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ABSTRACT

Type 1 diabetes (T1D) affects millions of people worldwide. People with T1D must reg-

ularly monitor their blood glucose (BG) level and administer insulin to manage it. This

process is burdensome, necessitating frequent measurements, meal size estimation, and bo-

lus calculations. Automated management solutions have been proposed, but still require

patients to accurately estimate meal sizes and manually update user parameters. We aim

to discern and address challenges in the utilization of data-driven approaches for BG man-

agement. First, estimating meal size is challenging, resulting in noisy carbohydrate counts,

which hamper BG management. We address noise in patient-reported carbohydrate esti-

mates by developing a novel training method for denoising autoencoders. Our approach

leverages the relationship between carbohydrates and the BG signal. Second, while data-

driven approaches could obviate the need for manual patient updates via their capacity for

online learning, current approaches fall short of the level of accuracy required for safe auto-

mated BG management. More specifically, learning the impacts of carbohydrates and insulin

boluses on future BG values is challenging due to the relative sparsity of these variables and

the correlation between them. We propose a forecasting approach that accounts for the

relative sparsity of bolus and carbohydrate values by isolating and constraining their effects

to align with domain knowledge. In addition, we address bolus and carbohydrate entan-

glement with an approach that leverages correction bolus values to disentangle individual

variable effects. Combined, these contributions represent a clear step towards data-driven

BG management, offering the potential to the reduce patient burden associated with T1D.
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CHAPTER 1

Introduction

Type 1 diabetes (T1D) is a global health concern that currently affects over 8 million individ-

uals worldwide, and its prevalence is projected to increase more than 60% by 2040 [Gregory

et al., 2022]. Individuals with T1D possess an impaired glucose regulation mechanism. In

contrast to healthy individuals whose bodies automatically control blood glucose (BG) lev-

els, individuals with T1D must take active steps to manage their BG levels. This need arises

due to the significant health implications of poorly managed BG levels—high BG can induce

kidney and eye damage, while low BG may precipitate coma or even death.

Insulin administration, a process that reduces BG levels, is critical for T1D management.

However, it is an arduous task requiring injection—either manual or pump-assisted— before

each meal and whenever BG levels dangerously escalate. Further complexity stems from

the necessity for precise dosage calculation. Over-dosing could trigger hypoglycemia (low

BG), while under-dosing could trigger hyperglycemia (high BG), necessitating an accurate

balance of insulin. Insulin dosage is calculated based on the amount of carbohydrates in a

meal, which is difficult to estimate accurately [Brazeau et al., 2012, Mehta et al., 2009]. Even

if meal size is known, other factors such as meal composition make deciding on insulin doses

a challenging process, since the body processes carbohydrates differently in the presence of

other macronutrients (e.g., fats, proteins) [Bell et al., 2015]. Inaccurate meal size estimates

can lead to inappropriate bolus choices, and in turn poor BG management. Additionally, an

individual’s glucoregulatory system will evolve and develop through adolescence and beyond,
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meaning that the parameters used to calculate insulin values must be manually updated,

presenting an additional burden [The Diabetes Control and Complications Trial Research

Group, 1993, Rubin-Falcone et al., 2022].

Technology has catalyzed the development of automated insulin dosing solutions with the

goal of making BG management less taxing for patients. Techniques such as Loop [Ahmed

et al., 2020], an open-source automatic pancreas system, rely on rule-based BG forecasting

models for dosage determination. These methods, however, also require patients to manually

select and update parameters, which requires sustained effort as values must be reconsidered

whenever an individual’s body changes. There are also several proprietary automated BG

control algorithms; while the specific forecasting models utilized by these approaches remain

undisclosed (they may or may not be rule-based), these approaches depend on patient-

managed parameters such as target set point and insulin sensitivity factor [Collyns et al.,

2021, Ware et al., 2022].

In contrast to rule-based approaches, researchers have developed machine learning (ML)-

based BG forecasting methods that can be automatically updated over time [Marling and

Bunescu, 2018a, Fox et al., 2018, Munoz-Organero, 2020]. A BG forecaster is given a brief

history of (usually 5-minute interval) BG values (e.g., last hour) and is trained to predict

BG 15 minutes to two hours into the future. Insulin, carbohydrates, and other auxiliary sig-

nals may also be included as inputs. A machine-learning based forecaster can be retrained

at any time on the latest available data, and an accurately trained BG forecaster can be

utilized repeatedly to warn a patient prior to an immanent dangerous outcome (hyper- or

hypoglycemia), allowing them to take preventive action. Additionally, a BG forecasting

model can be utilized to automate insulin dosing by selecting bolus values associated with

favorable predictions. While simple rule-based forecasters are often used in control solutions

[Ahmed et al., 2020], ML-based forecasters are not reliable enough for wide-spread adop-

tion. Specifically, such models fail to accurately capture the effects of carbohydrates and

insulin on BG. We hypothesize that this failure is due to a combination of issues which we

2



address here. In particular, ML-based models assume accurate meal size estimates, do not

separate endogenous from exogenous effects, and assume correlations between carbohydrate

and insulin values will hold across datasets. Recognizing these limitations, we propose new

data-driven approaches to aid in the management of BG.

1.1 Challenges, Opportunities & Contributions

Our aim is to discern and address challenges pertaining to the utilization of data-driven ap-

proaches for BG management (Figure 1.1). We propose (i) solutions to denoising patient-

reported meal sizes and (ii) novel approaches to forecasting BG values with sparse but

informative variables and correlated input variables. The first contribution is motivated by

the fact that current approaches to BG management rely on accurate estimates of meal size

(i.e., amount of carbohydrates). Therefore, noisy patient estimates remain a barrier to max-

imally effective BG management. Our solution provides a more accurate estimate of meal

size by utilizing the known relationship between carbohydrate intake and BG. Our novel ap-

proach to denoising patient-reported values through leveraging auxiliary signals is described

in Chapter 3. Our remaining contributions are inspired by a limitation of automated

BG management solutions. Specifically, many current control approaches rely on simple

rule-based forecasters which require patients to manually manage model parameters. While

machine-learning based forecasters could obviate this need via online learning, current deep

forecasting approaches struggle to accurately model the effects of insulin and carbohydrates

on BG. This is largely due to the relative sparsity of auxiliary variables and correlated inputs.

Our solution to the sparsity challenge incorporates domain knowledge to ensure better inte-

gration of bolus and carbohydrate values into forecasters. Our “Linked Encoder/Decoder”

for improved modeling of sparse informative variables in RNN-based forecasters is described

in Chapter 4. Our solution to modelling bolus and carbohydrate effects given their cor-

relation leverages the inherent properties of the basal bolus strategy. Our residual-effect

3



Figure 1.1: In this dissertation, we explore challenges preventing the applicability of data-
driven approaches to BG management. Our objective is to learn clean feature representations
for noisy measurements and to architect forecasting models capable of accurately deciphering
the impacts of carbohydrate intake and insulin boluses on blood glucose levels. To achieve
this, we address the challenges posed by the inherently noisy nature of carbohydrate data,
the relative sparsity of input variables, the and the strong entanglement between bolus and
carbohydrate values.

disentanglement strategy is described in Chapter 5. A comprehensive background pertain-

ing to these solutions is delineated in Chapter 2. While we focus on BG management as

inspiration for this work, each contribution is applicable to multiple domains across health-

care and machine learning more broadly (e.g., denoising patient-reported values; forecasting

vital signs, traffic, and stock prices; learning generalizable forecasters for model-based control

in robotics settings with correlated movement in adjacent parts).

First, we propose an approach for denoising carbohydrate measurements in the absence of

ground truth values. Estimating the carbohydrate content in meals is inherently challenging

due to the frequent necessity of this task and its intrinsic complexity [Brazeau et al., 2012,

Mehta et al., 2009]. This results in substantial noise and missingness in carbohydrate data,

which in turn hampers BG management. Ground truth carbohydrate values are rarely

possible to obtain, requiring either a dietitian or pre-packaged meals. Additional factors such
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as time-of-day metabolism dynamics and meal composition further compound this problem,

obscuring the true impact of carbohydrates on BG [Bell et al., 2015]. Existing denoising

techniques are unable to address this challenge due to a lack of available ground truth data,

low dimensionality, and an unknown noise function. To overcome this challenge, we note

that the related and less noisy BG signal can be utilized to recover carbohydrate values. We

devise an approach in Chapter 3 that employs co-teaching [Han et al., 2018] to iteratively

filter out the noisiest carbohydrate samples. We then train a denoising autoencoder to refine

carbohydrate measurements using the continuous glucose monitoring (CGM) signal and these

filtered samples. This approach is the first to utilize auxiliary input signals and co-

teaching to train denoising autoencoders on data where ground truth is unknown.

By incorporating both meal estimates and CGM signals, our approach effectively exploits

the relationship between BG and carbohydrates while using patient estimates as an initial

hypothesis and as additional data at inference time. Our method does not rely on ground

truth carbohydrate values but assumes some meal measurements to be more accurate than

others by chance. Our approach could benefit individuals by automatically informing them

of when they are over- or under-reporting carbohydrate values, enabling better treatment

management in the future.

Next, we identify the sparse but informative variable (SIV) problem and propose a novel

solution. Bolus and carbohydrate values have a significant impact on BG levels, and accu-

rately modeling their effects would enable a forecaster to be applicable to control applications.

Because ML-based forecasters can be autonomously updated, a control system built on such

a forecaster would have a clear advantage over current approaches, which require manual

parameter management. However, we observe a failure in leveraging meal information in

common ML-based forecasting approaches [Rubin-Falcone et al., 2020, Hameed and Klien-

berg, 2020, McShinsky and Marsha, 2020], making them inapplicable to control. We suspect

this is due to the sparse presence of these variables relative to the target variable. Non-

zero bolus and carbohydrate values occur about 3-4 times daily, while BG is logged every
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5 minutes. This situation differs from the sparsely sampled variable problem: while bolus

and carbohydrates are measured as frequently as BG, their true values are predominantly

zero. We make use of domain knowldege to overcome this sparsity problem. In Chapter 4,

we tackle this SIV problem with a novel recurrent neural network (RNN) encoder/decoder

strategy, isolating SIV dynamics with an auxiliary decoder and constraining bolus and carb

effects to align with domain knowledge. Our method is the first to explicitly ad-

dress the SIV problem. Our approach uses a minimal amount of supervision to

incorporate domain knowledge, unlike other forecasting approaches that either

require highly restrictive models or exclude domain knowledge altogether. This

approach not only enhances overall forecast accuracy but also augments the impact of bolus

and carbohydrate variables on the model.

Finally, we strive to ensure out-of-sample generalizability across BG control strategies,

even when bolus and carbohydrate values are highly confounded in the training data. The

basal bolus scheme is the most commonly recommended blood glucose control strategy [Janez

et al., 2020]. With this scheme, a consistent amount of insulin is administered throughout

the day (basal), and larger quantities are required during meals (bolus). Bolus values are

calculated as a linear combination of the carbohydrate content in a meal and current BG

levels, resulting in entangled input features. This entanglement may lead forecast models

to learn representations that perform well on basal bolus data (the behavior policy) but fail

to accurately capture the true effects of the bolus and carbohydrate values, thus hamper-

ing out-of-sample generalizability. Therefore, ML-based forecasters trained on basal bolus

data cannot be easily applied to control approaches. In Chapter 5, we leverage the known

properties of the basal bolus strategy to isolate the bolus’s independent effect on BG and

train the model accordingly. In doing so we more accurately model the independent effects

of carbohydrates and bolus insulin on future blood glucose values. This in turn yields better

predictions during planning in model-based control, potentially allowing automatically ad-

justable ML-based forecasters to be applied directly to BG management. Our approach is
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inspired by techniques for estimating average treatment effects in the presence of confound-

ing [Rubin, 1974, Rosenbaum and Rubin, 1983], although a lack of overlap makes these

techniques non-applicable. Our approach bears similarity to S-learner [Künzel et al., 2019],

where treatment effect is estimated by removing a related variable from the model, and

experimental treatment effect transfer techniques, where a small amount of non-confounded

data are used to guide training on confounded data [Kallus et al., 2018, Hatt et al., 2022].

Our approach utilizes the variations within the training data to isolate a partial

bolus effect, and then trains the model to learn a proportional effect. This facili-

tates learning a model that can generalize out-of-distribution (to control strategies without

confounded bolus values) without requiring additional training. We aim to create a model

that can be trained on a small amount of entangled data and then directly applied to a

model-based control application, where evaluation on unentanlged data would be necessary.

1.2 Summary of Contributions

In summary, we make the following contributions:

• In Chapter 3, we propose a technique for reconstructing noisy data in the absence of

known ground-truth samples by leveraging auxiliary data streams and iteratively filtering

the dataset. Our approach successfully recovers accurate carbohydrate values, potentially

leading to enhanced BG control.

• In Chapter 4, we introduce the sparse but informative variable (SIV) problem. This

problem arises when auxiliary input variables, though infrequent in occurrence, have sub-

stantial influence on the target variable to be forecasted, and RNN-based approaches struggle

to incorporate them effectively. We propose a solution that mitigates this limitation, and we

demonstrate that it enhances BG forecasting accuracy by better utilizing carbohydrate and

bolus values, both of which are SIVs.

• In Chapter 5, we highlight that the most common BG management strategy calculates
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bolus values as a linear combination of BG and carbohydrate values. This induces a strong

correlation between carbohydrates and bolus inulin in training data and impedes a forecasting

model’s ability to learn the independent effects of boluses and carbohydrates on BG values.

We propose a solution that utilizes the known properties of the control strategy to learn a

generalizable model from entangled inputs.

Generalizable Insights for Machine Learning. While each chapter of this disserta-

tion addresses a unique barrier to simplified BG management, each contribution has impli-

cations for other machine learning applications. Our denoising technique can be applied to

other situations involving patient-reported outcomes paired with sensor data, such as mood

scores paired with wearable-recorded step and sleep data. SIVs are present in various medical

settings, such as blood pressure forecasting (where vasopressor/vasodilator administrations

serve as SIVs), as well as in non-medical domains like travel forecasting (with holidays and

major events as SIVs), and stock price prediction (where quarterly reports and news releases

are SIVs). Finally, our approach to disentangling exogenous effects in forecasting could be

beneficial wherever two input variables are confounded to various degrees, such as in electric

load forecasting, where two power sources may exhibit strong correlation. Our approach

could also be useful in any model-based control setting where system variables are corre-

lated, for example, in robotics, where the movement of adjacent parts will be correlated but

isolating their individual impacts on the system could be crucial. In sum, by developing

methods for assisting in BG management in T1D, we advance towards improved

patient outcomes in this health-critical application and generate valuable insights

into challenges prevalent in various other machine learning applications.

The rest of the thesis is organized as follows. In Chapter 2, we describe relevant back-

ground concepts used throughout the remainder of the thesis. Chapters 3, 4 and 5 summarize

the details of our contributions. The concluding chapter (Chapter 6) reflects on future di-

rections in relation to the work presented in this dissertation.
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CHAPTER 2

Background: Blood Glucose Management in

Type 1 Diabetes

In this chapter, we cover topics referenced throughout this dissertation in the fields of blood

glucose (BG) management in type 1 diabetes (T1D), time-series forecasting, and model-based

control.

2.1 Manual Blood Glucose Management

Individuals with T1D experience an impairment in their glucoregulatory system, which ren-

ders their bodies incapable of automatically maintaining healthy BG levels, a process that

occurs naturally in healthy individuals. T1D affects millions of people around the globe

[Gregory et al., 2022]. The management of this condition necessitates manual control of BG

levels through regular insulin administration. This process poses a significant burden as it

necessitates multiple daily insulin injections and requires precise estimation of meal sizes for

accurate dosage calculation.

2.1.1 The Basal Bolus Strategy

The most widespread BG control strategy is the basal bolus method [Janez et al., 2020],

where a continuous dose of slow-acting (basal) insulin is delivered to maintain consistent

BG levels, supplemented by post-meal bolus injections to correct any potential BG surges.
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Bolus values b are calculated based on current BG levels g and meal size estimates c as: b =

c
CF

+ 1{g>TG}
g−TG
CR

, where patient-specific parameters carbohydrate ratio (CR), correction

factor (CF ), and target glucose (TG) are estimated to match insulin sensitivity to meal size,

insulin sensitivity to BG levels, and an upper bound to the healthy BG range, respectively.

Other manual control strategies share a similar core principle, wherein insulin doses are

calculated based on current BG levels and estimated meal size [Weinstock, 2023].

2.1.2 Measuring Success in BG Management

The effectiveness of a BG management strategy can be evaluated using various metrics

including risk scores that gauge the safety of current BG levels [Magni et al., 2007]. Although

these metrics can be derived from a single BG reading, a more comprehensive assessment

such as time in range (TIR), becomes feasible with additional data. TIR represents the

percentage of time an individual’s BG levels remain within the healthy, or euglycemic, range

and can be accurately measured with extended data sets, such as a week’s worth of 5-minute

BG measurements.

2.1.3 Meal Estimates

One of the major hurdles in BG management is estimating the carbohydrate content of

each meal. The estimation process is challenging and often leads to an inaccurate meal

signal and inappropriate boluses [Brazeau et al., 2012, Mehta et al., 2009]. In addition to

misestimation, there are other factors contributing to the disparity between recorded car-

bohydrate intake and its actual effect on BG. For instance, the potential variation in meal

types is often inadequately captured. This is problematic as the impact of carbohydrates

on BG can be moderated by factors such as the speed at which a meal is consumed or the

proportion of protein, fat, and other nutrients present [Bell et al., 2015]. Additionally, the

precise timing of a meal might not be accurately recorded. These considerations add further

layers of complexity to the use of carbohydrate data as a signal in forecasting or control
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approaches, even when the carbohydrate count is meticulously documented. In an unsuper-

vised learning context, denoising techniques could help derive more accurate representations

of carbohydrate data, taking into account these additional sources of variability. These re-

fined representations could be more pertinent for BG management than the exact amount of

carbohydrates consumed, thereby potentially enhancing the performance of forecasting and

control algorithms. Additionally, these denoising techniques have potential utility towards

patient education, in that automated utilization of these approaches could aid individuals in

understanding and correcting systematic errors in estimated carbohydrate counts.

2.2 Automated Blood Glucose Management

The advent of modern continuous glucose monitors (CGMs), insulin pumps, and smartphone

technology has facilitated the development of automated control strategies by making real-

time communication between devices possible. The DIY community has been employing

model-based approaches for over a decade [Ahmed et al., 2020], exemplified by LOOP, a

system that uses a basic linear model to forecast glucose trajectories based on bolus and

carbohydrate effects. Commercially available automated solutions also exist [Collyns et al.,

2021, Ware et al., 2022]. Each of these approaches require meal announcements and rely on

an underlying model or forecaster of BG dynamics, which is used to select the best performing

bolus value. While these approaches require manual parameter updates, machine-learning-

based solutions could obviate this need through automatic adjustments. It is feasible to

control BG levels using model-free approaches that operate without a forecaster, but these

methods demand extensive training data (e.g., years of CGM measurements), which renders

them impractical [Fox et al., 2020]. Model-based control strategies offer an alternative since

they are oftentimes more sample efficient [Atui, 2015]. Machine learning-driven model-based

control solutions could significantly streamline BG management.
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2.2.1 Model-Based Control

In control-based settings, an agent learns to interact with an environment by taking some

action with the goal of optimizing some reward. In the simplest form of model-based control

[Argenson and Dulac-Arnold, 2021], a model of the environment (i.e., a forecaster) is paired

with a planning algorithm. For example, in random shooting, a model or forecaster is utilized

to create predictions for multiple potential actions and the action with the highest predicted

reward is selected. With this approach a forecaster may be trained prior to control using

whatever data are available, but it will not be guaranteed to perform well outside of the

training data distribution.

2.2.1.1 Forecasting

Blood glucose forecasting plays a pivotal role in the management of type 1 diabetes (T1D)

and has been extensively investigated in a variety of settings including deep learning [Rubin-

Falcone et al., 2020, Fox et al., 2018, Munoz-Organero, 2020]. The goal of BG forecasting is

to estimate future BG concentration within a defined predictive horizon based on a historical

record of BG measurements and other pertinent input signals. This is a challenging task

because glucose dynamics vary based on factors including activity, time of day, and hormone

levels, resulting in significant non-stationarity. Additionally, many factors create significant

heterogeneity in BG dynamics across individuals [Redondo and Morgan, 2023], making the

training of patient-specific forecasters preferable. Accurate BG forecasting models aim to

predict potential BG highs or lows, thus providing individuals with advanced warning and

ample time to take preventative action. The field of BG forecasting has seen a broad spec-

trum of methodologies, from classical approaches like ARIMA [Yang et al., 2019] and support

vector regression [van Doorn et al., 2021], to modern deep learning techniques encompassing

RNNs [Mirshekarian et al., 2019, Rabby et al., 2021], attention models [Mirshekarian et al.,

2019, Armandpour et al., 2021], simple MLPs [van Doorn et al., 2021], and residual networks

[Rubin-Falcone et al., 2020]. Physiological models of the blood glucose system in T1D have
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been in development for many years [Palumbo et al., 2013], and some approaches utilize

these models for forecasting [Hameed and Kleinberg, 2022]. Recent approaches have also

combined deep approaches with these physiological models [Miller et al., 2020]. Although

many BG forecasting models are univariate [Rodriguez, 2021], there has been research ex-

ploring the incorporation of auxiliary variables such as insulin and carbohydrate intake, time

of day, and heart rate information. Despite these auxiliary variables providing some degree

of forecast performance enhancement, the effect is often marginal [Rubin-Falcone et al., 2020,

Hameed and Klienberg, 2020, McShinsky and Marsha, 2020]. While this discrepancy has not

been thoroughly explored, forecasting with more than one input variable is a well studied

problem more generally [Rockwell and Davis, 2016, Chatfield, 2000] and including multiple

variables when aiming for univariate prediction is often beneficial. Many techniques have

been proposed to learn inter-variable relationships in forecasting tasks, including attention-

based approaches [Qin et al., 2017, Pantiskas et al., 2020], normalizing flows in probablistic

settings [Rasul et al., 2020, Emmanuel de Bezenca an et al., 2020] and explicit modeling of

inter-variable relationships [Gu et al., 2020, Freiburghaus et al., 2020, Pantiskas et al., 2020,

Cao et al., 2020, Xu et al., 2020a]. These approaches do not utilize domain knowledge, but

there has been other work in forecasting that combines deep learning with domain knowledge

to reduce the hypothesis space [Munoz-Organero, 2020, Miller et al., 2020, Huanga et al.,

2014].

Generally, forecasters are trained and evaluated using data from the same distribution.

They are often assessed on training data that has been held out for testing purposes, where

lower error—measured by metrics such as mean square error or mean absolute error—is

preferred. However, while these metrics effectively gauge a forecaster’s performance in a

static environment, they are not always reliable for evaluating its suitability for model-based

control. In many model-based control scenarios, a forecaster is required to provide accurate

predictions across a broad spectrum of potential action values. This requirement leads to

a mismatch between the distributions of training and evaluation data. Consequently, new
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evaluation methodologies are essential to thoroughly evaluate forecasters, especially when

considering their adaptability to control scenarios.

2.2.1.2 Planning

Planning can be described in the context of a Markov decision process where an agent

selects actions based on an observed state. After an action is chosen, a new state occurs,

determined by a transition function that captures environmental dynamics. The effectiveness

of an agent’s actions is measured by a reward assigned at each timepoint. In model-based

planning, the action selection is guided by a model (a forecaster) of the transition function,

aiming to achieve the best predicted reward. For BG management, this reward could be

a measure of glycemic control or TIR. In the simplest model-based planning scenario, the

model is trained on existing data. A predefined planning strategy, such as random shooting,

then uses this model to select the action that leads to the best outcome or highest reward.

Notably, the planning algorithm itself does not need to be learned; it can be predetermined,

meaning that no exploration is necessary when applying the algorithm for control purposes.
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CHAPTER 3

Denoising Autoencoders for Learning from

Noisy Patient-Reported Data

3.1 Introduction

With the increasing ubiquity of wearable sensor technology (e.g., fitbit), there has been an

explosion in the number of studies seeking to correlate data from these technologies with

patient-reported data (e.g., near-falls), with the goal of remote patient monitoring [Kious

et al., 2019, Hauth et al., 2021]. Patient-reported outcomes have been used in studies of

cancer treatment [Nguyen et al., 2020], multiple sclerosis [D’Amico et al., 2019], diabetes

[Wee et al., 2021], and mental health [McIntyre et al., 2022], and are also used to quantify

patient-experience of care [Bull et al., 2019]. However, patient-reported data are often noisy

and difficult to validate [Churruca et al., 2021]. The accuracy of these data may change

day-to-day or even hour-to-hour [McKenna, 2011], making it challenging to detect meaning-

ful changes over time [van der Willik et al., 2020]. Moreover, in many cases, ground truth

is difficult if not impossible to obtain. Current state of the art denoising approaches uti-

lize assumptions that do not hold in this setting (e.g., high-dimensional data, known noise

function). In light of these limitations, we aim to develop an approach that can denoise

patient-reported data and increase their utility in downstream tasks (e.g., adverse outcome

prediction). Our approach is based on the observation that while ground truth values for

the target variable may be unavailable, other more reliable data streams (i.e., data collected
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Figure 3.1: Overview. In our setting, given access to both subjective patient-reported data
and higher-fidelity data from wearable sensors, we aim to denoise subjective measurements.

from wearable sensors) are often collected alongside noisy patient-reported measurements.

We hypothesize that these more reliable related data streams can help in recovering the

noisier variables (Figure 3.1).

In this chapter, as throughout this dissertation, we take inspiration from BG management

in T1D. BG, when measured by a continuous glucose monitor (CGM), has relatively little

noise [Shah et al., 2018], while the amount of carbohydrates in a meal are patient-reported

and subject to error [Brazeau et al., 2012, Mehta et al., 2009]. Recognizing this variation in

the level of noise across signals, we propose an approach that utilizes objective measurements

(e.g., BG) to update noisy patient-reported data. This retrospective correction could help

in downstream tasks: patients can learn when they are over- or under-reporting and adjust

in the future, ultimately improving disease management. Training forecasters with denoised

carbohydrate values could enable them to better learn the effects of both carbohydrates

and insulin (by reducing noise-influenced confounding), leading to better applicability to

model-based control approaches.

Denoising autoencoders (DAEs) [Vincent et al., 2008] have been used to accurately de-

noise signals, including medical images [Gondara, 2016], ECG signals [Xiong et al., 2016],

and power system measurements [Lin et al., 2019]. However, this approach generally requires
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access to both patient-reported measurements and ground truth measurements at training.

In many real-world settings (including ours), only patient-reported target samples are avail-

able at training (we don’t have access to paired ground truth patient-reported data). Work

in computer vision has addressed this problem through extensions that either require paired

noisy samples for each data point (e.g., multiple images of the same object) [Lehtinen et al.,

2018] or rely on patch-based analysis [Krull et al., 2018, Laine et al., 2019, Xie et al., 2020,

Batson and Royer, 2019]. Similar approaches do not extend to patient-reported data, where

paired samples rarely exist and patch-based techniques do not apply due to a lack of spa-

tial feature dependencies. Others have proposed techniques that leverage knowledge of the

noise distribution to recover the clean signal, but their applicability is limited in our setting,

as noise for patient-reported variables is rarely weak or known [Kim and Ye, 2021, Moran

et al., 2019, Xu et al., 2020b]. In contrast to prior work that has focused on missingness

in patient-reported datastreams (including meal reports in diabetes management), we focus

only on denoising existing measurements.

We adapt denoising autoencoders (DAEs) for patient-reported data. Our approach,

‘Noise+2Noise’, learns to denoise a target signal (e.g., patient-reported meals) given only

potentially noisy target samples (without access to ground truth) and an auxiliary clean

signal (e.g., BG measurements). Inspired by work in image denoising [Lehtinen et al., 2018,

Xu et al., 2020b], our approach augments existing DAEs with an auxiliary signal, leveraging

the relationship between the auxiliary and target signals. In addition, we adapt a novel

co-teaching approach from the noisy label literature [Han et al., 2018] to train two DAEs.

Our approach works by iteratively selecting lower-noise target samples for training. Through

a case study in blood glucose management, we demonstrate that our proposed approach can

more accurately recover patient-reported data in the presence of noise compared to several

baselines. Our contributions are as follows:

•We formalize an important problem in remote patient monitoring related to denoising

patient-reported data.
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Figure 3.2: In vanilla DAE training, access to a clean target identified a priori to training
(x) is assumed. Noise (m) is added to x to create noisy sample y, and the DAE is tasked
with reconstructing x.

•We propose a novel approach based on DAEs that leverages an auxiliary low-noise signal

to denoise a target variable without access to ground truth target data.

•We demonstrate improved denoising of carbohydrate values for blood glucose manage-

ment compared to baselines in a simulated data setting.

•We propose and validate a proxy measure for evaluating carbohydrate denoising when

ground truth is unavailable. Our approach outperforms baselines on a real-life dataset based

on this metric.

3.2 Background and Related Work

Our approach takes inspiration from work in DAEs, commonly used in image denoising, and

work in in noisy label learning. Below we briefly provide background on these topics.

In DAE training, a model input is corrupted and a network is tasked with recovering the

original input (Figure 3.2). In this way, the network cannot learn the identity, unlike in

basic autoencoder training [Vincent et al., 2008]. Recent work has focused on using DAEs

to recover clean signals from only noisy signals. The vast majority of this work lies in image

analysis and builds off of “noise2noise” [Lehtinen et al., 2018], an approach that uses multiple

noisy instances of the same image to learn to denoise the image. The approach relies on the
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fact that if the noise is zero mean, using a secondary noisy instance (besides the input image)

as a target will produce a network that learns the clean image, in expectation, when enough

training data are available. When paired samples are unavailable, other approaches exploit

patches sampled from the image [Laine et al., 2019, Xie et al., 2020, Batson and Royer,

2019], but these do not apply to our setting since the target data we aim to correct are

univariate. Other approaches eschew relying on inter-variable relationships but rely heavily

on a known noise function [Moran et al., 2019, Kim and Ye, 2021] or a low expectation and

variance noise function [Xu et al., 2020b]. Our approach builds off Xu et al. [2020b], learning

to reconstruct a signal from only potentially noisy samples of that signal, but in contrast to

Moran et al. [2019] or Kim and Ye [2021], we do not make strong assumptions about the

noise distribution. Instead, we leverage an auxiliary signal and iteratively filter out noisy

samples.

Our approach is, in part, related to work in noisy-label learning, where a common ap-

proach involves identifying and reweighting samples with clean labels during training. Sam-

ples are filtered based on gradient values [Ren et al., 2020], Jacobian ranking [Mirzasoleiman

et al., 2020] or some latent state [Lee et al., 2019, Wu et al., 2020]. Co-teaching [Han et al.,

2018], which builds off of mentor net [Jiang et al., 2018], filters out incorrectly labeled sam-

ples by utilizing two networks in parallel. For each network, backpropagation is performed

using only samples within the current mini-batch for which the loss of the other network is

lowest. Intuitively, samples with incorrect labels are likely to have higher loss and therefore

be removed. Using two networks in parallel provides robustness to outliers and initially mis-

classified samples, to which single-network boosting-style approaches are sensitive. To date,

these approaches have been primarily explored in supervised and semi-supervised settings.

In contrast, we consider an unsupervised setting in which ground truth labels are unavailable

and, instead, the input signals themselves are corrupted. To the best of our knowledge, such

a co-teaching approach has not been explored in the context of denoising.
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3.3 Problem Setup

Given dataset D with k samples D = {yi,bi}ki=1, where yi ∈ R denotes a noisy target sample

and bi ∈ RT denotes an auxiliary time-series. True target values, {xi}ki=1, are unknown. For

each sample, yi = xi + ni, where ni denotes a random variable drawn from some unknown

distribution, i.e., ni ∼ N . We aim to learn some mapping: f : (y,b) → x, given D.

We assume that the distribution N is independent of both b and y. We assume that b is

related to x, such that some approximate mapping b → x exists. Implicitly, we assume that

the timing of the target variable, relative to b, is fixed and that the ordering is such that a

mapping is possible (i.e., if x causes a change in b, then b values must follow y in time so

x can be learned retrospectively). We also assume that some values of n are near zero such

that within training data D, there exists a subset S with sufficient size for training such that

the mean and variance of ns∀s ∈ S are negligible compared to the mean and variance of

xs∀s ∈ S. We assume that the distribution of low noise samples is such that they cover all

regions of the input; i.e. that S does not exclude entire regions in the range of possible y

values. Finally, we assume that the relationship between b and x can be accurately captured

with a recurrent neural network (RNN).

While we note that these assumptions allow for noise of arbitrary average magnitude,

access to some low-noise (though unlabeled) samples is assumed. Similar assumptions are

common in healthcare applications [Chang et al., 2020, Geng et al., 2022, Zhang et al., 2021],

where access to a small number of low noise or ground truth samples (through data curation)

is possible but labor intensive and costly (e.g., prospective data collection or clinician review).

3.4 Methods

First, we will describe our proposed training regime for addressing noisy patient-reported

values. Then we will briefly describe our evaluation set up.
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Figure 3.3: ‘Noise+2Noise’. Sample selection is performed with each DAE’s output when
given the uncorrupted y signal, but backpropagation is performed on the model’s output
when given a corrupted y signal. The loss values of DAE1 are used to select the sample
for backpropagation for DAE2 and vice versa. PR(t) denotes the R(t)th percentile, where
R(t) is a function of iteration t. b signals are aligned so that non-zero y values always occur
exclusively at the first position in the input window. The value of y is passed through to the
decoder at each timepoint in a separate channel from b.
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3.4.1 Proposed Approach

Overview. Our method, ‘Noise+2Noise’ (N+2N), is summarized in Figure 3.3. At a

high level, we filter out noisy samples during training, refining the model parameters on

selected samples of y (noisy carbohydrate values) estimated to have the least noise. To

identify these higher fidelity samples within a batch, we identify the subset of samples with

loss values below the R(t)th percentile of the batch, where R(t) is an increasing function of

iteration t. These ‘low-noise’ samples are augmented with additional noise and, along with

corresponding b (BG) vectors, are input to the DAE, which outputs a reconstruction ŷ. We

then backpropagate using the squared error between ŷ and y. This corresponds to training

on the samples estimated to have the least noise, while utilizing the noisy signal as input.

To increase robustness, we consider an ensemble approach in which we use co-teaching to

train two DAEs (DAE1 and DAE2). During training, the samples identified as low-loss by

DAE1 are augmented and passed to DAE2 for backpropagation, and vice-versa.

Denoising Autoencoder. In our setup, additional noise (m) is added to y to produce

z, a ‘doubly’ noisy measurement of x (hidden ground truth carbohydrate values). z and b

are input to a network (henceforth denoted DAE) that outputs ŷ = DAE(z,b), and the

network is trained to reconstruct y: loss is measured between y and ŷ. As shown by Xu

et al. [2020b], when the expectation and variance of the noise distribution N are negligible

compared to those of the signal, the model parameters that minimize the loss between ŷ and

y are very close to the optimal parameters of a model trained on data that is identified as

clean prior to training.

Co-teaching DAEs. We do not expect the noise value to be below a certain threshold

at all times, but we do assume that some of the samples will have noise close to zero. We

identify and train using these samples via an adapted co-teaching approach [Han et al., 2018].

We utilize two DAEs, and for each, we backpropagate using only the samples for which the

denoised y values from the other DAE are near the original y values. If the denoised y values

approach x, we are then selecting samples for which the estimated noise n is lowest.

22



Claim: When using co-teaching to train two DAEs (DAE1 and DAE2) in parallel, de-

noised y values ỹ1 = DAE1(y,b) and ỹ2 = DAE2(y,b) approach x. Justification: Based on

the main result of Xu et al. [2020b], if the two DAEs are trained in a standard fashion, ỹ1 and

ỹ2 converge to approximately x if, in the training data, the expectation and variance of the

signal are much greater than those of the noise. We have assumed that such a sub-sample

exists in our dataset, and propose that co-teaching is likely to select such a sub-sample.

Because the noise n is independent of both y and b, only the true component of the signal

can be learned during training, so the models will learn some function of x. The intuition

motivating Han et al. [2018] is that, in a noisy-label-learning setting, small-loss instances

occur either when both the model and label are correct, OR when the model has memorized

an incorrect label. By gradually decreasing the sample size of the training data based on

loss values at each iteration, noisy label samples are dropped before the model can memorize

them. In a similar vein, in our setting, a model will output a cleaned value ỹ that is close

to y when either it has learned the correct function of x and y is near to x, or if the model

has memorized part of the noise. By employing the co-teaching sample selection method, we

believe that the model selects the clean samples before it can memorize the noisy ones. We

note that it is not impossible for the model to learn a biased function of x, but in practice,

we have found that this approach works well even when there is fairly substantial bias in the

noise.

Sample Selection. We select the samples with the lowest estimated noise for backprop-

agation. If ỹ1 and ỹ2 approach each network’s estimated value of x, then DAE1’s estimate

of n, the noise between x and y, is approximately y − ỹ1 (and similar for DAE2). For loss

function L, we use L(ỹ1, y) and L(ỹ2, y) to select samples. As in Han et al. [2018], we be-

gin by training on the full sample. Over the course of training, as the DAEs are expected

to become more accurate, we gradually reduce the sample. Hyperparameter τ ∈ (0, 1) in

the pseudocode of Figure 3.3 represents the maximum proportion of samples removed and

Ek represents the iteration at which we stop increasing the proportion of samples removed.

23



A linear decrease in sample size as a function of iteration t is implemented by using the

lowest-loss R(t) = (1−Maximum( t
EK
τ, τ)) · 100% of samples for backpropagation.

Training. Each DAE is trained on the samples for which the other network estimates

that the noise is lowest, which prevents sensitivity to error propagation from wrongly selected

samples early in training. Samples selected by DAE1 (yj where j ∈ J1) are augmented with

additional noise mj ∼ M to generate zj values. zj, along with corresponding bj vectors,

are input to DAE2, which outputs a reconstruction of yj: ŷ
2
j . We then backpropagate using

the squared error between ŷ2j and yj. Similarly, we only use samples yj where j ∈ J2,

augmented with mj ∼ M , to backpropagate DAE1. By selecting samples based on L(ỹ, y)

rather than based on L(ŷ, y), we are able to select a sample independent of secondary noise

value m. Selecting samples dependent on m would be confounding because samples might

then be selected based on how low the value of m is at the current iteration, rather than

the value of n, which is hidden. Back-propagation is performed on an input that does not

include unaltered y values, so the model is not likely to learn the identity function. Sample

selection is always performed by the other DAE, so compared to boosting or other one-

network approaches, our method is less sensitive to error propagation from wrongly selected

samples early in training.

Co-teaching+. We utilize co-teaching+ [Yu et al., 2019], where samples for which the

models disagree are selected for backpropagation. As a result, each model learns from the

samples for which the other model’s estimates were better. This prevents the models from

learning from the samples that they agree upon, which prevents convergence [Yu et al.,

2019], maintaining unique strengths in each model. We remove the σ% of samples for which

the models’ outputs are closest (σ is a hyperparameter). This step is performed prior to

the sample selection step: the σ% of samples for which the distance between ŷ1 and ŷ2 are

lowest are removed, and then the remaining samples for which L(ỹ1, y) is lowest are used for

the backpropagation of DAE2 and vice versa.
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3.4.2 Experimental setup

We evaluate our approach in the context of learning to correct noisy patient-reported car-

bohydrate measurements. We compare performance to several baselines across real and

simulated datasets.

3.4.2.1 Datasets

We utilize two type 1 diabetes-based datasets. The simulated dataset provides access to

ground truth to which we can directly compare our method’s denoised outputs. The real

dataset provides a more challenging setting for quantifying the efficacy of our approach,

but corresponds to real-world scenarios. Both datasets are publicly available and have been

previously explored in the context of forecasting and control [Man et al., 2014, Xie, 2018,

Marling and Bunescu, 2018b, 2020b]. Both datasets consist of blood glucose, bolus (fast-

acting) insulin, basal (slow-acting) insulin, and carbohydrate values. All variables were scaled

to be between zero and one. For both datasets, time-series trajectories for each patient were

split into windows of 2 hour length (T = 24 5-minute time points). We ignore windows

where a carbohydrate occurs in anywhere but the first position, using only windows with no

carbohydrates or carbohydrates at the beginning of the window during training. This means

we also ignore windows with more than one carbohydrate present. In a real-world setting

these values could be updated recursively, but we simplify our setting here. The auxiliary

signal is assumed to be cleaner than the highly noisy target variable, but not completely

noise-free. In practice, the auxiliary signal can have noise- there is approximately 5% noise

in both the simulated and real blood glucose monitor data used in experiments.

Simulated. Our primary analyses are performed on data generated using the UVA-

Padova simulator [Man et al., 2014] via a publicly available implementation [Xie, 2018]. For

ten simulated individuals (the “adult” patients modeled in the simulator), we generated ap-

proximately 150 days worth of data each, in 30 day roll-outs of the simulator. Carbohydrate

values serve as x values, while CGM values and insulin delivered as output by the simulator
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serve as b values. We use noise proportional to the true carbohydrate value, as studies on

the accuracy of carb counting report errors relative to the total carbohydrates consumed

[Brazeau et al., 2012]. Also based on Brazeau et al. [2012], we use a noise distribution with

a negative bias, as the carbohydrates were found to be more-often under-reported than not.

We therefore set y = (1 + N (−.25, .5))x. We then cap y below and above at 1 and 200

to keep values realistic. We consider additional noise distributions as sensitivity analyses.

Bolus values were calculated based on the noisy carbohydrate values. See Appendix A.1

for more details on data generation.

Real. This dataset includes both the OHIOT1DM 2018 and 2020 datasets, developed

for the Knowledge Discovery in Healthcare Data Blood Glucose Level Predication Challenge

[Marling and Bunescu, 2018b, 2020b]. The data pertain to 12 individuals, each with approx-

imately 10,000 5-minute samples for training and 2,500 for testing. 12% of glucose values are

missing, but we do not include windows with missing glucose values. We do not include win-

dows with more than one carbohydrate measurement in our analysis. We sum carbohydrates

to the first timepoint if they are less than 15 minutes apart to maximize the amount of usable

data. We include only individuals with at least 100 training carbohydrate measurements,

as fewer are not sufficient for learning a model. We note that ground truth carbohydrate

measurements are not available for this dataset. Only potentially noisy patient-estimated

values are reported.

3.4.2.2 Baselines and Upper Bound

For all non-coteaching methods, we train two DAEs in parallel and report results on their

averaged output for a fair comparison. We also note that all models receive the same auxiliary

variables (blood glucose/ insulin) as input in an identical fashion. Overall time complexity

is similar for all methods because there is only one back propagation per sample per-DAE.

• CAE: An upper performance bound. This model is an autoencoder trained with ground

truth data, which we would expect to perform better than any method without access to
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ground truth data. In this oracle approach, x values are substituted for y values during

training, but y values are used during testing.

• NAC: Our first baseline. A DAE that treats the noisy data as clean which has been

shown to perform well in low noise settings [Xu et al., 2020b].

• NR2N: Our second baseline is noisier2noise [Moran et al., 2019], which uses the known

noise distribution to recover the clean signal. NR2N trains similarly to NAC, but at

evaluation time a transform is used to recover the clean values (briefly, if the distribution of

N is known and we set M = N , the model should learn to recover half of the noise so the

value used at evaluation is 2ŷ − z).

• SUP: Our motivating setting can be re-framed as a supervised learning problem: predict

y (or x) values using b values as input. Depending on the noise distribution, it is possible

that a model trained on noisy y values could learn to predict the correct x, using similar logic

to that found in Lehtinen et al. [2018]. We therefore use this supervised setting as a naive

baseline. We simply input b to the same network used in the DAE setting and calculate loss

as (ŷ − y)2 during training, but here the model has no information regarding y or z. As in

the DAE setting, at test time we evaluate (ỹ − x)2.

• SUPCT: We apply co-teaching to the supervised setting (SUP), to ensure that per-

formance gains observed are due to the combination of DAEs and co-teaching, and not

co-teaching alone. Here, the model is tuned and trained identically to N+2N, except the

model does not receive y or z values.

3.4.2.3 Implementation & Training Details

Each DAE is implemented as a 2-layer bidirectional LSTM with 100 hidden units. The LSTM

model was chosen because it has been shown to perform well in blood glucose forecasting,

which is a closely related challenge [Rubin-Falcone et al., 2020, Mirshekarian et al., 2019,

Rabby et al., 2021].The final hidden state is passed to a fully connected layer with a single

output. The output of the model is added to the input value corresponding to y, so that
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the network is tasked with learning the error term rather than a complete reconstruction.

Because we only aim to correct a single carbohydrate (y) value but use a time-based model,

we set one dimension of the model input to be y for all timepoints. Multiple auxiliary b

signals are input to the LSTM through separate channels: blood glucose values and bolus and

basal insulin are included in this way. We also carry over bolus insulin values (which occur

sparsely) to the end of the input window, to increase their impact on gradient calculations.

We threshold the output of each DAE at 0, because carbohydrates (our x and y) values cannot

be negative. For each co-teaching method and NR2N, hyperparameters were selected based

on tuning to a single individual adult#001. A small number of options was considered

through a simple grid search. Once selected, these hyperparameters were used across all

datasets. In tuning on adult#001, a ground truth signal was used for validation. This is a

limitation, as such a signal is generally not available in real-world scenarios. However, the

fact that the hyperparameters were not tuned to each individual, highlights the robustness

of the approach. Tuning is described in Appendix A.2. At evaluation we report the result

of the average correction learned by both networks when y values are given as input (i.e.,

where ỹi = DAEi(y,b), we report L(x, (ỹ1 + ỹ2)/2)).

For sample selection during co-teaching, we use mean squared percentage error (100% ·

((ŷ−y)/y)2) to avoid eliminating all high-valued y samples, as they are likely to have higher

noise values. As a noise function during training, we use z = (1 + N (0, .5))Bern(.5)y, i.e.

we add random noise to half of the samples so that the model can learn to utilize noisy z

information, and zero-out the other half so that the model has to learn to distinguish zero

from non-zero y values based on b alone. See Appendix A.3 for additional training details.

3.4.2.4 Evaluation

Simulated Data Metrics. When ground truth carbohydrate values are available, we use

MSE between the denoised carbohydrates and true carbohydrate values as our metric to

report the remaining noise (mean((x − ỹ)2), where ỹ = (ỹ1 + ỹ2)/2). The lower this value,
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the more noise has been removed. Although we assume that these data are not available

at training time, we use them for evaluation. Since it can be difficult to interpret the

meaning of a difference in MSE, we also consider a clinically motivated evaluation metric:

time in range. Time in range is a measure of blood glucose management and varies with the

accuracy of the carbohydrate measurements. The more accurate the carbohydrate estimates

the more time an individual will spend ‘in range.’ Here, we run a simulation of the subject

of interest with the default basal bolus controller using bolus values calculated from the

updated carbohydrate values, and report the proportion of time in the simulation that each

individual spent with blood glucose values between 70 and 180, or the euglycemic/healthy

range. This metric serves to indicate the real-world impact each approach might have. For

both metrics, 95% confidence intervals are calculated for each subject using 1,000 bootstrap

re-samples, and the average 2.5th and 97.5th percentiles across subjects are reported.

Sensitivity Analysis. To evaluate our model under different noise assumptions, we

repeat our analysis with multiple noise generation methods (x → y), without altering hy-

perparameters or our y → z function. We use various Gaussian and uniform distributions,

which include zero and negative mean multiplicative and additive noise functions. We con-

sider noise functions that might arise in carbohydrate counting. None are highly dissimilar

from our main analysis noise function: we aim here at feasibility, rather than a comprehen-

sive survey on a broad selection of loss functions, which our method would likely be unable to

address without further tuning or modification. Here, U(a, b) denotes a uniform distribution

with values between a and b. Carbohydrate values range between 0 and 200. After adding

noise, y values are capped above and below by 1 and 200. Alternate noise functions include:

1. Zero-mean multiplicative Gaussian: y = (1 +N (0, .75))x

2. Negative-mean multiplicative Gaussian (primary noise function): y = (1 +

N (−.25, .5))x

3. Zero-mean additive Gaussian: y = x+N (0, 40)
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4. Negative-mean additive Gaussian: y = x+N (−30, 50)

5. Zero-mean multiplicative Uniform: y = U(.5, 1.5)x

6. Negative-mean multiplicative Uniform: y = U(0, 1.6)x

7. Zero-mean additive Uniform: y = x+ U(−60, 60)

8. Negative-mean additive Uniform: y = x+ U(−60, 40)

Real Data Analysis. Without access to ground truth carbohydrate values at test time

for the real dataset (unlike the simulated dataset), we evaluate the performance of our

denoising approach based on a proxy. We take advantage of the fact that poorly estimated

carbohydrates result in inappropriate bolus calculations, which result in poor blood glucose

management. We expect that inaccurate carbohydrates estimates (large [x−y] values) result

in the poor blood glucose management. For a model that has come close to estimating x

correctly, we would observe a correlation between [ỹ− y] values and blood glucose control in

the time period following a meal. We assess this with Correction-Risk-Correlation (CRC),

defined as the Spearman correlation between the squared carbohydrate correction value

((ỹ − y)2) and the average Magni Risk [Magni et al., 2007] of blood glucose in the second

hour following the carbohydrate. We use the Spearman correlation to account for non-

linearities in the risk and correction value distributions. Magni risk is a measure of how

far from a safe value blood glucose is; higher risk values correspond to blood glucose values

that are either dangerously high or dangerously low. We use the second hour following the

carbohydrate because the effects of the carbohydrate consumption and insulin bolus have

not fully taken effect in the first hour. We calculate this correlation across all carbohydrates

observed in all individuals. For validation purposes, we also calculate this metric for the

simulated dataset.
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Table 3.1: Our approach outperforms baselines for all evaluation metrics and both datasets,
falling only 2% short of the upper bound for the clinical measurement ‘Time in Range.’ 95%
CIs are calculated from 1,000 bootstrap re-samples. CRC r and p values are calculated from
the Spearman correlation.

————————————SIMULATED———————————— ——REAL——
Model Remaining Carb MSE(g2)[95% CI] Time in Range (%)[95% CI] CRC (r)[p] CRC (r)[p]

N/A-clean carb 0.00 [0.00, 0.00] 73.18 [72.49,73.88] N/A N/A
N/A-noisy carb 72.26 [54.16, 92.58] 65.43 [64.70,66.16] N/A N/A
CAE (Oracle) 6.96 [5.03, 9.18] 72.44 [71.76,73.11] 0.32 [< 0.001] N/A

SUP 58.37 [45.11, 73.31] 64.59 [63.89,65.30] 0.04 [0.14] 0.19 [< 0.001]
SUPCT 100.50 [84.12,118.40] 60.22 [59.43,60.94] < 0.001 [0.91] 0.03 [0.61]
NAC 36.40 [27.02, 46.95] 68.22 [67.53,68.93] 0.11 [< 0.001] 0.13 [0.05]
NR2N 33.44 [26.59, 43.23] 68.79 [68.09,69.51] 0.11 [< 0.001] 0.13 [0.05]
N+2N (Ours) 17.91 [12.61,24.98] 71.24 [70.54,71.90] 0.19 [< 0.001] 0.22 [< 0.001]

3.5 Results

Through our experiments, we aim to answer the following questions.

• Does our approach meaningfully reduce error across a variety of simulated individuals,

compared to existing approaches?

• Is our model robust to different domain-appropriate noise distributions?

• Does our model show strong performance in real data, indicating accurate denoising?

Error Reduction for Simulated Data. Our approach, N+2N, outperforms baselines

in terms of noise reduction (MSE) (Table 3.1). N+2N reduces MSE from 72g2 to 18g2, but

falls short of the value achieved by our oracle approach CAE (7g2), as expected. CAE does

not achieve perfect MSE, probably due to insufficient training data or to a small amount of

noise in the CGM signal. Our approach’s reduction in noise is meaningful since it leads to

significantly better time in range. Most methods offer an improvement in % time in range

when used in a basal bolus controller, with baselines increasing over the noisy value from 65%

to 69%, and N+2N further improving performance to 71%, recovering 6% time in range out

of a total of 8% lost when using noisy versus clean values. SUPCT performs worse than any

other method including SUP, likely because without the noisy carbohydrate measurement as
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Figure 3.4: Performance on simulated datasets with multiplicative (×) vs. additive (+),
Normal (N) vs. Uniform (U), and zero (0) vs. negative mean (−) noise functions. N+2N
generally outperforms baselines. Error bars represent standard error (68% confidence inter-
val) from 1000 bootstrap samples.

input, co-teaching cannot learn the relationship between b and y as easily, and therefore does

not identify the less corrupted samples during training. This results in essentially random

sub-sample selection, hampering performance as less training data becomes available. SUP

does not suffer from this problem because it always utilizes the entire dataset.

Sensitivity Analyses on Simulated Data. N+2N outperforms all baselines across

the majority of noise distributions (Figure 3.4). For zero-mean uniform multiplicative

noise, NAC outperforms the proposed approach. We hypothesize that NAC performs well

in this setting because the expected value of the noise is zero and the variance is lower

than in other settings (it is 33%, which is approximately 30g, compared to 75% in the

multiplicative normal setting, or 40g and 60g in the additive noise settings, see Appendix

A.4). Of note, this analysis was carried out without additional tuning, demonstrating the

resilience of our approach to varying noise assumptions. Across biased noised distributions,

our proposed approach consistently outperforms all baselines. This resilience is likely due to
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our approach’s ability to select clean samples for training, without reliance on the secondary

noise function used during training.

We found that our approach is fairly robust to additional noise in the auxiliary signal:

when we increased the amount of noise in b by 5X, our approach remained competitive

with baselines trained with a clean b signal. At all noise settings our approach strongly

outperformed baselines trained with similar data. Details and figures are in Appendix

A.5.

In our examination of final training sample size, we found that performance is relatively

stable with a larger, noisier, sample, with all τ values between zero and 0.5 (half of the

samples excluded) offering substantial improvement over the best performing baseline. Per-

formance degrades for larger values of τ , which is likely due to the limited number of training

samples. See Appendix A.6 for details and a plot of model performance as τ is varied.

Experiments on Real Data. For the real dataset, N+2N outperforms all baselines

with respect to CRC. For simulated data, we see that, without exception, models with

lower remaining MSE after denoising have a higher or equal CRC. This indicates that our

metric serves as a reasonable proxy for remaining error when true values are unavailable.

Plots showing the components used to calculate CRC (magnitude of carbohydrate correction

versus Magni risk an hour after the meal) can be found in Appendix A.7. Interestingly,

the SUP baseline performs fairly well for this task on the real dataset (r,p=0.19, 3e-3,

vs. proposed approach 0.22, 9e-4). We hypothesize that this may be because carbohydrate

measurements are so unreliable for this dataset that learning to predict them from scratch

(without access to noisy values at test time) is sufficient for an error estimation proportional

to the actual error, especially given the implicitly correct timing data.
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3.6 Discussion & Conclusion

We propose a new approach to denoising, ‘Noise+2Noise’, that does not assume access to

ground truth target samples. Our approach leverages an auxiliary time-series that is related

to the target signal to help identify target samples with less noise. Our approach is the

first to adapt co-teaching to denoising, extending the applicability of this method to many

potential settings. While the approach recovers target data retrospectively and cannot be

used in real time for forecasting, it could be used in a number of downstream tasks. For

example in the clinical context, errors in carbohydrate measurements could aid in evaluating

an individual’s efforts in blood glucose management and provide a potential target. In

the context of carbohydrate recovery for blood glucose management, compared to existing

approaches, ‘Noise+2Noise’ leads to better signal reconstruction that is both statistically

significant and clinically significant.

While promising, our approach is not without limitations. Our primary analyses are on

simulated data where ground truth labels are available, but in real datasets common eval-

uation metrics (e.g., MSE) do not apply and we must rely on proxies. As presented, our

approach is designed for retrospective carbohydrate correction; more work is necessary to

investigate its applicability to closer-to-real-time correction. Four individuals in the Real

dataset had too few carbohydrate measurements to reliably train a denoising model, which

means that further work on model efficiency is necessary for this model to be broadly applica-

ble. While our approach was designed for and evaluated on denoising non-missing measure-

ments, our method could be extended to address missing measurements as well, provided

some additional regularization is utilized to ensure that the model does not impute meal

announcements too excessively. Finally, while we have empirically shown that co-teaching

appears to select a low-noise sample, we have not provided statistical guarantees.

Our approach is developed under the assumption that low-noise samples span the entire

input space. If this assumption is violated, e.g. if an individual consistently underestimates

large meals, it may result in a distribution shift between the final training sample, which
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lacks representation in the excluded range, and the evaluation sample. Although such a

discrepancy could impact performance, our method is somewhat robust to this scenario.

This resilience is due to the utilization of all samples during the initial training phase, which

provides some regularization that mitigates the effect of partial distribution exclusion later

in training.

Despite these limitations, we have demonstrated that it is feasible to correct a noisy

variable without access to ground truth samples during training, expanding the utility of

ideas from image analysis and noisy label learning. Applied to domains in which data are

composed of both individual-reported data and data measured from reliable sensors (e.g.,

mHealth), our approach could aid in improving the fidelity of patient-reported data.
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CHAPTER 4

Forecasting with Sparse but Informative

Variables

4.1 Introduction

In the previous chapter, we focused on learning alternate, cleaner feature representations

for carbohydrate information to be used for blood glucose management. In this chapter, we

shift focus to forecasting blood glucose.

In time-series forecasting, the future values of a target signal can depend on both intrinsic

and extrinsic effects. Intrinsic effects are dynamics that depend only on the current and

past values of the target signal. In contrast, extrinsic effects are dynamics that arise due

to auxiliary variables. In many cases, the inclusion of such auxiliary signals as input to

a forecasting model, in addition to the target signal, results in more accurate forecasts

[Chakraborty et al., 1992, Rockwell and Davis, 2016]. However, in other settings, including

auxiliary variables as input to a forecasting model produces little to no improvement in

forecast accuracy, even when there is a known relationship between the additional variables

and the target signal. This is particularly true in forecasting blood glucose: carbohydrates

consumed and bolus insulin administered both have well-known effects on blood glucose,

but their inclusion as inputs to forecasting models has not, in general, led to significant

improvements in performance over models based on blood glucose alone [Rubin-Falcone

et al., 2020, Hameed and Klienberg, 2020, McShinsky and Marsha, 2020]. We hypothesize
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Figure 4.1: An overview of the SIV problem. In this toy example, the target variable exhibits
oscillatory behavior when only zero SIV values are present (intrinsic dynamics), and the
presence of a non-zero SIV value causes the target signal to increase linearly (extrinsic [SIV]
dynamics).

that this is due in part to a mismatch in the relative frequency of non-zero values between

the auxiliary signal and the target signal. We refer to forecasting tasks where an auxiliary

signal is sparse but has a known effect on the target signal as the sparse but informative

variable (SIV) problem.

In this chapter, we introduce and address the SIV problem (Figure 4.1), which arises

when an auxiliary variable that occurs infrequently is known to cause an increase or decrease

in the target variable’s magnitude over time, although the exact effect may be unknown. The

sparsity of the SIV often results in the failure of standard multi-input forecasting approaches

in leveraging the auxiliary variable, i.e., models that include the variable perform similarly

to univariate-input approaches. A model that has overcome the SIV problem utilizes the SIV

in making its predictions, resulting in improved forecasting accuracy relative to a model that

does not use the additional variable. The SIV problem occurs when an important variable is

mostly zero-valued. This is not the same as a sparsely sampled variable (SSV). In the case

of under-sampling, the variable is sparse because it is not measured. In the SIV problem, we
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assume that the variable is measured frequently and accurately, but for most timepoints it

is zero. While approaches for addressing missingness or SSVs have been extensively studied

[Pratama et al., 2016], the SIV problem has not.

Although developing forecasting strategies that make use of SIVs has the potential to

improve predictive accuracy in several domains, it has not been directly addressed in previous

work. Recent multivariate forecasting approaches attempt to learn complex inter-variable

dependencies [Qin et al., 2017, Freiburghaus et al., 2020, Xu et al., 2020a]. However, these

approaches do not explicitly account for the relative sparsity of some variables. As we will

demonstrate, the incorporation of domain knowledge in terms of restricting model outputs

could help encourage a forecasting model to make better use of the SIV. However, existing

state-of-the-art deep forecasting approaches generally do not use such restrictions in order

to maintain flexibility. Here, we strive for a combination of the two: a forecasting approach

that maintains flexibility while incorporating domain knowledge.

To address the SIV problem we propose a novel forecasting approach: “The Linked En-

coder/Decoder.” Our model integrates two main ideas: (i) the isolation of intrinsic and

extrinsic effects, and (ii) the incorporation of domain knowledge. We implement the first

idea with two separate but connected decoder networks. One network learns per-timepoint

SIV effects (the SIV network), and the other learns the intrinsic dynamics of the target vari-

able (the target network). We implement the second idea by restricting the output of the

SIV network based on domain knowledge. Combined, these ideas lead to overall improved

usage of the SIV and in turn more accurate forecasts.

Our main contributions are as follows:

• We present the sparse informative variable (SIV) problem.

• We propose a novel forecasting approach designed to leverage the SIV by isolating the

effect of the SIV and incorporating domain knowledge.

• We evaluate our model in the context of forecasting blood glucose measurements and

show that it more effectively incorporates SIVs compared to several baselines, even in the
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presence of a small amount of noise.

4.2 Background and Related Work

We are the first to identify the SIV problem that arises when using RNNs for multi-input

forecasting and the first to propose a solution. While sparsely sampled variables (SSVs) have

been studied Pratama et al. [2016], the SIV problem is distinct. Interpolation approaches

for addressing missingness and noise in SSVs are not directly applicable to the SIV setting.

Although the SIV problem has not yet been addressed, several techniques have been proposed

to learn inter-variable relationships in forecasting tasks, which in part inspire our approach.

In the context of multi-input forecasting, Pantiskas et al. and Qin et al. use attention

mechanisms to identify which variables to focus on Qin et al. [2017], Pantiskas et al. [2020].

However, in contrast to our approach, these approaches do not account for signals that are

mostly zero-valued, nor do they incorporate domain knowledge. Beyond attention based

mechanisms, in a probabilistic setting, normalizing flows have been used to directly model

the joint probabilities between variables Rasul et al. [2020], Emmanuel de Bezenca an et al.

[2020]. However, SIVs are often too sparse to accurately estimate a joint probability. Several

other approaches have been proposed to explicitly model inter-variable relationships Gu

et al. [2020], Freiburghaus et al. [2020], Pantiskas et al. [2020], Cao et al. [2020], Xu et al.

[2020a]. However, none explicitly addresses the sparsity issue. Moreover, while some of

these architectures separate the effects of variables, none use this isolation to restrict the

effects based on domain knowledge as we do. There has been other work in forecasting that

combines deep learning with domain knowledge to reduce the hypothesis space. However,

researchers have relied on strong assumptions, e.g., structuring deep architectures to match

clinical intuition Munoz-Organero [2020], combining deep approaches with physiological-

model-based simulators Miller et al. [2020], and estimating expert judgements on model

outputs via Monte-Carlo approximations Huanga et al. [2014]. In contrast, we only restrict
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the sign of the SIV network’s hidden state, a more flexible approach.

4.3 Problem Setup

We focus on the task of multi-input univariate-output time-series forecasting in which we

aim to predict the future values of a single target variable, x ∈ R, but have access to an

additional auxiliary variable x′ ∈ R that is sparse but informative. More specifically, x′ is

zero at a much higher frequency than the target signal and the presence of a non-zero x′

value has a known effect on the target signal (e.g., it results in either an increase or decrease).

Given data pertaining to the previous T values of the target signal, x−T+1:0, and the auxiliary

signal x′
−T+1:0, we aim to predict the next h timepoints of the target signal: y = x1:h. We

denote the prediction output by a model as ŷ

4.4 Methods

In this section, we present our proposed architecture for addressing the SIV problem, the

“Linked Encoder/ Decoder”. We then discuss our experimental setup.

4.4.1 Proposed Architecture

Overview. To effectively capture the autoregressive dynamics of forecasting with an SIV,

our architecture, the “Linked Encoder/ Decoder,” relies on a recursive framework (Figure

4.2). It involves one encoder network and two linked decoder networks, which are used to

isolate the SIV dynamics from the intrinsic dynamics. The SIV decoder receives the SIV

signal as input. The decoder systems share a hidden state, which is processed in parallel.

This allows the intrinsic and extrinsic dynamics to be learned separately. Once isolated, we

restrict the effect of the SIV on the target signal based on domain knowledge.

Standard Encoder/Decoder. Our approach is based on a standard encoder/decoder
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Figure 4.2: Our architecture: the Linked Encoder/Decoder, shown with an input length T
and prediction horizon h. The θ network models intrinsic dynamics, while the ϕ network
models the SIV dynamics. The ψ network models shared dynamics. Input time-series are
gated, such that only inputs ([x−T+1:0,x

′
−T+1:0]) containing a non-zero SIV at any timepoint

are passed through the ϕ network. The ReLU network shown in grey is used to ensure that
the relationship between SIV and target is as expected.

recurrent neural network, as depicted by the orange and yellow sections of Figure 4.2. For

samples where x′
−T+1:0 = 0, this encoder/decoder is not modified. A single encoder (ψ), takes

x−T+1:0 and x′
−T+1:0 as input. The encoder outputs a hidden state hψ= ψ([x−T+1:0;x

′
−T+1:0]),

which is passed through a decoder LSTM (θ) that outputs hidden state hθ1 = θ(hψ). At each

timepoint in the forecast horizon, the output from the previous time step hθt−1 is passed

through θ, such that hθt = θ(hθt−1). This learned representation is also passed through

fully connected output network FC at each time step t in the forecast horizon to output a

prediction ŷt = FC(hθt).

Linked SIV Decoder and Gating. If an input sample contains a non-zero SIV value,

it is passed through both this standard encoder/decoder and a second decoder ϕ, depicted

in the blue section of Figure 4.2. This second decoder aims to model SIV dynamics. By

gating samples based on SIV values, we separate the extrinsic effects of the SIV on the target

variable from the intrinsic effects of the target signal on itself. When the corresponding SIV

values are non-zero (i.e., x′
−T+1:0 ̸= 0), the network engages the second decoder, which

processes hidden state hθt for t = 1, ..., h, in parallel with θ, as described below. Because ϕ

is only engaged when an SIV is present, θ learns to forecast in the absence of an SIV, while
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ϕ learns the additional SIV effect.

Linked Hidden State Processing and Incorporating Domain Knowledge. Both

decoders process a single hidden state in parallel, and their outputs are summed. At the first

time step in the prediction horizon, both decoders take as input hψ, but they each output

a unique hidden state (hθt and hϕt). At subsequent time steps, these two hidden states are

summed to create a new hidden state: as in Figure 4.2, we define h′
θt = hθt+k ·max(hϕt,0),

where k = 1 if the SIV is known to lead to an increase in the target signal and k = −1

otherwise. This is equivilent to passing hϕt through a ReLU function, which restricts the

effect of the SIV on the target variable to the expected direction. The combined hidden state

(h′
θt) is passed to the output network (FC) and both decoders at subsequent time steps. The

final forecast ŷ is a product of both decoders, capturing both intrinsic and restricted extrinsic

effects (i.e., ŷt = FC(h′
θt)). Note that when x′ = 0, ϕ is not engaged, and h′

θt = hθt. In

order to encourage the SIV decoder (ϕ) to utilize the SIV, ϕ receives the entire SIV signal

as input, concatenated with the hidden state. The SIV signal is shifted at each timepoint

so that the encoder’s position in time relative to the SIV is included in the representation

implicitly (see implementation details).

Additional Variables. In Figure 4.2, we present an overview of the proposed architec-

ture for a setting with a single SIV. In a setting with multiple SIVs, the number of secondary

decoders is increased and restrictions are applied according to the known effect of each SIV.

Each ϕ takes as input only the relevant SIV signal, along with h′
θt. h′

θt is modified by all

SIV decoder systems, so that the hidden state that is passed to FC and subsequent decoder

steps is a sum of the number of SIVs plus one components. Non-sparse auxiliary variables,

if any, are given to the ψ network.

SIV Representation. One issue that makes utilizing SIVs difficult is that they usually

occur at only one timepoint in an input window, having little effect on the gradient during

training. To increase its effect, we use the sum-total SIV value up to the current timepoint as

input (Figure 4.3). Up until the first non-zero SIV value of an input time-series, the signal
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Figure 4.3: Our sum-total approach. We use the sum total up to the current point within
an input window as input. This method allows the SIV signal to make a larger impact on
the gradient while maintaining all temporal information.

value is zero. After any non-zero SIV, the input is the sum of observed values prior to and

including that point, in the input time-series only. SIV values from before the input window

are ignored. This approach is used for all analyses, including baselines and ablations. This

sum-total input improved performance for all approaches (see Appendix B.2).

Implementation Details. Each LSTM encoder or decoder is implemented as a 2-layer

bidirectional LSTM with 100 hidden units. FC is a fully connected linear network with a

single output. Our architecture uses two ϕ networks, one for carbohydrates (positive effect,

ReLU restriction) and one for bolus insulin (negative effect, −1× ReLU restriction). In order

to input each SIV signal into each ϕ network while maintaining time information, x′
−T+1:0

is front-padded with h zeros and input to ϕ at the first time step of the forecast horizon.

The signal is shifted back at each timepoint, such that at the ith time step of the prediction

horizon, the SIV signal is shifted back i−1 positions, so that it is front-padded with h−(i−1)

zeros and back-padded with i−1 zeros. In this way the input corresponds with the encoder’s

position in time. x′
−T+1:0 is scaled to have the same mean as h′

θt for each input.
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4.4.2 Evaluating Model Performance

We evaluate our approach on several datasets pertaining to BG forecasting in type 1 diabetes.

We compare to several baselines, including resampling approaches. We evaluate forecast

accuracy and the extent to which each model utilizes the SIVs.

We aim to forecast BG 30 minutes into the future (h = 6), based on a history of BG

and two SIVs: carbohydrate and insulin bolus values. We use an input length of 2 hours

(T = 24). Here, h = 6 as it represents a common BG forecasting benchmark [Marling and

Bunescu, 2018a] and we set T=24 based on prior work that suggests longer histories do not

provide additional benefit [Silvia Oviedo, 2016]. Target and auxiliary variables are scaled

to between zero and one, using the maximum expected value to linearly scale (400 for BG,

200 for carbohydrates, 50 for insulin). Each individual’s train/validation/test data are split

into overlapping windows of length T + h with a stride of 1, to be used as model input and

labels.

4.4.2.1 Data

We compare the performance of our architecture to baselines on three T1D-based datasets:

Simulated, Simulated-noisy, and Ohio. All three datasets are publicly available [Man et al.,

2014, Xie, 2018, Marling and Bunescu, 2018a].

Simulated. Data generated from a commonly-used type 1 diabetes simulator [Man et al.,

2014, Xie, 2018] provide a curated test setting on which to evaluate our approach. We

generate ten days of data for ten individuals corresponding to 28,800 timepoints.

Simulated - noisy. While the simulator used above introduces noise in the BG measure-

ments, we assume that the SIV signals are recorded without noise or missingness. To measure

the robustness of our approach to this assumption, we generate additional simulated datasets

using the approach above in which we vary the amount of noise and missingness. After data

generation, we zero out between 10% and 50% of the carbohydrate values. Separately, we

also explore the effects of adding uniform random noise to the measurements, varying the
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maximum magnitude between 10% and 50%. These changes are made to both training and

testing data.

Ohio. Finally, we examine performance on a real dataset that was made publicly available

for the Knowledge Discovery in Healthcare Data BG Level Predication Challenge [Marling

and Bunescu, 2018a]. The data pertain to 12 individuals with BG measurements every 5

minutes.

4.4.2.2 Baselines

Encoder/Decoder (Abbrev: Enc/Dec). Our primary baseline is a stand-alone encoder/

decoder system, identical to the ψ plus θ setup in our full architecture [Fox et al., 2018]. This

baseline has less capacity than our proposed approach, so we increase the minimum number

of training iterations to match the same number of gradient updates for our approach. We

also examine a model with capacity that matches our proposed approach (Full Capacity).

Full Capacity. To ensure that any performance improvements observed are not due to

our model’s increased capacity, we also compare to a model based on our full architecture,

but with no SIV-specialization (i.e., there is no gating, no direct SIV input into ϕ, and no

output restriction). This model is trained for the same number of iterations as our proposed

approach.

Resampling. Resampling is perhaps the simplest approach to addressing signal sparsity.

In order to rule out resampling as a naive solution to the SIV problem, we implement

our primary baseline method with two resampling procedures: training the model on only

windows with SIV samples to initialize the weights before training on the full sample (SIV

Initialize), and training on the full sample, then fine-tuning the model on only windows with

non-zero SIV values (SIV Fine-tune). Similar to our primary encoder/decoder baseline,

we increase the minimum number of training iterations to match the number of gradient

updates used in training our proposed method.
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4.4.2.3 Evaluation

All evaluations are performed on held-out test sets. To evaluate the accuracy of each model,

we predominantly use root mean square error (rMSE;
√

( 1
n
)
∑n

i=1(yi − ŷi)2) and mean abso-

lute error (MAE; ( 1
n
)
∑n

i=1 |yi−ŷi|). In order to match common practice in the BG forecasting

literature, we calculate error terms based on the prediction accuracy of the final timepoint

in the prediction window [Marling and Bunescu, 2018a]. We also evaluate the impact of

carbohydrates and insulin on BG with a shapley value-inspired [Lipovetsky and Conklin,

2001] metric called SIV Usage. This metric is calculated as follows. Let X denote a dataset

with an SIV, and let X∅ denote the exact same dataset with all SIV values set to zero. Let f

define a mapping f : X → ŷ, where X ∈ X, and ŷ ∈ Rh is a prediction of the next h points

of the target variable. f is trained and evaluated on X, while f∅ is trained and evaluated

identically to f , except using X∅. Let L denote the error of the model’s prediction (here,

rMSE or MAE). We define SIV usage as L(f∅(X∅)) - L(f(X)). This metric reflects how error

changes when the SIV are removed. When removing the SIV, we both train and test on data

without the SIV (rather than performing a permutation test or similar), so the model can

learn the maximum amount of information available from the target variable alone.

Individual-Level Analyses. We compare the error and SIV usage of the baseline

encoder/decoder to the improvement over baseline offered by our method across individuals.

We expect that our model will offer greater improvement over baseline for individuals with

high baseline error and low baseline SIV usage, as those are the individuals for which SIVs

are most poorly modeled in the baseline. This would indicate that our approach addresses

baseline deficits in SIV-modelling.

Ablations. We perform the following ablation analyses to examine which elements con-

tribute to our model’s performance. No Gating: All samples are passed through both de-

coders. No Restriction: The outputs of the SIV decoder systems are not passed through

a ReLU function. No SIV Input: The SIV decoders receive only the hidden state as in-

put, and not the SIV signal. Only SIV Input: The baseline model is used, but with the
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modification that the SIV is input to the decoder directly, as in our proposed approach.

Noise and Missingness. We assume that SIV signals are noise free. Here, we evaluate

our model’s performance as this assumption is relaxed. This is possible in our simulated

dataset because we have ground truth carbohydrate values. In real data, not only may

the magnitude of these values be inaccurate (they are estimated by the individual), but

individuals may skip recordings altogether. In order to examine how unreliable carbohydrate

values impact our approach, we utilize the varied-noise and varied-missingness simulated-

noisy datasets to evaluate the performance of our model vs the stand-alone encoder/decoder

baseline as carbohydrate values become unreliable. We report average forecast error across

all individuals and 5 random noise-generation seeds for this analysis. We also evaluate our

approach on a real dataset which is expected to have some degree of missingness and noise

for comparison.

Training Details. We split each individual’s data into training, validation and test sets.

We split data by number of timepoints using a 70%/15%/15% split, without overlap. We

implement and train our models in pytorch 1.9.1 and CUDA version 10.2, using Ubuntu

16.04.7 and a GeForce RTX 2080, using an Adam optimizer Kingma and Ba [2014] and a

batch size of 500. We use a learning rate of 0.01 and a weight decay of 10−7. When training,

mean square error (MSE) across all timepoints in the prediction horizon is used as a loss

function. We train for at least 500 epochs, until validation performance does not improve for

50 epochs. The model parameters that led to the best validation set performance are used

at inference time. We train and test a model on each individual and report across-individual

averages.

4.5 Results

We aim to answer the following questions.

• Does our model offer improvement over baseline approaches in terms of forecast error
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Figure 4.4: A sample prediction for a simulated individual (adult#004). Our model better
accounts for the steep rise in the BG signal following a meal.

and SIV Usage?

• Across individuals, when does our model offer the greatest improvement?

• What elements of our model improve performance?

• How do inaccurately measured SIVs impact our model?

Improvement Over Baselines (Simulated Data). Our model outperforms base-

lines leading to lower average rMSE/ MAE and greater relative SIV usage (Table 5.6).

Specifically, our model appears to account for the effect of the SIV on the target signal

(e.g., accurately predicting sharp rises that the baseline encoder/decoder cannot account

for: Figure 4.4). Naive SIV resampling approaches are generally outperformed by other

baseline approaches, or perform similarly. Our proposed approach shows a large improve-

ment over even the strongest baseline (rMSE 13.07 vs 14.14, paired t-test across individuals

[t statistic/p-value]: 2.0/0.05). We also examine the clinical benefit of forecasting with our

approach using a Clarke error grid in Appendix B.3.

Individual Level Results (Simulated Data). In the simulated dataset, we consider

ten individuals who differ in terms of simulated physiological parameters. Here, we inves-
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Model rMSE [95%CI](Usage) MAE [95%CI](Usage)

BASELINES
Enc/Dec 15.63[14.1,16.9](11.13) 12.42[11.1,13.6] (6.63)
SIV Fine-tune 27.30[24.7,29.1](-0.54) 22.22[19.9,23.9](-3.17)
SIV Initialize 15.37[13.6,16.9](11.39) 11.99[10.7,13.2] (7.06)
Full Capacity 14.14[12.7,15.3](12.62) 11.21 [9.9,12.2] (7.85)

PROPOSED 13.07[11.8,14.2](13.69) 10.45 [9.4,11.4] (8.61)

ABLATIONS
No Gating 13.93[12.6,15.0](12.84) 11.11 [9.9,12.1] (7.95)
No Restriction 13.12[11.8,14.2](13.64) 10.43 [9.3,11.4] (8.62)
No SIV Input 14.20[12.7,15.4](12.56) 11.18 [9.9,12.2] (7.87)
Only SIV Input 13.97[12.6,15.1](12.79) 11.12 [9.6,12.2] (7.94)

Table 4.1: Mean forecasting error and SIV usage. Outcomes are reported as: Error [95%
confidence interval] (SIV Usage). Our proposed approach outperforms baselines and abla-
tions. CIs were calculated using 1,000 bootstrap samples.

tigate how model performance with respect to the baseline Encoder/Decoder varies across

these individuals. In particular, we identify settings in which our approach is most beneficial.

Our model’s benefit over baseline varies inversely with the extent to which the baseline

approach relies on the SIV (i.e., SIV usage) across individuals (Pearson r=-0.65, p=0.041,

Figure 4.5 (a)). This supports the hypothesis that our model’s improved performance over

the baseline is due in part to the increased usage of the SIV. For individuals for whom the

baseline model was able to achieve high usage, our model was not necessary, but individuals

with low baseline usage stood to benefit. We also observe a strong correlation between

baseline forecast error and our approach’s improvement (r=0.80, p= 0.0056, Figure 4.5

(b)). This suggests that our approach addresses the deficits of the baseline at the individual

level. There is higher rMSE variability across individuals for the baseline compared to the

proposed approach (range: 9.5 vs 6.3), perhaps partially due to difficulties in SIV modeling,

for which our model compensates.

Ablations (Simulated data). Ablation analyses reveal that, in general, our approach’s

strong SIV usage and forecast accuracy are a result of the combined effects of each implemen-

tation detail, rather than any one component. Table 5.6 shows the results of our ablation
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Figure 4.5: (a) Our architecture’s improvement over baseline increases as baseline SIV usage
decreases. (b) Improvement over baseline is positively correlated with baseline rMSE. Each
point represents an individual in the simulated dataset, and errors bars represent standard
error i.e., the standard deviation of 100 bootstrapped samples.

study: removing any component results in a decrease in performance accuracy and SIV

usage. Notably, removing the domain-guided restriction (i.e., the ReLU functions) results

in the smallest effect on performance. This is likely because, in our simulated dataset, the

effect of the insulin boluses and carbohydrate administrations are strong enough that the

model can learn them easily without supervision. When the restriction element is included,

it seems to be utilized by the model: randomly switching the sign of the ReLU component

at test time in a post-hoc analysis drastically hampers performance, more than doubling

rMSE. We expect this component to have a greater effect in situations where the impact of

the SIV is more subtle.

Noise and Missingness (Simulated and Real data). In the above experiments, we

assume that the SIV is accurately measured. To quantify the impact of measurement noise

on our approach, we perturb the SIV as described in the experimental setup section. We

find that as missingness and noise increase, our approach’s performance degrades (Figure

4.6). Relative to the baseline, our approach is more impacted by corrupted SIV values, in
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Figure 4.6: Mean model performance across all individuals as (a) simulated carbohydrate
values are hidden and (b) noise is added to carbohydrates. As noise and missingness increase,
our model fails to reliably outperform the baseline. Errors bars represent standard error i.e.,
the standard deviation of 100 bootstrapped samples.

part because of the increased dependence on the SIV (i.e., greater SIV usage). As expected,

completely omitting carbohydrates has a greater effect than simply corrupting the magni-

tude. Though performance decreases with increased noise/missingness, we are encouraged

by the fact that our proposed approach remains competitive with the baseline.

We further explore the effects of a corrupted SIV signal using the ‘Ohio’ data, a real

dataset generated by individuals with type 1 diabetes. While we cannot measure the amount

of noise in the Ohio dataset, we expect it to be more in line with the simulated-noise setting

than the noise-free setting. Somewhat reassuringly, even in this noisy setting, our approach

performs no worse than existing approaches and even provides a small benefit over baselines.

Specifically, our approach consistently leads to lower forecast rMSE compared to all baselines,

though performance gains are modest (rMSE=20.16 vs. the strongest baseline rMSE=20.36).

Furthermore, in ablation analyses we found that the restriction component was beneficial

for this dataset, supporting the hypothesis that domain knowledge insertion is beneficial for

more challenging tasks (see Appendix B.1 for full results).
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4.6 Discussion & Conclusion

The SIV problem arises in forecasting domains when the relative sparsity of an auxiliary

signal makes learning its effect on a target signal challenging. We introduce the problem and

propose a forecasting approach that leverages SIVs. Our approach isolates SIV dynamics

and restricts them based on domain knowledge, achieving higher SIV-usage and stronger

forecasting performance than baselines. While our approach assumes accurately measured

SIVs, it performs no worse than baselines in the presence of missing or noisy SIV measure-

ments. Though we focus on a specific use case, we expect the SIV problem to arise frequently

in healthcare. In such settings, SIVs are likely associated with time periods during which a

patient is most vulnerable (i.e., medication administration). Therefore, prediction models

that address the SIV problem could lead to more accurate predictions during time periods

that are critical for health outcomes.

While there are many different ways to forecast signals, we focus on RNN-based tech-

niques. Our primary contributions are the identification of the SIV problem in forecasting

and noting the failure of common RNN-based approaches when addressing this problem.

We demonstrate how addressing the SIV problem can lead to improvements over directly

comparable baselines. We do not claim SOTA in forecasting, but our findings could apply

to many settings in which variants of RNNs are applied to forecasting problems with SIVs,

which could include vital sign forecasting with medication administration as an SIV, stock

prices with quarterly reports or news articles as SIVs, and traffic forecasting with holidays

or events as SIVs. The two main ideas behind our approach include gating and output

restriction. While neither of these methodological developments are unprecedented on their

own, their combined application to the SIV problem poses a novel direction for forecasting

in related domains.
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CHAPTER 5

Learning Control-Ready Forecasters for

Blood Glucose Management

5.1 Introduction

Individuals with T1D must inject insulin to manage their blood glucose (BG) levels. Man-

ual dosing solutions, such as the commonly used basal bolus (BB) regimen, require patient-

managed parameters [Janez et al., 2020, Weinstock, 2023] that must be manually updated

as an individual’s glucoregulatory system evolves over time [Lee et al., 2021, Rubin-Falcone

et al., 2022]. Even so-called “automated” systems rely heavily on patient-provided parame-

ters, which demand calibration and oversight as an individual’s body changes [Ahmed et al.,

2020, Collyns et al., 2021, Ware et al., 2022].

An adaptive BG control system could alleviate the need for constant patient intervention.

Along these lines, researchers have investigated machine learning (ML)-based forecasters for

model-based control. Such forecasters can be continually retrained on the most recent data

[Anava et al., 2013], adapting to an individual’s changing glucoregulatory system without

manual intervention. However, such forecasters often fail to accurately model BG across

a range of potential insulin doses. In addition to challenges around sparsity addressed in

Chapter 4, the inherent correlation between carbohydrate intake and bolus insulin values

in BB-controlled data makes training effective forecasters difficult. The correlation leads to

entanglement in which the forecaster fails to accurately model the independent impact of
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Figure 5.1: Our setting is similar to modeling treatment effects in the presence of confound-
ing: the basal bolus strategy creates a strong correlation between bolus and carbohydrate
values, making it difficult to disentangle their impacts on future BG values. Bolus values
depend on three patient-specific parameters: BG target, carbohydrate ratio (CR), and cor-
rection factor (CF).

these variables.

Existing solutions, like recurrent neural network (RNN)-based forecasters trained on data

collected under a BB policy, fail to address the entanglement present in BB data, since

they do not adjust for the presence of confounding: the number of carbohydrates in a

meal affect both the outcome (future BG values) and the treatment (insulin administration;

see Figure 5.1 for causal DAG). Treatment effect estimation techniques that adjust for

confounding via matching or stratifying (such as those utilizing a propensity score [Collyns

et al., 2021]), do not apply because the BB strategy permits no overlap; bolus choices

are selected deterministically based on other system variables with no variability. While

there is some overlap across individuals (i.e., two people eating similarly sized meals may

use different bolus values), the significant heterogeneity in BG dynamics among individuals

[Redondo and Morgan, 2023] prevents attributing differences in BG trajectories solely to

bolus effects. Variations in predicted BG values between two individuals can be ascribed to

a multitude of other factors, so a forecaster trained on data from multiple individuals cannot

accurately model bolus effects specific to individuals [Huang et al., 2023]. In terms of patient
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specific models, disentangled representation learning techniques [Kingma and Welling, 2014,

Jeon et al., 2021] do not account for the near-perfect correlation between action choices. Our

domain knowledge utilization approach, the linked encoder/decoder technique described in

Chapter 4, is able to address the orthogonal problem of auxiliary variable sparsity. However,

approaches of this type cannot directly address entanglement without precise assumptions

regarding the relative magnitudes and shapes of entangled variable impacts.

In this chapter, we propose a novel approach for training control-ready BG forecasters

with the goal of learning to accurately model the independent effects of carbohydrates and

insulin on BG. Our strategy hinges on the insight that depending on the BG value, the

entanglement between boluses and carbohydrates can vary. Specifically, in the basal bolus

(BB) regimen, the bolus calculation involves a corrective dose when BG levels are high.

Based on this observation, we propose a two stage approach. In stage 1, we utilize samples

with a correction factor to construct an initial estimate of the independent effect of insulin.

In stage 2, we exploit the monotonic impact that insulin has on BG during subsequent

training. This enables the forecaster to accurately disentangle action effects, making it

ready for model-based control.

In simulations, our control system outperforms that based on a forecaster trained using

standard approaches. Notably, our method does not require a user to tune any hyperpa-

rameters, enhancing its reliability over BB and other approaches. For instance, we show

that as the parameters for the BB control strategy become inaccurate in a simulated setting,

control performance degrades. This demonstrates a lack of adaptability to evolving system

dynamics, which often arise in individuals with T1D, as an individual’s body will change

over time [Majety, 2022]. Our approach’s inherent adaptability could potentially obviate the

patient burden associated parameter updates as an individual’s body changes. We further

illustrate our approach’s benefit over baseline forecasters using real-world data from three

distinct datasets via proxy metrics which assess potential model-based control performance.

Though inspired by BG management in T1D, our methodology has broader implications. It
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can be applied to other control settings, especially when behavior policies result in corre-

lated action pairs, given that this correlation is not absolute and that one action’s impact

on the change in state is monotonic. We demonstrate this broader applicability in a classic

inverted pendulum setting, in which we learn to forecast pendulum angle, accurately disen-

tangling the effects of the forces of the agent’s push and gravity. Our method has potential

in safety-critical domains where exploration is expensive.

Our main contributions are as follows:

• We formalize the problem of learning the independent effects of insulin and carbohy-

drates on BG with access to only highly entangled BB data.

• We propose a novel approach in training control-ready BG forecasters that leverages

correction bolus values and exploits insulin’s monotonic impact on BG to learn an

estimated effect for further training.

• Using an FDA-approved simulator, we demonstrate our approach’s efficacy within

a model-based control strategy, demonstrating improved control over baselines from

causal inference, domain knowledge utilization, and disentangled representation learn-

ing.

• On real data from three different cohorts, we design and validate proxy metrics, demon-

strating the efficacy of our proposed approach in a real-world setting.

Though inspired by BG management in T1D, our methodology has broader implications.

It can be applied to other control settings, especially when behavior policies result in corre-

lated action pairs, given that this correlation is not absolute and that one action’s impact

on the change in state is monotonic. Our method has potential in safety-critical domains

where exploration is expensive.
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5.2 Background and Related Work

In this section, we first describe the challenges and benefits of BG forecasting. Following this,

we discuss model-based control strategies, for which our approach is specifically designed.

Lastly, we discuss the limitations of existing treatment effect estimation techniques applied

to the problem of learning control-ready forecasters.

5.2.1 BG Forecasting

In BG forecasting, one typically aims to forecast the next 15 minutes to two hours of BG

measurements. Such forecasts can inform control strategies [Loop Docs, 2023, Yamagata

et al., 2020]. However, the effectiveness of these forecasters, especially in guiding bolus dos-

ing, is compromised if they fail to differentiate the individual effects of carbohydrates and

insulin on BG. In model-based control scenarios, an inaccurate representation of carbohy-

drate and bolus impacts can lead to erroneous BG trajectory predictions and, consequently,

inappropriate bolus dosing recommendations. Such inaccuracies can arise due to distribu-

tion shift : during control, forecasters are likely to encounter bolus, carbohydrate, and BG

data combinations that differ substantially from those encountered by the behavior policy

used for training. The behavior policy typically used to collect training data relies on a BB

strategy, where insulin dosing depends on carbohydrate intake. Specifically, bolus values are

calculated as bolus = carb
CF

+ 1{BG>TARG}
BG−TARG

CR
, where CF , CR, and TARG are patient-

managed parameters. Due to this dependence, standard approaches to model training result

in BG forecasters that are unable to disentangle the impacts of each variable and fall short

of real world application when evaluated with control strategies where this correlation does

not hold.
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5.2.2 Model-based Control Solutions

BG management in T1D can be framed as a sequential decision problem. In this setting, an

agent interacts with an environment (the individual as represented by CGM measurements)

by taking some action (insulin bolus, potentially meal sizes) with the goal of optimizing some

cumulative reward (time in the healthy BG range, or TIR). In model-based control, a model

of the environment is used to test the impact of taking different actions in order to select the

best action while minimizing potential harm. However, this assumes access to an accurate

model. Oftentimes the data used to train the model are collected under a behavior policy

in which exploration might be limited. This can lead to inaccurate model predictions when

new state-action pairs are encountered during planning. Methods to address this challenge

include techniques that use an explicit model of environmental uncertainty to avoid uncertain

actions [Kidambi et al., 2021, Yu et al., 2020] and techniques which incorporate explicit

causal or physical models of the environment to bridge the gap between the observed and

unobserved state-action pairs [Arora et al., 2022, Xu et al., 2023]. While these approaches

mitigate issues posed by limited exploration, they all assume that some overlap exists in the

original behavior policy, i.e., that there is enough variability in action selection for a model

to learn independent action effects for in-sample data. This assumption does not hold in

many settings, such as in standard BG management, where deterministic algorithms guide

actions, leading to extremely limited overlap. This makes it exceedingly difficult for models to

disentangle the effects of each action on future state and reward values, hindering the learning

of action counterfactuals, even within behavior policy data. Consequently, not only is there

a high risk of distribution shift during deployment, but conventional methods for countering

such shifts also fail because action impacts may be modeled completely inaccurately within

the training data.
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5.2.3 Treatment Effect Estimation Under Confounding

Learning an accurate forecaster from data with limited exploration is similar to learning

treatment effects from observational data in the presence of strong confounding [Rubin, 1974,

Rosenbaum and Rubin, 1983], in that we aim to recover treatment effects despite correlation

between the treatment (insulin) and underlying covariates (carbohydrates) affecting the out-

come (BG). Whereas randomized control trial data can simplify treatment effect estimation,

randomized bolus data in BG management is unsafe, making typical treatment effect esti-

mation methods infeasible. While techniques based on propensity score adjustment [Austin,

2011]—including matching [Imbens, 2004, Rosenbaum and Rubin, 1983], weighting [Austin

and Mamdani, 2006], and deep learning-based multi-output strategies [Shalit et al., 2017,

Zhang et al., 2020]—exist, they presuppose a condition of overlap. Overlap is present when

a range of outcomes is possible for any set of covariates, but the deterministic nature of the

BB strategy violates this assumption. Our method gleans insights from two non-propensity

score approaches. The first is meta-learning, e.g., the S-Learner [Künzel et al., 2019], which

treats treatment as a standard covariate and evaluates its effects upon its removal. The

second set of approaches that we build from are techniques leveraging a small set of random-

ized control trial data to update models initially trained on confounded data using a residual

update [Kallus et al., 2018, Hatt et al., 2022]. These latter methods learn residuals from

unconfounded experimental data. Our strategy also adopts ideas from contrastive learning

[Chen et al., 2020]: we utilize cosine similarity, not just for robust representations as in some

methods [Kutsuna, 2023], but to ensure temporal proportionality between variable effects

from different models.

Other supervised learning techniques are somewhat applicable to the challenge of mod-

eling treatment effects under confounding, but they fall short of utility for modeling action

effects within a BB behavior policy. Methods for disentangled representation learning [Wang

et al., 2022], such as variational autoencoders (VAE, Kingma and Welling [2014]) and gener-

ative adversarial networks [Jeon et al., 2021], aim to separate a system’s generative factors,
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either by encouraging independence across hidden representations or by explicitly recreating

the data generating process. However, these approaches do not address strong correlation

present in model inputs, resulting in an inability to isolate bolus and carbohydrate effects.

Domain-knowledge approaches, which utilize known properties of the task to improve fore-

cast accuracy, either by utilizing an explicit physiological model [Miller et al., 2020], or by

enforcing directional effects [Rubin-Falcone et al., 2023], lack the specificity to disentangle

bolus and carbohydrate effects. This is because multiple domain-guided choices can pro-

vide identical forecasts on fully entangled BB data. Our method does not leverage explicit

domain-specific causal or physical models, nor does it rely on any randomness or exploratory

data. Instead, we assume that there is a subset of actions where the influence of entangle-

ment is slightly diminished. Our approach exploits this subset and utilizes a monotonicity

assumption to disentangle the effects of paired actions.

5.3 Problem Formalization and Notation

We model our system as a Markov decision process where, at each time point t, two actions

are taken: the “agent action” at ∈ R, i.e., bolus values, and the “user action” aut ∈ R,

i.e., carbohydrate values, given a d-dimensional state vector st ∈ Rd. The agent controls

at, while aut is determined by a user. Some state-dependent reward R is given at each

timepoint (in BG management, this reward can correspond to the inverse of glycemic risk

or a similar metric). The subsequent state st+1 is determined by some transition function

T: st+1 = T (st, a
u
t , at), which a forecaster is trained to model. As is typical in observational

settings, we only have access to a batch of historical data D = {(st, aut , at, st+1) | t ∈ N}

collected under some behavior policy π. Within D, actions aut and at are strongly correlated,

creating entanglement and complicating the task of distinguishing their individual effects on

the state vector (see DAG in Figure 5.1).

Given D, we aim to train a forecaster that can accurately model the independent effect of
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each action on the state. In particular, the approach will be evaluated via the performance

of some model-based control method used to choose at given st and aut . If the forecaster

accurately models the impact of both variables on st, it can select the at values that optimizes

some reward based on st.

Behavior policy. We assume that actions aut and at are strongly linearly correlated. For

all batch data D, at = Kaut + f(st) for some “residual” function f and constant K. We

assume |Kat| ≫ |f(st)| generally holds, ensuring strong entanglement. We also assume that

f(st) is nonzero for some actions and that |f(st)| has nonzero variation. We assume there is

some criterion C such that when C is met, the entanglement between at and a
u
t is reduced

(i.e., |f(st)| is higher for samples where C is true). An example behavior policy is visualized

in Figure 5.2 Left. In basal bolus data, the C criteria is met when BG values exceed a

target and a correction bolus portion is administered. The C criterion can also be identified

after data generation; e.g., by setting C to true when |at −Kaut | is relatively large.

Monotonicity Assumption. We assume that the impact of action at on the state vector

st+1 is strictly monotonic; specifically, either dst+1

dat
> 0 or dst+1

dat
< 0 holds for all time points

and state/action values. This is a reasonable assumption in domains such as BG forecasting,

where the administration of insulin boluses reliably decreases BG values in proportion to

their size. This monotonic relationship ensures that the ‘residual effects’ of at—additional

changes to the state vector resulting from increases in at beyond a baseline—are consistent

with the direction of the baseline action’s impact and scale proportionally with at value.

Our approach is most effective when the second derivative d2st+1

da2t
is near zero: in an ideal

setting where d2st+1

da2t
= 0 for all actions, meaning that the impact of at is linear, residual

action impacts are equal to full action impacts, which is advantageous for our method.

Nevertheless, our approach can accommodate a broad spectrum of second derivative values

as long as monotonicity is maintained; this is empirically examined in sensitivity analyses.

Example agent-action impacts ranging from ideal to expected failure are illustrated in Figure

5.2 Bottom.
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Figure 5.2: Top: Example data adhering to the behavior policy studied, where a strong
correlation between user and agent actions is present across all samples but slightly reduced
when a criterion is met. Bottom: Example agent action impacts on a hypothetical state
variable where we expect our approach to perform optimally (blue), well (orange), and poorly
(green).
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Figure 5.3: In our setting, the only available training data exhibits entanglement between
paired action values. We aim to learn a forecaster on this data that can be directly applied
to model-based control schemes. Our proposed approach encompasses two steps. In the first
step, we separate the agent action’s residual effect from the effect of the portion which is
fully correlated with the fixed action. In the second step, we employ cosine similarity in the
loss term to ensure that the total agent action effect learned aligns with the residual effect
identified in step 1.

5.4 Methods

In this section, we present our proposed approach for training control-ready BG forecasters

that accurately model the independent effects of carbohydrates and insulin on BG.

5.4.1 Proposed Approach

Overview. Our training strategy is organized into two stages (Figure 5.3). In both stages,

a forecaster is trained to predict target values from a set of historical state and action data.

Notably, in stage 1, we set the agent action value to zero when it is most entangled with the

user action value as assessed by some predetermined criteria (e.g., if a correction dose is not

administered in a BG forecasting setting). This step enables the model to isolate the impact

of the residual portion of the agent action in its own channel, while the effect of the fully

entangled portion of the agent action is captured in the channel modeling the user action.
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In stage 2, the forecaster is retrained conventionally (no data are hidden), but we augment

the loss function with cosine similarity between the effect of the agent action estimated by

the current model and the (frozen) model trained in step 1. This helps encourage the model

towards a representation of action effects that is proportional to and in the same direction

as the residual effects without penalizing the model if the magnitudes of the residual and

complete effects are different.

Forecaster. We assume a forecaster architecture that receives a history of state and

action values (for input length T, we denote this input as X = [s−T :0, a
f
−T :0, a−T :0]). The

forecaster can be of any architecture, provided that each variable is input to an unique

independent channel. The forecaster outputs ŷ = θ(X), the model’s forecast following the

input window. We assume that the reward signal is based on a single state variable, and so

our model is trained to output a time-series (for prediction horizon h and reward variable

sj, ŷ is optimized to match y = sj1:h). While we focus on univariate time-series forecasting,

our approach generalizes to multivariate prediction by simply adding additional variables to

the model output and loss functions.

Stage 1: Learning Residual Action Effects. Our training scheme is divided into

two parts. In stage 1, the forecaster is conventionally trained, with a slight modification.

Whenever the condition C is not met (i.e., the agent action is strongly entangled with the

user action), the agent action value is set to zero. Because the agent action value is set to

zero when the agent action is most correlated with the user action, the model learns the

combined effect of both actions in the user action channel. The agent action channel learns

the impact of the residual portion of the agent action variable, beyond what is entangled

with the user action. Because the entangled portion is being modeled in a separate channel,

the residual impact of the agent action variable learned at this stage should be independent

of the user action and therefore easy to model. The forecast model trained in this stage is

henceforth referred to as θ1, and its output is ŷ1. The loss function during this stage is the

MSE(y, ŷ1).
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Stage 2: Learning Full Action Effects. A second forecast model, θ2, is initialized

from θ1. This model is trained in a standard fashion, in that no variables are removed during

training and part of the loss function is the error of the model’s forecast (MSE(y, θ2(X))).

During this stage, the residual agent action effect learned in step 1 is also utilized. Let X0

denote the input data (X) with all agent action values set to 0. We estimate the action

effect being modeled by θ2 as ae2 = θ2(X) − θ2(X0). We freeze θ1, and model the residual

action effect learned by the this model as ae1 = θ1(X) − θ1(X0). While we do not expect

the full agent action effect being modeled by θ2 to be similar in magnitude to the residual

effect modelled by θ1, we do expect the smaller residual effect to be in the the same direction

(the additional residual effect should impact the target variable positively or negatively

depending on what the full action value does), and we also expect these two effects to

be proportional (this follows from our monotonicity assumption). In order to utilize these

assumptions, we employ cosine similarity. We do this by subtracting Sc(ae2, ae1), where Sc

denotes cosine similarity, from the loss term. By maximizing cosine similarity, we encourage

the model towards agent action effects which are proportional to and vary along with the

residual effects. This reduced hypothesis space encourages better modelling of the action

effects. Notably, no hyperparameters are utilized for this loss term; cosine similarity is simply

subtracted directly from the MSE term.

5.4.2 Experimental Setup

We evaluate our proposed approach applied to the task of building control ready forecasters

for BG management. In addition, we demonstrate the utility of the proposed approach in

a common control task based on an inverted pendulum. We describe the implementation

details of our approach and evaluation metrics in each setting.

5.4.2.1 Learning Control Ready Forecasters for Blood Glucose Control

Synthetic Data.
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We utilize a publicly available implementation of an FDA approved simulator of T1D [Man

et al., 2014, Xie, 2018]. Our training dataset (BB dataset) is assembled from 20 days of data

for each of the 10 adult individuals available in the simulator under a BB behavior policy. A

standard meal schedule generated with the Harrison-Benedict equation [Harris and Benedict,

1919]. During forecaster training, BG values, bolus values, and carbohydrate values are used

as input variables, and BG is the target to be predicted two hours into the future. Given

current BG level g and meal size c, bolus b is calculated based on patient-specific parameters

carbohydrate ratio (CR) and correction factor (CF ): b = c
CF

+1{g>150}
g−140
CR

. In this setting,

C corresponds to
(
BG > Target

)
).

Evaluation: Accuracy of counterfactual forecasts. While we report root mean square error

(rMSE) results on held-out BB data, we do not anticipate significant performance differences

across models in that setting, as our approach is designed to address out-of-sample evaluation.

To evaluate model performance in a control setting, where we expect our approach to show

strong performance over baselines, we developed a separate counterfactual dataset. In this

dataset, 20 meals are generated for each individual, and for each meal, 20 boluses are selected

randomly (from a uniform distribution across the range of observed boluse values). BG data

are generated for each meal/bolus combination, essentially providing ground truth estimates

of the counterfactual. Evaluation (using 2 hour prediction rMSE) is performed only in

windows where a bolus is administered at the final timepoint of the input data, as these

windows represent when the model would be utilized in a control setting (meal time).

Evaluation: Impact of forecasts on control performance. Evaluation: Impact of forecasts

on control performance. In order to ground our results in a clinically actionable metric (i.e.,

TIR), we directly evaluate control performance on simulated data. Control performance is

evaluated using a random shooting strategy: at each meal, 50 boluses sampled from the

training data are selected, and a forecast is generated for each one. The bolus that yields

a 2-hour forecast value closest to a target value of 140 is chosen (we also explore varying

this target slightly to 150). We generate 30 days of data for each individual and each model
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using this control scheme and report the proportion of time that each individual (on average)

spends in the target range (TIR; 70 < BG < 180), above range (TAR; BG > 180) and below

range (TBR; BG < 70).

Evaluation: Synthetic BG Sensitivity Analyses. We further evaluate our approach when

the level of entanglement between the carbohydrate and insulin varies. We do this by mod-

ifying the behavior policy used to collect the training data. Individuals with T1D often do

not adhere completely to a basal bolus strategy, but instead may occasionally administer

boluses of different values or at different time-points. In this setting, instead of using a

glucose-dependent correction factor, we added a random amount (sampled from a uniform

distribution with a maximum value of 10) to the bolus when the blood glucose (BG) level was

above the target threshold. We varied the target BG (TG) from 60 to 200 and concurrently

increased the carbohydrate ratio for lower values. As a result, bolus values are calculated

using the following formula: b = c
CF
S+1{g>TG}U(0, 10(1−S)). Here, S = (TG− 60)/140 is

a scaling factor. This scaling factor ensures that each bolus is fully random when the target

value is 60 and the boluses are 100% carbohydrate-correlated when the target is 200. This

allows us to modulate the correlation between aut and at from nearly 0 to almost 1, provid-

ing a broad spectrum for evaluating the performance of our model compared to a standard

training baseline. We expect our approach to perform similarly to baseline when the cor-

relation is sufficiently low. To further examine the robustness of our approach to potential

real BG scenarios, we systematically add unpaired bolus and carbohydrate measurements by

introducing data generated with a delay between carbohydrates and boluses (up to 2 hours

delayed in either direction, delay selected from a random uniform distribution). We com-

pare our approach to baseline as unpaired boluses are added up to the point that there are

more unpaired than paired samples. This experiment was selected because individuals may

administer a bolus before or after meals, and having enough time between measurements

could break the entanglement that our approach addresses. For both sensitivity analyses,

we evaluate on the counterfactual dataset and plot average error over 10 random seeds.
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Fully Synthetic Data Sensitivity Analyses. We generate fully synthetic data (as opposed to

synthetic BG data) to test our monotonicity assumptions and the robustness of our model.

A regression task is constructed with three input variables: g, b, and c. The objective

is to predict ĝ, where ĝ = g + 0.3c + f(b) and f : R → R is an agent action impact

function used to explore our assumptions. Variables g and c are randomly sampled from

a uniform distribution. We set b = c + 1g>0.6U(0.2) in the training data, mimicking the

basal bolus strategy. In the evaluation phase, we test the model on uniform random b

values, independent of c, to emulate our counterfactual bolus experiments. Our dataset

comprises 1000 samples, split into 70%, 15%, and 15% for training, validation, and testing,

respectively. The performance is evaluated against a standard forecaster and resampling

(described in section 4.2.3) as baselines, and compared to training on random b values to

establish a lower performance bound.

Fully Synthetic Experiment 1: Examining Monotonicity Assumption. We use four f

functions to examine the performance of our proposed approach when the assumption of

monotonicity is not met. Specifically, we test three monotonic functions: pos : f(b) = 0.1b,

neg : f(b) = −0.1b, and dis : f(b) = −(0.1 + 0.05⌊4b⌋)b. The pos and neg functions assess

whether our method performs well when the user and agent action effects are in the same

or opposite directions, whereas dis tests the method’s robustness to discontinuous or non-

differentiable action value functions. The final function, sin: f(b) = −0.1 sin(10b), represents

a non-monotonic agent action effect, a scenario where we do not expect our method to provide

an advantage.

Fully Synthetic Experiment 2: Small Second Derivative. We utilize a series of exponential

f(b) functions to assess our approach’s performance in relation to the second derivative of

the agent action effect. By setting f(b) = eαb and varying α, we analyze how our method

copes with different rates of change.
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Ohio (N=12) Tidepool (N=100) Michigan (N=212)

Mean Age [IQR] ∼ 47[NA] 36 [14,53] 12 [8,15]
% Female 42 36 50
# Individuals Included in Analysis 8 65 8
# Bolus Agreement Measurements 17 184 3
# Potential Bolus Imp. Meas. 37 240 15
TIR [IQR] 65 [61,72] 68 [58,84] 44 [32,55]
TBR [IQR] 4 [2,5] 3 [1,4] 1 [0,1]
TAR [IQR] 33 [24,37] 29 [11,40] 55 [43.67]

Table 5.1: Demographics information and number of measurements for each real BG dataset.
Limited age information is available for the Ohio dataset. We report interquartile range
(IQR) for relevant metrics, and report time in range (TIR), time below range (TBR), and
time above range (TAR) for available CGM data.

Real Data. We employ three real-world datasets from individuals with T1D. Each

dataset encompasses readings of BG, insulin, and carbohydrates from multiple subjects,

spanning durations of 40-60 days. All participants were equipped with a CGM and insulin

pump. To facilitate forecasting, data points were interpolated to consistent 5-minute inter-

vals. Our selection process began with ensuring that the records had continuous 60/10/10

day sequences with a minimum of 80% completeness in CGM readings and an average of

at least three daily recordings for both bolus and carbohydrate measurements. We further

refined our dataset by ensuring participants had at least one bolus entry in both training and

testing sets that met our specified analysis criteria. These requirements include the associa-

tion of the bolus with a simultaneous carbohydrate estimate, the appropriate timing of the

bolus administration/meal estimate (elaborated upon later), and the presence of continuous

BG readings without any missing values for the three-hour windows following and preceding

the meal. We use the following datasets; information on demographics and data availability

is summarized in Table 5.1. The Ohio dataset was released for public access as a part

of the Knowledge Discovery in Healthcare Data BG Level Prediction Challenge [Marling

and Bunescu, 2018a]. The Tidepool dataset is a compilation of data from 100 participants

[Neinstein et al., 2016]. Participants voluntarily opted into this dataset, leading to records

that are generally comprehensive with minimal data gaps. The Michigan dataset draws
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from individuals with T1D who visited the Michigan Medicine pediatric diabetes clinic from

September 2012 to December 2019. The dataset was amassed and refined for an earlier retro-

spective study [Rubin-Falcone et al., 2022], and this study was approved by the University of

Michigan Medical School Institutional Review Board. As this data originates directly from

an authentic clinical environment, it naturally exhibits more gaps compared to the other

datasets.

Across these datasets we do not have access to the underlying behavior policy, as such a

clear indicator of whether or not a correction bolus was given is not available. Instead, we use

the following criterion to determine which actions are most entangled. For all paired boluses

and carbohydrates in the training data, we fit a 1-degree polynomial function (a line) of the

equation b = xc+ z, where b is bolus, c is carbohydrate, and x and z are modelled for each

individual. We consider the actions to be less entangled when the bolus value is sufficiently

far from that line, i.e., C =
(
|b−xc−z| > χ

)
, where χ is a tuned hyperparameter. While there

is a strong relationship between bolus and carbohydrate values in real data, the basal bolus

strategy is not strictly followed. This means that unpaired boluses and carbohydrates (i.e.,

boluses that occur without a carbohydrate estimate, and vice-versa) exist in the dataset. We

utilize only paired boluses and carbohydrates for step 1 of our proposed approach and then

include the full dataset in step 2. The full dataset is used for the baseline forecaster. We also

only include “well-timed” boluses in step 1, as defined below, which ensures a cleaner sample.

Finally, to ensure that the directionality of the learned bolus effect is correct, during step 1,

we replace non-zeroed bolus values with their distance from the best-fit line (b− xc− z).

Evaluation: proxy metrics. Directly assessing a forecaster’s ability accurately forecast

BG under counterfactual actions is not feasible with only observational data, and directly

applying the control methods studied here prospectively is too risky. Instead, we introduce

two metrics to determine the forecaster’s efficacy for BG management within a rudimentary

control framework (Figure 5.4). At evaluation, for every bolus paired with a meal in the

test dataset, an alternative bolus is selected through the forecaster. Similar to evaluation
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on simulated data, 100 counterfactual values are randomly generated from a uniform distri-

bution ranging from zero to the largest bolus in the observed training data. The bolus that

aligns its 2-hour forecast closest to a target of 140 is selected. This chosen bolus is then

compared with the one selected by the patient.

Metrics include:

Bolus Agreement. This metric evaluates how the forecaster would perform for meals where

patients successfully managed their BG. This metric is therefore only calculated for meals

where the BG remains entirely within the euglycemic range during the 2 to 3 hours following

the meal. The metric is the mean absolute error between the patient-chosen bolus (p) and

the model-chosen bolus (m), scaled by the individual’s average bolus value (µ): |p −m|/µ.

A lower score suggests the forecaster is in line with a successful patient’s decision, while a

higher score indicates a potential disparity.

Potential Bolus Improvement. Taking inspiration from the Clarke error grid [Clarke et al.,

1987], this metric evaluates the forecaster’s potential to outperform the patient. As such, it

is only calculated for windows where BG in the 2 to 3 hour period following the meal leaves

the euglycemic range for at least one time point. BG trajectories are categorized by their

outcome (hyperglycemic or hypoglycemic), and boluses are divided based on whether the

model’s choice is greater or lesser than the patient’s. The goal is to determine the proportion

of bolus adjustments that are in the ‘well-calibrated’ direction. A model is considered well-

calibrated if it suggests larger boluses than the patient when the predominant outcome is

hyperglycemic and lower boluses when the outcome is hypoglycemic. The metric’s value

ranges from 0 (indicating poor performance) to 1 (indicating ideal performance), with 0.5

suggesting random choices. While this metric does not measure optimal real-world control

performance, it can help identify systems that are likely to perform more poorly than human

judgment.

Assessments are exclusively made on “well-timed boluses”: instances where a bolus and

carbohydrate are recorded concurrently, and where BG remains relatively stable before a
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Figure 5.4: Evaluation methodology for real data: We input historical BG and carbohydrate
data into our forecaster alongside an array of potential boluses. The bolus that yields a
forecast closest to the desired target is chosen. If the post-meal BG remains within the
euglycemic range, we compute bolus agreement by measuring the difference between the
patient’s bolus choice and our model’s recommendation. Conversely, if the BG veers outside
of the euglycemic range we determine potential bolus improvement by assessing the fraction
of model-recommended boluses that lean in the optimal direction—higher than the patient
bolus when post-meal BG is hyperglycemic and lower if hypoglycemic.

meal (less than a 20 point increase in the three hours preceding the meal) and sees at least

a 40-point increase in the three hours following the meal. This ensures evaluations are not

biased by misaligned bolus timings. We do not evaluate any bolus measurement where

another bolus or meal appears in the 90 minutes following the evaluated bolus to circumvent

confounding.

We validate each metric using simulated data, assessing the correlation between each

metric and counterfactual forecast error. This analysis reveals the extent to which these

metrics are indicative of potential control capability.

5.4.2.2 Learning Control Ready Forecasters for Inverted Pendulum Control

We assess our method’s viability in other model-based control contexts using a standard

reinforcement learning (RL) benchmark, the inverted pendulum [Arora et al., 2022, Lambert

et al., 2021, Lee et al., 2020, Wang et al., 2019]. This setting serves to demonstrate our
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approach’s applicability to physics based systems where the second derivative of the agent

action impact on the state might have higher variability. This setting differs from BG

management in that full and residual action impacts may be both positive and negative.

Implemented via Mujoco using default settings [Todorov et al., 2012], the task involves

moving a cart to balance a pole vertically on top of it, with system variables being the pole’s

angle (ϕ) and angular velocity (ω), and the cart’s speed and position (v and x). The dataset

D is created from a policy based on an angle-responsive force with a correction proportional

to the angular velocity when a threshold is exceeded, inspired by the basal bolus strategy

and a simple cart-pole solution [Xu, 2021]. The force F is defined as F = 12ϕ + {0.15ω

if |ω| > 1.5}, with values optimized for performance. This policy is able to keep the pole

elevated for over 200 time steps. Given its strong correlation with ϕ (r=0.99), distinguishing

the impact of the push on the cart (F ) from gravity’s ϕ-proportional influence becomes

challenging (here, gravity’s force is a hidden user action which is also correlated with ϕ). The

goal here is learning a control-ready forecaster from D, produced through this constrained

control scheme, without added exploration. VAE and up-weighting are used as baselines,

as domain-knowledge methods are inapplicable. Each model predicts ϕ from past values of

ϕ,F ,ω,x, and v.

Implementation Details. Given the behavior policy studied here, strongly entangled sam-

ples are present when the magnitude of the angular velocity of the pole is below a set

threshold (i.e., C=
(
|ω| > 1.5

)
). To ensure that the directionality of the learned residual

agent action effect is correct, during step 1, we replace non-zeroed agent action values with

their distance from the would-be fully entangled action value (i.e., we set the agent action

to F − 12ϕ). A single timestep is used as a prediction horizon in this setting. As such,

the cosine similarity loss term in step 2 of our proposed approach is computed across batch

elements, rather than across timesteps.

Evaluation. Models are assessed on reserved behavior policy data and on control for 100

random runs, noting mean forecast error during control and timesteps to failure. Control in-
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volves sampling 200 action values from a uniform distribution centered at 0 and choosing the

force associated with the lowest magnitude pole angle at the next step. Here counterfactual

actions are examined when selected by the model.

5.4.2.3 Performance Target and Baselines

Performance Target- Counterfactual Training. A counterfactual training dataset is devel-

oped. This dataset is generated in a similar fashion to the BB dataset used for training

other models, but the bolus at each meal is selected randomly (as in the counterfactual

dataset used for evaluation). Our primary baseline model was trained on this data to es-

tablish a performance target. We assume that a model which accurately disentangles bolus

and carbohydrate effects would perform similarly to a model trained with this ideal, though

unrealistic, data.

Baselines. We compare our method against seven baselines including domain knowledge

utilization, treatment effect estimation, and disentangled representation learning approaches

(Table 5.2). Although these approaches offer some relevance to our context, we hypothesize

that their limitations in handling the lack of overlap in BB data reduce their effectiveness

towards disentangling the effects of carbohydrates and bolus on BG.

Baseline Domain Knowledge Treatment Effects Disentangled Representations

Standard
LED χ
VAE χ
SUP χ
VAE+SUP χ χ
Resample χ
Matching χ

Table 5.2: Categorizations of baselines.

1. Standard Training: This method involves the training of the base model without

any additional supervision or modifications.

2. Linked Encoder/Decoder (LED): This model was developed to incorporate do-
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main knowledge regarding the direction of bolus and carbohydrate effects into a recurrent

forecasting approach [Rubin-Falcone et al., 2023]. This approach works by utilizing individ-

ual decoders for each variable and gating inputs so that only relevant samples are passed

to the appropriate decoders. Bolus and carbohydrate values are passed to their relevant

decoders, as well as to the encoder, via a skip connection. Given the simultaneous occur-

rence of boluses and carbohydrates in our dataset, the gating mechanism is less effective. To

address this, we only input boluses and carbohydrates into their respective decoders (and

not the encoder), which enforces better separation of effects. This approach ensures that the

effects of boluses and carbohydrates can only be learned by their relevant decoders, which,

due to the incorporation of domain knowledge, should have opposite effects on the output.

3. Variational Auto-Encoder (VAE): In this approach, we use a probabilistic encoder

and aim to minimize the Kullback-Leibler (KL) divergence between the distribution of each

element in the hidden state and the unit normal. Previous research has shown that this

method can lead to disentangled hidden state representations [Kingma and Welling, 2014].

We include this approach to investigate whether a disentangled hidden state leads directly

to a disentangled representation of entangled input variables.

4. Domain Supervision (SUP): This method involves the addition of an auxiliary loss

term during training. While training the forecaster, we estimate the effects of boluses and

carbohydrates as the difference in forecasts when each variable is hidden from the model (i.e.,

where XB and XC denote the input data with boluses and carbohydrates set to zero, bolus

effects are θ(X)− θ(XB) and carbohydrate effects are θ(X)− θ(XC)). We add the loss term

α × (bolus effect − carbohydrate effect) to encourage the model to output a negative bolus

effect and a positive carbohydrate effect, which is in line with our domain knowledge. The

value of α is tuned using counterfactual evaluation data in order to assess the best possible

performance this model can achieve.

5. VAE + SUP: This approach combines the techniques of VAE and supervision. We

include this model to test the hypothesis that a disentangled hidden state, when combined
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with additional supervision towards correct bolus and carbohydrate effects, can lead to

accurately modeled effects.

6. Matching: This approach matches meals that include a correction portion to the

bolus (BG>TG) with meals of similar size (measured in grams of carbohydrates) that do

not include a correction portion. We exclude meals that cannot be paired.

7. Resample:In this approach, each input sample that includes a correction bolus is

included in the batch N times. Similar to SUP, the value of N was determined by tuning on

counterfactual evaluation data in order to achieve the strongest possible performance.

5.4.2.4 Implementation Details

Architecture Details. Each network is implemented as a single layer bidirectional LSTM

with 25 hidden units. For BG data, we use an input window of 36 timesteps, equivalent to 3

hours, which represents the approximate maximum duration of bolus/carbohydrate effects.

A 24-timestep window, or 2 hours, is selected as our prediction horizon since it provides a long

enough period for control without posing excessive challenge. For the inverted pendulum,

we utilize an input of six timesteps. This is because 36 timesteps would retain excessive,

potentially irrelevant information. Considering the immediate effects of each action and the

continuous control nature of the task, where an action is taken at every timestep—unlike our

BG management scenario—a single timestep is deemed more appropriate for the prediction

horizon.

Training. We implement and train our models in Pytorch 1.9.1 with CUDA version 10.2,

using Ubuntu 16.04.7, a GeForce RTX 2080, an Adam optimizer [Kingma and Ba, 2014],

a batch size of 500 and a learning rate of 0.01. We train for at least 100 iterations, and

then until validation performance does not improve for 50 iterations, selecting the model

for which validation performance was best. Because a larger amount of data was utilized

for the real dataset, we use a patience 10 iterations and a minumum of 20 iterations. We

decrease the learning rate to 0.001 during stage 2 of training for our proposed approach.
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This value was selected from [0.01,0.001,0.0001,0.00001] and tuned to behavior policy (BB)

validation performance using adult#001. For the sensitivity analysis with unpaired boluses

and carbohydrates, a model is trained on the paired data using our proposed approach

and then fine-tuned using the unpaired data, which allows our approach to better utilize

the unpaired boluses and carbohydrates. For real data experiments, the value of χ (the

parameter which determines which boluses are set to zero during stage 1 of training) was

individually tuned for each participant. The tuning aimed to minimize [bolus agreement

- potential bolus improvement] on the training and validation data. The values considered

were 0.01, 0.1, and 0.2 times the mean bolus value of each individual’s training and validation

data.

Data. A unique model is used for training and testing for each individual. We split each

dataset into training, validation and test sets used for evaluation purposes. For the inverted

pendulum, we use 3 runs, 1 each for training, validation and testing. For simulated BG data,

for each individual, we use 14 days for training and 3 each for validation and testing. For

the Ohio dataset, we split the training data into 80% training and 20% validation, and use

the held-out test data for evaluation. For the other two real datasets, we use 60 days for

training, and 10 each for validation and testing. To maximize the number of paired bolus

and carbohydrate values, we group proximate meals and boluses. Carbohydrate estimates

within 15 minutes of a bolus are shifted to coincide with the bolus time. Similarly, boluses

within 15 minutes of another are combined at the earlier time point. The same method

is applied for carbohydrate values. These are performed as preprocessing steps before all

analyses. For both the baseline and proposed approaches, during training and evaluation,

we ignore windows with missing BG values in either the input data or prediction horizon.

5.5 Results

Throughout our experiments, we aim to answer the following questions:
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• Does training a BG forecaster on BB data using our approach yield improvements

when forecasting under counterfactual actions? (Section 5.5.1- Forecasting Results)

• Do these counterfactual forecasts lead to better decisions and in turn better control,

when compared to models trained with relevant baselines? (Section 5.5.1- Control

Results)

• How does our approach perform when boluses and carbohydrates are not perfectly

paired or correlated? (Section 5.5.1- Sensitivity Analyses)

• Does our approach offer potential benefit for real data BG control? (Section 5.5.2)

• Does our approace lead to impvoed inverted pendulum control? (Section 5.5.3)

In-sample Error Out-of-sample Error
Model BB rMSE (↓) Counterfactual Action rMSE (↓)

Standard 31.4 [29.3,33.6] 49.2 [46.5,51.9]
LED 33.1 [30.9,35.3] 43.6 [41.1,46.1]
VAE 35.6 [33.5,37.8] 48.7 [45.9,51.4]
SUP 32.0 [29.8,34.1] 46.4 [44.0,48.9]
VAE+SUP 35.2 [32.9,37.5] 47.1 [44.5,49.7]
Resample 32.7 [30.4,34.9] 46.9 [44.4,49.5]
Matching 32.8 [30.7,35.0] 46.1 [43.5,48.8]
Proposed 32.0 [29.9,34.2] 34.0 [31.9,36.0]

Counterfactual Training 33.8 [31.7,35.8] 23.5 [21.8,25.1]

Table 5.3: Simulated BG data forecasting results. Mean forecasting error (rMSE) on basal
bolus (BB) and counterfactual data are shown. Outcomes are reported as: value [95%
confidence interval (CI)]. Our proposed approach outperforms baselines for the counterfactual
dataset. CIs were calculated using 1,000 bootstrap samples. Abbreviated baselines include
the linked encoder-decoder (LED), a variational autoencoder (VAE), and magnitude-based
domain supervision (SUP).

5.5.1 Results on Synthetic Blood Glucose Data

We evaluate control performance on synthetic BG management using a counterfactual

dataset and by assessing model-based control directly. We also examine the sensitivity

of our approach as our assumptions vary.
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Model %TIR (↑) %TAR (↓) %TBR (↓)

Standard 44.2 [43.4,45.0] 54.0 [53.3,54.7] 1.8 [1.6,2.0]
LED 31.6 [30.8,32.3] 68.0 [67.3,68.7] 0.5 [0.4,0.5]
VAE 53.6 [52.7,54.6] 45.3 [44.4,46.3] 1.0 [0.9,1.2]
SUP 44.3 [43.4,45.1] 54.1 [53.3,54.9] 1.6 [1.5,1.8]
VAE+SUP 50.7 [49.7,51.7] 48.2 [47.3,49.2] 1.1 [1.0,1.2]
Resample 37.0 [36.2,37.9] 61.9 [61.1,62.8] 1.1 [0.9,1.2]
Matching 43.8 [42.9,44.7] 53.8 [52.9,54.7] 2.4 [2.2,2.6]
Proposed 81.1 [80.3,81.9] 13.9 [13.2,14.6] 5.0 [4.6,5.4]
Proposed (Target=150) 72.0 [71.0,72.9] 25.6 [24.8,26.5] 2.4 [2.2,2.7]

Counterfactual Training 81.5 [80.7,82.3] 12.9 [12.3,13.5] 5.6 [5.2,6.1]
BB Control 79.7 [78.9,80.4] 17.8 [17.1,18.5] 2.5 [2.3,2.7]
BB Control +20% error 72.6 [71.7,73.4] 26.6 [25.7,27.4] 0.9 [0.8,0.1]
BB Control +40% error 64.7 [63.8,65.7] 35.0 [34.1,35.9] 0.3 [0.2,0.3]

Table 5.4: Simulated BG control results. Time in, above, and below range (TIR, TAR,
TBR), when using the relevant approach in a random shooting control scheme are shown.
Outcomes are reported as: value [95% confidence interval]. Our proposed approach outper-
forms baselines for TIR. CIs were calculated using 1,000 bootstrap samples.

Forecasting Results (Synthetic BG Data). Our method outperforms baseline tech-

niques, showing reduced forecast error on the counterfactual dataset (Table 5.3): while

all models perform similarly on data collected under a BB behavior policy, ours strongly

outperforms the next-best baseline on counterfactual data (rMSE 34.0 vs. 43.6). Treatment

estimation methods (Resample, Match) and supervision techniques (LED, SUP) perform

slightly better than the VAE forecasting method but fall short of our approach.

Control Results (Synthetic BG Data). With respect to BG control, the proposed

forecasting approach achieves 81.1% time in range when paired with a simple control algo-

rithm, far exceeding the 44.2% time in rage achieved by the standard forecaster and the

53.6% time in range achieved by VAE, the next best baseline (Table 5.4). Our approach

paired with the simple control algorithm utilized here slightly improves over a standard BB

controller (81.1% TIR vs 79.7%). The BB strategy requires an individual to accurately esti-

mate a carbohydrate ratio and correction factor. When these are not set appropriately (e.g.,

20% or even 40% error) the time in range achieved by the basal bolus control strategy drops

to 72.6% at 20% error and 64.7% at 40% error. Our approach did not offer improvement
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in reducing hypoglycemia, only achieving a performance of 5% TBR. However, this severe

hypoglycemia is abated when a target of 150 is used for bolus selection. In this setting, the

proposed approach achieves a TBR comparable to BB control, although TIR is reduced. A

two-hour prediction horizon may not fully encompass the duration of bolus effects. There-

fore, setting a higher target can compensate for additional blood glucose (BG) decreases

linked to the chosen bolus, which are not accounted for in the model.

Synthetic BG Sensitivity Analyses. As we alter the degree of correlation between

boluses and carbohydrates in the behavior policy data, our approach generally maintains

stable performance, while baseline performance steadily degrades for more entangled data

(See Figure 5.5). As expected, at low r-values (< 0.5) the baseline model and our approach

perform similarly. As we increase the proportion of paired boluses and carbohydrates in

the training data, our proposed approach begins to significantly outperform the baseline

forecasting approach when more than half of the sample is unpaired.

Fully Synthetic Data Sensitivity Analyses. In our simple synthetic data regression

task, as predicted, our method significantly outperforms the baselines for the three monotonic

agent action impact functions (pos, neg, and dis), nearly reaching the lower performance

bound for the first two functions, which due to their linear nature, are ideally suited for our

approach (Figure 5.6 top). For the non-monotonic sin function, our method does not show

improvement over the baseline. As demonstrated in Figure 5.6 bottom, and in line with

our expectations, our approach performs on par with or surpasses the lower performance

bound when d2ĝ
db2

is small. However, as d2ĝ
db2

increases, performance begins to deteriorate,

eventually falling below that of the baseline for significantly large values of d2ĝ
db2

.

5.5.2 Results on Real Blood Glucose Data

We utilize proxy metrics to asses the potential control ability of our approach compared to

a standard baseline forecaster using real data. We validate these metrics on simulated data

before demonstrating our approach’s benefit on real world data.
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Figure 5.5: Sensitivity analyses on synthetic BG data. (a) Our approach vs. baseline as
the correlation between bolus and carbohydrate values varies. Our method markedly out-
performs the baseline when the correlation between bolus and carbohydrate values exceeds
r=0.5 and yields similar performance to the baseline at low correlation values. (b) Our ap-
proach consistently outperforms baseline when unpaired bolus and carbohydrate values are
added to the training data. Evaluation for both plots utilize the counterfactual dataset.
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Figure 5.6: Model performance for fully synthetic data in a simple regression task. Top:
the proposed approach significantly outperforms baselines when applied to monotonic agent
action effects but does not yield improvement in scenarios where monotonicity is violated.
Bottom: Model performance as a function of the average magnitude of the second derivative
of the agent action effect, as assessed by a family of exponential functions. The proposed
approach markedly outperforms the baselines when the second derivative is of low magni-
tude, indicating a near-linear relationship, but performance deteriorates as the magnitude
increases.
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Validation of Evaluation Metrics. We validated the proposed evaluation metrics:

bolus agreement and potential bolus improvement, using simulated data. When trained on

simulated BB data, our proposed approach demonstrates lower bolus agreement and higher

potential bolus improvement than baseline, and the outcomes are further improved when

the forecaster is trained on counterfactual data (see Table 5.5). We examined the Pearson

correlation between counterfactual bolus rMSE and potential bolus improvement across the

10 individuals and 3 models (baseline-BB, proposed-BB, and counterfactual bolus), and

found that higher error was significantly associated with lower potential bolus improvement

(r=-0.47, p=0.01). We also found that counterfactual bolus rMSE and bolus agreement

were significantly correlated (r=0.44, p=0.02). This indicates that better results with these

metrics likely translate to superior control performance.

Potential Control Performance Results (Real BG Data). Our three datasets

consisting of data from real patients are summarized in Table 5.1. While our approach does

not notably improve overall forecast performance compared to the baseline on behavior policy

data, it does show promise in both proxy metrics (Table 5.5). Notably, there is a pronounced

improvement in potential bolus improvement across all three datasets (baseline potential

bolus improvements are 0.73, 0.54, and 0.53, compared to the proposed approach: 0.86,

0.60, and 0.80). Additionally, bolus agreement sees a marked improvement for the Tidepool

dataset, the largest and most robust collection. For the Ohio dataset, the improvement in

bolus agreement is modest. On the the Michigan dataset, although bolus agreement is higher

for our approach, this metric was calculated with a limited sample of 3 measurements where

BG was entirely within the euglycemic range 2-3 hours post-meal. In addition to containing

fewer boluses for evaluation, the Michigan dataset presents weaker forecast performance,

probably because this clinic-based dataset contains BG data that is much noisier and more

poorly controlled compared to other datasets (exhibiting an average TIR approximately 20%

lower than the Tidepool or Ohio datasets), making it a more complex task to understand

BG dynamics in this setting. Finally, we note that in all real datasets, the performance, as
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measured by both proxy metrics, falls between the results of models trained on simulated

BB data and those trained on simulated counterfactual data, indicating some entanglement,

although less than observed in the fully entangled simulated BB data, as expected.

Model Forecast rMSE (↓) Potential Bolus Improvement (↑) Bolus Agreement (↓)

SIMULATED
BB Training, Baseline 31.4 [29.3,33.6] 0.48 [0.31,0.69] 0.98 [0.80,1.17]
BB Training, Proposed 32.0 [29.9,34.2] 0.93 [0.83,1.00] 0.55 [0.42,0.70]
counterfactual Training 33.8 [31.7,35.8] 0.97 [0.90,1.00] 0.41 [0.31,0.51]

REAL
Ohio- Baseline 50.9 [47.8,54.3] 0.73 [0.57,0.86] 0.82 [0.61,1.03]
Ohio- Proposed 50.4 [47.8,53.6] 0.86 [0.76,0.95] 0.81 [0.62,1.00]

Tidepool- Baseline 51.7 [48.4,55.2] 0.54 [0.47,0.60] 0.89 [0.78,1.00]
Tidepool- Proposed 52.8 [49.4,56.1] 0.60 [0.54,0.66] 0.82 [0.74,0.91]

Michigan- Baseline 72.1 [64.0,81.8] 0.53 [0.27,0.80] 0.61 [0.29,0.84]
Michigan- Proposed 72.3 [63.0,83.5] 0.80 [0.60,1.00] 0.74 [0.64,0.88]

Table 5.5: Results for real data experiments. Mean forecasting error (rMSE) on behav-
ior policy data, mean bolus agreement, and mean potential bolus improvement are shown.
Outcomes are reported as: value [95% confidence interval]. Both metrics are validated in
simulated data, and our proposed approach outperforms baselines for most relevant metrics.

5.5.3 Inverted Pendulum

During control, our proposed forecaster achieves significantly lower error compared to all

baselines (rMSE=0.70 vs. best performing baseline of 2.59, Table 5.6). As a result, only

the proposed forecast model is able to achieve good control when used in model-based control

(353 timesteps until failure versus 11). To examine why other forecasters fail, we plotted

the forecast error during control as a function of the absolute difference between the selected

action and the action that would have been selected under the behavior policy (Figure

5.7). Our approach exhibits stable forecast performance. However, the baseline standard

forecaster’s error drastically increases when the action selected is far from the behavior policy

action. The forecasting error of the baseline is nearly perfectly correlated with selected

action distance from control policy action, indicating that this model has not learned a
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representation of the effect of the action independent of the angle of the pole.

Model Behavior Policy rMSE (↓) During-control rMSE (↓) Mean Num. Steps Until Failure (↑)

Behavior Policy N/A N/A 252.14 (248.65,255.53)
Standard forecaster 0.35 (0.28,0.42) 2.81 (2.68,2.94) 11.64 (11.48, 11.80)
Upweight 0.37 (0.29,0.44) 2.83 (2.69,2.96) 11.62 (11.43, 11.86)
VAE 0.33 (0.27,0.39) 2.59 (2.48,2.69) 11.70 (11.54, 11.90)
Proposed 0.74 (0.73,0.74) 0.71 (0.70,0.72) 353.82 (337.29,370.08)

Table 5.6: Results for inverted pendulum experiments. Mean forecasting error (rMSE) on
behavior policy data, during random-shooting model-based control, and mean number of
epochs before failure when using each approach for control are reported. rMSE reported in
degrees. Outcomes are reported as: value [95% confidence interval]. Our proposed approach
outperforms baselines.

5.6 Discussion & Conclusion

Our proposed forecasting approach accurately models the independent effects of bolus insulin

and carbohydrates on BG despite only training on data in which the two actions are strongly

correlated. It outperforms several baselines including treatment-effect estimation techniques,

disentangled representation learning approaches, and domain knowledge utilization, with

respect to out-of-sample forecasting error. In addition, the better forecasting performance

translates to better time in range when paired with a simple control strategy. Taken together

with our inverted pendulum results, our BB control findings indicate that our approach has

the potential to improve over the behavior policy with zero additional exploration or data,

provided a suitable control policy is employed. Through sensitivity analyses we demonstrate

that our approach remains beneficial over baselines as our assumptions vary. Additional

simulated BG sensitivity analyses and real data results with proxy metrics indicate that our

approach could be beneficial in a real BG setting.

Our approach offers a potential alternative to BB control. ML-based forecaster-driven

model-based control holds several advantages over BB management: while BB control re-

quires manual parameter adjustments by patients, a ML-based controller can auto-update

with physiological changes, reducing patient involvement. Furthermore, if a patient mises-
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Figure 5.7: Inverted pendulum forecast error during model-based control as a function of
mean difference between the selected action and the would-be behavior policy action for
baseline (top) and the proposed approach (bottom). The baseline forecaster fails when it
selects actions dissimilar to what was observed in the training data.
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timates control parameters, or fails to update them as their body’s glucoregulatory system

changes, their control performance will suffer. A forecaster updated with online learning

would avoid this error as patient-parameter selection would be obviated.

Current automated BG management strategies include rule-based forecaster control

strategies [Ahmed et al., 2020] and model-free RL [Fox et al., 2020]. Rule-based meth-

ods are not self-updating, and model-free RL demands extensive exploratory data, which

is impractical. Our method is noteworthy as model-based control systems are more sample

efficient compared to model-free RL [Atui, 2015], and machine learning offers more adapt-

ability than rule-based methods [Wang et al., 2020]. Our method is the first to initialize an

adaptable forecaster using BB BG data, representing a significant advance in harnessing the

efficiency and adaptability of ML-based forecasters for BG management

Evaluating counterfactuals using real data is always challenging. To this end, we proposed

and validated proxy metrics to gauge a BG forecaster’s potential in a control setting. Our

proposed forecasting approach demonstrates improvement over the baseline in these metrics

(where we had sufficient statistical power for evaluation). However, these metrics merely

hint at possible control performance. The full effectiveness of our algorithm in real-world

BG control cannot be ascertained without a real-life trial, which comes with inherent risks.

Although our results suggest that our method can surpass baselines, implementing a deep

forecaster for BG management needs further refinement. Even with the improvement offered

by our approach, the observed bolus agreement and potential bolus improvement values are

not near optimal (0 for bolus agreement and 1 for potential bolus improvement). As such, the

proposed approach is not yet ready to be considered for deployment. Several avenues could

enhance our model. First, the BG target value used to select boluses during evaluation (140)

was picked to match the simulator and to provide a reasonable contrast between models, but

in practice, patient-specific targets could be more appropriate and lead to improved perfor-

mance in a real-world scenario. Other potential improvements include extending forecast

horizons to three or four hours, adopting sophisticated planning methods beyond random
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shooting, and integrating more training data or implementing online learning. These en-

hancements could bring us closer to algorithms capable of safely managing real BG levels.

We note that while our forecaster’s effectiveness with a random shooting strategy is demon-

strated, further assessment is needed with advanced control methods like model-based RL.

Another limitation is our dependency on “well-timed” boluses during training, leading to the

exclusion of many individuals. Effectively training a ML-based BG forecaster requires access

to a well-curated collection of past data for each individual. We trained our models using

50 days of data. Access to a comparable dataset, complete with CGM measurements and

accurately recorded meal sizes, would be necessary for model deployment in clinical settings.

Our approach is built on a relatively lightweight architecture, so access to a smartphone or

similar computing resources would be sufficient to train an individual-specific model. A final

limitation of note is that, in simulated control experiments, our proposed approach has a

higher TBR than the BB approach (5.0% vs 2.5%), marking a potential danger that will

need to be addressed before an approach like ours can be utilized. We note that a longer

prediction horizon, though more challenging to train for, could abate this, because two hours

is too short to fully capture bolus impacts. Additionally, when a BG target of 150 is used for

bolus selection, TBR with our proposed approach is comparable with BB control, indicating

that careful individual-tailored target selection has the potential to balance TIR and TBR

in future studies.

In model-based control, forecasters may fail to learn accurate effects if actions are highly

correlated in the behavior policy. This could hamper a forecaster’s applicability to action

selection during control. We propose an approach that addresses this challenge. Our ap-

proach enables the training of control-ready forecasters utilizing only data generated under

a behavior policy with strongly correlated action pairs. Our method functions when a linear

correlation between paired actions is strong but imperfect and when the impact of one action

is strictly monotonic. Beyond the BG control setting, our technique could prove useful in

other settings with highly correlated actions. For instance, our approach could demonstrate
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utility for predicting energy demand from multiple sources like residential, commercial, and

industrial sectors, where usage patterns often overlap and influence each other, or forecasting

action impacts from adjacent parts in a robotics setting.
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CHAPTER 6

Conclusion

This dissertation addressed open challenges regarding the utilization of data-driven tech-

niques for blood glucose (BG) management in type 1 diabetes (T1D). Although automated

approaches for this task have been proposed, they require frequent management of model pa-

rameters [Collyns et al., 2021, Ware et al., 2022], and accurate meal-size estimates [Brazeau

et al., 2012, Mehta et al., 2009], both of which are burdensome for individuals. We pro-

pose techniques for mitigating these burdens: automated meal-size denoising could ease the

required accuracy of patient estimates, and improved reliability for machine-learning based

forecasters has the potential to allow this automatically adjustable solution to be utilized

for BG management. We presented approaches that address these challenges in BG man-

agement which also have applications beyond this field. We summarize challenges and our

contributions.

First, we noted the challenge of counting carbohydrates in BG management, which is

required for patients to select appropriate boluses. We formalized this problem and identi-

fied it as a general challenge present with wearables: utilizing an auxiliary data stream to

denoise noisy, univariate patient estimates. In order to ease the burden, we proposed a tech-

nique that utilizes denoising autoencoders [Vincent et al., 2008] and co-teaching [Han et al.,

2018, Yu et al., 2019] to iteratively filter and denoise carbohydrate estimates by using CGM

datastreams. As demonstrated in Chapter 3, our approach showed promise for denoising

carbohydrate estimates in real patient data, and has potential applications to problems like
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remote pain and mood monitoring.

Second, we identified a challenge present when forecasting BG values: the sparse but

important variable problem. In Chapter 4, we formalized the problem, which occurs

when important auxiliary variables are significantly sparser than the target variable be-

ing predicted. This makes incorporating these variables into forecasters challenging. Our

proposed approach, the linked encoder-decoder, improved utilization of boluses and carbo-

hydrates in BG forecasters. It is also potentially applicable to domains like traffic, stock

price, and vital sign forecasting.

Finally, we identified a second challenge preventing the utilization of machine learning-

based forecasting approaches for blood glucose management. The deterministic basal bolus

control scheme creates a strong correlation between carbohydrate and bolus values, which

makes learning their impacts challenging. In Chapter 5, we proposed an approach which

accounts for this challenge and utilizes correction boluses to more accurately model the

impacts of these variables. We demonstrated our approach’s benefit for controlling simulated

BG, and proposed proxy metrics to demonstrate its application to real BG data. We also

evaluated our approach in the inverted pendulum setting, and it has potential application

in other treatment effect estimation and robotics settings.

There are several areas in this dissertation that could be interesting for further examina-

tion. First, while our carbohydrate denoising approach has the capability of recovering clean

estimates, which can be utilized to improve time in range (TIR) longitudinally, it requires

90 minutes of BG values following the meal as currently presented. It may be possible to

recover clean meal size estimates with less data, provided a technique were highly sensitive

to BG variation. Such a technique would allow for real time correction doses to be calcu-

lated. Subsequently, incorporating our approach into an automated control method could

improve performance by cleaning the carbohydrate signal for more reliable bolus selection.

We also have not investigated the applicability of our approach to recovering unrecorded car-

bohydrate measurements. Our approach is easily adaptable to this setting, provided some

91



regularization is used to avoid over imputation. Our approach has the potential to obviate

carbohydrate counts altogether, provided a sensitive enough algorithm can be developed,

but much work remains on this front.

Second, while our approach for addressing the SIV problem has been validated in an RNN-

based approach, it has not been utilized in other architectures. Since we first completed work

on the SIV problem, RNNs have lost their state-of-the-art status to transformers. Auxiliary-

variable-sparsity problems, similar to the SIV problem, have been identified in transformers,

with solutions including binning [Labach et al., 2023] and triplet feature representation

approaches [Tipirneni and Reddy, 2021]. Our proposed approach is suitable for any encoder-

decoder based model, and so could be applicable to many transformer setups, potentially

combined with an existing orthogonal approach. Examining the efficacy of our approach

paired with a time-series transformer presents an interesting direction, specifically towards

the application of real BG data. While we have identified several domains where the SIV

problem applies (including vital signs, traffic, and stock price forecasting), we have not yet

evaluated our approach beyond BG, and as such this presents an interesting direction for

further study.

Finally, while we have proposed an approach for learning control-ready forecasters from

basal bolus data and demonstrated its benefit when applied to real data, our approach is

still far from being potentially applicable to a real individual. Our approach outperforms

baseline on both bolus agreement and potential bolus improvement, indicating that it has

better potential to manage BG. However, our proposed approach is still far from ideal in

terms of these metrics. More work on longer term prediction, more accurate forecasts, and

better model-based control algorithms is likely necessary before any deep forecaster will be

precise enough in terms of bolus effect modelling to be truly useful for direct BGmanagement.

The main contributions of this dissertation are: 1) developing a novel technique for recov-

ering noisy patient estimates in the presence of an auxiliary data stream and 2) proposing

novel techniques for addressing auxiliary variable sparsity and confounding in a forecasting
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setting. Going forward, we expect the techniques developed in this dissertation to help build

robust and automatically adjustable machine learning models for BG management.
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APPENDIX A

Appendix for Denoising Autoencoders for

Learning from Noisy Patient-Reported Data

A.1 Simulated Dataset Details

During data generation, days where a patient either had more than 25 timepoints of glucose

at the minimum value of 40, or more than 35 timepoints over 450 were thrown out for

being non-realistic. The meal schedule used to generate simulated data was based on the

Harrison-Benedict equation [Harris and Benedict, 1919] as implemented in [Fox et al., 2020].

In our simulation, for all datasets generated, we used the default basal-bolus controller

from the existing implementation of the simulator to administer insulin, but we delayed

five sixths (randomly selected) of the bolus administrations up to 3.5 hours, with delay

time randomly sampled from a uniform distribution. The delay allows for disentanglement

between carbohydrate and bolus effects. 20% of carbohydrates are not reported, to make

the dataset more realistic, as missingness is common.

A.2 Tuning Details

For each model, tuning was performed on simulated adult#001 using validation perfor-

mance. No additional tuning was performed for other individuals or noise functions. For

Noisier2Noise, we selected α, the parameter that controls the relative noise distributions,
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from [0.1,0.3,0.5,0.7,0.9,1.0,1.25,1.5,1.75,2], ultimately selecting α = 1. Because we do not

assume access to the exact noise we would not expect this method to perform spectacularly,

but note that it often outperforms other baselines.

For co-teaching methods, we performed a simple grid search over the values of

Ek=[250,500] (where 500 is the minimum number of training iterations), τ=[0.333,0.5,0.667],

and σ = [0.1,0.3,0.5,0.7]. For N+2N, we selected Ek = 250, τ = 0.333, and σ = 0.1. For the

supervised setting co-teaching (SUPCT), we set selected Tk = 500, τ = 0.5 and σ = 0.3.

Hyperparameter options were selected from a limited but comprehensive spectrum of

values that cover a reasonable search space (given that all hyperparameters are limited

to a fixed interval) without consideration for task. Only a small number of options were

considered to avoid computational burden, as a simple grid search was used. A ground

truth signal was used for evaluation during tuning, which is a limitation, as such a signal

is generally not available in real-world scenarios. However, we note that we did not re-tune

for each individual (tuning to simulated adult#001), nor did we retune for the real-world

dataset, which is substantially different from the simulated dataset. Proxy measures such as

CRC may also be used for tuning.

A.3 Additional Training Details

We split each dataset into training, validation and test sets used for evaluation purposes. For

the simulated dataset, we use 80 days for training, 20 for validation, and 50 for testing. For

the real dataset, we split the training data into 80% train and 20% validation. The held-out

test data were used for evaluation only. We implement and train our models in Pytorch 1.9.1

with CUDA version 10.2, using Ubuntu 16.04.7, a GeForce RTX 2080, an Adam optimizer

[Kingma and Ba, 2014], and a batch size of 500. We use a learning rate of 0.01 and a weight

decay of 10−7. We train for at least 500 iterations, and then until validation performance does

not improve for 50 iterations, selecting the model for which validation performance was best.
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For both datasets, we train and test a model on each individual and report across-individual

averages. Such individual-specific models/evaluations are common in blood glucose control

and forecasting [Silvia Oviedo, 2016], since dynamics vary greatly across individuals and

individual-specific training data are typically available.

We perform co-teaching on samples containing non-zero y values only. However, when

training all models (including baselines) we also pass zero-valued y samples (and their cor-

responding b values) through both DAEs and take loss equal to ŷ2 for these samples. We

do this because there are many more samples with zero-valued carbohydrates than there

are with positive values, and this allows the models to learn from this larger collection. We

report results on only positive-valued y values, because denoising is only applied to such

values.

A.4 Alternate Noise Functions

We consider noise functions that might arise in carbohydrate counting. None are highly

dissimilar from our main analysis noise function: we aim here at feasibility, rather than a

comprehensive survey on a broad selection of loss functions, which our method would likely

be unable to address without further tuning or modification. Here, U(a, b) denotes a uniform

distribution with values between a and b. Carbohydrate values range between 0 and 200.

After adding noise, y values are capped above and below by 1 and 200. Alternate noise

functions include:

1. Zero-mean multiplicative Gaussian: y = (1 +N (0, .75))x

2. Negative-mean multiplicative Gaussian (primary noise function): y = (1 +

N (−.25, .5))x

3. Zero-mean additive Gaussian: y = x+N (0, 40)

4. Negative-mean additive Gaussian: y = x+N (−30, 50)
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5. Zero-mean multiplicative Uniform: y = U(.5, 1.5)x

6. Negative-mean multiplicative Uniform: y = U(0, 1.6)x

7. Zero-mean additive Uniform: y = x+ U(−60, 60)

8. Negative-mean additive Uniform: y = x+ U(−60, 40)

A.5 Sensitivity to noise in the b signal.

Although the auxiliary b signal is expected to be relatively low noise compared to y, some

noise is possible. In our motivating domain, CGM data contain a non-negligible amount

of noise. In the simulator, this noise is modeled as additive time-varying Gaussian [Man

et al., 2014]. To evaluate our approach’s sensitivity to noise in the auxiliary signal, we

added an increasing multiplier to the noise term in the CGM for each simulated individual.

The multiplier ranged from 1X to 6X, with 1X being the standard CGM. At 6X noise the

magnitude of the signal is more than 25% noise on average, and the original glucose signal

is barely detectable (Figure A.1).

We found that at each noise setting, our approach outperformed all baselines (Figure

A.2). Also encouragingly, even with 20% noise, our approach performs similarly to the best

baseline trained on clean data. Taken together, this indicates that our approach is robust

to noise in the relatively clean auxiliary signal, up to levels more than four times what is

typically observed.

A.6 Sensitivity to hyperparameter τ

In order to examine the impact of including various amounts of data in our final training

sample, we varied hyperparameter τ , which controls the proportion of samples within each

minibatch that the networks are backpropagated on. We note that low values of τ , corre-

sponding to a larger, noisier, sample, result in relatively stable performance, with all values
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Figure A.1: One day’s worth of blood glucose data for simulated subject adult#002 with 1
x and 5 x additional simulator noise added. At 5 x, the signal is almost unrecognizable.

Figure A.2: Our approach vs. strongest baselines for varying levels of noise in the CGM
signal, average across all 10 simulated individuals with 1,000 sample bootstrap SEs as error
bars. Our approach performs well even when noise is fairly large.
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Figure A.3: Model performance as a function of hyperparameter τ , with all else constant,
across all 10 simulated individuals. Our model outperforms baseline as long as fewer than
50% of samples are excluded.

Figure A.4: Risk following the carbohydrate vs. magnitude of carbohydrate correction
learned for all models and both datasets. Besides the clean autoencoder, N+2N performs
best.
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between zero and 0.5 (half of the samples excluded) offering substantial improvement over

the best performing baseline (Figure A.3). Performance degrades for larger values of τ ,

which likely indicates that the approach is robust until the final training sample becomes

too small to be effective.

A.7 CRC Plots

With N+2N, we see a higher correlation between the magnitude of carbohydrate correction

and risk following the meal compared to baselines for both real and simulated data (Figure

A.4).

100



APPENDIX B

Appendix for Forecasting with Sparse but

Informative Variables

B.1 Ohio Dataset Experiments

B.1.1 Data and Training Description

This dataset includes both the OHIOT1DM 2018 and 2020 datasets, developed for the

Knowledge Discovery in Healthcare Data Blood Glucose Level Predication Challenge Mar-

ling and Bunescu [2020a]. The data pertain to 12 individuals, each with approximately

10,000 5-minute samples for training and 2,500 for testing, with carbohydrate administra-

tions occurring every 88 timepoints on average, (median, [IQR]: 70, [56,134]), and insulin

boluses occurring every 52 timepoints on average (36, [28,63]). 12% of glucose values are

missing, but we do not include windows with missing glucose values.

This dataset contains the same variables and is processed and analyzed identically to

the simulated dataset, except as described here. For the real dataset we evaluated on the

held-out test data from the challenges. The remaining data were split into 80% train and

20% validation. Models were trained for at least 25 epochs, and then until validation data

performance did not improve for 10 epochs.

The Ohio Dataset (Ohio T1D Blood Glucose Level Prediction Challenge, 2018

and 2020), can be made available through a data-use agreement with the owners:
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http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.html.

B.1.2 Primary Results

On the Ohio dataset, performance gains are more moderate (rMSE 20.16 vs 20.36, Table

B.1), when compared to the simulated dataset. Multiple approaches exhibit negative SIV

usage for the Ohio dataset, indicating that including the SIVs does more harm then good.

We hypothesize that this is due to noise in the carbohydrate signal.

Model rMSE [95%CI](Usage) MAE [95%CI](Usage)

Enc/Dec 20.36[19.4,21.3](0.08) 14.67[14.1,15.2](0.24)
SIV Fine-tune 21.74[20.9,22.6](-1.30) 16.25[15.7,16.9(-1.35)
SIV Initialize 20.98[20.0,22.0](-0.54) 14.99[14.4,15.6](-0.09)
Full Capacity 20.98[20.0,21.9](-0.54) 15.09[14.5,15.7](-0.18)
Proposed 20.16[19.3,21.1](0.28) 14.64[14.1,15.2](0.27)

Table B.1: Forecasting Error and SIV usage for the real dataset. Outcomes are reported as:
Error [95% confidence interval] (SIV Usage). Our proposed approach outperforms baseline,
although to a lesser degree than the simulated dataset. Confidence intervals were calculated
from bootstraps with 1,000 resamples.

B.1.3 Individual Level Results and Ablations

With respect to the Ohio data, while the overall trend was the same as the simulated data,

across individuals, the correlation between baseline error and our approach’s improvement

over baseline was not significant (r=0.22, p=0.49, Figure B.1 (b)). We hypothesize that

this again might be due to the presence of noise in the carbohydrate signal, which prohibits

our model from accurately modeling the SIV signal (explored in Section 5.5). Alternatively,

the intrinsic dynamics in the Ohio dataset may simply be more complex and thus result in

more variability across individuals. The association between baseline encoder/decoder SIV

usage and improvement over baseline does hold for real data (Figure B.1 (a)), Pearson

r=-0.59, p=0.042,

The restriction element is important for the Ohio dataset (Table B.2, rMSE increases to
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Figure B.1: (a) Our architecture’s improvement over the encoder/decoder baseline vs baseline
SIV usage for the Ohio dataset. Our method’s benefit increases as baseline SIV usage
decreases. (b) Improvement over baseline vs baseline prediction error for Ohio data, for each
individual. Improvement over baseline is not correlated with baseline error.

20.38 from 20.16 when restriction is removed). This is likely because this dataset presents a

more difficult challenge, compared to the simulated dataset, due to noise in the SIV signal

and more complex target variable dynamics. For the Ohio dataset, we see a decrease in

performance for each ablation. Our architecture works by isolating the effect that the SIV

signal has on the target variable and enforcing consistency with domain knowledge. Although

the domain knowledge is very general (we only restrict the signal direction), it improves

performance, offering a benefit over isolation alone for the Ohio dataset. More restrictive

model guidelines, such as directly restricting the architecture to use a detailed physiological

model, could be beneficial, but during model development, we found that “less is more,” in

that a small amount of restriction with significant flexibility was most effective. However,

some sort of domain-knowledge-based-guidance is helpful to overcome the challenges posed

by the SIV problem, since without it, it is difficult to learn anything useful from the small

number of non-zero samples.
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Model rMSE [95%CI](Usage) MAE [95%CI](Usage)

Ohio
No Gating 20.34[19.5,21.3](0.11) 14.77[14.2,15.3](0.13)
No Restriction 20.38[19.5,21.3](0.06) 14.73[14.2,15.3](0.18)
No SIV Input 20.71[19.8,21.6](-0.27) 14.97[14.4,15.6](-0.07)
Only SIV Input 20.52[19.6,21.5](-0.08) 14.70[14.1,15.3](0.20)
Proposed 20.16[19.3,21.1](0.28) 14.64[14.1,15.2](0.27)

Table B.2: rMSE and MAE, with SIV usage, for each ablation. Outcomes are reported
as: Error [95% confidence interval] (SIV Usage). Confidence intervals were calculated from
bootstraps with 1,000 resamples.

B.2 Impact of Carry-Forward Approach

Utilizing the Carry-forward approach improves performance on both datasets for both the

baseline encoder/decoder and our proposed approach (Table B.3).

Model rMSE [95%CI](Usage) MAE [95%CI](Usage)

Simulated- Carry Forward
Enc/Dec 15.63[14.1,16.9](11.13) 12.42[11.1,13.6](6.63)
Proposed 13.07[11.8,14.2](13.69) 10.45[9.4,11.4](8.61)

Simulated- NO Carry Forward
Enc/Dec 16.46[14.6,17.8](10.30) 12.97[11.5,14.1](6.09)
Proposed 16.08[14.5,17.4](10.68) 12.80[11.4,13.9](6.25)

Ohio- Carry Forward
Enc/Dec 20.36[19.5,21.3](0.08) 14.67[14.1,15.2](0.24)
Proposed 20.16[19.3,21.1](0.28) 14.64[14.1,15.2](0.27)

Ohio- NO Carry Forward
Enc/Dec 20.64[19.7,21.5](-0.20) 14.98[14.4,15.6](-0.08)
Proposed 20.41[19.5,21.4](0.03) 14.85[14.3,15.4](0.05)

Table B.3: Forecasting Error and SIV usage for both datasets, examining our primary base-
line and proposed approach with and without our carry-forward approach. Outcomes are
reported as: Error [95% confidence interval] (SIV Usage). Both methods benefit from utiliz-
ing the carry-forward approach on both datasets. Confidence intervals were calculated from
bootstraps with 1,000 resamples.
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Region Baseline Proposed

A 97.1 97.8
B 2.36 1.43
C 0.00 0.00
D 0.05 0.08
E 0.00 0.00

Table B.4: Proportion of points in each region of the Clarke Error Grid. Region A represents
strong forecasts, while regions C through E represent potentially catastrophic errors

B.3 Clarke Error Grid

A Clarke error grid demonstrates where a forecaster could lead to catastrophic failure; pre-

dicted BG values are compared to true values, and regions where making treatment decisions

based on forecasts would lead to poor health outcomes are highlighted. Clarke error grids

for our approach and the best performing baseline on the simulated dataset, are shown in

Figure B.2 and Figure B.3, respectively. Both approaches demonstrate fairly strong per-

formance, but our approach has 98% of points in region A, while the baseline has 97% of

points in region A (Table B.4). Region A represents the region where utilizing the forecasts

for BG control would reliably lead to good health outcomes. While one percentage point is

a modest improvement, every prediction is important in a clinical setting. This illustrates

that while our approach is not a complete solution to reliable BG forecasting, it a step in

the right direction.
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Figure B.2: Clarke error grid for the proposed approach.

Figure B.3: Clarke error grid for the full capacity baseline.
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