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PREFACE

I begin by explaining a stylistic choice and some of the ideas that led to this particular disserta-
tion topic. First, this dissertation makes the somewhat unconventional choice to use the first-person
singular “I” for the voice of the author, and the third-person “one” to refer to the reader or anyone
implementing these methods. Unlike many other technical works at time of writing, I generally
avoid the first-person plural “we”. I make this stylistic choice 1) to take clear ownership for my
contributions and assertions, 2) to avoid excessive use of the passive voice or anthropomorphiza-
tion of the document, and 3) to avoid the ambiguity of the more traditional first-person plural “we”,
which could refer to any combination of myself, my advisor, my lab members, my colleagues, the
controls community, and/or the reader. That said, while this is a personal monograph, this work of
course would not have been possible without the assistance of all of the above sources. I also note
here that I interchangeably use the words “space system”, “spacecraft”, and “satellite” throughout
this dissertation.

Next, I discuss some of the motivating problems that led me to this particular research area
and the topics that follow. When I started at the University of Michigan, I was most interested
in multi-agent spacecraft control. However, as I briefly explain in Chapter 8, “multi-agent” in
space is a rather vague term. There are a variety of multi-agent space mission proposals, all with
very different characteristics and control technology requirements. Many of these missions could
be accomplished simply by individually commanding each agent to follow its own trajectory; in
these cases, there exists no real need for closed-loop communication between agents, so a multi-
agent mission is not necessarily a multi-agent control problem. Some of these mission concepts
could be solved with existing technologies, and simply have not yet because of limited budgets and
the current science priorities. In the few cases where the system could benefit from closed-loop
communication, the conclusion I came to repeatedly was that a capable multi-agent system is a
collection of capable and autonomous single agents. Thus, this dissertation focuses on technologies
to make more autonomous single agents; multi-agent extensions are left entirely to future work.

Starting from this general goal of “improve spacecraft autonomy capabilities”, I then extracted
all the sub-problems presented in this dissertation. My thought process was to have some (more
than one in the case of this whole document) ambitious, science-fiction-like, concept in mind, and
then to think through all the other technologies that would be needed to make that happen. I en-
courage future researchers to use a similar approach of starting from a grand application idea rather
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than just looking for gaps in existing theory. Along the way, I ran experiments until I got stuck, in
which case I knew I arrived at a problem that needed further work. For instance, Chapter 5 focuses
on sampled-data dynamics. From a high-level, this seems like a not-that-important technology, but
it was actually an area where I repeatedly got stuck when creating simulations and where existing
tools in the literature never got me unstuck. Thus, I studied sampled-data theory until I knew it
well enough that I never got stuck due to controller-sampling problems again. The simulations
then demonstrate the new control theory developed on more immediately practical problems rather
than the much-more-complex originating ideas. As all of this was motivated by aerospace prob-
lems, this work lives between the aerospace and general control theory literature. In general, I
present all the controls results as general control theory with abstract equations, applicable to any
relevant system, and then I choose to specialize the results in simulation to spacecraft. Thus, future
aerospace engineers will have evidence that these approaches already work for spacecraft.

Besides improving spacecraft autonomy, another influence in settling on the topic of safety
filtering was my prior internships at NASA. There, I was several times asked to solve a difficult
constrained—often over-constrained—control problem, which usually resulted in developing some
sort of nonlinear control law. I would then demonstrate that this controller worked in a majority of
the proposed use cases, and also identify its limitations. Each time this occurred, other engineers
would then ask “how do we verify this control law?”. Usually, the engineers sought both some sort
of analytic method that showed that the method indeed worked, and Monte Carlo simulations. The
following work is a response to that need for an analytic proof of algorithm performance.

Regarding organization, this dissertation is structured as a collection of papers on various topics
relevant to control barrier function and safety filter theory. The introduction and conclusion are
entirely original to this document. It is impossible to adequately summarize the entire history of
and all possible future routes for constrained control theory, so these two chapters only present
what I believe are the most important subtopics in this domain. Chapter 2 is an extension of an
unsubmitted brief paper that I have been working on for a while and that tries to iron out some
of the ambiguities and unnecessary assumptions that persist in the modern safety filter literature.
Regarding terminology, I generally prefer the term “safety filter” in this work, because that is
what this method actually does, but at present the preferred keyword in the literature is “control
barrier function”. Chapters 3-7 are then a concatenation of several published academic papers with
many additional remarks added since publication, some corrections and clarifications, and more
connections made to other chapters and to the overall goal of enhanced spacecraft autonomy.
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ABSTRACT

This dissertation presents advances in the design of constrained control laws, specifically con-
trol barrier function (CBF) quadratic program (QP) based control laws, herein called safety filters,
with a focus on space systems applications. At present, most complex space systems tasks are
solved by computing trajectories on the ground and then uplinking these trajectories to the space-
craft to follow. As humans venture further into the Solar System, and launch an ever increasing
number of Earth-orbiting satellites each year, there is a need for control laws that can perform
more complex tasks with less ground-based supervision. At the same time, on the ground, people
are surrounded by more and more autonomous systems, and there is a need for controls tools for
the safety supervision of such systems. CBF-QP safety-filters provide a computationally efficient
framework for both constructing constrained control laws for these ground and space applications,
including nonlinear systems, and for provably demonstrating that systems satisfy given safety con-
straints without requiring an engineer to review every trajectory. However, constructing a CBF and
safety filter for given system dynamics is still a nontrivial problem.

In brief, this dissertation presents 1) tools to constructively design CBFs that are applicable to
common spacecraft dynamics, and 2) extensions to safety filters that account for realistic control
law implementation in space. Though motivated by spacecraft, both of these topics are equally
relevant to other robotic systems.

Following an introductory chapter reviewing constrained control methodologies, the second
chapter provides a thorough technical overview of CBFs and safety filters. The third chapter
presents the “high relative-degree problem”, and constructive methodologies for deriving CBFs
that solve this problem while respecting input constraints. This chapter assumes a deterministic
system, so the fourth chapter extends safety filters to provably guarantee safety for systems with
bounded uncertainties, and then modifies these constructions accordingly. Notably, these construc-
tions still provably satisfy input constraints, whereas prior work usually relaxes input constraints
if the model is uncertain. This chapter also presents conditions on when so-called “tight-tolerance
objectives” are feasible with an uncertain model, and constructive tools for achieving such objec-
tives with safety filters.

The fifth chapter considers the effect of sampled measurements and both zero-order-hold and
impulsive actuators. These phenomena more closely model how real spacecraft hardware operates.
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Emphasis is placed on quantifying and then minimizing conservatism. The sixth chapter presents
results on how to modify the CBF construction when the safety filter is tasked with enforcing many
constraints simultaneously.

The seventh chapter presents one more tool for constructing CBFs, specifically for systems with
large time-scales and small actuators. This type of CBF relies on future predictions of the state
trajectory, but is distinct from model predictive control (MPC) and incurs a fraction of the com-
putational cost of MPC. The eighth chapter presents conclusions and application remarks. Rather
than focusing on a single space system, case studies for various robotic and space systems are
presented throughout. In summary, this dissertation presents an array of tools for designing CBFs
for several space (weak gravity asteroid, high gravity asteroid, planetary orbits, attitude control,
relative-motion/docking) and robotic (unicycle, double integrator, car intersection) domains and
safety filters for several implementation scenarios (continuous, zero-order-hold, impulsive, per-
turbed), and thus enables space missions and other constrained control applications that would
require higher degrees of autonomy than was previously achievable.
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CHAPTER 1

Introduction

This dissertation presents a collection of tools for the design of constrained control laws for
space systems. In this chapter, I discuss the motivation for studying constrained control in space
and describe some of the common constraints that motivated this course of research. I also compare
to the existing state of the art. In the next chapter, I cover the fundamentals of the class of tools to
which this dissertation contributes. I then devote each of Chapters 3-7 to documenting a specific
new design tool in detail. Finally, Chapter 8 summarizes what these new design tools accomplish,
and what are the most pressing areas for future work.

1.1 Motivations

1.1.1 Space Systems Requirements

In just a few words, this dissertation tries to answer the question “how can engineers design and
verify control laws for space systems that provably satisfy system requirements?”. By nature, most
space systems are massive projects, employing hundreds or thousands of engineers and consisting
of dozens of subsystems. To keep track of all these subsystems, engineers and project managers
organize space missions by writing out requirements that each subsystem must meet. The design
of the mission is complete when every subsystem reaches a level of development at which it sat-
isfies every requirement. For instance, a requirement of the Guidance, Navigation, and Control
(GNC) system of a satellite inspection mission might read “the GNC system shall be capable of
keeping the Inspector at all times at least 2 cm away from the Target at the satellites’ closest point”.
Subrequirements might then specify the disturbance environment, measurement capabilities, and
other factors that may affect this requirement in progressively greater levels of detail. Importantly,
the GNC team must both 1) design a control law to address the requirement, and 2) rigorously
demonstrate that the control law indeed satisfies all requirements.

In the language of control theory, one would refer to a requirement as a constraint on the
system. One common type of constraint is state constraints, such as the requirement above that
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the two satellites’ states stay separated. Another common type is input constraints, which require
that the control law only command the actuators to work within their physical limits. The need to
ensure input constraint satisfaction also often leads to imposing additional state constraints. The
science and art of designing control laws to meet state and input constraints, and other types of
constraints, is constrained control. In space systems, all design is guided by the requirements,
so space systems naturally lead to constrained control problems. Moreover, these constraints are
usually safety-critical, meaning that violation of a constraint may lead to loss of mission and/or
life.

In addition to the challenge of designing for these constraints, often for complex system dynam-
ics, controls engineers are also constrained to designing control laws that can operate under the
limited computational capabilities of radiation hardened spacecraft computers, often 20x slower
than the processors for ground applications [1]1. Thus, the final control laws must be relatively
simple, and the use of onboard path-planning is limited. Computer chips manufacturers will likely
eventually make radiation hardened versions of newer specialized computing modules, but these
versions will follow several years after such modules become widespread in Earth-based applica-
tions.

Finally, once a spacecraft is launched, it is usually impossible to fix the spacecraft if an error
occurs. Thus, engineers require very rigorous verification that all requirements are satisfied in the
worst-case expected environments (or the 3σ environments for Gaussian disturbances/measure-
ments). The need for such stringent verification further encourages controls engineers to design
simple control laws with minimal internal logics. As a result, most spacecraft control laws are
based on linearized trajectory tracking, where trajectories are generally computed on the ground
so that 1) engineers have access to more powerful (larger, more energy-intensive, not radiation
hardened) ground-based computers and 2) operators can verify by hand that computed trajectories
indeed meet requirements before trajectories are uplinked to the spacecraft. This framework is in-
efficient and limits the types of requirements (i.e. types of space missions) that controls engineers
can achieve, because spacecraft must wait for a response from the ground before proceeding with
new mission phases.

As the number of satellites operating near the Earth increases, satellite operators seek control

1Note that “slower” is often difficult to precisely define, because space computers can be made to varying radiation
tolerances, in varying architectures, and with varying mass and power consumption. However, generally speaking,
space computers on the market today are rated in 100s or occasionally 1000s of DMIPs [2], while ground computers
are usually rated in 1000s or 10000s of DMIPs (e.g., NXP Electronics S32G399A at 36300 DMIPs2 and Renesas
Electronics R-Car H3 at 40000 DMIPs3). Also note that DMIPs may or may not be representative of true performance
depending on what tasks must be computed.

2https://www.nxp.com/company/blog/accelerating-software-defined-vehicles-
and-safety-processing-with-nxp-s32g3-processors:BL-NXP-S32G3-PROCESSORS

3https://www.renesas.com/us/en/document/fly/vehicle-computer-vc3
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laws with greater onboard autonomy to reduce ground operating costs. Moreover, as humans seek
to explore more of the Solar System, the complexity of the missions required to collect scientific
data or to support manned missions will increase. At the same time, these missions must con-
tend with long communication delays and infrequent use of in-demand communication equipment.
Thus, future exploration missions will require control laws that can satisfy the system requirements
without constantly receiving trajectories from the ground. This dissertation is interested in a class
of control laws called safety filters that I believe is a promising solution to meet these demands.
Note that while this dissertation is motivated by space applications, what follows is mostly general
control theory. Moreover, I do not focus on any specific space mission concept, but rather test the
following strategies on various systems to highlight their generality.

1.1.2 Safety Filters

1.1.2.1 Two Layer Approach

In the proposed approach, a control law is divided into a two layer hierarchy, the nominal con-

trol law and the safety filter. The safety filter acts as a higher-level supervisor for the nominal
control law (this is sometimes called a “simplex architecture” [3, 4]). Thus, responsibility for the
satisfaction of some or all of the requirements is encoded into the safety filter, which is rigorously
verified, while the nominal control law does not need to undergo the same strict verification pro-
cess. Thus, the nominal control law may be arbitrarily complex (or arbitrarily simple) and may
include internal decision logics, path planning with simplified models, learning-based control, and
other methodologies that are difficult to verify. Instead, the safety filter will discard any proposed
control inputs that may be unsafe. While this two-layer approach relaxes the challenge of verify-
ing the nominal control law, this of course transfers that challenge to the safety filter. Thus, the
majority of this dissertation presents strategies for the design of safety filters that are relevant for
space systems.

1.1.2.2 Motivation for Safety Filters

The motivation for using safety filters is the need for greater trust in control laws with a high
degree of autonomy, i.e. control laws that can make complicated decisions without consulting
ground operators. In space systems context, “complicated decisions” often means any control law
that is nonlinear.

At time of writing, one of the challenges with implementing nonlinear control laws onboard
satellites is the need for stringent verification. With linear control techniques, there are widely
accepted performance metrics in terms of gain and phase margins, e.g. [5, Ch. 13.26], [6]. NASA
has even published its “Gold Rules” of space systems designs, including the proper choice of these
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margins [7, Section 1.30]. It is possible to have such “Gold Rules” because linear control laws are
inherently rather simple. However, it is difficult to define analogous rules for nonlinear systems.
Instead, if a satellite application truly demands a nonlinear control law, controls engineers usually
verify it by either Lyapunov perturbation analysis or Monte Carlo simulation, or frequently both.
Both of these are often only possible for relatively simple nonlinear control laws. For instance, if
the control law is a switched control law with more than a few cases, then Lyapunov analysis may
be prohibitively complicated, and a sufficiently large set of Monte Carlo simulations may take a
prohibitively long time to compute.

Instead, with the safety filter methodology, the filter is proven using Lyapunov-like analysis (e.g.
Theorem 2.2) to ensure satisfaction of the requirements. That is, at every state, the filter outputs
a set of verified control inputs, and filters out any nominal control inputs that are outside that set.
Additionally, Monte Carlo simulation can be done with the safety filter alone (e.g. with a random
nominal control law). In addition to reducing the need to verify the nominal control law, this two
layer approach enables other complex behaviors previewed in Section 2.4 and described in the rest
of this dissertation. Importantly, as the safety filter is an extra step of the control computation, it
must be quick to compute, as is indeed the case for the class of filters described in Section 2.4.

1.2 Literature Review

In this section, I review several methodologies for the constrained control of spacecraft. While
this literature review is expansive, it is certainly not complete, as that would require a literature
review longer than this entire dissertation.

1.2.1 Uses and Limitations of Linear Control

First, I review how linear control is used in spacecraft. Many aspects of space missions evolve
slowly in time and are amenable to linearization. For satellite rendezvous and docking in circular
orbits, the Clohessy-Wiltshire equations of motion [8] in the Hill Frame [9] yield a linear time-
invariant approximation of satellite motion. Various elliptical extensions [10–13] have also been
proposed. Outside of these high-precision relative motion tasks, most spacecraft position control
is achieved open loop. Methods for such open-loop maneuver planning are not addressed in this
dissertation.

Because satellites float freely in space, they may also rotate freely in all three dimensions. Pre-
vious authors have proposed many different parameterizations of satellite attitude (i.e. orientation
in 3D space), summarized for instance in [14]. Due to the wrap phenomenon of rotations, the
dynamics of each of these parameterizations is inherently nonlinear. Nonetheless, the problems of
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1) regulating the attitude to a single point or a continuous trajectory, or 2) reorienting the satellite
from one attitude to another, are easily solved with linear control laws [14, Ch. 7]. An engineer
may then conduct an analysis of the maximum expected perturbation to certify that a linear control
law indeed satisfies required tolerances.

Such linear control laws are used extensively today for satellite attitude control, and to a lesser
extent for satellite position control. This control methodology has a strong operational history, and
is preferred for its simplicity. However, sometimes satellites encounter constraints which cannot
be easily addressed by linear control. The most common reason for this is an exclusion constraint,
e.g. that a docking satellite cannot enter certain sections of the state space, or that a satellite
cannot point an instrument in a certain direction while reorienting. It is impossible to encode
such exclusions into a linear control law. To address this, operators instead preplan trajectories
on the ground (e.g. using nonlinear optimization), and only require the spacecraft to track such
trajectories, sometimes using linearized closed-loop feedback, and other times entirely open loop.
This strategy also has a strong operational history, and allows operators to compute fuel-optimal
and/or time-optimal trajectories that would be difficult to compute onboard. However, this becomes
cumbersome because of the heavy reliance on ground operators and communication equipment. By
contrast, the safety filtering approach is rarely fuel-optimal or time-optimal, but allows for greater
autonomy and less reliance on ground operators.

Besides such exclusion constraints, another reason for nonlinear control is the unique sensors
and actuators with which spacecraft are designed. Linear feedback works well with continuously
(or approximately continuously) operating sensors and actuators. However, it is often the case that
measurements are available only infrequently. Due to computational constraints, the satellite com-
puter may only be able to read sensors or send signals to actuators at slow sampling frequencies,
i.e. 0.2 Hz to 5 Hz. Additionally, satellite actuators are often either low-thrust (i.e. less than 1
Newton) or impulsive, and often operate in an on/off fashion rather than with continuous varia-
tion. These are only a subset of the many possible sensor/actuator constraints that may be present
on satellites. Often, controls engineers can still approximate these behaviors within linear control
frameworks (e.g. including phase margin to account for controller sampling). However, many
nonlinear control laws, including some in this dissertation, instead try to directly account for these
sensor/actuator dynamics.

1.2.2 Review of Other Constrained Control Methodologies

Many techniques for control of satellites with constraints have already been proposed in the
literature. Each of these methods has its own benefits and drawbacks, and some of these properties
will also apply to safety filters. An incomplete discussion of some alternatives to safety filters is as
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follows.
First, the simplest method of constrained control follows from Lyapunov-like methods, such as

Artificial Potential Fields (APFs) and Logarithmic Barrier Functions (LBFs, also called Reciprocal
Barrier Functions and other names). APFs originated as a method for robotic navigation [15, 16].
In this strategy, one assigns a potential value (i.e. an APF) to every state in the state space, fre-
quently as the sum of several continuously differentiable potential functions. For instance, one
might place a large positive potential around every excluded space, and a large negative potential
around a target state so that this is the global minimum of the APF. One then designs a control law
(often a linear control law) so that the velocity of an agent tracks the negative gradient of the APF.
If the bandwidth of the tracking controller is sufficiently large in comparison to the second deriva-
tive of the APF, then one can also obtain strong constraint satisfaction guarantees. Alternatively,
with LBFs, one instead chooses a potential function that approaches infinity near the boundary of
the permissible set, e.g. [17–19]. The concept of LBFs originates with barrier functions in op-
timization, e.g. [20]. APFs/LBFs are a simple and powerful tool for constrained control design,
and in fact, the authors in [21] showed that this technique works well with impulsive-type satellite
actuators [21]. The authors in [22] further highlighted how this method of attraction to a target
and repulsion from obstacles can be used to achieve complicated behaviors, and the approach has
also been simulated for satellite swarm synchronization [23, 24], docking [25], and attitude control
[26, 27]. However, this method still requires the design of a tracking control law, and any prov-
able constraint satisfaction guarantees will depend on that tracking law. By comparison, safety
filters work directly with the control input (usually the second derivative in space systems, though
any number of derivatives is workable), so there is more literature on achieving strong guarantees
with safety filters using a wide variety of actuators, including continuous [28, 29], discrete [30],
zero-order-hold [31], impulsive [32, 33], underactuated [34], and mixed-order [35], among others.
Indeed, the bulk of Chapters 3-7 details behaviors that can be provably accomplished with safety
filters, but which I am unsure how to replicate with APFs. That said, the intuition of descend-
ing an APF often carries over to explain CBF phenomena as well. For instance, APFs frequently
have local minimum in addition to the target state at the global minimum, and controllers will
sometimes converge to the local minimum instead. Safety filters frequently experience the same
deficiency, particularly when the nominal control law and the safety filter work against each other.
Various authors have explored solutions to this for specific systems, e.g. [36, 37], but this remains
an open problem for both APFs/LBFs and safety filters. Indeed, the work in [27] is of particular
note because it developed a set of LBFs for satellite attitude reconfiguration that exhibits no local
minimum (though this dissertation still improves upon that approach in Section 5.2.5.1). Finally,
the interested reader may refer to [38] for additional comparisons between APFs and CBFs.

Second, another method similar to safety filters is the Reference Governor [39–41]. In this
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method, one must create a pre-stabilized control input that satisfies all the system constraints. One
then programs a supervisor that switches either continuously or discontinuously between the nom-
inal control law, which generally is chosen to yield good performance of the closed-loop system,
and the constraint-satisfying control law. There are many different varieties of reference gover-
nors [40], and a complete review of these is beyond the scope of this summary. One variety of
particular interest is the explicit reference governor [42], as this yields explicit formulas that are
computationally simple to implement. Reference governors and safety filters are closely related,
as both are a “two-layer” approach, where safety and performance are decoupled. The concept of
reference governors is most similar to the concept exploited by one type of safety-filter, termed
the “backup CBF”. In this approach, the safety filter continuously runs predictions to test whether
switching to a safety-preserving control law would render the system inside the specified safe set,
and if not, then the control law switches to the safety-preserving control law. By contrast, in the
reference governor, the switching logic is usually computed a priori, but the concept of switching
to a safety-preserving control law if necessary is similar. In fact, the variant of backup CBF in [43]
could be alternately called an explicit reference governor. That said, in general, the most common
difference between reference governors and safety filters as studied in this dissertation is that safety
filters are generally concerned with a set of safety-preserving control inputs rather than a single
safety-preserving control law (this is still true for the most versions of the backup CBF other than
[43]), and thus require an optimization step to choose among this set of control inputs. That is,
with safety filters the engineer never needs to actually compute a safety-preserving control law,
though such a computation is in essence implicit in the construction of a controlled-invariant set
as part of the safety-filter. The final safety filter as in Section 2.4 could choose any control input
that results in trajectories that remain within this control invariant set, rather than a single safety-
preserving control law. As a result of this abstraction and set-based approach, much of the safety
filter literature (generally under the title “control barrier functions”) is concerned with general tools
to compute such sets, whereas the reference governor literature is often more specific to the stud-
ied system. Reference governors are also often treated as an “add-on” whereas safety filters are
usually an essential part of the control design, though this perspective does not necessarily imply a
mathematical difference. Reference governors have been successfully applied to satellite attitude
control [44, 45] and orbit transfers [46], and remain an active area of research. Similar to safety
filters, reference governors allow for provable satisfaction of constraints, but often yield inferior
performance compared to optimization-based methods such as the following two approaches.

Third, to avoid the problem of local minima with the prior two methods, one might choose
to implement a Trajectory Planner onboard a satellite. A complete review of trajectory planning
methodologies is well beyond the scope of this dissertation, so instead I only highlight some rel-
evant properties of trajectory planners. As discussed in Section 1.2.1, one common strategy is to
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compute trajectories on the ground, though this limits the responsiveness of a satellite to the re-
sponsiveness of the ground station and speed-of-light delay for signals to reach the ground. Instead,
trajectories can also be computed onboard the satellite, given sufficient computational resources.
Usually, this means pausing the satellite in a safe-hold state while the computations for the next
segment of the trajectory take place. In any case, trajectories can be 1) computed using the full
system dynamics, or 2) computed using a reduced-order model. Moreover, once computed, trajec-
tories can be followed either open-loop (usually requires knowledge of the full system dynamics
with minimal error) or closed-loop (frequently used to compensate for errors in a reduced-order
model, or for high-precision applications). Safety filters can be used to ensure that closed-loop
trajectories stay within a prescribed tolerance of a preplanned trajectory in cases where the tar-
get trajectory is computed with a reduced-order model [47]. If the full dynamics are used for
planning, then one can instead use linear perturbation analysis to describe the expected deviation
from the computed trajectory. Many trajectory search and/or optimization routines exist to com-
pute such trajectories (e.g. see [48–50]). The techniques of rapidly-exploring-randomized-trees
[51–54] (and other randomized approaches) and pseudospectral trajectory optimization [55–58]
in particular have been specialized to the space domain due to their comparative computational
efficiency. One of the main advantages of trajectory planning routines over other methods dis-
cussed here is that, given a sufficiently accurate model, one can use trajectory planners to find
fuel-optimal or time-optimal trajectories. All fuel in space must be launched on rockets, so there is
a strong financial incentive to utilize fuel-optimal trajectories. By comparison, safety filters do not
necessarily yield fuel-optimal trajectories, as will become apparent in the simulations throughout
this dissertation. Or rather, the optimality of safety filters is limited by the optimality of the nom-
inal control laws with which they are used (and in this dissertation, I usually choose very simple
nominal control laws, or even poorly chosen nominal control laws, so as to demonstrate how the
safety filter yields constraint satisfaction regardless of the nominal control law). This is one reason
why ground-based trajectory planners continue to be used in practice. That said, one challenge
with trajectory-planners is that it is difficult to guarantee that such planners will always converge
to a good (i.e. feasible and/or globally optimal) trajectory in fixed time, which is one reason that
these planners continue to be run mostly on the ground rather than onboard satellites. Additionally,
a trajectory that is computed in 15 minutes on the ground may take several hours to compute on-
board, and may require that the spacecraft be built with a larger computer and larger solar arrays.
Thus, the computational simplicity of safety filters may be a major advantage.

Fourth, the most popular method of constrained control is Model Predictive Control (MPC)
[59–62]. In this method, the system is almost always discretized, and often linearized. With this
discretization, the controller then predicts a finite horizon of control inputs and a finite horizon of
state samples. The controller then solves an optimization problem for some cost function of these
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control input and state samples. Importantly, one can also add constraints to this optimization
problem, and thus can encode requirements such as the exclusion constraint that was impossible
to encode in a linear control law. MPC is powerful and widely used, though it too has some down-
sides. One limitation is that while MPC is intended as a real-time control methodology (unlike
the trajectory planner, which runs offline), it is still rather computationally intensive. This com-
putational cost is acceptable for most ground-based systems with modern computers, but may be
prohibitive for satellites with radiation hardened computers depending on the control frequency
(multi-rate MPC control schemes have also been suggested [63, 64]). By comparison, though
safety filters also often require solving an optimization problem, this optimization problem is usu-
ally much simpler (i.e. lower dimensional and with fewer constraints) than MPC. Moreover, the
computational cost of implementing a safety filter of the type in Section 2.4 is the same for both
linear and nonlinear systems/constraints, whereas MPC is far more complex for nonlinear systems
or constraints. This has resulted in authors finding various approximations to keep constraints
linear, such as the half-space approximation in [65]. To get around this computational burden,
sometimes MPC is implemented with a long duration between samples—usually with the assump-
tion that a lower level control will also take over between MPC samples—though such a long
discretization can reduce performance and/or cause a violation of constraints (e.g. as occurs for
the MPC comparisons in Sections 5.2.5.1 and Section 7.1.4.2). Alternatively, a robustness margin
for the MPC discretization may be added, and such a margin may be computed identically as in
Chapter 5. Another challenge with MPC is that the types of exclusion constraints most common
in this dissertation, e.g. obstacle avoidance, result in “holes” in the set of allowable states, thus
making this set nonconvex, and making the MPC optimization a nonconvex program. By com-
parison, the safety filter approach ignores this nonconvexity (which also has some downsides; see
Chapter 7) and thus can usually be computed as the solution to a convex program [66] or some-
times an explicit algebraic expression [67]. Next, compared to a trajectory planner, MPC-derived
trajectories are usually sub-optimal. This is because 1) the horizon predicted with MPC is usually
smaller than with a trajectory planner, and 2) because of the finite horizon, the cost function used
with MPC is usually not the total fuel, but is some other cost function that leads to better numerical
stability. That said, because MPC still allows for direct consideration of a cost function, this func-
tion provides an extra “knob” to tune to potentially achieve greater fuel-optimal than a safety filter.
Finally, I note that one difference between MPC and safety filters arises from the sets with which
these two methods work. As described in Chapter 3, usually one possesses both a constraint set,
which can be read directly from the requirement, and a controlled invariant subset of the constraint
set, which one usually has to derive. The safety filters derived in this dissertation always work with
the controlled invariant subset. By contrast, in MPC formulations, one often constrains the MPC
optimization so that the predicted states always lie within the constraint set. Unfortunately, this
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common practice forfeits the provable guarantee of constraint satisfaction with MPC. Instead, one
should additionally require that the last state in the predicted horizon also belongs to the controlled

invariant subset. This is a minor correction, though I believe it is worth highlighting here. Un-
fortunately, this extra step also implies a need to a priori compute a controlled invariant subset,
which is frequently described by nonlinear functions (whereas the constraint set more often can be
approximated by a linear function), thus resulting in nonlinear MPC optimizations. In summary,
MPC is an oft-used approach for constrained control, though it is limited by the explosion in com-
putational cost when applied to nonlinear systems/constraints, and thus has limited applications
on currently-orbiting satellites (though there exist many academic studies of MPC for satellites) in
either linear or nonlinear regimes.

Fifth, one recent method for constrained control is machine learning-based control, such as
reinforcement learning (both model-based and model-free) [68–70]. Similar to how with APFs
one could assign a positive potential to bad states and a negative potential to target states, one
can assign positive cost (equivalently, negative reward) to unallowable states and a negative cost
(equivalently, positive reward) near the target state. Learning can even be done without a model,
whereas safety filters and the four methods above all require knowing an accurate system model.
Thus, constrained control is a natural application of machine learning. In fact, I hypothesize that
machine learning will soon be one of the principal methods of developing fuel-efficient constrained
control laws for aerospace systems. That said, it is difficult to derive provable guarantees about
constraint satisfaction with learning-based control laws. Furthermore, learning-based control laws
often work well for the majority of the state space, but may yield poorer performance or loss of
safety near the edges of the training set (this can also be the case for other advanced nonlinear
control laws). Thus, I hypothesize that the safety filters derived in this dissertation will be partic-
ularly relevant as supervisors for future learning-based controllers. Note that such a supervisory
safety filter will still require knowledge of the system model. There is also substantial literature on
learning controlled invariant sets, and associated control barrier functions for use in safety filters
(discussed in Section 1.2.3.6), though learning these sets/functions is distinct from learning a com-
plete constrained control policy. That is, one can train a control law to perform both convergence
and safety simultaneously, and thus satisfy some optimality criterion, or one can focus only on
learning a function for use in a typical two-layer safety filter. Both approaches are subject to the
traditional limits of machine learning, e.g. computational cost, possibility of non-convergence of
the learning, lack of performance guarantees for the learned object, etc..
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1.2.3 Review of Safety Filters

The origins and technical details of safety filters are covered in detail in Chapter 2. Rather, this
subsection describes some of the known problems with safety filters that motivated this disserta-
tion. Each of Chapters 3-7 also begins with its own literature review.

As described in Section 1.1.2.1, the safety filter works using a two-layer control approach.
Specifically, the filter works to keep a specified set forward invariant. In this work, this set is
always the zero-sublevel set of a function, called a Control Barrier Function (CBF). As such, I
call the zero-sublevel set of this function a CBF set. One can approach safety filters from either
a set-based perspective, or a function-based perspective, and both perspectives are used in this
dissertation.

Recall that, in Lyapunov analysis, if one possesses a function meeting the conditions of a Lya-
punov function, e.g. [71, Thm. 4.2], then one immediately knows that the minimizer of the Lya-
punov function is stable. Likewise, if one possesses a function meeting the conditions of a Barrier
Function (BF), e.g. [72, Prop. 3], then one immediately knows that the BF set is forward invari-
ant. As extensions of these ideas, if one possesses a Control Lyapunov Function (CLF), then one
knows that there exists a control input that renders the minimizer of this function asymptotically
stable [73]. Similarly, if one possesses a CBF, then one knows that there exists a control input that
renders the CBF set forward invariant [29]. The challenge in all of these cases is to find a function
meeting the definition of a (control) barrier/Lyapunov function.

Barrier functions were studied extensively in [72, 74–77]. The generalization of barrier func-
tions to control barrier functions was first suggested in [28], and the modern study of CBFs as in
this dissertation most closely follows the formulation in [29]. In [29], the authors delineated the
theory of safety filters with CBFs and showed how this theory could be applied to a specific sys-
tem, in this case, adaptive cruise control and lane keeping for an autonomous vehicle. While these
results are powerful and set the stage for the remainder of this dissertation, these results are also
geared towards that particular system and are not immediately applicable to spacecraft dynamics.
The following subsections detail some of the extensions necessary to make CBFs relevant to space
systems.

1.2.3.1 Safety Filters for Systems with Inertia

As mentioned above, one challenge with using safety filters is the need to find a CBF for the
given system dynamics. For simple systems, it is sometimes possible to simply write a constraint
as the zero-sublevel set of a function, and then verify that said function is indeed a CBF. However,
more often, further analysis is required. While the fundamentals of CBFs were established in
[29], at the start of this research, there were only a few tools/strategies available to actually derive
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CBFs, each for certain classes of systems. For instance, [36] developed a CBF for the double
integrator system. [34] suggested a form of CBF for nonholonomic systems. The authors in
[29, 78–83] each develop CBFs for specific systems of interest. The only general methods were
the backstepping CBF [84], the exponential CBF [85], and preliminary work on the backup CBF
[86]. These tools were each difficult to apply to spacecraft dynamics. The backstepping CBF does
not allow for input constraints; the exponential CBF only allows for input constraints under certain
circumstances (clarified in later works [87]) and can be difficult to tune; and the preliminary work
on the backup CBF assumed explicitly integrable dynamics that do not often occur in practice.
Thus, additional tools were needed.

This dissertation does not focus on any single type of space system, but rather studies miscel-
laneous dynamics, including navigation around a low-gravity asteroid, navigation around a high-
gravity asteroid, satellite relative motion and docking, attitude control, and management of satel-
lites in dissimilar planetary orbits, as well as the dynamics for simple robots and ground vehicles.
One property that all these systems have in common is that they are second-order systems, i.e.
there are states whose state derivatives are only functions of other states and not functions of the
control inputs. Physically, this means that all these systems have inertia; the control input only im-
pacts the acceleration. Most often, the safety requirements are given as constraints on the position
state, and the CBF must be a strategically chosen function of both the position and velocity. Thus,
this work seeks strategies to find CBFs for A) the class of systems with inertia for B) constraints
placed on the position state.

A general form of CBF for this setup is the High-Order CBF (HOCBF) introduced in [87],
and subsequently expanded in [88–91]. Like the exponential CBF, the HOCBF is often difficult
to tune. That said, the HOCBF is indeed one of the most general possible CBF formulations, and
a comparison to this approach is discussed in Section 4.3.2. A form of CBF intended for multi-
link robotic manipulators, and which is suitable for the above class of systems, and constructive
conditions for tuning such a CBF are described in [92, 93], though this form of CBF can be overly
conservative. Importantly, the works [85, 87, 92, 93] all work best when the operating set of the
system is compact. By contrast, spacecraft are often allowed to operate anywhere except a given set
of collision states. One could add a constraint of a maximal keep-in radius to make the operating set
compact, but this radius would be arbitrary, yet would have a large impact on the CBF parameters.
Instead, by starting from the perspective of obstacle avoidance in unbounded domains, Chapters 3-
4 are able to develop explicit formulas for less conservative CBFs and constructive tools to tune
these CBFs.

Finally, the backup CBF formulation has appeared in many iterations, including non-
exhaustively [86, 94–100], as well as this dissertation. Compared to prior works, this dissertation
specializes the backup CBF to obstacle avoidance scenarios, explains how to practically compute
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this CBF (as this is often not straightforward and not explained in prior works), and studies the
robustness of this CBF.

The above summarizes the papers on how to derive CBFs that are most relevant to space systems
and to subsequent chapters, but this is far from exhaustive. Papers on how to find CBFs for specific
systems remain a prolific area of research.

1.2.3.2 Safety Filters for Systems with Disturbances

Another challenge with safety filters and CBFs is that these are inherently a model-based ap-
proach, and “all models are wrong”. There is also work on finding CBFs without a full model
[101–104] and on adapting CBFs to uncertain models [91, 105–108]. However, I ignore this work
subsequently, because 1) as explained previously, learning-based methods are difficult to trust, and
2) in the space domain, engineers often possess very good models. Nonetheless, these models still
have some uncertainty, e.g. from the density of an unexplored asteroid being unknown [109] or the
particular solar conditions being difficult to predict [110, 111]. Though small compared to other
terms in the system dynamics, these disturbances can still potentially cause the system trajectories
to leave the CBF set, and thus should be considered in the CBF formulation. Here, I equivalently
use the terms “disturbance”, “perturbation”, and “model uncertainty”; these disturbances can be
either deterministic (e.g. unmodelled dynamics), or random (e.g. solar perturbations).

The principal results on set invariance for perturbed systems are in essence extensions of per-
turbed Lyapunov theory as in [71, Ch. 5]: 1) under some assumptions (namely input-to-state stabil-
ity [112–115]), a small disturbance may cause a small excursion outside the CBF set [89, 116], and
2) if the disturbance has a known bound, then under some assumptions, an adjustment to the safety
filter design will prevent trajectories from leaving the CBF set under even a worst-case disturbance
[117–119]. As generally any amount of constraint violation is unacceptable for space missions,
this dissertation focuses on the latter approach. The adjustment to the safety filter design made
in [118, Def. 1] is made less conservative and extended to non-compact safe sets in Chapter 4 via
Theorem 4.1.

Besides requiring a modification to the numerical condition that the safety filter enforces online,
the presence of model uncertainty also might require adjustment of the CBF and CBF set. Other-
wise, the modified safety filter condition may be infeasible. Similar to conventional CBFs [29], it
is often easier to write out the conditions that the robust CBF must satisfy than to derive a function
that meets those conditions. One of the main contributions of Chapter 4 is the development of
constructive methods to derive CBFs that are valid in the presence of both input constraints and
bounded model uncertainties. I am not aware of any other authors that have developed similar
constructive methods to develop input-constrained CBFs for perturbed systems.

In addition to the above Lyapunov-like analysis of perturbations, there is also related literature
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on probabilistic set invariance for systems with stochastic disturbances (i.e. disturbances sampled
from distributions with infinite tails), commonly called “risk-bounded CBFs”, e.g. [75, 120–123].
Many other system phenomena can also be treated as disturbances, and most often, robustness
to these phenomena can also be addressed by small modifications to the safety filter design. For
instance, other authors have studied adversarial robustness [124], sampling robustness [119, 125],
and measurement robustness [126, 127] all using similar frameworks.

1.2.3.3 Safety Filters for Sampled Systems and Impulsive Systems

Indeed, this dissertation devotes substantial attention to robustness to sampling effects. The
safety filters used in this work are generally based on quadratic programs (see Section 2.4). These
quadratic programs take finite time to compute, especially on computationally limited satellite
hardware, so their outputs are only updated infrequently. Generally, the actuators will choose
a zero-order-hold control input between each new control computation. Limited sensor update
frequencies may also affect the control update times. This dissertation does not study input delay,
but this is also discussed in [31].

Sampling introduces two new problems: 1) the control law must ensure that the state is still
inside the CBF set at the next sample, and 2) the control law must ensure that the state never leaves
the CBF set between samples. The first problem in essence generates a set invariance problem
in discrete time, which can be solved via discrete CBFs [30, 128, 129]. However, discrete CBFs
generally lead to safety filters that are nonlinear programs rather than quadratic programs, so a
conservative approximation is made instead, e.g. [31, 119, 124, 125]. The second problem is al-
most always solved by effectively shrinking the CBF set by some margin computed as a function
of bounds on the system’s first and/or second derivatives, so that the trajectory between samples
provably remains within the CBF set. The definition of “effectively shrinking” will be made clearer
via Definition 5.2 (relative-degree 1 case) and (5.90) (relative-degree 2 case). Depending on the
conservatism of the approximation used above, additional shrinking of the CBF set might be un-
necessary, as in some cases (e.g. Theorem 5.7), both problems are solved simultaneously.

Similar to robustness to disturbances, the challenges with robustness to sampling are 1) de-
termining how to modify the safety filter, ideally with minimal conservatism, and 2) determining
constructive conditions to design functions that still satisfy the definition of a CBF after this con-
servatism is added. As spacecraft tend to operate with slow control update cycles—almost never
more than 10 Hz—the need to minimize conservatism is especially pronounced. Chapter 5.1 in-
troduces methods to quantify and compare conservatism, and then develops an improved sampled-
data safety filter that is multiple orders of magnitude less conservative than [119, 124] and that is
more explicitly characterized (i.e. all formulas are given) than [31, 125, 130]. Chapter 5.2 then
details constructive conditions to find CBFs that meet this revised definition of CBF.
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Additionally, many spacecraft operate with impulsive thrusters, rather than continuous or even
zero-order-hold thrusters. If the time between thruster applications is lower-bounded, then this
can be treated very similarly to the sampled-data CBF problem, and so is covered in Chapter 5.3.
To my knowledge, no other authors have considered the problem of impulsive actuators with a
minimum time between actuator applications. The problem setup in this case is indeed similar to
CBFs for hybrid systems [32, 33, 72, 131–135], but the safety filter design is more similar to the
above sampled-data work due to the timing requirements.

1.2.3.4 Safety Filters for Multiple Constraints

Next, I should emphasize that nearly all of the above sources are for safety filters constructed
from one CBF at a time. Since the early work on CBFs in [29], authors have been interested in
using safety filters with multiple CBFs. However, for reasons elaborated upon in Chapter 6, CBFs
do not stack together as easily as constraints stack in MPC optimizations. Or rather, whether using
MPC or safety filters or some other constrained approach, if there are multiple constraints, it is
easy for the control law to become infeasible. The difficulty in both cases arises from the fact that
the intersection of two controlled-invariant sets is not necessarily itself a controlled-invariant set.
Thus, Chapter 6 takes a set-based perspective to create constructive conditions under which one
can recover a controlled-invariant subset. Other notable works that have noted the existence of this
problem, though not provided such constructive conditions, include [67, 136, 137]. The authors
in [138] also provided constructive conditions to check for feasibility of multiple CBFs without
input constraints, and [139] developed a constructive method to identify (or rather adaptively find)
a set where such a safety filter remains feasible, assuming no input constraints and that such a
set exists. Given several CBFs, [140] proposes an algorithm for checking that the intersection of
several CBF sets is also controlled-invariant in the presence of input constraints. This can also be
accomplished with tools from the viability theory literature (see Chapter 6 for more details, though
this is also a large area of literature that is not thoroughly covered in this dissertation), though
such tools are currently limited for nonlinear systems and generally do not make use of certain
simplifying properties of CBFs. Building on this verification work, Chapter 6 then proposes some
constructive conditions to modify a set of CBFs so as to pass this verification. To my knowledge,
[140] and Chapter 6 are the only works at time of writing to consider this problem in the presence
of input constraints, though I predict that this will be a dense area of research in the near future. A
special case of a safety filter with multiple CBFs is also presented in the case study in Section 4.7,
and Chapter 6 explains further why this is a special case.
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1.2.3.5 Safety Filters for Improved Performance

Next, I mentioned previously how safety-filter-based control laws tend to be suboptimal in time
and/or fuel compared to offline path planners, or even online path planners like MPC. This will
depend of course on the choice of nominal control law, so for the purposes of discussion, suppose
that the nominal control law is agnostic to the state constraints, as this is the case for all the nominal
control laws used in the subsequent chapters. Work on improving the nominal control law (usually
at greater computational expense) is also considered in [128, 141–143], but here I focus instead on
improving the safety filter itself. In this case, the safety-filter is suboptimal often because it only
focuses on the current state and not on a horizon of states, so it can only compute control inputs that
optimize a local (i.e. instantaneous) cost function, and not a cost function over a trajectory, which
is usually more relevant for mission objectives like time and fuel minimization. For this reason,
safety filters with CBFs are referred to as a “reactive” methodology, or sometimes “myopic”. At
this point, I emphasize that existence of a CBF implies that a set can be rendered forward invariant
for all future time, so in some sense, a CBF does inherently encode possible future trajectories (e.g.,
how the CBFs described in Section 1.2.3.1 consider the system inertia). However, this property
does not prevent myopic behaviors. It is also worth mentioning that a small modification of the
safety-filters herein leads to the solution to a particular optimal control problem [144], though the
cost function of this problem is rarely of physical importance.

Two possible reasons a safety filter may be overly conservative include 1) the CBF is overly
conservative (i.e. the CBF set is smaller than the largest possible controlled invariant set) and
causes a reaction sooner than would occur along an optimal trajectory, and 2) the CBF set is
not very conservative and causes a reaction later than would occur along a nominal trajectory.
Regarding the first problem, just as there was interest in making robust and sampled-data CBFs
less conservative, there is also interest in making the CBF sets as large as possible, either by finding
better algebraic expressions (e.g. Chapters 3-4) or using optimal control approaches to derive better
CBFs, e.g. [98, 99, 145–147]. Deriving less conservative CBFs for specific systems remains an
open area of research. Regarding the latter problem, this is a less-studied problem, and is usually
addressed by modifying the nominal control law [142, 148]. Instead, in Chapter 7, I introduce
a new form of CBF that directly encodes future trajectory predictions and which can be used to
solve both of the above problems. Firstly, by encoding the future trajectories into the CBF (with no
changes to the nominal control law), this method makes the CBF less conservative than most other
approaches. Of course, this approach is still more conservative than the approaches in [98, 99]
for deriving the largest possible CBF sets (assuming a sufficiently large time horizon), but this
approach is computationally lightweight enough to be used with much larger time horizons than
[98, 99] and thus might yield larger CBF sets anyways. Secondly, the encoding of these predictions
allows for a way to tune how far in advance the CBF reacts to obstacles predicted in the future. In
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the case of obstacle avoidance, reacting earlier often results in trajectories that accelerate around
an obstacle rather than away from an obstacle. Note that this tuning is done in the CBF itself,
resulting in a different CBF set, rather than in the rate-limit within the safety filter, as was done in
[112, 115, 149].

1.2.3.6 Other Topics in Safety Filters

Sections 1.2.3.1-1.2.3.5 discuss the literature most directly relevant to Chapters 2-7. I now sum-
marize a few other miscellaneous topics in safety filtering and CBFs that I believe the reader may
find of value. First, most CBF literature, and thus most of this dissertation, works with continu-
ously differentiable CBFs, thus yielding continuous control laws. Minor extensions to functions
differentiable almost everywhere arise in Chapter 3 and Chapter 7. More thorough treatments of
nonsmooth CBFs are studied in [150–154], and helpful tools not specific to safety filtering are pre-
sented in [155]. Generalizations of CBFs to hybrid systems are provided in [132], among others
(see references in Chapter 5.3).

Next, in addition to using machine learning to develop complete constrained control laws, many
researchers have also investigated using machine learning to design CBFs for use in safety filters,
e.g. [101–104, 156–159]. In these cases, verification of the CBF must be done with some other
method, since this is no longer a model-based approach, but nonetheless such learning approaches
can be useful for design. There is also a small community interested in polynomial optimization
to verify and/or generate a CBF [160–162], assuming the system has polynomial dynamics and
the CBF can be expressed as a polynomial. These assumptions may not hold for certain space
systems (because of the µ

r2
gravity term) and may be computationally intensive, but in the cases

where such methods do apply, they yield strong set invariance guarantees. Even in other cases,
polynomial optimization may be a useful early-phase design tool. Extensions to nonpolynomial
systems, specifically to neural networks with linear rectifier activation functions, also recently
appeared in [163].

Another relevant research area is using CBFs for designing control laws that satisfy certain time
specifications, that is, CBFs for spatiotemporal logics [79, 164–167]. This is generally done with
non-Lipschitz continuous control barrier functions that effect finite-time or fixed-time convergence
to a target set (instead of finite-time stability to a target point [168]), though this can also be
achieved with time-varying control barrier functions [152, 169]. Also related to this, researchers
have investigated the concurrent design of high-level planning control laws for task satisfaction
and low-level safety-preserving control laws [141, 170]. Generally, provably safe control in such
a multi-rate setup is achieved via well-chosen robustness margins added to the safety filter, similar
to the papers listed in Sections 1.2.3.2-1.2.3.3. Between the domains of robustness and prediction,
the work in [171] recently suggested a form of CBF that takes into account a finite prediction of
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the future disturbances (e.g. road gradient, expected loads) to make robust CBFs less conservative;
this may also have interesting applications to multi-rate control. Though not utilized in this thesis,
these approaches for autonomously reaching desired states (instead of avoiding undesired states as
in this dissertation) also have the potential to improve the level autonomy of robotic and satellite
control laws. Such logics have already been proposed as an alternative approach for verifying
spacecraft software [172].

1.3 Contributions and Outline

The previous sections have already discussed many of the contributions of this dissertation in
the context of the prior literature. Here, I provide a more concise statement of this dissertation’s
contributions chapter-by-chapter.

• Chapter 2 presents an overview of control barrier functions implemented in quadratic-
program-based safety filters. This chapter identifies connections between the most important
of the prior works and emphasizes the varying technicalities and regularity conditions em-
ployed in prior works. The chapter then formally proves three set invariance theorems (The-
orem 2.2, Theorem 2.6, and Theorem 2.8) for particular regularity conditions. This chapter
serves as technical preliminaries for the rest of the dissertation.

• Chapter 3 presents two new and constructive strategies for synthesizing control barrier func-
tions for higher-order systems in the presence of input constraints. A minor generalization
of the CBF regularity conditions in Chapter 2 is also presented in Theorem 3.2. This chapter
focuses on the author’s work in [173].

• Chapter 4 presents results on robustness of safety filters to disturbances. Specifically The-
orem 4.1, Theorem 4.3, and Theorem 4.4, generalize the main set invariance theorems in
Chapter 2 to systems with bounded disturbances. The chapter then presents three strate-
gies for constructively designing control barrier functions for second-order systems (the
third strategy is also applicable to higher-order systems) in the presence of input constraints
and bounded disturbances—two strategies are extensions of Chapter 3 while one strategy is
unique to this chapter. The chapter continues by introducing a switching approach aimed at
decreasing the conservatism of robust CBFs, and a specific choice of rate-limit for the safety
filter implementation that allows further tuning of this conservatism. The chapter concludes
with a case study, Section 4.7, that shows how this tuning can be used to ensure that robust-
ness does not interfere with mission objectives. This chapter focuses on the author’s work in
[174, 175].
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• Chapter 5 presents results on implementing safety-filters in sampled-data control laws. The
chapter defines two notions of conservatism, and then presents less conservative conditions
that still yield provable set invariance guarantees under sampled-data control laws. The chap-
ter then presents a constructive method for developing one form of CBF applicable to second
order systems subject to sampled-data control, bounded disturbances, and input constraints
(building upon the first method in Chapter 4). Theorem 5.16 and Theorem 5.17 generalize
the main set invariance theorems in Chapter 2 to sampled-data control laws. The chapter
concludes by deriving similar conditions for sampled-data control with impulsive actuators
with larger sampling times, and presents both a set invariance theorem (Theorem 5.19) and
a stability theorem (Corollary 5.22) for this domain. This chapter focuses on the author’s
work in [176–178].

• Chapter 6 presents constructive conditions for designing safety filters that render several
control barrier functions nonpositive. The chapter identifies how the intersection of two or
more controlled-invariant sets is not necessarily controlled-invariant, and proposes geometric
conditions to generate a smaller controlled-invariant subset. This chapter focuses on the
author’s work in [179].

• Chapter 7 presents a fourth strategy for constructively designing control barrier functions
for higher-order (or first-order) systems. This strategy is based on predicting the system’s
future trajectory under the nominal control law, and if the nominal control law is unsafe, the
safety filter chooses a different control input that encourages future safety. This reduces the
myopic property of the safety filter in simulation. Unlike Chapters 3-4, this method does
not constructively consider input constraints. This chapter is focused on the author’s work
in [180].

Parts of this dissertation were also included in the tutorial paper [181].
In summary, this dissertation presents several constructive strategies for designing control bar-

rier functions, and extends safety filtering conditions to domains not previously studied, or where
existing conditions were too conservative for practical application to space systems. Importantly,
all the set invariance theorems presented in Chapters 2-5 are proven or re-proven within this dis-
sertation rather than referencing external proofs. This is done to ensure that the assumed regularity
conditions in these theorems are consistent throughout.

The above are all contributions to general control theory. As this dissertation is focused on space
systems, the areas of control theory I chose to study are primarily areas that I believed needed ad-
ditional work to be relevant to space systems. Also, while this theory is general, the simulations
that demonstrate this theory in practice are generally space systems. A list of simulations is pre-
sented in Table 1.1. Note that this dissertation does not focus on any particular space system or
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Dynamics Used in
Double Integrator Section 3.4.1, Section 7.1.4.1

Unicycle Section 5.1.4
Attitude Dynamics Section 5.1.4, Section 5.2.5, Section 6.4

Asteroid (High-Thrust) Section 3.4.2, Section 4.5.4
Asteroid (Low-Thrust) Section 4.5.3

Low-Earth Orbit Section 7.1.4.2
Relative Motion ([8]) Section 4.7.4, Section 5.3.4

Table 1.1: List of Simulations. List of the types of spacecraft and robot dynamics used as simula-
tion case studies in this dissertation

space mission application, but rather develops general methods, and demonstrates these methods
on various space systems throughout.

1.3.1 Three Minute Thesis

As part of my studies, I participated in a “Three Minute Thesis” challenge to communicate my
research to a non-technical audience in only three minutes. I include a summary of that project
here. A visual summary is also shown in Fig. 1.1.

The setup is thus: imagine you are in Paris and you want to reach the Eiffel Tower. Suppose
you have no map, no access to the internet, and cannot ask others for directions (as all of these

Figure 1.1: Non-Technical Explanation of Research Objectives
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are computationally expensive or simply unavailable in space). However, you are close enough
that you can see the Eiffel tower. Therefore you try to move generally in that direction. This is
analogous to the nominal control law in the safety-filter framework. This control law can be simple
or can make use of accumulated knowledge as you explore the city.

While your objective is to move generally towards the Eiffel Tower, you are at street-level, so
there are many buildings in the way. You cannot move in a straight line towards the target, but
rather skim along the edges of these buildings. This is analogous to the effect of the safety filter,
which modifies the nominal control law to keep you away from places you cannot enter. This
two-layer framework is extremely simple, but protects you from running into buildings, and if the
streets of Paris are sufficiently well-connected, then you still reach the Eiffel Tower. You most
likely do not take the most efficient route, which you could do if you had a map and planned out
a trajectory, and it is possible that you get stuck at a dead-end road. However, this control law is
much simpler to compute than a path planner. The objective of this dissertation is to advance the
state-of-the-art enough to be able to implement this same simple two-layer logic on autonomous
spacecraft.
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CHAPTER 2

Preliminaries

In this chapter, I present a general form of the type of system analyzed throughout the remainder
of the dissertation and discuss what it means for such a system to be safe. I also present a general
definition of Control Barrier Function (CBF), three general theorems discussing how CBFs can be
used to ensure safety, and a common form of control law used with CBFs. The following chapters
then present more specific system models and other definitions of CBF to solve more specific
problems. This chapter is intended to give a general overview of CBFs for the unfamiliar reader.

2.1 Notations

In this dissertation, calligraphic letters, e.g. A, B, and capital or bold Greek letters, e.g. Ξ, Ω, µ,
will generally represent sets. Lower case Greek letters will generally represent scalars and scalar-
valued functions. Latin characters will generally represent vectors and vector-valued functions.
Note that these conventions are not followed strictly. When the need arises for quantities with
multiple subscripts or superscripts, I will either define a new character to eliminate the need for
multiple sub/superscripts, or else will separate the sub/superscripts with commas, e.g. fa,b,c.

Given two objects a and b, let (a, b) represent the tuple of a and b. If a and b are both scalars
or vectors, (a, b) also represents the concatenation/stacking of a and b, sometimes written as c =
[aT bT]T ≡ (a, b). The notations ≜ and ≡ are used for emphasis when defining a new quantity and
when declaring that two quantities are identical, respectively, but mathematically these characters
are equivalent to the plain = equality symbol. When a and b are vectors of equal dimension, the
expressions a = b, a ≤ b, a < b, a ≥ b, and a > b are interpreted elementwise. Let R denote the
set of real numbers, R≥a the set of real numbers greater than or equal to a, and R>a the set of real
numbers strictly greater than a. Let Rn denote the set of n-dimensional vectors of real numbers,
and Rm×n the set of matrices of real numbers with m rows and n columns. Let Z denote the set of
integers. For a number N ∈ Z≥1, let [N ] ≜ {1, 2, · · · , N − 1, N}.

Let ∥ · ∥ denote the two-norm, ∥ · ∥1 the one-norm, and ∥ · ∥∞ the infinity-norm. Let a · b denote
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the inner product of compatible column vectors a and b, also written as aTb. Let a × b denote the
vector cross product for vectors a, b ∈ R3, and let a× denote the skew-symmetric cross product
matrix, such that a×b ≡ a × b. Let I denote the identity matrix of appropriate dimension. The
character ∃ is shorthand for “there exists” and the character ∀ is shorthand for “for all” or “for
any”.

Given a set X , let 2X denote the power set of X , that is, the set of all possible subsets of X .
Given sets A and B, let A ⊆ B denote that A is a subset of B. In this dissertation, the notation
A ⊂ B is mathematically equivalent to A ⊆ B, but is used to further indicate that the set A in
such a context is usually strictly smaller than the set B, such as when A is assumed compact and
B is Rn. Let A × B denote the Cartesian product of A and B. Let |A| denote the cardinality (i.e.
number of elements) of the setA. Let ∂A denote the boundary of a setA, whereAmay be closed,
open, or neither. Let int(A) denote the interior of A, and cl(A) the closure of A. Let A ∩ B
denote the intersection of A and B, and let A ∪ B denote the union of A and B. Let ∅ denote
the empty set. This dissertation will frequently utilize time-varying sets, which will be introduced
as A : T → 2X , where T is a time domain and A(t) ⊆ X . After the first introduction, such a
time-varying set will be referred to only by the character A, unless the value of the set A(t) at a
specific time t is required. I also shorthand AT ≜ {(t, x) ∈ T × X | x ∈ A(t)}.

A function f that maps domain A to co-domain B will be introduced as f : A → B. The
image of A through f is f(A). The expression ∂f(t,x)

∂t
denotes the derivative (if t is scalar) or

gradient row vector (if t is a vector) of the function f with respect to the function’s first argument
evaluated at the point (t, x). Likewise, ∂f(t,x)

∂x
denotes the derivative or gradient with respect to

the second argument. Let ∂f(x)
∂x

∣∣∣
x=y

denote that the derivative is evaluated at y; if such a y is not

specified, then the derivative is assumed to be evaluated at the argument(s) in the numerator of
the fraction. In later chapters, additional derivative notation will be introduced to clearly describe
more complex arrangements. For instance, given two functions f and g with compatible domains
and co-domains, the expression ∂f(t,g(x))

∂x
is unclear using the above notation, and therefore will be

clarified in the chapters where such an expression appears.
Let limx→a f(x) denote the limit of f as the function argument approaches a, if the limit exists.

Let limx→a+ denote the one-sided limit from the right, i.e. from values greater than a. Let limx→a−

denote the one-sided limit from the left, i.e. from values less than a. The character x is used
for the state of a dynamical system throughout this dissertation, and ẋ denotes the derivative of
x in forward time, ẋ(t) = limδ→0+

x(t+δ)−x(t)
δ

. For T ⊂ R, the expression x(T ) denotes a state
trajectory curve with time domain T ; the initial condition and control law for such a curve may
also be indicated or left unspecified.

Additional notations will be introduced in later chapters as needed for clarity.
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2.2 Model and Assumptions

Throughout this work, consider a dynamical system of the form

ẋ = F (t, x, u) (2.1)

where t is the time, x is the system state, and u is the control input. This work makes the following
assumptions:

2.2-A1 The time t belongs to the set of considered times T ≜ [t0, tf ) ⊆ R, where tf is possibly
∞;

2.2-A2 The state x belongs to the set of possible states X ⊆ Rn (e.g. set of unit quaternions);
trajectories of (2.1) starting in X always remain in X for any control input;

2.2-A3 The control input belongs to the set of allowable control inputs U ⊆ Rm, where U may
be compact or may be unbounded depending on the chapter;

2.2-A4 The control input u is a function u : T × X → U ;

2.2-A5 The dynamics F is a function F : T × X × U → Rn;

2.2-A6 Assume that F and u are sufficiently regular so as to always admit unique solutions to
(2.1) for all times in the domain T and from all initial times and initial states in T ×X .

The regularity Assumption 2.2-A6 can be guaranteed using any of the sufficient conditions in [71,
Ch. 3] or other works. Many works in the CBF literature further assume that F and u are locally
Lipschitz continuous for this reason, but for the sake of generality, I only make such an assumption
in specific chapters, not throughout the entire dissertation. Many of the subsequent chapters will
redefine (2.1) to be control-affine, i.e. F (t, x, u) = f(t, x) + g(t, x)u, as is most common in the
CBF literature.

2.3 Defining Safety and Control Barrier Functions

While humans have various intuitive notions of safety, in control theory, safety is defined pre-
cisely in terms of sets. Denote the set of all allowable states as S ⊂ X . For the sake of generality,
suppose S is a time varying map S : T → 2X , and denote ST = {(t, x) ∈ T × X | x ∈ S(t)}.
When working with time-varying sets S, a “state” refers to a combination of a time and system
state. I now present some definitions.
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Definition 2.1 (Instantaneously Safe State). A state (t, x) ∈ T × X is instantaneously safe if

x ∈ S(t).

Definition 2.2 (Safe Trajectory). A trajectory x(T ) is safe if every state x(t) along the trajectory

is instantaneously safe for all t ∈ T .

Definition 2.3 (Perpetually Safe State). A state (t, x) is perpetually safe if there exists a control

input u(T≥t) such that u(τ) ∈ U for all τ ∈ T≥t and the trajectory x(T≥t) originating from (t, x)

under u is safe.

Definition 2.4 (Viability Kernel [182, Def. 2.1]). The viability kernel is the set AT ⊆ ST of all

perpetually safe states (t, x).

2.3.1 Barrier Functions and Control Barrier Functions

The history of CBFs begins with Barrier Functions (BFs) for uncontrolled systems (equiva-
lently, for systems wherein the control law is already specified). Prajna [72, 74–77] introduced the
notion of barrier certificates, later called Barrier Functions (BFs), to certify whether states of an
uncontrolled system are perpetually safe. A modified definition is as follows.

Definition 2.5 (Barrier Function [75, Thm. 1]). Let ẋ = F (x) and let S be time-invariant. A

continuously differentiable function B : X → R is a Barrier Function (BF) if 1) B(x) > 0 for all

x ∈ X \S , 2) B(x) < 0 for some nonempty open subset of S, and 3) ∂B(x)
∂x

F (x) ≤ 0 for all x such

that B(x) = 0.

Since there is no control input, it is straightforward to test whether a function B : X → R satisfies
Definition 2.5 or not. One can also show that any state that starts in the sublevel set B = {x ∈ X |
B(x) ≤ 0} will stay in B for all future time [75, Thm. 1]. That is, B is forward invariant.

Definition 2.6 (Forward Invariant Set). Let ẋ = F (t, x). A set AT ⊂ T × X is forward invariant
if for any (t, x) ∈ AT , the trajectory x(T≥t) satisfies (τ, x(τ)) ∈ AT for all τ ∈ T≥t.

I emphasize that B as above is a subset of S, and usually a strict subset, as much of this dis-
sertation is concerned with identifying similar subsets and designing B so that these subsets are as
large as possible. The controlled equivalent of a forward invariant set is a controlled invariant set.

Definition 2.7 (Controlled Invariant Set). A set AT ⊂ T × X is controlled invariant if for any

(t, x) ∈ AT , there exists a control curve u(T≥t) such that u(τ) ∈ U for all τ ∈ T≥t and the

trajectory x(T≥t) under u satisfies (τ, x(τ)) ∈ AT for all τ ∈ T≥t.
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Note that the set T ×∅ also trivially satisfies Definitions 2.6-2.7. Some papers choose to present
Definitions 2.6-2.7 in terms of subsetsA ⊂ X rather than in terms of subsetsAT ⊂ T ×X ; here I
choose theAT formulation because this formulation applies more readily with Nagumo’s theorem
(repeated below as Lemma 2.7). Given a controlled invariant set, one then seeks a specific control
law u : T × X → U such that the system ẋ = F (t, x, u(t, x)) is forward invariant. However, if a
set is not controlled invariant, then no such control law will exist.

In addition to being forward invariant, B as above is also a viable set, defined as follows.

Definition 2.8 (Viable Set). A setAT ⊆ ST is a viable set (also called a viability domain) if every

state (t, x) ∈ AT is perpetually safe.

Note that a viable set is not necessarily a forward invariant or controlled invariant set. Given a
state (t, x) in a set AT , a trajectory x(T≥t) used to test whether AT is a viable set is permitted to
leave AT as long as the trajectory does not leave ST . However, by definition, any such trajectory
must not leave the viability kernel, which is the largest viable set and which must be a controlled
invariant set. The related field of Viability Theory is concerned with the computation of the via-
bility kernel (e.g. [182–187]). By contrast, such computations are not studied in this dissertation,
because they are often expensive even for linear systems [187, 188]. It will suffice to work with
sets that are both controlled invariant and viable, but not necessarily equivalent to the viability
kernel.

From the concept of BFs, Wieland and Allgöwer [28] proposed the concept of CBFs, which
Ames later put into its modern form [29, 66, 189]. Note that Ames’ early papers discuss what he
calls a reciprocal CBF (a CBF that approaches∞ at the boundary of the viable set) while Ames’
later papers introduce what he calls a zeroing CBF (a CBF that is approaches zero at the boundary
of the viable set, similar to Definition 2.5). The relation between the two forms is detailed in [29].
This dissertation works exclusively with zeroing CBFs. Moreover, at time of writing, nearly all
new papers on CBF theory work with zeroing CBFs, so I drop the term “zeroing” and simply call
these functions CBFs. Finally, note that BFs and CBFs have been defined in the literature such
that the viable set is either the zero sublevel set (as in Definition 2.5) or the zero superlevel set (as
in [29, 66, 189]) of the CBF, depending on the author. In this dissertation, all BF and CBF viable
sets are zero sublevel sets of the corresponding BF/CBF. This formulation aligns with the most
common convention in Viability Theory and Control Lyapunov Function (CLF) Theory (CBFs are
essentially a variant of CLF), but this convention has become less popular in the most recent CBF
literature.

Next, some definitions:

Definition 2.9 (Class-K). A continuous function α : R≥0 → R≥0 is said to belong to class-K,

denoted α ∈ K, if α(0) = 0 and α is strictly increasing.
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Definition 2.10 (Class-K∞). A continuous function α : R≥0 → R≥0 is said to belong to class-K∞,

denoted α ∈ K∞, if α ∈ K and limλ→∞ α(λ) =∞.

Definition 2.11 (Class-Ke). A continuous function α : R → R is said to belong to extended

class-K, denoted α ∈ Ke, if α(0) = 0 and α is strictly increasing.

Definition 2.12 (Class-K0). A continuous function α : R → R is said to belong to class-K-zero,

denoted α ∈ K0, if α(0) = 0, α(λ) ≤ 0 for all λ < 0, and α(λ) is strictly increasing for all λ > 0.

The first step in going from BFs to CBFs involves noting a property of the trajectories of systems
for which there exists a BF.

Lemma 2.1 ([29, Prop. 3]). Let ẋ = F (x), let S be time-invariant, and let B : X → R be a BF as

in Definition 2.5. Let B = {x ∈ X | B(x) ≤ 0} be compact. Then there exists a set D ⊆ X such

that B ⊆ D and a function α ∈ Ke such that ∂B(x)
∂x

F (x) ≤ α(−B(x)) for all x ∈ D.

That is, the rate of increase of the BF is upper bounded by a class-Ke function. In the remainder
of this section, I provide a definition of CBF, and then examine several of the peculiarities of
some of the most common CBF theorems in the literature. Already, one notes two peculiarities of
Lemma 2.1 that arise in certain papers: 1) the assumption that B is compact, and 2) the introduction
of a larger set of definition D. In Lemma 2.1, and often in other theorems, compactness of B is
a critical assumption used in the proof in [29, Prop. 3]. In other papers in the CBF literature, the
compactness assumption is sometimes made only as a means to guarantee existence of solutions of
(2.1) for all time via [71, Thm 3.3], and thus may not be critical to all theoretical results. Therefore,
when a compactness assumption is made in this dissertation, I will make clear the reasoning.
The importance of the larger set D will also become apparent in the proof of Theorem 2.2 and
Theorem 2.6 (note that one such D in Lemma 2.1 is simply D = B, whereas Theorem 2.2 requires
D to be larger than B (or ratherH)).

From Lemma 2.1, Ames redefines BFs as follows (note that I have switched Ames’ original
definition to the zero sublevel set convention used in this dissertation).

Definition 2.13 (Barrier Function as in [29, Def. 3]). Let ẋ = F (x). Let B : X → R be continu-

ously differentiable and let B = {x ∈ X | B(x) ≤ 0}. The function B is a barrier function if there

exists a set D ⊆ X and a function α ∈ Ke such that B ⊆ D and ∂B(x)
∂x

F (x) ≤ α(−B(x)) for all

x ∈ D.

Note that Definition 2.13 does not require B to be compact, but the equivalence between Def-
initions 2.5 and 2.13 only holds if B is compact and is a subset of S. I am now ready to present
a definition of CBF, in which I switch to using the character h as is more common in the CBF
literature.
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Definition 2.14 (Control Barrier Function). Let h : T × X → R be continuously differentiable,

and let

H(t) ≜ {x ∈ X | h(t, x) ≤ 0} , (2.2)

HT ≜ {(t, x) ∈ T × X | h(t, x) ≤ 0} . (2.3)

The function h is a control barrier function (CBF) for the system (2.1) if there exists a set D : T →
2X and a function α ∈ Ke such thatH(τ) ⊂ D(τ) for all τ ∈ T and

inf
u∈U

[
∂h(t, x)

∂t
+
∂h(t, x)

∂x
F (t, x, u)

]
≤ α(−h(t, x)), ∀(t, x) ∈ HT . (2.4)

Given a CBF, I refer toH and/orHT as the CBF viable set, or simply the CBF set. By construc-
tion, H(t) must be a closed set for every t ∈ T [190, Cor. 11.13]. Note that unlike Definition 2.5,
Definitions 2.13-2.14 do not assume that H(t) ⊆ S(t) for all t ∈ T or that H(t) is nonempty
for all t ∈ T , though these assumptions are usually required for the CBF to be of practical util-
ity. Similarly, note that the formulation in [169], to which Definition 2.14 and Theorem 2.2 are
most similar, also requires that H(t) possess no vanishing disconnected subsets. This dissertation
does not explicitly make this assumption, because it is not necessary to prove Theorem 2.2, but in
practice this property usually holds.

2.3.2 Set Invariance Theorems

Given a CBF, one has the following controlled invariance theorem.

Theorem 2.2. Given a CBF for the system (2.1) as in Definition 2.14, let D : T → 2X be an open

set such thatH(τ) ⊂ D(τ) for all τ ∈ T , let DT = {(t, x) ∈ T ×X | x ∈ D(t)}, and let α ∈ Ke.
Then any control law u : T × X satisfying

∂h(t, x)

∂t
+
∂h(t, x)

∂x
F (t, x, u(t, x)) ≤ α(−h(t, x)),∀(t, x) ∈ DT (2.5)

will renderHT in (2.2) forward invariant.

Lemma 2.3. Suppose z : [t0,∞)→ R is absolutely continuous and satisfies ż(t) = α(−z(t)) for

almost every t ∈ [t0,∞), where α ∈ Ke. If z(t0) ≤ 0, then z(t) ≤ 0 for all t ≥ t0.

Proof. Suppose otherwise; that is, suppose z(t0) ≤ 0 and that there exists t > t0 such that z(t) > 0.
Since z is absolutely continuous, this implies there exists an open set Ω where z(t) > 0 for all
t ∈ Ω. Thus, without loss of generality, assume that z is differentiable at t. This implies that
ż(t) = α(−z(t)) < 0. It follows that, at an infinitesimal time t − δ preceding t, it must be that
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z(t− δ) > z(t). This further implies that z(τ) > z(t) for all τ < t, including τ = t0. This implies
that z(t0) > z(t) > 0, which contradicts the assumption that z(t0) ≤ 0. ■

Proof of Theorem 2.2. By assumption 2.2-A6, solutions to (2.1) are unique. Let x(T ) be any
solution to (2.1) and define θ(t) = h(t, x(t)). Controlled invariance is only concerned with states
originating from x(t0) ∈ H(t0) for some t0 ∈ T , so θ(t0) = h(t0, x(t0)) ≤ 0. The choice u(t, x)
satisfying (2.5) ensures that θ̇(t) ≤ α(−θ(t)) for almost every t ∈ T . Thus, by the comparison
lemma [191, Lemma IX.2.6], θ(t) ≤ z̄(t), where z̄(t) is the maximum solution of ż(t) = α(−z(t))
with z(t0) = θ(t0). By Lemma 2.3, every solution of ż(t) = α(−z(t)) starting from z(t0) =

θ(t0) ≤ 0 satisfies z(t) ≤ 0 for all t ∈ T . Therefore, z̄(t) ≤ 0 for all t ∈ T , so h(t, x(t)) =

θ(t) ≤ z̄(t) ≤ 0 and thus x(t) ∈ H(t) for all t ∈ T , which is equivalent to HT being forward
invariant. ■

Note two peculiarities of Theorem 2.2. First, I use the comparison lemma to complete the proof.
There are two principal ways of proving forward invariance with CBFs: using the comparison
lemma and using Nagumo’s theorem. In particular, the above proof used an extended version of the
comparison lemma since the comparison equation ż ≤ α(−z) was permitted to be non-Lipschitz,
and therefore to possibly have multiple solutions. Second, the statement of Theorem 2.2 required
(2.5) to apply not only insideH, but also inside a neighborhood D. This is a general feature of set
invariance theorems in continuous-time systems: it is not sufficient to design a control law only
on H; the control law must also be defined within an (arbitrarily small) open region around H.
Practically, this detail matters because most real control laws are sampled, so small excursions
outside H may occur. Likewise, numerical simulators with multi-step Runge-Kutta propagation
may take steps outside H before averaging is applied. Thus, the system dynamics should be well-
defined outside H and should not discontinuously change at ∂H. This might occur, for instance,
if ∂H represents a physical wall, where an agent might start to experience contact dynamics with
the wall; such a CBF should be re-designed to have a small amount of margin before the dynamics
change. These implementation realities are mitigated by the following corollary.

Corollary 2.4. Given the assumptions of Theorem 2.2, let Hϵ(t) = {x ∈ X | h(t, x) ≤ ϵ}, and

further assume that there exists some ϵ ∈ R>0 such that Hϵ(t) ⊆ D(t) for all t ∈ T . Then the set

HT is asymptotically stable from all points inHϵ,T = {(t, x) ∈ T × X | x ∈ Hϵ(t)}.

Corollary 2.5. Theorem 2.2 also applies if α belongs to K0 instead of Ke. However, in this case,

Corollary 2.4 only implies thatHT is stable, not necessarily asymptotically stable, from all points

inHϵ,T .

That is, the assumptions of Theorem 2.2 also result in H being attractive from Hϵ (or simply
from D). On the other hand, Corollary 2.5 implies that the dynamics in D \ H need only be
non-divergent, not necessarily attractive.
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Next, it may be the case that one wishes to avoiding enforcing condition (2.5) everywhere in an
open set D. In this case, the following theorem provides an alternate regularity condition.

Theorem 2.6. Let u : T × X → U be a control law, let h be a CBF for the system (2.1) as in

Definition 2.14, and let α ∈ K. Let D : T → 2X be an open set such that ∂H(τ) ⊂ D(τ) for

all τ ∈ T , and let DT = {(t, x) ∈ T × X | x ∈ D(t)}. Suppose that F is locally Lipschitz

continuous in its third argument for all u ∈ U , and suppose that F , u, ∂h
∂t

, and ∂h
∂x

are locally

Lipschitz continuous for all (t, x) ∈ DT . Then any control law satisfying the above conditions and

∂h(t, x)

∂t
+
∂h(t, x)

∂x
F (t, x, u(t, x)) ≤ α(−h(t, x)), ∀(t, x) ∈ HT (2.6)

will renderHT forward invariant.

Proof. Let x(T ) be any solution to (2.1) and define θ(t) = h(t, x(t)). Solutions to (2.1) must be ab-
solutely continuous, so any solution starting at θ(t0) = h(t0, x(t0)) ≤ 0 must pass through θ(t) = 0

for some t ∈ T≥t0 to become unsafe. Therefore, I only focus on the behavior of θ̇ in a neighborhood
θ ∈ (−ϵ, ϵ) of θ = 0, where ϵ ∈ R>0. By assumption, θ̇(t) = ∂h(t,x(t))

∂t
+ ∂h(t,x(t))

∂x
F (t, x, u(t, x))

is locally Lipschitz continuous for states (t, x) ∈ DT , or equivalently for θ ∈ (−ϵ, ϵ). In this
neighborhood, there exists a bound β : R→ R such that 1) θ̇(t) ≤ β(−θ(t)) for all θ(t) ∈ (−ϵ, ϵ),
2) β(−λ) ≤ α(−λ) for λ ∈ (−ϵ, 0] (recall that α is not defined for negative arguments), and 3)
β(λ) is locally Lipschitz continuous for λ ∈ (−ϵ, ϵ). Thus, it follows that β(0) ≤ 0, so one can
linearly upper bound β as β(λ) ≤ L|λ| for some L ∈ R≥0 on the neighborhood (−ϵ, ϵ). For any
initial condition z(t0) ≤ 0, the system ż(t) = L|z(t)| has solution z(t) = z(t0)e

−L(t−t0), so it
follows that z(t) ≤ 0 for all t ≥ t0. By the comparison lemma [191, Lemma IX.2.6], any solution
θ with θ(t0) ≤ 0 also satisfies θ(t) ≤ 0 for all t ∈ T≥t0 . This is equivalent to HT being forward
invariant. ■

Compared to Theorem 2.2, Theorem 2.6 makes a stricter Lipschitz continuity assumption but
only requires (2.6) to apply inside the CBF set, not on a larger open set. To see why this Lipschitz
assumption is helpful, consider the system ż =

√
|z|with z(0) = 0. This system has two solutions:

z(t) ≡ 0 and z(t) = 1
4
t2. One solution remains non-positive (i.e. safe) while the other solution

becomes positive (i.e. unsafe). The additional Lipschitz assumption prevents this possibility of
multiple solutions. Compared to Corollary 2.5, Theorem 2.6 now allows the dynamics on D \ H
to diverge from H, as long as this divergence is locally Lipschitz in nature (as otherwise initial
conditions with h(t0, x(t0)) = 0 might diverge as well).

On closer analysis of the proof of Theorem 2.6, one might conclude that Theorem 2.6 is a special
case of Theorem 2.2, since the Lipschitz assumption implies that one can construct a bounding
function on a larger setD. That said, I present these two cases separately as they represent different
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points of view, and to highlight some of the non-obvious ways Lipschitz assumptions are used in
the broader CBF literature. Note that some papers instead assume that α ∈ K is locally Lipschitz
continuous for various reasons, but this is only a sufficient condition for forward invariance if
α ∈ Ke (not just K) and the condition (2.5) holds for all (t, x) in the open set DT (not just onHT ).

Lastly, I introduce Nagumo’s theorem, originally presented in [192], and show how the result
in Theorem 2.2 and Theorem 2.6 can also be derived from that theorem. Recall the definition
of tangent cone for a closed, possibly nonconvex set (first termed the contingent cone in [193,
Page 66]).

Definition 2.15 (Tangent Cone [194, Def. 4.6]). Given a closed set A ⊆ Rn, the tangent cone of

A at x ∈ Rn is

TA(x) ≜

{
v ∈ Rn | lim inf

k→0

infw∈S ∥x+ kv − w∥
k

= 0

}
. (2.7)

Lemma 2.7 (Nagumo’s Theorem [194, Cor. 4.8]). Let ẋ = F (x). A closed and time-invariant set

A ⊆ Rn is forward invariant if and only if F (x) ∈ TA(x) for all x ∈ A.

Note that Nagumo’s theorem is a necessary and sufficient condition for set invariance, whereas
Theorem 2.2 and Theorem 2.6 only stated sufficient conditions. Necessity of existence of a BF is
studied in [76], so under the conditions of Lemma 2.1, existence of a CBF is guaranteed as well
[28, Remark 11], [29, Page 3866]. However, in more complex “corner cases”, Nagumo’s theorem
is often easier to apply to answer whether a set is forward invariant. Nagumo’s theorem only ap-
plies to time-invariant sets, which is why I wrote Definitions 2.6-2.7 in terms of AT ⊂ T × X
instead of A : T → X . Also note that Nagumo’s theorem depends heavily on the uniqueness as-
sumption in Assumption 2.2-A6; if instead there exist multiple solutions, then Nagumo’s theorem
only guarantees that one of these solutions remains in A [195].

Ames then used Nagumo’s theorem to state an alternate CBF forward invariance theorem [66,
Thm. 2]. A time-varying extension of this theorem is presented as follows.

Theorem 2.8. Let T be a closed set, either [t0, tf ] or [t0,∞), so that HT in (2.3) is a closed set.

Given a CBF for the system (2.1), assume that |∂h(t,x)
∂t
| + ∥∂h(t,x)

∂x
∥ ̸= 0 for all (t, x) ∈ ∂HT , and

let α ∈ K. Then any control law u : T × X satisfying (2.6) will renderHT forward invariant.

Proof. First, note that the tangent cone of a closed set A ⊂ Rn at any point y in the interior of
that set is TA(y) = Rn, and by assumption HT is a closed set. Therefore, Nagumo’s condition
is automatically satisfied for all (t, x) ∈ int(HT ). Next, under the assumption that |∂h(t,x)

∂t
| +

∥∂h(t,x)
∂x
∥ ̸= 0, the tangent cone of HT in (2.3) for the boundary (t, x) ∈ ∂HT is THT (t, x) =

{(ṫ, ẋ) ∈ R × Rn | ∂h(t,x)
∂t

ṫ + ∂h(t,x)
∂x

ẋ ≤ 0}. By definition, ṫ ≡ 1, so any control law satisfying
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(2.6) causes (ṫ, ẋ) = (1, F (t, x, u(t, x))) to always lie inside the tangent cone, so by Lemma 2.7,
the setHT is forward invariant. ■

Thus, one has a third set of conditions under which a CBF can be used to render a set forward
invariant. Instead of requiring a Lipschitz condition as in Theorem 2.6, Theorem 2.8 instead re-
quires that the gradient of the CBF does not vanish on the boundary of the CBF set. As illustrated
by Theorem 2.2 and Theorem 2.6, this condition is not always necessary. However, without this
condition, the tangent cone of HT is no longer given by the formula above, so Nagumo’s theorem
is more difficult to apply [194, Ch. 4.2]. The scenario where the gradient of the CBF vanishes on
∂HT is common in the following chapters, which is why I also presented Theorem 2.2 and Theo-
rem 2.6. The observation that Nagumo’s theorem is effectively only a condition on flows along the
boundary of HT will also be useful later. Further variations of Theorems 2.2, 2.6, 2.8 are likely
possible as well.

2.4 Quadratic Programs for Safety Filtering

Now suppose that the system (2.1) is control-affine,

ẋ = F (t, x, u) = f(t, x) + g(t, x)u (2.8)

for functions f : T × X → Rn and g : T × X → Rn×m, and suppose that either U = Rm

or U is a polytope. That is, there exists a matrix Au ∈ Rq×m and a vector bu ∈ Rq such that
U ≡ {u ∈ Rm | Auu ≤ bu}.

Given a system as above and a CBF h as in Definition 2.14, it is common (see also [66, Sec. II-
C]) to write control laws of the form

u(t, x) = argmin
u∈Rm

∥u−unom(t, x)∥ (2.9)

such that
∂h(t, x)

∂t
+
∂h(t, x)

∂x

[
f(t, x) + g(t, x)u

]
≤ α(−h(t, x))

Auu ≤ bu

where unom : T × X → U is some other control law. I refer to (2.9) as a safety filter, or as a
QP-based control law. This type of control law allows one to separately design a “performance
control law” unom, also called the “nominal control law”, without considering the safety constraints
encoded in S and H. The optimization (2.9) then modifies the nominal control law to create a
control signal that is provably safe according to Theorems 2.2, 2.6, 2.8. Multiple CBFs can be
combined by adding constraints to (2.9), as is done in Chapter 6. The control law (2.9) is often

32



called a “minimally modifying safety filter” or “minimally invasive safety filter”, as it pointwise
chooses the control input u satisfying (2.5),(2.6) that is closest (measured by the 2-norm) to the
nominal control input unom. An alternative formulation of (2.9) sets unom(t, x) ≡ 0 and instead adds
a Control Lyapunov Function (CLF) as an additional constraint [29], though in my experience, this
type of control law is more difficult to design and tune.

2.4.1 Optimizer Choice

Note that the optimization (2.9) is a Quadratic Program (QP), i.e. an optimization problem with
a strictly convex quadratic cost function and constraints that are affine in the optimization variable.
One can rewrite (2.9) as

u(t, x) = argmin
u∈Rm

1

2
uTHu+ cTu (2.10)

such that Acu ≤ bc

Auu ≤ bu

where

H = I, c(t, x) = unom(t, x), Ac(t, x) =
∂h(t, x)

∂x
g(t, x),

bc(t, x) = α(−h(t, x))− ∂h(t, x)

∂t
− ∂h(t, x)

∂x
f(t, x).

QPs can be solved extremely fast, on the order of 50 microseconds on a personal computer for
a 4-dimensional QP, and thus are practical for real-time control. One can also compute explicit
solutions to (2.9), though the explicit formulas can be very long. Most of the results in this disser-
tation were derived using either MATLAB’s quadprog optimizer, or the Operator Splitting QP
optimizer (OSQP) [196], though many other off-the-shelf optimizers exist. Compared to Model
Predictive Control (MPC), one advantage of the control law (2.9) is that it can be solved so sim-
ply and quickly that one can use almost any convex optimization algorithm, whereas when using
MPC, one often needs to devote more attention to the choice of optimizer. That said, when solving
a problem with many CBFs (i.e. hundreds or thousands of CBFs), note that some algorithms take
almost no extra time to handle lots of constraints (generally because few constraints are active
simultaneously) whereas other algorithms increase in computation time each time a constraint is
added. Note that if (2.1) is not control-affine, then one can still construct a safety filter similar
to (2.9), but the filter will generally have nonlinear constraints that may require more specialized
optimizers and take more time to compute.

While almost any convex optimization algorithm is capable of quickly solving (2.9), these algo-
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rithms output only approximate solutions within some numerical tolerance, so the choice of opti-
mizer and optimizer settings can still affect results. In particular, if µ(t, x) = {u ∈ U | Ac(t, x)u ≤
bc(t, x)} is the set of guaranteed-safe control inputs (recall that Theorems 2.2, 2.6, 2.8 are sufficient,
not necessary, conditions), then whether the optimizer guarantees that u(t, x) ∈ µ(t, x) exactly, or
within some small tolerance, may impact results. Additionally, if µ(t, x) is a very small set, then
quadprog may return an error that the problem is infeasible. In this case, a helpful debugging
tool is that MATLAB’s linprog optimizer can provide a certificate of feasibility/infeasibility. In
practice, it is best to construct CBFs with margin at all steps (i.e. so that small disturbances and
computational errors are not catastrophic (see Chapter 4), and so that µ is never too small).

2.4.2 Class-Ke Functions

One potential source of margin is the class-Ke function in (2.9). Note the following two obser-
vations:

1. Nagumo’s theorem (Lemma 2.7) says that the only region that matters for safety is the bound-
ary of the CBF set, yet the class-Ke function in (2.9) applies everywhere in the CBF set.

2. The class-Ke function α in Definition 2.14 is not unique. In particular, if Definition 2.14
holds for some α1 ∈ Ke, then the definition also holds for any α2 ∈ Ke satisfying α2(λ) ≥
α1(λ) for all λ ∈ R.

Thus, the engineer has freedom to choose the class-Ke function in (2.9), and that this function can
be a useful tuning parameter. In my opinion, this is the greatest practical difference between BFs
as in Definition 2.5 and CBFs as in Definition 2.14. When using BFs, Definition 2.5 only provides
a flow condition on the boundary of B. The existence of a class-Ke function as in Lemma 2.1 is
a side-effect of the definition. When using CBFs, to create a continuous control law that achieves
the flow condition specified in Lemma 2.7, one instead chooses among the infinite number of
allowable class-Ke functions.

To see one effect of this parameter, suppose that α(λ) = γλ for some γ ∈ R>0. Then any
solution to (2.1) satisfying (2.5) obeys h(t, x(t)) ≤ h(t0, x(t0))e

−γ(t−t0). Thus, there is a relation
between the choice of α ∈ Ke used in the control law (2.9) and the rate of change of the system,
analogous to the bandwidth of a linear control law. As in linear control systems, the intuition
that a high-bandwidth control law (high slope α ∈ Ke) will require a higher controller sampling
frequency holds for CBFs as well. On the other hand, even if a function α as above with a small γ
satisfies Definition 2.14, one may wish to choose a larger γ in order to permit the system state to
evolve more quickly.
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This dissertation provides a few remarks about the class-Ke function in Definition 2.14, mostly
oriented towards removing the function and thus developing methods closer to Nagumo’s necessary
condition, but this is not a main topic of this work. Analyzing the effect of the class-Ke function
further is an open area for future work. Moreover, finding methods to tune or vary the choice
of class-Ke function to achieve certain results (instead of attempting to remove it) is an area of
research that has recently gained attention, including [36, 149].

2.4.3 Continuity of Quadratic Programs

Assumption 2.2-A6 assumes that u is sufficiently regular so as to guarantee unique solutions,
so regularity of the control law (2.9) is not a major topic of this dissertation. Thus, I only provide
brief remarks on the regularity of QPs in this subsection and in sections where I intentionally add
control law discontinuities. For theoretical reasons, Lipschitz continuity of (2.9) is often desired,
so that the theorems in [71, Ch. 3] apply.

One way to prove/disprove Lipschitz continuity is to solve for the explicit, piecewise solution
to (2.9) according to which constraints are active and inactive, e.g. [116]. Note that the work in
[116] and others rely on a constraint qualification condition, such as the Mangasarian Fromowitz
Constraint Qualification (MFCQ) condition [197, 198]. For a small number of constraints and no
input bounds, the MFCQ assumption is reasonable. However, if U is a compact polytope, then
the MFCQ conditions will rarely hold globally. At any corner of a polytope U ⊂ Rm, there will
already be m active inequality constraints, so a CBF constraint Acu ≤ bc coinciding with a corner
will cause m+ 1 active constraints, in which case MFCQ cannot hold. MFCQ also cannot hold if
the gradient of the CBF ∂h(t,x)

∂x
vanishes, as occurs with some of the methods in Chapters 3-4. A

more general regularity condition is as follows.

Lemma 2.9. For the control law (2.9), suppose that there exists some set D ⊆ T ×X such that 1)

Ac : T ×X → Rq×m and bc : T ×X → Rq are twice continuously differentiable on D, and 2) for

every (t, x) ∈ D, there exists v such that Ac(t, x)v < bc(t, x) and Auv < bu. Then the control law

(2.9) is locally Lipschitz continuous on D.

Proof. The proof follows immediately from [199, Thm. 2.1]. Assumption A1 and A2 in [199] are
stated above, and Assumption A3 in [199] holds because H = I is positive definite. ■

Continuity without Lipschitz guarantees is also established under more general conditions in
[200, Thm. 3.1]. Other conditions for more specific problems have been studied in [29, 136, 201]
and the erroneous result in [202] (corrected in [201]). Finally, CBFs can also be used with explicit
control laws such as [28, 67], though this is not done in this dissertation.
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2.4.4 Why Use Safety Filters

One alternative to CBFs is to plan a safe trajectory through S for all times in T and then follow
that trajectory. If such a trajectory can be found, then one can skip the step of finding a viable
subset of S , as occurs implicitly when finding a CBF. Alternatively, one can plan a safe trajectory
for a receding finite horizon and require that the the endpoint of the trajectory lie within some
viable set. This idea is also the motivation behind a type of CBF called the Backup CBF [95, 96].
There exist many variations of trajectory planners, including some combinations between planners
and CBFs. For this comparison, I consider MPC to also be a variant of trajectory planner. The
advantages of safety filters over trajectory planners are 1) the reduced computation time, and 2)
the ability to naturally handle nonlinear dynamics without approximation.

To see the reason for reduced computation time, consider the common problem of controlling
a group of agents navigating in a space with obstacles. Each obstacle creates a “hole” in the com-
plete state space that the agents are not allowed to enter. This results in S often being nonconvex.
Trajectory planning algorithms often struggle with nonconvex specifications, or require problem-
specific heuristics (e.g. “always go right”) to navigate the nonconvexities. The two layer safety
filtering (2.9) of the nominal control law unom bypasses these nonconvexities. In the first layer,
the nominal control law can be a simple linear control law, a control law based on an approximate
model, and/or the result of a separate optimization problem that does not take into account the
safety constraints, and thus which is hopefully convex. In the second layer, the optimization (2.9)
is also convex. Thus, a nonconvex trajectory planning problem may be replaced by two convex
optimization problems with exact safety guarantees (i.e. no approximations in the safety layer).
Moreover, the safety filter (2.9) has only affine constraints even when the system (2.8) is nonlin-
ear in the state (t, x), whereas a trajectory planner must either optimize over the full nonlinear
dynamics or add margins for any approximations made.

A summary of the key differences between CBFs and trajectory planning is shown in Table 2.1.
Note that this is only a general comparison, as I am not referring to any specific trajectory planning
algorithm. In addition to the convexity observations, note that the safety filter (2.9) only considers
the current control input, of dimensionm. In contrast, a trajectory planner computes a horizon of of
N control inputs, which leads to an optimization problem of dimensionmN (or possibly (m+n)N

if the states are also optimization variables) that is more computationally expensive. Thus, the
safety filtering approach (2.9) converts a high dimension optimization problem solved at the start
of the trajectory (and possibly recomputed periodically throughout the trajectory as in MPC) to
two convex optimization problems that are solved continuously throughout the trajectory. This
sort of continuously running optimization fits naturally into a real-time control system, whereas
trajectory planning is often implemented in a multi-rate architecture. That said, CBFs can also fit
into a multi-rate control architecture [141], as the options for variations of filters and planners are
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Trajectory Planning Safety Filtering
Performance and safety are coupled Performance and safety are decoupled

Requires exact model or margins for approx-
imations

Requires exact model only in the safety layer

Optimization dimension mN or (m+ n)N Optimization dimension m

Generally nonconvex optimization with non-
linear constraints

A convex safety filter and a simple nominal
control law

Yields true optimal solution Trajectories may be inefficient

Runs once before start, possibly recomputed Runs continuously

Can make decisions based on future predic-
tions

Can only make decisions based on the present
state and environment

Table 2.1: Comparison of Trajectory Planning and CBFs as Safety Filters

as infinite as the number of open control problems.
Compared to linear control laws, CBFs and safety filters may also simplify certain aspects

of control design. For one, CBFs often provide a more natural language to express and verify
requirements. Often, requirements are phrased as tolerances, which can be equivalently phrased
as a permissible set of states. With linear trajectory tracking methods, an engineer has to find a
nominal trajectory that is always inside the set of permissible states and then verify that the real
trajectory under perturbations indeed remains within that set. By contrast, the methods that follow
allow one to directly encode sets as constraints, and build CBFs that by construction render the
state trajectories always in these sets, rather than iteratively designing a control law and checking
for constraint satisfaction. This also enables one to use very simple nominal control laws in (2.9)
rather than going to the effort of computing a safe trajectory a priori.

While CBFs as safety filters are a powerful control tool, this approach also has disadvantages.
The most obvious at time of writing is the need for a highly educated engineer to implement such
filters. The tuning of class-Ke functions is also less intuitive than tuning in linear control laws.
Finding a CBF and CBF viable set may also be challenging, akin to the challenge of finding a Lya-
punov function. Next, while a trajectory planner provides an optimal solution over its prediction
horizon, safety filters are only pointwise-optimal and thus may yield inefficient trajectories. The
authors in [144] showed that the control law (2.9) is the solution to a particular optimal control
problem, but in general, this control law will not yield the trajectory that is optimal in fuel, time,
or other common optimality metrics.

Because of the lack of prediction horizon, CBFs may also result in deadlocks, where either a
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single agent gets stuck in front of an obstacle, or multiple agents all come to a stop and are unable to
navigate around each other. Deadlocks may occur when using either centralized or decentralized
control laws [36]. Such points are analogous to the phenomenon of local minima in Artificial
Potential Fields (APFs), and a relation between APFs and CBFs is discussed in [38]. Also similar
to APFs, trajectories under (2.9) may come to a near-stop near an obstacle before slowly navigating
around the obstacle, whereas a trajectory planner with a sufficiently large time horizon should be
able to navigate around an obstacle without stopping. That said, in a cluttered environment with
many obstacles, a trajectory planner may be just as conservative as the safety filter (2.9) because
of the need for the trajectory to end inside a (likely conservative) viable set.

As with trajectory planners and most other methodologies, there are variations of the core CBF
method illustrated above that handle some of the well-known disadvantages of this approach. Over-
all, CBFs often provide a “middle-ground” between simplicity and performance. Some of the
above phenomena also serve as motivations for the improvements in the following chapters.
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CHAPTER 3

High Relative Degree Constraint Functions

In this chapter, I introduce the “high relative-degree problem”, formalized as Problem 3.1. In
this problem, the set of instantaneously safe states S takes the form of a sublevel set of a function,
called the constraint function, that is of “high relative-degree with respect to the system dynam-
ics”, defined precisely in Definition 3.2. This chapter then proposes two general methods to find a
CBF and a viable subset of S for arbitrary relative-degrees, and compares the methods in simula-
tion using the controller (2.9). The preliminary analysis of the “high relative-degree problem” in
this chapter then serves as an introduction to the “robust high relative-degree problem” in Chap-
ter 4, where I will expand upon the two methods presented here and introduce a third related
method. Note that this chapter constitutes earlier work within this dissertation and thus contains
more references to older works, in particular works written before the HOCBF formulation (a
related approach discussed further in Chapter 4) became standardized in [88, 89].

3.1 Introduction

Control Barrier Functions (CBFs) have recently gained popularity across disciplines for control
synthesis in safety-critical systems. However, the problem of designing CBFs for high relative-
degree (r ≥ 2) constraint functions under control input constraints remains an open question
except for specific systems [28, 29, 36, 82]. In this chapter, I develop two methods of designing
CBFs that generalize the results for specific systems in [28, 29, 36, 82], and in particular the
methods in [82, 96, 203], to a wider class of systems, namely systems that meet the assumptions
of Theorems 3.4-3.5.

As in Chapter 2, the objective of this chapter is to design a control law that always renders
systems inside some set of instantaneously safe states S, henceforth termed the safe set. Here
and in subsequent chapters, the safe set S is specified as the zero sublevel set of some constraint

function. If the constraint function is of relative-degree r = 1 with respect to the system dynamics,
then the set can be rendered forward invariant if the constraint function is also a CBF [29]. For
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control-affine dynamics as in (2.8), this leads to an affine condition on the control input, which can
be applied pointwise to yield either explicit control laws as in [28], or optimization-based control
laws as in [29, 84, 85, 87] and (2.9) that render the safe set forward invariant. However, if the
constraint function is of relative-degree r ≥ 2 and the uncontrolled dynamics allow trajectories
to leave the safe set (i.e. if S is not forward invariant under u ≡ 0), then the constraint function
alone cannot be a CBF. To recover such a control-affine condition, this chapter constructs CBFs
composed of both the constraint function and its derivatives, and designed such that the CBF viable
set is a subset of the instantaneously safe set.

Several papers develop methods to convert high relative-degree constraint functions (r ≥ 2)
into CBFs, including using compositions with bounded monotonic functions [29], backstepping
[84], feedback linearization and pole placement [85, 138], or by defining allowable sets for every
order of derivative of the constraint function [87]. The approach in [203] bypasses the creation
of a new CBF, but develops a condition on the lowest order controllable derivative that fills the
same role as the conditions in [84, 85]. All these approaches lead to conditions on the control
input that are potentially infeasible if the set of valid control inputs is bounded (i.e. (2.9) might
become infeasible). In practice, input constraints may be satisfied within the frameworks of [29,
84, 85, 138] for certain trajectories by tuning (e.g. choosing different poles using the method in
[85]), but these approaches only yield provably feasible control laws if the control set is Rm. The
work in [87] improves upon this by defining a subset of the safe set that is controlled invariant in
the presence of input constraints. However, choosing appropriate class-K functions to satisfy the
feasibility requirements in [87, Def. 7] may not be straightforward.

Conditions for safety under input constraints for the n-integrator system are introduced in [82].
For certain other systems, a second CBF that guarantees satisfaction of control input constraints
for all future times can also be introduced [29, 36]. For more general systems, [94, 96] recently
developed an approach (not specific to high relative-degree) wherein a small known backup set is
expanded to the set of states which can reach the backup set in a finite time horizon under input
constraints. The work in [86] is similar to [94, 96], but generalizes the approach to infinite time
horizon.

Compared to [28, 29, 36, 82, 94, 96], this chapter addresses the problem of designing CBFs
for high relative-degree constraint functions for a broader class of systems using two extensions
to the approach in [86]. The first strategy employs a predefined nominal control law and tests
whether the system would remain inside the safe set under this control law, similar to [86, 94, 96].
However, this strategy does not require a predefined backup set as in [94, 96], and does not require
that the searched time horizon contain a unique maximizer of the constraint function as in [86].
The second strategy simplifies the first and generalizes [82] to any system for which there exists
a minimum control authority over the rth derivative of the constraint function everywhere in the
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safe set. Similar to [87], the resultant controlled invariant sets are subsets of the safe set, and
may be smaller or larger than the corresponding sets obtained in [87]. However, unlike [87], these
methods by construction respect input constraints without tuning other parameters of the CBF.
After introducing the theory behind these methods, I then compare both strategies in simulation on
an obstacle avoidance problem for a double-integrator system, and demonstrate the second strategy
on a safety-critical spacecraft control problem for asteroid observation.

3.2 Preliminaries

3.2.1 Notations

In addition to the notations in Section 2.1, for a vector v ∈ Rn, let v⊥ = {w ∈ Rn : vTw = 0}.
For a continuously differentiable function κ : Rn → R, let Lfκ(x) denote the Lie-derivative of
κ with respect to a function f : Rn → Rn×m at the point x, that is Lfκ(x) ≜ ∂κ(x)

∂x
f(x). For

sufficiently differentiable κ and f , let L2
fκ(x) = Lf (Lfκ(x)) and Lrfκ(x) = Lf (L

r−1
f κ(x)). The

Lie-derivative notation is an efficient way to denote high order derivatives and was common in the
early CBF literature, but I use this notation limitedly in the rest of this dissertation because it is
not as helpful when κ is a function of multiple variables. Let κ̇ denote the total derivative of κ
along some system dynamics, explained further in Section 3.2.2. Let κ̈ denote the second total
derivative and κ(r) denote the rth total derivative. Define the directional derivative of a function
h : Rn → Rm in direction v ∈ Rn as

∂vh(x) ≜ lim
δ→0+

h(x+ vδ)− h(x)
δ

. (3.1)

Definition 3.1 (Directionally Differentiable Function). A continuous function h : X → Rm with

X ⊆ Rn is directionally differentiable if the directional derivative (3.1) of h exists for all x ∈ X
and all v ∈ Rn.

3.2.2 Model and Problem Formulation

This chapter works with the time-invariant system

ẋ = f(x) + g(x)u , (3.2)

with state x ∈ X ⊆ Rn, control input u ∈ U ⊂ Rm where U is compact, and functions f : X →
Rn, g : X → Rn×m where f, g are r-times continuously differentiable. The first total derivative of
a function κ : X → R along (3.2) is κ̇(x, u) ≜ Lfκ(x) + Lgκ(x)u.
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Definition 3.2 (Relative Degree). A function κ : X → R is said to be of relative-degree r with

respect to the dynamics (3.2) if

1. κ is r-times continuously differentiable,

2. LgLkfκ(x) ≡ 0, ∀x ∈ X , ∀k = 0, 1, · · · r − 2, and

3. ∃C ⊆ X , C ̸= ∅ such that LgLr−1
f κ(x) ̸= 0,∀x ∈ C.

Denote the space of all functions of relative-degree r with respect to a given system as Gr. For
a function κ ∈ Gr for r ≥ 2, it follows that Lgκ(x) ≡ 0, so κ̇(x, u) ≡ κ̇(x) = Lfκ(x). Thus,
even without specifying a control law, one can derive higher order derivatives such as κ̈(x, u) =

L2
fκ(x) + LgLfκ(x)u. For readability, total derivatives above second order are denoted κ(r).

Let κ : X → R satisfy κ ∈ Gr, and let S in this chapter be given as

S ≜ {x ∈ Rn | κ(x) ≤ 0} (3.3)

where S is time-invariant. I refer to κ as the constraint function for set S.
If κ ∈ G1, then a sufficient condition for controlled invariance of S is that κ is a CBF as in

Definition 2.14, i.e. that there exists a set D ⊆ X satisfying S ⊆ D and, in the notation of this
chapter, such that

inf
u∈U

[Lfκ(x) + Lgκ(x)u] ≤ α(−κ(x)), ∀x ∈ D . (3.4)

Note that the infimum above can be replaced by a minimum since U is assumed compact in this
chapter.

However, if instead κ ∈ Gr for r ≥ 2, then Lgκ(x)u ≡ 0, so the infimum in (3.4) disappears
and (3.4) becomes

Lfκ(x) ≤ α(−κ(x)),∀x ∈ D . (3.5)

The condition (3.5) is not useful for control design, so going forward I assume that κ is not a CBF
and instead seek to design a new CBF h. Thus, the objective of this chapter is as follows.

Problem 3.1. Given a constraint function κ ∈ Gr for r ≥ 2, such that there exists at least one

x0 ∈ ∂S where Lfκ(x0) > 0, and a compact control set U , develop functions h : X → R such

thatH = {x ∈ Rn | h(x) ≤ 0} is a subset of S, and h is a CBF.

A solution h to Problem 3.1 defines a subset H of the safe set that is controlled invariant.
Problem 3.1 can be addressed by methods such as those in [87] with a proper selection of αi ∈
K, i = 1, 2, · · · , r (or without input constraints for any αi ∈ K). In contrast, the approaches in this
chapter always satisfy the input constraints by construction.
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Lastly, similar to [82, 86], define the flow operator ψκ(t;x, u) for t ≥ 0 as the value κ(y(t))
resulting from the initial value problem ẏ = f(y)+ g(y)u, y(0) = x under the control law u. Also,
let ψx(t;x, u) denote the value of the state y(t) according to the same initial value problem.

3.2.3 Directionally Differentiable Control Barrier Functions

To address Problem 3.1, this chapter considers the possibility of a CBF that is continuous, but
not necessarily continuously differentiable. This generalization of CBF takes inspiration from the
relaxed differentiability conditions in [204], though the conditions used here differ slightly from
[204] because the use of the open set V in [204, Def. 2.1] is too restrictive. Even more general
conditions may be obtained from [150, 151]. Motivated by [204, Def. 2.3], consider the slightly
generalized definition of CBF as follows.

Definition 3.3 (Control Barrier Function (Directionally Differentiable)). Let h : X → R be direc-

tionally differentiable as in Definition 3.1 and let

H ≜ {x ∈ X | h(x) ≤ 0} . (3.6)

The function h is a Control Barrier Function (CBF) for the system (3.2) if there exists a set D ⊆ X
such thatH ⊆ D and a function α ∈ Ke such that

inf
u∈U

∂f(x)+g(x)uh(x) ≤ α(−h(x)),∀x ∈ D . (3.7)

Definition 2.14 and Definition 3.3 are so similar that I do not introduce a new term for Defini-
tion 3.3. This definition is useful because of the following observation.

Lemma 3.1. Let {hi}Ni=1 be a finite collection of continuously differentiable functions hi : X → R
and define h : X → R as h(x) = maxi∈[N ] hi(x). If there exists a set D ⊆ X such that H ⊆ D in

(3.6) and a function α ∈ Ke such that

inf
u∈U

max
i∈I(x)

[Lfhi(x) + Lghi(x)u] ≤ α(−h(x)),∀x ∈ D , (3.8)

where I(x) ≜ {i ∈ [N ] | h(x) = hi(x)}, then h is a CBF as in Definition 3.3.

Proof. Since N is finite, the function h as above is directionally differentiable and its deriva-
tive is ∂vh(x) = maxi∈I(x) [∂

vhi(x)] by [205, Thm. 3.2]. It follows that ∂f(x)+g(x)uh(x) ≡
maxi∈I(x) ∂

f(x)+g(x)uhi(x) ≡ maxi∈I(x) [Lfhi(x) + Lghi(x)u], so (3.8) implies (3.7). ■

Forward invariance ofH is then guaranteed as follows.
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Theorem 3.2. Given a CBF h : X → R for the system (3.2) as in Definition 3.3, let D be an open

set satisfyingH ⊂ D and let α ∈ Ke. Then any control law u : X → U satisfying

∂f(x)+g(x)u(x)h(x) ≤ α(−h(x)),∀x ∈ D (3.9)

will renderH in (3.6) forward invariant as in Definition 2.6.

Proof. The proof follows the same logic as Theorem 2.2. Note that the comparison lemma
[191, Lemma IX.2.6] applies for any type of derivative. Let θ(t) = h(x(t)) and let
θ̇(t) = limδ→0+

δ(t+δ)−δ(t)
δ

denote the directional derivative in forward time. Then θ̇(t) =

∂f(x(t))+g(x(t))u(x(t))h(x(t)) ≤ α(−θ(t)), and the result follows by the same logic as Theo-
rem 2.2. ■

Recall that Theorem 2.6 was shown to be a special case of Theorem 2.2, so it follows that
one can extend Theorem 2.6 to CBFs as in Definition 3.3 as well. I also include an extension of
Theorem 2.8 as follows, because the following result is illustrative of the usefulness of Nagumo’s
theorem.

Theorem 3.3. Suppose that h is a CBF as constructed in Lemma 3.1, and suppose that ∥∂hi(x)
∂x
∥ ≠

0 for all i ∈ I(x) and all x ∈ ∂H, and let α ∈ K. Then any control law u : X → U satisfying

max
i∈I(x)

[Lfhi(x) + Lghi(x)u(x)] ≤ α(−h(x)),∀x ∈ H (3.10)

will renderH in (3.6) forward invariant as in Definition 2.6.

Proof. Since h(x) = maxi∈[N ] hi(x), it follows that H = ∩Ni=1Hi and the tangent cone of H is
TH(x) = ∩Ni=1THi

(x). Since ∂hi(x)
∂x

does not vanish for x ∈ ∂H for any active i ∈ I(x), it follows
from the same argument as in Theorem 2.8 that any control law satisfying (3.10) will cause ẋ to
lie inside the tangent cone TH(x) and thus renderH forward invariant. ■

Thus, the continuously differentiable notion of CBFs may be easily expanded to more compli-
cated functions h. Again, recall the critical Assumption 2.2-A6 that solutions to (3.2) are unique
(see [195] for a discussion of what may happen if there are multiple solutions). Note also that the
maximum over a finite index set as in (3.10) can be encoded in a QP-based control law as in (2.9)
by enforcing Lfhi(x) + Lghi(x)u ≤ α(−h(x)) simultaneously as separate constraints on the QP
for every i ∈ I(x).
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3.3 Two Methods to Derive CBFs for High Relative-Degree
Constraint Functions

3.3.1 General Case (Backup CBF)

For κ ∈ Gr, I refer collectively to the derivatives κ̇, κ̈, · · ·κ(r−1) which are not explicit functions
of u as generalized inertia, by analogy to inertia in kinematic systems. To ensure safety when
r ≥ 2, a controller must be able to dissipate this generalized inertia before leaving the safe set, i.e.
must be able to ensure that κ(k)(x) ≤ 0,∀k ≤ r for all x such that κ(x) = 0.

The approach in this chapter is to examine the system response forward in time according to
its generalized inertia. Suppose that κ(x) < 0 and κ(k)(x) > 0 for one or more k ∈ {1, 2, · · · r}.
Then this chapter seeks to determine how large each κ(k) can be allowed to grow before there
is no allowable control input under which the trajectory stays within the safe set at some future
time. However, analyzing all possible future trajectories (i.e. all possible control laws) for safety
is intractable, so instead suppose that one has a predefined control law u∗ : X → U that attempts
to drive the state towards the interior of S (called a “nominal evading maneuver” in [86]). For
example, if U is a closed ball, one might choose

u∗ball(x) ≜ argmin
u∈U

LgL
r−1
f κ(x)u , (3.11)

which pointwise minimizes κ(r).

Assumption 3.1. For any x(0) ∈ S, assume that the system (3.2) admits a unique solution for all

t ≥ 0 under the control law u∗(x).

Denote the evolution of κ under u∗ from initial condition x(0) as ψκ(t;x(0), u∗). Then there
exists at least one safe and feasible trajectory from x(0) if ψκ(t;x(0), u∗) ≤ 0,∀t ≥ 0. Thus, I
introduce a new function,

h∗(x) ≜ sup
t≥0

ψκ(t;x, u
∗) , (3.12)

which I seek to render nonpositive (see also [86, Eq. 14]).

Assumption 3.2. For all x ∈ S, assume that h∗(x) in (3.12) exists and is finite and directionally

differentiable.

That is, Assumption 3.2 assumes that the trajectories under u∗ dissipate the generalized inertia so
that ψκ is upper bounded (and not infinite), and that this upper bound is regular with respect to x.

The relationship between κ, ψκ, and h∗ is visualized in Fig. 3.1. In this example, κ(x(0)) < 0,
but there exist t > 0 such that κ(x(t)) > κ(x(0)) under the control law u∗. The point of interest in
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Figure 3.1: Explanation of Backup Control Law. A potential trajectory of ψκ(t;x, u∗) under control
input u = u∗(x), and unforced evolution ψκ(t;x, 0) under u = 0 for comparison. The method in
this section is concerned with whether the point h∗(x) exceeds 0, which would imply that under
the proposed backup controller u∗, there exists t such that κ(x(t)) > 0.

Fig. 3.1 is the black dot h∗(x(0)), because h∗(x(0)) > 0 would imply that there exists t > 0 such
that κ(x(t)) > 0 under u∗, which means u∗ does not render the system safe from x(0).

If the supremum in (3.12) is achieved for finite t, denote the set of time instances that maximize
ψκ as

t∗c(x) ≜
{
argmax

t≥0
ψκ(t;x, u

∗)
}
, (3.13)

so that (3.12) can be equivalently written as

h∗(x) = ψκ(tc,0;x, u
∗), ∀tc,0 ∈ t∗c(x) . (3.14)

Note that the set t∗c(x) may contain more than one element. One can see this visually for the exam-
ple in Fig. 3.1, for which a slight perturbation might result in the blue line having two maximizers.

Assumption 3.3. For all x ∈ S, assume that t∗c(x) in (3.13) has finitely many elements.

Finally, define the set rendered safe by u∗ as

H∗ ≜ {x ∈ Rn | h∗(x) ≤ 0} . (3.15)

By definition, h∗(x) ≥ κ(x), ∀x ∈ Rn, soH∗ ⊆ S.
For brevity, in this section let ψκ(t) = ψκ(t;x, u

∗) and ψx(t) = ψx(t;x, u
∗). I am now ready to

state the first main result of this chapter.

Theorem 3.4. The function h∗ in (3.12) is a CBF for the control set U , providedH∗ ̸= ∅ in (3.15).

Proof. The function h∗ is a CBF if it meets the condition (3.4) or the extensions (3.7)-(3.8). This
proof considers three cases depending on the elements of t∗c(x).
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First, consider if 0 ∈ t∗c(x). Then it must hold that κ̇(x) ≤ 0 (where κ̇ is independent of u
if κ ∈ Gr for r ≥ 2) for 0 to be a maximizer of ψκ(t). By definition, ψκ(0) = κ(x) and thus
Lfψκ(0) + Lgψκ(0)u = Lfκ(x) + Lgκ(x)u = κ̇(x) ≤ 0. Thus, condition (3.4) is satisfied for any
u if κ ∈ Gr, r ≥ 2, and for the input u∗ if κ ∈ G1.

Next, consider if tc,0 ∈ t∗c(x) where tc,0 > 0. Then tc,0 is a maximizer on an open interval, so a
necessary condition is ∂ψκ(t)

∂t

∣∣
t=tc,0

= 0. Define ω ≜ ψκ(tc,0;x, u
∗). It follows that

ω = ψκ(tc,0;x, u
∗) = ψκ(tc,0 − τ ;ψx(τ ;x, u∗), u∗) , (3.16)

for any τ ∈ [0, tc,0]. Since ω is constant with respect to τ , its derivative satisfies

d

dτ
[ω] =

∂ψκ(tc,0 − τ ;ψx(τ), u∗)
∂(tc,0 − τ)

∂(tc,0 − τ)
∂τ

+
∂ψκ(tc,0 − τ ;ψx(τ), u∗)

∂ψx(τ)

∂ψx(τ)

∂τ
(3.17)

=⇒ 0 = −∂ψκ(tc,0 − τ ;ψx(τ), u
∗)

∂(tc,0 − τ)

+
∂ψκ(tc,0 − τ ;ψx(τ), u∗)

∂ψx(τ)
(f(ψx(τ)) + g(ψx(τ))u

∗(ψx(τ)) . (3.18)

At τ = 0, it further holds that ∂ψκ(tc,0−τ)
∂(tc,0−τ)

∣∣
τ=0

= ∂ψκ(t)
∂t

∣∣
t=tc,0

= 0, and ψx(0) = x, so substituting
τ = 0 into (3.18) yields

0 = Lf(x)ψκ(tc,0;x, u
∗) + Lg(x)ψκ(tc,0;x, u

∗)u∗(x) . (3.19)

Thus, the input u∗, which by definition is always in U , renders Lfψκ(tc,0) + Lgψκ(tc,0)u = 0,
thereby satisfying condition (3.4).

Finally, if the supremum in (3.12) is not achieved for finite t (i.e. (3.13) does not exist),
then choose ω = limt→∞ ψκ(t − τ ;ψx(τ ;x, u

∗), u∗). By Assumption 3.2, the limit exists, so
limt→∞

∂ψκ(t)
∂t

= 0. Differentiating ω with respect to τ as in the prior case yields that (3.19) holds
in the limit as tc,0 → ∞, so under the input u∗, condition (3.4) is still satisfied. As an abuse of
notation, I denote this case as∞ ∈ tc(x).

Since tc may contain multiple elements (but finitely many by Assumption 3.3), the trajectory
of h∗ satisfies ḣ∗(x, u) = maxtc,0∈t∗c(x) [Lfψκ(tc,0) + Lgψκ(tc,0)u] by [205, Thm. 3.2]. The control
law u∗ is independent of tc,0, so the above cases show that there exists a single control law u :

X → U given by u(x) = u∗(x),∀x ∈ X that always maps to the set of allowable control inputs
U and that renders Lfψκ(tc,0) + Lgψκ(tc,0)u nonpositive for every element tc,0 ∈ t∗c(x). Thus, the
control law u∗ will also render the maximum of these flows nonpositive, so that ḣ∗(x, u(x)) ≤ 0 ≤
α(−h∗(x)) for all x ∈ S and for any choice of α ∈ Ke. By Lemma 3.1, h∗ in (3.12) is a CBF as in
Definition 3.3. ■
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The immediate consequence of Theorem 3.4 is that if x(0) ∈ H∗, then there is a controller
such that x(t) ∈ H∗,∀t ≥ 0, and by extension x(t) ∈ S,∀t ≥ 0 since H∗ ⊆ S. Specifically,
Theorem 3.4 implies that if x(0) ∈ H∗, then there exists at least one safe trajectory. Unlike in
[86], Theorem 3.4 also allows for the possibility of ψκ having multiple maximizers. The following
remark then provides a means to calculate ḣ∗ for general systems, which I then apply as a condition
on the control input using (3.9)-(3.10).

Remark 3.1. Suppose that the control law u∗ : X → U is continuously differentiable. For a

control input v ∈ U , ḣ∗ is given by

ḣ∗(x, v) = max
tc,0∈t∗c(x)

(
∂ψκ(tc,0;x, u

∗)

∂x
(f(x) + g(x)v)

)
. (3.20)

The gradient of ψκ(tc,0;x, u∗) with respect to x at a particular tc,0 is given by

∂ψκ(tc,0;x, u
∗)

∂x
=
∂κ(x)

∂x

∣∣∣∣
x=ψx(tc,0;x,u∗)

Θ(tc,0) (3.21)

where matrix Θ(t) is the solution of the initial value problem

Θ̇ =
∂

∂y
[f(y) + g(y)u∗(y)]

∣∣
y=z

Θ, Θ(0) = I

ż = f(z) + g(z)u∗(z), z(0) = x

(3.22)

where I is the identity matrix.

Note that the maximum of (3.20) is generally not known until v is selected. Thus, the consequence
of Remark 3.1 is that a control law u of the form (2.9) should be encoded so as to satisfy the condi-
tion Lfψκ(tc,0)+Lgψκ(tc,0)u ≤ α(−h∗(x)) once for each element tc,0 ∈ t∗c(x) (i.e. one additional
safety constraint in the QP for each maximizer in t∗c). Note that u∗ also must be differentiable for
(3.22) to be well-defined, though the case study in Section 3.4 shows how differentiability of u∗

almost everywhere is often sufficient in practice.
While Theorem 3.4 theoretically applies to any system for which a nonemptyH∗ exists, in prac-

tice, it may be limited by the requirement to propose a “good” u∗ (i.e. one which yields a large set
H∗). Also, for most systems, h∗ and ∂ψκ

∂x
will not have explicit expressions. That said, computing

h∗ and ∂ψκ
∂x

only requires propagating two Ordinary Differential Equations (ODEs), which can be
done efficiently. On the other hand, the advantage of this approach is that if h∗(x(0)) ≤ 0, then
one immediately knowsH∗ can be rendered forward invariant under the input constraints.

Next, I present an alternative approach that avoids the complexity of (3.20)-(3.22) but yields a
different, usually smaller, CBF setH.
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3.3.2 Special Case of Constant Control Authority

Instead of allowing for any u∗ satisfying Assumptions 1-2, which could make (3.12) difficult
to compute, this section chooses the control input so as to regulate the system to a constant rate
of generalized inertia dissipation, i.e., chooses any u such that κ(r)(x, u) is a predefined constant.
Specifically, consider a control law u′ : X → U such that Assumption 3.1 holds and u′(x) ∈
µ(x) ⊂ U ,∀x ∈ Rn, where I define:

µ(x) ≜
{
u ∈ U

∣∣ κ(r)(x, u) = −amax
}
, (3.23)

where amax is a precomputed constant rate of generalized inertia dissipation,

amax ≜ max

({
a ∈ R

∣∣ ∀x ∈ S,∃v ∈ (LgL
r−1
f κ(x))⊥ :

−
(a+ Lrfκ(x))(LgL

r−1
f κ(x))

||LgLr−1
f κ(x)||2

+ v ∈ U
})

, (3.24)

assuming an amax > 0 exists. This choice of u is reasonable if minu∈U κ
(r)(x, u) does not vary

much with x, but may be overly conservative in other cases, where the system may be able to
dissipate generalized inertia at a rate higher than amax except within a small subset of S.

Under any u ∈ µ(x), it follows that κ(r)(x, u) = −amax, so ψκ has the Taylor expansion:

ψκ(t;x, u
′) =

r−1∑
i=0

1

i!
κ(i)(x)ti − 1

r!
amaxt

r . (3.25)

Next, define

t′c(x) ≜
{
argmax

t≥0
ψκ(t;x, u

′)
}
, (3.26)

h′(x) ≜ ψκ(tc,0;x, u
′), ∀tc,0 ∈ t′c(x) , (3.27)

H′ ≜ {x ∈ R | h′(x) ≤ 0} . (3.28)

Remark 3.2. The functions t′c(x) and h′(x) always exist because ψκ(t;x, u′) is a polynomial with

strictly negative highest coefficient −amax. That is, Assumptions 3.2-3.3 are always satisfied for u′.

By definition, h′(x) ≥ κ(x),∀x ∈ Rn, soH′ ⊆ S as well. Lastly, define the set U ′ as

U ′ ≜
{
u ∈ U

∣∣ ∃x ∈ S : u ∈ µ(x)
}
⊆ U , (3.29)

which represents the set of control inputs such that κ(r) = −amax. For brevity, in this section let
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ψκ(t) = ψκ(t;x, u
′). I now state the second main result of this chapter.

Theorem 3.5. The function h′ in (3.27) is a CBF for the control set U ′ (or U), providedH′ ̸= ∅ in

(3.28).

Proof. As in Theorem 3.4, t′c(x) is not necessarily unique, so this proof considers two cases de-
pending on the elements of t′c(x). If 0 ∈ t′c(x), then ψκ(0) = κ(x) and condition (3.4) is satisfied
by the same argument as Theorem 3.4.

If tc,0 ∈ t′c(x) for tc,0 > 0, then tc,0 is a maximizer on an open interval so ∂ψκ(t)
∂t

∣∣
t=tc,0

= 0,
where

0 =
∂ψκ(t)

∂t

∣∣∣∣
t=tc,0

=
r−2∑
i=0

(tc,0)
i

i!
κ(i+1)(x)− (tc,0)

r−1

(r − 1)!
amax . (3.30)

Then one has

Lfψκ(tc,0)+Lgψκ(tc,0)u
(3.25)
=

r−2∑
i=0

1

i!
κ(i+1)(x)(tc,0)

i +
1

(r − 1)!

[
Lrfκ(x)+LgL

r−1
f κ(x)u

]
(tc,0)

r−1

(3.30)
=

(tc,0)
r−1

(r − 1)!

[
amax + Lrfκ(x) + LgL

r−1
f κ(x)u

]
. (3.31)

By definition of amax, the right hand side of (3.31) can be rendered nonpositive by a u ∈ U ′ ⊆
U independent of tc,0, so by the same argument as Theorem 3.4, h′ satisfies the definition of a
CBF. ■

Similar to Theorem 3.4, Theorem 3.5 provides a guarantee of at least one safe trajectory, but
t′c(x) is computed via polynomial root-finding rather than ODE propagation, making (3.31) easier
to compute than (3.20)-(3.22) when implementing conditions (3.9)-(3.10). Note the polynomial
degree depends only on the relative-degree of κ (usually r ≤ 4 [82]), and not on the state dimen-
sion. Similar to ḣ∗, note that if t′c(x) ever has multiple elements, then ḣ′ is given by (3.20) with t′c in
place of t∗c and where ∂ψκ(tc,0;x,u′)

∂x
is easily derived from (3.25). See also [82] for some restrictions

on what t′c can be when r = 3, 4. When r = 2, t′c always contains only one element, which allows
one to construct the following explicit form for h′.

Example 3.1. In the case where κ ∈ G2, h′ takes the form:

h′(x) =

κ(x) κ̇(x) < 0

κ(x) + κ̇(x)2

2amax
κ̇(x) ≥ 0

. (3.32)
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3.4 Case Study for Spacecraft Application

In this section, I present two use cases for the CBFs in Section 3.3 for a spacecraft in weak
gravity, in which the spacecraft must navigate around an object under observation using control
inputs calculated online via a CBF.

In each case, the spacecraft state is x = [r, v] ∈ R6 with

ẋ =

[
ṙ

v̇

]
=

[
v

fµ(r) + u

]
, (3.33)

where r is the vector from the center of the object under observation to the spacecraft, v is the rate
of change of r as measured in an inertial frame (where the center of the object under observation
is assumed to be non-accelerating in an inertial frame), fµ is the local gravitational force, and u is
the control thrust. I construct a preplanned path rp : [0, 1] → R3 of desired observations which
circumnavigate the observed object (the interested reader is invited to examine the simulation code
below to see the curve fitting algorithm used to construct rp). This path is on the surface of the
object, which is outside the safe set S, so the spacecraft must get close to rp while staying within
the safe set. The spacecraft is driven to track the target using the Control Lyapunov Function (CLF)
[85]:

V (x) =
1

2
||r − rp||2 +

1

2
k2||v − k1(r − rp)||2 . (3.34)

The spacecraft control input is then calculated as:

u(x) = argmin
u∈U ,δ∈R

uTu+ Jδ2 such that (3.35)

Lfh(x) + Lgh(x)u ≤ α(−h(x))

LfV (x) + LgV (x)u+ δ ≤ −k3V (x)

where δ is a slack variable for the CLF to ensure feasibility, J is a constant slack penalty, k1, k2, k3
are constants, and h is a CBF. By construction, the QP (3.35) will always be feasible in H∗ and
H′ and I assume that (3.35) is sufficiently regular to satisfy Assumption 2.2-A6. For simplicity, let
α(λ) = λ in (3.35). Note that (3.35) utilizes a CLF and a slack penalty to establish convergence
rather than a nominal control law unom as in (2.9).

3.4.1 Case 1: Spherical Target

I first consider a spherical object of radius ρt with fixed position rs, and negligible gravity
fµ ≡ 0, so (3.33) reduces to a double integrator. Maintaining a distance of ρs from the object is
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equivalent to maintaining the relative-degree 2 constraint function κa(x) ≤ 0:

κa(x) = ρa − ||r − rs|| , (3.36)

where ρa = ρs + ρt > 0. Note that κa is defined specifically so that κ̈a represents physical
acceleration, since if fuel is consumed slowly enough, then the spacecraft peak acceleration in any
direction is a known constant, so amax is easy to compute. Suppose the spacecraft has six identical
and orthogonal thrusters, so U = {u ∈ R3 : ∥u∥∞ ≤ umax} for some umax ∈ R>0.

I then construct a CBF h∗ as in Section 3.3.1 using the assumed control law u∗ball in (3.11).
Specifically, to compute h∗, the controller numerically propagates the dynamics (3.33) for some
amount of time Tprop, yielding an array of states {ψx(tk;x, u∗ball)}Nk=1, and an array of κ values
{ψκ(tk;x, u∗ball)}Nk=1. For this particular combination of dynamics (3.33) and control law (3.11),
there is always a unique maximizer time tc,0. Moreover, tc,0 can be upper bounded, and I use
this bound to choose the propagation time Tprop. Unfortunately, depending on the integration
method, the array {ψκ(tk;x, u∗ball)}Nk=1 may not include the true maximizer, since this array is
only a sampling of a continuous curve. Thus, the controller selects the three highest points
{ψκ(tkl ;x, u∗ball)}3l=1 and fits a quadratic curve q(τ) = aτ 2 + bτ + c to these three points (where τ
is the propagated time minus the current time, i.e. q(0) = κ(x)). Assuming the maximum is not
simply h∗(x) = κ(x) (i.e. that tc,0 ̸= 0), the code then chooses h(x) = maxτ∈R≥0

q(τ) = c − b2

4a
,

which is associated with a unique maximizer tq = argmaxτ∈R≥0
q(τ) = −b

2a
. From here, the gra-

dient of h∗ can be computed as in Remark 3.1 using tc,0 = tq. Alternatively, for these dynamics

specifically, it holds that Θ(tc,0) =

[
I3×3 tc,0I3×3

03×3 I3×3

]
in (3.21) (note that u∗ball is not continuously

differentiable here because of the ∞-norm, but the ODE (3.22) still has a solution because u∗ball

is differentiable almost everywhere; proving that Remark 3.1 still holds in this case is an open
problem not considered here; see also [206, Thm. 6.1]). For more details, see the simulation code
below. Note, for more complex problems where tc(x) may have more than one element, if there
are multiple local maximizers tk such that the values ψκ(tk;x, u∗) are close to each other (but not
necessarily identical), then I recommend constructing q(τ) for each local maximizer.

Next, for the same system, I construct h′ as in Section 3.3.2. It follows that h′ is as given in
(3.32) with κa in place of κ and amax = umax. This leads to U ′ = {u ∈ R3 : ∥u∥ ≤ umax} ⊂ U .
Finally, for comparison, consider the CBF

ho(x) =
(
arctan(κ̇a(x)) +

π

2

)
κa(x) , (3.37)

derived using the rules in the prior work [29]. As discussed in [29], and similar to [84, 85, 138],
this CBF is only guaranteed to be valid over U = R3.
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Figure 3.2: Simulation and Comparison for Spherical Obstacle. The paths around the spherical
obstacle under the three CBFs considered (h∗(x), h′(x), ho(x))
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Figure 3.3: Control Inputs Using Backup CBF. The control input using h∗ as the CBF
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Figure 3.4: Control Inputs Using Polynomial-Based CBF. The control input using h′ as the CBF
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Figure 3.5: Control Inputs Using Comparison CBF. The control input using ho as the CBF, which
necessitates using control inputs outside the prescribed bounds (dashed red lines) for (3.35) to have
a solution
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I then simulated trajectories under all three CBFs (h∗, h′, ho) in MATLAB (the sim-
ulation code for this chapter can be found at https://github.com/jbreeden-

um/phd-code/tree/main/2021/CDC%20High%20Relative%20Degree%20CBFs%

20Input%20Constraints). The three simulated paths are shown in Fig. 3.2, and the
corresponding control inputs are shown in Figs. 3.3-3.5. All three trajectories in Fig. 3.2 remained
safe and generally followed similar paths around the obstacle. However, the control input only
stayed within the designated control set in Figs. 3.3-3.4. For the trajectory under ho(x), the QP in
(3.35) became infeasible at t = 14 (see Fig. 3.5), so I had to expand the control set U to compute
a control input satisfying the safety constraints (3.9)-(3.10). Thus, the proposed methods always
yield trajectories that are safe in the presence of control input constraints, whereas earlier methods
might not.

Additionally, note that the lines for ux, uz for t ∈ [15, 25] are slightly closer to the horizontal
axis in Fig. 3.4 than in Fig. 3.3. This occurred because h′ only makes use of u ∈ U ′ ⊂ U even
though the QP was calculated over the complete control set U .

3.4.2 Case 2: Asteroid Target

Next, I consider a spacecraft avoiding an object more complicated than a sphere, in this case an
asteroid, but still in weak gravity, with gravity modeled by spherical harmonics [207]. If the aster-
oid is convex, one could simply use κa(x) as the constraint function, setting rs as the instantaneous
closest point. However, if the asteroid is nonconvex (as in this example), the spacecraft could ob-
tain a large velocity with respect to a point other than the closest point, so that strategy is no longer
sufficient. Instead, I consider a discrete point-cloud model of the entire asteroid. The simplest
response is to construct a CBF for every point in the model, similar to [136], though this could be
computationally demanding (computational costs will also depend on the optimizer used). Using
the result in [151, Thm. 3] one can reduce the number of constraints to only those constraints that
could be violated within some finite time horizon ∆t > 0 to reduce complexity. For this case study,
I chose asteroid 433 Eros. The point cloud is a shape model of Eros with N = 7790 plates [208],
and gravity fµ modeled using the 16th order spherical harmonics in [209]. For this simulation, I
assume that the spacecraft knows the truth gravity model. I construct a CBF with the form of h′

for every point, yielding {h′i}Ni=1. I then apply a QP control law similar to (3.35) with multiple
CBF constraints ḣ′i(x, u) ≤ α(−h′i); in this chapter, I assume that all these CBF constraints are
simultaneously feasible (which turns out to be true along the simulation trajectory), but I also note
that simultaneous feasibility of several CBFs is not necessarily guaranteed unless one follows the
analysis in Chapter 6, which potentially requires additional margins.

To make the spacecraft traverse around the asteroid, I construct a preplanned path rp : [0, 1]→
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R3 around the asteroid. I then let s ∈ [0, 1] be an additional state with single integrator dynamics
ṡ = uground for uground ∈ R, and I enforce the constraint hground(x, s) = ρground−∥r− rp(s)∥ remain
nonpositive, where ρground > ρa. Thus, as the spacecraft tries to get closer to the instantaneous
target rp, the position of rp also advances. Note that hground is already a CBF, because I let the
artificial state s have first-order dynamics with no input constraints.

The trajectory, control inputs, and CBF values for the asteroid simulation are shown in Figs. 3.6-
3.8 and a video of the scenario can be found at https://youtu.be/JKj3PUrYnEg. As
expected, the trajectory is always safe and u satisfies the input constraints. Since the spacecraft
generally moves tangentially to the asteroid, h′ is only slightly larger than κa in Fig. 3.8 for most
of the simulation.

3.5 Conclusions

In this chapter, I introduced two general methods to determine CBFs for high relative-degree
constraint functions. Both approaches are derived from control policies known to meet the input
constraints, and thus are guaranteed safe under such constraints without further tuning. The two
strategies were demonstrated safe under input constraints on a spacecraft obstacle-avoidance exam-
ple, whereas most prior techniques would have failed to meet the input constraints [29, 84, 85, 203]
or required clever selection of bounding functions [87]. The second strategy was further verified
on an asteroid exploration example. Both strategies benefited from a relaxed definition of CBF in
Definition 3.3. While these two methods are fairly generally applicable, there will always be a need
for future researchers to develop additional methods of finding CBFs for systems not yet covered
by these methods. This need is demonstrated most clearly by the problem posed in Chapter 7, for
which none of these methods are applicable.
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Figure 3.6: Eros Circumnavigation Trajectory (Non-Rotating). The trajectory around Eros (top
view)

57



0 100 200 300 400 500 600

Time (s)

-50

0

50

u
 (

m
/s

2
)

Control Input u
x

u
y

u
z

Figure 3.7: Eros Circumnavigation Control Inputs. The control input over time for Fig. 3.6, which
stays between the prescribed bounds (dashed red lines)

0 100 200 300 400 500 600

Time (s)

-3

-2

-1

0

 (
k
m

)

Constraint Values

max({
a
}
i
)

max({h' }
i
)

Figure 3.8: Eros Circumnavigation Constraint Function and CBF Values. The value of the largest
κa(x) and h′(x) over time

58



CHAPTER 4

Robust Control Barrier Functions

This chapter is concerned with the “robust high relative-degree problem”, formalized in Sec-
tion 4.2.2. This is an extension of the problem considered in Chapter 3, wherein now the system
may experience disturbances. These disturbances this could represent model uncertainty, measure-
ment error, sampling error, or others. Regardless of the cause, I assume that these disturbances are
bounded. I then describe how to design CBFs as in the previous chapter, now for this revised sys-
tem model and with more emphasis specifically on second-order systems rather than on arbitrary
relative-degrees as in Chapter 3. After describing these “Robust CBFs” in detail, I present a special
application to what I call a “tight-tolerance objective”, and show how the Robust CBF approach
can be used not just for safety (i.e. avoidance) but also for accomplishing objectives defined as
convergence (i.e. attraction) to a set, or equivalently, convergence to a specific state within some
tolerance.

4.1 Introduction

This chapter advances the recent theory of Control Barrier Functions (CBFs) to systems with
high relative-degree under input constraints and disturbances, and applies the results to control de-
sign for satellite trajectories. Currently, satellite trajectory design is generally the product of exten-
sive optimizations for fuel and/or time consumption, completed long before a satellite is deployed.
As spacecraft venture further away from the Earth and attempt more complex mission objectives,
there is a need for greater autonomy, and a subsequent need to ensure that autonomous trajectories
meet various requirements, herein termed safety. While the present focus is on spacecraft, the
following results are broadly applicable to systems with constraints of high relative-degree.

System safety is often formulated as an invariance problem for a set of safe states, referred to
as the safe set. As in Chapter 3, the safe set is defined as the zero sublevel set of some constraint

function, which is assumed to be of high relative-degree with respect to the system dynamics, as
is the case for satellite problems. This chapter then designs a CBF whose zero sublevel set, called
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the CBF set, is a subset of the safe set. Existing CBF theory then provides a sufficient condition
(e.g. (2.5),(2.6)), which I call the CBF condition, on the control input that establishes forward
invariance of the CBF set. However, one limitation of this approach is that finding a valid CBF
may be challenging in general. Thus, the main questions of this chapter are: given a constraint
function with relative-degree 2 (or higher in Section 4.3.3) and specified input constraints, 1) how
to determine a CBF whose CBF set is a subset of the safe set and which is valid with respect to
the input constraints, and 2) how to ensure invariance of the CBF set in the presence of bounded
disturbances.

Given this setup, several papers develop methods on constructing CBFs whose CBF sets
are equivalent to the safe set. Prior methods include constructing CBFs via compositions of
the constraint function and its derivatives [29], backstepping [84], or feedback linearization
[85, 102, 138, 203]. However, the aforementioned papers all require that the set of allowable
control inputs is Rm. Since the constraint function is of high relative-degree, there may exist states
in the safe set from which arbitrarily large control inputs are needed to render the system trajec-
tories within the safe set. Therefore, if the set of allowable control inputs is bounded, there may
be no admissible control input that keeps the system trajectories within the safe set, and hence the
system could become unsafe (e.g., the satellite might fail to decelerate before colliding with an
obstacle and/or (2.9) might become infeasible). The work in [87] fixes this issue by specifying
the CBF set as a viability domain for the given system dynamics—i.e. a set inside the safe set
that may be rendered forward invariant under input constraints—and provides parameters (class-K
functions) that can be tuned to meet various input constraints. However, finding such parameters
is a non-trivial challenge, akin to finding a Lyapunov function. Recently, such parameters have
been found via learning from expert demonstration [101] and reinforcement learning [157]. This
chapter will similarly specify a subset of the safe set that is controlled forward invariant but, unlike
[87], here I use first-order CBFs [66] and I provide three principled methodologies to select the
analogue of the parameters in [87] for certain classes of systems (namely, systems satisfying the
theorem assumptions in Section 4.3). These methodologies are based on feedback linearization
(distinct from [85] and similar to Section 3.3.2), potential energy functions (the completely new
method in this Chapter), and model-predictive safety (similar to Section 3.3.1), respectively. The
significance of these results and those in [87, 101, 157] is that if a valid CBF can be found via one
of these methods, then existence of a safe trajectory is guaranteed from any point in the CBF set.

Other studies have taken advantage of special features of certain systems to satisfy input con-
straints when the constraint function is of high relative-degree. The work in [36] develops a CBF
specific to the double integrator system. Similarly, [82] develops a technique applicable to the
n-integrator system, which was generalized in Section 3.3.2. The method in Section 3.3.2 is then
further extended in Section 4.3.1 to be robust to disturbances while maintaining provable safety

60



under input constraints, and in Section 4.3.2 to work with more general dynamics for which amax in
(3.24) is possibly zero. Alternatively, one could use an additional CBF to limit the agent velocity
to a certain domain, as in [29, 36]. The example in [28] instead takes advantage of the damping of
the considered system to meet input constraints. Finally, the work in [86, 96] and in Section 3.3.1
considers CBFs that examine a system’s trajectory forward in time under various assumptions to
determine safety. The authors of [96] consider the set of states reachable in fixed time from a
pre-designated backup set, but do not consider whether the predicted trajectories from the current
state to the backup set are everywhere safe (i.e. whether the backup trajectories become unsafe in
the process of reaching the backup set). The work in [86] improves upon this by examining the
minimizer of a performance function applied along the predicted trajectories (thus testing every
point along the backup trajectory for safety), and Section 3.3.1 extends [86] to work when the
minimizer is not unique. Compared to these works, Section 4.3.3 extends this strategy to be robust
to disturbances while maintaining provable safety under input constraints, and provides tools for
computing the CBF and its derivatives when analytic solutions are unavailable (see also [96, Sec.
V-A]).

Several papers have considered CBF robustness to disturbances in various senses. Neglecting
input constraints, an early result on CBF robustness in [116] shows that a bounded disturbance
causes a bounded excursion outside the CBF zero sublevel set, and later authors showed that this
excursion can be tuned [112]. Recently, [89] extended this result to higher-order CBFs as in [87].
Safety under a bounded worst-case disturbance, as is considered in this chapter, is studied in [117–
119], while probability of safety using a similar approach with a stochastic disturbance is studied
in [72]. In multi-agent systems, dynamic couplings between agents that act independently of each
other can also be considered disturbances, and robustness to such effects are treated similarly in
[80, 124]. In all of these papers, it is assumed that the system has sufficient control authority to
counteract these disturbances. However, satisfying this assumption is nontrivial, and is a require-
ment of the methods in Section 4.3.

Finally, one objective of this chapter is to place fewer restrictions on closed-loop trajectories by
applying safety criteria only near the boundary of the CBF set. This was accomplished in [89] by
designating strict subsets of the safe set termed “performance-critical regions” where safety was
guaranteed without enforcing the CBF condition. However, this relaxation required expanding the
control set to Rm. For systems subject to many CBFs simultaneously, the work in [36, 203] sim-
plifies control input calculation in a similar manner by breaking the state space into regions where
only a few CBFs are actively applied, though this introduces potential issues with non-uniqueness
of system solutions. These issues are fixed in [151] by relaxing the system to a differential in-
clusion. A similar approach using products of CBFs is described in [204]. Expanding upon these
approaches, this chapter introduces a hysteresis-switching approach inspired by [151] and [28] that

61



relaxes the CBF condition in the interior of the CBF set while still provably guaranteeing safety
in the presence of input constraints. Such hysteresis-switching removes the need for differential
inclusions, and thus prevents chattering control inputs that may not be feasible on real actuators.
This switching approach also motivates a special choice for the class-Ke function that is left as a
free tuning parameter in all of the theorems in Section 4.3 (as was also the case for Theorem 3.4
and Theorem 3.5). I then show in simulation how the proposed choice allows one to directly tune
how closely trajectories approach the boundary of the CBF set.

In summary, this chapter is divided into:

1. three strategies for generating CBFs from high relative-degree constraint functions in the
presence of input constraints and bounded matched and unmatched disturbances simultane-
ously (Section 4.3);

2. a switching method for relaxing the CBF condition in the interior of the CBF set and for
tuning how closely trajectories approach the boundary of the CBF set (Section 4.4);

3. specializations of the above CBFs to deep-space trajectory applications (Section 4.5); and

4. an extension and case study of these methods to “tight-tolerance specifications”, introduced
later in Section 4.7.

4.2 Preliminaries

4.2.1 Notation

In addition to the notations in Section 2.1, for a continuously differentiable function ϕ : R→ R,
let ϕ′ : R → R denote the first derivative of ϕ. Denote the inverse, if it exists, as ϕ−1 : R → R.
For a continuously differentiable function of both time and state, φ : T × X , denote the partial
derivative with respect to the first argument as ∂tφ. Denote the gradient row vector with respect
to the second argument as ∇φ. That is, ∂tφ(s, x) ≜ ∂φ(t,x)

∂t

∣∣∣
t=s

and ∇φ(t, y) ≜ ∂φ(t,x)
∂x

∣∣∣
x=y

.

Let φ̇ denote the total derivative of φ along the dynamics (4.1), φ̇(t, x, u, wu, wx) = ∂tφ(t, x) +

∇φ(t, x)F (t, x, u, wu, wx), where it may be the case that φ(t, x, u, wu, wx) = φ(t, x, wx) if φ is
of high relative-degree. For the purpose of illustrating concepts, I may also reference the second
derivative, φ̈, or rth derivative, φ(r), along some dynamics, though note that derivatives beyond the
first order are generally not well-defined in this chapter (and thus should not be used in equations)
unless wx ≡ wu ≡ 0, because the disturbances wu and wx are not assumed to be differentiable.
The exception to this remark is κ̈w, which is well-defined in (4.20). Additional derivative notation
is introduced in Section 4.3.3 to prevent confusion in that section.
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4.2.2 Model and Problem

Consider the time-varying control-affine model

ẋ = f(t, x) + g(t, x)(u+ wu) + wx︸ ︷︷ ︸
=F (t,x,u,wu,wx)

, (4.1)

with time t ∈ T = [t0,∞), state x ∈ X ⊆ Rn, control input u ∈ U ⊂ Rm where U is compact,
unknown disturbances wu ∈ Rm and wx ∈ Rn that are continuous in time, and functions f :

T × X → Rn and g : T × X → Rn×m. Let wu and wx be bounded as ∥wu∥ ≤ wu,max and
∥wx∥ ≤ wx,max for some wu,max, wx,max ∈ R≥0, and define the set of allowable disturbancesW ≜

{wu ∈ Rm | ∥wu∥ ≤ wu,max} × {wx ∈ Rn | ∥wx∥ ≤ wx,max}. Assume a unique solution to
(4.1) exists for all t ∈ T . Given dynamics (4.1) with f and g sufficiently differentiable, a function
φ : T × X → R is said to be of relative-degree r if it is r-times total differentiable along (4.1)
for wx ≡ wu ≡ 0, and if φ(r) is the lowest order derivative in which u and wu appear explicitly.
Denote the set of all relative-degree r functions as Gr, similar to Definition 3.2 in Chapter 3.

Remark 4.1. Instead of viewing wx as a disturbance, one could alternatively view x as a filtered

estimate of the true state of the system (which in practice is never known exactly), and wx as the

corrections to that estimate (provided that one can approximate a bound wx,max).

Let κ : T × X → R, κ ∈ Gr, denote the constraint function, and define a time-varying safe set
S : T → 2X as

S(t) ≜ {x ∈ X | κ(t, x) ≤ 0} . (4.2)

For compactness, denote the safe set across time as ST ≜ {(t, x) ∈ T × X | x ∈ S(t)}.
This chapter is devoted to developing methods for rendering the state trajectory always inside

the safe set S in the presence of any allowable disturbances (wu, wx) ∈ W . I will do this by
constructing functions h : T × X → R that generate sets of the form

H(t) ≜ {x ∈ X | h(t, x) ≤ 0} , (4.3)

Hres(t) ≜ {x ∈ X | h(t, x) ≤ 0 and κ(t, x) ≤ 0} , (4.4)

visualized in Fig. 4.1. I refer to the set H as a CBF set, and to the set Hres as a restricted CBF

set. Note that if h(t, x) ≥ κ(t, x) for all (t, x) ∈ T × X , then H ≡ Hres. A controller is said
to render Hres forward invariant, if given any x(t0) ∈ Hres(t0), the closed-loop trajectory satisfies
x(t) ∈ Hres(t),∀t ∈ T , similar to Definition 2.6. In general, there may exist points x(t0) ∈ S(t0),
from which one will not be able to render S forward invariant under (4.1). That is, S (or ST ) is
generally not a controlled invariant set as in Definition 2.7. Nevertheless, if one can render the

63



Figure 4.1: Illustration of CBF Set and Restricted CBF Set. Given a safe set S ⊂ X as in (4.2)
and input constraints U , this chapter presents methods of finding viability domains H as in (4.3)
that are subsets of the safe set (left). In certain cases (Theorem 4.10 and Theorem 4.11), the
presented forms of κ cause the setH to include unsafe states (see also Fig. 4.2), so I introduce the
set Hres in (4.4) (right). If κ is an RCBF as in Definition 4.2, then H (or Hres in Theorem 4.10
and Theorem 4.11) can be rendered forward invariant under any disturbances (wu, wx) ∈ W while
always satisfying the input constraints U .

subsetHres ⊆ S forward invariant, then one can ensure that the closed loop trajectories of (4.1) are
safe (i.e. never exit S) for initial conditions lying in the setHres. Thus, a crucial requirement is that
x(t0) ∈ Hres(t0), where κ is chosen from the strategies in Section 4.3. Also define the domains
HT ≜ {(t, x) ∈ T × X | x ∈ H(t)} andHT

res ≜ {(t, x) ∈ T × X | x ∈ Hres(t)} similar to ST .
At this point, I emphasize that the purpose of this chapter is to derive conditions that ensure that

state trajectories never leave Hres even in the presence of disturbances. There is a related school-
of-thought that is instead interested in designing CBFs such that Hres is asymptotically stable,
e.g. [29, Prop. 2], and thus a bounded disturbance will cause a bounded excursion outside Hres.
Since I am interested in spacecraft, I assume that any excursion outside the safe set could lead to
catastrophic damage and is therefore unacceptable. Note however that, mathematically, these two
notions of robustness are very similar, and the relation will become clearer in the context of the
asymptotically stable manifolds discussed in Section 4.4 and Section 4.7.

4.2.3 Mathematical Background

Recall the definition of a CBF without disturbances in Definition 2.14. Now, to account for
disturbances, I introduce the following definitions, inspired by [117, 118].

Definition 4.1 (Control Barrier Function on a Set). For the system (2.1), a continuously differ-

entiable function h : T × X → R is a control barrier function (CBF) on a time-varying set
D : T → 2X if there exists a function α ∈ Ke such that

inf
u∈U

[
∂th(t, x) +∇h(t, x)

[
f(t, x) + g(t, x)u

]]
≤ α(−h(t, x)),∀x ∈ D(t), t ∈ T . (4.5)
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Definition 4.2 (Robust Control Barrier Function on a Set). For the system (4.1), a continuously

differentiable function h : T × X → R is a robust control barrier function (RCBF) on a time-
varying set D : T → 2X if there exists a function α ∈ Ke such that

max
(wu,wx)∈W

[
inf
u∈U

(
∂th(t, x) +∇h(t, x)

[
f(t, x) + g(t, x)(u+ wu) + wx

])]
≤ α(−h(t, x)),

∀x ∈ D(t), t ∈ T . (4.6)

Note the added language “CBF (or RCBF) on a set D” compared to Definition 2.14 and Defi-
nition 3.3. In prior chapters, a function was a CBF if it was a CBF on H or any superset D of H.
By contrast, in this chapter, the set D : T → 2X may be any set, not necessarily a superset of H,
so I require that this set is specified whenever Definition 4.1 or Definition 4.2 is invoked. Usually,
D will be eitherH orHres, though other sets will be possible later in Chapter 6.

Based on Definition 4.2, define

W (t, x) ≜ max
(wu,wx)∈W

∇h(t, x)(g(t, x)wu + wx) (4.7)

≡ ∥∇h(t, x)g(t, x)∥wu,max + ∥∇h(t, x)∥wx,max ,

where I will use both equivalent forms of W (t, x) in (4.7) depending on the setting. The set of
control inputs such that (4.6) is satisfied is then

Urcbf(t, x) ≜ {u ∈ U | ∂th(t, x) +∇h(t, x)(f(t, x) + g(t, x)u) ≤ α(−h(t, x))−W (t, x)} (4.8)

for some function α ∈ Ke. Note that since Definition 4.2 considers the allowable control set U , if
h is an RCBF on D, then Urcbf(t, x) is nonempty for all x ∈ D(t), t ∈ T . Given an RCBF on H,
one can establish forward invariance ofH using the following theorem.

Theorem 4.1 (Extension of Theorem 2.2 to RCBFs). For the system (4.1), suppose h : T ×X → R
is an RCBF as in Definition 4.2 on an open setD : T → 2X satisfyingH(τ) ⊂ D(τ) for all τ ∈ T
with H as in (4.3). Let DT = {(t, x) ∈ T × X | x ∈ D(t)} and let α ∈ Ke. Then any control law

u : T × X → U satisfying u(t, x) ∈ Urcbf(t, x),∀(t, x) ∈ DT will renderHT forward invariant.

The proof of Theorem 4.1 follows identical logic to Theorem 2.2 and is similar to that of [118,
Lemma 4]. A version for time-invariant sets is also found in [117, Thm. 2].

Note that the methods in Section 4.3 only output functions that are guaranteed to be RCBFs on
H (or Hres), not necessarily on a larger open set D as required in Theorem 4.1. Therefore, one
should verify that the dynamics do not drastically change right at the boundary ∂H (i.e. change so
as to make ḣ non-Lipschitz and positive in a neighborhood {(t, x) ∈ T × X | h(t, x) ∈ [0, ϵ]} for
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ϵ ∈ R>0), as was discussed following Theorem 2.2. Alternatively, one can use one of the following
theorems that only require u(t, x) ∈ Urcbf(t, x) for (t, x) ∈ HT instead of on a larger open set DT .

Corollary 4.2. For the system (4.1), suppose h : T × X → R is an RCBF as in Definition 4.2

on the set H in (4.3). Assume that α ∈ Ke is locally Lipschitz continuous. Then any control

law u : T × X → U satisfying u(t, x) ∈ Urcbf(t, x),∀(t, x) ∈ HT will render int(HT ) forward

invariant.

Proof. Let x(T ) be any solution to (4.1) and define θ(t) = h(t, x(t)). Solutions to (4.1) must
be absolutely continuous, so any solution starting at a point (t0, x(t0)) ∈ int(HT ) will satisfy
θ(t0) = h(t0, x(t0)) < 0 and must pass a point where θ(t) = 0 as it exits int(HT ). Moreover, θ
satisfies θ̇ ≤ α(−θ) by (4.8). Since α is locally Lipschitz continuous, in any neighborhood [0, ϵ]

of the origin, the function α is linearly upper bounded as α(λ) ≤ Lλ for all λ ∈ [0, ϵ] for some
Lipschitz constant L ∈ R>0. The system ż(t) = −Lz(t) has solution z(t) = z(t0)e

−L(t−t0), so if
z(t0) < 0, then z(t) < 0 for all t ∈ T . Thus, by the comparison lemma [191, Lemma IX.2.6], any
solution θ with θ(t0) < 0 will satisfy θ(t) < 0 for all t ∈ T . This is equivalent to the solution to
(4.1) always staying in int(HT ) and thus rendering int(HT ) forward invariant. ■

That is, just by 1) choosing α in (4.8) to be locally Lipschitz continuous, and 2) choosing
an initial state in the interior of the CBF set, one can avoid the need for the larger open set D in
Theorem 4.1. Alternatively, one can also state a version of Theorem 4.1 with Lipschitz assumptions
similar to Theorem 2.6 to achieve a similar result.

Theorem 4.3 (Extension of Theorem 2.6 to RCBFs). Let u : T × X → R be a control law, let

h : T × X → R be an RCBF as in Definition 4.2 on the setH in (4.3) and for the dynamics (4.1).
Let D : T → 2X be an open set such that ∂H(τ) ⊂ D(τ) for all τ ∈ T and let DT = {(t, x) ∈
T × X | x ∈ D(t)} and let α ∈ K. Suppose that wu and wx are functions wu : T × X → Rm

and wx : T × X → Rn. Suppose that, for all (t, x) ∈ DT , it holds that f , g, u, wu, wx, ∂th, and

∇h are locally Lipschitz continuous in x and piecewise locally Lipschitz continuous in t, with a

minimum delay of T ∈ R>0 between discontinuities. Then any control law satisfying the above

and u(t, x) ∈ Urcbf(t, x),∀(t, x) ∈ HT will renderHT forward invariant.

As with Theorem 4.1, the proof of Theorem 4.3 is identical to the proof of Theorem 2.6, and a
similar extension of Theorem 2.8 is as follows.

Theorem 4.4 (Extension of Theorem 2.8 to RCBFs). Let T be a closed set (as in Theorem 2.8), so

that HT in (2.3) is a closed set. Given an RCBF as in Definition 4.2 on the set H in (4.4) and for

the dynamics (4.1), assume that |∂th(t, x)| + ∥∇h(t, x)∥ ̸= 0 for all (t, x) ∈ HT , and let α ∈ K.

Then any control law u : T × X satisfying u(t, x) ∈ Urcbf,∀(t, x) ∈ HT will render HT forward

invariant.
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Going forward, I will refer to the inclusion u(t, x) ∈ Urcbf(t, x) in the above theorems as the
RCBF condition. I continue to refer to H as simply the CBF set, not the RCBF set, as H has
not changed any since H was first defined in (2.2). The consequence of the above theorems is
that if one knows 1) h is an RCBF on H, 2) the initial condition satisfies x(t0) ∈ H(t0), and 3)
H(t) ⊆ S(t),∀t ∈ T , then one immediately knows that there exists a safe trajectory beginning at
(t0, x(t0)) satisfying the input constraints.

4.2.4 Set Invariance for the Restricted CBF Set

Next, I consider the possibility that H(t) ̸⊆ S(t), in which case I seek to extend the invariance
theorems in the prior subsection to establish invariance ofHres instead. Define

Hcom(t) ≜ {x ∈ H(t) | κ(t, x) = 0} , (4.9)

HT
com ≜ {(t, x) ∈ HT | κ(t, x) = 0} , (4.10)

Hunsafe(t) ≜ {x ∈ H(t) | κ(t, x) > 0} , (4.11)

HT
unsafe ≜ {(t, x) ∈ HT | κ(t, x) > 0} . (4.12)

An illustration of Hcom and Hunsafe is shown in Fig. 4.2, specifically for the CBF that will be
designed in Lemma 4.9. Recall that in the related high-order CBF literature [87–89], the CBF
set is also defined as an intersection, so it is not surprising that, under certain conditions, one can
also show that the RCBF condition is sufficient to render the intersection Hres = H ∩ S forward
invariant as well. I now present these additional conditions and extend the theorems in Section 4.2.3
to establish forward invariance ofHres.

Corollary 4.5 (Corollary to Theorem 4.1). Suppose that the assumptions of Theorem 4.1 hold with

Hres in place ofH. Suppose also that

max
(wu,wx)∈W

κ̇(t, x, u(t, x), wx, wu) < 0,∀(t, x) ∈ (DT ∩HT
unsafe) ∪ (int(HT ) ∩HT

com) (4.13)

and

max
(wu,wx)∈W

κ̇(t, x, u(t, x), wx, wu) ≤ 0,∀(t, x) ∈ (∂HT ) ∩ (∂ST ) (4.14)

Then any control law u : T × X satisfying u(t, x) ∈ Urcbf(t, x),∀(t, x) ∈ DT will render HT
res

forward invariant.

Proof. Recall from Nagumo’s theorem (Lemma 2.7) that a set is forward invariant if and only if
trajectories never cross the set boundary. By the same argument as in Theorem 2.2, trajectories
will never exit HT along the manifold (∂HT ) ∩ ST . Moreover, since κ̇(t, x) < 0 for all (t, x) ∈
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Figure 4.2: Illustration of Restricted CBF Set Boundary. An illustration of the setsHres andHunsafe

and the manifold Hcom between them in magenta, drawn for the CBF (4.17). Only states where
κ(t, x) ≤ 0 are safe, and onlyHres is rendered forward invariant.

int(HT ) ∩HT
com in (4.13), trajectories will not exit ST along the manifold int(HT ) ∩HT

com either.
Finally, at the manifold (∂HT ) ∩ (∂ST ), I have already shown that trajectories will not leave
HT , and because κ̇(t, x) < 0 for all (t, x) ∈ DT ∩ HT

unsafe in (4.13), trajectories are unable to
exit ST at that manifold either. The union of these three manifolds forms the entire boundary of
HT

res. Thus, trajectories satisfying the corollary conditions can never leave HT
res, so HT

res is forward
invariant. ■

Next, if one is only concerned with the interior of Hres, similar to Corollary 4.2, then one can
drop condition (4.14), as follows.

Corollary 4.6 (Corollary to Corollary 4.2). For the system (4.1), suppose h : T × X → R is

an RCBF as in Definition 4.2 on the set Hres in (4.4). Assume that α ∈ Ke is locally Lipschitz

continuous. Let D : T → 2X be a set (not necessarily open or closed) satisfying Hres(τ) ⊆ D(τ)
for all τ ∈ T , and suppose that (4.13) holds. Then any control law u : T × X satisfying u(t, x) ∈
Urcbf(t, x),∀(t, x) ∈ HT will render int(HT ) ∩ int(ST ) forward invariant.

Proof. By condition (4.13), trajectories will never cross the manifold int(HT )∩HT
com ≡ int(HT )∩

(∂ST ). Also, by the same logic as Corollary 4.2, trajectories starting inside int(HT ) ∩ int(ST )

will never reach (∂HT ) ∩ int(ST ). Since trajectories cannot reach either of these two manifolds,
any control law as described above will render int(HT ) ∩ int(ST ) forward invariant. ■
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Next, note that condition (4.14) does not make use of the larger open set D, and that condi-
tion (4.13) only makes use of a subset of D that intersects with H. Also, conditions (4.13)-(4.14)
are only conditions on κ̇, so if κ ∈ Gr for r ≥ 2, then these conditions are independent of the
control law. Thus, it is easy to make a similar extension to Theorem 4.3 and Theorem 4.4 as
follows.

Corollary 4.7 (Corollary to Theorem 4.3). Suppose that the assumptions of Theorem 4.3 hold

with Hres in place of H. Let D : T → 2X be an open set satisfying Hres(τ) ⊂ D(τ) for all

τ ∈ T , and suppose that (4.13)-(4.14) hold. Then any control law u : T × X satisfying u(t, x) ∈
Urcbf(t, x),∀(t, x) ∈ HT will renderHT

res forward invariant.

Proof. The proof follows the same logic as in Corollary 4.5. By the same argument as in Theo-
rem 2.6, trajectories will never exit HT along the manifold (∂HT ) ∩ ST . And by the same logic
as in Corollary 4.5, trajectories will never exit ST along either of the manifolds int(HT ) ∩ HT

com

or (∂ST )∩ (∂HT ). Thus, by the same logic as Corollary 4.5, the setHT
res is forward invariant. ■

Note that Corollary 4.7 still introduced an open set D as was done in Theorem 2.2 and Corol-
lary 4.5, but this set D is only used to define the set where κ̇ is required to be negative. The control
law in Corollary 4.7 still only needs to satisfy the RCBF condition on HT , not on the larger open
set DT . I chose this proof strategy because 1) I did not want to complicate the corollary conditions
by introducing a Lipschitz assumption on the evolution of κ (which could have replaced the need
for introducing D entirely), and 2) the assumption on κ̇ in both Corollary 4.5 and Corollary 4.7
will be automatically satisfied by both of the RCBFs in Theorem 4.10 and Theorem 4.11, so these
conditions are not restrictive.

Finally, I present a similar extension of Theorem 4.4.

Corollary 4.8 (Corollary to Theorem 4.4). Let T be a closed set (as in Theorem 2.8) so that

HT
res is a closed set. Given an RCBF as in Definition 4.2 on the set Hres in (4.4), assume that

|∂th(t, x)| + ∥∇h(t, x)∥ ̸= 0 for all (t, x) ∈ (∂HT ) ∩ ST and that |∂tκ(t, x)| + ∥∇κ(t, x)∥ ̸= 0

for all (t, x) ∈ (∂ST )∩HT Suppose that max(wu,wx)∈W κ̇(t, x, u(t, x), wu, wx) ≤ 0 for all (t, x) ∈
HT

com. Then any control law satisfying u(t, x) ∈ Urcbf(t, x) for all (t, x) ∈ HT
res will render HT

res

forward invariant.

Proof. By the assumed conditions and following the same logic as the proof of Theorem 2.8,
trajectories can never leave HT via the manifold (∂HT ) ∩ ST . Also, due to the condition on
|∂tκ| + ∥∇κ∥ and the assumption that κ̇(t, x) ≤ 0 for all (t, x) ∈ HT

com, Lemma 2.7 implies
that trajectories can never leave ST via the manifold HT

com. These two manifolds cover the entire
boundary ofHres, soHres is rendered forward invariant by the same logic as in Theorem 2.8. ■
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Note that I present Corollary 4.8 for completeness, though in practice, both of the RCBFs in
Theorem 4.10 and Theorem 4.11 violate the conditions of Corollary 4.8, because for these two
RCBFs, it always holds that |∂tκ(t, x)| + ∥∇κ(t, x)∥ = 0 for (t, x) such that h(t, x) = κ(t, x) =

0. One open area for future work is determining under what conditions one can prove forward
invariance as in Corollary 4.8 without explicitly requiring this condition at these specific states.
Intuitively, Fig. 4.2 suggests that THT (t, x) = TST (t, x) at the points (t, x) such that h(t, x) =

κ(t, x) = 0. If this holds, then one could relax the requirement that |∂tκ(t, x)| + ∥∇κ(t, x)∥ ≠ 0

at these specific points, but this intuitive conjecture still needs to be proven.
Now that I have established the conditions under which one can prove forward invariance of

both H and Hres, in the next section I present the specific forms of RCBFs with which I am
interested in using the above theorems.

4.3 Robust Control Barrier Functions for Input Constraints

Given some constraint function κ and associated safe set S, along with input constraints U
and disturbances W , the goal of this section is to develop an RCBF h and associated sets H in
(4.3) and Hres in (4.4) for dynamics relevant to spacecraft, namely relative-degree 2 dynamics.
The primary challenge addressed by all the subsequent methods is that for constraint functions
with high relative-degree, the input constraints and disturbances must also be incorporated into
the form of the RCBF. For example, if κ ∈ G2, there may exist a state (t0, x(t0)) ∈ S(t0) such
that κ(t0, x(t0)) < 0 and κ̇(t0, x(t0)) > 0. Without loss of generality, κ can be thought of as the
position of an agent, κ̇ its velocity, and κ̈ its acceleration. This state can be in the zero sublevel
set H of some RCBF h only if there exists a control input satisfying the input constraints such
that the agent decelerates to κ̇(t, x(t)) = 0 before leaving S. Thus, an RCBF must be a function
of the input constraints, and this section seeks systematic methods of finding such functions. The
following subsections identify three forms of RCBFs, presented in order of increasing complexity
and decreasing conservatism. Each form is developed as a function of κ and is applicable under
different conditions on the input constraints and disturbances. Sections 4.3.1 and 4.3.2 consider
only relative-degree r = 2 constraint functions and require specific system properties, while Sec-
tion 4.3.3 provides an approach for relative-degree r ≥ 2 with distinct requirements.

4.3.1 Constant Control Authority

In this subsection, suppose the constraint function κ is of relative-degree r = 2, and has the
special property that κ̈ can always be made less than some negative constant, similar to (3.24).
Intuitively, this means that the controller can add/remove “energy” from the system at a constant
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rate. Then, assuming a time-invariant system and no disturbances, Example 3.1 provides one
possible form of CBF, repeated here as follows

h(x) =


κ(x) κ̇(x) < 0

κ(x) +
κ̇(x)2

2amax
κ̇(x) ≥ 0

(4.15)

where amax is a parameter.
Next, note that (4.15) can be modified to remove the piecewise definition. The following alter-

nate form of (4.15) provides a more intuitive metric for safety, especially when disturbances are
added.

Lemma 4.9. Suppose wu ≡ wx ≡ 0. If κ ∈ G2, f , g, and κ are time-invariant, and there exists

amax such that

inf
u∈U

κ̈(x, u) ≤ −amax,∀x ∈ S , (4.16)

then the function

h(x) = κ(x) +
|κ̇(x)|κ̇(x)

2amax
(4.17)

is a CBF on Hres in (4.4) as in Definition 4.1 for any α ∈ Ke. Moreover, Theorem 2.2 and

Theorem 2.6 hold withHres in place ofH.

Proof. First note that h in (4.17) is continuously differentiable (recall that z : R→ R, z(λ) = λ|λ|
is once continuously differentiable). Next, note that the derivative of h is

ḣ(x, u) = κ̇(x) +
|κ̇(x)|κ̈(x, u)

amax
. (4.18)

When κ̇(x) ≤ 0, (4.16) implies that one can always choose a u that renders (4.18) nonpositive.
When κ̇(x) > 0, (4.18) reduces to ḣ(x, u) = κ̇(x)

(
1 + κ̈(x,u)

amax

)
. Any u such that κ̈(x, u) ≤ −amax

will thus render ḣ nonpositive, and by assumption in (4.16), such a u always exists in U for all
x ∈ S. Thus, for every x ∈ Hres ⊆ S, there exists u(x) ∈ U such that ḣ(x, u(x)) ≤ 0 ≤ α(−h(x))
for any α ∈ Ke, so h satisfies the conditions of a CBF onHres in Definition 4.1 for any α ∈ Ke.

Next, note that for h as in (4.17), the set H in (4.3) is not a subset of S in (4.2); i.e., there exist
states x ∈ H where h(x) ≤ 0 and κ(x) > 0, as shown by the red hashed region in Fig. 4.2. Note
that no such states occurred previously for h as in (4.15) due to the piecewise definition. Thus,
one can divide the set H into two disjoint subsets, the restricted CBF set Hres as in (4.4) and the
set Hunsafe as in (4.11), which is unsafe. Denote the manifold between these two subsets as Hcom

in (4.9), illustrated in Fig. 4.2. It follows from Theorem 2.2 and Theorem 2.6 that closed-loop
trajectories satisfying u(t, x) ∈ Urcbf(t, x) cannot transition directly fromHres to X \H (i.e. cannot
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cross the black line in Fig. 4.2). I next show that trajectories also cannot transition directly from
Hres toHunsafe.

A trajectory starting in Hres can only transition directly from Hres to Hunsafe along Hcom (i.e.
cross the magenta line in Fig. 4.2). Divide Hcom into two disjoint sets Hc,1 = {x ∈ Hcom | h(x) <
0} and Hc,2 = {x ∈ Hcom | h(x) = 0}. For all x ∈ Hc,1, it holds that κ̇(x) < 0, so, under the
regularity conditions of Theorem 2.2 or Theorem 2.6, it follows that trajectories can never cross
the manifoldHc,1 from insideHres. Similarly, the need for an open set D in Theorem 2.2 prevents
trajectories from crossing the manifoldHc,2. Additionally, for all x ∈ Hc,2, it holds that κ̇(x) = 0.
Note that any controller satisfying u(t, x) ∈ Urcbf(t, x) at x ∈ {x ∈ H | h(x) = 0 and κ̇(x) >
0} must yield κ̈(x) ≤ −amax. By the regularity assumptions in Theorem 2.6, it follows that
κ̈(x) ≤ −amax < 0,∀(x) ∈ Hc,2, so trajectories can never cross the manifold x ∈ Hc,2 under the
conditions of Theorem 2.6 either. Thus, trajectories starting inHres never directly transition across
Hcom = Hc,1 ∩ Hc,2 to Hunsafe. Since closed-loop trajectories can never transition from Hres to
eitherHunsafe or X \ H, it follows thatHres is rendered forward invariant. ■

Remark 4.2. If (4.16) holds for all x ∈ H, then any controller satisfying u(t, x) ∈
Urcbf(t, x),∀(t, x) ∈ HT also necessarily causes trajectories originating in Hunsafe to approach

Hres (see also [89, Rem. 2]).

Note that by definition Hres is a subset of S, so rendering Hres forward invariant also ensures
safety for all future time. Moreover, Lemma 4.9 says that the same CBF conditions as in Sec-
tion 2.3.2 causesHres to be rendered forward invariant (assuming no disturbances). In fact, the set
Hres for the CBF in (4.17) is identical to the set H for the CBF in (4.15), but the form of (4.17)
is mathematically more convenient. In particular, the CBF in (4.17) is of relative-degree 1 every-
where, and captures the rate at which κ decreases, unlike the piecewise form in (4.15). Note also
that Lemma 4.9 does not include an extension of Theorem 2.8, because, as noted in Section 4.2.4,
the conditions of Theorem 2.8 may not hold at x ∈ Hc,2.

Note that the function (4.17) by construction satisfies conditions (4.13) and (4.14), as will the
next two RCBFs introduced. Thus, one can come to the same conclusion as in Theorem 4.9 that
Hres can be substituted for H by noting that, with this substitution, Theorem 2.2 and Theorem 2.6
become special cases of Corollary 4.5 and Corollary 4.7, respectively. The above serves as an
alternate proof of this result. Note that one could still define the upcoming RCBF in this section
with the piecewise definition in (4.15); i.e. the switch from (4.15) to (4.17) is not necessary for the
main result of this section to hold; this switch is just helpful for interpretability of the CBF metric
and for consistency when tuning the controller.

Next, I add disturbances to the CBF in (4.17). Note that (4.17) is a function of the constraint
function derivative κ̇, and that in the case of unmatched disturbances (i.e. when wx ̸= 0), κ̇ is a
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function of the disturbance wx and thus not exactly known. I define the following upper bound on
κ̇:

κ̇w(t, x) ≜ max
∥wx∥≤wx,max

κ̇(t, x, wx) (4.19)

= ∂tκ(t, x) +∇κ(t, x)f(t, x) + ∥∇κ(t, x)∥wx,max

(recall that κ is relative-degree 2, so∇κ(t, x)g(t, x) ≡ 0 and thus κ̇ does not depend on u,wu) and
its derivative

κ̈w(t, x, u, wu, wx) =
d

dt
κ̇w(t, x)

= ∂tκ̇w(t, x) +∇κ̇w(t, x)F (t, x, u, wu, wx) . (4.20)

Note that κ̇w is a known quantity, while κ̈w is a function of the unknown quantities wu, wx in F in
(4.1). Assume that ∥∇κ∥ does not vanish, so that κ̇w in (4.19) is differentiable (note that ∥∇κ∥ ≡ 1

in Section 4.5). I now present the robust formulation of (4.15),(4.17).

Theorem 4.10. Suppose κ ∈ G2 and there exists amax > 0 such that ∀(t, x) ∈ ST ,

max
(wu,wx)∈W

(
inf
u∈U

κ̈w(t, x, u, wu, wx)
)
≤ −amax . (4.21)

Then the function

h(t, x) = κ(t, x) +
|κ̇w(t, x)|κ̇w(t, x)

2amax
(4.22)

is an RCBF on Hres in (4.4) for the system (4.1) for any α ∈ Ke. Moreover, (4.22) satisfies

conditions (4.13)-(4.14) for any control law u : T × X → U .

Proof. As in Lemma 4.9, h is continuously differentiable, and its derivative satisfies

ḣ(t, x, u, wu, wx) = κ̇(t, x, wx) +
|κ̇w(t, x)|κ̈w(t, x, u, wu, wx)

amax
(4.19)
≤ κ̇w(t, x) +

|κ̇w(t, x)|κ̈w(t, x, u, wu, wx)
amax

. (4.23)

By assumption in (4.21), there exists u ∈ U independent of the disturbances wu, wx

such that max(wu,wx)∈W κ̈w(t, x, u, wu, wx) ≤ −amax. Such a u will render the right hand
side of (4.23) nonpositive similar to (4.18) in Lemma 4.9, and therefore will also render
max(wu,wx)∈W ḣ(t, x, u, wu, wx) nonpositive. Thus, condition (4.6) is satisfied for any α ∈ Ke
and all (t, x) ∈ HT

res, so h is an RCBF on Hres for any α ∈ Ke. Next, since κ is of relative-degree
r = 2 and κ̇w(t, x) < 0 for all (t, x) ∈ Hunsafe in (4.11), there exists an open set D for which κ will
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satisfy (4.13)-(4.14) regardless of the control law. ■

Thus, I have presented the first of three methods in this chapter for rendering trajectories al-
ways inside sublevel sets of relative-degree r = 2 constraint functions under input constraints and
disturbances, by constructing a general form of RCBF h in (4.22) as a function of the constraint
function κ, the input constraints (encoded in amax), and the disturbance bounds. Note that Theo-
rem 4.10 showed that (4.6) is satisfied for any α ∈ Ke, so Section 4.4 will suggest a choice for the
free parameter α ∈ Ke. The RCBF in Theorem 4.10 is particularly useful for systems similar to
the double integrator, as illustrated by the simulations in Section 3.4.1. It is also easy to check if
this method is applicable to a system or not. The largest allowable amax is

amax,0 ≜ − max
(t,x)∈ST

[
∂tκ̇w(t, x) +∇κ̇w(t, x)(f(t, x) + g(t, x)umin(t, x)) + ∥∇κ̇w(t, x)∥wx,max

+ ∥∇κ̇w(t, x)g(t, x)∥wu,max
]
, (4.24)

where
umin(t, x) = argmin

u∈U
∇κ̇w(t, x)g(t, x)u . (4.25)

Note that (4.24) can be solved offline. If amax,0 > 0, then any amax ∈ (0, amax,0] satisfies the
requirements of Theorem 4.10, while if amax,0 < 0, then no such amax exists for the particular
κ. The form of RCBF in (4.22) is constructive, since if an amax > 0 exists, then one knows that
a subset Hres ⊆ S can be rendered forward invariant, and one has explicit expressions for the
restricted CBF setHres in (4.4) and the set of safe control inputs Urcbf in (4.8).

However, even if an amax > 0 does exist, this method can be overly conservative. That is, there
may exist (t, x) ∈ ST such that (t, x) can be robustly rendered inside S but (t, x) is not in HT

res

with h as in (4.22), as illustrated in simulation in Section 4.5. The following section describes an
alternative to Theorem 4.10 that aims at reducing conservatism, and which further treats certain
cases where no amax exists.

4.3.2 Variable Control Authority

Using the methodology in the prior section, the setHres only includes states that can be rendered
always inside S by setting κ̈w equal to a negative constant−amax. For agents with a wide operating
range, such as a spacecraft operating at various altitudes, this restriction may result in an overly
conservative set Hres, or no such amax may exist. On the other hand, in the spacecraft scenario,
the gravity of a central attractive body is known to high precision at every altitude. Similarly,
electric/magnetic field strengths, spring force, buoyancy force, and aircraft lift/drag forces are
well-characterized across operating ranges. Thus, instead of assuming that κ̈w is upper bounded
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by a constant as in (4.21), suppose it is upper bounded by a known function, denoted ϕ. This is the
idea central to the following theorem.

Theorem 4.11. Let κ ∈ G2 define a safe set as in (4.2). Suppose there exists an invertible, strictly

monotone decreasing, and continuously differentiable function Φ : R → R, whose derivative is

Φ′ = ϕ for ϕ : R→ R, such that

max
(wu,wx)∈W

inf
u∈U

κ̈w(t, x, u, wu, wx) ≤ ϕ(κ(t, x)) < 0, ∀(t, x) ∈ ST . (4.26)

Let Φ−1 be the function for which Φ−1(Φ(λ)) = λ,∀λ ∈ R. Then the function

h(t, x) = Φ−1

(
Φ(κ(t, x))− 1

2
κ̇w(t, x)|κ̇w(t, x)|

)
(4.27)

is an RCBF on Hres in (4.4) for the system (4.1) for any α ∈ Ke. Moreover, (4.22) satisfies

conditions (4.13)-(4.14) for any control law u : T × X → U .

Proof. The function h is an RCBF if ḣ satisfies the condition (4.6). By the chain rule, the total
derivative of h is

ḣ = (Φ−1)′
(
Φ(κ)− 1

2
κ̇w|κ̇w|

)
(Φ′(κ)κ̇− |κ̇w|κ̈w)

(4.27)
= (Φ−1)′(Φ(h)) (Φ′(κ)κ̇− |κ̇w|κ̈w) (4.28)

where the arguments of κ, κ̇w, h are omitted for brevity. By definition, Φ′(·) = ϕ(·), and by the
Inverse Function Theorem, (Φ−1)′(Φ(·)) = 1

ϕ(·) , so (4.28) becomes

ḣ =
1

ϕ(h)
(ϕ(κ)κ̇− |κ̇w|κ̈w)

(4.19)
≤ 1

ϕ(h)
(ϕ(κ)κ̇w − |κ̇w|κ̈w) . (4.29)

By assumption in (4.26), there exists u ∈ U independent of wu, wx such that
max(wu,wx)∈W κ̈w(t, x, u, wu, wx) ≤ ϕ(κ(t, x)). Since ϕ(h) ≤ 0, it follows that such a u will
render max(wu,wx)∈W ḣ(t, x, u, wu, wx) with ḣ as derived above nonpositive. Since this holds in-
dependent of wu, wx, condition (4.6) is satisfied for any α ∈ Ke and all (t, x) ∈ HT

res, so h is an
RCBF onHres for any α ∈ Ke.

As in Lemma 4.9 and Theorem 4.10, for h as in (4.27), it holds that H(t) ̸⊆ S(t). Following
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the logic of these two theorems, ∀(t, x) ∈ HT
res, it holds that

0 ≥Φ−1

(
Φ(κ(t, x))− 1

2
κ̇w(t, x)|κ̇w(t, x)|

)
,

Φ(0) ≤Φ(κ(t, x))− 1

2
κ̇w(t, x)|κ̇w(t, x)| , (4.30)

since Φ is monotone decreasing. If x ∈ Hcom(t), then κ(t, x) = 0 and (4.30) reduces to κ̇w(t, x) ≤
0. Thus, the function (4.27) also satisfies (4.13)-(4.14) for any control law u : T × X → U . ■

Remark 4.3. In most cases, the function ϕ is derived from the dynamics (e.g. ϕ might represent a

potential force that can be read directly from the equations of motion), in which case Φ can be any

anti-derivative of ϕ. The results are invariant under different constants of integration. For instance,

gravity may be described by ϕ(λ) = − µ
λ2

, in which case either Φ(λ) = µ
λ

or Φ(λ) = µ
λ
− µ

λ0
for

fixed λ0 meets the requirements of Theorem 4.11.

Thus, I have presented the second form of RCBF in this chapter that is applicable to relative-
degree r = 2. Intuitively, the function Φ in (4.26) is usually a potential field, in which states below
a certain potential value are unsafe. One can think of the argument of Φ−1 in (4.27) as analogous
to the sum of potential energy −Φ(κ) and kinetic energy 1

2
κ̇2w; the inverse of this quantity provides

an “effective constraint value” h in the same units as the original constraint κ. Using this analogy,
Theorem 4.11 gives a condition for ensuring an agent moving in this potential field never falls
below the minimum safe potential threshold. If an expression for potential energy is known, then
finding Φ is often straightforward, as shown in Section 4.5, but this may be difficult otherwise.
There is no general formula for Φ as there was for amax in (4.24), though Φ can possibly be learned
[157].

The conditions (4.21) and (4.26) may appear to be restrictive assumptions, but are reasonable
for many systems. Similar assumptions are implicit in [87, Eqs. 11-14] and [89, Eq. 16], ex-
cept that the assumptions in [87, 89] only apply to Hres rather than to all of S, and are relaxed
in int(Hres) by using one additional class-Ke function. Similar relaxations can be made in The-
orem 4.10 and Theorem 4.11, but then the theorems would be less constructive, since one would
need to know Hres in advance and would need to be able to find an appropriate class-Ke function;
instead, Theorem 4.10 and Theorem 4.11 assume stricter conditions than [87, 89] so that any class-
Ke function will work. In fact, h as in (4.27) can be expressed using the conventions of [87, 89]
as ψ1(t, x) = κ̇w(t, x) −

√
2(Φ(κ(t, x))− Φ(0)). However, in this case, ψ1 no longer has an in-

terpretation as energy, and this form is problematic for the robustness strategy in [89] because the
square-root function is not differentiable at the origin.

At time of writing, the Exponential CBF (ECBF) has become a standard method to construct
CBFs for high relative-degree constraint functions [85, 138, 210, 211], and a similar RCBF exten-
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sion exists. Suppose that the function g in (4.1) is a constant, as occurs in many systems. In this
case, one downside to the ECBF is that it can only be defined with input constraints for compact
S. For non-compact S, the ECBF definition will require increasing control authority along ∂H
as the state goes further from ∂S, thus requiring U to be unbounded if S is also unbounded. By
contrast, the forms of CBF (4.22) and (4.27) are potentially applicable with input constraints even
to non-compact CBF sets.

4.3.3 General Case Control Authority

I now consider the case where a function Φ may not exist, or may still yield overly conservative
results. To accomplish this, suppose there is a known control law u∗, called the nominal evading

maneuver in [86], which encourages safety by driving the agent towards the interior of S. For
instance, u∗ can be a control law which drives an agent away from an obstacle, but which does
not necessarily provide for stability or convergence to an objective, such as the control law in
(4.58). The core idea of this subsection is to propagate the state forward in time using the nominal
evading maneuver, and analyze the resultant trajectory for safety. If the propagated trajectory from
(t0, x(t0)) is always in S, then I conclude that (t0, x(t0)) should be in the CBF set for some CBF to
be defined. This was formalized mathematically for the case without disturbances in Theorem 3.4
(see also [86, Thm. 2], though that is more restrictive).

Note that Theorem 3.4 required an extended notion of CBF because (3.12) may not be contin-
uously differentiable; this extended definition is not used subsequently to avoid confusion in Sec-
tion 4.4. The extension of Theorem 3.4 to the time-varying case is straightforward, but accounting
for the presence of disturbances introduces several more restrictions, as I will show. Note that this
section allows for constraint functions κ of arbitrary relative-degree unlike Sections 4.3.1-4.3.2.

For clarity, in this section, I will use the notation dκ
dt
, ∂κ
∂t
, ∂κ
∂x

instead of κ̇, ∂tκ,∇κ, respectively.
Suppose existence of a control law (the proposed nominal evading maneuver) u∗ : T ×X → U that
is sufficiently regular to yield unique system solutions. Define the function χ : R≥0×T ×X → X
(this was previously ψx in Section 3.3.1) as the solution to the following initial value problem

χ(β, t0, x0) = y(β), where y(0) = x0,Θ(0) = I, θ(0) = 0,

Y (β, t0,y) ≜ f(t0 + β, y) + g(t0 + β, y)u∗(t0 + β, y) ,

dy

dβ
= Y (β, t0, y) , (4.31)

dθ

dβ
=
∂Y (β, t0, y)

∂t0
,

dΘ

dβ
=
∂Y (β, t0, y)

∂y
Θ .
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Here, (t0, x0) is some given state, β is the amount of time in the future from t0 that one wishes
to propagate the trajectory, and χ is the propagated state. Since β is “time since t0”, I use the
absolute time t0+β in the arguments of f, g, u∗ in (4.31). The solution to (4.31) also defines θ and
Θ, which I will show are the sensitivities (i.e. derivatives) of χ(β, t0, x0) with respect to t0 and x0,
respectively. Let θ(β, t0, x0) and Θ(β, t0, x0) denote the values of θ and Θ, respectively, at β. To
determine safety, one is interested in the values of κ(t0 + β, χ(β, t0, x(t0))) for various times in
the future β.

First, I make some remarks about the derivatives of χ from (4.31) in the following lemma.

Lemma 4.12. Suppose f, g, u∗ are all continuously differentiable, and χ in (4.31) exists every-

where in a neighborhood of β, t0, x0. Then the partial derivatives of χ are

∂χ(β, t0, x0)

∂β
= Y (β, t0, χ(β, t0, x0)) , (4.32)

∂χ(β, t0, x0)

∂t0
= θ(β, t0, x0) , (4.33)

∂χ(β, t0, x0)

∂x0
= Θ(β, t0, x0) . (4.34)

Proof. First, the partial derivative with respect to β in (4.32) follows immediately from (4.31),
since y in (4.31) evolves with respect to β.

Second, note that at β = 0, χ(0, t0, x0) = x0, so ∂
∂t0

[χ(0, t0, x0)] = 0. Also, since f, g, u∗

are continuously differentiable, one can describe the evolution of the partial derivative with β as
follows

d

dβ

[
∂

∂t0
[χ]

]
=

∂

∂t0

[
d

dβ
[χ]

]
=

∂

∂t0
[Y ]

where I omit the arguments for brevity. Thus, ∂
∂t0

[χ] in (4.33) is given exactly by the construction
of θ in (4.31).

Third, note that since χ(0, t0, x0) = x0, it follows that ∂
∂x0

[χ(0, t0, x0)] = I . The partial deriva-
tive evolves with β similarly to the prior case as

d

dβ

[
∂

∂x0
[χ]

]
=

∂

∂x0

[
d

dβ
[χ]

]
=

∂

∂x0
[Y ] =

∂Y

∂y

∂y

∂x0︸︷︷︸
=Θ

.

Noting that χ = y, the above equation is a linear ordinary differential equation (ODE) in β for ∂y
∂x0

,
and this ODE takes the exact same form as the equation for Θ in (4.31). Thus, ∂

∂x0
[χ] in (4.34) is

also given by Θ in (4.31). This completes the proof. ■
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A similar result is also given in [206, Thm 6.1] and [96, Eq. 23]. Note that whereas related
work in [86] solved for χ explicitly, I assume that in most cases no explicit expression will exist,
so the ODEs for θ and Θ will be necessary for implementation. Next, define the set

Uw =
{
u ∈ Rm

∣∣∣ ∥u∥+λwu,max
∥u∥ u ∈ U ,∀λ ∈ [−1, 1]

}
, (4.35)

which represents a subset of the allowable control inputs with a margin for the disturbance.
Next, recall that h∗ in Theorem 3.4 was defined as a maximization. Proving the robust extension

of Theorem 3.4 requires arguments using the maximizer times. Thus, given a u∗, define the set-
valued function B : T × X → R as

B(t, x) ≜
{
argmax

β≥0
κ(t+ β, χ(β, t, x))

}
. (4.36)

Note that B could have finitely many elements or could be dense. If no maximizer exists along the
trajectory χ starting from (t, x) (e.g. κ(t+β, χ(β, t, x)) is unbounded or asymptotically approaches
its supremum), then the set B(t, x) is empty. I now present some assumptions and notations,
followed by the robust extension of Remark 3.1.

Assumption 4.1. For the remainder of this subsection, assume that χ is continuously differentiable,

wx ≡ 0, κ ∈ Gr for r ≥ 2, Uw is nonempty, and u∗ : T × X → Uw has co-domain Uw ⊂ U .

Assume also that for all (t, x) ∈ ST the set B(t, x) in (4.36) is nonempty and contains at most one

nonzero element. Denote the nonzero element of B(t, x), if it exists, as β∗(t, x).

Let ∂κ(·)
∂λt

, ∂κ(·)
∂λx

refer to the partial derivative of κ with respect to its first and second arguments,

respectively, evaluated at (·). This is to remove ambiguity when (·) includes functions of t and

x. Similarly, define ∂χ(·)
∂λβ

, ∂χ(·)
∂λt0

, ∂χ(·)
∂λx0

and ∂h(·)
∂λt

, ∂h(·)
∂λx

. Denote the total derivative of any of these

quantities as dφ
dt

with κ, h, or χ in place of φ. For compactness, I also abbreviate certain function

arguments as a1, a2, a3, defined by underbraces in the following equations. Finally, note that wx is

omitted from the arguments of κ̇, ḣ, and F from (4.1) in the following equations, because I require

wx ≡ 0.

Lemma 4.13. Let Assumption 4.1 hold. Consider the function h : T × X → R defined as

h(t, x) = max
β≥0

κ(t+ β, χ(β, t, x)) . (4.37)

Suppose the control law u : T × X → Uw is Lebesgue-integrable, and let x(T ) be a trajectory of

(4.1) under u(t, x). Then h(t, x(t)) is absolutely continuous in t and satisfies

ḣ(t, x, u, wu)= max
βc∈B(t,x)

[
∂κ(a1)

∂λt
+
∂κ(a1)

∂λx
θ(βc, t, x) +

∂κ(a1)

∂λx
Θ(βc, t, x)F (t, x, u, wu)

]
(4.38)
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Figure 4.3: Explanation of Backup Trajectory Critical Points. An example trajectory of κ(t +
β, χ(β, t, x)) with two maximizers, {0, 3.6}. Each maximizer βc is surrounded by a set Bloc(βc)
on which βc is the unique maximizer. At time t+∆t for small ∆t, the trajectory may only have a
single global maximizer, but both sets Bloc will still each contain a local maximizer, which is used
to compute dβc

dt
for each βc.

almost everywhere along x(T ), where θ,Θ are as in (4.31) and a1 is as in (4.39).

Proof. First, since ẋ satisfies (4.1), any trajectory x(T ) must be absolutely continuous [212, Eq.
C.2]. Since B(t, x) is assumed nonempty, h in (4.37) always exists, and on any compact interval
[t1, t2] the elements βc of B(t, x(t)) are bounded. Note that h in (4.37) is equivalent to

h(t, x) ≡ κ(t+ βc, χ(βc, t, x)︸ ︷︷ ︸
=a1

) (4.39)

for any βc ∈ B(t, x). Since κ and χ are both continuously differentiable in all arguments, βc is
locally bounded, and x(t) is absolutely continuous, it follows that h(t, x(t)) in (4.39), and therefore
(4.37) also, is absolutely continuous in t.

Next, to prove (4.38), I first consider how each maximizer βc ∈ B(t, x) varies with (t, x), and
then will study how the value of h in (4.39) varies with βc. Since B is assumed to contain at
most one nonzero element, B cannot be dense. Thus, there exist open subsets of R≥0, denoted
Bloc(βc), containing only one element βc of B(t, x). These sets are visualized in Fig. 4.3. Within
their respective sets Bloc(βc), each βc ∈ B(t, x) is a strict maximizer. Thus, given a βc ∈ B, the
derivative of βc(t, x) with respect to some variable is equivalent to the derivative of the maximizer
of (4.37) restricted to β ∈ Bloc(βc) with respect to that variable. I analyze these derivatives in
three cases. First, if βc = 0 ∈ B(t, x), then βc is a strict maximizer on Bloc(0) = [0, c) for
some c, and it must hold that κ̇(t + βc, χ(βc, t, x))

∣∣
βc=0

≤ 0. Note also the equivalency κ̇(t +
βc, χ(βc, t, x))

∣∣
βc=0

≡ dκ(a1)
dβc

∣∣
βc=0

≡ κ̇(t, x), and note that this quantity is independent of u, as
κ ∈ Gr for r ≥ 2 (note how unlike in Theorem 3.4, I do not allow κ ∈ G1 here). For the first
case, further suppose that κ̇(t, x) < 0 strictly. Then at an infinitesimal time in the future t + ∆t

(or the past if ∆t < 0), the point βc = 0 will still be a strict maximizer on Bloc(0), so it must
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hold that dβc
dt

∣∣
βc=0

= lim∆t→0
βc(t+∆t,x(t+∆t))−βc(t,x(t))

∆t
= lim∆t→0

0−0
∆t

= 0. Second, if βc = 0 and
κ̇(t, x) = 0, then it holds equivalently that dκ(a1)

dβc

∣∣
βc=0
≡ κ̇(t, x) = 0. Third, if βc ̸= 0, βc ∈ B(t, x),

then βc = β∗(t, x) is a maximizer of the continuously differentiable function κ on an open interval
Bloc(βc) = (c1, c2) for some 0 < c1 < c2, so it must hold that the derivative of κ at the maximizer
is zero, i.e. dκ(a1)

dβc

∣∣
βc=β∗ = 0. It follows that dκ(a1)

dβc

dβc
dt

= 0 in all three cases and regardless of u and
βc, which is the result I will need in (4.40) below. Next, note that ḣ satisfies

ḣ(t, x, u, wu) =
dh(t, x)

dt
=
dκ(a1)

dt

=
∂κ(a1)

∂λt

d(t+ βc)

dt
+
∂κ(a1)

∂λx

dχ(βc, t, x)

dt

=
∂κ(a1)

∂λt

(
1 +

dβc
dt

)
+
∂κ(a1)

∂λx

(
∂χ(βc, t, x)

∂λβ

dβc
dt

+
∂χ(βc, t, x)

∂λt0
+
∂χ(βc, t, x)

∂λx0

dx

dt

)
(4.1)
=

(
∂κ(a1)

∂λt
+
∂κ(a1)

∂λx

∂χ(βc, t, x)

∂λβ

)
dβc
dt

+
∂κ(a1)

∂λt

+
∂κ(a1)

∂λx

∂χ(βc, t, x)

∂λt0
+
∂κ(a1)

∂λx

∂χ(βc, t, x)

∂λx0
F (t, x, u, wu)

=
dκ(a1)

dβc

dβc
dt︸ ︷︷ ︸

=0

+
∂κ(a1)

∂λt
+
∂κ(a1)

∂λx

∂χ(βc, t, x)

∂λt0︸ ︷︷ ︸
=θ(βc,t,x)

+
∂κ(a1)

∂λx

∂χ(βc, t, x)

∂λx0︸ ︷︷ ︸
=Θ(βc,t,x)

F (t, x, u, wu) (4.40)

=
∂κ(t, x)

∂t

∣∣∣∣t=t+βc
x=χ(βc,t,x)

+
∂κ(t, x)

∂x

∣∣∣∣t=t+βc
x=χ(βc,t,x)

(
θ(βc, t, x) + Θ(βc, t, x)F (t, x, u, wu)

)

for one of the βc ∈ B(t, x). Specifically, if B(t, x(t)) contains N elements at time t, then there
are N sets Bloc. At an infinitesimal time in the future t + ∆t, each set Bloc will still contain a
local maximizer, and at least one of these will still be a global maximizer (for sufficiently small
∆t). The derivative ḣ corresponds to the rate of change of whichever local maximizer(s) is the
global maximizer at both t and t + ∆t, i.e. the βc ∈ B(t, x) that maximizes (4.40) (similar to in
Remark 3.1). This is then encoded in (4.38). ■

Now that I have an expression for the total derivative (4.38) of h in (4.37), the next lemma
derives an upper bound on this derivative that I then use in Theorem 4.15 to prove that the corre-
sponding setH can be rendered forward invariant while satisfying the input constraints.

Lemma 4.14. Suppose the assumptions of Lemma 4.13 hold. Then h in (4.37) satisfies

ḣ(t, x, u, wu) ≤

0 B(t, x(t)) = {0}

max{0, q(β∗(t, x), t, x)[u+ wu − u∗(t, x)]} B(t, x(t)) ̸= {0}
(4.41)
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almost everywhere along x(T ), where

q(β, t, x) ≜
∂κ(t, x)

∂x

∣∣∣∣t=t+βc
x=χ(βc,t,x)

Θ(β, t, x)g(t, x) (4.42)

≡ ∇κ(t+ β, χ(β, t, x))Θ(β, t, x)g(t, x) .

Proof. Let βc be any element of B(t, x). Since βc is a maximizer of (4.37), it must hold [213, Eq.
11.35] that

0 ≥ d

dβc
[κ(t+ βc, χ(βc, t, x)︸ ︷︷ ︸

=a1

)]
∂κ(a1)

∂λt
+
∂κ(a1)

∂λx

∂χ(βc, t, x)

∂λβ
. (4.43)

Next, define the quantity ω as follows,

ω ≜ κ(t+ βc, χ(βc, t, x)) (4.44)

and note that ω has the equivalent form

ω ≡ κ(t+ βc, χ(βc − τ, t+ τ, χ(τ, t, x)︸ ︷︷ ︸
=a2

)

︸ ︷︷ ︸
=a3

) (4.45)

for any τ ∈ [0, βc]. Since ω is constant with respect to τ , it follows that d
dτ
(ω) = 0, so

0 =
dω

dτ
=
∂κ(a3)

∂λx

(
−∂χ(a2)

∂λβ
+
∂χ(a2)

∂λt0
+
∂χ(a2)

∂λx0

∂χ(τ, t, x)

∂λβ

)
. (4.46)

At τ = 0, this becomes

0 =
∂κ(a1)

∂λx

(
−∂χ(βc, t, x)

∂λβ
+
∂χ(βc, t, x)

∂λt0
+
∂χ(βc, t, x)

∂λx0
Y (0, t, x)

)
(4.43)
≥ ∂κ(a1)

∂λt
+
∂κ(a1)

∂λx

(
∂χ(βc, t, x)

∂λt0
+
∂χ(βc, t, x)

∂λx0
Y (0, t, x0)

)
. (4.47)

ḣ in (4.40) then simplifies to

ḣ(t, x, u, wx)
(4.47)
≤ ∂κ(a1)

∂λx

∂χ(βc, t, x)

∂λx0
(F (t, x, u, wu)− Y (0, t, x))

(4.1),(4.31)
=

∂κ(a1)

∂λx

∂χ(βc, t, x)

∂λx0
g(t, x) (u+ wu − u∗(t, x))

(4.42)
= q(βc, t, x)(u+ wu − u∗(t, x)) . (4.48)
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As in Lemma 4.13, ḣ is upper bounded by the maximum of (4.48) over all βc ∈ B(t, x). Next,
recall that Θ(0, t, x) = I in (4.31), so q(0, t, x) = ∇κ(t, x)g(t, x) in (4.42). By definition of κ
being of relative-degree r ≥ 2, it follows that q(0, t, x) = 0 for any (t, x). Therefore, (4.48) is at
most 0 when βc = 0. It follows that ḣ in (4.38) is at most 0 when βc = 0 is the only element of B,
and ḣ is upper bounded by the second case of (4.41) when there is a nonzero βc = β∗ ∈ B. ■

That is, due to the max function, h in (4.37) is potentially non-smooth, so the partial derivatives
∂th and ∇h are not well defined. Instead, Lemma 4.13 and Lemma 4.14 provide expressions for
the total derivative ḣ. However, (4.41) still contains the unknown disturbance wu, so based on
(4.41) and with a slight abuse of notation, I now re-define

W (t, x) = ∥q(β∗(t, x), t, x)∥wu,max , (4.49)

Urcbf(t, x) = {u ∈ U | if B(t, x) ̸= {0} then

q(β∗(t, x), t, x)(u− u∗(t, x)) ≤ α(−h(t, x))−W (t, x)} . (4.50)

If B(t, x) = {0}, then Urcbf(t, x) = U . I now present the robust extension of Theorem 3.4.

Theorem 4.15. Let Assumption 4.1 hold. For h as in (4.37), define Urcbf as in (4.50) and define

H as in (4.3), where H ≡ Hres. Then for any α ∈ Ke, the set Urcbf(t, x) is nonempty for all

(t, x) ∈ HT , and any control law u : T ×X satisfying the conditions of Theorem 4.1, Theorem 4.3,

or Theorem 4.4 will renderHT forward invariant.

Proof. If B(t, x) = {0}, then Urcbf(t, x) = U , which is always nonempty, and ḣ in (4.41) is
nonpositive regardless of the control input u. If instead B(t, x) ̸= {0}, then the disturbance wu
that maximizes (4.41) has magnitude wu,max and is in the direction of q(β∗(t, x), t, x). Denote
this disturbance as wu,worst =

q(β∗(t,x),t,x)
∥q(β∗(t,x),t,x)∥wu,max, and note that this is a known quantity because I

assumed at most one nonzero βc ∈ B(t, x) (note that if I instead allowed multiple nonzero βc, then I
could not uniquely definewu,worst here). By Assumption 4.1, the control input u = u∗(t, x)−wu,worst

exists in U since u∗ is restricted to Uw in (4.35). This choice of u also renders ḣ(t, x, u, wu) ≤ 0 in
(4.41) for any wu, and therefore belongs to Urcbf(t, x) in (4.50) for any α ∈ Ke, so Urcbf is always
nonempty regardless of the choice of α ∈ Ke.

With W as in (4.49), any u(t, x) ∈ Urcbf(t, x) in (4.50) causes ḣ in (4.41) to satisfy
ḣ(t, x, u, wu) ≤ α(−h(t, x)) regardless of the disturbance wu. Thus, if the additional regular-
ity assumptions of any of Theorem 4.1, Theorem 4.3, or Theorem 4.4 hold, then u will renderHT

forward invariant. ■
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Corollary 4.16. Suppose the assumptions of Theorem 4.15 hold. If additionally B(t, x) has exactly

one element for all (t, x) ∈ HT , then h in (4.37) is an RCBF on H in (4.3) for the system (4.1)
with wx ≡ 0 for any α ∈ Ke, and (4.49),(4.50) are equivalent to (4.7),(4.8), where

∂th(t, x) =
∂κ(t, x)

∂t

∣∣∣∣t=t+βc
x=χ(βc,t,x)

+
∂κ(t, x)

∂x

∣∣∣∣t=t+βc
x=χ(βc,t,x)

θ(βc, t, x) , (4.51)

∇h(t, x) = ∂κ(t, x)

∂x

∣∣∣∣t=t+βc
x=χ(βc,t,x)

Θ(βc, t, x) . (4.52)

with βc = B(t, x).

Proof. Under this stricter condition on B(t, x), the function h in (4.37) is now continuously
differentiable [86, Lemma 1]. By the same argument as in Theorem 4.15, the control input
u = u∗(t, x) − wu,worst must exist in U , and makes ḣ at most 0 independent of the actual dis-
turbance wu. Thus, condition (4.6) is satisfied for any α ∈ Ke, so h is an RCBF on H for any
α ∈ Ke.

Next, since h is continuously differentiable, I can now properly define its partial derivatives.
I proved in Theorem 4.15 that dκ(a1)

dβc

dβc
dt

= 0, where now βc(t, x) ≡ B(t, x). Expanding this, it
follows that

0 =

(
∂κ(a1)

∂λt
+
∂κ(a1)

∂λx

∂χ(βc, t, x)

∂λβ

)(
∂βc(t, x)

∂t
+
∂βc(t, x)

∂x

dx

dt

)
(4.53)

Note that (4.53) must hold for any dx
dt

, so it follows that
(
∂κ(a1)
∂λt

+ ∂κ(a1)
∂λx

∂χ(βc,t,x)
∂λβ

)
∂βc(t,x)
∂x

≡ 0. It

follows that
(
∂κ(a1)
∂λt

+ ∂κ(a1)
∂λx

∂χ(βc,t,x)
∂λβ

)
∂βc(t,x)

∂t
≡ 0 too. That is, I have extended the result on the

sensitivity of κ to the total derivative of βc from Theorem 4.15 to the sensitivity of κ to the partial
derivatives of βc as well. This allows the separation of (4.40) into the desired partial derivatives.

Next, the partial derivatives of (4.37) are equivalent to the partial derivatives of (4.39), which
are

∂th(t, x) =
∂κ(a1)

∂λt

(
1 +

∂βc(t, x)

∂t

)
+
∂κ(a1)

∂λx

(
∂χ(βc, t, x)

∂λt0
+
∂χ(βc, t, x)

∂λβ

∂βc(t, x)

∂t

)
(4.54)

∇h(t, x) =∂κ(a1)
∂λt

∂βc(t, x)

∂x
+
∂κ(a1)

∂λx

(
∂χ(βc, t, x)

∂λx0
+
∂χ(βc, t, x)

∂λβ

∂βc(t, x)

∂x

)
. (4.55)
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Cancelling the zero terms identified above, (4.54)-(4.55) simplify to

∂th(t, x) =
∂κ(a1)

∂λt
+
∂κ(a1)

∂λx

∂χ(βc, t, x)

∂λt0
, (4.56)

∇h(t, x) =∂κ(a1)
∂λx

∂χ(βc, t, x)

∂λx0
, (4.57)

which are equivalent to (4.51)-(4.52). ■

Remark 4.4. The extra condition that B(t, x) have exactly one element in Corollary 4.16 is a

technicality, but is required to ensure that h in (4.37) is continuously differentiable, which was a

condition of Definition 4.2. If I had instead defined RCBFs using directional derivatives in this

chapter, then I would not need to make this distinction.

Remark 4.5. I am not aware of a method by which Theorem 4.15 and Corollary 4.16 can be

extended to the case ofwx ̸≡ 0 with guaranteed safety. In this case, I refer readers to the robustness

method in [116, Prop. 5]. This could require expansion of the control set U , and/or could be an

interesting area for future work.

Remark 4.6. In practice, computing (4.37) and (4.38) requires computing the maximum and max-

imizer of the solution to an ODE. Most differential equation simulators output only samples along

a curve rather than a continuous curve. One should not simply search for the maximum of these

samples, because that might be less than the maximum of the continuous curve. In practice, I found

it effective to fit a quadratic curve to the maximum three samples, and then use the maximum and

maximizer of this fitted curve as the values of h(t + βc, χ(βc, t, x)) and βc, respectively. See also

the discussion of how this was performed for the case study in Section 3.4.1.

In other words, if the undisturbed trajectory described by χ(β, t, x(t)) remains safe for all
future time, then there always exists a safe trajectory from (t, x(t)) regardless of the actual
disturbance (for matched disturbances only). It is trivial to show that h in (4.37) satisfies
h(t, x) ≥ κ(t, x), ∀(t, x) ∈ T × X , so the CBF set H in Theorem 4.15 is a subset of the safe
set S. In Chapter 3, Theorem 3.5 was presented as a special case of theorem 3.4. In this chapter,
the assumptions of Theorem 4.10 and Theorem 4.11 are different from those of Theorem 4.15
(i.e. these theorems are no longer just a special case), but Theorem 4.15 is still the most generally
applicable method of finding a CBF set H because there may exist u∗ satisfying Assumption 4.1
even when there is no amax or Φ satisfying the assumptions of Theorems 4.10 or 4.11, respectively.

Note that satisfying the assumptions on B(t, x) in Assumption 4.1 could be easy or challenging
depending on the system and choice of u∗, as will be elaborated upon in application in Section 4.5.
The need to verify these assumptions is perhaps the primary limitation of Theorem 4.15, and is a
topic of future study. In the case of relative-degree r = 2 or r = 3, a sufficient condition for the
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assumption on B to hold is the existence of γ ∈ R<0 such that κ(r)(t, x, u∗(t, x), wu) ≤ γ, ∀(t, x) ∈
ST ,∀wu ∈ W . I also suspect that Theorem 4.15 will often hold even when B has several elements,
likely with additional conditions, but how to show this generally is an open area for future research.

Applying Theorem 4.15 also requires that one knows a control law u∗ that generally drives
the trajectories χ towards safe states. For a system with relative-degree r, one obvious choice of
control law is

u∗opt(t, x) = argmin
u∈Uw

∇κ(r−1)(t, x)g(t, x)u . (4.58)

Certain known phenomena of system trajectories might also motivate other control laws, such as
the control law u∗orth in Section 4.5, inspired by satellite orbits.

Of the methods presented so far, Theorem 4.15 is the most computationally intensive. Un-
like the previous methods, the ODE in (4.31) rarely simplifies to explicit algebraic expressions.
That said, the simulations in Section 4.5 show that the computation costs are reasonable on a
6-dimensional system. In practice, one also needs an upper bound on the amount of time to prop-
agate (4.31) by which time all maximizers of (4.37) will be guaranteed to have occurred, though
computation of such a bound is system-specific and not addressed in this dissertation.

4.4 Hysteresis-Switched Control Barrier Functions

This section develops a condition on the control input that establishes set forward invariance
similar to Theorem 4.1, but which places fewer constraints on the system trajectories. The core
idea of this section is that, as I will show, the RCBF condition u ∈ Urcbf(t, x) in (4.8) does not
need to be enforced everywhere in Hres to ensure forward invariance of Hres, and this section will
develop a systematic way to relax the conditions in Theorem 4.1, Theorem 4.3, and Theorem 4.4.

Recall that the theorems in Section 4.3 showed that the presented functions h are RCBFs for
any α ∈ Ke. Thus, α is a free parameter, though α still impacts system performance by its role
in defining Urcbf in (4.8),(4.50). Near the boundary of the set Hres, the function α works to ensure
invariance of Hres by bounding the rate at which the system approaches this boundary. However,
in the interior of the Hres, the bound provided by α is arbitrary (since α is a free parameter) and
can prevent the system from following otherwise safe trajectories. For example, consider the CBF
in (4.17). The CBF condition for this function becomes

κ̈(x, u) ≤ − κ̇(x)

|κ̇(x)|
amax +

α(−h(x))
|κ̇(x)|

amax (4.59)

Suppose κ, κ̇, κ̈ represent position, velocity, and acceleration, respectively. If an agent is far away
from the boundary of Hres (i.e. h(x) ≪ 0 and κ(x) ≪ 0) and moving quickly (i.e. |κ̇| ≫ 0),
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Figure 4.4: Hysteresis Switching Control Law Example Trajectory. A visualization of state-
dependent hysteresis-switching in (4.60).

then the acceleration κ̈ may be constrained even though the state is far from the boundary of Hres.
This is a consequence of how all CBFs for high relative-degree constraint functions are necessarily
functions of the constraint function derivatives. In Section 4.5, I will apply the RCBF condition in
a safety filter similar to (2.9), where I want this safety filter to only minimally modify the nominal
control law unom. Thus, this section seeks to remove the above unnecessary constraint when h is
far less than zero.

To this end, I introduce a discrete state σ ∈ {0, 1}, which captures whether the state is near the
boundary ofH. I say a particular RCBF condition is active if σ = 1, and inactive if σ = 0. If there
are multiple RCBFs, then one would construct σi, i = 1, 2, · · · for each RCBF. Define ϵ2 > ϵ1 ≥ 0

and at a time instant t, let

σ(t) =


0 h(t, x(t)) ≤ −ϵ2
1 h(t, x(t)) ≥ −ϵ1
σ(t−) otherwise

. (4.60)

where σ(t0) = 0, and t− denotes the time instant immediately preceding t. That is, σ exhibits
hysteresis, as visualized in the example in Fig. 4.4; the constraint becomes active (σ → 1) when
h first exceeds some tolerance (h ≥ −ϵ1), and remains active until the state is far away from the
boundary of H (h ≤ −ϵ2). One can then use this discrete state to choose between two control
laws depending on whether the constraint is active or inactive. The result is a switched control law
with state-dependent switching, where a switch occurs when σ(t) changes between discrete states.
I denote a switch to active as σ → 1 and a switch to inactive as σ → 0. Since trajectories of x
are continuous and h is continuous, the state can never leave Hres ⊆ S without the corresponding
RCBF h becoming active. I now demonstrate set forward invariance under such a switched control
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law in the following theorem.

Theorem 4.17. Let h : T × X → R be an RCBF onH in (4.3) and let u : T × X × {0, 1} → U ,

denoted u(t, x, σ), be a control law, with σ as in (4.60). Then the result of Theorem 4.1 applies

for any control law satisfying u(t, x, 1) ∈ Urcbf(t, x),∀(t, x) ∈ {(t, x) ∈ DT | h(t, x) ≥ −ϵ2},
and the result of Theorem 4.3 and Theorem 4.4 applies for any control law satisfying u(t, x, 1) ∈
Urcbf(t, x),∀(t, x) ∈ {(t, x) ∈ HT | h(t, x) ≥ −ϵ2}.

Proof. By construction, solutions x(T ) to dynamics (4.1) are absolutely continuous [212, Eq.
C.2], and are assumed to be unique. Therefore, θ(t) = h(t, x(t)) is absolutely continuous, and re-
gardless of the disturbances wu, wx, θ̇ satisfies θ̇(t) = ḣ(t, x(t), u(t, x(t), 1), wu, wx) ≤ α(−θ(t))
for all t ∈ T1 ≜ {t ∈ T | σ(t) = 1}. Thus, by Lemma 2.3, if h(t0, x(t0)) ≤ 0, then
h(t, x(t)) = θ(t) ≤ 0,∀t ∈ T1. Also, by construction, h(t, x(t)) ≤ −ϵ1 ≤ 0,∀t ∈ T \ T1.
Thus, under the assumptions of Theorem 4.1, it follows that h(t, x(t)) ≤ 0,∀t ∈ T , which implies
HT is forward invariant. Recall that Theorem 4.3 is a special case of Theorem 4.1, so the result
holds in that case as well. Finally, note that ∂HT ⊂ {(t, x) ∈ HT | h(t, x) ≥ −ϵ2}, so the
argument in Theorem 4.4 still holds as well. Thus, HT is rendered forward invariant by such a
switched control law under any of the three sets of assumptions in Theorem 4.1, Theorem 4.3, or
Theorem 4.4. ■

Note that one can come to a similar conclusion as in Theorem 4.17 from [151, Thm. 3], but
by using a hysteresis switching logic, Theorem 4.17 avoids the need for differential inclusions and
non-smooth analysis. Such switching prevents sliding modes with chattering control inputs that
may be introduced by differential inclusions, and thus results in more realistic actuator behavior,
while still providing the benefits of allowing potentially discontinuous controllers. A related ap-
proach for smooth switching based on the value of κ rather than h is presented in [89], but this
approach requires U = Rm. Compared to [28, 67], the switching approach in Theorem 4.17 still
utilizes the RCBF condition in (4.8), and thus can be included in optimization-based controllers
such as (2.9), as is done in Section 4.5. Note that if ϵ1 = ∞, then Theorem 4.17 reduces to
Theorem 4.1.

Remark 4.7. Note that the argument used to prove invariance of Hres in Corollar-

ies 4.5, 4.6, 4.7, 4.8 and Lemma 4.9 is unaffected by the addition of switching as long as (4.13)-
(4.14) still hold for the switched control law. If κ ∈ Gr for r ≥ 2, then (4.13)-(4.14) are inde-

pendent of the control law and thus agnostic to whether the control law is continuous or switched.

Thus, H may be replaced by Hres in Theorem 4.17 for the RCBFs (4.22) and (4.27). Similarly,

the RCBF in (4.37) and Theorem 4.15 may be used with a switched control law even if the stricter

conditions of Corollary 4.16 do not hold.
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For practical implementation, it is often desirable to tune a controller to reduce the number
of switches of the discrete state, which could cause jumps in the control input that wear out the
actuators. This tuning can be done directly in the RCBF development by proper choice of the
class-Ke function α and the switching tolerances ϵ1, ϵ2. To this end, I propose using the function

αr(λ, t, x) ≜
W (t, x)λ

ϵ1
(4.61)

in place of α in (4.6),(4.8),(4.50) and the choices ϵ2 > 2ϵ1 and ϵ1 > 0. The reasoning for choosing
ϵ2 > 2ϵ1 is that the disturbances wu, wx could be helpful or harmful to safety. If σ = 1 and the
disturbance is temporarily helpful to safety (i.e. causing h to decrease), I seek to avoid a switch
σ → 0 at states where a disturbance harmful to safety (i.e. causing h to increase) could quickly
cause another switch back to σ → 1. To this end, suppose that the control input satisfies the RCBF
condition in (4.8) or (4.50) with equality. Then the set Sf (t) ≜ {x ∈ H(t) | ḣ(t, x) = 0} is
asymptotically stable. Next, suppose α = αr as in (4.61). Then ḣ is given by

ḣ(·) = ∂th(·) +∇h(·)
(
f(·) + g(·)(u+ wu) + wx

)
(4.8)
= α(−h(·))−W (·) +∇h(·)

(
g(·)wu + wx

)
(4.61)
= −W (·)h(·)

ϵ1
+∇h(·)(g(·)wu + wx)︸ ︷︷ ︸

=Wreal(t,x,wu,wx)

−W (·) (4.62)

whereWreal captures the effect on ḣ of the disturbances that occur online. If the online disturbances
wu, wx are maximally harmful to safety (i.e. tending to increase ḣ), then Wreal = W in (4.62) and
Sf (t) ≡ {x ∈ H | h(t, x) = 0}, so h converges to 0 asymptotically. If instead wu, wx are
maximally helpful to safety (i.e. tending to decrease ḣ), then Wreal = −W and Sf (t) ≡ {x ∈
H(t) | h(t, x) = −2ϵ1}, so h converges to −2ϵ1 asymptotically. Thus, choosing ϵ2 > 2ϵ1 in the
switching conditions prevents a switch induced purely by the disturbance. Instead, switches will
occur when the system objectives drive the trajectory closer to or further from the boundary of
H, i.e. when the control input changes between satisfying (4.8),(4.50) with and without equality.
Finally, if the disturbance is zero, then Sf (t) ≡ {x ∈ H(t) | h(t, x) = −ϵ1}, so h will converge
to −ϵ1. That is, using α = αr in (4.61) allows one to tune how closely the closed-loop trajectories
approach the boundary of H as a function of the disturbances. Note that αr does not belong
to class-Ke (as required by Theorems 4.1,4.3,4.4 and Theorem 4.17), so the following corollary
shows that αr can still be used for safety.

Corollary 4.18. Suppose g(t, x) and∇h(t, x) are bounded for all (t, x) ∈ HT . Then Theorem 4.1,

Theorem 4.3, Theorem 4.4 and Theorem 4.17 hold when Urcbf(t, x) in (4.8) is defined with α = αr

as in (4.61). Similarly, if q(β∗(t, x), t, x) is bounded for all (t, x) ∈ HT , then Theorem 4.15 holds
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when (4.50) is defined with α = αr.

Proof. Under the above assumptions, W (t, x) in (4.7) and (4.49) is upper bounded. Let wm denote
this bound. Then αr(λ, t, x) ≤ ᾱr(λ) ≜ wmλ/ϵ1, where ᾱr ∈ Ke. Thus, a control input u ∈
Urcbf(t, x) yields θ̇(t) ≤ ᾱr(−θ(t)) as in Theorem 4.17, so the result of Theorem 4.17 still holds. By
the same argument, Theorem 4.1, Theorem 4.3, Theorem 4.4, and Theorem 4.15 hold as well. ■

Note that the extra assumption of boundedness of g and ∇h in Corollary 4.18 serves the same
purposes as the compactness assumption reviewed in Lemma 2.1.

Thus, this section has proposed a method of regulating safety that allows for switched con-
trollers that mitigate the potentially undesirable constraints following from high relative-degree
constraint functions. Using the position/velocity/acceleration interpretation of κ, κ̇, κ̈, respec-
tively, this switching approach allows an agent to choose control inputs without considering the
CBF condition when in the interior of its safe set and then to decelerate approximately along the
surface Sf (t) as it approaches an unsafe region. This approach also allows for a provably safe
means of adding and removing RCBFs over time, for instance, as an agent explores an unknown
environment and identifies obstacles.

4.5 Spacecraft Simulation and Discussion

4.5.1 Spacecraft Dynamics

In this section, I apply the previously presented RCBFs and hysteresis-switching strategy to
satellite dynamics and demonstrate these approaches in simulation. The satellite state is x =[
rT vT

]T, with dynamics

ẋ =

[
ṙ

v̇

]
=

[
v

fµ(t, r)

]
︸ ︷︷ ︸

f(t,x)

+

[
03×3

I3×3

]
︸ ︷︷ ︸
g(t,x)

(u+ wu) +

[
wx

0

]
(4.63)

for position and velocity r, v ∈ R3 resolved in an inertial frame and gravitational force fµ :

T × R3 → R3. For ease of implementation, I assume wx only acts on the ṙ equation (any effects
on v̇ can be grouped with wu). In this system, the matched disturbance wu could represent un-
modelled forces like higher-order gravity effects or solar radiation pressure, while the unmatched
disturbance could represent filtered sensor updates. Suppose the satellite mass m is approximately
constant and the satellite contains 6 orthogonal thrusters (or fewer thrusters capable of changing
orientation sufficiently fast) capable of outputting a continuously variable thrust in [0, umaxm] for
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some umax > 0. Then the control set is U = {u ∈ R3 | ∥u∥∞ ≤ umax} and represents the satel-
lite allowable acceleration. The following examples compute trajectories entirely online (i.e. no
advance path-planning) and assume no global velocity bound. All simulation code for this sec-
tion may be found at https://github.com/jbreeden-um/phd-code/tree/main/
2021/Automatica%20Robust%20CBFs%20for%20Satellite%20Trajectories.

4.5.2 Robust CBF Setup

The first proposed mission centers around a flyby of the asteroid Ceres. A second simulation
around the asteroid Eros is also included in Section 4.5.4. The safe set S is the set of states with
positions r sufficiently far from the asteroid and arbitrary velocities v, while the sets H, Hres add
restrictions on v. Safety is encoded by the constraint function

κc(t, x) ≜ ρ− ∥r − rc(t)∥ , (4.64)

where rc : T → R3 is the point to be avoided and ρ is the minimum allowable distance. Suppose
this point has known velocity vc : T → R3 and acceleration uc : T → R3. The derivatives of κc
following from (4.19) are as follows.

κ̇w,c(t, x) = −
(r − rc(t))T(v − vc(t))

∥r − rc(t)∥
+ wx,max (4.65)

κ̈w,c(t, x, u, wu) = −
(r − rc(t))T(fµ(t, r) + u+ wu − uc(t))

∥r − rc(t)∥

+
(r − rc(t))T(v + wx − vc(t))×(v − vc(t))×(r − rc(t))

∥r − rc(t)∥3

≤ −(r − rc(t))T(fµ(t, r) + u+ wu − uc(t))
∥r − rc(t)∥

+
w2
x,max

4ρ
− ∥(r − rc(t))

×(v − vc(t))∥2

∥r − rc(t)∥3
(4.66)

For this mission, I assume that only low-thrust actuators are available, meaning that umax ≪ ∥fµ∥
in the vicinity of the asteroid. Specifically, let umax = (10)−4 m/s2, which is approximately the
peak acceleration achievable by the DAWN spacecraft halfway through its mission1, or a modern
SmallSat ion thruster2. The radius of Ceres is approximately ρCeres = 476000 m, and gravitational

1Ref: https://solarsystem.nasa.gov/missions/dawn/technology
2E.g. Busek Bit-3 on a 12 kg CubeSat: http://www.busek.com/technologies__ion.htm
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RCBF Theorem Form ρ Parameter
hA1 4.10 (4.22) 3.63(10)7 amax in (4.68)
hA2 4.11 (4.27) 3.21(10)7 Φc in (4.70)
hA3 4.16 (4.37) 2.50(10)7 u∗rad in (4.71)
hA4 4.15 (4.37) 4.76(10)5 u∗orth in (4.72)

Table 4.1: Summary of RCBFs for Ceres Simulation. A summary of the 4 RCBFs tested and the
parameters used for simulations around Ceres

acceleration near Ceres is given by

fµ,c(t, r) = −
µ(r − rc)
∥r − rc(t)∥3

, (4.67)

where µ = 6.26325(10)10 is fixed. As the following simulations all take place in a frame centered
around Ceres, let uc = 0.

Simulations were run with 4 different RCBFs, summarized in Table 4.1 and detailed as follows.
First, I apply Theorem 4.10. Substituting the dynamics (4.63) into (4.24), the parameter amax is
given by

amax = umax −
w2
x,max

4ρ
− wu,max − sup

t∈T ,x∈S(t)
∥fµ(t, r)∥. (4.68)

One possible RCBF, which I denote hA1 , is then given by (4.22) with κc, κ̇w,c in place of κ, κ̇w,
respectively. Because umax ≪ ∥fµ∥ near the asteroid, one must choose ρ large enough that amax

in (4.68) is positive. Specifically, I chose ρ as ρA1 = 3.63(10)7 m, which along with wu,max =

5(10)−6 m/s2 leads to amax = 4.55(10)−5 m/s2 in (4.68).
Second, I note that κ̈w,c in (4.66) satisfies

max
∥wu∥≤wu,max

inf
u∈U

κ̈w,c(t, x, u, wu) ≤
µ

∥r − rc(t)∥2
− umax + wu,max +

w2
x,max

4ρ
. (4.69)

Since ∥r − rc(t)∥ = ρ − κc(t, x), the right hand side of (4.69) can be written as a function
ϕc(κc(t, x)) only dependent on κc and constants. The anti-derivative of ϕc is then

Φc(λ) =
µ

ρ− λ
+ (wu,max +

w2
x,max
4ρ
− umax)λ . (4.70)

Applying Theorem 4.11, a second possible RCBF, which I denote hA2 , is then given by (4.27) with
κc, κ̇w,c,Φc in place of κ, κ̇w,Φ, respectively. Note that Theorem 4.11 requires that the right hand
side of (4.69) is always negative, so I chose ρ as ρA2 = 3.21(10)7 m. In this system, the function
Φc in (4.70) follows directly from fµ being a potential force, and while that is not necessary in
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general, it may be hard to find a function Φ satisfying the conditions of Theorem 4.11 for systems
without known expressions for potential energy. On the other hand, it is comparatively easy to find
a constant amax (or show than none exists) using (4.24) even for complex systems.

Note that one also could have used the equivalent constraint function κalt(t, x) ≜ ρ2 − ∥r −
rc(t)∥2. However, no valid amax or Φ exists for κalt, so one may need to choose the constraint
function carefully as well. Intuitively, κc represents position inside a potential field, while κalt has
no physical interpretation in the context of the dynamics in (4.63).

Third, I apply Theorem 4.15 for two different control laws u∗. Note that the constructions of
both amax in (4.68) and Φ in (4.70) ignore the effect of the second term of κ̈w,c in (4.66), which
is always nonpositive (i.e. helpful to safety), but not amenable to simple RCBF formulas. Theo-
rem 4.15 allows for accounting of this term as well, and thus decreases conservatism. First, define
the control law

u∗rad(t, x) ≜ argmin
u∈Uw

−(r − rc(t))u , (4.71)

where Uw is given in (4.35). This is a special case of u∗opt in (4.58). In addition to capturing the
effect of the second term of (4.66), using Theorem 4.15 with this control law also captures how the
spacecraft has more control authority when r − rc has components in the direction of more than
one thruster. A third possible RCBF, which I denote hA3 , is then given by (4.37) with κc, u∗rad in
place of κ, u∗, respectively.

Lastly, define the control law

u∗orth(t, x) ≜ argmin
u∈Uw

vorth(t, x)u , (4.72)

where
vorth(t, x) ≜ v − vc(t)−

(r − rc(t))T(v − vc(t))
∥r − rc(t)∥2

(r − rc(t)) . (4.73)

While u∗rad thrusts away from the asteroid, the control law u∗orth thrusts tangential to the asteroid,
thereby making the second term of (4.66) (which does not depend directly on u) more negative. A
fourth possible RCBF, which I denote hA4 , is then given by (4.37) with κc, u∗orth in place of κ, u∗,
respectively. This choice of u∗ is motivated by orbital dynamics, and intuitively, hA4 (t0, x(t0)) ≤ 0

implies that a safe orbit can be established from (t0, x(t0)).
Note that it still needs to be verified that u∗rad and u∗orth satisfy the requirement of Theorem 4.15

that the set B(t, x) in (4.36) contains at most one nonzero element. Assuming a constant amax > 0

as in (4.68) exists, it follows that κ̈c(t, x, u∗rad(t, x), wu) ≤ −amax, so B(t, x) in (4.36) always has
exactly one element, and thus meets the requirements of Corollary 4.16. However, u∗rad can still
be used even if an amax does not exist (i.e. if one chooses ρ small enough that there exists states
(t, x) ∈ ST such that κ̈c(t, x, u∗rad(t, x), wu) > 0). That said, if this is the case, then Theorem 4.15
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must be applied very carefully. This is because there exists a manifold of initial conditions (ta, xa)
for which χ(t, ta, xa), t ≥ ta is a closed periodic orbit. Safe trajectories exist on both sides of this
manifold, but along this manifold, B(ta, xa) has an infinite number of elements, which violates
the assumption of Theorem 4.15. For this reason, here I let ρA3 = 2.50(10)7 m, which places this
manifold entirely outside the safe set.

When using u∗orth, there is no constant amax which bounds κ̈c (or any higher derivatives), so
proving that B(t, x) in (4.36) is nonempty and contains at most one nonzero element is challenging
and is an open area for future work. In practice, many nominal evading maneuvers u∗ : T × X →
Uw may not allow for straightforward proofs of how many maximizers of κ(t + β, χ(β, t, x)) the
system admits. In these cases, how to prove or disprove the applicability of Theorem 4.15 is an
open research question. For this particular system, my strategy was to examine sample trajectories
of κ(t + β, χ(β, t, x)) according to (4.31) and originating from many different states (t, x). I
verified numerically that each trajectory 1) remain bounded, 2) achieved its upper bound, and
3) had at most one nonzero local maximizer. I also sought out corner cases that might violate
these three conditions. As no trajectory violating these conditions could be found, I conclude
that u∗orth is consistent with the conditions on B(t, x) in Theorem 4.15, though an analytic proof
of this observation would provide a stronger guarantee. One also needs to ensure that the initial
conditions are such that ∥vorth∥ is never zero along the trajectories, so u∗orth is uniquely defined.
Thus, u∗orth meets the requirements of Theorem 4.15 for any ρ > 0. For this simulation, I chose
ρA4 = 476000 m, which is the radius of Ceres.

In summary, I have constructed four RCBFs hA1 , h
A
2 , h

A
3 , h

A
4 . Each RCBF was constructed using

specific properties of the system and the input constraints, so given an initial condition (t0, x(t0)) ∈
Hres for any of these RCBFs, it is guaranteed that there exists at least one safe trajectory beginning
from (t0, x(t0)) along which the control input always satisfies the input constraints. Moreover, the
spacecraft will remain on a safe trajectory as long as the control input satisfies the RCBF condition
u ∈ Urcbf in (4.8). Thus, even though the trajectories are not known in advance, one still knows
that the trajectories will stay within the setHres.

4.5.3 Simulations: Ceres

Next, I validate the RCBFs hA1 , h
A
2 , h

A
3 , h

A
4 from Section 4.5.2 in simulation. Suppose a control

input of the form
u(t, x) = argmin

u∈Us(t,x,σ)
∥u− unom(x)∥2 , (4.74)
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where there is a nominal control input unom that may be unsafe and Us is the set of allowable control
inputs. In this case, the nominal control input is the linear control law

unom(x) = −kp(r − (r · êx)êx)− kd
(
v −

√
2µ
∥r∥ + 104êx

)
(4.75)

where kp = 1.2(10)−11 and kd = 6(10)−5, and êx is the x-axis unit vector. That is, the nominal
control input tries to drive the spacecraft along the x-axis and through the center of Ceres, which
is an unsafe state. The set Us captures the switching described in Section 4.4 and is given by

Us(t, x, σ) =

U σ = 0

Urcbf(t, x) σ = 1
. (4.76)

The switching tolerances are ϵ1 = 5(10)4 m and ϵ2 = 1.5(10)5 m, and the class-Ke function used
to determine Urcbf was chosen as αr in (4.61). Note how the quadratic program in (4.74) contains
only 3 degrees of freedom, and is thus much less computationally expensive than most MPC-based
controllers.

I ran four simulations using the above controller with the four different RCBFs hA1 , h
A
2 , h

A
3 , h

A
4

to specify Urcbf and one simulation with Urcbf = U (i.e. with no RCBF) for comparison. All
five simulations had a random zero-mean matched disturbance of magnitude upper bounded
by wu,max = 5(10)−6 m/s2. The simulations using hA1 , hA2 , and no RCBF also had a random
zero-mean unmatched disturbance of magnitude upper bounded by wx,max = 2(10)−6 m/s (re-
call that Theorem 4.15 requires wx,max = 0 for hA3 , hA4 ). The initial condition was x0 =

[−6(10)7, −106, 0, 20, −2, 0]T in all five simulations, and each was run for 69 simulated days,
taking on the order of 10 minutes to compute. The resultant trajectories are shown together in
Fig. 4.5.

Note how the trajectories under hA1 , hA2 , hA3 come progressively closer to Ceres because con-
servatism is reduced with each added layer of complexity. The distance along the x-axis traveled
in the same amount of time also increases, as the satellite spends less time reshaping its trajectory
around Ceres. Physically, the RCBF derivative ḣ for hA1 , h

A
2 , h

A
3 is minimized when the satellite

thrusts away from the asteroid. On the other hand, the RCBF derivative for hA4 is minimized when
the satellite thrusts tangentially to the asteroid. As a result, the trajectory under hA4 is able to keep
hA4 nonpositive while approaching far closer to Ceres than any of the other RCBFs, as shown in the
zoomed-in plot in Fig. 4.6. Here, the satellite comes so close to Ceres that it is redirected by Ceres’
gravity (which is much greater than umax), but the satellite is moving fast enough to avoid being
pulled outside the safe set, unlike the trajectory with no RCBF, which crashes into the surface of
Ceres. In practice, one might wish to choose a larger ρA4 to result in a hyperbola around Ceres
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Figure 4.5: Ceres Flyby Simulation Trajectories. Trajectories under each of the RCBFs moving
from left to right. Ceres is located at the grey dot at the origin and is not to scale. Note how
the different RCBFs allow their respective trajectories to approach within differing distances of
the asteroid and how the magenta trajectory approaches close enough to be redirected by Ceres’
gravity. The grey and magenta trajectories trace very similar paths.
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Figure 4.6: Ceres Flyby Close Up. Zoomed-in view of Fig. 4.5 with Ceres to scale (trajectories
moving from left to top)
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Figure 4.7: Ceres Flyby CBF Values and Asymptotic Surface. The RCBF values along the trajec-
tories in Fig. 4.5. Note how each trajectory converges approximately to h = −ϵ1 due to the choice
of α = αr in (4.61), but the corresponding distances to the asteroid are different in Figs 4.5,4.8
due to the differing constructions of the RCBFs.
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Figure 4.8: Ceres Flyby Altitude versus Time. The altitudes above Ceres of the trajectories in
Fig. 4.5
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Figure 4.9: Ceres Flyby Control Inputs. Control inputs along the trajectories in Fig. 4.5. The
controller (4.74) remained feasible in the presence of input constraints, as expected from Theo-
rems 4.10,4.11,4.15.

with a smaller turn angle than in Fig. 4.6, but the RCBF ensures the trajectory does not impact the
asteroid regardless.

The values of the RCBFs along these four trajectories are shown in Fig. 4.7. Note how all four
trajectories initially approach the surface {x ∈ Hres | h(t, x) = −ϵ1} and then remain near this
surface until at least t = 9 days. Next, the distance to Ceres is plotted in Fig. 4.8. As expected
from Fig. 4.5, the trajectory under hA4 came the closest to the surface, which may be desirable
for an inspection mission, though the satellite was moving very fast during its closest approach.
Finally, the control inputs are shown in Fig. 4.9, and indeed stay within the specified bounds. The
z-axis control inputs are negligible, except under hA3 and hA4 , as u∗rad and u∗orth have the potential to
magnify the effects of disturbances in the z direction.

If this were a high-thrust scenario (i.e. umax > ∥fµ∥), any of these four RCBFs would allow the
satellite to get equally close to Ceres (in differing time spans), but since the actuators are assumed
limited to low-thrust, the choice of RCBF and resultant conservatism made a significant difference
in the trajectories. In particular, the RCBF motivated by orbital dynamics, hA4 , allowed for the
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Figure 4.10: Ceres Flyby Comparison of Switched and Unswitched Control Laws. The RCBF
values under hA1 with and without switching and with α both as αr in (4.61) and as a “regular”
class-Ke function αc.

closest approach to the asteroid. The RCBF hA3 and its derivatives θ,Θ took between 0.25-12 ms
to compute, while hA4 and its derivatives took between 0.36-560 ms to compute on a 3.5 GHz
computer, though the code for these calculations could likely be further optimized. In particular,
u∗orth often results in χ trajectories that travel around Ceres many times, and thus require small time
steps to accurately propagate using this state representation (e.g., computation time could likely
be improved by using Keplerian elements as a state representation). This computation time is also
very small relative to time-scale of the problem.

Finally, I considered the effect of switching and the choice of function α using the RCBF hA1 .
First, I ran an additional simulation with α = αr without switching the RCBF (i.e. σ(t) = 1,∀t ∈
T ). The resultant trajectory was qualitatively similar, and a comparison of the RCBF values is
shown in Fig. 4.10. As shown in Fig. 4.10, the trajectory with switching reached the surface
{x ∈ Hres | h(t, x) = −ϵ1} 0.4 days ahead of the trajectory without switching, as expected since
the growth rate was not limited by αr until the satellite came close to the boundary of HA

res,1.
Second, I ran a simulation with α equal to the “regular” class-Ke function αc, where αc(λ) ≜ kλ,
again without switching. I let k equal the average value of W

ϵ1
when hA1 was active, which was

k = 3.42(10)−5. Again, the shape of the resultant trajectory around Ceres was qualitatively similar,
but Fig. 4.10 shows that the two trajectories (switched and unswitched) using α = αr in (4.61)
approached −ϵ1 much faster than the trajectory using αc. However, the trajectory under α = αc

approached much closer to the edge of the safe set than the other two trajectories, because the
analysis of the steady state surface Sf following (4.62) no longer applies.

4.5.4 Simulations: Eros

Next, I consider the problem of finding a safe trajectory when the spacecraft is near
an irregularly-shaped asteroid, in this case Eros. I consider a mesh model of Eros with
N = 3897 points [208], shown in Fig. 4.11, where the satellite should stay sufficiently
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far from every point in the mesh. Note that Eros spins with angular velocity ω =

[3.101(10)−4, 6.232(10)−5, 9.810(10)−5] rad/s [214], so each point is moving and thus the time
varying component ∂th is important in this scenario (this model of Eros is identical to the model
used in Chapter 3, except for the addition of asteroid spin, which was not present in the simula-
tions in Chapter 3). Denote each point as rc,i, i = 1, 2, · · ·N . Then I construct N time-varying
constraint functions

hc,i(t, x) ≜ ρ− ∥r − rc,i(t)∥ , (4.77)

rc,i(t) = eω
×(t−t0)rc,i(t0) , (4.78)

where ω× is the cross product matrix for ω. For this scenario, let ρ be ρB = 500 m, which
represents the closest allowable distance to any point rc in the mesh. Note that the maximum
distance between points in the model [208] is 850 m, so one should require that ρ be at least half
this distance (otherwise, the agent could travel inside the asteroid between mesh points), and one
can expect smoother results when ρ and/or N are larger.

I model the gravity of Eros fµ using the 16th order spherical harmonics model in [209]. The full
model is assumed known to the controller in the present simulation, but note that one could also
use a simplified model and account for higher order effects as disturbances (e.g. fµ = − µ

∥r∥3 r+ ξ,
as the harmonics of greater order than µ are difficult to obtain prior to orbiting the asteroid), as
was done in my preliminary work [203] (which has not been reproduced in this dissertation).
Since Eros is rotating and asymmetric, fµ will also be time-varying. Let umax = 0.1 m/s2, which
is larger than the peak gravitational acceleration at the surface of Eros, so this is a high-thrust
simulation. Suppose there are random matched and unmatched disturbances upper bounded by
wu,max = 0.005 m/s2 and wx,max = 0.001 m/s, respectively.

Using these N constraint functions, I construct N RCBFs of the form given in (4.22), denoted
hBi , i = 1, 2, · · ·N . Here, the parameter amax is the same for every RCBF and is

amax = umax −
w2
x,max

4ρ
− wu,max − sup

t∈T ,x∈S(t)
∥fµ(t, r)− uc(t)∥, (4.79)

where the asteroid surface acceleration uc ̸= 0 since every mesh point is moving. This results in
amax = 0.0523 m/s2. One could also have found a function Φ and used the form of RCBF in (4.27),
but this would be less beneficial here than in Section 4.5.3 since the agent will always be close to
the asteroid surface. I also construct a separate discrete state for each RCBF to describe whether
each RCBF is active, which I concatenate into the vector Σ ∈ ZN , containing N discrete states σi.
Each RCBF induces a set of allowable control inputs Urcbf,i, so the control inputs must live in the
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intersection of the allowable sets following from each active RCBF. To this end, define

Us(t, x,Σ) =
⋂

{i|σi=1}

Urcbf,i(t, x) , (4.80)

and let Us equal U if there is no active RCBF. I assume that Us is always nonempty (see Chapter 6
for more information about how to guarantee this assumption). The controller is then

u(t, x) = argmin
u∈Us(t,x,Σ)

∥u− unom∥2 , (4.81)

unom(x) = −kp(r − rt)− kdv (4.82)

where kp = 3(10)−5, kd = 0.03, and rt = [20(10)3, 0, 0]T. Let the switching tolerances be
ϵ1 = 100 m and ϵ2 = 300 m, and the class-Ke functions required to define each Urcbf,i are all
identical and given by αr in (4.61).

As observed in [151] and in Section 3.4.2, one only needs to enforce each RCBF condition
when it is close to being violated. This is facilitated by the switching approach in Section 4.4 and
(4.80), so the quadratic program in (4.81) never has all 3897 constraints active simultaneously.
However, unlike in [151], the use of hysteresis-switching allows for this simplification without
requiring non-smooth analysis.

I then simulated the above controller and all 3897 RCBFs around Eros, starting from ini-
tial condition x0 = [−20(10)3, −4(10)3, 0, 1, 1, 0]T. The value of the maximum of the 3897
RCBFs is shown in Fig. 4.12. In this simulation, there were never more than 4 RCBFs ac-
tive simultaneously. The trajectory around the asteroid in an Eros-fixed frame is shown in
Fig. 4.11 and a video in the inertial frame that also highlights the active RCBFs can be found
at https://youtu.be/ArQ84sdMTqo. The control inputs are shown in Fig. 4.13. As ex-
pected, the spacecraft stays safe for all time, despite the natural motion of the asteroid and the
nominal linear controller attempting to drive the trajectory through the asteroid. Also, the maximal
RCBF value stays very close to −ϵ1 during the interval t ∈ [110, 2760] in Fig. 4.12. The chop-
piness of the control input may be attributed to the sparsity of the mesh relative to the size of the
asteroid, and the relatively small values of ρ and ϵ1.

4.6 Conclusions on Robust CBFs

This chapter has presented three forms for RCBFs for relative-degree 2 systems that construc-
tively consider input constraints and disturbance bounds to ensure the RCBF condition is always
feasible in the presence of input constraints. Thus, systems meeting the theorem requirements
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Figure 4.11: Eros Close Approach Trajectory (Rotating). Trajectory of the spacecraft around Eros
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Figure 4.12: Eros Close Approach CBF Values. Maximum of the 3897 RCBF values
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Figure 4.13: Eros Close Approach Control Inputs. Control inputs of the spacecraft around Eros

are guaranteed to have safe closed-loop trajectories despite the input constraints and disturbances.
This chapter also introduced a switching approach for enforcing the RCBF condition only near
the boundary of the CBF set, and a class-Ke-like function that allows one to predict how close the
state will approach the boundary of this set as a function of the disturbance. Finally, I applied these
methods to create five spacecraft-relevant RCBFs and demonstrated these RCBFs in simulation.
The simulations show that such RCBFs can be used to plan safe trajectories online, though three
of the flyby trajectories were overly conservative. In these simulations, the nominal linear con-
trol laws were very simple, so the resultant control inputs were not fuel-efficient. Increasing this
efficiency is one area for future work, partially considered in Chapter 7.

Finally, in the following section, I present an extension of the above RCBF formulation for
a specific type of problem motivated by the observations in Section 4.4. I previously noted that
using the class-Ke-like function αr in (4.61) allowed one to a prior determine to which surfaces the
trajectories of (4.1) would converge in the presence of a worst-case disturbance, no disturbance,
or a best-case (i.e. safety encouraging) disturbance. Because these surfaces are asymptotically
stable, a trajectory starting on or between these three surfaces will stay between these surfaces,
and Section 4.4 showed that one could determine a priori the location of these surfaces by choice
of ϵ1. This is used to deliberate effect in the following definition of “tight tolerance problems”,
including a case study applied to the common problem of satellite docking.
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4.7 Tight Tolerance Specifications Using RCBFs

This section is concerned with the application of RCBFs as in Definition 4.2 to the specific
problem of spacecraft docking, and more generally to the problem of “tight-tolerance objectives”.
The presence of disturbances prevents convergence of the satellites/spacecraft to a unique docking
state, so instead docking is defined as occurring within a set constructed using prescribed toler-
ances. Forward invariance of the set of non-colliding states in the presence of any considered
disturbance is ensured using RCBFs. However, as I will show, the RCBF strategy necessarily pre-
sumes a worst-case disturbance, and thus, if a worst-case disturbance is not present, this strategy
will restrict trajectories to a smaller subset of the interior of the CBF set, which may have no over-
lap with the set of docking states. Thus, this section presents a method for ensuring that the set
of docking states has non-empty intersection with the set of reachable states under a robust con-
trol law, for any considered disturbance. The control law provably achieves docking in finite time
regardless of the disturbance and is validated in a docking simulation in Section 4.7.4.

4.7.1 Introduction to Spacecraft Docking Problem

A common requirement for spacecraft systems is the capability for one spacecraft, called the
chaser, to dock with another spacecraft, called the target. Successful docking requires the satisfac-
tion of several tolerances, such as a minimum and maximum relative velocity, maximum displace-
ment between docking mechanisms, and maximum spacecraft attitude deviation, among others.
In the remainder of this chapter, I propose encoding these tolerances as Control Barrier Functions
(CBFs) [66] and applying CBF theory to guarantee tolerance satisfaction.

There are two principal approaches to robustness with CBFs. First, a CBF can be designed to
drive state trajectories that lie outside the allowable safe set into this set [112, 116]. Second, a
CBF can be designed to ensure that a disturbance with a known upper bound never causes the state
to leave the safe set [117, 118]. In this chapter, I have thus far utilized the latter approach, and
will continue to follow this construction so that docking tolerances are never violated. However,
tight-tolerance objectives, such as docking, in principle require that the system operate very close
to the boundary of its safe set (e.g. the chaser comes very close to the target). In the presence
of a disturbance pointing toward the interior of the safe set, or no disturbance, an RCBF may
prevent the system from approaching sufficiently close to the boundary of its safe set to execute
its mission. Thus, this section develops conditions under which one can guarantee that system
trajectories always remain safe, yet also approach to within the required proximity to the boundary
of the safe set in finite time. While this section is most focused on spacecraft docking to other
spacecraft, or landing on celestial bodies, the developed approach can be applied to operating any
system near the boundary of a safe set using RCBFs.
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Autonomous spacecraft rendezvous and docking has been extensively studied, and addressed
using several methods, including artificial potential fields (APFs) [21, 25, 215, 216], path planning
[217], model predictive control [65], sliding mode control [218], reinforcement learning [219], and
linear control [220], among others. While the fundamental problem almost always centers on the
Hill-Clohessy-Wiltshire (HCW) dynamics, different authors have considered various constraints.
The work in [215, 218] specifically considers APFs for coupled rotation and translation, while
[216, 217] consider fuel efficiency as well. The work in [220] considers adaptation to uncertain
model parameters, and [217] considers a tumbling target. However, most of the aforementioned
works attempt to accomplish docking exactly, or simply report the achieved tolerances when dis-
turbances are added, rather than provably guaranteeing satisfaction of docking tolerances. Such
guarantees can be obtained systematically through RCBFs, which can be used in conjunction with
all of the above methods and constraints.

The preceding work in this chapter unifies the topics of input constraint satisfaction and dis-
turbance rejection into a single RCBF methodology. This section extends the preceding work by
considering the case when the spacecraft mission and safety requirements are opposite to each
other, as in the case of docking, and thus require operations within tight tolerances. To address
this problem, the following sections present precise definitions of “landing” and “docking” in an
RCBF context, and then present methods of accomplishing landing and docking within prescribed
tolerances. Section 4.7.4 then presents simulations for a spacecraft landing on an asteroid with
nontrivial gravity, and docking with another spacecraft in low Earth orbit.

4.7.2 Preliminaries

In addition to the notations previously presented, for brevity, define the function ssq : R → R
as ssq(λ) = λ|λ|, and recall from Lemma 4.9 that ssq is continuously differentiable and invertible
everywhere on R.

The remainder of this chapter continues to work with the model (4.1), but instead assumes
that T = [t0, tf ] is a closed set, as I seek to demonstrate docking in finite time. Let the function
κ : T × X → R be a metric for distance between the chaser and target agents, defined so that
κ < 0 when the agents are separated, and κ = 0 when the agents are in contact. When κ̇ > 0, the
chaser is approaching the target. Assume that κ ∈ G2, as in Section 4.3.1-4.3.2, and that ∇κ does
not vanish. I define landing and docking mathematically as follows.

Definition 4.3 (Landing). The state x is said to correspond to landing at time t if κ(t, x) = 0 and

κ̇(t, x) ∈ [0, γ2] simultaneously, where γ2 ≥ 0 is a specified constant.

Definition 4.4 (Docking). The state x is said to correspond to docking at time t if κ(t, x) = 0 and

κ̇(t, x) ∈ [γ1, γ2] simultaneously, where γ1, γ2 > 0 are specified constants.
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Figure 4.14: Visualization of Docking Requirements

Note that Definitions 4.3-4.4 pose the landing/docking objective as the value of κ̇ belonging
to an interval, rather than requiring a single value of κ̇. Landing and docking differ only by the
requirement of a minimum velocity γ1 > 0 for docking. In both cases, I assume that γ2 is suf-
ficiently small to be dissipated by the spacecraft structure; i.e. landing/docking is a controlled

collision. These tolerances are visualized in Fig. 4.14. The focus of this section is on ensuring that
landing/docking occurs within the specified range of κ̇ values in finite time. This will be accom-
plished in part by treating the κ̇ upper bound requirement as a safety constraint, and constructing
an RCBF h as in (4.27). Recall that ḣ is not known precisely due to the disturbances, but one does
know that ḣ(t, x, u, wu, wx) ∈ [ḣ(t, x, u, 0, 0)−W (t, x), ḣ(t, x, u, 0, 0) +W (t, x)] where W is as
in (4.7).

This section will only work with the RCBF proposed in (4.27) and Theorem 4.11, restated here
as

h(t, x) = Φ−1

(
Φ(κ(t, x))− 1

2
ssq (κ̇w(t, x))

)
(4.83)

for some function Φ : R→ R meeting the requirements of Theorem 4.11. Define Hres as in (4.4).
Instead of αr in (4.61), consider the more general form

αr(λ, t, x) = W (t, x)αw(λ) (4.84)

for any αw ∈ Ke. Note that Corollary 4.18 applies to (4.84) as well.

4.7.3 Methods for Best and Worst Case Disturbances

I divide the landing/docking problem into two parts: robust safety in Section 4.7.3.1 and robust

proximity in Section 4.7.3.2. Robust safety refers to the requirement that, under any allowable
disturbances wu, wx in (4.1), κ̇(t, x(t)) ≤ γ2 for all t such that κ(t, x(t)) = 0. Robust proximity
refers to the requirements that 1) κ(t, x(t)) = 0 for finite t, and 2) at the time when κ(t, x(t)) = 0,
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it holds that 2a) κ̇(t, x(t)) ≥ γ1 for docking, or 2b) κ̇(t, x(t)) ≥ 0 for landing.

4.7.3.1 Robust Safety

The set Hres as above does not contain any states such that κ = 0 and κ̇ > 0 simultaneously
(as such states would immediately leaveHres regardless of the control input, which was previously
undesirable), so for the same function Φ as in (4.27),(4.83) define the new function

hdock(t, x) ≜ Φ−1

(
Φ(κ(t, x))− 1

2
ssq (κ̇w(t, x)) + δ

)
(4.85)

for some parameter δ ≥ 0. This expands the setHres to the setHres,dock(t) ≜ {x ∈ X | hdock(t, x) ≤
0 and κ(t, x) ≤ Φ−1(Φ(0)− δ)}, where Φ−1(Φ(0)− δ) ≥ 0. UnlikeHres, the setHres,dock contains
docking states. First, I note that hdock is also an RCBF.

Corollary 4.19 (Corollary to Theorem 4.11). Suppose the conditions of Theorem 4.11 hold for all

(t, x) such that κ(t, x) ≤ Φ−1(Φ(0) − δ). Then hdock : T × X → R in (4.85) is an RCBF on

the set Hres,dock as in Definition 4.2, condition (4.6) is satisfied for any α ∈ Ke, and conditions

(4.13)-(4.14) are both satisfied.

The proof of Corollary 4.19 follows identical logic to that of Theorem 4.11. More importantly,
the new setHres,dock allows one to upper bound κ̇ when κ = 0 as follows.

Theorem 4.20. If a trajectory x(T ) satisfying hdock(t, x(t)) ≤ 0,∀t ∈ T contains a point

(tf , x(tf )) such that κ(tf , x(tf )) = 0, then κ̇(tf , x(tf )) ≤
√
2δ.

Proof. The proof follows from the construction of hdock. Suppose there exists tf such that
κ(tf , x(tf )) = 0 and hdock(tf , x(tf )) ≤ 0. Then

0 ≥ hdock(·) = Φ−1

(
Φ(κ(·))− 1

2
ssq (κ̇w(·)) + δ

)
,

Φ(0) ≤ Φ
(
κ(tf , x(tf ))︸ ︷︷ ︸

=0

)
− 1

2
ssq (κ̇w(tf , x(tf ))) + δ,

0 ≤ −1

2
κ̇w(tf , x(tf ))|κ̇w(tf , x(tf ))|+ δ.

Thus,
√
2δ ≥ κ̇w(tf , x(tf )) ≥ κ̇(tf , x(tf )). ■

I then choose δ = 1
2
γ22 , from which it follows that any controller which renders Hres,dock for-

ward invariant will also ensure the landing/docking velocity meets the upper bound requirement in
Definitions 4.3-4.4.
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4.7.3.2 Robust Proximity

Given a control law u : T × X → U satisfying u(t, x) ∈ µ(t, x) for the RCBF (4.85), the
next problem is that of ensuring the trajectory reaches a landing/docking state, denoted xf , under
any allowable disturbances wu, wx. Note that the state xf is not necessarily an equilibrium of
the system (4.1), so Definitions 4.3-4.4 do not require convergence to xf . Rather, this section
seeks to ensure that trajectories pass through an xf = x(tf ) meeting the criteria of the definitions.
Note that this work does not consider the system evolution after the first time instance tf when
landing/docking is achieved.

Because of the disturbances, one cannot guarantee convergence of κ, κ̇, h to specific values.
However, one can guarantee bounds on h, and by consequence κ and κ̇ as well. To capture the
possible impacts of the disturbances, define the set

∂ϵH(t) ≜ {x ∈ H(t) | h(t, x) ≥ −ϵ} (4.86)

∂ϵHres(t) ≜ {x ∈ H(t) ∩ S(t) | h(t, x) ≥ −ϵ} (4.87)

where ϵ is a parameter. While Theorems 4.1, 4.3, 4.4 upper bound h (and by consequence upper
bound κ̇ in Theorem 4.20), the following result also lower bounds h for any allowable disturbances.

Lemma 4.21. Suppose h : T × X is an RCBF on H as in Definition 4.2, and that there exist

constantsw1, w2 ∈ R>0 such thatW (t, x) ∈ [w1, w2] for all (t, x) ∈ HT . Suppose the assumptions

of any of Theorem 4.1, 4.3, or 4.4 hold. If the control law u : T × X → U satisfies

∂th(t, x) +∇h(t, x)(f(t, x) + g(t, x)u) = αr(−h(t, x), t, x)−W (t, x) (4.88)

for all (t, x) ∈ HT for αr in (4.84) for some αw ∈ Ke, and the initial condition satisfies x(t0) ∈
H(t0), then limt→∞ x(t) ∈ ∂α−1

w (2)H (i.e. ∂ϵH as in (4.86) with ϵ = α−1
w (2)).

Proof. First, since (4.88) applies, it follows that u(t, x) ∈ µ(t, x). Moreover, since the conditions
of at least one of Theorem 4.1,4.3,4.4 apply, Corollary 4.18 implies that closed-loop trajectories
cannot leave H and thus lim supt→∞ h(t, x(t)) ≤ 0. Moreover, the derivative of h in the presence
of disturbances is lower bounded by

ḣ(·) = ∂th(t, x) +∇h(t, x)(f(·) + g(·)(u+ wu) + wx)

= ∂th(t, x) +∇h(t, x)(f(·) + g(·)u) +W (t, x) +∇h(t, x)g(·)wu +∇h(t, x)wx −W (t, x)

(4.88)
= αw(−h(t, x))W (t, x) +∇h(t, x)g(·)wu +∇h(t, x)wx −W (t, x)

(4.7)
≥ αw(−h(t, x))W (t, x)− 2W (t, x) . (4.89)
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SinceW ≥ w1 > 0, (4.89) implies that ḣ is strictly positive whenever αw(−h) > 2, or equivalently
when h < −α−1

w (2). It immediately follows that lim inft→∞ h(t, x(t)) ≥ −α−1
w (2). Thus, as

t→∞, the state x(t) approaches ∂α−1
w (2)H. ■

Thus, regardless of the disturbance, a control law satisfying (4.88) guarantees a lower bound,
determined by αw, on h as t → ∞. Note that (4.88) is simply the prior RCBF condition (4.8)
enforced with equality instead of an inequality. Moreover, because Corollary 4.19 states that hdock

is an RCBF for any α ∈ Ke, the choice of αw (and of the point α−1
w (2)) is a free parameter.

Remark 4.8. Note that Lemma 4.21 only guarantees x → ∂α−1
w (2)H as t → ∞. There exist finite

and fixed time extensions of Lemma 4.21, provided the derivative α′
w of αw satisfies α′

w(λc) = ∞
where λc = α−1

w (2), such as αw(λ) = 2

λ
1/3
c

((λ− λc)1/3 + λ
1/3
c ). However, this choice of αw is not

locally Lipschitz continuous, as is often desired for other reasons, though this sort of design is a

potential area for future study. For now, I instead employ the fact that for every ϵ > α−1
w (2), there

exists a finite time T such that x→ ∂ϵH as t→ T .

Note that Lemma 4.21 applies to any RCBF, and thus to hdock as well. The next step is then
to use the terminal set ∂α−1

w (2)H in Lemma 4.21 to generate the desired lower bounds on κ and κ̇.
First, I introduce one more metric as follows.

Definition 4.5 (Feasibility Margin). Let lκ be the Lipschitz constant of κ in a neighborhood Y ⊆ X
of the set {(t, x) ∈ T × X | h(t, x) = 0}. Given constants γ1, γ2, the feasibility margin is

cf (γ1, γ2) ≜ γ2 − (γ1 + 2lκwx,max) . (4.90)

The feasibility margin is important because the condition κ̇ ∈ [γ1, γ2] is robustly guaranteed when-
ever κ̇w ∈ [γ2− cf , γ2]. Thus, I require that [γ2− cf , γ2] be nonempty, or equivalently that cf ≥ 0;
otherwise the problem of landing/docking with disturbances is not well-posed. To combined land-
ing/docking with RCBFs, I then further require that cf > 0 strictly, as in the following theorem.

Theorem 4.22. Given constants γ2 > γ1 > 0 satisfying cf (γ1, γ2) > 0 in (4.90) and a function

hdock : T × X of the form (4.85) with δ = 1
2
γ22 , suppose the assumptions of Lemma 4.21 hold with

hdock andHres,dock in place of h andH. Suppose αw ∈ K in (4.84) satisfies

α−1
w (2) = −Φ−1

(
1

2
γ22 + Φ(0)− 1

2
(2lκwx,max + γ1)

2

)
. (4.91)

If the control input u : T ×X → U satisfies (4.88) for all (t, x) ∈ HT
res,dock and the initial condition

satisfies x(t0) ∈ Hres,dock(t0), then there exists a finite tf ≥ t0 such that x(tf ) corresponds to

landing at tf .

109



Proof. First, note that cf (γ1, γ2) > 0 implies α−1
w (2) > 0 in (4.91) (if instead it held that

α−1
w (2) ≤ 0, then αw /∈ Ke, so the landing/docking problem would be poorly posed for the given

disturbances).
Next, I note an important property of points inside the set ∂α−1

w (2)Hres,dock, visualized in gray in
Fig. 4.15. Let xc ∈ X be any point inside ∂α−1

w (2)Hres,dock(tc) for some tc ∈ T , and suppose that
κ(tc, xc) = 0. Then at xc, it holds that

−α−1
w (2) ≤ hdock(tc, xc)

(4.85)
= Φ−1

(
Φ
(
h(tc, xc)︸ ︷︷ ︸

=0

)
− 1

2
ssq (κ̇w(tc, xc)) +

1

2
γ22

)
Φ(−α−1

w (2)) ≥ Φ(0)− 1

2
κ̇w(tc, xc)|κ̇w(tc, xc)|+

1

2
γ22 (4.92)

κ̇w(tc, xc)|κ̇w(tc, xc)| ≥ 2Φ(0) + γ22 − 2Φ(−α−1
w (2))

(4.91)
= (2lκwx,max + γ1)

2 (4.93)

The right hand side of (4.93) is positive, so κ̇w(tc, xc) will be positive as well. Specifically,
κ̇w(tc, xc) ≥ 2lκwx,max + γ1. By definition, lκ satisfies lκ ≥ ∥∇κ(tc, xc)∥, and κ̇ satisfies
κ̇(t, x, wx) ≥ κ̇w(t, x)−2∥∇κ(t, x)∥wx,max. It follows that κ̇(tc, xc, wx) ≥ κ̇w(tc, xc)−2lκwx,max ≥
γ1 > 0. Visually, this means that κ̇w(tc, xc) always lies on the intersection of the gray region and
the magenta line in Fig 4.15, which implies κ̇(tc, xc, wx) always lies on the magenta line (i.e. the
docking states). Moreover, since Φ is monotone decreasing, Φ(λ) > Φ(0) for all λ < 0. It follows
from (4.92) that if x ∈ ∂α−1

w (2)Hres,dock(t) and κ(t, x) < 0, then κ̇(t, x, wx) > γ1, as shown by how
the gray region in Fig. 4.15 occurs for larger κ̇w (and therefore larger κ̇) as κ decreases.

Safety with respect to γ2 is already guaranteed by Theorem 4.20 since δ = 1
2
γ22 , so I next use

the above property and Lemma 4.21 to guarantee proximity, i.e. that there exists tf < ∞ such
that κ(tf , x(tf )) = 0. I divide this into two cases, depending on x(t0). The assumption x(t0) ∈
Hres,dock(t0) implies κ(t0, x(t0)) ≤ 0, so going forward this proof assumes that κ(t, x(t)) ≤ 0, as
otherwise landing already occurred.

First, in the case that x(t0) /∈ ∂α−1
w (2)Hres,dock(t0), then by Lemma 4.21, hdock is initially increas-

ing and will keep increasing at least until the state reaches ∂α−1
w (2)Hres,dock. If the state reaches

∂α−1
w (2)Hres,dock before landing, then see the second case. Otherwise, since x(t) is converging to

a set where κ(t, x(t)) < 0 =⇒ κ̇(t, x(t), wx) > γ1, it follows from Remark 4.8 that for every
γ ∈ (0, γ1), there exists a finite time T (γ) such that the trajectory x(t), t ≥ T is sufficiently close
to ∂α−1

w (2)Hres,dock that κ(t, x(t)) < 0 =⇒ κ̇(t, x(t), wx) > γ. For example, in Fig. 4.15, all states
on the top-most orange line (level set where hdock = −1.4α−1

w (2)) satisfy κ̇ > γ = 0.1 as long as
κ < 0. Since κ̇(t, x(t)) becomes lower bounded by γ > 0 within finite time T , there must exist a
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Figure 4.15: Phase Diagram of Landing and Docking Trajectories. A phase diagram of κ and
κ̇w when wx ≡ wu ≡ 0, along with trajectories from two initial states x(t0) inside and outside
of ∂α−1

w (2)Hres,dock. From each initial condition, three trajectories are propagated in the presence
of: disturbances that decrease ḣdock (blue), no disturbance (green), and disturbances that increase
ḣdock (red). The magenta line represents docking states. The orange lines are level sets of hdock.
Trajectories converge asymptotically to the hdock ≥ −α−1

w (2) superlevel set (gray region), and
therefore converge in finite time to the lower superlevel sets and to the horizontal axis.

finite tf at which κ(tf , x(tf )) = 0.
Second, in the case that x(T ) ∈ ∂α−1

w (2)Hres,dock(T ) for any T ∈ T before landing occurs, then
Lemma 4.21 implies that x(t) will remain in ∂α−1

w (2)Hres,dock(t) for all t ≥ T (as occurs for the
trajectories plotted with solid lines in Fig. 4.15). It follows from (4.93) that κ̇(t, x(t), wx) > γ1 for
all t ≥ T as long as κ(t, x(t)) < 0. Thus, κ will keep increasing until tf such that κ(tf , x(tf )) = 0,
and at tf it holds that κ̇(tf , x(tf )) ≥ γ1. Thus, landing as in Definition 4.3 is guaranteed for finite
tf in both cases. ■

That is, I now have established a condition, given by (4.88) and (4.91), under which landing is
guaranteed. Note that while landing occurs for κ̇ ≥ 0, Theorem 4.22 requires one to encode the
controller with a parameter γ1 strictly greater than zero. Otherwise, landing is only guaranteed as
t → ∞. Also note that as the feasibility margin cf becomes smaller, the value λc = α−1

w (2) in
(4.91) where α(λc) = 2 becomes smaller, and thus the slope of αw becomes larger. In practice, for
digital controllers, following a steep αw curve will require a faster controller update cycle. Next, I
cover the docking case as follows.

Corollary 4.23. Suppose the assumptions of Theorem 4.22. If furthermore x(t0) ∈
∂α−1

w (2)Hres,dock(t0), then there exists a finite tf ≥ t0 such that x(tf ) corresponds to docking at

tf .

Proof. This result follows immediately from the proof of Theorem 4.22. Since x(t0) ∈
∂α−1

w (2)Hres,dock(t0), it follows that x(t) remains in ∂α−1
w (2)Hres,dock for the entire closed-loop tra-
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jectory. By the argument in the final case of Theorem 4.22, it follows that κ̇(t, x(t)) ≥ γ1 for all t
until tf such that κ(tf , x(tf )) = 0. Thus, docking as in Definition 4.4 occurs for finite tf . ■

Thus, it is possible with this method to prescribe a minimum docking velocity γ1 as well.
Physically, the additional condition that x(t0) ∈ ∂α−1

w (2)Hres,dock(t0) means that the chaser agent
begins the maneuver with a sufficiently large velocity relative to the target. If this is not the case,
then the chaser agent may not be able to accelerate to the required velocity before contacting the
target, as occurs for the trajectories plotted with dashed lines in Fig. 4.15.

4.7.4 Spacecraft Landing and Docking Simulations

To verify the above conditions, I conducted two simulations. The first considered
landing on an asteroid with nontrivial gravity and no atmosphere. The second consid-
ered docking in a low Earth orbit with multiple constraints. All simulation code can
be found at https://github.com/jbreeden-um/phd-code/tree/main/2022/L-
CSS%20Guaranteed%20Spacecraft%20Docking

The first problem sought for a spacecraft to land on the surface of the asteroid Ceres. Let
r, v ∈ R3 be the position and velocity of the spacecraft with respect to the center of Ceres and
µ = 6.26325(10)10 m3/s2 the gravitational parameter, so the dynamics are as in (4.63), repeated
here

ẋ =

[
ṙ

v̇

]
=

[
v

− µ
∥r∥3 r

]
+

[
0

u

]
+

[
wx

wu

]
, (4.94)

where u ∈ U ⊂ R3 is the control input. Let U = {u ∈ R3 | ∥u∥∞ ≤ ū} where ū = 0.5 m/s2,
wu,max = 0.025 m/s2, and wx,max = 0.01 m/s. Let κ be the distance from the surface of Ceres,
modelled as a perfect sphere, κ = ρ − ∥r∥, where ρ = 476000 m. Note that condition (4.26)
is satisfied for Φ(λ) = µ

ρ−λ + (wu,max − ū)λ as in (4.70). Let hdock be as in (4.85), and choose
γ1 = 0.1 m/s and γ2 = 1.5 m/s, so δ = 1.125 in (4.85). This places the zero vector outside
Hres,dock, so κ and hdock are continuously differentiable everywhere on Hres,dock. For simplicity,
choose αw(λ) = kλ, where condition (4.91) implies k = 0.355. I then appled the controller

u(t, x) = ∇hdock(t, x)g(t, x)max
b∈R

b (4.95)

such that (b∇hdock(t, x)g(t, x)) ∈ µrcbf(t, x)

and simulated the spacecraft until landing occurred. In practice, u in (4.95) satisfies condition
(4.88) at all points except where the RCBF condition (4.8) allows hdock to increase at a rate that is
unachievable within the input constraints (i.e. (4.88) is satisfied everywhere except where U is a
strict subset of µrcbf). Since hdock is constructed with Φ satisfying condition (4.26), the constraint on
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the maximization in (4.95) will never require hdock to decrease at a rate that is unachievable within
the input constraints. Thus, the maximization in (4.95) is always feasible. For this simulation, I let
wu, wx be random bounded disturbances. The resultant trajectory is shown in Fig. 4.16, the altitude
above Ceres is shown in Fig. 4.17, and the control inputs are shown in Fig. 4.18. As expected, the
control inputs always remained within the allowable set U , and the spacecraft achieved landing in
3236 seconds with κ̇(tf , x(tf )) = 1.46 m/s < γ2.

The second problem sought for a chaser spacecraft to dock with a target spacecraft in a 400
km altitude circular Earth orbit. Suppose that the chaser coordinates relative to the target are
x1, x2 ∈ R and follow the Hill-Clohessy-Wiltshire dynamics [8]

ẋ1

ẋ2

ẍ1

ẍ2

 =


0 0 1 0

0 0 0 1

3n2 0 0 2n

0 0 −2n 0



x1

x2

ẋ1

ẋ2

+


0

0

u1

u2

+


wx,1

wx,2

wu,1

wu,2

 (4.96)

with n = 0.00113 rad/s. Let U = {u ∈ R2 | ∥u∥∞ ≤ ū} where ū = 0.082 m/s2, wu,max =

0.002 m/s2, and wx,max = 0.001 m/s. For this scenario, suppose that the chaser is required to dock
along a particular docking axis â = [0, 1]T, starting from behind the target (i.e. x2(t0) < 0).
First, let κ = x2 encode the distance from the docking point, and let hdock be a function of κ as
in (4.85) using Φ(λ) = −ũ1λ where ũ1 = 0.057 m/s2. Let γ1 = 0.07 m/s and γ2 = 0.12 m/s, so
δ = 0.0072. Again, let αw(λ) = kaxisλ, where condition (4.91) implies kaxis = 25. Next, to ensure
convergence along the docking axis, define κright = x1−∆ and κleft = −x1−∆, where the tolerance
∆ = 0.03 m. Then define the CBFs hright and hleft as functions of κright and κleft, respectively, as
in the prior form of RCBF (4.83) using Φ(λ) = −ũ0λ where ũ0 = 0.021 m/s2. For these two
constraints, I used the RCBF h in (4.27),(4.83) discussed prior to this case study, instead of the
relaxed RCBF hdock in (4.85), as I want to ensure that the cross-track tolerance ∆ is never violated.
For these two RCBFs, I applied the class-K functions αright(λ) = αleft(λ) = kctλ with kct = 200.
These three constraints are visualized in Fig. 4.14 and the complete two-spacecraft scenario is
visualized in Fig. 4.19. Finally, I imposed a velocity constraint hvel(t, x) = ∥[ẋ1, ẋ2]∥∞ − vmax

with vmax = 10 m/s and using αvel(λ) = kvelλ with kvel = 20. Define

unom(t, x) =
[
αw(−hdock(·))W (·)−W (·)− ∂thdock(·)

−∇hdock(·)f(·)
]
∇hdock(·)g(·)/∥∇hdock(·)g(·)∥2 − kpx1 (4.97)
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Figure 4.16: Ceres Landing Trajectory. Trajectory of the spacecraft as it lands on Ceres
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Figure 4.17: Ceres Landing Altitude versus Time. Altitude of the spacecraft as it lands on Ceres
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Figure 4.18: Ceres Landing Control Inputs. Control inputs of the spacecraft as it lands on Ceres
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Figure 4.19: Satellite Docking Target and Chaser Visualization. Visualization of the docking cylin-
der (green) fixed to the target spacecraft (larger spacecraft) and a chaser spacecraft (smaller space-
craft) near the end of its docking maneuver
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Figure 4.20: Satellite Docking In-Track Distance. Distance between spacecraft along docking axis
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Figure 4.21: Satellite Docking Cross-Track Distance. Distance between spacecraft orthogonal to
docking axis
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Figure 4.22: Satellite Docking Control Inputs. Control inputs of the chaser spacecraft

where kp = 0.1. I then applied the controller

u(t, x) =

argminu∈µrcbf,dock∩µrcbf,right∩µrcbf,vel
∥u− unom(t, x)∥2 hleft(t, x) > 0

argminu∈µrcbf,dock∩µrcbf,right∩µrcbf,left∩µrcbf,vel
∥u− unom(t, x)∥2 hleft(t, x) ≤ 0

.

Note that the controller in (4.98) is broken into two cases because most initial conditions start
outside the (narrow) docking cylinder, so only one of the RCBFs hright, hleft will be initially non-
positive. In this case, it held that hright(t0, x(t0)) ≤ 0. The term −kpx1 of unom works to drive the
spacecraft close to the docking axis, and once it is sufficiently close, the control law (4.98) applies
both the hright and hleft RCBF conditions. Meanwhile, the first term of unom in (4.97) satisfies con-
dition (4.88) to ensure docking occurs in finite time as in Theorem 4.22, and the quadratic program
in (4.98) ensures safety and input constraint satisfaction. Note that ũ1 and ũ0 were chosen so that
(4.70) is strictly satisfied for each Φ. This results in the QPs in (4.98) being strictly feasible and
therefore locally Lipschitz continuous in x [199, Thm. 2.1].

A docking simulation with random bounded disturbances is shown in Figs. 4.20-4.21 and the
control inputs are shown in Fig. 4.22. A video of the sequence is available at https://youtu.
be/RoByiSD__jo. Docking occurred within the constraints in 1153 seconds with a terminal
velocity of κ̇(tf , x(tf )) = 0.11 m/s ∈ [γ1, γ2]. Note that x1 in Fig. 4.21 converged quickly to
x1 ∈ [−∆,∆], and then spent a lot of time near x1 = ∆. This is because the uncontrolled
dynamics in (4.96) tend to cause x1 to increase. The proportional control law −kpx1 in (4.97)
does not adequately account for these dynamics, so instead the safety constraint h0,r ensures that
x1 ≤ ∆ for all time.

4.7.5 Conclusions on Docking and Other Tight Tolerance Specifications

This section has demonstrated how RCBFs introduce a margin on how close system trajecto-
ries can come to the boundary of the CBF set. In response to this, I then developed a method
for tuning this margin and applied it to guaranteeing the finite-time execution of a landing and
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docking maneuver with a terminal velocity inside a specified interval in the presence of bounded
matched and unmatched disturbances. While the focus of this case study was spacecraft docking,
the observations that

1. RCBFs limit the set of reachable states under certain disturbances, and

2. This shrinking of the CBF set can be tuned

are generally applicable to any system. In addition to demonstrating a solution to this specific
problem, I hope that this section encourages the reader to think about problems like satellite dock-
ing as set-based specifications. In a conventional docking control design, one would typically
design a controller for a particular nominal trajectory and then verify that under expected distur-
bance bounds, the set of all possible trajectories (or, more likely, a finite number of representative
test trajectories) stays within the tolerances of the nominal trajectory. By contrast, the approach
in this section did not require any nominal trajectory, and instead worked directly upon the set of
trajectories defined as acceptable. This allowed me to prove a priori (without any test trajecto-
ries) that trajectories would stay within this set. This perspective, and the tuning of asymptotically
convergent surfaces enabled by (4.61), are powerful control design tools.
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CHAPTER 5

Sampled-Data Implementation of Control Barrier
Functions

This chapter is concerned with implementing CBFs under sampled-data control laws. While
the prior chapters considered entirely continuous-time systems, in practice, most modern control
laws are implemented on computers, which can only sample the system state at some maximum
frequency. Often, this sampling frequency is fast enough to well approximate continuous-time
behavior. However, most spacecraft outside low Earth orbit require radiation hardened equipment,
which substantially decreases processing speed. Whereas factory robots may recompute control
inputs at 100 Hz or quicker, spacecraft are more likely to run between 1 Hz and 10 Hz update
cycles. Between controller samples, the system continues to evolve in continuous time, but the
controller cannot measure this evolution until the next sample, so the control input is fixed in
a Zero-Order-Hold (ZOH) fashion. With such long delays between control input updates, it is
important to consider these ZOH dynamics when implementing a safety-critical system.

This chapter is organized into three parts that address different aspects of the “sampled-data
CBF problem”. In Section 5.1, I present some preliminary work on 1) implementing ZOH con-
trollers similar to (2.9), and 2) reducing the conservatism of these controllers. As I will show,
the state of the art at the beginning of this research used extremely conservative approximations
for the system evolution between controller updates, and these approximations were poorly suited
to applications at 10 Hz or slower. Section 5.1 is intended as an overview of the “sampled-data
CBF problem” and various solutions to it. Next, Section 5.2 presents the “robust sampled-data
CBF problem” and the “robust high relative-degree sampled-data CBF problem” that builds upon
the best-performing of the results in Section 5.1. Section 5.2 also considers a case study of con-
strained satellite attitude control in detail. Lastly, Section 5.3 presents some tools for the related
problem of sampled-data control with impulsive actuators instead of ZOH actuators. While these
impulsive actuators lead to a hybrid system model, the principal question is still whether the sys-
tem is safe between control impulses, and thus the analysis is very similar to the analysis for ZOH
actuators.
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5.1 Various Methods to Ensure Set Invariance with Zero-
Order-Hold Control Laws

5.1.1 Introduction to Sampled-Data CBFs

Quadratic Programs (QPs) utilizing Control Barrier Functions (CBFs) have been used for
safety-critical control applications across disciplines, including vehicle control [29, 129], bipedal
robots [30, 84], mechanical hands [119], and multi-agent systems [36]. Various authors have devel-
oped CBF-based set invariance conditions that apply to both continuous-time [29, 36, 84, 119] and
discrete-time [30, 128, 129] systems. In practice, physical systems evolve in continuous time under
controllers that are implemented in discrete time, such as Zero-Order-Hold (ZOH) controllers with
fixed time-step. One can easily construct counter-examples showing that the control laws devel-
oped from the continuous-time CBF condition in [29, 36, 84] are no longer provably safe when the
controller is executed in discrete steps, as visualized in Fig. 5.1. On the other hand, a controller im-
plemented using only discrete-time CBFs may not satisfy the continuous safety condition between
time steps [78], as illustrated by the red trajectory in Fig. 5.1.

Recently, [119] proposed a method for ensuring satisfaction of the continuous-time CBF condi-
tion using a ZOH control law by bounding the time derivative of the CBF between time steps. The
method is extended in [124] to multi-agent systems in the presence of adversaries and uncertainty.
The authors in [31] propose a similarly motivated approach, which also addresses uncertainty and
input delay, using reachable set theory. In all of these papers, certain safe states might be cast
unreachable, or excessive control inputs might be used to avoid unsafe regions.

This section studies several alternative conditions for forward invariance of safe sets under
ZOH controllers. I begin by defining two types of margins, the controller margin and the physical

margin, to compare the conservatism of the conditions developed. In Section 5.1.3.1, I then present
extensions to the approaches in [31, 119, 124] that reduce conservatism as measured by these
margins, while similarly relying on proving that the continuous-time CBF condition is always
satisfied. Next, in Section 5.1.3.2, I instead approach the problem starting from discrete-time CBF
conditions such as in [30, 195], and develop new sufficient conditions on the forward invariance
of a CBF set under ZOH controllers. Finally, I present simulations using the existing and new
conditions on an obstacle-avoidance problem for a unicycle agent, and on a spacecraft attitude-
control problem. The simulations demonstrate how the reduced conservatism of the proposed
approaches enables both the achievement of tight tolerance mission objectives (similar to how I
tuned margins for disturbances in Section 4.7) and the ZOH application of CBFs under time-steps
that were not possible using the method in [119, 124].
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Figure 5.1: Illustration of Common CBF Sampling Outcomes. Illustration of CBF set and possible
trajectories over a simple time-step [0,∆t] from some point x(0) = x0. If one simply applies the
conventional CBF condition ∂h(x)

∂x
(f(x) + g(x)u) ≤ α(−h(x)) only at the controller sample times

(instead of at all times continuously), then any of these three trajectories may occur. The black
trajectory remains in the CBF set for the entire interval. The red trajectory is safe at the beginning
and end of the interval, but becomes unsafe between samples (this also occurs with conditions such
as those in [30, 128, 129]). The yellow trajectory exits the CBF set and does not return before the
next sample.

5.1.2 Preliminaries

5.1.2.1 Notations

In addition to the notations in Section 2.1, let Br(x) denotes the closed ball centered at x of
radius r. For a matrix A ∈ Rn×m, let ∥A∥ denote the matrix-induced 2-norm of A. The function
wrapπ(λ) wraps λ to [−π, π]. For a given dynamical system, let R(x0, T ) denote the set of states
reachable from some x0 ∈ Rn in times 0 ≤ t < T . This section also makes use of the Lie-
derivative notations explained in Section 3.2.1.

5.1.2.2 Model and Problem Formation

In this section, I return to considering time-invariant systems and CBFs, so consider the model

ẋ = f(x) + g(x)u , (5.1)

with state x ∈ X ⊆ Rn, control input u ∈ U ⊂ Rm where U is compact, and functions f :

X → Rn and g : X → Rn×m. Assume that f and g are locally Lipschitz continuous. Define
umax ≜ maxu∈U ∥u∥.

Let h : X → R be a continuously differentiable function and further assume that h has locally
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Lipschitz continuous derivatives. Define the time-invariant setH as

H ≜ {x ∈ Rn | h(x) ≤ 0} . (5.2)

In this section, I call h a “CBF”, andH a “CBF set”, but I note that this section does not make use
of any formal definition of CBF. That is, h in this section is simply any function that defines a set
H as in (5.2). For now, I call h a CBF for consistency of terminology, and in Section 5.2, I will
present a formal definition of “ZOH-CBF” analogous to the Robust CBF in Definition 4.2.

For a continuous control law u : X → U , the problem of rendering H forward invariant may
be solved using any of Theorems 2.2, 2.6, 2.8. When applied to a QP as in (2.9), this leads to a
condition of form

Lfh(x(t)) + Lgh(x(t))u(x(t)) ≤ α(−h(x(t)),∀t ∈ T (5.3)

where α ∈ Ke and T = [t0, tf ] is the time domain of some trajectory. Without loss of generality,
let t0 = 0. Here, I write the CBF condition (5.3) in terms of time t ∈ T instead of states x ∈ X
(as was done in (2.5) and (2.6)), because this will better align with the ZOH extensions of (5.3) in
this section.

To apply the theorems in Section 2.3.2, one must ensure that (5.3) is satisfied along x(t) for all
t ∈ T . However, suppose instead that the state x is only measured discretely (and thus u(x) is
updated discretely too) at times tk = kT, k ∈ Z≥0 for a fixed time-step T ∈ R>0. Consider a ZOH
control law satisfying

uzoh(t) = uk ≜ u(xk), ∀t ∈ [tk, tk+1) , (5.4)

where u : X → U and xk ≜ x(tk), ∀k ∈ Z≥0. Note that uniqueness of the maximal closed-loop
solution x(t) (and hence of the sequence xk) under such a control law uzoh for a compact set U is
guaranteed by [212, Thm. 54]. If one applies a control law similar to (2.9) with sampling as in
(5.4), then (5.3) is only guaranteed to be satisfied at tk, not necessarily on (tk, tk+1). This discrete
satisfaction of (5.3) is not sufficient to guarantee forward invariance ofH. Thus, this section seeks
a control-affine condition similar to (5.3) under which safety can be guaranteed when the control
input is updated as in (5.4). This is summarized in the following problem statement:

Problem 5.1. For a function h : X → R, design a function ϕ : R>0 × X → R such that any

bounded, piecewise-constant control input uzoh of the form (5.4) satisfying

Lfh(xk) + Lgh(xk)uk ≤ ϕ(T, xk), (5.5)

at the sampled states xk for all k ∈ Z≥0 renders H forward invariant along the closed-loop
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trajectories of (5.1).

I call (5.5) the ZOH-CBF condition. The following result, adapted from [119], provides one form
of the function ϕ that solves Problem 5.1 (see also [124]).

Lemma 5.1 ([119, Thm. 2]). Let the set H in (5.2) be compact and α ∈ K be locally Lipschitz

continuous. Let lLfh, lLgh, lα(h) be the Lipschitz constants of Lfh, Lgh, α(−h), respectively. Then

the function ϕg0 : R>0 × Rn, defined as

ϕg0(T, x) ≜ α(−h(x))− l1∆

l2

(
el2T − 1

)
, (5.6)

solves Problem 5.1, where l1 = lLfh + lLghumax + lα(h), l2 = lLfh + lLghumax, and ∆ =

supx∈H,u∈U ∥f(x) + g(x)u∥.

Note that (5.3) and (5.5) are sufficient, not necessary, conditions for forward invariance [28,
Rem. 12]. In practice, the form of the function ϕg0 in (5.6) is conservative in the sense that many
safe trajectories with ZOH controllers may fail to satisfy (5.5) for ϕ = ϕg0, as illustrated in simula-
tion in Section 5.1.4. The work in the Section 5.1.3 is devoted to developing alternative solutions
to Problem 5.1 that are less conservative compared to (5.6). I first introduce two metrics to quantify
the conservatism of solutions to Problem 5.1 so as to better compare the following solutions.

5.1.2.3 ZOH Comparison Metrics

This section only considers functions ϕ of the form:

ϕ(T, x) = α(−h(x))− ν(T, x) , (5.7)

where α is a class-K function that vanishes as h(x) → 0, and ν : R>0 × Rn → R is a function of
the discretization time-step T and the state x that does not explicitly depend on h. This motivates
the first metric of comparison, defined as follows.

Definition 5.1 (Controller margin). The function ν in (5.7) is called the controller margin.

Note that ν is the difference between the right-hand sides of conditions (5.3) and (5.5), and is
a bound on the discretization error that could occur between time steps. At a given state x ∈ H,
a larger controller margin will necessitate a larger control input to satisfy (5.5). A sufficiently
large controller margin might also necessitate inadmissible control inputs, and thus make a CBF
no longer applicable to a system. Thus, it is desired to design functions ϕwhose controller margins
are small. For a given T , I say that a solution ϕa less conservative than ϕb if the controller margins
of ϕa and ϕb satisfy νa(T, x) ≤ νb(T, x), ∀x ∈ H.
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The controller margin is called local (denoted as νl(T, x)) if ν varies with x, and global (denoted
as νg(T )) if ν is independent of x. The superscripts l and g, respectively, denote the correspond-
ing cases, and ν is denoted with the same sub/superscripts as the corresponding ϕ function. For
instance,

νg0(T ) =
l1∆

l2
(el2T − 1) (5.8)

is the controller margin of ϕg0 defined in (5.6), and is a global margin because it is independent of
x.

Note that the continuous-time CBF condition (5.3) imposes that the time derivative of h van-
ishes as h approaches the boundary of the safe set. In contrast, the ZOH-CBF condition (5.5)
causes the time derivative of h to vanish at a manifold in the interior of the safe set. Inspired from
this, I define a second metric of comparison, which captures the maximum distance between this
manifold and the boundary of the safe set.

Definition 5.2 (Physical margin). For a solution ϕ of Problem 5.1 with the form (5.7), the physical
margin is the function δ : R>0 → R defined as

δ(T ) ≜ sup
{x∈H | ϕ(T,x)=0}

−h(x) . (5.9)

Intuitively, δ quantifies the effective shrinkage of the safe set due to the error introduced by discrete
sampling. The condition (5.5) may exclude closed-loop trajectories from entering the set Hδ ≜

{x ∈ X | −δ ≤ h(x) ≤ 0}, while the condition (5.3) does not (though condition (5.3) still limits
the rate at which trajectories can approach this set, as discussed in Section 4.7). A smaller physical
margin δ implies a smaller setHδ where system trajectories may not be allowed to enter.

Remark 5.1. The physical margin δ depends on the choice of α ∈ K, but is always lower bounded.

To capture this, define

δinf(T ) ≜ inf
α∈A

δ(T ) , (5.10)

where A ⊆ K is the set of considered α (e.g. Lischitz continuous α in Lemma 5.1). Note that δinf

may be unachievable. For instance, the α which yields the physical margin-infimum for ϕg0 is a

linear function with an unbounded slope.

The goal of Section 5.1.3 is to develop solutions to Problem 5.1 which have lower controller
and/or physical margins than ϕg0.

5.1.3 Three New Methods

This section presents three solutions to Problem 5.1, in both local and global forms. Sec-
tion 5.1.3.1 presents solutions that follow from the continuous-time CBF condition (5.3), while
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Section 5.1.3.2 presents conditions inspired by discrete-time CBF conditions as in [30, 195].

5.1.3.1 Extensions to Existing Literature

First, I note that in the proof of Lemma 5.1 in [119], the term ∆
l2
(el2T − 1) serves as an upper

bound on ∥x(t) − xk∥, t ∈ [kT, (k + 1)T ). The bound is exponential, because xk is treated as a
solution to a dynamical system in [119]. Noting that xk is a constant, the following lemma presents
an alternative upper bound.

Lemma 5.2. Let ∆ = supx∈D,u∈U ∥f(x)+g(x)u∥ whereD ⊆ Rn. Then for any xk = x(kT ) ∈ D,

the closed-loop trajectories of (5.1) satisfy ∥x(kT + τ) − xk∥ ≤ τ∆ for all τ ∈ R≥0 such that

x(kT + τ) ∈ D.

Proof. The proof follows by inspection. ■

That is, the exponential upper bound in (5.6) can be immediately replaced with a linear bound. For
very small time-steps T , this will make a minor difference, but the impact can be substantial for
slower updating systems like spacecraft and/or systems with large l2.

Second, I note that νg0 is a global margin. The ZOH-CBF condition (5.5) with ϕ of the form
(5.7) can be made less conservative by using local margins instead of global margins. To this end,
let R(xk, T ) denote the set of states reachable from some xk ∈ H in times t ∈ [kT, (k + 1)T ). I
now present the first main result of this section.

Theorem 5.3. Consider the set H defined in (5.2) and let α ∈ K be locally Lipschitz continuous.

Let lLfh(x), lLgh(x), lα(h)(x) be the Lipschitz constants of Lfh, Lgh, α(−h) over the set R(x, T ),
respectively. Then the function ϕl1 : R>0 × Rn, defined as

ϕl1(T, x) ≜ α(−h(x))− l1(x)T∆(x)︸ ︷︷ ︸
νl1(T,x)

, (5.11)

solves Problem 5.1, where l1(x) = lLfh(x) + lLgh(x)umax + lα(h)(x), and ∆(x) =

supz∈R(x,T ),u∈U ∥f(z) + g(z)u∥.

Proof. For all t ∈ [kT, (k + 1)T ), k ∈ Z≥0, it holds that

Lfh(x(t)) + Lgh(x(t))uk = Lfh(xk) + Lgh(xk)uk − α(−h(xk))

+ [Lfh(x(t))− Lfh(xk) + (Lgh(x(t))− Lgh(xk))uk
− (α(−h(x(t)))− α(−h(xk)))] + α(−h(x(t)))

≤ Lfh(xk) + Lgh(xk)uk − α(−h(xk)) + (lLfh(xk)+
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+ lLgh(xk)umax + lα(h)(xk))∥x− xk∥+ α(−h(x(t)))
(5.11)
≤ Lfh(xk) + Lgh(xk)uk − ϕl1(T, xk) + α(−h(x(t)))

(5.5)
≤ α(−h(x(t))) .

Thus, under (5.5) with ϕ = ϕl1, it follows that ḣ(x(t)) = Lfh(x(t)) + Lgh(x(t))uk ≤ α(−h(x(t))
for all t ∈ [kT, (k + 1)T ). Since this holds for all k ∈ Z≥0, it follows that ḣ(x(t)) ≤ α(−h(x(t)))
for all t ∈ T . By assumption, f , g, and ∂h

∂x
are locally Lipschitz continuous, and u is constant over

[tk, tk+1), so all assumptions of Theorem 2.6 are satisfied and thus the set H is rendered forward
invariant. Therefore, the function ϕl1 solves Problem 5.1. ■

Note that Theorem 5.3 requires knowledge of the local Lipschitz constants. If these constants
are unavailable (e.g. due to computation constraints), it is still possible to improve upon Lemma 5.1
with the global margin function introduced in the following result.

Corollary 5.4. Under the assumptions of Lemma 5.1, and with l1,∆ as in Lemma 5.1, the function

ϕg1 : R>0 × Rn, defined as

ϕg1(T, x) ≜ α(−h(x))− l1T∆︸ ︷︷ ︸
νg1 (T )

, (5.12)

solves Problem 5.1. Furthermore, for the same α, it holds that νl1(T, x) ≤ νg1(T ) < νg0(T ),∀x ∈
H,∀T ∈ R>0.

Proof. Observe that (5.11) reduces to (5.12) for l1 = supx∈H l1(x) and ∆ = supx∈H ∆(x), so
it holds that νl1(T, x) ≤ νg1(T ),∀x ∈ H,∀T ∈ R>0 for the same α. It follows that ϕg1(T, x) ≤
ϕl1(T, x). Therefore, satisfaction of (5.5) with ϕg1 implies satisfaction of (5.5) with ϕl1, and so by
Theorem 5.3, ϕg1 also solves Problem 5.1.

From Taylor expansion, it holds that T < 1
λ
(eλT − 1),∀λ > 0, so it follows that νg1(T ) <

νg0(T ), ∀T ∈ R>0. ■

Thus, both ϕl1 and ϕg1 reduce conservatism compared to ϕg0.
The physical margins of ϕl1 and ϕg1 are then δl1(T ) = α−1(supx∈H,ϕl1(T,x)=0 l1(x)T∆(x)) and

δg1(T ) = α−1(l1T∆), respectively. Since α is assumed locally Lipschitz continuous, there exists
β ∈ R>0 and a neighborhood N ⊆ R≥0 of the origin such that α(λ) ≤ βλ, ∀λ ∈ N . It follows
that α−1(λ) ≥ 1

β
λ,∀λ ∈ N , so δl1 and δg1 vary linearly with T , as does δg0 .

To reduce conservatism further, I next define the following error term, inspired by [31], repre-
senting the difference between (5.3) evaluated at two points x, z ∈ X for a given input u:

υ(x, z, u) ≜ Lfh(z)− Lfh(x) + (Lgh(z)− Lgh(x))u− α(−h(z)) + α(−h(x)) . (5.13)
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The following result immediately follows.

Theorem 5.5. Consider the setH defined in (5.2) and let α ∈ K. Then the function ϕl2 : R>0×Rn

as follows solves Problem 5.1:

ϕl2(T, x) ≜ α(−h(x))− sup
z∈R(x,T ),u∈U

υ(x, z, u)︸ ︷︷ ︸
νl2(T,x)

. (5.14)

The proof follows identical logic to the proof of Theorem 5.3. Note that α in Theorem 5.5 is no
longer assumed to be locally Lipschitz continuous, as Theorem 5.5 no longer requires knowledge
of the Lipzchitz constant of α and as this is not a condition of Theorem 2.6. Using the same
approach relating ϕg1 and ϕl1, I then define the function ϕg2 for which the following result can be
easily shown.

Corollary 5.6. Suppose that the conditions of Theorem 5.5 hold. Then the function ϕg2 : R>0×Rn

as follows solves Problem 5.1:

ϕg2(T, x) ≜ α(−h(x))− sup
y∈H,z∈R(y,T ),u∈U

υ(y, z, u)︸ ︷︷ ︸
νg2 (T )

. (5.15)

Remark 5.2. Using l1(x),∆(x) as defined in Theorem 5.3, and for the same α ∈ K, it follows that

υ(x, z, u) ≤ l1(x)T∆(x),∀z ∈ R(x, T ),∀u ∈ U ,∀x ∈ H. Thus, for any T ∈ R>0, the controller

margins satisfy νl2(T, x) ≤ νl1(T, x),∀x ∈ H, and it follows that νg2(T ) ≤ νg1(T ).

5.1.3.2 Alternative Method Based On Second Order Dynamics

The approaches discussed so far, as well as in [31, 119, 124], have relied on showing satisfaction
of (5.3) to prove safety. In this section, rather that enforcing (5.3) between sample times, I instead
start from a discrete-time CBF condition and apply it to an approximation of the continuous-time
dynamics. One sufficient discrete-time CBF condition, as shown in [30], is

h(xk+1)− h(xk) ≤ −γh(xk), ∀k ∈ Z≥0 (5.16)

for some γ ∈ (0, 1]. In general, this condition is not control-affine. However, its linear approxima-
tion is control-affine and thus amenable to inclusion in a QP. The error of a linear approximation of
a twice differentiable function is bounded by the function’s second derivative. For brevity, define

ψ(x, u) ≜
∂ḣ(x, u)

∂x
(f(x) + g(x)u) , (5.17)
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which represents the second derivative of h between time steps. Since f, g, ∂h
∂x

are assumed locally
Lipschitz continuous, ψ is defined almost everywhere. Define the bound

ζ(T, x) ≜ max

{(
sup

z∈R(x,T )\Z,u∈U
ψ(z, u)

)
, 0

}
, (5.18)

where Z is any set of Lebesgue measure zero (to account for CBFs that are not twice differentiable
everywhere). I now state the first solution to Problem 5.1 in this chapter that does not rely on
satisfying (5.3) along x(t), ∀t ∈ T .

Theorem 5.7. The function ϕl3 : R>0 × Rn, defined as

ϕl3(T, x) ≜ −
γ

T
h(x)− 1

2
Tζ(T, x)︸ ︷︷ ︸
νl3(T,x)

(5.19)

solves Problem 5.1, for any γ ∈ (0, 1].

Proof. For k ∈ Z≥0, let t = kT + τ, τ ∈ [0, T ]. For any x(t) ∈ R(xk, T ), uzoh as in (5.4) with
uk ∈ U , the time derivative ḣ satisfies

ḣ(x(t), uk) = ḣ(x(tk), uk) +

∫ kT+τ

kT

ḧ(x(σ), uk)dσ

= ḣ(x(tk), uk) +

∫ kT+τ

kT

ψ(x(σ), uk)dσ

(5.18)
≤ ḣ(xk, uk) +

∫ kT+τ

kT

ζ(T, xk)dσ

= ḣ(xk, uk) + τζ(T, xk). (5.20)

Similarly, h satisfies

h(x(t)) = h(x(tk)) +

∫ kT+τ

kT

ḣ(x(σ), uk)dσ

(5.20)
≤ h(x(tk)) +

∫ kT+τ

kT

(
ḣ(xk, uk) + τζ(T, xk)

)
dσ

= h(xk) + ḣ(xk, uk)τ +
1

2
τ 2ζ(T, xk)

(5.19)
≤ h(xk) + ϕl3(T, x)τ +

1

2
τ 2ζ(T, xk)

= h(xk)−
γτ

T
h(xk)−

τT

2
ζ(T, xk) +

τ 2

2
ζ(T, xk)

=
(
1− γτ

T

)
h(xk) +

τ

2
ζ(T, xk) (τ − T ) . (5.21)
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By definition in (5.18), ζ(T, xk) ≥ 0. Suppose h(xk) ≤ 0. Then both terms of (5.21) are non-
positive for any τ ∈ [0, T ], so h(x(t)) ≤ 0,∀t ∈ [kT, kT + T ], and thus, h(xk+1) ≤ 0. Hence,
given x(0) such that h(x(0)) ≤ 0 and applying (5.5) at every time step with ϕ = ϕl3, it follows
by induction that h(x(t)) ≤ 0,∀t ∈ T , and thus H is forward invariant along the closed-loop
trajectories of (5.1). Therefore, the function ϕl3 solves Problem 5.1. ■

Note that Theorem 5.7 did not invoke any of Theorems 2.2, 2.6, 2.8. One advantage of working
with ZOH controllers (and discrete-time systems in general) is that many of the peculiarities of
existence and uniqueness in continuous-time systems no longer matter.

Similar to the previous cases, I define the global version ϕg3 as follows.

Corollary 5.8. Under the assumptions of Theorem 5.7, the function ϕg3 : R>0 × Rn as follows

solves Problem 5.1:

ϕg3(T, x) ≜ −
γ

T
h(x)− 1

2
T sup
z∈H

ζ(T, z)︸ ︷︷ ︸
νg3 (T )

. (5.22)

Next, I study how the solutions ϕl3, ϕ
g
3 compare to prior methods, by first comparing the con-

troller margins as follows.

Theorem 5.9. Under the assumptions of Theorem 5.7, the controller margins for ϕl3, ϕ
g
3 and ϕl1, ϕ

g
1

satisfy νl3(T, x) ≤ 1
2
νl1(T, x) and νg3(T ) ≤ 1

2
νg1(T ), ∀x ∈ H,∀T ∈ R>0.

Proof. Since f and g are differentiable almost everywhere, their Lipschitz constants are the norms
of their gradients. Thus,

νl3(T, x) =
T

2
ζ(T, x) =

T

2
max

{
sup

z∈R(x,T )\Z,u∈U
ψ(z, u), 0

}

=
T

2
max

{
sup

z∈R(x,T )\Z,u∈U

∂[Lfh(z) + Lgh(z)u]

∂z
ż, 0

}

≤ T

2
sup

z∈R(x,T )\Z,u∈U

(∥∥∥∥∂[Lfh(z)]∂z

∥∥∥∥+ ∥∥∥∥∂[Lgh(z)]∂z

∥∥∥∥umax

)
∥ż∥

≤ T

2

(
lLfh(x) + lLgh(x)umax

)
∆(x)

=
1

2
νl1(T, x)−

1

2
lα(h)(x)T∆(x) (5.23)

The inequality for the global margins follows immediately. ■

Thus, solutions ϕg1, ϕ
g
2 are provably less conservative than the existing solution ϕg0, and ϕg3 is

provably half as conservative as ϕg1 (and similarly for the local margins). It is difficult to analyti-
cally compare ϕl2, ϕ

g
2 with ϕl3, ϕ

g
3, so I address this via simulations in Section 5.1.4.
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Lastly, I consider the physical margins. Since α ∈ K from (5.7) is specified as α(λ) = γ
T
λ

in (5.19),(5.22), the physical margin of ϕg3 is δg3(T ) = T
γ
νg3(T ) = T 2

2γ
supx∈H\Z,u∈U ψ(x, u), and

similarly δl3(T ) = T 2

2γ
supx∈H\Z,ϕl3(T,x)=0,u∈U ψ(x, u). This implies δl3, δ

g
3 vary quadratically with

T , while δg0 , δ
l
1, δ

g
1 vary only linearly with T . Note that choosing α(λ) = γ

T
λ does not similarly

reduce δg0 , δ
l
1, δ

g
1 , δ

l
2, δ

g
2 , because lα(h) would increase inversely with T . Thus, reducing step size is

far more effective at reducing physical margin when ϕl3 or ϕg3 is used.

5.1.4 Simulation Results and Comparison

I implemented the methods in Section 5.1.3 on two systems. First, I tested the unicycle system,
described by

ẋ1 = u1 cos(x3), ẋ2 = u1 sin(x3), ẋ3 = u2, (5.24)

where [x1, x2]
T is the position, x3 is the orientation, and u1,u2 are the linear and angular velocity

of the agent; the agent’s task was to move around an obstacle at the origin using the CBF [34]

h = ρ−
√
x21 + x22 − (wrapπ(x3 − σ arctan 2(x2, x1)))2 , (5.25)

where ρ is the radius to be avoided, and σ is a shape parameter. Second, I tested a spacecraft
pointing system (assuming unit moment of inertia in every direction), described by

ṗ = ω × p, ω̇ = u, (5.26)

where p ∈ R3, ∥p∥ ≡ 1, is a pointing vector, ω ∈ R3 is the angular velocity, and u ∈ R3 is the
angular acceleration. The system was tasked with reorienting an instrument while pointing away
from an inertially-fixed vector using the CBF

h = s · p− cos(θ) + µ(s · (ω × p))|s · (ω × p)| , (5.27)

where s ∈ R3, ∥s∥ ≡ 1, is a constant vector pointing to an object to be avoided, θ is the smallest
allowable angle, and µ is a shape parameter. I also constrained ∥ω∥∞ ≤ 0.2 (this can be done
easily by requiring ωi + Tui ≤ 0.2 for each i ∈ {1, 2, 3} in the QP), because otherwise the global
controller margins are unbounded.

Both systems were tested for T = 0.1. For functions ϕg0, ϕ
l
1, ϕ

g
1, ϕ

l
2, ϕ

g
2, I used α(λ) = λ, and

for ϕl3, ϕ
g
3, I used γ = 1. Notable parameters and the controller margins for the selected time-

step for both systems are listed in Table 5.1. The physical margins for various time-steps are
listed in Table 5.2. Note that δg,inf3 is less than δg,inf0 , δg,inf1 , δg,inf2 , which means that ϕl3 and ϕg3 will
allow the system trajectories to get closer to the boundary of the safe set than any of the other

129



Parameter Unicycle Spacecraft
Exclusion Zone ρ = 10 θ = π/5

Shape Parameter σ = 1 µ = 100

U
u1 ∈ [0, 5]

u2 ∈ [−0.25, 0.25]
∥u∥∞ ≤ 0.01

νg0(0.1) 1.316(10)50 14.20
νg1(0.1) 570.3 2.946
νg2(0.1) 0.6908 0.8815
νg3(0.1) 0.1319 0.1194

Table 5.1: Simulation parameters and global controller margins

Unicycle Spacecraft
T 0.1 0.01 0.001 0.1 0.01 0.001
δg,inf0 1.2(10)42 420 0.010 9.8 0.23 0.021
δg,inf1 0.54 0.054 0.0054 2.0 0.20 0.020
δg,inf2 0.53 0.053 0.0053 0.81 0.082 0.0082
δg,inf3 0.013 1.3(10)−4 1.3(10)−6 0.013 1.3(10)−4 1.3(10)−6

Table 5.2: Global physical margins for selected time-steps T

methods. Moreover, for the smaller values of T in Table 5.2, δg,inf3 varies quadratically with T ,
while δg,inf0 , δg,inf1 , δg,inf2 vary linearly with T . The agents used a controller of the form

u = argmin
u∈Uzoh

∥u− unom∥ (5.28)

where unom is a nominal control law that ignores the obstacle, and Uzoh ⊆ U is the set of control
inputs satisfying (5.5).

For the unicycle agent, the exact reachable sets R(xk, T ) were computed, and νl1, ν
l
2, ν

l
3 were

computed using online maximizations of l1(x),∆(x), υ(x, z, u), ψ(x, u) over these sets. For the
spacecraft system (and in general for nonlinear systems), these reachable sets are harder to compute
online, so I note that all preceding results still hold when R(xk, T ) is replaced with any superset
of R(xk, T ) (though this in principle increases conservatism). Also, by Lemma 5.2, R(xk, T ) ⊆
BT∆(xk). To this end, given Lipschitz constants lf , lg for functions f, g, respectively, an upper
bound for ∆ is

∆0(xk) ≜
∥f(xk)∥+ ∥g(xk)∥umax

1− (lf + lgumax)T
, (5.29)

assuming that the denominator of (5.29) is positive. Thus, the margins νl1,ν
l
2,ν

l
3 for the spacecraft

were computed using online maximizations over the superset BT∆0(xk)(xk). These maximizations

130



Figure 5.2: Unicycle Trajectories. The trajectories of the unicycle for 4 of the margin functions

took approximately 0.028, 0.026, and 0.018 seconds for νl1, ν
l
2, ν

l
3, respectively, for the unicycle,

and 0.058, 0.071, and 0.045 seconds, respectively, for the spacecraft on a 3.5 GHz computer using
MATLAB R2019b. For higher-dimensional systems, these online computations could limit the
applications of the local methods. Each global margin took under a minute to compute. I then
computed the states using the exact dynamics, and solved (5.28) using OSQP [196]. In total, 7 so-
lutions (ϕg0,ϕg1,ϕl1,ϕg2,ϕl2,ϕg3,ϕl3) to Problem 5.1 were tested. All simulation code for this section may
be found at https://github.com/jbreeden-um/phd-code/tree/main/2021/L-
CSS%20CBFs%20for%20Sampled%20Data%20Systems.

The trajectories for the two systems are plotted in Figs. 5.2-5.3, where the green markers are
the target locations. As expected, certain methods took wider arcs around the obstacles than others
based on the relative values of ν and δ. For the unicycle, only four methods are shown because
using ϕg0,ϕg1,ϕl1 resulted in the agent turning away from the target. Similarly for the spacecraft,
using ϕg0,ϕg1,ϕg2 eventually resulted in divergence from the target attitude as the QP was unable to
satisfy (5.5).

The instantaneously required controller margins ν for every method, computed for x(t) along
the ϕl3 trajectories from Figs. 5.2-5.3, are plotted in Figs. 5.4-5.5. As predicted by Theorem 5.9, the
green solid and dashed lines for controller margins νl1, ν

g
1 are always at least double (and generally

an order of magnitude greater than) the equivalent pink lines for νl3, ν
g
3 , respectively. The controller

margins νl2, ν
g
2 were also always larger than νl3, ν

g
3 , though this is not guaranteed by Theorem 5.9.

Interestingly, for the unicycle, the global margin νg3 was generally similar to or smaller than the
local margin νl2, whereas for the spacecraft, νg3 was larger than both νl1 and νl2. However, the
trajectories corresponding to ϕg3 still approached closer to the obstacles than those under ϕl1 and ϕl2
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Figure 5.3: Satellite Orientation Trajectories. The trajectories of the spacecraft for all 7 margin
functions
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Figure 5.4: Unicycle Controller Margins. Controller margins for the unicycle system
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Figure 5.5: Satellite Orientation Controller Margins. Controller margins for the spacecraft system
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Figure 5.6: Unicycle CBF Values. CBF values along the 4 unicycle trajectories in Fig. 5.2
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Figure 5.7: Satellite Orientation CBF Values. CBF values along the 7 spacecraft trajectories in
Fig. 5.3

in both Figs. 5.2-5.3 because ϕg3 has an order of magnitude smaller physical margin.
Finally, the CBF values during every simulation are shown in Figs. 5.6-5.7. These plots show

that the trajectories corresponding to ϕl3 and ϕg3 come within an order of magnitude closer to the
boundary than those for any of the other methods. The dashed lines in Figs. 5.6-5.7 also agree with
the theoretical physical margins listed in Table 5.2.

Noting these physical margins, I added a second constraint to the unicycle system that forced the
unicycle to navigate through a narrow corridor only 0.3 units wide, shown in Fig. 5.8. The unicycle
operating under ϕg3 or ϕl3 made it through the obstacles, while the best of the other methods (ϕl2)
could not, illustrating the importance of the physical margin.

5.1.5 Conclusions

This section has presented new conditions for ensuring safety in sampled-data systems that
provably reduce conservatism compared to earlier results. I introduced two metrics for quantifying
the margin in both the control input and in the effective shrinkage of the safe set. I then showed
that the proposed conditions have smaller margins compared to those in earlier studies, and demon-

133



Figure 5.8: Unicycle Trajectories with Two Obstacles. A simulation with two tightly-spaced ob-
stacles, in which controllers using margins ϕl3 and ϕg3 permit passage through the obstacles, while
the other functions force the agent to stop.

strated the improved performance of the proposed results via numerical case studies. Conservatism
in the numerical studies was reduced by at least as much as the theoretical results, and often by
multiple orders of magnitude compared to the prior work. In particular, the physical margin of
the last condition proposed varied quadratically with the discretization time-step, while that of the
existing approaches varied linearly. This allowed completion of objectives that were not possible
using other methods under the same time-step. Future work includes studying whether higher-
order approximations can further decrease conservatism, as will be partially elaborated upon in the
next section.

5.1.5.1 Remark About Class-K Functions

Theorem 5.9 only guarantees that the controller margin of νg3 will be at most half the controller
margin νg1 , yet in both simulations it is actually many magnitudes lower (the difference in the local
margins is not quite as stark, with the solid green and pink lines in Fig. 5.5 approaching a ratio
of 2 to 1 around t = 40). The reason for this is largely due to the second term involving lα(h) in
(5.23). If one chooses γ = 1 in (5.16), then (5.16) reduces to simply h(xk+1) ≤ 0. That is, there
is no class-K function in this expression. In continuous-time, the class-K function is important to
ensure a continuous control signal (as discussed in Section 4.4) and the associated implications for
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uniqueness of system solutions, but in discrete time, this function is unnecessary. The solutions
ϕl3 and ϕg3 are the only solutions in this section that make use of this fact. Since these solutions do
not include a class-K function (provided that γ = 1; one can still choose other γ ∈ (0, 1] if one
seeks to limit the system rate for other reasons), they also do not include a Lipschitz constant for
the class-K function. The elimination of this term is the most significant source of improvement
between νg1 and νg3 . For this reason, the following section will only discuss solutions that originate
from the condition h(xk+1) ≤ 0 without any additional bounds on the rate of increase of h.

5.2 Robust Zero-Order-Hold for Spacecraft Attitude Control

Now that I have presented various solutions to the “sampled-data CBF problem”, I now expand
upon the best of these solutions (i.e. (5.19) with γ = 1) to create a more complete framework for
CBFs under ZOH control laws and in the presence of disturbances. The ZOH controller margin
discussed in the prior section acts as a margin for what is not known (or rather what would be
too computationally expensive to predict) between time-steps, so adding an unknown disturbance
to the model (5.1) as in (4.1) is a natural extension. This leads to the “robust sampled-data CBF
problem”, which is the main topic of Section 5.2.4.

Another issue highlighted in Section 5.1 is that the condition (5.16) may demand control inputs
outside the allowable control set U . This was observed particularly for ϕg0 under the satellite simu-
lation in Section 5.1.4. However, while this error did not occur for ϕl3 and ϕg3 along the particular
trajectory simulated, Example 5.1 will show that even these improved solutions are subject to the
same deficiency. This is because (5.27) is an application of (4.17) to the high relative-degree con-
straint κ = s · p − cos(θ). Thus, Section 5.2.3 will also address the “robust high relative-degree
sampled-data CBF problem”. The solution to this problem is presented first, because the “robust
sampled-data CBF problem” is essentially a special case of the high relative-degree version of this
problem. At the end of both Section 5.2.3 and Section 5.2.4, I present formal definitions of the
properties of a “ZOH CBF”, analogous to Definition 2.14.

The following subsections contain a frightening amount of basic algebra and calculus. To
ground all of this theory in a practical application, a case study for spacecraft attitude control
(a more general version of (5.26)) is presented in several steps alongside the steps of the theory.
The section concludes with extensive simulations surrounding this case study.

5.2.1 Introduction to Spacecraft Attitude Control

This section extends the theory of CBFs to solve the problem of constrained spacecraft attitude
reorientation. At present, most spacecraft reorientations are accomplished either via shortest-path
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maneuvers, which can be easily implemented onboard a spacecraft, or else are pre-planned by
ground operators when more complex maneuvers are required. As the number of active spacecraft
increases, there is potential for reducing operating costs in the latter case by increasing spacecraft
autonomy, i.e. by computing maneuvers onboard without consulting ground operators. A common
scenario in which shortest-past maneuvers are not allowable is when a spacecraft is not permitted
to point sensitive instruments (body fixed vectors) at bright objects (inertially fixed vectors), or
equivalently, when a spacecraft is required to keep an instrument pointed in a specified direction.

The problem of constrained reorientation has been studied extensively, using methods includ-
ing path planners [221–230], model predictive controllers (MPC) [45, 231–234], sliding mode
controllers (SMC) [235–237], reference governors [44], and barrier functions [26, 27, 238–240].
It has also been studied using CBFs combined with path planning in [47], along with cursory
treatment using CBFs with controllers computed online in [83, 203, 241]. Compared to prior
approaches, this work develops a method that provably guarantees both state constraint (i.e. in-
strument pointing requirements are obeyed) and input constraint (i.e. maximum allowable torques
are not exceeded) satisfaction in the presence of bounded disturbances and under a sampled-data
control law. The final control law is the output of a 4-dimensional quadratic program that is compu-
tationally lightweight. These guarantees are particularly useful when designing SmallSat attitude
controllers, which often operate with infrequent ground contact, using undersized actuators (i.e.
tight input constraints), at low altitudes (i.e. large disturbances), at low control sampling frequen-
cies, and with limited computational capabilities.

To employ standard CBF terminology, I refer to the set of states with allowable separations
between all instruments and all bright objects, and with allowable angular rates, as the safe set,
which I assume to be nonempty at all times. The central problem is that of rendering trajectories
always inside the safe set from some viable set (see Definition 2.8) of initial conditions where this
problem is well-posed.

Early work on constrained reorientation in [26] developed a Lyapunov function for safe reori-
entation in terms of Euler angles, though this Lyapunov function may be nonconvex. The authors
in [221] noted that this same constraint could be expressed as a convex set of quaternions, and
[27, 238] developed a strictly convex Lyapunov function in terms of quaternions. The work in
[236, 237] added an angular velocity constraint and actuator-allocation algorithm to the same tech-
nique. The work in [240] expanded the technique to Modified Rodrigues Parameters, and proposed
a method for ensuring input constraint satisfaction. Note that while these Lyapunov functions re-
sulted in simple control laws that could be implemented online, none of these approaches consider
controller sampling, and these controllers can result in slow trajectories, as I will show in simula-
tion in Section 5.2.5.

An early path planning technique utilized a variant of Rapidly Exploring Random Trees to find
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safe paths in SO(3) space [230]. Later, path planning techniques using direct optimization along
with the quaternion constraint identified in [221] were developed in [221, 222, 226] and combined
with translational planning in [225], though these methods are potentially too computationally in-
tensive to implement online on a spacecraft processor. Related work in [223, 224, 228] discretized
the safe set to a finite set of nodes and used graph search techniques to plan paths between the
nodes. The maneuvers resulting from these techniques are safe but possibly inefficient due to
the discretization. The planners in [227, 229] add additional refinements to improve efficiency,
whereas the controller proposed in [47] executes a faster transition between the path nodes and
uses CBFs to keep the trajectory within a safe region around the pre-planned path. By comparison,
the approach employed in this work and in [27, 238] only keeps the state away from unsafe states
rather than in a neighborhood of a precomputed safe path as in [47].

MPC approaches to constrained reorientation, such as [45] and its extensions in [231, 232],
are generally special applications of path planning techniques. Similarly, the SMC approach in
[235–237] and the approximate optimal control via reinforcement learning in [239] are special ap-
plications of the barrier functions used in [27, 238]. While MPC and optimal control can provide
safety guarantees, in this work I seek a method that is less computationally intensive. The ref-
erence governor approach in [44] is notable because it developed an explicit control law without
path planning that is guaranteed to satisfy input constraints. However, few of the aforementioned
approaches explicitly consider disturbances, whereas there is extensive CBF literature on distur-
bance rejection [117, 118], and Chapter 4 developed multiple results on simultaneous disturbance
rejection and input constraint satisfaction. Finally, spacecraft often operate with digital controllers
with slow update cycles. Path planners and MPC can account for controller sampling given suffi-
ciently sophisticated models, while most Lyapunov methods cannot. On the other hand, margins
for controller sampling have also been considered in prior CBF literature such as [119] and Sec-
tion 5.1, which this section will now extend to also account for relative-degree 2 state constraints,
input constraints, and disturbance rejection.

Control Barrier Functions are a Lyapunov-like method for determining safe control inputs, i.e.
control inputs that generate trajectories that provably satisfy the state constraints. For an overview
of CBFs, see [66] or Chapter 2. Following this methodology, I assume that each requirement that
the system trajectories must satisfy is expressed as the state belonging to a given constraint set (e.g.
the set of states such that a particular instrument is sufficiently far away from a particular bright ob-
ject). The safe set is then the intersection of all constraint sets (see also [136, 140] and Chaoter 6).
For each constraint set, I then construct a corresponding CBF (e.g. as in [85, 86] and Chapters 3-4)
and associated zero-sublevel set, herein called a CBF set. Each CBF then provides a pointwise
condition on the control input that is sufficient to ensure that state trajectories always belong to the
corresponding CBF set. Multiple CBFs and CBF sets may then be combined to establish forward
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invariance of a subset of the safe set (see Chapter 6 for more considerations regarding combining
CBFs). Application of CBFs to attitude control was first suggested in [83], and in fact, it would
be simple to express the quaternion constraint developed in [221] as a CBF. However, such a CBF
would suffer from the same challenges with input constraints, disturbances, and controller sam-
pling as the related Lyapunov approaches in [27, 236–238]. These challenges are amplified when
some of the constraint functions are of relative-degree 2 with respect to the system dynamics, as
is the case for spacecraft pointing constraints. That said, extensions of [66] in the CBF literature
provide several general tools for addressing these challenges (see [66, 87, 117, 118] and the remain-
der of this dissertation), as well as other potentially relevant phenomena not presently considered.
This dissertation has already individually addressed input constraint satisfaction, robustness to dis-
turbances, and zero-order-hold (ZOH) controller sampling with CBFs, and this section will now
incorporate and extend all of these preceding results. In particular, I will show in Example 5.1
that the ZOH discretization method in Section 5.1 is not immediately compatible with the input
constraint work in Chapters 3-4 and [87], so the bulk of Section 5.2.3 is devoted to reconciling
these two approaches while minimizing conservatism. I then apply all the CBF conditions herein
derived together online using an m-dimensional quadratic program (QP), where m is the number
of control inputs and is generally far smaller than the dimension of the optimizations in planning
or MPC approaches.

The rest of this section is organized into both 1) a general method accomplishing the above
foci for arbitrary systems and constraints, and 2) a case study that applies this method to the
constrained reorientation problem. The case study is presented in parallel as each step of the
theory is developed for numerical motivation. Section 5.2.2 presents the formulation of the general
problem, and of the specific system and constraints used in the case study. Section 5.2.3 presents
the main result combining ZOH control inputs with input constraints and disturbances for relative-
degree 2 constraints (e.g. pointing constraints), while Section 5.2.4 presents a related result for
relative-degree 1 constraints (e.g. angular rate constraints). Section 5.2.5 presents the real-time QP
controller and simulations both in MATLAB and in a NASA-developed attitude control simulator.
Section 5.2.6 presents concluding remarks.

5.2.2 Preliminaries for General Problem and Case Study

5.2.2.1 Model

Let q ∈ Q ⊆ Rn1 be the coordinates and v ∈ V ⊆ Rn2 the velocities of a second-order system
of the form

q̇ = f1(t, q, v) (5.30a)
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v̇ = f2(t, q, v) + g1(t, q, v)u+ g2(t, q, v)ξ (5.30b)

with time t ∈ T ⊆ R, state x ≜ (q, v) ∈ X ≜ Q × V ⊆ Rn1+n2 , control u ∈ U ⊂ Rm where
U is compact, and disturbance ξ ∈ Ξ ⊂ Rp where Ξ is bounded. Assume function f1 is twice
continuously differentiable in all arguments, functions f2, g1, g2 are continuously differentiable
in all arguments, and that f1, f2, g1, g2, u, ξ are sufficiently regular so as to admit unique system
trajectories for the entire time domain T . The results of this section hold for general f1, f2, g1, g2,
but for the purposes of the attitude control case study, suppose the following specific system.

Case Study Part i (System Definition). Assume a single rigid-body spacecraft. Let FN be an

inertial frame and FB a spacecraft-fixed frame. For this case study, let Q = {q ∈ R4 | ∥q∥ = 1}
be the quaternion space and let q = [q0, q1, q2, q3]

T ∈ Q be the quaternion (with scalar element

q0 first) that rotates from FN to FB. Let ω ∈ R3 be the angular velocity of FB with respect to FN
expressed in frame FB. Suppose the spacecraft has m reaction wheels. Let ai, i = 1, · · · ,m,

ai ∈ R3, ∥ai∥ = 1 denote the spin axes of the wheels in frame FB, and define A ∈ R3×m as

A ≜ [a1, · · · , am]. Let wi, i = 1, · · · ,m, wi ∈ R denote the angular velocity of the wheels with

respect to FB, and define w ∈ Rm as w = [w1, · · · , wm]T. The system velocities as in (5.30b)
are v = (ω,w) ∈ V = R3+m. Assume each wheel is axially symmetric and let Jw,i ∈ R>0

be the axial moment of inertia of the ith wheel, and let Jw ∈ Rm×m be a diagonal matrix

whose ith row and column element is Jw,i. Let Jb be the moment of inertia of the spacecraft

without wheels plus the transverse moments of inertia of the wheels (e.g. see [14, Eq. 3.140,

Ch. 3.3.5.1]) expressed in frame FB, and let Jtot ≜ Jb +
∑m

i=1 Jw,i(aia
T
i ) denote the total

moment of inertia of the spacecraft. Assume that Jb and Jw are constant. The spacecraft state

is then x = (q, ω, w) ∈ X = Q× R3+m and the dynamics [242] are

q̇ =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 q (5.31a)

v̇ =

[
ω̇

ẇ

]
=

[
Jtot AJw

JwA
T Jw

]−1

︸ ︷︷ ︸
≜Z

[
−ω × (Jtotω + AJww) + ξ

u

]
(5.31b)

where u ∈ U ⊂ Rm is the commanded wheel torque. The maximum wheel torque is limited

to umax, so U = {u ∈ Rm | ∥u∥∞ ≤ umax}. For this particular case study, I suppose a 6U

CubeSat with parameters given in Table 5.3 and visualized in Fig. 5.9. Note that I have chosen
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Parameter Value
m 4

A

 0 0 0.8165 −0.8165
0 −0.9428 0.4714 0.4714
−1 0.3333 0.3333 0.3333


Jw,i 1.722(10)−5 kg-m2, i = 1, 2, 3, 4

umax,i 7(10)−4 N-m, i = 1, 2, 3, 4

Jb

0.1672 0 0
0 0.1259 0
0 0 0.06121

 kg-m2

P

0.1672 P12 P13

P21 0.1259 P23

P31 P32 06121

 kg-m2

where |Pij| < 10−20 for i ̸= j
emax 5.092(10)−5 kg-m2/s2

wmax 628.3 rad/s
ξmax 1.00(10)−5 Nm

Table 5.3: Physical Parameters of the Spacecraft

a configuration with 4 wheels in Table 5.3 rather than a more typical 3 wheel configuration in

order to demonstrate the general applicability of these results. The wheel moments of inertia

and maximum torques in Table 5.3 are based off a commercially available wheel packagea,

with the maximum per-wheel torque reduced to be comparable to a 3 wheel configuration. Let

Ξ = {ξ ∈ R3 | ∥ξ∥ ≤ ξmax} for ξmax in Table 5.3, which comes from approximate values of

aerodynamic drag on a 6U CubeSat at 500 km altitude.

aCubeWheel Medium: www.cubespace.co.za/products/adcs-components/cubewheel/
#cubewheel-specifications

5.2.2.2 Safety Constraints

Next, suppose that the trajectories of (5.30) are required to lie in the intersection of several
constraint sets, each defined by the zero sublevel set of some constraint function as in Chapters 3-
4. Let κi : T ×Q→ R for i = 1, · · · , N1 denote the relative-degree 2 constraint functions, and let
ηi : T × V → R for i = N1 + 1, · · · , N1 + N2 denote the relative-degree 1 constraint functions.
The constraint sets are

Qi(t) ≜{x = (q, v) ∈ X | κi(t, q) ≤ 0} (5.32a)

Vi(t) ≜{x = (q, v) ∈ X | ηi(t, v) ≤ 0} (5.32b)
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b1

b2

s

Figure 5.9: Visualization of the Spacecraft. A 6U CubeSat with two spacecraft-fixed keep-out
zones centered about b1, b2, and an inertially-fixed vector s that must be kept outside these zones

and the resultant safe set is

S(t) ≜

(
N1⋂
i=1

Qi(t)

)
∩

(
N1+N2⋂
i=N1+1

Vi(t)

)
(5.33)

where Qi, Vi, and S are permitted to be time-varying. As an abuse of notation, I will generally
write κi(t, x) and ηi(t, x) in place of κi(t, q) and ηi(t, v) in order to match the CBF notation for
h(t, x) in Section 5.2.2.3. Some constraint functions that are common in attitude control are as
follows; these constraints are also the basis of the simulations in Section 5.2.5.

Case Study Part ii (Constraints). For the spacecraft system in (5.31), let b ∈ R3, ∥b∥ = 1,

be a body-fixed vector, such as an instrument boresight vector (e.g. the green or blue vectors

in Fig. 5.9). Let s(t), ∥s(t)∥ = 1, be a vector, potentially time-varying (provided s is thrice

continuously differentiable). Suppose that one requires that the angle between s(t) and b is

always at least θ (e.g. the local sun vector, represented by the yellow vector in Fig. 5.9). This

leads to a constraint function of the form

κb(t, q) = s(t)TR(q)b− cos θ (5.34)
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where R(q) is

R(q) ≜

1− 2q22 − 2q23 2q1q2 − 2q0q3 2q0q2 + 2q1q3

2q0q3 + 2q1q2 1− 2q21 − 2q23 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q0q1 + 2q2q3 1− 2q21 − 2q22

 . (5.35)

This is a relative-degree 2 constraint function, since κ̇b is not a function of u, ξ. Note that

(5.34) can be used to express both keep-out and keep-in zones. Also note that κb in (5.34) is

equivalent to κ∗b(t, x) = q∗TMq∗ in [221, Eq. 2.5] where M is given in [221, Eq. 2.6] and

q∗ = [−q1, −q2, −q3, q0]T is the conjugate of q with the scalar element q0 last (the conjugate

arises because of notational differences with [221]). Next, suppose that one also requires that

the maximum angular rate of the spacecraft is bounded for safety of the spacecraft structure.

This leads to the constraint function

ηω(t, v) = ωTPω − emax (5.36)

where emax ∈ R and P ∈ R3×3 are given in Table 5.3. The values of emax and P in Table 5.3 are

constructed so that the safe set allows for angular rates of up to 1 deg/s on the largest principal

axis and up to 2.730 deg/s on the smallest principal axis, and will be elaborated upon in Case

Study Parts xi-xii. This is a relative-degree 1 constraint, since η̇ω is a function of u, ξ. Finally,

suppose that the wheel angular velocities are limited by the constraint functions

ηwi(t, v) = |wi| − wmax, i = 1, · · · ,m (5.37)

for i ∈ {1, · · · ,m}, where wmax is a constant. This work will assume that a suitable momentum

dumping control law (e.g. scheduled thruster or magnetorquer application) has been developed

so that the constraints encoded by ηwi(t, x) are always satisfied without impacting the rest of the

control design. Thus, the following subsections only focus on the relative-degree 1 constraint in

ηω and the relative-degree 2 constraint in κb, though I still incorporate the wheel rate bounds

in (5.37) in the safe set construction in (5.33). Finally, for this case study, suppose there are

two constraints of the form (5.34) for body fixed vectors b1 and b2, so the safe set is S =

Qb1 ∩Qb2 ∩ Vω ∩ Vw1 ∩ Vw2 ∩ Vw3 ∩ Vw4 .

5.2.2.3 Notes Regarding Continuous-Time RCBFs

Recall the definition of an RCBF on a set as in Definition 4.2 (where now wu = ξ and wx ≡ 0).
One interpretation of this definition is that a function hi is an RCBF on S if there is sufficient
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control authority given the set U that the total derivative of hi can be appropriately upper bounded
on S regardless of the disturbance value ξ in the considered set Ξ. Similarly, this section will
develop a suitable “ZOH robustness margin” that serves as a combination of W in (4.7) and ν in
(5.7). I then say that hi is a “ZOH CBF” in Sections 5.2.3-5.2.4 if there exists sufficient control
authority over U at every state inHi to satisfy these margins.

Also, while Chapter 4 was concerned with only one RCBF at a time, Theorems 4.1, 4.3, 4.4
can be applied to any number of CBFs, so the following work seeks a collection of CBFs {hi}Mi=1

such that the intersection of the CBF sets ∩Mi=1Hi is a subset of S in (5.33). As will be shown in
Chapter 6, this can be achieved with an arbitrary number of CBFs, but in this chapter, I will aim
to construct one CBF hi for each constraint function κi or ηi (equivalently, one CBF set Hi for
each constraint set Qi or Vi) in order to leverage the work in Chapter 4, though such a one-to-one
correspondence is not necessary.

For each relative-degree 1 constraint ηi in (5.32b), I will choose the CBF hi ≡ ηi so Hi ≡ Vi.
This choice will be further justified at the end of Section 5.2.4. For the relative-degree 2 constraints
κi in (5.32a), the following work will extend the method in Section 4.3.1 specifically. Recall from
Section 4.3.1 that for a constraint function κi satisfying certain properties, one possible choice of
RCBF is

hi(t, x) = κi(t, x) +
κ̇i(t, x)|κ̇i(t, x)|

2µ
, (5.38)

Hi(t) = {x ∈ X | h(t, x) ≤ 0} , (5.39)

for some parameter µ > 0. Note that in this chapter, I replace amax in (4.22) with µ in (5.38),
as µ will be a tunable parameter rather than a specific value as in (4.24). The choice of CBF in
(5.38) does not work for all systems, but is particularly useful for systems similar to the double
integrator, such as a double integrator with small nonlinearities. I hypothesize that (5.38) can be
used for pointing constraints as in (5.34), so this is the only CBF for relative-degree 2 constraint
functions κi considered in the remainder of this section. Possible extensions of the other RCBFs
in Chapter 4 to zero-order-hold control inputs would be an excellent area for future work, partially
discussed in Section 5.2.6.2.

Let µ1 > µ2 > 0, and let hi,µ1 and hi,µ2 be two corresponding CBFs. Note that Hi,µ1 ⊃ Hi,µ2 .
Thus, the least conservative CBF of the form (5.38) will have the largest allowable parameter µ.
Also recall from Lemma 4.9 and Theorem 4.10 that, with the RCBF (5.38) on Qi, the RCBF
condition (4.8) is sufficient to render Hi ∩ Qi forward invariant rather than just Hi, as visualized
in Fig. 5.10. For simplicity, I restate this result as follows.

Lemma 5.10. Let [t0, tf ] ⊆ T . Let κ : T ×X → R be of relative-degree 2, and let h : T ×X → R
be as in (5.38). If x(t0) ∈ Q(t0) and x(t) ∈ H(t) for all t ∈ [t0, tf ], then x(t) ∈ Q(t) for all

t ∈ [t0, tf ].
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Thus, given one CBF hi, i = 1, · · ·N1 in (5.38) for each relative-degree 2 constraint function
κi, and one CBF hi = ηi, i = N1 + 1, N1 + N2 for each relative-degree 1 constraint function ηi,
leads to an effective operating subset A(t) ⊆ S(t) where

A(t) =

(
N1⋂
i=1

(Qi(t) ∩Hi(t))

)
∩

(
N1+N2⋂
i=N1+1

Hi(t)

)
. (5.40)

To begin the analysis, consider the application of the continuous-time CBF (5.38) to the case
study as follows.

Case Study Part iii (Continuous-Time CBF). For the constraint function κb in (5.34), the func-

tion hb in (5.38) is an RCBF on S ∩Hb as in Definition 4.2 for any parameter 0 < µ ≤ 0.0025.

5.2.2.4 Robust Sampled-Data Formulation

The preceding subsection discussed results for continuous controller updates, but the goal of
this work is to apply the CBFs (5.38) and (5.36) when the controller is instead updated at a fixed
frequency. Now suppose that the control input u is updated at discrete times tk, k ∈ Z≥0 where
tk+1 − tk = T for fixed time-step T > 0, and that u is fixed between time steps k and k + 1. That
is, consider a control law of the form (5.4), repeated here as

uzoh(t) = uk ≜ u(tk, xk), ∀t ∈ [tk, tk+1) , (5.41)

where u : T × X → U and xk = x(tk). As discussed in Section 5.1, since the control input
is updated only at the times tk, it is difficult to ensure that the continuous-time CBF condition
(2.5),(2.6),(3.9),(5.3) (or RCBF condition (4.8)) is satisfied at every time instant (i.e. including
between time steps). This was partially solved in Section 5.1. However, the methods in Section 5.1
do not easily apply to CBFs constructed from relative-degree 2 constraint functions, such as in
(5.38). This is demonstrated by way of the following example.

Example 5.1. Given a relative-degree 2 constraint function κi, one possible CBF is that in (5.38)
for some constant µ > 0. According to Theorem 5.7, this CBF can be rendered safe in a ZOH

fashion if for all x ∈ Hi(t), t ∈ T there exists u ∈ U such that

ḣi(t, x) = κ̇i(t, x)

(
1 +

κ̈i(t, x, u, ξ)

µ

)
≤ − 1

T
κi(t, x)−

1

2
νl3(T, x)T (5.42)

for νl3 in (5.19). Here, νl3 represents possible values of κ̈i, and for that reason is usually lower

bounded by a positive number, here denoted ν∗ > 0 (or one could use the global case of Corol-
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lary 5.8 and let ν∗ = νg3(T )).

The issue that arises here is that for any arbitrarily small δ > 0, there exist x ∈ Hi(t), t ∈ T
such that κ̇i(t, x) = δ and κi(t, x) = − δ2

2µ
. For such x, (5.42) simplifies to κ̈i(t, x, u, ξ) ≤ ϵ(δ) ≜

δ
2T
− µνl3T

2δ
. Because νl3 ≥ ν∗ > 0, it follows that limδ→0+ ϵ(δ) = −∞. That is, the ZOH sampling

margin νl3 causes the required κ̈i to go to −∞ near the boundary of Hi, which also causes the

required u to become unbounded. Thus, the methods in Section 5.1 cannot be applied to the CBF

(5.38) (except along specific trajectories that avoid states where both h and κ̇ are close to zero, as

happened to occur in Section 5.1.4), or any of the relative-degree 2 strategies in Chapter 4, if there

are also input constraints.

Thus, even the improved method in Section 5.1 suffers from the possible infeasibility of the
condition (5.5) when the control input u is constrained to a compact set. This is why that section
did not yet present a definition of “ZOH CBF” and instead only presented the preliminary condition
(5.5). The interested reader can examine this problem further by downloading the code linked in
Section 5.1.4 and increasing the value of the constant µ in Table 5.1. Thus, the central problem of
the present section is as follows.

Problem 5.2. Given the safe set S in (5.33), focus on a single constraint function ηi : T ×V→ R
or κi : T × Q → R that is of relative-degree 1 or 2, respectively, with respect to the dynamical

model (5.30). Assume that x(tk) ∈ S(tk) in (5.33) at the current sample time k, and that all other

constraints x(t) ∈ Qj(t) and x(t) ∈ Vj(t) for j ̸= i are satisfied for all t in the inter-sample period

[tk, tk+1). Sections 5.2.3-5.2.4 seek to derive a set Zi(t) ⊆ Qi(t) or Zi(t) ⊆ Vi(t) for all t ∈ T
and a set Uzoh,i(tk, x(tk)) such that, 1) given x(tk) ∈ Zi(tk) and u(tk, x(tk)) ∈ Uzoh,i(tk, x(tk))

it is provably guaranteed that i) x(tk+1) ∈ Zi(tk+1) and ii) x(t) ∈ Qi(t) or x(t) ∈ Vi(t) for all

t ∈ [tk, tk+1) for any allowable disturbance ξ ∈ Ξ, and 2) the set U ∩ Uzoh,i(tk, x(tk)) is nonempty

for all x(tk) ∈ Zi(tk) ∩ S(tk), k ∈ Z≥0.

I refer to set Zi as the ith robust CBF set. Similar to how Chapter 4 restricted the constraint set
Qi (in that chapter, I used simply S ≡ Qi since there was only one constraint) to the CBF set Hi

to account for input constraints, leading to the safe control set Urcbf,i, in the following subsections,
I will further restrict the allowable sampled states to the new set Zi to account for disturbances and
controller sampling, leading to the new safe control set Uzoh,i. Fig. 5.10 shows the relation between
Qi (cyan), Hi (hashed), and Zi (gray) for a relative-degree 2 constraint function. Section 5.2.3
will address the relative-degree 2 case of Problem 5.2, while Section 5.2.4 will address the simpler
relative-degree 1 case.
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Figure 5.10: Visualization of Constraint Set, CBF Set, and ZOH CBF Set. Diagram of a constraint
set Qi, corresponding CBF set Hi, robust CBF set Zi, and a safe trajectory x(t) ∈ Qi ∩ Hi with
controller samples x(tk) ∈ Zi at the red ‘x’ marks. In this case, Hi ̸⊆ Qi, which is allowed since
Lemma 5.10 ensures that state trajectories cannot cross the green line (∂Qi)∩Hi. The robust CBF
set Zi is a subset of Qi ∩ Hi with additional margin. The trajectory x(t) lies within the set Zi(tk)
at every sample time tk, k ∈ Z≥0, and thus lies within Qi(t) ∩ Hi(t) for all t ∈ T . Qescape is the
set of points on ∂Qi that immediately leaveQi and therefore are excluded fromHi ∩Qi and from
Zi.
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5.2.3 Method for Relative-Degree Two

5.2.3.1 Strategy

I begin by addressing the relative-degree 2 case of Problem 5.2, as the relative-degree 1 case
easily follows. In this subsection, I drop the subscript i, so let κ denote any relative-degree 2
constraint function (e.g. (5.34)), and h the corresponding CBF as in (5.38). The core idea of
this method is that given h(tk, x(tk)) ≤ 0, I want to identify a formula for a worst case value
of h(tk + τ, x(tk + τ)), denoted hbound(tk, x(tk), τ), for τ ∈ [0, T ] and find a suitable control
input to ensure that hbound(tk, x(tk), τ) is nonpositive for all τ ∈ [0, T ]. However, the prob-
lem highlighted in Example 5.1 is that the worst case formulas hbound following from all the
methods in Section 5.1 and [119] rely upon linear approximations of h on the interval [tk, tk+1].
The obvious extension is to use a higher-order approximation of the worst case trajectory that
h could follow between time steps. However, when using a higher order approximation, it is
no longer sufficient to only check that hbound(tk, x(tk), T ) ≤ 0, as there may exist τ ∈ (0, T )

such that hbound(tk, x(tk), τ) > hbound(tk, x(tk), T ), as visualized by the red and cyan points in
Fig. 5.11. Thus, unlike in Section 5.1, one must instead check that hbound(tk, x(tk), τ) ≤ 0 for
all τ ∈ [0, T ], which adds complexity to the problem. To address this possibility of exiting and
returning to the CBF set, I seek local maximizers σ (e.g. the red circle in Fig. 5.11) such that
hbound(tk, x(tk), σ) ≥ hbound(tk, x(tk), τ) for all τ ∈ [0, T ]. I then identify a bound ∆ on the dif-
ferences hbound(tk, x(tk), σ)− h(tk, x(tk)) and hbound(tk, x(tk), σ)− hbound(tk, x(tk), T ) and define
the sets

H∆(t) ≜ {x ∈ X | h(t, x) ≤ −∆} , (5.43)

Qδ(t) ≜ {x ∈ X | κ(t, x) ≤ −δ} . (5.44)

It follows that if h(tk, x(tk)) ≤ −∆ and hbound(tk, x(tk), T ) ≤ −∆, which are relatively sim-
ple conditions to enforce (e.g. see (5.93)), then h(tk + τ, x(tk + τ)) ≤ hbound(tk, x(tk), τ) ≤
hbound(tk, x(tk), σ) ≤ 0 for all τ ∈ [0, T ]. This is visualized in Fig. 5.10, where the red sample
trajectory is always safe, because at the sample times tk, the trajectory meets the stricter condition
of being in the gray set.

To define a set Z as in Problem 5.2, I will derive expressions for suitable ∆ in (5.43) and δ
in (5.44), from which it will follow that Z = H∆ ∩ Qδ. I seek to minimize conservatism, i.e.
to choose the smallest δ,∆ for which I can still provably demonstrate safety between each tk and
tk+1. To this end, Sections 5.2.3.3-5.2.3.4 study possible expressions for δ,∆ that work well for
the system (5.31), and that lead to a final control strategy summarized in Theorem 5.16.

I begin by presenting a naive approach to determining ∆, δ. Assuming a second order hbound

function (such as that in (5.92)), the required margin ∆ can be determined entirely by the values
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Figure 5.11: Diagram of Linear and Quadratic Upper Bounds. Diagram of a linear and quadratic
upper bound on the trajectory of h(t, x(t)) between two sampled times, and the maximizer σ of
the quadratic curve

of the second derivative ḧ. Thus, consider the following (very conservative) baseline example with
numbers derived from the case study.

Case Study Part iv (A Naive Approach to Computing Maximum Overshoot). Let the time-

step for the controller of (5.31) be T = 0.2 s. Let hb as in (5.38) be a CBF for κb in (5.34)
and suppose µ = 0.00167 as in Table 5.4 (which I will justify later). Suppose ξ ≡ 0 for this

example. Let r = minx∈S(t),t∈T ,u∈U ḧb(t, x, u, 0) = −0.550. It follows that one possible upper

bound on the overshoot of hb between time steps is ∆ = −1
8
T 2r = 2.75(10)−3. I will show in

Sections 5.2.3.3-5.2.3.4 that this is over 200 times as conservative as necessary for this system.

5.2.3.2 Sampling and Robustness Constants

I now proceed similarly to Section 5.1 by defining several constants of the system, analogous
to the Lipschitz constants in Section 5.1, and then using these constants to bound system behavior.
First, define

M−
2 ≜ inf

t∈T ,x∈S(t),ξ∈Ξ

∂κ̇(t, x)

∂v
g2(t, x)ξ (5.45a)

M+
2 ≜ sup

t∈T ,x∈S(t),ξ∈Ξ

∂κ̇(t, x)

∂v
g2(t, x)ξ (5.45b)

The constants M−
2 and M+

2 represent bounds on the uncertainty in κ̈ because of the unknown
disturbance. I assume that (5.45) and (5.48) are well-defined. I represent the component of κ̈ that
is certain using the function ψ (similar to (5.17), now for the model (5.30)) as follows

ψ(t, x, u) ≜
∂κ̇(t, x)

∂t
+
∂κ̇(t, x)

∂q
f1(t, x) +

∂κ̇(t, x)

∂v
(f2(t, x) + g1(t, x)u) (5.46)
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so that
κ̈(t, x, u) ≤ ψ(t, x, u) +M+

2 (5.47a)

κ̈(t, x, u) ≥ ψ(t, x, u) +M−
2 (5.47b)

In practice, the value of ψ is exactly known only at the sampling times tk, so I also define the
constants

M−
3 ≜ inf

t∈T ,x∈S(t),u∈U ,ξ∈Ξ

[
∂ψ(t, x, u)

∂t
+
∂ψ(t, x, u)

∂q
f1(t, x)

+
∂ψ(t, x, u)

∂v
(f2(t, x) + g1(t, x)u+ g2(t, x)ξ)

]
(5.48a)

M+
3 ≜ sup

t∈T ,x∈S(t),u∈U ,ξ∈Ξ

[
∂ψ(t, x, u)

∂t
+
∂ψ(t, x, u)

∂q
f1(t, x)

+
∂ψ(t, x, u)

∂v
(f2(t, x) + g1(t, x)u+ g2(t, x)ξ)

]
(5.48b)

to describe the uncertainty in the evolution of ψ between time steps due to both the ZOH sampling
and the disturbance. That is, for τ > 0,

ψ(t+ τ, x(t+ τ), u) ≤ ψ(t, x(t), u) +M+
3 τ (5.49a)

ψ(t+ τ, x(t+ τ), u) ≥ ψ(t, x(t), u) +M−
3 τ (5.49b)

Note that the control input u is the same on both sides of the inequalities in (5.49), so these in-
equalities are only useful during a single ZOH time step. Also, note that now, unlike in Section 5.1,
I assume the bounds M−

2 ,M
+
2 ,M

−
3 ,M

+
3 are global (i.e. are computed over all of S) for simplic-

ity. Extensions of this work for local bounds computed online as in Section 5.1 could also be
developed, but I found this computation to be one of the more difficult elements of Section 5.1 to
implement. If the global bounds (5.45), (5.48) are undefined, then more involved analysis than is
presently considered may be required. Note that I defined the lower bounds M−

2 ,M
−
3 and upper

bounds M+
2 ,M

+
3 separately to cover cases such as when the dynamics and/or disturbance environ-

ment are known to tend to increase/decrease h (e.g. if the unsafe state is of higher/lower potential
energy than other states, such as would occur if gravity gradient were included in (5.31)). In other
cases, it may occur that M−

2 = −M+
2 and M−

3 = −M+
3 .

In the upcoming theorems, I will need the following relations. Let σ be some time in [tk, tk+1]

where u is constant on [tk, tk+1), and let τ ∈ R≥0 be such that σ + τ (or σ − τ ) is also within
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Symbol Value
T 0.2 s
M+

2 1.64(10)−4

M−
2 −1.64(10)−4

M+
3 6.2(10)−3

M−
3 −6.2(10)−3

δ1 1.10(10)−5

δ2 9.7(10)−6

∆2 1.3(10)−5

∆3 1.09(10)−5

µ 0.00167
M1 5.79(10)−7

M alt
2 1.95(10)−5

Table 5.4: System Constants for Case Study

[tk, tk+1]. Then, using only the time argument for brevity, it holds that

κ̈(σ)
(5.47a)
≤ ψ(σ) +M+

2

(5.49b)
≤ ψ(σ + τ)−M−

3 τ +M+
2

(5.47b)
≤ κ̈(σ + τ)−M−

2 −M−
3 τ +M+

2 (5.50a)

κ̈(σ)
(5.47b)
≥ ψ(σ) +M−

2

(5.49a)
≥ ψ(σ + τ)−M+

3 τ +M−
2

(5.47a)
≥ κ̈(σ + τ)−M+

2 −M+
3 τ +M−

2 (5.50b)

κ̈(σ)
(5.47b)
≥ ψ(σ) +M−

2

(5.49b)
≥ ψ(σ − τ) +M−

3 τ +M−
2

(5.47a)
≥ κ̈(σ − τ)−M+

2 +M−
3 τ +M−

2 (5.50c)

κ̈(σ)
(5.47a)
≤ ψ(σ) +M+

2

(5.49a)
≤ ψ(σ − τ) +M+

3 τ +M+
2

(5.47b)
≤ κ̈(σ − τ)−M−

2 +M+
3 τ +M+

2 (5.50d)

Case Study Part v (Constants). For the system (5.31) and constraint κb in (5.34), the values of

M−
2 ,M

+
2 ,M

−
3 ,M

+
3 are given in Table 5.4. Note that these values hold for all θ ≤ π/2 in (5.34),

and are larger than the resultant values (i.e. are overly conservative) when θ > π/2.

5.2.3.3 Determining ∆, δ when h and κ share maximizers

Using the above constants, I now determine suitable values of ∆, δ for (5.43),(5.44) in two
parts. First, I note that a necessary condition for a maximizer σ of h occurring between time steps
tk and tk+1 is ḣ(σ, x(σ), uk, ξ) = 0. Because of the form of h in (5.38), a sufficient condition for
ḣ = 0 is κ̇ = 0, so maximizers of h will often be co-located with maximizers of κ, as illustrated by
the blue lines in Fig. 5.12. Thus, this subsection determines appropriate margins ∆, δ specifically
when the maximizers of κ and h are co-located, while the following subsection determines these
margins when this is not the case (green lines in Fig. 5.12). I begin with the following lemma.
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t
k+1

Figure 5.12: Illustration of Co-Located and Distinct Maximizers of h and κ. Illustration of trajec-
tories where the maximizers of κ and h on [tk, tk+1] are co-located (blue), and where the maximizer
of h precedes that of κ (green)

Lemma 5.11. Suppose κ is thrice continuously differentiable and of relative-degree 2 with respect

to (5.30), and u is constant on [tk, tk+1). If σ ∈ (tk, tk+1) is the time of a local maximizer of h in

(5.38) on (tk, tk+1) and κ̇(σ, x(σ)) = 0, then σ is also a local maximizer of κ on (tk, tk+1) and it

must hold that 0 ≥ κ̈(σ, x(σ), u, ξ) ≥ −µ.

Proof. For brevity, in this proof, I only write out the time argument of κ, h, and their derivatives.
Note that on the open interval (tk, tk+1), the functions κ, κ̇, κ̈, and ...

κ are continuous due to the
assumptions on f1, f2, g1, g2, ξ in (5.30) and how u is constant. I divide this proof into two cases
depending on whether κ̇ changes signs at σ.

First, suppose that κ̇ does not change signs at σ (including the case where κ̇(t) = 0 for all
t ∈ (tk, tk+1)). This can only occur if κ̈ changes signs at σ or if κ̈(t) is zero for all t ∈ (tk, tk+1).
Since κ̈ is continuous, this implies κ̈(σ) = 0. Since µ > 0, it follows that there exists sufficiently
small τ > 0 such that |κ̈(t)| < µ for all t in a neighborhood t ∈ (σ − τ, σ + τ). Note that ḣ is
given by

ḣ(t) = κ̇(t) +
1

µ
|κ̇(t)|κ̈(t) . (5.51)

It follows from (5.51) that ḣ(t) has the same sign as κ̇(t) for all t ∈ (σ−τ, σ+τ). Since ḣ(σ) does
not change signs, σ cannot be a local maximizer of h on (tk, tk+1) unless κ̇(t) = ḣ(t) = κ̈(t) = 0

for all t ∈ (tk, tk+1), in which case the lemma is trivially true.
Second, suppose that κ̇ does change signs at σ. The second derivative of h is

ḧ(t) = κ̈(t) +
1

µ
sign(κ̇(t))κ̈(t)2 +

1

µ
|κ̇(t)| ...κ (t) (5.52)

so h is twice continuously differentiable for almost all t ∈ [tk, tk+1]. Therefore, a necessary
condition for σ to be local maximizer of h is for ḧ to be nonpositive in a neighborhood of σ. At
t = σ exactly, ḧ(σ) is undefined since the lemma assumed κ̇(σ) to be zero, but the limits of ḧ(t)
as t approaches σ from the left and right are well-defined and must both be nonpositive for σ to be
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a maximizer of h. These limits are
ḧ−(σ) = lim

κ̇(t)→0−
ḧ(t) = κ̈(σ)− κ̈(σ)2

µ
, (5.53a)

ḧ+(σ) = lim
κ̇(t)→0+

ḧ(t) = κ̈(σ) +
κ̈(σ)2

µ
. (5.53b)

A necessary condition for both (5.53a) and (5.53b) to be nonpositive simultaneously is for 0 ≥
κ̈(σ) ≥ −µ. Since κ̈(σ) ≤ 0, and this case assumed κ̇(t) changed sign at σ, it follows that σ is
necessarily also a maximizer of κ, so the lemma holds in this case as well. ■

The consequence of Lemma 5.11 is that, provided the stated condition holds, it is now possible
to use knowledge about κ to upper bound the variation in h between time steps. Lemma 5.11 is
particularly helpful because analysis of κ is generally simpler than analysis of h, and because µ is
a tunable parameter. Note that maximizers of the CBF h can also occur when κ̇(σ, x(σ)) ̸= 0 and
in these cases Lemma 5.11 would no longer apply, thus motivating Lemma 5.14 in Section 5.2.3.4.
However, when Lemma 5.11 does hold, one can substantially reduce the required conservatism
to prevent x(t) from leaving H(t) between sample times, as illustrated using the case study as
follows.

Case Study Part vi (Application of Lemma 5.11). Suppose the same setup as in Case Study

Part iv and suppose that the conditions of Lemma 5.11 hold. It follows that h(σ, x(σ)) =

κ(σ, x(σ)), so ∆ can be computed as a bound on the possible overshoot of κ (instead of over-

shoot of h) between time steps. Here, let r = minx∈S(t),t∈T ,u∈U κ̈(t, x, u, 0) = −0.0262 (re-

call Case Study Part iv assumed ξ ≡ 0), which leads to the new bound ∆ = −1
8
T 2r =

1.31(10)−4. Finally, since Lemma 5.11 also says that κ̈(σ, x(σ), u, ξ) ≥ −µ, and since

minx∈S(t),t∈T ,u∈U
...
κ (t, x, u, 0) = −0.0062, it follows that κ̈(t, x(t), u, 0) ≥ r = −µ −

0.0062T = −0.00291 for all t ∈ [tk, tk+1] assuming σ ∈ [tk, tk+1], which leads to ∆ =

−1
8
T 2r = 1.46(10)−5. Thus, Lemma 5.11 reduces the conservatism ∆ on H needed to ensure

safety during the between-sample interval by a factor of 188 compared to Case Study Part iv.

I now apply Lemma 5.11 to calculate a general formula for appropriate margins ∆, δ in
(5.43),(5.44) on h(tk, xk), κ(tk, xk) to ensure x remains safe between sampling times.

Theorem 5.12. Suppose κ is thrice continuously differentiable and of relative-degree 2 with re-

spect to (5.30), and u is constant on [tk, tk+1). Suppose that all maximizers σ of h in (5.38) on the
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interval (tk, tk+1) satisfy κ̇(σ, x(σ)) = 0. Define δ1 as

δ1 ≜ max
τ∈[0,T ]

[
min

{
1

2
(µ+M+

2 −M−
2 )(T − τ)2 −

1

6
M−

3 (T − τ)3,

1

2
(µ+M+

2 −M−
2 )τ

2 +
1

6
M+

3 τ
3

}]
(5.54)

If x(tk) ∈ Hδ1(tk) ∩ Q(tk) in (5.43),(5.32) and x(tk+1) ∈ H(tk+1) ∩ Qδ1(tk+1) in (5.39),(5.44),
then x(t) ∈ H(t) for all t ∈ [tk, tk+1].

Proof. For brevity, in this proof, I only write out the time argument of κ, h, and their derivatives.
The trajectory x(t) belongs toH(t) for all t ∈ [tk, tk+1] if the maximum value h(σ) for some max-
imizer σ ∈ [tk, tk+1] satisfies h(σ) ≤ 0, so I proceed by trying to bound h(σ) using Lemma 5.11
and the system constants (5.45), (5.48). By assumption, h(tk) ≤ −δ1 ≤ 0 and h(tk+1) ≤ 0, so the
theorem is immediately true in the case where σ is either endpoint. By Lemma 5.11, if σ is a local
maximizer of h on the open interval (tk, tk+1), then σ must also be a local maximizer of κ. This
implies h(σ) = κ(σ). Thus, I focus on κ instead of h going forward.

Suppose there exists a local maximizer σ of κ on (tk, tk+1) for which κ(σ) = h(σ) >

max{h(tk), h(tk+1)}. The largest possible value of κ(σ) occurs when κ̇(t) is positive for all
t ∈ [tk, σ) and negative for all t ∈ (σ, tk+1], so without loss of generality, suppose that the sign
of κ̇(t) follows this partitioning. By assumption, h(tk) ≤ −δ1, and since this proof assumed that
κ̇(tk) > 0, it follows from (5.38) that κ(tk) ≤ −δ1 as well. Thus, for the worst case value of κ(σ),
both κ(tk) and κ(tk+1) are at most−δ1. Also, by Lemma 5.11, κ̈(σ) ≥ −µ. It follows from (5.50a)
that

κ̈(σ + τ) ≥ −µ+M−
2 +M−

3 τ −M+
2 . (5.55)

Thus, κ̇(t) can be lower bounded for t ∈ (σ, tk+1] as

κ̇(σ + τ) = κ̇(σ)︸︷︷︸
=0

+

∫ σ+τ

σ

κ̈(t)dt

(5.55)
≥
∫ σ+τ

σ

(
−µ−M+

2 +M−
3 (t− σ) +M−

2

)
dt

= (−µ−M+
2 +M−

2 )τ +
1

2
M−

3 τ
2 (5.56)

and thus κ(t) can be lower bounded for t ∈ (σ, tk+1] as

κ(σ + τ) = κ(σ) +

∫ σ+τ

σ

κ̇(t)dt
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(5.56)
≥ h(σ) +

∫ σ+τ

σ

(
(−µ−M+

2 +M−
2 )(t− σ) +

1

2
M−

3 (t− σ)2
)
dt

= κ(σ) +
1

2
(−µ−M+

2 +M−
2 )τ

2 +
1

6
M−

3 τ
3 . (5.57)

Similarly, it follows from (5.50d) that

κ̈(σ − τ) ≥ −µ+M−
2 −M+

3 τ −M+
2 (5.58)

Thus, κ̇(t) can be upper bounded for t ∈ [tk, σ) as

κ̇(σ − τ) = κ̇(σ)︸︷︷︸
=0

−
∫ σ

σ−τ
κ̇(t)dt

(5.58)
≤ −

∫ σ

σ−τ

[
−µ−M+

2 −M+
3 (σ − t) +M−

2

]
dt

= (µ+M+
2 −M−

2 )τ +
1

2
M+

3 τ
2 (5.59)

and thus κ(t) can be lower bounded for t ∈ [tk, σ) as

κ(σ − τ) = κ(σ)−
∫ σ

σ−τ
κ̇(t)dt

(5.59)
≥ κ(σ)−

∫ σ

σ−τ

(
− (−µ−M+

2 +M−
2 )(σ − t) +

1

2
M+

3 (σ − t)2
)
dt

= κ(σ) +
1

2
(−µ−M+

2 +M−
2 )τ

2 − 1

6
M+

3 τ
3 . (5.60)

I then rearrange (5.57) and (5.60) to

κ(σ) ≤κ(σ + τ)− 1

2
(−µ−M+

2 +M−
2 )τ

2 − 1

6
M−

3 τ
3 and (5.61)

κ(σ) ≤κ(σ − τ)− 1

2
(−µ−M+

2 +M−
2 )τ

2 +
1

6
M+

3 τ
3 . (5.62)

Let τ = tk+1 − σ in (5.61) and τ = σ − tk in (5.62). Note that the bounds in (5.61) and (5.62)
must both apply simultaneously, or equivalently, whichever bound is tighter must apply. Thus, it
follows that

κ(σ)
(5.61),(5.62)
≤ min

{
−δ1 +

1

2
(µ+M+

2 −M−
2 )(tk+1 − σ)2 −

1

6
M−

3 (tk+1 − σ)3,

−δ1 +
1

2
(µ+M+

2 −M−
2 )(σ − tk)2 +

1

6
M+

3 (σ − tk)3
}

(5.54)
≤ 0 . (5.63)
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Thus, because of the choice of δ1 in (5.54), it is guaranteed that κ(σ) ≤ 0 in (5.63). It follows that
h(t) ≤ h(σ) = κ(σ) ≤ 0 for all t ∈ [tk, tk+1], or equivalently x(t) ∈ H(t) for all t ∈ [tk, tk+1]. ■

Case Study Part vii (Application of Theorem 5.12). Using the values of M−
2 ,M

+
2 ,M

−
3 ,M

+
3 , µ

in Table 5.4, it follows that δ1 = 1.10(10)−5 in (5.54). This is of similar magnitude to the value

of ∆ in Case Study Part vi, as expected, and is equivalent to 2.27 arc-seconds of shrinkage of

the CBF set.

Thus, in the case where the maximizers of κ and h are consistent, I have presented an explicit
formula for how much to further restrict the setH at the sample times to ensure that the state never
leaves the set H between the sample times. Having established this, I note that the requirements
of Theorem 5.12 are still overly conservative. This is because I assumed that H∆ and Qδ were
defined using the same margin parameter ∆ = δ = δ1. For certain systems, applying different
margins ∆2 on h(tk, xk) and δ2 on κ(tk, xk) may reduce this margin, as presented in the following
theorem.

Theorem 5.13. Suppose κ is thrice continuously differentiable and of relative-degree 2 with re-

spect to (5.30), and u is constant on [tk, tk+1). Suppose that all maximizers σ of h in (5.38) on the

interval (tk, tk+1) satisfy κ̇(σ, x(σ)) = 0. Suppose there exists constants δ2 ≥ 0 and ∆2 ≥ 0 for

which it holds that

max
τ∈[0,T ]

[
min

{
−∆2 +

1

2
(µ+M+

2 −M−
2 )(T − τ)2 −

1

6
M−

3 (T − τ)3,

−δ2 +
1

2
(µ+M+

2 −M−
2 )τ

2 +
1

6
M+

3 τ
3

}]
≤ 0 . (5.64)

If x(tk) ∈ H∆2(tk)∩Q(tk) in (5.43),(5.32) and x(tk+1) ∈ H∆2(tk+1)∩Qδ2(tk+1) in (5.43),(5.44),
then x(t) ∈ H(t) in (5.39) for all t ∈ [tk, tk+1].

Proof. The proof follows almost identical logic to that of Theorem 5.12, but instead of having
κ(tk) ≤ −δ1 and κ(tk+1) ≤ −δ1, one ends up with κ(tk) ≤ −∆2 and κ(tk+1) ≤ −δ2. Thus, in
place of (5.63), it follows that

κ(σ) ≤ min

{
−δ2 +

1

2
(µ+M+

2 −M−
2 )(tk+1 − σ)2 −

1

6
M−

3 (tk+1 − σ)3,

−∆2 +
1

2
(µ+M+

2 −M−
2 )(σ − tk)2 +

1

6
M+

3 (σ − tk)3
}

(5.64)
≤ 0 . (5.65)

Similar to in Theorem 5.12, the condition on ∆2 and δ2 in (5.64) ensures that κ(σ) ≤ 0 regardless
of the actual maximizer location σ ∈ (tk, tk+1). By the same logic as in Theorem 5.12, it follows
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that x(t) ∈ H(t) for all t ∈ [tk, tk+1]. ■

The primary difference between Theorem 5.12 and Theorem 5.13 is that in Theorem 5.12,
the form for δ1 was provided explicitly. On the other hand, in Theorem 5.13, neither δ2 nor ∆2

is uniquely defined. If one fixes either δ2 or ∆2, then one can use condition (5.64) to compute
the other constant. It follows from Theorem 5.12 that one valid combination is ∆2 = δ2 = δ1.
Another helpful strategy is to set ∆2 = ∆3, where ∆3 is presented in the next subsection, and
to then compute the smallest allowable δ2. I also note that, unlike Theorem 5.12, the conditions
of Theorem 5.13 are recursively feasible. That is, the ending condition x(tk+1) ∈ H∆2(tk+1) ∩
Qδ2(tk+1) at time tk+1 implies the starting condition x(tk) ∈ H∆2(tk) ∩ Q(tk) when k advances
by one step.

Case Study Part viii (Application of Theorem 5.13). Using the values ofM−
2 ,M

+
2 ,M

−
3 ,M

+
3 , µ

in Table 5.4, one possible combination satisfying (5.64) besides ∆2 = δ2 = δ1 is ∆2 =

1.3(10)−5 and δ2 = 9.7(10)−6.

5.2.3.4 Determining ∆, δ when h and κ have distinct maximizers

Now that I have thoroughly covered excursions outside the sets H∆,Qδ when Lemma 5.11
applies, I finally discuss the behavior between sampling times when this is not the case, as is
illustrated by the green lines in Fig. 5.12.

Lemma 5.14. Suppose κ is thrice continuously differentiable and of relative-degree 2 with respect

to (5.30), and u is constant on [tk, tk+1) where tk+1 = tk + T . Suppose that M+
3 > 0, M−

3 < 0,

and µ ≥ M+
2 − M−

2 + (max{|M+
3 |, |M−

3 |})T . Define ∆3 as in (5.88). Suppose there exists

a maximizer time σ ∈ (tk, tk+1) for which h(σ, x(σ)) ≥ h(t, x(t)) for all t ∈ [tk, tk+1] at which

κ̇(σ, x(σ)) ̸= 0. If x(tk) ∈ H∆3(tk)∩Q(tk) and x(tk+1) ∈ H∆3(tk+1)∩Q(tk+1), then x(t) ∈ Q(t)
for all t ∈ [tk, tk+1]. Moreover, if there exists a time ts ∈ (tk, tk+1) at which κ̇(ts, x(ts)) = 0, then

ts is unique.

Proof. For brevity, in this proof, I only write out the time argument of ψ, κ, h, and their derivatives.
By assumption, x(tk) ∈ Q(tk) and x(tk+1) ∈ Q(tk+1), so the trajectory can only leave Q if there
exists a local maximizer ts ∈ (tk, tk+1) of κ such that κ(ts) > 0. Thus, the rest of this proof
proceeds by analyzing whether such a maximizer ts can exist.

Note that on the open interval (tk, tk+1), the functions κ, κ̇, and κ̈ are continuous in time, and
therefore ḣ in (5.51) is continuous as well. By assumption, σ is a maximizer of h, so it follows
that ḣ(σ) = 0. Because of the form of ḣ in (5.51), if ḣ(σ) = 0 and κ̇(σ) ̸= 0, it must be that
κ̈(σ) = −µ sign(κ̇(σ)). That is, for a critical point of h to occur at σ when κ̇(σ) ̸= 0, the second
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derivative of κ (e.g. angular acceleration) at σ must pass through one of two critical values, ±µ,
depending on the sign of κ̇(σ). This yields the two cases below.

First, suppose that κ̇(σ) < 0, which implies κ̈(σ) = µ. Thus, I derive an expression for κ̈(t) for
t in a neighborhood of σ. Let τ ≥ 0 and it follows from (5.50a) that

κ̈(σ + τ) ≥ µ+M−
2 +M−

3 τ −M+
2 . (5.66)

Because of the assumed lower bound on µ, (5.66) implies that κ̈(σ + τ) > 0 for any τ ∈ (0, T ).
Similarly, it follows from (5.50d) that

κ̈(σ − τ) ≥ µ+M−
2 −M+

3 τ −M+
2 , (5.67)

which implies κ̈(σ − τ) > 0 for any τ ∈ (0, T ). Thus, by (5.66) and (5.67), κ̈(t) > 0 for all
t ∈ (tk, tk+1) and therefore there can be no local maximizers of κ on (tk, tk+1). Moreover, if there
exists a time ts ∈ (tk, tk+1) at which κ̇(ts) = 0, then ts is unique and is a local minimizer of κ
since κ̈ is strictly positive.

Second, suppose that κ̇(σ) > 0, which implies κ̈(σ) = −µ. It follows from (5.50c) that

κ̈(σ − τ) ≤ −µ+M+
2 −M−

3 τ −M−
2 , (5.68)

which implies that κ̈(σ − τ) < 0 for all τ ∈ (0, T ). Since κ̇(σ) > 0 and κ̈(σ − τ) < 0, it follows
that κ̇(t) > 0 for all t ∈ [tk, σ] and therefore there can be no local maximizers of κ on [tk, σ]. Next,
it follows from (5.50b) that

κ̈(σ + τ) ≤ −µ+M+
2 +M+

3 τ −M−
2 , (5.69)

which again implies that κ̈(σ + τ) < 0 for all τ ∈ (0, T ), and thus by (5.68) and (5.69), κ̈(t) < 0

for all t ∈ (tk, tk+1). Thus, in this case, there may exist a local maximizer ts of κ but only for
ts ∈ (σ, tk+1], such as shown by the green “x” in Fig. 5.12. If such a ts exists, then κ̇(ts) = 0, and
ts is the unique maximizer of κ on [tk, tk+1] since κ̈ is strictly negative. Going forward, I assume
such a ts exists and now seek to ascertain its value.

From here, there are several possible ways to ensure κ(t) ≤ 0 for all t ∈ [tk, tk+1], and I only
present one method. In my approach, I now shift focus from the values of κ to the values of h.
I will show that for the choice of ∆3 in (5.88), it holds that h(t) ≤ 0 for all t ∈ [tk, tk+1] and
conclude that x(t) ∈ Q(t) for all t ∈ [tk, tk+1] by applying Lemma 5.10.

Since ḣ(σ) = 0, I am interested in how positive ḣ(t) can be for t ∈ [tk, σ] and how negative
ḣ(t) can be for t ∈ [σ, tk+1], from which I can derive a margin that ensures that h(σ) does not
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exceed zero. To this end, it follows from (5.50d) that

κ̈(σ − τ) ≥ −µ+M−
2 −M+

3 τ −M+
2 . (5.70)

Let κ̇(σ) = γ for γ ∈ R>0 at the maximizer σ of h, where the existence of ts ∈ (σ, tk+1) implies
that γ is close to zero. First, for t ∈ [tk, σ], κ̇(t) is upper bounded as

κ̇(σ − τ) = κ̇(σ)−
∫ σ

σ−τ
κ̈(t)dt

(5.70)
≤ γ −

∫ σ

σ−τ
−µ+M−

2 −M+
2 −M+

3 (σ − t)dt

= γ + (µ−M−
2 +M+

2 )τ +
1

2
M+

3 τ
2 . (5.71)

Since I showed that κ̇(t) > 0 for all t ∈ [tk, σ], it follows that ḣ(t) is upper bounded by

ḣ(σ − τ) (5.51)
= κ̇(σ − τ)

(
1 +

κ̈(σ − τ)
µ

)
(5.71),(5.68)
≤

(
γ + (µ−M−

2 +M+
2 )τ +

1

2
M+

3 τ
2

)(
M+

2 −M−
3 τ −M−

2

µ

)
. (5.72)

Next, similar to (5.70), for t ∈ [σ, tk+1], κ̇(t) is upper bounded by

κ̇(σ + τ) = κ̇(σ) +

∫ σ+τ

σ

κ̈(t)dt

(5.69)
≤ γ +

∫ σ+τ

σ

−µ+M+
2 −M−

2 +M+
3 (t− σ)dt

= γ − (µ+M−
2 −M+

2 )τ +
1

2
M+

3 τ
2 . (5.73)

I now divide the interval [σ, tk+1] into two intervals [σ, ts) and (ts, tk+1] because, unlike the upper
bound in (5.72), the lower bounds for ḣ in (5.51) will be different before and after κ̇ changes
from positive to negative at ts. For the interval t ∈ [σ, ts) where κ̇(t) > 0, ḣ(t) is minimized by
minimizing κ̈(t), so I note that (5.50a) lower bounds κ̈(t) as

κ̈(σ + τ) ≥ −µ+M−
2 +M−

3 τ −M+
2 . (5.74)

Thus, during the interval t ∈ [σ, ts) where κ̇(t) > 0, it follows that ḣ(t) is lower bounded by

ḣ(σ + τ)
(5.51)
= κ̇(σ + τ)

(
1 +

κ̈(σ − τ)
µ

)
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(5.73),(5.74)
≥

(
γ − (µ+M−

2 −M+
2 )τ +

1

2
M+

3 τ
2

)(
M−

2 +M−
3 τ −M+

2

µ

)
. (5.75)

To take into account the interval t ∈ (ts, tk+1] where κ̇(t) < 0, instead of the upper bound (5.69), I
will utilize the following lower bound for κ̇

κ̇(σ + τ) = κ̇(σ) +

∫ σ+τ

σ

κ̈(t)dt

(5.74)
≥ γ +

∫ σ+τ

σ

−µ+M−
2 −M+

2 +M−
3 (t− σ)dt

= γ − (µ−M−
2 +M+

2 )τ +
1

2
M−

3 τ
2 . (5.76)

Finally, during the interval t ∈ (ts, tk+1] where κ̇(t) < 0, it follows that ḣ(t) is lower bounded as

ḣ(σ + τ)
(5.51)
= κ̇(σ + τ)

(
1− κ̈(σ − τ)

µ

)
(5.76),(5.74)
≥

(
γ − (µ−M−

2 +M+
2 )τ +

1

2
M−

3 τ
2

)(
2− M−

2 +M−
3 τ −M+

2

µ

)
. (5.77)

Next, given the bounds for ḣ(t) in (5.72),(5.75),(5.77), I seek to upper bound h(σ)− h(tk) and
h(σ)− h(tk+1). Starting with the latter, it follows that

h(σ)− h(tk+1) = −
∫ ts

σ

ḣ(t)dt−
∫ tk+1

ts

ḣ(t)dt

≤ −
∫ ts

σ

[ḣ(t) as in (5.75)]dt−
∫ tk+1

ts

[ḣ(t) as in (5.77)]dt (5.78)

where ts ∈ (σ, tk+1] is an unknown parameter. Because of the disturbance, it is impossible to
develop an exact expression for ts as a function of γ (this is why τ1, τ2 will be free optimization
parameters in (5.88)), but it is possible to develop lower and upper bounds on ts for the computation
of (5.78). Possible trajectories of κ̇(σ + τ) are visualized in Fig. 5.13. At ts, κ̇(ts) = 0, where
κ̇ is bounded by (5.73) and (5.76), so all candidate values of ts must lie between the roots of the
bounding functions (5.73) and (5.76). Since the lemma assumed that M−

3 < 0, the red line (5.76)
is a concave downwards quadratic polynomial. Since κ̇(t) > 0 for t ∈ [σ, ts), it follows that ts
must lie to the right of the second root of (5.76) (dashed red vertical line in Fig. 5.13), denoted
r1 : R≥0 → R:

r1(γ) ≜
1

M−
3

[
(µ+M−

2 −M+
2 )−

√
(µ+M−

2 −M+
2 )

2 − 2M−
3 γ

]
. (5.79)
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Figure 5.13: Visualization of Bounds on κ̇. Visualization of the lower and upper bounds on κ̇(σ+τ)
imposed by (5.76) (red solid line) and (5.73) (blue solid line), respectively, and how this results in
a finite interval of possible roots of κ̇

That is, it holds that

ts − σ
(5.76)
≥ r1(γ) . (5.80)

Similarly, since the lemma assumed that M+
3 > 0, the blue line (5.73) is a concave upwards

quadratic polynomial, and since κ̇(t) < 0 for t ∈ (ts, tk+1), it follows that ts must lie to the left of
the first root of (5.73) (dashed blue vertical line in Fig. 5.13), denoted r∗2 : R≥0 → R:

r∗2(γ) ≜
1

M+
3

[
(µ−M−

2 +M+
2 )−

√
(µ−M−

2 +M+
2 )

2 − 2M+
3 γ

]
. (5.81)

The time ts must also occur inside the present time step, so I define the bound r2 : R≥0×R≥0 → R

r2(γ, τ) ≜

min{r∗2(γ), T − τ} if γ ≤ (µ−M−
2 +M+

2 )
2/(2M+

3 )

T − τ else
(5.82)

and conclude that
ts − σ

(5.73)
≤ r2(γ, σ − tk) . (5.83)

The second case of (5.82) occurs when γ is such that (5.81) is nonreal, in which case ts is instead
upper bounded by the length of the time-step. Note that the bounds (5.79) and (5.82) greatly
simplify the complete relationship between ts and γ, but accounting for all possible curves of κ
in a neighborhood of ts would require more assumptions about the disturbance and would make
this proof far more complex. Instead, I choose to treat ts and γ as free parameters with minimal
coupling to each other except that in (5.79) and (5.82), so that (5.78) is computable. I then simplify
the right hand side of (5.78) and assign the result to the function dright : R≥0 × R≥0 × R≥0 → R
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defined as

dright(γ, τ1, τ2) ≜
(M−

3 )
2

8µ
(τ 41 − τ 42 )−

M−
3 M

+
3

8µ
τ 42 +

[
M−

3 (M
−
2 −M+

2 )

2µ
− 2M−

3

3

] (
τ 31 − τ 32

)
+

1

6µ

[
2M−

3 (M
−
2 −M+

2 + µ)−M+
3 (M

−
2 −M+

2 )
]
τ 32 −

1

µ
(γ(M−

2 −M+
2 ))τ2

+
1

2µ

[(
M+

2 −M−
2 + 2µ

)
(M+

2 −M−
2 + µ) +M−

3 γ
] (
τ 21 − τ 22

)
+

1

2µ

[
(M−

2 −M+
2 )(M

−
2 −M+

2 + µ)−M−
3 γ
]
τ 22 +

γ

µ
(M−

2 −M+
2 − 2µ)(τ1 − τ2) (5.84)

so that (5.78) simplifies to

h(σ)− h(tk+1) ≤ dright(γ, tk+1 − σ, ts − σ) (5.85)

where the third argument ts − σ is bounded by (5.80) and (5.83).
Similar to (5.78), h(σ)− h(tk) can be bounded as

h(σ)− h(tk) =
∫ σ

tk

ḣ(t) ≤
∫ σ

tk

[ḣ(t) as in (5.72)]dt = dleft(γ, σ − tk) (5.86)

where it is not necessary to break the integral into two parts here because κ̇(t) does not change
signs on [tk, σ]. I then define the function dleft : R≥0 × R≥0 → R as the simplification of the
integral in (5.86) as follows

dleft(γ, τ) ≜ −
τ 4

8µ
(M−

3 M
+
3 )−

τ 3

6µ

(
2M−

3 (M
+
2 −M−

2 + µ) +M+
3 (M

−
2 −M+

2 )
)

− τ 2

2µ

(
(M−

2 −M+
2 )(M

+
2 −M−

2 + µ) +M−
3 γ
)
− γτ

µ
(M−

2 −M+
2 ) . (5.87)

Both (5.85) and (5.86) must apply simultaneously, so I define ∆3 below as a maximization of the
lesser of dleft and dright, subject to the constraints on ts − σ in (5.79) and (5.82). Furthermore, the
maximizer σ of h must occur in the present time step, so σ − tk ∈ [0, T ], and γ must be positive.
Let τ1 = σ − tk and τ2 = ts − σ, and finally define

∆3 ≜ max
γ∈[0,∞)
τ1∈[0,T ]

τ2∈[r1(γ),r2(γ,τ1)]

(
min {dleft(γ, τ1), dright(γ, T − τ1, τ2)}

)
. (5.88)

Note that although γ is not upper bounded in (5.88), in practice there is a maximum value of γ for
which the interval [r1(γ), r2(γ, σ − tk)] is nonempty. Finally, using both bounds (5.85),(5.86), the
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maximum value of h is bounded by

h(σ)
(5.85),(5.86)
≤ min {h(tk) + dleft(γ, σ − tk), h(tk+1) + dright(γ, tk+1 − σ, ts − σ)}

≤ −∆3 +min {dleft(γ, σ − tk), dright(γ, tk+1 − σ, ts − σ)}
(5.88)
≤ 0 (5.89)

so x(t) ∈ H(t) for all t ∈ [tk, tk+1]. By Lemma 5.10, x(t) ∈ Q(t) for all t ∈ [tk, tk+1] too. In
summary, I have shown that 1) when κ̇(σ) < 0, no maximizer ts of κ can occur, and 2) when
κ̇(σ) > 0, only one maximizer ts of κ can occur and by (5.89) and Lemma 5.10, κ(ts) < 0, so
x(t) ∈ Q(t) for all t ∈ [tk, tk+1] in all cases where κ̇(σ) ̸= 0. ■

Note that in Lemmas 5.11 and 5.14, I supposed existence of a local maximizer of h. If a
local maximizer of h does not occur on [tk, tk+1], then it is trivial to show that x(t) ∈ H(t) for
all t ∈ [tk, tk+1], and thus by Lemma 5.10, x(t) ∈ Q(t) for all t ∈ [tk, tk+1]. Also, it should
be emphasized that Lemma 5.14 does not guarantee that x(t) ∈ H(t) for all t ∈ [tk, tk+1] as in
Theorems 5.12-5.13, because the value of ∆3 required to guarantee that result could be larger.
Rather, Lemma 5.14 only guarantees that x(t) stays in the original constraint set Q(t) for all
t ∈ [tk, tk+1], and the proof further shows that x(t) stays in H(t) in the special case where a local
maximizer ts ∈ (tk, tk+1) of κ also exists.

Case Study Part ix (Application of Lemma 5.14). Using the values of M−
2 ,M

+
2 ,M

−
3 ,M

+
3 , µ

in Table 5.4, it follows that ∆3 = 1.09(10)−5 in (5.88). This occurs for γ = 3.6(10)−6, σ− tk =
0.13 s, and ts − σ = 0.0023 s. In this case, ∆3 < δ1, but this is not guaranteed in general.

Remark 5.3. Note that the necessary condition κ̈(σ, x(σ), u, ξ) = −µ in the proof of Lemma 5.14

(preceding (5.68)) is very specific, so in my experience, maximizers of h meeting the conditions

of Lemma 5.14 are rarer than maximizers meeting the conditions of Lemma 5.11. However, the

conditions of Lemma 5.14 occur more frequently if µ is chosen very small.

Thus, I have now identified bounds on the overshoot of κ between time steps both when κ and
h share maximizers (Lemma 5.11) and when the maximizer of κ is distinct from the maximizer of
h (Lemma 5.14). I thus have all the tools required to define the ZOH robust CBF set Z . I now
combine Theorem 5.13 and Lemma 5.14 to state my main theorem for relative-degree 2 constraints.

Theorem 5.15. Suppose κ is thrice continuously differentiable and of relative-degree 2 with re-

spect to (5.30), and u is constant on [tk, tk+1) where tk+1 = tk + T . Suppose that M+
3 > 0,

M−
3 < 0, and µ ≥ M+

2 − M−
2 + max{|M+

3 |, |M−
3 |}T . Suppose there exists δ2 and ∆2

satisfying condition (5.64), and that ∆2 ≥ ∆3 in (5.88). If x(tk) ∈ H∆2(tk) ∩ Q(tk) and

x(tk+1) ∈ H∆2(tk+1) ∩Qδ2(tk+1), then x(t) ∈ Q(t) for all t ∈ [tk, tk+1].
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Proof. For brevity, in this proof, I only write out the time argument of κ, h, and their derivatives.
By assumption, κ(tk) ≤ 0, h(tk) ≤ −∆2 ≤ 0, κ(tk+1) ≤ −δ2 ≤ 0, and h(tk+1) ≤ −∆2 ≤ 0.
Thus, x(t) can only exit Q if there is a local maximizer ts of κ for ts ∈ (tk, tk+1). As a result of
Lemma 5.10, it is only possible for κ(ts) > 0 to occur if there also exists a local maximizer σ of
h for σ ∈ (tk, tk+1) such that h(σ) > 0, where it is possible that σ = ts. Suppose the existence
of both ts and σ, where neither is necessarily unique. If there exists a maximizer σ of h such that
κ̇(σ) ̸= 0, then Lemma 5.14 implies that ts is unique and that κ(ts) ≤ 0.

Next, if every maximizer σ of h satisfies κ̇(σ) = 0, then Theorem 5.13 implies that κ(ts) ≤ 0

for every ts, where ts = σ. Finally, if there is one or more maximizers σ1 of h such that κ̇(σ1) = 0,
and one maximizer σ2 of h such that κ̇(σ2) ̸= 0, then by the first paragraph, ts is unique and
κ(ts) ≤ 0, and it follows that σ1 is unique and σ1 = ts. That is, the conditions presented so far do
not preclude the possibility of the cases described in Lemma 5.11 and Lemma 5.14 both occurring
in the same time step, but in this case, safety is ensured by Lemma 5.14 alone. Since κ(ts) ≤ 0 for
every maximizer ts of κ, it follows that κ(t) ≤ 0 for all t ∈ [tk, tk+1], and thus x(t) ∈ Q(t) for all
t ∈ [tk, tk+1]. ■

It follows from Theorem 5.15 that the ZOH robust CBF set in Fig. 5.10 is

Z(tk) = Qδ2(tk) ∩H∆2(tk) ∩H∆3(tk) . (5.90)

Remark 5.4. Note that δ1 in (5.54) decreases with decreasing µ while ∆3 in (5.88) tends to in-

crease with decreasing µ. Although µ is a tunable variable, this tradeoff suggests that there is

some minimum amount of margin required when using a ZOH controller, regardless of the choice

of µ. Note that both δ1 and ∆3 decrease with decreasing T .

5.2.3.5 Determining the set of safe controls

Now that I have thoroughly addressed the problem of overshoot between time steps, I seek a
condition on u that guarantees h(tk+1, x(tk+1)) ≤ −∆2 and κ(tk+1, x(tk+1)) ≤ −δ2 so that I can
practically apply Theorem 5.15. Moreover, I seek a choice of parameters δ2,∆2, µ such that this
condition is always feasible with respect to the input constraints everywhere in Z in (5.90). To this
end, define the following polynomials in τ :

pκ(t, x(t), u(t), τ) ≜ κ(t, x(t)) + κ̇(t, x(t))τ +
1

2
ψ(t, x(t), u(t))τ 2 +

1

2
M+

2 τ
2 +

1

6
M+

3 τ
3 (5.91)

ph(t, x(t), u(t), τ) ≜ pκ(t, x(t), u(t), τ) +
1

2µ
ssq

(
κ̇(t, x(t))+
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ψ(t, x(t), u(t))τ +M+
2 τ +

1

2
M+

3 τ
2

)
(5.92)

which I will show represent upper bounds on κ(t+ τ, x(t+ τ)) and h(t+ τ, x(t+ τ)), respectively,
given x(t) and a ZOH u(t). Here, ssq(λ) ≜ λ|λ| for brevity.

Theorem 5.16. Suppose κ is thrice continuously differentiable and of relative-degree 2 with re-

spect to (5.30), M−
3 ,M

+
3 , δ2,∆2,∆3, µ satisfy the conditions of Theorem 5.15, Z is as given in

(5.90), and u satisfies (5.41) for every k ∈ Z≥0. If x(t0) ∈ Z(t0) and

pκ(tk, x(tk), u(tk, x(tk)), T ) ≤ −δ2 (5.93a)

ph(tk, x(tk), u(tk, x(tk)), T ) ≤ −∆2 (5.93b)

both hold for every k ∈ Z≥0, then x(t) ∈ Q(t) for all t ∈ T .

Proof. For brevity, I only write the time arguments of ψ, pκ, ph, κ, h, and their derivatives in this
proof. First, note that the evolution of κ̇ and κ between time steps can be upper bounded as follows:

κ̇(tk + τ) = κ̇(tk) +

∫ tk+τ

tk

κ̈(t)dt

(5.49a)
≤

∫ tk+τ

tk

ψ(tk) +M+
2 +M+

3 (t− tk)dt

= κ̇(tk) + ψ(tk)τ +M+
2 τ +

1

2
M+

3 τ
2 , (5.94)

κ(tk + τ) = κ(tk) +

∫ tk+τ

tk

κ̇(t)dt

(5.94)
≤ κ(tk) +

∫ tk+τ

tk

κ̇(tk) +

[
ψ(tk) +M+

2 +
1

2
M+

3 (t− tk)
]
(t− tk)dt

= pκ(tk, τ) . (5.95)

Thus, pκ in (5.91) is an upper bound on κ(tk+τ), and (5.94) is an upper bound on κ̇(tk+τ). Since
h in (5.38) is monotonically increasing in both κ and κ̇, it follows that ph in (5.92) is an upper
bound on h(tk + τ). Since tk+1 = tk + T , it follows that (5.93a) implies x(tk+1) ∈ Qδ2(tk+1)

and (5.93b) implies x(tk+1) ∈ H∆2(tk+1), or equivalently x(tk+1) ∈ Z(tk+1). Since this holds for
every k ∈ Z≥0, Theorem 5.15 implies that x(t) ∈ Q(t) for all t ∈ T . ■

Note that while the upper bounds pκ and ph are valid for any τ ≥ 0, Theorem 5.16 only consid-
ers the values of pκ and ph at τ = T , and thus relies on the analysis leading up to Theorem 5.15
(which was not dependent on pκ, ph) to guarantee that κ remains nonpositive between sampling
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times, i.e. for τ ∈ (0, T ). Based on Theorem 5.16, I conclude with the following definition of a
CBF for ZOH applications.

Definition 5.3 (Degree 2 Zero-Order-Hold Control Barrier Function). For a thrice continuously

differentiable constraint function κi, the function hi : T × X → R in (5.38) with parameter µ is

a Degree 2 Zero-order-hold Control Barrier Function (D2ZohCBF) on the set S for time-step T if

there exist constants δ2,∆2 satisfying (5.64) and ∆2 ≥ ∆3 in (5.88) such that

min
u∈U

(max {pκi(t, x, u, T ) + δ2, phi(t, x, u, T ) + ∆2}) ≤ 0, ∀x ∈ Zi(t) ∩ S(t), ∀t ∈ T (5.96)

where Zi, pκi , and phi are given in (5.90), (5.91), and (5.92), respectively.

I revert to using the i indexing notation in Definition 5.3 for completeness (recall that this entire
section, and thus Definition 5.3 too, are for one constraint at a time). Similar to (2.4),(4.5) with
continuous control, (5.96) accounts for the allowable control set U , so if h is a D2ZohCBF, then
the conditions (5.93) are feasible in the presence of input constraints for all x(t) ∈ Z(t), t ∈ T .
Equivalently, if h is a D2ZohCBF then the set Uzoh(t, x) ∩ U is nonempty for all x ∈ Z(t) ∩ S(t),
t ∈ T , where

Uzoh(t, x) = {u ∈ Rm | pκ(t, x, u, T ) ≤ −δ2 and ph(t, x, u, T ) ≤ −∆2} . (5.97)

The only remaining component is to determine a valid triple (δ2,∆2, µ). One such triple is δ2 = δ1

in (5.54), ∆2 = ∆1 where ∆1 ≜ max{δ1,∆3} in (5.54),(5.88), and µ = µ∗ as follows

µ∗(δ2,∆2) ≜ max
µ∈(0,∞)

µ (5.98)

such that max
x∈Z(t)∩S(t)

t∈T

(
min
u∈U

(max {pκ(t, x, u, T ) + δ2, ph(t, x, u, T ) + ∆2})
)
≤ 0

assuming µ∗ exists. One can also choose µ ≤ µ∗(δ2,∆2). Note that for large ξ or T , δ2 and ∆2

will also be large, and there may be no µ∗ satisfying (5.98) and the conditions of Theorem 5.15,
indicating that (5.30) cannot be safely controlled at such a sampling time T . A plot of µ∗ using
δ2 = δ1 and ∆2 = ∆1 for dynamics (5.31) is shown in Fig. 5.14, where the black region is where
µ∗ does not exist or is less than M+

2 −M−
2 +max{|M+

3 |, |M−
3 |}T . Note that the range of valid µ∗

will also vary with umax, though that variation is not plotted here.

Case Study Part x (Selection of µ for Input Constraints). Using the values of

M−
2 ,M

+
2 ,M

−
3 ,M

+
3 in Table 5.4, the choice (δ1, δ1, µ

∗(δ1, δ1)) where µ∗(δ1, δ1) = 0.00167 as

in (5.98) is one valid triple. Alternatively, (δ2,∆2, µ
∗(δ2,∆2)) is another such triple. Note that
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µ
∗(δ

1 ,∆
1 )

µ
<
M
+2 −

M
−2
+
M
+3 T

Figure 5.14: Plot of µ∗ with Sample Time and Disturbance Bounds. Plot of µ∗ in (5.98) variation
with the disturbance bound ξmax and sampling period T for the system (5.31), where ‘x’ marks the
case study parameters. The black region represents µ that violate the assumptions of Theorem 5.15.

µ∗(δ2,∆2) is slightly larger than µ∗(δ1, δ1), but the difference is only in the fourth significant

digit of µ for this particular system. I observed a greater difference between µ∗(δ2,∆2) and

µ∗(δ1, δ1) for problems where umax was greater. Thus, ZOH discretization has led to a more

conservative result than the continuous-time case with µ = 0.0025 in Case Study Part iii.

Note that the polynomial pκ is linear in ψ, and therefore affine in u, so one can en-
code (5.93a) in a QP-based control law as in [66, Sec. II-C]. The polynomial ph has
nonlinear dependence on ψ (because of the ssq function), but ph is still monotone in-
creasing in ψ, and thus one can write ph ≤ −∆2 in (5.93b) equivalently as ψ ≤ ψmax

for some number ψmax (the expression for ψmax is excessively long and is omitted here,
but can be easily derived; the interested reader may also refer to the function get PhiQ

in https://github.com/jbreeden-um/phd-code/blob/main/2022/AIAA%

20Autonomous%20Attitude%20Reorientation/42/Source/42fsw.c). Thus, one
can also encode (5.93b) in a QP, and the set Uzoh in (5.97) is a polytope. In conclusion, the sets Z
in (5.90) and Uzoh in (5.97) solve the relative-degree 2 case of Problem 5.2.

5.2.4 Method for Relative Degree One

5.2.4.1 Preliminary Method

I now extend the method in Section 5.2.3 to constraint functions that are of relative-degree 1
with respect to the dynamics (5.30). As before, I drop the subscript i and assume that η represents
any relative-degree 1 constraint function. In this subsection, I assume that η is also a CBF, so I will
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not need to employ the intermediary step of defining h and H, as was done for relative-degree 2
constraints. Similar to (5.46), define the function

ϕ(t, x, u) ≜
∂η(t, x)

∂t
+
∂η(t, x)

∂v
(f2(t, x) + g1(t, x)u) , (5.99)

which represents the component of η̇ that is known to the controller. Likewise, define the constant

M1 ≜ sup
t∈T ,x∈S(t),ξ∈Ξ

∂η(t, x)

∂v
g2(t, x)ξ , (5.100)

which represents the uncertainty in η̇ because of the unknown disturbance. It then holds that

η̇(t, x, u) ≤ ϕ(t, x, u) +M1 . (5.101)

Next, to account for the ZOH controller, define

M2 ≜ sup
t∈T ,x∈S(t),u∈U ,ξ∈Ξ

[
∂ϕ(t, x, u)

∂t
+
∂ϕ(t, x, u)

∂q
f1(t, x)

+
∂ϕ(t, x, u)

∂v
(f2(t, x) + g1(t, x)u+ g2(t, x)ξ)

]
(5.102)

so that for τ ≥ 0 it holds that

ϕ(t+ τ, x(t+ τ), u) ≤ ϕ(t, x(t), u) +M2τ . (5.103)

In this subsection, I only require the upper bounds on (5.100) and (5.102), so I omit the superscripts
+ and − used in the prior section. Here, M1 and M2 are analogous to M+

2 and M+
3 , respectively,

from Section 5.2.3.2. Now define the following polynomial in τ

pη(t, x, u, τ) ≜ η(t, x) + ϕ(t, x, u)τ +M1τ +
1

2
M2τ

2 . (5.104)

which serves as an upper bound on the evolution of η and is employed in the following theorem.

Theorem 5.17. Suppose η is twice continuously differentiable and of relative-degree 1 with respect

to (5.30) and u satisfies (5.41) for every k ∈ Z≥0. Suppose M2 ≥ 0 in (5.102). If x(t0) ∈ V(t0)
and

pη(tk, x(tk), u(tk, x(tk)), T ) ≤ 0 (5.105)

for every k ∈ Z≥0, then x(t) ∈ V(t) for all t ∈ T .

Proof. For brevity, I only write the time arguments of ϕ, pη, η, and their derivatives in this proof.

167



First, note that the evolution of η can be upper bounded between time steps as follows

η(tk + τ) = η(tk) +

∫ tk+τ

tk

[
η̇(tk) +

∫ τ1

tk

η̈(tk + τ2)dτ2

]
dτ1

(5.102)
≤ η(tk) +

∫ tk+τ

tk

[
η̇(tk) +

∫ τ1

tk

M2dτ2

]
dτ1

(5.100)
≤ η(tk) +

∫ tk+τ

tk

[ϕ(tk) +M1 +M2τ1] dτ1

(5.104)
≤ pη(tk, τ) . (5.106)

It follows that if pη(tk, τ) ≤ 0, then η(tk + τ) ≤ 0 and thus x(tk + τ) ∈ V(tk + τ). Note that
pη in (5.104) is a concave upwards quadratic in τ (since M2 is assumed to be nonnegative), so if
pη(tk, 0) = η(tk) ≤ 0 and pη(tk, T ) ≤ 0, then η(tk + τ) ≤ pη(tk, τ) ≤ pη(tk, T ) ≤ 0 for all
τ ∈ [0, T ]. Since the theorem assumed x(t0) ∈ V(t0), or equivalently pη(t0, 0) = η(t0) ≤ 0, and
since (5.106) implies pη(tk, T ) ≤ 0 for all k ∈ Z≥0, it follows that η(t) ≤ 0 for all t ∈ T , or
equivalently, x(t) ∈ V(t) for all t ∈ T . ■

Note that Theorem 5.17 is a straightforward extension of Corollary 5.8 to systems with distur-
bances, while the insights in the following subsection are more novel and are motivated specifically
by the system in (5.31).

Case Study Part xi (Application of Theorem 5.17). For the system (5.31), in order for the

constants M−
2 ,M

+
2 ,M

−
3 ,M

+
3 for κb in (5.34) to be well defined (i.e. for S in (5.45),(5.48) to be

compact), the maximum system angular velocity must be bounded. There are various ways to

encode such a bound. First, if one desires that ∥ω∥ ≤ ωmax for some ωmax ∈ R>0, then one could

use either η1(t, x) = ∥ω∥ − ωmax or η2(t, x) = ∥ω∥2 − ω2
max. Note that M2 is undefined for the

constraint function η1, so Theorem 5.17 does not apply. Instead, consider the function η2. For

η2 with ωmax = 0.0175 rad/s, it follows that M2 = 0.00153. While η2 satisfies the definition of

D1ZohCBF, this leads to an effective margin of
(
1
2
M2T

2
)
/w2

max ≈ 10%, which is rather large.

While this does not directly impact the robust CBF set Z in (5.113), this margin in effect makes

certain states in the safe set inaccessible (see Definitions 5.1-5.2), so I would like to reduce this

margin.

Next, suppose the matrix Z in (5.31) is of the form

Z =

[
Z11 Z12

Z21 Z22

]
(5.107)

where Z11 ∈ R3×3, Z12 ∈ R3×m, Z21 ∈ Rm×3, Z22 ∈ Rm×m. Note that, under the dynamics
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in (5.31), ∥ω∥2 is not a conserved quantity, so if the spacecraft is not spinning about a prin-

cipal axis, it will take active control effort to keep the state within a level set of η2. On the

other hand, kinetic energy is a conserved quantity, which takes no control effort to maintain

(unless the disturbance adds energy to the system). For this reason, define P in ηω in (5.36) as

P = Z−1
11 , so that ηω encodes a maximum kinetic energy constraint. Then, using ηω in (5.36)

with emax in Table 5.3, one finds M2 = 8.30(10)−5, leading to a smaller controller margin of(
1
2
M2T

2
)
/emax ≈ 3.3%.

5.2.4.2 Reducing Conservatism

Before I present a definition for a valid CBF for the relative-degree 1 case, I present an extension
of Theorem 5.17 that reduces conservatism for certain systems and constraint functions, and in
particular the constraint function ηω in the case study in (5.36). In developing this work, I noticed
that the main contributor to M2 for the constraint function in (5.36) was the control input u. While
x and ξ are not known exactly between time steps tk and tk+1, the value of u(t) = u(tk) for
t ∈ (tk, tk+1) is a known quantity, and thus can be removed from the uncertainty bound M2.
Motivated by this, suppose there exists functions ϕ1 : U → R≥0 and ϕ2 : T × S × U × Ξ → R
such that

ϕ̇(t, x, u, ξ) ≡ ϕ1(u) + ϕ2(t, x, u, ξ) (5.108)

for all t ∈ T , x ∈ S, u ∈ U , ξ ∈ Ξ. The value of ϕ1(u) is known, so define a constant analogous
to (5.102) using ϕ2 only as

M alt
2 ≜ sup

t∈T ,x∈S(t),u∈U ,ξ∈Ξ
ϕ2(t, x, u, ξ) . (5.109)

See also [125] for a related decomposition. Then define the polynomial

palt
η (t, x, u, τ) ≜ η(t, x) + ϕ(t, x, u)τ +M1τ +

1

2

(
ϕ1(u) +M alt

2

)
τ 2 . (5.110)

Corollary 5.18. Suppose η is twice continuously differentiable and of relative-degree 1 with re-

spect to (5.30) and u satisfies (5.41) for all k ∈ Z≥0. Suppose ϕ1 in (5.108) is positive semi-definite

and M alt
2 ≥ 0 in (5.109). If x(t0) ∈ V(t0) and

palt
η (tk, x(tk), u(tk, x(tk)), T ) ≤ 0 (5.111)

for every k ∈ Z≥0, then x(t) ∈ V(t) for all t ∈ T .

Proof. For brevity, I only write the time arguments of ϕ1, p
alt
η , η, and their derivatives in this proof.
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Similar to (5.106), palt
η (tk, τ) in (5.110) is an upper bound on η(tk+ τ). By (5.41), u is constant be-

tween time steps and therefore the quadratic coefficient of palt
η given by ϕ1(u(tk))+M

alt
2 is constant.

Because ϕ1 maps to R≥0 and M alt
2 ≥ 0, the coefficient ϕ1(u(tk)) +M alt

2 is also nonnegative. Thus,
palt
η (tk, τ) is a concave upwards quadratic polynomial in τ , so if η(tk) ≤ 0 and palt

η (tk, T ) ≤ 0, then
it follows by the same logic as Theorem 5.17, that x(t) ∈ V(t) for all t ∈ T . ■

I now give the complete requirements for a relative-degree 1 constraint function η to be a CBF
in ZOH applications.

Definition 5.4 (Degree 1 Zero-Order-Hold Control Barrier Function). A twice continuously differ-

entiable function ηi is a Degree 1 Zero-order-hold Control Barrier Function (D1ZohCBF) on the

set S for time-step T if there exists a positive semidefinite function ϕ1 : U → R≥0 and a function

ϕ2 : T × S × U × Ξ (where one can use ϕ1(u) ≡ 0) satisfying (5.108) such that

min
u∈U

palt
ηi
(t, x, u, T ) ≤ 0, ∀x ∈ S(t),∀t ∈ T (5.112)

where palt
ηi

is as given in (5.110).

That is, η is a D1ZohCBF if the condition (5.105) is always feasible inside the safe set. Unlike
Definition 5.3, Definition 5.4 does not contain any additional tuning parameters. I assume that the
function η has already been constructed or tuned so as to be possible to render the corresponding
set V forward invariant in the presence of input constraints. This is reasonable in the context of
spacecraft attitude control, because the function ηω in (5.36) represents spacecraft kinetic energy.
A fundamental requirement of control design should be that the spacecraft is able to reduce its
kinetic energy from any safe state. In math, this requirement is equivalent to (5.112) for ηω. One
case in which this requirement is not satisfied is if the spacecraft is allowed to achieve large angular
velocities while operating at a control frequency too slow to stabilize the system. In this case, no
amount of tuning will yield a safe controller, so (5.112) will be violated, and one will need to
operate at lower angular velocities or smaller time-steps to achieve a stable system and satisfy
(5.112).

For the D1ZohCBF, denote

Z(t) ≡ V(t), Uzoh(t, x) = {u ∈ Rm | palt
η (t, x, u, T ) ≤ 0} , (5.113)

which solves the relative-degree 1 case of Problem 5.2. Note that if ϕ1 ≡ 0 in (5.108), then Uzoh

in (5.113) is a half-space and safe control inputs can again be computed using a QP-based control
law. Alternatively, if ϕ1 is a convex function, then Uzoh in (5.113) is not necessarily a polytope,
but will still be a convex set, allowing the use of other convex optimization tools to choose control
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inputs. For instance, in Section 5.2.5.1, ϕ1 will be a strictly convex quadratic function, yielding a
quadratically constrained quadratic program (QCQP) as a control law.

Case Study Part xii (Application of Corollary 5.18). Suppose η2 is as described in Case Study

Part xi, and let ϕ1(u) = 2uTZT
12Z12u. This leads to M alt

2 = 4.88(10)−4, resulting in an effective

margin of
(
1
2
M alt

2 T
2
)
/w2

max ≈ 3.2%, much less than in the prior case with ϕ1(u) ≡ 0. Thus,

when ϕ1(u) is large, the controller still ends up applying the same amount of margin as in Case

Study Part xi, but when ϕ1(u) is small (i.e. u is small), the margin inherent in palt
η in (5.110) is

reduced compared to the margin in pη in (5.104).
Next, for ηω with P as described in Case Study Part xi, let ϕ1(u) = uTZT

12PZ12u, resulting

in M alt
2 = 1.95(10)−5. This yields an effective margin of

(
1
2
M alt

2 T
2
)
/emax ≈ 0.77%, and is

therefore the setup used for simulation in Section 5.2.5.1.

5.2.5 Applications to Spacecraft Attitude Control

5.2.5.1 Simulations in MATLAB

In this section, I demonstrate the above methods in simulation. I assume a spacecraft with two
instruments with boresight vectors b1, b2 and keep-out zones θ1, θ2 in Table 5.5, which induce two
pointing constraint functions κ1, κ2 of the form in (5.34). Let s1 = s2 be the local sun vector,
which is slowly time-varying. I then construct two D2ZohCBFs h1, h2 as in Section 5.2.3 with the
constants in Table 5.4. Suppose there is also an angular velocity constraint function η3 of the form
in (5.36) with the previously presented parameters in Table 5.3, and with ϕ1(u) = uTZT

12PZ12u

as discussed in Case Study Part xii. Then η3 is a D1ZohCBF. The set of safe control inputs is
U ∩ Uzoh,1(t, x) ∩ Uzoh,2(t, x) ∩ Uzoh,3(t, x).

Suppose the spacecraft (visualized in Fig. 5.9) is required to point instrument b1 at inertially
fixed target bt, given in Table 5.5. Define the following shortest-path proportional-derivative con-
trol law

φ = satφ∗
(
arccos

(
bT
tR(q)b1

))
, (5.114a)

y = b1 ×
(
R(q)Tbt

)
, (5.114b)

upd(t, x) = Z†
12

(
kp sin

(φ
2

) y

∥y∥
− kdω

)
, (5.114c)

where upd may be unsafe and does not necessarily satisfy the input constraints. Here, let sat be the
saturation function and Z†

12 be the Moore-Penrose pseudoinverse. I then construct the final control
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Parameter Value
b1 [0.5774, 0.5774, 0.5774]T

b2 [−0.8660, 0.5, 0]T
bt [0, −0.7072, −0.7072]T
θ1 π/4 rad
θ2 π/4 rad
φ∗ 0.2 rad
kp 0.1
kd 0.5

q(t0) [0.5, 0.5, 0.5, 0.5]T

ω(t0) [0, 0, 0]T

w(t0) [0, 0, 0, 0]

Table 5.5: Satellite Reorientation Simulation Parameters. Simulation parameters for Sec-
tion 5.2.5.1

law as a QCQP

uzohcbf = argmin
u∈U∩Uzoh,1(t,x)∩Uzoh,2(t,x)∩Uzoh,3(t,x)

∥u− upd(t, x)∥2 . (5.115)

Using this “ZohCBF” controller, I simulated a single reorientation maneuver with initial and
final parameters given in Table 5.5, and in the presence of a random disturbance bounded
by ξmax in Table 5.3. For more details, I refer the interested reader to the simulation
code at https://github.com/jbreeden-um/phd-code/tree/main/2022/AIAA%
20Autonomous%20Attitude%20Reorientation/MATLAB. The simulation is short
enough that this section does not presently consider momentum-management (i.e. ensuring wi

remains bounded for i = 1, 2, 3, 4). A diagram of the excluded pointing zone and the trajecto-
ries of the two instrument vectors is shown in Fig. 5.15, and a video of the reorientation in three
dimensions is found at https://youtu.be/EVuyZ-06-1Y. The constraint values over the
maneuver duration are shown in Fig. 5.16, and the control inputs are shown in Fig. 5.17. As ex-
pected, safety is maintained, and the control input constraints are always satisfied. The absolute
value of the maximum value of η3 in Fig. 5.16 is the physical margin explained in Definition 5.2.
Both ZohCBF plots in Fig. 5.16 exhibit a physical margin, but the margin is only noticeable for
the constraint η3 without zooming in.

For comparison, I also simulated the controllers in 1) [27, Eq. 22], denoted “Log-B”, with
α = 0.75, β = 8, k1 = 0.0165; 2) [236, Eq. 17] denoted “SMC”, with k = 0.01, k1 = 5015,
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Figure 5.15: Satellite Reorientation Azimuth and Elevation. Plot of the azimuth and elevation in
an inertial coordinate system of the two instrument pointing vectors b1 (solid) and b2 (dashed) and
the keep-out zone (red) centered about the sun vector
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Figure 5.16: Satellite Reorientation Constraint Values. Plots of the two instrument constraint
function values κ1, κ2 for the lines in Fig. 5.15, and the system energy constraint function values
η3 using all control laws
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Figure 5.17: Satellite Reorientation Control Values. Plots of the control inputs and input con-
straints (black dashed lines) for Fig. 5.15 using all control laws

k2 = 0.0167, ˆ̄d ≡ 0; and 3) [231], denoted “NMPC”1, with n = 5, h = 0.2, Q1 = P1 = 0.01I ,
Q2 = P2 = 38I , Q3 = 100I , where I is the identity matrix. The resultant trajectories are shown
in Figs. 5.15-5.17 and described in Table 5.6, where all simulations were run on a 3.5 GHz Intel
Xeon processor. While the Log-B and SMC controllers do not guarantee safety in the presence
of input constraints or ZOH control inputs, Figs 5.15-5.17 show that when properly tuned, all
of the above controllers can behave similarly. That said, the ZohCBF controller took a different
route around the exclusion zone than all of the comparison controllers. The ZohCBF and NMPC
controllers approached closer to the edge of the safe set than the Log-B and SMC controllers, and
the NMPC controller briefly violated the κ1 constraint. Also, the Lyapunov function introduced
in [27] is infinitely continuously differentiable, so the trajectories under the Log-B controller are
smooth. This is shown particularly in Fig. 5.16, where the green lines have unique maximizers,
whereas the other controllers spend much of the trajectory very close to zero. This allowed the
ZohCBF controller to achieve the fastest settling time, defined here as time to 0.1 degrees error, in
Table 5.6. Note that for larger values of k1, the Log-B controller could be faster but would exceed
the angular velocity constraint, and for much larger values of k1, the Log-B controller would violate

1I wish to thank Dr. Rohit Gupta of the Indian Institute of Technology Bombay for providing the optimization code
used to simulate the “NMPC” controller. Without Dr. Gupta’s assistance, I would not have been able to include this
comparison.

174



Method Settling Time (s) Mean Compute Time (s) Max Compute Time (s)
CBF 207.0 0.0088 0.021

Log-B 338.8 0.00022 0.0082
SMC 1719.8 0.00016 0.0087

NMPC 803.6 0.15 2.3

Table 5.6: Satellite Reorientation Simulation Times. Simulation times for Figs. 5.15-5.17

the pointing constraints due the ZOH implementation. The NMPC controller approached the target
at a rate similar to the ZohCBF controller, but exhibited oscillations around the target due to small
prediction horizon, thus resulting in a large settling time. The SMC controller was the slowest due
to the upper bound on k implied by [236, Eq. 16].

Another notable difference between the ZohCBF and Log-B controllers is that the Lyapunov
function in [27] is strictly convex, so the controller is globally convergent. This is not true of
the ZohCBF or NMPC controllers. To examine this, I increased the value of θ1, θ2 to 0.95 rad
and resimulated the ZohCBF and Log-B controllers. The results are shown in Figs. 5.18-5.19 and
Table 5.7 and in the video at https://youtu.be/sZ_F4N75kcw. Note that the blue lines
(ZohCBF controller) in Fig. 5.18 both approach the edge of the red region, and then stop when the
controller cannot safely move closer to the target direction (green dot) due to the set S∩Z1∩Z2∩Z3

being nonconvex. The spacecraft remains safe, but does not complete its objective. On the other
hand, the Log-B controller is eventually able to navigate around the exclusion zone and converge
to the target vector. That said, the Log-B controller is very slow in Table 5.7. Lastly, I note that the
ZohCBF technique can be applied to any nominal controller, so consider the control law

ucombined = argmin
u∈U∩Uzoh,1(t,x)∩Uzoh,2(t,x)∩Uzoh,3(t,x)

∥u− ulogb-fast(t, x)∥2 , (5.116)

which I call the “Combined” controller. The controller ulogb-fast in (5.116) is the same as the Log-
B controller, but with a much more aggressive choice of gain k1 = 0.04. Without the ZohCBF
application, the controller ulogb-fast would violate the system energy constraint η3, but with the
additional ZohCBF acting as a safety-filter, the controller ucombined yields the orange trajectory in
Figs. 5.18-5.19. Unlike under uzohcbf, the trajectory under ucombined converged to the target, and
exhibited a reduced settling time in Table 5.7 compared to the Log-B controller.

Remark 5.5. Note that while the controllers (5.115),(5.116) were successful in the simulations

above, it still may be possible for the optimizations (5.115),(5.116) to become infeasible because

these controllers apply multiple CBFs at once. Progress towards provably guaranteed feasibility

of multiple CBFs simultaneously with input constraints is studied in continuous-time in Chapter 6,

and such studies for sampled-data CBFs are left to future work.
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Figure 5.18: Nonconvex Reorientation Azimuth and Elevation. Plot of the azimuth and elevation
in an inertial coordinate system of the two instrument pointing vectors b1 (solid) and b2 (dashed)
in the presence of a larger exclusion zone than in Fig. 5.15
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Figure 5.19: Nonconvex Reorientation Constraint Values. Plots of the two instrument constraint
function values κ1, κ2 for the lines in Fig. 5.18, and the system energy constraint function values
η3 using all three control laws

Method Settling Time (s) Mean Compute Time (s) Max Compute Time (s)
CBF ∞ 0.0072 0.0237

Log-B 1079.6 0.00024 0.0084
Combined 374.2 0.0097 0.0243

Table 5.7: Nonconvex Reorientation Simulation Times. Simulation times for Figs. 5.18-5.19
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5.2.5.2 NASA Simulator Results

The prior subsection validates the methods in Sections 5.2.3-5.2.4 in a simple simulation, so I
now present results from a more detailed spacecraft simulator, specifically the NASA “42” open-
source spacecraft attitude control simulator [243]. Here, rather than random disturbances, the
disturbances are representative of disturbances in the orbital environment for an input spacecraft
geometry and specified solar and geomagnetic activity indices.

Specifically, I simulated a 6U CubeSat with the parameters presented in Table 5.3 in a 500 km
altitude circular Earth orbit. Suppose the spacecraft has a single instrument which must point at a
sequence of targets but which must avoid the Sun by at least 25◦ (encoded in κ1), and a star tracker
which must not point at the Sun within 45◦ (encoded in κ2) or the Moon within 30◦ (encoded in κ3).
The angular velocity is constrained by η4 = ηω as in Case Study Part xi, where I now use ϕ1(u) = 0,
so that M alt

2 = M2 = 8.3(10)−5. This change makes Uzoh,4 more conservative than in the prior
subsection, but makes U ∩Uzoh,1∩Uzoh,2∩Uzoh,3∩Uzoh,4 a polytope and thus changes (5.115) from a
QCQP to a regular QP, which was implemented using the fast Operator Splitting QP solver [196].
Finally, the code limited the QP solver to only 20 solver iterations to mimic realistic spacecraft
computing constraints. For more details and input parameters, the interested reader is referred
to the simulation code https://github.com/jbreeden-um/phd-code/tree/main/
2022/AIAA%20Autonomous%20Attitude%20Reorientation/42.

The instrument and star tracker pointing vectors are shown in Fig. 5.20, the constraint values
are shown in Fig. 5.21, and the control inputs are shown in Fig. 5.22 using both uzohcbf in (5.115)
and upd in (5.114c). A video of the reorientation sequence is at https://youtu.be/qeB-
F5J4ZFI. All constraints and actuator limits were satisfied for the entire pointing sequence using
the ZohCBF controller (solid lines in Fig. 5.20), while there were several constraint violations
using the nominal controller (dashed lines in Fig. 5.20). Note that three of the targets (green dots
in Fig. 5.20) were located very close to the sun vector (i.e. outside the safe set), so the ZohCBF
controller prioritized safety over convergence for these targets.

5.2.6 Conclusions

5.2.6.1 Remarks on Presented Results

The above work presented a methodology for ensuring that trajectories of a dynamical system
always remain within a specified constraint set in the presence of ZOH sampled-data control in-
puts, bounded disturbances, and input constraints by developing extensions to CBF theory. This
methodology is generally applicable to constraint functions of relative-degree 1 or 2, and was
specialized to spacecraft attitude control. Formal definitions of “ZOH-CBF” incorporating all
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Figure 5.20: NASA Simulator Azimuth and Elevation. Plot of the azimuth and elevation in an
inertial coordinate system of the instrument pointing vector b1 (green) and star tracker pointing
vector b2 (orange) along with all three keep-out zones
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Figure 5.21: NASA Simulator CBF Values. Plots of the instrument to Sun CBF values (green),
the star tracker to Sun CBF values (orange), and the star tracker to Moon CBF values (red) for the
lines in Fig. 5.20, and the system energy constraint (gray) values η4 using both control laws.
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Figure 5.22: NASA Simulator Control Values. Plots of the control inputs and input constraints
(black dashed lines) for Fig. 5.20 using both control laws
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required margins and control input bounds were presented. Special attention was devoted to de-
creasing the margins for overshoot in the case of relative-degree 2 constraints, and for the case of
a relative-degree 1 kinetic energy constraint specifically. The methodology was then demonstrated
in simulation, where it exhibited faster settling times than all compared online controllers (note that
path-planning methods were not tested). While these CBF-based methods provably achieve all de-
sired safety criteria, the comparison plots show that similar safe reorientations can be achieved with
the comparison methods, albeit only with careful tuning and without proof of safety under these
circumstances. The improvement in convergence by the “combined” controller over the original
ZohCBF controller show that this approach may be limited in part by the capabilities of the nomi-
nal control law, so choosing “optimal” nominal control laws is one area of future work. Additional
future work includes the incorporation of momentum-management techniques and measurement-
delay considerations, and study of more general conditions on the existence of a guaranteed safe
control input in the presence of several CBFs simultaneously (see also Chapter 6).

5.2.6.2 Remarks on Future Sampled-Data Applications

While the above work provably achieved all desired results, this section showcased a lot of
effort devoted to a very specific problem (i.e. the relative-degree 2 results are only for the CBF
(5.38), not for other forms of CBFs). I now discuss some alternatives to the methodology above
that I think may make these results easier to generalize in the future.

The first alternative result is the notion of “practical safety”. This is partially discussed in
[130] and also arose during a conversation with Andrew Taylor at the 2022 IEEE Conference
on Decision and Control. Note that all the complicated math in Sections 5.2.3-5.2.4 in the end
was used to produce a single number: the controller margin for a specified time-step T . This
number took a substantial amount of calculus (or in Section 5.1, analysis of Lipschitz constants) to
derive. Moreover, even after all these steps to reduce unnecessary margins, the constraint function
trajectories in Figs. 5.16, 5.19, and 5.21 still never reach zero. This suggests that the controller
margins produced by Sections 5.2.3-5.2.4 are still overly conservative. Thus, instead of going
through all the tedious math above, one could instead guess what a suitable controller margin
should be, run a simulation, and increase/decrease the controller margin according to the simulation
results (i.e., increase the margin if the safe set is violated; decrease the controller margin if there
is a large physical margin). For many systems, I predict that this method of guessing what a
good controller margin will be and then tuning the margin as needed will be a more practical way
to design ZOH control laws. That said, this technique will not allow for a proof of safety, so
applications with extremely strict requirements may still prefer deriving bounds similar to what
was done in this section. Going through this derivation may also yield other insights into system
behaviors.
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The second alternative result is ZOH techniques applied to High Order CBFs (HOCBFs). In
the HOCBF technique [87–89], one starts with a constraint function κ : T × X → R and derives
a sequence of functions

ψ0(t, x) = κ(t, x) (5.117a)

ψ1(t, x) = κ̇(t, x)− α1(−ψ0(t, x)) (5.117b)

ψ2(t, x) = κ̈(t, x)− α2(−ψ1(t, x)) (5.117c)
...

ψr−1(t, x) = κ(r−2)(t, x)− αr−1(−ψr−2(t, x)) (5.117d)

and associated sets
Ψi(t) = {x ∈ X | ψi(t, x) ≤ 0} , (5.118)

where r is the relative-degree of κ (note that my indexing may differ from that in [87–89]). One
can then treat ψr−1 as a conventional CBF on the set Ψ = Ψ0 ∩ Ψ1 ∩ · · · ∩ Ψr−1 (analogous to
Hres), and the condition ψ̇r−1 ≤ α(−ψr−1(t, x)) is sufficient to render Ψ forward invariant [88,
Thm. 4]. Thus, one could use a similar ZOH analysis of the derivatives and/or Lipschitz constants
of ψr−1 as in Sections 5.1.3 and 5.2.4 to render a subset Ψ (analogous toH) ofQ forward invariant
for the high-relative degree function κ, possibly without all the complicated steps followed in
Section 5.2.3. To my knowledge, no one has yet published work on generic ZOH applications of
ψr−1 in this manner, but this is a natural extension of the HOCBF method.

I mention this natural extension both 1) because I predict it will be used more frequently than
the results in Section 5.2.3, as those results are specific to the CBF (5.38), and 2) because I want to
highlight one of the deficiencies of this hypothetical approach that is also illustrative of other CBF
phenomena. As mentioned in Section 4.3.2, the CBF (5.38) is equivalent to the HOCBF

ψr−1(t, x) = ψ1(t, x) = κ̇(t, x)−
√
−2µκ(t, x) . (5.119)

However, the square root function is not differentiable or Lipschitz continuous, which violates the
assumptions of [87–89]. Moreover, because the square root function is not differentiable, if one
treats ψr−1 in (5.119) as a relative-degree 1 constraint function, then the quantity M2 in (5.102) is
undefined. Thus, it appears that (5.119) is not compatible with the math in Sections 5.1.3 and 5.2.4,
yet I have already shown in Section 5.2.3 that a subset of Ψ with ψr−1 as in (5.119) can be rendered
forward invariant with a ZOH control law. In light of this, I hypothesize that there is a relationship
between the fact that (5.119) is non-differentiable, and the fact that the derivative of (5.38) van-
ishes at κ̇ = 0. This relationship would be interesting to explore in the future, as a more complete
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understanding of it may allow for the design of better HOCBFs. Section 5.2.3 circumvented the
problem of κ̇ vanishing by using a quadratic approximation of the system evolution, which then
motivated introducing additional (physical) margins δ1,∆2,∆3. These margins represent a maxi-
mum amount of deviation that can occur over a single time-step, whereas the prior methods relied
on upper bounding the maximum rate of deviation that can occur at any instant, which is infinite.
Similarly, I hypothesize that the non-differentiability of ψr−1 can be circumvented by using a more
precise approximation method (i.e. one that avoids the non-differentiable point in the square root
function), likely involving a related margin applied to one or more of the sets (5.118). What this
margin might look like is not considered further in this thesis, but I think that this is an excellent
area for future work. Note that this non-differentiability issue does not occur with the most com-
mon form of HOCBF, the Exponential CBF (ECBF), also discussed in Section 4.3.2. However, the
ECBF results in a more conservative CBF set than the CBF in (5.38) because the ECBF is always
linear in κ̇, whereas (5.38) is quadratic in κ̇.

The above remarks conclude the discussion of ZOH control laws in this dissertation. The fol-
lowing section discusses a related variety of sampled control law, the impulsive control law.

5.3 Sampling and Impulsive Control Laws

Now that I have thoroughly discussed implementing CBF-based QP controllers with zero-order-
hold dynamics, I now consider the related problem of implementing CBF-based control laws with
impulsive dynamics and with a minimum time between impulses. I call this the “impulsive timed
CBF problem”. As I will show, the philosophy behind the following method is nearly identical to
the philosophy used for the zero-order-hold controllers (i.e. use Lipschitz constants to guarantee
that the trajectory does not leave the CBF set between control updates). The primary differences
are 1) the actuators are impulsive rather than continuously applied, and 2) the time between control
impulses is much larger than the time between zero-order-hold control updates. This second differ-
ence motivates the use of additional predictions to reduce the amount of uncertainty arising from
the Lipschitz constants. The following work then concludes by revisiting a spacecraft docking
problem similar to that in Section 4.7.4, now with impulsive actuators.

5.3.1 Introduction to Control Barrier Functions for Hybrid Systems

Control Barrier Functions (CBFs) [66] are a tool for designing control laws that render state
trajectories always inside a specified set. Each CBF converts a set of allowable states, herein called
the CBF set, to a set of allowable control inputs at every state in that set [140]. Any control input
within this set will render the future state trajectory inside the CBF set. The controller thus has
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freedom to work towards other goals, such as convergence, as long as the control remains within the
input set generated by the CBF. CBFs thus provide a computationally tractable solution to many
nonlinear constrained control problems. While the original formulations of CBFs [28, 29, 72]
considered continuous-time systems, subsequent authors have published numerous extensions to
sampled systems [119, 244–246], discrete-time systems [30, 128], and hybrid systems [33, 131–
133], among others. In this section, I develop set invariance rules for a specific class of hybrid
systems: systems with impulsive actuators that are only permitted to be used after a minimum dwell

time has elapsed since their previous use. This models, for instance, a spacecraft with chemical
thrusters.

Impulsive systems are a special class of hybrid systems, and there has been much work on
stability of hybrid systems over the past two decades [247–252], and more recently work on set
invariance [32, 72, 133] and CBFs [33, 131, 132, 134, 135] for hybrid systems. A hybrid system
is a combination of a set of time intervals where a system flows according to a state differential
equation called the flow map, and a set of times where the state jumps (changes instantaneously)
according to an algebraic function called the jump map. Control may be applied along the flows,
at the jumps (also called impulses), or both. In this section, I study systems where control occurs
only via jumps, and jumps occur only when control is applied, as is formalized in Section 5.3.2.
The work in [32, 133] show that a hybrid system renders a set forward invariant if 1) the flow map
always lies within the tangent cone of the set, and 2) the image of the set through the jump map is
a subset of the set. The authors in [33, 72, 132] then rewrite these conditions for CBFs and CBF
sets. However, these two conditions have no way to incorporate a minimum dwell time constraint
(equivalently, a minimum time between events [251]).

Recall that the problem of finding a CBF is equivalent to the problem of finding a controlled-
invariant set. For hybrid systems, this equivalency follows from, e.g., [33, Def. 3.6] and [135,
Def. 5]. In the following work, due to the minimum dwell time constraint, rather than applying
control to render the state always inside such a controlled-invariant set, one must apply control so
as to render the state into a set whose forward reachable set remains a subset of the CBF set at
least until the dwell time has elapsed. This is an inherently different problem than that addressed
by typical CBFs [29, 66] or by the hybrid CBFs in [32, 33, 72, 131–135], and has more in com-
mon with margins for ensuring set invariance between samples under sampled controllers such as
[119, 125, 130, 244, 245] and Sections 5.1-5.2. This section applies the same concept of sampling
margins as in the prior two sections, now modified for impulsive rather than zero-order-hold con-
trol, to guarantee set invariance under a minimum dwell time. Additionally, in Section 5.3.3.6, I
propose a variation of this method for reducing conservatism, particularly for long dwell times.

Finally, the addition of the minimum dwell time constraint also complicates existing stability ar-
guments. The work in [247] provides a formula for a maximum dwell time at which stability is still
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guaranteed, and similar stability certificates for specified dwell times are presented in [250–252].
However, all of these results are overly restrictive, because they all place weak assumptions (e.g.,
exponentially bounded divergence) on the flows in exchange for strong requirements (e.g., rapid
exponential contractivity) on the jumps. This is sensible in general, since the jumps are controlled
and the flows are uncontrolled, but the spacecraft community has long developed controllers with
weaker assumptions on the jumps [21, 25, 253], though not with the desired minimum dwell time.
Thus, building up from the minimum dwell time constraint, the following work presents conditions
to

1. render a CBF set forward invariant subject to impulsive control with a minimum dwell time
constraint, and

2. render the origin asymptotically stable subject to the same impulsive control and dwell time
rules.

The following subsections are organized as follows. Section 5.3.2 presents the hybrid system
model. Section 5.3.3 presents the set invariance strategy for this system, new results on asymptotic
stability, and some mathematical tools. Section 5.3.4 presents simulations of these methods on a
satellite docking problem with impulsive thrusters. Section 5.3.5 presents concluding remarks.

5.3.2 Preliminaries

5.3.2.1 Notations

As in Chapter 4, for a function φ : T × X → R, let ∂tφ denote the partial derivative with
respect to t, let ∇φ denote the gradient row vector with respect to x, and let φ̇ = ∂tφ + ∇φẋ
denote the total derivative of φ in time along the model (5.120). The following work considers
hybrid systems, so let x+ denote the value of x immediately following a jump in a hybrid system.
That is, x+(t) ≜ limλ→t+ x(λ). Also consider the following generalization of class-K functions.

Definition 5.5 (Class-Kr). A continuous function β : R≥0 → R≥0 is said to belong to class-Kr,
denoted β ∈ Kr, if β(0) = 0 and β(λ) > 0 for all λ > 0.

5.3.2.2 Impulsive Model and Problem Statement

Spacecraft with chemical thrusters are frequently modeled as evolving according to an ordinary
differential equation (ODE) with impulsive jumps. When activated, the thruster subsystem causes
an instantaneous change, called an impulse, to the spacecraft velocity, and then the system flows
according to the ODE until the next impulse is applied. Control can only be applied at the impulses,
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as here I assume that there are no other actuators capable of applying control during the flows. I
also assume the following two restrictions on impulses:

R-1 the controller is sampled with fixed period ∆t and an impulse can only be applied at the
sample times; and

R-2 the controller can only apply an impulse at least ∆T after the last impulse was applied, where
∆T > ∆t.

Let T ⊆ R be a set of considered times, X ⊆ Rn be the state space, and U ⊆ Rm be the set of
allowable controls. To encode R-1, let

D0 ≜ {t ∈ T | t = t0 + k∆t, k ∈ Z≥0} (5.120a)

be the set of controller sample times originating from an initial time t0 ∈ T . To encode R-2, let
the additional state σ ∈ R≥0 encode the time since the last impulse was applied. A tuple (t, σ) is
an impulse opportunity if t ∈ D0 and σ ≥ ∆T , or equivalently, if (t, σ) lies in the set of impulse
opportunities

D ≜ D0 × {σ ∈ R≥0 | σ ≥ ∆T} . (5.120b)

The control is thus a map u : D ×X → U defined only at the set of impulse opportunities D. The
time ∆T is called the minimum dwell time between impulses [247]. For simplicity, assume that
∆T = q∆t for some q ∈ Z≥1.

Such a spacecraft can thus be modelled generally as

ẋ = f(t, x)

σ̇ = 1
(t, σ) /∈ D

x+ = g(t, x, u)

σ+ = σ if u = 0

σ+ = 0 if u ̸= 0

(t, σ) ∈ D

(5.120c)

The system (5.120c) defines a hybrid system with flow set C ≜ (T × R≥0) \ D, flow map f :

T × X → Rn, jump set D, and jump map g : T × X × U → X . I note that (5.120c) has time-
dependent jumps, and therefore is also a timed automaton [254]. In the following work, I assume
that the maps f and g are known and single-valued (rather than being differential inclusions), that
g(t, x, 0) = x for all t ∈ T , x ∈ X , and that solutions to (5.120) exist and are unique for all t ∈ T .
Also assume that σ(t0) = ∆T at the initial time t0, so that the initial state tuple (t0, σ(t0), x(t0))

is an impulse opportunity. Note that, strictly speaking, both the flow and jump maps of a hybrid
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system as in (5.120c) should be closed sets. I ignore this detail here because this section avoids
discussion of some of the more complex phenomena that can occur in hybrid systems, so the
meaning of (5.120c) is clearer as is, even if not entirely mathematically correct.

Note that at every impulse opportunity (t, σ) ∈ D, the controller u can choose whether or not
to apply an impulse, so impulses will generally be aperiodic, and may lack an average dwell time
as in [247]. For brevity in Section 5.3.3, given a control law u : D × X → U , denote the set of
impulse opportunities where the control law chooses to not apply an impulse as

Zcoast ≜ {(t, σ, x) ∈ D × X | u(t, σ, x) = 0} . (5.121)

The central problem addressed in Section 5.3.3 is as follows.

Problem 5.3. Given dynamics (5.120) and a set S : T → 2X , derive conditions on the control

u : D×X → U that are sufficient to 1) guarantee x(t) remains in S(t),∀t ∈ T , and 2) render the

origin asymptotically stable, where I assume 0 ∈ S(t),∀t ∈ T .

The conditions arising from Problem 5.3 can then be enforced online using optimization-based
control laws as is typical in the CBF literature [66, Sec. II-C]. Unlike the rest of this dissertation,
in this section I allow these optimizations to be nonlinear programs. Such programs are more
computationally expensive than the quadratic programs in Section 2.4, but I assume that this cost
is acceptable because of the long dwell time ∆T between impulses.

5.3.3 Impulsive Timed Control Barrier Functions and Control Lyapunov
Functions

In this section, I first present some definitions and tools in Section 5.3.3.1, before using these
tools to address invariance of a subset of S(t) in Section 5.3.3.2. I then address stability of the
origin in two parts in Sections 5.3.3.3-5.3.3.4, and provide examples and additional tools in Sec-
tion 5.3.3.5.

5.3.3.1 Flows and Bounding Functions

In the following work, I will utilize predictions about the future state. Suppose that no jumps
occur in some interval [t, τ ] ⊂ T . Then define the flow operator p : T × T × X → X (similar to
χ in (4.31)) as

p(τ, t, x) = y(τ) where ẏ(s) = f(s, y(s)), y(t) = x . (5.122)

Next, given a scalar function h : T × X → R, and an initial state (t, x), denote by ψh :
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T × T × X → R any function satisfying

ψh(τ, t, x) ≥ h(s, p(s, t, x)), ∀s ∈ [t, τ ] . (5.123)

That is, ψh is an upper bound on the future evolution of the function h for any interval [t, τ ] during
which there are no control impulses. Methods to find such a bounding function are described
in Sections 5.1-5.2 and in [119, 125, 130, 244], among others, and thus these methods are only
briefly elaborated upon here in Section 5.3.3.5. Note that the above references all include a term
that accounts for the effects of the control input u ∈ U , whereas this term can be ignored here since
f in (5.120) is independent of u.

5.3.3.2 Set Invariance

I first address the safety part of Problem 5.3. As is typical with CBFs, this will require a function
h : T × X → R such that the set

H(t) ≜ {x ∈ X | h(t, x) ≤ 0} (5.124)

satisfiesH(t) ⊆ S(t),∀t ∈ T . I assume that it is possible to find a candidate function h using any
of the methods previously presented or within the broader CBF literature. The notion of CBF in
Definition 2.14 can then be generalized to the system (5.120) as follows.

Definition 5.6 (Impulsive Timed Control Barrier Function). Let ψh be as in (5.123). A continuous

function h : T × X → R is an Impulsive Timed Control Barrier Function (ITCBF) for the system

(5.120) if

inf
u∈U

ψh(t+∆T, t, g(t, x, u)) ≤ 0,∀x ∈ H(t),∀t ∈ T . (5.125)

Note that 1) I relax Definition 2.14 to no longer require differentiability of h, though differ-
entiability is helpful when applying the tools in the prior sections, and 2) condition (5.125) does
not include a class-K function, as this is unnecessary in sampled controllers such as (5.120). The
following theorem then provides sufficient conditions for forward invariance ofH(t).

Theorem 5.19. Given an ITCBF h : T ×X → R for the system (5.120), letH(t) be as in (5.124),
and ψh as in (5.123). Let u : D × X → U be a control law, and let Zcoast be as in (5.121). If u

satisfies

ψh(t+∆t, t, x) ≤ 0, ∀(t, σ, x) ∈ (D ×H) ∩ Zcoast, (5.126a)

ψh(t+∆T, t, y) ≤ 0, ∀(t, σ, x) ∈ (D ×H) \ Zcoast, (5.126b)

where y = g(t, x, u(t, σ, x)), then u renders time-varying setH(t) forward invariant for all t ∈ T .
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Proof. Given (t0, σ(t0)) ∈ D and x(t0) ∈ H(t0), divide {t ∈ T | t ≥ t0} into a sequence of
intervals Ik = [tk, tk+1], k ∈ Z≥0, where tk+1 > tk. Then a sufficient condition for u to render
H(t) forward invariant for all future t ∈ T is for the following two properties to hold for every
k ∈ Z≥0: 1) u renders x(t) ∈ H(t) for all t in the interval Ik, and 2) the endpoint tk+1 of Ik
is an impulse opportunity. If u = 0, then condition (5.126a) implies that both properties hold
for tk+1 = tk + ∆t. If u ̸= 0, then condition (5.126b) implies that both properties hold for
tk+1 = tk +∆T . Thus, u rendersH(t) forward invariant. ■

Thus, I have presented conditions analogous to those in Theorems 2.2, 2.6, and 2.8 that ren-
der sets of the form (5.124) forward invariant subject to the impulsive dynamics (5.120). The
remaining challenge is to determine functions h and ψh satisfying (5.125) and (5.123), respec-
tively. I first discuss conditions for asymptotic stability before providing examples of h and ψh in
Section 5.3.3.5.

5.3.3.3 One-Step MPC Impulsive Stability

I now begin to address the stability part of Problem 5.3. There has been much work on stability
of hybrid systems with continuous actuators [245, 248, 249, 255], impulsive actuators [250–252],
or both [247]. In summary, given a Lyapunov function V : T × X → R≥0, the conditions [250,
Eq. 5], [251, Eq. 8], and [247, Eq. 4b] state that if V (t, g(t, x, u)) ≤ cV (t, x) for c ∈ (0, 1), then
for sufficiently frequent jumps, the origin of the system (5.120c) is exponentially stable. These
conditions can be readily applied to stabilize (5.120) using periodic impulses. However, when the
dwell time ∆T is large, a more efficient strategy may be to examine the predicted value of the
Lyapunov function after ∆T has elapsed rather than immediately after the impulse. To this end,
consider the following lemma.

Assumption 5.1. Let V : T × X → R≥0 be a continuously differentiable function satisfying

α1(∥x∥) ≤ V (t, x) ≤ α2(∥x∥) (5.127)

for all x ∈ X and all t ∈ T for two functions α1, α2 ∈ K∞.

Lemma 5.20. Let Assumption 5.1 hold. Assume that there exists α3 ∈ K∞ such that f in (5.120)
satisfies ∥f(t, x)∥ ≤ α3(∥x∥) for all t ∈ T and x ∈ X . Let p be as in (5.122). Let u : D×X → U
be a control law, and denote Z1 ≡ Zcoast as in (5.121) and Z2 = (D × X ) \ Z1. For the system

(5.120), if u satisfies

V (t+∆t, p(t+∆t, t, x)) ≤ V (t, x), ∀(t, σ, x) ∈ Z1, (5.128a)

V (t+∆T , p(t+∆T , t, y)) ≤ V (t, x), ∀(t, σ, x) ∈ Z2, (5.128b)

188



where y = g(t, x, u(t, σ, x)), then u renders the origin uniformly stable as in [71, Def. 4.4].

Proof. First, note that (5.127) implies that every sublevel set of V is compact and contains the
origin. Also recall that I assumed solutions to (5.120) always exist, so p in (5.122) and (5.128) is
well defined.

Let (tk, σ(tk)) ∈ D be an impulse opportunity. For brevity, denote zk = (tk, σ(tk), x(tk)). First,
suppose that zk ∈ Z2, which implies that u(zk) ̸= 0. Then no other impulses can be applied for
t ∈ (tk, tk +∆T ), so x(tk +∆T ) = p(tk +∆T, tk, g(tk, x(tk), u(zk))), and thus (5.128b) ensures
that V (tk + ∆T, x(tk + ∆T )) at the next impulse opportunity (tk + ∆T, σ(tk + ∆T )) ∈ D is
upper bounded by V (tk, x(tk)). Since V is bounded at both tk and tk+∆T and V satisfies (5.127),
it follows that both ∥x(tk)∥ and ∥x(tk + ∆T )∥ are also bounded. Since ∥f(t, x)∥ is bounded by
α3(∥x∥) and ∆T is fixed and finite, the amount that V can grow during the jump at x(t+k ) and
during the flow t ∈ (tk, tk + ∆T ) are bounded as V (t, x(t)) ≤ V (tk, x(tk)) + α4(∥x(tk)∥) for
some α4 ∈ K∞.

Next, suppose that zk ∈ Z1. Then u(zk) = 0, so the next impulse opportunity will occur at
tk +∆t. By (5.128a), V (tk +∆t, x(tk +∆t)) ≤ V (tk, x(tk)). By the same argument as the prior
case, V is again bounded as V (t, x(t)) ≤ V (tk, x(tk)) + α4(∥x(tk)∥) for some α4 ∈ K∞ for all
t ∈ [tk, tk +∆t).

Thus, V is nonincreasing at the impulse opportunities (tk, σ(tk)) ∈ D, and the maximum value
of V (t, x(t))− V (tk, x(tk)) is uniformly bounded (i.e. uniform in t) by α4(∥x(tk)∥) for t between
the impulse opportunities. Thus, for initial state x(t0) ∈ X , (t0, σ(t0)) ∈ D, and any future
time t ∈ T , t ≥ t0, it holds that ∥x(t)∥ ≤ α−1

1 (V (t, x(t))) ≤ α−1
1 (V (tk, x(tk)) + α4(∥x(tk)∥)) ≤

α−1
1 (V (t0, x(t0))+α4(∥x(t0)∥)) ≤ α−1

1 (α2(∥x(t0)∥)+α4(∥x(t0)∥)). This is equivalent to uniform
stability of the origin. ■

Lemma 5.20 differs from [247, 250, 251] in three ways. First, (5.128) provides conditions on
the future state, which is explicitly computed using (5.122), rather than the present state. Second,
these predictions allow one to avoid explicitly checking for upper bounds on the growth of V
during flows, as is required in [250, 251]. Third, Lemma 5.20 allows for aperiodic impulses, as
long as (5.128) are checked at their respective frequencies.

I refer to (5.128) as a “one-step Model Predictive Control (MPC)” strategy. That is, to eval-
uate (5.128), I input the control u at a single (i.e. “one-step”) time instance, make a prediction
using (5.122), and then check a condition on V , analogous to checking constraints in an MPC
optimization. Note that encoding (5.128) into an optimization problem could be computationally
expensive, since checking (5.128) entails computing the solution to a differential equation during
every iteration of the optimization. In Section 5.3.4, I assume that this cost is acceptable, or that
there exists an analytic form for the solution, as is the case for many spacecraft orbits.
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5.3.3.4 Impulsive Stability via Restriction to Stable Flows

Motivated by fuel efficiency, a strategy in aerospace systems (e.g. [21]) is to allow a system to
coast uncontrolled until a control impulse is necessary to continue stabilization. In this subsection,
I implement such a strategy subject to constraints R-1 and R-2 via a specialization of Lemma 5.20.
In technical terms, given a Lyapunov function V as in (5.127), I seek to render the set

Sv(t) ≜ {x ∈ X | v(t, x) ≤ 0} (5.129)

forward invariant, where, for readability, I denote

v(t, x) ≡ V̇ (t, x) = ∂tV (t, x) +∇V (t, x)f(t, x) . (5.130)

This is possible under dynamics (5.120) if v : T × X → R is also an ITCBF as in Definition 5.6.
Let ψv be an upper bound for v analogous to ψh in (5.123). In the following theorem, I provide
new conditions to establish stability using such a coasting strategy. However, if x(t0) /∈ Sv(t0),
then these conditions will not initially apply, so I instead fall back on the “one-step MPC” strategy
in (5.128). Divide the state space into two sets: 1) Z1 ∪ Z2, where the controller enforces (5.128),
and 2) Z3 ∪ Z4, where the controller enforces the new conditions (5.131).

Theorem 5.21. Let Assumption 5.1 hold. Assume that there exists α3 ∈ K∞ such that f in (5.120)
satisfies ∥f(t, x)∥ ≤ α3(∥x∥) for all t ∈ T and x ∈ X . Let v be as in (5.130), ψv be as in (5.123),
and p be as in (5.122). Let Z1, Z2, Z3, and Z4 be four disjoint sets such that Z1 ∪ Z3 = Zcoast

in (5.121), and Z2 ∪ Z4 = (D × X ) \ Zcoast. Then for the system (5.120), any control law u :

D ×X → U satisfying (5.128) and all of the following

ψv(t+∆t, t, x) ≤ 0, ∀(t, σ, x) ∈ Z3, (5.131a)

ψv(t+∆T, t, g(t, x, u(t, σ, x))) ≤ 0, ∀(t, σ, x) ∈ Z4, (5.131b)

V (t, g(t, x, u(t, σ, x))) ≤ V (t, x), ∀(t, σ, x) ∈ Z4, (5.131c)

will render the origin uniformly stable as in [71, Def. 4.4].

Proof. Let (tk, σ(tk)) ∈ D be an impulse opportunity, and let (tk+1, σ(tk+1)) ∈ D be the next
impulse opportunity. For brevity, denote zk = (tk, σ(tk), x(tk)). First, Lemma 5.20 implies that if
zk ∈ Z1 ∪ Z2, then V (tk+1, x(tk+1)) ≤ V (tk, x(tk)).

Next, if zk ∈ Z3 ∪ Z4, conditions (5.131a)-(5.131c) similarly imply that V (tk+1, x(tk+1)) ≤
V (tk, x(tk)). Specifically, if zk ∈ Z3 ⊆ Zcoast, then no impulse is applied, and (5.131a) implies
that V (t, x(t)) is nonincreasing along the flow f for all t ∈ [tk, tk + ∆t) until the next impulse
opportunity at tk+1 = tk+∆t. Next, if zk ∈ Z4, then a nonzero impulse is applied, (5.131c) implies
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that V is nonincreasing during the impulse, and (5.131b) implies that V (t, x(t)) is nonincreasing
along the flow f for all t ∈ (tk, tk + ∆T ) until the next impulse opportunity at tk+1 = tk + ∆T .
Thus, V (tk+1, x(tk+1)) ≤ V (tk, x(tk)) for all (tk, σ(tk)) ∈ D, so the origin is uniformly stable by
the same argument as Lemma 5.20. ■

Compared to [247, 250, 251], Theorem 5.21 imposes stricter conditions on the flows (5.131a)-
(5.131b) in order to allow relaxed conditions on the jumps (5.131c) and the jump times. In
[250, 251], it is assumed that the flows are destabilizing and jumps are exponentially stabiliz-
ing, whereas Theorem 5.21 says that if one can restrict the flow (5.131a)-(5.131b) to the set in
(5.129) where V̇ ≤ 0, as is often possible in practice, then the jump (5.131c) only needs to be sta-
bilizing, not exponentially stabilizing. This coasting strategy can reduce control usage compared
to the exponentially stabilizing impulses in [250, 251], and is distinct from the coasting strategy in
[21] because of the explicit inclusion of a minimum time between impulses. Note that (5.131a)-
(5.131b) are identical to (5.126a)-(5.126b), so a controller as in Theorem 5.21 will further render
Sv in (5.129) forward invariant if x(t0) ∈ Sv(t0) and Z3 ∪Z4 = D×Sv. Finally, I present a result
on asymptotic stability that I will use in Section 5.3.4.

Corollary 5.22. Let the conditions of Theorem 5.21 hold. If there exists β1, β2 ∈ Kr and ∆Tmax ∈
R>0 such that 1) (5.132a)-(5.132b) hold and 2) either 2a) (5.132c)-(5.132d) hold or 2b) (5.132e)-
(5.132f) hold

V (t+∆t, p(t+∆t, t, x))− w ≤ −β2(w), ∀(t, σ, x) ∈ Z1, (5.132a)

V (t+∆T, p(t+∆T, t, y))− w ≤ −β2(w), ∀(t, σ, x) ∈ Z2, (5.132b)

ψv(t+∆t, t, x) ≤ −β1(w), ∀(t, σ, x) ∈ Z3, (5.132c)

ψv(t+∆T, t, y) ≤ −β1(w), ∀(t, σ, x) ∈ Z4, (5.132d)

V (t, y)− w ≤ −β2(w), ∀(t, σ, x) ∈ Z4, (5.132e)

σ ≥ ∆Tmax =⇒ u(t, σ, x) ̸= 0, ∀(t, σ, x) ∈ D × X , (5.132f)

where y = g(t, x, u(t, σ, x)) and w = V (t, x), then the origin is uniformly asymptotically stable

[71, Def. 4.4].

Proof. The main idea of this proof is to show that there exists a convergent sequence {Vk}Nk=1,
where I denote Vk = V (tk, x(tk)), each (tk, σ(tk)) ∈ D is an impulse opportunity, and ∆t ≤
tk+1 − tk ≤ ∆Tmax. I do this in three parts. For brevity, denote zk = (tk, σ(tk), x(tk)).

First, conditions (5.132a)-(5.132b) strengthen (5.128a)-(5.128b) so that the “one-step MPC”
strategy is now asymptotically stabilizing for all zk ∈ Z1 ∪ Z2. Specifically, if zk ∈ Z1, then let
tk+1 = tk + ∆t, so that (5.132a) is equivalent to Vk+1 − Vk ≤ −β2(Vk) ≤ −β2(Vk+1). Similarly,
if zk ∈ Z2, then (5.132b) implies the same result for tk+1 = tk +∆T .
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Second, if 2a holds, then impulses are stabilizing as in Theorem 5.21, and flows are now asymp-
totically stabilizing for all zk ∈ Z3∪Z4. If zk ∈ Z3, then let tk+1 = tk+∆t. Then (5.132c) implies
that v(t, x(t)) ≡ V̇ (t, x(t)) ≤ −β1(V (t, x(t))) ≤ −β1(Vk+1) for all t ∈ (tk, tk+1). It follows that
Vk+1 − Vk ≤ −β1(Vk+1)∆t. If 2a holds and instead zk ∈ Z4, then let tk+1 = tk + ∆T . Then
(5.131c) implies that V is nonincreasing during the impulse, so (5.132d) similarly implies that
Vk+1 − Vk ≤ −β1(Vk+1)∆T .

Third, if 2b holds, then flows are stabilizing as in Theorem 5.21, and impulses are now
asymptotically stabilizing for all zk ∈ Z3 ∪ Z4. Condition (5.132f) implies that impulses oc-
cur at least as frequently as ∆Tmax, so let tk+1 be the time of the last impulse opportunity in
[tk, tk + ∆Tmax]. Next, let {τj}Mj=1 be the sequence of impulse opportunity times starting at tk
and ending at tk+1. Then Theorem 5.21 implies that V (τj+1, x(τj+1)) ≤ V (τj, x(τj)) for all
j ∈ {1, · · · ,M}. Moreover, (5.132e)-(5.132f) imply that there exists at least one τj ∈ {τj}M−1

j=1

such that V (τj+1, x(τj+1)) − V (τj, x(τj)) ≤ −β2(V (τj, x(τj))). It follows that Vk+1 − Vk ≤
−β2(V (τj, x(τj))) ≤ −β2(Vk+1).

Recall that Z1 ∪ Z2 ∪ Z3 ∪ Z4 = D × X , so the combination of (5.132a)-(5.132b) and either
(5.132c)-(5.132d) or (5.132e)-(5.132f) covers all possible states. In every case, I showed that
Vk+1−Vk ≤ −β(Vk+1) for some β ∈ Kr. Equivalently, Vk+1+ β(Vk+1) ≤ Vk. Since each Vk ≥ 0,
this condition describes a convergent sequence {Vk}Nk=1. If T is unbounded, then N = ∞, and
limk→∞ Vk = 0. Note that this convergence is uniform in time, because β is only a function of
V (i.e. β is not a function of t and V ). Since (5.120) is uniformly stable, ∥x∥ satisfies ∥x∥ ≤
α−1
1 (V (t, x(t))), the sequence tk satisfies tk+1 − tk ≤ ∆Tmax, and Vk is uniformly convergent, it

follows that the origin of (5.120) is uniformly asymptotically stable. ■

That is, if the Lyapunov function V is nonincreasing as in Theorem 5.21, and either the flows
(5.132c)-(5.132d) or the jumps (5.132e)-(5.132f) cause V to strictly decrease, then the origin is
asymptotically stable. Again, I provide alternative “one-step MPC” conditions (5.132a)-(5.132b)
in case (5.132c)-(5.132f) cannot be satisfied because x(t) /∈ Sv(t). If one further assumes that β1
and β2 are linear functions, then the conditions in Corollary 5.22 become special cases of [247,
Thm. 1].

5.3.3.5 Examples of Bounding Functions

In this subsection, I discuss in more detail how to develop ψh and ψv to use in the preceding
theorems. Suppose second order dynamics such that x = [rT, ṙT]T ∈ Rn for flow dynamics
r̈ = fr(x). First, an obstacle avoidance constraint can be written using the Exponential CBF h
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[85] as follows:

κ(t, x) = ρ− ∥r − r0(t)∥ (5.133a)

h(t, x) = κ(t, x) + γκ̇(t, x) (5.133b)

ψh(t+ δ, t, x) = max
{
h(t, x), κ(t, x) + (γ + δ)κ̇(t, x) +

(
1
2
δ2 + γδ

)
κ̈max

}
(5.133c)

where ρ ∈ R>0 is the obstacle radius, γ ∈ R>0 is a constant, r0 : T → Rn/2 is the center of the
obstacle, and κ̈max ∈ R≥0 is an upper bound on the possible values of κ̈ between t and t + δ. I
use formula (5.133c) for the bound ψh because κ in (5.133a) is not thrice differentiable, so one
cannot make use of any higher order derivatives. Next, the rate of change of a quadratic Lyapunov
function V (t, x) = xTPx can be upper bounded as

ψv(t+ δ, t, x) = V̇ (t, x) + max{0, V̈ (t, x)}δ + 1
2

...
V maxδ

2 (5.134)

where
...
V max ∈ R≥0 is an upper bound on the possible values of

...
V . I stop the approximation ψv at

the third derivative of V , because
...
V is a function of only derivatives and higher powers of fr, so

higher order approximations do not substantially decrease conservatism.

5.3.3.6 Decreasing Conservatism

Note that the upper bounds derived in Sections 5.1-5.2 and [119, 125, 130, 244] and imple-
mented above in (5.133c) and (5.134) were intended for relatively short horizon times τ − t. For
very large horizon times, these upper bounds can become overly conservative. One can optionally
decrease this conservatism by breaking the interval τ − t into nψ ∈ Z≥1 smaller intervals. To this
end, let δ = (τ − t)/nψ and τj = t + jδ, and for a scalar function h : T × X → R, replace ψh as
above with ψ∗

h : T × X → Rnψ with elements defined as

[ψ∗
h(τ, t, x)]j = ψh(τj, τj−1, p(τj−1, t, x)) (5.135)

for j = 1, · · · , nψ. That is, ψ∗
h makes nψ exact state predictions using p in (5.122), which could be

more expensive to compute, and bounds the evolution between these predictions using the original
ψh function. This division is analogous to MPC with a control horizon of 1, a prediction horizon of
nψ, and a discretization margin encoded in ψh. An illustration of the advantages of this approach is
shown in Fig. 5.23. In the above work, all statements of the form ψa(·) ≤ 0, where a is h or v, can
be equivalently replaced by ψ∗

a(·) ≤ 0 elementwise. I will demonstrate the utility of this strategy
in simulation in Section 5.3.4.
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Figure 5.23: Illustration of Using a Single Trajectory Sample versus Multiple Samples. An exam-
ple of a continuous future trajectory curve (top), an approximation ψh (middle), and an approxi-
mation ψ∗

h with nψ = 10 (bottom). The margin of the approximation (5.133c) in the middle plot is
quadratic in the propagated time. Thus, making nψ samples of the continuous curve allows for a
total smaller margin (the 10 green samples, where each green line is also a quadratic curve), at the
expense of creating a nonlinear optimization problem.
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5.3.4 Application to Satellite Docking with Impulsive Thrusters

I now validate the above methods by simulating an impulsive system representative of space-
craft docking in low Earth orbit. Let X = R4, U = R2, let µ ∈ R>0 be constant, and let

f(·) =


x3

x4

−µx1/(x21 + x22)
3/2

−µx2/(x21 + x22)
3/2

 , g(·) =


x1

x2

x3 + u1

x4 + u2

 . (5.136)

Let there be four CBFs hi of the form (5.133b) for various obstacles ri(t) ∈ R2, representing
other objects in orbit, with ψhi as in (5.133c). Let there be an additional constraint κ5(t, x) =

(r − r5)
T(ṙ5/∥ṙ5∥) ≤ 0 with associated CBF h5 also as in (5.133b). That is, κ5 encodes that

the controlled satellite r must always lie behind an uncontrolled target satellite r5(t) ∈ R2. Let
xt(t) = [r5(t)

T, ṙ5(t)
T]T. I choose a Lyapunov function V (t, x) = (x − xt(t))TP (x − xt(t)) and

approximation ψ∗
v as in (5.134) and (5.135). Let γ1, γ2 ∈ R≥0 and J ∈ R>0 be constants. The

chosen control law is

u =

0 ψv(·) ≤ γ1V (t, x) and ψhi(·) ≤ 0, ∀i ∈ I

u∗ else
(5.137a)

where (·) = (t+∆t, t, x), I = {1, 2, 3, 4, 5}, and u∗ is

u∗ = argmin
u∈R2,d∈R≥0

uTu+ Jd2 (5.137b)

such that ψ∗
v(t+∆T, t, g(t, x, u)) ≤ γ1V (t, x) + d (5.137c)

V (t, g(t, x, u)) ≤ γ2V (t, x) + d (5.137d)

ψhi(t+∆T, t, g(t, x, u)) ≤ 0, ∀i ∈ I . (5.137e)

I assume that the optimization (5.137) is always feasible, though I note that this is difficult to
guarantee when there are multiple CBFs [138, 140], as will be elaborated upon in Chapter 6. I
simulated (5.137) using various choices of ∆T , and then repeated these simulations with ψh in
(5.137e) replaced with ψ∗

h as in (5.135) with nψh = 10. The resultant trajectories, converted
to Hill’s frame for visualization, are shown in Fig. 5.24, and full results are shown in the video
at https://youtu.be/_o-FAGbvfgg. A comparison to a trajectory pre-planner is also
shown in Fig. 5.24, and details on select trajectories are shown in Figs. 5.25-5.26. All simu-
lation code and parameters can be found at https://github.com/jbreeden-um/phd-
code/tree/main/2023/LCSS%20Impulsive%20Control.
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Figure 5.24: Impulsive Satellite Docking Trajectories. Trajectories of (5.120) and (5.136) subject
to the control (5.137)

All of the simulations in Fig. 5.24 remained safe, and eight of the nine trajectories converged to
the target. The trajectory using ψh with ∆T = 60 was so conservative that it immediately turned
away from the target, whereas trajectories using ψ∗

h still converge with much larger ∆T , though
the rate of convergence is slow for ∆T ≥ 420. This is because ψ∗

h implements (5.133c) with a
smaller, less conservative, δ than ψh alone. That said, this decreased conservatism came at an
average computational cost per control cycle, for ∆T = 45, of 0.22 s using ψ∗

h and 0.022 s using
ψh. These computation times are for a 3.5 GHz CPU, and would likely be much larger onboard
a spacecraft processor. The total fuel consumption varied from 188 m/s (∆T = 30 with ψh)
to 18.2 m/s (∆T = 300 with ψ∗

h). For comparison, the pre-planned trajectory consumed between
12.2 m/s and 13.9 m/s depending on the choice of ∆T . This improvement is expected since (5.137)
only considers ∆T seconds of the trajectory at a time, whereas a pre-planner can optimize over
longer sequences.
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Figure 5.25: Impulsive Satellite Docking Control Inputs. Control inputs along selected trajectories
in Fig. 5.24
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Figure 5.26: Impulsive Satellite Docking Lyapunov Function Values. Lyapunov function along
selected trajectories in Fig. 5.24
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5.3.5 Conclusions

This section has developed a methodology for extending the provable set invariance guarantees
provided by CBFs to systems with impulsive actuators subject to a minimum dwell time con-
straint, and for ensuring asymptotic stability in the same systems. I then encoded the resulting
conditions in an optimization-based control law similar to (2.9), which was successful in a simu-
lated spacecraft docking. The conditions presented are similar to those in Sections 5.1-5.2, but are
generally nonlinear in the control input, thus leading to controllers that are solutions to nonlinear
optimizations. I showed how one can reduce the conservatism of these controllers, in exchange for
greater computational cost, by dividing the safety prediction horizon into multiple intervals using
an MPC-like strategy.

A natural future direction for this research is to consider extensions of the above results to
systems with disturbances, analogous to how Section 5.2 added disturbances to the method in
Section 5.1.3.2. Such extensions could be accomplished by a “robust tube” approach [256], where
the predicted path p in (5.122) instead belongs to an expanding tube of possible paths. Such a tube
could be modelled either using Lipschitz constants as in Section 5.2, or by generalizing (5.120)
to a differential inclusion for all considered disturbances, or possibly other methods. In either
case, such a tube would likely have an impact on the maximum available precision, similar to in
Section 4.7. This research direction is not considered further in this dissertation, and is left as an
open area for future researchers. Other directions for future research include studying additional
methods to decrease conservatism, and the use of ITCBFs with optimal trajectory planning to yield
more fuel-efficient trajectories. Future researchers might also consider how to design control laws
for impulsive actuators when the minimum impulse magnitude is lower bounded, and how this
lower bound might impact the range of achievable results, similar to how the disturbance bounds
impacted the range of achievable results in Section 4.7.

5.4 Conclusions on Sampled-Data Systems

To review, this chapter considered the problem of how to implement the CBF conditions as in
Theorems 2.2, 2.6, 2.8 and Theorems 4.1, 4.3, 4.4 using a sampled-data control law, for a variety
of models (5.1), (5.30), (5.120). I started with the simplest form of this problem, a ZOH control
law applied to the deterministic and time-invariant model (5.1). I then expanded to a time-varying
model with disturbances in (5.30). I concluded by showing how these ZOH control tools could
also be applied to the impulsive model (5.120). One natural extension of the work in this chapter
would be a model containing all of the above, i.e. a model subject to disturbances, continuously-
applied ZOH control channels, and impulsively-applied control channels. Though such an all-
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inclusive model is not studied in this dissertation, the above tools have nonetheless substantially
expanded the applicability of CBFs. At the start of my studies, CBFs were generally applied in
control laws with very high update frequencies to closely approximate the continuous-time results.
Now, using the tools above, one can provably achieve safe set forward invariance even when the
control law is sampled so infrequently that the system behavior no longer closely approximates
the hypothetical behavior following from a continuously-varying control law. This tolerance for
sampling is extremely important for spacecraft applications, as spacecraft typically have limited
computational resources, and as there is not yet a metric for CBFs analogous to the phase margin
of linear-time-invariant systems that can concisely capture the effects of the controller sampling.
The remaining chapters of this dissertation consider other obstacles to the adoption of CBFs on
space systems.
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CHAPTER 6

Simultaneous Application of Multiple Control
Barrier Functions

In this chapter, I finally address the “multiple control barrier functions problem” to which I
have alluded repeatedly in the previous chapters. At this point, I emphasize that none of the prior
work in this dissertation explicitly considered whether the application of multiple control barrier
functions at once in a QP was a valid control strategy. Given two or more CBFs, it is common
in the CBF literature to simply express the two CBF conditions (e.g. (3.9), (4.8), (5.5), (5.126))
as two affine constraints on the QP (2.9). This strategy was also used in the Eros simulations in
Chapters 3-4, the unicycle with two constraints in Section 5.1, the multiple pointing constraints in
Section 5.2, and the multiple obstacles in Section 5.3. Even though I have not yet studied whether
such a strategy is valid—and in fact I will show in this chapter that this strategy is usually not
valid everywhere in the CBF sets—all of the aforementioned simulations were successful (note
that the docking controllers in Section 4.7 with multiple CBFs are still provably valid even after
taking into account the concerns in this chapter). Similarly, other papers in the CBF literature
often successfully apply multiple CBF conditions simultaneously without considering interactions
between the CBFs. Thus, the reader may conclude that the work in this chapter, while necessary
for provable safety, is not necessary to achieve useful control results. Reasons for this are expanded
upon in the conclusions in Section 6.5.

To motivate this problem, consider a single CBF in the time-invariant case. If a function h :

X → R satisfies the definition of a CBF in (2.4) in Definition 6.1 for an open set D containing H
in (2.2), then the optimization problem in the control law (2.9) is always feasible over D, and thus
by Theorem 2.2, such a control law will render H forward invariant. However, if there are two
CBFs h1 : X → R and h2 : X → R, then Definition 6.1 does not necessarily imply that both CBF
conditions (2.5) are feasible simultaneously. This will be demonstrated in Example 6.1.

That said, if the system is control affine and the control set U is Rm, then as long as ∂h1(x)
∂x

g(x) ̸=
−∂h2(x)

∂x
g(x), a QP as in (2.9) with two constraints will be feasible. Moreover, even if ∂h1(x)

∂x
g(x) =

−∂h2(x)
∂x

g(x), as long as x ∈ H1 ∩ H2, the modified QP in (6.12) will be feasible and will render
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H1 ∩ H2 forward invariant. However, if U ≠ Rm, then the QP may or may not be feasible. The
work in this chapter is focused on determining how to construct CBFs so that their associated CBF
conditions are provably concurrently feasible.

The work in this chapter is divided into two perspectives. The first (Section 6.3.1) is a collection
of geometric observations. Recall that an affine condition on the control input results in a half-space
constraint. Thus, using geometry, I identify conditions that ensure that the intersection of these half
spaces with U is non-empty. Second, if these geometric results fail or are overly conservative, I
suggest an iterative algorithm (Section 6.3.3) for deriving a controlled invariant set parameterized
by CBFs. Note that this algorithm can be followed by hand, or coded to search for a controlled
invariant set using a computer.

6.1 Introduction and Literature Review

Control Barrier Functions (CBFs) are a control synthesis method for ensuring that system state
trajectories always remain within some specified safe set [66]. In general, there may exist points
within the safe set for which all feasible trajectories originating at these points will eventually exit
the safe set. In such cases, one often seeks to construct a CBF so that a subset of the safe set,
herein called the CBF set, is controlled invariant for the given system dynamics and input bounds.
The problem of finding a CBF is equivalent to the problem of finding a description for such a
controlled invariant set. This in itself is a challenging problem, but for simple safe sets, i.e. safe
sets that can be described as a sublevel set of a single constraint function, several authors have
proposed strategies to find CBFs as functions of the constraint function, including [66, 86, 87, 92]
and Chapters 3-4, among others.

One open challenge in the CBF literature is that most works assume that there exists a controlled
invariant subset of the safe set that is sufficiently simple to be described by the zero sublevel
(or superlevel) set of a single CBF. More complex sets could be expressed as the intersection of
the zero sublevel sets of multiple CBFs, e.g. when each CBF represents a single obstacle in a
cluttered environment. This is sometimes achieved by taking a smooth [169], nonsmooth [151],
or adaptive [139] maximum over several CBFs, or by simply applying multiple CBFs at once in
a Quadratic Program (QP) [136, 138]. However, these approaches all assume that one is able to
find a collection of CBFs whose CBF sets form a controlled invariant set when intersected, or else
the QP could become infeasible, as is illustrated by the two planar constraints in Fig. 6.1. Finding
such a collection of CBFs is a much more challenging problem than finding a single CBF. The
authors are not aware of any general algorithms analogous to [66, 86, 87, 92] for finding several
CBFs at once, excepting learning approaches [156, 157], which can only yield probabilistic safety
guarantees.
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CBF Conditions on u at (q, v)
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w2

A2u ≤ b2

A1u ≤ b1

Figure 6.1: Two CBF Sets and the Associated CBF Conditions in the Control Space.
Left: Visualization of the safe positions q = (q1, q2) ∈ R2 (green) for a double-integrator agent
with two constraints κ1, κ2 as in Example 6.1. The state x0 = (q, v) ∈ R4 in Example 6.1 has
position q labeled above and velocity v pointing to the right.
Right: Visualization of the control space at x0 in Example 6.1. Both CBF conditions are indi-
vidually feasible via control inputs w1 and w2, but there is no u ∈ U satisfying both conditions
simultaneously, so the intersection of the CBF sets is not a controlled invariant set.

h1 > 0 h2 > 0 h1 > 0 h2 > 0

S1 ∩ S2 S1 ∩ S2

h1 ≥ −ϵ h2 ≥ −ϵ

Figure 6.2: Intersecting and Nonintersection CBF Set Boundaries.
Left: In [67], the problem of multi-CBF safety is simplified by assuming that {x | h1(x) =
0} ∩ {x | h2(x) = 0} = ∅, and then designing separate safe controllers for the cases h1(x) ≥ −ϵ
and h2(x) ≥ −ϵ.
Right: By contrast, this work is interested in the case where {x | h1(x) = 0} ∩ {x | h2(x) = 0} ≠
∅, and thus both CBF conditions must be simultaneously satisfied, potentially resulting in conflicts
such as that in Fig. 6.1.
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The most common strategy to employ multiple CBFs is to assume that all the CBFs act in-
dependently of each other [67, 93]. For example, the CBFs may apply to different states with
decoupled input channels, as occurs for the docking simulation in Section 4.7 and in [93], or it
may be the case that only one CBF acts at a time [67]. The latter is equivalent to assuming that the
boundaries of the individual CBF zero sublevel sets, i.e. the CBF zero level sets, do not intersect,
as shown in Fig. 6.2. In this case, the CBFs may be designed in a one-at-a-time fashion using
existing algorithms. However, if this does not hold, then the CBFs must be designed all-at-once, or
else the intersection of the CBF sets may not be controlled invariant. Note that for most problems
with high relative-degree constraint functions, the corresponding CBF sets usually have intersect-
ing boundaries because of the velocity states, even if this is not obvious from the zero level sets of
the constraint functions (i.e. from the position states).

There exist many tools for the computation of viable sets and controlled invariant sets in the
control verification literature [186–188, 257–260]. Such tools have also been used to construct
CBFs [147], and have been augmented via application of CBF concepts [185]. However, all of
these algorithms are computationally expensive, even for linear systems [187, 188].

Compared to prior works, this chapter presents two contributions. First, I present a methodology
for decoupling the design of multiple CBFs in the presence of prescribed input bounds. This decou-
pling allows one to leverage existing single-CBF algorithms in Chapters 3-4 and [66, 86, 87, 92],
while avoiding conflicts such as those in Fig. 6.1. Second, I present an iterative algorithm to
find a controlled invariant set parameterized by these decoupled CBFs. That is, instead of using
zonotopes [186, 258], polytopes [188, 259], or other parameterized functions [185, 260, 261], this
work expresses the viable sets in terms of an intersection of CBF sets. As each CBF forbids state
trajectories from crossing the boundary of its own CBF set, the proposed algorithm focuses on ver-
ifying Nagumo’s condition only at the states where the boundaries of multiple CBF sets intersect.
One can then compute safe control actions using a QP [66, 262] subject to the CBF conditions
arising from every CBF, and I show that this QP is always feasible. Note that, compared to [186–
188, 257–260], the viable sets resulting from this algorithm will generally be more conservative,
as the intention of this work is to enable the use of existing (usually conservative) CBF literature
rather than to approximate the maximal viability kernel.

6.2 Preliminaries

6.2.1 Notations

The results of this chapter can be applied to any constraint function, but this dissertation is
generally concerned with constraint functions of relative-degree 2, so I will specialize the notations
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to that case. Given a function φ : Rn1 × Rn2 → R, denoted φ(q, v), let ∇qφ(q, v) denote the row
vector of derivatives (i.e. the gradient) of φwith respect to inputs q ∈ Rn1 , and let∇vφ(q, v) denote
the row vector of derivatives of φ with respect to inputs v ∈ Rn2 . Let Cr denote the set of functions
r-times continuously differentiable in all arguments. Given one or more vectors {v1, · · · , vN} and a
vector u of the same dimension, define the projection operator as proj{v1,··· ,vN} u =

∑
i∈[M ](u·b̂i)b̂i,

where {b̂1, · · · , b̂M} is an orthonormal basis spanning span{v1, · · · , vN}.

6.2.2 Model

Let q ∈ Rn1 be the coordinates, and v ∈ Rn2 the velocities, of a second-order system of the
form

q̇ = g1(q)v, (6.1a)

v̇ = f(q, v) + g2(q)u , (6.1b)

with state x ≜ (q, v) ∈ Rn1+n2 and control input u ∈ U ⊂ Rm. Let f : Rn1 × Rn2 → Rn2 ,
g1 : Rn1 → Rn1×n2 , and g2 : Rn1 → Rn2×m belong to C2. Let U encode the set of allowable
control inputs, herein called the control set, and assume that U is compact and convex and contains
the zero vector. Assume that f , g1, g2, and u are sufficiently regular that trajectories of (6.1) exist
and are unique for all times t ∈ T = [t0, tf ), where tf is possibly∞. Note that the model (6.1)
includes Euler-Lagrange systems, where n1 = n2, as in [92, 93, 263], but is also more general. I
use this form of model because it also includes the attitude control case study from Section 5.2,
which I will expand upon in this chapter.

6.2.3 Safety Definitions

A principal requirement of any autonomous system should be to at all times satisfy certain
operation constraints. Specifically, suppose that one is given several constraint functions κi :

Rn1 → R, κi ∈ C2, i ∈ [N1] and ηj : Rn2 → R, ηj ∈ C1, j ∈ [N2], which each generate a
constraint set:

Qi ≜ {q ∈ Rn | κi(q) ≤ 0} , (6.2)

Vj ≜ {v ∈ Rn | ηj(v) ≤ 0} . (6.3)
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I call the composition of all the constraint sets the safe set S, and say that the system is safe at time
t if x(t) ∈ S:

S ≜

( ⋂
i∈[N1]

Qi
)
×
( ⋂
j∈[N2]

Vj
)
. (6.4)

That is, I allow for both position constraints κi and velocity constraints ηi, but assume that these
constraints are encoded separately. This implies that each κi is of relative-degree 2 along (6.1) and
each ηi is of relative-degree 1 along (6.1). This separation of Qi and Vi is not necessary, but is
greatly simplifying, as will be explained in Remark 6.3.

I now introduce two more specific notions of CBF.

Definition 6.1 (CBF on a State and Control Set). Let X ⊆ S and Y ⊆ U . A function h : Rn1+n2 →
R, h ∈ C1 is a control barrier function (CBF) for (X ,Y) if there exists α ∈ Ke such that the set

Ucbf(q, v,Y) ≜ {u ∈ Y | ḣ(q, v, u) ≤ α(−h(q, v))} (6.5)

is nonempty for all (q, v) ∈ H ∩ X , where

H ≜ {(q, v) ∈ Rn1+n2 | h(q, v) ≤ 0} . (6.6)

I callH the CBF induced set, or simply CBF set.

Note that under the dynamics (6.1), ḣ is affine in u,

ḣ(q, v, u) = ∇qh(q, v)g1(q)v +∇vh(q, v)f(q, v) +∇vh(q, v)g2(q)u , (6.7)

so if Y is convex, then the set Ucbf in (6.5) is also convex.

Definition 6.2 (Simple CBF on a State and Control Set). Let X ⊆ S and Y ⊆ U . A function

h : Rn1+n2 → R, h ∈ C1 is a simple control barrier function (SCBF) for (X ,Y) if 1) h is a CBF

for (X ,Y), and 2) the set

Uscbf(q, v,Y) ≜ {u ∈ Ucbf(q, v,Y) | ∃c ≥ 0 : u = −c[∇vh(q, v)g2(q)]T} (6.8)

is nonempty for all (q, v) ∈ H ∩ X .

That is, h is an SCBF if the condition ḣ(q, v, u) ≤ α(−h(q, v)) can always be satisfied for a
control input u anti-parallel to the vector∇vh(q, v)g2(q). I introduce the notion of SCBF because it
allows for slightly less conservative viable set computations, as I will show in Section 6.3. SCBFs
arise naturally in many practical applications. Note that if Y = {u ∈ Rm | ∥u∥2 ≤ umax}, then any
CBF for (X ,Y) is automatically an SCBF for (X ,Y) too.
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Next, recall the viability definitions in Definition 2.7 and Definition 2.8. I combine these two
definitions as follows.

Definition 6.3 (Viable Controlled Invariant Set). A set A ⊆ S is called a viable controlled-
invariant set (VCIS) if for every point x(t0) ∈ A, there exists a control signal u(t) ∈ U , t ∈ T
such that the trajectory x(·) of (6.1) satisifes x(t) ∈ A for all t ∈ T .

Note that if 1) h is a CBF for (S,U) and 2) H ⊆ S , then it follows from Definition 6.1 and
Theorem 2.2 that H is a VCIS. This is useful because generally S in (6.4) is not a VCIS, but one
can use CBFs to describe subsets of S that are VCISs. However, in this work, I assume that S is
sufficiently complex that it is difficult to find a single CBF h for which H ⊆ S , thus motivating
the following extensions of Theorem 2.2.

6.2.4 Safe Quadratic Program Control

The heart of safety-critical control is Nagumo’s theorem, previously stated in Lemma 2.7. For
a set A ⊂ Rn1+n2 , recall that if x ∈ int(A), then TA(x) = Rn1+n2 , so Lemma 2.7 in effect only
depends on the flow ẋ when x ∈ ∂A. I use this fact in Lemma 6.2 below.

Given multiple constraint functions κi, i ∈ [N1] and ηj, j ∈ [N2], it is common [136, 138, 140]
to construct multiple CBFs hk, k ∈ [M ]. These can then be used for safe control according to the
following lemma, which follows from Theorem 2.2.

Lemma 6.1. Given functions {hk}k∈[M ], with Hk as in (6.6), denote Hall = ∩k∈[M ]Hk. Assume

that each hk is a CBF for (Hall,U) and let D be an open set satisfying D ⊃ Hall. Then any control

law u : Rn1+n2 → U satisfying

u(q, v) ∈ Ucbf,all(q, v) ≜
⋂
k∈[M ]

Ucbf,k(q, v,U) (6.9)

for all (q, v) ∈ D will renderHall forward invariant.

Remark 6.1. Note that while the definitions of CBFs and SCBFs in Definitions 6.1-6.2 are con-

cerned only with states (q, v) ∈ H, Lemma 6.1 instead requires that (6.9) is satisfied for all

(q, v) ∈ D for a larger open set D, similar to Theorem 2.2. As explained in Chapter 2, this

need for a larger open set D is a mathematical technicality, and this condition can be replaced by

instead assuming that ∇h does not vanish at the boundary of each set H. This technicality is not

addressed further in this chapter (i.e. this chapter continues to focus only on designing CBFs for

H rather than for a larger open setD), but should still be accounted for upon implementation. See

Section 2.3.2 for more information.
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Note that Lemma 6.1 does not include the safe set S from (6.4), so safety is only guaranteed if
Hall ⊆ S. I next introduce a modified version of Lemma 6.1 to handle the possibility thatHall ̸⊆ S,
as frequently occurs when using High Order CBFs (e.g. [87] and Section 4.2.4).

Lemma 6.2. Given functions {hk}k∈[M ], with Hk as in (6.6), denote Hall = ∩k∈[M ]Hk and A =

Hall ∩ S. Assume that each hk is a CBF for (A,U). Let u : Rn1+n2 → U be a control law. Assume

that ∇κi(q, v) ̸= 0 and ∇ηj(v) ̸= 0 for all (q, v) ∈ S and all i ∈ [N1], j ∈ [N2]. For every

i ∈ [N1], j ∈ [N2], and all (q, v) ∈ int(Hall), assume that κi(q) = 0 =⇒ κ̇i(q, v) ≤ 0 and that

ηj(v) = 0 =⇒ η̇j(q, v, u(q, v)) ≤ 0. Let D be an open set satisfying D ⊃ A. If u satisfies (6.9)
for all (q, v) ∈ D, then u will render A forward invariant.

Note that κi(q) = 0 =⇒ κ̇i(q, v) ≤ 0 is equivalent to Nagumo’s necessary condition in
Lemma 2.7, and the conditions ∇κi ̸= 0 and ∇ηi ̸= 0 are similar to the condition on |∂h(t,x)

∂t
| +

∥∂h(t,x)
∂x
∥ in Theorem 2.8. Thus, Lemma 6.2 highlights how one purpose of the CBFs hk is to

construct a set A ⊆ S that excludes all the states in S where Nagumo’s necessary condition does
not hold for any u ∈ U . This idea is the central motivation for the algorithm in Section 6.3.3.

Finally, given a collection of constraints κi, ηj and CBFs hk satisfying the conditions of
Lemma 6.2, it is common to construct control laws u : Rn1+n2 → U of the form

u(q, v) = argmin
u∈U

∥u− unom(q, v)∥22 (6.10a)

s.t. ḣk(q, v, u) ≤ αk(−hk(q, v)),∀k ∈ [M ] (6.10b)

where αk comes from (6.5), unom is any control law, and (6.10b) is affine due to (6.7). If u in
(6.10) always exists, i.e. if Ucbf,all in (6.9) is nonempty for all (q, v) ∈ A, then it follows from
Lemma 6.2 that the set A in Lemma 6.2 is a VCIS. However, if there exists (q, v) ∈ A for which
Ucbf,all(q, v) is empty, then (6.10) could become infeasible and thus trajectories originating at (q, v)
might (remember that Lemma 6.2 is sufficient, not necessary) exit the safe set S. Thus, the goal of
this chapter is to present tools to ensure that A is a VCIS, so that the related controller (6.12) (to
be introduced) is always feasible.

Problem 6.1. Determine a set of CBFs {hk}k∈[M ] such that the set A in Lemma 3 is a VCIS.

6.2.5 Assumptions and Motivating Example

The principal challenge addressed in this chapter is the problem of multi-CBF compositions.
For this reason, I assume that the single-CBF problem is sufficiently solved.

Assumption 6.1. Given sets X ⊆ S and Y ⊆ U , focus on any single constraint function κi (or

ηj). Denote O = Qi × Rn2 (or O = Rn1 × Vj). Consider the set Z = X ∩ (int(X ) ∪ ∂O).
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Assume that there exists an algorithm (e.g. [66, 86, 87, 92] or Chapters 3-4) to derive one or

more functions {hk}k2k=k1 , each a CBF for (X ,Y), such that κi(q) = 0 =⇒ κ̇i(q, v) ≤ 0

(or ηj(v) = 0 =⇒ η̇j(q, v, u) ≤ 0) for all (q, v) ∈ (Z ∩ (∩k2k=k1 int(Hk))) and all u ∈ U ,

where Hk is as in (6.6). That is, for each constraint function, assume that one already possesses

sufficiently capable tools to find one or more CBFs that prevents state trajectories from violating

that particular constraint function.

Remark 6.2. In practice, for the relative-degree 1 constraint functions ηj , one can often choose a

CBF hk so that hk = ηj . In this case, the set Z∩ int(Hk) in Assumption 6.1 has empty intersection

with the set {(q, v) ∈ X | ηj(v) = 0}, so the condition “ηj(v) = 0 =⇒ η̇(q, v, u) ≤ 0 for

all (q, v) ∈ (Z ∩ int(Hk)), u ∈ U” is automatically satisfied. Therefore, the “all u ∈ U” part

of Assumption 6.1 is a rarely used technicality. One only needs to check this technicality if one

chooses a CBF hk such that there exists (q, v) ∈ Hk where ηj(v) > 0. I am unaware of a practical

example where this occurs for a relative-degree 1 constraint function ηj , though such a choice of hk
is common for relative-degree 2 constraint functions κi, as was discussed in Sections 4.3.1-4.3.2.

Successive application of Assumption 6.1 to every constraint function one-at-a-time then pro-
duces a collection of CBFs {hk}k∈[M ] satisfying the assumptions of Lemma 6.2. However, this still
does not imply joint feasibility of all the CBFs hk, as illustrated in the following example.

Example 6.1. Consider the 2D double integrator q̇ = v, v̇ = u, q = (q1, q2) ∈ R2, v = (v1, v2) ∈
R2, u = (u1, u2) ∈ U = [−1, 1]× [−1, 1] subject to two constraint functions κ1(q) = q1+ γq2 and

κ2(q) = q1 − γq2 for some constant γ > 0, resulting in the safe set S = (Q1 ∩Q2)×R2, pictured

in Fig. 6.1. From Section 4.3.1, one can derive CBFs h1, h2 for (S,U), where hi(q, v) = κ̇i(q, v)−√
−2(1 + γ)κi(q), that satisfy the conditions of Lemma 6.2. Denote A = H1 ∩ H2 ∩ S and let

x0 = (q, v) = (− 1
2(1+γ)

, 0, 1, 0) ∈ ∂A. Then there is no u ∈ U that renders A forward invariant

from x0 (see the right side of Fig. 6.1). That is, Nagumo’s necessary condition (Lemma 2.7) for

forward invariance of A is violated at x0.

6.3 Proposed Methods

It is clear from Example 6.1 that possessing a collection of CBFs for (S,U) is not sufficient
to solve Problem 6.1. Thus, my first proposed strategy is to identify other control sets Y , for
which possessing CBFs for (S,Y) is sufficient to solve Problem 6.1. That is, if one restricts
w1, w2 in Fig. 6.1 to a smaller set Y ⊂ U when designing CBFs for these constraint functions,
then under certain conditions, presented in Section 6.3.1, one can ensure that several CBFs will be
concurrently feasible over the full control set U . When this strategy fails to yield a full solution
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to Problem 6.1, I then present a more typical iterative algorithm in Section 6.3.3 to remove the
remaining infeasible states in S . I also present a brief remark on QP controllers in Section 6.3.2.

6.3.1 When All CBFs are Non-Interfering

Some properties I will need are as follows:

Definition 6.4 (Non-Interference). Two CBFs hi and hj are called non-interfering on X if

(∇vhi(q, v)g2(q)) · (∇vhj(q, v)g2(q)) ≥ 0 for all (q, v) ∈ X . A collection of CBFs {hk}k∈[M ]

is called non-interfering if every pair of CBFs is non-interfering.

Definition 6.5 (Orthogonal Extension Property). Given a set U ′ ⊂ U , let {wi}i∈[m] be a set of m

vectors wi ∈ U ′ satisfying wi · wj ≥ 0,∀i ∈ [m], j ∈ [m]. Let {yi}i∈[m] be the set of orthogonal

projections yi = wi − proj({wj}j∈[i−1])
wi (or yi = wi if {wi}i∈[m] are orthogonal). The set U ′ has

the orthogonal extension property (OEP) with respect to U if for every such set {wi}i∈[m], the point

z =
∑

i∈[m] yi belongs to U .

Definition 6.6 (Quadrant Extension Property). Given a set U ′ ⊂ U , let {Pi}i∈[m] be a set of m

orthogonal hyperplanes in Rm satisfying Pi ∩ U ′ ̸= ∅,∀i ∈ [m]. Let p be the point where all m

hyperplanes intersect (where p is guaranteed to exist because {Pi}i∈[m] are orthogonal). The set

U ′ has the quadrant extension property (QEP) with respect to U if for every such set {Pi}i∈[m], the

point p belongs to U .

Definition 6.6 is perhaps better termed the “orthant extension property”, but I use the term QEP
anyways so that Definitions 6.5-6.6 have differing acronyms. Examples of sets satisfying Defini-
tions 6.5-6.6 are as follows:

Example 6.2. Given various prescribed input bounds U , the following sets U ′ possess the OEP or

QEP with respect to U . Note that these choices of U ′ are not unique.

1. If U = {u ∈ Rm | ∥u∥∞ ≤ γ}, then one possible set with the OEP is U ′ = {u ∈ Rm |
∥u∥1 ≤ γ} (Fig. 6.3a). One possible set with the QEP is U ′ = {u ∈ Rm | ∥u∥1 ≤ γ∗}
(Fig. 6.3b), where γ∗ must be computed. If m = 2, then γ∗ = 2γ

1+
√
2
.

2. If U = {u ∈ Rm | ∥u∥1 ≤ γ}, then one possible set with the OEP is U ′ = {u ∈ Rm |
∥u∥∞ ≤ γ

m
}. One possible set with the QEP is U ′ = {u ∈ Rm | ∥u∥∞ ≤ γ∗

m
}, where γ∗ is

as in the prior case.

3. If U = {u ∈ R | ∥u∥2 ≤ γ}, then one possible set with the OEP (Fig. 6.3c) and QEP

(Fig. 6.3d) is U ′ = {u ∈ Rm | ∥u∥2 ≤ γ√
m
}.
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4. If U = {u ∈ Rm | maxi |aiui| ≤ γ} for constants {a1, · · · , am}, then one possible set with

the OEP is U ′ = {u ∈ Rm |
∑

i |aiui| ≤ γ∗} (Fig. 6.3e), where γ∗ ≤ γ must be computed.

A set with the QEP can be constructed similarly (Fig. 6.3f).

The core idea of this subsection is that given a set U ′ with the OEP or QEP, if one designs
the CBFs {hk}k∈[M ] one-at-a-time for (S,U ′), then, subject to an additional condition on the CBF
gradients, one can guarantee a priori that {hk}k∈[M ] will have jointly feasible CBF conditions. To
show this, I begin with several lemmas about the geometry of the OEP and QEP, first for two
constraints, and then for M constraints.

Lemma 6.3. Let U ′ have the OEP with respect to U . Given two row vectors A1, A2 ∈ R1×m and

two scalars b1, b2 ∈ R, if A1 · A2 ≥ 0 and there exists w1, w2 ∈ U ′ such that 1) A1w1 ≤ b1, 2)

A2w2 ≤ b2, 3) A1 · w1 = −∥A1∥2∥w1∥2, and 4) A2 · w2 = −∥A2∥2∥w2∥2, then there exists z ∈ U
such that A1z ≤ b1 and A2z ≤ b2.

Proof. Note that conditions 3 and 4 imply that either 1) w1 is parallel and opposite to A1 when
b1 < 0, or 2) that w1 = 0 when b1 ≥ 0, and similarly for A2, b2, w2. Without loss of generality,
assume that ∥w1∥2 ≥ ∥w2∥2. Let w∗ = w2− w2·w1

w1·w1
w1. Then z = w1 +w∗ satisfies A1z = A1w1 ≤

b1 since w∗ is orthogonal to w1 and A1, and

A2z = A2w2 + A2w1︸ ︷︷ ︸
≤0

(1− w2·w1

w1·w1︸ ︷︷ ︸
≤1

) ≤ A2w2 ≤ b2 .

By the OEP, z ∈ U . ■

Lemma 6.4. Let U ′ have the OEP with respect to U . Given M row vectors {Ak}k∈[M ] and scalars

{bk}k∈[M ] with Ak ∈ R1×m, if 1) Ai ·Aj ≥ 0 for all i ∈ [M ], j ∈ [M ], 2) there exists wk ∈ U ′ such

that Akwk ≤ bk for all k ∈ [M ], and 3) Akwk = −∥Ak∥2∥wk∥2 for all k ∈ [M ], then there exists

z ∈ U such that Akz ≤ bk for all k ∈ [M ].

Proof. The proof follows from that of Lemma 6.3. Assume that the vectors are ordered by decreas-
ing ∥wk∥2. If M ≤ m, then use orthogonal projections to construct a vector z =

∑
i∈[M ](wi −

proj({wj}j∈[i−1])
wi) that satisfies allM constraintsAkz ≤ bk simultaneously. By the OEP, z ∈ U . If

M > m, then because Ai · Aj ≥ 0 for all i, j, the setW = {u ∈ Rm | Aku ≤ bk,∀k ∈ [M ]} must
contain a complete orthant O = {u ∈ Rm | Oku ≤ Oky,∀k ∈ [m]} ⊆ W for some orthogonal set
{Ok}k∈[m], Ok ∈ R1×m and some point y ∈ Rm. Therefore, at least l0 =M −m of the constraints
Akz ≤ bk must be redundant, i.e. l ≥ l0 of the constraints must be automatically satisfied if the
remaining constraints are satisfied. Use the remaining M − l constraints as in the prior case to
construct a vector z ∈ U satisfying all M inequalities simultaneously. ■
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 6.3: Illustration of OEP and QEP. Given three different control sets U (gray), the above
illustrates possible choices of set U ′ (blue) that: left) have the OEP with respect to U , and right)
have the QEP with respect to U , as in Definitions 6.5-6.6. The left plots also show how given two
orthogonal vectors (solid arrows) in U ′, their sum (dashed arrow) must by construction belong to
U . The right plots also show various choices of orthogonal hyperplanes (i.e. lines in R2) whose
intersections (the red right angles) by construction must belong to U .
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Lemma 6.5. Let U ′ have the QEP with respect to U . Given two row vectors A1, A2 ∈ R1×m and

two scalars b1, b2 ∈ R, if A1 · A2 ≥ 0 and there exists w1, w2 ∈ U ′ such that A1w1 ≤ b1 and

A2w2 ≤ b2, then there exists p ∈ U such that A1p ≤ b1 and A2p ≤ b2.

Proof. Consider the following figure:

A1

A2

w1 ∈ U ′

w2 ∈ U ′

p

p1

p2

A1u ≤ b1

A2u ≤ b2A1u ≤ b1 and A2u ≤ b2

y

Figure 6.4: Visualization for Lemma 6.5 proof

Since w1, w2 ∈ U ′, by the QEP, any two orthogonal lines (i.e. hyperplanes in R2) that intersect w1

and w2 (i.e. intersect points in U ′) must meet at a point in U , such as the points p, p1, p2 above.
That is, every point on the black arc must belong to U . Next, since A1 · A2 is at least zero, the
point y where the hyperplanes {u | A1u = b1} and {u | A2u = b2} (dashed lines) intersect must
be enclosed by the black arc. It follows that at least one point, above labeled p, on this arc must
satisfy both inequalities simultaneously. ■

Lemma 6.6. Let U ′ have the QEP with respect to U . Given M row vectors {Ak}k∈[M ] and scalars

{bk}k∈[M ] with Ak ∈ R1×m, if Ai · Aj ≥ 0 for all i ∈ [M ], j ∈ [M ] and there exists wk ∈ U ′ such

that Akwk ≤ bk for all k ∈ [M ], then there exists p ∈ U such that Akp ≤ bk for all k ∈ [M ].

Proof. The argument is similar to that in Lemma 6.5, now extended to higher dimension. Let
{Pk}k∈[m] be a set of orthogonal hyperplanes in Rm that meet at some point p ∈ Rm and satisfy
Pk ∩ U ′ ̸= ∅,∀k ∈ [m]. Let P = {u ∈ Rm | Pku ≤ Pkp,∀k ∈ [m]} be the orthant of Rm

originating from p and enclosed by {Pk}k∈[m], for appropriate vectors {Pk}k∈[m], Pk ∈ R1×m. As
in Lemma 6.4, there are at most m non-redundant constraints. Let N be the set of indices of these
non-redundant constraints, and construct P so that wk ∈ ∂P,∀k ∈ N , analogous to how the solid
red lines (∂P) intersect the vectors w1, w2 in Fig. 6.4. Then the point p will lie on the boundary of
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an m-hypersphere S analogous to the black arc in Fig. 6.4, and all possible choices of p must lie
in U by the QEP. Let y ∈ Rm satisfy Aky = bk,∀k ∈ N . By the same argument as in Lemma 6.5,
S must enclose at least one such y. Thus, there exists at least one p ∈ S ⊆ U that satisfies all M
inequalities simultaneously. ■

I now apply the above geometric observations to the concurrent feasibility of several SCBFs or
CBFs as follows.

Theorem 6.7. Let U ′ be any set with the OEP with respect to U . Let {hk}k∈[M ] each be an SCBF

for (S,U ′). If {hk}k∈[M ] are non-interfering on S as in Definition 6.4, then the set Ucbf,all in (6.9)
is nonempty for all (q, v) ∈ S ∩ (∩k∈[M ]Hk).

Proof. Let Ak = ∇vhk(q, v)g2(q) and bk = αk(−hk(q, v)) −∇qhk(q, v)g1(q)v for all k ∈ [M ],
where αk each come from (6.5). It follows from Definition 6.4 that Ai · Aj ≥ 0 for all
i ∈ [M ], j ∈ [M ] everywhere in S. It follows from Definition 6.2 that for each k ∈ [M ], there
exists wk ∈ U ′ such that Akwk ≤ bk and wk is anti-parallel to Ak. Lemma 6.4 then implies that
these M inequalities are simultaneously feasible for some u in the full set U , which is equivalent
to the sets {Ucbf,k}k∈[M ] having a nonempty intersection Ucbf,all. ■

Theorem 6.8. Let U ′ be any set with the QEP with respect to U . Let {hk}k∈[M ] each be a CBF for

(S,U ′). If {hk}k∈[M ] are non-interfering on S as in Definition 6.4, then the set Ucbf,all in (6.9) is

nonempty for all (q, v) ∈ S ∩ (∩k∈[M ]Hk).

Proof. The proof is identical to that of Theorem 6.7, except that hk are CBFs instead of SCBFs,
so each wk is not guaranteed to be anti-parallel to each Ak, respectively. Thus, I apply Lemma 6.6
instead of Lemma 6.4. ■

Theorems 6.7-6.8 constitute my first method for ensuring concurrent feasibility of multiple
CBFs. Note that I provide theorems under both the OEP and QEP separately, because as shown
in Fig. 6.3, the OEP is less conservative (i.e. allows for larger U ′), but is only applicable when
the stricter SCBF condition (6.8) holds (which is often the case in practice). I also note the fol-
lowing remarks about the computation of the gradients of the CBFs hk for Definition 6.4 and
Theorems 6.7-6.8.

Remark 6.3. If κ is a High Order CBF as in [87], then there exists a function ϕ ∈ K such that

h(q, v) = κ̇(q, v)−ϕ(−κ(q)) is a CBF as in Definition 6.1. Moreover, κ̇(q, v) = ∇qκ(q)g1(q)v, so

∇vh(q, v) ≡ ∇qκ(q)g1(q)g2(q). That is, ∇vh(q, v) 1) is independent of v and 2) does not depend

on the function ϕ. Thus, Definition 6.4 can be checked using only the gradients of the constraint

functions κi, κj and the dynamics (6.1) without knowing the exact CBFs (i.e. the choices of ϕ).

This is the main motivation for considering the specific second-order model (6.1).
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w1

w2z

A2u ≤ b2

A1u ≤ b1

w1

w2z

A2u ≤ b2

A1u ≤ b1

Figure 6.5: Modification of Fig. 6.1 After Shrinking the Assumed Control Set.
Left: Visualization of the control space at a point x0 ∈ ∂H1∩∂H2 usingH1,H2 as in Example 6.3.
Compared to Fig. 6.1, the CBFs are now designed over U ′ (the blue diamond) instead of U , so there
exists z ∈ U satisfying both A1z ≤ b1 and A2z ≤ b2.
Right: Visualization of the control space at the point x0 in Example 6.4. Because the CBFs h1, h2
do not satisfy Definition 6.4, it may be the case that every point z satisfying both inequalities
Akz ≤ bk lies outside the set U , so x0 should not lie in the VCIS.

Remark 6.4. To use the above strategies with a more general model than (6.1), let h : Rn → R take

a single argument x, and suppose ẋ = f(x) + g(x)u. Then ḣ(x, u) = ∇h(x)f(x) +∇h(x)g(x)u.

Thus, the term∇vh(q, v)g2(q) in (6.7) can be replaced with∇h(x)g(x) in the more general model.

However, in this case, the argument in Remark 6.3 about ∇vh(q, v)g2(q) ≡ ∇qκ(q)g1(q)g2(q)
being independent of the velocities v does not hold.

Referring to Example 6.1, Theorems 6.7-6.8 address the problem of determining a VCIS A
when γ ∈ (0, 1]. However, how to address Example 6.1 when γ > 1 still needs to be determined,
as is done in Section 6.3.3.

Example 6.3. Consider the problem in Example 6.1 with γ = 0.75. The set U ′ = {u ∈ R2 |
∥u∥1 ≤ 2

1+
√
2
} has the QEP with respect to U as in Example 6.1. Using the new set U ′ as the

assumed allowable input bounds, the method in Section 4.3.1 yields the CBFs hi(q, v) = κ̇i(q) −√
− 4

1+
√
2
κi(q). Unlike in Example 6.1, the new setA = S∩H1∩H2 is indeed a VCIS. The impact

of constructing the CBFs for (S,U ′) instead of (S,U) is visualized in the left half of Fig. 6.5.

6.3.2 Modifying the Quadratic Program

The work in the prior section required Definition 6.4 to apply to all states in S. Now, recall that
Lemma 2.7 is effectively only a condition on the boundary of the invariant set A. Noting this, in
Section 6.3.3, I will focus only on the boundary of A, so unlike in Section 6.3.1, I will no longer
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be able to guarantee that Ucbf,all(q, v) is nonempty for (q, v) ∈ int(A). Rather, I will only be able
to guarantee that there exists u ∈ U such that ḣk(q, v, u) ≤ 0 for all k in the active set

I(q, v) = {k ∈ [M ] | hk(q, v) = 0} . (6.11)

That is, after employing the algorithm in Section 6.3.3, the condition ḣk(q, v, u) ≤ αk(−hk(q, v))
in (6.10b) will be feasible for all k ∈ I(q, v), but possibly not for k ∈ [M ] \ I(q, v). By [76], if A
in Lemma 6.2 is a VCIS, then there exists a set of class-Ke functions {α∗

k}k∈[M ], such that (6.10)
is always feasible. Instead of computing such a set directly, I let α∗

k(λ) = δkαk(λ), where δk is a
free variable. I then let Jk > 0, and modify the QP (6.10) as in [262] to

u(q, v) = argmin
u∈U ,δk≥1

∥u− unom(q, v)∥22 +
∑
k∈[M ]

Jkδk (6.12a)

s.t. ḣk(q, v, u) ≤ δkαk(−hk(q, v)),∀k ∈ [M ] (6.12b)

Theorem 6.9. Suppose the conditions of Lemma 6.2 hold. Then 1) the control law (6.12) will

render A forward invariant for as long as (6.12) is feasible, 2) (6.12) is feasible for all (q, v) ∈ A
for which I(q, v) has cardinality of 0 or 1, and 3) (6.12) is feasible for all (q, v) ∈ A if A is a

VCIS.

The proof follows from [262].

Remark 6.5. In light of Theorem 6.9, the concept of non-interference in Definition 6.4 only needs

to apply to states (q, v) where the boundaries of two CBF sets intersect. That is, if one uses (6.12)
instead of (6.10), then the requirement in Theorems 6.7-6.8 that all the CBFs be non-interfering

on all of S can be relaxed to only require CBFs be non-interfering where their CBF set boundaries

intersect (if they intersect at all). However, one generally does not know what the CBF sets are

until all the CBFs have been designed, so control design is easier if the CBFs (and the constraint

functions from which they were designed—see Remark 6.3) are non-interfering everywhere in S .

Note also that Theorem 6.9 does not make use of Definition 6.4, or any of the other work in
Section 6.3.1. That is, this QP can be used regardless of whether the CBFs are interfering or
non-interfering.

6.3.3 When the CBFs are Interfering

Next, consider what happens in Example 6.3 if γ > 1.
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∇qκ1

∇qκ2
∇qκ3

Allowable (q1, v1) when q2 = v2 = 0

Figure 6.6: Modification of Figs. 6.1,6.5 After Adding a CBF.
Left: The CBFs h1, h2 do not satisfy Definition 6.4, so Theorems 6.7-6.8 do not apply. To remedy
this, I add a third constraint κ3 and associated CBF h3 to remove the remaining states where (6.12)
is infeasible. Note that∇qκk ≡ ∇vhk for this system.
Right: Fixing q2 = v2 = 0, this plot show the allowable states (q1, v1) according to 1) the safe set
(cyan), 2) the CBFs in Example 6.4 (blue), and 3) the CBFs in Example 6.5 (green).

Example 6.4. Consider the problem in Example 6.3 for γ = 1.25. Using the same strategy as in

Example 6.3 yields the new CBFs hi(q, v) = κ̇i(q, v)−
√
− 4γ

1+
√
2
κi(q). Denote A = S ∩H1 ∩H2

and let x0 = (q, v) = (−1+
√
2

4γ
, 0, 1, 0) ∈ ∂A. From the right side of Fig. 6.5, one can see that

there is no u ∈ U that satisfies both CBF conditions at x0. That is, Nagumo’s necessary condition

for forward invariance of A is violated at x0, so A is not a VCIS.

The difference between Example 6.3 and Example 6.4 is that in Example 6.4, the CBFs h1, h2
do not satisfy Definition 6.4, so Theorems 6.7-6.8 do not apply. Thus, there is a need for additional
tools to systematically remove states such as x0 in Example 6.4 from A in such cases. I begin by
presenting a solution to this simple example before discussing a general algorithm.

Example 6.5. Consider the problem in Example 6.4. Introduce κ3(q) = q1, resulting in the con-

straint geometry in Fig. 6.6. LetH1 andH2 be as in Example 6.4, and using Section 4.3.1, one can

derive the CBF h3(q, v) = κ̇3(q, v)−
√
− 4

1+
√
2
κ3(q). Then A = S ∩H1 ∩H2 ∩H3 is a VCIS for

the sets S and U (see the green set on the right side of Fig. 6.6).

Example 6.5 improves upon Example 6.4 by further limiting the system’s velocity v1 so as to
remove all the points where (6.12) is infeasible. This can be done either by adjusting h1 and h2, or
by adding the additional CBF h3. The first approach amounts to a joint tuning of all CBFs, which
is challenging, so I instead focus on generalizing the latter strategy.
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Algorithm 1 Get VCIS
Require: S in (6.4), U ′ possessing QEP (or OEP) w.r.t. U , CBFs (or SCBFs) {hk}M0

k=1 for (S,U ′)
satisfying Lemma 6.2

1: X ← S ∩ (∩Mk=1Hk)
2: D = ∪i∈[M0],j∈[M0],i ̸=j(∂Hi ∩ ∂Hj)
3: M ←M0

4: E ← getInfeasibleSet(D)
5: while E ̸= ∅ do
6: Ec ← getCluster(E)
7: hM+1 ← getCBF(Ec,X ,U ′)
8: X ← X ∩HM+1

9: M ←M + 1
10: D = ∪i∈[M ],j∈[M ],i ̸=j(∂Hi ∩ ∂Hj)
11: E ← getInfeasibleSet(D)
12: end while
13: A ← X
14: return A, {hk}Mk=1

To this end, I propose Algorithm 1. Here, {hk}k∈[M ] is a working set of CBFs and X is a
working domain. Let D be a set of candidate points where (6.12) could be infeasible, namely all
points where at least two CBFs are active as in (6.11), as Theorem 6.9 guarantees feasibility of
(6.12) at all other points. Next, let E be the subset ofD where (6.12) is actually infeasible, where E
is more expensive to compute thanD. Next, let getCluster() be a function that divides all the points
in E into clusters (e.g. see Fig. 6.7), and then returns a single cluster Ec ⊆ E for focus. Given this
cluster, the function getCBF() then determines a new CBF hM+1 for (X ,U ′) such that the cluster
Ec is entirely outside the CBF setHM+1. By Assumption 6.1, such a CBF hM+1 will always exist.
Note also the use of the set U ′ satisfying Definition 6.5 or 6.6 in getCBF(); this is done to reduce
the number of points where hM+1 might conflict with the existing CBFs {hk}k∈[M ]. Algorithm 1
then adds hM+1 to the working set of CBFs and shrinks the working domain to X ∩HM+1 (e.g. see
Fig. 6.6). The while block then repeats until either all the CBFs are jointly feasible or the domain
X becomes empty.

Note that the exact mechanics of grouping points into clusters during getCluster() and of gener-
ating CBFs during getCBF() will be specific to the system under study. An example of these steps
is described in Section 6.4.

Proposition 6.10. If Algorithm 1 converges, thenA is a VCIS as in Definition 6.3 and the controller

(6.12) is always feasible and renders A forward invariant.

Algorithm 1 is similar to typical viability domain computation algorithms [186–188, 257–260],
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except that the set A is parameterized by a collection of CBFs. Since these CBFs are defined for
a control set U ′ possessing the QEP (or OEP), one can reduce the number of points that one needs
to check for infeasibility to only the points where 1) multiple CBFs are active as in (6.11) and
2) the active CBFs violate the condition in Definition 6.4. I next illustrate the implementation of
Algorithm 1 by example on a nonlinear system.

Remark 6.6. The choice of the functions getCluster() and getCBF() in Algorithm 1 will also af-

fect the conservativeness of the resulting set A compared to the viability kernel, and the time of

convergence of the algorithm. A very small cluster size could result in many added CBFs and an

explosion in computation. Note also that Algorithm 1 can be either coded and run autonomously,

or followed step-by-step “by hand” by a practiced engineer.

6.4 Application to Orientation Control

Let q ∈ {q ∈ R4 | ∥q∥2 = 1} be the quaternion describing the orientation of a spherically
symmetric rigid body with unit moments of inertia, and let ω = (ω1, ω2, ω3) ∈ R3 be the angular
velocity of the body. The dynamics are

q̇ =
1

2


0 ω3 −ω2 ω1

ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 q, ω̇ = u . (6.13)

Suppose a sensitive instrument faces towards an axis â fixed to the body, and must avoid point-
ing towards the fixed directions b̂1, b̂2 in Fig. 6.7 by angles θ1, θ2 (red cones in Fig. 6.7). These
constraints can be expressed as κ1(q) = qTP (â, b̂1, θ1)q and κ2(q) = qTP (â, b̂2, θ2)q, where P
is constant with respect to the state (q, ω) and is constructed as in [221] and Section 5.2.2.2. Let
U = {u ∈ R3 | ∥u∥∞ ≤ umax} for some umax. Assume the angular velocity is bounded by
η(ω) = ∥ω∥∞ − ωmax, where the∞-norm can be expressed as 6 continuously differentiable con-
straint functions {ηj}j∈[6].

First, I find a set U ′ with the OEP with respect to U . Example 6.2 implies that U ′ = {u ∈
R3 | ∥u∥2 ≤ umax√

3
} is one such set, from which I derive SCBFs hκ,1, hκ,2 for (S,U ′) given by

hκ,i(q, ω) = κ̇i(q, ω) −
√
−βiκi(q) for some βi ∈ R>0. Note that each ηj already satisfies the

definition of an SCBF on (S,U ′), so denote these SCBFs as hη,j ≡ ηj . The eight SCBFs together
satisfy the conditions of Lemma 6.2. I now focus only on the hκ,1, hκ,2 SCBFs. If the corresponding
sets Hκ,1,Hκ,2 satisfy ∂Hκ,1 ∩ ∂Hκ,2 = ∅, then A in Lemma 3 is a VCIS and no further analysis
is required. Here, I chose θ1, θ2 sufficiently large that this does not hold, as indicated by the
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b̂1 b̂2

Cluster 1

Cluster 2

Figure 6.7: Visualization of Two Simultaneous Pointing Constraints. Visualization of the con-
strained reorientation problem studied in Section 6.4. The large red cones are the initial unsafe
states (where the body cannot point body-fixed vector â), the two clusters are the states where
(6.12b) is infeasible, and the brown cones are the states excluded by the new CBFs introduced by
Algorithm 1.

intersection of the red cones in Fig. 6.7. All code and parameters discussed in this subsection can be
found at https://github.com/jbreeden-um/phd-code/tree/main/2023/ACC%
20Multiple%20Control%20Barrier%20Functions.

I then apply Algorithm 1. For this system, I coded getCluster() to return connected subsets of
E . In this case, getInfeasibleSet() returned states (q, v) ∈ R7 with quaternions q corresponding to
the green and blue chevrons in Fig. 6.7, and getCluster() identified these points as two clusters.
I then coded getCBF() to remove the cluster states by introducing a new constraint of the form
κM+1(q) = qTP (â, b̂M+1, θM+1)q, and computing an SCBF hκ,M+1 of the same form as hκ,1 and
hκ,2. The getCBF() function searched for the orientation b̂M+1 and minimum angle θM+1 that
removed the entire cluster and that satisfied Definition 6.4 when paired with each of the existing
SCBFs. Visually, for states with ω = 0, the new SCBF hκ,M+1 resulted in removing one of the
brown cones in Fig. 6.7. After removing the first cluster, Algorithm 1 repeated for a second loop,
and then completed and returned the two initial SCBFs (red cones) and two new SCBFs (brown
cones) shown in Fig. 6.7.

One can also implement Algorithm 1 by hand as in Remark 6.6. For this system, a practiced
engineer might instead decide that both clusters in Fig. 6.7 should be grouped into a single cluster,
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which can then be removed by adding a single new SCBF representing a larger cone. Note also that
Fig. 6.7 is visually different from Fig. 5.15 in Chapter 5, because Fig. 6.7 depicts one instrument
and two unsafe directions, whereas Fig. 5.15 depicts two instruments and one unsafe direction,
though both are still multi-CBF scenarios.

Note that the computation time of Algorithm 1 depends most on the computation time of the
getInfeasibleSet() step, which has to search a potentially large set for infeasibilities. However, this
set is smaller than in typical verification algorithms, because one only has to consider states where
the boundaries of two or more CBFs intersect. All other states already satisfy Lemma 2.7 because
X is parameterized by CBFs. Possible implementations of getInfeasibleSet() include [140, 261],
and the wider viability theory literature. Since these are primarily sampling-based algorithms, the
computation time is dependent on the sampling interval, which depends on the Lipschitz constants
of hk and the margin by which each hk satisfies (6.5). The latter is equivalent to the chosen
amount of conservatism with which the CBFs are implemented; more conservative margins (e.g.
smaller βi) will allow for sparser sampling and quicker computations. In this case, the results in
Fig. 6.7 took 1052 seconds to compute, and results with a 10x coarser sampling took 0.30 seconds
to compute, using a 3.5 GHz processor.

6.5 Conclusions on Multiple CBFs

This chapter identified and partially addressed the challenge of designing controllers that are
everywhere feasible in the presence of multiple CBFs. After presenting this challenge and two set
invariance theorems utilizing multiple CBFs, this work proposed the definition of “non-interfering
CBFs”. I then showed how geometric observations following from this definition allow one to
guarantee that a set of CBFs will be jointly feasible, while allowing each CBF to be designed in
a one-at-a-time fashion under more conservative assumptions on the available control authority.
However, if any of the CBFs are not “non-interfering”, then it is still possible for there to exist
points where an optimization-based controller with multiple constraints may become infeasible.
Thus, I also introduced an algorithm to iteratively remove such points from the allowable state
set using additional CBFs until this set becomes a controlled invariant set, so that a CBF-based
QP controller is always feasible. Future work in this area may include robust and sampled-data
extensions of this framework, generalizations of the observations about relative-degree 2 systems
to other classes of systems, and extensions to relate this algorithm to the maximal viability kernel.
One might also wish to further refine the proposed algorithm so as to have provable convergence
guarantees.

It is also worth considering how all the work in this dissertation prior to this chapter was suc-
cessful in generating safe trajectories, even though this earlier work did not consider the possibility
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of infeasibility of the QP when multiple CBFs were employed simultaneously. Similar to the con-
clusions in Chapter 5, the above work represents a lot of effort devoted to a problem that may or
may not occur. While it is good to understand this problem, it may not be essential to consider
these multi-CBF factors at all phases of controller design. For instance, when doing a “rough
draft” controller design, a controls engineer may choose to ignore these factors in order to speed
up the controller design process. It is also possible that the problems identified in Example 6.1
and Example 6.4 can be removed through tuning. To see why this is, note how the only states at
which (6.12) can become infeasible are states that are in the boundary of at least two CBF sets. If
the αk functions are chosen with small slopes, then it will take a long time for trajectories to reach
this boundary. Intuitively, if the unsafe regions are obstacles, then by the time a system trajectory
reaches the edge of an obstacle, the trajectory may have already passed the obstacle. Thus, un-
less the system’s nominal objectives try to drive the trajectory towards states where multiple CBF
set boundaries intersect, it is often the case that trajectories never encounter such states and thus
the controller (6.12) is feasible along these specific trajectories. In this way, tuning of the class-Ke
functions αk can be used to “hide” such infeasibilities. One can see this for the example in Fig. 6.7,
where the two clusters are a very small part of the total safe set. Given how small these clusters
are, it is unsurprising that these states where the control law (5.115) would have been infeasible
were never encountered in Section 5.2.5.1. That said, if the nominal control law does tend to drive
trajectories towards these infeasible states, then the control law (6.12) may allow trajectories to
reach the boundaries of the CBF sets in finite time (where increasing Jk will tend to increase the
amount of time); i.e. even if αk are locally Lipschitz continuous, the product δkαk in (6.12) is not
necessarily locally Lipschitz continuous, so trajectories can still reach states at the boundary of
one or more CBF sets. In conclusion, I suggest that it is equally important to 1) understand how
to solve the multi-CBFs problem, and 2) understand for what scenarios this problem is likely to
occur.
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CHAPTER 7

A Predictive Control Barrier Function for
Time-Varying Applications

In this chapter, I return to the problem of designing control barrier functions for constraints of
high relative-degree with relevance to spacecraft problems. In particular, one problem not previ-
ously addressed is the problem of safety in constellations of satellites in differing orbits. When
satellites are in similar enough orbits to be approximated by the HCW dynamics [8] (or possibly
the ellipsoidal extensions of the HCW dynamics, e.g. [11–13]), then tools such as those in Chap-
ters 3-4 apply well. However, satellites can still occupy the same positions even when their orbits
(i.e. their Keplerian elements) are very different. Conversely, satellites that are at one time instant
close to each other may live in orbits with a near zero risk of collision, thus leading the approaches
in Chapters 3-4 to be extremely over-conservative, as is illustrated in simulation in Section 7.1.4.
Thus, the motivation for this chapter is how to design a good CBF for satellites in dissimilar orbits.

The proposed strategy is to make a prediction of where satellites will be over a finite horizon,
and to determine the minimum distance between the satellites during that horizon. I then encode
this minimum predicted distance in a CBF. In addition, since this distance may be less than the
required separation distance between satellites, I add to the CBF a relaxation term that depends on
how much time is predicted until the satellites first become unsafe (i.e. the time instant when the
required separation distance is first violated). I can then program a QP controller similar to (2.9)
that ensures that the state always stays in the zero sublevel set of this new CBF, which Theorem 7.2
shows is sufficient for safety. The simulations in Section 7.1.4 show that this is a very promising
strategy. In fact, I show how it is promising not just for spacecraft problems, but for other collision
avoidance problems, like car intersections. That said, the tradeoff to this strategy is that it does not
easily allow for provable input constraint satisfaction.

This chapter is organized into two parts. The first part presents the analysis required to produce
the “path predictive CBF”. Like the backup CBF in Section 3.3.1 and Section 4.3.3, this is general
form of CBF that can be applied to any system meeting the theorem requirements. That said,
I emphasize that the path predictive CBF is an entirely different sort of CBF from the backup
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CBF, even though the backup strategy has been called a “predictive CBF” elsewhere in the CBF
literature, e.g. [99]. The key difference is that the backup CBF tests whether a provided safe control
law (the “backup control law”) can render a trajectory safe and thus constraints trajectories only
to states where switching to the backup law would lead to safety. By contrast, the path predictive
CBF tests whether any provided control law is safe on a horizon, and if not, the QP controller uses
the gradients of the path predictive CBF to find a safe control trajectory. This act of finding a safe
trajectory is why it is difficult to apply the path predictive CBF with input constraints. In the tutorial
[181], I also termed this approach a “bird’s eye CBF”, by analogy to these predictions giving the
controller a “bird’s eye view” of the environment and potential future obstacles. Alternatively, I
invite future researchers to call this method “Joseph’s CBF” (to my knowledge, the acronym JCBF
is not yet taken) or the “Breeden-Black-CBF” in recognition of work done independently at the
same time in [264].

Note that this chapter constitutes some of the later work done within this dissertation and is not
entirely finished. I had hoped to integrate the path predictive CBF with constructive input constraint
satisfaction and with multi-CBF considerations, and to develop relaxations of some of the path
predictive CBF assumptions. However, I now believe that accomplishing all of these objectives
could constitute over half of a second dissertation. Thus, at the end of this chapter, I present some
criticisms of this approach that may be non-obvious. I am actively working on extensions that
address many of these questions, but was not able to include these in this dissertation. Solutions to
these questions may appear soon in other academic literature.

7.1 A General Form of CBF for Collision Avoidance Problems

7.1.1 Introduction

Control Barrier Functions (CBFs) are a tool for achieving safe control of state-constrained sys-
tems in an online fashion [66]. Specifically, CBFs are functions of the system state that motivate an
affine condition on the instantaneous control input that, if satisfied pointwise, guarantees forward
invariance of a given set of safe states. I call this condition the CBF condition and this set the safe

set. For example, the state of a car on a shared road should belong to the set of states that are a
minimum separation distance from every other car.

However, one drawback of CBFs is that the CBF condition is reactive (frequently called my-

opic [142]); i.e., CBFs only consider the safety of the current state and state derivative, rather than
considering future objectives of the system. For this reason, the CBF condition may allow trajec-
tories to reach states where large control inputs are required to maintain safety [142, 148], or when
control inputs are constrained, CBF safe sets are often overly conservative, requiring large evasive

223



actions (e.g., the wide arcs around Ceres in Section 4.5.3). For instance, CBFs may cause two
cars meeting at an intersection to both decelerate to a complete stop to maintain safety, whereas
it would be more efficient for only one car to decelerate slightly, allowing both cars to pass with-
out stopping. To address this and similar situations, I propose the notion of Path Predictive CBFs
(P2CBFs).

Intuitively, P2CBFs are functions that encode both the present and future safety of the system
in a model-predictive manner, while still providing the convenient CBF condition on the current
control input. Specifically, the method in this section supposes a known nominal trajectory, herein
called a path, not necessarily safe, that the agent is to follow, and computes a measure of the safety
of the path on a receding horizon. This measure is then encoded into a special structure of CBF. If
the safety measure is positive (i.e. unsafe), then the resultant CBF condition causes the controller
to modify the nominal control input so as to render the trajectory safe.

P2CBFs are closely related to Model Predictive Control (MPC) [98, 99, 128, 141, 148, 265, 266]
and to the notion of Backup CBFs [86, 95–99], which both also consider safety on a receding hori-
zon, but P2CBFs provide distinct advantages. Unlike MPC, the CBF condition is always control-
affine, even when the dynamics and constraints are nonlinear. The CBF condition also only applies
to the current control input rather than to a predicted horizon of control inputs. Thus, the control
input under a P2CBF can be computed using a Quadratic Program (QP) with small dimension
and affine constraints, which can be solved more easily than nonlinear MPC (e.g. [128, 148]).
Moreover, as the P2CBF approach does not introduce a fixed discretization, safety is guaranteed at
all times in the prediction horizon rather than just at the MPC sampled times (this is particularly
imporant in the orbital simulations in Section 7.1.4). That said, the P2CBF does not yet support
sampled-data controllers, as does MPC.

Compared to Backup CBFs, the P2CBF works by propagating the system trajectory according
to its nominal objectives, which are allowed to be unsafe, rather than according to some backup
safety plan. Thus, a backup controller or backup set does not need to be known a priori [96],
and the system trajectories are not limited to evolving near the backup set, which may be overly
conservative. Both Backup CBFs and P2CBFs can be constructed from a safety measure of any
relative-degree. That said, unlike Backup CBFs, P2CBFs do not guarantee input constraint satis-
faction, though this is an area for future study.

Another recent approach for making CBFs consider the future system evolution is to introduce
an additional constraint that bounds the future control inputs generated by a CBF [90, 267]. I fur-
ther argue that any Higher Order CBF (e.g., [85, 88] or Chapters 3-4) also implies some degree
of look-ahead (see the discussion of generalized inertia in Chapter 3), though this look-ahead is
implicit in the choice of class-Ke functions and thus may be difficult to tune. The work in [171]
tried to make robust CBFs less conservative by encoding a finite horizon prediction of future dis-
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turbances (e.g. road curvature, friction coefficient) into the CBF, and proposed one such form of
CBF for linear second-order systems. This work indeed made the CBF less intrusive (while main-
taining provable safety) for problems that involved keeping the state within a specified operating
tolerance (e.g. minimum/maximum velocity or maximum deviation from center), but this strategy
would not make the resultant safety filters more proactive at avoiding future obstacles, as is sought
in this work (in fact, making the CBF less conservative could make the safety filter react even later
in this case). The authors in [268] also found that learned policies tended to proactively avoid un-
safe regions better than CBFs alone. This section supplements all of these prior works by looking
ahead only along a specified path rather than along all possible safe trajectories. This work is also
closely related to the work in [264], but is generalized to arbitrary dynamics and paths rather than
constant velocity vehicles.

This section is organized as follows. Section 7.1.2 introduces preliminaries on CBFs. Sec-
tion 7.1.3 formalizes the notion of a nominal path (path function), introduces a predictive safety
function, and proves that this function is a CBF. Section 7.1.4 presents simulations and compar-
isons that show how this function is proactive. Section 7.1.5 presents concluding remarks and
highlights possible deficiencies of this approach.

7.1.2 Preliminaries

In this section, I return to considering a time-varying system of the form

ẋ = f(t, x) + g(t, x)u (7.1)

with time t ∈ T ≜ [t0, tf ], state x ∈ X ⊆ Rn, and control input u ∈ Rm. Note that the set of
control inputs is assumed to be unconstrained in this section (for the first time in this dissertation).
Assume that f , g, and u are sufficiently regular that x(t) exists and is unique for all t ∈ T .

Given a constraint function κ : T × X → R, define the safe set S : T → 2X as

S(t) ≜ {x ∈ X | κ(t, x) ≤ 0} . (7.2)

As in prior chapters, the objective of this chapter is to render trajectories always inside the safe

set, specifically by rendering a subset of S forward invariant. To this end, I first generalize the
definition of CBF [66, 169] to functions that are differentiable almost everywhere, to account for
how the proposed P2CBFs will have discontinuities at the beginning and end of the prediction
horizon.

Definition 7.1 (Absolutely Continuous Control Barrier Function). Let h : T × X → R be abso-

lutely continuous (i.e. continuously differentiable except on a set of Lebesgue measure zero) and
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let H and HT be as in (2.2)-(2.3). The function h is a Control Barrier Functions (CBF) for the

system (7.1) if there exists a set D : T → 2X and a function α ∈ Ke such that H(τ) ⊂ D(τ) for

all τ ∈ T and

inf
u∈Rm

[
∂h(t, x)

∂t
+
∂h(t, x)

∂x

(
f(t, x) + g(t, x)u

)︸ ︷︷ ︸
= d
dt
[h(t,x)]

]
≤ α(−h(t, x)) (7.3)

for almost every (t, x) ∈ HT .

One can then establish forward invariance of the CBF set HT similarly to prior chapters as
follows.

Lemma 7.1. Given a CBF h : T × X → R as in Definition 7.1, let D : T → 2X be an open

set such that H(τ) ⊂ D(τ) for all τ ∈ T , let DT = {(t, x) ∈ T × X | x ∈ D(t)}, and let

α ∈ Ke. Assume that for every trajectory x(T ), it holds that h is continuously differentiable almost

everywhere on the curve x(T ) (i.e. this is a stricter condition that h is not only differentiable almost

everywhere in X (of dimension n), but is furthermore differentiable almost everywhere on every

feasible trajectory along T (of dimension 1) of (7.1)). Then any control law u : T × X → Rm

that satisfies u(t, x) ∈ Kcbf(t, x) for almost every (t, x) ∈ HT , where

Kcbf(t, x) ≜

{
u ∈ Rm | ∂h(t, x)

∂t
+
∂h(t, x)

∂x

(
f(t, x) + g(t, x)u

)
≤ α(−h(t, x))

}
, (7.4)

will renderHT forward invariant.

Proof. The proof is identical to the proof of Theorem 2.2. ■

Note that Lemma 2.3 and Theorem 2.2 (invoked in Lemma 7.1) generalize [169, Lemma 1] and
[169, Thm. 1], respectively, to allow for non-Lipschitz α. These extensions are important, because
the main theorem of this section, Theorem 7.5, will need to make use of non-Lipschitz α functions
for one of the proof cases.

Remark 7.1. Note in particular the assumption in Lemma 7.1 about h being continuously differen-

tiable almost everywhere along every feasible x(T ). To see why this is important, consider x ∈ R
with dynamics ẋ = u and the CBF h(t, x) = |t− x|. This h is absolutely continuous, because the

manifold Xnon-diff = {(t, x) ∈ R2 | t = x} is of Lebesgue measure zero in R2. For initial condition

x(0) = 0 and control input u ≡ 1, the resulting trajectory evolves entirely along Xnon-diff. In this

case, the function θ constructed in the proof of Theorem 2.2 is continuously differentiable nowhere

along this trajectory. Thus, the assumption that h is continuously differentiable almost everywhere

along each x(T ) is necessary to apply the logic of Theorem 2.2 to absolutely continuous CBFs.
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That said, even though u ≡ 1 does not meet the assumptions of Lemma 7.1, this choice of

control law indeed renders H as above forward invariant. Intuitively, this is what one would

expect from any system whose trajectories depend continuously on the system’s initial conditions

(see [71, Thm. 3.4]). Thus, I hypothesize that with the addition of some regularity assumptions on

f , g, and u (e.g. local Lipschitz continuity) that this assumption on the trajectories x(T ) can be

removed, though proving this is beyond the scope of this dissertation.

I am now ready to begin the presentation of the main topic of this chapter.

7.1.3 Predictive Control Barrier Functions

The P2CBF has three components: a nominal trajectory (Section 7.1.3.1), points of interest
on this trajectory (Section 7.1.3.2), and the function structure (Section 7.1.3.3). After introduc-
ing all three parts, I then analyze the the P2CBF zero-sublevel set and present a computational
lemma required for implementation. The main theoretical result of this section then shows that the
P2CBF satisfies Definition 7.1. I conclude the subsection with a discussion of the main theorem
assumptions.

7.1.3.1 Path Functions

Suppose that an agent seeks to follow a nominal trajectory through X , which is not necessarily
safe. I call this trajectory a path, and assume that all potential paths of the system can be described
by a path function, defined as follows.

Definition 7.2 (Path Function). A function p : T × T × X → X , denoted p(τ, t, x), is called a

path function if 1) it is continuously differentiable in all inputs, 2) p(t; t, x) = x, ∀(t, x) ∈ T × X ,

and 3) for every (t, x) ∈ T ×X , there exists a control law µ : T ×X → Rm, denoted µ(t, x), that

satisfies
∂p(τ, t, x)

∂τ
= f(τ, p(τ, t, x)) + g(τ, p(τ, t, x))µ(τ, p(τ, t, x)), ∀τ ≥ t . (7.5)

That is, p is a function that from every (t, x) generates a trajectory p(τ, t, x) over future times
τ starting from state x, where p must be feasible according to the dynamics (7.1). Note that τ
here is defined as absolute time in this section, but τ could be equivalently defined as time since
t (e.g. as in β in Section 4.3.3). Since generated paths p(τ, ·, ·) are not required to be safe, the
following methodology decouples safety from the computation of p, and thus enables the use of
very simple nominal paths. That is, one does not need to know a safety-encouraging backup law
as in Section 4.3.3; indeed, one possible choice of p is the trajectory following from µ(t, x) ≡ 0.
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Figure 7.1: Illustration of Times of Interest on Propagated Trajectories. A sample trajectory of
κ(τ, p(τ, t, x)) with the corresponding sets M and M . The value of R corresponding to each
element of M is also shown. The set of all local maximizers M is dense, so M extracts one
element from every isolated subset of M . Each element of M and its corresponding root R is
then used to construct (7.12)-(7.13).

Remark 7.2. Path functions can be defined either geometrically (as in Section 7.1.4.2), provided

a feasible µ(t, x) in (7.5) exists, or as the explicit (as in Section 7.1.4.1) or numerical (as in

(3.22) or [96, Eq. 23]) solution to the differential equation (7.5) given a nominal input µ(t, x).

Note that while some of the following techniques appear complicated, they can be implemented

straightforwardly using numerical solutions to (7.5).

7.1.3.2 Future Times of Interest on the Propagated Trajectory

Given a path function, one can examine the safety of the agent forward in time along that path.
To do this, I assume that the agent knows both the current and future construction of its safe set
(e.g. future locations of obstacles) on a finite receding horizon T > 0, so that the agent is able
to compute κ across this horizon. Given this, I then reduce the continuous trajectory p(τ, ·, ·) to
a finite number of “times of interest”, namely the maximizers and roots of κ(τ, p(τ, ·, ·)). These
times are shown for a sample trajectory in Fig. 7.1, and defined mathematically as follows. First,
define the set of all local maximizers within the horizon (for a specific path), M : T × X → 2T ,
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as

M (t, x) ≜ {τ ∈ [t, t+ T ] | ∃ϵ > 0 : ∀σ ∈ [τ − ϵ, τ + ϵ] ∩ [t, t+ T ],

κ(τ, p(τ, t, x)) ≥ κ(σ, p(σ, t, x))} . (7.6)

Note that the set M could be uncountable, so next define the countable subset M : T × X → 2T

as

M(t, x) ≜ {τ ∈ cl(M (t, x)) | τ = t or ∃ϵ > 0 : σ /∈M (t, x),∀σ ∈ (τ − ϵ, τ)}, (7.7)

That is, M contains all the isolated elements of M and the first element of every interval in M , as
shown in Fig. 7.1. This extra step is needed to ensure that M has finitely many elements, so that
M is tractable for computations. Additionally, let M ∗ : T × X → R, defined as

M ∗(t, x) ≜ minM (t, x) , (7.8)

denote the first element of M , since I am most interested in the soonest future time where the
trajectory could leave the safe set. Next, it is not enough to know just the maximizer times; the
proposed methodology also needs to know when the predicted paths first become unsafe (if ever),
i.e. the roots of κ(τ, p(τ, ·, ·)) over τ ∈ [t, t+ T ], so define R : T × T × X → R as

R(τ, t, x) ≜

R1(τ, t, x) κ(τ, p(τ, t, x)) > 0

τ κ(τ, p(τ, t, x)) ≤ 0
, (7.9)

R1(τ, t, x) ≜ max
{
η ∈ [t, τ ] | κ(η, p(η, t, x)) = 0 and

∃ϵ > 0 : κ(σ, p(σ, t, x)) < 0,∀σ ∈ (η − ϵ, η)
}
. (7.10)

That is, for every propagated time τ ∈ [t, t + T ], if p(τ, ·, ·) is unsafe, then R(τ, ·, ·) is the root
R1 = η of κ(η, p(η, ·, ·)) immediately preceding τ , or if p(τ, ·, ·) is safe, then let R(τ, ·, ·) = τ .
The second case of (7.9) is defined as above because I will principally consider R(τ, ·, ·) when
the argument τ is a local maximizer of κ(τ, p(τ, ·, ·)). If τ ∈ M (·), then it follows that at points
where (7.9) switches cases, i.e. where κ(τ, p(τ, ·, ·)) = 0 (e.g. τ4 in Fig. 7.1), both cases of (7.9)
are equivalent. That is, when the maximizer τ ∈ M(·) of the propagated trajectory takes on
value zero, then the maximizer and root are equivalent. Thus, when the value at the maximizer
τ is less than zero, choosing R = τ yields a continuous definition of R. Possible trajectories of
κ(τ, p(τ, ·, ·)) and associated M and R values are shown in Fig. 7.2. Together, the local maximums
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Figure 7.2: Illustration of Cases for Theorem Proof. Various possible trajectories of κ(τ, p(τ, t, x))
along a path p on a finite horizon T = 10. Each trajectory shown has only a single maximizer on
[t, t + T ], so M ∗ = M= M . Each maximizer M ∗ is annotated with a circle and each root R is
annotated with an “x”. When the maximum value of κ is nonpositive (bottom four lines), I define
R(M ∗; ·) = M ∗.

κ(τ, p(τ, ·, ·)), τ ∈ M (·) measure how unsafe a predicted trajectory is, and the roots R(τ, ·, ·)
measure how much time the controller has to make a correction.

7.1.3.3 Construction of the Path Predictive Control Barrier Function

Next, define the predictive safety function κp : T × T × X → R as

κp(τ, t, x) ≜ κ(τ, p(τ, t, x))−m(R(τ, t, x)− t) (7.11)

where m : R≥0 → R≥0 is any continuously differentiable function that is nondecreasing and
satisfies m(0) = 0. I also impose the following assumption.

Assumption 7.1. Let κmax ≜ supx∈S(t),t∈T supτ∈[t,t+T ] κ(τ, p(τ, t, x)) denote the maximum pos-

sible value of κ that may occur along propagated paths (e.g. the value of κ at the center of an

obstacle). Assume that κmax <∞ and m(T ) ≥ κmax.

The first term of the function κp in (7.11) encodes the future safety of the system along p, while
the second term encodes a relaxation (i.e. nonpositive number) based on the amount of time in the
future R − t until the path p becomes unsafe. Here, m is a tunable margin function that converts
this “time margin” to a “position margin” in the units of κ so as to allow for the combined metric κp
to be nonpositive even if the predicted path is unsafe, i.e. if κ(τ, p(τ, t, x)) > 0. A steeper margin
function m will allow κp to remain nonpositive when the agent is closer to obstacles (i.e. has a
smaller R−t) than would occur for a more gradual margin. In this context, Assumption 7.1 implies
that even if a new maximizer τ = t + T is discovered at the end of the horizon, κp(τ, t, x) will
initially be nonpositive. The proposed strategy is then to render κp(τ, t, x) always nonpositive,
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which I will show 1) renders trajectories always inside a subset of S (Theorem 7.2) and 2) is
feasible from a particular CBF setH under certain assumptions (Theorem 7.5).

Remark 7.3. In the formulation (7.11), I choose the argument ofm to be the time until the nominal

trajectory becomes unsafe (or the time until the maximizer τ if p(η, t, x) is safe for all η ∈ [t, τ ]).

Alternatively, [264, Eq. 38] chooses the argument of m to be the current safety distance κ(t, x(t)).

I expect the time-based formulation in (7.11) to be more appropriate than [264, Eq. 22] in cases

where κ(τ, p(τ, ·, ·)) is expected to vary rapidly with τ (e.g. as occurs for the low-Earth-orbiting

system in Section 7.1.4.2). As m(R− t) serves as a relaxation on the first term of (7.11), I suspect

that there exist other useful relaxations, though using such a relaxation would require re-proving

Theorem 7.2.

I then apply (7.11) at the local maximizer times in M in (7.7) to define functions hp,all : T ×
X → 2R and hp : T × X → R as

hp,all(t, x) ≜


...

κp(τi, t, x)
...

 ,∀τi ∈M(t, x), (7.12)

hp(t, x) ≜ κp(M
∗(t, x), t, x) . (7.13)

I now present theorems relating the future safety encoded in hp,all and hp to the present safety given
by κ in (7.2).

Theorem 7.2. For some constraint function κ : T × X → R, let S be as in (7.2) and hp as in

(7.13), withHp defined as

Hp(t) ≜ {x ∈ X | hp(t, x) ≤ 0} . (7.14)

ThenHp(t) ⊆ S(t),∀t ∈ T .

Proof. By construction, M in (7.7) is always nonempty, because if no local maxima occur for
τ ∈ [t, t+T ), then τ = t+T is guaranteed to be an element in (7.6). Thus, M ∗ always exists and
hp is well defined.

First, consider if M ∗(t, x) = t (i.e. κ is initially decreasing along the path p). Then hp(t, x) =
κ(t, x) and the result follows immediately.

Second, consider if M ∗(t, x) ̸= t. This implies that κ is initially increasing along the path
(e.g., as occurs in the top six lines of Fig. 7.2), so it must be that κ(t, x) ≤ κ(τ, p(τ, t, x)) for
all times τ ∈ [t,M ∗(t, x)], so to complete the proof, I only need to show that there exists such a
time τ ∈ [t,M ∗(t, x)] where κ(τ, p(τ, t, x)) ≤ 0. If κ(M ∗(t, x), p(M ∗(t, x); t, x)) ≤ 0 (bottom
four lines of Fig. 7.2), then the proof is done. If instead κ(M ∗(t, x), p(M ∗(t, x); t, x)) > 0 (top
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three lines of Fig. 7.2), then by (7.11), x ∈ Hp(t) implies that m(R(M ∗(t, x); t, x) − t) > 0.
Since m(0) = 0 and m is nondecreasing, it follows that R(M ∗(t, x); t, x) > t. Thus, there
exists τ = R(M ∗(t, x); t, x) ∈ (t,M ∗(t, x)) such that κ(τ, p(τ, t, x)) = 0, so it must be that
κ(t, x) ≤ κ(τ, p(τ, t, x)) ≤ 0. Thus, x ∈ Hp(t) implies x ∈ S(t). ■

Corollary 7.3. Let q(t, x) = |M(t, x)| and let hp,i be the ith output of hp,all in (7.12). Define the

setHp,all as

Hp,all(t) ≜ {x ∈ X | hp,i(t, x) ≤ 0, ∀i = 1, · · · , q(t, x)} . (7.15)

ThenHp,all(t) ⊆ S(t),∀t ∈ T .

Proof. The result follows immediately from Theorem 7.2 since hp,1 ≡ hp. ■

That is, rendering eitherHp,all orHp forward invariant is sufficient to render trajectories always
inside the safe set S. The remaining question is under what conditions rendering Hp,all or Hp

forward invariant will be possible. First, I make some regularity assumptions.

Assumption 7.2. Assume that the functions hp,all and hp in (7.12) and (7.13), respectively, are

absolutely continuous. Assume further that each maximizer location τi ∈ M (t, x) ∩ (t, t + T ),

where τi = τi(t, x), is continuously differentiable.

That is, each maximizer τi in M (t, x) is also a function of t and x, and I assume that the
variation of τi(t, x) is regular when τi is in the open set (t, t + T ). When τi is at the start or end
of the horizon, this will in general not be true, which is why I only assume hp,all and hp to be
absolutely continuous rather than continuously differentiable (and why I introduced Definition 7.1
and Lemma 7.1).

Next, I present a result on how to compute the derivatives of hp in (7.13) and each output hp,i
in (7.12). Going forward, to remove ambiguity, let ∂p(a,b,c)

∂λτ
, ∂p(a,b,c)

∂λt
, and ∂p(a,b,c)

∂λx
denote the partial

derivative of p with respect to its first, second, and third argument, respectively, and evaluated
at (a, b, c), similar to the notation used in Section 4.3.3. Similarly, let ∂κ(a,b)

∂λt
and ∂κ(a,b)

∂λx
denote

the partial derivative with respect to the first and second argument of κ, respectively, evaluated at
(a, b), i.e. ∂κ(a,b)

∂λt
= ∂κ(t,x)

∂t

∣∣∣
t=a,x=b

and ∂κ(a,b)
∂λx

= ∂κ(t,x)
∂x

∣∣∣
t=a,x=b

.

Lemma 7.4. Let τ ∈M(t, x) and let m′ : R≥0 → R≥0 be the derivative of m in (7.11). Assume

x ∈ Hp(t).

Case i: If τ ∈ (t, t+ T ), then

d

dt
[κp(τ, p(τ, t, x))] = m′(R(τ, t, x)− t) +B(τ, t, x)(u− µ(t, x)) . (7.16)
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Case ii: If τ = t+ T and R(τ, t, x) < τ , then

d

dt
[κp(τ, p(τ, t, x))] = m′(R(τ, t, x)− t) +B(τ, t, x)(u− µ(t, x))

+
d

dτ
[κ(τ, p(τ, t, x))]

dτ(t, x)

dt
. (7.17)

Case iii: If τ ∈ {t, t+ T} and R(τ, t, x) = τ , then

d

dt
[κp(τ, p(τ, t, x))] =

∂κ(τ, p(τ, t, x))

∂λx

∂p(τ, t, x)

∂λx
g(t, x)(u− µ(t, x))

+
d

dτ
[κ(τ, p(τ, t, x))]

dτ(t, x)

dt
−m′(R(τ, t, x)− t)

(
dτ(t, x)

dt
− 1

)
, (7.18)

where

B(τ, t, x) =

[
∂κ(τ, p(τ, t, x))

∂λx

∂p(τ, t, x)

∂λx
−m′(R(τ, t, x)− t)C(τ, t, x)

]
g(t, x) , (7.19)

C(τ, t, x) =


∂τ(t,x)
∂λx

R(τ, t, x) = τ

C1(R1(τ, t, x), t, x) R(τ, t, x) ̸= τ
, (7.20)

C1(η, t, x) = −
∂κ(η, p(η, t, x))

∂λx

∂p(η, t, x)

∂λx

·
[
∂κ(η, p(η, t, x))

∂λt
+
∂κ(η, p(η, t, x))

∂λx

∂p(η, t, x)

∂λτ

]−1

(7.21)

and where dτ(t,x)
dt

= ∂tτ(t, x) +Lf(t,x)+g(t,x)uτ(t, x) describes the sensitivity of the maximizer time

to the current time t ∈ T and state x ∈ X .

Proof. First, note that every τ in M (t, x) is a function τ(t, x) defined as the maximizer of κ along
the path originating from (t, x) and restricted to a sufficiently small domain around τ (see Fig. 4.3
for a related visualization).

I start by deriving a relationship between the partial derivatives of p in (7.5). For a fixed time
σ > t, by definition p(σ, t, x) is constant so long as ẋ = f(t, x) + g(t, x)µ(t, x) as in (7.5). Thus,
it follows that

c = p(σ, t, x) if ẋ = f(t, x) + g(t, x)µ(t, x) (7.22)
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for some constant c ∈ Rn. Thus,

0 =
d

dt

[
p(σ, t, x)

]
if ẋ = f(t, x) + g(t, x)µ(t, x) (7.23a)

=
∂p(σ, t, x)

∂λτ

dσ

dt︸︷︷︸
=0

+
∂p(σ, t, x)

∂t
+
∂p(σ, t, x)

∂x
[f(t, x) + g(t, x)µ(t, x)] (7.23b)

=⇒ ∂p(σ, t, x)

∂λt
= −∂p(σ, t, x)

∂λx
[f(t, x) + g(t, x)µ(t, x)] (7.23c)

That is, (7.23c) provides a simplification for the partial derivative of p in (7.5) with respect to its
second argument, the initial time. This result is not strictly necessary to apply the CBF (7.11) (i.e.
one could simply differentiate (7.11) directly), but this result is convenient because it reveals the
structure of dhp

dt
as a difference between u and µ.

Next, I compute the total derivative of the first term of (7.11), κ(τ, t, x), as follows

dκ(τ, p(τ, t, x))

dt
=
∂κ(τ, p(τ, t, x))

∂λt

dτ

dt

+
∂κ(τ, p(τ, t, x))

∂λx

[
∂p(τ, t, x)

∂λτ

dτ

dt
+
∂p(τ, t, x)

∂λt
+
∂p(τ, t, x)

∂λx

dx

dt

]
(7.24a)

(7.23c)
=

[
∂κ(τ, p(τ, t, x))

∂λt
+
∂κ(τ, p(τ, t, x))

∂λx

∂p(τ, t, x)

∂λτ

]
dτ

dt

+
∂κ(τ, p(τ, t, x))

∂λx

∂p(τ, t, x)

∂λx

[
dx

dt
−
(
f(t, x) + g(t, x)µ(t, x)

)]
(7.24b)

(7.1),(7.5)
=

d

dτ
[κ(τ, p(τ, t, x))]

dτ

dt

+
∂κ(τ, p(τ, t, x))

∂λx

∂p(τ, t, x)

∂λx
g(t, x)(u− µ(t, x)). (7.24c)

Note that (7.24c) holds in all three cases in Lemma 7.4.
Next, consider the second term of (7.11), which has total derivative

dm(R(τ, t, x)− t)
dt

= m′(R(τ, t, x)− t)
(
dR(τ, t, x)

dt
− 1

)
, (7.25)

which further requires one to compute d
dt
[R(τ, t, x)]. Note that x ∈ Hp(t) implies that R(τ, t, x)

is well defined for all τ ≥ t (i.e. κ(t, x) ≤ 0, so (7.9) always returns a value).
In the case where R(τ, t, x) = τ , then d

dt
[R(τ, t, x)] = dτ(t,x)

dt
. If instead R(τ, t, x) ̸= τ , then

by (7.9), η = R1(τ, t, x) is a zero of κ(η, p(η, t, x)) over η in a neighborhood preceding τ . That is,

0 = κ(R1(τ, t, x), p(R1(τ, t, x); t, x)) , (7.26)

234



which when differentiated with respect to t yields

0 =
∂κ(R1, p(R1, t, x))

∂λt

dR1

dt

+
∂κ(R1, p(R1, t, x))

∂λx

[
∂p(R1, t, x)

∂λτ

dR1

dt
+
∂p(R1, t, x)

∂λt
+
∂p(R1, t, x)

∂λx

dx

dt

]
(7.27a)

=⇒ dR1(τ, t, x)

dt

(7.27a)
= −

(
∂κ(R1, p(R1, t, x))

∂λt
+
∂κ(R1, p(R1, t, x))

∂λx

∂p(R1, t, x)

∂λτ

)−1

· ∂κ(R1, p(R1, t, x))

∂λx

[
∂p(R1, t, x)

∂λt
+
∂p(R1, t, x)

∂λx

dx

dt

]
(7.27b)

(7.23c)
= −

(
∂κ(R1, p(R1, t, x))

∂λt
+
∂κ(R1, p(R1, t, x))

∂λx

∂p(R1, t, x)

∂λτ

)−1

· ∂κ(R1, p(R1, t, x))

∂λx

∂p(R1, t, x)

∂λx

[
dx

dt
−
(
f(t, x) + g(t, x)µ(t, x)

)]
(7.27c)

(7.1),(7.5)
= −

(
∂κ(R1, p(R1, t, x))

∂λt
+
∂κ(R1, p(R1, t, x))

∂λx

∂p(R1, t, x)

∂λτ

)−1

· ∂κ(R1, p(R1, t, x))

∂x

∂p(R1, t, x)

∂x
g(t, x)(u− µ(t, x)) (7.27d)

where (7.27d) is used to define C1(R1, t, x) in (7.21).
The total derivative d

dt
[κ(τ(t, x), p(τ(t, x); t, x))] in (7.16)-(7.18) is then the difference between

(7.24c) and (7.25) where I make the following simplifications.
Case i: In this case, τ is a maximizer of κ(τ, p(τ, t, x)) on an open interval, and κ and p

are assumed to be continuously differentiable, so a necessary condition for τ ∈ M(t, x) is that
d
dτ
[κ(τ, p(τ, t, x))] = 0. Moreover, since τ(t, x) is assumed to be continuously differentiable, the

term dτ
dt

in the first line of (7.24c) is finite. Therefore, the first line of (7.24c) is zero in Case i and
does not appear in (7.16). The remaining second line of (7.24c) is incorporated into the first term
of (7.19).

Next, since τ ∈ (t, t + T ), by Assumption 7.2, the maximizer τ(t, x) is continuously differ-
entiable. Similar to (7.22) and (4.44), the maximizer time will also not change if the trajectory
continues along the nominal path. That is, for σ in a sufficiently small neighborhood of t, there
exists c ∈ R such that

c = τ(t, x) = τ(σ, p(σ, t, x)) , (7.28)

which implies

0 =
d

dσ

[
τ(σ, p(σ, t, x))

]
=
∂τ(σ, p(σ, t, x))

∂λt
+
∂τ(σ, p(σ, t, x))

∂λx

∂p(σ, t, x)

∂λτ
(7.29a)
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=⇒ ∂τ(t, p(σ, t, x))

∂λt
= −∂τ(σ, p(σ, t, x))

∂λx

∂p(σ, t, x)

∂λτ
. (7.29b)

I then select σ = t to get

∂τ(t, p(t, t, x))

∂λt
= −∂τ(t, p(t, t, x))

∂λx

∂p(t, t, x)

∂λτ
∂τ(t, x)

∂λt
= −∂τ(t, x)

∂λx

(
f(t, x) + g(t, x)µ(t, x)

)
. (7.29c)

Thus, the variation of the maximizer time τ(t, x) ∈M(t, x) is

dτ(t, x)

dt
=
∂τ(t, x)

∂λt
+
∂τ(t, x)

∂λx

dx

dt
(7.30a)

(7.29c)
=

∂τ(t, x)

∂λx

[
dx

dt
−
(
f(t, x) + g(t, x)µ(t, x)

)]
(7.30b)

(7.1),(7.5)
=

∂τ(t, x)

∂λx
g(t, x)(u− µ(t, x)) . (7.30c)

Note that (7.30c) is only valid if τ(t, x) is continuously differentiable, which is why Cases ii-iii
(when τ is an endpoint) simply include dτ(t,x)

dt
rather than using the simplification (7.30c).

When R(τ, t, x) = τ , the simplification (7.30c) yields the first case of C(τ, t, x) in (7.20).
When instead R(τ, t, x) ̸= τ , the simplification (7.27d) yields the second case of C(τ, t, x) in
(7.20). Both cases are then incorporated into the second term of (7.19). Thus, (7.16) accounts for
all the terms of the difference between (7.24c) and (7.25).

Case ii: In this case, d
dτ
[κ(τ, p(τ, t, x))] is no longer guaranteed to be zero, so I add the first

line of (7.24c) back to (7.17) compared to (7.16). Since τ is an endpoint of the horizon, τ is no
longer assumed continuously differentiable so ∂τ(t,x)

∂λx
may no longer be well-defined. Thus, the

simplification in (7.30c) may no longer hold, so I do not simplify dτ(t,x)
dt

from (7.24c) any further.
Next, looking at the second term of (7.19), since Case ii assumes that R(τ, t, x) < τ , the second

case of (7.20) (i.e. R = τ , also the first case of (7.9)) will always hold in Case ii. Thus, even though
C in (7.20) includes the term ∂τ(t,x)

∂λx
(which by the above logic is no longer well-defined), I can use

the same formula for B and C in (7.19) and (7.20) as in Case i, because the case involving ∂τ(t,x)
∂x

is excluded. Thus, (7.17) accounts for all the terms of the difference between (7.24c) and (7.25).
Case iii: This case is identical to Case ii, except that R(τ, t, x) = τ so d

dt
[R(τ, t, x)] is equiva-

lent to dτ(t,x)
dt

instead of coming from (7.27d) via C(τ, t, x) in (7.20). Thus, the first two terms of
(7.18) account for all the terms of (7.24c), while the last term of (7.18) accounts for all the terms
of (7.25). ■

Remark 7.4. In (7.18), if τ = t, then dτ(t,x)
dt

is either equal to 1 or is undefined. That is, the

maximizer time advances at the same rate as the time variable, or else advances in a discontinuous
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fashion.

In (7.17) and (7.18), if τ = t + T and if dτ(t,x)
dt

is well-defined, then either dτ(t,x)
dt

= 1 or
d
dτ
[κ(τ, p(τ, t, x))] = 0. The case d

dτ
[κ(τ, p(τ, t, x))] = 0 implies that on a slightly larger interval

[t, t+ T + ϵ), the time t+ T is a local maximizer. The case dτ(t,x)
dt

= 1 implies that the maximizer

time advances at the same rate as the horizon progresses forward.

Note that the case R = τ in (7.20) only gets invoked by Case i of Lemma 7.4, where τ ∈ (t+T ).

In this case, dτ(t,x)
dt

could take on any value (i.e. not just 0 and 1). It follows that ∂τ(t,x)
∂λx

in (7.20)
could take on any value and thus must be numerically computed. Lemma 7.4 assumes that τ ∈
(t, t + T ) are continuously differentiable so that this value is well-defined, though proving this is

difficult and is an area for future work.

I am now ready to prove that, under mild assumptions elaborated upon after the proof, hp in
(7.13) is a CBF, and thus can be used to ensure safety via the CBF condition.

Theorem 7.5 (Main Theorem: hp is a CBF). Let the derivative m′ : R≥0 → R≥0 of m in (7.11) be

strictly positive on (0, T ). Suppose that there exists γ such that d
dτ
[κ(τ, p(τ, t, x))] ≤ γ for all τ ∈

T , t ∈ T , x ∈ X . Suppose also that ∥∂κ(η,p(η,t,x))
∂λx

∂p(η,t,x)
∂λx

g(t, x)∥ ≠ 0 for all η ∈ (t, t+T )\M (t, x)

and for all t ∈ T , x ∈ X , and that ∂κ(τ,p(τ,t,x))
∂λx

T ∂κ(η,p(η,t,x))
∂λx

≥ 0 whenever η = R(τ, t, x) for all

τ ∈ T , t ∈ T , x ∈ X . Then hp in (7.13) is a CBF as in Definition 7.1.

Proof. By Assumption 7.2, hp is absolutely continuous, and therefore differentiable almost ev-
erywhere. Thus, hp is a CBF as in Definition 7.1 if there exists α ∈ Ke satisfying condition (7.3)
almost everywhere. I will show that such an α ∈ Ke always exists, by breaking this proof into cases
where A) R(M ∗(t, x); t, x) = M ∗(t, x) and B) R(M ∗(t, x); t, x) ̸= M ∗(t, x). I further break
both A and B into the cases 1) M ∗(t, x) = t, 2) M ∗(t, x) ∈ (t, t+ T ), and 3) M ∗(t, x) = t+ T .
Note that while Lemma 7.4 applies to any τ ∈M (t, x), this theorem only considers τ = M ∗(t, x),
so dτ(t,x)

dt
≡ dM∗(t,x)

dt
in this proof.

In cases A1-A3, the path p(τ, t, x) is safe for future times τ until at least M ∗(t, x), so intuitively
choosing u = µ(t, x) should render the system safe, thereby satisfying (7.3). I show this formally
as follows. First, case A1 (orange line in Fig. 7.2) implies that τ = M ∗(t, x) = t is a local
maximizer of κ(τ, p(τ, t, x)) on τ ∈ [t, t + T ]. This implies that κ is initially nonincreasing
along the path p beginning from (t, x), so d

dτ
[κ(τ, p(τ, t, x)]|τ=t ≤ 0. Moreover, if the agent

continues along the path (i.e. chooses u = µ(t, x)), then at an arbitrarily small time t + ϵ in
the future, M ∗(t + ϵ, p(t + ϵ; t, x)) = t + ϵ will be the first local maximizer on the horizon
[t + ϵ, t + ϵ + T ] (see also Bloc(0) in Fig. 4.3), so dM∗(t,x)

dt
= 1 under u = µ(t, x). Thus, (7.18)

implies that d
dt
[hp(t, x)] =

d
dτ

[κ(τ, p(τ, t, x)]|τ=t ≤ 0 under u = µ(t, x), which satisfies condition
(7.3) for any α ∈ Ke.
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Next, in case A2 (magenta line in Fig. 7.2), (7.16) implies that under u = µ(t, x), it follows that
d
dt
[hp(t, x)] = m′(M ∗(t, x) − t). Moreover, case A assumes that R(M ∗(t, x); t, x) = M ∗(t, x),

which by (7.9) implies that the predicted maximum value κ(M ∗(t, x), p(M ∗(t, x); t, x)) is
at most zero, so hp(t, x) ≤ −m(M ∗(t, x) − t) < 0. Thus, choose α ∈ Ke such that
α(m(λ)) ≥ m′(λ),∀λ ∈ [0, T ], and then (7.3) is satisfied under u = µ(t, x). Note that if
κ(M ∗(t, x), p(M ∗(t, x); t, x)) = 0, then u = µ(t, x) will cause hp to reach (but not exceed since
M ∗ is a maximizer) the origin in finite time. Thus, a function α ∈ Ke satisfying the above
condition will not be Lipschitz continuous (recall that a Lipschitz α will not allow finite-time con-
vergence to the origin).

Next, in case A3, two behaviors are possible at the end of the horizon. First, if κ is nonincreasing
along the path at the end of the horizon (cyan line in Fig. 7.2), i.e. d

dτ
[κ(τ, p(τ, t, x))]|τ=t+T = 0,

then under u = µ(t, x), at some arbitrarily small time t+ ϵ in the future, M ∗(t+ ϵ, p(t+ ϵ; t, x)) =

M ∗(t, x) will still be a local maximizer. Thus, dM
∗(t,x)
dt

= 0 under u = µ(t, x), so (7.18) implies
that d

dt
[hp(t, x)] = m′(M ∗(t, x) − t), and the same logic as in case A2 implies satisfaction of

condition (7.3). Second, if instead d
dτ

[κ(τ, p(τ, t, x))]|τ=t+T > 0 (purple line in Fig. 7.2), then
under u = µ(t, x), at some arbitrarily small time t + ϵ in the future, M ∗(t + ϵ, p(t + ϵ; t, x)) =

M ∗(t, x) + ϵ will be the local maximizer on the horizon [t + ϵ, t + ϵ + T ]. Thus, dM∗(t,x)
dt

= 1

under u = µ(t, x), so (7.18) implies that d
dt
[hp(t, x)] =

d
dτ

[κ(τ, p(τ, t, x))]|τ=t+T ≤ γ. Similar to
case A2, hp(t, x) ≤ −m(M ∗(t, x) − t) = −m(T ) < 0, so choose α so that α(m(T )) ≥ γ, and
then condition (7.3) is satisfied for u = µ(T, x).

Next, note that case B1 is not possible, since (7.9) implies that R(t; t, x) = t, which
would imply case A1. Next, cases B2-B3 imply that κ(M ∗(t, x), p(M ∗(t, x); t, x)) > 0;
i.e the path p(τ, t, x) becomes unsafe on the horizon [t,M ∗] ⊆ [t, t + T ], so unlike cases
A1-A3, the system will need to take a control action u ̸= µ(t, x) to ensure safety. Since
κ(M ∗(t, x), p(M ∗(t, x); t, x)) > 0, any x ∈ Hp(t) must satisfy R(M ∗(t, x); t, x) > t, so the sys-
tem has until time R(M ∗(t, x); t, x) to take corrective action. First, in case B2, both the maximizer
time M ∗ and the root R occur within the time horizon (green line in Fig. 7.2), and d

dt
[hp(t, x)] is

given by (7.16). Since m′ is assumed to be strictly positive and ∂κ(η,p(η,t,x))
∂λx

∂p(η,t,x)
∂λx

g(t, x) is as-
sumed to not be the zero vector, the second line of (7.19) is guaranteed nonzero. Additionally,
since the theorem assumed that the inner product of ∂κ(τ,p(τ,t,x))

∂λx
and ∂κ(η,p(η,t,x))

∂λx
is nonnegative for

τ = M ∗(t, x) and η = R(M ∗(t, x); t, x), the first term of (7.19) cannot cancel with the second
term, so the matrix B(τ, t, x) in (7.19) is guaranteed nonzero. Since u ∈ Rm is unconstrained, one
can thus choose u to make d

dt
[hp(t, x)] in (7.16) arbitrarily negative, so (7.3) can be satisfied for

any α ∈ Ke.
Lastly, case B3 represents the scenario where the path becomes unsafe for some time

R(M ∗(t, x); t, x) ∈ (t, t + T ) in the prediction horizon, and the maximizer of κ(τ, p(τ, t, x))
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occurs either at (red line in Fig. 7.2) or after (blue line in Fig. 7.2) the end of the horizon.
For this case to occur, it must be that d

dτ
[κ(τ, p(τ, t, x))]|τ=t+T ≥ 0. However, by assump-

tion, d
dτ
[κ(τ, p(τ, t, x))] ≤ γ also. Since the prediction horizon T is constant, it follows that

dM∗(t,x)
dt

≤ 1, so the second line of (7.17) is upper bounded by γ. The term m′(R(τ, t, x) − t)

is also independent of u and is bounded since m is assumed to be continuously differentiable.
Therefore, by the same argument as in case B2, one can choose u to make d

dt
[hp(t, x)] in (7.17)

arbitrarily negative, so (7.3) can be satisfied for any α ∈ Ke.
Thus, in every case, a function α ∈ Ke satisfying α(m(λ)) ≥ m′(λ),∀λ ∈ [0, T ] and

α(m(T )) ≥ γ will satisfy condition (7.3), so hp is indeed a CBF. Note that these are sufficient, not
necessary conditions on α. ■

That is, under mild assumptions, it is always possible to render the set Hp forward invariant,
so I call hp as in (7.13) a P2CBF. To elaborate on these assumptions, first, γ represents a bound
on the rate of change of κ along the nominal path p, which is a reasonable assumption for most
paths. Next, intuitively, the assumption that ∥∂κ(η,p(η,t,x))

∂λx

∂p(η,t,x)
∂λx

g(t, x)∥ ≠ 0 is analogous to con-
trollability and observability. This quantity is the sensitivity of the future value of κ to the current
control input, so this assumption encodes that both the state trajectory p(η, ·, ·) and the observed
values κ(η, p(η, ·, ·)) along that trajectory must be controllable. If instead future κ values are not
controllable along p, then one cannot expect such a predictive strategy using the path function p to
be useful. That said, Theorem 7.5 makes an exception to allow for ∥∂κ(τ,p(τ,t,x))

∂λx

∂p(τ,t,x)
∂λx

g(t, x)∥ = 0

to occur when τ is a maximizer time (i.e. τ ∈M (t, x)). This is because one can easily construct a
path for which the maximum value maxτ∈[t,t+T ] κ(τ, p(τ, t, x)) of κ is constant with t and x; for ex-
ample, a path that attempts to converge to an unsafe state. In this case, no control input will change
the maximum value of κ along the path, but the assumption that ∥∂κ(η,p(η,t,x))

∂λx

∂p(η,t,x)
∂λx

g(t, x)∥ ≠ 0

for all η /∈ M (t, x) encodes that it is still possible to delay the time R(τ, t, x) at which the state
trajectory first becomes unsafe by choosing a control input u different from the nominal input
µ(t, x).

The related assumption that ∂κ(τ,p(τ,t,x))
∂λx

T ∂κ(η,p(η,t,x))
∂λx

≥ 0 means that if the path is such that
it is possible to change both 1) the maximum value of κ achieved along the path (first term of
(7.11)) and 2) the first time along the path at which the trajectory becomes unsafe (second term
of (7.11)), then there exists a control action which decreases both terms of (7.11) simultaneously.
For example, a car moving towards a stop sign and decelerating at |u| larger than |µ| will stop both
shorter and sooner than the same car decelerating at |µ|. That is, this assumption excludes the
use of dynamics that would cause the car to instead stop further and sooner, or shorter and later.
This is also reasonable mathematically, since, for R > M , the two terms of B in (7.19) (i.e. the
first term of (7.19) and the negation of the first line of (7.21)) approach the same direction as R

approaches M .
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In particular, I note that this section has not made any assumptions on the relative-degree of
κ. For many systems, such as those in Section 7.1.4, this method will generate a CBF hp even
when κ is not a CBF. That is, using only the constraint function κ, the dynamics f and g, and a
nominal, not necessarily safe, control law µ(t, x), one can directly utilize the sensitivities (7.16)-
(7.18) of the nominal trajectory p to construct a P2CBF and compute a safe trajectory. Note also
that Theorems 7.2-7.5 do not assume that the system actually follows the “nominal” trajectory
p(τ, t, x), even when this trajectory is safe. Rather, this trajectory is just used to generate the
P2CBF. However, I only expect a controller to proactively ensure safety better than traditional
CBFs when hp is constructed using a path that is relevant to the system’s intended behavior (note
that I use the term “expect” because I have not provided any guarantees of less myopic behavior,
and have not even precisely defined “myopic”, though the simulations in Section 7.1.4 show very
promising results). Thus, one possible safe controller is

u(t, x) = argmin
u∈Kcbf(t,x)

∥u− µ(t, x)∥2 , (7.31)

where Kcbf in (7.4) uses h = hp and where I assume that (7.31) is sufficiently regular for
Lemma 7.1.

Next, while hp in (7.13) is sufficient for enforcing safety, to make the controller even more
proactive, one may want to consider future safety for all elements of hp,all in (7.12) simultaneously.
However, it is in general difficult to show that hp,all in (7.12) is also a CBF (with appropriate
generalizations for hp,all being set-valued), because there may not exist control inputs such that
the CBF condition can be satisfied simultaneously for every output hp,i. That said, it may still
be advantageous to construct the CBF condition for every future time-of-interest and use slack
penalties for violation of the CBF condition for τi ∈M \M ∗ in case of a conflict. Additionally,
instead of enforcing the CBF condition on every hp,i, one can reduce the size of hp,all by instead
considering the maximal value of hp,all [151], the smooth maximum of hp,all [169], or by using
hysteresis tolerances to make certain elements of hp,all inactive (see Section 4.4). In essence, the
above considerations are analogous to controller tuning.

Remark 7.5. To avoid needing to run a line-search for maximizers and roots in (7.6)-(7.10), one

could instead sample M as many discrete time points in the finite horizon (e.g. every ∆T time

point), similar to MPC. With a suitable robustness margin for the discretization, this could also

be used to guarantee safety in a similar manner. This strategy would increase the number of

constraints on the control input, but would still be simpler than MPC approaches because only the

current control input is an optimization variable in (7.31).

I now present simulations demonstrating the utility of the P2CBF hp.
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7.1.4 Simulations and Comparisons

7.1.4.1 Autonomous Vehicles

The first case study presented involves two cars passing through a four-way intersection. I
assume that the cars are fixed in their lanes l1 : R → R2 and l2 : R → R2, respectively, with
locations z1 and z2 along their lanes. Thus, the position of car 1 on the road is l1(z1) and the
position of car 2 is l2(z2). For simplicity, I model the cars as double-integrators: z̈1 = u1 and
z̈2 = u2, resulting in state vector x = [z1; ż1; z2; ż2] and control vector u = [u1;u2]. Suppose
the cars nominally want to travel in their lanes at velocities v1 and v2, respectively, so the nominal
control input is µ = [µ1;µ2] where µi(t, x) = k(vi− żi) for some gain k > 0. The path function is
then p = [p1; p2] where pi is the solution to (7.5) under µ:

pi(τ, t, x) =

[
zi + vi(τ − t) + żi−vi

k
(1− e−k(τ−t))

vi + (żi − vi)e−k(τ−t)

]
. (7.32)

Let the safety constraint be κ = ρ− ∥l1(z1)− l2(z2)∥.
I then constructed a P2CBF of the form hp, and simulated two intersection scenarios using the

controller (7.31), one with two cars intersecting perpendicularly, and one with one car driving
straight and a second car turning left and passing through l1. The results were very similar, so I
focus on the left-turn case. For comparison, I also simulated this case with safety governed by an
Exponential CBF [85] (ECBF) and via Nonlinear MPC (NMPC) using the same prediction horizon.
The control inputs are shown in Fig. 7.3 and the safety constraint is shown in Fig. 7.4. Videos
of every simulation can be found at https://youtu.be/0tVUAX6MCno and all parameters
and simulation code can be found at https://github.com/jbreeden-um/phd-code/
tree/main/2022/CDC%20Predictive%20CBFs. Figs. 7.3-7.4 show that the P2CBF and
MPC performed generally similarly, with both cars approaching close and then continuing on
opposite sides of the intersection. On the other hand, the ECBF caused both agents to come to a
complete stop, so neither agent made it through the intersection. On average, the computation time
per control computation was 0.0011 s for the ECBF, 0.0061 s for the P2CBF, and 0.40 s for the
NMPC approach, all on a 3.5 GHz CPU, though the code for all three cases could likely be further
optimized.

7.1.4.2 Satellite Collision Avoidance

The second case study presented involves two satellites in Low Earth Orbit avoiding collision.
Let r1 and r2 denote the satellite positions and let κ(t, x) = ρ − ∥r1 − r2∥ where ρ = 1 km. Let
the satellites be governed by two body dynamics. This scenario is not well solved by existing CBF
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Figure 7.3: Control Inputs of Ground Vehicles. Control inputs of two vehicles with safety deter-
mined by an ECBF, P2CBF, or by NMPC. The solid lines are u1 (acceleration of vehicle 1) and the
dashed lines are u2 (acceleration of vehicle 2).
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Figure 7.4: Safety Metric of Ground Vehicles. The values of κ during the three simulations
in Fig. 7.3. The P2CBF and MPC trajectories are similar, whereas the ECBF trajectory slowly
converges to zero as the vehicles come to a complete stop. See also the animation: https:
//youtu.be/0tVUAX6MCno.
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Figure 7.5: Control Inputs of Satellites. Control thrusts of a satellite with safety determined by an
ECBF or P2CBF.
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Figure 7.6: Safety Metric of Satellites. The values of κ during the two simulations in Fig. 7.5 and
a simulation with zero control input. The P2CBF minimally modifies the original trajectory so the
red and blue lines are very similar, but the red line exceeds the safe set by 1 km (see zoomed in
inset or the animation: https://youtu.be/HhtWUG63BWY), while the blue and green lines
remain safe.

methods, or gradient methods in general, because the satellites necessarily orbit at large velocities,
so κmay rapidly change from very negative to zero. If the satellites wait to take evasive maneuvers
until κ is nearly zero, then large control actions will be necessary to maintain safety. However, very
small control actions taken approximately a half orbit preceding a predicted collision (when κ is
most negative) will result in large changes to r1 and/or r2 at the predicted collision time.

For this case study, let x = [r1; ṙ1] represent the state of a controlled satellite and let r2 be an
uncontrolled piece of debris with a known orbit. Let p be the trajectory of the controlled satellite
under zero control input, which is a well-characterized elliptical orbit. The simulation scenario
places the controlled satellite and the debris initially very far apart, but in orbits that eventually
intersect if no control action is taken. Simulations under hp, under an ECBF, and under no control
action are shown in Figs. 7.5-7.6 and in the video at https://youtu.be/HhtWUG63BWY.
Note how the P2CBF trajectory (blue) takes a small control action as soon as the unsafe prediction
enters the horizon at t = 367 s, and then is very similar to the nominal trajectory (red). On the other
hand, the ECBF trajectory (green) takes control action much later, when over 10 times as much
thrust is required. This avoidance problem could in theory also be solved with NMPC, but would
require a very fine discretization, because κ > 0 occurs for only 0.14 seconds since the satellites
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are moving so fast. Thus, utilizing the same length of prediction horizon would require more
than 104 samples, making the NMPC problem (and most other online trajectory search algorithms)
intractable.

7.1.5 Conclusions

This section has developed a systematic approach for propagating state trajectories into the fu-
ture along a nominal path, and then adjusting the trajectory if the propagated path is found to be
unsafe. The approach reduces the degree to which the CBF condition intrudes on the nominal
path compared to a traditional CBF in simulation, and performs similarly to an NMPC approach
while reducing computation times by an order of magnitude and avoiding the need for lineariza-
tions and/or other approximations. The satellite collision avoidance simulation in particular shows
how the P2CBF can also solve problems that are not well handled by either traditional CBFs or
MPC. Remaining questions include whether this approach can be extended to consider input con-
straints, similar to the Backup CBF, and extending the safety guarantees to collections of agents
with distributed controllers.

7.2 Remarks on Performance, Assumptions, and Extensions

The above methodology presents a universal structure of CBF, and the simulation results in
Section 7.1.4 suggest a substantial increase in performance for the cases tested. Thus, the P2CBF
on first reading appears to be a very powerful tool for control design. However, with any powerful
tool, it is important to understand the assumptions and possible limitations. Since publishing this
initial work, I have worked on better understanding these limitations, and in this subsection, I
now discuss some (probably not all) of the non-obvious properties of the CBF (7.13) that I have
since discovered. Some of these findings may be presented in a more organized fashion in future
academic publications.

7.2.1 Performance

First, I revisit the question of input constraints. The main limitation of Theorem 7.5 is that it
assumes the set of allowable control inputs is Rm. However, Section 7.1.4 showed that the P2CBF
actually resulted in lesser control input usage. This begs the question: “can one design the P2CBF
to satisfy specified input constraints?”. To answer this, recall that the zero sublevel set of a CBF
must be a viable set. Thus, given a set of input constraints U ⊂ Rm, the setHp in (7.14) should be
designed to be a viable set. The primary “knobs” one can modify to change the size/shape ofHp are
the function m : R→ R in (7.11) and the prediction horizon T . In effect, the function m converts
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the time until the system becomes unsafe R − t (e.g. units of seconds) into a relaxation on how
large κ(M ∗, p(M ∗, t, x)) (e.g. units of meters) is permitted to be. A steeper choice ofmwill allow
for initial conditions x ∈ Hp(t) that require more aggressive actions to remain within the CBF set.
A more gradual choice of m will result in a smaller CBF set. At present, the choice of m has been
made arbitrarily, and thus Theorem 7.5 has only been proven for the case of unconstrained control
inputs. I hypothesize that there exists a more principled method of choosing m that will lead to
provable input constraint satisfaction for certain systems. Even lacking provable guarantees, one
can manually tune them function to achieve more or less aggressive responses. That said, note that
tuningm to achieve earlier, more fuel-efficient responses is inherently in opposition to deriving the
largest possible controlled-invariant set, so an engineer must balance these competing objectives.
Finally, as this chapter lacks an analytic proof of input constraint satisfaction regardless of how
m is chosen, this is one area where learning a CBF, specifically learning the m function in (7.11),
might be an advantageous method of tuning (in the prior chapters, I eschewed learning approaches
because of the lack of provable guarantees, but in this case, I speculate that machine learning of m
under the form (7.11) might provide a probabilistic guarantee of input constraint satisfaction that
would enhance the present theory).

Likewise, the horizon T affects performance in multiple ways. Firstly, the maximum value of
R − t in (7.11) is T , so m(T ) is the maximum relaxation afforded by the second term of (7.11).
Thus, states (t, x) where κ(M ∗, p(M ∗, t, x)) > m(T ) are automatically excluded from the CBF
setHp, whereas such states might still be allowable if a longer horizon were used. Secondly, I note
that the controller (7.31) performs very differently depending on whether M ∗ is in (t, t+ T ) or is
one of the endpoints. If M ∗(t, x) = t and κ is of high relative degree, then B in (7.19) is zero, so
u(t, x) = µ(t, x) in (7.31). If κ represents obstacle avoidance and p provides a path through the
obstacle, and if M ∗(t, x) ∈ (t, t + T ), then the first term of B in (7.19) will be a vector pointing
orthogonal to p. This will encourage the controller (7.31) to maneuver around the obstacle. If,
on the other hand, M ∗(t, x) = t + T , then the first term of B in (7.19) will be a vector pointing
from the center of the obstacle to p(t + T, t, x). This vector will not necessarily be orthogonal to
p, and thus might encourage the controller (7.31) to decelerate ahead of the obstacle (as the ECBF
did in Section 7.1.4) rather than to maneuver around it. Thus, the P2CBF and the controller (7.31)
perform better when T is sufficiently large that M ∗ is generally not equal to T . Alternatively, one
might choose α sufficiently steep that the QP (7.31) outputs u(t, x) = µ(t, x) until the state gets
close enough to the obstacle that M ∗(t, x) < t + T . For this reason, the P2CBF is well suited
to obstacle avoidance problems, where the system can navigate around a small excluded region of
the state space, but the P2CBF behaves more similarly to conventional CBFs when the unsafe set
is similar to a long wall rather than a small excluded region.

The above paragraph also suggests two more peculiarities of the controller (7.31). Firstly, it is
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not clear what is a good choice of α in (7.31). As mentioned in Section 2.4.2, this is true in general
of CBF-based methods. However, the requirements on α summarized at the end of the proof of
Theorem 7.5 further complicates this question. I have not yet studied this question sufficiently
to make a recommendation, besides referring to the analysis surrounding (4.61). Secondly, it is
worth studying the direction of the second term of B in (7.19) as well. This second term is a vector
indicating which direction will cause R to most increase. In the context of obstacle avoidance,
delaying R most often means decelerating. Thus, to avoid this deceleration, one seeks that the
first term of B (i.e. the sensitivity of κ(M ∗, p(M ∗, t, x))) be greater in magnitude than the second
term of B (i.e. the sensitivity of m(R− t)). How to achieve this is also an open question for future
work.

Finally, I emphasize that, despite some of the assumptions elaborated upon in Section 7.2.2, the
P2CBF is indeed a very generally applicable tool. Besides the way it improves obstacle avoidance
specifically, it is also extremely useful for time-varying applications when the system needs to
respond to things that may not happen until far into the future.

7.2.2 Assumptions

I now revisit and re-explain some of the assumptions and their implications. Firstly, the most
limiting assumption is the assumption that the set of allowable control inputs is Rm. That said, as in
most control systems, one can tune the controller parameters, particularly the m function in (7.11),
to achieve input constraint satisfaction. I also suspect that for certain systems one may be able to
find more principled methods of choosing m that lead to provable input constraint satisfaction as
in the prior chapters of this dissertation. Recall that this assumption was only invoked in cases B2
and B3 of the proof of Theorem 7.5. I suspect that case B3, the endpoint case, will be the more
challenging case both for tuning and for finding provable extensions of Theorem 7.5 with U ̸= Rm.
Motivated by this, if one instead assumes that the prediction horizon is sufficiently long that M ∗

always occurs inside it, then one can ignore case B3.
Next, recall the assumption in Theorem 7.5 that ∂κ(τ,p(τ,t,x,))

∂λx

T ∂κ(η,p(η,t,x))
∂λx

≥ 0. In my experience
(i.e. working with physical agents in Newtonian environments and with second-order constraint
functions) this assumption that has never been limiting, and I explained the intuitive meaning of
it after presenting Theorem 7.5. That said, I note here that other researchers suggested that this
may conflict with the dynamics of certain electronic systems. Thus, the reader should remember
to verify this and other assumptions before applying this work.

Next, recall that Assumption 7.1 assumed that the maximum possible value of κ along any
propagated trajectory originating from a state in S was bounded. A careful reader might notice
that this assumption was never invoked in Theorem 7.2 or Theorem 7.5. As explained after the
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assumption, the reason for this assumption is that if M ∗(t, x) = t is one local maximizer and
there exists another local maximizer at t + T , then there must be a local minimum between these
two local maximizers. When the system passes this local minimum, the values of M ∗ and of
κ(M ∗, p(M ∗, t, x)) jump, so the method requires that they jump in such a manner that hp is less
than zero before and after the jump. At this point, the reader may identify two flaws in the above
logic. Firstly, Assumption 7.2 further assumed that hp was absolutely continuous. This essentially
prevents the phenomenon of M ∗ jumping values, as this would usually cause hp to be discontinu-
ous. Thus, one may conclude that Assumption 7.1 is unnecessary, because the phenomenon that it
is intended to address is already forbidden by Assumption 7.2. Moreover, while Fig. 7.1 illustrates
multiple maximizers and roots, the absolute continuity assumption makes this analysis irrelevant
for the same reason. Section 7.2.3 discusses a fix for this logical oversight, and also explains the
second logical flaw in Assumption 7.1.

Next, the strongest assumption of this section is the assumption that hp is absolutely continuous
in Assumption 7.2. While this holds for the simulated cases in Section 7.1.4, one can construct
simple κ and p functions for which this does not hold. In general, the maximum of a function
over an interval is usually continuous, and under fairly weak assumptions (e.g. see [205, Ch. 3])
is also directionally differentiable (which is nearly equivalent to absolute continuity). However,
the maximizer (i.e. the point(s) at which the maximum occurs) may in general be discontinuous,
and thus not differentiable either. Thus, to generalize Lemma 7.4, the first term of (7.11) should
be treated as a single quantity and differentiated directly, rather than differentiating κ, p, and M

separately. Similarly, the root R along a trajectory in general may be discontinuous and/or non-
differentiable. For simple κ and p functions (e.g. straight line paths through concave κ functions),
Lemma 7.4 and Theorem 7.5 often apply nicely, but I emphasize that they are only applicable
under the assumption that M and R are sufficiently regular. Deriving easy-to-check conditions
that certify this is one open area for future work.

Indeed, even when Assumption 7.2 does apply, absolute continuous functions may cause nu-
merical issues. For instance, the formula (7.27d) contains an inverse, and the quantity being in-
verted may be zero. Indeed, the quantity being inverted is equivalent to d

dR
[κ(R, p(R, t, x))].

Since, κ(τ, p(τ, t, x)) is assumed continuously differentiable, this quantity is always zero when
R ∈M ∩ (t, t + T ), i.e. on the boundary between the cases of (7.20). Thus, the matrices B and
C in (7.19)-(7.21) become unbounded. In practice, this is not an issue because 1) an unbounded
sensitivity matrix allows for the use of an arbitrarily small control input to satisfy (7.4), and 2) the
system spends very little time on this boundary between the cases of (7.21). However, it is still
undesirable to possibly have division by zero in the controller code.

Finally, one might note that the choice of κ used in the simulations in Section 7.1.4 is actually
not continuously differentiable. There exists a single point where the norm function is not dif-
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ferentiable. In the context of the P2CBF, this non-differentiable point arises along a manifold of
points where it is equally advantageous to go left or right (or an infinite number of directions if
the space is three-dimensional, as in the satellite simulations) around an obstacle. In practice, nu-
merical errors in the simulation cause the system to quickly leave this manifold of states for which
l1(z1) = l2(z2) occurs in the prediction horizon, but nonetheless, it is still undesirable to have such
a non-differentiable manifold in the controller code. This can be fixed for instance by choosing
κ(t, x) = ρ2−∥l1(z1)−l2(z2)∥2, which is continuously differentiable. However, this choice results
in the first term of B in (7.19) being very small near ∥l1(z1) − l2(z2)∥ ≈ 0. As explained above,
one generally achieves better performance when the first term of (7.19) is larger in magnitude than
the second term. Thus, I suggest that it is better to account for this non-differentiability directly
(e.g. by establishing an assumed direction for the gradient vector at this manifold) than to try to
eliminate the manifold by changing κ.

7.2.3 Extensions

The prior subsection identified some potential flaws in the logic of Section 7.1.3, so this subsec-
tion now identifies some corrections. Firstly, in practice, the assumption that hp is differentiable
almost everywhere (absolutely continuous) is not satisfactory for practical controller design. In-
stead, one prefers that the P2CBF and the controller based on the P2CBF sensitivities should be
well-defined everywhere (i.e. not almost everywhere). One can make progress towards accom-
plishing this by working with directional derivatives (also called “sub-gradients”) instead of reg-
ular derivatives. However, this also introduces complexity, and the tools to work with directional
derivatives in math and in code may be less developed. In any case, establishing differentiability of
M ∗ and R is extremely challenging, so I suggest that it is better to work with κ(M ∗, p(M ∗, t, x))

directly and to develop additional tools to aid in the analysis of R. Alternatively, I am also work-
ing on developing a hybrid system extension of this method that uses jumps to avoid areas where
k(M ∗, p(M ∗, t, x)) and/or R are not continuously differentiable. While this then requires one to
verify a hybrid logic, it has the advantage of avoiding the need for directional derivatives.

Next, the assumption that hp is absolutely continuous should be relaxed, so that the method can
handle multiple maximizers. I suspect that this extension will be rather straightforward to write
out mathematically, though possibly difficult to guarantee in practice. In a hybrid system (e.g. see
Section 5.3), the CBF conditions are that 1) the flows of the system satisfy the typical continuous-
time CBF condition, e.g. (7.4), and 2) the jumps of the system always map states in the CBF set
to states in the CBF set. That is, the image of H through the jump map must be a subset of H.
The same logic can be applied to the P2CBF. One can relax Definition 7.1 to instead allow for
jumps, so long as these jumps stay within the CBF set. This will then make Assumption 7.1 more
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meaningful, and would allow for trajectories that pass through nonconvex obstacles or multiple
obstacles in this framework. That said, even with such a relaxation, I note that Assumption 7.1 is
still not sufficient. To see this, note that even if M ∗ jumps to M ∗ = t+ T , it may be the case that
R(M ∗, t, x) < t+T . Thus, the relaxationm(R−t) will be less thanm(T ), so the assumption that
m(T ) ≥ hmax in Assumption 7.1 does not fulfill its intended purpose. This is the second logical
flaw mentioned in Section 7.2.2. Determining the appropriate replacement for Assumption 7.1 to
properly fulfill this purpose is an area for future work.
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CHAPTER 8

Conclusion

8.1 Conclusions

This dissertation presents a series of tools that advance the state of the art of control barrier
functions and quadratic-program-based safety filters for constrained control design. Recall that
the problem that motivated this work was the goal of constructing and verifying computationally
efficient control strategies for space systems with constraints. Control barrier functions (CBFs)
as safety filters provide solutions to both problems simultaneously. Given a CBF, one can always
construct a safety-preserving controller using the quadratic program in Section 2.4, so CBFs are
constructive. Equally important, this quadratic program provably yields set invariance of the CBF
set, so the work in this dissertation removes (or at least lessens) the need for additional controller
verification. That said, at the start of this work—i.e. at the end of Chapter 2—this seemingly
powerful method was difficult to apply to space systems. Now, with all the methods in this disser-
tation taken together, engineers have the tools to apply CBF-based safety filters to a range of space
systems, and have a basis for deriving further extensions if necessary.

Specifically, Chapter 1 presented an overview of the constrained control literature and a deeper
review of the CBF literature in particular. Chapter 2 presented a comprehensive technical review
of the general CBF method to 1) establish a baseline for the rest of the dissertation, and 2) clarify
certain non-obvious technicalities of this method for the reader. Chapter 2 also identified the con-
nection between CBFs and viability theory; this connection is useful because it allows engineers
to compare what behaviors are allowed by physics and what behaviors are allowed by a particular
safety-filter (which is usually much more conservative).

Chapter 3 presented two constructive tools for designing CBFs for systems with inertia and
input constraints (i.e. any real space system), and these tools were improved upon and added to in
Chapter 4. These chapters thus provide much-needed practical tools to construct CBFs for space
systems problems.

Chapter 4 then extended CBFs from the deterministic setting to the setting of systems with
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bounded disturbances. This chapter introduced a new “robust CBF condition” in place of the
condition in Chapter 2, and re-proved the results on set invariance in that chapter now for perturbed
systems. Chapter 4 also extended the tools in Chapter 3 to the robust case, and importantly, the
methods in Chapter 4 maintain input constraint satisfaction for any disturbance in the assumed
bounds. Finally, Chapter 4 introduces the notion of a “tight-tolerance problem”, and shows how
robust CBFs can be used to provably achieve such tolerances. This chapter thus makes the provable
guarantee of set invariance provided by CBFs and safety filters more relevant in practice, especially
in light of how controls engineers almost always work with simplified models and possibly other
uncertainties.

Chapter 5 extends all of the work up to this point to the sampled-data regime. Section 5.1 first
extends the results in Chapter 2 to sampled-data systems, and introduces two metrics of conser-
vatism. I emphasize that these metrics are also generalizable to other types of robustness. Sec-
tion 5.2 then generalizes the new developments in Chapter 4 to sampled-data systems as well.
Finally, Section 5.3 shows how the same tools can be applied to systems with impulsive actuators
with a minimum dwell-time between impulses. This chapter thus generalizes safety filters from
the continuous domain to some of the actuators more commonly deployed on spacecraft, and again
makes the provable guarantee of set invariance provided by this method more relevant.

Chapter 6 addresses a technical problem in the scalability of safety filters to multiple constraints,
and provides constructive tools for how to modify individual CBFs to ensure that all CBFs are
compatible together in a single safety filter. The eventual goal of safety filters is to allow agents
to be more autonomous in complex environments, so this chapter thus helps elevate CBFs from
simple constraints to more complicated and possibly multi-agent environments.

Chapter 7 proposes a new form of CBF that both adds to the methods in Chapters 3-4 and solves
new problems. In particular, CBFs (and constrained control methodologies in general) tend to be
conservative in the presence of time-varying obstacles, and difficult to apply when the magnitude
of the uncontrolled dynamics is much larger than the magnitude of the control input. Chapter 7
solves these problems by proposing a computationally-efficient way to consider the safety of future
trajectories of the system when choosing the current control action. As a result, this is the only
method in this dissertation that is applicable (without substantial conservatism) to satellites in
dissimilar low Earth orbits (i.e. where relative motion approximations do not apply), such as
might occur for a constellation of communication satellites. While it is too soon to know which
method in this dissertation will prove most useful in practice, I can say now that this is the most
theoretically novel tool and the most significant “leap” in control algorithm design accomplished in
this dissertation. Chapter 7 thus generalizes CBFs to another important domain for space systems.

In summary, the prior chapters all present a piece of the many new tools needed to apply CBFs
and safety filters to space systems. Additional pieces remain unsolved, but the above nonetheless
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provides a foundation for many practical problems and from which to tackle the remaining theo-
retical problems. While this work was all motivated by the goal of enhancing space systems, the
theoretical problems encountered along the way are not specific to space systems. Thus, the above
tools are all contributions to general control theory and can be applied to other systems meeting
the theorem requirements as well. Many of the observations made in this dissertation are also
relevant to other constrained control methodologies, such as how the sampling margins studied in
Chapter 5 are equally relevant to model predictive control. I hope that these tools are useful for
future engineers looking to solve space systems challenges, and to future researchers looking for
constrained control tools for problems that I have not yet even imagined.

8.2 Future Work

While this work is expansive, there are certainly many areas still open for improvement. Some
specific areas were suggested at the ends of Chapters 3-7, so here I highlight the most important
(i.e. the most frequently recurring) and the most high-level of these topics. The most glaring
area for future work is the need for greater fuel optimality. Because safety filters of the sort
introduced in Section 2.4 only consider the current state, this framework does not immediately
admit any way to consider fuel optimality over a trajectory. Thus, future researchers may consider
studying more computationally complex tools that yield optimality or near-optimality guarantees,
the potential role of CBFs in multi-rate planning frameworks, and/or whether safety filters can
be used to “gracefully degrade” online a pre-computed optimal trajectory. When studying this
question, researchers will likely contend with the “no free lunch theorem”—i.e. how no gain
in performance in one area comes without costs in another area—and thus will have to sacrifice
computational simplicity for greater fuel optimality. The proper balance between these two goals
will likely be determined by industry engineers rather than researchers. Another consideration is
that a continuously running computation like a safety-filter is more practical to run on an embedded
computer, whereas large, infrequent trajectory planning computations might require scheduled
pauses in nominal operations. Note that Chapter 7 indeed improved fuel optimality substantially,
but this improvement was largely coincidental. That is, there is no way (that I know of) to prove that
the method in Chapter 7 will yield lower fuel consumption. Still, knowing that there exist CBFs
that reduce fuel consumption makes me hopeful that some variation of the safety filter method can
be practically applied in fuel-critical scenarios.

Next, this dissertation only considered a subset of possible spacecraft dynamics. As long as
there are mission concepts that researchers have still not imagined, there will always be a need to
derive CBFs (and other Lyapunov tools) for those specific systems. The tools in Chapters 3-4 and
Chapter 7 (and the broader CBF literature) form a baseline for these future developments. Like-
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wise, Section 4.7 considered the possibility that a conservative robust safety filter might conflict
with main mission objectives. Along this line of thought, future engineers will need to design
tools for other varieties of CBFs to ensure that these CBFs do not conflict with objectives of the
missions to which these CBFs are applied. Tools such as the “feasibility margin” in Section 4.7
are particularly relevant here, as they inform the engineer of what is maximally possible with a
method. Similar tools should be developed for other mission scenarios.

The tools in Chapters 4-5 considered safety filter robustness to two specific phenomena, in
this case bounded disturbances and controller sampling. Future work might consider robustness
to other phenomena, such as measurement uncertainty, input delay, large persistent disturbances
(e.g. wind gusts, periods of high solar activity, etc.), and others. In particular, current filtering
techniques often lead to Gaussian measurement uncertainties, so many requirements are written in
terms of 3σ behaviors. Such disturbance models are not immediately compatible with the bounded
disturbances work in this dissertation. Thus, an open problem is going from bounded disturbances
to stochastic distributions with tails. This has partially been studied via “risk-bounded CBFs”,
but there is still work to be done in relating pointwise statistics to statistics of a full trajectory,
and in doing this analysis in a minimally conservative manner. A method for bridging this gap
from pointwise to full-trajectory statistics may also be relevant to methods for considering full-
trajectory fuel-optimality. Additionally, zero-order-hold and impulsive actuators are only a subset
of possible actuator behaviors. Other common constraints include actuators that only operate on-
off—i.e. without continuous variation between these endpoints—and impulsive actuators with a
minimum impulse magnitude.

Next, one of the motivating applications for safety filters that was not studied in this disser-
tation is multi-agent control. I qualify this by pointing out that “multi-agent control” is a very
vague term, especially in the spacecraft domain. The term can apply to satellites in passive rel-
ative orbits, in high-precision formations, in loose formations, in distributed interferometers, in a
network of resource-scouting spacecraft with no hard separation requirements, or to a group of
planetary rovers, ice-tunneling snake robots, etc.. The tools to achieve all of these tasks look very
different from each other. The motivation for using safety-filters for multi-agent applications in
general is that by giving each agent responsibility for its own safety, engineers can reduce the need
for expensive centralized computation (in particular, engineers might be able to avoid the “hole”
phenomenon that exclusion constraints cause, and thus be able run convex centralized planning
routines instead of non-convex planning-and-avoidance routines) and make the system more robust
to single-agent failures. However, the hypothesis that safety filters will help achieve this is lim-
ited by (at least) two observations. First, designing safety filters that enforce multiple constraints
simultaneously is a nontrivial problem, as shown in Chapter 6. Enforcing multiple constraints
required redesigning every CBF in the safety filter to be compatible with every other CBF. This
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process is in direct opposition to the goal of a scalable, flexible multi-agent system. Second, it is
difficult to generalize local safety constraints to whole-system safety constraints. Indeed, with only
three or four double-integrator agents, it is easy to construct examples where one agent becomes
trapped between other agents with no viable control action. Two solutions to this are to perform
some amount of centralized planning and deconfliction (possibly in a multi-rate architecture), or
to apply system-level rules or heuristics, analogous to the rules of driving on a shared road. On
a road, drivers agree to stay in their lines and obey traffic rules; these rules may make individual
drivers’ routes less efficient, and may in fact make the net system’s operations suboptimal, but
similar rules will be necessary for distributed safety-filter applications to exhibit provable safety
guarantees. The alternative of having a centralized planner dictate every possible action to agents
will require much more computational power than is likely to exist soon. Thus, there exists a need
for further and more complex extensions to Chapter 6.

One should also consider the types of problems to which CBFs and safety filters apply well,
and those to which they do not. For one, the safety filters in this thesis all implicitly required
that the system be fully controllable. For example, the simulations in Chapters 3-4 all assumed
that the system had a thruster pointing in every direction. In practice, satellites may have a single
large thruster that requires rotating the satellite to thrust in different directions, thus creating a
nonholonomic system. There is some work on nonholonmic and mixed relative-degree CBFs,
but this has yet to be tested on satellite simulations. CBFs could also be further extended to
underactuated systems, where the system needs to stay in a particular configuration (i.e. a particular
subset of the state space that needs to be computed) to maintain feasible operations (consider for
instance the James Webb Space Telescope, which must always stay on a particular side of the Sun-
Earth Lagrange point because it possesses no thrusters pointing towards the Sun; this could be a
natural CBFs problem but would likely need further tools). Next, CBFs and safety filters often
work best when there is a clear set of states to be rendered forward invariant. In problems where
such a set is not clearly defined, or where such a set can be violated under certain conditions or for
limited amounts of time, the CBFs studied in this work may not apply well. The constraint sets
used in the simulations throughout this dissertation were also relatively simple—usually two-norm
exclusion constraints—whereas it may be more difficult to apply these methods to more complex
constraint set geometries. Finally, one should consider how most satellite systems operate without
breaks every day of the year. As a result, satellites spend a majority of that time holding their
position/orientation or applying no active control. For example, though this dissertation studied the
satellite reorientation case study in Section 5.2, a satellite is likely to spend far more time holding
an orientation than reorienting. Likewise, a satellite formation mission that uses a reasonable
amount of fuel will need to spend far more time resting in orbit than thrusting. The safety filters
studied in this dissertation are an inherently “active” method, so the control of the satellite during
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these more “passive” phases of operation should also be considered, especially for multi-agent
applications.

This dissertation made contributions to deriving practical CBFs for space systems, but there
are still other obstacles to using CBFs in practice. For one, the need for high expertise in this
subject area to easily apply these methods is one obstacle. Moreover, all practical control systems
need some amount of tuning. For safety filters, much of this tuning appears via the choice of the
class-K function. At present, it is not clear how this function should be chosen. Section 4.4 pro-
vides one suggestion, and other works provide other reasons for specific choices of this function,
but ultimately choosing this function still largely depends on the engineer’s own experience with
safety filters. Other guidelines/heuristics or easily tunable parameters would also make CBFs more
widely useful.

Finally, recall that one of the objectives of this work was to enable increased trust in machine-
learning-based control laws, by wrapping such control laws in a model-based and provably-safe
safety filter. Though this was a major inspiration for this work, the nominal control laws in all
the case studies in this dissertation were always very simple control laws (usually control laws
deliberately intended to cause safety violations). Having established functionality under this setup,
the next step is to replace this nominal control law with a learning-based control law, and to conduct
further experiments that may identify other interesting behaviors arising from this combination.
Such behaviors could also arise in other more in-depth mission applications with safety filters, so
this is a wide area for future experimentation.

8.3 Closing Practical Remarks

I conclude with some of my own predictions for how safety filters and constrained control
methodologies may be used in the future. First, computational hardware continues to advance
quickly, and optimization tools are also continuing to improve. Much of this dissertation con-
cerned itself with alternatives to model predictive control (MPC), under the assumption that MPC
might be too computationally complex for space systems. On the other hand, if one possesses
the computational power to run nonlinear MPC (i.e. without linearization approximation error
that would remove the provable guarantees of safety), then this strategy will almost certainly yield
better fuel efficiency than the pointwise safety-filter design as in Section 2.4. That said, I empha-
size again my point from Section 1.2.2 that MPC should always be used with a constraint that the
terminal state belong in a known controlled-invariant set, i.e. a CBF set. Thus, the tools for com-
puting such a set in Chapters 3-4 and Chapter 6 are still relevant to MPC. The robustness margins
in Chapters 4-5 are also relevant to MPC, and I am curious how the continuous safety prediction
and search suggested in Chapter 7 might also be relevant to new MPC strategies.
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Next, I repeat my prediction in Section 1.2.2 that machine-learning will be one of the pri-
mary approaches for constrained control in the future. As such, safety filters that work well with
learning-based control laws may also become widespread. That said, despite the increases in al-
gorithmic capabilities and computational power coming to fruition, to some degree engineers will
likely always want to know in advance (i.e. on the ground) that the systems they launch will indeed
work as expected. Thus, ground-based planning will not entirely disappear. For similar reasons,
engineers will likely derive the explicit piecewise solutions to the above QPs a priori rather than
relying on online optimization solvers. That said, as the number of active satellites increases, en-
gineers will have more incentive to use control laws with higher degrees of autonomy and more
onboard computations. As a result, engineers will likely gradually become more comfortable trust-
ing such methods, except in the most critical, or the most uncertain, applications.

Finally, recall that space systems design is inherently a systems engineering problem, so en-
gineers often have to take a systems-level perspective. A more powerful computer to run an ad-
vanced algorithm will require more mass and power (which will require larger solar arrays or
power-generation equipment, which will also add mass), but may alleviate other complexities.
Based on my past experience, I am generally of the opinion that relegating problems to software
(i.e. control) that could have been solved by better hardware is a bad idea, but nonetheless that is
a tradeoff that systems engineers can make. And indeed one of the objectives of control theory,
and this dissertation, is to make software more capable so that hardware can be made cheaper. In
conclusion, the tools proposed in this dissertation add to an already large set of controls tools to
which engineers can refer to potentially make different systems tradeoffs than were made in past
missions, and to find solutions for future engineering problems.
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