Laboratory, Bar Harbor, ME) and 1 yr of age 

(National Institute of Aging aged rodent colony). Cohort 2 animals were used for all 

other results reported here. Cohort 2 young and aged mice were fed ad libitum either 

10% fat SD or 60% HFD (SD, D12450J; HFD, D12492; Research diets, New Brunswick, 

NJ). All animals were acclimated at the University of Michigan for at least 1 wk prior to 

dietary changes. Mice were also provided water ad libitum in a pathogen-free room 

maintained under a 14:10 light:dark cycle at 20 ± 2 °C and monitored daily by veterinary 

staff at the University of Michigan’s Unit for Laboratory Animal Medicine.  

The two cohorts differed in diet duration (SD or HFD) and experiment. Cohort 1 

young mice were fed SD or HFD for 11 wk or 19 wk for two terminal timepoints to 

perform hippocampal RNA-seq. All cohort 2 young and aged mice were fed SD or HFD 

for 14 wk for a single terminal timepoint. At terminal timepoints in all cohorts, animals 

were sacrificed using an intraperitoneal injection of 150 mg/kg sodium pentobarbital 

(Fatal-Plus, Vortech Pharmaceuticals, Dearborn, MI). At sacrifice, cohort 1 mice were 
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16 wk of age after 11 wk on diet, or 24 wk of age after 19 wk on diet; cohort 2 mice were 

19 wk of age after 14 wk on diet, or 66 wk of age after 14 wk on diet. Following sacrifice 

for all animals, plasma was taken for metabolic phenotyping and mice were then 

perfused with phosphate-buffered saline and tissues harvested. Cohort 1 hippocampal 

tissue was isolated and snap frozen and stored at -80° C for later RNA extraction and 

RNA-seq. Cohort 2 terminal plasma was isolated to measure insulin and cytokine levels, 

hippocampal tissue was isolated, snap frozen, and stored for later cytokine measures or 

RNA extraction for NanoString inflammatory gene expression analysis, and liver and 

epididymal fat tissues were formalin fixed for histological analysis. All procedures were 

carried out per the University of Michigan’s Committee on Use and Care of Animals 

under protocol numbers PRO0010039, PRO00010247, PRO00006140, and 

PRO00008116.  

 

4.5.2 Metabolic phenotyping 

Cohort 1 mice underwent metabolic phenotyping as previously reported 30. 

Cohort 2 young and aged mice underwent terminal metabolic phenotyping after 14 wk 

on diet. Metabolic phenotyping was performed on all animals according to the Diabetic 

Complications Consortium guidelines (https://www.diacomp.org/share/protocols.aspx) 

and as previously published 30,31. At terminal, animals were weighed and glucose 

tolerance tests were performed, as previously published 31. Briefly, mice underwent an 

intraperitoneal injection of 1 g glucose per 1 kg body weight and blood glucose readings 

were recorded prior to injection and at 15, 30, 60, and 120 minutes (min) post injection.  
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Additional metabolic phenotyping for cohort 2 included body composition 

quantification, plasma insulin concentration, liver pathology scoring, and adipose tissue 

histomorphometry. Body composition analysis was performed after cognitive 

phenotyping and immediately prior to study termination at 14 wk using a EcoMRI 4in1-

900 (EcchoMRI LLC, Houston, TX) at the Metabolism, Bariatric Surgery and Behavior 

core as part of the University of Michigan Mouse Metabolic Phenotyping core. Terminal 

plasma insulin concentrations were measured using a rat/mouse insulin ELISA (catalog 

# EZRMI-13k, Millipore Sigma-Aldrich, St. Louis, MO) by the University of Michigan 

Mouse Metabolic Phenotyping core. Formalin fixed liver tissue samples collected at 

study endpoint after 14 wk of diet were processed by the University of Michigan in vivo 

animal core and assessed for liver pathology, which included measures of 

macrosteatosis (droplet counts within 100-1000 µm2 in area, normalized to tissue area) 

and Kleiner scoring 32–34. Kleiner scoring included measures of lobular inflammation 

(scale of 0-3), ballooning degeneration (scale of 0-2), steatosis (scale of 0-3), and a 

summed non-alcoholic fatty liver disease (NAFLD) activity score (NAS) (scale of 0-8).  

Formalin fixed epididymal white adipose tissues collected at study endpoint after 

14 wk of diet were paraffin embedded, sectioned, stained with hematoxylin and eosin, 

and assessed for fat histomorphometry, as previously published 35,36. Briefly, four 

representative images were taken per animal at a 10X magnification, and 

histomorphological analysis was performed using Metamorph software version 

7.10.3.279. Images were thresholded to include adipocytes with a shape factor between 

0.35 and 1 (shape factor of 0 being a straight line, shape factor of 1 being a perfect 

circle), an equivalent sphere surface area between 5,000 μm2 and 1x106 μm2, and 
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areas between 10 μm2 and 1.5x103 μm2. Objects bordering the edge of the image were 

excluded. Following initial thresholding, manual adjustments were made to add, 

remove, cut, or join adipocytes. For each image, adipocytes were binned from 0 to 

2x104 μm2 at 250 μm2 increments. Using the frequency for each binned adipocyte size, 

the percentage of adipocytes belonging to each bin was calculated for each image and 

the images for each experimental group were averaged to determine differences for 

each binned adipocyte size between groups.  

 

4.5.3 Cognitive phenotyping 

Cohort 2 young and aged mice on SD and HFD underwent fear conditioning prior 

to study termination after 14 wk on diet. Fear conditioning was carried out as previously 

published 37,38. In brief, mice were trained to anticipate a foot shock by training with a 

180 sec baseline, a tone (28 kHz, 85 dB, 30 sec), followed by the 0.75 mA foot shock. 

Tone/shock pairings were completed 2 additional times, for a total of 3 pairings with a 

120 sec gap following each tone. On days 2, 3, and 4, mice were placed into the 

chamber for a total of 30 min, with no tones or shocks to assess fear extinction. The first 

5 min of time in the chamber on day 2 was used to assess contextual memory. On day 

5, animals were assessed for cued (tone) memory. The chamber was re-configured to 

represent a different context, i.e., different flooring type and wall shape. In addition, the 

background odor, noise, and lighting were altered 37,38. The mice were placed into the 

reconfigured chamber and given a 180 sec baseline, followed by a 28 kHz tone (30 

sec). Freezing behavior, i.e., the absence of movement, excluding breathing, was 

measured and used to calculate percent freezing, i.e., the amount of time spent freezing 
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out of the total amount of time while in the chamber. Percent freezing was used to 

assess fear extinction, cued memory, and contextual memory. 

 

4.5.4 Gene expression 

Hippocampi from mice on SD and HFD from cohorts 1 and 2 underwent RNA 

extraction and gene expression analysis. Cohort 1 hippocampal tissues were collected 

at study endpoint after 11 wk or 19 wk of diet and processed for RNA-seq, as previously 

published 30. Cohort 2 hippocampi were collected at study endpoint after 14 wk of diet 

and RNA extracted for NanoString nCounter transcriptomics analysis (NanoString 

Technologies, Seattle, WA). For both cohorts, RNA was isolated using an RNAeasy kit 

(Qiagen, Germantown, MD), per the manufacturer’s instructions. 

Briefly, for RNA-seq on cohort 1 hippocampi, RNA quality was assessed using a 

2100 Bioanalyzer at the University of Michigan’s Advanced Genomics Core and used to 

construct a library, which was sequenced using the NovaSeq 6000 (Illumina, San 

Diego, CA) to obtain approximately 60 million 50 bp paired-end reads per sample. The 

raw FASTQ files were first cleaned by removing low quality reads (Q<30) and adapters 

with Trimmomatic 39. All clean reads were mapped to the mouse reference genome 

mm10 (GRCm38) using HISAT2 mapper 40. FeatureCounts 41 was used to summarize 

the reads mapped to mouse genes. Fragments per kilobase of transcript per million 

mapped reads values were calculated for all genes to represent their expression levels.  

For NanoString on cohort 2 hippocampi, RNA samples were sent to Michigan 

State University for nCounter analysis using NanoString’s mouse immunology panel 
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(catalog # PLS PPL M IMM) with 19 spike-in genes (Iba1, Aim2, Atf6, Cd200r, cGAS, 

Decaf1, Chop, Dgat2, Perk, Elovl6, Ire1a, Gfap, Jnk, Mapt, Mmp12, Nlrp3, Asc, Scd1, 

Tmem119). NanoString data were processed using nSolver 4.0 software. Any samples 

not passing quality control were removed and background thresholding was performed 

so that any samples with counts below the lowest negative control (a relative gene 

expression level of 4 counts) were set to that value for analysis. Data were then 

normalized to the positive controls and to the housekeeping genes provided within the 

panel. Normalized data were then used for subsequent statistical analysis of relative 

gene expression (counts).  

 

4.5.5 Immunological phenotyping 

Terminal plasma and hippocampal lysates from cohort 2 young and aged mice 

on SD and HFD were used to measure cytokine concentrations via enzyme-linked 

immunosorbent assay (ELISA). Plasma was analyzed for tumor necrosis factor alpha 

(TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6), and 

interleukin 1 beta (IL-1β). Hippocampal lysates were analyzed for TNF-α, MCP-1, IL-6, 

IL-1β, interferon gamma (IFN-γ), and interleukin 10 (IL-10). ELISA was performed by 

the University of Michigan Immune Monitoring Core of the Rogel Cancer Center. 

 

4.5.6 Bioinformatics and statistical analysis 

Differentially expressed gene analysis for RNA-seq data was performed with 

DESeq2 package 42. Differentially expressed genes (DEGs) were identified with an 
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adjusted P-value<0.05. To identify the overrepresented biological functions, the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) 

enrichment analysis were performed using a hypergeometric test with our in-house R 

analysis package richR (http://github.com/hurlab/richR). The terms with Benjamini-

Hochberg corrected P-values<0.05 were deemed as significantly overrepresented 

biological functions in each DEG set. 

Statistical analysis of all other data was performed using either Prism (version 9; 

GraphPad Software, La Jolla, CA, USA) or SAS 9.4 software (SAS Institute, Cary, NC). 

GraphPad analyses were performed using either t-test or analysis of variance (ANOVA) 

and significance of multiple comparisons determined using Tukey’s test. SAS analyses 

were performed using the Proc Mixed function, and for NanoString data cartridge was 

set as a random effect to account for potential differences between batches. Normality 

was established using Anderson-Darling, D'Agostino-Pearson omnibus, Shapiro-Wilk, 

and Kolmogorov-Smirnov tests. Non-normal data were log transformed and if log 

transformation did not result in normality, non-parametric analysis was performed using 

Kruskal-Wallis test. Data are presented as either means or least square means ± 

standard deviation or as mean ± SEM and are indicated as such in the figure legends. 
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Chapter 5 Preliminary Data on the Role of Endoplasmic Reticulum Stress in 
Hippocampal Microglial Activation in Obesity 

5.1 Abstract 

Obesity is an established risk factor for developing cognitive impairment and dementia. 

Despite decades of research, Alzheimer’s disease (AD) lacks disease-modifying 

therapies, possibly because current therapeutics target pathways too late in the disease 

process. Understanding early events that set off the cascade of pathological changes 

may lead to potentially disease-modifying therapies, preventing progression of disease. 

Obesity induces brain inflammation and activates microglia in brain regions responsible 

for cognition, such as the hippocampus. In the periphery, high-fat diet (HFD) mediates a 

macrophage endoplasmic reticulum (ER) stress response, including through the IRE1a-

XBP1 stress response pathway, and inflammation in obesity. However, the role of SFA-

induced ER stress on microglial activation is unclear. Herein, we devised experiments to 

address our hypothesis that a saturated-fat-enriched HFD activates microglia through 

the ER stress response, contributing cognitive impairment. Chapter 5 outlines the 

preliminary results currently available for Aim 4 of the dissertation, and we propose 

future experiments to address unanswered questions. 

 

5.2 Introduction 

The prevalence of global obesity continues to rise 1,2, placing a great burden on 
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patients and healthcare systems. Unfortunately, obesity is an established risk factor for 

developing cognitive impairment and dementia 3,4. Despite decades of research, 

disease-modifying therapies for dementia and AD are lacking. Reasons are manifold, 

but among them is the possibility that current therapeutics target pathways too late in 

the disease process. Thus, understanding early events that set off the cascade of 

pathological changes may constitute a potential therapeutic path forward. Obesity along 

the continuum of the life span, from childhood to midlife, predisposes individuals to 

cognitive deficits 4–7. However, mechanisms linking obesity to cognitive dysfunction are 

not well characterized.  Rodent models of diet-induced obesity demonstrate an 

inflammatory response to a saturated fatty acid-enriched HFD feeding in the 

hippocampus, a brain region critical for declarative memory, alongside hippocampal-

dependent cognitive dysfunction 8–10. Researchers suggest a contributory role for 

microglial activation in obesity-associated cognitive impairment 8. Thus, understanding 

how and when microglial become activated over the course of obesity in the lifespan will 

clarify appropriate therapeutic opportunities. However, there is a gap in our 

understanding of the pathological mechanisms mediating obesogenic diet-induced 

hippocampal microglial activation. 

Drawing on observations from peripheral macrophages in obesity, the 

endoplasmic reticulum stress response may be a potential mechanism mediating 

microglial activation. SFA-enriched HFD induces a macrophage endoplasmic reticulum 

(ER) stress response, which leads to a pro-inflammatory macrophage phenotype 11. The 

inositol requiring enzyme 1-a (IRE1a) branch of the ER stress response (Fig 5.1) plays 

a role in this process in macrophages 11, and SFAs activate the IRE1a-XBP1 pathway 
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in macrophages in vitro 12. IRE1a is a transmembrane ER protein with ribonuclease and 

kinase catalytic activity 13. IRE1a splices X-box binding protein 1 (XBP1) mRNA into 

spliced XBP1 (sXBP1), which is translated into a transcription factor involved in an 

adaptive response to stress, and IRE1a activation can also induce apoptosis 14,15. As an 

‘immunometabolic’ hub, the ER senses metabolic disturbances and responds by 

inducing the transcription of adaptive genes, or if stress is chronic and excessive, 

apoptosis 14,15. ER stress also contributes to insulin resistance (IR) in obesity models 

16,17.  IRE1a can activate TNF receptor-associated factor 2 (TRAF2), leading to JNK 

phosphorylation (pJNK), which induces IR by phosphorylating insulin receptor substrate 

1 (pIRS1) 16,17. The ER stress response thus contributes to both inflammation and 

insulin resistance in obesity, but its role in microglia is unclear. 

In contrast to macrophages, the role of SFA-induced ER stress on microglial 

activation is less well-established, but SFAs can induce a pro-inflammatory state in 

microglia in vitro 18. We previously found elevated spliced XBP1 (sXBP1) and heat 

shock protein 5 (Hsp5) in the hippocampus of HFD mice following 20 wk of diet 19. In 

Chapter 3 of this dissertation, single-cell RNA-seq identified a signature of dysregulated 

protein processing in the ER across microglia from HFD versus control diet mice. 

Nevertheless, studies of SFA- and/or HFD-induced ER stress in microglia are lacking. 

Herein, we devised two sets of experiments (Fig 5.1, overview) to address our 

hypothesis that a SFA-enriched HFD activates microglia through the ER stress 

response, contributing to cognitive impairment. We leveraged a microglia cell line for in  
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Figure 5.1  Study overview. 

(A) Schematic of IRE1a signaling. SFAs (yellow rods) activate IRE1a (lightening), which splices XBP1 to 
sXBP1. IRE1a activation also activates TRAF2/JNK signaling, which can lead to IRS1 phosphorylation 
and IR. In vitro work in microglia will determine if this pathway is activated by the SFA palmitate. (B) In 
vivo SFA-rich HFD triggers ER stress, microglial activation, and cognitive impairment. We aim to 
determine whether the microglial ER stress response contributes to inflammatory activation. 

B     Pro-inflammatory state and cognitive deficits 

A      SFA-induced ER stress and IREα activation 
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vitro experiments and an ER stress-reporter mice for in vivo experiments. This Chapter 

5 of the thesis presents preliminary data and proposes future experiments to address 

Aim 4 of the dissertation.  

 

5.3 Results 

5.3.1 Preliminary data suggests that the SFA palmitate activates the IRE1a-XBP1 

pathway in microglia in vitro 

Our prior work demonstrates that sXBP1 and pJNK, which can be activated by 

multiple mechanisms, including downstream of IRE1a (see Fig 5.1) are elevated in the 

hippocampus of obese mice 19. Our analysis of hippocampal gene expression in obese 

mice also demonstrated dysregulation of XBP1 gene expression (unpublished, Fig 5.2). 

Because SFAs are known to activate the IRE1a-XBP1 ER stress response in 

macrophages 12, and IRE1a is activated in macrophages in obese mice 11, we asked 

whether SFAs can also activate this ER stress response pathway in microglia. We 

treated human immortalized microglia with the SFA palmitate, and preliminary results 

suggest that palmitate increases both total IRE1a and phospho-IRE1a protein levels in 

microglia (Fig 5.3). Further, we performed quantitative RT-PCR of total XBP1, spliced 

XBP1, and unspliced XBP1 in control or palmitate treated microglia, and preliminary 

findings show that palmitate increases spliced, unspliced, and total XBP1 RNA, and 

increases the ratio of spliced to unspliced XBP1 relative to controls (data not shown). 

Further work is required to confirm these preliminary results. 
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Figure 5.2  XBP1 expression in the hippocampus of obese mice.  

Heat map of gene expression in mice fed control (Green, left) or HFD (pink, right) diets from 5 wk of age 
for a total of 19 wk. Individual animals are plotted on the x-axis, genes on the y-axis, and color represents 
relative gene expression from low (blue) to high (red). 
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Figure 5.3  Palmitate increase protein and phosphorylation of IRE1a.  

SV40 microglia cells are treated with thapsigargin (thap, positive control) or 62.5 µM palmitate (pal) for 
18-24 hours and cells lysates are analyzed for IRE1a and pIRE1a level. Equal protein loading is 
confirmed with tubulin. *** p<0.005, ** p<0.01 by Student t-test, 2 experiments. 
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5.3.2 Preliminary data suggests that microglia are insulin responsive but do not 

develop insulin resistance in vitro 

To our knowledge, there are no reports examining insulin resistance in microglia. 

One research group demonstrated that microglia respond to insulin in vitro, and that this 

response counteracts pro-inflammatory activation 20. This effect suggests that if IR were 

to develop in microglia, as might occur through SFA-induced ER stress, or 

independently of ER stress, IR may promote a pro-inflammatory phenotype. We 

demonstrated IR in the hippocampus of our diet-induced obesity model 19, and in 

neurons using an in vitro model of IR 21,22. Here we used immortalized human microglia 

in vitro to determine whether microglia develop insulin resistance in response to glucose 

or palmitate using our established in vitro model of insulin resistance 21,22. Preliminary 

results suggest that microglia are responsive to insulin, demonstrated by an increase in 

phospho-AKT, phospho-ERK, and phospho-IRS1 (pS612) following insulin stimulation 

(Fig 5.4). However, when microglia are pre-treated with palmitate or glucose for 24 

hours, we did not observe a blunted response to insulin stimulation compared to 

controls (Fig 5.5). These preliminary data suggest that although microglia are 

responsive to insulin, they are able to maintain responses in the context of metabolic 

stress, unlike neurons 21,22. 

 

5.3.3 Ongoing studies will determine the role of microglial XBP1 activation using 

an in vivo model of diet-induced obesity 

We utilized endoplasmic reticulum stress activated-indicator (ERAI) 23 transgenic 

mice, which display a Venus fluorescence reporter of XBP1 splicing, to examine  
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Figure 5.4  SV40 microglia cells respond to insulin treatment.  

SV40 cells are treated with 20 nM insulin for the indicated times. Cells lysates are analyzed by Western 
blotting with the indicated antibodies. Equal protein loading is confirmed with tubulin. 
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Figure 5.5  Palmitate or glucose do not induce insulin resistance in SV40 microglia cells.  

SV40 cells are treated with 62.5 µM palmitate (pal) or 50 mM glucose (glu) for 24 h and then treated with 
20 nM insulin (ins) for 30 min. Cells lysates are analyzed by Western blotting with the indicated 
antibodies. Equal protein loading is confirmed with tubulin. 
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activation of the IRE1a-XBP1 pathway in vivo.  We fed ERAI transgenic and wild-type 

littermates HFD or control diet starting at 5 wk age for 1 wk, 1 mo, or 6 mo to 

longitudinally measure XBP1 pathway activation in the brain. Mice in the 1 wk and 1 mo 

cohorts have been sacrificed at their respective terminal time points, and the 6 mo 

cohorts are underway. Brains were processed for immunohistochemical analysis. Brain 

sections of the hippocampus will be stained for Iba1 and NeuN to identify cellular co-

localization of XBP1-splicing Venus signal. An anti-GFP antibody that binds to the 

Venus protein, a variant of GFP, will be used to effectively visualize the Venus signal. 

We will quantify the percentage of microglia and neurons that are positive for the Venus 

reporter signal. Further, we will measure 3-D morphology of microglia using our 

established protocol, to determine whether the ER stress response associates with 

measures of microglial activation, as determined by microglial morphology, using a 

linear mixed effects regression model. Based on our findings in Chapter 2, we do not 

expect differences in microglial morphology between HFD and controls in the CA1 

region before 6 mo. However, we will also examine the dentate gyrus molecular layer, 

and measure soma size as an additional morphology measure. Further, we will 

supplement with additional methods of determining microglial activation, such as spatial 

transcriptomics.  

 

5.4 Discussion  

5.4.1 Summary 
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Obesity is associated with deficits in cognitive function throughout the lifespan, 

however, how obesity elevates risk for cognitive dysfunction is not well understood. 

Mouse models of diet-induced obesity suggest that microglial activation may play a role 

in mediating hippocampal cognitive impairment. The mechanisms mediating obesity 

induced microglial activation in the hippocampus remain unclear. The IRE1a ER stress 

response plays a role in macrophage mediated inflammation in obesity 11, and 

represents a potential mechanism mediating microglial activation in the hippocampus. In 

this preliminary in vitro work, we found evidence that the SFA palmitate activates the 

IRE1a-XBP1 pathway in microglia, quantified by increased IRE1a and pIRE1a proteins, 

and increased RNA levels of total, spliced, and unspliced XBP1. Our preliminary results 

suggest that microglia respond to insulin, but do not develop insulin resistance in 

response to palmitate or glucose pre-treatment. Our study aimed at quantifying 

hippocampal microglial XBP1 splicing in vivo and correlating pathway activation with 

morphology in the ERAI mice is underway. We expect that microglial in HFD mice will 

demonstrate an elevated sXBP1 signal relative to controls. It is possible that our study 

may demonstrate an initial elevation in IRE1a/XBP1 signaling, followed by a reduction 

in some components of the ER stress response over time. A loss of appropriate ER 

stress response after chronic stress, or ‘stress response failure,’ has been reported in 

metabolic disease and aging models 24. Our single cell RNA-sequencing results in 

Chapter 3 demonstrated dysregulation of ER heat shock proteins in microglia from 

obese mice, and this microglial ER response has been proposed to be anti-

inflammatory in this context 25. Quantifying the longitudinal progression of XBP1 

activation, and correlating this ER stress response with the microglial activation 
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phenotype, will help determine whether an ER response is protective, pro-inflammatory, 

or both, over time. 

 

5.4.2 Future directions 

To assess the effects of potential IRE1a-XBP1 pathway activation on 

hippocampal microglial pro-inflammatory activation and cognition, studies using 

pharmacological inhibition of IRE1a ribonuclease activity, or genetic ablation of 

microglial-specific IRE1a, would prove useful. Inhibiting activation of this pathway in a 

diet-induced obesity mouse model would help determine whether activation of this 

stress response pathway contributes to hippocampal microglial activation. Further, by 

performing tests of hippocampal-dependent cognition, these future studies could 

determine whether this ER stress response pathway contributes to cognitive 

impairment.  

 

5.5 Methods 

5.5.1 Microglial cell culture 

Immortalized human microglia cells were obtained for in vitro experiments (abm, 

catalog # T0251) and maintained in high glucose DMEM (Thermo, catolog # 11965092) 

with 10% fetal bovine serum (Gibco, catalog # 10437-028). Cells were passaged with 

0.25% trypsin-EDTA (Thermo, catalog # 25200056).  
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5.5.2 SFA treatments for ER stress 

Sodium palmitate (Sigma, catalog # P9767 or NuCheckPrep INC) fatty acid 

treatment was prepared by conjugation to fatty-acid free bovine serum albumin (BSA) 

(Fischer, catalog # BP9704). Treatment conditions included treatment media (negative 

control), BSA only vehicle (negative control), thapsigargin (positive control, Tocris, 

catalog # 1138), and BSA-conjugated palmitate (PA) for 18-24 h. Per lab protocol 26, 

palmitate dose response curves using physiological concentrations (31.25, 62.5, 125, 

and 250 µM) were generated. ER stress was induced using thapsigargin as a positive 

control for comparison to SFA treated cells. IRE1a signaling was quantified by Western 

blot (WB) (outlined below) for IRE1a (Novus Biologicals, catalog # NB100-2324SS) and 

phospho-IRE1a (Novus Biologicals, catalog # NB100-2323SS). 

 

5.5.3 Insulin resistance induction treatments 

Insulin response was evaluated in vitro by treating SV40-microglia with 20 nM 

insulin and collecting cell lysates for Western blotting after 0, 5, 15, 30, 60, and 120 

minutes post stimulation. Phospho-IRS-1 (pS612, Cell Signaling, catalog # 2386), 

phospho-AKT (Cells Signaling, catalog # 4060), and phospho-ERK (Cell Signaling, 

catalog # 4370) protein levels were evaluated by Western blots to determine 

downstream activation of insulin stimulation. To evaluate insulin resistance, SV40 

microglia were incubated for 24 h with either 62.5 µM palmitate, 50 mM glucose, or 

control media plus BSA vehicle (positive control for insulin response) and then treated 

for 30 minutes with 20 nM insulin. Insulin response was evaluated by Western blot using 
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antibodies against phospho-AKT, total AKT (catalog # 4691), phospho-ERK, total ERK 

(catalog # 4695), phospho-JNK (catalog # 4668), phoshpo-GSK3b (catalog # 9315), 

pospho-IRS-1 (pS612), phospho-mTOR (catalog # 5536), total mTOR (catalog # 2983), 

and tubulin (catalog # 3873) for loading control. All antibodies are from Cell Signaling 

unless otherwise indicated. 

 

5.5.4 Western blotting 

Cell culture lysates were prepared on ice in RIPA lysis buffer (Thermo, catalog # 

89901) containing protease inhibitor cocktail (Roche, catalog # 11836170001). Lysates 

were sonicated and centrifuged at 17,000 rpm at 4 degrees and the supernatant was 

collected. Protein concentration was measured using the Pierce 660 Protein Assay 

Reagent (Thermo, catalog #22660), and lysates were resolved by SDS-PAGE. Protein 

was transferred to nitrocellulose membranes, which were incubated in blocking solution 

(3% BSA in TBS with 0.1% Tween-20) for 2 h at room temperature. Nitrocellulose 

membranes were then incubated with primary antibodies overnight at 4 degrees: 

Primary antibodies were diluted 1:1000-1:3000 in blocking buffer. Membranes were 

washed with TBST and then incubated with horseradish peroxidase-conjugated 

secondary antibodies for 2 hr at room temperature. Secondary antibodies were diluted 

1:2000 in 5% non-fat dry milk in TBS with 0.1% Tween-20. Membranes were washed 

again and incubated in Clarity (Bio-Rad cat#: 102031794) or Clarity Max (Bio-Rad cat#: 

1705062) Western ECL substrate depending on signal strength. Bands were imaged on 

the ChemiDoc Imaging system, quantified by Image Lab 6.1 software (Bio-Rad) and 

analyzed by Prism (GraphPad Software, San Diego, CA). 



 180 

 

5.5.5 XBP1 Quantitative RT-PCR 

Following treatment, SV-40 microglia cell pellets were collected and frozen at -80 

degrees Celsius. Total RNA was isolated using Trizol and the RNA Cleanup and 

Concentration kit (Norgen Biotek, catalog # 43200). Quantitative real-time PCR was 

performed using universal species primers, which were custom made according to 

published universal sequences 27.  

 

5.5.6 Animal study design  

Microglial activation in vivo will be quantified in ERAI-Venus mice. ERAI-Venus 

mice were provided by Dr. Iwawaki (Kanazawa Medical University) via Dr. Sheng 

(NINDS). Mice were maintained in the Unit for Laboratory Animal Medicine (ULAM) at 

the University of Michigan and housed with a 12/12-h light/dark cycle in specific-

pathogen-free facility kept at 20 ± 2 °C. 5-wk-old ERAI-Venus or WT littermate control 

male mice were placed on a HFD (60% fat, Research Diets, D12492) or control diet 

(10% fat, D12450J) (n=6-7/group). To determine the temporal progression and 

association between hippocampal microglial activation and XBP1 splicing, and if ER 

stress precedes microglial activation, mice are sacrificed at 3 time points: after 1 wk diet 

(late acute), after 1 mo diet (intermediate), and after 6 mo diet (chronic). Chow and 

water were available ad libitum. Intraperitoneal injection of pentobarbital (Fatal-Plus, 

Vortech Pharmaceuticals) was administered for sacrifice at the terminal time points. 

Mice were perfused with phosphate buffered saline and the following tissues were 
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collected for later analyses: flash frozen cortex, flash frozen hippocampus, a 4% 

paraformaldehyde fixed brain hemisphere, fixed liver, fixed visceral fat, flash frozen 

visceral fat, flash frozen spleen, blood, and plasma. The University of Michigan’s 

Institutional Animal Care and Use Committee (IACUC; protocol numbers PRO00010039 

and PRO00010247) approved all procedures. 

 

5.5.7 Metabolic phenotyping 

All mice are will be phenotyped according to our well-established protocols 26,28, 

including: baseline and weekly body weights, fasting glucose (glucometer reading from 

tail blood draw), and glucose tolerance tests, as well as terminal fasting plasma insulin 

(ELISA) and lipid profiles (triglycerides, cholesterol, HDL). 

 

5.5.8 Immunohistochemistry  

One brain hemisphere from each mouse was dissected and fixed in 4% 

paraformaldehyde. Floating tissue sections will be cut to 50 µm thickness and 

immunohistochemistry will be performed using rabbit anti-Iba1 (Wako, cat# 019-19741), 

anti-NeuN (Abcam, catalog # ab279297), and anti-GFP (Rockland, catalog #  600-901-

215) at 4 °C overnight. Incubation in secondary antibodies (Invitrogen, catalog #s 

A11039, A21096, and A32740) will be at room temperature for 2 h and nuclei will be 

stained with Hoechst (1mg/ml; Sigma-Aldrich, catalog # 861405) for 8 min. ProLong 

Gold Antifade Mountant (Thermo, catalog # P36930) will be used for mounting. 
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5.5.9 RNA-sequencing 

RNA-sequencing data presented here was generated from cohort 1 in Chapter 

4. Please refer to Chapter 4 for methods. 
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Chapter 6  Conclusions and Future Directions 

6.1 Summary  

Rising rates of obesity in the last several decades have introduced a new health 

crisis, driven by the multitude of systemic complications that result from obesity and the 

resulting metabolic dysfunction. At the individual level, people with obesity face 

increased risk of co-morbidities including type 2 diabetes, cardiovascular disease, 

stroke, cancer, and as investigated in this dissertation work, cognitive impairment. At 

the national and international level, the obesity crisis creates a burden of chronic 

disease on the healthcare system, and results in exorbitant healthcare costs. 

Unfortunately, the obesity crisis is not limited to adults, but affects children and 

adolescents. These obese children go on to face increased morbidity in adulthood 1,2. 

Chronic inflammation occurs in multiple tissues in obesity, and this inflammatory 

response contributes to sequelae of obesity, such as insulin resistance 3, cardiovascular 

disease, and retinopathy 4. 

Inflammation in the brain may play a role in the pathophysiology of obesity 

induced cognitive impairment and dementia, as it does in Alzheimer’s disease pathology 

5,6. Indeed, microglia, the resident innate immune cells of the CNS, are activated in 

rodent models of HFD feeding and obesity 7–9, and microglia have been proposed to 

contribute to hippocampal-dependent cognitive impairment 10.  Mechanisms mediating 

hippocampal microglia activation in this context, as well as the evolution of microglial 

activation over time are unclear. Elucidation of drivers of this activation, as well as an 
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understanding of temporal progression, will aid in the development of interventions to 

prevent, reverse, or treat obesity-induced cognitive impairment. In this dissertation, we 

used a mouse model of obesity to quantify morphological measures of hippocampal 

microglial activation longitudinally and performed single-cell RNA-sequencing to identify 

dysregulated intra- and inter-cellular processes and potential mechanisms of activation. 

We focused on the effects of HFD and subsequent obesity in the hippocampus during 

the adolescent period of development and compared inflammatory responses and 

cognitive performance in young versus middle-aged mice. Finally, we began to 

determine the role of endoplasmic reticulum stress in the phenotype of hippocampal 

microglia in obesity. 

In addressing Aim 1, we found that HFD feeding induced obesity and 

progressive metabolic dysfunction in our established mouse model. We initially fed 5-

week-old animals a HFD for 2 wk, 1 mo, or 3 mo, mirroring equivalent human age of 

adolescence through early adulthood. We quantified three-dimensional microglial 

morphology using metrics including cell territorial volume, cell volume, number of 

endpoints per cell, number of branchpoints per cell, and average branch length. We did 

not observe an effect of HFD on morphology metrics in the CA1 region of the 

hippocampus at any time point over the longitudinal course. To address Aim 2, we 

asked the same research question using a more sensitive technique, single cell RNA-

seq, to elucidate effects of HFD on intercellular signaling and intracellular processes in 

this heterogeneous population of cells. Although morphology as an indicator of 

activation state did not reveal an effect of HFD in our model, transcriptomics at the 

single-cell level demonstrated that HFD dysregulates microglia-to-microglia immune 
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signaling and endoplasmic reticulum homeostasis at as early as 1 mo diet. Based on 

our scRNA-seq results, we propose a model where an early ER protein folding 

chaperone and co-chaperone response may reflect an attempt to maintain ER 

homeostasis, and potentially prevent microglial activation at 1 mo, followed by a 

transition to a more inflammatory microglial state by 3 mo.  In parallel to studies of 

microglial activation in HFD-fed young mice, we asked whether age impacts the effect 

of obesity on cognition in our model, Aim 3. Performance in the fear conditioning task, 

which measures associative learning and relies on multiple brain regions including the 

amygdala and hippocampus, demonstrated that HFD-fed mice had elevated fear 

responses relative to controls, and deficits in this task were worse in middle-aged 

versus young HFD mice. Collectively, our data suggest that in a model of adolescent, 

early-life obesity, hippocampal microglial dysfunction can be measured at the single cell 

transcriptomic level, but not by changes in microglia morphology in the CA1 region. We 

anticipate more overt pro-inflammatory morphological changes indicating microglial 

activation may occur in aged obese mice, or in young mice after an even longer period 

of chronic obesity than 3 mo, and these findings may parallel changes in cognitive 

function. A microglial response to burden on the endoplasmic reticulum may be 

adaptive, or may contribute to an ER stress response that leads to a pro-inflammatory 

phenotype. The role of ER stress in microglial activation was explored in Aim 4 and 

discussed in future directions section 6.2 below. Dissertation results and our proposed 

model are summarized in Fig 6.1. 
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Figure 6.1 Summary and proposed model of HFD effects on hippocampal microglia in young 
mice. 
 
This model integrates findings resulting from the dissertation. In adolescent mice, HFD feeding 
induces obesity and metabolic dysfunction, but does not alter microglial morphology in the CA1 region 
of the hippocampus by 3 mo. scRNA-seq results demonstrate a signature of dysregulation of genes 
involved in the endoplasmic reticulum, particularly at 1 mo. Cell signaling communication analysis 
reveals a greater effect of HFD on microglia-to-microglia immune signaling at 3 mo, and differentially 
expressed gene analysis suggests an upregulation of inflammatory genes such as complement at 3 
mo. Future work will determine the role of a potential ER stress response in microglial activation.  
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6.2 Determining the role of endoplasmic reticulum stress in obesity-induced 

hippocampal microglial responses 

Our single-cell RNA-sequencing data demonstrated dysregulation of 

endoplasmic reticulum heat shock proteins in hippocampal microglia. These findings 

align with those of Brykczynska et al (2020), who suggest a potential anti-inflammatory 

effect of microglial upregulation of heat shock proteins in response to HFD 11. We 

previously reported elevated spliced XBP1, a mediator of the ER stress response, in the 

hippocampus of HFD mice 12, and our preliminary in vitro data suggests that the SFA 

palmitate activates the microglial IRE1a/XBP1 stress response. SFA-induced IRE1a 

pathway activation contributes to a pro-inflammatory phenotype in macrophages 13, but 

its function in microglia is unclear. We began feeding HFD to a transgenic mouse strain 

exhibiting fluorescence reporting of XBP1 splicing, allowing us to monitor the activation 

of this ER stress response in an in vivo model of obesity. Using this model and 

examining a longitudinal time course of 1 wk, 1 mo, and 6 mo of diet, we will determine 

whether the XBP1 pathway is activated in hippocampal microglia in response to HFD. 

Further, we will employ measures of morphological activation to determine whether 

potential XBP1 splicing correlates with microglial morphological measures. Future work 

administering an IRE1a ribonuclease inhibitor will allow us to begin to assess the effects 

of potential microglial XBP1 pathway activation on microglial phenotype (anti- or pro-

inflammatory) and on cognitive performance. 
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6.3 Identifying obesity-induced cognitive deficits in alternative cognitive domains 

Clinical studies on the association of childhood obesity with cognitive function 

have demonstrated deficits in hippocampal function 14, but also in cognitive domains 

that rely on regions of the brain outside of the hippocampus 15,16. For example, a 

systematic review reported an association between obesity and deficits in cognition 

including in executive function and attention 16, which involve cortical function 17,18. 

These findings in humans suggest that studies must expand beyond the hippocampus 

to examine the potential role of inflammation and microglial activation in cognitive 

deficits resulting from other brain regions. Perhaps the mid-life obesity risk for late-life 

dementia, which reflects deficits in hippocampal function, is more specific to the adult 

and aging brain. Potentially, in this childhood or adolescent period, other brain regions 

are more susceptible to obesity induced inflammation. For testing executive function, 

the attentional set shifting task has been used to demonstrate cognitive flexibility deficits 

in adolescent mice compared to adults, and this task could be employed to determine 

whether obesity impacts this adolescent developmental function 19. Additionally, obesity 

in pre-adolescent children is associated with inhibitory control deficits 20,21, and the 

go/no-go task could be employed in mice to test inhibitory control. Future work could 

determine the effect of HFD and obesity on microglia in brain regions contributing to 

these executive function tasks, and cortical structures known to develop during 

adolescence 22. 
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6.4 Longitudinal cognition in obesity across the lifespan 

In the work presented in this dissertation, we examined HFD feeding starting in 

adolescence at 5 wk of age and continuing to early, mature adulthood at around 4 mo of 

age. We investigated effects of adolescent obesity on hippocampal microglial activation 

and cognition, using the fear conditioning task. However, we did not yet determine 

whether adolescent obesity affects inflammatory status or cognition later in life, and 

data in this area in both humans and rodent models is lacking. One study feeding HFD 

to adolescent mice for 33 wk (over 8 mo) found impaired cognition in adulthood and 

increased total microglia numbers, and increased proportion of MHCII co-expressing 

microglia in the dentate gyrus 23. Evidence suggests that childhood and adolescent  

obesity raise the risk for morbidity in adulthood 1,2,24. Further, a recent longitudinal 

clinical report following children to mid-life, measured childhood fitness and waist-to-hip 

ratio and found an association between poor fitness and anthropometry in childhood 

and lower mid-life psychomotor attention and global cognition 25. Our laboratory has 

begun to model longitudinal obesity across the lifespan in our mouse model of obesity. 

By performing repeated measures of cognitive function in adolescence, mid-life, and 

late life, we can define the onset and progression of cognitive impairment. Additionally, 

by measuring cognitive performance in adult mice started on HFD either in adolescence 

or later in adulthood, we can compare temporal windows of HFD and the risk of later life 

cognitive dysfunction. Further, a dietary reversal paradigm would enable us to 

determine whether weight loss following adolescent obesity can restore potential deficits 

that may be present later in life. 
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6.5 Conclusion 

In summary, this dissertation work has demonstrated that obesity alters the 

hippocampal microglial phenotype in young mice transitioning through adolescence to 

early adulthood, without overt changes to morphology. In this age group, we showed 

that prolonged HFD feeding dysregulates endoplasmic reticulum homeostasis and inter-

cellular immune signaling pathways in hippocampal microglia. Ongoing experiments will 

determine whether an ER response mitigates HFD-induced stressors on microglia, or 

leads to a pro-inflammatory and injurious microglial activation state. Finally, we found 

that aged obese mice demonstrated greater cognitive dysfunction than young obese 

mice using the fear conditioning test.  Results arising from this work will provide an 

understanding of critical temporal windows in the lifespan for preventing or treating 

cognitive deficits in obesity. Further, an understanding of the microglial contribution to 

pathology will uncover avenues for targeted therapeutic intervention. 
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