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ABSTRACT

This thesis presents a numerical approach designed to solve wave propagation problems

with high accuracy on an unstructured grid. The method employs a fully explicit approach

with a compact stencil, addressing both material and remote boundaries automatically. The

ultimate goal is to contribute to the development of a highly accurate Navier-Stokes code for

aeroacoustic predictions, specifically focusing on waves with wavelengths not significantly

larger than the grid size. In essence, the aim is to accurately capture short waves using

relatively coarse and cost-effective unstructured grids that can represent intricate geometric

details.

The underlying hypothesis is based on the belief that, for ensuring accuracy, particularly

in terms of bandwidth – which is often more crucial than achieving high formal accuracy

– the method must be fully-discrete and explicit. This choice is driven by the recognition

that a numerical stencil, while encompassing the analytical domain of dependence to prevent

instability, should not be excessively large. An overly large stencil includes irrelevant data,

leading to either instability or an overly dissipative scheme. Moreover, semi-discrete methods,

despite enabling high formal accuracy for long waves, prove less effective in ensuring well-

behaved mid- and high-frequency behavior due to the gradual inclusion of data from outside

the true domain of dependence unless the time step is significantly reduced.

Any endeavor to enhance accuracy invariably involves the processing of additional infor-

mation, commonly achieved by enlarging the stencil. However, in the scenario of element

enlargement, where irrelevant information is incorporated into a large stencil, it not only

encounters the issues previously outlined but also poses challenges on irregular grids and

in proximity to boundaries. An alternative approach is to augment the set of information

retained at each location, as demonstrated in methods such as Discontinuous Galerkin and

Active Flux. This extended set of information encompasses various variables, including but

not limited to values, gradients, and element averages of the solution.

Guided by these heuristics, the thesis establishes a general framework applicable across

arbitrary dimensions and levels of element accuracy. It introduces an analytical solution

designed to smooth initial-value wave propagation problems. Consequently, a Hermitian

version of the Active Flux method is devised in two dimensions, successfully retaining the ad-

xiii



vantages of optimal one-dimensional methods. There is a high likelihood that extending this

method to three dimensions will be straightforward. Notably, the algorithm autonomously

identifies the correct direction of propagating waves, forming a robust foundation for non-

reflecting boundary conditions and addressing multi-material problems. The efficacy of the

method is demonstrated through various interface conditions in acoustics and elastodynamics

wave propagation.

This method attains at least fifth-order accuracy and provides compelling numerical evi-

dence for a form of superconvergence, indicating the potential for highly precise solutions. In

doing so, it significantly propels the state-of-the-art in solving wave propagation problems.

xiv



CHAPTER 1

Introduction

The demand for numerical methods to address temporal wave propagation problems is great

and spans many industries, including aviation, electronics, and geophysics, among others.

In the aviation industry, which holds a pivotal role in modern society, substantial environ-

mental concerns and repercussions have emerged. As a response to these challenges, there

is mounting pressure for the aviation sector to adopt “greener” technologies [2]. A notable

aspect of this endeavor is noise reduction [3]. Aeroacoustics is dedicated to the science of

noise management in aviation, presenting unique computational challenges. Noise in avia-

tion originates from highly energetic flow patterns, rendering conventional acoustic methods

ineffective. Furthermore, destructive interference often results in only a small fraction of the

noise reaching distant observers. Common approaches involve solving the Euler equations,

linearized about a nonlinear base flow [4, 5]. Often, a zonal approach [6] is employed, solv-

ing the full Euler or Navier-Stokes equations in the near-field, and adopting progressively

simplified models at greater distances [7].

Similarly, the electronics industry also grapples with wave propagation challenges, where

the solutions to Maxwell’s equations become crucial [8, 9]. Maxwell’s equations govern the

behavior of electromagnetic waves and are fundamental to the operation of electronic de-

vices. Accurate numerical methods are essential for the design and analysis of electronic

components, circuits, and systems. Challenges in electronics involve high-frequency wave

propagation, signal integrity, and Electromagnetic Interference (EMI) management [10]. Ef-

fective numerical techniques are vital to address these complexities and optimize electronic

systems.

In the field of geophysics, wave propagation plays a vital role in earthquake prediction

and seismic hazard assessment [11]. Here, elastodynamic equations are solved to model

the behavior of seismic waves in the Earth’s crust and mantle. These simulations aid in

understanding earthquake mechanisms, ground motion predictions, and the evaluation of

structural responses to seismic events. Numerical methods are indispensable for simulating

1



the propagation of seismic waves through complex geological structures, allowing scientists

to make critical assessments for disaster preparedness and infrastructure resilience [12]. How-

ever, the challenges in geophysics involve the modeling of multiscale and multiphysics phe-

nomena, as well as the need for high-performance computing resources to handle large-scale

simulations [13].

Ongoing challenges persist in wave propagation problems, require continuous attention

and innovative solutions. These challenges encompass various facets, including but not

limited to: accurate wave propagation across extensive distances, management of remote

boundary conditions, navigating complex geometrical configurations, and overcoming wave

propagation obstacles through disparate materials, encompassing air, structures, and acous-

tic linings.

To effectively tackle these challenges, it’s crucial to utilize specialized numerical methods

that align with the unique characteristics of each problem. These distinct features demand

dedicated strategies and methodologies for developing numerical schemes that can provide

accurate approximations for the solutions required in such complex scenarios. Practical

issues specifically addressed in this thesis include a capacity to compute on coarse grids

by resolving the high frequencies through Hermite approximation, a capacity to propagate

weak waves over large distances by reducing numerical dissipation,a capacity to compute

problems having remote boundaries without the use of large grids, a capacity to operate

with arbitrary unstructured grids to deal with complex geometry, and a capacity to capture

material interfaces in a very compact manner.

1.1 Contemporary Numerical Approaches in Wave

Propagation Problems

Numerical approaches in wave propagation problems are computational techniques and

methodologies used to simulate and analyze the behavior of waves as they propagate through

various mediums and interact with different structures. The subsequent sections delve into

a review of some of these practices.

1.1.1 Finite Difference Methods

Finite Difference Methods (FDM) discretize the continuous domain into a grid of discrete

points, approximating the derivatives through finite difference approximations. FDM are

straightforward to incorporate and have undergone extensive scrutiny in prior research [14,

15]. Despite their age and simplicity, these schemes continue to be widely employed in various
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applications, including optimized FDM for aeroacoustics simulations [16], Yee schemes for

Maxwell’s equations [17], and FDM simulations for seismic wave propagation [18]. These

schemes have maintained their popularity due to their simplicity of implementation and fully

explicit formulations. High-order FDM can be created by enlarging the stencil width in one

dimension space and/or modifying its shape in higher dimensions.

One drawback of finite difference techniques lies in the challenge they face when simulating

waves in intricate domains in higher dimensions.

1.1.2 Finite Element Methods

Finite Element Methods (FEM) rely on the concept that a computational domain can be

represented as a collection of interconnected elements, often organized in an unstructured

manner [19].

In the context of FEM [20, 21, 22], each of these elements is used to approximate the

solution, employing piecewise polynomials known as basis functions. These basis functions

are carefully selected to ensure accuracy and continuity across element boundaries. Subse-

quently, FEM proceeds to assemble a global system of equations, combining the element-level

equations derived from all interconnected elements. This process results in the creation of a

large, sparse matrix system that encapsulates the equations governing the problem. Upon the

assembly of the global system and the imposition of boundary conditions, numerical solvers,

such as direct solvers or iterative methods, are employed to acquire the solution to this system

of equations. However, these techniques often lose their efficiency when dealing with large

global systems. An alternative method, introduced in the early 1970s, is the Discontinuous

Galerkin (DG) method [23]. DG methods aim to independently approximate the solution

within each element by utilizing test functions confined to the local elemental space. By

distributing the data at element interfaces and having the capability to approximate the

local solution with any desired level of accuracy using the test functions, a highly-accurate

and compact method emerges. Nevertheless, this comes at the cost of increased memory re-

quirements and computational expenses[24]. It also leads to semi-discretisations that impose

small time steps and can misrepresent high frequencies [25].

1.1.3 Finite Volume Methods

Similar to FEM, Finite Volume Methods (FVM) also partitions the computational domain

into interconnected elements, referred to as control volumes in FVM. Within each of these

control volumes, it employs a conservative approach to approximate the solution by consider-

ing the conservation of quantities across the interfaces of these control volumes. A Riemann
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solver is often used to calculate the fluxes at the interfaces by solving Riemann problems at

each interface [26, 27]. Extending Riemann solvers to multidimensional cases is a straight-

forward process, involving the solution of Riemann problems normal to the element face.

However, this approach designed for one-directional wave motion and makes an assumption

that all waves propagate strictly perpendicular to element interfaces, which can lead to the

generation of nonphysical waves dependent on the grid geometry rather than representing

genuine flow features.

Numerous endeavors have been pursued to rectify the irregularities present in the solu-

tions. These efforts encompass a combination of simplified wave solvers, such as HLL or

Rusanov, in conjunction with full Riemann solvers as highlighted in [28]. Additionally, re-

searchers have explored the application of the Multidimensional Corner Treatment (MCT)

method, originally conceived by Colella [29], and have investigated various rotated Riemann

techniques, including those documented in [30, 31, 32]. These approaches are designed to

ameliorate the observed issues within the solutions. Nevertheless, it is essential to acknowl-

edge that while these methods effectively mitigate the symptoms of the problem, they often

introduce higher computational complexity and do not fundamentally resolve the root is-

sue, which persists in the fact that the modified solvers remain grounded in one-dimensional

physics.

Roe, in [33, 34], highlights the necessity of modeling multidimensional physical processes

in nonlinear systems with numerical methods that consider the appropriate domain of depen-

dence. For omnidirectional wave propagations, this entails utilizing information from circular

domains in two dimensions and spherical domains in three dimensions. This requirement

poses a fundamental challenge for inherently one-dimensional schemes like Riemann solvers.

Previous efforts to develop schemes, such as fluctuation splitting or residual distribution

methods introduced by Roe for linear advection [35], have attempted to circumvent the

use of Riemann solvers. These methods, extended to hyperbolic-elliptic systems by Rad,

have achieved third-order accuracy and demonstrated the ability to approximate potential

flow around elliptical bodies in steady-state problems [36, 37]. They afford many points of

similarity with the present method and these will be explored in future research.

1.1.4 Global Spectral Methods

In contrast to finite methods, the Global Spectral Methods (GSM) represent the solution

as a superposition of basis functions, over the entire computational domain [38, 39, 40, 41].

These basis functions are selected to satisfy boundary conditions and accurately capture

the behavior of the underlying problem. A multitude of options exist for these basis func-
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tions, including trigonometric functions, Chebyshev polynomials, and Legendre polynomials,

among others.

The strength of the GSM lies in its ability to provide exponentially accurate solutions.

Nonetheless, due to its global nature, GSM is characterized by the dense and intricate

algebraic formulation of its basis functions, introduces computational complexity and costs.

As a consequence, it is especially well-suited for problems involving relatively straightforward

domains of simple shape, but less suited to complex domains. Furthermore, this global nature

poses challenges when attempting to implement parallel computations efficiently.

1.1.5 Active Flux

Active Flux (AF) method represents a novel approach aimed at addressing the limitations

of existing methods discussed in prior sections. Its foundation lies in Scheme V, which was

identified by van Leer in a 1977 paper as the most efficient among six schemes he devised to

achieve better-than-first-order convergence for the one-dimensional advection problem [42].

Scheme V introduces additional edge values alongside the element-average value for each

element and utilizes these extra degrees of freedom to enhance solution accuracy up to third

order. The AF method independently updates interface values based on edge values, incor-

porating both the previous element average and previous edge values. Notably, the interface

update need not be conservative; the only requirement is that fluxes are consistent, allowing

flexibility in choosing an edge update method. This flexibility enables the incorporation of

multidimensional physics, breaking free from the constraints of solving one-dimensional Rie-

mann problems. The AF method currently operates at third-order accuracy and has found

applications in diverse problem domains, including unsteady, compressible, two-dimensional

Euler equations on arbitrary unstructured grids [43, 44]. In this context, it has demon-

strated superior cost-effectiveness, achieving comparable accuracy in significantly less time,

compared to the DG method with quadratic reconstruction. Further optimization of the

implementation promises to enhance this advantage by a factor of two to three. The AF

method boasts a compact nature, versatility across structured and unstructured grids, and

can be efficiently coded as a loop over elements.

1.2 Towards High-Order Methods

The current accuracy standard in commercial numerical solvers is second-order due to the

desire to maintain low computational costs. However, the increasing demand for solving

more intricate problems has sparked an interest in developing high-order methods. Re-
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cent advancements in high-order methods have revealed that they can, in fact, be more

cost-effective than lower-order alternatives while maintaining the same level of error [45].

Nevertheless, the advantages offered by existing high-order methods are not significant or

established enough to entice developers to switch their tools. Additionally, many of these

methods face issues related to robustness, a crucial requirement for production codes.

In our pursuit of high-order method development, we are guided by the recommendations

outlined in [25]. One key recommendation is that the method should be fully discrete and

explicit. This approach is chosen because while the numerical stencil needs to encompass

the analytical domain of dependence to prevent instability, an overly large numerical sten-

cil can include irrelevant data, leading to instability or excessive dissipation in the scheme.

Furthermore, any semi-discrete method progressively expands its stencil at each stage, even-

tually incorporating data from outside the true domain of dependence unless the time step

is significantly reduced. Consequently, while semi-discrete methods can provide high formal

accuracy for long waves, they are less effective in ensuring proper behavior for mid- and

high-frequency components.

Any effort to enhance accuracy typically involves processing more information, often

achieved by expanding the stencil, as seen in methods like ENO [46] and its various deriva-

tives such as WENO [47], H-WENO [48], and TENO [49], as well as dispersion-preserving

methods [50, 51]. However, the enlargement of the stencil not only encounters the previ-

ously mentioned issues but also poses challenges on irregular grids and near boundaries.

An alternative approach involves enriching the set of variables retained at each location,

as demonstrated by Discontinuous Galerkin and Active Flux methods. We will begin by

exploring these options in one spatial dimension, aiming to glean valuable insights related

to low-frequency accuracy, bandwidth, resolution of discontinuities, and the prevention of

undamped high-frequency modes.

1.2.1 Stencil Enlargement

We can convey our points without delving into the intricacies of ENO/WENO/TENO

and simply by examining the application of basic finite difference methods to linear ad-

vection. These observations are equally applicable to more sophisticated methods. It’s a

well-established fact that odd-order schemes outperform even-order schemes [52, 53]. Iserles

and Strang [54] have demonstrated that the most effective odd-order polynomial interpola-

tion schemes have slightly biased stencils, featuring one additional mesh point on the upwind

side. They also established that this family of schemes remains stable for Courant numbers

within the range of [0, 1]. In Figure 1.1, we present the amplification factors for finite differ-
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ence schemes of order 3, 5, and 7. We consider a Courant number of 0.25 on the left and 0.75

on the right. The plotted quantity is g(ν, θ)1/ν , where g(ν, θ) represents the amplification

of a sine wave with frequency θ in a single timestep. Taking this value to the power of 1/ν

yields the “normalized amplification” as the wave traverses one element.

𝑔 !/# 𝑔 !/#

Figure 1.1: Normalized amplification of finite difference schemes. left: ν = 0.25 and right:
ν = 0.75.

Indeed, as we elevate the order of the schemes, we observe a wider range of accurately

treated frequencies. However, the enhancements appear somewhat underwhelming, espe-

cially considering the significant increase in complexity, which becomes particularly pro-

nounced in higher dimensions. The primary reason for this is the larger stencil, which

extends well beyond the domain of dependence. While it provides additional information,

this information is primarily useful for low frequencies. Essentially, we have more data, but

it is of lower quality. When confronted with higher frequencies for which the method lacks

pertinent information, it attempts to mitigate them, albeit not very effectively, especially at

ν = 0.75. This consideration is particularly pertinent in the context of Large Eddy Simu-

lation (LES), where a “scale gap” can exist between the resolved low frequencies and the

unresolved yet “modeled” frequencies [55]. Our aim is to bridge this gap and eliminate it

entirely.

When tackling a problem that involves long-distance wave propagation, it’s essential to

determine the required mesh size in terms of points per wavelength to maintain the amplitude

within a specified tolerance. In this analysis, we set a stringent criterion of preserving

the amplitude within one part in a thousand for each cell crossed. Table 1.1 presents the

outcomes for our three finite difference schemes and highlights the anticipated trends.

An alternative measure of the quality of an advection scheme lies in its ability to accurately

represent a traveling square wave. General theoretical insights into this aspect are available

[52, 53]. For even-order methods, the phase error predominates over the amplification error,
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Order ν = 0.25 ν = 0.50 ν = 0.75

3 18.0 16.4 13.6
5 9.6 9.1 8.0
7 7.0 6.7 6.1

Table 1.1: Number of points per wavelength necessary to maintain amplitude within 0.1%
per wavelength of travel for three finite difference schemes.

leading to modes with incorrect phase speeds that are only weakly damped, resulting in

pronounced spurious oscillations on one side of a discontinuity. These oscillations typically

have an amplitude of around 20 to 25%. Therefore, our focus here is exclusively on odd-order

schemes. This leads to smaller spurious oscillations (around 5− 7% in amplitude) appearing

on both sides of the discontinuity and having a much smaller spatial extent. The width w(t)

of the “discontinuous region” is related to the formal accuracy p in smooth regions, following

the important result w(t) ∝ t1/(p+1), although the constant in this relationship is influenced

by the extent of the stencil.

Third-order finite difference.   Seventh-order finite difference.   Fifth-order finite difference.   

Figure 1.2: Square waves advected over twice their length, simulated using optimal finite
difference schemes with 3rd, 5th, and 7th order accuracy. Courant numbers of 0.25 (open
circle), 0.50 (filled circle), and 0.7537 (diamond) are considered.

Results presented in Figure 1.2 exhibit remarkable insensitivity to the Courant number,

with many symbols overlapping. As anticipated, the profiles become narrower as the order of

accuracy increases, although the improvement from 5th order to 7th order is not substantial.

Moreover, the region outside the shock but contaminated by the shock remains relatively

constant, possibly due to the larger stencil associated with increased accuracy. Overshoots

and undershoots remain modest in all cases.

1.2.2 Stencil Enrichment

1.2.2.1 Discontinuous Galerkin

As discussed in Section 1.1.2, this method has gained recognition and has an extensive body

of literature dedicated to it, although practical applications in the aerospace industry are
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relatively scarce. The DG method is implemented on a simplicial mesh employing trial

functions for polynomial reconstruction. Minimizing the error in the time derivative in

a least-squares fashion is achieved by using the same set of functions as both trial and

test functions. Typically, time-marching is accomplished using a Runge-Kutta method,

and the fourth-order RK4 scheme is a common choice, even when spatial derivatives are

evaluated to a higher order. This choice is justified by the usual small time steps employed

for stability reasons. A Von Neumann analysis of the linear advection equation for a sine

wave with frequency θ yields normalized amplification, g(ν, θ)1/ν , as depicted in Figure 1.3

for the complete space-time operation. Notably, these results differ significantly from those

presented in Figure 1.1.
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Figure 1.3: Normalized amplification of Discontinuous Galerkin schemes with order 3, 5 and
7. Note the change of horizontal scale.

One noteworthy observation is the presence of solution modes with frequencies exceeding

the Shannon limit, which imposes a restriction of θ ≤ π. There has been ongoing debate [56]

as to whether such modes should be considered “physical” or dismissed as “spurious”. We

contend that they can be both. These modes do not contribute to the formal accuracy of the

method since accuracy is defined solely concerning the resolved frequencies. However, they

do exist, and if they are not sufficiently damped, they can manifest in the “solution” as waves

that exhibit some form of unconventional behavior. To the extent that this misbehavior is

benign, it might enhance the overall “realism” of the simulation. For methods of odd order

p, the upper limit of observable frequencies is (p+1)π/2. In the case of DG methods, Figure

1.3 illustrates high-frequency waves that are only weakly damped, and we will refer to these

as spurious.

If we define bandwidth as the range of frequencies within which the amplitude is well

preserved, a comparison between Figures 1.1 and 1.3 reveals significant improvements, with

the extent of resolved frequencies extended by factors ranging between two and three. How-

ever, it’s worth noting that the maximum stable Courant numbers have been reduced to
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values of 0.406, 0.271, and 0.206 for orders 3, 5, and 7, respectively. This reduction can be

explained by the discussion above regarding the challenges of semi-discrete methods. Addi-

tionally, when Courant numbers are just within the stable range, there are modes that are

only lightly damped. This contrasts with the behavior of simple finite difference schemes,

where accuracy consistently improves with increasing Courant number, becoming exact when

ν = 1.0 for simple linear advection. On a positive note, the left column of Figure 1.5 demon-

strates significantly improved square waves. The third-order DG method is comparable to

the fifth-order FDM, and the fifth-order DG method outperforms the seventh-order FDM.

1.2.2.2 Active Flux

The AF method, being a relatively recent concept, is still in the process of defining itself. Its

key characteristic is the calculation of fluxes based on updates derived from the governing

equations rather than relying on data interpolation. While this distinction is particularly

prominent in multidimensional applications, it’s essential to note that one-dimensional evolu-

tion essentially involves interpolation in characteristic variables. In this context, we present

the one-dimensional version as proposed in [25]. Additionally, other high-order extensions

in one dimension have been explored by Abgrall and Barsukov [57].

The normalized amplification factors for the Active Flux method are presented in Figure

1.4. Similar to the DG method, this approach significantly expands the range of accurately

resolved frequencies.
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Figure 1.4: Normalized amplification factors for Active Flux schemes. left: ν = 0.25 and
right: ν = 0.75.

To provide a more detailed comparison, Table 1.2 is included, indicating the points re-

quired per wavelength to meet the stringent criterion of less than one part in a thousand
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for each cell crossed. This improvement over the simple finite difference method (Table 1.1)

ranges from two to threefold. In fact, the third-order scheme performs comparably to the

fifth-order finite difference scheme, while the fifth-order version is substantially superior to

the seventh-order finite difference scheme. We believe that these results are indicative of the

trade-off between mesh enrichment and refinement in similar comparisons.

Order ν = 0.25 ν = 0.50 ν = 0.75

3 10.7 9.5 8.2
5 4.0 3.8 3.2
7 2.2 1.9 1.8

Table 1.2: Number of points per wavelength necessary to maintain amplitude within 0.1%
per wavelength of travel for three Active Flux schemes.

The unexpectedly good results for the square wave in the right-hand column of Fig. 1.5

might be surprising. There is a common misconception that discontinuous reconstructions

are favorable when dealing with true discontinuities in the solutions. However, Roe has

addressed this misconception in [33]. It is clarified that discontinuous reconstruction offers

no advantage in one-dimensional computations (unless the true discontinuity aligns with

an interface) and is, in fact, detrimental in higher dimensions since it imposes simplistic

one-dimensional physics.

The results presented for AF method in Figure 1.5 demonstrate a high level of compact-

ness, with minimal contamination outside of the square wave. While we haven’t displayed

those results, a similar pattern emerges for weakly nonlinear shocks, as seen, for instance, in

the far field of a sonic boom. This suggests the potential for computing such flows effectively

without the need for limiter mechanisms.

1.3 Element Enrichment: Sources of Additional Infor-

mation

As explored in Section 1.2, the journey toward higher-order methods involves the enrichment

of elements to achieve compactness and higher frequency resolution. Now, the question

arises: What are the various sources of information that can be incorporated to enrich the

element for reconstruction? Traditionally, one approach is to define an element that provides

additional solution values as degrees of freedom at various locations within the element. This

can include the element average. The inclusion of element average among the degrees of

freedom is a favorable choice for the Active Flux method, as discussed in Sections 3.3.1.4
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Figure 1.5: Results for a square wave advected over twice its length using (left) the Dis-
continuous Galerkin method and (right) the Active Flux method at three different Courant
numbers. Open circle: ν = 0.25, Solid circle: ν = 0.5, Open diamond: ν = 0.75. Note that
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and 3.3.2.4, where it aids in straightforwardly enforcing conservation. However, achieving the

element average as one of the degrees of freedom is not always feasible due to the requirement

of symmetry within the degrees of freedom, which will be elaborated upon in Section 2.3.

Expanding the range of information locations within the element is not advisable when

working with Active Flux, primarily because the introduction of new locations necessitates

updates, thereby reducing the stability limits for these updates. Instead, an alternative

approach involves incorporating different types of information at the same locations within

the element, such as an arbitrary order gradient, which gives rise to what is referred to as

the Hermite element. These elements are not a recent development in finite element theory

and can be traced back to at least the 1970s [58]. They have been extensively explored in

one space dimension [59] for solving ordinary differential equations.

Hermite methods in higher dimensions were initially introduced by Goodrich [60]. These

techniques combine gradient-based interpolation with dual grids to create stable, high-order

accurate approaches for solving hyperbolic problems. Vargas et al. [61] developed three

variations of these methods specifically designed for periodic problems, eliminating the need

for time evolution on dual grids. Additionally, Hermite methods can be combined with DG

methods to enhance geometric adaptability [62]. However, it is worth noting that there are

limited instances of such methods in higher dimensions, and none of them align precisely

with the elements utilized in this thesis.

1.4 Thesis Outsets

Drawing from these guiding principles outlined in the previous sections, this dissertation

introduces an effective strategy, known as the Hermite Active Flux method for tackling wave

propagation problems when dealing with coarse grids. Currently, this approach is primarily

applied within the context of multimaterial wave propagation, where linear equations with

non-constant coefficients govern the behavior of waves. These multidimensional schemes are

founded on the generalization proposed by Fan and Roe [63] of Poisson’s solution for the

initial-value problem associated with the scalar wave equation [64].

Chapter 2 introduces a comprehensive concept for defining elements in an arbitrary di-

mension and accuracy. This concept is pivotal for discretizing the domain of interest into a

grid, a fundamental step for numerically solving general physics problems. Importantly, this

foundation is fully unstructured, making it suitable for application in irregular and complex

geometries.

The groundwork laid in this chapter serves as the basis for the development presented

in Chapter 3, where a linear fifth-order Hermite algorithm is constructed for the acoustic

13



component of the Euler equations. Notably, this algorithm addresses challenges related to

remote boundaries and material interfaces, automatically.

In Chapter 4, the Elastodynamic wave equations are decomposed into two distinct wave

systems. These two wave systems exhibit similarities to acoustic equations and are fully

decoupled, except at the boundaries. The solutions are obtained using the methodology

outlined in Chapter 3.

In conclusion, Chapter 5 of the dissertation summarizes the key findings and insights,

offering suggestions for potential avenues of future research.
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CHAPTER 2

Advancing Accuracy: Exploring Arbitrary

Order of Accuracy and Hermite Elements in

Various Dimensions

An element in the finite element method is a geometric entity or subdomain that represents

a portion of the overall domain or structure under consideration. It is characterized by its

shape, size, and mathematical formulation, and serves as a building block for discretizing

the problem domain into smaller, manageable regions.

Each element typically possesses certain properties and attributes, including geometry,

topology, and material properties, which are essential for accurately representing the be-

havior of the system being analyzed. These information components are often defined or

approximated within the element using interpolation or basis (shape) functions, allowing

the element to represent a specific portion of the domain.

The selection of the element type relies on the specific problem at hand and the desired

level of accuracy for the analysis. In the finite element method, commonly employed element

types for two-dimensional problems include triangles and quadrilaterals, while for three-

dimensional problems, tetrahedra, hexahedra (cubes), and prisms are commonly utilized. It

is worth noting that the concept of element types extends beyond three dimensions, allowing

for the definition of elements in higher dimensions such as pentachorons or 5-cells in four

and hexaterons or 6-cells in five dimensions. The method developed in this thesis is not a

finite-element method, but it has been found helpful to take a similarly careful approach

to the meaning of the numbers that a code produces. We will use elements, but not in

conventional ways.

By discretizing the problem domain into elements and solving the governing equations

within each element, the finite element method allows for an efficient and accurate approx-

imation of the system’s behavior, making it a widely used numerical technique in various

fields, including structural analysis, heat transfer, fluid dynamics, and electromagnetics. We
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hope to achieve a similar versatility

In this chapter, we start by introducing a general concept of “element” and its extension

into arbitrary dimensions, along with the flexibility of reconstructing it to any desired order.

Subsequently, we delve into the reconstruction of elements in one-, two-, and three-space

dimensions. Finally, we conclude the chapter with a discussion on grid definition, which

encompasses a collection of interconnected elements.

2.1 Element Definition

In the context of practical applications, an element is commonly characterized as a collection

of nodes or vertices that play a crucial role in shaping and establishing connectivity within

the element. These nodes serve as reference points, offering the required degrees of freedom

essential for solving the governing equations associated with the problem formulated within

the element. Notably, nodes can be regarded as zero-dimensional entities, capable of being

precisely defined through the utilization of the following code snippet:

class Node:

def __init__(self, vector, property):

self.vector = vector

self.property = property

In this snippet, a “node” or “zero-dimensional” element is defined within an n-dimensional

space partly by using a one-dimensional vector of length n, that represents the location of

the corresponding element. A node is not useful unless it also has properties. These prop-

erties are encapsulated within a one-dimensional vector of variable length, which scales

according to the number of properties defined for the node. These encompass, though are

not confined to, properties like point values of distinct information, gradients of informa-

tion up to any order such as those seen in Hermite elements, material characteristics, and

more. Subsequently, these properties contribute to the information reconstruction process

within non-zero-dimensional elements where the node participates. It is noteworthy that a

zero-dimensional element inherently exhibits full accuracy since there is no requirement for

interpolation or reconstruction to determine values within the element.

Let’s define an m-dimensional element through an array possessing a length of m + 1.

Within this array, the entry i = 0, 1, · · · ,m, represents a collection of i-dimensional elements

termed “sub-elements”. These sub-elements collectively amalgamate to form successively

higher-dimensional constructs, culminating in the original m-dimensional element. The ini-

tial definition of a zero-dimensional element or node, serves as the foundational step. This
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method fundamentally furnishes a methodologically organized approach to apprehend the

intricate constitution of elements across diverse dimensions.

Lemma 1. Let n and m be positive integers such that n ≥ m > 0. In an n-dimensional

space, a minimum of m + 1 linearly independent nodes is necessary to construct a valid

m-dimensional element.

Proof. Consider an m-dimensional element in an n-dimensional space. To construct such an

element, we need a basis consisting of m linearly independent vectors to span its subspace.

By the definition of a basis, the number of linearly independent vectors in any basis is equal

to the dimension of the subspace.

Assume, for the sake of contradiction, that we can construct a validm-dimensional element

using fewer than m+ 1 linearly independent nodes. This implies the existence of a set of m

nodes that can define the m-dimensional element.

However, this contradicts the requirement of having a basis with m linearly independent

vectors, as m < m + 1. Hence, it is necessary to have at least m + 1 linearly independent

nodes in an n-dimensional space to construct a valid m-dimensional element.

Theorem 1. Let E be an m-dimensional element constructed from m + 1 nodes in n-

dimensional space, where n ≥ m ≥ 0. Then the element E has
(
m+1
k+1

)
, k-dimensional

sub-element for 0 ≤ k ≤ m.

Proof. We define the sub-elements of E by choosing k + 1 nodes from the m + 1 available

nodes, where 0 ≤ k ≤ m. Each combination of k + 1 nodes forms a unique k-dimensional

sub-element of E.

The number of ways to choose k + 1 nodes from m + 1 nodes is given by the binomial

coefficient
(
m+1
k+1

)
.

Therefore,
(
m+1
k+1

)
represents the number of distinct k-dimensional sub-elements that can

be formed from E.

Hence, we have proved that an m-dimensional element E constructed from m + 1 nodes

in an n-dimensional space, where n ≥ m > 0, has
(
m+1
k+1

)
, k-dimensional sub-elements for

0 ≤ k ≤ m.

2.2 Arbitrary-Dimensional Elements

In order to construct elements of arbitrary dimensions, nodes, which are zero-dimensional

elements, are utilized. As stated in Lemma 1, a minimum of m + 1 nodes is required to

construct an m-dimensional element for m > 0.
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The following code snippet defines a class called “Element” which represents an arbitrary-

dimensional element. It takes a list of nodes as input during initialization and determines the

dimension of the element based on the number of nodes. Additionally, it calculates the faces

of the element using the “combination” function, which returns all unique combinations of

m nodes of the element (see Theorem 1). It should be noted that each node in the list must

have at least m dimension(s).

class Element:

def __init__(self, nodes):

self.nodes = nodes

self.dimension = len(nodes) - 1

self.faces = combination(nodes, self.dimension)

Nodes within an element serve as degrees of freedom, allowing for the interpolation of

information within the element. Typically, this is achieved by reconstructing a polynomial

of degree p within the element. The nodes act as reference or control points for the poly-

nomial interpolation, enabling the accurate representation and approximation of the desired

information or function within the element.

Lemma 2. For a polynomial of order p in n dimensions, the degree of freedom is given by

the multinomial coefficient
(
p+n
p

)
.

Proof. Consider a polynomial of the form:

P (x1, x2, . . . , xn) =
∑

0≤p1+p2+...+pn≤p

cp1,p2,...,pnx
p1
1 xp2

2 . . . xpn
n

where cp1,p2,...,pn represents the coefficients of the polynomial.

Each coefficient cp1,p2,...,pn can be considered as a degree of freedom in the polynomial.

Now, let’s count the number of coefficients cp1,p2,...,pn .

Consider the expansion of the complete homogeneous symmetric polynomial

hp(x1, x2, . . . , xn) =
∑

1≤i1≤i2≤...≤ip≤n

xi1xi2 · · ·xip

Introduce p additional variables xn+1, xn+2, . . . , xn+p−1 to ensure that there are exactly p

variables in each monomial.

Now, think of distributing p identical stars (representing the variables) into n+p−1 bins

(including the additional variables) using (n − 1) bars. The number of ways to do this is

given by the binomial coefficient
(
n+p−1

p

)
.
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The stars and bars argument ensures that each distribution corresponds to a unique

monomial in the complete homogeneous symmetric polynomial, and vice versa.

To determine the count of coefficients cp1,p2,...,pn , we enumerate the distinct monomials of

degree p involving n + 1 variables x0, x1, x2, . . . , xn. Subsequently, by setting x0 = 1, the

total number of coefficients for the polynamial P is given by
(
n+p
p

)
.

Hence, the lemma is proved.

Using Lemma 2, we can demonstrate that an m-dimensional element defined by m + 1

nodes can only reconstruct a linear polynomial. This limitation arises from the fact that we

have m+1 degrees of freedom, which is only sufficient to reconstruct a linear polynomial in

m dimension. The number of degrees of freedom corresponds to the number of coefficients

that can be adjusted to define the polynomial. With m + 1 degrees of freedom, we are

able to uniquely determine a linear polynomial, but higher-order polynomials would require

additional degrees of freedom to accurately represent them.

2.3 Arbitrary-Order Elements

Although increasing the number of reference points within an element leads to a higher

order of accuracy, it is important to note that the order of accuracy of elements is not

solely determined by the number of nodes. Rather, it is determined by the amount of

information available at each reference node. In other words, the accuracy of an element

depends on the amount of information or data associated with each individual reference node.

While increasing the number of nodes can provide more reference points for interpolation,

the availability of additional information at each node is crucial for achieving higher-order

accuracy. Therefore, the order of accuracy primarily relies on the quantity and quality of

information associated with the reference nodes, rather than the number of nodes alone.We

will refer to this as mesh enrichment rather than mesh refinement.

For an m-dimensional element to be well-defined, it is mandatory to have at least m+ 1

degrees of freedom. However, in order to achieve an arbitrary order of accuracy for an

m-dimensional element, we require a total of
(
p+m
p

)
pieces of information. The difference,

denoted as DOFadd, represents the additional degrees of freedom needed to construct an

element of order p.

Mathematically, we can express it as:

DOFadd =

(
p+m

p

)
− (m+ 1) (2.1)
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The additional reference information can be distributed among the sub-elements of the

original element to enhance accuracy. For example, in the case of a three-dimensional ele-

ment, this information can be allocated to faces, edges, or even vertices, allowing for different

types of information to be defined at the same location. However, it is crucial to ensure that

the information is equally distributed within each sub-element to maintain symmetry. For

instance, if there are four faces (two-dimensional sub-elements) in a three-dimensional ele-

ment, the extra information should be sufficient to assign equal amounts of information to

each face. This requirement places limitations on the available approaches to increase the

order of accuracy for arbitrary elements, as maintaining symmetry and equal distribution

within the sub-elements becomes crucial.

In general, there are three possible types of information that can be utilized as element

degrees of freedom:

1. Values: Solution’s specific values at individual nodes within the element.

2. Gradients: Arbitrary order gradients of solution at individual nodes.

3. Averages: Spatial average of solution within individual sub-elements1.

The selection of each type is contingent on the nature of the problem and the availability

of information locations within each sub-element. For instance, when opting for element

averages as degrees of freedom, there is a single information location representing the entire

element, which is the element itself.

Theorem 2. Let list = [x1, x2, ..., xk] be an arbitrary list of positive integers, and let n

be the target sum we want to obtain. We define the function f(n, nlast) that counts the

number of distinct ways to obtain the sum n by adding combinations of numbers from the list

without considering permutations. The parameter nlast ensures that we only use the same

or larger numbers in subsequent calls, thereby avoiding counting permutations of the same

combination.

The function f can be represented mathematically as follows:

f(n, nlast) =


1, if n = 0

0, if n < 0∑k
i=1 f(n− xi, xi), otherwise

1In the case of a zero-dimensional sub-element, this simplifies to the “value” type because the element
average of a node is identical to the individual value of that node.
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Proof. We will prove the correctness of the function f using mathematical induction.

Base Cases:

For n = 0, there is only one way to obtain the sum. Therefore, f(0, nlast) = 1.

For n < 0, it is not possible to obtain a non-negative sum. Hence, f(n, nlast) = 0.

Inductive Step:

Assuming the function works correctly for all values up to n, we will show that it also

works for n+ 1.

Let list = [x1, x2, ..., xk] be the list of numbers.

For n + 1, we iterate over the numbers in the list. If the current number xi is greater

than or equal to nlast, we recursively call f(n − xi, xi). This ensures that we only consider

numbers that are the same or larger than nlast, thus avoiding counting permutations of the

same combination.

By applying this logic, the function f(n, nlast) will correctly count the number of distinct

ways to obtain the target sum n by adding combinations of numbers from the given list

without considering permutations.

Hence, the function f is correct for any arbitrary list of positive integers and target sum.

Theorem 1 demonstrates that the number of k-dimensional sub-elements within an ar-

bitrary m-dimensional element, constructed using m + 1 nodes, is given by
(
m+1
k+1

)
, where

0 ≤ k ≤ m. It offers a set of fundamental integers that can be utilized to determine the

number of potential ways to enhance the element’s order of accuracy.

In our pursuit of increasing the order of accuracy, we recognize the significance of sym-

metry as a crucial property. Hence, we are exploring various methods to distribute the

additional degrees of freedom (DOFadd) among the sub-elements. This entails seeking one

of the many possible ways to distribute the number of sub-elements such that it sums up to

DOFadd. Understanding these limitations is vital, as it allows us to recognize scenarios where

the degrees of freedom cannot be evenly distributed among certain sub-elements, thereby

violating the symmetry requirement. This result provides a foundational understanding of

the combinatorial possibilities inherent in the element’s structure.

The information associated with each node in an m-dimensional element is utilized to

interpolate the properties within the element. This is typically performed by a set of basis

functions Bp = {bi} that form a complete set of polynomials of degree p. Here, Bp has(
p+n
p

)
members . Property q is then reconstructed by the projection of data onto Bp (see
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appendix A).

q =

(p+n
p )∑

i=1

cibi (2.2)

where ci is the coefficient corresponding to the basis function bi.

2.4 One-Dimensional Elements

A one-dimensional linear element comprises two nodes, namely x1 and x2, where x2 is greater

than x1. In this context, we are examining a one-dimensional element which exists within

a one-dimensional space (m = n) represented by x. To simplify matters, the element is

transformed from the physical space x to the reference space ξ using the following equation

(refer to figure 2.1):

ξ =
x− x1

x2 − x1

=
1

∆x
(x− x1) (2.3)

here, ∆x = x2 − x1 denotes the length of the element.

Figure 2.1: Mapping from physical space to reference space for a one-dimensional element.

Within the element, in order to achieve p-th order accuracy in interpolating properties,

we need p + 1 pieces of information to be available. As outlined in Theorem 2, there are

multiple approaches to accomplish this.

A traditional approach includes creating a stencil that integrates property values at p+1

evenly spaced and distinct locations, as demonstrated in Figure 2.2 (consult table 2.1 for

related coefficients and basis functions). However, a challenge arises when using this method

to attain high values of p. The expanded stencil can extend well beyond the actual domain of

dependence, unless extremely small time steps are utilized. This issue is further compounded

when employing iterative time-stepping techniques, like the Runge-Kutta method.

The Hermite element provides the required information in different forms, for example

as derivatives of the properties 2, perhaps at the same locations as the values, as shown in

Figure 2.3 (refer to table 2.2 for coefficients and basis functions).

2High-order moments of the properties are used in [48]
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(a) p = 1 (b) p = 2 (c) p = 3

Figure 2.2: Information placement for a one-dimensional element.

Index ci bi

1 q(ξ=0) 1− ξ
2 q(ξ=1) ξ

(a) p = 1

Index ci bi

1 q(ξ=0) 1− 3ξ + 2ξ2

2 q(ξ=1/2) 4ξ − 4ξ2

3 q(ξ=1) −ξ + 2ξ2

(b) p = 2

Index ci bi

1 q(ξ=0) 1− 5.5ξ + 9ξ2 − 4.5ξ3

2 q(ξ=1/3) 9ξ − 22.5ξ2 + 13.5ξ3

3 q(ξ=2/3) −4.5ξ + 18ξ2 − 13.5ξ3

4 q(ξ=1) ξ − 4.5ξ2 + 4.5ξ3

(c) p = 3

Table 2.1: Basis functions and coefficients for one-dimensional element reconstruction.

The order of accuracy of elements is determined by the amount of information available

at each node, rather than solely by the number of nodes. For instance, a one-dimensional

element with three nodes consists of two nodes located at each end and one in the mid-

dle. In this case, the value at the middle node and the first K derivatives (including the

zeroth derivative) at each end (denoted as ∂k, k = 0 . . . K, where k ranges from 0 to K)

are used together to reconstruct the element. This reconstruction allows for a polynomial

approximation of order 3 + 2K within the element.

In principle, the required amount of information can be provided in almost any combina-

(a) p = 3 (b) p = 4

Figure 2.3: Hermitian information placement for a one-dimensional element.
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Index ci bi

1 q(ξ=0) 1− 3ξ2 + 2ξ3

2 qξ(ξ=0) ξ − 2ξ2 + ξ3

3 q(ξ=1) 3ξ2 − 2ξ3

4 −qξ(ξ=1) ξ2 − ξ3

(a) p = 3

Index ci bi

1 q(ξ=0) 1− 11ξ2 + 18ξ3 − 8ξ4

2 qξ(ξ=0) ξ − 4ξ2 + 5ξ3 − 2ξ4

3 q(ξ=1/2) 16ξ2 − 32ξ3 + 16ξ4

4 q(ξ=1) −5ξ2 + 14ξ3 − 8ξ4

5 −qξ(ξ=1) −ξ2 + 3ξ3 − 2ξ4

(b) p = 4

Table 2.2: Hermitian basis functions and coefficients for one-dimensional reconstruction.

tion, although at least one value must be given (or else there is no way to define conservation)

and at least two locations must be used. In [65] three solution values and two solution gra-

dients were combined to give fourth-order reconstructions (p = 4) and this has become

somewhat standard in H-WENO methods.

It will not be attempted in this thesis to compare and evaluate every possibility. Heuristic

considerations [25], such as compactness and centering with respect to the required infor-

mation, are used to select a few promising possibilities. These are mostly analyzed in forms

that could be of practical use, but sometimes in a simple context, more extreme possibilities

will be explored.

2.5 Two-Dimensional Elements

A linear two-dimensional element is formed by three nodes, as illustrated in Figure 2.4, using

a barycentric coordinate system. The adoption of this coordinate system ensures stability

by virtue of providing a more orthogonal basis, as explained in Section 2.7.

Figure 2.4: Barycentric representation of a two-dimensional triangular element.

The transformation from barycentric coordinates σ = (σ1, σ2, σ3)
T to physical space co-
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ordinates x = (x, y)T is expressed as:

Rσ = x, (2.4)

where R = [r1|r2|r3] is the relation matrix with ri = (xi, yi)
T representing the Cartesian

coordinates of the triangle vertices. To ensure a unique and normalized conversion, the

barycentric coordinates must satisfy the condition σ1+σ2+σ3 = 1. This condition modifies

the conversion relation to:

[1|RT ]Tσ = [1|xT ]T −→

 1 1 1

x1 x2 x3

y1 y2 y3


σ1

σ2

σ3

 =

1

x

y

 (2.5)

The barycentric coordinates are thus the solution of the linear systemσ1

σ2

σ3

 =
1

2A

x2y3 − x3y2 y2 − y3 x3 − x2

x3y1 − x1y3 y3 − y1 x1 − x3

x1y2 − x2y1 y1 − y2 x2 − x1


1

x

y

 (2.6)

where 2A = det
(
[1|RT ]T

)
= x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2) is twice the signed area

of the triangle.

To improve the accuracy of an element, Eq. 2.1 suggests incorporating supplementary

information while preserving symmetry in the degrees of freedom (i.e., maintaining the same

degrees of freedom per sub-element). This concept is depicted in figures 2.5 and 2.6 for a

two-dimensional element.

(a) p = 1 (b) p = 2

Figure 2.5: Information placement of a two-dimensional element.

In the context of a two-dimensional element, we encounter a noteworthy constraint in

our attempts to enhance the accuracy. Lemma 1 establishes that a minimum of three nodes
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Index ci bi

1 q(1,0,0) σ1

2 q(0,1,0) σ2

3 q(0,0,1) σ3

(a) p = 1

Index ci bi

1 q(1,0,0) σ2
1 − σ1(σ2 + σ3)

2 q(1/2,1/2,0) 4σ1σ2

3 q(0,1,0) σ2
2 − σ2(σ1 + σ3)

4 q(0,1/2,1/2) 4σ2σ3

5 q(0,0,1) σ2
3 − σ3(σ1 + σ2)

6 q(1/2,0,1/2) 4σ1σ3

(b) p = 2

Table 2.3: Coefficients and basis functions for two-dimensional reconstruction.

ci bi

Vertex v
qv σ2

v + 2σv(σw + σx)− 2σwσx

Sqv σv(σw + σx)− σwσx

(a) p = 2

ci bi

Vertex v
qv σ4

v + 4σ2
v [σv(σw + σx)− σwσx]− 5σ2

v(σ
2
w + σ2

x)
Sqv→w σ3

vσw − 0.5σvσwσx(σv − σw + σx)− σ2
vσ

2
w

Midpoint vw
qvw 16σvσwσx(σv + σw − σx) + 16σ2

vσ
2
w

Sqvw 4σvσwσx(σx + σw − σx)

(b) p = 4

Table 2.4: Coefficients and basis functions for two-dimensional hermitian reconstruction.
The values of ci can be found in figure 2.6.

is necessary to construct a linear element (p = 1). To achieve a higher order of accuracy

i.e., p = 2, we require an additional DOFadd of 6 − 3 = 3. Preserving symmetry mandates

the equal distribution of these three additional degrees of freedom among all sub-elements.

However, since the number of sub-elements is either one (representing the two-dimensional

element as a whole) or three (corresponding to one- and zero-dimensional elements), adding

just one extra degree of freedom to the element itself, such as an element average, would

violate the symmetry requirement.

To address this challenge, two approaches are illustrated in Figure 2.5b and Figure 2.6a for

the scenario where p = 2. In the former figure, the extra degrees of freedom are distributed

along the edges, while in the latter figure, they are added at the vertices in the form of

gradients (Hermite element), effectively accommodating the required increase in accuracy

without violating symmetry.
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(a) p = 2

(b) p = 4

Figure 2.6: Hermite information placement of a two-dimensional element.

Within Hermite elements, the orientation of gradient directions is chosen deliberately to

yield a streamlined algebraic formulation for expressing the basis functions. This decision

leads to reduced computational overhead during basis function computations. For instance,

consider the element shown in Figure 2.6b. Initially, the approach involved imposing normal

gradients at each midpoint, aiming to ensure consistent normal gradients along all edges

to enhance continuity. However, this approach resulted in complex algebraic expressions.

Consequently, we opted to prescribe the gradient along the median of the element, yielding

more manageable algebraic manipulation.

Table 2.3 and 2.4 present the associated coefficients and basis functions for each element

reconstruction. Refer to appendix A for a detailed explanation of the derivation.
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2.6 Three-Dimensional Elements

Transitioning to higher dimensions introduces a greater consideration of realistic problems,

simultaneously leading to an exponential growth in the complexity of the underlying foun-

dations.

A three-dimensional element, depicted in Figure 2.7, is formed by four nodes and repre-

sented using a barycentric coordinate system.

Figure 2.7: Barycentric representation of a three-dimensional element. A point in phys-
ical space, denoted as x = (x, y, z), is represented using barycentric coordinates σ =
(σ1, σ2, σ3, σ4), satisfying the constraint σ1 + σ2 + σ3 + σ4 = 1.

Similarly, as demonstrated in Equation 2.4, for a three-dimensional element, the trans-

formation from barycentric coordinates σ = (σ1, σ2, σ3, σ4)
T to physical space coordinates

x = (x, y, z)T is expressed as

[1|RT ]Tσ = [1|xT ]T −→


1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4



σ1

σ2

σ3

σ4

 =


1

x

y

z

 (2.7)

where R = [r1|r2|r3|r4] is the relation matrix with ri = (xi, yi, zi)
T representing the

Cartesian coordinates of the four vertices of the three-dimensional element. The barycentric

coordinates σ1, σ2, σ3, and σ4 satisfy the constraint σ1 + σ2 + σ3 + σ4 = 1.

Improving the accuracy of higher-dimensional elements presents greater challenges due to

the increased degrees of freedom and the growing number of sub-elements, as indicated by

Lemma 2 and Theorem 1. This complexity makes it more difficult to assign the additional

degrees of freedom DOFadd in Equation 2.1 equally without violating the symmetry. Figure

2.8 demonstrates three-dimensional elements exhibiting higher accuracy.
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(a) p = 2

(b) p = 4

Figure 2.8: Information placement within a three-dimensional element. For p = 4, an ad-
ditional degree of freedom exists, representing the element average. Gradients are indicated
by black arrows. Refer to table 2.5 for the corresponding values.

Table 2.6 displays the corresponding basis functions and coefficients for the three-

dimensional elements depicted in this figure (see appendix A for derivation).

2.7 Numerical Sensitivity

Numerical sensitivity plays a pivotal role in assessing the impact of even slight discrepancies

within the data on the intricacies of the reconstruction process. It not only provides a

metric for measuring the extent of such influences but also serves as a discerning gauge to

determine the susceptibility of the reconstruction to the presence of inaccuracies embedded

within the data. In essence, numerical sensitivity unravels the intricate relationship between
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Information ci

Vertex v
qv qv

Sqv→w (∂σw − ∂σv)(qv)

Midpoint vw, triangle vwx
qvw qvw
Sqvw [∂σx − (∂σv + ∂σw)/2](qvw)

Table 2.5: Coefficients for information placement within a three-dimensional element (p = 4).

ci bi

Vertex v qv σ2
v − σv(σw + σx + σy)

Midpoint vw qvw 4σvσw

(a) p = 2

ci bi

Vertex v
qv

σ4
v + 4σ3

v(σw + σx + σy)− 5σ2
v(σ

2
w + σ2

x + σ2
y)

− 4σ2
v(σwσx + σwσy + σxσy)− 12σvσwσxσy

Sqv→w

σ3
vσw − σ2

vσ
2
w − 0.5(σx + σy)(σ

2
vσw − σvσ

2
w)

− 0.5σvσw(σ
2
x + σ2

y)

Midpoint vw, triangle vwx
qvw

16σ2
vσ

2
w + 16(σx + σy)(σ

2
vσw + σvσ

2
w)

− 16σvσw(σ
2
x + σ2

y)− 128σvσwσxσy

Sqvw 4σvσwσx(σv + σw − σx)− 8σvσwσxσy

Element Average q̄ 1680σvσwσxσy

(b) p = 4

Table 2.6: Coefficients and basis functions for three-dimensional reconstruction. The ci can
be found in figure 2.8.

the accuracy of the reconstruction and the potential perturbations within the input data

introduced by machine precision, offering valuable insights into the robustness and reliability

of the overall methodology.

Equation 2.2 presents the reconstruction process for property q. This process involves

projecting q onto a set of basis functionsBp, accommodating elements of arbitrary dimensions

and orders.

The basis function bi is derived through the methodology elucidated in Appendix A and

is expressed as

bi = λi ·φ (2.8)

Here, λi signifies the reconstruction parameters vector for the ith basis function, while φ

represents the vector of basis features, each possessing a length of
(
p+n
p

)
.
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The inner product of the basis features across an n-dimensional domain Ω is defined as

⟨φi, φj⟩Ω =

ˆ ˆ
· · ·
ˆ
Ω

φiφj dΩ (2.9)

The collinearity between two basis features is then determined by:

⟨φi ∥ φj⟩Ω =
|⟨φi, φj⟩Ω|√

⟨φi, φi⟩Ω
√

⟨φj, φj⟩Ω
(2.10)

Here, the value of ⟨φi ∥ φj⟩Ω ranges between 0 and 1, where 0 indicates that φi and φj are

orthogonal, and 1 indicates that they are collinear.

A set of basis features is characterized as orthogonal if, for every i ̸= j, the collinearity

of any two distinct basis features equals zero.

⟨φi ∥ φj⟩Ω = 0 for i ̸= j (2.11)

The orthogonality of a set of basis features significantly impacts the sensitivity of re-

construction. When a set of basis functions is orthogonal, it means that the functions are

mutually independent and have minimal overlap in the space they span. This property has

profound implications for the accuracy and stability of reconstruction processes. While the

exact orthogonality of basis features isn’t a strict prerequisite for the reconstruction process,

the degree of orthogonality significantly influences its stability. As the level of orthogonality

decreases—reflected by increasing deviations from 0 in ⟨φi ∥ φj⟩Ω for i ̸= j—the reconstruc-

tion becomes more susceptible to instability.

To illustrate this phenomenon, in one-dimensional space, within domain Ω = [0, 1] con-

sider the basis features used for reconstructing a polynomial of order p. These are in fact

the monomial functions;

φ = (1, ξ, ξ2, . . . , ξp) (2.12)

In this context, the collinearity between features i and j within the element can be described

as

⟨ξi ∥ ξj⟩Ω =
⟨ξi, ξj⟩Ω√

⟨ξi, ξi⟩Ω
√

⟨ξj, ξj⟩Ω
=

√
2i+ 1

√
2j + 1

1 + i+ j
for i, j = 0, 1, · · · , p (2.13)

As the parameter p increases, the collinearity of higher-order basis features tends to approach

unity (≈ 1). This trend leads to a substantial overlap in the space covered by each individual

feature, thereby causing instability in the reconstruction procedure. Put differently, the

higher-order components within the features become tightly grouped, leading to a reduction
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in their distinctiveness and independence. This phenomenon is visualized in Figure 2.9.

From this we reach the well-known conclusion that the monomials themselves do not make

a good basis for polynomial reconstruction, and this provides the motivation for the various

orthogonal polynomials [66].
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Figure 2.9: Collapse of orthogonality: Illustration of increasing collinearity with growing p.

To shed further light on this matter, we quantify how the degree of orthogonality among

a set of basis features contributes to the instability of a scheme.

Resuming from Equation 2.2, which delineates the reconstruction process, we proceed by
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substituting Equation 2.8 with the expression bi, thus yielding

q =

(p+n
p )∑

i=1

cibi =

(p+n
p )∑

i=1

ciλi ·φ =

(p+n
p )∑

i=1

(p+n
p )∑

j=1

ciλijφj

=

(p+n
p )∑

j=1

(p+n
p )∑

i=1

ciλijφj =

(p+n
p )∑

j=1

φj

(p+n
p )∑

i=1

ciλij =

(p+n
p )∑

j=1

λ∗
jφj (2.14)

where

λ∗
j =

(p+n
p )∑

i=1

ciλij (2.15)

In this expression, λij denotes the reconstruction parameter corresponding to basis function

i and feature j.

As an illustrative example, within the context of a one-dimensional space, Equation 2.14

takes on the following form

q(ξ) =

p+1∑
i=1

cibi(ξ) =

p∑
i=0

λ∗
i ξ

i, (2.16)

The reconstruction of property q on an element involves the interpolation and/or extrap-

olation of data within that element. The reconstruction parameters λ∗ for this interpolation

and/or extrapolation is achieved through

Aλ∗ = q (2.17)

where A represents the coefficient matrix and q represents the data vector. For instance, in

one-dimensional space, Equation 2.17 corresponding to a second-order element (p = 2) can

be expressed as: 1 0 0

1 1
2

1
4

1 1 1


λ∗

0

λ∗
1

λ∗
2

 =

 q(ξ=0)

q(ξ=1/2)

q(ξ=1)

 (2.18)

at which rows of matrix A is computed by

A(ξ) =
[
1 ξ ξ2

]
for ξ = 0,

1

2
, 1 (2.19)

Equation 2.17 is solved to determine the reconstruction parameters. A reconstruction is

considered well-conditioned when small errors in the data vector q lead to small variations
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in the reconstruction parameters λ∗. These errors arise due to the limitations of machine

precision. However, if the reconstruction is ill-conditioned, these errors will exponentially

amplify with each iteration over time.

In order to conduct a more thorough analysis of the categorization of a reconstruction

as well- or ill-conditioned, we direct our attention towards elucidating the manner in which

variations in the data vector q manifest within the reconstruction parameters vector λ∗.

Let’s consider a perturbation in the data vector q, denoted as ∆q. This perturbation leads

to a corresponding change in the reconstruction parameters, denoted as ∆λ∗. We can express

the perturbed equation as:

A(λ∗ +∆λ∗) = q +∆q (2.20)

Expanding the left-hand side using the distributive property of matrix multiplication

Aλ∗ +A∆λ∗ = q +∆q (2.21)

Subtracting Equation 2.17 from this perturbed equation

A∆λ∗ = ∆q (2.22)

Now, we’re interested in the relationship between the magnitudes of ∆q and ∆λ∗. We’ll

denote the norms of these vectors as ||∆q|| and ||∆λ∗||, respectively.
Utilizing the properties of norms and given that matrix A is nonsingular—a necessary

condition, as otherwise Equation 2.17 remains unsolvable

Aλ∗ = q ⇒ ||q|| ≤ ||A|| · ||λ∗|| (2.23)

A∆λ∗ = ∆q ⇒ ∆λ∗ = A−1q ⇒ ||∆λ∗|| ≤ ||A−1|| · ||∆q|| (2.24)

By multiplying Equation 2.23 with Equation 2.24 and subsequently dividing both sides by

||q|| · ||λ∗||:
||∆λ∗||
||λ∗||

≤ ||A|| · ||A−1|| ||∆q||
||q||

(2.25)

Now, recall that the condition number of matrix A is given by κ(A) = ||A|| · ||A−1||.
Therefore:

||∆λ∗||
||λ∗||

≤ κ(A)
||∆q||
||q||

(2.26)

In Equation 2.26, the value ||∆q||/||q|| represents the relative alteration in the data, while the

quantity ||∆λ∗||/||λ∗|| signifies the ensuing relative change in the reconstruction. Utilizing

relative changes holds the advantage of dimensionlessness, rendering them impervious to
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overall scale factors. The inequality elucidates that the condition number functions as an

amplification factor for relative errors. Perturbations in the data can lead to modifications

in the reconstruction that are magnified by a factor of κ(A). This marks the culmination

of our classification of well- and ill-conditioned reconstructions. A reconstruction is labeled

as well-conditioned when the condition number κ(A) approaches 1. On the contrary, a

reconstruction is deemed ill-conditioned when κ(A) significantly exceeds 1.

Table 2.7 provides condition numbers for various one-dimensional elements, illustrating

how the numerical stability exponentially deteriorates with increasing order of element accu-

racy. It further emphasizes that the Hermite reconstruction not only enhances the stability

threshold of the numerical algorithm but also exhibits significantly better numerical stability

compared to standard reconstructions on the same degree of freedom.

Standard Hermitian

p = 1 2.6 –
p = 2 15.1 –
p = 3 98.9 23.8
p = 4 686.4 283.1

Table 2.7: Condition numbers for different elements in one-dimensional space.

To address the instability linked with higher-order elements, a strategy involves applying

Gram-Schmidt orthogonalization to the basis features. For instance, in the context of a

quadratic reconstruction (p = 2) for a one-dimensional element, instead of employing φ =

(1, ξ, ξ2), one can opt for shifted Legendre polynomials φ = (1, 2ξ − 1, 6ξ2 − 6ξ + 1) to

achieve this. Nevertheless, employing this approach in higher dimensions with enhanced

accuracy can lead to notable computational costs. Alternatively, using more symmetric

coordinate systems such as barycentric coordinates can help reduce the condition number

without incurring significant computational costs. These coordinate systems provide a more

orthogonal set of basis features, leading to a reduced condition number of the reconstruction

and thus greater stability. Table 2.8 presents a comparison of the condition numbers for

two-dimensional Hermite triangular elements in both Cartesian and barycentric coordinate

systems. In this table, it is demonstrated that for a linear reconstruction (p = 1), the basis

functions exhibit orthogonality when employing a barycentric coordinate system. Conversely,

while a Cartesian coordinate system maintains stability, it does not yield orthogonality. For

quartic reconstruction (p = 4), the condition number in the Cartesian coordinate system

surpasses that of the barycentric system by an order of magnitude. According to findings

from the experiment [1], this increased condition number in the linear acoustic solver, to

be discussed in Chapter 3, renders it unstable. This instability propels the adoption of the
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barycentric coordinate system as the preferred choice for presenting our higher-dimensional

elements.

Cartesian Barycentric

p = 1 3.7 1.0
p = 2 16.4 11.0
p = 4 1592.0 216.2

Table 2.8: Condition numbers for different Hermite elements in two-dimensional space.

2.8 Grids

By connecting the nodes of adjacent elements, a mesh or grid is formed, enabling the entire

domain to be discretized into a collection of interconnected elements.

a system of equations can be effectively solved by leveraging a grid. Typically, these equa-

tions are derived from conservation laws, necessitating the transfer of information between

adjacent elements. In this context, an element of dimensionality m is considered to have

neighboring elements that share (m − 1)-dimensional sub-elements. It is essential to note

that information can only be transferred between such (m − 1)-dimensional sub-elements.

Thus, maintaining a connection between elements becomes crucial.

To achieve this, a graph data structure is constructed, representing the grid. In this graph,

each element is represented as a node, and edges are defined to connect two m-dimensional

elements that share an (m−1)-dimensional sub-element. This has been shown in figure 2.10

By organizing the problem in this manner, the efficient transfer of information and solving

of the system of equations can be facilitated.

Here, the information will be updated through a graph traversal process, which demon-

strates an efficient time complexity of O(n), where n represents the number of elements. This

traversal is crucial for updating the information associated with each element. Algorithm

2.1 provides a detailed description of this efficient traversal approach.
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Figure 2.10: Schematic representation of a grid as a graph data structure.

Algorithm 2.1 Grid Traversal

Require: Grid G with n elements and information associated with each element.
Ensure: Updated information for all elements in the grid.
1: function GridDFS(element)
2: Mark element as visited.
3: Update the information associated with element.
4: for each neighbor e of element do
5: if e is not visited then
6: GridDFS(e)
7: end if
8: end for
9: end function
10: GridDFS(element) {Start the recursive GridDFS from a chosen starting element.}
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CHAPTER 3

Acoustics: Coarse Grids with a High-Order

Method

The Euler equations constitute a fundamental system of three-dimensional partial differential

equations that describe the dynamics of inviscid fluid flow. These equations hold significant

importance in the field of fluid dynamics and find wide-ranging applications in both scientific

research and engineering. In response to the complexities inherent in the Euler equations,

Eymann et al. [67] have proposed an innovative approach involving the decomposition of these

equations into distinct advective and acoustics components in multi-dimensional settings.

Within this framework, they introduce a cutting-edge technique known as Active Flux, a

promising and novel method for addressing the solution for each component.

This is predicated on the hypothesis that to ensure accuracy, and more specifically band-

width, it is very important that all information flow is correctly modeled. Roe [25] believes

that this is the way to construct schemes that enjoy wide bandwidth, which in many cases

is more important than high formal accuracy. The ingredients for this are continuous re-

construction, analysis at the PDE level to a desired order, appropriate stencil choice and

fully discrete timestepping. The resulting method therefore deviates from current practice in

numerous ways. Since optimal stencils are very different for acoustic and advective behavior,

different stencils must be used for different modes of information. The decomposition cannot

be directly performed on the equations in conservation form, but can be imposed by finding

the fluxes in an evolutionary manner that distinguishes the two effects. This leads to the

method being called the Active Flux. Acoustic and advective effects are then computed

almost independently

In this chapter, our primary focus lies in addressing the acoustics component, which

presents notable challenges. Our research is dedicated to achieving heightened accuracy in

numerical solutions of the acoustic equations while simultaneously maintaining the same

storage requirements, thereby obviating the need for reduced timesteps. This endeavor

aims to contribute to the advancement of numerical simulations in fluid dynamics, thereby
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enhancing our understanding and analysis of various real-world flow situations.

3.1 Governing Equations

For completeness, we start with the unsteady Euler equations that govern the dynamics of

ideal compressible flows and are expressed in a conservative vector form

ρt +∇ · (ρu) = 0 (3.1)

(ρu)t +∇ · (ρu× u) = −∇p (3.2)

(ρE)t +∇ · [u (ρE + p)] = 0 (3.3)

where ρ represents density, u denotes the velocity vector, and p stands pressure. The total

energy per unit volume, E, is also defined as

E = e+
1

2
|u|2 (3.4)

with e being the internal energy per unit volume.

The equation of state also is given by

p = ρe(γ − 1) (3.5)

where γ is the specific heat ratio, a fundamental property of the fluid influencing its thermo-

dynamic behavior under compressible conditions. These equations describe the conservation

of mass, momentum, and energy, respectively, in the flow field

Nonconservative systems play a significant role when it comes to achieving accurate nu-

merical discretization. To address this, a Lax-Wendroff type discretization method is applied

to the nonconservative system, particularly to the physical disturbance systems that are dis-

tinctly present within it. This approach offers valuable insights into the temporal evolution

of each physical disturbance, contributing to a more intuitive understanding of their behavior

over time.

Below is the representation of the nonconservative Euler system

ρt + u · ∇ρ+ ρ∇ · u = 0 (3.6)

ut + u · ∇u+
1

ρ
∇ρ = 0 (3.7)

pt + u · ∇p+ γp∇ · u = 0 (3.8)
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Introducing entropy as a measure of system disorder linked to the dispersion of energy,

s = Cv log
p

ργ
+ C (3.9)

Under isentropic conditions, it implies

∂p

∂ρ

∣∣∣∣
s=constant

≡ a2 =
γp

ρ
(3.10)

Here a2 represents the square of the speed of sound in the system.

Equations 3.6 - 3.8 can be expressed in matrix form as

qt +AD(q) +AC(q) = 0 (3.11)

Here, q = (ρ, u, v, w, p)T represents the vector of nonconservative variables. The operators

AD and AC correspond to the advective and acoustic operators, respectively.

The advective operator AD is given by

AD =


u · ∇ 0 0 0 0

0 u · ∇ 0 0 0

0 0 u · ∇ 0 0

0 0 0 u · ∇ 0

0 0 0 0 u · ∇

 (3.12)

and the expression for the acoustic operator AC is as follows

AC =


0 ρ∂x ρ∂y ρ∂z 0

0 0 0 0 1
ρ
∂x

0 0 0 0 1
ρ
∂y

0 0 0 0 1
ρ
∂z

0 ρa2∂x ρa2∂y ρa2∂z 0

 (3.13)

This matrix representation decomposes the nonconservative Euler equations into the ad-

vective and acoustic components, allowing for a more insightful analysis of the system’s

dynamics. This approach has been used in [43] and [44] to compute the flow due to a trans-

lating vortex and also past a lifting airfoil. In this thesis, we will only be concerned with the

acoustic subsystem but we will also consider its extension to linear elastodynamics.

By linearizing the acoustic subsystem, we can express the linearized acoustic part of the
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Euler equations as follows

qt + a0LAC(q) = 0 (3.14)

where a0 is wave speed which in general may be a function of time and space and LAC is the

linearized acoustic spatial gradient matrix

LAC =


0 ∂x ∂y ∂z

∂x 0 0 0

∂y 0 0 0

∂z 0 0 0

 (3.15)

It’s noteworthy that if the coefficient a0 is not constant, Equation 3.14 can give rise to

vorticity ω = ∇× u according to

∂tω +∇a0 ×∇p = 0 (3.16)

Equation 3.16 is derived by taking the curl of Equation 3.14.

In Equation 3.14, the primitive variables q are nondimensionalized using a0 and constant

density, ρ0, and will be displayed as

q =


p/(ρ0a

2
0)

u/a0

v/a0

w/a0

 (3.17)

Henceforth, we adopt the convention of utilizing the variables in their normalized form. As

an instance, p signifies the normalized pressure, namely p/(ρ0a
2
0), within the context of this

discussion.

For this specific subset of problems, it is possible to obtain an exact solution for updating

the pressure and velocity over time.

3.2 Exact Solutions

Equation 3.14 possesses a formal solution that is defined by

q(t,x) = exp(−a0LAC)q(0,x) =
∞∑
p=0

(−a0LACt)
p

p!
q(0,x) (3.18)
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A fascinating and valuable characteristic of the gradient matrix LAC is its fulfillment of

Lp+2
AC

= ∇2Lp
AC

for p > 2 (3.19)

where ∇2 denotes the Laplacian operator in three-dimensional space.

By utilizing this distinct property of LAC , we can transform Equation 3.18 into a series

of odd and even terms, which are further expanded using Equation 3.14 as a basis.

q(t) = q(0)−
∞∑

p=2p−1

(a0LACt)
p

p!
q(0) +

∞∑
p=2p

(a0LACt)
p

p!
q(0)

= q(0)− a0LACt

∞∑
p=2p−1

(a0LACt)
p−1

p!
q(0) + (a0LACt)

2

∞∑
p=2p

(a0LACt)
p−2

p!
q(0)

= q(0)− a0LACt

{
∞∑

p=2p−1

(a0t)
p−1

p!
∇p−1

}
q(0) + (a0LACt)

2

{
∞∑

p=2p

(a0t)
p−2

p!
∇p−2

}
q(0)

= q(0)− t

{
∞∑
p=0

(a0t)
2p

(2p+ 1)!
∇2p

}
a0LACq(0) + t2

{
∞∑
p=0

(a0t)
2p

(2p+ 2)!
∇2p

}
a20L2

AC
q(0)

= q(0) + t

{
∞∑
p=0

(a0t)
2p

(2p+ 1)!
∇2p

}
qt(0) + t2

{
∞∑
p=0

(a0t)
2p

(2p+ 2)!
∇2p

}
qtt(0) (3.20)

Concurrently, Darboux’s equation is given by

∂rrMr{f}(x) +
2

r
∂rMr{f}(x) = Mr{∇2f}(x) (3.21)

and it holds true for any function f(x) that has been obtained as the spherical mean of some

other, sufficiently smooth, function.

This equation has a solution represented by

Mr{f}(x) =
sinh(∇r)

∇r
f(x) (3.22)

In Equation 3.22, Mr{f}(x) represents the spherical means of a function f , defined as

Mr{f}(x0) =
1

4πr2

¨
∂Br(x0)

f(y) dS(y) (3.23)

where the spherical means compute the average value of function f(x) over the surface area

∂Br(x0) of the influence sphere Br(x0) with radius r centered at x0.
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The odd terms in Equation 3.20 can then be computed as follows:

MR{f}(x) =
∞∑
p=0

(a0t)
2p

(2p+ 1)!
∇2p (3.24)

where, the radius of the spherical means is denoted as R = a0t.

This phenomenon arises from the fact that the spherical means formula can be represented

as a series of point evaluations involving increasing powers of the Laplacian operator. This

property becomes evident when we expand the spherical means formula as follows:

Mr{f}(x0) =
1

4πr2

¨
∂Br(x0)

f(y) dS(y) =
1

4πr2

∞∑
p=0

(−1)p

(2p)!
r2p∇2pf(x0) (3.25)

This expression illustrates how the spherical means of the function f at the point x0 can

be computed by evaluating the function f at that point and its higher-order Laplacian

derivatives, which are determined by the powers of ∇2 in the series.

Subsequently, we may incorporate the derived expression directly into the subsequent

integral, resulting in a term that corresponds to the even components in Equation 3.20.

2

R2

ˆ R

0

rMr{f}(x) dr =
2

R

ˆ R

0

r sinh(∇r)

∇r
f(x) dr

=
2 cosh(∇R)− 1

∇2R2
f(x)

= 2
∞∑
p=0

(a0t)
2

(2p+ 2)!
∇2pf(x) (3.26)

Thus, we can represent the formal solution to the linear acoustics system using Equa-

tions 3.24 and 3.26 as follows:

q(t,x) = q(0,x) + tMR{qt}(0,x) +
1

a20

ˆ R

0

rMr{qtt}(0,x) dr (3.27)

this applies to all components of q.

To determine the first component, p, we begin by taking the second time-derivative of

the pressure equation in Equation 3.14:

ptt − a20∇2p = 0 (3.28)
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As a result, we can express p(t,x) as:

p(t,x) = p(0,x) + tMR{pt}(0,x) +
ˆ R

0

rMr{∇2p}(0,x) dr (3.29)

Upon combining the first and third terms, we obtain the well-known exact solution for the

scalar wave equation, as commonly found in textbooks on partial differential equations [68,

64].

p(t,x) = [tMR{p}(0,x)]t + tMR{pt}(0,x) (3.30)

A different representation of the preceding expression can be attained through the expan-

sion of the first term, wherein the time derivative is replaced by a derivative with respect

to R. Subsequently, the time derivative can be substituted with spatial derivatives obtained

from the pressure equation in Equation 3.14, as originally derived by Eymann [69].

p(t,x) = MR{p}(0,x) +R[MR{p}(0,x)]R + tMR{pt}(0,x)

= MR{p}(0,x) +R[MR{p}(0,x)]R −RMR{∇ · u}(0,x) (3.31)

It was subsequently pointed out by Barsukow et al. [70] that a variation of this formula

is valid in the sense of distributions. The practical implications of this have yet to be fully

worked out.

A similar simplification process can be applied to the velocity components of q by utilizing

the second time-derivative of the velocity equations in Equation 3.14.

utt − a20∇2u− a20∇×∇× u = 0 (3.32)

This results in the following expression for u(t,x):

u(t,x) = MR{u}(0,x) +R[MR{u}(0,x)]R −RMR{∇p}(0,x)

+

ˆ R

0

rMr{∇ ×∇ × u}(0,x) dr (3.33)

Considering the volume integral for an arbitrary velocity field u(x)

V =

˚
Ω

∇×∇× u dV (3.34)
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We can apply the generalized form of Stokes’ equations to obtain

V =

˚
Ω

∇×∇× u dV =

‹
∂Ω

n̂× (∇× u) dS (3.35)

By using the classic Stokes’ theorem, we recognize that the flux integral of a curl field over

a closed surface is zero due to the absence of a boundary for a closed surface. Consequently

V = −
‹

∂Ω

∇× (u× n̂) dS = −
ˆ
0

(u× n̂) ds = 0 (3.36)

Next, we establish a relationship between the radial change in the volume integral and the

spherical means integral

Vr = 4πr2Mr{∇ ×∇× u}(x) = 0 (3.37)

This leads to the conclusion that Mr{∇ ×∇× u}(x) = 0, thereby eliminating the integral

term in Equation 3.33.

Ultimately, the exact solution to Equation 3.14 can be expressed as follows

q(t,x) = MR{q}(0,x) +R[MR{q}(0,x)]R −RMR{LACq}(0,x) (3.38)

Visually, this has the appearance of a Lax-Wendroff expansion and can be used to derive

one if the spherical means are evaluated to low order. If the spherical means are evaluated

with increasing accuracy, the accuracy of the formula increases correspondingly. The second

term contains the effects of all odd time derivatives, and the third term the effects of all even

time derivatives.

Hermite elements employ gradients among their degrees of freedom. This gives rise to

the requirement for an exact solution concerning the gradients of q(t,x). Given the linear

nature of the spherical means integral Mr{f}(x) and the linearized acoustic spatial gradient

operator LAC , it becomes feasible to differentiate Equation 3.38 to derive an exact solution

for gradients.

qxi
(t,x) = MR{qxi

}(0,x) +R[MR{qxi
}(0,x)]R −RMR{LACqxi

}(0,x) (3.39)

Higher-order gradients can also be derived by taking successive derivatives, effectively ob-

taining a derivative of a derivative, as demonstrated in the differentiation of Equation 3.39.
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3.3 Numerical Solutions on Coarse Grids

The conservation law equations are expressed as:

Qt +
3∑

i=1

(fi)xi
= 0 (3.40)

In this equation, Q represents the vector of conservative variables, and fi denotes the flux

in the direction xi

The Finite Volume Methods (FVM) are widely used numerical discretization techniques

for solving conservation laws. They divide the computational domain into discrete control

volumes, preserving essential physical quantities like mass, momentum, and energy. FVM’s

accuracy lie in approximating fluxes across control volume interfaces, considering neighboring

variables and gradients. Their adaptability to complex geometries makes them a preferred

choice in various computational simulations, ensuring robustness and accuracy in analyzing

intricate scientific problems. However, the unstructured discretization nature limits FVM’s

development for higher accuracy. Unstructured grids, in particular, pose challenges in finding

neighbors of neighbors. Furthermore, this is not the only concern; even if efficient algorithms

are developed to address the computation of fluxes with a larger stencil, the method should

still remain fully-discrete and explicit. The reason is that although the numerical stencil

must, clearly, enclose the analytical domain of dependence to prevent instability, a numerical

stencil that is too large will include data that has no relevance to the solution, which results

either in instability or in a very dissipative scheme. Additionally, any semi-discrete method

adds to its stencil at each stage and will eventually take most of its data from outside the

true domain of dependence, unless the time step is made very small. Hence, although semi-

discrete methods do allow us to obtain high formal accuracy for long waves, they are of little

use with regard to obtaining well-behaved mid- and high-frequency behavior.

The Active Flux method presents a novel approach to address the issues faced by current

high-order methods, as mentioned earlier. The scheme’s name reflects its distinct feature

of updating interface values independently from conserved quantities. This is achieved by

computing an active flux directly from edge values, taking into account both previous cell

values and previous edge values. It is essential to note that the interface update does not

necessarily need to be conservative. Instead, the requirement is for the fluxes to be consistent,

allowing for the use of any suitable method to generate an interface update. For instance,

Equation 3.40 can also be expressed in terms of primitive variables, which are often easier
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to nonconservatively solve and can be employed for the interface update.

qt +
3∑

i=1

Aq
i qxi

= 0 (3.41)

In this equation, q denotes the vector of primitive variables, andAq
i represents the coefficient

matrices associated with the primitive form of the conservation laws.

Unlike the FVM, which rely more on inter-element communication, the AF method’s

strength lies in its ability to generate flux values from interface data, resulting in a conserva-

tive scheme. The AF method operates primarily within individual elements, minimizing the

need for extensive communication between neighboring elements. This flexibility in selecting

the interface update method also allows for the integration of multidimensional physics.

In the AF method, the solution of conservation laws unfolds in four distinct stages.

1. Reconstruction: The initial step of the AF method is to perform a reconstruction of

primitive variables q within an element. This choice guarantees the scheme’s exactness

for data with the order of reconstruction.

2. Evolution: In the second stage, the AF method updates the primitive variables at

the element interface using any consistent and appropriate method. The method

need not be conservative, offering the advantage of selecting an update method that

accurately represents physical processes in multidimensions.

3. Conservation: The third stage involves constructing average fluxes from the interface

data by integrating along the element’s interfaces, utilizing a high-order approximation

compatible with the reconstruction. These fluxes are then used to update the conserved

element-average, akin to finite volume methods.

4. Correction: The fourth and final stage, if necessary, corrects the interface values to

ensure that the reconstruction’s average aligns with the element average updated in

stage three. It’s important to note that due to the non-conservative nature of the

evolution stage, this alignment is not automatically satisfied. Explicit enforcement be-

comes essential, particularly when the element reconstruction lacks a degree of freedom

as the element average.

This is depicted schematically in Figure 3.1. Algorithm 3.1 also demonstrates the modifi-

cations to Algorithm 2.1 required to adapt it for different stages of the active flux method.

These updates are carried out through grid traversal procedures. Note that in this algorithm,

stages one and two are combined into a single function.
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Algorithm 3.1 Active Flux

Require: Grid G with n elements and information associated with each element.
Ensure: Numerically solve conservation laws.
1: function InterfaceUpdate(element)
2: Mark element as visited.
3: Reconstruct the solution within element.
4: Update element’s contribution to the interfaces.
5: for each neighbor e of element do
6: if e is not visited then
7: InterfaceUpdate(e)
8: end if
9: end for
10: end function
11: function Conserve(element)
12: Mark element as visited.
13: for each face f of element do
14: if f is not visited then
15: Mark f as visited.
16: Compute the average flux at f .
17: Add/subtract the appropriate residual value to elemnt/neighboring element inter-

faced with f .
18: end if
19: end for
20: for each neighbor e of element do
21: if e is not visited then
22: Conserve(e)
23: end if
24: end for
25: end function
26: function Correct(element)
27: Mark element as visited.
28: Calculate the difference between the element average updated from conservation and the

reconstruction’s average.
29: Incorporate element’s contribution into the interface correction.
30: for each neighbor e of element do
31: if e is not visited then
32: Correct(e)
33: end if
34: end for
35: end function
36: Call InterfaceUpdate with an starting element.
37: Call Conserve with an starting element.
38: Call Correct with an starting element.
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Figure 3.1: Schematic representation of Active Flux Element.

3.3.1 One Dimension

Let’s begin by performing a preliminary analysis of linear acoustics in one-dimensional space

written in conservative form as

qt + fx = 0 (3.42)

where q = (p, u)T is the conserved vector, and f = a0(u, p)
T is conservative flux function

with constant wave-speed a0.

The solution q = q(t, x) to Eq. 3.42 undergoes spatial and temporal evolution within an

arbitrary spatial domain Ω, which is divided into N non-overlapping elements denoted as

Ωi = {x|xi < x < xi+1}, Ω =
N⋃
i=1

Ωi (3.43)

Similar to the approach described in Section 2.4 for a single element, we utilize a mapping

technique to streamline the representation of the solution within these elements. This map-

ping transforms the physical space x within each element Ωi into a reference space ξ using

the equation

ξ =
x− xi

xi+1 − xi

=
1

∆x
(x− xi) (3.44)

where ∆x = xi+1 − xi represents the element length (refer to figure 3.2).
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Figure 3.2: Mapping from physical space to reference space for one-dimensional element.

3.3.1.1 Reconstruction

Within the element Ωi, the solution q is reconstructed through data interpolation using a

polynomial of degree p, exclusively within the confines of Ωi, and holding a value of zero

outside of this element. Employing explicit methods in evolution stage, we analyze the

problem within each element Ωi, which computes a new solution qn+1
i based on the old

solution qn
i with an accuracy of (p + 1)-th order. Consequently, for this computation, it is

necessary to have p+1 pieces of information available at time-level n to ensure the accuracy

of the method.

In the context of one-dimensional space, this interpolation process is achieved through a

set of basis functions denoted as Bp = {bi(ξ)}, which collectively constitute a complete set

of polynomials of degree p. The set Bp consists of p+ 1 basis functions. The approximation

of q is then performed by projecting the data onto these basis functions Bp, leading to the

representation

q(ξ) =

p+1∑
i=1

cibi(ξ) (3.45)

In the given equation, ci denotes the coefficient associated with the basis function bi, enabling

us to reconstruct the solution q within the element Ωi. Refer to Figure 2.2 and 2.3, as well

as Table 2.1 and 2.2 for detailed information on the various element types, their coefficients,

and corresponding basis functions.

The selection of elements depends on the accuracy requirements, offering various options

like incorporating Hermite elements alongside standard elements. The utilization of Hermite

elements allows the inclusion of gradients as additional information to enrich the element,

resulting in improved stability and efficiency in finding the solution. A comprehensive ex-

planation of these distinct element choices is provided in Chapter 2. In the present chapter,

our primary focus lies in the exploration and evaluation of highly accurate elements that

facilitate acoustic analysis on coarse grids.
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3.3.1.2 Evolution

During the evolution stage, we adhere to the methodology given in Section 3.2 for obtaining

the exact solutions of the linear acoustic equations. In the context of one-dimensional space,

utilizing Equation 3.14, we reduce LAC to accommodate the one-dimensional nature of the

problem.

LAC
1D =

[
0 ∂x

∂x 0

]
(3.46)

Here, the spherical means integral adopts a straightforward form, reducing to

MR{f}(x) =
1

2R

ˆ R

−R

f(x)dx (3.47)

This simplification leads to the expressions for the exact solutions as presented in equa-

tion 3.38

p(t, x) =
1

2
[p(0, R) + p(0,−R)− u(0, R) + u(0,−R)] (3.48)

u(t, x) =
1

2
[u(0, R) + u(0,−R)− p(0, R) + p(0,−R)] (3.49)

These expressions serve as the basis for the independent update method utilized during

the evolution stage. It’s worth noting the linear characteristic of Equation 3.48 and Equa-

tion 3.49, which permits differentiation of the primitive variables, of any order and in any

direction, thereby providing the necessary gradient update expressions, obey the same gov-

erning equations, for Hermite-type elements.

3.3.1.3 Conservation

This stage entails the numerical solution of the conservation law equation represented by

Equation 3.42. The computation of the average flux f̄i = (1/∆t)
´ tn+∆t

tn
fi dt at interface i

requires a numerical integration technique of adequate accuracy, consistent with the precision

of the reconstruction.

For a second-order element, the application of Simpson’s rule yields the calculation of the

average flux as

f̄ =
1

6
[fn + 4fn+ 1

2 + fn+1] (3.50)

On the other hand, employing a fourth-order element involves the utilization of the
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Gauss–Lobatto rule, resulting in

f̄ =
1

12

[
fn + 5

(
fn+

1−
√

1/5

2 + fn+
1+

√
1/5

2

)
+ fn+1

]
(3.51)

These computed average flux values are subsequently used to update the conserved

element-average in a manner akin to FV methods, as expressed by

q̄n+1
i = q̄n

i − ∆t

∆x
(f̄i+1 − f̄i) (3.52)

3.3.1.4 Correction

In general, inconsistency arise between the element average of the reconstructed qi described

by Equation 3.45 and the one deduced from the conservation law as expressed in Equa-

tion 3.52. This incongruity stems from the selection of an independent update method,

which does not necessarily maintain conservation. This inconsistency within element Ωi is

defined as

dq̄i = q̄i −
p+1∑
j=1

cj

ˆ 1

0

bj(ξ) dξ (3.53)

To ensure conservation, it is imperative that

N∑
i=1

dq̄i∆xi = 0 (3.54)

Notably, the achievement of conservation does not mandate eliminating inconsistency for

each individual element (dq̄i = 0 for i = 1, 2, ..., N). Nevertheless, this practice still upholds

conservation as it satisfies Equation 3.54.

In the most recent formulation, conservation is enforced by distributing the inconsistency

across the information within each element. For instance, consider element Ωi having p+ 1

degrees of freedom, including values qi(j) and gradients ∂qi(j) at location j. The inconsistency

dq̄i is exclusively distributed to the values

qi(j) := qi(j) + αi(j)dq̄i (3.55)

Here, the corrector weights αi(j) are determined based on the requirement of conservation

law [71] ∑
j=value basis only

αi(j)

ˆ 1

0

bj(ξ) dξ = 1 (3.56)
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The selection of corrector weights is not universally unique and depends on the degree of

freedom within the element. For elements with interior degrees of freedom, αi(j) at interfaces

are set to zero to prevent discontinuities. However, for elements having degrees of freedom

only at interfaces, αi(j) cannot be zero. This circumstance introduces a discontinuity at the

interfaces, which is resolved by averaging the shared values of neighboring elements

qi := qi +
αi(j=left)

dq̄i∆xi + αi−1(j=right)
dq̄i−1∆xi−1

∆xi +∆xi−1

(3.57)

3.3.1.5 Smooth Solution

Our initial findings revolve around the evaluation of the accuracy offered by the different

one-dimensional element types introduced in Chapter 2. To conduct this assessment, we

utilize a smooth solution based on the initial conditions outlined by Lukacova-Medivid’ova,

Morton, and Warnecke [72]. Although this solution is initially presented in two dimensions

and will be further explored in Section 3.3.2.6, we adapt it to a one-dimensional context for

our present testing purposes.

p(0, x) =
1

a0
sin(2πx)

u(0, x) = 0 (3.58)

The sine waves problem possesses an analytical solution in one-dimensional space, charac-

terized by the presence of standing waves.

p(t, x) =
1

a0
cos(2πa0t) sin(2πx)

u(t, x) = − 1

a0
sin(2πa0t) cos(2πx) (3.59)

The computations are conducted within the domain Ω = [−1/2, 1/2], with a wave speed

of a0 = 1. To establish a Courant number, we introduce a length scale by considering the

number of elements. Consequently, with N elements, the length scale is defined as L = 1/N .

Figure 3.3 illustrates the outcomes of simulations conducted over 2008 temporal iterations

using a Courant number of 0.8. This figure depicts the performance of various element

types. It is evident that a standard element with p = 2 (depicted in Figure 2.2b) exhibits

comparatively subpar performance when contrasted with the other two Hermite elements

outlined in Figure 2.3.

An important observation is that the Hermite element with p = 3 in this context lacks

interior degrees of freedom. Therefore, conservation is attained through the utilization of
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Equation 3.57, elucidated in Section 3.3.1.4, during the corrector stage. In contrast, the other

two elements encompass interior nodes, and conservation is established by distributing the

discrepancy exclusively to the interior nodes. This approach avoids compelling the resolution

of potential discontinuities.

Figure 3.4 displays the L2 error computed after one complete period (t = 1/a0) as a

function of the mesh size. The Courant number was selected as 0.8, considering the afore-

mentioned mesh size specification. Notably, the Hermite element with p = 4 method exhibits

exceptional precision (approximately 0.01% error) with four cells per wavelength. This stands

in contrast to the standard element with p = 2, which yields an error of about 1% under the

same conditions of elements per wavelength.

The derivatives of a numerical solution often exhibit an order of accuracy one less than

that of the point values. To address this, we multiplied the errors by ∆x when plotting them

(essentially representing the value error resulting from a gradient error). The presented

outcomes demonstrate highly encouraging results, which motivate us to further explore the

application of Hermite elements in higher dimensions. This extension of the concept will be

deliberated in Section 3.3.2.

3.3.1.6 Non-Simple Wave

We employ a non-simple wave problem to evaluate the performance of the elements, where

both characteristic variables vary across the domain.

p(0, x) =
1

4
+

1

80
sin(2πx)

u(0, x) =
1

4
− 1

10
sin(πx) (3.60)

In this scenario, the solution becomes slightly more intricate. However, the exact solution

continues to maintain a simple form owing to the linear nature of the underlying problem.

p(t, x) =
1

2
[p(0, x+ a0t) + p(0, x− a0t)− u(0, x+ a0t) + u(0, x− a0t)] (3.61)

u(t, x) =
1

2
[u(0, x+ a0t) + u(0, x− a0t)− p(0, x+ a0t) + p(0, x− a0t)] (3.62)

The identical numerical setup that was applied to the smooth problem is also utilized for

the non-simple wave problem. The only difference in this case is that the domain is expanded

to Ω = [0, 2].

Figure 3.5 provides a comparative analysis between the exact and numerical results for

various element types at t = 10.9. Notably, the differences are more discernible in the case
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Figure 3.3: Pressure and velocity solutions for the one-dimensional smooth wave problem
after completing 2008 temporal iterations considering different element types. Refer to Fig-
ures 2.2 and 2.3 for visual representations of the elements.
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Figure 3.4: Errors after evolution over one period for the one-dimensional smooth wave
problem. The gradient errors are computed as ∆x multiplied by the Gradient Error value.
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of the standard element with p = 2. This discrepancy can be attributed to the presence

of a higher-frequency pressure wave, which results in increased dissipation within this par-

ticular element. In contrast, the Hermite elements exhibit remarkably favorable outcomes,

showcasing excellent agreement with the exact solution.

This discrepancy in accuracy highlights the influence of the chosen element type on the

numerical results, particularly in scenarios involving variations in characteristic variables

across the domain. It’s important to consider the implications of these findings in the

context of computational acoustics simulations in multi-dimensions.

3.3.1.7 Square Wave

Upon confirming that the Active Flux solver consistently generates nearly indistinguishable

outcomes for smooth scenarios, particularly when employing high-order elements such as

Hermite elements, it is now imperative to subject these elements to examination under

discontinuous conditions. To this end, we consider the initial configuration involving a basic

square wave profile, formulated as follows:

Let the initial conditions be defined as

p(0, x) =

1 if − 1 ≤ x ≤ 1

0 elsewhere

u(0, x) = 0 (3.63)

The computational domain Ω = [−2, 2], discretized into 40 elements spanning the domain.

Once again, it is noteworthy that due to the linearity of the governing equations, the ex-

act solution possesses a straightforward representation as articulated in Equation 3.61 and

Equation 3.62. Employing a Courant number of 0.6, we proceed to evaluate the propagation

of waves in the system.

Figure 3.6 presents a visual representation of the wave’s propagation at t = 12. It’s

important to note that due to the periodic nature of the domain boundaries, the compression

wave departing from the leading boundary undergoes re-entry at the opposing end. By the

time t = 12 is reached, the wave has completed a three full cycle and returned to its original

position, aligning with the initial conditions.

The observations from the figure reveal that the Hermite element with a polynomial order

of p = 4 closely approximates the exact results, capturing the inherent discontinuities with

impressive accuracy. In comparison, the standard element featuring a polynomial order of

p = 2 exhibits superior performance when contrasted with the exact solution. This par-

ticular test case also serves as a foundational benchmark to contextualize our outcomes in
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Figure 3.5: Pressure and velocity solutions for the one-dimensional non-simple wave problem
at t = 10.9 considering different element types. Refer to Figures 2.2 and 2.3 for visual
representations of the elements.
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multi-dimensional settings against those established in the one-dimensional realm. This com-

parative assessment is visually depicted in Figure 3.13, which contrasts the two-dimensional

outcomes with their one-dimensional counterparts. This augmentation provides valuable

insights into the method’s efficacy across varying dimensions and complexities.
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Figure 3.6: Pressure and velocity solutions for the one-dimensional square wave problem
at t = 12 considering different element types. Refer to Figures 2.2 and 2.3 for visual
representations of the elements.

3.3.2 Two Dimensions

In this section, our focus shifts towards the design of a multidimensional scheme, a logical

progression built upon the insights derived from our comprehensive one-dimensional analysis.

As elucidated in Chapter 2, our investigation demonstrated a systematic approach for es-

tablishing the parameters necessary to achieve arbitrary accuracy and dimensionality within

an element definition. This chapter also underscored the intricate nature of the challenges

that emerge as accuracy and dimensionality are augmented. The growth in the number

of degrees of freedom, coupled with the various possibilities for their placement within the

element, magnifies the complexity of the system.

Extending our endeavor to encompass a systematic array of schemes with arbitrary ac-

curacy and dimensionality presents an even more intricate landscape to navigate. Neverthe-

less, within the forthcoming sections, we shall meticulously expound upon a two-dimensional
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method of fifth-order, a method that not only presents a comprehensive formulation but also

holds the potential for further extensions. Our pursuit is to replicate the efficacy of the fifth-

order Active Flux method, a technique that has exhibited commendable performance within

the realm of one-dimensional simulations. Furthermore, its inherent advantages become even

more pronounced in the context of higher dimensions.

To facilitate a comparative analysis, we juxtapose our fifth-order approach with the third-

order method, achieved by selectively omitting gradient information. Although, admittedly,

our engagement with higher-order methods initially bore a sense of caution, we firmly assert

the feasibility of venturing into these more ambitious frontiers. This belief stems from

the robust foundation of understanding we have established, coupled with the promising

outcomes that our meticulous exploration of the Active Flux method has yielded.

Linear acoustics in a two-dimensional spatial domain can be expressed in a conservative

form as

qt +
2∑

i=1

(fi)xi
= 0 (3.64)

Here, the vector q = (p, u, v)T represents the conserved quantities associated with the system.

The conservative flux functions, fi, are defined as:

f1 = a0

u

p

0

 and f2 = a0

v

0

p

 (3.65)

where the constant wave-speed is represented by a0.

In the context of two-dimensional space, the solution q = q(t,x), to Equation 3.64 eval-

uates over time and space within a defined spatial domain Ω. This domain is discretized

into N non-overlapping two-dimensional triangular elements. To define these elements, a

barycentric coordinate system is employed, as elaborated upon in Section 2.5. This strate-

gic selection is employed to uphold the stability of the reconstruction process through the

utilization of a basis that possesses enhanced orthogonality for the interpolation procedure.

3.3.2.1 Reconstruction

Within element Ωi, the solution qn
i at time level n is reconstructed using a polynomial of

degree p. To facilitate this process, a set of basis functions denoted as Bp = {bi(σ1, σ2, σ3)},
with a cardinality of (p + 1)(p + 2)/2, is employed. This collection constitutes a complete

ensemble of polynomials of degree p, aligning with the analogous strategy in one-dimensional
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space. Consequently, the representation of q is achieved through its projection onto Bp.

q =

(p+1)(p+2)/2∑
i=1

cibi, (3.66)

Here, ci corresponds to the coefficient associated with the basis function bi, as detailed

in Table 2.3 and Table 2.4. This formulation indicates that at time level n, there exist

(p+ 1)(p+ 2)/2 individual pieces of information available for the reconstruction process, as

illustrated in Figure 2.5 and Figure 2.6.

3.3.2.2 Evolution

Similar to our approach for the one-dimensional problem, we adhere to the guidelines intro-

duced in Section 3.2 to derive exact solutions for the linear acoustic equations, this time in

the context of two dimensions during the evaluation stage. Consequently, this simplifies LAC

in Equation 3.14 to the form

LAC
2D =

 0 ∂x ∂y

∂x 0 0

∂y 0 0

 (3.67)

In this configuration, the three-dimensional sphere of influence, as described by Equa-

tions 3.23, transforms into two-dimensional spherical means using the method of descent [64]

as a particular scenario wherein the z-coordinate has no influence. This transformation re-

sults in the sphere of influence taking the shape of a disc, where the function is averaged

over the surface area of the disc.

MR{f}(x0, y0) =
1

2πR

ˆ θQ

θP

ˆ R

0

f(x0 + r cos θ, y0 + r sin θ)
r√

R2 − r2
dr dθ (3.68)

Within the Active Flux framework, the integration of two-dimensional spherical means takes

place across discs having a radius of R = a0∆t, which are centered on degrees of freedom

established by the element. This process is depicted in Figure 3.7. The procedure entails

carrying out a partial integration of the disc individually within each element. The range of

angular integration is determined by the intersection of the integral disc with the edges of

the element. At each vertex, both a starting angle θP and an ending angle θQ are defined,

subject to the condition θQ > θP . For edge nodes, solely θP is necessary since θQ − θP = π

is always inferred based on the geometry.

The exact solution is approximated through the reconstruction of elements, followed by

the utilization of Equation 3.38, and if necessary, Equation 3.39 for Hermite elements. At
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Figure 3.7: Integration of spherical means in two-dimensional space

the node (xj, yj), the contribution of the solution state q to the spherical means integral is

computed from each of the neighboring elements. Similar to the seemingly distinct Godunov

method, we determine the exact solution for approximating data. This implies that

Equation 3.68 takes the form

MR{q}(xj, yj) =
1

2πR

ˆ 2π

0

ˆ R

0

q(xj + r cos θ, yj + r sin θ)
r√

R2 − r2
dr dθ

=
1

2πR

(p+1)(p+2)/2∑
i=1

ci

ˆ 2π

0

ˆ R

0

bi(σ1, σ2, σ3)
r√

R2 − r2
dr dθ (3.69)

The integral presented in Equation 3.69 might initially appear complex. However, taking

into account that the basis functions bi(σ1, σ2, σ3) are polynomial expressions in barycentric

coordinates that possess linear correlation with the Cartesian coordinates (x, y) through

Equation 2.6, and then transforming to polar coordinates as,

x = xj + r cos θ (3.70)

y = yj + r sin θ (3.71)

the integrals that need to be computed are of the form

I(p1,p2) =

ˆ θQ

θP

ˆ R

0

(r cos θ)p1 (r sin θ)p2√
R2 − r2

drdθ and 0 ≤ p1 + p2 ≤ p (3.72)
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that can be found in inexpensive closed form as

I(p1,p2) = R(p1+p2)

(
a0(θQ − θP )

+

p1+p2∑
i=1

ai [cos(iθQ)− cos(iθP )] + bi [sin(iθQ)− sin(iθP )]

)
(3.73)

where ai and bi are constant coefficients of the ith term as detailed in Table B.1. For a more

comprehensive understanding of the derivations and coefficients, refer to Appendix B.

The evolution stage is designed as a loop over elements, facilitating the update of infor-

mation at each degree of freedom. During the processing of a specific element, there is no

inherent requirement to possess knowledge regarding the geometry of neighboring elements

or the data they encompass. This design characteristic significantly contributes to mitigating

any computational intricacies that our method might introduce.

3.3.2.3 Conservation

Following the evolution stage, where the values at the degrees of freedom are updated,

the fluxes described by Equation 3.65 are time-averaged to update the element-average, as

governed by Equation 3.64. It is essential for the time-average order of the fluxes to align

with the one utilized for element reconstruction.

Refer to Figure 3.1, for a second-order element (p = 2), employing Simpson’s rule in two

dimensions is performed as

f̄ =
1

6

(
fn + 4fn+ 1

2 + fn+1
)

with fn =
1

6
(fn

L + 4fM + fn
R) (3.74)

while for a fourth-order element (p = 4), the Gauss–Lobatto rule is utilized to average the

fluxes.

f̄ =
1

12

[
fn + 5

(
fn+

1−
√

1/5

2 + fn+
1+

√
1/5

2

)
+ fn+1

]
with fn =

1

60

(
14(fn

L + fn
R) + f ′n

L + f ′n
R + 32fM

)
(3.75)

In Equation 3.75, f ′ is the flux derivative along the edge pointing to the midpoint of the

edge.

Subsequently, these averaged fluxes are employed to update the element-averages in a
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manner akin to the FV method:

q̄n+1 = q̄n − ∆t

Ωi

3∑
j=1

(f̄j · n̂j)lj (3.76)

Here, Ωi signifies the area of element i, while n̂j and lj correspond to the normal vector

and length associated with edge j respectively. This equation embodies the conservation law

presented by Equation 3.64 governing the update of element-averages.

3.3.2.4 Correction

As also observed in one-dimensional elements, as detailed in Section 3.3.1.4, the utilization of

the independent update approach during the evolution stage does not inherently guarantee

that the element-average obtained from the conservation stage will match the average derived

from the reconstruction process. This characteristic will be extended to two-dimensional

elements as well. The resulting inconsistency can be quantified as

dq̄i = q̄i −
1

Ωi

(p+1)(p+2)/2∑
j=1

cj

¨
Ωi

bj dΩ (3.77)

To ensure conservation, we adhere to the same principles as outlined in the one-dimensional

case in Section 3.3.1.4.

Conservation must be enforced to ensure

N∑
i=1

dq̄iΩi = 0 (3.78)

with N representing the total number of elements.

Through the distribution of this inconsistency across the information within each ele-

ment,conservation, as expressed in Equation 3.78, is upheld. Considering that an element

Ωi encompasses (p + 1)(p + 2)/2 degrees of freedom, encompassing both values qi(j) and

gradients ∂qi(j) at the location j, the inconsistency dq̄i is allocated solely to the values in

the following manner

qi(j) := qi(j) + αi(j)dq̄i (3.79)

where αi(j) is a correction weight that is determined to satisfy the fundamental conservation
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criterion, as highlighted by He et al. [71]:

1

Ωi

∑
j=value basis only

αi(j)

¨
Ωi

bj dΩ = 1 (3.80)

This actually adjusts the reconstructed qi by shifting it orthogonally in the spatial domain.

Nevertheless, this process introduces discontinuities at element interfaces due to the fact

that, in general, dq̄i ̸= dq̄j for i ̸= j.

To mitigate this, the modified values of neighboring elements at shared locations are

averaged. Assuming that Eq. 3.79 has altered the values of qi(j) for s elements at the

common location j, the qi(j) at this specific location is averaged as

qi(j) :=

∑s
i=1 qi(j)Ωi∑s

i=1Ωi

(3.81)

This approach ensures conservation in Eq. 3.78 without introducing any discontinuities.

3.3.2.5 Boundary Conditions

Frequently, boundary conditions such as radiative (open), interfaces, etc., are responsible for

considerable numerical inaccuracies observed in computational acoustics or computational

fluid dynamics methods [73].

For instance, the radiation condition is among the most difficult boundary conditions

to handle. This is where the method should allow the outgoing wave to exit the domain

without unwanted reflections within the domain. Several kinds of open boundary conditions

have been established to address the open-domain issue. These include far-field asymptotic

solutions [74], the buffer zone technique [75], the perfectly matched layer technique [76], and

characteristic-based inflow and outflow boundary conditions [77]. The latter is favorable for

upwinding-feature schemes and usually functions optimally when the wave angle is perpen-

dicular to the boundary. However, its performance may decline when the wave angle strays

from normal, resulting in errors as much as 3− 5 percent for larger incidence angles [78, 79].

The active flux method inherently handles boundary conditions by utilizing its built-in

features. It accomplishes this by computing the spherical means over the disc of influence,

which are determined based on the requirements of the boundary condition. These conditions

can include, open, and interface boundaries.

In Figure 3.8, the illustration demonstrates that individual cells in the simulation can

have distinct propagation speeds. This is noticeable from the varying radii of integration

domains around the nodes in two different materials. A modified version of this technique is
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employed at open boundaries, where contributions from outside the domain are disregarded.

This is due to the fact that no elements, including ghost elements, are positioned beyond

the domain boundary. It should be noted that this approach is consistent with the concept

of placing ghost elements with a0 = 0.

Figure 3.8: Node location and regions of dependence. The sound speed is smaller in the
uppermost four elements

We have determined that there is no necessity for incorporating absorbing layers or similar

devices in our simulations. While this radiation condition is not flawless, it is important to

recognize that there is no existing local boundary condition that can precisely simulate

an unbounded domain with more than one dimension. The quest for a suitable practical

methodology in this regard has a lengthy history [78]. A recent and comprehensive review

from the perspective of elastic waves can be found in [80]. Despite its imperfections, our

proposed radiation condition performs just as well or even better than the approximations

currently in use. Additionally, we can demonstrate that it does not require the utilization

of excessively large domains.

3.3.2.6 Smooth Solution

We initially evaluate the accuracy of the AF scheme using a smooth solution with a fourth-

order Hermite element (p = 4) presented in Figure 2.6b. This choice is expected to yield

fifth-order accuracy since the dominant error term is of order five. We adopt the initial
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conditions suggested by Lukacova-Medivid’ova, Morton, and Warnecke. [72].

p(x, y, 0) =
1

a0
[sin(2πx) + sin(2πy)]

u(x, y, 0) = v(x, y, 0) = 0 (3.82)

The double sine waves problem possesses an analytical solution comprising standing waves.

p(x, y, t) =
1

a0
cos(2πa0t)[sin(2πx) + sin(2πy)]

u(x, y, t) =
1

a0
sin(2πa0t) cos(2πx)

v(x, y, t) =
1

a0
sin(2πa0t) cos(2πy) (3.83)

The calculations are performed within a square domain of length 1, utilizing a fully

unstructured grid with a sound speed set to a0 = 1. To establish a Courant number, we

introduce a length scale derived from the number of elements. In the case of a square n× n

grid, the element count would be N = 2n2, and the length scale can be expressed as L = n−1.

For general grids, we assume a relationship L = (N/2)−1/2.

Figure 3.9 illustrates the temporal evolution of a double sine pressure pulse with a periodic

boundary condition.
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Figure 3.9: Active Flux pressure solution for double sine pulse after half a period.

Figure 3.10 displays the L2 error after a single full period (t = 1/a0) as a function

of the mesh size. A Courant number of 0.5 was employed, based on the defined mesh size

relationship. Remarkably, the fifth-order method demonstrated remarkable accuracy (≈ 1%)
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with just two cells per wavelength, corresponding to a mesh of four squares divided into eight

elements. The more ambitious target of 0.1% error is attained with a configuration of nine

cells divided into 18 elements, surpassing even the performance of the one-dimensional case.

For comparative purposes, the results obtained from the third-order scheme that excludes

all gradient information are also presented. These findings suggest that the third-order

approach could prove highly valuable as well.
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Figure 3.10: Errors after evolution over one period; left: pressure, right: u-velocity. The
results for ∂xv, ∂yv are almost the same as those for ∂yu, ∂xu

It’s a common observation that the derivatives of a numerical solution often exhibit an

order of accuracy that’s one less than the order of accuracy of the point values themselves.

To account for this discrepancy, we plotted the errors multiplied by a characteristic mesh

size, essentially representing the value error induced by a gradient error.

Interestingly, the measured orders of accuracy for the point values of pressure exceeded

our initial expectations. Instead of the anticipated three and five, we observed values of

almost four and nearly six for the respective cases. This suggests that the accuracy of our

derivatives is actually three and five.

Furthermore, in a somewhat surprising turn, when we measured errors stemming from

velocity gradients using the same approach, we obtained slopes of slightly above four and

even almost seven(!). While we’re unsure if this can be attributed to any specific feature of

the problem, these results are indeed encouraging, particularly in the context of extending

the methodology to Navier-Stokes equations.

Even when utilizing merely two cells per wavelength, the complete fifth-order scheme

showcases remarkable graphical precision, achieving accuracy better than one percent. The

third-order approach also maintains its accuracy, being almost five percent precise. These

results don’t run counter to the Shannon limit, which dictates a minimum of two points
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per wavelength, as our inclusion of edge midpoints effectively halves the cell size. Further-

more, this limit doesn’t extend to Hermitian schemes that offer supplementary, independent

information, encompassing both values and gradients.

The accuracy of the gradients exhibits a noticeable sensitivity to the Courant number. In

Figure 3.11, the errors for both schemes are plotted against the Courant number for a mesh

with 16 points per wavelength. The depicted range ends at CFL = 0.7 and 0.82 due to the

stability limits, beyond which the plots cease. Within the stable Courant number range, the

accuracy of the gradients experiences a shift of approximately one order of magnitude. This

effect is more pronounced than in one dimension, but even the lower accuracy values remain

quite satisfactory.
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Figure 3.11: Errors after evolution over one period for 16 cells per wavelength; left: pressure,
right: u-velocity. The results for ∂xv, ∂yv are almost the same as those for ∂yu, ∂xu.

3.3.2.7 Square Waves

While in one dimension, the advection of a square wave provided valuable insights into the

resolution capabilities of each scheme, the situation is different in the context of acoustics.

In one dimension, this scenario could be reduced to an advection problem for each Riemann

invariant. However, in the two-dimensional acoustics scenario, a perfect correspondence

between the behavior and resolution characteristics might not be readily expected.

We present a problem that combines one-dimensional initial data with a solution imple-

mented on a regular rectangular two-dimensional grid. This choice is motivated by the chal-

lenge of initializing discontinuous data on entirely unstructured grids. The problem setup,

as presented by Figure 3.12, involves an initially quiescent fluid (t = 0) with an elevated

pressure in the central half. Following the initiation of discontinuities, outward compression

waves and inward rarefaction waves propagate (t = 0.5), reaching the boundaries by t = 1.
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Due to the periodic boundaries, the compression wave departing from the front boundary

re-enters at the top, and by t = 2, it has advanced a quarter of the domain’s length. As

time progresses to t = 4, the compression wave returns to its initial position, yielding a final

solution matching the initial conditions.
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Figure 3.12: Two-dimensional square wave propagated over twice its length as captured by
Active Flux of fifth-order accuracy.

Examining Figure 3.13, we observe that the solutions exhibit a slightly diminished accu-

racy compared to their one-dimensional counterparts. A general observation might suggest

that within each shock transition, the third-order scheme roughly contains seven points

instead of four. However, for the fifth-order scheme, the agreement is remarkably close. Im-

portantly, there is no detectable error in the phase of the waves; they have precisely returned

to their initial positions.
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Figure 3.13: Two-dimensional square pressure waves (top) along the centerline (x = 0, y)
and one-dimensional square pressure waves (bottom), both propagated over three times their
length as captured by Active Flux of (left) 3rd and (right) 5th-order accuracy.

3.3.2.8 Radiation Conditions

Our third test scenario is chosen specifically to showcase the distinctive characteristics of this

scheme near boundaries. This concept has been previously introduced in relation to Figure

3.8. The primary premise is that there are no elements whatsoever outside the designated

domain. Boundary vertices are exclusively updated by elements located within the boundary.

We operate under the assumption that if elements were present outside the boundary, either

their internal gradients would be exceedingly small or they would only generate outgoing

waves, which we can afford to disregard. Given this presumption, it isn’t necessary to

position the boundary at an extensive distance. The domain under consideration is a simple

square, and the mesh is composed of 15× 15 squares, each bisected by the same diagonal.

Figure 3.14 illustrates the progression of events. In the upper left corner, we visualize the

initial data (t = 0) featuring a narrow Gaussian hill captured over a 3× 3 cell path. To the

right, we observe the outgoing circular wave just before reaching the boundary, maintaining

its compact support. Moving to the bottom half of the figure, the solution at a later time

(t = 2) is presented. The effect of wall boundary conditions on the left side of the domain is

manifested through the presence of numerous waves. On the right side, the outcome of our

straightforward radiation condition, which nullifies incoming contributions to the spherical
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mean, is evident; the remaining disturbance is eradicated.
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Figure 3.14: Active Flux pressure solution for Gaussian pulse; top left: initial conditions,
top right: just before exit, bottom left: periodic boundary, bottom right: open bound-
ary.

3.3.2.9 Multiple Materials and Vorticity

Our fourth test problem, as depicted in Figure 3.15, serves to highlight the effectiveness

of the interface condition. In this scenario, the domain takes the form of a rectangle with

an aspect ratio of 2. Each half of the domain features a different propagation speed, with

a speed of 1.0 at the top and 2.5 at the bottom. It’s important to note that in a one-

dimensional acoustic setting, a change in wave speed doesn’t impact the eigenvectors of the

system. Consequently, simple waves passing through an interface merely alter their velocity

and are not reflected. This conclusion holds true in higher dimensions as well, provided that
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the wave arrives at an almost normal angle. If the incidence is notably oblique, there will

naturally be some reflection at the original speed.
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Figure 3.15: Active Flux pressure solution for Gaussian pulse; top left: initial condition,
top right: wave starting to cross boundary, bottom left: wave continues in faster material,
and bottom right: a very weak wave reflects in the original material (and would not exist
in one dimension).

In our fourth test problem, the mesh consists of 14× 30 squares divided by their NE/SW

diagonals. We employ the same Gaussian hill to initiate the problem in the upper half of

the domain (top left). At t = 0.9 (top right), the wave is on the cusp of leaving the slow

material. By t = 1.2 (bottom left), it has crossed parts of the boundary. In regions where

we have implemented a radiation condition (left, right, and top), no reflections are evident.

Along the boundary y = 0 with the faster material, the wave propagates at an increased

speed. There is no discernible reflection back into the slow material because the wave crosses

the boundary almost perpendicularly. At t = 1.5 (bottom right), this portion of the wave
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continues, but we begin to observe some reflection from the more oblique parts of the wave.

Additionally, we can see two “dimples” in the pressure field, situated close to but not exactly

at the boundaries. These dimples result from vortices generated at the interface. Similar to

the initial conditions, these features exhibit a well-defined width of approximately two cells.
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Figure 3.16: Active Flux Vorticity for Gaussian pulse; top left: initial condition, top right:
wave starting to cross the interface, small vorticity just visible. bottom left: vorticity
strengthens and moves outward, bottom right: vorticity has left the domain. Notice the
different vertical scales.

In Figure 3.16, we examine the vorticity in the simulation. At t = 0.0, the vorticity is

naturally absent. By t = 0.9, the flow remains irrotational, except where it has begun to

cross into the second material. Here, vorticity is generated at a rate of ∇a0×∇p = ∂ya0 ·∂xp.
Initially, very little vorticity is produced because ∂xp is very small. However, if we focus on

a specific location along the interface, we observe a pressure gradient that changes sign as

the wave passes, resulting in the creation and subsequent destruction of vorticity (Figure
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3.16). This transient vorticity gives the appearance of a pair of vortices with opposite signs

moving outward from initial positions near the center.

In the final image at t = 2, we plot the vorticity and observe that it has disappeared. If we

had refined the mesh in the vicinity of the interface, ∇a0 would have been larger, resulting

in more intense vorticity production within a smaller region.
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CHAPTER 4

Elastodynamics: Hermite Methods for Elastic

Wave Propagation

Acoustic waves within an isotropic medium, uniformly travel in all directions at a constant

speed. It is increasingly recognized that in such scenarios, employing conventional one-

dimensional upwinding methods yields little to no discernible advantage, primarily due to

the upwind dissipation matrix being a mere scalar. Lung et al. [81] demonstrated that a

suitably parameterized Lax-Wendroff method can yield exceptional outcomes, encompassing

the exact preservation of the vorticity constraint and optimal isotropic behavior1

The situation becomes more intricate in the context of elastodynamics, where we en-

counter a dual isentropic problem. This comprises P-waves, generating oscillations perpen-

dicular to the wavefront and traveling at speed aP , and S-waves, creating oscillations parallel

to the wavefront and moving at speed aS, approximately half the speed of the P-waves. Due

to the differing magnitudes of these wavespeeds and the dependence of optimal dissipation

on the Courant number, the dissipation matrix is no longer scalar. Consequently, it becomes

imperative to treat each type of wave uniquely. Fortunately, in linear elastodynamics, both

types of waves can be described through separate second-order wave equations. These equa-

tions govern a scalar potential for irrotational P-waves and a vector potential for solenoidal

S-waves. These waves essentially operate independently within the domain’s interior, with

coupling usually occurring only at the boundaries, where the prescribed behavior typically

pertains to both types of waves causing them to interact.

Nakazawa [82] conducted a Helmholtz decomposition to separate the elastodynamic equa-

tions into two distinct first-order systems, with each system exclusively addressing either

P-waves or S-waves. Subsequently, the upwind leapfrog method [83] was applied indepen-

dently to each system. For this purpose, a mesh of size h was employed for P-waves, while a

1A similar scenario arises when considering Maxwell’s equations, which encompass a pair of isotropic
problems—one for the electric field and another for the magnetic field. In both cases, the wavespeed remains
constant, resulting in the dissipation matrix once again being scalar in nature.
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mesh of size h/2 was used for S-waves. This mesh configuration ensured that each wave was

computed with an approximately optimal Courant number. The results presented in this

thesis are notably well-defined and encompass a range of scenarios, including wave reflection

problems and situations involving Rayleigh, Stoneley, Lamb, and Love waves.

In this chapter, each system is solved using the high-order AF method introduced in

Chapter 3. In our numerical setup, we exclusively consider open boundaries where the

coupling between the two systems does not occur. These open boundaries are managed using

the built-in capabilities of the AF method. We may provide information about the treatment

of free and rigid boundaries in the near future. The rates of stress are calculated using the

gradient update of the Hermite element, which imposes no additional computational load.

4.1 Helmholtz Decomposition

Let ū(t,x), representing the displacement of a material particle situated at position x, and

σ(t,x), representing the Cauchy stress tensor. We make the assumption that the material is

homogeneous and isotropic, and the equations governing the evolution of displacement are

those of linear elasticity

ρūtt = ∇ · σ (4.1)

where, ρ represents the material density, which is assumed to remain constant. The stress

tensor is related to the strain tensor through the equation

σ = λ(∇ · ū)I + 2µϵ (4.2)

Here, λ and µ are the Lamé parameters, which are related to Young’s modulus E and

Poisson’s ratio ν by

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
(4.3)

and the strain tensor ϵ is given by

ϵ =
1

2
(DT +D) with D = ∇ū (4.4)

Elastodynamics equations can also be expressed as a first-order system, taking the form

ūt = u (4.5)

ρut = ∇ · σ (4.6)

σt = λ(∇ · u)I + 2µϵ̇ (4.7)
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Here, u represents the velocity field, and ϵ̇ denotes the rate of strain tensor, defined as

ϵ̇ =
1

2
(ḊT

+ Ḋ) with Ḋ = ∇u (4.8)

Let’s consider expressing the velocity vector u in terms of a scalar potential Φ and a

vector potential Ψ [82]

u = ∇Φ +∇×Ψ (4.9)

In this expression, the first term corresponds to an irrotational component, while the second

term represents a solenoidal component.

In accordance with the explanation provided in [84], the elastodynamic equation repre-

sented by Equation 4.1 is expressed as

ρūtt = (λ+ 2µ)∇(∇ · ū)− µ∇×∇× ū (4.10)

Consequently, substituting Equation 4.9 into Equation 4.10, we obtain

∇
(
a2P∇2Φ− Φtt

)
−∇×

(
a2S∇×∇×Ψ+Ψtt

)
= 0 (4.11)

For this equation to be satisfied, the P-wave equation

a2P∇2Φ = Φtt with aP =

√
λ+ 2µ

ρ
(4.12)

and the S-wave equation

a2S∇×∇×Ψ = −Ψtt with aS =

√
µ

ρ
(4.13)

are sufficient. By applying the well-known vector identity

∇×∇×Ψ = ∇(∇ ·Ψ)−∇2Ψ (4.14)

to Equation 4.13, we transform the S-wave equation into

a2S∇2Ψ = Ψtt with aS =

√
µ

ρ
(4.15)

Here, we require that ∇·Ψ remains constant. While this constant can have arbitrary values,

it is often convenient to set it to zero. In the general representation of a vector field u
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by Equation 4.9, where ∇ · Ψ = 0, is commonly known as the Helmholtz decomposition.

Through this decomposition, the original vector field is separated into two components:

one originating from a scalar potential denoted by uP = ∇Φ, and the other from a vector

potential represented by uS = ∇×Ψ. The scalar potential is characterized by its irrotational

nature: ∇× uP = 0, while the vector potential is divergence-free: ∇ · uS = 0.

Equation 4.12 and Equation 4.15 represent well-known scalar wave equations that de-

scribe two types of waves, P- and S- waves, each propagating at distinct speeds, aP and

aS, respectively. These waves propagate independently, with no interaction between them

except at boundaries in the presence of heterogeneities.

4.1.1 Formulation in Two Dimensions

In this section, we specialize the equations to a two-dimensional scenario2. In two dimensions,

the velocity components are expressed as

u = Φx +Ψy (4.16)

v = Φy −Ψx (4.17)

Here, Ψ represents the non-zero component of the vector potential Ψ = (0, 0,Ψ).

The expression for stress rates can also be formulated using potential functions, given by

σ̇xx = λ(ux + vy) + 2µux = λ∇2Φ + 2µ(Φxx +Ψyx) (4.18)

σ̇yy = λ(ux + vy) + 2µvy = λ∇2Φ + 2µ(Φyy −Ψxy) (4.19)

σ̇xy = µ(uy + vx) = µ(2Φxy +∇2Ψ) (4.20)

σ̇yx = µ(vx + uy) = µ(2Φyx +∇2Ψ) (4.21)

These equations conform to the principle of angular momentum conservation, resulting in

σ̇xy = σ̇yx.

Next, we will introduce additional variables, represented as σ and ω:

σt = (λ+ 2µ)(ux + vy) = (λ+ 2µ)∇2Φ (4.22)

ωt = µ(vx − uy) = −µ∇2Ψ (4.23)

The variable σ is solely derived from Φ, making it associated with the P-wave system.

Therefore, this variable signifies the compression or expansion of a material. Conversely, ω

2Moving forward, we will simplify our calculations by assuming that ρ = 1.
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is linked to the S-wave system, and as such, it indicates the rotation along the z-axis of the

material.

Using the new variables σ and ω, we can derive the first time derivatives of the velocity

components. Beginning with Equation 4.16 and taking the second time derivative, we have

utt = (Φx)tt + (Ψy)tt (4.24)

By using Equations 4.12 and 4.15, along with Equations 4.22 and 4.23, we can express this

equation as

utt = (a2P∇2Φ)x + (a2S∇2Ψ)y = (σt)x − (ωt)y (4.25)

Now, by integrating Equation 4.25 over time to obtain ut, we get

ut = σx − ωy (4.26)

Similarly, starting from Equation 4.17, we obtain

vt = ωx + σy (4.27)

Hence, the expressions for the decomposed systems are as follows:

• P-wave subsystem

∂t

 σ

uP

vP

 =

 0 a2P∂x a2P∂y

∂x 0 0

∂y 0 0


 σ

uP

vP

 (4.28)

• S-wave subsystem

∂t

 ω

uS

vS

 =

 0 −a2S∂y a2S∂x

−∂y 0 0

∂x 0 0


 ω

uS

vS

 (4.29)

This completes Nakazawa’s [82] two-dimensional decomposition of the elastodynamic equa-

tions that we will employ here 3.

In this decomposition, the calculation of stresses for the P-wave and S-wave subsystems

can be carried out independently as secondary computations derived from the primary com-

3However, the complete three-dimensional decomposition in (4.12) and (4.13) is also amenable to treat-
ment by the Active Flux technique, and we hope to report on this shortly.
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putations in Equation 4.28 and 4.29.

∂t


σxxP

σyyP

σxyP

σyxP

 =


a2P∂x αa2P∂y

αa2P∂x a2P∂y

a2S∂y a2S∂x

a2S∂y a2S∂x


(
uP

vP

)
, ∂t


σxxS

σyyS

σxyS

σyxS

 =


a2P∂x αa2P∂y

αa2P∂x a2P∂y

a2S∂y a2S∂x

a2S∂y a2S∂x


(
uS

vS

)
(4.30)

where α is given by

α = 1− 2

(
aS
aP

)2

(4.31)

Lastly, this decomposition reassembles the variables u and σ using

u = uP + uS and σ = σP + σS (4.32)

Equations 4.28 and 4.29 are independently solved as the primary calculations for the elas-

todynamic system, and the stresses may be subsequently computed as secondary calculations

if required from Equation 4.30.

4.2 Hermite Active Flux Numerical Formulation

By taking Equation 4.28 and introducing the variable σ∗ defined as

σ = −aPσ
∗ (4.33)

We can express it as

∂t

σ∗

uP

vP

+ aP

 0 ∂x ∂y

∂x 0 0

∂y 0 0


σ∗

uP

vP

 = 0 (4.34)

Similarly, by introducing new variables ω∗ and v∗S defined as

ω = aSω
∗ (4.35)

vS = −v∗S (4.36)

We can rewrite Equation 4.29 as

∂t

ω∗

v∗S
uS

+ aS

 0 ∂x ∂y

∂x 0 0

∂y 0 0


ω∗

v∗S
uS

 = 0 (4.37)
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Equations 4.34 and 4.37 correspond to the familiar linear acoustics equations presented in

Equation 3.14. In fact, these equations represent the splitting of an elastodynamic equation

into two acoustic equations, each with its respective wave speed, namely, aP and aS. In

this context, these equations are entirely decoupled, except at the boundaries, where the

homogeneity of the system is lost. In boundary elements, both ∇ × uP and ∇ · uS are

non-zero.

We employ the Hermite Active Flux method, as explained in Section 3.3.2, to solve

both the P- and S- wave acoustic equations. This choice allows us to apply boundary

conditions remotely without needing to handle the coupling of stresses at the boundaries,

as demonstrated by Nakazawa [82]. Additionally, the Hermite method promptly provides us

with the velocity gradients, enabling us to compute stress rates with the degree of freedom

of the elements, as these gradients are directly related to the stress rates. In this context,

we utilize Equations 4.18 through 4.21 instead of relying on the computationally expensive

calculations in Equation 4.30.

4.3 Example Cases

In this section, we showcase numerical experiments aimed at illustrating the method’s char-

acteristics. We commence with wave interactions within a homogeneous material, proceed

to waves traveling two distinct materials, and conclude with a test case where waves interact

while traveling along the interface of two dissimilar materials.

The domain is rectangular with an aspect ratio of 1/2 and open boundaries. There

are two available mesh options: a grid consisting of 60 × 30 squares, each subdivided by

common diagonals, resulting in right triangles as the constituent elements of the grid, and

an unstructured grid formed by using equilateral triangles. These mesh choices allow us

to assess the numerical solver’s performance under different element orientations concerning

wave propagation. Both mesh configurations are illustrated in Figure 4.1. In all scenarios,

we employ the fourth-order Hermite element (p = 4) presented in Figure 2.6b. Furthermore,

we introduce a Gaussian pulse centered at (x0, y0) described by

g(x)(x0,y0) = exp

(
(x− x0)

2 + (y − y0)
2

2δ2

)
(4.38)

This Gaussian pulse has a variance of δ = 0.1 and is utilized to apply loading within the

domain.
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Figure 4.1: Structured (left) and unstructured (right) mesh configurations.

4.3.1 Wave Interaction

In the beginning, we examine wave interactions within a homogeneous material using the

unstructured mesh depicted in Figure 4.1 (right grid). This material is defined by Lamé

parameters as

λ = µ = 1 (4.39)

We define the initial loading using a Gaussian pulse described by Equation 4.38 applied at

two distinct locations near the left and right ends of the domain.

σ∗(0,x) = ω∗(0,x) = 1 +
1

4

(
g(x)(−1,0) + g(x)(1,0)

)
(4.40)

uP (0,x) = uS(0,x) = 0 (4.41)

vP (0,x) = v∗S(0,x) = 0 (4.42)

This initial condition generates both types of waves at the center of each subdomain. The

results are presented in Figures 4.2, 4.3, 4.4, and 4.5.

Figure 4.2 illustrates the behavior of P-waves (σ) in the left-hand and S-waves (ω) in the

right-hand contour plots over time. Initially (first row from top), these waves have different

amplitudes due to distinct wave speeds: aP = 1.7 for P-waves and aS = 1.0 for S-waves.

Around t = 0.45 (second row from top), the P-waves reach each other at the line (x = 0, y)

and the open boundaries while the S-waves are approximately three-fifths of the way out of

the domain. This is because S-waves travel at about 60% of the speed of P-waves.

At t = 0.65 (third row from top), the P-waves (left hand contour plot) collide in the

center, leading to an interaction that amplifies them in that region while causing cancellation

effects at the sides. The interactions between the velocity components and rates of stress

are depicted in Figures 4.3 and 4.4, respectively. Because of the symmetric nature of the

problem, this behavior is symmetrical around the line (x, y = 0). It’s worth noting that we
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compute rates of stress using gradient updates from the Hermite AF method, where gradient

information becomes immediately available during the reconstruction stage.

The interaction of S-waves occurs around t = 1.25 (fourth row from top), at which point

the original P-waves have largely left the domain, but the waves arising from the collision

remain and are about halfway out. Note that they are still P-waves, and therefore invisible

in the right-hand contour plot.

Figure 4.5 provides an intriguing observation. As the P-waves exit the open boundaries

(as evident in the second and third rows of the left contours), it becomes apparent that

uP does not exhibit irrotational behavior. Additionally, when the S-waves cross the open

boundaries (as seen in the third and fourth rows of the right contours), uS does not adhere to

divergence-free characteristics. However, the magnitudes of these disturbances are extremely

small. This phenomenon arises because of the differing wave speeds imposed by the open

boundaries, where the wave speed of the material outside is, in effect, set to zero.

Specifically, at t = 1.25, as the P-wave exits the domain (fourth row from top of the left

contours in Figure 4.2) around x ≈ 1.0 and −1.0, ∇ × uP exhibits a non-zero value (third

row from top of the left contours in Figure 4.5). Similarly, ∇ · uS also has a non-zero value

(third row from top of the right contours in Figure 4.5) since the S-waves are leaving the

domain while interacting along the center line (x = 0, y) (fourth row from top of the right

contours in Figure 4.2).

Additionally, at t = 1.25, there is a generation of a small-amplitude wave resulting from

the interaction that takes place behind the P-waves (fourth row from top of the left contours

in Figure 4.2). This phenomenon is also evident in the velocity components and the rate

of stresses, as depicted in Figures 4.3 and 4.4, respectively. The faint crosses visible in the

center of the departing P-waves (also visible at the next level in the departing S-waves) are

the faint reflections of the original waves from the upper and lower boundaries. They are

of very low amplitude, ≈ 0.1% of the outgoing waves. Recall [78] that there is no local

boundary condition that enforces perfectly non-reflecting behavior4.

Finally, By t = 2.0, S-waves are still propagating through the domain, while the P-waves

have left it (fifth row from top of the left and right contours, respectively, in Figure 4.2).

There are still small-amplitude waves within the P-waves subsystem, primarily due to inter-

actions and boundary effects. Note the scale of the data.

4For a recent, very comprehensive, review from the standpoint of elastic waves, see [80].
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Figure 4.2: Temporal evolution of σ (left) and ω (right) during the propagation of an elastic
wave under a dual-load condition; from top to bottom: t = 0.0, 0.45, 0.65, 1.25, 2.0.
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Figure 4.3: Temporal evolution of u (left) and v (right) during the propagation of an elastic
wave under a dual-load condition; from top to bottom: t = 0.45, 0.65, 1.25, 2.0.
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Figure 4.4: Temporal evolution of σ̇xx (left) and σ̇xy (right) during the propagation of an
elastic wave under a dual-load condition; from top to bottom: t = 0.45, 0.65, 1.25, 2.0. The
behavior of σ̇yy closely resembles that of σ̇xx but is oriented normal to the direction of σ̇xx

due to symmetry.
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Figure 4.5: Temporal evolution of ∇× uP (left) and ∇ · uS (right) during the propagation
of an elastic wave under a dual-load condition; from top to bottom: t = 0.45, 0.65, 1.25, 2.0.
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4.3.2 Wave Propagation through Multiple Materials

In Section 4.3.1, we observed that when waves exit the boundaries, vortices and divergence

are generated due to the non-constant material properties across the boundaries. To shed

further light on this phenomenon, we set up a problem where the boundary exists within the

domain, creating an interface through which waves propagate in different materials. In this

scenario, employing the structured mesh in Figure 4.1 (left grid), we establish an interface

along the line (x = 0, y), where the left and right sides have different material properties

given by

Left:

λ = 1

µ = 1
Right:

λ = 1

µ = 2
(4.43)

To isolate the effects of the material interface, we exclusively apply loading to the left

side, defined as

σ∗(0,x) = ω∗(0,x) = 1 +
1

4
g(x)(−1,0) (4.44)

uP (0,x) = uS(0,x) = 0 (4.45)

vP (0,x) = v∗S(0,x) = 0 (4.46)

The results are exhibited in Figures 4.6, 4.7, 4.8, and 4.9.

Figure 4.6 presents the evolution of P-waves (σ) and S-waves (ω) over time. At the initial

time (first row), the distinct materials on each side lead to higher values of P-waves on the

left side of the domain and higher values of S-waves on the right side of the domain.

Around t = 0.4 (second row from top), the P-wave reaches the interface (left contour plot),

while the S-wave (right contour plot) continues to propagate through the left material without

any boundary interaction. The P-wave interface interaction leads to a slight generation of

vorticity (first row of the left contour plots of Figure 4.9). This phenomenon occurs because

the P-wave system is responsible for generating vorticity. During this time, the S-wave shows

no interaction resulting in zero divergence (first row of the right contour plots of Figure 4.9).

By the time t = 0.6 (third row from top), the P-wave (left contour plot) has crossed the

interface and entered the right material, where the wave speed (aP ) is higher. This leads to an

acceleration of the wave front. This phenomenon is also apparent in the velocity components

and the rate of stresses, as illustrated in Figures 4.7 and 4.8, respectively. Notably, there are

no reflections observed during this time as the wave crosses the right material perpendicularly.

Observing Figure 4.9, it’s apparent that the amplitude of vorticity increases as the P-wave

passes through at t = 0.6 (second row). However, this generated vorticity will gradually

decay and exit the domain as the wave continues to pass through the interface.
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At around t = 0.75 (fourth row from top), the P-wave (left contour plot) is exiting the

left-side material while it propagates at a different speed through the right-side material.

There are no visible reflections due to the open boundaries and the interface. During this

time, the S-wave (right contour plot) reaches the interface and begins to interact within the

material regions with different properties. This is when we start to observe the generation

of divergence (third row of the right contour plots of Figure 4.9).

At t = 2.0 (fifth row from top), the P-wave (left contour plot) has left the domain, and

the vorticity within the domain has become minimal (fourth row of the left contour plots

of Figure 4.9). However, the S-wave (right contour plot) is still traveling and is located

approximately at x = 1.0 (fourth row of the right contour plots of Figure 4.9). Here, near

the open boundary, we observe the presence of divergence, indicating the open boundary

effects as the S-wave continues to propagate.

4.3.3 Wave Interaction through Multiple Materials

To comprehensively investigate the effect of wave interaction at material interfaces, we com-

bine the problems discussed in Sections 4.3.1 and 4.3.2. Once again, utilizing the structured

mesh in Figure 4.1 (left grid), we divide the domain into two materials

Left:

λ = 1

µ = 1
Right:

λ = 1

µ = 2
(4.47)

We apply loading near both ends, on the left and right sides, using

σ∗(0,x) = ω∗(0,x) = 1 +
1

4

(
g(x)(−1,0) + g(x)(1,0)

)
(4.48)

uP (0,x) = uS(0,x) = 0 (4.49)

vP (0,x) = v∗S(0,x) = 0 (4.50)

This setup allows us to thoroughly explore the consequences of wave interaction at ma-

terial interfaces, considering varying material properties on both sides of the interface and

applying loading conditions at multiple locations within the domain. The results are depicted

in Figures 4.10, 4.11, 4.12, and 4.13.

Figure 4.10 illustrates the evolution of P-waves (left contour plots) and S-waves (right

contour plots) as they propagate through two distinct materials. Notably, each wave system

interacts with waves of the same type at the interface between these materials, revealing

complex wave behavior and interactions.
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Figure 4.6: Temporal evolution of σ (left) and ω (right) during the propagation of an elastic
wave through two different materials under a single-load condition; from top to bottom:
t = 0.0, 0.4, 0.6, 0.75, 2.0.
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Figure 4.7: Temporal evolution of u (left) and v (right) during the propagation of an elastic
wave through two different materials under a single-load condition; from top to bottom:
t = 0.4, 0.6, 0.75, 2.0.
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Figure 4.8: Temporal evolution of σ̇xx (left) and σ̇xy (right) during the propagation of an
elastic wave through two different materials under a single-load condition; from top to bot-
tom: t = 0.4, 0.6, 0.75, 2.0. The behavior of σ̇yy closely resembles that of σ̇xx but is oriented
normal to the direction of σ̇xx due to symmetry.
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Figure 4.9: Temporal evolution of ∇× uP (left) and ∇ · uS (right) during the propagation
of an elastic wave through two different materials under a single-load condition; from top to
bottom: t = 0.4, 0.6, 0.75, 2.0.
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In this scenario, the wave propagation within each subsystem exhibits characteristics rem-

iniscent of what we discussed in Sections 4.3.1 and 4.3.2. However, the presence of material

variations at the interface introduces an element of asymmetry into the wave interaction

around the line (x = 0, y).
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Figure 4.10: Temporal evolution of σ (left) and ω (right) during the propagation of elastic
waves through two different materials under a dual-load condition; from top to bottom:
t = 0.0, 0.35, 0.6, 1.2, 2.0.

96



Figure 4.11: Temporal evolution of u (left) and v (right) during the propagation of elastic
waves through two different materials under a dual-load condition; from top to bottom:
t = 0.35, 0.6, 1.2, 2.0.
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Figure 4.12: Temporal evolution of σ̇xx (left) and σ̇xy (right) during the propagation of elastic
waves through two different materials under a dual-load condition; from top to bottom:
t = 0.35, 0.6, 1.2, 2.0. The behavior of σ̇yy closely resembles that of σ̇xx but is oriented
normal to the direction of σ̇xx due to symmetry.
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Figure 4.13: Temporal evolution of ∇×uP (left) and ∇ ·uS (right) during the propagation
of elastic waves through two different materials under a dual-load condition; from top to
bottom: t = 0.35, 0.6, 1.2, 2.0.
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CHAPTER 5

Towards the Future: Concluding Insights and

Next Steps

5.1 Conclusive Remarks

This dissertation details an effective strategy, known as the Hermite Active Flux method

for tackling wave propagation problems when dealing with coarse grids. Currently, this

approach is primarily applied within the context of multimaterial wave propagation, where

linear equations with non-constant coefficients govern the behavior of waves.

A foundational concept explored in Chapter 2 is the “element” and its extension into

arbitrary dimensions. This concept, coupled with the remarkable flexibility of reconstructing

the element to attain any desired order, is crucial in addressing problems involving irregular

geometries or complex domains. The chapter delves into the construction of an unstructured

grid, wherein an arbitrary order element is placed in any desired dimension. Specifically, two-

dimensional elements with 6 (quadratic) and 15 (quartic) degrees of freedom are discussed,

highlighting various types of degrees of freedom. Hermite elements, which utilize gradients as

degrees of freedom, demonstrate lower sensitivity to perturbations in reconstruction. This

exploration sets the stage for a three-dimensional space discussion, introducing Hermite

elements defined with 10 degrees of freedom for quadratic elements and 35 degrees of freedom

for quartic elements in three-dimensional space.

Building upon the principles outlined in Chapter 2, Chapter 3 presents an alternative

to Riemann solvers, which inherently assume wave propagation solely along element inter-

faces, thereby emphasizing one-dimensional wave behavior. Instead, our strategy relies on a

representation derived from spherical means, which remains valid in three dimensions. We

harness the potential of C1 Hermitian elements, ensuring the absence of nonphysical discon-

tinuities and enabling the use of larger time steps. Our fully discrete time-stepping approach

maintains a compact domain of dependence, allowing us to clearly visualize flow features,

even when they are only coarsely resolved. Additionally, it significantly reduces the need
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for interface boundary conditions. Implementation is facilitated through an element-wise

traversal that is applicable to any boundary with minimal adjustments.

In Chapter 4, the study focuses on elastodynamic waves, which are effectively decoupled

into two distinct systems: P-waves and S-waves. Interestingly, both systems exhibit behav-

ior akin to acoustic waves. The coupling between these systems exclusively takes place at

boundaries where the two interact. The Hermite Active Flux method, introduced in Chap-

ter 3, is applied to independently solve each system. This method facilitates the computation

of stress rates through the gradient update of the Hermite element, introducing no additional

computational burden.

5.2 Roadmap for Future Research

There are several promising avenues for extending this research effort. These potential

extensions encompass the following areas.

• Maxwell’s Equations: The behavior of these equations is akin to what was demon-

strated in Chapter 4, where a pair of isotropic waves propagate with a constant

wavespeed—one for the electric field and another for the magnetic field.

• Exploring Different Boundary Conditions: In Chapter 4, we delved into the

propagation of elastic waves using the built-in open boundary condition implemen-

tation of AF. However, there are more intriguing boundary conditions to consider,

such as free boundaries and rigid boundaries. In these scenarios, the P- and S-wave

systems become coupled, resulting in interactions between waves of different types.

Investigating the implementation of these boundary conditions within the context of

AF represents a compelling avenue for future research.

• Family of Multidimensional Methods: Indeed, introducing higher-order methods

in multiple dimensions presents challenges, particularly when it comes to symmet-

rically distributing degrees of freedom within each element. For example, to create

a fifth-order method in three dimensions, each element would require 35 degrees of

freedom to define a sextic function. This could be achieved by having one value and

three derivatives at each vertex, along with one value and two derivatives at each edge

midpoint. This distribution results in a total of 4 × 4 + 6 × 3 = 34 degrees of free-

dom. Including the element average would complete the set and create a conservative

method. Alternatively, consider seeking a seventh-order method in two dimensions,

which necessitates 28 degrees of freedom. At each vertex of a tetrahedral element, you
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might have one value, two first derivatives, and three second derivatives. At each edge

midpoint, you could have one value, along with the first and second derivatives along

the median, totaling 3 × 6 + 3 × 3 = 27 degrees of freedom. Again, the addition of

a element average would fulfill the requirement for conservation. However, it’s worth

noting that not every attempt at extension will result in such neat solutions.

• Three-dimensional AF: Utilizing spherical means integral to solve wave propagation

problems offers the advantage of maintaining physical validity when extended to three

dimensions. However, the challenge in this extension lies in the computation of the

spherical means integral, as defined by Equation 3.23, over the sphere of influence. In

three dimensions, this equation can be expressed using a spherical coordinate system

as

MR{f}(x0, y0, z0) =
1

4πR2

ˆ ϕQ

ϕP

ˆ θQ

θP

f(x0 +R sinϕ cos θ, y0 +R sinϕ sin θ,

z0 +R cosϕ)R2 sinϕ dθ dϕ (5.1)

In Equation 5.1, we define the element’s contribution to computing the average of

reconstructed solution, over a partial sphere surrounded by the element. This includes

the partial spheres centered at each vertex or edge node, as illustrated in Figure 5.1.

These partial spheres will ultimately add up to a full sphere when taking the spherical

means of neighboring elements centered at shared nodes.

Figure 5.1: Partial spheres for spherical means computation in three dimensions.

Similar to the details expanded in Appendix B for two dimensions, we can show that
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when using the basis functions for element reconstructions proposed in Table 2.6, in

three dimensions, the integrals to be computed all take the form

I(p1,p2,p3) =

ˆ ϕQ

ϕP

ˆ θQ

θP

(sinϕ cos θ)p1 (sinϕ sin θ)p2 (cosϕ)p3 sinϕ dθ dϕ (5.2)

where 0 ≤ p1 + p2 + p3 ≤ p. Equation 5.2 has a closed-form solution, which takes the

form:

I(p1,p2,p3) = Iϕ(p1,p2,p3)I
θ
(p1,p2,p3)

(5.3)

where Iϕ(p1,p2,p3) and Iθ(p1,p2,p3) are computed by

Iϕ(p1,p2,p3) = aϕ0∆1(ϕPQ) +

p1+p2+p3+1∑
i=1

aϕi ∆cos(iϕPQ) + bϕi ∆sin(iϕPQ) (5.4)

Iθ(p1,p2,p3) = aθ0∆1(θPQ) +

p1+p2+p3∑
i=1

aθi∆cos(iθPQ) + bθi∆sin(iθPQ) (5.5)

Here, ∆f (iϕPQ) is defined as:

∆f (iϕPQ) ≡ f(iϕQ)− f(iϕP ) (5.6)

The closed-form solutions to Equation 5.2 should be computed up to the required order

of reconstruction p. Here are the solutions for p = 1

I(0,0,0) = − (cosϕQ − cosϕP ) (θQ − θP ) (5.7)

I(1,0,0) =
1

4
[2(ϕQ − ϕP )− (sin 2ϕQ − sin 2ϕP )] [sin(θQ)− sin(θP )] (5.8)

I(0,1,0) = −1

4
[2(ϕQ − ϕP )− (sin 2ϕQ − sin 2ϕP )] [cos(θQ)− cos(θP )] (5.9)

I(0,0,1) = −1

4
(cos 2ϕQ − cos 2ϕP ) (θQ − θP ) (5.10)

These integrals constitute the fundamental building blocks of spherical means integrals

in three-dimensional space, which may find application in future three-dimensional

Active Flux methods.
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APPENDIX A

Element Reconstruction

Let Ω represent an m-dimensional element in n-dimensional space (n ≥ m) described by

a barycentric coordinate system σ = (σ1, σ2, .., σm+1). Ensuring proper normalization of

coordinates is crucial to establish unique coordinates for each point within the element, and

it is achieved through the condition:

m+1∑
i=1

σi = 1 (A.1)

The set Bp = {bi(σ1, σ2, .., σm+1)} also constitutes a complete collection of polynomials

of degree p. This set Bp encompasses
(
p+n
p

)
members, aligning with the count of degrees

of freedom for the elements. By projecting data onto Bp, we can effectively reconstruct

property q.

q =

(p+n
p )∑

i=1

cibi (A.2)

where ci is the coefficient corresponding to the basis function bi.

Expanding Equation A.2 yields the general polynomial q of order p as

q(σ1, σ2, .., σm+1) =
∑

a1+a2+...+am+1=p

ca1,a2,...,am+1σ
a1
1 σa2

2 ...σ
am+1

m+1 (A.3)

It’s important to emphasize that due to the barycentric system employed to describe property

q, the resulting expanded expression is not unique. While the reconstructed values remain

consistent, the form of the expression can vary. However, by enforcing the requirement that

each term in Equation A.3 corresponds to an order of p (which means a1+a2+ ...+am+1 = p

for each term), a distinct expression can be attained.

Given that the element Ω possesses
(
p+n
p

)
degrees of freedom, Equation A.3 generates a

sufficient number of linear equations to determine each coefficient ca1,a2,...,am+1 . This proce-
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dure is effectively utilized to derive the basis function bi. By definition, bi takes a value of 1

at the degree of freedom i and is set to 0 at any other degrees of freedom.

Upon solving the linear system, bi, now described by Equation A.3, can be represented

as an inner product between the vector of coefficients λi and the basis features φi

bi = λi ·φi (A.4)

Note that in the case of Hermite elements, where information is represented as kth order

gradients, equation A.3 provides the derivative of the general polynomial q with respect to σi.

For higher-order gradients, we can take derivatives of derivatives to obtain the corresponding

partial derivatives of q with respect to the barycentric coordinates.

∂q

∂σi

=
∑

a1+a2+...+am+1=p

ca1,a2,...,am+1 ×

0, if ai = 0

ai × σa1
1 σa2

2 ...σ
ai−1

i−1 σai−1
i σ

ai+1

i+1 ...σ
am+1

m+1 , otherwise

(A.5)

Furthermore, if we seek to obtain the element average, the integral of each term in equa-

tion A.3 over the element, Ω, is given by

ˆ ˆ
· · ·
ˆ
Ω

σa1
1 σa2

2 ...σ
am+1

m+1 dΩ =
ma1!a2!...am+1!

(a1 + a2 + ...+ am+1 +m)!
(A.6)
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APPENDIX B

Two-Dimensional Spherical Means Integrals

The spherical means integral in two-dimensional space for a function q(x, y) defined in a

Cartesian coordinate system and center (xj, yj) is expressed as

MR{q}(xj, yj) =
1

2πR

ˆ θQ

θP

ˆ R

0

q(xj + r cos θ, yj + r sin θ)
r√

R2 − r2
dr dθ (B.1)

During the reconstruction stage, the active flux method interpolates the function q with a

polynomial of order p, utilizing a set of basis functions Bp defined by

Bp = {bi(σ1, σ2, σ3)}, i = 1, 2, · · · , (p+ 1)(p+ 2)/2 (B.2)

Subsequently, the function q is represented as

q(σ1, σ2, σ3) =

(p+1)(p+2)/2∑
i=1

cibi(σ1, σ2, σ3) (B.3)

In this equation, ci corresponds to the coefficient associated with the basis function bi. Here,

bi is a polynomial of order p, expressed in a general form as

bi(σ1, σ2, σ3) =
∑

a1+a2+a3=p

λa1,a2,a3σ
a1
1 σa2

2 σa3
3 (B.4)

For a comprehensive derivation of basis function bi, refer to Appendix A.

Substituting Equation B.3 into Equation B.1 and expanding the basis function using
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Equation B.4

MR{q}(xj, yj) =
1

2πR

ˆ θQ

θP

ˆ R

0

q(xj + r cos θ, yj + r sin θ)
r√

R2 − r2
dr dθ

=
1

2πR

(p+1)(p+2)/2∑
i=1

ci

ˆ θQ

θP

ˆ R

0

bi(σ1, σ2, σ3)
r√

R2 − r2
dr dθ

=
1

2πR

(p+1)(p+2)/2∑
i=1

ci
∑

a1+a2+a3=p

λa1,a2,a3

ˆ θQ

θP

ˆ R

0

σa1
1 σa2

2 σa3
3

r√
R2 − r2

dr dθ

=
1

2πR

(p+1)(p+2)/2∑
i=1

ci
∑

a1+a2+a3=p

λa1,a2,a3Ia1,a2,a3 (B.5)

where Ia1,a2,a3 is defined as

Ia1,a2,a3 =

ˆ θQ

θP

ˆ R

0

σa1
1 σa2

2 σa3
3

r√
R2 − r2

dr dθ (B.6)

The barycentric coordinate system is correlated to the Cartesian coordinate system

through the relationship defined by Equation 2.6. This relationship can be expressed in

a simplified form as

σi = Aix+Biy + Ci (B.7)

Here, Ai, Bi, and Ci are constant coefficients computed based on the element definition, as

indicated in Equation 2.6.

Equation B.6 represents the spherical means integral of Equation B.1 with the integrand

of the form σa1
1 σa2

2 σa3
3 . This expression can be expanded using Equation B.7 and further

transformed into a polar coordinate system centered at (xj, yj) to become computable:

σa1
1 σa2

2 σa3
3 =

3∏
i=1

[Ai(xj + r cos θ) +Bi(yj + r sin θ) + Ci]
ai (B.8)

Considering that in Equation B.8, a1 + a2 + a3 = p, the expansion of the right-hand side

entails a linear combination of terms [r sin(θ)]p1 [r cos(θ)]p2 , where 0 ≤ p1 + p2 ≤ p. This

further subdivides the integral of Equation B.6 into more computationally manageable forms

I(p1,p2) =

ˆ θQ

θP

ˆ R

0

(r cos θ)p1 (r sin θ)p2√
R2 − r2

drdθ and 0 ≤ p1 + p2 ≤ p (B.9)

107



These integrals possess a closed-form solution, which can be expressed as

I(p1,p2) = R(p1+p2)

(
a0(θQ − θP )

+

p1+p2∑
i=1

ai [cos(iθQ)− cos(iθP )] + bi [sin(iθQ)− sin(iθP )]

)
(B.10)

where ai and bi are constant coefficients of the ith term.

Table B.1 illustrates the closed-form solutions up to order five (p = 5) for the spherical

means integrals. These solutions provide the fundamental basis for computing the spherical

means of the solution state q, as defined in Equation B.1. Given the general form provided

in Equation B.10, the closed-form solution involves a summation with constant coefficients

for terms cos(iθQ)− cos(iθP ) and sin(iθQ)− sin(iθP ).

To enhance the readability of Table B.1, we introduce the operator ∆f (iθPQ) as

∆f (iθPQ) ≡ f(iθQ)− f(iθP ) (B.11)

Here, ∆f (iθPQ) is the foundation for calculating spherical mean integrals. Table B.1 high-

lights that when determining the spherical means of q at order p, it is essential to compute

∆f (iθPQ) for values of i ranging from 0 to p. This approach is designed for computational

efficiency because ∆f (iθPQ) for each i is computed only once per degree of freedom. Higher-

order integrals in this table involve ∆f (iθPQ) with lower values of i that have already been

computed at lower-order integrals.

108



Order Term Spherical Means, I(p1,p2)

0 1 ∆1(θPQ)/(2π)

1
x R∆sin(θPQ)/8
y −R∆cos(θPQ)/8

2
x2 R2 [2∆1(θPQ) + ∆sin(2θPQ)] /(12π)
y2 R2 [2∆1(θPQ)−∆sin(2θPQ)] /(12π)
xy −R2∆cos(2θPQ)/(12π)

3

x3 R3 [9∆sin(θPQ) + ∆sin(3θPQ)] /128
y3 R3 [−9∆cos(θPQ) + ∆cos(3θPQ)] /128
x2y −R3 [3∆cos(θPQ) + ∆cos(3θPQ)] /128
xy2 R3 [3∆sin(θPQ)−∆sin(3θPQ)] /128

4

x4 R4 [12∆1(θPQ) + 8∆sin(2θPQ) + ∆sin(4θPQ)] /(120π)
y4 R4 [12∆1(θPQ)− 8∆sin(2θPQ) + ∆sin(4θPQ)] /(120π)
x3y −R4 [4∆cos(2θPQ) + ∆cos(4θPQ)] /(120π)
xy3 R4 [−4∆cos(2θPQ) + ∆cos(4θPQ)] /(120π)
x2y2 R4 [4∆1(θPQ)−∆sin(4θPQ)] /(120π)

5

x5 R5 [150∆sin(θPQ) + 25∆sin(3θPQ) + 3∆sin(5θPQ)] /3072
y5 −R5 [150∆cos(θPQ)− 25∆cos(3θPQ) + 3∆cos(5θPQ)] /3072
x4y −R5 [10∆cos(θPQ) + 5∆cos(3θPQ) + ∆cos(5θPQ)] /1024
xy4 R5 [10∆sin(θPQ)− 5∆sin(3θPQ) + ∆sin(5θPQ)] /1024
x3y2 R5 [30∆sin(θPQ)− 5∆sin(3θPQ)− 30∆sin(5θPQ)] /3072
x2y3 −R5 [30∆cos(θPQ) + 5∆cos(3θPQ)− 30∆cos(5θPQ)] /3072

Table B.1: Closed-form solutions for spherical mean integrals. We use the symbol x to
represent r sin θ and the symbol y for r cos θ. For additional details, refer to the data structure
available at [1].

109



BIBLIOGRAPHY

[1] Iman Samani. Active flux. https://github.com/imansamani/ActiveFlux, 2023.

[2] Richard Blockley. Green aviation. John Wiley & Sons, 2016.

[3] Dennis L Huff. Noise mitigation strategies. Green Aviation, pages 83–104, 2018.

[4] Philip L Roe. Characteristic-based schemes for the euler equations. Annual review of
fluid mechanics, 18(1):337–365, 1986.

[5] Marvin E Goldstein. A generalized acoustic analogy. Journal of Fluid Mechanics,
488:315–333, 2003.

[6] Gang Tan and Leon R Glicksman. Application of integrating multi-zone model with cfd
simulation to natural ventilation prediction. Energy and Buildings, 37(10):1049–1057,
2005.

[7] Marco Bonvini, Mirza Popovac, and Alberto Leva. Sub-zonal computational fluid dy-
namics in an object-oriented modelling framework. In Building Simulation, volume 7,
pages 439–454. Springer, 2014.

[8] Jian-Ming Jin. The finite element method in electromagnetics. John Wiley & Sons,
2015.

[9] Allen Taflove, Susan C Hagness, and Melinda Piket-May. Computational electromag-
netics: the finite-difference time-domain method. The Electrical Engineering Handbook,
3(629-670):15, 2005.

[10] Stephen H Hall, Garrett W. Hall, and James A. McCall. High-speed digital system
design—A handbook of interconnect theory and design practices. John Wiley & Sons,
2000.

[11] Peter M Shearer. Introduction to seismology. Cambridge university press, 2019.

[12] Jeroen Tromp, Dimitri Komatitsch, and Qinya Liu. Spectral-element and adjoint meth-
ods in seismology. Communications in Computational Physics, 3(1):1–32, 2008.

[13] Maureen D Long and Thorsten W Becker. Mantle dynamics and seismic anisotropy.
Earth and Planetary Science Letters, 297(3-4):341–354, 2010.

110

https://github.com/imansamani/ActiveFlux


[14] Gordon D Smith. Numerical solution of partial differential equations: finite difference
methods. Oxford university press, 1985.

[15] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time dependent problems
and difference methods, volume 2. Wiley Online Library, 2013.

[16] Adrian Sescu, Ray Hixon, and Abdollah A Afjeh. Multidimensional optimization of
finite difference schemes for computational aeroacoustics. Journal of Computational
Physics, 227(9):4563–4588, 2008.

[17] Kane Yee. Numerical solution of initial boundary value problems involving maxwell’s
equations in isotropic media. IEEE Transactions on antennas and propagation,
14(3):302–307, 1966.

[18] Hideo Aochi, Thomas Ulrich, Ariane Ducellier, Fabrice Dupros, and David Michea.
Finite difference simulations of seismic wave propagation for understanding earthquake
physics and predicting ground motions: Advances and challenges. In Journal of Physics:
Conference Series, volume 454, page 012010. IOP Publishing, 2013.

[19] Susanne C Brenner. The mathematical theory of finite element methods. Springer,
2008.

[20] Patrick Joly. Variational methods for time-dependent wave propagation problems. In
Topics in computational wave propagation: direct and inverse problems, pages 201–264.
Springer, 2003.

[21] Mark S Gockenbach. Understanding and implementing the finite element method, vol-
ume 97. Siam, 2006.
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[40] Hans Schamel and Klaus Elsässer. The application of the spectral method to nonlinear
wave propagation. Journal of Computational Physics, 22(4):501–516, 1976.

[41] Stephen B Wineberg, Joseph F McGrath, Edward F Gabl, L Ridgway Scott, and
Charles E Southwell. Implicit spectral methods for wave propagation problems. Journal
of computational physics, 97(2):311–336, 1991.

[42] Bram Van Leer. Towards the ultimate conservative difference scheme. iv. a new approach
to numerical convection. Journal of computational physics, 23(3):276–299, 1977.

[43] Jungyeoul Maeng. On the advective component of active flux schemes for nonlinear
hyperbolic conservation laws. PhD thesis, University of Michigan, Ann Arbor, 2017.

112



[44] Duoming Fan. On the acoustic component of active flux schemes for nonlinear hyperbolic
conservation laws. PhD thesis, University of Michigan, Ann Arbor, 2017.

[45] Zhijian J Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, Doru Caraeni,
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