
Development and Application of Hypernetworks for
Discretization-Independent Surrogate Modeling of Physical Fields

by

James T. Duvall

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering and Scientific Computing)

in the University of Michigan
2024

Doctoral Committee:

Professor Karthik Duraisamy, Chair
Professor Krzysztof Fidkowski
Associate Professor Benjamin Jorns
Assistant Professor Aaron Towne

James T. Duvall

jamesduv@umich.edu

ORCID iD: 0000-0001-6398-8819

©James T. Duvall 2024

Table of Contents

List of Tables vi

List of Figures ix

List of Appendices xvii

List of Symbols xxi

List of Acronyms xxiii

Abstract xxiv

Chapter 1: Introduction 1

1.1 Interplay Between Fidelity and Cost in Engineering Simulation 2

1.1.1 High-Fidelity Models 3

1.1.2 Navier-Stokes Equations and a Hierarchy of Models 6

1.2 Data-driven Modeling and Optimization 18

1.2.1 Solver Augmentation 19

1.2.2 Design Optimization and Surrogate Modeling 20

1.2.3 Solver Acceleration and Intrusive Reduced Order Modeling 26

1.2.4 Solver Replacement or Emulation 29

1.3 Objectives and Contributions 33

1.4 Thesis Outline . 34

Chapter 2: Optimization and Relevant Machine-Learning-Based Regres-

sion and Surrogate Modeling Techniques 36

2.1 A Test Problem: 2D Vehicle Aerodynamics 37

2.2 Optimization in Design and Model Construction 38

2.2.1 Scaling and Normalization 40

ii

2.2.2 Unconstrained Gradient-Based Optimization and Training ANN 41

2.3 A Survey of Existing Regression Techniques 44

2.3.1 Regularized and Non-linear Least Squares 44

2.3.2 Gaussian Process Regression 46

2.3.3 Proper Orthogonal Decomposition 55

2.3.4 Dense Neural Networks 57

2.3.5 Autoencoders . 59

2.3.6 Convolutional Neural Networks 61

2.3.7 Graph Neural Networks 65

2.3.8 Point cloud neural networks 69

2.3.9 Operator regression methods 69

2.3.10 Solving PDEs with neural networks 70

Chapter 3: Predictive Deep-Learning Models Without Interpolation of

Ground-Truth Data 73

3.1 Decoder Convolutional Neural Networks (DCNN) 76

3.2 Discretization-Independent Methods 78

3.2.1 Shape and Scene Representation via Coordinate-based Neural Net-

works . 79

3.2.2 Conditioning Neural Networks 80

3.2.3 Problem Setup . 85

3.2.4 Method 1: Design-variable MLP (DV-MLP) 86

3.2.5 Method 2: Design-Variable Hypernetworks (DVH) 86

3.2.6 Method 3: Non-linear Independent Dual System (NIDS) 90

3.3 Modal Interpretation of NIDS Predictions 93

3.4 Piecewise Learning-Rate Schedule 95

Chapter 4: Surrogate Modeling Applications 97

4.1 Model Implementation and Training Details 97

4.2 2D Poisson Equation . 99

4.2.1 DVH: Effect of Training Method and Class Label 102

iii

4.2.2 Comparing Model Performance 107

4.3 2D Incompressible RANS . 108

4.3.1 Numerical Experiments I: Vehicle Aerodynamics 108

4.3.2 Model Architecture and Training Options 111

4.3.3 Single Vehicle Speed . 113

4.3.4 Multiple Speeds and Generalization: Low-Data Regime 116

4.4 Numerical Experiments II: Effect of Random Fourier Features 121

4.4.1 Model Architectures and Training Options 122

4.4.2 Single Vehicle Speed . 124

4.4.3 Multiple Speeds and Generalization: Low-Data Regime 127

4.5 Ahmed Body: 3D Vehicle Aerodynamics 133

4.5.1 Generation of CFD Solutions 135

4.5.2 Data Processing and Preparation 139

4.5.3 Numerical Experiments: Single Vehicle Speed 140

Chapter 5: Design of Axial Compressor-Rotor Sections 143

5.1 Introduction . 143

5.2 Methodology . 146

5.2.1 ASO Problem Statement and RANS Solutions 146

5.2.2 ANN Flow Emulators 149

5.3 Subsonic Compressor Airfoil Emulation and Optimization 157

5.3.1 Proof of Concept: Driving Design Optimization 163

5.4 Transonic Compressor Airfoil Emulation and Optimization 164

5.4.1 Geometric Parameterization(s) and Datasets 164

5.4.2 Emulator Model Architectures 165

5.4.3 Problem 1: Geometric Design Variables Only 165

5.4.4 Problem 2: Geometric Design Variables and Rotor Speed 169

5.5 Summary . 174

Chapter 6: Conclusions 176

6.1 Summary of Contributions . 177

iv

6.1.1 Methods . 178

6.1.2 Numerical Experiments 179

6.2 Future Work . 183

Appendix A: DVH Network Scaling: Further Details 189

Appendix B: Vehicle Aerodynamics Dataset 191

B.1 Baseline Results: Additional Figures 191

B.1.1 Single Vehicle Speed . 191

B.1.2 Multiple Vehicle Speeds 193

B.2 Fourier Features: Additional Figures 194

Bibliography 197

v

List of Tables

4.1 Description of design variables for the 2D Poisson problem. 101

4.2 One-hot encoded vectors . 102

4.3 Summary of training and validation error metrics for DVH models trained

with various options on the Poisson problem. 104

4.4 Summary of training and validation error metrics on the Poisson problem

for DV-MLP, NIDS, and DVH models with similar main and hypernetworks.108

4.5 Description of entries in geometric design-variable-vector µµµgeo for the 2D

vehicle aerodynamics dataset. 110

4.6 Number of trainable parameters for DV-MLP and DVH models for all

baseline results of Section 4.3.1, where H = HL = 50, Lm = LH = 5. 112

4.7 Comparing training profiles across the models and training methods. 112

4.8 Dataset and training options, where st is the total number of optimizer

steps, and values in parentheses are dataset-iterations or epochs. 113

4.9 Summary of training and validation error metrics at a vehicle speed of 90

kph. . 114

4.10 Comparing training-case error metrics between points with are retained

and actually used in training versus those which are truncated. 115

4.11 Dataset and training options, where st is the total number of optimizer

steps, and values in parentheses are dataset-iterations or epochs. 117

4.12 Summary of training and validation error metrics for vehicle speeds of 90

and 130 kph with a training fraction of 0.80. 120

4.13 Comparing DVH non-dimensional and dimensional error metrics computed

for each vehicle speed separately with a training fraction of 0.80. 120

vi

4.14 Profiling DVH models with varying hypernetwork-final-hidden-dimension

HL using training method 2, batch-by-case, with mixed precision. 124

4.15 Number of trainable parameters for DV-MLP and DVH models for all

Fourier-feature results of Section 4.4, where H = HL = 50, Lm = LH = 5. 124

4.16 Summary of training and validation error metrics at a vehicle speed of 90

kph for models using a Fourier-feature layer. 125

4.17 MRL2E (equivalent to mean-absolute-percent error) in predicting the pres-

sure drag coefficient over the training and validation groups for non-Fourier

and Fourier-based models for a single vehicle speed of 90 kph. 126

4.18 Summary of training and validation error metrics for vehicle speeds of

90 and 130 kph with a training fraction of 0.80, including use of Fourier

features. The percentage improvement when using Fourier features is given

in parentheses. . 129

4.19 MRL2E (equivalent to mean-absolute-percent error) in predicting the pres-

sure drag coefficient over the training and validation groups for non-Fourier

and Fourier-based models for multiple vehicle speeds of 90 and 130 kph. 132

4.20 Summary of training and validation error metrics at a vehicle speed of 60

m/s. . 141

4.21 MRL2E (equivalent to mean-absolute-percent error) in predicting the pres-

sure drag coefficient over the training and validation groups. 142

5.1 Comparison of DVH training methods by examining the shape of the train-

ing arrays, meaning of batch axis, and compared training time for the

transonic problem in Section 5.4.4. 156

5.2 Summary of subdomain DCNNs. 158

5.3 Summary of dimensional training and validation error metrics RMSE,

MAE, and MRL2E for the subsonic airfoil dataset. 159

5.4 Multi-block DCNN architecture for the transonic airfoils. 165

vii

6.1 Summary of training and validation error metrics for vehicle speeds of 90

and 130 kph with a training fraction of 0.80. 187

6.2 Summary of training and validation error metrics for vehicle speeds of 90

and 130 kph with a training fraction of 0.80. 188

viii

List of Figures

1.1 The HPL performance from 1993-2019, taken from Ref. [5], showing the

development through the peta-FLOP era of supercomputing. 2

2.1 Vehicle aerodynamics domain and processed Cartesian grid. 37

2.2 Cartesian grid interpolated pressure field in the region of interest, where

the pixelation in the vehicle shape is apparent. 38

2.3 MRL2E versus data-noise level σ2
n (a): coarsely over a broad range and

(b): more finely over a narrower range where validation-set minima are

seen. . 52

2.4 Example training-set (a-c) and validation-set (d-f) pressure-field predic-

tions in the essentially noise-free regime, with σ2
n = 10−16. 52

2.5 Example training-set (a-c) and validation-set (d-f) x-velocity-field predic-

tions in the essentially noise-free regime, with σ2
n = 10−16. 53

2.6 Example training-set (a-c) and validation-set (d-f) pressure field predic-

tions when the MRL2E validation-best noise level was used. 54

2.7 Example training-set (a-c) and validation-set (d-f) x-velocity field predic-

tions when the MRL2E validation-best noise level was used. 54

2.8 The variation in reconstruction MRL2E for each flow quantity of the in-

terpolated vehicle dataset for the training and validation groups using a

POD basis with a varying number of modes. 56

2.9 Example training-set (a-c) and validation-set (d-f) pressure-field recon-

structions using a non-truncated POD basis with 95 modes. 56

ix

2.10 Example training-set (a-c) and validation-set (d-f) x-velocity-field recon-

structions using a non-truncated POD basis with 95 modes. 57

3.1 Schematic comparison of (a) autoencoder CNN with latent-space injection,

model as presented in [76], and (b) DCNN, with sequence of dense and

transposed convolution layers. 77

3.2 Notional schematic of a multi-block DCNN model with parallel decoder

legs for each mesh zone. . 78

3.3 Schematic representations of the discussed methods for conditioning neural

fields. Conditional scaling and FiLM use pointwise multiplication. 84

3.4 Illustrating the difference between (a) fully-mixed batches and (b) batch-

by-case training mini-batches, by considering the shape and dimension of

the training arrays for a single batch j. Colors correspond to data from a

given case. . 90

3.5 Schematic diagram of a NIDS network emphasizing reuse of parameter

network outputs. Ref. [174] was used in making this figure. 91

3.6 Schematic diagram comparing the different proposed methods. Ref. [174]

was used in making this graphic. 92

4.1 Example solution fields and meshes for three randomly generated shapes. 100

4.2 DVH training curves for the Poisson problem, showing the effect of training

method and inclusion of class-label vector c. Training losses are solid lines

while validation losses are dashed and transparent. 103

4.3 Mean-relative-L2-error (MRL2E) versus shape class for the three scenarios

considered. . 104

4.4 Histograms relating the RMSE to each generative factor, where the Pear-

son correlation coefficient is shown on each plot. 105

x

4.5 DVH predictions on an unseen triangle, both without and with class-label

vector c used as input. Note that the figures are generated independently

of another, thus the differences in colorbar limits and location of contour

lines in the ground truth and predictions. 106

4.6 DVH predictions on an unseen nonagon, both without and with class-label

vector c used as input. Note that the figures are generated independently

of another, thus the differences in colorbar limits and location of contour

lines in the ground truth and predictions. 106

4.7 Comparing MRL2E by shape class with and without inclusion of the class-

label vector as part of the design variables for (a): DV-MLP and (b): NIDS. 107

4.8 Mean-relative-L2-error (MRL2E) versus shape class for the three model

types. . 107

4.9 Pertaining the training dataset, (a) an example unstructured CFD mesh

and (b) a composite image of all 124 vehicle shapes overlain on the same

axes . 110

4.10 Mean absolute error over points truncated from training cases versus those

retained and used in training for DV-MLP and DVH M2 predictions for

each field variable. . 115

4.11 Validation-group instance (a) ground-truth pressure field, (b) DV-MLP

prediction, (c) DV-MLP error, (d) DVH prediction, and (e) DV-MLP error.

Error colorbars are limited to ±4×RMSE centered on the average error

for the instance. . 116

4.12 Training (solid) and validation (dashed) losses during training as the amount

of training data is varied from 5 to 199 cases, where darker lines corre-

spond to more data, for (a) DV-MLP and (b) DVH. The curves have been

smoothed using a moving average with a window length of 3 epochs for

DV-MLP and 5 epochs for DVH. 118

xi

4.13 Comparing trends in predictive error using mean-relative-L2-error (MRL2E),

with (a) the final weights, and (b) the best weights per validation loss seen

during training. The y-axis is not multiplied by 100%, therefore 10−1 cor-

responds to 10% mean error in the state variable. 119

4.14 Pressure field ground truth, DVH prediction, and errors at 90 and 130 kph

for the same vehicle shape. . 121

4.15 Training curves for DV-MLP models, where the Fourier features are: (a)

applied to all inputs x′ and µµµ, and (b) applied to only spatial inputs x′. 123

4.16 DV-MLP single speed, pointwise absolute error probability distributions

with and without random Fourier features, computed using Gaussian ker-

nel density estimates. . 125

4.17 DVH single speed, pointwise absolute error probability distributions with

and without random Fourier features, computed using Gaussian kernel

density estimates. . 126

4.18 Comparing trends in predictive error using mean-relative-L2-error (MRL2E),

with (a) the final weights, and (b) the best weights per validation loss seen

during training. The y-axis is not multiplied by 100%, therefore 10−1 cor-

responds to 10% mean error in the state variable. 128

4.19 x-velocity ground truth, DVH prediction, and errors at 90 and 130 kph for

the same vehicle shape, where neither instance was included in the training

set. . 130

4.20 Line probes comparing baseline and Fourier feature DVH predictions for

an unseen case at 90 kph. . 131

4.21 Comparing DV-MLP and DVH pointwise absolute error probability dis-

tributions using random Fourier features, computed using Gaussian kernel

density estimates. . 132

4.22 Geometry and dimensions of the Ahmed body in millimeters, Figures taken

from reference [192]. . 133

xii

4.23 Conceptual representations of prominent flow-field vortices at the rear end

of the Ahmed body, where (a) is taken from [192], and (b) is taken from

[196]. . 134

4.24 Time-averaged streamlines at the Ahmed body rear-end obtained using

PIV, taken from [199]. . 135

4.25 Comparing residual and drag coefficient convergence for slant angles of 0

and 30 degrees at a speed of 60 m/s. Residuals are normalized relative to

uniform initial conditions. . 138

4.26 (a): Experimental CD versus slant angle from ref. [192], not all numerical

values provided in the figure or elsewhere in the paper. (b): Comparing

the experimental values extracted from the image with the CFD results

here, both at a speed of 60 m/s. 139

4.27 DV-MLP-LN pressure drag coefficient predictions, (a): versus slant angle

and (b): predicted versus ground truth, where the CFD solution is consid-

ered the ground truth in this scenario. The overall trend is well captured,

but with small errors for each drag coefficient. 142

5.1 Example multi-block mesh for a subsonic rotor airfoil, where the inlet and

outlet are labeled. . 147

5.2 CFD-driven optimization in performance space at varying rotor speed,

where the baseline NASA rotor 37 at 70% span corresponds to the black

squares. . 148

5.3 Cartesian grid overlain on computational mesh, highlighting the loss of

information associated with interpolation to such a grid. 151

5.4 Schematic comparison of (a) autoencoder CNN with latent-space injection,

model as presented in [76], and (b) DCNN, with sequence of dense and

transposed convolution layers. 153

5.5 Comparison of (a) coordinate-MLP with embedding vector µµµ, and (b)

design-variable hypernetwork, where the main network weights and biases

θm are generated using a hypernetwork. 155

xiii

5.6 Training curves for (a) DCNN and (b) DVH emulators, corresponding to

min-max normalized quantities. 159

5.7 Comparing ground truth and predicted pressure fields for DCNN and DVH

models on an unseen airfoil, for a subsonic condition. Error colorbars are

limited to ±5× RMSE. . 160

5.8 Comparing ground truth and predicted x-velocity fields for DCNN and

DVH models on an unseen airfoil, for a subsonic condition. Error colorbars

are limited to ±10× RMSE. 160

5.9 The predicted vs. ground truth pressure lift and drag coefficients for the

DCNN model. . 161

5.10 The predicted vs. ground truth pressure lift and drag coefficients for the

DVH model. . 161

5.11 The predicted and ground truth pressure coefficient distributions for an

unseen airfoil. . 162

5.12 The average distribution in pressure coefficient prediction again surface

computational domain coordinate ξ, which is 0 at the trailing edge and

walks around the airfoil surface clockwise, with the leading edge marked

by a vertical dash line in the plot. 162

5.13 Objective space displaying baseline and outcome of DCNN-driven opti-

mization . 163

5.14 Airfoil loading as predicted by (a) DCNN surrogate model; and (b) as

validated by CFD. . 164

5.15 Pairplot of pressure ratio and adiabatic efficiency against the individual

geometric design variables µi, with the higher-performing group 1 airfoils

in red. Axis labels removed for proprietary reasons. 166

xiv

5.16 A comparison of the effect of training with the augmented dataset on group

1 airfoil surface pressure predictions for (a) DCNN and (b) DVH models,

where the ground-truth is solid black and the predictions are dashed red.

For each emulator, each row corresponds to the same airfoil, with a label

marking it as part of the training or testing set. Axis labels removed for

proprietary reasons. . 167

5.17 Predicted QoI’s, (a) without the data augmentation and (b) with the data

augmentation. Using data augmentation hurts group 2 predictions while

improving those for desirable group 1 airfoils. Axis labels removed for

proprietary reasons. . 168

5.18 Comparing CFD-driven (green) and emulator-driven shape optimization

with (blue) and without (red) CFD residual information. The iteration

count excludes initial DOE of 10 cases. Axis labels removed for proprietary

reasons. . 169

5.19 Training curve for DVH model with a piecewise learning rate schedule, con-

sisting of two regions, with constant learning rate followed by exponentially-

decaying learning rate, starting at epoch 2000. 170

5.20 Ground truth (black) and predicted (red) surface-pressure distributions

around several unseen airfoils. A wide variety of behavior is seen, and is

captured well by the DVH emulator. Axis labels removed for proprietary

reasons. . 170

5.21 Contours plots showing the ground truth, prediction, and error for some

of the DVH predicted flow quantities for an unseen case. 171

5.22 The predicted vs. ground truth objectives, colored by rotor speed. Axis

labels removed for proprietary reasons. 171

5.23 Comparing CFD-driven and emulator-driven optimization objective histo-

ries for the design of a transonic airfoil at varying rotor speed, where the

objective is plotted against (a) the number of evaluations or iterations,

and (b) the number of CFD evaluations. 172

xv

5.24 Performance-space view of (a) CFD-driven surrogate assisted optimization

and (b) CFD-emulator-driven surrogate assisted optimization, where the

black squares correspond to the baseline design. 173

6.1 Detailed schematic for a one-shot decoder convolutional hypernetwork,

where the main network hidden dimension is the same for all layers with

a value of 32, a power of 2. This results in a 3 zone hypernetwork, with

the kernel and stride dimensions shown. Note that padding is excluded in

all zones, P = 0, and F is the number of filter maps per layer. 185

6.2 Plotting the number of hypernetwork trainable weights against the number

of filters F , for a main-network with nL = 5 hidden layers with H =

64, and input/output dimensions corresponding to a vehicle aerodynamics

problem of Section 4.3.4. This shows that using a decoder convolutional

hypernetwork may reduce the number of weights even compared to the

main network. . 187

B.1 Unseen vehicle pressure field predictions and errors. 191

B.2 Unseen vehicle x-velocity predictions and errors. 192

B.3 Unseen vehicle y-velocity predictions and errors. 192

B.4 x-velocity field ground truth, DVH prediction, and errors at 90 and 130

kph for the same vehicle shape. 193

B.5 y-velocity field ground truth, DVH prediction, and errors at 90 and 130

kph for the same vehicle shape. 194

B.6 Pressure field ground truth, DVH prediction, and errors at 90 and 130

kph for the same vehicle shape, where neither instance was included in the

training set. . 195

B.7 y-velocity field ground truth, DVH prediction, and errors at 90 and 130

kph for the same vehicle shape, where neither instance was included in the

training set. . 196

xvi

List of Appendices

Appendix A: DVH Network Scaling: Further Details 189

Appendix B: Vehicle Aerodynamics Dataset 191

B.1 Baseline Results: Additional Figures 191

B.2 Fourier Features: Additional Figures 194

xvii

List of Symbols

A Vandermonde / adjacency matrix

B bias matrix

b bias vector

D degree matrix

H Hessian matrix hidden-state matrix

h hidden-state vector

Ip Identity matrix, dimension p× p

K filter matrix

L graph Laplacian matrix

m0 / mpost prior /posterior mean vectors

p(·) polynomial feature-generating function

Q discretized HFM solution, matrix form

q vector of HFM solution variables

qN discretized HFM solution, flattened vector form

q′′ heat flux vector

u velocity vector

W weight matrix

w vector of weights

x vector of spatial coordinates

x′ augmented vector of spatial coordinates

z latent vector

aij anisotropic stress tensor

CD drag coefficient

CL lift coefficient

xviii

Coη Cournat number, Kolmogorov scale

cp specific heat capacity at constant pressure

cv specific heat capacity at constant volume

E0 stagnation energy

e specific internal energy

FD drag force

h enthalpy

I turbulence intensity

k turbulent kinetic energy

kB Boltzmann constant

k(·, ·) covariance function / kernel

`0 largest eddy scale

M molar mass

m(·) mean function

N(·) neural network

NA Avogadro’s number

n(·) dimension of subscript quantity (·)

p/p0 pressure/stagnation pressure

pR stagnation pressure ratio

R computer performance in flops

Rsp specific gas constant

Ru universal gas constant

Re Reynolds number

S Sutherland constant

Sij strain rate tensor

T/T0 temperature/stagnation temperature

t time

u x-component of velocity

u′i fluctuating velocity component

v y-component of velocity

xix

w z-component of velocity

ΓΓΓ Noise matrix

εεε vector of errors

λλλ vector of eigenvalues

µµµ vector of design variables

ΦΦΦ feature matrix

φφφ(·) feature generating function

ΣΣΣ0 / ΣΣΣpost prior / posterior covariance matrix

α learning rate / slant angle

δij Kronecker delta

γ ratio of specific heats

η adiabatic compression efficiency / Kolmogorov length scale

κ thermal conductivity

λ second coefficient of viscosity

φ minimum distance function

Θ(·) decoder

θ set of trainable weights

µ molecular viscosity

ρ density

Φ(·) encoder

φ(·) signed distance function

Ω physical domain

ω specific turbulent dissipation rate

σ2 variance

σ.(·) element-wise activation function

τij viscous stress tensor

ξ streamwise computational coordinate

B boundary condition operator

D dataset

E graph edges

xx

G graph

GP Gaussian process

J (·) objective / loss function

M vector space, design variables

Q vector space, CFD solution

R PDE system of equations operator

V graph vertices

X vector space, spatial coordinates or data space

X ′ vector space, augmented spatial coordinates

Z vector space, latent representation

·̂ approximation of quantity (·)

·̃ non-dimensional quantity (·)

E[·] expectation of quantity [·]

R real numbers

xxi

List of Acronyms

ANN artificial neural network

ASO aerodynamic shape optimization

BO Bayesian optimization

CFD computational fluid dynamics

CNN convolutional neural network

DCNN decoder convolutional neural network

DES detached eddy simulation

DMD dynamic mode decomposition

DNS direct numerical simulation

DoE design of experiments

DVH design-variable hypernetwork

DV-MLP design-variable multi-layer perceptron

EGO efficient global optimization

FDM finite-difference method

FEM finite-element method

FFNN feed-forward neural network

FiLM feature-wise linear modulation

FIML field inversion machine learning

FLOPS floating point operations per second

FVM finite-volume method

GAN generative adversarial network

GCN graph convolutional network

GNN graph neural network

GPR Gaussian process regression

xxii

GPU graphics processing unit

HFM high fidelity model

HPL High Performance Linpack

LES large-eddy simulation

LSTM long short-term memory

MAE mean-absolute error

MDF minimum distance function

MDO multi-disciplinary design optimization

MLP multi-layer perceptron

MPGNN message-passing graph neural network

MRL2E mean-relative-L2 error

MSE mean-squared error

NIDS non-linear independent dual system

ODE ordinary differential equation

PDE partial differential equation

POD proper orthogonal decomposition

QoI quantity of interest

RANS Reynolds-averaged Navier-Stokes

RMSE root-mean-squared error

ROM reduced-order model

RSM response-surface method

SBO surrogate-based optimization

SDF signed distance function

SQP sequential quadratic programming

SLSQP sequential least-squares quadratic programming

TKE turbulent kinetic energy

WR-LES wall-resolved large eddy simulation

WM-LES wall-modeled large eddy simulation

xxiii

Abstract

Computational simulations have become central in many engineering and scientific disci-

plines, providing insight and understanding into the behavior of complex systems. High-

fidelity models (HFMs) of physical phenomena are frequently expressed using partial

differential equations which require expensive and complex numerical methods for solu-

tion. This limits their application in many-query scenarios such as design optimization,

model-based control, and inverse problems. The complexity may be decreased through

simplifying assumptions regarding the underlying physics and coarse-graining. Alter-

natively, data-driven approaches may be used, whereby the HFM solutions or scalar

quantities of interest (QoIs) are approximated using a surrogate regression model.

Surrogate modeling techniques aim to decrease computational expense while retaining

dominant solution features and characteristics. In the context of optimization, “surrogate

modeling” typically corresponds to approximation of scalar QoIs which comprise terms

in the objective function or constraints. The scalar QoIs are usually extracted from HFM

solutions, often as integral quantities, and represent a distillation of the information

present in the solution. Research into driving engineering design optimization with data-

driven or deep-learning-based QoI surrogates has become widespread and seen many

successes. However, QoI surrogates are limited in their portability, as a change in the

objective function possibly requires retraining new surrogates. This may be remedied by

approximating the HFM solution fields instead of the extracted QOIs as the solutions

are objective agnostic. However, this is a more difficult task, not only due to the much

greater problem dimensionality, but also due to practical considerations regarding the

required varying mesh topologies across parameter or design-variable space.

This thesis is concerned with development of HFM surrogates or emulators which

are discretization independent. The problem physics drives modeling choices regarding

xxiv

numerical scheme and spatial/temporal discretization, and in many engineering-relevant

scenarios the meshes must be adapted or changed among solution instances to effec-

tively capture variation in all important solution-field features. These changes are often

driven by alteration of the physical design or operating conditions as described by the

problem parameters or design variables. Existing frameworks based on convolutional

neural networks and snapshot-matrix decomposition often rely on lossy pixelization and

data-preprocessing, limiting their effectiveness in realistic engineering scenarios. The in-

terpolation represents a loss of important information in regions with large solution-field

gradients where mesh points are tightly spaced, such as through fluid boundary layers

and free-shear layers in the wake of aerodynamic bodies. The methods developed here,

however, can learn from heterogeneous data sources by handling each point in every mesh

separately, bypassing the need for constructing snapshot matrices of consistent dimension

for each case.

Developed methods include decoder convolutional neural network (DCNN) models for

situations where the computational domain has a regular Cartesian or block-Cartesian

structure. DCNN models map directly between the design variables and full solution

fields, providing richer information than QoI surrogates. This addresses information loss

due to interpolation, but not variation in mesh topology among solution instances. Re-

cently, coordinate-based multi-layer-perceptron networks have been found to be effective

at representing 3D objects and scenes by regressing volumetric implicit fields, with ap-

plications in computer graphics. A key distinction is that coordinate-inputs are taken

pointwise instead of as full-domain solution snapshots. These concepts are leveraged and

adapted in the context of physical-field surrogate modeling, and allow for full discretiza-

tion independence where each solution may have a unique and varying domain, boundary,

mesh topology, and operating conditions.

Generalization across solution instances is achieved by conditioning the neural net-

works through a combination of local and global variables. Local conditioning relates to

use of the signed-distance function or minimum-distance function as an additional net-

work input to provide geometric information. Global conditioning utilizes the problem

xxv

design variables as the conditional input. Various methods of global conditioning are

explored, including concatenation-based conditioning and the use of hypernetworks for

full or partial network-weight conditioning. The methods are applied to predict solutions

around complex, parametrically-defined geometries on non-parametrically-defined meshes

with model predictions obtained many orders of magnitude faster than the full-order

models. The incorporation of random Fourier features enhances prediction and general-

ization accuracy in some situations, as does incorporation of layer-normalization in the

main network.

The HFM surrogates are applied to a variety of steady-state problems, including

2D external vehicle aerodynamics, jet-engine-compressor aerodynamics, the 2D poisson

equation with a source term, and finally 3D Ahmed body aerodynamics. Additionally,

the HFM surrogates are used to drive aerodynamic design optimization of jet-engine-

compressor airfoils in subsonic and transonic regimes, with orders-of-magnitude reduction

in online time to attain optimal designs as compared to CFD-driven optimization. In

summary, this work develops and demonstrates HFM surrogates with promising potential

as practical tools in industrial analysis and design.

xxvi

Chapter 1

Introduction

The prevalence and importance of numerical simulation has grown in concert with and as

a result of the exponential increase in computing power through the latter-half of the 20th

century, as famously described by Moore’s law [1]. His initial forecasting in 1965 posited

a log-linear relation by which integrated circuit complexity would increase by a factor of

two year-over-year until 1975, and actual industry developments matched this pace over

that period. In 1975 the forecast was revised with a gentler slope corresponding to a dou-

bling period of 18-24 months, and at this time the term “Moore’s Law” was coined and

entered the public lexicon [2], remaining relevant ever since. Engineers and researchers

have continually developed computer components, architectures, and programming lan-

guages in order to put the transistor-dense chips to best use. Virtually every branch of

science has utilized the enhanced computational resources, and thus these developments

have gone hand-in-hand with more detailed and accurate models and methods; a natural

coevolution.

Measuring the performance of computers is a complex task, as different applications

have varying requirements and measures of success. One commonly used measure is a

reporting of the f loating-point-operations-per-second, or FLOPS, where a FLOP corre-

sponds to a single mathematical operation such as addition or multiplication. The High

Performance Linpack (HPL) benchmark [3] provides a standard problem for comparison,

solving a dense linear system of equations, and the results are compiled in the TOP500

list [4]. Figure 1.1, taken from reference [5], plots the maximum performance on the HPL

benchmark against year, showing the continual improvement and development through

1

the teraflop and petaflop eras. The next milestone moves performance into the exascale,

with the Frontier supercomputer at Oak Ridge National Laboratory the first to pierce

this barrier while currently sitting atop the TOP500 list with a measured performance of

1.194 exaFLOPs Rmax
1 [4].

Figure 1.1: The HPL performance from 1993-2019, taken from Ref. [5], showing the develop-
ment through the peta-FLOP era of supercomputing.

1.1 Interplay Between Fidelity and Cost in Engineer-

ing Simulation

Numerical simulations of complex physical systems are based upon mathematical descrip-

tions representing governing equations or physical laws which are derived or discovered

through empirical and theoretical scientific study. These models may be conceptual, phe-

nomenological, mechanistic and/or probabilistic in nature and frequently do not have a

closed-form solution, necessitating the need for numerical solutions. Engineering models

typically involve the numerical solution of governing equations expressed using systems of

partial differential equations (PDEs). In mechanical and aerospace engineering, compu-

tational fluid dynamics (CFD) is widely used to simulate external flows around machines

or structures and internal flows through engineering devices. The governing equations

for fluid mechanics generally take the form of the Navier-Stokes equations in the contin-

uum regime, and the Boltzmann equations for the kinetic, non-continuum regime, with

augmentations for additional physics to account for chemical reaction, non-equilibrium,

and plasma-state scenarios. Within each regime, simplifying assumptions applied to the

governing equations or solution procedure result in a hierarchy of models, where the

1Rmax is a measured value using the HPL benchmark, as compared to Rpeak which is theoretical.

2

simplifications are generally made to ease the computational burden or outright enable

some problems to be simulated. This hierarchy is particularly notable for simulations of

high-Reynolds-number fluid turbulence, characterized by chaotic multi-scale behavior.

While the main contributions of this thesis center on data-driven or deep-learning

techniques for fast approximation of engineering-relevant PDE systems in general, most

of the problems considered are in the domain of fluid mechanics and aerodynamics in

particular. Thus, in what follows in this introductory chapter, notation surrounding

high-fidelity simulation models is presented generally at first in Section 1.1.1 and then

the governing equations of continuum-regime fluid motion are presented in Section 1.1.2.

Following this an overview of the various fidelities of simulating fluid mechanics prob-

lems is given, highlighting the need for modeling simplification due to computational

constraints arising from the multi-scale problem physics. Then background information

and context surrounding optimization and data-driven methods is provided in Section

1.2 before the specific contributions are enumerated in Section 1.3 and an overall outline

in Section 1.4.

1.1.1 High-Fidelity Models

Engineering models frequently have parametric dependence on some input conditions,

typically describing the domain geometry, physical properties, and operation conditions.

Collect all such parameters in vector µµµ ∈ Rnµ , let x ∈ Rnx be the spatial coordinates,

and t ∈ R be time. Then vector-valued solution-states at a point in physical space may

be written as q(x, t;µµµ) ∈ Rnq , which are the unknowns to be determined. Frequently,

governing-equation PDEs are derived from conservation laws which have spatio-temporal

dependence, and considering a domain Ω(µµµ) and boundary ∂Ω(µµµ) which are functions of

the parameters µµµ, then the PDE system may be written generally as

∂q(x, t;µµµ)

∂t
+R

(
q(x, t;µµµ),x, t, . . . ;µµµ

)
= 0, x ∈ Ω(µµµ), t ∈ [t0, tf], (1.1)

3

where R is a (usually) non-linear PDE-term operator which generates the required ex-

pressions, and commonly includes spatial derivatives, divergences, and source terms. All

other necessary outside information is collected in the ellipsis. Appropriate initial and

boundary conditions must also be prescribed. The initial conditions may be written as

q(x, t0;µµµ) = q0, x ∈ Ω(µµµ), (1.2)

which fully defines the solution state over the domain. Consider a boundary-condition

operator B which defines the boundary conditions in a similar manner to the governing

equations, written as

B(q(x, t;µµµ),x, t, . . . ;µµµ) = 0, x ∈ ∂Ω(µµµ), t ∈ [t0, tf]. (1.3)

The boundary conditions may set the value of q directly (Dirichlet), the boundary-normal

gradients ∇q · n̂ (Neumann), or a linear combination of both (Robin), and may differ for

each component of q or for varying positions on the boundary.

Equations 1.1-1.3 define the PDE-system of interest. Solutions are obtained numeri-

cally, usually by discretizing in space and time with scheme details dependent upon the

problem physics, although mesh-free methods exist for some scenarios. Many engineer-

ing models treat the spatial discretization of R/B separately from the time-integration

scheme. Spatial discretization schemes include finite difference methods (FDMs), finite

element methods (FEMs), and finite volume methods (FVMs), and entire fields of study,

such as CFD, are devoted to the development of domain-specific algorithms. Applying

the spatial discretization leads to the semi-discrete form of the governing equations, which

have been transformed from a system of PDEs to a system of ODEs. Considering a spa-

tial discretization which results in N nodes or cell centers holding the solution state, the

semi-discrete form may be written as

dqN(t;µµµ)

dt
= f(qN(t;µµµ)), (1.4)

4

where qN ∈ RNnq×1 holds the nq-dimensional solution state at all N spatial locations,

and f represents the discretization of R/B, though rearranged. Note that in this thesis,

column vectors are represented by lowercase bold letters while matrices, arrays, or tensors

are represented by bold uppercase letters.2 Thus qN is a flattened representation of the

spatially-discretized solution state. The semi-discrete initial conditions are written as

qN(t0;µµµ) = qN,0. (1.5)

Appropriate handling of boundary conditions depends greatly on the spatial discretization

scheme selected and the boundary-condition type.

When time-varying problems are considered, the solution is marched forward in

time using a time-integration scheme. Common methods include Runge-Kutta, linear-

multistep methods, and predictor-corrector methods [6]. When a steady-state problem

is considered, obviously no time integration is required but any non-linearity in f gener-

ally still requires iterative methods in order to obtain a solution. In either scenario qN

represents the high-fidelity-model (HFM) solution.

Numerical simulations are subject to many sources of error, with three important

categories being modeling, discretization, and convergence errors. Modeling errors arise

from differences between the true nature of the simulated phenomena and the mathemat-

ical model. Discretization errors account for the differences between exact discretized and

mathematical-model solutions, while convergence errors are due to the difference between

the exact discretized solution and that which is numerically obtained. Modeling errors

are most fundamental and relate to overall state-of-knowledge, as development of a per-

fect model would require absolute understanding and mastery of the problem physics; a

condition notably lacking for fluid turbulence. Assessment of modeling errors is difficult

and requires comparison between simulation and experiment, but may be confounded by

other sources of errors given that the mathematical models usually don’t have closed-form

solutions. Discretization and convergence errors are related to notions of consistency and

2An exception applies in discussion of the governing equations of fluid motion and RANS/LES models
in Section 1.1.2, where index-notation conventions are followed and include representing tensors by their
scalar entries, such as τij for the viscous stress tensor.

5

stability. Consistency relates to the numerical scheme and its discretization, and for a

scheme to be consistent the discretized form must tend to the underlying mathematical

model as the space and time steps tend to zero, while stability requires that all numerical

errors must remain bounded while obtaining an iterative solution [7].

Thus, the spatial (and temporal) discretization are inherently linked to the numerical

scheme, and defining an appropriate mesh and scheme for a problem is incredibly impor-

tant. Generally, FDMs require computational meshes with a regular Cartesian structure,

or multiple mesh zones with such structure. Elliptic body-fitted meshes [8] allow for use

of regular computational meshes on irregular domains or geometries but can struggle in

regions with intricate geometric details. Whereas unstructured meshes can more natu-

rally accommodate complex geometry and be adapted more easily in the presence of large

solution gradients. FEM and FVM schemes can be applied using unstructured meshes

and as a result these methods are more widely used in commercially available simulation

software and remain at the forefront of advanced research topics. When a parametric set

of HFM solutions is considered, as described by varying µµµ, each solution will require its

own mesh that may be adapted to the manifestation of the problem physics according

to the specifics of each design. This becomes problematic when attempting to apply

data-driven methods to approximate HFM solutions, as many techniques require, at a

minimum, consistent spatial discretization among all solution instances.

1.1.2 Navier-Stokes Equations and a Hierarchy of Models

The governing relations for continuum-regime fluid motion are derived by considering

conservation of mass, momentum, and energy. A Eulerian perspective is considered, in

which the fluid state is expressed by fields, as functions of space x =
[
x y z

]T
and

time t. Several assumptions are made in this presentation:

1. Continuum regime, single species, non-reacting, gas-phase flow

2. Local thermodynamic equilibrium everywhere in the flow

3. Acceleration due to gravity g may be ignored

6

4. Newtonian fluid, linear relation between stress and strain

5. Heat is conducted via Fourier’s law, q′′ = −κ∇T , with isotropic thermal conduc-

tivity κ

Assumption 1 may still be applied to non-reacting mixtures such as air since the main

component species of Oxygen and Nitrogen are both diatomic molecules with similar

properties, and thus thermodynamic properties of the mixture are computed and used.

The unknowns are the velocity vector field u(x, t) = u(x, t)̂ı + v(x, t)̂ + w(x, t)k̂, the

thermodynamic pressure p(x, t), and the absolute temperature T (x, t). Frequently the

coordinates (x, t) are left off to ease notation. Other included thermodynamic quantities

are the density ρ(x, t), internal energy e(x, t) or enthalpy h = e + p/ρ, and transport

properties of molecular viscosity µ(x, t) and thermal conductivity κ(x, t). Given assump-

tion 2, each of these may be considered a function of p and T via state relations expressed

as empirical formulas or data collected in tables or charts, and in practice many depend

much more strongly on temperature. For example the viscosity µ is frequently found

using a power law or Sutherland’s Law,

µ

µ0

≈
(
T

T0

)3/2
T0 + S

T + S
, (1.6)

where T0 and µ0 are reference states and S is a gas-specific Sutherland constant, all of

which can be found from tables for a given gas. The thermal conductivity κ is also found

using a power law or Sutherland’s Law, identical in form to Equation 1.6 with κ replacing

µ, along with different lookup tables. Frequently a perfect gas assumption is made, giving

rise to the ideal gas law

p = ρRspT, (1.7)

where Rsp = Ru/M is the specific gas constant, and

Ru = NAkB =

(
6.022× 1023 # particles

mol

)(
1.3806× 10−23 J

K

)
= 8.314

J

mol K
(1.8)

is the universal gas constant expressed in terms of Avogadro’s number NA and the Boltz-

7

mann constant kB, where M is the molar mass or molecular weight of the gas species

or mixture. Note that Ru, NA, and kB are not expressed with full precision in the ex-

pression above. Many other equivalent forms of the ideal gas law exist and are used in

practice, scenario dependent. The perfect-gas assumption also means the specific heat

capacities of the gas at constant pressure cp and constant specific volume cv are functions

of temperature only, leading to de = cvdT and dh = cpdT , and further e = cvT , h = cpT

are the specific internal energy and enthalpy when T is the absolute temperature. The

total energy per unit mass is then given by E = e+ 1
2
uiui.

The conservation of mass, momentum, and energy may be expressed as

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (1.9)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) =

∂τij
∂xj
− ∂p

∂xi
(1.10)

∂

∂t
(ρE) +

∂

∂xj
[(ρE + p)uj] =

∂

∂xj
(uiτij) +

∂

∂xj

(
κ ∂T
∂xj

)
(1.11)

respectively. Term τij are the viscous stresses which may be written as

τij := µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλ

∂uk
∂xk

(1.12)

where δij is the Kronecker delta

δij :=

0 if i 6= j

1 if i = j

(1.13)

and λ is the second coefficient of viscosity. Usually Stokes’ hypothesis is used, λ =

−2
3
µ, although this is an approximation and not true in general, especially for highly

compressible flows. The viscous stresses are frequently written in terms of the strain-rate

tensor,

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (1.14)

8

and together with Stokes’ hypothesis the viscous stresses become

τij = 2µSij − δij
2

3
µ
∂uk
∂xk

. (1.15)

Collectively Equations 1.9-1.11 are the governing equations of fluid motion. The con-

servation of momentum, expression 1.10, is vector valued and results in three separate

relations, one for each coordinate direction, and are commonly known as the Navier-

Stokes equations, but frequently this label is used in reference to the complete set of

governing equations. Thus there are five expression with five unknowns, along with aux-

iliary expressions and equations of state for computing the thermodynamic properties.

These governing equations are non-unique, and other formulations exist which are de-

rived in terms of the entropy s for example. If chemical reactions are considered, then

additional species conservation and chemical reaction expressions must be included.

Appropriate boundary conditions must be set, with common boundaries including

solid walls, inlets and outlets, along with far-field or free-stream conditions, and the

proper handling of boundary conditions depends greatly on the flow regime considered.

Notably, in a wall bounded flow or flow past an object, the velocity and temperature are

subject to the no-slip condition, u = uwall or T = Twall. This gives rise to boundary layer

behavior, where the gas state change rapidly in a thin region directly adjacent to the

wall. Capturing this rapid variation is of primary concern in fully-resolved simulations,

and gives rise to computational difficulties related to discretization and scaling.

The governing equations may be simplified when variation in density is negligible,

known as the incompressible flow regime, and for external flows is loosely considered as

Ma < 0.3, where Ma is the Mach number,

Ma(x, t) =
|u(x, t)|
a(x, t)

, (1.16)

where a ∈ R>0 is the speed of sound. If the viscosity µ is also assumed constant, then the

energy equation becomes decoupled and is no longer needed to determine u and p, with

ρ prescribed. The energy equation may be used later to determine T if that information

9

is also of interest. The continuity equation, Equation 1.9, reduces to ∇·u = 0, providing

simplification to the viscous stresses τij and removing the need for Stokes’ hypothesis.

Considering the material derivative

D

Dt
:=

∂

∂t
+ (u · ∇), (1.17)

the incompressible governing equations of continuity and momentum conservation are

then given by

∇ · u = 0 �
∂ui
∂xi

= 0 (1.18)

ρ
Du

Dt
= µ∇2u−∇p � ρ

∂ui
∂t

+ ρuj
∂ui
∂xj

=
∂

∂xj
(2µSij)−

∂p

∂xi
(1.19)

respectively.

The Reynolds number is an important dimensionless similarity parameter in fluid

mechanics. It describes the ratio of inertial and viscous forces in a flow and is given by

Re =
ρ|u|L
µ

. (1.20)

A single flow may be described by many Reynolds numbers depending on the length and

velocity scales selected and the location within the flow. For example, consider an external

incompressible flow around an airfoil with chord length c and free-stream conditions ρ∞

and u∞, then the Reynolds number for the configuration is given by Re = ρ∞|u∞|c
µ

. The

Reynolds number also characterizes the multi-scale nature of the flow, given that the

inertial forces are related to bulk fluid motion of length scale L, while the viscous forces

are realized by much smaller diffusional or molecular length scales. Thus a flow with a

larger Reynolds number displays greater multi-scale behavior, considered further below.

Many excellent textbooks cover derivations and further considerations in greater detail,

including those which were heavily referenced in preparing this section [9, 10, 11].

10

1.1.2.1 Direct Numerical Simulation

The highest fidelity of fluid simulation is known as direct numerical simulation (DNS), in

which all relevant scales are fully resolved and Equations 1.9-1.11 or 1.18-1.19 are solved

without further modeling simplification. The requirements this imposes on the spatial

discretization and ultimately the overall computational cost is examined. The energy

cascade exemplifies the multi-scale nature of turbulence, describing the process by which

turbulent kinetic energy at the largest scales is transferred to successively smaller scales

as eddies are broken up before finally being dissipated as heat. The Kolmogorov scales

describe the length, velocity, and time scales of the smallest, dissipative eddies. These

scales are intrinsically linked to the largest scales through the energy transfer rate from

the large scales, which must ultimately equal the dissipation rate at the small scales.

Consider a flow characterized by a streamwise Reynolds number ReL. The Kol-

mogorov length scale η is related to the size of the largest eddies `0 as η/`0 ∼ Re
−3/4
L ,

meaning that as the Reynolds number increases, so does the difference between largest

and smallest scales to be resolved [12]. The number of mesh points for boundary-layer

DNS may be estimated as NDNS ∼ Re
37/14
L [13]. Consider a motor vehicle of length 4 m

traveling at highway speeds of 30 m/s. This corresponds to a Reynolds number of around

8× 106. The number of required grid points for DNS is then estimated to be 1.8× 1018.

Following ref. [14], the time in days to complete the simulation may be roughly estimated

as

TG =
nops × nmesh × nsteps

R× 60× 60× 24
, (1.21)

where nops are the number-of-operations per mesh-point per time-step, nmesh is the num-

ber of mesh points, nsteps are the number of time steps, and R is the performance of the

computer in FLOPS. To stably and fully resolve the finest scales, a Kolmogorov-scale

Courant number may be considered. First, estimate the Kolmogorov scale as

η/`0 ∼ Re−3/4 → η ≈ `0Re−3/4 = 4×
(
8× 106

)−3/4
= 2.66× 10−5 m, (1.22)

then consider turbulence intensity of 1%, reasonable though perhaps an overestimate for

11

quiescent air as a vehicle approaches to give

I =
u′

|u∞|
→ u′ = I|u∞| = (0.01)(30) = 0.3 m/s. (1.23)

Then a Kolmogorov-scale Courant number may be defined and set as Coη = u′∆tη
η

= 0.1.

Rearranging for the required time step size yields

∆tη =
Coηη

u′
=

(0.1)(2.66× 10−5)

0.3
= 8.8× 10−6 s. (1.24)

Typically a computational domain around a vehicle will be sized as approximately 10×L

[15] in the streamwise direction, so the number of time steps for a fluid particle traveling

at the freestream velocity to traverse the domain is nt,1 = 10L/|u∞|
∆tη

= (10×4)/30
8.8×−6 = 1.5×105.

DNS simulations must be run until the solution becomes statistically stationary, and for

petascale DNS of turbulent channel flow on the Mira supercomputer at Re = 5000 [16],

statistical stationarity is achieved after an estimated 13 domain flow-throughs or roughly

6.5× 105 time steps. Applying a similar multiplier of 10 yields nsteps = 1.5× 106 for the

vehicle. Then, following [14], let nops = 103, and plugging into Equation 1.21 gives the

estimated exascale simulation wall time of

TG,DNS =
(103)(1.8× 1018)(1.5× 106)

1018 × 60× 60× 24
= 30440.9 days ≈ 83.4 years. (1.25)

This may also be a conservative estimate by several orders of magnitude, as nops = 1000

was chosen to be representative for a pseudo-spectral method solved on a Cartesian

mesh with a simple geometry, while a vehicle contains complex geometry requiring an

unstructured mesh and thus a different method. Further, R = 1018 represents exascale

performance, with only a single supercomputer at Oak Ridge National Lab achieveing

this peak performance, and it is unrealistic to expect peak performance at all or even

most times. Even further, the free-stream turbulence intensity was used to estimate

the Kolmogorov length scale, and while the intensity may be overestimated for the air in

front of the vehicle, greater turbulence intensity will exist near the vehicle and in its wake,

12

requiring an even finer spatial discretization and thus smaller time stepping requirements.

Clearly DNS is out of the question for even a single vehicle design, let alone a trade study,

and will remain so for some time. Therefore, modeling simplifications must be made in

order to drastically reduce the simulation cost.

1.1.2.2 Large Eddy Simulation and Reynolds Averaged Navier Stokes

Large-eddy Simulation (LES) and Reynolds Averaged Navier Stokes (RANS) approaches

lessen the computational burden of DNS by decomposing the state quantities by filter-

ing or averaging, respectively.3 This reduces the required number of mesh points, but

both filtering and averaging bring about a closure problem whereby additional terms are

introduced into the governing equations which must be modeled. Development of those

models so that RANS/LES simulations remain physically consistent with the unmodified

governing equations, via comparison with experiments or DNS, represent a central chal-

lenge and an active area of research. In general LES is more expensive and accurate than

RANS, and only recently is LES becoming affordable for some industrial applications.

For RANS, Reynolds-averaging approaches are used to decompose state quantities qi

into mean 〈qi〉 and fluctuating components q′i, that is

qi(x, t) = 〈qi(x, t)〉+ q′i(x, t) (1.26)

The most general form of the mean is an ensemble average,

〈qi(x, t)〉E := lim
N→∞

1

N

N∑
j=1

qji (x, t) (1.27)

for N independent realizations which are identical other than for random perturbations

of initial and boundary conditions. Often a time-average is used instead of the ensemble

average, defined as

〈qi(x)〉T := lim
T→∞

1

T

∫ t+T

t

qi(x, t)dt, (1.28)

3While filtering is a form of spatial averaging the distinction is maintained.

13

where of course T represents time not temperature in this context. Time averaging in

this way is only applicable to flows which do not change with time, as t is lost from

the mean coordinate as compared to ensemble averaging. Unsteady-RANS (URANS)

approaches do not take the limit as T → ∞, but instead define a time scale T which is

large compared to the turbulent time scales T1, but small compared to the time-scales by

which the mean flow changes, T2. Then the time-average may be redefined as

〈qi(x, t)〉T :=
1

T

∫ t+T

t

qi(x, t)dt, T1 � T � T2, (1.29)

and the solution may still be time-varying. However, this time-scale separation is not

a valid assumption for all flows, or even for all locations within a flow, such as through

a shear layer. When RANS equations are presented the averaging will be left general,

using 〈qi〉 without subscript, but many times the expressions are developed specifically

using time-averaging [11].

Large-Eddy Simulation (LES) directly simulates the large-scale turbulent motions

(the large eddies) while modeling the effects of smaller scales [17]. The decomposition of

qi has filtered qi (resolved) and residual qri components resulting,

qi(x, t) = qi(x, t) + qri (x, t). (1.30)

This is justified by deference to Kolmogorov’s hypothesis of local isotropy which posits a

universal or near-universal form for the small scales of turbulence. LES is more naturally

suited for time-varying problems as unsteady effects are accounted for. Filtering is almost

always applied via convolution, with spatial high-pass convolutional kernel G and spatial

cutoff scale or filter width ∆, the filtering is defined by

qi(x, t) :=
1

∆

∫ ∞
−∞

∫ ∞
−∞

G

(
x− ξξξ

∆
, t− t′

)
qi(ξξξ, t

′)dt′d3ξξξ. (1.31)

14

Convolution is represented more compactly as

qi = G ∗ qi. (1.32)

Conveniently, convolution in the spatial/temporal domain is multiplication in the wavenum-

ber/frequency domain, as related by the Fourier transform, and thus many LES schemes

are spectral in nature. Commonly used filters include the box, Gaussian, and sharp cutoff

filters, among others [18].

The incompressible RANS equations may be expressed as

∂〈ui〉
∂xi

= 0 (1.33)

ρ
∂〈ui〉
∂t

+ ρ〈uj〉
∂〈ui〉
∂xj

=
∂

∂xj

(
2µ〈Sij〉

)
− ∂

∂xj

(
ρ〈u′iu

′

j〉
)
− ∂〈p〉

∂xi
, (1.34)

and the incompressible LES equations as

∂ui
∂xi

= 0 (1.35)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

=
∂

∂xj

(
2µSij

)
− ∂

∂xj

(
ρτ r

ij

)
− ∂pm

∂xi
, (1.36)

where 〈Sij〉 and Sij are the averaged and filtered strain-rate tensors, defined analogously

to Equation 1.14 with averaged/filtered velocity components.When compared to the in-

compressible governing equations of Equation 1.18-1.19, the only difference in structure

are a single additional term on the right-hand side of each. These stress tensors arise from

averaging/filtering the non-linear advection term of the Navier-stokes equations, ρuj
∂ui
∂xj

,

which is re-expressed in conservation form as ρ
∂(uiuj)

∂xj
in the incompressible regime. The

extra terms arise because the averaged/filtered products 〈uiuj〉/uiuj are not equal to the

product of the averaged/filtered terms 〈ui〉〈uj〉/uiuj. For RANS, the difference is known

as the Reynolds-stress tensor,

〈u′iu
′

j〉 = 〈uiuj〉 − 〈ui〉〈uj〉, (1.37)

15

and for LES, the difference defines the residual stress tensor,

τR
ij := uiuj − uiuj. (1.38)

While the actual stress tensors are given by −ρ〈u′iu
′
j〉 or −ρτR

ij , the terminology above

persists as ρ is known and prescribed for incompressible flow simulations. The residual

kinetic energy is defined as

kr := 1
2
τR
ii , (1.39)

which is in turn used to define the anisotropic residual-stress tensor

τ r
ij := τR

ij − 2
3
krδij (1.40)

and modified filtered pressure

pm := p+ 2
3
ρkr (1.41)

which appear in Equation 1.36. Similarly, for RANS, the turbulent kinetic energy is

defined as

k := 1
2
〈u′iu′i〉, (1.42)

and similar to Equation 1.40, a deviatoric anisotropic stress tensor is given by

aij := 〈u′iu
′

j〉 − 2
3
kδij. (1.43)

The Reynolds stresses of Equation 1.37 and the residual-stress tensor of Equation

1.38 must be modeled in order to close each system of equations. Eddy-viscosity mod-

els are widely used in both approaches and depend upon an appropriate eddy-viscosity

hypothesis. While the unclosed terms result from the same non-linear component of the

momentum equation, the physics which drives them is different. The Reynolds stresses

are due to momentum transfer via turbulent fluctuations of the velocity field, while the

residual-stresses are due to momentum transfer via the unresolved velocity field, repre-

senting a coupling between the resolved and unresolved scales. Widely known turbulence

16

models for RANS include the algebraic mixing-length model, single-equation TKE mod-

els, and two-equation models such as k-ε [19], k-ω [20], and k-ω-SST [21] which blends

the two: k-ω near walls and k-ε elsewhere. Two-equation models include transport equa-

tions for k and ε/ω containing scalar coefficients which are tuned using boundary-layer

theory, experimental data, and/or expert intuition. When the compressible flow regime

is considered, many additional cross-correlation terms which also require modeling arise

due to fluctuations in temperature and density, on top of existing pressure and veloc-

ity field fluctuations. Favre-averaging or Favre-filtering is often used to mathematically

simplify the resulting expressions, but the additional physics must still be accounted for.

The compressible RANS and LES equations are considerably more complicated and their

treatment is left to the literature [11, 22]. The modeling challenge is also greater in the

compressible regime as there is less experimental data to anchor modeling choices.

At this time RANS approaches are most widely used in industry due to the reduced

cost, where RANS is cheaper by a factor of up to 106 for Reynolds numbers around

106 [23]. LES variants include wall-resolved (WR-LES) and wall-modeled (WM-LES)

approaches, with WR-LES being more desired and accurate. The number of required

grid points for WR-LES scales approximately as NWR−LES ∼ Re
13/7
L while WM-LES

displays linear scaling NWM−LES ∼ ReL [13]. Applying the WR-LES estimator to the

vehicle scenario considered for DNS results in 6.6 × 1012 required mesh points, a great

improvement over DNS but still out of reach for practical application in industry. Some

estimates place WR-LES becoming computationally tractable by around 2035 [23] to 2045

[24]. Hybrid RANS-LES schemes, such as detached-eddy simulation (DES) [25, 26], have

also been developed and represent a middle-ground between the two. In DES the near-wall

region is treated using RANS, while LES is used for the bulk flow, either using a zonal

approach or a modified wall-distance to control switching between schemes. For flows

where compressibility and/or unsteady effects are important, such as axial compressor

design or aeroacoustics, the utility of LES is even greater and RANS simulations must

be treated with greater uncertainty.

17

1.2 Data-driven Modeling and Optimization

High-fidelity numerical simulations are ubiquitous in engineering design and analysis

but are often prohibitively expensive in design applications. Data-driven and machine-

learning surrogate-modeling techniques offer an interesting alternative, particularly in

situations where model accuracy may be acceptably traded for computational savings.

However, many existing methods face limitations when confronted with unstructured

and varying mesh topologies across the parameter or design-variable space. This confines

such methods to problems that can be defined with a shared discretization, or requires

additional lossy interpolation to map solutions onto consistent meshes. These limitations

pose a significant challenge for problems involving multi-scale phenomena, commonly

found in fluid and structural mechanics, where solutions frequently contain regions with

large gradients and tightly-clustered mesh cells. Additionally, the domains may contain

intricate and varying geometric features among solution instances. In such scenarios

interpolating the solutions to a common and often Cartesian mesh results in unacceptable

loss of critical information and fidelity.

Data-driven approaches may be considered in many engineering-relevant contexts.

The list below enumerates a few broad, non-exclusive categories which will be expanded

upon in the proceeding sections.

1. Solver augmentation: many high-fidelity models depend on modeled quantities or

closures which have uncertainty in their form or numerical coefficients, resulting in

mismatch between simulation and experimental measure. The experimental data

is used to augment the uncertain quantities in an effort to reduce the error present.

This includes Field-Inversion and Machine-Learning (FIML) techniques. Increasing

solution speed is not the goal in this scenario, only increasing accuracy and/or

interpretability.

2. Optimization and surrogate meta-modeling: in scenarios such as design optimiza-

tion, scalar quantities of interest (QoIs) extracted from the solution field are used

to compute the objectives and constraints. The QoIs are approximated directly,

18

without obtaining the solution field qN or an approximation. Methods include Re-

sponse Surface Methods (RSM), Guassian Process Regression (GPR), and use of

artificial neural networks (ANN).

3. Solver acceleration: high-fidelity models are accelerated by modifying the solution

procedure, either by replacing steps in an iterative scheme with an approxima-

tion, or by projecting the discretized solution qN onto a reduced set of variables

qr ∈ Rr×nq , where r << N , and solving the governing equations, including non-

linear term f , on this reduced set; commonly referred to as intrusive Reduced Order

Models (ROMs), and includes projection-based Galerkin and Petrov-Galerkin vari-

ants, along with deep-learning augmented POD-NN.

4. Solver replacement or emulation: the solution field qN is approximated without

direct reference to the high-fidelity model or its components. This includes non-

intrusive ROMs, Dynamic Mode Decomposition (DMD), and Koopman Methods.

Additionally, ANN-based methods built upon convolutional neural networks (CNN)

graph neural networks (GNN), including Neural Operator variants, Deep Operator

Networks, and physics-informed neural networks (PINNs). In some contexts this

may also be referred to as surrogate modeling, with emphasis on modeling the

solution field instead of QoIs, noting that the QoIs are instead extracted from the

emulated field.

1.2.1 Solver Augmentation

As discussed in Section 1.1.2.2, RANS and LES formulations require turbulence mod-

els to close the system of equations due to the averaging/filtering operations. RANS

turbulence models depend upon additional transport equations whose functional form is

guided by expert intuition. They also contain empirical parameters which are calibrated

to canonical flows or experimental data, and model performance suffers when applied

to different scenarios. Recently, data-driven methods have been developed to improve

existing models and to discover new, more accurate model forms using data from DNS,

19

LES, and experiments.

Early works were within the regime of parameter estimation, and sought to tune tur-

bulence model coefficients by regressing approximation models mapping between model

coefficients and error metrics computed from experimental values, and then optimizing

the approximation model to obtain new, improved coefficients [27, 28]. These techniques

had limited portability and did not address model-form errors or uncertainties present in

turbulence models. As a step beyond this, Bayesian uncertainty quantification methods

were used to quantify RANS parameter and model-form uncertainties, where the tur-

bulence model parameters are treated as random variables and model inadequacies are

Gaussian random fields [29], as opposed to scalar measures such as root-mean-squared-

error (RMSE) in the above parameter estimation approaches. Similarly, field-inversion

machine-learning (FIML) techniques move beyond tuning existing coefficients and instead

supplement existing closure models with additional spatial or spatiotemporal functions,

either as additive or multiplicative modifications [30, 31, 32]. Correction fields are deter-

mined by solving inverse problems, usually using Bayesian approaches [33], and machine

learning is used to regress functional forms in terms of local features accessible to the

turbulence model [34]. The use of such features is an important step in attaining a

generalizable and predictive augmented model, first recognized in the context of kernel

regression to model local errors [35]. FIML has been applied in several contexts, including

separated airfoil flows [36] and fuel-cell modeling [37].

1.2.2 Design Optimization and Surrogate Modeling

Design optimization routines seek to wholly or partially automate stages of the design

process, and optimization underpins many methods for constructing data-driven models.

Generally these tasks may be expressed as non-linear constrained optimization prob-

lems. Given design variables µµµ = [µ1, · · · , µnµ]T , each with lower and upper bounds

µi,min/µi,max, scalar objective function J (µµµ) ∈ R, ng inequality constraints gj(µµµ) ∈ R,

20

and nh equality constraints hk(µµµ) ∈ R, the problem may be expressed as

minimize J (µµµ)

by varying µi for i = 1, . . . , nµ

subject to gj(µµµ) ≤ 0 for j = 1, . . . , ng (1.44)

hk(µµµ) = 0 for k = 1, . . . , nh

µi,min ≤ µi ≤ µi,max for i = 1, . . . , nµ.

The above problem formulation does not include solution of relevant governing equations,

but generally the objective and constraints are computed from parametric HFM solution

fields qN(x, t;µµµ). Equation 1.44 is solved using iterative numerical methods, using either

gradient-based or gradient-free approaches, and more mathematical detail is provided in

Section 2.2.

Sequential quadratic programming (SQP) methods are the most efficient and widely

used gradient-based schemes to solve non-linear constrained optimization problems per

Equation 1.44, and the sequential least-squares quadratic programming (SLSQP) algo-

rithm [38] is available in many optimization software packages. These include SciPy [39]

and openMDAO [40] python libraries, the latter providing a wrapper around the former,

which are open source and free to use. SQP methods are analogs of Quasi-Newton meth-

ods for unconstrained optimization, and SLSQP uses very similar inverse-Hessian update

expressions as the widely-used Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [41,

42, 43, 44]. Other commonly used unconstrained gradient-based schemes include steep-

est descent and conjugate gradient methods, but do not include curvature information

via the Hessian. Stochastic gradient descent and its variants are widely used in training

neural networks.

For many engineering devices, varying model fidelities are acceptable at different

stages in the design cycle, or for simulation of different sub-components or effects. When

the design space is large then even lower-fidelity simulation models such as RANS may

be unacceptably costly to fully explore the design space or to use directly in an optimiza-

21

tion routine. This is especially true for multi-disciplinary design optimization (MDO),

where the objectives and constraints may depend on segregated HFM solutions from

multiple disciples, or from iterative or directly coupled multi-physics solvers. In any

of these scenarios surrogate-based optimization (SBO) offers an affordable alternative,

where surrogate models are regressed directly between the design variables µµµ and the

objective response J (µµµ) or other QoI’s, side-stepping HFM solution. Common methods

for constructing surrogate models include least-squares regression, kriging or Gaussian

process regression, and artificial neural networks. Later in Chapter 5, such surrogates

are referred to as “QoI emulators” to help distinguish them from the flow-field emulators

which are developed in this thesis. However, this is not common terminology, and gen-

erally when works refer to surrogates or SBO they are referencing models which predict

scalar quantities.

Response surface methodology (RSM) was originally developed in the context of at-

taining optimal conditions in chemical experiments [45], where a second-order polyno-

mial model is constructed to evaluate relationships between independent or explanatory

variables and the experimental outcome or response. Ordinary least squares is used to

obtain the unknown polynomial coefficients and the general approach may be applied in

the context of design, where the design variables comprise the independent variables and

the objective or QoIs are the scalar response, represented by y ∈ R. The polynomial

model takes the form

ŷ(µµµ) = w0 +

nµ∑
i=1

wiµi +

nµ∑
i=1

wiiµ
2
i +

nµ∑
i=1

nµ∑
j>i

wijµiµj (1.45)

where w are the unknown coefficients or weights to be determined. Given a dataset with

M entries, D =
{
yi|µµµi

}M
i=1

, let y ∈ RM collect all y ∈ D, let w ∈ Rp collect all weights,

construct Vandermonde matrix A ∈ RM×p, then the ordinary least-squares problem setup

is

w∗ = argmin
w
‖εεε‖2

2 = argmin
w
‖y −Aw‖2

2 = argmin
w

(y −Aw)T (y −Aw), (1.46)

22

where εεε ∈ RM is the error. Typically there are more simulations than undetermined

coefficients, that is A is taller than it is wide, M > p, and thus the problem is over-

determined. In this scenario the solution to Equation 1.46 is well known, assuming

rank(A) = p, and is given by Equation 1.47.

w∗ = [ATA]−1ATy. (1.47)

Define polynomial-feature-generating function

p(µµµ) := Rnµ → Rp, (1.48)

which applies the model form of Equation 1.45 (without coefficients) to a design variable

vector µµµ, expressed as a column vector. This was used to construct the rows of the

Vandermode matrix, and thus the model response prediction is written as

ŷ(µµµ; w∗) = p(µµµ)Tw∗. (1.49)

The response surface may then be optimized to find an estimate for the optimal design,

µµµ∗. RSMs are often applied sequentially, with more HFM solutions obtained spanning

a region near the previous RSM optima. Quadratic response surfaces have been applied

to design problems using FEM simulation data [46, 47] as well as RANS simulations for

aerodynamic shape optimization [48, 49, 50].

Kriging or non-parametric Gaussian Process Regression (GPR) are also frequently

used to construct response surfaces instead of least-squares polynomial models. Non-

parametric GPR allows for predictions to be made directly in function space, without

explicitly inferred the weights w of a linear model. Let matrix M ∈ Rnµ×M collect all in-

put vectors µµµ ∈ D. Given a covariance kernel k(µµµ,µµµ′) ∈ R and mean function m(µµµ) ∈ R,

then matrix k(M,M) ∈ RM×M collects the covariance function over training points,

where element (i, j) is k(µµµ(i),µµµ(j)). Considering a design µµµ∗ where a response is sought,

then column vector k(M,µµµ∗) ∈ RM×1 collects the covariance function between the point

23

of interest µµµ∗ and all training points in the dataset, as does row vector k(µµµ∗,M) ∈ R1×M ,

while k(µµµ∗,µµµ∗) is a scalar. Further let ΓΓΓ = σ2IM ∈ RM×M be the i.i.d. Gaussian prior on

the noise associated with the observations in dataset D. The rules for conditional Gaus-

sian distributions allow closed-form expressions for the posterior predictive distribution

and variance functions for µµµ∗ /∈ D, following Bayes’ theorem.

E[f(µµµ∗)|y] = m(µµµ∗) + k(µµµ∗,M)
(
k(M,M) + ΓΓΓ

)−1
(y −m(M)) (1.50)

Var(f(µµµ∗), f(µµµ∗)|y) = k(µµµ∗,µµµ∗)− k(µµµ∗,M)
(
k(M,M) + ΓΓΓ

)−1
k(M,µµµ∗) (1.51)

Frequently the mean function is taken to be the zero function, and this simplifies the

prediction, letting f∗ := E[f(µµµ∗)|y], then

f∗ = k(µµµ∗,M)
(
k(M,M) + ΓΓΓ

)−1
y (1.52)

is the predicted function value. This may be interpreted as a linear combination of M

kernel functions k(µµµ∗,M), each centered on a training data point, with coefficients given

by
(
k(M,M) + ΓΓΓ

)−1
y. GPR is advantageous over RSM as it interpolates the training

data exactly in the noise-free scenario, when ΓΓΓ = I. That is, if µµµ∗ = µµµi ∈ D, then the

product k(µµµ∗,M)
(
k(M,M) + ΓΓΓ

)−1
is a row vector of zeros except for a one at position

i, then subsequent inner product with y yields yi, the exact value. Additional details

and further background on parametric and non-parametric GPR are provided in Section

2.3.2.

Efficient global optimization (EGO) is a Bayesian SBO procedure designed for expen-

sive, black-box objective functions, such as those dependent upon HFM solutions [51].

EGO utilizes GPR models to build response surfaces, and rather than minimizing the

response surface directly, acquisition functions or figures of merit which account for un-

certainty are optimized instead. A popular acquisition function is known as “expected

improvement” which seeks to balance exploitation of points where the response is small

and exploration of points where the uncertainty is high. Inclusion of this exploration

term helps to free the optimizer from local minima, and accounts for the global nature

24

of the algorithm. Other acquisition functions include probability of improvement, upper-

confidence bound, and entropy search, among others which are designed with different

trade-offs in mind [52]. Optimizing the acquisition function may be difficult, as they

frequently contain local minima and regions with small gradients, and development of

methods for their effective optimization is an active area of research [53]. Bayesian opti-

mization is applied in the context of designing transonic compressor airfoils in Chapter

5, where flow-field emulators were used as a data source as compared against CFD.

There has been increasing interest in using artificial neural networks (ANNs) to regress

surrogates, and for other tasks related to optimization. One advantage of ANNs as

compared to RSM or GPR is that ANNs may be readily extended to predict a small

vector of QoIs easily, whereas this is non-trivial for the other approaches. Co-kriging

models do allow for this and one may naively predict vectors using vanilla GPR but this is

effectively running several GPR models in parallel, without accounting for the covariance

among the output quantities. This naive multi-output approach is demonstrated later

in Section 2.3.2.1. ANNs have been used in SBO routines to predict lift, drag, and/or

pitching moment coefficients in many scenarios [54, 55, 56].

Regressing surrogate models with deterministic computer simulation data has different

recommendations and considerations as compared to experimental measures. In design-

of-experiments (DoE) methods, experimental measurement uncertainty may be reduced

by replicating an experiment many times. This is not necessary when selecting operating

conditions from a HFM to train a meta-model, the recommendation is to instead sample

µµµ to span the design space without replication instead. Random sampling may be used,

but this does not explicitly account for the span of the design space or the previously

chosen designs. Latin hypercube sampling combats this and ensures that each input

variable (element of µµµ) has all portions of its input distribution covered, and that the

number of required samples does not increase with dim(µµµ) [57].

25

1.2.3 Solver Acceleration and Intrusive Reduced Order Model-

ing

Numerical schemes used to solve the HFM are usually sparse, iterative methods, some-

times requiring many iterations to progress onto the next time step. There are frequently

bottleneck steps within each iteration. A common example is the pressure Poisson equa-

tion resulting during application of the Semi-Implicit Method for Pressure-Linked Equa-

tions (SIMPLE) algorithm [58, 59, 60] for solution of the incompressible Navier-Stokes

equations, knows as the pressure-correction step. Data-driven methods may be used

to replace these bottleneck steps or to circumvent entire solver iterations. For exam-

ple, CFD-Net is used to predict the full state, including an eddy-viscosity term for the

Spalart Allmaras turbulence model, to accelerate 2D simulations of the incompressible

RANS equations using the SIMPLE algorithm in OpenFOAM. After a warmup period,

a CNN is used to predict the final solution state given the current intermediate values,

and the CNN prediction is subsequently refined using the solver, providing a speedup by

a factor of 1.9-7.4×, once the network is trained.

As a classical dimensionality-reduction technique, proper orthogonal decomposition

(POD) has been used to construct surrogate and reduced-order models [61, 62, 63,

64]. Despite many attractive properties, conventional POD implementations process dis-

cretized data, and require the use of a fixed topology mesh across all parameter regimes,

fixing the number of degrees-of-freedom. This is restrictive in many engineering problems

in which various solution features (e.g., relative motion of bodies, crack propagation, etc.)

may emerge in different regions of parameter space. Further, data may be available from

multiple sources with varying discretization and mesh topologies. Reduced order models

(ROMs) seek to accelerate or supplement a high-fidelity model by utilizing information

from previous observed solutions. ROM construction consists of two stages, an offline

stage where solutions are generated and the model is formed, and an online stage, where

the model is deployed in place of the full-order model. Note that the ROM may still

make use of components of the high-fidelity solver.

26

ROMs are most commonly applied to time-varying problem, where an initial state is to

be forward propagated in time. The ROM equations may be developed by considering the

discretized form of the governing equations, as may be represented by the semi-discrete

form

dqN(t)

dt
= f(qN(t)) (1.53)

qN(t0) = qN,0 (1.54)

which may be viewed as an autonomous system. A single set of operating conditions

µµµ is considered and thus omitted from notation in this scenario. Let N ′ = N × nq

represent the full dimensionality of the state-space, where there are N mesh locations,

and qN ∈ RN ′ . Projection-based ROMs seek a reduced set of variables qr ∈ Rk where

k << N ′ with which to evolve the system. This is achieved by projection and truncation

in an appropriate basis, developed using data from high-fidelity solutions.

The ROM equations first approximate the full state as qN(t) ≈ ΦΦΦqr(t) or qN(t) ≈

qN,0+ΦΦΦqr(t) using an appropriate trial basis ΦΦΦ ∈ RN ′×k, then given a test basis ΨΨΨ ∈ RN ′×k

the ROM equation is given by

dqr
dt

=
[
ΨΨΨTΦΦΦ

]−1
ΨΨΨT f(qN,0 + ΦΦΦqr). (1.55)

For Galerkin ROMs, the trial and test basis are set equal to another, ΨΨΨ = ΦΦΦ. When the

columns of ΦΦΦ are orthonormal, then ΦΦΦTΦΦΦ = Ik and the Galerkin ROM equation results

as

dqr
dt

= ΦΦΦT f(qN,0 + ΦΦΦqr). (1.56)

Petrov-Galerkin ROMs result when ΨΨΨ 6= ΦΦΦ and the resulting projection is oblique instead

of orthogonal. Proper orthogonal decomposition (POD) is frequently used to determine

the basis ΦΦΦ for Galerkin ROMs. A POD expansion may be written as

qN(t) =
k∑
i=1

bi(t)φφφi(x), (1.57)

27

where the spatial modes φφφi(x) form a mutually orthogonal set and are weighted by scalar

coefficients bi. In the ROM equation, Equation 1.55, the entries of reduced representation

qr play the role of the coefficients.

Consider a data-snapshot matrix consisting of M solution snapshots at different times,

X =

. . .

qN(t0) qN(t1) . . . qN(tM−1)

. . .

 ∈ RN ′×M , (1.58)

where the snapshots need-not be ordered. Note that the solution fields should be nor-

malized or scaled, especially when qN contains multiple output quantities, see Section

2.2.1. In some cases it may be beneficial to generate a separate POD basis for each flow

quantity separately. Center the data snapshot matrix by subtracting the mean column

〈qN〉,

Xm =
[
qN(t0)− 〈qN〉 qN(t1)− 〈qN〉 . . . qN(tM−1)− 〈qN〉

]
∈ RN ′×M , (1.59)

then perform a singular-value decomposition of Xm,

Xm = UΣVT =
[
U1 U2

]ΣΣΣ1 0

0 0

[V1 V2

]T
= U1ΣΣΣ1V

T
1 . (1.60)

Matrices U ∈ RN ′×N ′ and V ∈ RM×M are orthonormal, and Σ ∈ RN ′×M is a rectangular

diagonal matrix whose entries are the singular values. U1 and V1 have r columns, and

ΣΣΣ1 ∈ Rr×r = diag(σ1, σ2, ..., σr) where rank(Xm) = r. The trial basis is selected as the

first k columns of U, known as the left singular vectors. That is, let

ΦΦΦ = U[:, : k] (1.61)

using zero-indexing and python numpy slicing conventions. An appropriate value for k

may be selected by examining reconstruction errors or by optimal hard-thresholding per

reference [65]. The mean column must be added back wherever the basis is used.

28

Even though the dimension of Equations 1.55 and 1.56 are k×1, they involve evaluat-

ing the non-linear term f for N ′ locations, and subsequently performing a matrix-vector

product as ΨΨΨT f , which is (k ×N ′)× (N ′ × 1). This still scales as N ′ and appears to de-

feat the purpose. However, methods such as the discrete empirical interpolation method

(DEIM) [66, 67, 68], compressed sensing [69, 70], and gappy-POD [71, 72] may be used

to actually reduce computational cost in ROMs, in many cases by approximating the

non-linear function f with a reduced POD basis.

1.2.4 Solver Replacement or Emulation

Non-intrusive ROMs are different than those from the previous section in that they do

not make direct use of the HFM solver or its components at all, beyond using data.

One such method is known as POD-NN and was originally introduced in the context

of steady-state PDE solutions with dependence on parameters µµµ [73]. A POD basis is

computed by first collecting M solution snapshots for different µµµ,

X =

. . .

qN(µµµ1) qN(µµµ2) . . . qN(µµµM)

. . .

 ∈ RN ′×M , (1.62)

subtracting the mean column 〈qN〉,

Xm =
[
qN(µµµ1)− 〈qN〉 qN(µµµ2)− 〈qN〉 . . . qN(µµµM)− 〈qN〉

]
∈ RN ′×M , (1.63)

and an SVD computed to obtain a reduced basis ΦΦΦ using k left singular vectors

Xm = UΣΣΣVT → ΦΦΦ = U[:, : k]. ∈ RN ′×k (1.64)

29

A mean-centered snapshot, a column of Xm, may be rank-k reconstructed given the basis

coefficients a(µµµ) ∈ Rk, computed for all snapshots in Xm as

Xm ≈ ΦΦΦA→ A := ΦΦΦTXm =

. . .

a(µµµ1) a(µµµ1) . . . a(µµµM)

. . .

 ∈ Rk×M . (1.65)

Alternatively the coefficients could be determined for the training set using the SVD,

A = ΣΣΣ[: k, : k]V[:, : k]T . Next a neural network is trained to map the design variables

to the basis coefficients, N(µµµi; θ) = a(µµµi), where N represents the ANN and θ is its set

of trainable weights. Then when a prediction is needed for a new parameter set µµµ∗, the

trained ANN is used to generate the basis coefficients, N(µµµ∗; θ) = a(µµµ∗), which are in

turn used with the basis ΦΦΦ to generate the approximate solution as

qN(µµµ∗) ≈ qN + ΦΦΦa(µµµ∗) (1.66)

POD-NN has also been applied to time-varying parametric problems using a two-step

POD algorithm, where the time trajectories for each µµµ are compressed in the first stage,

and then a second stage performs POD on the compressed trajectories [74].

POD-based methods are powerful but have a few limitations and shortcomings. First,

all HFM solutions must lie on meshes with the same topology and number of points. This

restricts the types of problems which may be considered, as such meshes are not always

appropriate for all regions of parameter space, especially in the presence of complex and

variable geometry. Second, the methods assume that span(ΦΦΦ) fully encompasses the

solution dynamics for all (µµµ, t). This may be a poor assumption in convection domi-

nated problems, where temporal predictions are sought outside the region spanned by

the training set.

Convolutional neural network (CNN) based autoencoders have been used to construct

solution-field surrogate models for both steady-state [75, 76, 77, 78, 79] and time-varying

parametric problems [80, 81] by including an additional time-advance model such as an

30

LSTM or temporal-convolutional network. However, they place even greater restrictions

on the discretization than POD-based methods, requiring inputs and outputs to be de-

fined on regular Cartesian grids with consistent dimensions for all parameter regimes.

Overcoming this restriction requires interpolation from the computational mesh to a

Cartesian grid overlain on the problem domain, equivalent to pixelization. The interpola-

tion results in a number of undesirable effects, including a reduced-fidelity representation

of the domain geometry, and a loss of information in regions of tightly-clustered mesh

points, such as within boundary layers, shocks, and wakes. The models may then be

conceptualized as image-to-image mappings.

Another more problematic but surprisingly overlooked issue is that the memory re-

quirements for 3D convolutions, commonly implemented on a single GPU, are not af-

fordable for typical resolutions in realistic engineering problems. Considering mini-batch

training, even storing the output of one single hidden layer (a 5-dimensional tensor), re-

quires memory typically on the order of O(10)−O(102) GB for a 3D Cartesian field with

40 million cells. As a result, most reported works using 3D CNNs for engineering prob-

lems are limited to below 5-6 million degrees of freedom [82, 83], and often still require

lossy interpolation [84].

Graph neural networks have been developed to extend CNNs to problems defined

on non-Euclidean domains, or with non-regular Cartesian structure. In the context of

modeling physical simulations, the computational mesh may be treated as a graph, G =

(V , E), where V is the set of vertices representing points in the computational domain,

and E is the set of edges defining the connections among the nodes corresponding to

mesh connectivity. Graph neural networks may be classified as either spectral [85, 86,

87, 88] or spatial [89] approaches, although the two may be generalized by the message-

passing graph neural network (MPGNN) [90]. MPGNNs have been used for body-force

predictions of aerodynamic flows [91].

Additionally, MPGNNs are used as a sub-component for certain learning and pre-

diction schemes, with a focus on PDEs in either a mesh-based [92, 93] or mesh-free

scenario [94]. These methods operate in the computational domain and are used to ad-

31

vance a solution field from one time instance to the next, serving as a model for the

high-fidelity simulator. The architectures consist of encoder-processor-decoder compo-

nents, with MPGNNs used in the processor to compute interactions among computa-

tional nodes. In some instances a particle-based representation of the simulation is used

[94], where message passing is used to capture non-local interactions between discrete

particles in the simulation. While others adopt a more finite-volume-method inspired

perspective in constructing the processor [93, 92], with message passing used to represent

fluxes. Impressive results are seen with these methods, and they overcome many of the

shortcomings of CNN-based approaches. Conditionally parameterized networks [92] also

share some similarity with the proposed methods, in that neural network weights are

treated as parametric functions, much like design-variable hypernetworks generate the

weights and biases for the main network. However, the focus of those works is on sim-

ulating a particular problem instance forward in time, while here the focus is surrogate

modeling of steady-state, parametrically-related cases.

Another class of relevant techniques capable of handling unstructured data includes

operator-regression methods, such as those based on DeepONet [95, 96, 97], Neural Oper-

ator [98, 99], Fourier basis networks [100], and GMLS Nets [101]. DeepONet and Neural

Operator methods have shown impressive results but generally seek to develop mappings

between spatially-varying input functions appearing explicitly in the governing equations

and the solution. The architecture of an unstacked DeepOnet corresponds to the use of

a hypernetwork for just the final layer, except the DeepONet branch network also con-

sumes input functions sampled across the domain as opposed to an embedding or known

quantity such as µµµ, as is pursued here. This distinction may seem to split hairs, but

DeepONet requires sensors to be fixed in location across all solutions which breaks the

desired discretization independence, with no obvious way to place sensors when variable

geometry is considered.

32

1.3 Objectives and Contributions

Data-driven methods may be applied to engineering-relevant scenarios in a variety of

ways, notably by solver augmentation and acceleration, or through modeling of QoIs

or HFM solution fields. The primary objective of this dissertation is to develop data-

driven and ultimately deep-learning methods which are capable of handling unstructured

simulation data in the presence of variable geometry and operating conditions without

lossy interpolation of the prediction or ground truth data. Specifically, the objectives

may be enumerated as follows:

1. To develop data-driven techniques for full-field surrogate modeling of PDE simula-

tions, to allow for:

(a) Mesh independence

(b) Parametric variation in geometry and operating conditions

(c) Indirectly coupled mesh and model size; allows for scaling to 3D domains with

lessened memory limitations

2. To evaluate the effectiveness of the techniques on a variety of problems, with a focus

on external aerodynamics, and including problems with industrial-scale complexity

3. To develop and explore methods for effective model construction and training

4. To demonstrate design-optimization routines driven by full-field surrogates

The resulting contributions are enumerated below.

1. Adapted coordinate-based neural networks for discretization-independent, full-field

surrogate modeling of problems with complex, parametric geometry and operating

conditions.

(a) Developed methods include design-variable-embedded dense networks, along

with one-shot full and partial hypernetwork models; inspired by recent ad-

vances in deep-learning for computer graphics rendering tasks and modal de-

composition techniques.

33

2. Showed that hypernetwork-based predictions may be written in a form analogous

to POD, without restriction on mesh size or topology.

3. Introduced and demonstrated decoder-convolutional-neural-networks (DCNN) for

surrogate modeling of problems defined on single and multi-block coordinate trans-

formed structured meshes; eliminates the need for lossy interpolation.

4. Trained DCNN and DVH flow-field emulators used in design optimization of sub-

sonic and transonic compressor rotors; a problem of industrial scale complexity.

(a) Dataset performance-space imbalance identified and mitigated through aug-

mentation via simple repetition of cases, vastly improving model predictions

for high-performing airfoils.

(b) Emulators used in place of CFD in Bayesian design-optimization routine, pro-

viding orders-of-magnitude savings in online computational cost.

5. Developed batch-by-case training for hypernetwork-based models, providing in-

creased training stability and an order-of-magnitude savings in training time when

combined with mixed- or single-precision training.

6. Applied piecewise constant/exponentially-decaying learning rate schedules to model

training, resulting in improved convergence rates.

7. Demonstrated scaling to three-dimensional, unstructured simulations of the Ahmed

body for vehicle aerodynamics with parametric geometry.

1.4 Thesis Outline

The content of this thesis is arranged as follows. In Chapter 2, greater technical detail is

provided on both classical regression techniques along with more recent relevant develop-

ments, many based on deep learning or ANN. The shortcomings of a few techniques in a

vehicle aerodynamics scenario are presented as well, highlighting their inability to directly

handle unstructured data and the consequences therein. Chapter 3 presents additional

34

background along with the methods used to build fast surrogate models for HFM solu-

tions, centered on coordinate-based networks capable of handling unstructured data, and

include design-variable MLP (DV-MLP), design-variable hypernetworks (DVH), and non-

linear independent dual system (NIDS). Decoder convolutional neural networks (DCNN)

are also developed for problems defined on structured meshes. Chapter 4 presents sur-

rogate modeling applications of the methods developed in Chapter 3, where the goal is

simply to regress accurate and generalizable surrogates, without use in a downstream

task. Chapter 5 presents the culmination of a multi-year project centered on the emula-

tion and design of energy-efficient compressor airfoils. This work was a partnership with

Raytheon Technologies Research Center (RTRC) and a part of the MULTI-LEADER

project, with funding through the ARPA-E DIFFERENTIATE program. This work was

presented at SciTech 2023 [102] and was further developed into a journal article published

in the AIAA journal [103]. Finally, conclusions, perspectives, and areas for future work

are provided in Chapter 6, with additional details and figures given in the Appendix.

35

Chapter 2

Optimization and Relevant Machine-Learning-Based

Regression and Surrogate Modeling Techniques

Many techniques for data approximation are in wide use, ranging from curve fitting or

least-squares regression to complex neural network architectures. An overview of many

methods is provided here and expands upon those presented in Chapter 1, with a greater

emphasis on technical detail. The methods will be presented generally in some scenarios,

but largely will center on the approximation of parametric fields or scalar QoI’s which

are extracted from said parametric fields. Following Section 1.1.1, the solution state at

a point in space is written as q(x;µµµ) ∈ Rnq , and let qN(x;µµµ) ∈ Rnmeshnq represent the

parametric field produced by a HFM expressed as a flattened vector, where parameters

or design variables are collected in µµµ ∈ Rnµ and x ∈ Rnx are the spatial coordinates for a

single point in nx-dimensional space. Steady-state solutions are considered so variable t is

left out of notation, although t may be considered as an element of µµµ to retain generality.

Let y(µµµ) := f(qN(x;µµµ)) ∈ R be a scalar quantity of interest which is extracted from the

HFM solution via generic function f .

Before presentation of the various methods, a vehicle aerodynamics test problem is

described with the goal of demonstrating the shortcomings of Gaussian Process Regression

(GPR) and Proper Orthogonal Decomposition (POD) in that scenario. Then methods

which are usually used to approximate scalar QoI’s are presented next and include least

squares regression, GPR, and multi-layer perceptron (MLP) neural networks. Following

this, background on autoencoders, and many relevant ANN-based methods are presented.

36

2.1 A Test Problem: 2D Vehicle Aerodynamics

A main point of emphasis in this thesis is the handling of solution data defined on

unstructured meshes with varying dimension and topology. In order to understand and

illustrate the shortcomings of some existing techniques, a vehicle-aerodynamics dataset

consisting of solutions to the 2D steady incompressible RANS equations around realistic,

parametric vehicle shapes on unstructured meshes is processed such that those methods

may be applied. Greater detail on this dataset may be found in Section 4.3, where it is

used in unprocessed form.

The methods considered rely on snapshot data matrices and require, at a minimum,

that the number of mesh points is consistent among all snapshots. The vehicle solutions

are processed by overlaying a Cartesian grid on the domain around the vehicle and inter-

polating each flow quantity from the computational mesh onto the Caresian grid. The

flow solutions lie in the xy plane with freestream velocity vector pointing in the positive x

direction, u∞ = u∞ı̂. The domain limits for the Cartesian mesh are x ∈ [−1, 7], y ∈ [0, 4],

shown in relation to the full domain in Figure 2.1a. Figure 2.1b shows a 150×150 Carte-

sian grid overlain on the region of interest along with all vehicle shapes from the dataset.

This Cartesian grid resolution is used for most of the demonstrations, and was selected to

be consistent with previous work from the lab group using convolutional autoencoders to

predict airfoil flows using a similar processing scheme [76]. One major drawback of using

the interpolated data is that an appreciable portion of the Cartesian points lie within the

vehicle shape, where CFD solutions are not defined. Additionally, the points which lie

inside each shape are not consistent among all cases.

(a) Full domain with region of interest.
(b) Region of interest with Cartesian grid for in-
terpolation and all vehicle shapes.

Figure 2.1: Vehicle aerodynamics domain and processed Cartesian grid.

37

Another significant drawback of interpolation is loss of information in boundary layers

and wakes, along with a reduced fidelity representation of the problem geometry. An

interpolated vehicle pressure field is shown in its raw form in Figure 2.2, and the effect of

the pixelation on the vehicle shape is apparent. Later, figures are generated using filled

contours which further interpolate and smooth the appearance.

Figure 2.2: Cartesian grid interpolated pressure field in the region of interest, where the
pixelation in the vehicle shape is apparent.

2.2 Optimization in Design and Model Construction

Conventional engineering design processes are iterative in nature, with repeated successive

stages of design generation and performance evaluation using some metrics which grade

the designs according to the specifications. In large organizations the design and analysis

engineers may be different groups of people, particularly when physical prototypes must

be produced and evaluated, potentially causing each iteration to consume large amounts

of time and resources. Mathematical notions of optimality have been around from antiq-

uity, becoming more common and precise since the invention and widespread adoption of

Calculus, with examples including analytical means for finding and classifying function

extrema, variational calculus and Lagrangian methods for identifying intrinsic coordi-

nates, or through iterative root-finding procedures such as Newton-Rhapson iteration

which forms the basis of Newton and Quasi-Newton methods in wide use today. More

recently, within the last century, formal linear and non-linear optimization routines have

been developed along with mathematically precise measures of optimality [104]. Applying

these methods using computer simulation data from one or more disciplines concurrently

38

is a very active area of research, with entire conferences dedicated to the topic. Further,

optimization lies at the heart of nearly all data approximation or model construction

techniques, from least squares to training of complex neural networks.

Gradient-based approaches are more mathematically formal and frequently make use

of a first or second-order Taylor-series expansions of the objective function. A second-

order multi-dimensional expansion about point µµµ in direction d ∈ Rnµ may be expressed

as

J (µµµ+ d) = J (µµµ) +∇J (µµµ)Td + 1
2
dTH(µµµ)d +O

(
‖d‖3

2

)
, (2.1)

where the gradient ∇J (µµµ) ∈ Rnµ is a column vector of partial derivatives

∇J (µµµ) :=
[
∂J (µµµ)
∂µ1

∂J (µµµ)
∂µ2

· · · ∂J (µµµ)
∂µnµ

]T
(2.2)

and H(µµµ) ∈ Rnµ×nµ is the Hessian matrix of second-order partial derivatives, providing a

measure of curvature. Adjoint-based solvers pair naturally with gradient-based schemes

and provide the sensitivities ∇J (µµµ) along with the solution field qN from which the ob-

jective is computed. Such solvers have been developed for many scenarios and governing

equations, but represent a recent development and are not as widely used as other solu-

tion procedures. For non-adjoint solvers, computing derivatives of J (µµµ) is not straight

forward. The simplest approach is to use finite-differences, but this requires solving the

HFM for each small perturbation of the design variables µµµ. This becomes impractical

quickly as dim(µµµ) increases, and the effect is compounded when considering the Hessian.

Further, the appropriate size of the perturbations is not known a priori and numerical

issues such as subtractive loss of precision may plague the result. Alternatively, the

derivatives may be computed via the complex step method [105] or through algorithmic

differentiation [106], also known as automatic differentiation, but these methods require

access to and modification of the source code for the HFM solver.

The general optimization problem statement of Equation 1.44 also applies in the

scenario of constructing or training an approximation model, and frequently corresponds

to an unconstrained optimization problem with nh = ng = 0. In that context the objective

39

is often referred to as a loss function, and may be written as J (θ) or J (w), where θ is

the set of all model weights or parameters, which are alternatively represented by vector

w. In scenarios such as least squares, the weights are defined as a vector so using w is

natural, while for neural network models the weights are several matrices and vectors,

represented more naturally by set θ. Neural networks in particular are frequently trained

using first-order gradient based methods. Problem scaling is important both in design

optimization and training of ANNs, so an overview is provided below. Following this,

greater detail regarding unconstrained gradient-based optimization is provided, with a

focus on first-order or non-Quasi-Newton schemes and other general considerations for

training ANN.

2.2.1 Scaling and Normalization

The term ∇J (µµµ)Td from Equation 2.1 is known as a directional derivative, and quantifies

the objective function rate-of-change projected onto vector d, and in order to retain the

correct units d should be scaled to have unit length,

d̂ =
d

‖d‖2

=
d√
dTd

. (2.3)

The design variables µµµ should also be normalized so that they have similar scale to

another. When prescribed limits for each design variable are given, µi,min ≤ µi ≤ µi,max

per Equation 1.44, then these limits may be used to apply min-max normalization to

scale each entry of µµµ so that it lies within [0, 1]. Let a normalized quantity be represented

by ·̆, then the formula for min-max normalization with prescribed limits is

µ̆i =
µi − µi,min

µi,max − µi,min

. (2.4)

When constructing data-driven models, frequently all model inputs and outputs are

normalized. At the time of model construction, only a training dataset D is on hand.

For some inputs, like the design variables µµµ, prescribed limits may be on hand as above.

For model outputs or target quantities the ranges may not be known for all unseen cases

40

ahead of time, and instead statistics of the training dataset may be used. Let qi be the

ith entry of state vector q, and collect all entries from the training dataset in vector qD,i.

Min-max normalization is expressed similarly in this scenario as

q̆i =
qi −min(qD,i)

max(qD,i)−min(qD,i)
. (2.5)

All training-set data will lie within [0, 1], but it is possible data from unseen cases will lie

slightly outside of this range if the values are above or below the training dataset limits.

If normalization over a different range [a, b] is desired, then a more general formula is

q̆i = (b− a)
qi −min(qD,i)

max(qD,i)−min(qD,i)
+ a, (2.6)

where a range of [−1, 1] is also commonly used. Z-score normalization is also common

in data-driven methods, and it transforms the data so that the normalized values have a

mean of 0 and a standard deviation of 1. A z-score normalized quantity is computed as

q̆i =
qi −mean(qD,i)

std(qD,i)
. (2.7)

The optimizer should use normalized quantities, while the HFM solver usually uses fully-

dimensional quantities. Thus the normalization should be reversed by rearranging the

above expressions before use with the HFM solver.

2.2.2 Unconstrained Gradient-Based Optimization and Train-

ing ANN

Unconstrained optimization has straight-forward optimality conditions. Denoting the

optimal design as µµµ∗, the conditions are

∇J (µµµ∗) = 0

H(µµµ∗) is positive definite, dTH(µµµ∗)d > 0 for all nonzero d.

(2.8)

41

The former is the first-order optimality condition and depends only on the gradient

information, without consideration of curvature via the Hessian H.

Unconstrained optimization routines are typically grouped into one of two categories,

either line-search or trust-region algorithms, and here line-search approaches are described

further. Line-search methods follow a similar overall procedure with two important com-

ponents; the selection of a search direction d, and determination of a step size α ∈ R>0

to take along that direction to decrease the objective. The design at iteration k is then

updated according to

µµµk+1 = µµµk + αdk. (2.9)

The procedure usually continues until the first-order optimality is satisfied to within some

tolerance ε, often using ‖∇J (µµµk)‖∞ ≤ ε, or until a specified number of iterations have

elapsed.

Gradient descent, also known as steepest descent, selects the search direction to be

dk = −∇J (µµµk), (2.10)

given that the gradient points in the direction of steepest ascent. As with consideration

of a directional derivative, it is usually recommended to use a normalized search direction

per Equation 2.3. Selecting d = −∇J (µµµ) seems like a sensible choice, but often results

in a large number of iterations in the presence of high curvature in the objective; not

surprising given that gradients are local and curvature effects were not considered.

One method to address the issues with steepest descent is to include a momentum

term [107] in the update expression, such that the search direction at iteration k is a

weighting of the current direction of steepest descent and the previous search direction,

k − 1. That is,

dk = −∇J (µµµk) + βk−1dk−1, (2.11)

usually starting with d0 = −∇J (µµµ0) and then updating per Equation 2.9 as usual. In

the simplest case β may simply be a scalar specified ahead of time or left free as a

hyperparameter, while other methods update β dynamically using a specific formula.

42

One such example is the conjugate gradient method [108], which was developed based

upon linear conjugate gradient methods to solve linear systems of equations [109]. The

update formula in that scenario is given by

βk =
∇J (µµµk)T∇J (µµµk)

∇J (µµµk−1)T∇J (µµµk−1)
. (2.12)

In the context of design, the step size α is usually determined using a line-search algorithm

which are quite involved, with examples provided in references [110, 111].

Stochastic gradient descent (SGD) is a foundational algorithm for training ANN, and

it differs from gradient descent only in that the gradients are estimated stochastically

using mini-batches for each optimizer update. Momentum terms are a common feature

of many gradient-based methods used for training ANN, and have been empirically shown

to aid in optimization of such non-convex objective functions [107]. One such algorithm

is Adam [112], which is used extensively in this thesis, and depends on estimated first and

second moments mt and vt of the loss. It also depends upon scalar quantities β1 = 0.9,

β2 = 0.999, and ε = 10−8 with the default values given. The method uses update rules

below, where βk1 /βk2 denotes exponentiation, not iteration.

mk = β1m
k−1 + (1− β1)∇J (θk)

vk = β2v
k−1 + (1− β2)(J (θk))2

m̂k = mk/(1− βk1) (2.13)

v̂k = vk/(1− βk2)

θk+1 = θk − αm̂k/(
√
v̂k + ε)

In training ANN, the learning rate α is usually specified ahead of time, either as

a scalar or following a prescribed schedule such as an exponential decay. Other opti-

mization schemes such as ADAGRAD [113], ADADELTA [114], and RMSprop [115] seek

to dynamically adjust the learning rate per axis during training. Adam may be inter-

preted in this manner as well, and generally these methods are blended extensions of

43

SGD incorporating ideas from momentum and adaptive learning rates.

2.3 A Survey of Existing Regression Techniques

2.3.1 Regularized and Non-linear Least Squares

The least-squares procedure presented in Section 1.2.2 may be extended using regular-

ization and non-linear features. Regularization is used to endow regression models with

different properties by adding terms to the objective function, while non-linear features

move the regression problem beyond polynomial curve fitting. If a response surface or

other underlying function is highly complex or has other non-polynomial structure, such

as periodicity, then a polynomial model may be insufficient. Other more complex feature

transformations may be considered, written generally as

φφφ(µµµ) : Rnµ → Rp, (2.14)

where the entries of φφφ(µµµ) may contain arbitrary non-linear terms beyond monomials.

The transformation may also represent a basis expansion, with Chebyshev and Hermite

polynomial bases commonly used, for example. In this case the Vandermonde matrix A,

which is specific to polynomials, is replaced by general feature matrix ΦΦΦ ∈ RM×p, defined

similarly as

ΦΦΦ :=

− φφφ(µµµ1)T −

− φφφ(µµµ2)T −
...

...
...

− φφφ(µµµM)T −

 ∈ RM×p. (2.15)

In all presentation of least squares, with and without regularization, the Vandermonde

matrix A may be replaced with the general feature matrix ΦΦΦ. Model predictions are then

written as

ŷ(µµµ; w∗) = φφφ(µµµ)Tw∗, (2.16)

which generalizes Equation 1.49.

44

Ridge-regression [116] is used to avoid over-fitting, and it does so via regularization

in the form of penalizing the L2-norm of the model weights w,

w∗ = argmin
w
‖y −ΦΦΦw‖2

2 + λ‖w‖2
2, (2.17)

where λ is a user-specified weighting coefficient. This penalty helps to make the predictive

model less sensitive to outliers in the training dataset D, more common in scenarios

with large measurement error, and is useful when the training data is correlated. Ridge

regression has a closed-form solution, given by

w∗ = (ΦΦΦTΦΦΦ + λIp)
−1ΦΦΦTy, (2.18)

where Ip is the p × p identity matrix. Ridge regression is a special case of Tikhonov

regularization, given by

w∗ = argmin
w
‖y −ΦΦΦw‖2 + λ‖Dw‖2

2, (2.19)

where D ∈ Rp×p is a linear operator, such as a circulant matrix for smoothing or denoising

via total variation regularization. The solution is given by

w∗ = (ΦΦΦTΦΦΦ + λDTD)−1ΦΦΦTy, (2.20)

where setting D = Ip recovers ridge regression. Other variations include LASSO [117],

which is intended to promote sparsity and parsimony by penalizing the L1-norm of w,

w∗ = argmin
w
‖y −ΦΦΦw‖2

2 + λ‖w‖1, (2.21)

which aides in obtaining an interpretable model, particularly when a dictionary of non-

linear terms is used. Elastic Net [118] combines features of ridge regression and LASSO,

45

including both L1 and L2 penalties on coefficients w, and is given by

w∗ = argmin
w
‖y −ΦΦΦw‖2

2 + λ1‖w‖1 + λ2‖w‖2
2, (2.22)

where two coefficients λ1 and λ2 control the tradeoff between penalties. No closed-form

solution exists in general for LASSO and Elastic Net and thus must be solved numerically.

Regardless of the method selected to regress the response surface, once the coefficients

w = w∗ are on hand, then the QoI response for a given µµµ are obtained using Equation

2.16.

Least squares is a vast and important topic, with many courses in linear algebra and

data science partially or wholly devoted to its study. Greater background and description

of these methods and their variants in the context of RSM, including those applied to

physical experiments, may be found in the literature [119].

2.3.2 Gaussian Process Regression

Gaussian Process Regression (GPR) is closely related to kriging models, kernel regression,

and kernel machines such as support vector machines (SVM). First, define a Gaussian

Process.

Definition 2.3.1 (Gaussian Process) A Gaussian process is a distribution over func-

tions, such that for any n inputs, the resulting n function evaluations have a multivariate

Gaussian distribution. A Gaussian process is fully specified by its mean and covariance

functions

m(µµµ) = E[f(µµµ)] (2.23)

k(µµµ,µµµ′) = E[(f(µµµ)−m(µµµ))(f(µµµ′)−m(µµµ′))], (2.24)

and a Gaussian process is notated as

f(µµµ) ∼ GP(m(µµµ), k(µµµ,µµµ′)). (2.25)

46

GPR may be expressed either in parametric or non-parametric form. Bayes’ theorem

is central to both forms of GPR, and Bayesian linear inverse problems generally, and is

expressed in context of parametric GPR in Equation 2.26.

posterior =
likelihood× prior

evidence
, p(w|y,M) =

p(y|w,M)p(w)

p(y|M)
. (2.26)

Both parametric and non-parametric scenarios rely on Gaussian priors and the condi-

tional properties of multivariate-Gaussian distributions, i.e. Gaussian Processes, to infer

posterior distributions of either:

1. the weights for a linear model w (parametric), or

2. the predicted function values directly (non-parametric).

Beginning with parametric GPR, consider a linear model for the response, same form

as Section 2.3.1 for a generalized feature transformation, written as

y(µµµ; w) = f(µµµ; w) + ε = φφφ(µµµ)Tw + ε (2.27)

(2.28)

where noise εεε is i.i.d Gaussian, εεε ∼ N (0,ΓΓΓ), with ΓΓΓ = σ2
nIM ∈ RM×M . Additionally,

take a Gaussian prior on the weights w ∼ N (m0,ΣΣΣ0), where m0 ∈ Rp is the prior mean

and ΣΣΣ0 ∈ Rp×p is the prior covariance. Often times the prior mean is taken to be zero,

m0 = 0. Random variable Y describing y is a linear combination of Gaussian random

variables w and εεε and thus Y is also Gaussian,

pY (y) ∼ N (ΦΦΦm0,ΦΦΦΣΣΣ0ΦΦΦ
T + ΓΓΓ). (2.29)

Further, the Gaussian priors induce a Gaussian-Process prior over predictive function

f(µµµ; w), the model without noise, and may be written as

f(µµµ; w) ∼ GP(φφφ(µµµ)Tm0,φφφ(µµµ)TΣΣΣ0φφφ(µµµ′)). (2.30)

47

This is central to non-parametric GPR, discussed after parametric GPR.

Given Equation 2.29, the properties of multivariate Gaussian distributions may be

used to write the joint distribution of y and w, p(y,w), which is then marginalized to

obtain the posterior distribution p(w|y). The joint distribution is expressed as

w

y

 ∼ N
 m0

ΦΦΦm0

 ,
 ΣΣΣ0 ΣΣΣ0ΦΦΦ

T

ΦΦΦΣΣΣ0 ΦΦΦΣΣΣ0ΦΦΦ
T + ΓΓΓ

 , (2.31)

leading to posterior mean mpost and covariance ΣΣΣpost which are obtained from conditional

properties of multivariate Gaussians.

mpost = m0 + ΣΣΣ0ΦΦΦ
T (ΦΦΦΣΣΣ0ΦΦΦ

T + ΓΓΓ)−1(y −ΦΦΦm0) (2.32)

ΣΣΣpost = ΣΣΣ0 −ΣΣΣ0ΦΦΦ
T (ΦΦΦΣΣΣ0ΦΦΦ

T + ΓΓΓ)−1ΦΦΦΣΣΣ0 (2.33)

That is, the posterior distribution of the weights is

p(w|y,M) ∼ N (mpost,ΣΣΣpost) (2.34)

and thus the updated predictive function over the training data is now distributed as

pY (y) ∼ N (ΦΦΦmpost,ΦΦΦΣΣΣpostΦΦΦ
T + ΓΓΓ). (2.35)

Predictions on µµµ∗ /∈ D frequently exclude noise ε, and thus the predictive distribution

over unseen data points is given as

pY (ŷ(µµµ∗)) ∼ N
(
φφφ(µµµ∗)

Tmpost,φφφ(µµµ∗)
TΣΣΣpostφφφ(µµµ∗)

)
, (2.36)

and usually the mean and covariance are taken as the prediction and uncertainty. That

is, a model prediction is written as

ŷ(µµµ) = φφφ(µµµ)Tmpost, (2.37)

48

and corresponds directly to the least-squares linear model, Equation 2.16, where w and

mpost both represent the weights found by different methods. This may be extended to

predictions at multiple points outside the training set simultaneously by constructing a

feature matrix ΦΦΦ∗.

Next non-parametric GPR is developed, where inference occurs directly in predicted

function space, without explicitly referencing or determining model weights w / mpost.

Given Equation 2.30, the prior predictive function mean and covariance functions can be

readily seen,

m(µµµ) ⇔ φφφ(µµµ)Tm0 (2.38)

k(µµµ,µµµ′) ⇔ φφφ(µµµ)ΣΣΣ0φφφ(µµµ′)T . (2.39)

When a prediction is needed at µµµ∗, the joint distribution of the data and prediction

p(y, f(µµµ∗)) is written and the properties of Gaussians are again used to marginalize

to obtain the mean and variance of the predictive distribution p(f(µµµ∗)|y). The joint

distribution is

 y

f(µµµ∗)

 ∼ N
m(M)

m(µµµ∗)

 ,
k(M,M) + ΓΓΓ k(M,µµµ∗)

k(µµµ∗,M) k(µµµ∗,µµµ∗)

 , (2.40)

where matrix M ∈ Rnµ×M collects all input vectors µµµ ∈ D. Matrix k(M,M) ∈ RM×M

collects the covariance function over training points, where element i, j is k(µµµ(i),µµµ(j)).

Then column vector k(M,µµµ∗) ∈ RM×1 collects the covariance function between the point

of interest µµµ∗ and all training points in the dataset, as does row vector k(µµµ∗,M) ∈ R1×M ,

while k(µµµ∗,µµµ∗) is a scalar. Then applying the rules for conditional Gaussians to obtain the

posterior predictive distribution and variance functions for µµµ∗ /∈ D yields the following.

E[f(µµµ∗)|y] = m(µµµ∗) + k(µµµ∗,M)
(
k(M,M) + ΓΓΓ

)−1
(y −m(M)) (2.41)

Var(f(µµµ∗), f(µµµ∗)|y) = k(µµµ∗,µµµ∗)− k(µµµ∗,M)
(
k(M,M) + ΓΓΓ

)−1
k(M,µµµ∗) (2.42)

Often times the mean function is taken to be the zero function, and this simplifies the

49

prediction, letting f∗ := E[f(µµµ∗)|y], then

f∗ = k(µµµ∗,M)
(
k(M,M) + ΓΓΓ

)−1
y (2.43)

is the predicted function value. This may be interpreted as a linear combination of M

kernel functions k(µµµ∗,M), each centered on a training data point, with coefficients given

by
(
k(M,M) + ΓΓΓ

)−1
y.

Global or local basis expansions may be used to construct features φφφ(µµµ), where com-

mon global basis functions are those mentioned previously, and include monomials as

in the curve-fitting example, along with Chebyshev, Hermite, or Lagrange polynomials.

The listed non-monomial bases are advantageous over monomials as they are orthogonal.

Local basis functions are usually symmetric functions which are centered on the data

points and decay towards zero far from the data points. This includes the commonly

used squared-exponential kernel, written for scalar inputs as

kSE(µ, µ′; γ, `) = γ exp

[
− (µ− µ′)2

2`2

]
, (2.44)

where γ and ` are hyperparameters of the kernel. Multidimensional kernels may be

constructed as products or summations of scalar kernels along each axis. Many other

kernel functions are widely used, with The Kernel Cookbook providing a good overview

[120], along with greater details on constructing kernels with different properties.

2.3.2.1 Application in Vehicle Aerodynamics

GPR is normally considered only in the context of predicting a scalar output quantity,

and extending GPR to account for multi-dimensional output quantities while accounting

for the covariance of those output quantities is non-trivial, and an active area of research

[121]. In that scenario the kernel function becomes matrix valued instead of scalar valued.

The alternative is to use separate GPR models for each output, and some existing python

libraries such as scikit-learn offer a GPR implementation which will do so for you

automatically. This method is pursued here, where the scikit-learn [122] GPR toolkit

50

is used to regress snapshots of of a single flow quantity using the interpolated vehicle

aerodynamics dataset, described in Section 2.1. Using that dataset, consider the ith

flattened snapshot of a single flow quantity of the interpolated solution lying on a 150×150

Cartesian grid, yi ∈ R(22,500). Construct a snapshot matrix with snapshots stored as rows,

Y =

| yT1 |

| yT2 |

...

| yTM |

 ∈ RM×22,500, (2.45)

then Equation 2.29 becomes simply

f∗ = k(µµµ∗,M)
(
k(M,M) + ΓΓΓ

)−1
Y. (2.46)

In the sklearn.gaussian process.GaussianProcessRegressor implementation, the

term C =
(
k(M,M) + ΓΓΓ

)−1
Y ∈ RM×22,500 is computed first and stored, following Algo-

rithm 2.1 of reference [123]. The lower Cholesky decomposition is computed, LL∗ =(
k(M,M) + ΓΓΓ

)
, and then used to solve the system of equations LL∗C = Y using

scipy.linalg.cho solve from the SciPy [39] python library. Then predictions are given

as row vectors simply by f∗ = k(µµµ∗,M)C.

A vehicle speed of 90 kph was, with flow quantities of static pressure, x-velocity, and

y-velocity, and a training validation split of 80/20 was applied to the 124 solutions giving

M = 99 in the training set. The squared-exponential (radial basis function) kernel was

used and the noise level was varied as 10−16 ≤ σ2
n ≤ 1016, where ΓΓΓ = σ2

nIM , to understand

the behavior on the validation set. The MRL2E against σ2 over training and validation

sets over this broad noise range is given in Figure 2.3a, and zoomed in (with a finer sweep)

on validation minima in 2.3b.

51

(a) (b)

Figure 2.3: MRL2E versus data-noise level σ2
n (a): coarsely over a broad range and (b): more

finely over a narrower range where validation-set minima are seen.

In the essentially noise-free regime, training-set performance is very good as would

be expected since GPR returns exact values from the training set when σ2
n = 0. The

training error increases with σ2
n until about σ2

n = 1, where it remains essentially flat

after. The validation errors are considerably worse in all regimes, with slight minima

seen in each curve between 10−2 ≤ σ2
n ≤ 10−1. Figures 2.4 and 2.5 shows pressure-field

and x-velocity-field predictions for the training and validation sets in the very-low noise

regime, with σ2
n = 10−16, where the training set predictions match very well while the

validation predictions do not, especially in regions near the vehicle surface. Note that

the ground truth data is masked during pre-processing, while the prediction and error

contours are not.

(a) Ground truth, p, training (b) Prediction, p, training (c) Error, p, training

(d) Ground truth, p, validation (e) Prediction, p, validation (f) Error, p, validation

Figure 2.4: Example training-set (a-c) and validation-set (d-f) pressure-field predictions in the
essentially noise-free regime, with σ2

n = 10−16.

52

(a) Ground truth, u, training (b) Prediction, u, training (c) Error, u, training

(d) Ground truth, u, validation (e) Prediction, u, validation (f) Error, u, validation

Figure 2.5: Example training-set (a-c) and validation-set (d-f) x-velocity-field predictions in
the essentially noise-free regime, with σ2

n = 10−16.

Figures 2.6 and 2.7 show training and validation predictions for the same vehicle

shapes when the validation-best-MRL2E noise level was selected. The validation predic-

tions are modestly improved, but the training predictions are vastly degraded and are of

similar poor quality as the validation set. Note that each GPR model, for every noise

level and flow variable, has its squared-exponential kernel length scale optimized per the

log-marginal-likelihood during fitting.

53

(a) Ground truth, p, training (b) Prediction, p, training (c) Error, p, training

(d) Ground truth, p, validation (e) Prediction, p, validation (f) Error, p, validation

Figure 2.6: Example training-set (a-c) and validation-set (d-f) pressure field predictions when
the MRL2E validation-best noise level was used.

(a) Ground truth, u, training (b) Prediction, u, training (c) Error, u, training

(d) Ground truth, u, validation (e) Prediction, u, validation (f) Error, u, validation

Figure 2.7: Example training-set (a-c) and validation-set (d-f) x-velocity field predictions
when the MRL2E validation-best noise level was used.

Thus in this scenario, use of GPR without more involved treatment does not lead to

a satisfactory, generalizable model. Using the signed-distance field as the input feature

to explicitly give the vehicle shape does not lead to improved results. In the dataset’s

unprocessed, non-interpolated form, it cannot be processed by GPR as a snapshot since

54

each solution has a varying number of mesh points and differing connectivity. So even if

GPR performed well at predicting unseen snapshots, it would still be unsatisfactory due

to the required interpolation.

2.3.3 Proper Orthogonal Decomposition

POD is a popular choice for selecting the trail/test basis used in intrusive projection-

based reduced-order-modeling schemes, as presented in Section 1.2.3. POD-NN develops

a similar POD basis for non-intrusive ROMs, see Section 1.2.4, where the basis coefficients

are generated for an unseen parameter set using an ANN. As was mentioned previously,

POD methods require consistent meshes across all cases considered in order to assemble

the snapshot matrix. Thus these methods are not effective for handling data lying on

unstructured meshes with varying dimension and topology, but they may still be evaluated

in the context of the interpolated vehicle dataset of Section 2.1.

A single vehicle speed of 90 kph is considered and each flow quantity is treated sep-

arately, with 95 cases used in the training dataset to construct the snapshot matrices.

Each output field is z-score normalized, per Section 2.2.1 before application of Equations

1.62-1.64. Before use with a method such as POD-NN, the basis ΦΦΦ may be evaluated

in reconstructing the training and validation dataset, using Equations 1.65 and 1.66. A

mean-centered data-snapshot matrix Xm may be assembled for each the training and

validation groups, but only the training set used in computing the basis. Note that this

is not a truly predictive task as the solutions are needed to compute the basis coefficients;

in POD-NN a separate mapping between design variables and basis coefficients via ANN

is needed. Thus evaluating the performance this way provides an upper bound on the

possible predictive performance. The MRL2E for each flow quantity versus the number

of retained POD modes is shown in Figure 2.8.

55

Figure 2.8: The variation in reconstruction MRL2E for each flow quantity of the interpolated
vehicle dataset for the training and validation groups using a POD basis with a varying number
of modes.

This shows that the error in reconstructing the training dataset does is fact go to zero

as expected, but only when 94 or 95 modes are retained. The reconstruction errors for the

validation group generally decrease as the number of retained POD modes is increased,

but the validation reconstruction errors essentially flat-line after a certain point.

(a) Ground truth, p, training (b) Reconstruction, p, training (c) Error, p, training

(d) Ground truth, p, val. (e) Reconstruction, p, val. (f) Error, p, val.

Figure 2.9: Example training-set (a-c) and validation-set (d-f) pressure-field reconstructions
using a non-truncated POD basis with 95 modes.

56

(a) Ground truth, u, training (b) Reconstruction, u, training (c) Error, u, training

(d) Ground truth, u, val. (e) Reconstruction, u, val. (f) Error, u, val.

Figure 2.10: Example training-set (a-c) and validation-set (d-f) x-velocity-field reconstructions
using a non-truncated POD basis with 95 modes.

It is re-emphasized that the validation-group errors are in reconstruction not predic-

tion. A scheme such as POD-NN is required for a truly predictive scenario, see Section

1.2.4. Again, as with GPR, these results rely on snapshot matrices which require lossy

interpolation of the ground-truth data.

2.3.4 Dense Neural Networks

The perceptron is the most fundamental building-block of ANN models and is a simplified

mathematical model of a neuron [124] and in its most basic form is a binary classifier.The

incoming signals are represented by a vector of inputs x ∈ Rnx , and a weight is placed

on each signal, collected in vector w ∈ Rnx . The perceptron sums the weighted input

signals, optionally adds a bias b ∈ R, and then applies a non-linear activation function

σ() to generate the scalar output signal y ∈ R as

y = σ
(
wTx + b

)
. (2.47)

The original perceptron used a heaviside step function, but other more commonly used

activation functions include the logistic function (sigmoid), hyperbolic tangent, swish,

57

and rectified linear unit (ReLU). A perceptron is a single-layer neural network, while

multi-layer perceptron (MLP) models consist of several layers, each containing multiple

perceptrons, also commonly referred to as nodes or neurons. Each node is densely con-

nected to every node in the preceding and successive layers. The formula for a single

dense layer with H nodes is given by

fdense(h; W,b) = σ.
(
Wh + b

)
, (2.48)

where matrix W ∈ RH×dim(h) collects the weights for each node as its rows, vector

b ∈ RH holds the biases, and σ.() represents element-wise application of the activation

function. Given an output target y ∈ Rny , an MLP is a composite function which maps

f : Rnx → Rny , where the input is sequentially processed into the output, and a general

formula for propagating the hidden state through the ith layer is given by

h(i) = σ.
(
W(i)h(i−1) + b(i)

)
. (2.49)

This applies generally for i ≥ 1 by considering the input vector to be the zeroth hidden

state, x = h(0). Linear activation functions are commonly used for the output layer of

predictive networks, while the softmax function is often used for classification.

All weight matrices and bias vectors may be collected in a set θ =
{

W(i),b(i)

}nL+1

i=1

when there are nL hidden layers.Let θ(i) =
{

W(i),b(i)

}
be the trainable weights for the ith

layer. When the parentheses are not included in the superscript, θi, then this represents

all network weights at the ith iteration of training. The elements of θ are trainable

parameters, initialized randomly (though carefully) which are updated during training,

usually using a variant of stochastic gradient descent, an unconstrained optimization

algorithm. In predictive tasks the loss function is usually taken to be the mean-squared-

error (MSE) loss. Given inputs x, let the network prediction be written as ŷ(xi; θ), or

ŷi(θ), then the training problem of finding optimal weights θ∗ may be expressed as

θ∗ = argmin
θ

1

M

M∑
i=1

‖ŷi(θ)− yi)‖2
2, (2.50)

58

where the argument J (θ) = 1
M

∑M
i=1 ‖ŷi(θ) − yi)‖2

2 is known as the loss function, anal-

ogous to the objective function in general optimization. Gradient descent is an iterative

numerical method for solving non-linear optimization problems, where the weights are

updated from one iteration to the next according to the formula

θj+1 = θj − α∇J (θj), (2.51)

where α is the step size which is called the learning rate in deep-learning literature. The

gradient ∇J (θ) has terms for each W(i) and b(i) and for a simple network such as an

MLP those terms can be worked out analytically. The derivation is straight-forward

although somewhat tedious, and a general rule may be found using the chain rule and

backpropagating the derivatives through the network using previously computed terms

[125]. Modern codes generally use automatic differentiation to compute the derivatives,

using open-source libraries such as tensorflow [126], PyTorch [127], or JAX [128]. This

becomes almost a necessity when more complex network architectures are considered.

The “stochastic” part of stochastic gradient descent comes from splitting the dataset

into minibatches and performing optimizer updates on the model weights after each

minibatch, instead of processing the whole training dataset between updates as Equation

2.50 suggests. The minibatches are randomly generated and either shuffled or regenerated

between dataset iterations, known as epochs.

2.3.5 Autoencoders

Autoencoders are a class of model characterized by a bottleneck structure for learning a

meaningful, lower-dimensional latent representation of the data. These models have wide-

ranging applications in supervised and unsupervised machine learning tasks, including

clustering, classification, denoising, and generative modeling [129], and additionally serve

as the basis for many surrogate modeling techniques. An autoencoder consists of two

functions called the encoder and decoder. The encoder takes as input a data snapshot

and produces a latent code vector which is of smaller dimension than the snapshot. The

59

decoder in turn takes as input the latent vector and seeks to reproduce the input data.

That is, given a data space X ⊂ Rnx and a latent space Z ⊂ Rnz where nx ≥ nz, the

encoder is written as

Φ : X → Z; Φ(x) = z, (2.52)

and the decoder as

Ψ : Z → X ; Ψ(z) = x̂ ≈ x. (2.53)

The autoencoder output is then the composition of decoder and encoder, x̂ = Ψ ◦ Φ(x).

The autoencoder problem for obtaining the encoder and decoder may then be defined as

Φ,Ψ = argmin
Φ,Ψ

n∑
i=1

∆
(
Ψ ◦ Φ(xi),xi

)
, (2.54)

adapted from [130], where n data snapshots are present, and ∆ is a dissimilarity function

or reconstruction loss term. The Lp norms are possible dissimilarity functions, with

the L2 or L2
2 norm being commonly used. In the described setting, the problem is auto-

associative, meaning that the inputs and outputs are identical. In some cases the problem

is non auto-associative, meaning that some external target y 6= x is predicted by the

network. In this case, define a third space Y ⊂ Rny and redefine the decoder as

Ψ : Z → Y : Ψ(z) = ŷ ≈ y, (2.55)

and the autoencoder problem as

Φ,Ψ = argmin
Φ,Ψ

n∑
i=1

∆
(
Ψ ◦ Φ(xi),yi

)
. (2.56)

In this context the dimensions of input and output spaces are not required to be the same

and this is commonly the case. This second class of autoencoders may be termed ‘predic-

tive’ autoencoders. Typically autoencoders are composed of neural networks, but they

were first proposed in the context of boolean networks [131], while linear autoencoders

are analogous to principal components analysis [132]. Autoencoders may be constructed

60

using any type of neural network for the encoder and decoder, but they are typically

constructed as mirror images of another with dense and convolutional layers being most

common. Predictive autoencoders are widely used in the context of surrogate modeling

for scientific problems [76, 80, 78].

2.3.6 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a powerful ANN variant responsible for many

state-of-the-art advances over the last 10-15 years, becoming particularly popular after

winning the 2012 Imagenet competition [133]. CNNs were first conceived as the neocog-

nitron with vision tasks in mind, with a structure inspired by the connection of neurons

in a cat’s visual cortex [134, 135]. Specifically, not every node is connected to every other

node of the adjacent hidden layers as they are in MLPs, instead only nodes in a local

receptive field are connected. A local receptive field is comprised of inputs which are

“close” to one another, and defining “close” forces structure on the inputs and hidden

states. For images, this is natural, as the connectedness or distance may be simply scaled

differences in pixel coordinates, given the Cartesian structure. For a 2D image, the local

receptive field is an area spanned by a filter matrix K ∈ RK1×K2 . Convolution may be

thought of as a sliding dot product between input image H ∈ RD1×D2 and flipped ker-

nel matrix K1. Note that the kernel matrix may not be larger than the input image.

Convolution is represented with an asterisk or star, and in neural networks a non-linear

activation is also applied, so a convolutional layer with a single kernel may be written as

fconv(H; K,B) = σ.
(
H ∗K + B

)
, (2.57)

where B is a bias matrix with dimensions given later per Equation 2.61. The bias matrix

is often a single repeated number, tiled to the appropriate dimensions. As with MLPs, an

input image is processed sequentially into hidden states, with general forward-propagation

1The flipping is due to sign convention in defining convolution.

61

given by

H(i) = σ.
(
H(i−1) ∗K(i) + B(i)

)
, (2.58)

where H is the hidden state or feature map.

Zero-indexed two-dimensional convolution of feature map H with kernel K may be

written as

Zi,j =

K1−1∑
m=0

K2−1∑
n=0

Hi+m,j+nKm,n. (2.59)

CNNs parameterize the entries of the filter matrices, and when there are multiple input

channels then the kernel is actually three-dimensional but the sliding movement is only in

two dimensions. In that scenario, when there are C channels, the input image or hidden

state is H ∈ RD1×D2×C and the kernel is K ∈ RK1×K2×C , then the convolution has an

additional summation across the channels, given as

Zi,j =
C−1∑
c=0

K1−1∑
m=0

K2−1∑
n=0

Hi+m,j+n,cKm,n,c. (2.60)

Further, if there are P channels in the next hidden state, then convolution is performed

with P different kernels. This may be thought of as applying Equation 2.59 C times with

C different two-dimensional kernels, and then aligning and adding to attain the final

result for a single new channel. If there are P new channels in the next hidden state,

then this is repeated P times with different kernels.

The size of the image changes after a convolution operation, and many times square

images and kernels are used but that is not always the case, see the decoder-CNNs

(DCNNs) used in Chapter 5. Strided convolution is also common, where the filter matrix

moves more than one pixel at a time and is a form of sub-sampling. When strided

convolutions are used, the stride length along each axis must be less than the kernel

dimension or portions of the input will be skipped. It is also common to pad the images,

often with zeros, to avoid or control changes in feature-map size, and pooling operations

are also frequently applied, where the pixels in a local receptive field are down-sampled

with average-pooling and max-pooling commonly used. Consider an input image or

feature map for layer i of size D
(i−1)
1 ×D(i−1)

2 , a kernel of size K
(i)
1 ×K

(i)
2 , strides of length

62

S
(i)
1 × S

(i)
2 , and padding of size P

(i)
1 × P

(i)
2 added to the images, then the output image

dimension along axis j = 1, 2 is given by

D
(i)
j = floor

(
D

(i−1)
j −K(i)

j + 2P
(i)
j

S
(i)
j

+ 1

)
. (2.61)

The bias matrix of Equation 2.57 has the same dimensions as the resulting output. Gen-

erally convolutional layers reduce the image dimension, or include padding to keep it the

same or control the reduction.

One-dimensional and three-dimensional CNNs are also commonly used, and Equation

2.59 is easily generalized for those scenarios as

zi =

K1−1∑
m=0

hi+mkm (2.62)

Zi,j,k =

K1−1∑
m=0

K2−1∑
n=0

K3−1∑
o=0

Hi+m,j+n,k+oKm,n,o (2.63)

respectively, with an additional axis added and summation across channels included when

necessary, similar to Equation 2.60. The entries of the kernels and bias matrices are the

trainable parameters of a convolutional layer. Further, Equation 2.61 applies for each

axis j = 1, 2, 3 in an analogous fashion. Using 2D convolutions as an example, if there

are Cin channels in the incoming feature map and Cout channels in the output feature

map, then there are Cout three-dimensional kernels, each with dimension K1 ×K2 ×Cin.

Thus, the total number of trainable parameters in the layer is Cout×K1×K2×Cin +Cout,

where the final +Cout comes from the tiled bias matrices with one trainable parameter

per channel.

Note that to truly perform convolution the kernel matrices K must be flipped along

each axis before applying the expression above. However, deep-learning frameworks such

as tensorflow implement convolution as given above since the kernels are full of trainable

parameters, and thus the flipping is unnecessary.

Transposed convolutional layers are also frequently used and act as in a nearly opposite

way to convolution. While convolutional layers reduce dimensions through a sliding dot

63

product between the input and kernel(s), transposed convolution increases dimension by

broadcasting the kernel at each input location and summing the intermediate results.

The feature map change in dimension for transposed convolution is given by

D
(i)
j = floor

([
D

(i−1)
j − 1

]
S

(i)
j − 2P

(i)
j +K

(i)
j

)
(2.64)

for j = 1, 2, 3. Note the relation to Equation 2.61, where D
(i)
j and D

(i−1)
j are swapped

and the expression rearranged.

Transposed convolution is named as such due to its relation with the matrix transpose.

Note that convolution may be expressed as a matrix-vector product by transforming

the kernel K into a multiply-blocked Toeplitz-like matrix Kt and multiplying with a

vectorized (flattened) input, where the number of blocks depends on the filter size and

original dimension of the convolution. Consider a 2D convolution as an example, with

K ∈ R3×3 and Hconv ∈ R4×4 with a stride of 1 and no padding. Then Kt ∈ R4×16 is

the block-Toeplitz kernel matrix, hf,conv ∈ R16 is the flattened input, and the flattened

convolution output zf,conv ∈ R4 is given as

zf,conv = Kthf,conv, (2.65)

which is then reshaped into Zconv ∈ R2×2. Then, suppose transposed convolution with the

same kernel matrix is desired, again with strides of 1 and no padding. Then Htrans ∈ R2×2

and hf,trans ∈ R4 is the flattened input to transposed convolution. Then zf,trans ∈ R16 is

the flattened output which is computed by

zf,trans = KT
t hf,trans, (2.66)

which may then be reshaped into Ztrans ∈ R4×4.

Many networks use a combination of dense and convolutional layers, and a class of

models where the input is processed sequentially into the output are known as feed-

forward neural networks. The network function may be written as a composition of all

64

layers, and for a network with L hidden layers with input vector x this is given by

N(x; θ) = f (L+1) ◦ f (L) ◦ f (L−1) · · · f (2) ◦ f (1)(x) (2.67)

where the L+1th layer is the output layer, and intermediate layers may be a combination

of dense and convolutional layers, along with layers which simply reshape the hidden state.

Examples of this include convolutional autoencoders and decoder-CNN (DCNN) models

developed in this thesis.

2.3.7 Graph Neural Networks

Graphs are a flexible data structure which store a collection of objects and their attributes

or data as nodes or vertices, and information about their relationships to another through

edges. Many datasets are modeled naturally as graphs, with canonical examples being

social networks, citation networks, knowledge graphs, and recommender systems. As

discussed previously, CNNs have driven state-of-the-art performance in computer vision,

image classification, and pattern recognition type problems, and recently researchers

have worked to extend core concepts from CNNs to general unstructured graphs, with

network designs termed graph neural networks (GNNs) or graph convolutional networks

(GCNs). In the context of modeling physical simulations, the computational mesh may

be treated as a graph, G = (V , E), where V is the set of vertices representing points

in the computational domain, and E is the set of edges defining the connections among

the nodes corresponding to mesh connectivity. This is represented using the weighted

adjacency matrix A ∈ RN×N which encodes the graph connections and weights between

all nodes. If vi and vj are connected, then they share an edge (vi, vj) with strength wij,

which becomes an entry in the weighted adjacency matrix as Aij = wij. If two nodes vi

and vj are unconnected, then Aij = 0. A diagonal degree matrix D ∈ RN×N may also be

defined, where Dii =
∑N

j=1 Aij.

Graph neural networks may be classified as either spectral [85, 86, 87, 88] or spatial

[89, 136, 137] approaches, although the two may be generalized by the message-passing

65

graph neural network (MPGNN) [90]. Extending the ideas of CNNs to graphs is not

straightforward since the discrete convolution and pooling operations are only defined on

regular, Cartesian grids or domains. Spectral graph theory and the analysis of signals on

graphs is an emerging field which seeks to extend ideas and mathematics from traditional

signal processing to the graph domain [138]. The spectral formulation of GCNs utilize the

fact that convolution in the spatial domain corresponds to multiplication in the Fourier

domain, which may be restated that convolutions are linear, time invariant operators

which diagonalize in the Fourier basis [139]. Additionally, there is a correspondence

between the definition of the Fourier transform in the Euclidean domain and that in

the graph-spectral domain, and this correspondence is used to define spectral graph

convolutions.

To demonstrate this correspondence first define the unnormalized graph Laplacian

L = D − A ∈ RN×N . The graph Laplacian may also be normalized as L̃ = IN −

D−1/2AD−1/2.Then the Cartesian-space Laplace operator Lc and the graph Laplacian

are given as

Lc := ∇ · ∇

Lc(f(x)) = ∇ · ∇f(x)

↔
L := D−A

L(X) = (D−A)f ,

(2.68)

where f ∈ RN is a column vector representing the function or signal on the graph. The

usual Fourier transform may be defined as an inner product of the signal with the complex

conjugate of the eigenfunctions of the 1D Laplace operator, e−iωt [138], with the forward

and inverse Fourier transforms defined as

f̂(ω) := 〈f, eiωt〉 =

∫ +∞

−∞
f(t)e−iωtdt (2.69)

f(t) :=
1

2π

∫ +∞

−∞
f̂(ω)eiωtdω. (2.70)

where 〈·〉 is an inner product in this context. L is a real, symmetric, positive-semidefinite

matrix which has a full set of eigenvectors and a corresponding eigenvalue diagonalization

L = UΛΛΛU−1 = UΛΛΛUT [88]. ΛΛΛ = diag(λ0, ..., λN−1) = diag(λλλ), where λλλ ∈ RN holds the

66

eigenvalues, and U ∈ RN×N , where the columns of U are orthonormal eigenvectors in

this case.By analogy, one may then define the forward/inverse graph Fourier transform

of any function f on the nodes of G as an expansion in terms of the eigenvectors of L,

with index i this is given component-wise and vectorized

f̂(λ`) := 〈f ,u`〉 =
N−1∑
ı=0

f(i)u∗`(i)→ f̂ := UT f (2.71)

f(i) =
N−1∑
`=0

f̂(λ`)u`(i)→ f = Uf̂ (2.72)

And finally, convolution of signal f and filter h in the temporal domain is multiplication

in the spectral domain, as related by the Fourier transform

h(t) = (f ∗ g)(t)→ ĥ(ω) = f̂(ω)ĝ(ω). (2.73)

This may be used to define convolution in the graph spectral domain between signal f

and filter g. Start by proposing that convolution is multiplication in the spectral domain,

ĥ(λλλ) = (ĝ(λλλ)I)̂f(λλλ), then substitute Equation 2.71 for f̂ and take the inverse graph Fourier

transform by left-multiplying with U, and replacing Ĝ = ĝ(λλλ)I to yield the definition

(f ∗G g) := UĜUT f . (2.74)

Vector ĝ ∈ RN holds the diagonal entries of the filter matrix and is its spectral represen-

tation. The filter may be viewed as a re-scaling the graph Laplacian eigenvalues.

The first spectral GCNs parameterized the filter ĝ(θ) , analogous to how CNNs

parameterize the convolutional kernels, and wrap the result with a non-linear activa-

tion function [85]. For a layer with Cin input features, and Cout output features, then

H(i) =
[
h

(i)
1 . . . h

(i)
Cin

]
∈ RN×Cin and H(i+1) =

[
h

(i+1)
1 . . . h

(i+1)
Cout

]
∈ RN×Cout are the

ith and (i+ 1)th hidden states, with a forward propagation rule given by

h
(i+1)
` = σ.

(∑Cout
`′=1 UkG(θ)`,`′U

T
kh

(i)
`′

)
. (2.75)

67

A truncated basis is frequently used, Uk ∈ RN×k, implying G ∈ Rk×k with k trainable

parameters on the diagonal.

Other GCNs seek an approximation as even computing the eigendecomposition for

large graphs may be prohibitively expensive, with each defined by the manner of ap-

proximation [86, 140, 88]. Despite operating on non-Euclidean data, spectral GCNs are

limited to problems defined by the same graph, since the filter weights learned are with

respect to the eigenbasis U. Thus spectral GCNs are not dot discretization independent

when applied to HFM solutions.

While spectral GCNs define graph convolution by analogy with the Euclidean Fourier

transform and convolution, others take a more spatially-inspired approach, where nodes

in the graph interact within a predefined neighborhood for each node v, N (v). This

includes message-passing graph neural networks (MPGNN), which in fact even generalize

the spectral GCN approaches given above [90]. In addition to node-defined quantities

used in the spectral approaches, MPGNN also allow for edge features evw between nodes

v and w. A forward-pass consists of message-passing and (optional) readout stages. The

message-passing phase is iterative and depends upon message function Mt and vertex

update function Ut as

mt+1
v =

∑
w∈N (v)

Mt(h
t
v,h

t
w, evw) (2.76)

ht+1
v = Ut(h

t
v,m

t+1
v). (2.77)

Additional edge-feature hidden states may also be defined and updated analogously. The

readout stage is used when a graph-level embedding is needed, ŷ ∈ RM for some scalar

M , and may be written in terms of readout function R as

ŷ = R

([
hv|v ∈ G

]
.

)
(2.78)

Functions Mt, Ut and R are all learned parametric, differentiable functions. GraphSAGE

was proposed around the same time as MPGNNs and includes similar trainable aggrega-

tor functions [141] which fall under the generalized approach, but with an emphasis on

68

allowing predictions for unseen nodes or subgraphs. MPGNNs have been used to emu-

late PDE solutions in both mesh-based [92, 93] and mesh-free scenarios [142, 94]. Within

the context of modeling HFM solutions, whether or not a MPGNN can be applied in a

discretization independent manner depends upon the details of the message passing and

update functions.

2.3.8 Point cloud neural networks

Point cloud neural networks are useful in situations in which the data is available in the

form of unstructured point clouds, such as the raw output of a LIDAR unit or other three-

dimensional sensor. As such they are often seen in the context of autonomous vehicles or

robotic vision. PointNet[143] and PointNet++[144] are architectures designed for point

clouds and are used for scene recognition, classification, and segmentation tasks. The

networks consume a point cloud corresponding to a 3D scan or mesh, and either offer an

overall classification score for the scene, or a point-by-point segmentation score, where

the goal is scene analysis. The network produces a global feature vector upon processing

a point cloud, which is used in turn by a global classifier network, or a segmentation

network. The segmentation network provides a pointwise score, and it is possible that

a network with such an architecture may be used in a predictive setting instead. This

is demonstrated with PointNet++ used to predict viscous, incompressible flows over 2D

shapes lying on unstructured meshes [145].

2.3.9 Operator regression methods

Another class of relevant techniques capable of handling unstructured data in some in-

stances includes operator-regression methods, such as those based on DeepONet [95, 96,

97], Neural Operator [98, 99], Fourier basis networks[100], and GMLS Nets [101]. These

methods have also shown impressive results, and generally seek mappings between terms

appearing explicitly in the governing equations and the state. Deep Operator Networks

(DeepONet) are designed based on an operator representation theorem and can query

any point in the output domain [95], and may be interpreted as a partial-hypernetwork

69

model where the weights of only the output layer are generated via the branch network.

DeepONet has been demonstrated for Darcy flow on complex domains, mapping from

boundary conditions to full-domain pressure fields, but separate networks are trained for

each different domain, rather than using a single network on all domains [146]. Addition-

ally most Neural Operator (NO) methods [147] are capable of handling unstructured or

varying meshes, excluding Fourier-NO (FNO) [100] which require inputs and outputs to

lie on a Cartesian grid. Geo-FNO was developed recently to extend FNO to such problems

[148], and FNO was extended previously by expanding/shrinking the input/output do-

mains and interpolating to a Cartesian mesh and extrapolating the solution to a bounding

box as required [146].

2.3.10 Solving PDEs with neural networks

Some techniques blur the line between solving PDEs and regressing approximate PDE

solutions from data. Physics-informed neural networks [149, 150] (PINNs) are an example

of this. PINNs may be seen as a modern extension of methods to solve ODEs/PDEs

without data using neural networks, introduced in the late 90’s [151, 152]. The general

idea is to embed the governing ODE/PDE in the loss function, and to compute the

required derivatives directly from the neural-network prediction. A system of ordinary

or partial differential equations may be written generically as

R(q(x, t;µµµ), . . .) = 0, x ∈ Ω (2.79)

B(q(x, t;µµµ), . . .) = 0, x ∈ ∂Ω (2.80)

where vector q(x, t) is the unknown system state, R is a PDE operator, B is a bound-

ary condition operator, and µµµ are the problem parameters. In the following discussion,

limit to steady-state problems with 1-dimensional states for simplicity. Lagaris et. al

introduced such a method for solving initial and boundary value problems on rectangular

domains [151] and later introduced a modification allowing for irregular domains [152].

70

The method constructs a trial solution q̂ consisting of two terms written as

q̂(x; θ) = A(x) + F
(
x, N(x; θ)

)
. (2.81)

The first term A(x) is constructed to satisfy the boundary conditions without trainable

parameters, while the second term F uses a neural network N(x; θ) operating on the

coordinates and is constructed such that it does not contribute on the boundary. The

neural network weights and biases are represented by the set θ. To solve the differential

equation, the approximation q̂ is plugged into Equation 2.79 and used to compute a loss

function, with an example total squared loss written as

L(θ) =
∑
i

R
(
q̂(xi; θ)

)2
, xi ∈ Ω. (2.82)

The solution is then obtained by solving an optimization problem for the network weights,

written as

θ̂ = argmin
θ
L(θ). (2.83)

This procedure was shown to work for simple ODEs/PDEs, but the method for con-

structing A(x) to satisfy boundary conditions is a laborious process for higher dimensional

states and problem domains more complex than simple rectangles. Additionally, their

work predates the wide availability of automatic-differentiation tools so gradients with

respect to the model parameters θ were computed explicitly, also a time intensive and

difficult task. The modification presented in the follow on work of reference [152] for

irregular boundaries uses a combination of feed forward network for the solution domain

and radial basis function network to satisfy the the boundary conditions. This idea has

seen a resurgence in interest with the introduction of Physics Informed Neural Networks

(PINNs), which provide a slightly different approach to solving differential equations with

or without the use of data [149]. In PINNs, the approximation of the unknown function

q̂ is given simply as a feed-forward neural network, without term A(x). Violation of the

boundary conditions is then weakly penalized during training, and additional data terms

71

may also be included, with domain loss, boundary loss, data loss, and overall loss written

as

LΩ(θ) =
1

nΩ

nΩ∑
i=1

R
(
q̂(xi, θ)

)2
, xi ∈ Ω (2.84)

L∂Ω(θ) =
1

n∂Ω

n∂Ω∑
i=1

B
(
q̂(xi, θ)

)2
, xi ∈ ∂Ω (2.85)

Ld(θ) =
1

nd

nd∑
i=1

(
q̂(xi, θ)− q(xi)

)2
(2.86)

L(θ) = λΩLΩ(θ) + λ∂ΩL∂Ω(θ) + λdLd(θ). (2.87)

Coefficients λ may be used to assign relative importance or contribution to the total loss.

Solution of the differential equation is as before in Equation 2.83 and solved via uncon-

strained optimization. Computing derivative terms is facilitated by modern automatic-

differentiation-based deep learning packages.

72

Chapter 3

Predictive Deep-Learning Models Without

Interpolation of Ground-Truth Data

Many advances in machine learning have been driven by methods which approximate

mappings involving high-dimensional spaces, with the cardinality of input or output

spaces ∼ O(102 − 105) [153, 154, 79, 133]. This includes matrix-decomposition-based

methods [63, 155] and deep-learning autoencoder techniques [76, 80, 78] used in scientific

applications. Computational limitations arise when applied to scientific or engineering

simulations of scale, where the mesh-cell cardinality N may be in the tens-of-millions

or even billions in super-computing settings [156], with the total degrees-of-freedom for

a solution state an even larger multiple of N . This corresponds to mapping between

high-dimensional snapshots in autoencoder-style models, and decomposing even larger

snapshot matrices for projection-based ROMs, dynamic mode decomposition, or related

Koopman methods [157]; scenarios which become easily limited by computational cost.

Further, when several solutions at different conditions are considered, then the mesh

topology and N may also vary, disallowing use of snapshot or decomposition based meth-

ods.

A recent line of research instead approximates infinite-dimensional (continuous) func-

tions by mapping between lower-dimensional spaces using simple coordinate-based fully-

connected multi-layer-perceptron (MLP) neural networks. That is, instead of map-

ping between snapshots over the full domain of the problem, for example with a non-

autoassociative autoencoder convolutional neural network (CNN) [76], a mapping is re-

73

gressed between inputs and outputs at each individual point in space. The resulting

key distinction is that coordinate-inputs x are taken pointwise, for example as a single

physical-coordinate-tuple (x, y, z), instead of entire-solution snapshots. A driving appli-

cation is object and scene representation for rendering in computer graphics by which

objects are represented by continuous implicit fields such as the signed-distance-function

(SDF) zero-level-set [158, 159], SDF decision-boundary [160], or as a density/differential-

opacity along a light ray [161] 1. This concept is known by several names, including

coordinate-based networks, neural fields, neural implicits, and implicit neural representa-

tions [162], the latter of which provides a framework which encompasses and generalizes

the methods, extending them to other problem scenarios including recovery of typical

supervised learning problems. Using a continuous representation is key in attaining dis-

cretization independence when applied to scientific simulation data. Every point in each

mesh may be included separately, eliminating the need for lossy interpolation of solution

data onto a common Cartesian mesh, as was needed in Section 2.1 for snapshot-based

methods.

In this work coordinate-based MLPs are applied to the prediction of partial differential

equation (PDE) solution fields defined on domains with complex and variable geometry.

The predictive models must be able to concurrently handle unstructured data and vari-

ation in physical design and operating conditions, as described by design-variable vector

µµµ, to provide the greatest utility in design optimization or other engineering tasks. The

physical-coordinate inputs are augmented to include an evaluation of the signed-distance

or minimum-distance function (MDF) to provide global information about the domain

at each point; this may be viewed as a form of concatenation-based local conditioning as

the SDF/MDF are functions of space over the relevant domains. This input is referred

to as the augmented physical coordinates, and for a 3D problem is given as

x′ =
[
x y z φ(x, y, z)

]T
. (3.1)

For the problems considered, the MDF and SDF are equivalent, as all mesh locations

1See Equation 3.5 for SDF definition.

74

are external to the relevant shapes. In addition to the MDF, the network predictions

are globally conditioned upon the design variables µµµ. The distinction between global and

local conditioning is that global-conditioning vectors do not vary with space and apply to

all mesh points, while local conditioning vectors are spatial functions. Several different

techniques for conditioning neural network predictions are used in the literature [163,

158, 164, 162] with concatenation-based conditioning and the use of hypernetworks [165]

explored here. Most conditioning schemes involve learning an additional embedding to

condition the networks upon, whereas here the design variables and SDF are used instead;

both of which are known once a design is selected, simplifying the overall scheme.

The developed methods begin by first considering problems defined on coordinate-

transformed meshes, where the computational domain has a regular, Cartesian structure.

Common examples include body or domain-fitted meshes, as well as C-meshes and O-

meshes commonly used in airfoil aerodynamics. The regular structure allows for convo-

lutional architectures, variants of which drove many recent advances in deep learning, to

be applied directly in the computational domain, eliminating the need for interpolation.

This is significant, as none of the negative effects associated with interpolation of the

ground-truth data are present. Developed methods include decoder-CNN (DCNN) based

full-field surrogates which are covered in Section 3.1. These methods address the desire

to handle the ground truth data without interpolation, but are not suited to handle vari-

able mesh topologies as they are locked to and defined for the Cartesian computational

meshes for a given problem.

Next, background relating to coordinate-based MLPs as described above are given in

greater detail by examining implicit neural representations. Three methods towards gen-

eralization via conditioning are considered and compared. The first utilizes concatenation-

based conditioning, where the design-variable-embedding-vector µµµ is concatenated with

the augmented physical coordinates, similar to autodecoder networks [158] but without

concurrent learning of the embedding, referred to as design-variable MLP (DV-MLP).

The second utilizes weight-embedding, where the weights of a main network are gen-

erated using a hypernetwork consuming the design variables, known as deign-variable

75

hypernetworks (DVH). The third is a special case of DVH, called non-linear independent

dual system (NIDS), where only weights and biases of the final layer are generated us-

ing a hypernetwork. NIDS predictions may be written in a format analogous to POD

reconstruction, and further shares strong similarity with recently developed DeepONet

methods.

3.1 Decoder Convolutional Neural Networks (DCNN)

As discussed in Section 2.3.5, autoencoders have a bottleneck structure and may be

used for a variety of supervised and unsupervised learning or representation tasks. Non-

autoassociative autoencoders have been used in the context of surrogate modeling. For

example, an autoencoder CNN was used to predict turbulent airfoil flows using the signed

distance field as input [76]: see Figure 3.1(a) for a network schematic. Global parameters

µµµ =
[
Re AoA

]T
are concatenated with the encoder output and fed-forward through the

decoder to generate an approximate solution, as shown in Equations 3.2-3.4.

Φ(x) = z̃ (3.2)

z =
[
µµµT z̃T

]T
(3.3)

Θ(z) = Q̂ ≈ Q (3.4)

In other existing methods, an approximate solution for a new set of conditions or for a

new time-step may be approximated using only the trained decoder and some form of

mapping or interpolation in the latent space [80].

Here it is proposed that, for problems of interest in engineering design optimization,

the design variables µµµ may be used in lieu of a learned latent representation z, given that

the design variables define a unique design instance, assuming the problem definition is

deterministic and one-to-one. This corresponds to eliminating the encoder and replac-

ing the learned latent representation with the design variables, and this defines DCNN

models.

The difference between autoencoder CNNs and DCNNs is visualized in Figure 3.1.

76

(a)

(b)

Figure 3.1: Schematic comparison of (a) autoencoder CNN with latent-space injection, model
as presented in [76], and (b) DCNN, with sequence of dense and transposed convolution layers.

Although the DCNN schematic shows a sequence of dense layers, numerical experiments

showed the best results, in terms of mean squared error, were achieved with a single dense

layer between the input and first decoder layer. Thus only a single dense layer is used

for all DCNN predictions shown in later sections.

In Chapter 5, compressor airfoil RANS solutions are defined on multi-block meshes,

where each zone has a Cartesian structure. In that scenario DCNN models may be

applied by defining parallel decoder legs for each mesh zone, and in principle this method

may be applied to multi-block meshes with an arbitrary number of zones, provided each

block is Cartesian in structure. A notional schematic for a multi-block DCNN model for

a subsonic compressor airfoil is shown in Figure 3.2.

77

Figure 3.2: Notional schematic of a multi-block DCNN model with parallel decoder legs for
each mesh zone.

Designing DCNN models, or convolutional autoencoder models in general, for compu-

tational meshes often involves unforeseen difficulties due to unusual or non-typical mesh

dimensions. The difficulty arises from needing to account for non-integer values and the

floor functions of Equations 2.61 and 2.64.

Beyond the present discussion, encoding and decoding are fundamental concepts and

operations in machine learning. Convolutional classifiers correspond architecturally to

the encoder of Figure 3.1, where a vector of class probabilities replaces the produced

latent representation. Generative adversarial networks (GANs), a popular generative

modeling method, may utilize convolutional decoders in image synthesis, analogous in

architecture to DCNN models, although with a very different training scheme. These

use cases correspond to more probabilistic scenarios and as a result use different training

losses and training schemes, such as binary-cross-entropy loss for classification, and paired

training of generator and discriminator networks in GANs via minimax game [166].

3.2 Discretization-Independent Methods

Prior to introducing the devised techniques, additional background is presented regard-

ing deep-learning methods which directly influenced their development. This includes

coordinate-based networks for scene representation which is generalized by implicit neu-

78

ral representations, along with concepts for conditioning network predictions which may

be generalized by hypernetworks. The proposed methods draw directly from these to

achieve full discretization independence.

3.2.1 Shape and Scene Representation via Coordinate-based

Neural Networks

Given a set of points representing a surface S = ∂V of an object V ∈ Rm in m-dimensional

physical space, the signed-distance function may be defined as

fsdf(x;S) ,

φ(x,S) x 6∈ V

0 x ∈ S

−φ(x,S) x ∈ V

, (3.5)

where

φ(x,S) , inf
y∈S

d(x,y) (3.6)

is a minimum-distance function (MDF), and d(·, ·) is the Euclidean-distance function.

Stated simply, the SDF is the minimum distance between the field point x and the

surface S in consideration. It takes positive values for points outside the object (x 6∈ V),

negative values for points inside (x ∈ V), and is identically zero on the surface.

Coordinate-based MLPs have been used to represent 3D objects for rendering tasks.

The object’s surface is implicitly represented within a volumetric field; including as the

zero-level-set of a directly-regressed signed-distance field [158, 159] or decision boundary

(interior/exterior) [167, 160], or as an emitted radiance and density/differential-opacity

field [161]. Many of these methods include loss terms describing a rendering process,

such that the entire image generation process contributes to the loss during training.

This concept may be generalized by implicit neural representations, introduced along

with sin-activation SIREN networks in by [168], from which defining Equations 3.7 and

3.8 are taken. In this setting, a function of interest Φ with input coordinates x, written

79

Φ : x→ Φ(x), is defined by a set of m constraints C,

Cm(x, a(x),Φ,∇xΦ,∇2
xΦ, . . .) = 0, x ∈ Ωm, m = 1, . . . ,M (3.7)

which optionally depend on the function values Φ, function gradients∇xΦ, and additional

quantities a(x) which are needed to compute the constraints. When a neural network N

with parameters θ is used to approximate Φ, then this is referred to as an implicit neural

representation. To train the neural-network approximation, a loss function with M terms

is defined by penalizing deviation from the constraints,

J (θ) =

∫
Ω

M∑
m=1

1Ωm(x) ‖ Cm(θ,x, a(x), . . .)‖ dx, (3.8)

where the indicator function 1Ωm activates over valid locations within the domain Ωm.

A key distinction between this and other methods is that coordinate-inputs x are taken

pointwise, for example as a single physical-coordinate-tuple (x, y, z), instead of as entire-

solution snapshots. Surprisingly-many problems may be cast in this form, including as-

discussed surface representation and variations on classic deep-learning problems, such

as classifying MNIST hand-written digits. The approaches proposed in this work may

be viewed through this lens where the only constraint is that the predictions match the

data, recovering basic supervised regression. However, this does not directly align with

the main thrust of implicit neural representations, where an implicit function is regressed

and additional constraints are imposed.

3.2.2 Conditioning Neural Networks

It is commonplace in machine learning to process an input in the context of another

secondary input in a process known as conditioning. Several conditioning techniques will

be introduced briefly, with the presentation influenced by and similar to that given in

ref. [164]. Let x ∈ Rnx be the primary input and µµµ ∈ Rnµ be the secondary or conditional

input. For all examples consider fully-connected MLP networks with a hidden dimension

H, although the concepts may be readily applied to other network types.

80

Concatenation-based conditioning is a self descriptive term; the primary and condi-

tional inputs are concatenated before being passed to the next layer. For example, if

applied to network inputs (the zeroth hidden state), then h(0) is given simply as

h(0) =

x

µµµ

 ∈ Rnx+nµ . (3.9)

The inclusion of the conditional input has the effect of adding H × nµ weights to the

layer.

Another approach is known as conditional biasing, where a bias vector is generated

from the conditional input, fbias : µµµ → b(µµµ) ∈ RH , and added to a layers input. For

example, consider conditional biasing of the first hidden state, written as

h(1b) = h(1)(x) + b(µµµ), (3.10)

where the second layer now takes h(1b) as its input. Conditional biasing is equivalent to

concatenation-based conditioning when fbias is linear and bias-less linear, dense layers are

considered. To see this, consider h(0) as given in Equation 3.9 for concatenation-based

conditioning, and let nx = nµ = 2, H = 5. Then the first-layer weight matrix may be

written as

W(1) =

w1 w2 w3 w4

 ∈ R5×4, (3.11)

where wi ∈ R5. Then the first layer may be written as

f
(1)
dense = W(1)h(0) =

w1 w2 w3 w4

x

µµµ

 = x1w1 + x2w2 + µ1w3 + µ2w4 (3.12)

= W
(1)
1,2x + W

(1)
3,4µµµ (3.13)

= h(1)(x) + b(µµµ) (3.14)

81

where W
(1)
1,2 =

[
w1 w2

]
∈ R5×2 and W

(1)
3,4 =

[
w3 w4

]
∈ R5×2. Note the equivalence of

Equations 3.14 and 3.10, with fbias = W
(1)
3,4µµµ.

Similar to conditional biasing is conditional scaling, where an elements-wise product

is computed instead of addition. The conditional scaling vector is given by fscale : µµµ →

s(µµµ) ∈ RH . Then, as an example, the output of the first layer is modified according to

h(1s) = h(1) � s(µµµ), (3.15)

where � is the Hadamard or element-wise product.

Feature-wise Linear Modulation (FiLM) layers [163], used in feature-wise transforma-

tions [164], include both conditional biasing and scaling terms, with a general expression

given as

FiLM(x) = γγγ(µµµ)� x + βββ(µµµ). (3.16)

The vectors γγγ(µµµ) and βββ(µµµ) come from a FiLM generator, which is a separate function or

neural network. The FiLM generator may be written as fFiLM : µµµ → γγγ(µµµ),βββ(µµµ) ∈ RH .

A given main network may have FiLM layers or other conditional operations inserted

between each existing hidden layer or blocks of layers. Each FiLM layer may have a

separate FiLM generator network, or all required FiLM vectors may be produced from a

single generator, with the same comments applying to conditional biasing and scaling.

3.2.2.1 Hypernetworks and Generalized Conditioning

Hypernetworks constitute a metamodeling approach where one neural network is used to

generate the weights of another main network [165], and are part of a broader class of

proposed techniques where network weights are conditioned on model inputs or features

[169, 170, 171]. Additionally, hypernetworks generalize all of the conditioning meth-

ods presented above by considering a hypernetwork which generates only a portion of

the main-network weights and/or biases. This is easy to understand for conditional

biasing, as fbias may be interpreted as a hypernetwork which generates only the bias

vectors. Concatenation-based conditioning is generalized with the caveat that the bias-

82

only hypernetwork should use linear activations, but a non-linear hypernetwork may be

more expressive. Conditional scaling is a linear map and as such may be expressed as

a matrix-vector multiplication instead, where the matrix is the weight-matrix output by

the hypernetwork. That is, given a scaling vector γγγ(µµµ), then

γγγ(µµµ)� x = W(µµµ)x (3.17)

for some W(µµµ) which may be viewed as expansion in an appropriate, learned basis. FiLM

layers are comprised of conditional scaling and biasing so it follows immediately that they

are generalized by hypernetworks. However, there are differences regarding the number

of trainable parameters in a FiLM generator and equivalent hypernetwork, generally with

the hypernetwork containing more parameters. Consider a main-network layer which has

inputs and outputs of dimension H. Then the FiLM-generator-output-space dimension

is 2H, while for a hypernetwork it is H2 + H. If a single-layer, biasless, dense FiLM

generator or hypernetwork is used, then the number of trainable parameters in each is

2Hnµ and (H2 +H)nµ respectively. Schematic representations of the methods are shown

in Figure 3.3.

83

(a) Concatenation-based conditioning (b) Conditional biasing

(c) Conditional scaling (d) Feature-wise linear modulation

(e) Hypernetwork

Figure 3.3: Schematic representations of the discussed methods for conditioning neural fields.
Conditional scaling and FiLM use pointwise multiplication.

Hypernetworks were originally applied to convolutional and recurrent neural networks

for image- and natural-language-processing tasks, with the goal of reducing the number

of trainable parameters while maintaining or improving model accuracy. In such models,

the weights of the main network are generated on a layer-by-layer basis, where the hyper-

network consumes a layer-embedding vector and outputs the weights for that layer. The

use-cases for hypernetworks have largely been the domain of computer science, but lately

have been applied to scientific machine learning in some instances. Pan et al. [172] lever-

aged hypernetworks to learn latent representation from turbulence on arbitrary meshes in

a scheme similar to design-variable hypernetworks developed here. HyperPINNs applies

hypernetworks to Physics Informed Neural Networks (PINNs) [149] for parametric PDE

solutions of 1D-viscous Burgers and the Lorenz system, with improved accuracy seen over

baseline PINN models despite a smaller main network [173].

84

3.2.3 Problem Setup

Denote the solution snapshot for a single instance j of the FOM as

Dj ,
{{

qi | xi
}nj
i=1

, µµµj

}
, (3.18)

where the solution output-input pairs are defined at nj spatial (mesh) locations. Consid-

ering a dataset

D ,
{
D1, D2, ... ,DnD

}
(3.19)

containing nD snapshots, a distinctive feature of this approach is that each snapshot may

correspond to a solution domain with different spatial extent and discretization, with

varying number and location of mesh points. Models are sought which can approximate

the solution snapshots stored in D, without interpolation of ground-truth data or pre-

diction. In other words, given the generative factors or design variables for a problem

µµµ ∈ M ⊂ Rnµ , predict the system state q at any location x ∈ Ω(µµµ). Denote the input

space as x ∈ X ⊂ Rnx , and the output space as q ∈ Q ⊂ Rnq .

The desired model should generalize across solution instances, and thus approximate

the mapping f : M × X → Q, without direct knowledge of the system state. Note

that this is in contrast to initial-value problems, where the initial state to be integrated

forward in time is necessary. The problems considered may contain complex and variable

geometry, the input space is augmented to include an additional minimum-distance-

function coordinate, defined as

x′ ,
[
xT , φ(x;µµµ)

]T
. (3.20)

In the scenarios considered all mesh-distances are positive, so use of MDF and SDF are

equivalent. This defines an augmented input space, X ′ ⊂ Rnx+1, where x′ ∈ X ′, and in

turn the desired mapping is

f :M×X ′ → Q. (3.21)

85

The model approximation is then written as f(x′;µµµ) ≈ q̂(x′;µµµ) or just q̂ in compact

notation. Each design variable µµµ defines a spatial solution field over a domain, thus it is

natural to condition the models upon the design variables.

3.2.4 Method 1: Design-variable MLP (DV-MLP)

DV-MLP uses concatenation-based conditioning to account for different solution in-

stances, where the augmented coordinates x′ are concatenated with the design variables

µµµ. This is a from of global conditioning as the same µµµ is used for all spatial locations for

a given solution field. The main network (denoted as Nm with weights θm) and resulting

prediction are written as

q̂(x′;µµµ) = Nm(x′,µµµ; θm). (3.22)

Simple fully-connected layers are used, where the hidden state of each layer has the same

dimension or number of nodes, and no skip or recurrent connections are used.

3.2.5 Method 2: Design-Variable Hypernetworks (DVH)

DVH generates the weights and biases of the main network θm using a one-shot hypernet-

work which takes as input the design variables µµµ. Ref. [159] noted an autodecoder trained

to represent many shapes had marginally-worse performance representing the fine-grain

details of the objects as compared to over-fitting a network on each case separately. In

an effort to avoid this loss in fine-grain detail, and to avoid training a separate model for

each case, a hypernetwork is used to generate main network weights θm for each solution

instance. The hypernetwork is written as

θm(µµµ) = Nh(µµµ; θh), (3.23)

and the main-network prediction written as

q̂(x′; θm(µµµ)) = Nm(x′; θm(µµµ)), (3.24)

86

where θh and θm are the weights and biases of the hypernetwork and main network.

In the following experiments, simple MLPs are used for both the main network and

hypernetwork and are referred to as one-shot dense hypernetworks; all of the weights

and biases contained in θm are generated at once as one large vector which is sliced and

reshaped as required. The training loss depends on the main-network predictions, but

only the hypernetwork weights θh are adjusted during training; the loss gradients are

back-propagated through to the hypernetwork.

3.2.5.1 Network-size Scaling Considerations

One-shot dense hypernetworks have an important scaling consideration relating the num-

ber of trainable hypernetwork parameters in θh to the size of the main network θm.

Consider a main network with Lm hidden layers each with a hidden dimension H, and

an analogous hypernetwork with hidden dimension H except for the final hidden layer

which has dimension HL. Since all of the main network weights are generated at once,

the output layer of the hypernetwork has roughly HL times as many weights as the main

network. That is,

dim(θh) ∝ dim(θm)HL ∝ LmH
2HL, (3.25)

showing that the total number of hypernetwork weights is linear in main-network depth

Lm, quadratic in man-network hidden-dimension H, and linear in hypernet-final-hidden-

dimension HL. This is intuitive given the use of dense layers throughout, but Equation

3.25 is developed in more detail in the Appendix Section A. Once a main network archi-

tecture is chosen with Lm and H selected, then HL is the remaining term to be selected

which drives the number of weights, which of course must be managed for the given

training hardware and problem at hand, suggesting selecting HL < H. This leads to an

encoder-like interpretation for the hypernetwork, where the final hidden state is an HL-

dimensional embedding for a linear neural-network generator; the hypernetwork output

layer. The interpretation exists regardless, even if HL ≥ H, but the bottleneck structure

brings it out, and is reminiscent of autoencoder-style models.

The scaling relationship of Equation 3.25 also highlights a difference between this

87

and many other hypernetwork models. Frequently the goal is to reduce the number of

trainable parameters in a given main network while retaining predictive accuracy, while

here the differences in accuracy and generalization are studied between vector-embedded

and weight-embedded coordinate-based networks. In most of the following experiments

HL is chosen to be simply HL = H = 50, across main and hypernetworks, meaning that

the size of the DVH model is roughly 50 times larger than the DV-MLP model. This

is taken into account by comparing the time and resources needed to train each type

of model while also assessing predictive accuracy. Further, the training methods which

follow in Section 3.2.5.2 are found to have a large impact on the required training time.

Differing hypernetwork architectures which reduce the number of trainable parameters

are possible but are outside the scope of this work, with a specific example given in

Chapter 6.

3.2.5.2 Training Considerations

Equation 3.25 implies that the computational complexity of training DVH models may

follow a similar scaling relative to training DV-MLP models. This is investigated by

considering two approaches for training DVH models, with differences relating to details

of model evaluation. Consider a minibatch j consisting of N spatial locations drawn from

each of M solution instances. Represent the minibatch as a tuple of tensors, (Mj,Xj,Qj),

where tensor Mj holds hypernetwork inputs, Xj holds main network inputs, and Qj holds

the target solution variables. The tensor shapes vary between the following methods

which are described below and represented in Figure 3.4.

• Method 1: Fully-Mixed Batches Mini-batches are created which consist of

points from different cases, with both the hypernetwork and main network forward-

propagated for each data point, meaning hypernetwork input vector µµµ is tiled across

the mesh. In this scenario all tensors have two axes, dim(Mj) = (M × N) × nµ,

dim(X) = (M×N)×nx′ , and dim(Q) = (M×N)×nq as shown in Figure 3.4a. Let

CM/CH be the cost for each the main and hypernetwork, then forward-propagating

88

the minibatch is proportional to

CFM ∝ (M ×N)CH + (M ×N)CM (3.26)

The data is fully mixed by shuffling over all locations and solution instances used in

building the minibatch. The batch size then corresponds to the number of spatial

locations where predictions are sought.

• Method 2: Batch-by-Case This method takes advantage of the fact that design

variables µµµ apply to an entire solution instance and that the hypernetwork is a

neural-network generator. A single forward pass of the hypernetwork is combined

with multiple forward passes of the main network for a given number of spatial

locations, all coming from the same solution instance, defined by µµµ. In this scenario

the design-variable tensor has two axes, dim(Mj) = M×nµ, while the other tensors

have three; dim(X) = M ×N × nx′ , and dim(Q) = M ×N × nq, as represented in

3.4b. The complexity of forward-propagating the minibatch scales as

CBC ∝M × CH + (M ×N)CM . (3.27)

The batch size is then the number of cases per mini-batch, where the same number

of spatial locations N are evaluated for each case in each minibatch.

Comparing first terms between Equations 3.26 and 3.27 shows the batch-by-case first-

term complexity is reduced by a factor of N × CH due to the many fewer expensive

hypernetwork calls. The actual computational complexity will be measured through

profiling in later sections.

89

(a) (b)

Figure 3.4: Illustrating the difference between (a) fully-mixed batches and (b) batch-by-case
training mini-batches, by considering the shape and dimension of the training arrays for a single
batch j. Colors correspond to data from a given case.

3.2.6 Method 3: Non-linear Independent Dual System (NIDS)

NIDS may be conceptualized as a design-variable hypernetwork which generates only the

weights and biases of the final output layer of the main network. In this context, the

hypernetwork is referred to as the parameter network. The spatial network, which is the

main network except the output layer, and its output vector are defined as

Nx(x
′; θx) , hx ∈ H ⊂ Rnh . (3.28)

The parameter network and its output are defined as

Nµ(µµµ; θµ) , wµ ∈ W ∈ R(nq×nh)+nq = Wµ,bµ. (3.29)

Given this, the overall prediction is written as

q̂(x′,µµµ; θx, θµ) ,Wµhx + bµ. (3.30)

In equation 3.29, the flattened output wµ is split and reshaped appropriately to form

Wµ and bµ. Thus, the parameter network generates the weights and biases for the linear

output layer of the main network, and the spatial network provides the final hidden

state. Alternatively, Wµ may be viewed as a basis matrix dependent on the problem

parameters, while final hidden state hx are the coordinates to that basis for a specific

location in space x. Wµ is reused for every spatial location where a prediction is desired,

90

while a new hx is required. Thus, a prediction for a given case requires one forward-pass

of the parameter network and as many forward-passes of the spatial network as there

are spatial locations, much like DV-Hnet. Figure 3.5 shows a schematic diagram which

emphasizes reuse of wµ.

Figure 3.5: Schematic diagram of a NIDS network emphasizing reuse of parameter network
outputs. Ref. [174] was used in making this figure.

Functionally, the mapping of the spatial network is

Nx : X ′ → H, (3.31)

the mapping of the parameter network is

Nµ : M→W , (3.32)

and that of the linear output layer may be written as

No : W ×H → Q. (3.33)

Note that the triple (W ,H, No) defines a dual system over a subset of the real numbers R

when the system state q is one-dimensional. When the system state is n-dimensional, then

91

n dual systems are induced of the form (W ′
i ,H, No,i), with bilinear map No,i described as

No,i : W ′

i ×H → Q
′

i, (3.34)

which corresponds to the inner product of each row of Wµ with hx, and addition of the

bias term. In this case, W ′
i ⊂ Rnh+1 and Q′i ⊂ R, corresponding to the ith dimension

of the system state. The maps are bilinear in wµ and hx, not in x and µµµ due to the

non-linear nature of neural networks.

From this we can see that the name ‘non-linear independent dual system’ is an apt

description of how the model output layer operates. That is, the tripe describing the

output layer (W ,H, No) is a dual system or induces multiple dual systems. The vectors

from each space wµ ∈ W and hx ∈ H serve as inputs to the dual system bilinear map

No, and are generated non-linearly and independently by the neural networks.

3.2.6.1 Comparison of Proposed Methods

Figure 3.6: Schematic diagram comparing the different proposed methods. Ref. [174] was
used in making this graphic.

A diagram comparing the various methods is shown in Figure 3.6, introducing DV-MLP,

DVH and NIDS models from left to right. DV-MLP is a simple dense network, with

weights and biases collected in θm, set above the main-network graphic to indicate the

dependence. DVH introduces the design-variable hypernetwork and its trainable param-

eters θh in addition to the main network, with correspondence to the DV-MLP main

network. The hypernetwork generates the weights for the main network as a function

of the design variables θm(µµµ). In the NIDS approach, the parameter network generates

92

the vector ŵµ, and the figure highlights how the main network weights and biases θm

may be considered as the spatial network weights and biases θx in addition to vector

ŵµ. Additionally, the dashed line in the main network corresponds to the NIDS spatial

network, highlighting the slight difference between the two in the context of the other

models.

3.3 Modal Interpretation of NIDS Predictions

Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are

popular techniques originally developed for analysis of flow fields and turbulence [175,

176], and are now frequently used for model order reduction, prediction, and control [64,

177, 62]. Here POD reconstruction is examined, and it is shown how NIDS predictions

may be interpreted in a similar manner.

Consider M solution snapshots of a system with a single state variable defined on a

D-dimensional common mesh with N nodes, where each solution corresponds to a unique

set of design variables µµµ. The solution at a spatial location i is written as q(xi,µµµ
j) ∈ R,

and a snapshot of the state (FOM solution) at all locations may be written as qjN ∈ RN or

qN . Additionally, collect mesh spatial-coordinates in matrix X ∈ RN×D and all solution

snapshots in data matrix Q ∈ RN×M . Follow Sections 1.2.3 or 1.2.4 (noting the change in

notation regarding Q/X) to get the truncated, rank r POD basis, Φ = U[:, 1 : r] ∈ RN×r,

where U contains the left singular vectors of mean-centered snapshot matrix Q. A

snapshot from the collection may be reconstructed using basis Φ by first computing the

basis coefficients a, following Equations 1.65. Additionally, each POD mode is a function

of the mesh coordinates in X and the basis coefficients are dependent on the parameters

µµµ associated with snapshot qN . Then the POD projection may be written as

q̂N(X,µµµ)POD = Φa =
r∑
i=1

ai(µµµ)φφφi(X), (3.35)

where addition of the mean-column is ignored, as it may be added to both NIDS and

POD predictions/reconstructions.

93

Next consider the approximation of a snapshot qN with a NIDS network, where a

prediction for location i is

q̂(xi,µµµ) = Wµ(µµµ)hx(xi) + bµ, (3.36)

where xi is the ith row of X. The full snapshot is attained by stacking the NIDS predic-

tions at all locations. The system state is 1D, so Wµ ∈ R1×nh is a row vector. Re-express

this as a column vector as w(µµµ) = WT
µ , noting that w(µµµ) 6= wµ which is the parameter

network output per Equation 3.29. Collect all spatial-network evaluations in Hx, defined

as

Hx :=

hx(x1) hx(x2) · · · hx(xm)

 ∈ Rnh×N (3.37)

Then let q̂N(X,µµµ)NIDS ∈ RN collect all NIDS predictions and let bN(µµµ) = ~1N × bµ ∈ RN

tile the bias over the mesh. Further, let hx,i ∈ RN be the ith row of Hx; the ith entry of

spatial-network output hx collected over all mesh locations. Then the NIDS predictions

may be written as

q̂N(X,µµµ)NIDS = HT
xw(µµµ) + bN(µµµ) =

nh∑
i=1

wi(µµµ)hx,i(X) + bN(µµµ). (3.38)

Equation 3.38 for the NIDS prediction has a very similar structure as Equation 3.35 for

the POD reconstruction, except for the additional bias term and the fact that the NIDS

network may also consume an additional MDF/SDF coordinate in x. However X may be

defined to include this additional coordinate without affecting the POD analysis. Thus

hx,i may also be interpreted as a spatial mode and plotted/analyzed in a similar way as a

POD mode. A key difference is that the POD modes were obtained via decomposition of

a snapshot matrix, requiring a consistent discretization, while NIDS operates pointwise

and the modes are learned during training.

Equation 3.38 inverts the role of the spatial and parameter networks as previously de-

scribed. Previously the parameter network was conceptualized as providing a basis which

94

applies globally for a solution instance, while the spatial network provides coordinates

relative to that basis to generate the prediction at a spatial location. Whereas with the

above interpretation, the coordinates provided by the spatial network are collected for all

locations and interpreted as basis functions, with the parameter network now providing

the coordinates for the global modes. The POD modes have additional structure beyond

orthonormality since they are obtained via SVD, and thus the modes have an inherent

order defined by the singular values. And more critically, it may be shown that that the

POD reconstruction of data matrix Q is the optimal rank r reconstruction in a Frobenius

norm sense. NIDS modes lack these structures and this guarantee, but indeed there are

possibilities to impose such structure by including appropriate penalizing terms in the

loss function during training.

3.4 Piecewise Learning-Rate Schedule

A piecewise learning-rate schedule was devised and used for many later-reported results,

consisting of periods with constant and exponentially-decaying learning-rates. This was

devised to combat large variation around training-loss plateaus seen in some instances,

and to stabilize DVH M1 training dynamics which showed large training-loss fluctuations.

To define the learning rate at optimizer-step i, written as α(i), denote the number of

optimizer steps with constant learning rate as sc, the decay rate r, and decay steps as sd,

then

α(i) =

α0 if i < sc

α0 × r(i−sc)/sd if i ≥ sc

(3.39)

defines the learning rate schedule. The interpretation is that the learning rate will de-

crease by a factor of r every sd steps when the exponential term is active. To convert

between optimizer steps and dataset iterations or epochs, use

s = nepochs × nupdates per epoch.

In mini-batch stochastic gradient descent (SGD) and single-example true SGD, the

95

noise added to the training process due to the stochastic sampling of the dataset-loss-

gradient is beneficial in reaching a better local minima, but also prevents the network from

reaching the minima exactly [178]. It has been shown that the variance of the fluctuations

around local minima are proportional to the learning rate [179], and thus to reduce the

size of the fluctuations the learning rate may be decreased, or alternatively the mini-

batch size increased. Intuitively, when the training loss plateaus and large fluctuations

are seen with small mini-batch sizes, then this means that the “general” or common part

of the underlying function has been learned as the mini-batch gradients point in differing

directions from another. The optimizer then overshoots the corrections in each direction

resulting in the training-loss oscillations. Thus reducing the learning rate when this is

observed should decrease the overshooting and increase convergence.

It is generally accepted in the deep-learning community that large initial learning

rates aid in generalization [180], at the cost of longer overall training times as compared

to small initial learning rates. The strategy of using a large initial learning rate followed

by an annealing period where the learning rate decreases is commonly used. For example,

in training highly-influential CNNs for image recognition, the learning rate was decreased

manually by a factor of 10 when a validation plateau was observed, with this repeated up

to three times [133, 181, 182]. The piecewise learning-rate schedule chosen follows this

line of thinking, and instead of using a stair-step decrease in learning rate a smoother,

exponential decrease is applied such that the learning rate decreases by an order of

magnitude over a given number of training epochs. Exponential learning-rate decay is

a specific and widely used form of learning-rate annealing [183], although it is more

frequently used from the beginning of the training process.

96

Chapter 4

Surrogate Modeling Applications

The proposed methods of Chapter 3 are applied to a variety of problems in this Chapter,

with an additional compressor-rotor application covered in greater detail in Chapter 5.

Not all methods are applied to every application, given that this is not generally possible

since DCNN models have discretization dependence. Considered problems include a 2D

Poisson problem designed to test discretization independence and translational invariance

is presented in Section 4.2. Next, the 2D incompressible RANS equations are considered

in the context of a vehicle aerodynamics problem in Section 4.3. And finally, the 3D

incompressible RANS equations are applied to the Ahmed Body, a simplified vehicle

shape, in Section 4.5. But first, some implementation details are provided in Section 4.1.

4.1 Model Implementation and Training Details

All models are implemented via Python 3.7 classes using Tensorflow v2.6 [126] and are

trained using Nvidia RTX A6000 48 GPUs. The DV-MLP implenentation uses off-the-

shelf Tensorflow-Keras sequential models, constructed using the Keras functional API.

DVH and NIDS models subclass Tensorflow-Keras Models (tf.keras.Model), overwrit-

ing the call method as required, depending on the batching method used per Section

3.2.5.2. The DVH implementation uses a Tensorflow-Keras sequential model for the hy-

pernetwork, required during class instantiation. Tensorflow-Keras models are useful as

they provide high-level abstraction and contain easy-to-use functions for common tasks,

such as training models and saving/loading network weights. All model weights are ini-

97

tialized using the Glorot-uniform weight-initialization scheme [249], and trained using

calls to tf.keras.Model.fit() or custom training loops. Adam optimizer [140] with

default settings and a mean squared error loss is used for all numerical experiments, with

the piecewise learning rate schedule of Section 3.4 called out when used. Swish activation

function is used for all hidden layers, and all output layers use a linear activation func-

tion. All inputs and outputs are min-max normalized using the statistics of the training

dataset, see Section 2.2.1. Mixed or single precision is used in training all models, and

model checkpoints are used to save the model weights corresponding to the final, best

training, and best validation losses obtained as training progresses.

The error metrics of root-mean-squared-error (RMSE) and mean-absolute-error (MAE)

are computed by averaging across all nj mesh points in each case, and then averaging

across all nc cases. The root-mean-squared-error (RMSE) for the kth component of the

state is then defined as

RMSEk ,
1

nc

nc∑
j=1

√√√√ 1

nj

nj∑
m=1

(
q̂k(x

j
m,µµµj; θ)− qk(x

j
m,µµµj)

)2

. (4.1)

The mean-absolute-error (MAE) is computed analogously as

MAEk ,
1

nc

nc∑
j=1

1

nj

nj∑
m=1

|q̂k(xjm,µµµj; θ)− qk(x
j
m,µµµ

j)|. (4.2)

Both RMSE and MAE have units consistent with the predicted quantities, making them

more intuitive than MSE alone. They provide similar measures, though the RMSE pe-

nalizes larger errors more than the MAE.

The mean-relative-L2-error (MRL2E) is also reported. To ease notation, gather all

predictions for case j in matrix Q̂j ∈ Rnj×nq , and all ground-truth in matrix Qj ∈ Rnj×nq .

Then Q̂j[:, k] is the full snapshot for the kth component of the predicted state, for the

jth case. Then the MRL2E for the kth state component may be expressed as

MRL2Ek ,
1

nc

nc∑
j=1

‖Q̂j[:, k]−Qj[:, k]‖2

‖Qj[:, k]‖2

(
× 100%

)
. (4.3)

98

The final multiplication by 100% is placed in parentheses as this operation is not always

performed. The distinction is made clear in context by reporting the value with or without

the percentage symbol.

4.2 2D Poisson Equation

The Poisson equation with a source term is solved on a unit square two-dimensional

domain with a randomly sized and oriented shape within the domain acting as another

internal boundary. While the geometry of the domain is parametric, the meshes are not,

with each mesh having different spatial extent, number of points, and topology. The

square domain and its boundary (without the internal shape) are written as

B =
{
x, y | x, y ∈ [0, 1]

}
, (4.4)

and

∂B =
{
x, y | x = 0, or x = 1, or y = 0, or y = 1

}
, (4.5)

respectively. Since each shape is different, the problem domains are also different. Let

∂Sj be the set of points defining the jth internal-shape boundary. Then let Sj represent

the set of points which are either on the jth shape surface or enclosed by it. With this,

the domain for the jth problem is

Ωj = B ∩
(
Sj − ∂Sj

)C
, (4.6)

with overall boundary given by

∂Ωj = ∂B ∪ ∂Sj. (4.7)

99

The governing Poisson equation and source term are defined as

∇2q(x, y) = f(x, y), x, y ∈ Ωj (4.8)

f(x, y) =

+500 x < 0.5

−500 x ≥ 0.5

(4.9)

with Dirichlet boundary conditions specified for all boundaries as

q(x, y) = 100, x, y ∈ ∂Ωj. (4.10)

Eight classes of shapes are considered, consisting of circles and polygons with 3-9 sides.

1000 instances of randomly scaled, located, and rotated shapes of each class are defined.

Each shape is specified by its center point, the radius of its circumcircle (which is also

the distance between the center point and each vertex), and a rotation angle measured

positive counterclockwise from the x-axis. Example meshes and solution fields are shown

in Figure 4.1. The ranges for each design variable are given in Table 4.1 and these entries

are used to populate the design-variable vectors. The largest mesh contains 2677 points,

while the smallest contains just 1341.

Figure 4.1: Example solution fields and meshes for three randomly generated shapes.

100

Table 4.1: Description of design variables for the 2D Poisson problem.

Symbol Description Range Units

xcen x-coordinate of shape center point [0.3, 0.7] -

ycen y-coordinate of shape center point [0.3, 0.7] -

r Shape radius [0.05, 0.2] -

γ Shape rotation angle [−π, π) radians

Triangular meshes are generated for each random shape using the Gmsh Python API

[184], though the surface mesh of each shape are fully specified programatically such that

the distance between adjacent surface nodes, ∆r, is approximately 5×10−3. For polygons,

the coordinates of the vertices are given as initial mesh points. Then the line connecting

adjacent vertices is divided into n equal segments, where n is selected as the smallest

integer such that the distance between mesh points is less than or equal to 5 × 10−3.

For circles, the number of points is chosen by rearranging the (approximate) arc length

formula ∆s = r∆γ to compute the required ∆γ while setting ∆s = 5 × 10−3. Then

the number of points is chosen as n =

(
2π
∆γ

)
. The mesh for the rest of each domain

Ωj is generated using the Gmsh python API with mesh spacing on ∂B set to 5 × 10−2.

The meshes are saved to .vtk format and the governing equations solved using the finite

element method using SfePY [185].

Two problem scenarios concerning the design-variable vector µ are considered. First

is a scenario where µµµ is ‘incomplete,’ with the class of the shape (circle, triangle, etc..)

not explicitly given.

µµµ =
[
xcen, ycen, r, γ

]T
∈ R4 (4.11)

This information enters the main network indirectly through the MDF coordinate present

in x′, defined the same as in Equation 4.21. The second scenario includes a one-hot-

encoded label vector c ∈ R8 in µµµ,

µµµ =
[
xcen, ycen, r, γ, cT

]T
∈ R12. (4.12)

101

One-hot-encoding is a commonly used feature-engineering tool for converting categorical

labels to numerical representations, common in classification machine learning tasks.

One-hot-encoded vectors are made by first enumerating the categories and giving each

an integer label, starting with zero for zero-indexed languages such as python. If there

are n categories, then each one-hot vector is first initialized as an n-dimensional zero

vector, with a 1 added at the integer label index. The one-hot labels used are shown in

Table 4.2, making the pattern clear.

Table 4.2: One-hot encoded vectors

Shape Class Integer Label c Shape Class Integer Label c

Circle 0
[
1, 0, 0, 0, 0, 0, 0, 0

]T
Hexagon 4

[
0, 0, 0, 0, 1, 0, 0, 0

]T
Triangle 1

[
0, 1, 0, 0, 0, 0, 0, 0

]T
Septagon 5

[
0, 0, 0, 0, 0, 1, 0, 0

]T
Square 2

[
0, 0, 1, 0, 0, 0, 0, 0

]T
Octagon 6

[
0, 0, 0, 0, 0, 0, 1, 0

]T
Pentagon 3

[
0, 0, 1, 1, 0, 0, 0, 0

]T
Nonagon 7

[
0, 0, 0, 0, 0, 0, 0, 1

]T

4.2.1 DVH: Effect of Training Method and Class Label

First the effects of training methods of Section 3.2.5.2 and the inclusion of class label

vector c as model input are explored. A baseline result using fully-mixed training without

the class label is first obtained. 80% of the 8000 available solutions are used as the training

set, while the remaining 20% are withheld in the validation set, with an equal number of

training cases used from each shape class. Adam optimizer was used with a learning rate

of 1× 10−4 and default settings otherwise. A batch size of 1500 points is used, resulting

in 8765 batches/gradient updates per epoch. Then models with identical architecture

were trained with and without the class-label vector c using the more efficient batch-

by-case training method. Additionally, the piecewise learning rate schedule of Equation

3.39 was used. In this section no points from each training example were dropped out

to make mini-batches of equal size. Instead, a custom training loop was implemented

which allowed for varying mesh size. The models trained with the efficient batch-by-case

routine also utilized a training fraction of just 0.2, where 200 solutions from each shape

class were used to construct the training dataset.

102

Figure 4.2 shows the training loss for each scenario on the same set of axes, against

both the number of epochs and optimizer updates. First, when fully-mixed training is

used the loss rapidly decays initially before reaching a plateau, and then subsequently the

training and validation losses diverge and over-fitting occurs. When batch-by-case train-

ing is then applied, the gross over-fitting is not seen while the best-validation-losses are

observed to compare similarly to fully-mixed training before validation-loss divergence.

Then finally, when class label c is included the gross over-fitting is again avoided and the

overall performance is improved.

(a) Loss vs. epochs. (b) Loss vs. optimizer updates.

Figure 4.2: DVH training curves for the Poisson problem, showing the effect of training
method and inclusion of class-label vector c. Training losses are solid lines while validation
losses are dashed and transparent.

The training and validation loss metrics using the validation-best weights are sum-

marized in Table 4.3. This shows that indeed the fully-mixed and batch-by-case compare

similarly. The larger RMSE for fully-mixed while simultaneously having smaller MAE

indicates that the fully-mixed predictions are subject to infrequent, larger errors, given

that the RMSE penalizes larger deviations more than MAE. As expected from the train-

ing curves, the best overall results are achieved using batch-by-case with the class-label

c. Generally, the results are very good across all methods, with mean errors less than 1%

across the board, and the best errors less than 0.01%.

103

Table 4.3: Summary of training and validation error metrics for DVH models trained with
various options on the Poisson problem.

Network Type RMSE (train / val) MAE (train / val) MRL2E (train / val)

Fully Mixed 2.08 · 10−1 / 2.19 · 10−1 1.26 · 10−1 / 1.32 · 10−1 0.17% / 0.18%

Batch by Case 1.88 · 10−1 / 1.87 · 10−1 1.34 · 10−1 / 1.34 · 10−1 0.18/% / 0.19%

Batch by Case + c 8.03 · 10−2 / 8.60 · 10−2 5.60 · 10−2 / 6.00 · 10−2 0.080% / 0.086%

The errors are seen to correlate strongly with the shape class, with predictive per-

formance on triangles being worse than the other shape classes. This may be seen by

plotting the MRL2E versus shape class as shown in Figure 4.3. This shows the similar

performance between fully-mixed training and batch-by-case, where batch-by-case takes

roughly an order of magnitude less time to train: see Table 4.7 which is for a different

application but the trends hold here. All models in the present section were trained using

mixed precision. Figure 4.3 also highlights how including the class-label vector greatly

improves the predictions. Without the class label, the errors generally decrease with an

increasing number of sides, with the exception of circles where the error increases relative

to nonagons, with this trend not holding exactly for the fully-mixed model. However,

when the class label is included the errors do indeed decrease as the number of sides are

increased, where the circles have the smallest errors.

Figure 4.3: Mean-relative-L2-error (MRL2E) versus shape class for the three scenarios con-
sidered.

104

Next, to examine how well the network predictions achieve translational, rotational,

and scale invariance, the joint distribution of RMSE versus each (non-label) generative

factor are visualized using normalized 2D histograms in Figure 4.4, for the DVH model

including the class label. The Pearson correlation coefficient is reported on each subplot.

These plots show that the RMSE is very weakly correlated with the x and y locations

of the center point, along with the rotation angle. This implies that the predictions

have translational invariance as well as rotational invariance. There is greater correlation

between RMSE and the shape radius however. This suggests weaker scale invariance in

the predictions, but this may not be surprising given that the problem is not inherently

scale-invariant, since the size of the domain is fixed while the shapes inside change size.

Figure 4.4: Histograms relating the RMSE to each generative factor, where the Pearson
correlation coefficient is shown on each plot.

105

(a) Without class label c.

(b) With class label c.

Figure 4.5: DVH predictions on an unseen triangle, both without and with class-label vector c
used as input. Note that the figures are generated independently of another, thus the differences
in colorbar limits and location of contour lines in the ground truth and predictions.

(a) Without class label c.

(b) With class label c.

Figure 4.6: DVH predictions on an unseen nonagon, both without and with class-label vector c
used as input. Note that the figures are generated independently of another, thus the differences
in colorbar limits and location of contour lines in the ground truth and predictions.

106

4.2.2 Comparing Model Performance

Inclusion of the class label had a similar effect on DV-MLP and NIDS model predictions

as was seen for DVH, with model errors being reduced as shown in Figure 4.7a and 4.7b

for DV-MLP and NIDS respectively.

(a) DV-MLP (b) NIDS

Figure 4.7: Comparing MRL2E by shape class with and without inclusion of the class-label
vector as part of the design variables for (a): DV-MLP and (b): NIDS.

Model performance using the class labels is compared in Figure 4.8 and is summarized

in Table 4.4. These show that DV-MLP and DVH perform very similarly but with DVH

having slightly better error metrics across the board.

Figure 4.8: Mean-relative-L2-error (MRL2E) versus shape class for the three model types.

107

Table 4.4: Summary of training and validation error metrics on the Poisson problem for
DV-MLP, NIDS, and DVH models with similar main and hypernetworks.

Network Type RMSE (train / val) MAE (train / val) MRL2E (train / val)

DV-MLP 8.29 · 10−2 / 8.86 · 10−2 5.87 · 10−2 / 6.25 · 10−2 0.083% / 0.088%

NIDS 1.10 · 10−1 / 1.16 · 10−1 7.83 · 10−2 / 8.33 · 10−2 0.11/% / 0.12%

DVH 8.03 · 10−2 / 8.60 · 10−2 5.60 · 10−2 / 6.00 · 10−2 0.080% / 0.086%

4.3 2D Incompressible RANS

4.3.1 Numerical Experiments I: Vehicle Aerodynamics

The Reynolds Averaged Navier Stokes (RANS) equations are derived by ensemble av-

eraging the Navier Stokes equations and substituting the Reynolds-decomposed state

variables. This decomposition separates the state variables into mean and fluctuating

components q = 〈q〉+ q
′
, where q is a generic state variable, 〈q〉 is the mean, and q

′
is the

fluctuating component. In the incompressible limit, the steady RANS equations may be

written as

∇ · 〈u〉 = 0 (4.13)

ρ〈u〉j
∂〈u〉i
∂xj

=
∂

∂xi

[
µ

(
∂〈u〉i
∂xj

+
∂〈u〉j
∂xi

)
− 〈p〉δij − ρ〈u

′

iu
′

j〉
]
, (4.14)

where velocity vector u = ûı + v̂ + wk̂. Non-dimensional flow quantities and inputs are

used, denoted by a tilde ·̃. The Reynolds number Re is an important non-dimensional

similarity parameter describing the relative importance of inertial and viscous forces in a

flow, and since it has no dimensional counterpart the tilde is omitted.

Re =
ρ|u|L
µ

=
|u|L
ν

(4.15)

Free-stream flow conditions are used to define the Reynolds number, using the vehicle

length Lv as the length scale. The freestream dynamic pressure is written as q∞ =

108

1
2
ρ|u∞|2, then the non-dimensional form of other relevant quantities are given as

x̃ =
x

Lv
(4.16)

ỹ =
y

Lv
(4.17)

φ̃ =
φ

Lv
(4.18)

p̃ =
p− p∞
q∞

(4.19)

ũi =
ui
|u∞|

. (4.20)

The non-dimensional pressure of Equation 4.19 is equivalent to the pressure coefficient

cp, and for incompressible flows the expression is further simplified by using the gauge

pressure; taking p∞ = 0. This is allowed because only derivatives of pressure enter into

the incompressible momentum equation, Equation 4.14. If a compressible flow were con-

sidered this equivalency would not hold, as pressure enters directly into the compressible

energy equation.

External vehicle aerodynamics are considered, with parametric vehicle shapes lying on

unstructured, non-parametric meshes. The incompressible RANS equations were solved

using Star CCM+ with the k-ε turbulence model. The dataset - generated by General

Motors, Inc. - consists of 2D slices along the vehicle centerline for 124 unique vehicle

shapes at speeds of 90 and 130 kilometers-per-hour (kph). The simulations utilize un-

structured polyhedral meshes of varying size, with an example mesh shown in Figure

4.9a. Each vehicle shape is parameterized by 8 geometric parameters as summarized in

Table 4.5, with all 124 shapes overlain on one set of axes in Figure 4.9b. The vehicle

designs were selected using Latin hypercube sampling, and random subsets of the dataset

are chosen for training and validation for each problem.

109

Table 4.5: Description of entries in geometric design-variable-vector µµµgeo for the 2D vehicle
aerodynamics dataset.

Design Variable Units Range Design Variable Units Range

Backlight Angle Degrees [25, 57] Windshield Angle Degrees [57, 63]

Face Lip Angle Degrees [0, 5] Hood Front Angle Degrees [10, 20]

Angle of Approach Degrees [15, 25] Angle of Departure Degrees [15, 25]

Vehicle Length mm [3800, 4900] Floor to Roof Height mm [1448, 1788]

The CFD meshes vary in size and topology, with the number of cells ranging from

108,748 to 115,751. In all sections, a spatial batch size of 54,000 points is used, resulting

in two minibatches per case for a total of 108,000 mesh points used for each case. Mesh

points are randomly dropped from each solution as required to make the minibatches,

corresponding to 0.7%-6.7% of the points being left out for each training case. Reported

training-error metrics include all mesh points, even if they were dropped from the training

set, with further discussion of this in Section 4.3.3.

(a) (b)

Figure 4.9: Pertaining the training dataset, (a) an example unstructured CFD mesh and (b)
a composite image of all 124 vehicle shapes overlain on the same axes

The spatial input quantities are

x′ = [x, y, φ(x, y)]T ∈ R3, (4.21)

and the predicted state is

q = [p(x, y), u(x, y), v(x, y)]T ∈ R3. (4.22)

110

The design-variable vectors differ slightly depending on the number of speeds considered,

and are given as

µµµ =

µµµgeo ∈ R8 nspeeds = 1,

[Re, µµµTgeo]T ∈ R9 nspeeds > 1.

(4.23)

All spatial and predicted state quantities in x′ and q are non-dimensionalized according

to Equations 4.16-4.20. Non-dimensional quantities and dimensional analysis are widely

used in fluid mechanics, leading to satisfying similarity solutions and increased inter-

pretability. Following non-dimensionalization, all input and output vectors are min-max

normalized component-wise using training-set stats before use with the neural networks.

Details on this normalization are given in Section 2.2.1 . All reported errors are in the

fully-dimensional units of the state, with the exception of training curves which corre-

spond to fully-normalized quantities. Without normalization, the loss and loss-gradients

may be biased towards the state quantities with the largest unit-scale. Normalization

eases this problem and ensures that smaller output quantities are not ignored during

training.

4.3.2 Model Architecture and Training Options

In this section 5 hidden-layer networks are used, both main and hypernetworks, each

with a hidden dimension of 50 for all layers. The number of trainable weights for Section

4.3.1 are given in Table 4.6. As noted in Section 3.2.5.1, the DVH model has roughly

HL = 50 times as many trainable weights as the corresponding DV-MLP model, and

the computational consequences of this are explored and quantified here through pro-

filing. Three model-method combinations are considered, and include DV-MLP with

its sole fully-mixed training mode, DVH method 1 (M1) fully-mixed batches, and DVH

method 2 (M2) batch-by-case. See Section 3.2.5.2 for greater detail. The average step

time, average compute time, and maximum memory usage during training among the

models and methods are reported in Table 4.7, where the spatial batch size is 54,000

points for DV-MLP and DVH M1, and a corresponding case batch-size of 1 for DVH

M2. All profiled results were obtained using tensorboard callbacks. Three different

111

Table 4.6: Number of trainable parameters for DV-MLP and DVH models for all baseline
results of Section 4.3.1, where H = HL = 50, Lm = LH = 5.

Method # Trainable Weights
Single Speed Multiple Speeds

DV-MLP 10,953 11,003
DVH 548,853 548,903

levels of precision are compared for each method, including double-precision (float64),

single-precision (float32), and mixed-precision (combination of float32 and float16). The

reported values are averaged over the first 100 minibatches for 100 epochs of training,

and the ∆t step standard deviation is given in parentheses.

Table 4.7: Comparing training profiles across the models and training methods.

Type Training Method Precision ∆t step [ms] ∆t compute [ms] Max. Mem. [GB]
DV-MLP - float64 18.1 (0.2) 17.2 1.20
DV-MLP - float32 3.7 (0.1) 2.9 0.62
*DV-MLP - mixed 3.6 (0.5) 1.9 0.54

DVH M1 Fully-mixed float64 490.0 (1.6) 488.9 9.70
DVH M1 Fully-mixed float32 55.6 (0.2) 54.4 4.85
DVH M1 Fully-mixed mixed 40.5 (0.8) 37.5 2.66
DVH M2 Batch-by-case float64 20.1 (0.4) 18.7 0.72
*DVH M2 Batch-by-case float32 4.4 (0.1) 3.3 0.36
*DVH M2 Batch-by-case mixed 4.3 (0.4) 2.3 0.28

There are several important takeaways from these profiled results. First, the precision

has a large impact on the step-times and memory requirements, which decrease massively

between float64 and float32 in all instances. Subsequent smaller improvements are seen

moving between float32 and mixed precision. Next, M2 batch-by-case training decreases

the step-time and memory requirements by roughly an order of magnitude as compared

to M1 fully-mixed for a given precision. Further, the DVH M2 step times are comparable

to the DV-MLP step times and consume less memory despite the much greater parameter

count. Two average times are given, ∆t step which includes all operations in a single

optimizer update, and ∆t compute which includes only GPU operations per update.

Rows marked with an asterisk (*) in Table 4.7 may benefit from improvements in the

data pipeline, as the overhead associated with those operations becomes appreciable as

the ∆t step times decrease.

112

When comparing the accuracy of the resulting fully-trained models, it was found that

using single precision generally improved the mean-relative-L2 error (MRL2E) by roughly

1-8 percentage points as compared to mixed precision. The use of double precision neg-

ligibly improved the predictive performance beyond that seen with single precision, and

in some cases single precision performed best overall. Thus, given the greatly improved

step times from double to single precision, and the smaller improvements afforded by us-

ing mixed precision, all models in later sections are trained using single precision unless

otherwise stated.

4.3.3 Single Vehicle Speed

Training information is given in Table 4.8 where st is the total number of training steps,

and the values shown in parentheses are the corresponding number of epochs. Note that

DVH M1 uses α0 = 5×10−5 instead of α0 = 1×10−3 as reported in the table due to large

instabilities which frequently resulted in training-loss divergence with higher learning

rates.

Table 4.8: Dataset and training options, where st is the total number of optimizer steps, and
values in parentheses are dataset-iterations or epochs.

Dataset Options Learning Rate Schedule

vehicle speed 90 kph α0 1× 10−3

training cases 99 r 0.1

validation cases 25 st 1,386,000 (7000)

spatial batch size 54,000 sc 198,000 (1000)

case batch size 1 sd 594,000 (3000)

DV-MLP and DVH models are trained using Adam optimizer [112] with default op-

tions and single precision. In the case of DVH, both training methods described in Section

3.2.5.2 were employed, where DVH M1/M2 correspond to methods 1 and 2 respectively.

Table 4.9 presents error metrics, revealing that DVH M2 performs best across the board,

with both DVH methods having very similar and lesser errors as compared to DV-MLP.

113

DVH M2 slightly outperforms DVH M1 while requiring significantly less training time,

approximately 4.4 ms per optimizer step versus 40.5 ms as shown in Table 4.7.

Table 4.9: Summary of training and validation error metrics at a vehicle speed of 90 kph.

q̂i Network Type RMSE (train / val) MRL2E (train / val)

p [Pa]
DV-MLP 11.5 / 12.6 4.75% / 5.12%
DVH M1 8.7 / 11.5 3.60% / 4.61%
DVH M2 8.1 / 9.9 3.34% / 3.99%

u [m/s]
DV-MLP 0.66 / 0.74 2.85% / 3.18%
DVH M1 0.59 / 0.68 2.56% / 2.92%
DVH M2 0.56 / 0.60 2.41% / 2.59%

v [m/s]
DV-MLP 0.41 / 0.49 9.94% / 11.9%
DVH M1 0.34 / 0.47 8.28% / 11.3%
DVH M2 0.27 / 0.38 6.72% / 9.22%

Each model’s ability to infill or predict a seen case at unseen spatial locations may

be evaluated since training cases had points randomly dropped out or truncated during

minibatch construction. Error metrics were calculated separately for the truncated and

retained locations, with the case-wise mean-absolute error (MAE) for truncated locations

plotted against that for retained locations in Figure 4.10 for DV-MLP and DVH M2. The

dashed line is the identity line y(x) = x, meaning points which lie above the dashed line

correspond to truncated-point errors which are larger than those for the retained points,

and the opposite for points below the line. The points are generally located near the line,

some above and some below, indicating that the performance is very similar between the

retained and truncated groups. This is quantified in Table 4.10 where the mean error

metrics for retained and truncated points are given separately, while the training errors

reported in Table 4.9 include all points for the instance. This shows that the error metrics

are nearly identical between the two groups for all models, demonstrating that the models

are effective in this in-filling scenario.

114

Figure 4.10: Mean absolute error over points truncated from training cases versus those
retained and used in training for DV-MLP and DVH M2 predictions for each field variable.

Table 4.10: Comparing training-case error metrics between points with are retained and
actually used in training versus those which are truncated.

q̂i Network Type RMSE (Retained / Truncated) MRL2E (Retained / Truncated)

p [Pa]
DV-MLP 11.5 / 11.3 4.75% / 4.66%
DVH M1 8.7 / 8.5 3.60% / 3.49%
DVH M2 8.1 / 8.0 3.34% / 3.27%

u [m/s]
DV-MLP 0.66 / 0.66 2.85% / 2.86%
DVH M1 0.59 / 0.60 2.55% / 2.58%
DVH M2 0.56 / 0.56 2.41% / 2.42%

v [m/s]
DV-MLP 0.41 / 0.40 9.94% / 9.88%
DVH M1 0.34 / 0.34 8.27% / 8.20%
DVH M2 0.27 / 0.28 6.72% / 6.76%

Pressure field predictions near an unseen vehicle are shown in Figure 4.11 for DV-MLP

and DVH M2, with predictions for all field variables over the full domain shown in the

Appendix, Section B.1. The error contour colorbars are limited to±4×RMSE centered on

the average case error in order to see more fine-grain detail. Infrequent, comparably-large

errors obscure these details in many instances by skewing the colorbar, and points where

the error is outside of this band are left white. The pressure field predictions match the

ground truth well, with the main features captured including the high-pressure in front,

the low-pressure due to flow acceleration on the roof, and the slowly-recovering pressure

in the wake seen in the full-domain plots. Some distortion of the contour lines is present

in the predictions. The largest errors are seen near the vehicle surface, near the ground

in front, and at locations along the free-shear layer and in the wake.

115

(a) Ground truth pressure field.

(b) DV-MLP prediction, validation group. (c) DV-MLP error field.

(d) DVH M2 prediction, validation group. (e) DVH error field.

Figure 4.11: Validation-group instance (a) ground-truth pressure field, (b) DV-MLP pre-
diction, (c) DV-MLP error, (d) DVH prediction, and (e) DV-MLP error. Error colorbars are
limited to ±4×RMSE centered on the average error for the instance.

4.3.4 Multiple Speeds and Generalization: Low-Data Regime

The goal in situations such as surrogate-based design optimization is to obtain an accurate

and generalizable surrogate using the least amount of training data and resources. The

effect of the training dataset size on the generalization and convergence properties is

explored by varying the number of available training cases. Two vehicle speeds of 90

and 130 kph are used, giving a total of 248 available solution instances. DV-MLP and

DVH are compared while the number of training cases is varied from 5 to 199 instances,

corresponding to training fractions ranging from 0.02 to 0.8. Training method 2 batch-by-

116

case is used to train DVH models given that similar or better accuracy may be obtained

as compared to fully-mixed training in a fraction of the time, as demonstrated for a single

vehicle speed in Section 4.3.3. The dataset and training options are given in Table 4.11.

The number of epochs remains fixed, resulting in varying learning rate schedule entries

as the number of training cases is adjusted. Given a training fraction ftrain, the number

of training cases is chosen to be ceil(ftrainncases), then the number of steps is given as

s = nepochs × ceil(ftrainncases)× nbatches per case. (4.24)

The number of epochs are given in Table 4.11 in parentheses and nbatches per case = 2.

Table 4.11: Dataset and training options, where st is the total number of optimizer steps, and
values in parentheses are dataset-iterations or epochs.

Dataset Options Learning Rate Schedule
vehicle speeds 90, 130 kph α0 1× 10−3

spatial batch size 54,000 r 0.1
cases total 248 st Equation 4.24 (3000)
case batch size 1 sc Equation 4.24 (1000)
- - sd Equation 4.24 (1000)

In the low-data regime, it is evident that neither model demonstrates strong gener-

alization capabilities, leading to a substantial disparity between training and validation

losses. The effect is more pronounced for DV-MLP, as illustrated by the training curves

in Figure 4.12. In the figure the solid lines represent the training loss, the dashed lines the

validation loss, and darker lines correspond to a greater number of training cases. It is

worth noting that the training loss reaching a plateau at a higher value with less data can

be attributed, in part, to the fact that the number of epochs remains consistent rather

than the number of optimizer updates. This should be kept in mind while interpreting

the results.

117

(a) DV-MLP (b) DVH

Figure 4.12: Training (solid) and validation (dashed) losses during training as the amount of
training data is varied from 5 to 199 cases, where darker lines correspond to more data, for (a)
DV-MLP and (b) DVH. The curves have been smoothed using a moving average with a window
length of 3 epochs for DV-MLP and 5 epochs for DVH.

During training the best weights based on the validation loss are saved along with

the final weights. Figure 4.13a shows the MRL2E versus the number of training cases

using the final weights for each flow quantity. In the very low-data regime a large gap

between training and validation losses is seen for both models, with DV-MLP exhibiting

poorer performance. As the number of cases is increased this gap is closed more quickly

for DVH than DV-MLP. When 199 cases are used the models perform similarly, with a

slight advantage observed for DVH. Similar plots are generated using the validation best

weights, as is shown in Figure 4.13b. In this scenario there is a smaller gap between the

training and validation losses for each model. However, a persistent gap between DVH

and DV-MLP remains across all training fractions considered, most notable for the y

velocity v.

118

(a)

(b)

Figure 4.13: Comparing trends in predictive error using mean-relative-L2-error (MRL2E),
with (a) the final weights, and (b) the best weights per validation loss seen during training.
The y-axis is not multiplied by 100%, therefore 10−1 corresponds to 10% mean error in the
state variable.

119

Dimensional error metrics computed using the validation-best weights with 199 train-

ing instances, corresponding to the rightmost point in Figure 4.13b, are reported for both

DV-MLP and DVH in Table 4.12. This shows that DVH performs best across the board,

as expected. The RMSEs with two vehicle speeds are larger than those reported for a

single speed in Table 4.9, and this is due in part to the 130 kph solutions having higher

pressures and velocities than at 90 kph. To dig into this, the nondimensional and dimen-

sional error metrics are broken out by vehicle speed instead of training group in for DVH

in Table 4.13. This reveals that the non-dimensional errors compare similarly for each

vehicle speed, but with 130 kph errors being slightly larger. The dimensional pressure

errors for 90 kph lie between the training and validation errors for DVH M2 at a single

speed, while the velocity component errors are slightly larger.

Table 4.12: Summary of training and validation error metrics for vehicle speeds of 90 and 130
kph with a training fraction of 0.80.

q̂i Network Type RMSE (train / val) MRL2E (train / val)

p [Pa]
DV-MLP 16.4 / 18.3 4.37% / 4.69%
DVH M2 12.9 / 14.8 3.43% / 3.72%

u [m/s]
DV-MLP 0.78 / 0.83 2.75% / 2.87%
DVH M2 0.61 / 0.65 2.14% / 2.23%

v [m/s]
DV-MLP 0.59 / 0.63 11.7% / 12.2%
DVH M2 0.46 / 0.49 9.06% / 9.40%

Table 4.13: Comparing DVH non-dimensional and dimensional error metrics computed for
each vehicle speed separately with a training fraction of 0.80.

q̂i Error Type RMSE MRL2E
90 kph 130 kph 90 kph 130 kph

p [-]/[Pa]
Nondimensional 2.14 · 10−2 2.30 · 10−2 3.37% 3.61%

Dimensional 8.2 18.4 3.37% 3.61%

u [-]/[m/s]
Nondimensional 1.99 · 10−2 2.02 · 10−2 2.15% 2.18%

Dimensional 0.50 0.73 2.15% 2.18%

v [-]/[m/s]
Nondimensional 1.48 · 10−2 1.54 · 10−2 9.04% 9.22%

Dimensional 0.37 0.56 9.04% 9.22%

DVH pressure field predictions for a single vehicle shape at both 90 and 130 kph are

shown in Figure 4.14, where the 90 kph case is from the training set while the 130 kph

case is from the validation set. Good agreement between ground truth and prediction is

120

seen at both speeds. Additional plots for velocities u and v are shown in the Appendix

Section B.1.2 with similar good agreement.

(a) 90 kph, ground truth. (b) 130 kph, ground truth.

(c) 90 kph, DVH prediction, training set. (d) 130 kph, DVH prediction, validation set.

(e) 90 kph DVH error, training set. (f) 130 kph DVH error, validation set.

Figure 4.14: Pressure field ground truth, DVH prediction, and errors at 90 and 130 kph for
the same vehicle shape.

4.4 Numerical Experiments II: Effect of Random Fourier

Features

Spectral bias is a noted difficulty in training neural networks, where low-frequency signal

content is learned more quickly and readily than high-frequency content. Consequently,

the networks exhibit a bias towards low-frequency signal content [186]. This issue may be

addressed though use of random Fourier features [187] or positional encoding techniques

121

[161]. With these methods the input coordinates are processed by sinusoidal terms of

varying frequency before being fed into the MLP. Given network inputs x, a Fourier-

feature mapping is written as

γ(x) =
[
a1 cos(2πbT1 x), a1 sin(2πbT1 x), . . . , am cos(2πbTmx), am sin(2πbTmx)

]T
, (4.25)

where coefficients ai, frequency-vectors bi, and their number m are parameters of the

mapping. It has been shown that the simple strategy of setting ai = 1 and drawing each bi

randomly from a sampling distribution is an effective strategy in practice, with the width

σ of the sampling distribution having much greater importance than the distribution

shape [187]. This width has a major impact on the convergence and generalization

properties of the network, with underfitting observed for σ “too small” and overfitting

observed for σ “too large.” Positional-encoding strategies are generally a special case of

Fourier features [188] where the frequencies are specified as a geometric progression and

applied along each input dimension xi separately [161, 189]. This may be written as

γ(xi) =
[
cos(20πxi), sin(20πxi), . . . , cos(2m−1πxi), sin(2m−1πxi)

]
, (4.26)

where m may be set independently along each input axis. Another similar alternative

includes the specific weight-initialization of sin-activated SIREN networks [168]. A down-

side to random Fourier features is that the width σ and the number of features m must

generally be found by trial and error or hyperparameter tuning. In all experiments a

zero-mean truncated isotropic Gaussian sampling distribution is used, bi ∼ N (0, σI),

with σ = 3 for all results here. Samples greater than 2σ from the mean are discarded.

The number of features is selected to be m = 256, the same number of features chosen

in Ref. [187], despite the smaller hidden dimension of H = 50 used in experiments here.

4.4.1 Model Architectures and Training Options

The options and architectures of Section 4.3.2 are used again here but with the inser-

tion of a random Fourier feature layer after the input layer of the main network. Note

122

that the Fourier layer does not contain any trainable parameters, the sampled bi are

fixed.Applying this to DVH is straightforward and the same set of random Fourier fea-

tures are used for all main networks. However, Fourier features are not used in the

hypernetwork. For DV-MLP, Fourier features are applied only to spatial inputs x′. The

resulting output γ(x′) is then concatenated with µµµ and passed into the MLP. Naively

applying Fourier features to all DV-MLP inputs x′ and µµµ results in poor convergence and

generalization, as shown in Figure 4.15a. When applied to only the spatial inputs x′ the

models converge readily as shown in 4.15b. The network architecture and dataset are

identical between the two models other than the difference in which inputs are processed

by Fourier features. Thus, only the spatial input quantities x′ are passed through the

random Fourier layer in the following experiments.

(a) (b)

Figure 4.15: Training curves for DV-MLP models, where the Fourier features are: (a) applied
to all inputs x′ and µµµ, and (b) applied to only spatial inputs x′.

Insertion of a random Fourier layer with m = 256 results in models with more weights

as compared to a model without a random Fourier layer. This is because dim(γ(x′)) =

2m � dim(x′), leading to many more parameters in the first layer of the MLP. Models

are profiled with the addition of the Fourier-feature layer as shown in Table 4.14, with the

number of trainable parameters given in Table 4.15 as compared against Table 4.6. Double

precision is not considered here due to the much greater training time. Additionally only

DVH training method 2 batch-by-case is considered due to the lessened training time and

resources.

123

Table 4.14: Profiling DVH models with varying hypernetwork-final-hidden-dimension HL us-
ing training method 2, batch-by-case, with mixed precision.

Type Precision ∆t step [ms] ∆t compute [ms] Max. Mem. [GB]
DV-MLP FF single 5.0 (0.1) 4.2 0.85
DV-MLP FF mixed 4.1 (0.2) 2.7 0.71
DVH M2 FF single 5.4 (0.1) 4.5 0.55
DVH M2 FF mixed 5.1 (0.5) 3.1 0.41

Table 4.15: Number of trainable parameters for DV-MLP and DVH models for all Fourier-
feature results of Section 4.4, where H = HL = 50, Lm = LH = 5.

Method # Trainable Weights

Single Speed Multiple Speeds

DV-MLP 36,403 36,453

DVH 1,846,803 1,846,853

4.4.2 Single Vehicle Speed

DV-MLP and DVH using random Fourier features are first trained on a single vehicle

speed using the same dataset and training options as given in Table 4.8. Error metrics

are reported in Table 4.16, with the corresponding percentage improvement in RMSE

compared to the models without Fourier features indicated in parentheses. With the

use of Fourier features, DVH and DV-MLP exhibit similar performance and DV-MLP

is now best for several entries. For DV-MLP this is a rather large improvement as the

errors are roughly halved for a 35% increase in training step time (from 3.7 ms to 5.0 ms)

when using single precision. DVH shows large but less significant improvements, with

the training step time increased by 23% (from 4.4 to 5.4 ms) when using single precision.

124

Table 4.16: Summary of training and validation error metrics at a vehicle speed of 90 kph for
models using a Fourier-feature layer.

q̂i Network Type RMSE MRL2E

Train Val Train Val

p [Pa]
DV-MLP FF 5.55 (51.7%) 7.37 (41.3%) 2.31% 2.96%

DVH M2 FF 4.53 (44.1%) 7.26 (26.6%) 1.88% 2.89%

u [m/s]
DV-MLP FF 0.243 (63.3%) 0.30 (59.5%) 1.05% 1.29%

DVH M2 FF 0.236 (57.8%) 0.32 (47.3%) 1.02% 1.37%

v [m/s]
DV-MLP FF 0.20 (49.6%) 0.27 (44.6%) 5.04% 6.58%

DVH M2 FF 0.22 (21.1%) 0.31 (19.5%) 5.32% 7.40%

The pointwise absolute error probability distributions with and without Fourier fea-

tures are visualized using kernel density estimates, computed using the FFTKDE function

of the python library KDEpy [190] using the Silverman method for kernel bandwidth

selection. Other implementations were found to be very slow by comparison due to the

large number of points: ∼11.1 million training and ∼2.8 million validation mesh points

per vehicle speed. These are shown in Figure 4.16 for DV-MLP and Figure 4.17 for DVH.

In all instances the absolute error distributions are narrowed when using Fourier features,

meaning smaller errors are more prevalent.

(a) Pressure, single speed (b) x-velocity (c) y-velocity.

Figure 4.16: DV-MLP single speed, pointwise absolute error probability distributions with
and without random Fourier features, computed using Gaussian kernel density estimates.

125

(a) Pressure, single speed (b) x-velocity (c) y-velocity.

Figure 4.17: DVH single speed, pointwise absolute error probability distributions with and
without random Fourier features, computed using Gaussian kernel density estimates.

The drag coefficient is commonly used in assessing aerodynamic designs and is given

by

CD =
FD

1
2
ρ∞u2

∞A
, (4.27)

where FD is the drag force, subscript ∞ corresponds to freestream conditions, and A is

the frontal area. The MRL2E in computing the pressure drag coefficient is shown in Table

4.17 for both the Fourier models of this section and the non-Fourier models of Section

4.3.3. DVH M2 FF shows the smallest overall percent error over both the training and

validation groups. In general the Fourier models perform better than the non-Fourier

models, with the lone exception of the DVH M2 training group errors.

Table 4.17: MRL2E (equivalent to mean-absolute-percent error) in predicting the pressure
drag coefficient over the training and validation groups for non-Fourier and Fourier-based models
for a single vehicle speed of 90 kph.

Network Type Train Val

DV-MLP 2.66% 2.45%

DVH M1 2.28% 2.72%

DVH M2 1.26% 2.39%

DV-MLP FF 1.43% 1.50%

DVH M2 FF 0.67% 1.30%

126

4.4.3 Multiple Speeds and Generalization: Low-Data Regime

The impact of Fourier features on generalization in the low-data regime with multiple

vehicle speeds is studied here in an analogous fashion to Section 4.3.4. Dataset and

training options of Table 4.11 apply. Figure 4.18ashows the training and validation

MRL2E for each output quantity as a the number of training instances is varied. As

before, in the very-low data regime there is a large gap between training and validation

losses, with DV-MLP showing a greater disparity. However, as the number of training

instances is increased to around 40 the difference between DV-MLP and DVH is greatly

reduced, and thereafter their performance is very similar to one another. Figure 4.18b

shows the corresponding plots using the best weights per validation loss. Without Fourier

features there was a persistent gap between DVH and DV-MLP, but when Fourier features

are used this gap is more or less eliminated.

127

(a)

(b)

Figure 4.18: Comparing trends in predictive error using mean-relative-L2-error (MRL2E),
with (a) the final weights, and (b) the best weights per validation loss seen during training.
The y-axis is not multiplied by 100%, therefore 10−1 corresponds to 10% mean error in the
state variable.

128

Dimensional error metrics computed using the validation-best weights with 199 train-

ing instances, corresponding to the rightmost point in Figure 4.18b, are reported for both

DV-MLP and DVH in Table 4.18. The percentage improvement in RMSE as compared to

a model without Fourier features is given in parentheses. As with a single vehicle speed,

substantial improvements are seen for both DV-MLP and DVH, with the effect larger for

DV-MLP. Similarly to the single-speed scenario, DV-MLP now performs best for several

entries as well.

Table 4.18: Summary of training and validation error metrics for vehicle speeds of 90 and
130 kph with a training fraction of 0.80, including use of Fourier features. The percentage
improvement when using Fourier features is given in parentheses.

q̂i Network Type RMSE MRL2E
Train Val Train Val

p [Pa]
DV-MLP FF 8.4 (48.7%) 10.2 (44.5%) 2.26% 2.63%
DVH M2 FF 7.6 (40.9%) 9.7 (34.4%) 2.05% 2.48%

u [m/s]
DV-MLP FF 0.29 (63.2%) 0.33 (59.7%) 1.01% 1.14%
DVH M2 FF 0.28 (53.4%) 0.34 (47.3%) 0.99% 1.17%

v [m/s]
DV-MLP FF 0.29 (51.2%) 0.31 (49.9%) 5.70% 6.13%
DVH M2 FF 0.32 (30.7%) 0.36 (26.5%) 6.28% 6.95%

DVH predictions and errors of the x-velocity field at both speeds are shown in Fig-

ure 4.19, where neither speed is included in the training dataset. The predicted fields

match the ground truth well and capture the dominant flow features including the small

recirculating regions in front of the vehicle, acceleration and flow turning over the roof,

and a decaying free-shear layer in the wake. Similar plots for the pressure and y-velocity

predictions are given in the Appendix, Section B.2.

129

(a) 90 kph, ground truth. (b) 130 kph, ground truth.

(c) 90 kph, DVH prediction, validation set. (d) 130 kph, DVH prediction, validation set.

(e) 90 kph DVH error, validation set. (f) 130 kph DVH error, validation set.

Figure 4.19: x-velocity ground truth, DVH prediction, and errors at 90 and 130 kph for the
same vehicle shape, where neither instance was included in the training set.

For further comparison, vertical line probes are placed near the vehicle, with one

in front, one through the vehicle’s highest point, and two in the wake. The probe in

front of the vehicle is offset by 1 m, while those in the wake are offset by 1 m and

3 m. The ground truth and DVH predictions with and without Fourier features are

interpolated from mesh points to the line probe locations using the griddata function

from the scipy.interpolate library, with the results shown in Figure 4.20. Generally,

the line probe predictions match the ground truth well, though some oscillation is present

in the predictions. This is most prevalent for the pressure probes in the vehicle wake,

though the effect is more pronounced due to the x-axis limits.

130

Figure 4.20: Line probes comparing baseline and Fourier feature DVH predictions for an
unseen case at 90 kph.

Pointwise absolute error probability distributions for DV-MLP and DVH using Fourier

features are visualized using kernel density estimates, again computed using the FFTKDE

function of the python library KDEpy [190] using the Silverman method [191] for ker-

nel bandwidth selection. The distributions have similar shape for both network types,

showing a peak and gradual trailing off as the errors increase.

131

(a) Pressure (b) x-velocity (c) y-velocity.

Figure 4.21: Comparing DV-MLP and DVH pointwise absolute error probability distributions
using random Fourier features, computed using Gaussian kernel density estimates.

The MRL2E in predicting the pressure drag coefficient using the Fourier models of

this section and the non-Fourier models of Section 4.3.4 are shown in Table 4.19. In

general the Fourier models slightly outperform the non-Fourier models, with the lone

exception being the validation set using DVH without Fourier features.

Table 4.19: MRL2E (equivalent to mean-absolute-percent error) in predicting the pressure
drag coefficient over the training and validation groups for non-Fourier and Fourier-based models
for multiple vehicle speeds of 90 and 130 kph.

Network Type Train Val

DV-MLP 2.65% 3.30%

DVH 1.20% 1.54%

DV-MLP FF 1.90% 2.29%

DVH FF 1.05% 1.58%

Although the predicted fields agree well visually with the ground truth solutions, and

that Fourier features improved the predictions, errors in the predicted fields may or may

not be small enough depending on details of the desired use case. If the goal is to use

such a model for near-real-time flow-field visualization to draw qualitative comparisons,

then this level of accuracy may be sufficient. However, if the goal were to use the models

to drive surrogate-based optimization to improve an existing design then this accuracy

may not be sufficient. For example, if one were after improvements on the order of 1%,

then the errors would likely be too large. It was not discussed previously, but there are

132

shortcomings in the vehicle dataset which may be preventing better performance. No-

tably, the data was provided as a point cloud, without connectivity information between

cells. This includes the points which define the vehicle surfaces, which were provided out

of order. The vehicle shapes were sorted using a nearest-neighbor approach, but the fine

details in the grille area leads to several points being left unconnected from the rest of the

vehicle, which are dropped from the shape. This sorting is adequate to aid in creation of

the contour plots, with the sorted shape provided as a mask. However, the uncertainty in

ordering of the surface points has a negative and uncontrolled effect on computation of

the signed distance function, and in turn on model convergence and predictive capability.

4.5 Ahmed Body: 3D Vehicle Aerodynamics

The Ahmed body is a simplified vehicle shape devised in the mid-80’s to study flow around

passenger vehicles in order to investigate the main sources of efficiency-robbing drag [192].

The body consists of a rounded fore-body, a middle section of constant rectangular cross-

section, and a blunt or slanted rear-end, with the effect of wheel-rotation ignored by

placing the body on legs or suspending it from strings. The model is reconfigurable so

that the slant angle at the end may be changed from 0 to 40 degrees, and wind-tunnel

studies showed that most of the drag comes from pressure drag, generated largely at the

rear end. The model dimensions and details on the reconfigurable rear end are shown in

Figure 4.22.

Figure 4.22: Geometry and dimensions of the Ahmed body in millimeters, Figures taken from
reference [192].

133

Sometimes this general shape is referred to as the square-back body, while the exact

geometric details may differ the overall shape is very similar [193]. This has proven to

be an impactful concept, inspiring many follow on studies including experiments and

computations [194, 195, 196]. Detailed wake measurements [192, 197] helped make the

Ahmed body a popular simulation benchmark and test-case [198].

The flow field at the rear end changes greatly depending upon the slant angle. Some

of the main features of the flow are shown conceptually in Figure 4.23 and include a pair

of counter-rotating“horeseshoe” vortices emanating from the top corners.

(a) (b)

Figure 4.23: Conceptual representations of prominent flow-field vortices at the rear end of the
Ahmed body, where (a) is taken from [192], and (b) is taken from [196].

The strength of the corner vortices varies with slant angle and they interact with the

other wake vortices in a complex manner. For slant angles less than 15°the flow remains

fully attached along the slant and two vortices remain attached to the lower, vertical

flat surface. At 25°the flow begins to separate at the top of the slant, but the corner

vortices are strong enough to cause flow reattachment farther along the slant, resulting

in a separation bubble. The size of this bubble grows with increasing slant angle while the

corner vortices weaken until a slant angle of 35°where the flow becomes fully separated.

While the separation bubble grows the vortices at the rear end begin to separate with the

top vortex becoming more prominent and displaced upward. The movement of these rear-

end vortices with slant angle is shown in Figure 4.24, taken from reference [199], which

134

are time averaged streamlines 〈Ψ〉 obtained using particle image velocimetry (PIV) along

the vehicle centerline. As these complex interactions occur, the drag coefficient increases

greatly with slant angle until the flow becomes fully-separated, where it then decreases

substantially. The drag coefficient versus slant angle is shown in Figure 4.26a.

Figure 4.24: Time-averaged streamlines at the Ahmed body rear-end obtained using PIV,
taken from [199].

4.5.1 Generation of CFD Solutions

The Ahmed-body flow field was simulated by solving the steady, 3D incompressible RANS

equations using the k-ω SST turbulence model [200], using the OpenFOAM application

simpleFoam, an implementation of the SIMPLE algorithm [58, 59, 60]. The rear slant

angle was varied from 0 to 45 degrees in 5 degree increments. Solutions were obtained

at speeds of 40 m/s and 60 m/s, corresponding to highway-relevant Reynolds numbers

based on vehicle length of 2.78× 106 and 4.18× 106 respectively, with 60 m/s matching

the original experiments [192]. A centerline symmetry plane was used to reduce compu-

tational costs, and the legs were removed from the geometry to ease meshing. This may

also be justified since the aerodynamic forces from the legs are tared out in experimental

works.

A public repository has been created containing python and bash scripts which were

used to generate the solutions at 60 m/s, located at https://github.com/jamesduv/

ahmedBodyParametric_Public. Light modifications are made to run at 40 m/s. The

repository depends upon two environment variables, $AHMED REPO PUB which points to

the repository and $AHMED SLANT PATH where each case directory will be placed. The

workflow descriptions will reference files from this repository. Included in the repository

135

https://github.com/jamesduv/ahmedBodyParametric_Public
https://github.com/jamesduv/ahmedBodyParametric_Public

is a directory case setup which includes the usual OpenFOAM directories 0 for initial

and boundary conditions, constant for the turbulence and transport properties, and

system containing files:

• controlDict: high-level settings for running simpleFoam, such as start and stop

times and write intervals

• controlDict.postProcess: settings for post-processing the solutions, to compute

forces, force coefficients, y+ values, and wall shear stresses

• createPatchDict: creates mesh patches from the named .stl regions of the geom-

etry file

• decomposeParDict: mesh decomposition settings for running in parallel

• fvSchemes: schemes settings (gradients, divergences, wall distance, etc..)

• fvSolution: solver and algorithm settings, including tolerances and relaxation

factors

• meshDict: mesh settings, including refinement and boundary layer options.

An additional directory slurm contains anonymized job submission files. Use script

copy case setup.sh with slant-angle argument to copy the case files to the case di-

rectory, located at $AHMED SLANT PATH\slant angle $ANGLE.00 for integer slant angle

$ANGLE. This is the case path for a given simulation.

The body and domain geometry were generated as .stl files using the Gmsh [184]

python API, see generate case geometry nolegs.py which places the generated files

in case path\geometry. Meshes were generated using the OpenFOAM-included ver-

sion of cfMesh which takes a single .stl file of the fluid domain as input. Thus the

individual .stl files generated by Gmsh were merged and the patches named appropri-

ately for later reference using modify stl patch merge.sh. Meshes were generated us-

ing generate case mesh.sh or case path\slurm\run mesh.sh. The mesh is placed in

case path\constant\polyMesh. The meshes are unstructured with polyhedral elements,

136

and the number of cells per mesh varies between 9.44 and 9.53 million. The resulting

solutions have y+ < 5, deemed acceptable for the purposes here.

The simulations were run in parallel with MPI using 4 nodes and 120 cores on the

Great Lakes Slurm HPC Cluster at the University of Michigan. To set up the parallel

computation a mesh domain decomposition is performed, using case path\slurm\run -

decomp.sh. The solution fields were initialized with potential flow solutions using potentialFoam

by running case path\slurm\run potentialFoam parallel.sh. Initializing with the

potential flow solution increased solver stability and convergence and had low compu-

tational overhead. Then the solutions were generated using simpleFoam by running

case path\slurm \run simpleFoam parallel.sh. Per the slurm submission this cre-

ates a log file located at case path*solve.log. The residuals and drag coefficient for

each iteration may be gathered and placed in .txt files located at case path\residuals

using scripts gather cd.sh and gather residuals.sh. Plots may then be generated

using plot cd.py and plot residuals.py.

RANS simulations of the Ahmed body with varying slant angle are known to have

difficulty fully capturing behavior of the flow over the rear slant for slant angles between

roughly 20 and 40 degrees. From around 20-30 degrees the flow separates at the beginning

of the slant before reattaching, and this continues until around 35 degrees where the flow

fully separates. This can be observed in the residuals, where for slant angles less than

that all residuals decrease by at least 10−5 relative to the uniform, pre-potential flow

initial conditions. Note that OpenFOAM scales residuals so that if the initial field is

uniform then the residual is 1, while the curves for some quantities start with a value

lower than 1 due to the use of potential-flow initial conditions. All cases were run for an

initial 1500 iterations, and within the transitory regime residuals are less convergent so

the solutions were run for an additional 500 iterations. This behavior is shown in Figure

4.25, where the convergence of the residuals and drag coefficient are examined for slant

angles of 0 and 30 degrees for a vehicle speed of 60 m/s.

137

(a) Normalized residuals versus iteration, slant an-
gle 0 degrees.

(b) Drag coefficient versus iteration, slant angle 0
degrees.

(c) Normalized residuals versus iteration, slant an-
gle 30 degrees.

(d) Drag coefficient versus iteration, slant angle 30
degrees.

Figure 4.25: Comparing residual and drag coefficient convergence for slant angles of 0 and 30
degrees at a speed of 60 m/s. Residuals are normalized relative to uniform initial conditions.

The drag coefficient versus slant angle is reported in the original Ahmed body paper

[192], but they are not fully tabulated with only a few values reported in a plot, shown in

Figure 4.26a. The known values were used to extract values from the other slant angles

by plotting horizontal lines and using the pixel values to linearly interpolate from known

values. These extracted values are shown compared against those resulting from the CFD

simulations in Figure 4.26b.

138

(a) (b)

Figure 4.26: (a): Experimental CD versus slant angle from ref. [192], not all numerical values
provided in the figure or elsewhere in the paper. (b): Comparing the experimental values
extracted from the image with the CFD results here, both at a speed of 60 m/s.

This shows that generally the drag coefficients are over-predicted by the CFD solu-

tions, but the overall trends are largely captured. An exception is the 35 degree slant

angle where the drag coefficient is grossly over-predicted. There are several reasons which

may explain this and the general discrepancy between the simulated and experimental

values. First, RANS models are known to be deficient in accurately predicting separation.

The separation point in RANS simulations is often later than in experiments as the tur-

bulent kinetic energy of the boundary layer is over-estimated, keeping the flow attached

for too long. Secondly, RANS is time averaged, and the differences in drag coefficient may

be a result of unsteady effects. And third, a symmetry plane about the centerline is used

while in reality there would be an element of side-to-side vortex shedding which won’t be

captured, even if unsteady effects were accounted for at all. Despite these non-idealities,

the dataset is used as-is and all errors are reported against the CFD simulations as the

ground truth. This should be kept in mind when interpreting later results.

4.5.2 Data Processing and Preparation

OpenFoam is a cell-centered code, so the training dataset uses those values as opposed

to nodal quantities. The wall-distance functions present within OpenFoam are used to

compute the MDF, used as model input. A small utility was written to compute this

139

distance from only the Ahmed body patch instead of all boundary patches and it is found

with instructions for compilation in the repository in directory ahmedPatchDist. Non-

dimensional inputs and flow variables are considered, computed analogously to Equations

4.16-4.20. The augmented spatial coordinates are defined as

x′ =
[
x̃ ỹ z̃ φ̃(x, y, z)

]T
∈ R4, (4.28)

and the predicted state is

q =
[
p̃ ũ ṽ w̃ k ω νt

]T
∈ R7, (4.29)

where k is the turbulent kinetic energy, ω is the specific dissipation, and νt is the eddy

viscosity. These final three quantities are not non-dimensionalized, but all inputs and

outputs are min-max normalized on a signal by signal basis. Note that the quantities in

x′ lose the impact of non-dimensionalization after min-max normalization since all simula-

tions have the same vehicle length, but non-dimensionalization was performed regardless.

The design-variable vector consists of just the rear slant angle α, given as

µµµ = α ∈ R1. (4.30)

4.5.3 Numerical Experiments: Single Vehicle Speed

All results of this section utilize a main network with 8 hidden layers and a hidden dimen-

sion of 100. DVH models use one-shot dense hypernetworks consisting of 5 hidden layers

with 50 nodes per layer. A training/validation split of 80/20 was used, corresponding to

just 2 cases in the validation set, which were randomly selected to be the 10 and 40 de-

gree cases. Counter to what was seen in the 2D vehicle aerodynamics, the use of random

Fourier features did not improve performance over baseline results, and in fact were worse

across the board for all values of σ used. Instead, it was found that using Layer Nor-

malization layers [201] between each hidden layer in DV-MLP models improved network

predictions instead. Layer Normalization layers were added to the main network of DVH

140

models but were found to be difficult to train. A summary of training and validation

errors is given in table 4.20.

Table 4.20: Summary of training and validation error metrics at a vehicle speed of 60 m/s.

q̂i Network Type RMSE (train / val) MRL2E (train / val)

p [Pa]
DV-MLP 2.45e+01 / 2.27e+01 3.54% / 3.35%

DV-MLP-LN 1.83e+01 / 1.91e+01 2.64% / 2.82%
DVH 2.64e+01 / 2.63e+01 3.82% / 3.88%

u [m/s]
DV-MLP 1.31e+00 / 1.38e+00 2.47% / 2.63%

DV-MLP-LN 8.31e-01 / 9.79e-01 1.57% / 1.86%
DVH 1.46e+00 / 1.48e+00 2.75% / 2.80%

v [m/s]
DV-MLP 4.03e-01 / 4.34e-01 5.39% / 5.98%

DV-MLP-LN 3.03e-01 / 3.90e-01 4.05% / 5.38%
DVH 4.25e-01 / 4.67e-01 5.68% / 6.43%

w [m/s]
DV-MLP 7.94e-01 / 7.19e-01 10.33% / 9.79%

DV-MLP-LN 6.03e-01 / 5.91e-01 7.84% / 8.05%
DVH 8.02e-01 / 7.52e-01 10.43% / 10.24%

k [J/kg]
DV-MLP 2.05e+00 / 2.11e+00 9.38% / 11.11%

DV-MLP-LN 1.52e+00 / 1.92e+00 6.89% / 10.10%
DVH 2.03e+00 / 2.51e+00 9.30% / 13.27%

ω [1/s]
DV-MLP 1.92e+05 / 2.03e+05 12.51% / 13.28%

DV-MLP-LN 1.64e+05 / 1.80e+05 10.71% / 11.77%
DVH 2.04e+05 / 2.15e+05 13.34% / 14.10%

νt [m2/s]
DV-MLP 4.78e-04 / 1.25e-03 3.23% / 8.08%

DV-MLP-LN 3.55e-04 / 1.23e-03 2.40% / 8.01%
DVH 4.61e-04 / 1.30e-03 3.11% / 8.50%

The pressure drag forces and coefficients were computed using Paraview batch script-

ing after writing the predictions in VTK format, with the method verified using the

ground-truth data and comparing to the values reported by OpenFOAM. The errors

in predicting the pressure drag coefficient are given in Table 4.21, where DV-MLP-LN

performs best overall, with the validation errors actually smaller than the training er-

rors. Plots of the predicted and CFD-ground-truth pressure drag coefficient are shown

in Figure 4.27 for DV-MLP-LN.

141

Table 4.21: MRL2E (equivalent to mean-absolute-percent error) in predicting the pressure
drag coefficient over the training and validation groups.

Network Type Train Val All

DV-MLP 1.60% 3.61% 2.00%

DV-MLP-LN 1.75% 1.69% 1.74%

DVH 2.70% 5.05% 3.17%

(a) (b)

Figure 4.27: DV-MLP-LN pressure drag coefficient predictions, (a): versus slant angle and
(b): predicted versus ground truth, where the CFD solution is considered the ground truth in
this scenario. The overall trend is well captured, but with small errors for each drag coefficient.

Overall this is a positive result, given that the developed methods were able to scale

to 3D without memory or other computational limitations. However, similar comments

regarding the accuracy as mentioned at the end of Section 4.4.3. Namely, the achieved

accuracy may be acceptable for a flow-field visualization scenario, but may not be ad-

equate for driving optimization if the desired improvements are on the order of a few

percent, given that the errors are also of a few percent.

142

Chapter 5

Design of Axial Compressor-Rotor Sections

5.1 Introduction

Aerodynamic shape optimization (ASO) routines typically use computational fluid dy-

namics (CFD) as part of an iterative algorithm to accelerate and automate the design pro-

cess. Given some performance metric(s) comprising the objective and constraints along

with a baseline design, the algorithms repeatedly vary the shape of the aerodynamic body,

solve the appropriate governing equations, and compute, store, and track the resulting

objective. The computational bottleneck tends to be the CFD solution, where hundreds

to thousands of solutions may be required during run-time, often at prohibitively high

cost. Surrogate-based optimization (SBO) reduces this expense by constructing cheaper

approximations or meta-models to replace the costly CFD solution during convergence.

Integral quantities of interest (QoIs) for the design are computed from the spatial or spa-

tiotemporal field produced by the higher-fidelity CFD model, whereas the lower-fidelity

surrogate models usually seek a map from the design variables to the QoIs, bypassing

prediction of the complex flow field. Established surrogate-building methods include

polynomial and radial basis function regression models, obtained via least squares, and

kriging or equivalent Gaussian process regression models [202, 203]. The present work

considers the development and application of deep-learning based flow-field emulators for

use in surrogate-based ASO routines, applied to the design of axial compressor rotors.

ASO routines depend on at least three critical components:

1. the geometric parameterization to effectively represent shapes

143

2. the aerodynamic analysis to compute performance

3. the optimization routine to drive the process forward

In the context of airfoils, a variety of parameterization techniques have been developed

and compared in terms of shape reconstruction [204] and impact during optimization

[205]. An ideal parameterization would provide complete coverage of the design space

with a small number of interpretable design variables. The expense of the aerodynamic

analysis via CFD solution varies greatly depending on the problem dimensionality, the

complexity of the domain and geometry, and the form of the governing equations consid-

ered. For some problems, lower-fidelity analysis via inviscid or potential flow solutions

may be sufficient, and surrogates may not be required. For the axial compressors con-

sidered here, compressibility and viscous effects are important thus higher-fidelity mod-

eling via the compressible RANS equations is needed. A wide variety of optimization

algorithms are used and may be classified as either gradient-based or gradient-free ap-

proaches, depending upon how the next shape or shapes to be evaluated are determined.

Gradient-based methods have been shown to scale to larger design spaces more effectively

and converge more quickly than gradient-free methods [206], but are more susceptible to

becoming trapped in local-minima and may fail to fully explore the design space [207].

Some gradient-free methods are more effective in exploration and avoiding such minima-

trapping, but at the cost of a greater number of high-fidelity CFD evaluations.

Recent research incorporates machine learning into ASO algorithms in a variety of

ways, and as outlined by Li et al. in ref. [208], the applications relate to the three critical

ASO-routine components enumerated above via design of effective, compact geometric

design spaces and generators [209, 210, 211], fast aerodynamic analysis [209, 55], and

efficient design of optimization algorithms [212, 213]. Deep-learning in particular, the

use of artificial neural networks (ANN), is widely applied in these tasks, and drives the

recent surge in research.

A key difference between the present work and most existing works pertains to the

144

mapping of the surrogate model. A notional ASO problem may be written generally as

minimize f(µµµ)

by varying µµµ = [µ1, · · · , µnµ]T

subject to g(µµµ) ≤ 0

h(µµµ) = 0.

(5.1)

Machine-learning surrogates may replace the objective f(µµµ), usually mapping from the

design variables µµµ ⊂ M ∈ Rnµ directly to the objective f(µµµ) ∈ R, or other quantity of

interest such as a constraint, bypassing the prediction of the complex flow field. These

surrogate may be referred to as “QoI emulators,” since they approximate the mapping

between the design variables and the QoIs directly, and may be notated as

f̂QoI(µµµ) :M→ R. (5.2)

Whereas here CFD emulators are sought, where the entire CFD solution of all or a portion

of the flow quantities are predicted, from which the objective and constraints are com-

puted. Let the discretized CFD solution be written as Q(x;µµµ) ⊂ Q ∈ Rnmesh×nq , where

x ⊂ Ω(µµµ) ∈ Rd are the coordinates in d-dimensional physical space, defined over domain

Ω(µµµ). The CFD emulator approximation may be written as N(µµµ; θ) = Q̂(µµµ), where N is

a neural network with its set of trainable weights θ. The objective approximation is then

f̂N(µµµ) = f
(
Q̂(µµµ)

)
.

The proposed CFD emulators generate flow-field approximations in different ways,

either operating directly in the computational domain and ignoring x ⊂ Ω(µµµ),

NDCNN :M→Q; NDCNN(µµµ; θ) = Q̂, (5.3)

or by operating in the physical domain and including additional spatial inputs x′

NDVH :M×X ′ → Q; NDVH(µµµ,x′; θ) = Q̂. (5.4)

145

In this case x′ ,
[
xT , φ(x;µµµ)

]T
, where φ(·) is the signed distance function. Approximating

the CFD solution is more difficult as it is of higher dimension, nmesh × nq, whereas QoI

emulators predicts a scalar objective or small vector of QoIs.

The content of this paper is as follows: First the compressor-rotor ASO problem of

interest is introduced, along with information regarding the CFD solutions and Bayesian

optimization routine. Next the ANN models are introduced, starting with Decoder Con-

volutional Neural Network (DCNN) models, which are placed in context with widely-used

autoencoder-type models. Then Design-Variable Hypernetworks (DVH) are introduced,

and the inherent advantages and disadvantages of each are discussed. Results emulat-

ing subsonic compressor-rotor flows are then presented, where both models perform well.

Next, a challenging transonic compressor-rotor problem is explored, starting with geo-

metric design variables only. The design space is then expanded to include variation in

flow conditions via changing rotor speed. Finally, a single DVH model is used in place of

CFD to drive shape optimization at varying rotor speed.

5.2 Methodology

5.2.1 ASO Problem Statement and RANS Solutions

ASO may be used in the aerodynamic design of axial compressor components, using solely

CFD or with surrogates. The objective of each compressor stage is to increase the total

pressure from inlet to outlet, and this of course requires mechanical work which should

be minimized. Thus the efficiency is a critical design objective for a compressor stage,

and the adiabatic compressor efficiency may be written as

η =

(
p02

p01

)(γ−1)/γ − 1
T02

T01
− 1

, (5.5)

where all quantities are mass-flow averaged, station 1 is the inlet, and station 2 is the

outlet. The stagnation pressure ratio, pR ,
p02

p01
is clearly of prime importance, and is

often a design target during stage or overall engine sizing and detailed design. The ASO

146

problem of interest is to improve the efficiency of a baseline design µµµ0 while at least

maintaining baseline pR, and may be written as

maximize η(µµµ)

by varying µµµ = [µ1, · · · , µnµ]T

subject to pR(µµµ) ≥ pR(µµµ0).

(5.6)

This general ASO problem is applied to 2D rotor sections and is solved using surrogate-

based optimization. The surrogates require CFD solutions, which are generated using

RTRC in-house CFD solver UTCFD which solves the 3D compressible RANS equations

using the k-ω turbulence model. A 2D circumferential slice of the 3D solution is consid-

ered, with an example downsampled mesh for a subsonic condition shown in Figure 5.1.

Multi-block or multi-zone meshes are used, consisting of 4 blocks, differentiated by color.

Subsonic and transonic meshes have similar structure, but varying topology in terms of

the size and extent of each sub-domain. Each mesh zone involves a coordinate trans-

formation between non-uniformly spaced physical coordinates x/y and uniformly-spaced

computational coordinates ξ/η, with a body-fitted mesh in the zone nearest the airfoil.

This unit spacing in computational coordinates and consistent mesh dimensions allows

direct application of convolutional layers, as discussed in Section 5.2.2.1.

Figure 5.1: Example multi-block mesh for a subsonic rotor airfoil, where the inlet and outlet
are labeled.

Surrogate-based optimization is employed, using CFD or CFD emulators in a con-

147

strained Bayesian optimization (BO) technique [214] with flexible surrogate structure,

which is built upon authors’ prior work [215, 216, 217]. This technique addresses the

lack of data generated from expensive CFD solvers by starting with a very low sample-to-

variable ratio DoE and iteratively learning an adaptive surrogate with flexible structure

(e.g. Gaussian process, neural net etc.) for efficiency maximization via adaptive sampling.

Gaussian processes are used in this work, trained with data either from CFD or from a

CFD-emulator. In Bayesian sampling, the acquisition function controls the trade-off be-

tween exploration and exploitation. To handle the pressure ratio inequality constraint in

Equation 5.6 in the BO setting, a constrained version [218] of the lower confidence bound

acquisition function is used. In the comparisons in later sections, CFD-based BO is com-

pared against CFD-emulator based BO, where the predictions from the CFD-emulator

are not used directly but instead train separate QoI emulators in the BO routine.

Figure 5.2 illustrates the performance space (efficiency and pressure ratio relative to

the baseline, i.e. 70% span section of NASA rotor 37, shown as the black squares) and

CFD-based single-objective optimization result per Equation 5.6 at distinct rotational

speeds. These CFD-based optimization results will be used to benchmark the ability of

the emulators to drive meaningful optimization.

Figure 5.2: CFD-driven optimization in performance space at varying rotor speed, where the
baseline NASA rotor 37 at 70% span corresponds to the black squares.

148

5.2.2 ANN Flow Emulators

Neural networks are a popular class of machine learning model responsible for many recent

advances in image and natural language processing [219] with increasing application in

science and engineering [220]. In feed-forward neural networks (FFNN), information

moves in just one direction through the model, from inputs to outputs, through a series

of layers without cycles. Architectures containing cycles are known as recurrent networks

which are often used for sequential or temporal problems. Each hidden layer receives

an input, applies a non-linear operation via activation function, and passes the output

to the next layer. Often times in predictive tasks a linear output layer is used. Entire

models may be expressed as differentiable composite functions, and each layer has a set

of trainable parameters which are determined during training, usually using a variant

of stochastic gradient descent. A wide variety of network layers and models have been

developed, with dense and convolutional layers used to construct the models here. FFNNs

consisting of only dense layers are also known as multi-layer perceptron (MLP), while

convolutional neural networks (CNN) often contain dense and convolutional layers.

Early research showed the promise of utilizing neural networks in aerodynamic de-

sign [221, 222, 223, 224], including the design of turbomachinery airfoils [225, 226]. This

early work often involved using neural networks to build response surfaces and as such

most may be categorized as QoI emulators, although some predict the spatial variation

in airfoil-surface pressure coefficient. Applications may be further classified according to

the mapping the neural network approximates; either the “forward” map from geome-

try/geometric parameters to performance metrics, or the “reverse” map, from specified

performance metrics, usually airfoil surface pressure coefficient distribution, to the shape

or shape parameters for the corresponding design. ANNs using the reverse map are often

used in inverse design routines. For example, FFNNs have been used in reverse mode

with panel-method aerodynamics to predict the Bezier-PARSEC parameters [227], and

with panel-method, inviscid potential, or Euler solvers to predict Bezier coefficients [228].

A CNN was used in reverse mode to map from an image of the desired pressure coefficient

149

distribution to the shape parameters of the corresponding airfoil [229]. Self-organizing

maps with MLPs were used to map from performance QoIs and operating conditions to

PARSEC shape parameters for airfoils and wings [230].

Neural networks operating as QoI emulators in forward mode are more commonly used

in SBO routines. CNN-based models predicting lift and drag coefficients were successfully

integrated into a Bayesian optimization routine for subsonic airfoils, achieving the same

designs as CFD with less than two orders of magnitude online runtime [231]. Gradient-

enhanced MLPs were used for airfoil optimization in the subsonic and transonic regimes

with a single model, where inclusion of gradient information decreased the number of

training epochs and improved predictive performance [56]. MLPs have been used to

predict lift and drag coefficients for UAV applications given wing shape and loading

parameters, using the vortex lattice method for aerodynamics and a genetic algorithm for

optimization [55]. Multi-fidelity ASO was performed using a novel ANN architecture, with

sub-networks to model the linear and non-linear components of the correlation between

low and high fidelity models, with lift and drag coefficients of interest [232]. Response

surface methods and radial basis networks have been used jointly to map between design

variables and QoIs to optimize a supersonic turbine, using a combination of meanline 1D

codes and 3D CFD [233]. In many other instances QoI emulators are developed on their

own or as a sub-component of a larger problem, without integration into optimization,

with applications including airfoil performance [234, 235], transonic buffeting [236], and

aeroelastic modeling [237]. More thorough overviews of machine learning in ASO may be

found in the literature [208, 238].

The proposed methods use the flow solutions directly, without relying on interpolation.

CNN-based models require Cartesian-structured data, while flow solutions lie on irregular

meshes. Typically to use a CNN to predict a flow field, one must interpolate from the

computational domain to a Cartesian grid overlain on the problem domain [76, 80, 78,

239] or restrict the problem to the laminar regime so a reduced-fidelity solver may be

used [75]. The interpolation has several drawbacks, most critical is the fluid domain loss

of information where mesh points are more tightly clustered (boundary layers, wakes),

150

as well as a lower-fidelity, pixelated representation of the problem domain and geometry.

Additionally, if an aerodynamic body is present, points lying within the component are

wasted since they will be masked out of the final prediction. These issues are exemplified

in Figure 5.3, most notable through the boundary layer.

Figure 5.3: Cartesian grid overlain on computational mesh, highlighting the loss of information
associated with interpolation to such a grid.

However, if there is regular structure to the mesh then convolutional neural network

architectures may be applied directly in the computational domain without interpolation,

avoiding the issues given above. The multi-block meshes under consideration here meet

this requirement, as discussed in Section 5.2.1.

Several recent works utilize this computational domain CNN concept, though most

are not linked to optimization. A U-net, an autoencoder with skip connections across

the latent space, has been used in the computational domain, mapping mesh metrics or

signed-distance-functions representations to airfoil flow-fields [240] for 2D and 3D aero-

dynamic problems. A fully-convolutional computational-domain CNN was coupled with

a steady state, incompressible RANS CFD solver by mapping from partially-converged

to fully-converged flow quantities, providing a speedup of 1.9-7.4X [241]. A decoder CNN

with residual connections, similar to DCNN models of Section 5.2.2.1, were used to recon-

struct micro-fluidic heat transfer flows, using either design parameters or experimentally-

measured values as network inputs [242].

5.2.2.1 Autoencoders and Decoder Convolutional Neural Networks (DCNN)

Autoencoders have a bottleneck structure and may be used for a variety of supervised

and unsupervised learning or representation tasks. Autoencoders seek mappings to and

151

from a data space X ∈ Rnx and a latent space Z ∈ Rnz , where nz � nx. The latent

representation, a vector z ∈ Z, is then a reduced-dimensional embedding of the data.

Typically autoencoders consist of an encoder Φ(x) which maps from the data space to

the bottleneck latent space

Φ : X → Z; Φ(x) = z, (5.7)

and a decoder Θ(z) which inverts the mapping to approximate the input data,

Θ : Z → X ; Θ(z) = x̂ ≈ x. (5.8)

Typically, the encoder and decoder are parameterized using neural networks, and trained

using a variant of stochastic gradient descent. Convolutional autoencoders have been used

in a predictive setting by taking an external target Q different from x and redefining the

decoder as

Θ : Z → Q; Θ(z) = Q̂ ≈ Q. (5.9)

As an example, an autoencoder CNN was used to predict turbulent airfoil flows using the

signed distance field as input [76] (see Figure 5.4a). Global parameters µµµ =
[
Re AoA

]T
are concatenated with the encoder output and fed-forward through the decoder to gen-

erate an approximate solution, as shown in Equations 5.10-5.12.

Φ(x) = z̃ (5.10)

z =
[
µµµT z̃T

]T
(5.11)

Θ(z) = Q̂ ≈ Q (5.12)

In other methods, a solution for a new set of conditions may be approximated using

only the trained decoder and some form of mapping or interpolation in the latent space

[80].

In a predictive setting, the dimensionality of input and output spaces do not have to

agree.Additionally, the dimensions of the grids in input and output spaces do not have to

agree. Computational experiments were performed using dataset 1 where the input space

152

(a)

(b)

Figure 5.4: Schematic comparison of (a) autoencoder CNN with latent-space injection, model
as presented in [76], and (b) DCNN, with sequence of dense and transposed convolution layers.

was down-sampled, resulting in a non-symmetric autoencoder CNN mapping from integer

mesh coordinates η/ξ to flow field predictions. It was found that these networks performed

better in terms of validation MSE when the inputs were downsampled, suggesting that

a smaller encoder is better for this application. Following this line of reasoning leads to

DCNN-based models, consisting of only the decoder half of the network. In this setting,

z = µµµ, the prior information is used as network input, fed directly to the decoder. We

propose that, for the types of problems of interest in optimization, the design variables

for the problem µµµ may be used in lieu of a learned latent representation z, given that

the design variables define a unique design instance, assuming the generative model is

deterministic and one-to-one. This corresponds to eliminating the encoder as the design

variables replace the learned latent representation, and this defines DCNN models.

The difference between autoencoder CNNs and DCNNs is visualized in Figure 5.4.

Although the DCNN schematic shows a sequence of dense layers, numerical experiments

showed the best results, in terms of mean squared error, were achieved with a single

dense, linear layer between the input and first decoder layer. Thus only a single dense

layer is used for all DCNN predictions shown in later sections.

Beyond the present discussion, encoding and decoding are fundamental concepts and

153

operations in machine learning. Convolutional classifiers correspond architecturally to

the encoder of Figure 5.4, where a vector of class probabilities replaces the produced

latent representation. Generative adversarial networks (GANs), a popular generative

modeling method, may utilize convolutional decoders in image synthesis, analogous in

architecture to DCNN models, although with a very different training scheme. These

use cases correspond to more probabilistic scenarios and as a result use different training

losses and training schemes, such as binary-cross-entropy loss for classification, and paired

training of generator and discriminator networks in GANs via minimax game [166].

5.2.2.2 Design Variable Hypernetworks (DVH)

Some recent research in computer graphics and image processing has moved away from

autoencoder-type models with grid-sampled data to continuous representations using

MLPs [168]. For example, if the goal is to represent an m × n image with c channels

Y ∈ Rm×n×c using a neural network, then the input would be the coordinates for a single

pixel xij ∈ R2 and the output would be the channel values yij ∈ Rc of that pixel. This

is in contrast to the image-to-image mappings of autoencoders. In rendering tasks 3D

objects have been represented by learning the volumetric signed-distance field around

the object in a pointwise, mesh-agnostic sense, with the object implicitly defined by the

zero level set of the field. To represent multiple shapes an embedding vector z may be

defined for each unique image and used as additional input, concatenated with each xij

[158]. However, it appears that doing so comes at the cost of reduced accuracy for any

single case, as compared to a network N(·, θm) without input vector z, overfit to a single

case [159]. Following this line of thinking, the main network weights θm could then be

used as an embedding for each instance, and this leads to Design Variable Hypernetworks

(DVH). With DVH, the main network weights for a case θjm are generated using a neural

network N(µµµj; θh) known as a hypernetwork.

Hypernetworks [165] are a meta-modeling approach to deep learning, where one net-

work generates the weights of another. This means the output space of the hypernetwork

is that of flow-field generating neural networks instead of flow-fields directly. In this ap-

154

(a) (b)

Figure 5.5: Comparison of (a) coordinate-MLP with embedding vector µµµ, and (b) design-
variable hypernetwork, where the main network weights and biases θm are generated using a
hypernetwork.

proach, a weight-generating hypernetwork is used along with a flow-field-predicting main

network, where the training loss is computed according to the flow-field predictions, but

the trainable parameters exist solely in the hypernetwork. DVH uses a one-shot dense

hypernetwork, meaning that all of the main network weights and biases are generated

in one forward pass of the hypernetwork as a long vector. The vector is then split and

reshaped appropriately to form the weight matrices and bias vectors of the main net-

work. DVH may be considered as an instance of Neural Implicit Flow [172], as applied

to surrogate modeling.

DCNN models generate snapshots in the computational domain while DVH models

provide pointwise predictions in physical space. First, a main network architecture is

defined, with a coordinate-based MLP with embedding vector z = µµµ shown in Figure

5.5a. Then the trainable weights and biases θm are generated as a function of the design

variables µµµ using a hypernetwork, as shown in Figure 5.5b.

5.2.2.3 Implementation and Considerations Between DCNN and DVH

All models are implemented using the Tensorflow python library [126]. The models are

trained using Adam optimizer [112] using a mean-squared-error (MSE) loss function. All

inputs and outputs are min-max normalized component-wise so they lie approximately

between 0 and 1. Batch-normalization layers are used after each layer in DCNN models,

except the output layer. The DCNN models use the same number of filters in each

hidden convolutional layer across the model. Swish activation function is used for all

155

hidden layers, and all models use a linear output layer.

Two methods of training DVH models are considered, and are summarized in Table

5.1. The first method, known as fully-mixed batching, evaluates the hypernetwork and

main network for each spatial location. The solution data from all cases is flattened and

fully mixed, with the design variables tiled across the mesh. The batch size corresponds

to the number of physical locations where a prediction is needed, spanning many designs.

An optimizer step is taken after a specified number of locations are evaluated. A sec-

ond, more efficient method, known as batch-by-case, evaluates the hypernetwork for a

given design once and makes predictions for all spatial locations corresponding to that

design. The batch axis corresponds to the number of cases in this scenario, and when

batch-by-case training is used is always set to 1 in this work. Fully-mixed batching was

developed first, and preliminary explorations showed that fully mixing the data increased

the stochatsticity of the training process, allowing the optimizer to break free from local

minima. Batch-by-case was implemented later as computational costs became a concern,

and was found to be roughly an order of magnitude faster than fully-mixed batching, with

no ill effects on training accuracy or convergence rate. The differences in the approaches

can be understood by examining the dimension and shape of the training arrays, as given

in Table 5.1 below.

Table 5.1: Comparison of DVH training methods by examining the shape of the training
arrays, meaning of batch axis, and compared training time for the transonic problem in Section
5.4.4.

Fully-Mixed Batches Batch-by-Case

Training Arrays
dim(Mtrain) =

[
(ntrain × nmesh)× dim(µµµ)

]
(2D)

dim(X′train) =
[
(ntrain × nmesh)× dim(x′)

]
(2D)

dim(Qtrain) =
[
(ntrain × nmesh)× dim(q)

]
(2D)

dim(Mtrain) =
[
ntrain × dim(µµµ)

]
(2D)

dim(X′train) =
[
ntrain × nmesh × dim(x′)

]
(3D)

dim(Qtrain) =
[
ntrain × nmesh × dim(q)

]
(3D)

Batch Axis # spatial locations, any case # complete cases, all locations, always 1
Training Time 51.3 seconds/epoch 4.01 seconds/epoch

DCNN models, or more generally CNN-based models, are more widely used and un-

derstood than hypernetworks. CNNs have driven many advances in the state-of-the-art

in deep learning, particularly in image recognition, processing, and synthesis tasks. How-

ever, being designed for Cartesian data is an inherent limitation and disadvantage for

CFD emulation, as it requires that all meshes must be topologically identical with regu-

156

lar Cartesian structure. That is, a DCNN model trained on the subsonic dataset could

not make a prediction for a transonic case since the meshes are not identical in struc-

ture, assuming the parameterization µµµ accounted for the differences in flow condition and

shape. Further, CNN-based models do not scale well to 3D problems and can quickly

run into memory limitations, particularly for intermediate hidden states which are 5D

tensors when batching is considered during training. DVH does not have either of these

limitations since it provides pointwise predictions in space, allowing the meshes to vary

in size and topology among training examples. Fundamentally, the size of the model and

the mesh are linked for DCNN, while for DVH they are indirectly coupled, in that a

DVH model must have sufficient size to represent the complexity of the fields defined on

the mesh while not being directly linked to the degrees-of-freedom. DVH does however

require spatial information, implying knowledge of and access to the parametric geometry

model, mesh generator, and signed distance-function calculator (Eikonal equation solver

or other approximation). DVH scales naturally to 3D or higher dimensions since it is

not linked to snapshots; instead the input/output spaces/vectors simply increase dimen-

sion by one. Additionally, defining a valid CNN-based model is a non-trivial task as it

depends on the dimension of the input and output spaces. On the other hand, design

of DVH models is straight-forward, particularly when a dense, one-shot hypernetwork is

used, where just the network width and depth for the main network and hypernetwork

are specified.

5.3 Subsonic Compressor Airfoil Emulation and Op-

timization

The subsonic airfoils are parameterized by 4 geometric parameters, µµµ ∈ R4, corresponding

to 4 offset points along the camber distribution. A dataset of solutions corresponding

to 1000 unique airfoil geometries, selected via latin hyper-cube sampling, was generated

using the CFD solver as described in Section 5.2.1. All subsonic solutions lie on similar

meshes with the same dimension and topology.

157

Parallel DCNN models sharing an input layer are used in each mesh block and trained

concurrently, with the model architecture specified in Table 5.2. The kernel size and

strides are specified in equivalent-encoder order; starting from the output space and

working towards the DCNN input dense layers. The dimensions of each mesh block

required rectangular kernels to be used instead of square kernels, and the kernel size and

strides are set separately from each other. Indeed, we emphasize that finding a valid

design with odd mesh dimensions is a non-trivial task.

Table 5.2: Summary of subdomain DCNNs.

Block Output Dimension Kernel size (Equiv. encoder) Strides (Equiv. encoder)
1 513× 57 [2, 2]→ [2, 2]→ [4, 2]→ [4, 4]→ [2, 2] [1, 1]→ [2, 2]→ [4, 2]→ [4, 2]→ [2, 1]
2 393× 97 [2, 2]→ [7, 2]→ [2, 3]→ [2, 2]→ [2, 2] [1, 1]→ [7, 2]→ [2, 3]→ [2, 2]→ [2, 2]
3 49× 9 [2, 2]→ [2, 3]→ [4, 4] [1, 1]→ [2, 1]→ [4, 1]
4 97× 9 [2, 2]→ [2, 3]→ [2, 2]→ [2, 2] [1, 1]→ [2, 1]→ [2, 1]→ [2, 1]

Training curves for DCNN and DVH models are shown in Figure 5.6, where just 160

cases are used to train the models and three flow quantities are predicted: q = [p u v]T .

The DCNN model uses the architecture of Table 5.2 with 100 filters per layer.The DVH

main network and hypernetwork each consist of 5 hidden layers with 50 hidden nodes

per layer, and the DVH model was trained using fully-mixed batching with a batch size

of 40,000 points. The DCNN model was trained with a batch size of 8 cases, and both

used a constant learning rate of 1× 10−4.

A comparison of error metrics for the resulting DCNN and DVH models is given in

Table 5.3. The min-max normalized outputs are re-dimensionalized before errors are

computed. The root-mean squared error (RMSE) and mean absolute error (MAE) are

intuitive since they have the units of the output quantity while providing slightly different

measures of the error, where RMSE penalizes large errors more so than MAE. The mean

relative L2 error (MRL2E) may be multipled by 100 and loosely interpreted as an average

percentage error. The best performing model for each is highlighted in bold in Table

5.3, and this shows that DCNN and DVH models perform similarly to one another.

Interestingly, for the flow quantity u, the best RMSE belongs to the DCNN, while the

best MAE belongs to DVH, indicating that DVH has a higher frequency of larger errors

than DCNN, but on average the errors are smaller in magnitude, with a similar comment

158

(a) (b)

Figure 5.6: Training curves for (a) DCNN and (b) DVH emulators, corresponding to min-max
normalized quantities.

for the validation group for flow quantity p. These errors demonstrate that both models

generalize well and predict accurately, with the training and testing errors of very similar

size and MRL2E ¡ 1% for all quantities. This also shows that both model types are data-

efficient, in that only 160 of 1000 cases are used in training, while the validation group

consists of the remaining 840 designs.

Table 5.3: Summary of dimensional training and validation error metrics RMSE, MAE, and
MRL2E for the subsonic airfoil dataset.

q̂k Network Type RMSE (train / val) MAE (train / val) MRL2E (train/val)

p [lbf/ft2]
DCNN 6.30 · 10−2 / 6.98 · 10−2 3.95 · 10−2 / 4.42 · 10−2 2.98 · 10−5 / 3.30 · 10−5

DVH 7.63 · 10−2 / 8.05 · 10−2 4.00 · 10−2 / 4.24 · 10−2 3.58 · 10−5 / 3.78 · 10−5

u [ft/s]
DCNN 0.32 / 0.40 0.22 / 0.25 4.98 · 10−3 / 6.15 · 10−3

DVH 0.46 / 0.52 0.21 / 0.23 6.78 · 10−3 / 7.40 · 10−3

v [ft/s]
DCNN 0.27 / 0.29 0.21 / 0.22 6.16 · 10−3 / 6.79 · 10−3

DVH 0.25 / 0.27 0.13 / 0.14 5.56 · 10−3 / 6.81 · 10−3

Representative pressure and x-velocity field predictions for DCNN and DVH models

on an unseen airfoil are shown in Figures 5.7 and 5.8. The ground-truth and predicted

fields agree well, and the dominant flow structures are well captured. The suction-side

low-pressure pressure region is accurately captured, with only small deviations present in

the errors, which cluster near the trailing edge for p in both model types. The x-velocity

is also well represented, but larger errors are seen throughout the wake. It is interesting

to note that the DCNN error contours have a slightly pixelated quality, while DVH does

not, likely an artifact of convolutional models versus dense models.

159

Figure 5.7: Comparing ground truth and predicted pressure fields for DCNN and DVH models
on an unseen airfoil, for a subsonic condition. Error colorbars are limited to ±5× RMSE.

Figure 5.8: Comparing ground truth and predicted x-velocity fields for DCNN and DVH
models on an unseen airfoil, for a subsonic condition. Error colorbars are limited to ±10×
RMSE.

The pressure forces acting on the airfoil surfaces were extracted from the predictions

for each model. The corresponding lift and drag coefficients for the DCNN and DVH

models are shown in Figures 5.9 and 5.10 respectively, where a perfect prediction would

lie on the dashed line. The drag coefficient predictions match closely for both models, but

a small offset for the lift coefficient is seen for DCNN, with the predicted values smaller

160

than the ground truth.

Figure 5.9: The predicted vs. ground truth pressure lift and drag coefficients for the DCNN
model.

Figure 5.10: The predicted vs. ground truth pressure lift and drag coefficients for the DVH
model.

The offset in predicted lift coefficient for DCNN is due to over-prediction of the suction

side (top) pressure, towards the leading edge. This leads to an under-predicted pressure

coefficient in this region, and consequently less lift overall when integrated over the sur-

face. An example pressure coefficient distribution on the airfoil surface is shown in Figure

5.11, where the predictions of both models match the overall trend, but the suction-side

pressure coefficient offset can be seen for DCNN. The average error in predicted pressure

coefficient against airfoil surface computational coordinate ξ may be computed across

161

all cases, and is shown in Figure 5.12. ξ = 0 at the trailing edge and walks along the

airfoil surface in the clockwise direction, with the leading edge marked with a vertical

dashed line. The suction side of the airfoil is to the right of the dashed line, and the

over-prediction of cp by the DCNN model is apparent. From this it also seen that the

DVH predictions are subject to larger, high-frequency errors near the leading and trailing

edges.

Figure 5.11: The predicted and ground truth pressure coefficient distributions for an unseen
airfoil.

Figure 5.12: The average distribution in pressure coefficient prediction again surface compu-
tational domain coordinate ξ, which is 0 at the trailing edge and walks around the airfoil surface
clockwise, with the leading edge marked by a vertical dash line in the plot.

162

5.3.1 Proof of Concept: Driving Design Optimization

A trained DCNN model from above was incorporated into an airfoil optimization work-

flow to assess the ability of the DCNN model to drive an aerodynamic optimization. A

multi-objective optimization strategy was employed with the formulation of two objective

functions from the emulated airfoil pressure distribution: (i) maximize airfoil loading, and

(ii) minimize airfoil diffusion in the aft suction side of the airfoil. A differential evolution

algorithm [243] is used and extended to multi-objective problems using a Pareto-based

approach [244], using a similar nondominated sorting and ranking selection procedure as

in NSGA-II [245]. The DCNN-driven optimization history and Pareto front are presented

in the objective space in Figure 5.13. An optimum candidate is selected along the Pareto

front, providing maximum airfoil loading while maintaining the diffusion level of the base-

line airfoil. Figure 5.14 compares the loading of the baseline and optimized airfoils, as

predicted by the DCNN model on the left and as validated by CFD on the right. This

result highlights the ability of the DCNN flow emulator to drive an optimization towards

increased level of loading not seen in the training data. While the DCNN model exhibits

some discontinuities in the prediction of the loading distribution, relative differences in

overall shape of the loading distributions appear well validated against CFD.

Figure 5.13: Objective space displaying baseline and outcome of DCNN-driven optimization

163

(a) (b)

Figure 5.14: Airfoil loading as predicted by (a) DCNN surrogate model; and (b) as validated
by CFD.

5.4 Transonic Compressor Airfoil Emulation and Op-

timization

5.4.1 Geometric Parameterization(s) and Datasets

The baseline design of the transonic airfoils considered corresponds to the NASA rotor 37

at 70% span. CFD solutions were generated under two scenarios and parameterizations,

and all details related to the CFD solver from Section 5.2.1 apply. The first scenario is

nominal rotor speed with µµµ ∈ R7, corresponding to 3 offset points along the thickness

distribution and 4 offset points along the camber distribution. The results for this are

given in Section 5.4.3. The next scenario is an expansion of the first, where the rotor

speed is allowed to vary (and is an additional parameter), and an additional camber

distribution offset point to control the metal inlet angle is added. This is presented in

Section 5.4.4, whereg µµµ ∈ R9, and the rotor speed was allowed to vary ±6% from nominal.

The motivation of this second parameterization is to assess the ability of the emulators

to infer flow-fields for varying airfoil shapes and operating conditions, allowing shape

optimization to be performed at different conditions using a single trained emulator.

164

5.4.2 Emulator Model Architectures

In both Sections 5.4.3 and Section 5.4.4 DCNN emulators with the architecture in Table

5.4 were used. The DVH models consist of a main network with 5 hidden layers with 100

nodes per layer, while the hypernetwork has 5 hidden layers with 50 nodes per layer.

Table 5.4: Multi-block DCNN architecture for the transonic airfoils.

Block Output Dimension Kernel size (Equiv. encoder) Strides (Equiv. encoder)
1 357× 41 [6, 2]→ [4, 2]→ [2, 2]→ [2, 2]→ [2, 2] [1, 1]→ [4, 2]→ [2, 2]→ [2, 2]→ [2, 1]
2 265× 47 [2, 2]→ [4, 2]→ [3, 3]→ [4, 3] [1, 1]→ [4, 2]→ [3, 2]→ [2, 2]
3 66× 17 [3, 2]→ [4, 2]→ [2, 2]→ [2, 2] [1, 1]→ [4, 2]→ [2, 2]→ [2, 1]
4 38× 17 [3, 2]→ [3, 2]→ [2, 2]→ [2, 2] [1, 1]→ [3, 2]→ [2, 2]→ [1, 1]

5.4.3 Problem 1: Geometric Design Variables Only

A design-of-experiments was performed to select 1000 unique airfoil shapes in addition

to the baseline design via latin hyper-cube sampling and flow solutions generated. Only

converged solutions with CFD residual < 10−6 were retained, corresponding to 702/1001

of the requested shapes. Two groups or clusters are observed in the dataset when plotting

the QoIs of stagnation pressure ratio and adiabatic efficiency versus the design variables,

with the desireable airfoils being massively under-represented. Figure 5.15 shows a pair-

plot of the geometric design variables against the QoIs, where group 1 are the desireable

airfoils. Just 36 group 1 instances are present, with 666 group 2 instances. This imbalance

caused preliminary models to be biased towards the lower-performing group 2 airfoils,

and the predictions on group 1 airfoils were unacceptably inaccurate for both DCNN and

DVH models.

165

Figure 5.15: Pairplot of pressure ratio and adiabatic efficiency against the individual geometric
design variables µi, with the higher-performing group 1 airfoils in red. Axis labels removed for
proprietary reasons.

To address this issue, data augmentation was pursued. Traditional methods, such as

translation, rotation, and scaling used in image-processing tasks [246], do not apply to

this problem setting. Instead, the dataset imbalance was addressed by creating subsets

which have an approximately equal number of group 1 and group 2 training instances

by simply repeating the group 1 instances, similar to oversampling augmentations but

without generation of synthetic cases 1. 30 of the group 1 instances were repeated 4

times, and combined with 130 randomly selected group 2 instances. 6 group 1 cases are

held out for testing.

With this parameterization, all models predict a 5-dimensional fluid state, q =[
ρ p u v w

]T
, allowing computation of all necessary quantities through use of the ideal

gas law and isentropic relations. For DCNN models, using the augmented dataset lead

to improvements in group 1 cases which were explicitly added to the training group.

However, some large errors persist in the testing cases. For DVH, more efficient batch-

by-case training (see section 5.2.2.3) is used in combination with the augmented dataset,

leading to massively improved predictions in an order of magnitude less time (relative to

fully-mixed batching), for all training and testing cases. The training times reported in

Table 5.1 correspond to this dataset.

Figure 5.16 shows a comparison of predicted and ground truth surface-pressure distri-

butions for both model types, with and without use of the augmented dataset and efficient

DVH training. For each model, the left column corresponds to the original imbalanced

1If synthetic cases could be generated, then the CFD emulator would not be needed and that generator
used instead.

166

(a) (b)

Figure 5.16: A comparison of the effect of training with the augmented dataset on group 1
airfoil surface pressure predictions for (a) DCNN and (b) DVH models, where the ground-truth
is solid black and the predictions are dashed red. For each emulator, each row corresponds
to the same airfoil, with a label marking it as part of the training or testing set. Axis labels
removed for proprietary reasons.

dataset, while the right column corresponds to the augmented dataset. Each row cor-

responds to the same airfoil shape (for each model) with a note indicating whether the

solution is in the training or testing set. For DCNN, the top row of Figure 5.16a shows

that the prediction is greatly improved when the case is added to the training set. The

bottom row shows that large errors persist for some cases which remain in the testing

group. For DVH, the top row of Figure 5.16b again shows that the prediction is greatly

improved when the case is added to the training set. However, unlike DCNN, it was found

that the group 1 testing cases were all well predicted when augmented data was used.

This is exemplified in the bottom row of 5.16b, where the prediction appears greatly

improved with use of augmented data and efficient training, despite the specific airfoil

moving from the training to testing group. Since the predictions on group 1 airfoils are

of greater importance for shape optimization, only the DVH models are pursued for use

in such a routine.

The effect of using the augmented data is explored further by plotting the predicted

vs. ground truth QoIs for the DVH predictions with and without the augmentation

in Figure 5.17. Observing the top row for pressure ratio shows that the effect of the

augmented data is to trade accuracy on group 2 cases for increased accuracy on group

1 cases. The data augmentation itself can be seen by observing the number of higher-

167

performing, group 1 cases in the training set (black markers). Without the augmentation,

the group 2 cases cluster along the dashed line, while the group 1 cases are scattered.

With the augmented data, the group 2 predictions suffer while the group 1 predictions

now cluster more tightly along the dashed line. An increased number of group 2 airfoils

are over-predicted in this scenario, but this is deemed a worthwhile trade for increased

accuracy on the more desirable, higher-performing group 1 airfoils. Although this does

open the possibility of discovering a false minima due to over-predicted performance, but

this was not problematic here.

(a) (b)

Figure 5.17: Predicted QoI’s, (a) without the data augmentation and (b) with the data
augmentation. Using data augmentation hurts group 2 predictions while improving those for
desirable group 1 airfoils. Axis labels removed for proprietary reasons.

The overall ASO problem as stated in Equation 5.6 is solved using the Bayesian opti-

mization routine described in Section 5.2.1, using UTCFD RANS solutions and the DVH

flow emulator above. The routine utilizes CFD-residual information, which was supplied

for the demonstration here, but later a separate CFD-residual XGBoost QoI emulator was

trained offline using the training DoE. A comparison of emulator-driven and CFD-driven

168

optimization is shown in Figure 5.18, where emulator-driven optimization reaches the

same optimal design as CFD in fewer iterations. The use of residual information was key

in achieving success with the emulator, as the residual information may be interpreted

as a measure of feasibility, and thus steers the overall optimization process.

Figure 5.18: Comparing CFD-driven (green) and emulator-driven shape optimization with
(blue) and without (red) CFD residual information. The iteration count excludes initial DOE
of 10 cases. Axis labels removed for proprietary reasons.

5.4.4 Problem 2: Geometric Design Variables and Rotor Speed

A larger training DoE of 10,000 cases was generated, and inclusion of rotor speed al-

lows for a much wider variety of resulting flows. No obvious clusters were seen in

QoI versus design-variable space. A greater number of flow quantities is predicted,

q =
[
ρ p u v w k ω E0ρ

]T
. This allows for an alternate method for computing the

QoIs, but is not explored here further. DCNN and DVH models were regressed on the

dataset, with DVH models converging more quickly and readily using subsets of the over-

all DoE. Observing the training curves showed that as the training loss plateaued the loss

bounced around with large spikes, indicating repeated overshooting caused by too large

a step size or learning rate. Thus a piecewise learning rate schedule was used, where the

models were trained with a constant learning rate of 1 × 10−4 for 2000 epochs, followed

by a period of exponentially decaying learning rate for 2000 epochs, where the learning

rate decreased by an order of magnitude every 1000 epochs. The resulting training curve

is shown in Figure 5.19, where 800 randomly chosen cases are used for training.

169

Figure 5.19: Training curve for DVH model with a piecewise learning rate schedule, consisting
of two regions, with constant learning rate followed by exponentially-decaying learning rate,
starting at epoch 2000.

The predicted flow fields agree well with the ground truth data, with surface-pressure

predictions around unseen airfoils at varying rotor speed shown in Figure 5.20. The top-

left is similar to group 2 airfoils in the original dataset, top-center is similar to group 1,

while the others show vastly different behavior. Example full flow-field predictions are

shown in 5.21 for an unseen airfoil. The overall detailed structure of the field is well

captured, with the largest errors seen near the shock waves.

Figure 5.20: Ground truth (black) and predicted (red) surface-pressure distributions around
several unseen airfoils. A wide variety of behavior is seen, and is captured well by the DVH
emulator. Axis labels removed for proprietary reasons.

170

Figure 5.21: Contours plots showing the ground truth, prediction, and error for some of the
DVH predicted flow quantities for an unseen case.

Additionally the QoIs computed from the emulator predictions show good agreement,

as shown in Figure 5.22 across all 10,000 samples, where a perfect prediction would lie

exactly on the dashed line. The color represents rotor speed, and most visible markers

are testing cases.

Figure 5.22: The predicted vs. ground truth objectives, colored by rotor speed. Axis labels
removed for proprietary reasons.

The DVH emulator was then used to drive shape optimization at different rotor speeds;

under nominal conditions and at ±4% rotation rate. The Bayesian optimization routine

described in Section 5.2.1 is used again here, where CFD and CFD-emulator are used

separately to train Gaussian process QoI emulators, with the emulator-driven routine

171

using an XGBoost residual model. The relative improvement for emulator-driven and

CFD-driven optimization is shown in the objective-history curves of Figure 5.23, where

5.23a and 5.23b use different scaling of the x-axis. Compared to CFD-based Bayesian

Optimization (showing statistical average over 20 runs), the emulation-driven optimiza-

tion (showing one run) is observed capable to identify high-performing designs for the

three rotor rotational speeds considered. In Figure 5.23a, both history traces are plotted

against the raw number of QoI-emulator evaluations, showing that the emulator-driven

routines generally converge in a fewer number of evaluations. The reason for this is not

immediately clear and warrants further investigation. Whereas Figure 5.23b shows the

same objective history now plotted against time, expressed in terms of equivalent CFD

evaluations after the initial training DoE. In this view the emulator-driven optimiza-

tion converges and plateaus almost immediately, representing a large decrease in online

time to find the optimal design. A performance-space view comparing CFD-driven and

emulator-driven histories is shown in Figure 5.24. The difference in convergence speed be-

tween CFD-driven and emulator-driven routines manifests itself as decreased dot density

using the emulator.

(a) (b)

Figure 5.23: Comparing CFD-driven and emulator-driven optimization objective histories for
the design of a transonic airfoil at varying rotor speed, where the objective is plotted against
(a) the number of evaluations or iterations, and (b) the number of CFD evaluations.

172

(a) (b)

Figure 5.24: Performance-space view of (a) CFD-driven surrogate assisted optimization and
(b) CFD-emulator-driven surrogate assisted optimization, where the black squares correspond
to the baseline design.

While Figure 5.23 highlights the online saving afforded by the CFD emulators, it is

also important to consider the offline costs and an overall break-even point as compared

to CFD-driven optimization when evaluating the use of such models. For either method,

the overall cost includes the generation of a training dataset, the cost to train the model,

either the initial QoI surrogate or the CFD emulator, and then the online costs per

iteration. This may be written generally as

Coverall = Csolventrain + Ctrain + Citerationniterations, (5.13)

where Csolve is the cost for a single CFD solution. Usually ntrain is much smaller when

considering CFD-driven optimization as compared to that required to train a CFD emu-

lator; a small DoE is used for CFD-driven optimization. Further, Ctrain is much smaller for

CFD-driven optimization as it only involves training the QoI surrogate, whereas emulator-

driven optimization also includes the cost of neural-network training on GPU. Thus the

offline costs for emulator-driven optimization are generally much larger than that for

CFD-driven. This is offset by the lesser online costs, where CFD-driven optimization

requires a CFD-solve for each iteration while emulator-driven optimization does not in-

volve generation of CFD solutions once the model is trained. 2 Thus determination of an

2Other than a CFD-based verification of the optimal design.

173

overall break-even point must weigh the greater cost of attaining a CFD emulator against

the greater cost per iteration using CFD-driven optimization. A CFD emulator which

is more general and which may be reused to solve for a different operating condition (or

design problem) without additional training is more likely to have an overall lower cost

than one which can only be used for a single optimization.

5.5 Summary

Simulation-based Aerodynamic Shape Optimization plays an increasingly important role

in the design of aircraft and engine components, but are limited by the time required to

compute high fidelity CFD solutions. Deep-learning-based CFD emulators, which predict

full RANS CFD solutions instead of QoI’s, were developed and demonstrated for subsonic

and transonic compressor-rotor sections. Critically, the methods do not require use of

interpolated data, either by generating snapshots directly in the computational domain

(DCNN), or by operating continuously in the physical domain (DVH). While 2D sections

are presently considered, DVH scales naturally to 3D problems while 3D CNNs quickly

become memory limited.

Although both methods were effective in the prediction of subsonic flows (Section 5.3),

DVH models were found to perform better than DCNN models under transonic condi-

tions (Section 5.4). Dataset augmentation via simple repetition of under-represented

cases allowed DVH models to generalize reasonably well, trading increased accuracy

on higher-performing cases for worsened predictions on lower-performing designs, while

DCNN models still struggled (comparatively) in prediction of the higher-performing,

underrepresented cases. When varying flow conditions via altered rotor speed were con-

sidered in addition to geometric shape parameters, DVH models converged and generalize

more readily than DCNN models, especially when trained using a piecewise learning-rate

schedule. In that scenario the wide variation in the resulting complex flows were well

captured, and as a result the extracted QoIs of pressure ratio and efficiency were also

well predicted. Further, DVH emulators were used in place of CFD in a surrogate-based

174

Bayesian optimization routine, where the emulator-based surrogates reached similarly-

performing designs in a reduced number of model evaluations. This corresponds to an

acceleration of the online stages of design optimization, but does not consider the addi-

tional off-line computational cost of training the emulators. However, we note that once

the emulator is trained once off-line, it can be used on-line to conduct many different

design optimizations - e.g. with different objective functions, constraints and tradeoffs.

175

Chapter 6

Conclusions

The computational cost of numerically solving high-fidelity models (HFMs) limits their

application in engineering-relevant many-query scenarios such as design optimization,

with each iteration requiring a solution for the current design. Data-driven approaches

offer an appealing alternative in these scenarios, but many methods face practical short-

comings related to the processing of solution data. In particular, powerful non-intrusive

methods based on Proper Orthogonal Decomposition (POD), Gaussian Process Regres-

sion (GPR), and Convolutional Neural Networks (CNNs) use discrete snapshot matrices,

requiring all data points to lie on the same meshes with consistent dimension and topol-

ogy; an unrealistic requirement in the presence of variable, complex geometry and operat-

ing conditions. In order to apply those methods, a Cartesian mesh may be overlain on the

problem domain and the solution data interpolated to that mesh, as was demonstrated

in Sections 2.3.2 and 2.3.3. However, this has a number of undesirable effects, including

a reduced fidelity, pixelated representation of the geometry and a loss of information in

regions with large solution gradients, sometimes an extreme effect. Another way around

this is to instead approximate scalar quantities of interest (QoIs) which are extracted

from the HFM solutions. These QoI surrogate are generally easier to create, in part to

the reduced problem dimensionality, but have limited portability when different design

problems or objectives are considered.

Optimization lies at the heart of iterative design and surrogate-model regression.

Gradient-based and gradient-free constrained optimization routines are applied directly to

design optimization, with HFM solutions used to compute the objectives and constraints.

176

Classical linear and non-linear least-squares techniques pose model construction as the

solution to an optimization problem, often-times with a closed-form result. Several POD-

based methods utilize the singular-value decomposition (SVD) to obtain the rank-r trial

and test bases, and it may be shown that the SVD provides optimal rank-r reconstruction

of the training-data snapshot matrices in a Frobenius-norm sense. GPR lies at the heart

of Bayesian optimization routines, where an acquisition function, usually dependent upon

the GPR mean-function and covariance kernel, is optimized at each iteration to select

the next design. Further, training of advanced deep-learning models is usually carried

out using a form of stochastic gradient descent (SGD), an unconstrained optimization

routine. While POD-based methods in particular have been used in the development of

reduced-order-models (ROMs) which provide full-solution fields, they are limited by the

need to construct a snapshot matrix to hold the data for all training instances. This

is also true for naive multi-output GPR and many of the most popular deep learning

techniques which are based on autoencoders and/or convolutional architectures. Many

of these methods are effective for data reconstruction and prediction, but the processing

schemes required to place the solution data on consistent meshes severely limit their

effectiveness for application in problems with industrial-scale complexity. Further, POD-

based methods also face limitations due to the implicit assumption that the training

snapshot matrix spans all relevant dynamics, which is generally not true in practice,

especially for convection-dominated problems.

6.1 Summary of Contributions

The past few years have witnessed significant activity in the use of neural networks to

develop surrogate representations of physical fields (e.g. [75, 76, 80]) on a given dis-

cretized mesh, which still involve the shortcomings given above. Whereas this thesis

seeks the development of surrogate models without these interpolation-related shortcom-

ings by treating the solutions as continuous fields, allowing learning and prediction on

meshes with arbitrary discretization, topology, and geometry.

177

6.1.1 Methods

As a stepping-stone in this direction, DCNN models were developed to map directly

between the design variables and the solution fields in Section 3.1. DCNNs were conceived

in the context of convolutional autoencoders and are applied directly in the computational

domain to avoid lossy interpolation. They posit that the design variables µµµ may be used

directly as input to the decoder instead of a learned latent representation. This means

that the encoder is no longer needed, resulting in a simpler model with roughly half the

parameters of a corresponding autoencoder. DCNN models use transposed convolutional

layers, and as such are limited to problems which have a Cartesian or block-Cartesian

structure in the computational domain.

Full discretization independence is achieved through use of coordinate-based neural

networks which map between low dimensional spaces instead of snapshots, inspired by a

line of research involving scene and object representation for rendering tasks [158, 159,

168, 161, 162]. The key distinction is that network inputs and outputs are taken point-

wise, for example as a physical coordinate tuple, resulting in a continuous representation

of the fields. Accounting for variation in physical design and operating conditions is

achieved through a combination of local and global conditioning. First, an evaluation of

the signed or minimum distance function is included as a main-network input along with

the physical coordinates. This represents a form of local concatenation-based condition-

ing as the SDF/MDF are functions of space and generally vary along with the physical

coordinates. All spatially varying quantities are collected in the augmented spatial coor-

dinates, denoted by x′. The developed methods are distinguished by the form of global

conditioning used, with the design variables used as the global-conditional input as they

are not functions of space and apply to entire solution instances. Design-variable MLP

(DV-MLP) utilizes input-layer concatenation-based conditioning, where the design vari-

ables are concatenated with the augmented physical coordinates and used as network

inputs; see Section 3.2.4. Whereas design-variable hypernetworks (DVH) of Section 3.2.5

condition all of the main-network weights upon the design variables by generating them

178

with a hypernetwork. When only the weights of the output layer are generated via hyper-

network, then the resulting model predictions may be placed in a form analogous to POD

reconstruction, with that method known as non-linear independent dual system (NIDS);

see Section 3.2.6. DVH model predictions may also be loosely interpreted in this manner.

In practice it was observed that DV-MLP and DVH performed better than NIDS and as

such were more widely applied to the given problems.

The DVH models considered use a one-shot hypernetwork, whereby all weights are

generated at once via one forward pass of the hypernetwork. A side effect of this is that

a DVH model using dense layers in the hypernetwork has many more parameters for

a given main network than a similar DV-MLP model. However, the development and

utilization of batch-by-case training for DVH models significantly reduced the computa-

tional cost associated with training; see Sections 3.2.5.1-3.2.5.2. This approach led to a

substantial decrease in step times and memory consumption, approximately by an order

of magnitude, compared to fully-mixed training when considering a backend precision

policy, although improvements also depends upon the spatial batch size. This enabled

DVH models with significantly more parameters to be trained in a comparable amount

of time as DV-MLP models. Further, a piecewise learning-rate schedule with periods of

constant and exponentially-decaying learning rates was devised and implemented which

improved model convergence, see Section 3.4.

6.1.2 Numerical Experiments

The models were first evaluated on a 2D Poisson problem defined with varying shapes

embedded in a square domain with a spatially-distributed source term in Section 4.2.

Each solution instance has a different mesh with unique cardinality and topology. The

shapes location within the domain was varied to asses translational effects, while the

shapes size was varied to asses scaling effects. It was found that inclusion of a class-label

vector in addition to scaling and locating information in the design variables greatly

enhanced predictive accuracy for all models. Additionally, errors were observed to vary

with the shape class or number of sides, generally decreasing as the number of sides

179

increased. All models performed well with training- and validation-group MRL2Es less

than 0.1%, but with DVH and DV-MLP performing even better with MRL2Es less than

0.01%.

The effectiveness of DVH and DV-MLP was also evaluated in the context of a chal-

lenging 2D vehicle aerodynamics problem, utilizing realistic vehicle shapes with solutions

lying on unstructured meshes of variable topology. Baseline results indicated that DVH

consistently outperformed DV-MLP by a few percentage points, while also demonstrating

superior convergence and generalization properties in the low-data regime. By incorpo-

rating a random-Fourier-features layer to process the spatially-varying inputs x′, the

RMSEs were significantly reduced by roughly 20-60% with greater improvements seen for

DV-MLP as compared to DVH. In this scenario DV-MLP results were improved so sub-

stantially that the performance gap between DVH and DV-MLP was essentially closed,

including the convergence and generalization properties in the low-data regime. Both

DVH and DV-MLP exhibited strong generalization capabilities when multiple vehicle

speeds were considered, with minimal disparities between training and validation errors.

The pressure fields errors were near 2%, x-velocity errors around 1%, and y-velocity

errors around 6-7%. The pressure-drag coefficients were predicted within 2% by DVH

models, for both single and multiple speeds. The main features of the flow fields were

well-captured, with the largest errors often clustering in regions close to the vehicle, in

the fine details of the grill, and along the free-shear layer of the wake. Line probes showed

some oscillation in the network predictions compared to the ground truth, consistent with

discrepancies seen in the contour levels. Several researchers have noted the effectiveness

of positional encoding techniques in a variety of problem scenarios [161, 189, 247]. The

success of the techniques may be explained using Neural Tangent Kernel theory [248],

where the use of random Fourier features results in a stationary, shift-invariant kernel

with a tunable bandwidth controlled by sampled frequency vectors bi [187]. However,

this result is in the context of dense, nearly-uniform sampling of input coordinates with-

out an additional signed-distance input, and further study is warranted in the current

scenario with unstructured, non-uniform meshes.

180

DVH and DV-MLP models were also applied to a 3D Ahmed body problem, with geo-

metric variation in the rear slant angle. Under this scenario it was observed that DV-MLP

performed best, particularly when Layer Normalization layers were added between each

layer. The pressure drag coefficients were predicted to within 1.74% by DV-MLP-LN in

this scenario. DVH models did not perform well with the addition of Layer Normalization

in the main network. However, Layer Normalization includes scaling and biasing vectors

as trainable parameters, and these parameters were not included in the hypernetwork

output, and instead were left as part of the main network for all cases. It is possible

including those vectors in the hypernetwork output may improve the performance, but

this was not attempted. The use of Fourier features did not improve the performance in

this scenario, and was worse for all values of m and σ attempted for all model types. This

is unfortunate, as hyperparameter tuning or parameter sweeps with this larger dataset

will require non-trivial computational resources and time.

DCNN and DVH models were also applied to emulation of 2D subsonic and tran-

sonic compressor-airfoil flows lying on multi-block meshes with a Cartesian structure in

the computational domain in Chapter 5 . In the subsonic regime DCNN and DVH per-

formed similarly but with DVH having greater accuracy in the predicted lift and drag

coefficients. A DCNN model was used to drive aerodynamic shape optimization in the

subsonic regime as a proof-of-concept. Although both methods were effective in the pre-

diction of subsonic flows (Section 5.3), DVH models were found to perform better than

DCNN models under transonic conditions (Section 5.4). Dataset augmentation via simple

repetition of under-represented cases allowed DVH models to generalize reasonably well,

trading increased accuracy on higher-performing cases for worsened predictions on lower-

performing designs, while DCNN models still struggled (comparatively) in prediction of

the higher-performing, underrepresented cases. When varying flow conditions via altered

rotor speed were considered in addition to geometric shape parameters, DVH models

converged and generalize more readily than DCNN models, especially when trained using

a piecewise learning-rate schedule. In that scenario the wide variation in the resulting

complex flows were well captured, and as a result the extracted QoIs of pressure ratio and

181

efficiency were also well predicted. Further, DVH emulators were used in place of CFD

in a surrogate-based Bayesian optimization routine, where the emulator-based surrogates

reached similarly-performing designs in a reduced number of model evaluations. This

corresponds to an acceleration of the online stages of design optimization, but does not

consider the additional off-line computational cost of training the emulators. However,

we note that once the emulator is trained once off-line, it can be used on-line to conduct

many different design optimizations - e.g. with different objective functions, constraints

and tradeoffs.

The results suggest that both DVH and DV-MLP models can be accurate and effec-

tive alternatives to CNN-based methods for surrogate modeling of PDE solution fields

over complex geometries and arbitrary mesh topologies. It is re-emphasized that CNNs

typically require a fixed grid topology and have a large memory footprint for 3D problems

since the entire grid is an input. In contrast, coordinate-based networks take pointwise

information and design variables as inputs, allowing model size and memory requirements

to be indirectly decoupled to the solution field degrees-of-freedom via the field complex-

ity. This is critical for 3D applications and simulations of realistic configurations where

solutions may contains tens-of-millions to billions of mesh cells.

The use of the design-variables µµµ as model input is an advantage in terms of ease and

simplicity, but is also a drawback as it limits model portability and training-data sources.

The use of computational methods such as CFD and FEA have become commonplace in

industrial settings over the last few decades, and as a result many companies may have

large repositories of previously-performed simulations. Learning from heterogeneous data

sources opens the possibility of utilizing these repositories to train data-driven models

or generalized emulators which predict solution fields. However, the dependence upon

the design variables µµµ as model input complicates this, as it is very unlikely that all

previous simulations utilize a consistent parameterization. In order for repositories of

heterogeneous simulation data to be most useful then additional steps must be made

to encode the problems into a generalized representation to use in place of µµµ. Thus an

area of future work involves devising and implementing methods which encode solutions

182

in a generalized manner, and linking them to predictive coordinate-based models. It is

possible that point cloud neural networks, graph neural networks, and attention-based

networks may be useful in such a scheme.

6.2 Future Work

Future work in this area should include further experiments with 3D problems and dif-

fering PDE solutions. While the Ahmed body results obtained here are promising, it is a

simpler geometry and configuration than that seen in industrial automotive aerodynam-

ics. Given the positive results with 2D subsonic and transonic compressor airfoils seen

here, extending the models to predict 3D flows over full compressor blades is a natural

next step. Further, this thesis tackled only steady-state problems, and many important

engineering considerations involve unsteadiness and time-dependence. The simplest ap-

proach to handling such problems would be to simply include t as an element of µµµ with

no further modifications to the model’s architecture, similar to what is done in neural

implicit flow [172] which achieved excellent performance regressing spatio-temporal data.

However, the problems neural implicit flow was tested on did not include geometric design

variables in the parameter set, and also did not include the SDF as an additional input

coordinate. It is possible that geometric and temporal variations may need to be treated

separately, potentially using alternate conditioning schemes instead of or in addition to

networks or subnetworks which utilize a hypernetwork; see Section 3.2.2.

The use of alternate hypernetwork architectures beyond one-shot dense networks is

another area of potential future research. This is important due to the scaling considera-

tions and limitations of dense hypernetworks described in Section 3.2.5. All results in this

thesis use a one-shot dense hypernetwork, some experiments were performed using one-

shot convolutional decoder hypernetworks. Note that the main network is still an MLP

in this scenario, and to ease design of the hypernetwork consider a main network with nL

hidden layers each with dimension H which is a power of 2. The decoder hypernetworks

are similar in structure to multiblock DCNN models with parallel decoder legs, with a

183

single dense layer between the input layer and the first transposed convolutional layer,

with the dimension(s) of the first transposed convolutional layer selected to be Dmin along

each axis, where Dmin is also a smaller power of 2. The resulting decoder hypernetwork

then has 3 zones;

• Zone 1 for the first hidden-layer weights which uses 1D transposed convolutions.

The output space has dimension H with nx′+1 channels. This is sliced and reshaped

to give weight matrix W(1) ∈ RH×nx′ and bias vector b(1) ∈ RH .

• Zone 2 for all other hidden-layer weights uses 2D transposed convolutions. The

output space has dimension H × (H + 1) with nL − 1 channels. This is sliced and

reshaped to give weight matrices and bias vectors W(i) ∈ RH×H , b(i) ∈ RH , for

i = 2, 3, . . . , nL.

• Zone 3 for output layer weights uses 1D transposed convolutions. The output space

has dimension H + 1 with nq channels. This is sliced and reshaped to give weight

matrix W(nL+1) ∈ Rnq×H and bias vector b(nL+1) ∈ Rnq .

The hidden dimension of the hypernetwork intermediate layers progresses by powers of

2, by selecting P = 0, S = 2, K = 2 in Equation 2.64, which simplifies D
(i)
j = 2D

(i−1)
j .

To attain dimension H + 1 along needed axes, let P = 0, S = 1, K = 2, giving D
(i)
j =

D
(i−1)
j + 1. And finally, to let an axis not change dimension (as is needed in zone 2),

select P = 0, S = 1, K = 1 along that axis. For example, consider a main network with

H = 32 and nL = 4 hidden layers. Further let D
(1)
min = 8 and let F be the number of

filters for a given layer. Then a decoder convolutional hypernetwork will have a structure

as shown in Figure 6.1.

184

Figure 6.1: Detailed schematic for a one-shot decoder convolutional hypernetwork, where the
main network hidden dimension is the same for all layers with a value of 32, a power of 2.
This results in a 3 zone hypernetwork, with the kernel and stride dimensions shown. Note that
padding is excluded in all zones, P = 0, and F is the number of filter maps per layer.

185

Note that the training considerations and methods of Section 3.2.5.2 also apply to

decoder hypernetworks. However, the scaling in number of trainable parameters per

Equation 3.25 does not apply to convolutional decoder hypernetworks, and it is actually

possible to design a hypernetwork which has fewer weights than the main network. Once

a main-network design is specified via nL and H, then the hypernetwork design depends

only on the choice of Dmin and F . Define p2 such that H = 2p2 and p1 such that

D
(1)
min = 2p1 , then the total number of trainable parameters in the hypernetwork has a

closed-form expression, given by

dim(θh)zone1 = DminF (nµ + 1) + (p2 − p1 − 1)(2F 2 + F) + (nx′ + 1)(2F + 1) (6.1)

dim(θh)zone2 = D2
minF (nµ + 1) + (p2 − p1)(4F 2 + F) + (nL − 1)(2F + 1) (6.2)

dim(θh)zone3 = DminF (nµ + 1) + (p2 − p1)(2F 2 + F) + nq(2F + 1) (6.3)

dim(θh) = dim(θh)zone1 + dim(θh)zone2 + dim(θh)zone3. (6.4)

Letting nL = 5, H = 64, Dmin = 4, with nx′ = 3, nq = 3, and nµ = 9, which corresponds

to a vehicle aerodynamics problem in Section 4.3.4, then dim(θh) may be plotted versus

F as shown in Figure, where the red dashed line is the number of main network weights

generated by the hypernetwork. Thus choosing F less than approximately 20 results

in a model with fewer parameters than even DV-MLP. This is a great reduction in the

number of trainable parameters as compared to dense one-shot hypernetworks, which

scale according to Equation 3.25.

186

Figure 6.2: Plotting the number of hypernetwork trainable weights against the number of
filters F , for a main-network with nL = 5 hidden layers with H = 64, and input/output
dimensions corresponding to a vehicle aerodynamics problem of Section 4.3.4. This shows that
using a decoder convolutional hypernetwork may reduce the number of weights even compared
to the main network.

A small handful of experiments were performed using decoder-convolutional DVH

(DC-DVH) models on the vehicle aerodynamics problem of Section 4.3. A similar main

network to the above experiments was selected, with a hidden dimension of H = 64 and

nL = 5 hidden layers. A minimal convolutional dimension of Dmin = 4 was selected, and a

few networks trained using different values of F , with the number of trainable parameters

given in Table and the resulting errors shown in Table 6.2.

Table 6.1: Summary of training and validation error metrics for vehicle speeds of 90 and 130
kph with a training fraction of 0.80.

Filters # Trainable Weights, dim(θh)
20 17,471
40 58,931
100 327,311
130 542,501

In Chapter 5 it was observed that supplying residual information, from CFD or from

an additional QoI emulator, was required to obtain good results in optimization. Ex-

ploration of methods for incorporating both convergence and spatial discretization errors

into the model predictions may provide similar utility for the models themselves. A sim-

ple idea for handling convergence errors would be to include the solution residual as an

element of µµµ. This may make sense during regression where the residual is known, but

187

Table 6.2: Summary of training and validation error metrics for vehicle speeds of 90 and 130
kph with a training fraction of 0.80.

q̂i F RMSE (train / val) MRL2E (train / val)

p [Pa]

20 29.9 / 32.4 7.95% / 8.22%
40 16.9 / 19.3 4.51% / 4.98%
100 17.1 / 19.1 4.54% / 4.83%
130 16.9 / 19.1 4.50% / 4.88%

u [m/s]

20 0.97 / 1.03 3.42% / 3.58%
40 0.82 / 0.88 2.90% / 3.05%
100 0.92 / 0.96 3.26% / 3.33%
130 0.97 / 1.07 3.44% / 3.71%

v [m/s]

20 1.10 / 1.15 21.9% / 8.22%
40 0.67 / 0.73 13.3% / 14.2%
100 0.75 / 0.79 14.8% / 15.3%
130 0.68 / 0.72 13.4% / 14.1%

during inference this may not make sense. Handling of spatial discretization errors, for

example training a single model with data from meshes of variable coarseness, may also

be handled in a similar manner, with a metric describing the mesh coarseness used as an

element of µµµ. This scenario may make more sense in inference as the mesh coarseness is

known before a prediction is generated. Another area of future work involves uncertainty

quantification. Given that DVH models are neural network generators, it may be possible

to use DVH in a Bayesian neural network scheme to provide uncertainty information.

188

Appendix A

DVH Network Scaling: Further Details

Considering a main network with Lm hidden layers, each with hidden dimension H, the

total number of weights in the main network is

dim(θm) = (Hnx′ +H) + (Lm − 1)(H2 +H) + (nqH + nq), (A.1)

where the first term corresponds to the first hidden layer, the second term to all remaining

hidden layers, and the final term the output layer. With low-dimensional input and

output spaces, typically nx′ , nµ, nq << H, thus quadratic H2 terms dominate, leading

to simplifying approximations

dim(θm) ≈ (Lm − 1)H2 +O(H) ≈ LmH
2 +O(H). (A.2)

Next consider a hypernetwork with Lh hidden layers, where the first Lh − 1 layers also

have a hidden dimension of H, while the final hidden layer has dimension HL. The total

number of weights in the hypernetwork is

dim(θh) = (Hnµ+H)+(Lh−2)(H2+H)+(HLH+HL)+(dim(θm)HL+dim(θm)), (A.3)

where the terms are again in forward-propagation order. Retaining quadratic terms leads

to the approximation

dim(θh) ≈ (Lh − 2)H2 +HLH + dim(θm)(HL + 1) +O(H). (A.4)

189

The third term in this expression typically dominates, corresponding to the hypernetwork

output layer, revealing the important scaling consideration: a one-shot dense hypernet-

work model will have roughly HL times as many trainable weights as a similar DV-MLP

model. Writing this proportionality, and substituting Equation A.2 gives the final result,

dim(θh) ∝ dim(θm)HL ∝ LmH
2HL, (A.5)

corresponding to Equation 3.25 of the main text.

190

Appendix B

Vehicle Aerodynamics Dataset

B.1 Baseline Results: Additional Figures

B.1.1 Single Vehicle Speed

Full domain predictions for an unseen vehicle shape corresponding to Figure 4.11 are

shown below.

(a) Ground truth pressure field. (b) SDF field with truncated points marked.

(c) DV-MLP predicted pressure field. (d) DV-MLP error.

(e) DVH predicted pressure field. (f) DVH error.

Figure B.1: Unseen vehicle pressure field predictions and errors.

191

(a) Ground truth x-velocity field. (b) SDF field with truncated points marked.

(c) DV-MLP predicted x-velocity field. (d) DV-MLP error.

(e) DVH predicted x-velocity field. (f) DVH error.

Figure B.2: Unseen vehicle x-velocity predictions and errors.

(a) Ground truth y-velocity field. (b) SDF field with truncated points marked.

(c) DV-MLP predicted y-velocity field. (d) DV-MLP error.

(e) DVH predicted y-velocity field. (f) DVH error.

Figure B.3: Unseen vehicle y-velocity predictions and errors.

192

B.1.2 Multiple Vehicle Speeds

Additional plots of ground truth and predicted x-velocity and y-velocity fields for a single

vehicle shape at both speeds of 90 and 130 kph, corresponding to the same vehicle shape

as Figure 4.14. As with the pressure field, the velocity component predictions closely

match the ground truth at both speeds, with the largest errors seen near the vehicle

surface and in the free-shear layer of the wake.

(a) 90 kph, ground truth. (b) 130 kph, ground truth.

(c) 90 kph, DVH prediction, training set. (d) 130 kph, DVH prediction, validation set.

(e) 90 kph DVH error, training set. (f) 130 kph DVH error, validation set.

Figure B.4: x-velocity field ground truth, DVH prediction, and errors at 90 and 130 kph for
the same vehicle shape.

193

(a) 90 kph, ground truth. (b) 130 kph, ground truth.

(c) 90 kph, DVH prediction, training set. (d) 130 kph, DVH prediction, validation set.

(e) 90 kph DVH error, training set. (f) 130 kph DVH error, validation set.

Figure B.5: y-velocity field ground truth, DVH prediction, and errors at 90 and 130 kph for
the same vehicle shape.

B.2 Fourier Features: Additional Figures

Additional figures showing DVH pressure field and y-velocity field predictions at speeds of

90 and 130 kph, where neither instance was included in the training set. These correspond

to the same case as shown in Figure 4.19.

194

(a) 90 kph, ground truth. (b) 130 kph, ground truth.

(c) 90 kph, DVH prediction, validation set. (d) 130 kph, DVH prediction, validation set.

(e) 90 kph DVH error, validation set. (f) 130 kph DVH error, validation set.

Figure B.6: Pressure field ground truth, DVH prediction, and errors at 90 and 130 kph for
the same vehicle shape, where neither instance was included in the training set.

195

(a) 90 kph, ground truth. (b) 130 kph, ground truth.

(c) 90 kph, DVH prediction, validation set. (d) 130 kph, DVH prediction, validation set.

(e) 90 kph DVH error, validation set. (f) 130 kph DVH error, validation set.

Figure B.7: y-velocity field ground truth, DVH prediction, and errors at 90 and 130 kph for
the same vehicle shape, where neither instance was included in the training set.

196

Bibliography

[1] Gordon E. Moore. Cramming more components onto integrated circuits. 1965.

[2] Robert R Schaller. “Moore’s law: past, present and future”. In: IEEE Spectrum

34.6 (1997), pp. 52–59. doi: 10.1109/6.591665.

[3] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. “The LINPACK bench-

mark: past, present and future”. In: Concurrency and Computation: practice and

experience 15.9 (2003), pp. 803–820. doi: 10.1002/cpe.728.

[4] url: https://www.top500.org/lists/top500/2023/06/.

[5] Awais Khan, Hyogi Sim, Sudharshan S Vazhkudai, Ali R Butt, and Youngjae Kim.

“An Analysis of System Balance and Architectural Trends Based on Top500 Super-

computers”. In: The International Conference on High Performance Computing in

Asia-Pacific Region. New York, NY, USA: Association for Computing Machinery,

2021, pp. 11–22. isbn: 9781450388429. doi: 10.1145/3432261.3432263.

[6] Tom Pulliam and David Zingg. Fundamental Algorithms in Computational Fluid

Dynamics. Jan. 2014. isbn: 978-3-319-05052-2. doi: 10.1007/978-3-319-05053-

9.

[7] Charles Hirsch. Numerical computation of internal and external flows: The funda-

mentals of computational fluid dynamics. Elsevier, 2007.

[8] Joe F Thompson, Frank C Thames, and C Wayne Mastin. “Automatic numer-

ical generation of body-fitted curvilinear coordinate system for field containing

any number of arbitrary two-dimensional bodies”. In: Journal of Computational

Physics 15.3 (1974), pp. 299–319. doi: 10.1016/0021-9991(74)90114-4.

[9] Frank M. White. Viscous Fluid Flow. 3rd ed. Mcgraw-Hill, 2005.

197

https://doi.org/10.1109/6.591665
https://doi.org/10.1002/cpe.728
https://www.top500.org/lists/top500/2023/06/
https://doi.org/10.1145/3432261.3432263
https://doi.org/10.1007/978-3-319-05053-9
https://doi.org/10.1007/978-3-319-05053-9
https://doi.org/10.1016/0021-9991(74)90114-4

[10] H. Schlichting and K. Gersten. Boundary–Layer Theory. 8th ed. Springer–Verlag,

2000.

[11] David C. Wilcox. Turbulence modeling for CFD. Vol. 3. DCW Industries La

Canada, CA, 2006.

[12] Stephen B. Pope. “The scales of turbulent motion”. In: Turbulent Flows. Cam-

bridge University Press, 2000, 182–263. doi: 10.1017/CBO9781316179475.008.

[13] Haecheon Choi and Parviz Moin. “Grid-point requirements for large eddy sim-

ulation: Chapman’s estimates revisited”. In: Physics of fluids 24.1 (2012). doi:

10.1063/1.3676783.

[14] Stephen B. Pope. “Direct numerical simulation”. In: Turbulent Flows. Cambridge

University Press, 2000, 344–357. doi: 10.1017/CBO9781316179475.011.

[15] Marco Lanfrit. Best practice guidelines for handling Automotive External Aerody-

namics with FLUENT. 2005.

[16] Myoungkyu Lee, Nicholas Malaya, and Robert D Moser. “Petascale direct numer-

ical simulation of turbulent channel flow on up to 786k cores”. In: SC ’13: Pro-

ceedings of the International Conference on High Performance Computing, Net-

working, Storage and Analysis. 2013, pp. 1–11. doi: 10.1145/2503210.2503298.

[17] Joseph Smagorinsky. “General circulation experiments with the primitive equa-

tions: I. The basic experiment”. In: Monthly weather review 91.3 (1963), pp. 99–

164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

[18] Stephen B. Pope. “Large-eddy simulation”. In: Turbulent Flows. Cambridge Uni-

versity Press, 2000, 558–640. doi: 10.1017/CBO9781316179475.015.

[19] W Peter Jones and Brian Edward Launder. “The prediction of laminarization with

a two-equation model of turbulence”. In: International Journal of Heat and Mass

Transfer 15.2 (1972), pp. 301–314. doi: 10.1016/0017-9310(72)90076-2.

[20] David C Wilcox. “Formulation of the k-w Turbulence Model Revisited”. In: AIAA

journal 46.11 (2008), pp. 2823–2838. doi: 10.2514/1.36541.

198

https://doi.org/10.1017/CBO9781316179475.008
https://doi.org/10.1063/1.3676783
https://doi.org/10.1017/CBO9781316179475.011
https://doi.org/10.1145/2503210.2503298
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1017/CBO9781316179475.015
https://doi.org/10.1016/0017-9310(72)90076-2
https://doi.org/10.2514/1.36541

[21] Florian R Menter, Martin Kuntz, Robin Langtry, et al. “Ten years of industrial

experience with the SST turbulence model”. In: Turbulence, heat and mass transfer

4.1 (2003), pp. 625–632.

[22] P. Sagaut E. Garnier N. Adams. Large Eddy Simulation for Compressible Flows.

Springer, 2009. doi: 10.1007/978-90-481-2819-8.

[23] Nicolas Gourdain, Frédéric Sicot, Florent Duchaine, and Laurent Gicquel. “Large

eddy simulation of flows in industrial compressors: a path from 2015 to 2035”.

In: Philosophical Transactions of the Royal society A: Mathematical, Physical and

engineering sciences 372.2022 (2014), p. 20130323. doi: 10.1098/rsta.2013.

0323.

[24] Philippe R Spalart. “Strategies for turbulence modelling and simulations”. In:

International Journal of Heat and Fluid Flow 21.3 (2000), pp. 252–263. doi: 10.

1016/S0142-727X(00)00007-2.

[25] Philippe R Spalart. “Comments on the Feasibility of LES for Wings and on the

Hybrid RANS/LES Approach”. In: Proceedings of the First AFOSR International

Conference on DNS/LES, 1997. 1997, pp. 137–147. isbn: 1570743657.

[26] Philippe R Spalart. “Detached-Eddy Simulation”. In: Annual Review of Fluid

Mechanics 41 (2009), pp. 181–202. doi: 10.1146/annurev.fluid.010908.16513

0.

[27] S Yarlanki, Bipin Rajendran, and H Hamann. “Estimation of turbulence closure

coefficients for data centers using machine learning algorithms”. In: 13th Inter-

Society Conference on Thermal and Thermomechanical Phenomena in Electronic

Systems. IEEE. 2012, pp. 38–42. doi: 10.1109/ITHERM.2012.6231411.

[28] Zhengqi Gu, Xin Song, Yejie Jiang, and Xu Gong. Optimization of the Realizable

k-ε Turbulence Model Especially for the Simulation of Road Vehicle. Tech. rep.

SAE Technical Paper, 2012. doi: 10.4271/2012-01-0778.

199

https://doi.org/10.1007/978-90-481-2819-8
https://doi.org/10.1098/rsta.2013.0323
https://doi.org/10.1098/rsta.2013.0323
https://doi.org/10.1016/S0142-727X(00)00007-2
https://doi.org/10.1016/S0142-727X(00)00007-2
https://doi.org/10.1146/annurev.fluid.010908.165130
https://doi.org/10.1146/annurev.fluid.010908.165130
https://doi.org/10.1109/ITHERM.2012.6231411
https://doi.org/10.4271/2012-01-0778

[29] Todd A Oliver and Robert D Moser. “Bayesian uncertainty quantification applied

to RANS turbulence models”. In: Journal of Physics: Conference Series. Vol. 318.

4. IOP Publishing. 2011, p. 042032. doi: 10.1088/1742-6596/318/4/042032.

[30] Eric J Parish and Karthik Duraisamy. “A paradigm for data-driven predictive

modeling using field inversion and machine learning”. In: Journal of Computational

Physics 305 (2016), pp. 758–774. doi: 10.1016/j.jcp.2015.11.012.

[31] Jonathan R Holland, James D Baeder, and Karthikeyan Duraisamy. “Field Inver-

sion and Machine Learning With Embedded Neural Networks: Physics-Consistent

Neural Network Training”. In: AIAA Aviation 2019 Forum. 2019, p. 3200. doi:

10.2514/6.2019-3200.

[32] Vishal Srivastava and Karthik Duraisamy. “Generalizable physics-constrained mod-

eling using learning and inference assisted by feature-space engineering”. In: Phys-

ical Review Fluids 6.12 (2021), p. 124602. doi: 10.1103/PhysRevFluids.6.

124602.

[33] Eric Parish and Karthikeyan Duraisamy. “Quantification of Turbulence Modeling

Uncertainties Using Full Field Inversion”. In: 22nd AIAA Computational Fluid

Dynamics Conference. 2015, p. 2459. doi: 10.2514/6.2015-2459.

[34] Ze Jia Zhang and Karthikeyan Duraisamy. “Machine Learning Methods for Data-

Driven Turbulence Modeling”. In: 22nd AIAA Computational Fluid Dynamics

Conference. 2015, p. 2460. doi: 10.2514/6.2015-2460.

[35] Brendan Tracey, Karthik Duraisamy, and Juan Alonso. “Application of Supervised

Learning to Quantify Uncertainties in Turbulence and Combustion Modeling”. In:

51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and

Aerospace Exposition. 2013. doi: 10.2514/6.2013-259.

[36] Anand Pratap Singh, Shivaji Medida, and Karthik Duraisamy. “Machine-Learning-

Augmented Predictive Modeling of Turbulent Separated Flows over Airfoils”. In:

AIAA Journal 55.7 (2017), pp. 2215–2227. doi: 10.2514/1.J055595.

200

https://doi.org/10.1088/1742-6596/318/4/042032
https://doi.org/10.1016/j.jcp.2015.11.012
https://doi.org/10.2514/6.2019-3200
https://doi.org/10.1103/PhysRevFluids.6.124602
https://doi.org/10.1103/PhysRevFluids.6.124602
https://doi.org/10.2514/6.2015-2459
https://doi.org/10.2514/6.2015-2460
https://doi.org/10.2514/6.2013-259
https://doi.org/10.2514/1.J055595

[37] Vishal Srivastava, Valentin Sulzer, Peyman Mohtat, Jason B Siegel, and Karthik

Duraisamy. “A non-intrusive approach for physics-constrained learning with ap-

plication to fuel cell modeling”. In: Computational Mechanics (2023), pp. 1–20.

doi: 10.1007/s00466-023-02342-7.

[38] Dieter Kraft. “A software package for sequential quadratic programming”. In:

Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raum-

fahrt (1988).

[39] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,

David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan

Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,

Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,

C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Lax-

alde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles

R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van

Mulbregt, and SciPy 1.0 Contributors. “SciPy 1.0: Fundamental Algorithms for

Scientific Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi:

10.1038/s41592-019-0686-2.

[40] Justin S. Gray, John T. Hwang, Joaquim R. R. A. Martins, Kenneth T. Moore, and

Bret A. Naylor. “OpenMDAO: An open-source framework for multidisciplinary de-

sign, analysis, and optimization”. In: Structural and Multidisciplinary Optimiza-

tion 59.4 (2019), pp. 1075–1104. doi: 10.1007/s00158-019-02211-z.

[41] Charles George Broyden. “The Convergence of a Class of Double-rank Minimiza-

tion Algorithms 1. General Considerations”. In: IMA Journal of Applied Mathe-

matics 6.1 (1970), pp. 76–90. doi: 10.1093/imamat/6.1.76.

[42] Roger Fletcher. “A new approach to variable metric algorithms”. In: The Com-

puter Journal 13.3 (1970), pp. 317–322. doi: 10.1093/comjnl/13.3.317.

201

https://doi.org/10.1007/s00466-023-02342-7
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/comjnl/13.3.317

[43] Donald Goldfarb. “A family of variable-metric methods derived by variational

means”. In: Mathematics of computation 24.109 (1970), pp. 23–26. doi: 10.2307/

2004873.

[44] David F Shanno. “Conditioning of quasi-Newton methods for function minimiza-

tion”. In: Mathematics of computation 24.111 (1970), pp. 647–656. doi: 10.2307/

2004840.

[45] G. E. P. Box and K. B. Wilson. “On the Experimental Attainment of Optimum

Conditions”. In: Journal of the Royal Statistical Society: Series B (Methodological)

13.1 (1951), pp. 1–38. doi: https://doi.org/10.1111/j.2517-6161.1951.

tb00067.x. eprint: https://rss.onlinelibrary.wiley.com/doi/pdf/10.

1111/j.2517- 6161.1951.tb00067.x. url: https://rss.onlinelibrary.

wiley.com/doi/abs/10.1111/j.2517-6161.1951.tb00067.x.

[46] JT Li, ZJ Liu, MA Jabbar, and XK Gao. “Design optimization for cogging torque

minimization using response surface methodology”. In: IEEE Transactions on

Magnetics 40.2 (2004), pp. 1176–1179. doi: 10.1109/TMAG.2004.824809.

[47] Hasan Kurtaran, Azim Eskandarian, D Marzougui, and NE Bedewi. “Crashwor-

thiness design optimization using successive response surface approximations”. In:

Computational Mechanics 29 (2002), pp. 409–421. doi: 10.1007/s00466-002-

0351-x.

[48] Jaekwon Ahn, Hyoung-Jin Kim, Dong-Ho Lee, and Oh-Hyun Rho. “Response

Surface Method for Airfoil Design in Transonic Flow”. In: Journal of Aircraft 38.2

(2001), pp. 231–238. doi: 10.2514/2.2780.

[49] JT Xiong, ZD Qiao, and ZH Han. “Aerodynamic shape optimization of transonic

airfoil and wing using response surface methodology”. In: 25th Congress of the

International Council of the Aeronautical Sciences. 2006.

[50] Jafar Nejadali. “Shape optimization of regenerative flow compressor with aero-foil

type blades using response surface methodology coupled with CFD”. In: Structural

202

https://doi.org/10.2307/2004873
https://doi.org/10.2307/2004873
https://doi.org/10.2307/2004840
https://doi.org/10.2307/2004840
https://doi.org/https://doi.org/10.1111/j.2517-6161.1951.tb00067.x
https://doi.org/https://doi.org/10.1111/j.2517-6161.1951.tb00067.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1951.tb00067.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1951.tb00067.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1951.tb00067.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1951.tb00067.x
https://doi.org/10.1109/TMAG.2004.824809
https://doi.org/10.1007/s00466-002-0351-x
https://doi.org/10.1007/s00466-002-0351-x
https://doi.org/10.2514/2.2780

and Multidisciplinary Optimization 64.4 (2021), pp. 2653–2667. doi: 10.1007/

s00158-021-03020-z.

[51] Donald R Jones, Matthias Schonlau, and William J Welch. “Efficient Global Op-

timization of Expensive Black-Box Functions”. In: Journal of Global optimization

13 (1998), pp. 455–492. doi: 10.1023/A:1008306431147.

[52] Jiabin Hu, Yuze Jiang, Jiayu Li, and Tianyue Yuan. “Alternative Acquisition

Functions of Bayesian Optimization in terms of Noisy Observation”. In: Proceed-

ings of the 2021 European Symposium on Software Engineering. 2021, pp. 112–

119. doi: 10.1145/3501774.3501791.

[53] James Wilson, Frank Hutter, and Marc Deisenroth. “Maximizing acquisition func-

tions for Bayesian optimization”. In: Proceedings of the 32nd International Con-

ference on Neural Information Processing Systems. Vol. 31. Red Hook, NY, USA:

Curran Associates Inc., 2018.

[54] Ney Rafael Secco and Bento Silva de Mattos. “Artificial neural networks to pre-

dict aerodynamic coefficients of transport airplanes”. In: Aircraft Engineering and

Aerospace Technology 89.2 (2017), pp. 211–230. doi: 10.1108/AEAT-05-2014-

0069.

[55] Abdelwahid Boutemedjet, Marija Samardžić, Lamine Rebhi, Zoran Rajić, and

Takieddine Mouada. “UAV aerodynamic design involving genetic algorithm and

artificial neural network for wing preliminary computation”. In: Aerospace Science

and Technology 84 (2019), pp. 464–483. doi: 10.1016/j.ast.2018.09.043.

[56] Mohamed Amine Bouhlel, Sicheng He, and Joaquim RRA Martins. “Scalable

gradient–enhanced artificial neural networks for airfoil shape design in the sub-

sonic and transonic regimes”. In: Structural and Multidisciplinary Optimization

61 (2020), pp. 1363–1376. doi: 10.1007/s00158-020-02488-5.

[57] Michael D McKay, Richard J Beckman, and William J Conover. “A Comparison

of Three Methods for Selecting Values of Input Variables in the Analysis of Output

203

https://doi.org/10.1007/s00158-021-03020-z
https://doi.org/10.1007/s00158-021-03020-z
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1145/3501774.3501791
https://doi.org/10.1108/AEAT-05-2014-0069
https://doi.org/10.1108/AEAT-05-2014-0069
https://doi.org/10.1016/j.ast.2018.09.043
https://doi.org/10.1007/s00158-020-02488-5

from a Computer Code”. In: Technometrics 21.2 (1979), pp. 239–245. doi: 10.

2307/1268522.

[58] SV Patankar and DB Spalding. “A calculation procedure for heat, mass and mo-

mentum transfer in three-dimensional parabolic flows”. In: International Journal

of Heat and Mass Transfer 15.10 (1972), pp. 1787–1806. doi: 10.1016/0017-

9310(72)90054-3.

[59] Jeffrey P Van Doormaal and George D Raithby. “Enhancements of the SIMPLE

Method for Predicting Incompressible Fluid Flows”. In: Numerical Heat Transfer

7.2 (1984), pp. 147–163. doi: 10.1080/01495728408961817.

[60] F Moukalled and M Darwish. “A unified formulation of the segregated class of

algorithms for fluid flow at all speeds”. In: Numerical Heat Transfer, Part B:

Fundamentals 37.1 (2000), pp. 103–139. doi: 10.1080/104077900275576.

[61] Valentina Dolci and Renzo Arina. “Proper Orthogonal Decomposition as Surrogate

Model for Aerodynamic Optimization”. In: International Journal of Aerospace

Engineering 2016 (2016). doi: 10.1155/2016/8092824.

[62] Filippo Salmoiraghi, Angela Scardigli, Haysam Telib, and Gianluigi Rozza. “Free-

form deformation, mesh morphing and reduced-order methods: enablers for ef-

ficient aerodynamic shape optimisation”. In: International Journal of Computa-

tional Fluid Dynamics 32.4–5 (2018), pp. 233–247. doi: 10.1080/10618562.

2018.1514115.

[63] Karen Willcox and Jaime Peraire. “Balanced Model Reduction via the Proper

Orthogonal Decomposition”. In: AIAA Journal 40.11 (2002), pp. 2323–2330. doi:

10.2514/2.1570.

[64] Peter Benner, Serkan Gugercin, and Karen Willcox. “A Survey of Projection-Based

Model Reduction Methods for Parametric Dynamical Systems”. In: SIAM Review

57.4 (2015), pp. 483–531. doi: 10.1137/130932715.

204

https://doi.org/10.2307/1268522
https://doi.org/10.2307/1268522
https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1080/01495728408961817
https://doi.org/10.1080/104077900275576
https://doi.org/10.1155/2016/8092824
https://doi.org/10.1080/10618562.2018.1514115
https://doi.org/10.1080/10618562.2018.1514115
https://doi.org/10.2514/2.1570
https://doi.org/10.1137/130932715

[65] Matan Gavish and David L Donoho. “The Optimal Hard Threshold for Singu-

lar Values is 4/
√

3”. In: IEEE Transactions on Information Theory 60.8 (2014),

pp. 5040–5053. doi: 10.1109/TIT.2014.2323359.

[66] Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T Patera. “An

‘empirical interpolation’ method: application to efficient reduced-basis discretiza-

tion of partial differential equations”. In: Comptes Rendus Mathematique 339.9

(2004), pp. 667–672. doi: 10.1016/j.crma.2004.08.006.

[67] Saifon Chaturantabut and Danny C Sorensen. “Nonlinear Model Reduction via

Discrete Empirical Interpolation”. In: SIAM Journal on Scientific Computing 32.5

(2010), pp. 2737–2764. doi: 10.1137/090766498.

[68] Zlatko Drmac and Serkan Gugercin. “A New Selection Operator for the Discrete

Empirical Interpolation Method—Improved A Priori Error Bound and Exten-

sions”. In: SIAM Journal on Scientific Computing 38.2 (2016), A631–A648. doi:

10.1137/15M1019271.

[69] J Nathan Kutz, Syuzanna Sargsyan, and Steven L Brunton. “Leveraging Sparsity

and Compressive Sensing for Reduced Order Modeling”. In: Model Reduction of

Parametrized Systems. Springer International Publishing, 2017, pp. 301–315. isbn:

978-3-319-58786-8. doi: 10.1007/978-3-319-58786-8_19.

[70] Krithika Manohar, Bingni W Brunton, J Nathan Kutz, and Steven L Brunton.

“Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the

Benefits of Exploiting Known Patterns”. In: IEEE Control Systems Magazine 38.3

(2018), pp. 63–86. doi: 10.1109/MCS.2018.2810460.

[71] Richard Everson and Lawrence Sirovich. “Karhunen–Loève procedure for gappy

data”. In: Journal of the Optical Society of America A 12.8 (1995), pp. 1657–1664.

doi: 10.1364/JOSAA.12.001657.

[72] Patricia Astrid, Siep Weiland, Karen Willcox, and Ton Backx. “Missing Point

Estimation in Models Described by Proper Orthogonal Decomposition”. In: IEEE

205

https://doi.org/10.1109/TIT.2014.2323359
https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1137/090766498
https://doi.org/10.1137/15M1019271
https://doi.org/10.1007/978-3-319-58786-8_19
https://doi.org/10.1109/MCS.2018.2810460
https://doi.org/10.1364/JOSAA.12.001657

Transactions on Automatic Control 53.10 (2008), pp. 2237–2251. doi: 10.1109/

TAC.2008.2006102.

[73] Jan S Hesthaven and Stefano Ubbiali. “Non-intrusive reduced order modeling of

nonlinear problems using neural networks”. In: Journal of Computational Physics

363 (2018), pp. 55–78. doi: 10.1016/j.jcp.2018.02.037.

[74] Qian Wang, Jan S Hesthaven, and Deep Ray. “Non-intrusive reduced order mod-

eling of unsteady flows using artificial neural networks with application to a com-

bustion problem”. In: Journal of Computational Physics 384 (2019), pp. 289–307.

doi: 10.1016/j.jcp.2019.01.031.

[75] Xiaoxiao Guo, Wei Li, and Francesco Iorio. “Convolutional Neural Networks for

Steady Flow Approximation”. In: Proceedings of the 22nd ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining. 2016, pp. 481–490.

doi: 10.1145/2939672.2939738.

[76] Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailen-

dra Kaushik. “Prediction of aerodynamic flow fields using convolutional neural

networks”. In: Computational Mechanics 64.2 (2019), pp. 525–545. doi: 10.1007/

s00466-019-01740-0.

[77] Kaustubh Tangsali, Vinayak R Krishnamurthy, and Zohaib Hasnain. “Generaliz-

ability of Convolutional Encoder–Decoder Networks for Aerodynamic Flow-Field

Prediction Across Geometric and Physical-Fluidic Variations”. In: Journal of Me-

chanical Design 143.5 (2021). doi: 10.1115/1.4048221.

[78] Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu. “Deep Learn-

ing Methods for Reynolds-Averaged Navier–Stokes Simulations of Airfoil Flows”.

In: AIAA Journal 58.1 (2020), pp. 25–36. doi: 10.2514/1.J058291.

[79] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “”U-Net: Convolutional

Networks for Biomedical Image Segmentation”. In: Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2015. Springer. 2015, pp. 234–241.

isbn: 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4_28.

206

https://doi.org/10.1109/TAC.2008.2006102
https://doi.org/10.1109/TAC.2008.2006102
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1016/j.jcp.2019.01.031
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1115/1.4048221
https://doi.org/10.2514/1.J058291
https://doi.org/10.1007/978-3-319-24574-4_28

[80] Jiayang Xu and Karthik Duraisamy. “Multi-level convolutional autoencoder net-

works for parametric prediction of spatio-temporal dynamics”. In: Computer Meth-

ods in Applied Mechanics and Engineering 372 (2020), p. 113379. issn: 0045-7825.

doi: 10.1016/j.cma.2020.113379.

[81] Kazuto Hasegawa, Kai Fukami, Takaaki Murata, and Koji Fukagata. “Machine-

learning-based reduced-order modeling for unsteady flows around bluff bodies of

various shapes”. In: Theoretical and Computational Fluid Dynamics 34.4 (2020),

pp. 367–383. doi: 10.1007/s00162-020-00528-w.

[82] Arvind Mohan, Don Daniel, Michael Chertkov, and Daniel Livescu. “Compressed

Convolutional LSTM: An Efficient Deep Learning framework to Model High Fi-

delity 3D Turbulence”. In: arXiv preprint arXiv:1903.00033 (2019). url: https:

//api.semanticscholar.org/CorpusID:119353217.

[83] Javier E Santos, Duo Xu, Honggeun Jo, Christopher J Landry, Maša Prodanović,

and Michael J Pyrcz. “PoreFlow-Net: A 3D convolutional neural network to predict

fluid flow through porous media”. In: Advances in Water Resources 138 (2020),

p. 103539. issn: 0309-1708. doi: 10.1016/j.advwatres.2020.103539.

[84] Feng Gao, Zhuang Zhang, Chenyang Jia, Yin Zhu, Chunli Zhou, and Jingtao

Wang. “Simulation and prediction of three-dimensional rotating flows based on

convolutional neural networks”. In: Physics of Fluids 34.9 (2022), p. 095116. doi:

10.1063/5.0113030.

[85] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Net-

works and Locally Connected Networks on Graphs. 2014. doi: 10.48550/arXiv.

1312.6203. arXiv: 1312.6203 [cs.LG].

[86] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep Convolutional Networks on

Graph-Structured Data. 2015. doi: https://doi.org/10.48550/arXiv.1506.

05163. arXiv: 1506.05163 [cs.LG].

207

https://doi.org/10.1016/j.cma.2020.113379
https://doi.org/10.1007/s00162-020-00528-w
https://api.semanticscholar.org/CorpusID:119353217
https://api.semanticscholar.org/CorpusID:119353217
https://doi.org/10.1016/j.advwatres.2020.103539
https://doi.org/10.1063/5.0113030
https://doi.org/10.48550/arXiv.1312.6203
https://doi.org/10.48550/arXiv.1312.6203
https://arxiv.org/abs/1312.6203
https://doi.org/https://doi.org/10.48550/arXiv.1506.05163
https://doi.org/https://doi.org/10.48550/arXiv.1506.05163
https://arxiv.org/abs/1506.05163

[87] Max Welling and Thomas N Kipf. “Semi-supervised classification with graph con-

volutional networks”. In: J. International Conference on Learning Representations

(ICLR 2017). 2016.

[88] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional

neural networks on graphs with fast localized spectral filtering”. In: Proceedings

of the 30th International Conference on Neural Information Processing Systems.

Vol. 29. Red Hook, NY, USA: Curran Associates Inc., 2016, 3844–3852. isbn:

9781510838819.

[89] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Tim-

othy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. “Convolutional networks on

graphs for learning molecular fingerprints”. In: Proceedings of the 28th Interna-

tional Conference on Neural Information Processing Systems - Volume 2. Vol. 28.

NIPS’15. MIT Press, 2015, 2224–2232.

[90] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George

E Dahl. “Neural message passing for quantum chemistry”. In: Proceedings of the

34th International Conference on Machine Learning - Volume 70. Sydney, NSW,

Australia: JMLR.org, 2017, pp. 1263–1272.

[91] Francis Ogoke, Kazem Meidani, Amirreza Hashemi, and Amir Barati Farimani.

“Graph convolutional networks applied to unstructured flow field data”. In: Ma-

chine Learning: Science and Technology 2 (2020). url: https://api.semantics

cholar.org/CorpusID:227306077.

[92] Jiayang Xu, Aniruddhe Pradhan, and Karthikeyan Duraisamy. “Conditionally

Parameterized, Discretization-Aware Neural Networks for Mesh-Based Modeling

of Physical Systems”. In: Advances in Neural Information Processing Systems.

Vol. 34. 2021, pp. 1634–1645.

[93] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia.

“Learning Mesh-Based Simulation with Graph Networks”. In: International Con-

208

https://api.semanticscholar.org/CorpusID:227306077
https://api.semanticscholar.org/CorpusID:227306077

ference on Learning Representations. 2021. url: https://openreview.net/

forum?id=roNqYL0_XP.

[94] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec,

and Peter Battaglia. “Learning to simulate complex physics with graph networks”.

In: International Conference on Machine Learning. PMLR. 2020, pp. 8459–8468.

[95] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karni-

adakis. “Learning nonlinear operators via DeepONet based on the universal ap-

proximation theorem of operators”. In: Nature Machine Intelligence 3.3 (2021),

pp. 218–229. doi: 10.1038/s42256-021-00302-5.

[96] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “Learning the solution operator

of parametric partial differential equations with physics-informed DeepONets”. In:

Science Advances 7.40 (2021), eabi8605.

[97] Shengze Cai, Zhicheng Wang, Lu Lu, Tamer A Zaki, and George Em Karniadakis.

“DeepM&Mnet: Inferring the electroconvection multiphysics fields based on op-

erator approximation by neural networks”. In: Journal of Computational Physics

436 (2021), p. 110296. doi: 10.1016/j.jcp.2021.110296.

[98] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-

tacharya, Andrew Stuart, and Anima Anandkumar. “Neural operator: Graph ker-

nel network for partial differential equations”. In: arXiv preprint arXiv:2003.03485

(2020).

[99] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stu-

art, Kaushik Bhattacharya, and Anima Anandkumar. “Multipole graph neural

operator for parametric partial differential equations”. In: Proceedings of the 34th

International Conference on Neural Information Processing Systems. Vol. 33. 2020,

pp. 6755–6766.

[100] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-

tacharya, Andrew Stuart, and Anima Anandkumar. “Fourier neural operator for

209

https://openreview.net/forum?id=roNqYL0_XP
https://openreview.net/forum?id=roNqYL0_XP
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1016/j.jcp.2021.110296

parametric partial differential equations”. In: arXiv preprint arXiv:2010.08895

(2020).

[101] Nathaniel Trask, Ravi G. Patel, Ben J. Gross, and Paul J. Atzberger. GMLS-

Nets: A framework for learning from unstructured data. 2019. arXiv: 1909.05371

[cs.LG].

[102] James Duvall, Michael Joly, Karthikeyan Duraisamy, and Soumalya Sarkar. “Flow-

field Emulation and Shape Optimization of Compressor Airfoils using Design-

Variable Hypernetworks”. In: AIAA SCITECH 2023 Forum. doi: 10.2514/6.

2023-1678. eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2023-1678.

url: https://arc.aiaa.org/doi/abs/10.2514/6.2023-1678.

[103] James Duvall, Michael Joly, Karthik Duraisamy, and Soumalya Sarkar. “Design-

Variable Hypernetworks for Flowfield Emulation and Shape Optimization of Com-

pressor Airfoils”. In: AIAA Journal (2023), pp. 1–17. doi: 10.2514/1.J063156.

[104] Tinne Hoff Kjeldsen. “A Contextualized Historical Analysis of the Kuhn–Tucker

Theorem in Nonlinear Programming: The Impact of World War II”. In: Historia

Mathematica 27.4 (2000), pp. 331–361. issn: 0315-0860. doi: https://doi.org/

10.1006/hmat.2000.2289. url: https://www.sciencedirect.com/science/

article/pii/S0315086000922894.

[105] Joaquim RRA Martins, Peter Sturdza, and Juan J Alonso. “The complex-step

derivative approximation”. In: ACM Transactions on Mathematical Software (TOMS)

29.3 (2003), pp. 245–262. issn: 0098-3500. doi: 10.1145/838250.838251.

[106] Charles C Margossian. “A review of automatic differentiation and its efficient

implementation”. In: WIREs Data Mining and Knowledge Discovery 9.4 (2019),

e1305. doi: https://doi.org/10.1002/widm.1305.

[107] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. “On the im-

portance of initialization and momentum in deep learning”. In: Proceedings of the

30th International Conference on Machine Learning. Ed. by Sanjoy Dasgupta and

David McAllester. Vol. 28. Proceedings of Machine Learning Research 3. Atlanta,

210

https://arxiv.org/abs/1909.05371
https://arxiv.org/abs/1909.05371
https://doi.org/10.2514/6.2023-1678
https://doi.org/10.2514/6.2023-1678
https://arc.aiaa.org/doi/pdf/10.2514/6.2023-1678
https://arc.aiaa.org/doi/abs/10.2514/6.2023-1678
https://doi.org/10.2514/1.J063156
https://doi.org/https://doi.org/10.1006/hmat.2000.2289
https://doi.org/https://doi.org/10.1006/hmat.2000.2289
https://www.sciencedirect.com/science/article/pii/S0315086000922894
https://www.sciencedirect.com/science/article/pii/S0315086000922894
https://doi.org/10.1145/838250.838251
https://doi.org/https://doi.org/10.1002/widm.1305

Georgia, USA: PMLR, 2013, pp. 1139–1147. url: https://proceedings.mlr.

press/v28/sutskever13.html.

[108] Reeves Fletcher and Colin M Reeves. “Function minimization by conjugate gradi-

ents”. In: The Computer Journal 7.2 (1964), pp. 149–154. doi: 10.1093/comjnl/

7.2.149.

[109] Magnus R Hestenes and Eduard Stiefel. “Methods of conjugate gradients for solv-

ing linear systems”. In: Journal of research of the National Bureau of Standards

49.6 (1952), pp. 409–436. url: https://api.semanticscholar.org/CorpusID:

2207234.

[110] Joaquim R. R. A. Martins and Andrew Ning. Engineering Design Optimization.

Cambridge University Press, 2021. doi: 10.1017/9781108980647.

[111] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 2e. New York,

NY, USA: Springer, 2006.

[112] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-

tion”. In: arXiv preprint arXiv:1412.6980 (2014). doi: 10.48550/arXiv.1412.

6980.

[113] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for

Online Learning and Stochastic Optimization”. In: Journal of Machine Learning

Research 12.61 (2011), pp. 2121–2159. url: http://jmlr.org/papers/v12/

duchi11a.html.

[114] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. 2012. doi:

10.48550/arXiv.1212.5701. arXiv: 1212.5701 [cs.LG].

[115] Geoffrey Hinton. Coursear Neural Networks for Machine Learning, Lecture 6. ht

tps://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.

pdf. 2018.

[116] Arthur E Hoerl and Robert W Kennard. “Ridge Regression: Applications to

Nonorthogonal Problems”. In: Technometrics 12.1 (1970), pp. 69–82. doi: 10.

1080/00401706.1970.10488635.

211

https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/10.1093/comjnl/7.2.149
https://doi.org/10.1093/comjnl/7.2.149
https://api.semanticscholar.org/CorpusID:2207234
https://api.semanticscholar.org/CorpusID:2207234
https://doi.org/10.1017/9781108980647
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.48550/arXiv.1212.5701
https://arxiv.org/abs/1212.5701
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1080/00401706.1970.10488635
https://doi.org/10.1080/00401706.1970.10488635

[117] Robert Tibshirani. “Regression Shrinkage and Selection Via the Lasso”. In: Jour-

nal of the Royal Statistical Society: Series B (Methodological) 58.1 (1996), pp. 267–

288. doi: 10.1111/j.2517-6161.1996.tb02080.x.

[118] Hui Zou and Trevor Hastie. “Regularization and Variable Selection Via the Elastic

Net”. In: Journal of the Royal Statistical Society Series B: Statistical Methodology

67.2 (Mar. 2005), pp. 301–320. issn: 1369-7412. doi: 10.1111/j.1467-9868.

2005.00503.x. eprint: https://academic.oup.com/jrsssb/article-pdf/67/

2/301/49795094/jrsssb_67_2_301.pdf. url: https://doi.org/10.1111/

j.1467-9868.2005.00503.x.

[119] Raymond H Myers, Douglas C Montgomery, G Geoffrey Vining, Connie M Borror,

and Scott M Kowalski. “Response Surface Methodology: A Retrospective and

Literature Survey”. In: Journal of Quality Technology 36.1 (2004), pp. 53–77.

doi: 10.1080/00224065.2004.11980252.

[120] David Duvenaud. The Kernel Cookbook: Advice on Covariance functions. url:

https://www.cs.toronto.edu/~duvenaud/cookbook/.

[121] Haitao Liu, Jianfei Cai, and Yew-Soon Ong. “Remarks on multi-output Gaussian

process regression”. In: Knowledge-Based Systems 144 (2018), pp. 102–121. issn:

0950-7051. doi: 10.1016/j.knosys.2017.12.034.

[122] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-

cent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu

Brucher, Matthieu Perrot, and Édouard Duchesnay. “Scikit-learn: Machine Learn-

ing in Python”. In: Journal of Machine Learning Research 12.85 (2011), pp. 2825–

2830. url: http://jmlr.org/papers/v12/pedregosa11a.html.

[123] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for

machine learning. Adaptive computation and machine learning. MIT Press, 2006,

pp. I–XVIII, 1–248. isbn: 026218253X.

212

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://academic.oup.com/jrsssb/article-pdf/67/2/301/49795094/jrsssb_67_2_301.pdf
https://academic.oup.com/jrsssb/article-pdf/67/2/301/49795094/jrsssb_67_2_301.pdf
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1080/00224065.2004.11980252
https://www.cs.toronto.edu/~duvenaud/cookbook/
https://doi.org/10.1016/j.knosys.2017.12.034
http://jmlr.org/papers/v12/pedregosa11a.html

[124] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage

and organization in the brain.” In: Psychological Review 65.6 (1958), p. 386. doi:

10.1037/h0042519.

[125] Shun-ichi Amari. “Backpropagation and stochastic gradient descent method”. In:

Neurocomputing 5.4-5 (1993), pp. 185–196. doi: 10.1016/0925-2312(93)90006-

O.

[126] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,

Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,

Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software

available from tensorflow.org. 2015. url: https://www.tensorflow.org/.

[127] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-

ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library”. In: Advances in Neural Information Processing Systems 32. Curran

Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-

library.pdf.

[128] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye

Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy

programs. Version 0.3.13. 2018. url: http://github.com/google/jax.

213

https://doi.org/10.1037/h0042519
https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/10.1016/0925-2312(93)90006-O
https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://github.com/google/jax

[129] Dor Bank, Noam Koenigstein, and Raja” Giryes. “Autoencoders”. In: Machine

Learning for Data Science Handbook: Data Mining and Knowledge Discovery Hand-

book. Ed. by Lior Rokach, Oded Maimon, and Erez Shmueli. Springer International

Publishing, 2023, pp. 353–374. isbn: 978-3-031-24628-9. doi: 10.1007/978-3-

031-24628-9_16.

[130] Pierre Baldi. “Autoencoders, Unsupervised Learning, and Deep Architectures”.

In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning. Ed.

by Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and Daniel

Silver. Vol. 27. Proceedings of Machine Learning Research. JMLR Workshop and

Conference Proceedings. 2012, pp. 37–49. url: https : / / proceedings . mlr .

press/v27/baldi12a.html.

[131] David E. Rumelhart and James L. McClelland. “Learning Internal Representations

by Error Propagation”. In: Parallel Distributed Processing: Explorations in the

Microstructure of Cognition: Foundations. The MIT Press, 1986, pp. 318–362.

isbn: 9780262291408. doi: 10.7551/mitpress/5236.001.0001.

[132] Elad Plaut. “From principal subspaces to principal components with linear au-

toencoders”. In: arXiv preprint arXiv:1804.10253 (2018). doi: 10.48550/arXiv.

1804.10253.

[133] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification

with Deep Convolutional Neural Networks”. In: Advances in Neural Information

Processing Systems 25 (2012). url: https://proceedings.neurips.cc/paper_

files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[134] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position”. In: Biological

cybernetics 36.4 (1980), pp. 193–202. doi: 10.1007/BF00344251.

[135] David H Hubel and Torsten N Wiesel. “Receptive fields of single neurones in the

cat’s striate cortex”. In: The Journal of Physiology 148.3 (1959), p. 574. doi:

10.1113/jphysiol.1959.sp006308.

214

https://doi.org/10.1007/978-3-031-24628-9_16
https://doi.org/10.1007/978-3-031-24628-9_16
https://proceedings.mlr.press/v27/baldi12a.html
https://proceedings.mlr.press/v27/baldi12a.html
https://doi.org/10.7551/mitpress/5236.001.0001
https://doi.org/10.48550/arXiv.1804.10253
https://doi.org/10.48550/arXiv.1804.10253
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1007/BF00344251
https://doi.org/10.1113/jphysiol.1959.sp006308

[136] James Atwood and Don Towsley. “Diffusion-convolutional neural networks”. In:

Proceedings of the 30th International Conference on Neural Information Processing

Systems. Vol. 29. Curran Associates Inc., 2016, 2001–2009. isbn: 9781510838819.

[137] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. “Learning convolu-

tional neural networks for graphs”. In: Proceedings of the 33rd International Con-

ference on International Conference on Machine Learning - Volume 48. ICML’16.

JMLR.org, 2016, pp. 2014–2023.

[138] David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. “The emerging field of signal processing on graphs: Extending

high-dimensional data analysis to networks and other irregular domains”. In: IEEE

Signal Processing Magazine 30.3 (2013), pp. 83–98. doi: 10.1109/MSP.2012.

2235192.

[139] Stephane Mallat. A Wavelet Tour of Signal Processing. 2009.

[140] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph

Convolutional Networks”. In: International Conference on Learning Representa-

tions. 2017. url: https://openreview.net/forum?id=SJU4ayYgl.

[141] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning

on large graphs”. In: Proceedings of the 31st International Conference on Neural

Information Processing Systems. Vol. 30. Curran Associates Inc., 2017, 1025–1035.

isbn: 9781510860964.

[142] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al.

“Interaction networks for learning about objects, relations and physics”. In: Pro-

ceedings of the 30th International Conference on Neural Information Processing

Systems. Vol. 29. Curran Associates Inc., 2016, 4509–4517. isbn: 9781510838819.

[143] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas. “PointNet: Deep

Learning on Point Sets for 3D Classification and Segmentation”. In: 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 77–

85. doi: 10.1109/CVPR.2017.16.

215

https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/MSP.2012.2235192
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1109/CVPR.2017.16

[144] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. “Pointnet++:

Deep hierarchical feature learning on point sets in a metric space”. In: Proceedings

of the 31st International Conference on Neural Information Processing Systems.

Vol. 30. Curran Associates Inc., 2017, 5105––5114. isbn: 9781510860964.

[145] Ali Kashefi, Davis Rempe, and Leonidas J Guibas. “A point-cloud deep learning

framework for prediction of fluid flow fields on irregular geometries”. In: Physics

of Fluids 33.2 (2021), p. 027104. issn: 1070-6631. doi: 10.1063/5.0033376.

[146] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang

Zhang, and George Em Karniadakis. “A comprehensive and fair comparison of

two neural operators (with practical extensions) based on fair data”. In: Computer

Methods in Applied Mechanics and Engineering 393 (2022), p. 114778. doi: 10.

1016/j.cma.2022.114778.

[147] Nikola B Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik

Bhattacharya, Andrew M Stuart, and Anima Anandkumar. “Neural Operator:

Learning Maps Between Function Spaces With Applications to PDEs.” In: Journal

of Machine Learning Research 24.89 (2023), pp. 1–97. url: http://jmlr.org/

papers/v24/21-1524.html.

[148] Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. “Fourier

neural operator with learned deformations for pdes on general geometries”. In:

arXiv preprint arXiv:2207.05209 (2022). doi: 10.48550/arXiv.2207.05209.

[149] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neu-

ral networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations”. In: Journal of Computational

physics 378 (2019), pp. 686–707. doi: https://doi.org/10.1016/j.jcp.2018.

10.045.

[150] Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. “Surrogate model-

ing for fluid flows based on physics-constrained deep learning without simulation

216

https://doi.org/10.1063/5.0033376
https://doi.org/10.1016/j.cma.2022.114778
https://doi.org/10.1016/j.cma.2022.114778
http://jmlr.org/papers/v24/21-1524.html
http://jmlr.org/papers/v24/21-1524.html
https://doi.org/10.48550/arXiv.2207.05209
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045

data”. In: Computer Methods in Applied Mechanics and Engineering 361 (2020),

p. 112732. issn: 0045-7825. doi: 10.1016/j.cma.2019.112732.

[151] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. “Artificial neural net-

works for solving ordinary and partial differential equations”. In: IEEE transac-

tions on neural networks 9.5 (1998), pp. 987–1000. doi: 10.1109/72.712178.

[152] Isaac E Lagaris, Aristidis C Likas, and Dimitris G Papageorgiou. “Neural-network

methods for boundary value problems with irregular boundaries”. In: IEEE Trans-

actions on Neural Networks 11.5 (2000), pp. 1041–1049. doi: 10.1109/72.870037.

[153] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied

to document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–

2324. doi: 10.1109/5.726791.

[154] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

“Extracting and composing robust features with denoising autoencoders”. In: Pro-

ceedings of the 25th international conference on Machine learning. 2008, pp. 1096–

1103.

[155] J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor.

Dynamic mode decomposition: data-driven modeling of complex systems. SIAM,

2016.

[156] Carlos Pérez Arroyo, Jérôme Dombard, Florent Duchaine, Laurent Gicquel, Ben-

jamin Martin, Nicolas Odier, and Gabriel Staffelbach. “Towards the large-eddy

simulation of a full engine: Integration of a 360 azimuthal degrees fan, compressor

and combustion chamber. Part I: Methodology and initialisation”. In: Journal of

the Global Power and Propulsion Society May (2021), pp. 1–16. doi: 10.33737/

jgpps/133115.

[157] Peter J Schmid. “Dynamic Mode Decomposition and Its Variants”. In: Annual

Review of Fluid Mechanics 54 (2022), pp. 225–254. doi: 10 . 1146 / annurev -

fluid-030121-015835.

217

https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.870037
https://doi.org/10.1109/5.726791
https://doi.org/10.33737/jgpps/133115
https://doi.org/10.33737/jgpps/133115
https://doi.org/10.1146/annurev-fluid-030121-015835
https://doi.org/10.1146/annurev-fluid-030121-015835

[158] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven

Lovegrove. “DeepSDF: Learning Continuous Signed Distance Functions for Shape

Representation”. In: Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR). 2019, pp. 165–174. doi: 10.1109/CVPR.

2019.00025.

[159] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson. “On the Effectiveness

of Weight-Encoded Neural Implicit 3D Shapes”. In: arXiv preprint arXiv:2009.09808

(2020). doi: 10.48550/arXiv.2009.09808.

[160] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and

Andreas Geiger. “Occupancy networks: Learning 3d reconstruction in function

space”. In: Proceedings of the IEEE/CVF conference on computer vision and pat-

tern recognition. 2019, pp. 4460–4470. url: https://openaccess.thecvf.com/

content_CVPR_2019/papers/Mescheder_Occupancy_Networks_Learning_3D_

Reconstruction_in_Function_Space_CVPR_2019_paper.pdf.

[161] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi

Ramamoorthi, and Ren Ng. “NeRF: Representing Scenes as Neural Radiance

Fields for View Synthesis”. In: Communications of the ACM 65.1 (2021), pp. 99–

106. doi: 10.1145/3503250.

[162] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair

Khan, Federico Tombari, James Tompkin, Vincent sitzmann, and Srinath Sridhar.

“Neural Fields in Visual Computing and Beyond”. In: vol. 41. 2. 2022, pp. 641–

676. doi: https://doi.org/10.1111/cgf.14505.

[163] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville.

“FiLM: Visual Reasoning with a General Conditioning Layer”. In: Proceedings of

the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Inno-

vative Applications of Artificial Intelligence Conference and Eighth AAAI Sympo-

sium on Educational Advances in Artificial Intelligence. AAAI’18/IAAI’18/EAAI’18.

New Orleans, Louisiana, USA: AAAI Press, 2018. isbn: 978-1-57735-800-8.

218

https://doi.org/10.1109/CVPR.2019.00025
https://doi.org/10.1109/CVPR.2019.00025
https://doi.org/10.48550/arXiv.2009.09808
https://openaccess.thecvf.com/content_CVPR_2019/papers/Mescheder_Occupancy_Networks_Learning_3D_Reconstruction_in_Function_Space_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Mescheder_Occupancy_Networks_Learning_3D_Reconstruction_in_Function_Space_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Mescheder_Occupancy_Networks_Learning_3D_Reconstruction_in_Function_Space_CVPR_2019_paper.pdf
https://doi.org/10.1145/3503250
https://doi.org/https://doi.org/10.1111/cgf.14505

[164] Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian Strub, Harm de Vries,

Aaron Courville, and Yoshua Bengio. “Feature-wise transformations”. In: Distill

(2018). https://distill.pub/2018/feature-wise-transformations. doi: 10.23915/di

still.00011.

[165] David Ha, Andrew Dai, and Quoc V Le. “Hypernetworks”. In: arXiv preprint

arXiv:1609.09106 (2016). doi: 10.48550/arXiv.1609.09106.

[166] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets”.

In: Advances in Neural Information Processing Systems. Ed. by Z. Ghahramani, M.

Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger. Vol. 27. Curran Associates,

Inc., 2014. url: https://proceedings.neurips.cc/paper/2014/file/5ca3e9

b122f61f8f06494c97b1afccf3-Paper.pdf.

[167] Zhiqin Chen and Hao Zhang. “Learning Implicit Fields for Generative Shape Mod-

eling”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2019, pp. 5932–5941. doi: 10.1109/CVPR.2019.00609.

[168] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon

Wetzstein. “Implicit Neural Representations with Periodic Activation Functions”.

In: Advances in Neural Information Processing Systems 33 (2020), pp. 7462–7473.

url: https://proceedings.neurips.cc/paper_files/paper/2020/file/

53c04118df112c13a8c34b38343b9c10-Paper.pdf.

[169] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and koray kavukcuoglu.

“Spatial Transformer Networks”. In: Advances in Neural Information Processing

Systems. Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett.

Vol. 28. Curran Associates, Inc., 2015. url: https://proceedings.neurips.

cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-

Paper.pdf.

[170] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. “Dynamic filter

networks”. In: Proceedings of the 30th International Conference on Neural Infor-

219

https://doi.org/10.23915/distill.00011
https://doi.org/10.23915/distill.00011
https://doi.org/10.48550/arXiv.1609.09106
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1109/CVPR.2019.00609
https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf

mation Processing Systems. Vol. 29. NIPS’16. Barcelona, Spain: Curran Associates

Inc., 2016, 667–675. isbn: 9781510838819.

[171] Luca Bertinetto, João F Henriques, Jack Valmadre, Philip Torr, and Andrea

Vedaldi. “Learning feed-forward one-shot learners”. In: Proceedings of the 30th

International Conference on Neural Information Processing Systems. NIPS’16.

Barcelona, Spain: Curran Associates Inc., 2016, 523–531. isbn: 9781510838819.

[172] Shaowu Pan, Steven L Brunton, and J Nathan Kutz. “Neural Implicit Flow: a

mesh-agnostic dimensionality reduction paradigm of spatio-temporal data”. In:

Journal of Machine Learning Research 24.41 (2023), pp. 1–60. url: http://

jmlr.org/papers/v24/22-0365.html.

[173] Filipe de Avila Belbute-Peres, Yi-fan Chen, and Fei Sha. “HyperPINN: Learning

parameterized differential equations with physics-informed hypernetworks”. In:

The Symbiosis of Deep Learning and Differential Equations. Vol. abs/2111.01008.

2021. url: https://api.semanticscholar.org/CorpusID:240354714.

[174] Alexander LeNail. “NN-SVG: Publication-Ready Neural Network Architecture

Schematics”. In: Journal of Open Source Software 4.33 (2019), p. 747. doi: 10.

21105/joss.00747. url: https://doi.org/10.21105/joss.00747.

[175] John Leask Lumley. “The structure of inhomogeneous turbulent flows”. In: Atmo-

spheric turbulence and radio wave propagation (1967), pp. 166–178.

[176] Peter J Schmid. “Dynamic mode decomposition of numerical and experimental

data”. In: Journal of Fluid Mechanics 656 (2010), pp. 5–28. doi: 10.1017/S0022

112010001217.

[177] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. “Dynamic Mode De-

composition with Control”. In: SIAM Journal on Applied Dynamical Systems 15.1

(2016), pp. 142–161. doi: 10.1137/15M1013857.

[178] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. “Efficient

backprop”. In: Neural networks: Tricks of the trade. Springer, 2002, pp. 9–50.

220

http://jmlr.org/papers/v24/22-0365.html
http://jmlr.org/papers/v24/22-0365.html
https://api.semanticscholar.org/CorpusID:240354714
https://doi.org/10.21105/joss.00747
https://doi.org/10.21105/joss.00747
https://doi.org/10.21105/joss.00747
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1137/15M1013857

[179] Noboru Murata, Klaus-Robert Müller, Andreas Ziehe, and Shun-ichi Amari. “Adap-

tive on-line learning in changing environments”. In: Advances in Neural Informa-

tion Processing Systems 9 (1996). Ed. by M.C. Mozer, M. Jordan, and T. Petsche.

url: https://proceedings.neurips.cc/paper_files/paper/1996/file/

0e095e054ee94774d6a496099eb1cf6a-Paper.pdf.

[180] Yuanzhi Li, Colin Wei, and Tengyu Ma. “Towards explaining the regularization

effect of initial large learning rate in training neural networks”. In: vol. 32. 2019.

url: https://proceedings.neurips.cc/paper/2019/file/bce9abf229ffd7e5

70818476ee5d7dde-Paper.pdf.

[181] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for

Large-Scale Image Recognition”. In: arXiv preprint arXiv:1409.1556 (2014). doi:

https://doi.org/10.48550/arXiv.1409.1556.

[182] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learn-

ing for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[183] Kensuke Nakamura, Bilel Derbel, Kyoung-Jae Won, and Byung-Woo Hong. “Learning-

Rate Annealing Methods for Deep Neural Networks”. In: Electronics 10.16 (2021).

doi: 10.3390/electronics10162029.

[184] Christophe Geuzaine and Jean-François Remacle. “Gmsh: A 3-D finite element

mesh generator with built-in pre- and post-processing facilities”. In: International

journal for numerical methods in engineering 79.11 (2009), pp. 1309–1331. doi:

10.1002/nme.2579.

[185] Robert Cimrman, Vladimı́r Lukeš, and Eduard Rohan. “Multiscale finite element

calculations in Python using SfePy”. In: Advances in Computational Mathematics

(2019). issn: 1572-9044. doi: 10.1007/s10444- 019- 09666- 0. url: https:

//doi.org/10.1007/s10444-019-09666-0.

[186] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred

Hamprecht, Yoshua Bengio, and Aaron Courville. “On the spectral bias of neu-

221

https://proceedings.neurips.cc/paper_files/paper/1996/file/0e095e054ee94774d6a496099eb1cf6a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/0e095e054ee94774d6a496099eb1cf6a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bce9abf229ffd7e570818476ee5d7dde-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bce9abf229ffd7e570818476ee5d7dde-Paper.pdf
https://doi.org/https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3390/electronics10162029
https://doi.org/10.1002/nme.2579
https://doi.org/10.1007/s10444-019-09666-0
https://doi.org/10.1007/s10444-019-09666-0
https://doi.org/10.1007/s10444-019-09666-0

ral networks”. In: International Conference on Machine Learning. PMLR. 2019,

pp. 5301–5310. url: http : / / proceedings . mlr . press / v97 / rahaman19a /

rahaman19a.pdf.

[187] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin

Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng.

“Fourier Features Let Networks Learn High Frequency Functions in Low Dimen-

sional Domains”. In: Proceedings of the 34th International Conference on Neural

Information Processing Systems. NIPS’20. Vancouver, BC, Canada: Curran Asso-

ciates Inc., 2020. isbn: 9781713829546.

[188] Ali Rahimi and Benjamin Recht. “Random Features for Large-Scale Kernel Ma-

chines”. In: 20 (2007). Ed. by J. Platt, D. Koller, Y. Singer, and S. Roweis.

url: https://proceedings.neurips.cc/paper_files/paper/2007/file/

013a006f03dbc5392effeb8f18fda755-Paper.pdf.

[189] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

N Gomez, L ukasz Kaiser, and Illia Polosukhin. “Attention is All you Need”. In:

Advances in Neural Information Processing Systems. Ed. by I. Guyon, U. Von

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.

Vol. 30. Curran Associates, Inc., 2017. url: https://proceedings.neurips.

cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf.

[190] Tommy Odland. tommyod/KDEpy: Kernel Density Estimation in Python. Ver-

sion v0.9.10. Dec. 2018. doi: 10.5281/zenodo.2392268.

[191] B. W. Silverman. Density Estimation for Statistics and Data Analysis. London:

Chapman & Hall, 1986.

[192] Syed R Ahmed, G Ramm, and Gunter Faltin. “Some Salient Features Of The

Time-Averaged Ground Vehicle Wake”. In: SAE Transactions (1984), pp. 473–

503. url: http://www.jstor.org/stable/44434262.

222

http://proceedings.mlr.press/v97/rahaman19a/rahaman19a.pdf
http://proceedings.mlr.press/v97/rahaman19a/rahaman19a.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.5281/zenodo.2392268
http://www.jstor.org/stable/44434262

[193] R Verzicco, M Fatica, G Iaccarino, P Moin, and B Khalighi. “Large eddy sim-

ulation of a road vehicle with drag-reduction devices”. In: AIAA journal 40.12

(2002), pp. 2447–2455. doi: 10.2514/2.1613.

[194] Ilhan Bayraktar, Drew Landman, and Oktay Baysal. “Experimental and Com-

putational Investigation of Ahmed Body for Ground Vehicle Aerodynamics”. In:

SAE Transactions (2001), pp. 321–331. issn: 0096736X, 25771531. url: http:

//www.jstor.org/stable/44687433.

[195] RK Strachan, K Knowles, and NJ Lawson. A CFD and experimental study of an

Ahmed reference model. Tech. rep. SAE Technical Paper, 2004. doi: 10.4271/

2004-01-0442.

[196] Neil Ashton, A West, S Lardeau, and Alistair Revell. “Assessment of RANS and

DES methods for realistic automotive models”. In: Computers & fluids 128 (2016),

pp. 1–15. doi: 10.1016/j.compfluid.2016.01.008.

[197] Hermann Lienhart and Stefan Becker. “Flow and turbulence structure in the wake

of a simplified car model”. In: SAE Transactions 112 (2003), pp. 785–796. url:

http://www.jstor.org/stable/44745451.

[198] Walter Meile, Günter Brenn, Aaron Reppenhagen, Bernhard Lechner, and An-

ton Fuchs. “Experiments and numerical simulations on the aerodynamics of the

Ahmed body”. In: CFD Letters 3.1 (2011), pp. 32–39.

[199] Tural Tunay, Besir Sahin, and Veli Ozbolat. “Effects of rear slant angles on the

flow characteristics of Ahmed body”. In: Experimental Thermal and Fluid Science

57 (2014), pp. 165–176. doi: 10.1016/j.expthermflusci.2014.04.016.

[200] Florian R Menter. “Two-equation eddy-viscosity turbulence models for engineering

applications”. In: AIAA journal 32.8 (1994), pp. 1598–1605. doi: 10.2514/3.

12149.

[201] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normalization”.

In: (2016). doi: 10.48550/arXiv.1607.06450. arXiv: 1607.06450 [stat.ML].

223

https://doi.org/10.2514/2.1613
http://www.jstor.org/stable/44687433
http://www.jstor.org/stable/44687433
https://doi.org/10.4271/2004-01-0442
https://doi.org/10.4271/2004-01-0442
https://doi.org/10.1016/j.compfluid.2016.01.008
http://www.jstor.org/stable/44745451
https://doi.org/10.1016/j.expthermflusci.2014.04.016
https://doi.org/10.2514/3.12149
https://doi.org/10.2514/3.12149
https://doi.org/10.48550/arXiv.1607.06450
https://arxiv.org/abs/1607.06450

[202] Timothy Simpson, Farrokh Mistree, John Korte, and Timothy Mauery. “Com-

parison of response surface and kriging models for multidisciplinary design opti-

mization”. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization. 1998. doi: 10.2514/6.1998-4755.

[203] Nestor V Queipo, Raphael T Haftka, Wei Shyy, Tushar Goel, Rajkumar Vaidyanathan,

and P Kevin Tucker. “Surrogate-based analysis and optimization”. In: Progress in

Aerospace Sciences 41.1 (2005), pp. 1–28. doi: 10.1016/j.paerosci.2005.02.

001.

[204] Dominic A Masters, Nigel J Taylor, TCS Rendall, Christian B Allen, and Daniel J

Poole. “Geometric Comparison of Aerofoil Shape Parameterization Methods”. In:

AIAA journal 55.5 (2017), pp. 1575–1589. doi: 10.2514/1.J054943.

[205] Dominic A Masters, Daniel J Poole, Nigel J Taylor, Thomas Rendall, and Christian

B Allen. “Impact of Shape Parameterisation on Aerodynamic Optimisation of

Benchmark Problem”. In: 54th AIAA Aerospace Sciences Meeting. 2016. doi: 10.

2514/6.2016-1544.

[206] Zhoujie Lyu, Zelu Xu, and JRRA Martins. “Benchmarking Optimization Algo-

rithms for Wing Aerodynamic Design Optimization”. In: Proceedings of the 8th

International Conference on Computational Fluid Dynamics, Chengdu, Sichuan,

China. Vol. 11. ICCFD8-2014-0203. 2014, p. 585.

[207] Shigeru Obayashi and Takanori Tsukahara. “Comparison of optimization algo-

rithms for aerodynamic shape design”. In: AIAA journal 35.8 (1997), pp. 1413–

1415. doi: 10.2514/2.251.

[208] Jichao Li, Xiaosong Du, and Joaquim R.R.A. Martins. “Machine learning in aero-

dynamic shape optimization”. In: Progress in Aerospace Sciences 134 (2022),

p. 100849. doi: 10.1016/j.paerosci.2022.100849.

[209] Jichao Li, Mohamed Amine Bouhlel, and Joaquim R. R. A. Martins. “Data-based

approach for fast airfoil analysis and optimization”. In: AIAA Journal 57.2 (2019),

pp. 581–596. doi: 10.2514/1.J057129.

224

https://doi.org/10.2514/6.1998-4755
https://doi.org/10.1016/j.paerosci.2005.02.001
https://doi.org/10.1016/j.paerosci.2005.02.001
https://doi.org/10.2514/1.J054943
https://doi.org/10.2514/6.2016-1544
https://doi.org/10.2514/6.2016-1544
https://doi.org/10.2514/2.251
https://doi.org/10.1016/j.paerosci.2022.100849
https://doi.org/10.2514/1.J057129

[210] Wei Chen, Kevin Chiu, and Mark Fuge. “Aerodynamic Design Optimization and

Shape Exploration using Generative Adversarial Networks”. In: AIAA Scitech

2019 Forum. 2019. doi: 10.2514/6.2019-2351.

[211] Jichao Li, Mengqi Zhang, Joaquim R. R. A. Martins, and Chang Shu. “Efficient

Aerodynamic Shape Optimization with Deep-Learning-Based Geometric Filter-

ing”. In: AIAA Journal 58.10 (2020), pp. 4243–4259. doi: 10.2514/1.J059254.

[212] Alejandro González Pérez, Christian B. Allen, and Daniel J. Poole. “GSA-SOM: A

metaheuristic optimisation algorithm guided by machine learning and application

to aerodynamic design”. In: AIAA AVIATION 2021 FORUM. 2021. doi: 10.

2514/6.2021-2563.

[213] Jonathan Viquerat, Jean Rabault, Alexander Kuhnle, Hassan Ghraieb, Aurélien

Larcher, and Elie Hachem. “Direct shape optimization through deep reinforcement

learning”. In: Journal of Computational Physics 428 (2021), p. 110080. doi: 10.

1016/j.jcp.2020.110080.

[214] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical Bayesian Opti-

mization of Machine Learning Algorithms”. In: Advances in Neural Information

Processing Systems. Ed. by F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-

berger. Vol. 25. Curran Associates, Inc., 2012. url: https : / / proceedings .

neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.

pdf.

[215] Soumalya Sarkar, Sudeepta Mondal, Michael Joly, Matthew E Lynch, Shaunak D

Bopardikar, Ranadip Acharya, and Paris Perdikaris. “Multifidelity and Multiscale

Bayesian Framework for High-Dimensional Engineering Design and Calibration”.

In: Journal of Mechanical Design 141.12 (2019). doi: 10.1115/1.4044598.

[216] Michael Joly, Soumalya Sarkar, and Dhagash Mehta. “Machine Learning Enabled

Adaptive Optimization of a Transonic Compressor Rotor With Precompression”.

In: Journal of Turbomachinery 141.5 (2019). doi: 10.1115/1.4041808.

225

https://doi.org/10.2514/6.2019-2351
https://doi.org/10.2514/1.J059254
https://doi.org/10.2514/6.2021-2563
https://doi.org/10.2514/6.2021-2563
https://doi.org/10.1016/j.jcp.2020.110080
https://doi.org/10.1016/j.jcp.2020.110080
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://doi.org/10.1115/1.4044598
https://doi.org/10.1115/1.4041808

[217] Matthew E Lynch, Soumalya Sarkar, and Kurt Maute. “Machine Learning to

Aid Tuning of Numerical Parameters in Topology Optimization”. In: Journal of

Mechanical Design 141.11 (2019). doi: 10.1115/1.4044228.

[218] Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. “Bayesian Optimization

with Unknown Constraints”. In: UAI’14. Quebec City, Quebec, Canada: AUAI

Press, Arlington, Virginia, USA, 2014, 250–259. isbn: 9780974903910.

[219] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature

521.7553 (2015), pp. 436–444. doi: 10.1038/nature14539.

[220] Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. “Machine Learn-

ing for Fluid Mechanics”. In: Annual Review of Fluid Mechanics 52.1 (2020),

pp. 477–508. doi: 10.1146/annurev-fluid-010719-060214.

[221] II William Lamarsh, Joanne Walsh, and James Rogers. “Aerodynamic perfor-

mance optimization of a rotor blade using a neural network as the analysis”.

In: 4th Symposium on Multidisciplinary Analysis and Optimization. 1992. doi:

10.2514/6.1992-4837.

[222] S Huang, L Miller, and J Steck. “An exploratory application of neural networks

to airfoil design”. In: 32nd Aerospace Sciences Meeting and Exhibit. 1994. doi:

10.2514/6.1994-501.

[223] Magnus Norgaard, Charles C Jorgensen, and James C Ross. Neural network pre-

diction of new aircraft design coefficients. Tech. rep. NASA-TM-112197. 1997.

[224] Roxana M Greenman. Two-dimensional high-lift aerodynamic optimization using

neural networks. NASA-TM-1998-112233. Stanford University, 1998.

[225] Man Rai, Nateri Madavan, and Frank Huber. “Improving the unsteady aerody-

namic performance of transonic turbines using neural networks”. In: 38th Aerospace

Sciences Meeting and Exhibit. 2000. doi: 10.2514/6.2000-169.

[226] Man Mohan Rai and Nateri K Madavan. “Application of Artificial Neural Net-

works to the Design of Turbomachinery Airfoils”. In: Journal of Propulsion and

Power 17 (2001), pp. 176–183. doi: 10.2514/2.5725.

226

https://doi.org/10.1115/1.4044228
https://doi.org/10.1038/nature14539
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.2514/6.1992-4837
https://doi.org/10.2514/6.1994-501
https://doi.org/10.2514/6.2000-169
https://doi.org/10.2514/2.5725

[227] Athar Kharal and Ayman Saleem. “Neural networks based airfoil generation for

a given Cp using Bezier–PARSEC parameterization”. In: Aerospace Science and

Technology 23.1 (2012), pp. 330–344. doi: 10.1016/j.ast.2011.08.010.

[228] Abdurrahman Hacioglu. “Fast Evolutionary Algorithm for Airfoil Design via Neu-

ral Network”. In: AIAA journal 45.9 (2007), pp. 2196–2203. doi: 10.2514/1.

24484.

[229] Vinothkumar Sekar, Mengqi Zhang, Chang Shu, and Boo Cheong Khoo. “Inverse

Design of Airfoil Using a Deep Convolutional Neural Network”. In: AIAA Journal

57.3 (2019), pp. 993–1003. doi: 10.2514/1.J057894.

[230] Gang Sun, Yanjie Sun, and Shuyue Wang. “Artificial neural network based in-

verse design: Airfoils and wings”. In: Aerospace Science and Technology 42 (2015),

pp. 415–428. doi: 10.1016/j.ast.2015.01.030.

[231] Ruo-Lin Liu, Yue Hua, Zhi-Fu Zhou, Yubai Li, Wei-Tao Wu, and Nadine Aubry.

“Prediction and optimization of airfoil aerodynamic performance using deep neural

network coupled Bayesian method”. In: Physics of Fluids 34.11 (2022), p. 117116.

doi: 10.1063/5.0122595.

[232] Xinshuai Zhang, Fangfang Xie, Tingwei Ji, Zaoxu Zhu, and Yao Zheng. “Multi-

fidelity deep neural network surrogate model for aerodynamic shape optimiza-

tion”. In: Computer Methods in Applied Mechanics and Engineering 373 (2021),

p. 113485. doi: 10.1016/j.cma.2020.113485.

[233] Nilay Papila, Wei Shyy, Lisa Griffin, and Daniel Dorney. “Shape optimization of

supersonic turbines using response surface and neural network methods”. In: 39th

Aerospace Sciences Meeting and Exhibit. 2016. doi: 10.2514/6.2001-1065.

[234] Manas Khurana, Hadi Winarto, and Arvind Sinha. “Application of Swarm Ap-

proach and Artificial Neural Networks for Airfoil Shape Optimization”. In: 12th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2008. doi:

10.2514/6.2008-5954.

227

https://doi.org/10.1016/j.ast.2011.08.010
https://doi.org/10.2514/1.24484
https://doi.org/10.2514/1.24484
https://doi.org/10.2514/1.J057894
https://doi.org/10.1016/j.ast.2015.01.030
https://doi.org/10.1063/5.0122595
https://doi.org/10.1016/j.cma.2020.113485
https://doi.org/10.2514/6.2001-1065
https://doi.org/10.2514/6.2008-5954

[235] Yao Zhang, Woong Je Sung, and Dimitri N Mavris. “Application of Convolutional

Neural Network to Predict Airfoil Lift Coefficient”. In: 2018 AIAA/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference. 2018. doi: 10.2514/

6.2018-1903.

[236] Rebecca Zahn, Maximilian Winter, Moritz Zieher, and Christian Breitsamter.

“Application of a long short-term memory neural network for modeling transonic

buffet aerodynamics”. In: Aerospace Science and Technology 113 (2021), p. 106652.

doi: 10.1016/j.ast.2021.106652.

[237] AJ Torregrosa, LM Garćıa-Cuevas, P Quintero, and A Cremades. “On the ap-

plication of artificial neural network for the development of a nonlinear aeroe-

lastic model”. In: Aerospace Science and Technology 115 (2021), p. 106845. doi:

10.1016/j.ast.2021.106845.

[238] Gang Sun and Shuyue Wang. “A review of the artificial neural network surrogate

modeling in aerodynamic design”. In: Proceedings of the Institution of Mechanical

Engineers, Part G: Journal of Aerospace Engineering 233.16 (2019), pp. 5863–

5872. doi: 10.1177/0954410019864485.

[239] Moritz Krügener, Jose Felix Zapata Usandivaras, Michaël Bauerheim, and An-

nafederica Urbano. “Coaxial-Injector Surrogate Modeling Based on Reynolds-

Averaged Navier–Stokes Simulations Using Deep Learning”. In: Journal of Propul-

sion and Power 38.5 (2022), pp. 783–798. doi: 10.2514/1.B38696.

[240] Jiawei Hu and Weiwei Zhang. “Flow field modeling of airfoil based on convolutional

neural networks from transform domain perspective”. In: Aerospace Science and

Technology 136 (2023), p. 108198. doi: 10.1016/j.ast.2023.108198.

[241] Octavi Obiols-Sales, Abhinav Vishnu, Nicholas Malaya, and Aparna Chandramowliswha-

ran. “CFDNet: A Deep Learning-Based Accelerator for Fluid Simulations”. In:

Proceedings of the 34th ACM International Conference on Supercomputing. 2020.

doi: 10.1145/3392717.3392772.

228

https://doi.org/10.2514/6.2018-1903
https://doi.org/10.2514/6.2018-1903
https://doi.org/10.1016/j.ast.2021.106652
https://doi.org/10.1016/j.ast.2021.106845
https://doi.org/10.1177/0954410019864485
https://doi.org/10.2514/1.B38696
https://doi.org/10.1016/j.ast.2023.108198
https://doi.org/10.1145/3392717.3392772

[242] Tianyuan Liu, Yunzhu Li, Qi Jing, Yonghui Xie, and Di Zhang. “Supervised learn-

ing method for the physical field reconstruction in a nanofluid heat transfer prob-

lem”. In: International Journal of Heat and Mass Transfer 165 (2021), p. 120684.

doi: 10.1016/j.ijheatmasstransfer.2020.120684.

[243] Rainer Storn and Kenneth Price. “Differential Evolution – A Simple and Efficient

Heuristic for global Optimization over Continuous Spaces”. In: Journal of global

optimization 11.4 (1997), pp. 341–359. doi: 10.1023/A:1008202821328.

[244] Nateri K Madavan. “Multiobjective optimization using a Pareto differential evo-

lution approach”. In: Proceedings of the 2002 Congress on Evolutionary Computa-

tion. CEC’02 (Cat. No.02TH8600). Vol. 2. 2002, 1145–1150 vol.2. doi: 10.1109/

CEC.2002.1004404.

[245] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. “A fast

and elitist multiobjective genetic algorithm: NSGA-II”. In: IEEE Transactions on

Evolutionary Computation 6.2 (2002), pp. 182–197. doi: 10.1109/4235.996017.

[246] Connor Shorten and Taghi M Khoshgoftaar. “A survey on Image Data Augmen-

tation for Deep Learning”. In: Journal of Big Data 6.1 (2019), pp. 1–48. doi:

10.1186/s40537-019-0197-0.

[247] Ellen D. Zhong, Tristan Bepler, Joseph H. Davis, and Bonnie Berger. “Recon-

structing continuous distributions of 3D protein structure from cryo-EM images”.

In: International Conference on Learning Representations. 2020. url: https://

openreview.net/forum?id=SJxUjlBtwB.

[248] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel: Con-

vergence and generalization in neural networks”. In: Proceedings of the 32nd Inter-

national Conference on Neural Information Processing Systems. Vol. 31. NIPS’18.

Red Hook, NY, USA: Curran Associates Inc., 2018.

[249] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep

feedforward neural networks”. In: Proceedings of the Thirteenth International Con-

ference on Artificial Intelligence and Statistics. Proceedings of Machine Learning

229

https://doi.org/10.1016/j.ijheatmasstransfer.2020.120684
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/CEC.2002.1004404
https://doi.org/10.1109/CEC.2002.1004404
https://doi.org/10.1109/4235.996017
https://doi.org/10.1186/s40537-019-0197-0
https://openreview.net/forum?id=SJxUjlBtwB
https://openreview.net/forum?id=SJxUjlBtwB

Research. PMLR, 2010, pp. 249–256. url: https://proceedings.mlr.press/

v9/glorot10a.html.

230

https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html

	List of Tables
	List of Figures
	List of Appendices
	List of Symbols
	List of Acronyms
	Abstract
	Introduction
	Interplay Between Fidelity and Cost in Engineering Simulation
	High-Fidelity Models
	Navier-Stokes Equations and a Hierarchy of Models

	Data-driven Modeling and Optimization
	Solver Augmentation
	Design Optimization and Surrogate Modeling
	Solver Acceleration and Intrusive Reduced Order Modeling
	Solver Replacement or Emulation

	Objectives and Contributions
	Thesis Outline

	Optimization and Relevant Machine-Learning-Based Regression and Surrogate Modeling Techniques
	A Test Problem: 2D Vehicle Aerodynamics
	Optimization in Design and Model Construction
	Scaling and Normalization
	Unconstrained Gradient-Based Optimization and Training ANN

	A Survey of Existing Regression Techniques
	Regularized and Non-linear Least Squares
	Gaussian Process Regression
	Proper Orthogonal Decomposition
	Dense Neural Networks
	Autoencoders
	Convolutional Neural Networks
	Graph Neural Networks
	Point cloud neural networks
	Operator regression methods
	Solving PDEs with neural networks

	Predictive Deep-Learning Models Without Interpolation of Ground-Truth Data
	Decoder Convolutional Neural Networks (DCNN)
	Discretization-Independent Methods
	Shape and Scene Representation via Coordinate-based Neural Networks
	Conditioning Neural Networks
	Problem Setup
	Method 1: Design-variable MLP (DV-MLP)
	Method 2: Design-Variable Hypernetworks (DVH)
	Method 3: Non-linear Independent Dual System (NIDS)

	Modal Interpretation of NIDS Predictions
	Piecewise Learning-Rate Schedule

	Surrogate Modeling Applications
	Model Implementation and Training Details
	2D Poisson Equation
	DVH: Effect of Training Method and Class Label
	Comparing Model Performance

	2D Incompressible RANS
	Numerical Experiments I: Vehicle Aerodynamics
	Model Architecture and Training Options
	Single Vehicle Speed
	Multiple Speeds and Generalization: Low-Data Regime

	Numerical Experiments II: Effect of Random Fourier Features
	Model Architectures and Training Options
	Single Vehicle Speed
	Multiple Speeds and Generalization: Low-Data Regime

	Ahmed Body: 3D Vehicle Aerodynamics
	Generation of CFD Solutions
	Data Processing and Preparation
	Numerical Experiments: Single Vehicle Speed

	Design of Axial Compressor-Rotor Sections
	Introduction
	Methodology
	ASO Problem Statement and RANS Solutions
	ANN Flow Emulators

	Subsonic Compressor Airfoil Emulation and Optimization
	Proof of Concept: Driving Design Optimization

	Transonic Compressor Airfoil Emulation and Optimization
	 Geometric Parameterization(s) and Datasets
	Emulator Model Architectures
	Problem 1: Geometric Design Variables Only
	Problem 2: Geometric Design Variables and Rotor Speed

	Summary

	Conclusions
	Summary of Contributions
	Methods
	Numerical Experiments

	Future Work

	DVH Network Scaling: Further Details
	Vehicle Aerodynamics Dataset
	Baseline Results: Additional Figures
	Single Vehicle Speed
	Multiple Vehicle Speeds

	Fourier Features: Additional Figures

	Bibliography

