
Systems and Debugging Supports for Hardware Designs

by

Jiacheng Ma

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2024

Doctoral Committee:

Professor Baris Kasikci, Chair
Professor Scott Mahlke
Professor Dennis Sylvester
Professor George Tzimpragos

Jiacheng Ma

jcma@umich.edu

ORCID iD: 0000-0001-9285-422X

© Jiacheng Ma 2024

To all the loves we give and receive.

或是——
下一个春天在骸骨上茁壮地生长

风里吹来故乡的歌谣

ii

ACKNOWLEDGEMENTS

As I sit down to write these acknowledgements, I realized I was helped by a lot of people during
my PhD study. From offering academic guidance to providing emotional and financial supports,
these people have not only instilled in me the courage to step on this challenging path but also
equipped me with the essential knowledge and skills required to navigate towards its completion.

First and foremost, I would like to thank my wonderful parents, Lie Ma and Hongping Mei, for
their unwavering loves, supports, and sacrifices in every aspect of my life. Their understanding and
patience have always been my backbone, even when I made the bold decision to pursue a PhD eight
thousand miles away from home, or when I was a curious (or actually, stupid and trouble-making)
ten-year-old who accidentally (or actually, semi-intentionally) wiped the operating system of the
first computer of the family.

I would like to thank the Computer Science Engineering department of the University of Michi-
gan, the Applications Driving Architectures (ADA) Research Center, and the Processing with In-
telligent Storage and Memory (PRISM) Research Center, for their generous funding at various
stages of my PhD journey.

I would like to thank Zhengwei Qi, Yaozu Dong, Yubin Xia, Binyu Zang, and Mochi Xue,
who introduced me to the fabulous world of computer systems research during my undergrad, and
encouraged me to pursue a PhD in this field.

I would like to thank my research collaborators and coauthors, particularly Andrew Quinn,
Freddy Gabbay, Yanqiang Liu, and Majd Ganaiem, for their invaluable guidance and insightful
feedback. Their expertise has significantly enriched my research experience. I share the same
gratitude for Sanjay Kumar, Marcos Aguilera, Irina Calciu, and Dimin Niu, who mentored my
internships at Intel, VMware, and Alibaba, respectively.

I thank my fellow PhD students and postdoc at Efeslab: Gefei Zuo, Tanvir Ahmed Khan, Kevin
Loughlin, Ian Neal, Andrew Loveless, Marina Minkin, Andrew Quinn, and Shuwen Deng. It has
been an honor and a privilege to be part of the team and to share an office space with these great
people over the past few years. Without the wisdom and inner power of these people, I would not
have survived the PhD (a.k.a., Permanent Head Damage) study.

Similarly, I would like to thank the undergraduate, master, and PhD students I mentored or
worked close with during my PhD: Xiaohe Cheng, Abel Mulugeta Eneyew, Haoyang Zhang, Wen-
tao Zhang, Yin Yuan, Yiwei Yang, Maddie Burbage, Rachel McAmis, and Theo Gregersen.

iii

I next thank my dissertation committee—Dennis Sylvester, Scott Mahlke, George Tzimpragos,
and my advisor, Baris Kasikci—for serving as committee members. Their insightful feedback and
help are fundamentally important in the formation of this dissertation.

I am deeply grateful to Shibo Chen, Yunjie Pan, Shiyu Ding, Gefei Zuo, Yinlan Shao, and H1.
These people brought a lot of fun to my life, and their wonderful friendship and mental support
have been critical in maintaining my sanity above a crucial threshold throughout my PhD. I also
thank other close friends—Yuwei Bao, Shuyang Cao, Xuefei Chen, Tianji Cong, Juechu Dong,
Zekun Fan, Yan Ge, Yufeng Gu, Bowen Huang, Xinyi Ju, Jinyang Li, Yaxuan Li, Zun Li, Yin
Lin, Yanqiang Liu, Bo Peng, Dandan Shan, Jiachen Sun, Shengpu Tang, Elisa Tsai, Yongyi Yang,
Jialu Zhang, Xumiao Zhang, Yiwen Zhang, Nuda Zhang, Haizhong Zheng, Jiong Zhu, and Jiayun
Zou—for the same reason.

Additionally, I would like to thank members of the “Have You Soloed Today” pilot group,
especially Haoran Shi and Jianping Shen. Their special friendship, fostered 5,000 feet above the
ground, has been a unique and cherished part of my life.

Finally, I would like to thank my amazing PhD advisor, Baris Kasikci, for his guidance and
support throughout my PhD. Baris has been instrumental not only in teaching me how to identify
good research directions and conduct cool research, but also in imparting valuable life lessons on
how to be a better person. I feel incredibly fortunate and honored to have been among the first batch
of students in his research group, which is an experience that has indelibly shaped my academic
and personal growth.

1This person has chosen to remain anonymous in these acknowledgements.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . ix

ABSTRACT . x

CHAPTER

1 Introduction . 1

1.1 Software-like Hardware Development and Deployment 2
1.2 Systems and Debugging Supports for Hardware Designs 3

1.2.1 Building and Improving Systems for FPGAs 4
1.2.2 Understanding and Finding Hardware Bugs 4

1.3 Road-map . 6

2 A Hypervisor for Shared-Memory FPGA Platforms 7

2.1 Introduction . 7
2.2 Background . 9

2.2.1 FPGA Programming Models . 10
2.2.2 FPGA Virtualization . 11

2.3 Goals and Challenges . 12
2.4 Design . 13

2.4.1 Hardware Monitor . 15
2.4.2 Preemption Interface . 17
2.4.3 Userspace API . 18

2.5 Implementation . 19
2.6 Evaluation . 22

2.6.1 Experimental Setup . 22
2.6.2 FPGA Resource Utilization . 24
2.6.3 Performance Overhead . 25
2.6.4 Scalability of Spatial Multiplexing . 26
2.6.5 Benefit of Using Huge Pages . 29

v

2.6.6 Scalability of Temporal Multiplexing 29
2.6.7 Fairness of Spatial Multiplexing . 31
2.6.8 Fairness of Temporal Multiplexing . 32

2.7 Discussion . 32
2.7.1 OPTIMUS vs. AMORPHOS . 32
2.7.2 Key Takeaways . 33

2.8 Related Work . 33
2.9 Conclusion . 35

3 Debugging in the Brave New World of Reconfigurable Hardware 36

3.1 Introduction . 36
3.2 Background . 39

3.2.1 Languages for Hardware Programming 39
3.2.2 FPGA Debugging Stages . 39
3.2.3 FPGA Programming Techniques and Constructs 39

3.3 Study of Bugs in FPGA Designs . 41
3.3.1 Bug Classification . 42
3.3.2 Data Mis-Access Bugs . 43
3.3.3 Communication Bugs . 46
3.3.4 Semantic Bugs . 49

3.4 Design of FPGA Debugging Tools . 51
3.4.1 SignalCat for Unified Logging . 52
3.4.2 FSM Monitor for State Machine Traces 53
3.4.3 Dependency Monitor for Provenance Tracking 53
3.4.4 Statistics Monitor for Counting Events-of-Interest 54
3.4.5 LossCheck for Precise Data Loss Localization 54

3.5 Implementation . 58
3.6 Evaluation . 59

3.6.1 Testbed of Reproducible FPGA Bugs 59
3.6.2 Experimental Setup . 60
3.6.3 Effectiveness of Debugging Tools . 61
3.6.4 Efficiency of Debugging Tools . 63

3.7 Related Work . 64
3.8 Conclusion . 66

4 Proactive Runtime Detection of Aging-Related Silent Data Corruptions: A Bottom-
Up Approach . 67

4.1 Introduction . 67
4.2 Background and Motivation . 69

4.2.1 Silent Data Corruptions . 69
4.2.2 Hardware Development . 70
4.2.3 Transistor Aging . 71

4.3 Design of the Vega Workflow . 73
4.3.1 Preparation for the Workflow . 74
4.3.2 Aging Analysis . 75

vi

4.3.3 Error Lifting . 77
4.3.4 Test Integration . 82

4.4 Implementation . 83
4.5 Evaluation . 83

4.5.1 Experimental Setup . 84
4.5.2 Effectiveness of Vega . 84
4.5.3 Efficiency of Vega . 87

4.6 Related Work . 88
4.7 Conclusions . 89

5 Conclusion and Future Work . 90

5.1 Extending Systems Supports for FPGAs . 91
5.2 Exploring More Debugging Tools for Hardware Designs 91
5.3 Enhancing the Detection of Unreliable Hardware 92

BIBLIOGRAPHY . 94

vii

LIST OF FIGURES

FIGURE

2.1 Graph processing time using the SSSP algorithm. 11
2.2 OPTIMUS design overview . 14
2.3 An example OPTIMUS FPGA architecture . 15
2.4 Performance overhead compared to pass-through . 26
2.5 Average memory access latency of LinkedList . 27
2.6 Aggregate throughput of MemBench . 28
2.7 Aggregate throughput of real-world applications . 30
2.8 Aggregate throughput with preemptive temporal multiplexing 31

3.1 An example FSM . 40
3.2 Resource overhead of manual debugging using SignalCat and the monitors 62
3.3 LossCheck’s overhead . 64

4.1 The setup and hold windows of a clock edge. Signals should arrive at its destination
flip-flop before 1 and hold stable until 2 . 72

4.2 Overview of Vega’s workflow, comprising three key phases: Aging Analysis, Error
Lifting, and Test Integration. Each step in the workflow is outlined with a black box,
with the inputs enclosed in gray boxes and the outputs in red boxes. 73

4.3 The netlist associated with Listing 2. Components used for timing correction (e.g.,
clock buffers) are excluded. 75

4.4 The switching delay degradation of a 28nm XOR cell under different levels of SP over
a 10-year period. 77

4.5 Failure model for a setup violation in the path $4 → $7 → $8 → $10, with red
highlighting the failing path and green indicating the instrumented cells. Unrelated
signals are omitted for clarity. 78

4.6 Failure model for hold violation path $1→ $5→ $9. 78
4.7 The netlist instrumented with the shadow replica (in gray) and the failure model (in

green). 79
4.8 Performance overhead of the EEMBC benchmark set with Vega’s Profile-Guided Test

Integration. The “-M” and “-N” labels indicate that only the test cases generated with
and without the mitigation technique are enabled, respectively. 87

viii

LIST OF TABLES

TABLE

2.1 The benchmarks used to evaluate OPTIMUS . 23
2.2 Breakdown of FPGA resource utilization by component 25
2.3 Throughput range among eight homogeneous physical accelerators 30
2.4 MemBench’s throughput when co-located with a second active accelerator 30

3.1 The result of our bug classification . 41
3.2 The testbed of reproducible bugs . 60
3.3 The testbed of reproducible bugs . 61

4.1 An SP profile associated with the netlist in Figure 4.3. 76
4.2 An example trace that provokes the instrumented failure in Figure 4.7. o[1] and

o s[1] mismatch at cycle 3. 81
4.3 STA Result with Aging-Aware Timing Libraries. 85
4.4 Result of Test Case Construction. “S” denotes the successful construction of a test

case; “UR” indicates that the formal verification tool proves that the failing path can-
not cause an actual error; “FF” indicates a timeout occurred in the formal verification
tool; “FC” indicates a waveform is generated while Vega fails to convert it to a test case. 86

4.5 The quantity of test cases generated and the number of CPU cycles required for their
execution. 86

4.6 The quality of the generated test cases measured by their ability to detect failures.
“FM” refers to the failure mode used in the experiment; “Det.” indicates the failures
that are detectable by one of the test cases; “B” represents the failures detected by a
test case that executed before the test case designed to detect it; “L” represents the
failures that are not detected by their corresponding test case, but are identified by
later test case; “S” indicates cases where the failure results in the CPU becoming stuck. 87

ix

ABSTRACT

The development and deployment of hardware and software have traditionally been quite distinct.
Software benefits from an agile development cycle, aided by a wide array of debugging tools—
such as step-wise debuggers, logging frameworks, and both static and dynamic analyses—and is
further simplified by its integration with multiple layers of systems—such as hypervisors, operating
systems, and libraries. Unfortunately, such debugging and systems supports are less explored and
usually not available in the hardware domain.

This dissertation envisions that by integrating software-like systems and debugging supports
into the hardware domain, the development and deployment of hardware can be markedly im-
proved, thereby aligning them more closely with software practices. Accordingly, this dissertation
conducts preliminary explorations in designing and developing such supports tailored for differ-
ent hardware designs including those based on Field-Programmable Gate Arrays (FPGAs) and
Application-Specific Integrated Circuits (ASICs). Specifically, it presents three studies and sys-
tems that demonstrate the feasibility and benefits of these supports.

First, this dissertation introduces OPTIMUS, the first hypervisor designed for shared-memory
FPGA platforms. OPTIMUS incorporates both spatial and temporal multiplexing, enabling a cloud
FPGA to be shared among different virtual machines in various manners. This sharing can be
achieved either by partitioning the FPGA’s area or by allocating specific time slots for its use, thus
facilitating versatile and efficient resource utilization in a cloud environment. Moreover, OPTIMUS

scales linearly and can enhance the aggregated performance of applications running in different
virtual machines until the memory bandwidth of the FPGA platform reaches its limit.

Second, this dissertation conducts initial investigations into the debugging supports for FPGA-
based hardware designs. It includes a comprehensive study of bugs commonly encountered in such
platforms, and offers a testbed of 20 hardware bugs that can be easily reproduced in a push-bottom
manner. Based on this study and the testbed, the dissertation also proposes a suite of specialized
debugging tools designed to assist in the localization of these bugs.

The final part of this dissertation addresses the challenge of aging-related silent data corruptions
(SDCs) that are increasingly observed in data centers. It introduces Vega, a bottom-up approach
that constructs concise and effective tests for the detection of aging-related SDCs by examining
the hardware’s implementation details. To construct such tests, Vega identifies aging-prone signal

x

propagation paths using a model for transistor aging, and then lifts these paths into software-
executable test cases using a combination of formal methods and heuristics. Finally, Vega inte-
grates the generated tests into applications, therefore allowing aging-related SDCs to be efficiently
and effectively identified at application runtime.

xi

CHAPTER 1

Introduction

The development cycles and deployment approaches of hardware and software have traditionally
been quite distinct, reflecting the inherent differences between these two domains. Software
benefits from its ability to receive post-deployment patches, resulting in an agile development
cycle [59, 87, 124]. Initially, an application is developed and deployed. If any bugs emerge after the
deployment, developers fix these bugs by applying patches to the deployed application. To address
these bugs, developers may employ a wide variety of tools, including step-wise debuggers [255, 1],
logging frameworks [2, 3, 210], and static and dynamic analyses [107, 125, 82, 242, 243, 245,
238]. In addition, software applications are usually deployed on top of layers of systems, such as
hypervisors [181, 86], operating systems [4, 5, 6], language runtimes [7, 8, 9], and libraries [215,
189, 10, 141]. These systems encapsulate the intricate lower-level implementation details, thereby
simplifying the development, testing, debugging, and deployment of software applications.

In contrast with the rich set of systems and debugging supports available for software applications,
such supports have been relatively less explored in the hardware domain. This phenomenon can be
attributed to the inherent nature of hardware designs. Traditionally, a hardware design is synthesized
into gates and wires, ultimately being fabricated in a chip factory. As chip fabrication costs are
typically determined by the silicon area occupied by the hardware design, hardware designs often
omit systems supports in order to minimize the area usage. Moreover, because bugs that are found
after fabrication are extremely costly to fix, traditional hardware development embraces extensive
simulation [57, 237, 252, 277, 226, 108] and formal verification [278, 298, 163, 199, 147, 236, 235],
striving to reduce the number of bugs prior to fabrication.

However, over the past few years, a noticeable trend has emerged where hardware development
and deployment are increasingly aligning with their software counterparts. This shift can be
attributed to various factors, including the widespread adoption of reconfigurable hardware and the
growing concerns regarding transistor reliability issues. These changes underscore a growing need
to enhance the current methodologies for the development and deployment of hardware designs.

The vision of this dissertation is that by adopting and integrating software-like systems and

debugging supports in the hardware domain, the development and deployment of hardware can

1

be significantly improved and become more aligned to their software counterparts. To pursue this
vision, this dissertation conducts preliminary explorations into the design space of such supports
for different hardware designs. It details three projects, each targeting a different aspect of this
emerging field, collectively demonstrating the feasibility and benefits of introducing software-like
systems and debugging supports to the hardware domain.

In the remainder of this chapter, we first discuss the reasons that cause the new trend (§1.1),
and then introduce each of the three projects (§1.2). Finally, we give a roadmap that outlines the
structure and content of the rest of this dissertation (§1.3).

1.1 Software-like Hardware Development and Deployment

The trend of software-like hardware development and deployment can be traced to various factors,
including the emerging of reconfigurable hardware, the significant involvement of software compa-
nies in hardware development, the increasing adoption of abstractions, and the growing impact of
transistor reliability issues that lead to post-deployment bugs with modern technology nodes.

The Emerging of Reconfigurable Hardware Reconfigurable hardware, such as a Field Pro-
grammable Gate Array (FPGA), is becoming increasingly prominent in modern heterogeneous
computer systems. FPGAs allow users to deploy (and redeploy) customized hardware designs, thus
significantly accelerating their workloads. As the set of workloads changes over time, users can re-
configure their FPGAs into different designs, making FPGAs a cost-effective and flexible alternative
to fabricating customized chips (i.e., ASICs). Consequently, cloud providers are integrating FPGAs
into their data centers [66, 64] and implementing specialized hardware designs for a wide variety of
workloads, such as machine learning [247, 248, 300, 293, 202, 299, 178], compression [232, 297],
database operations [222, 240, 250], and networking [128, 269, 94].

With the emerging of FPGAs, hardware can now be deployed like software, as the reconfigurable
nature of FPGAs empowers developers to patch hardware bugs. Thus, FPGA developers are moving
towards a faster, software-like development cycle and adopting more agile development approaches
that accelerate time-to-market by relaxing the traditional, extensive simulation in favor of lightweight
simulation and on-FPGA testing. For example, Microsoft has adopted a software-like methodology
for FPGA development, in which they perform relatively small amounts of simulation-based testing
compared to traditional hardware [128].

The Increasing Involvement of Software and Cloud Companies In recent years, we have
observed companies traditionally known for their software or cloud services actively engaging in
hardware development. For example, Google designed TPU (tensor processing unit) [165, 166] and

2

VPU (video coding unit) [234] to improve the performance of specific workloads. Similarly, Alibaba
designed its own processors, tailored for both data center and edge computing applications [103, 11].
These companies are adopting more aggressive and agile methodologies in terms of hardware
development, debugging, and testing, drawing inspiration from their roots in software development.

The Adoption of Abstractions In order to further improve time-to-market efficiency, developers
are increasingly adopting multiple levels of abstraction—including the use of high-level synthesis
(HLS) and abstractions for various on-FPGA resources—to ease the development process. Typically
provided by FPGA vendors, these abstractions offer simplified interfaces. For example, both Intel
(Altera) and AMD (Xilinx) provide well-abstracted interfaces to their complex DMA (direct memory
access) [12, 284] stacks on their FPGAs, as well as HLS supports that allow hardware development
in software programming languages [152, 286]. This trend even extends to ASICs. For example,
Google employs HLS to speed up the design process of their video transcoding ASICs [234].

These abstractions not only simplify hardware development but also blur the boundary be-
tween software and hardware, thereby aligning hardware development more closely with software
development methodologies.

The Growing Impact of Transistor Reliability Issues While FPGA developers purposefully
embrace an agile development cycle that leads to more bugs in production, ASIC developers are
encountering a new challenge posed by post-fabrication errors. As semiconductor fabrication scales
to smaller nodes, reliability issues such as transistor aging effects are becoming more widespread
due to the reduced gate size and the increased transistor density [203, 36], eventually causing
post-fabrication bugs that are difficult to detect.

Recently, data center operators have begun to observe such bugs in a small fraction of their
deployed CPUs. These issues manifest as silent data corruptions (SDCs) [145, 121, 271, 122,
244, 84, 120], which are particularly problematic because they often go unnoticed until causing
significant damage. Consequently, there is an increasing demand for debugging supports that can
effectively detect and prevent these bugs after the hardware is deployed.

1.2 Systems and Debugging Supports for Hardware Designs

In this section, we introduce the three projects undertaken in the dissertation study. In these projects,
we conduct comprehensive studies—that help us understand the nature of hardware designs, the
taxonomy of hardware bugs, and the challenges encountered by hardware developers—and build a
set of software-like systems and debugging tools for hardware designs.

3

Below, we elaborate on the aforementioned projects, organizing them into two categories: (1)
how we build and improve the systems support for FPGAs (§1.2.1), and (2) how we understand
hardware bugs and build tools to detect and localize these bugs (§1.2.2).

1.2.1 Building and Improving Systems for FPGAs

In the first part of this dissertation, we present our attempt to build better systems supports for
hardware. Specifically, we showcase a hypervisor that we build for an emerging type of FPGA
platform —namely shared-memory FPGAs—that is getting increasingly popular in the cloud.

OPTIMUS—Virtualizing a Shared-Memory FPGA Platforms Cloud providers widely deploy
FPGAs as application-specific accelerators for customer use. These providers seek to multiplex
their FPGAs among customers via virtualization, thereby reducing running costs. Unfortunately,
most virtualization support is confined to FPGAs that expose a restrictive, host-centric programming
model in which accelerators cannot issue direct memory accesses (DMAs). The host-centric model
incurs high runtime overhead for workloads that exhibit pointer chasing. Thus, FPGAs are beginning
to support a shared-memory programming model in which accelerators can issue DMAs. However,
virtualization support for shared-memory FPGAs is limited.

This project presents OPTIMUS, the first hypervisor that supports scalable shared-memory FPGA
virtualization. OPTIMUS offers both spatial multiplexing and temporal multiplexing to provide
efficient and flexible sharing of each accelerator on an FPGA. To share the FPGA-CPU interconnect
at a high clock frequency, OPTIMUS implements a multiplexer tree. To isolate each guest’s address
space, OPTIMUS introduces the technique of page table slicing as a hardware-software co-design. To
support preemptive temporal multiplexing, OPTIMUS provides an accelerator preemption interface.
We show that OPTIMUS supports 8 physical accelerators on a single FPGA and improves the
aggregate throughput of twelve real-world benchmarks by 1.98x-7x.

1.2.2 Understanding and Finding Hardware Bugs

In the second part of this dissertation, we dive into the bugs in various hardware designs. Addi-
tionally, we develop novel debugging tools crafted to detect and localize these issues. Specifically,
we study two sets of bugs. First, we focus on functional bugs on FPGA platforms that originate
from errors made by hardware developers in hardware description languages (HDLs). Second, we
explore silent data corruptions (SDCs) that manifest as a result of transistor aging, even within
hardware that is correctly designed.

4

Understanding and Localizing Functional Bugs on FPGAs Hardware development and deploy-
ment are increasingly aligning with their software counterparts, thanks to the emerging of FPGAs.
FPGAs allow post-deployment patches like software, enabling hardware developers to fix bugs that
occur during on-chip testing and even in production. Unfortunately, FPGA programmers lack bug
localization tools amenable to this rapid development cycle, since past tools mainly find bugs via
simulation and verification. To develop hardware bug localization tools for a rapid development
cycle, a thorough understanding of the symptoms, root causes, and fixes of hardware bugs is needed.

In this project, we first study bugs in existing FPGA designs and produce a testbed of reliably
reproducible bugs. We classify the bugs according to their intrinsic properties, symptoms, and root
causes. We demonstrate that many hardware bugs are comparable to software bug counterparts, and
would benefit from similar techniques for bug diagnosis and repair. Based on our findings, we build
a novel collection of hybrid static/dynamic program analysis and monitoring tools for debugging
FPGA designs, showing that our tools enable a software-like development cycle by effectively
reducing developers’ manual efforts for bug localization.

Vega—Detecting Aging-Related SDCs at Application Runtime Recent advancements in semi-
conductor process technologies have unveiled the susceptibility of hardware circuits to reliability
issues, especially those related to transistor aging. Transistor aging gradually degrades gate per-
formance, eventually causing the hardware to behave incorrectly. Such misbehaving hardware can
result in SDCs in software—a type of failure that comes without logs or exceptions, but causes
miscomputing instructions, bitflips, and broken cache coherency. Alas, while design efforts can
be made to mitigate transistor aging, complete elimination of this problem during design and
fabrication cannot be guaranteed. This emerging challenge calls for a mechanism that not only
detects potentially aged hardware in the field, but also triggers software mitigations at application
runtime.

In this project, we propose Vega, a novel workflow that allows efficient detection of aging-related
failures at software runtime. Vega leverages the well-studied gate-level modeling of aging effects
to identify susceptible signal propagation paths that could fail due to transistor aging. It then
utilizes formal verification techniques to generate short test cases that activate these paths and
detect any failure within them. Vega integrates the test cases into a user application by directly
fusing them together, or by packaging the test cases into a library that the application can invoke.
We demonstrate our proposed techniques on the arithmetic logic unit and floating-point unit of a
RISC-V CPU. We show that Vega generates effective test cases and integrates them into applications
with an average of 0.8% performance overhead.

5

1.3 Road-map

In the subsequent chapters of this thesis, we provide details on the three projects regarding the
systems and debugging supports for hardware designs. Chapter 2 is dedicated to detailing OPTIMUS,
our proposed hypervisor designed for shared-memory FPGA platforms. Following this, Chapter 3
conducts a study of functional bugs in FPGAs and introduces the debugging tools developed to
address these issues. In Chapter 4, we introduce Vega, a novel workflow that we have developed,
aimed at detecting aging-related silent data corruptions in software runtime. Finally, we conclude
and present possible future research directions in Chapter 5.

6

CHAPTER 2

A Hypervisor for Shared-Memory FPGA Platforms

2.1 Introduction

Field Programmable Gate Arrays (FPGAs) allow users to significantly accelerate custom workloads,
including those of machine learning [247, 246, 300, 293, 250], compression [231], scientific
computing [139], database operations [250, 222], and graph analytics [78, 302]. As the set of data
center workloads changes over time, cloud providers can reconfigure their FPGAs into different
accelerators, making FPGAs a cost-effective and flexible alternative to ASICs [251, 101].

Considering the high non-recurring engineering cost [177] of hardware design and the fact that
most cloud application developers are software programmers, cloud providers such as Amazon and
Microsoft configure their FPGAs into popular accelerators, which the providers then make available
for customer use [66, 214].

As with other hardware devices, cloud providers desire the ability to multiplex their FPGAs
among different customers via virtualization, thereby increasing resource utilization and return
on investment (ROI) [176, 264]. Although multi-tenant FPGA hypervisors and operating systems
exist [183, 272, 96, 273, 104, 176, 296, 126, 267, 223, 225], these solutions are restricted to FPGA
platforms that expose a host-centric programming model, as opposed to a shared-memory model.

The key difference between host-centric and shared-memory FPGA programming models is
whether or not accelerators can issue direct memory accesses (DMAs, via which an I/O device
obtains data from system memory). In host-centric models, the host issues all DMAs via a
CPU-configured DMA engine, which passes the accessed data to the necessary accelerator; the
accelerators themselves cannot issue DMAs. Most FPGA manufacturers [283, 67, 260] adopt this
programming model. Unfortunately, the host-centric model cannot efficiently support applications
that exhibit pointer chasing (e.g., graph processing [275] and database acceleration [250]), as such
applications require repeated communication between the CPU and FPGA to coordinate each
DMA. In particular, the software programmer must either 1) initiate multiple data transmissions
separately and sequentially, or 2) marshal the data every time before transmission, both of which

7

hurt performance.
To overcome the performance penalties of the host-centric programming model, emerging

FPGAs are alternatively exposing a lighter, more flexible shared-memory programming model [256,
153, 150, 77]. Under this new model, each accelerator can issue its own DMAs and shares an address
space with a process on the CPU. The CPU is merely responsible for providing the accelerator with
a pointer to its initial input data. Upon receiving the pointer, the accelerator can issue the initial and
subsequent DMAs without CPU intervention. As we demonstrate in §2.2.1, the shared-memory
model can outperform the host-centric model by 37%–85% in a virtualized environment.

Unfortunately, virtualizing system memory on shared-memory FPGA platforms is challenging.
In particular, because both the CPU and FPGA can directly access system memory, virtualization so-
lutions must provide consistent views to applications on the CPU and accelerators on the FPGA. For
instance, if a software process updates a page’s data/metadata, these changes must be immediately
visible to its corresponding accelerator, and vice-versa.

Furthermore, while SR-IOV [191] (i.e., hardware-assisted IO virtualization) provides a method
of isolating virtual DMAs on PCIe links, shared-memory platforms can expose an interface that
encapsulates both a PCIe link and a UPI link (e.g., Intel HARP [150]). Thus, on such platforms,
SR-IOV does not provide a comprehensive solution to virtual DMA isolation. Additionally, for
the past five years, shared-memory platforms have been unable to support more than one VF per
FPGA [153, 150], limiting SR-IOV’s scalability on these platforms.

In this chapter, we introduce OPTIMUS, the first scalable hypervisor that virtualizes shared-
memory FPGAs. Deployed by cloud providers, OPTIMUS can configure a single FPGA into
well-isolated accelerators, simultaneously accelerating a variety of jobs and improving resource
utilization.

OPTIMUS targets a use case in which cloud providers configure FPGAs as a set of popular
accelerators for their customers (e.g., the accelerator libraries/registries of Amazon F1 [66] and
others [176, 104]). Notably, OPTIMUS does not aim to virtualize an FPGA’s reconfiguration capa-
bilities, opting instead to schedule VMs on FPGAs pre-configured with the necessary accelerator(s).
Such a model is desirable in a cloud setting, as it 1) avoids the high performance overheads—and
therefore, revenue losses—of reconfiguration during accelerator context switches, and 2) still allows
cloud providers to reconfigure their physical FPGAs as customer needs change over time.

OPTIMUS virtualizes shared-memory FPGAs via a composition of spatial multiplexing and
temporal multiplexing. Spatial multiplexing partitions the physical FPGA into multiple accelerators
that can be individually controlled by different VMs [104, 96, 126, 273, 184, 176, 267]. Temporal

multiplexing then oversubscribes these accelerators—multiple VMs take turns running atop a
fixed-configuration accelerator [272, 101]. To support temporal multiplexing, OPTIMUS offers a
preemption interface for accelerator design, such that it can instruct virtual accelerators to swap

8

their state to/from system memory on a context switch.
OPTIMUS is implemented atop Intel Skylake HARP [150], but its design can be generalized to

different shared-memory FPGA platforms. OPTIMUS efficiently overcomes the DMA isolation
limitations of existing shared-memory FPGAs with a virtualization technique called page table

slicing. Page table slicing is inspired by prior software-only techniques on isolating DMAs [262,
280], but is instead implemented as a generic hardware-software co-design to provide virtualization
independent of specific accelerator configurations. Using page table slicing, OPTIMUS configures
the FPGA to include a hardware monitor, which assists in partitioning a single IO page table among
all guests without incurring IO page table context switching overhead.

OPTIMUS spatially multiplexes up to eight unique physical accelerators and improves the aggre-
gate throughput of twelve real-world benchmark workloads by 1.98x-7x. Additionally, OPTIMUS’s
hardware monitor occupies less than 7% of FPGA resources. Finally, OPTIMUS stringently enforces
real-time bandwidth sharing policies for both spatially- and temporally-multiplexed accelerators.

In summary, this chapter makes the following contributions:

• We design OPTIMUS, the first scalable hypervisor to offer virtualization support for shared-
memory FPGAs, using both spatial multiplexing and temporal multiplexing to provide
efficient, fair, and flexible sharing of individual accelerators on an FPGA.

• We introduce a hardware-software co-design for IO virtualization—page table slicing—that
isolates each virtual accelerator’s DMAs via a combination of hypervisor and on-FPGA
support.

• We provide an interface to support the inclusion of preemption capabilities in accelerator
design.

A version of this work was previously published in the proceedings of the 25th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS’20) [207].

2.2 Background

Field Programmable Gate Arrays (FPGAs) are chips that can be configured (and reconfigured) into
custom circuits (e.g., accelerators). FPGA developers often use hardware description languages
such as Verilog [261] and VHDL [90] to describe their circuit designs. A synthesizer program
translates these designs into native FPGA bitstreams (i.e., binaries).

In the rest of this section, we give detailed background on FPGA programming models as well
as FPGA virtualization. We focus on FPGAs designed to be used as accelerators.

9

2.2.1 FPGA Programming Models

The software interface (i.e., programming model) for an FPGA is determined via a reserved portion
of the FPGA called a shell, often provided by the manufacturer. The shell is responsible for sending,
receiving, and processing I/O packets (such as those from the CPU, network, system memory,
etc.), and generally presents one of two programming models to system software: host-centric or
shared-memory. In both of these models, the shell exposes a memory-mapped IO (MMIO) control
plane for software to manage the accelerator. The key difference between these models is whether
accelerators can issue their own direct memory accesses (DMAs).

In the more widespread host-centric model, the accelerators are unaware of the system memory
map and thus cannot issue DMAs. Instead, the CPU configures a DMA engine to transfer data from
system memory to the accelerators. The host-centric model yields simpler hardware, as accelerator
architects need not add DMA logic to their designs, instead relying on software programmers to
manage DMAs.

However, the host-centric model incurs the latency of repeated communication between the CPU
and accelerators for applications that exhibit pointer chasing. Specifically, the CPU must repeatedly
configure the DMA engine to fetch new data for each accelerator. While scatter-gather DMA
engines [283] can alleviate the penalty of certain non-contiguous access patterns (e.g., those where
the sequence of DMA addresses is known prior to accelerator execution), they cannot alleviate the
penalty of pointer chasing, as the sequence of DMA addresses is determined during accelerator
execution.

In the emerging shared-memory model (e.g., that of Intel HARP [150]), each accelerator is
cognizant of the system memory map and can issue its own DMAs. Therefore, shared-memory
accelerators can engage in pointer chasing without interrupting the host to issue subsequent DMAs,
avoiding the latency of host-centric platforms for such applications.

We use a graph processing application that uses the single source shortest path (SSSP) algo-
rithm [302] to demonstrate the benefits of the shared-memory programming model. The algorithm
needs to iteratively access a non-contiguous set of vertices and edges, thereby emulating the behavior
of pointer chasing in the absence of scatter-gather DMA support (i.e., on our evaluation platform).

We implement this algorithm on Intel HARP, under the original shared-memory interface and
a host-centric interface. Figure 2.1 shows the processing time of the algorithm on a set of graphs
with 800K vertices and an increasing number of edges. “Host-Centric+Config” indicates that the
host-centric FPGA’s DMA engine has been configured to fetch each individual data segment, while
“Host-Centric+Copy” indicates that the host copies all data segments to a contiguous buffer before
invoking the DMA engine. As shown, the shared-memory implementation is 17%–60% faster
than that of the host-centric. The benefit of the shared-memory model is even more striking in a
virtualized environment (37%–85% faster execution), where control plane operations become more

10

3.2M 6.4M 12.8M 25.6M 51.2M
Number of Edges

0

2

4

6

8

10

12

Pr
oc

es
si

ng
 T

im
e

(s
)

Shared-Memory
Host-Centric+Config
Host-Centric+Copy
Shared-Memory (Virtualized)
Host-Centric+Config (Virtualized)
Host-Centric+Copy (Virtualized)

Figure 2.1: Graph processing time using the SSSP algorithm.

expensive due to hypervisor trap-and-emulate. In sum, the DMA capabilities of shared-memory
accelerators allow workloads to engage in pointer chasing without CPU involvement, reducing
communication costs and improving performance.

2.2.2 FPGA Virtualization

The accelerators on an FPGA can be multiplexed spatially [176, 104, 273, 223, 225, 96, 267] and
temporally [176, 272, 290, 104, 223, 225]. Spatial multiplexing allows different accelerator config-
urations to simultaneously occupy the same FPGA. Temporal multiplexing allows each individual
accelerator configuration on an FPGA to be shared by multiple VMs. Temporal multiplexing can ei-
ther be non-preemptive (i.e., run-to-completion) [272] or preemptive (i.e., pause-and-resume) [176].

To virtualize an FPGA, each virtual accelerator’s on-FPGA resources as well as IO channels must
be isolated [176]. The FPGA synthesizer handles most on-FPGA resource isolation. Specifically,
the synthesizer ensures that each accelerator on a spatially-multiplexed FPGA is provisioned a
distinct portion of device resources. If a physical accelerator is additionally overprovisioned via
preemptive temporal multiplexing, accelerator designs must include support for saving and restoring
their execution states upon preemption.

As for IO channels, FPGAs utilize both an MMIO control plane and a DMA data plane. Since
software initiates all MMIO accesses in both the host-centric and shared-memory programming
models, a hypervisor can easily virtualize guest access to MMIO registers via trap-and-emulate. In
the host-centric model, software also initiates all DMAs, meaning host-centric DMAs can also be
virtualized via trap-and-emulate [104] or paravirtualization [272].

However, in the shared-memory model, accelerators issue their own DMAs without software
intervention, posing a problem for DMA virtualization. The traditional virtualization solution for

11

DMA-capable IO devices has been a combination of SR-IOV [191] and PASID [154]. With SR-IOV,
the IO memory management unit (IOMMU) provides a unique IO page table for each virtual device,
thereby allowing the hypervisor to install unique address mappings that are enforced by the IOMMU
at the time of DMA for each guest. With PASID, the IOMMU uses a CPU page table to translate
DMAs, thereby allowing IO devices to directly access a process’s address space. Each DMA is
tagged with a process identifier, which the CPU uses to select the correct page table.

Unfortunately, the applicability of these techniques to shared-memory platforms is currently
limited for two reasons. First, SR-IOV and PASID only virtualize PCIe links. Thus, on shared-
memory platforms that expose both a UPI link and a PCIe link (e.g., Intel HARP [150]), SR-IOV
and PASID cannot provide complete virtualization.

Second, the scalability of SR-IOV implementations in shared-memory FPGAs is severely limited.
Although the SR-IOV standard supports thousands of VFs [191], shared-memory FPGAs have
only supported one VF for the past five years [153, 150]. Because SR-IOV implementations are
proprietary, our knowledge of the factors restricting scalability in shared-memory FPGAs is limited.
However, certain shared-memory platforms such as Intel HARP [150] currently implement both the
SR-IOV and the (related) IOMMU as soft IP in the FPGA shell, restricting scalability as compared
to that of more resource-efficient hard IP implementations.

2.3 Goals and Challenges

OPTIMUS targets a use case in which cloud providers configure FPGAs as a set of popular ac-
celerators for their customers, avoiding the penalty of virtual accelerator reconfiguration in favor
of increased uptime [66, 176, 104]. To enable efficient and flexible sharing of accelerators on
FPGAs, OPTIMUS utilizes spatial multiplexing [176, 104, 273, 223, 225, 96, 267] to partition an
FPGA into a fixed set of accelerators, and temporal multiplexing [176, 272, 290, 104, 223, 225] to
overprovision each of these accelerators. Because OPTIMUS novelly virtualizes shared-memory
FPGAs, OPTIMUS tailors the goals of FPGA virtualization to shared-memory platforms as follows:

Programmability Unlike virtualization solutions for host-centric platforms [104, 273, 223, 96,
272, 176, 267, 225], OPTIMUS aims to share a unified virtual memory address space between
software and hardware, similar to the original HARP interface [150]. However, programmability
implies that cloud application developers should not have to deal with low-level platform details
such as memory isolation, and should instead rely on straightforward memory abstractions of unified
address spaces [200, 38, 239, 301]. Therefore, OPTIMUS must provide user-friendly abstractions
for its unified CPU and FPGA address spaces to achieve programmability.

12

Isolation While host-centric FPGA virtualization solutions focus on the isolation of on-FPGA
DRAM [104, 273, 223, 96, 272, 176, 267], OPTIMUS must consider the isolation of system memory
in the presence of accelerator DMAs. Given limited support for hardware-assisted virtualization,
OPTIMUS must provide strong DMA isolation within a single IOMMU address space.

We note that OPTIMUS assumes the synthesizer places each physical accelerator on isolated
pieces of the FPGA fabric. Additionally, OPTIMUS does not consider side channels, which are an
interesting direction for future work.

Scalability As the number of accelerators on an FPGA increases, the FPGA’s multiplexers (i.e., the
hardware components that propagate signals between the set of accelerators and the singular system
interconnect) must process data from a greater number of sources within timing constraints (e.g., a
given number of cycles). At some point, a flat multiplexer arrangement physically cannot process all
the signals under timing constraints; a multiplexer tree hierarchy must instead be used [176]. Given
that OPTIMUS targets hardware operating at higher frequencies than state-of-the-art solutions—
thereby placing tighter constraints on timing—OPTIMUS must provide a multiplexer tree by default
to achieve scalability.

Efficiency OPTIMUS must have low virtualization overhead to provide sufficient performance
to each VM. Specifically, the sum of each virtual accelerator’s bandwidth must be as close as
possible to the FPGA’s total bandwidth. Furthermore, the latency added by hypervisor and hardware
monitor execution must be minimized. Given the frequent occurrence of DMAs as compared to
MMIOs, the primary challenge is ensuring that DMAs occur with minimal overhead. Unfortunately,
traditionally-efficient DMA isolation methods such as SR-IOV and PASID do not currently provide
a comprehensive and scalable DMA virtualization solution. Therefore, OPTIMUS must synthesize
virtualization support into the FPGA to achieve the efficiency of hardware-assisted virtualization.

Fairness In line with prior work [176], OPTIMUS aims to ensure that each accelerator receives a
fair share of the FPGA’s total bandwidth. Given N spatially multiplexed physical accelerators, each
accelerator must receive at least 1/N of the total real-time bandwidth when transmitting data. In
temporal multiplexing, the physical accelerator must be assigned to each virtual accelerator for the
same amount of time.

2.4 Design

OPTIMUS follows a mediated pass-through [262] architecture in which control plane operations
are trapped by the hypervisor, while data plane operations bypass the hypervisor. Figure 2.2 shows

13

VMX VMY

OPTIMUS

Shell

HW Monitor

A0

Apps

VMs

HV

FPGA

DRAM

MMU Page Tables

IOMMU Page Table

GVA

IO
VA

HPA

HPA

A0 B0

B0A0

MMIOA MMIOB

Accelerator A Accelerator B

A0 A1

A0

A1

...

B0

A1

B0

A0

A0

A1

B0

...

A1

Figure 2.2: OPTIMUS design overview, shown with two physical accelerators for brevity. OPTIMUS

spatially multiplexes a shared-memory FPGA as physical accelerators (A and B), and temporally
multiplexes physical accelerators as virtual accelerators (A0, A1, and B0).

the high-level architecture of OPTIMUS, limited to two accelerators for brevity. OPTIMUS uses
the FPGA’s shell to configure a shared-memory FPGA as a fixed set of physical accelerators (A
and B), thereby offering spatial multiplexing. OPTIMUS can additionally expand its virtualization
scalability by temporally sharing a physical accelerator among several virtual accelerators (A0

and A1). For example, in Figure 2.2, virtual accelerator A0 is scheduled on physical accelerator A

(meaning A holds A0’s execution state), while OPTIMUS stores virtual accelerator A1’s execution
state in DRAM until re-scheduling A1 on physical accelerator A.

MMIO Control Plane OPTIMUS traps all virtual accelerator control plane operations (MMIOs)
to redirect the operations to the correct physical location. For scheduled virtual accelerators (A0 and
B0), OPTIMUS adds an offset to the trapped MMIOs in order to address the appropriate physical
accelerator, forwarding the adjusted MMIOs to the FPGA. The hardware monitor then routes each
MMIO to the appropriate physical accelerator (A or B) based on the offset MMIO address. For a
queued virtual accelerator (A1), OPTIMUS postpones the MMIO access until the virtual accelerator
is re-scheduled on a physical accelerator. The details of MMIO operations in temporal multiplexing
will be discussed in §2.4.2.

DMA Data Plane Guest applications and their accelerators interact with DRAM using virtual
addresses, which are translated to host physical addresses by the MMU and IOMMU respectively.

14

Virtualization Control Unit

Multiplexer AB

Auditor A Auditor B

Accelerator A Accelerator B

System Interconnect

O
ffset Table

R
es

et
 T

ab
le

Auditor D

Accelerator C Accelerator D

Multiplexer ABCD

Shell

Auditor C

Multiplexer CD

Figure 2.3: An example OPTIMUS FPGA architecture, with the hardware monitor components
shaded in gray. A two-level binary multiplexer tree is shown for brevity, but the multiplexer tree
arrangement is configurable.

However, the IO virtual addresses (IOVAs) used for virtual DMAs are offset versions of guest virtual
addresses (GVAs). Although the CPU can provision a separate hardware page table in the MMU
(i.e., an extended page table) for each application, only a single hardware page table is available to
the FPGA in the IOMMU. Thus, OPTIMUS must partition the single IO virtual address space among
virtual accelerators using a technique called page table slicing, where each virtual accelerator’s
DMA region begins at a unique offset within the IO virtual address space. OPTIMUS stores an offset
table within the hardware monitor to translate from guest virtual addresses to IO virtual addresses
during DMAs.

2.4.1 Hardware Monitor

Figure 2.3 shows the FPGA configuration to support OPTIMUS. The manufacturer provides the
shell, which serves as the IO interface for the FPGA. OPTIMUS uses the shell to load the cloud
provider’s desired accelerator configurations onto the FPGA. OPTIMUS also includes a hardware
monitor (shown in gray) on the FPGA.

Virtualization Control Unit OPTIMUS uses the virtualization control unit (VCU) to configure the
runtime behavior of the hardware monitor. Specifically, VCU presents an accelerator management
interface to allow OPTIMUS to configure the offset and reset tables. The offset table stores offsets
between guest virtual addresses and IO virtual addresses for each accelerator (necessary to support
page table slicing). The reset table is used to specify the reset signal for each accelerator, thus
enabling OPTIMUS to reset individual accelerators to clear state for isolation purposes on a VM

15

context switch.
OPTIMUS reserves a special region of MMIO for communication with VCU. If the incoming

packets fall in this range, the virtual control unit intercepts the packets to configure the hardware
monitor. Otherwise, VCU forwards the packets to the multiplexer tree.

Multiplexer Tree The multiplexer tree is responsible for propagating input packets from the
shell to each accelerator, and transmitting output packets from each accelerator to the shell. Each
multiplexer in the multiplexer tree operates on a round robin scheduling policy, thereby ensuring
equal bandwidth for each accelerator on the same path through the multiplexer tree (and thus, fair
real-time bandwidth sharing as mentioned in §2.3). However, if cloud providers seek to provide
greater bandwidth to some accelerator A, the multiplexer tree can be configured to place fewer
accelerators under the multiplexers on A’s path.

Auditors Unlike AXI or Avalon interconnects [281, 157], the multiplexer tree does not make
routing decisions based on the accessed address. Instead, the multiplexer tree propagates packets to
a set of auditors (one per physical accelerator), where each auditor determines whether incoming
packets are intended for its associated accelerator. This lazy packet routing (i.e., waiting until the
packets arrive at the auditor to make routing decisions) results in simpler circuitry than eager packet
routing (i.e., including routing logic within the multiplexer tree).

If the incoming packet is an MMIO, the auditor checks that the MMIO offset falls within the
accelerator’s MMIO range. If so, the auditor forwards the packet to its associated accelerator. If not,
the packet is discarded.

If the incoming packet contains DMA data, the auditor must determine if the packet is a response
to a DMA that the accelerator initiated. When an accelerator wishes to perform a DMA, the auditor
tags the outgoing packet with an accelerator ID, which is preserved in the response packet. Thus,
an auditor can verify if a DMA packet is intended for its accelerator by checking the packet’s
accelerator ID field. If so, the packet is forwarded to the accelerator. If not, the packet is discarded.

Page Table Slicing For simplicity, guest applications and their virtual accelerators would both
access memory using guest virtual addresses, which would ultimately be translated to host physical
addresses by the MMU and IOMMU respectively. However, given the limitation of a single IO
virtual address space, the guest virtual addresses of different applications would conflict if used
as keys in the IO page table. To isolate guest memory, OPTIMUS introduces a hardware-software
co-design called page table slicing, which adapts prior software-only techniques for virtualizing
GPUs [262] and wireless NICs [280].

Page table slicing configures the auditors with a linear address mapping policy, where guest

16

virtual addresses (GVAs) map to IO virtual addresses (IOVAs). OPTIMUS allows each accelerator to
access a contiguous DMA memory range [g,g+ p) in the application’s address space. It also divides
IOVAs into several p-sized partitions, and assigns each partition to a unique (virtual) accelerator.
For a given IOVA partition [i, i+ p), OPTIMUS stores the offset value (i−g) in the corresponding
accelerator’s entry in the offset table. Afterward, the accelerator’s auditor can convert between
IOVAs and GVAs during DMAs within a single cycle, ensuring efficient memory isolation. In the
presence of temporal multiplexing (i.e., oversubscription of individual accelerators), OPTIMUS

updates the physical accelerator’s offset table entry with the newly-scheduled virtual accelerator’s
offset entry.

We consider page table slicing as a lightweight isolation method which is complementary to
SR-IOV. Specifically, even if SR-IOV scalability increases for future shared-memory FPGAs, page
table slicing would allow for nested virtualization on SR-IOV enabled devices; a cloud provider
could use SR-IOV to provide a “vFPGA” to a VM acting as a nested hypervisor. The nested
hypervisor could then use page table slicing to share this vFPGA among its own guests.

Shadow Paging An important goal of OPTIMUS is to share a contiguous range of virtual memory
between software and hardware, which requires the IOMMU (together with page table slicing)
to directly map GVAs to HPAs. Since the IOMMU does not support nested paging, OPTIMUS

maintains a shadow page table for each accelerator.

2.4.2 Preemption Interface

While spatial multiplexing allows different accelerators to run on the same FPGA, OPTIMUS uses
temporal multiplexing to share a fixed accelerator configuration among different VMs, with each
VM’s virtual accelerator occupying the physical accelerator for a short time-slice. OPTIMUS must
be able to preempt acceleration jobs to provide fair temporal multiplexing, and therefore exposes a
preemption interface similar to that of AmorphOS [176].

A preemption-capable accelerator should implement a set of control registers which serves
two purposes: 1) saving and restoring internal execution states, and 2) starting, preempting, and
resuming acceleration jobs. Control registers are privileged resources, thus should not be accessible
by virtual machines directly. The hypervisor traps and emulates accesses to control registers,
and hides the hardware status of the physical accelerator. Registers besides the control registers
are called application registers. Accesses to application registers are postponed until the virtual
accelerator is scheduled. Specifically, if the register does not have side effects (i.e., read/write to the
register is idempotent), the hypervisor can cache the register’s value in software and synchronize
the cache and the physical register while scheduling.

17

During virtual accelerator initialization, the accelerator informs OPTIMUS how much memory is
needed to store internal execution states. OPTIMUS then allocates a memory buffer for the states
and informs the physical accelerator of the buffer’s base address via the control registers.

When OPTIMUS wishes to schedule a virtual accelerator on a physical accelerator, OPTIMUS

reads the current job status from the physical accelerator. If the physical accelerator is occupied, OP-
TIMUS sends a preempt command, causing the physical accelerator to write the virtual accelerator’s
execution state to the system memory buffer. Once all in-flight transactions have been processed,
the accelerator notifies OPTIMUS that context has been successfully saved and a new job may be
scheduled, as in prior work [176]. If an accelerator fails to cede control, OPTIMUS can forcibly
reset the accelerator after a configurable timeout period.

Later, when OPTIMUS re-schedules the original virtual accelerator job on the physical accelerator,
it issues a resume command that instructs the physical accelerator to load execution state from its
memory buffer and continue execution.

OPTIMUS’s decision to leave the implementation of preemption to accelerator designers is a
complexity-performance trade-off. On one hand, designers using OPTIMUS must reason about the
state to save upon preemption, in contrast to automatic mechanisms such as Cascade [241]. On
the other hand, designers using OPTIMUS can identify the minimal amount of state to save. For
example, when preempting a linked-list walker, saving the address of the next node can be sufficient.
In contrast, Cascade conservatively requires all latches to be saved. This results in a more complex
circuit, consuming more resources, inhibiting a circuit’s ability to scale to higher frequencies,
and ultimately hurting performance. Thus, given OPTIMUS’s performance and scalability goals,
OPTIMUS relies on accelerator designers to implement the preemption interface.

2.4.3 Userspace API

Because native platform APIs can be complex [155], OPTIMUS offers a simplified API for software
application developers. OPTIMUS provides a separate implementation of the same simplified API to
accelerator developers for use in Verilog simulations.

From the guest’s perspective, each accelerator is a PCIe device. OPTIMUS offers a customized
driver and a userspace library that work in tandem to allow for application-level programming of
accelerators. The driver is responsible for initializing the virtual accelerator, including mapping
MMIO regions to userspace and registering DMA memory with the hypervisor. The userspace
library allows the programmer to easily connect to and disconnect from a virtual accelerator, reset the
accelerator, program the virtual accelerator through its MMIO region, and manage DMA memory.

18

2.5 Implementation

OPTIMUS is implemented atop the Intel HARP shared-memory FPGA platform [150] using Intel’s
Core Cache Interface (CCI-P) [149]; however, OPTIMUS’s design can be applied to any shared-
memory FPGA platform with IOMMU support (which is necessary to implement page table
slicing). OPTIMUS is implemented as a kernel module in 3,199 lines of C code, using the vfio-

mdev [164] framework for device mediation and KVM [182] for CPU and memory virtualization.
The guest FPGA driver and user API library are an additional 2,033 lines of C code, not including a
ported memory allocation library [198] used to help manage DMA regions for accelerators. The
Verilog implementation of the hardware monitor relies on Intel’s open-source multiplexer (MUX)
module [159], which adds 1,237 lines of code. Altogether, the hardware monitor occupies less than
7% of on-FPGA configurable resources.

FPGA Interface HARP’s shell provides a request/response interface called CCI-P for memory
access [149], which encapsulates PCIe and UPI transactions. In order to access CPU memory,
an accelerator sends a request packet and then waits for a corresponding response packet. While
waiting, the accelerator may send out other requests to saturate the bandwidth.

MMIO Slicing The MMIO address space of OPTIMUS consists of three portions. The first portion
of the MMIO space is reserved for the HARP shell. The next 4 KB is reserved for the virtualization
control unit’s accelerator management interface, via which the hypervisor can configure the hardware
monitor (e.g., the offset and reset tables) and obtain the FPGA configuration information (e.g., the
number of physical accelerators on the device and whether or not the configuration is compatible
with OPTIMUS). Finally, each physical accelerator receives a 4 KB page for its individual MMIO
state, with isolation enforced by the accelerator’s auditor.

Guest-MMIO Layout From a guest’s perspective, a virtual accelerator is a PCIe device. PCIe
BAR0 points to the accelerator MMIO space, and PCIe BAR2 points to the hypervisor MMIO space
(used to communicate with the hypervisor).

Page Table Slicing By default, OPTIMUS uses a 64 GB slice of the 48-bit IO virtual address
space for each virtual accelerator. However, this can be increased on systems where more than 64
GB of RAM is needed per virtual accelerator.

OPTIMUS’s guest library uses the mmap() system call with the MAP NORESERVE flag to reserve a
64 GB slice without allocating physical memory or swap. OPTIMUS writes the base address of each
slice to a register in BAR2 (the hypervisor MMIO space). The slicing offset is calculated based on
the value stored in this register.

19

Shadow Paging For prototype simplicity, OPTIMUS currently features a hypercall-style shadow
paging mechanism, reserving a register in the hypervisor MMIO space. During the initialization of
each accelerator, OPTIMUS allocates a 2 MB page, and initializes the IOPT entries of the accelerator
to map to the physical address of the page. When a guest wants to make a page FPGA-accessible,
it uses this register to notify the hypervisor of the GVA and GPA for the page. The hypervisor
then checks page permissions, calculates the correct IOVA and HPA, pins the HPA in memory, and
inserts the IOVA→HPA mapping into the IO page table.

Multiplexer Tree Hierarchy OPTIMUS uses a three-level binary tree which supports up to 8
physical accelerators. We experimented with different hierarchies for the multiplexer tree (e.g.,
more layers and more nodes per layer); however, for some benchmarks, the synthesizer was unable
to synthesize greater than eight accelerator instances on the FPGA without lowering the multiplexer
tree frequency below 400 MHz, which is necessary to fully utilize the memory bandwidth. Hence,
we limited the tree’s support to eight physical accelerators.

AMORPHOS [176]—a prior FPGA virtualization solution—uses a flat multiplexer to avoid the
complexity and latency of a multiplexer-tree when there are eight or fewer accelerators, and uses a
layered multiplexer-tree when there are greater than eight accelerators. However, in OPTIMUS, a
flat multiplexer is not feasible even with a smaller number of accelerators, as it prevents OPTIMUS

from multiplexing the accelerators at a high frequency (400 MHz).

Huge Pages In line with prior work [81, 45, 44, 39, 193, 194, 212], OPTIMUS uses huge pages to
avoid IOTLB (IO translation lookaside buffer) thrashing and improve DMA performance. To the
best of our knowledge, on the Intel HARP platform, the IOTLB for both 4 KB pages and 2 MB
pages can only store 512 IOVA to HPA mappings. Only using 4 KB pages may cause frequent
IOTLB misses, which hurts performance on HARP. OPTIMUS uses 2 MB huge pages for DMA
memory, thereby allowing the IOTLB to cache 2 MB ∗ 512 = 1 GB worth of mappings.

We do not see 2 MB pages as a significant drawback for three reasons. First, hypervisors are
already unable to oversubscribe memory in the presence of pass-through or SR-IOV-enabled devices;
the device-accessible memory pages must be pinned due to the IOMMU’s inability to handle page
faults. Second, as opposed to pass-through or SR-IOV, OPTIMUS only pins FPGA-accessible pages
once they are allocated by the guest. Third, data center servers are often equipped with hundreds of
gigabytes of memory; therefore, 2 MB pages are relatively small.

IOTLB Conflict Mitigation When using our original page table slicing technique (in which each
64 GB slice is laid out contiguously in the IO virtual address space), we discovered that IOTLB
mappings for different virtual accelerators were frequently evicting each other, hurting system

20

performance.
While the exact eviction policy for the IOTLB is unknown, we believe the problem stems from a

conflict in the set indices of IOVAs for different virtual accelerators. To the best of our knowledge,
when the page size is 2 MB, the IOTLB uses 9 bits after the 21-bit huge page offset as the set index
(bits 21-29). We believe each set consists of a single entry. Thus, if a virtual accelerator accesses a
virtual page with the same set index as another virtual accelerator’s page, an IOTLB conflict will
occur. More precisely, a given page p1 will conflict with any page p2 where p1 ≡ p2 mod 29.

To work around this problem in software (given the IOTLB could not be altered), we added an
extra 128 MB of address space between each 64 GB IOVA slice to offset the set indices of different
virtual accelerator pages. Because OPTIMUS supports eight physical accelerators and the IOTLB
can address 1 GB of memory without conflicts, OPTIMUS divides this 1 GB of memory evenly
among the accelerators, yielding 128 MB per accelerator. Thus, each virtual accelerator’s working
set must exceed 128 MB before IOTLB conflicts potentially occur among accelerators. If sequential
accesses are performed, IOTLB misses are rare, regardless of the working set size.

Tiling and Partial Reconfiguration Like other FPGAs [229, 101, 66], HARP FPGAs can be
reconfigured at tile granularity (i.e., a manufacturer-defined portion of the fabric). The reconfigura-
tion of an individual tile is known as partial reconfiguration. However, HARP only provides a single
tile, and therefore would require re-flashing all spatially-multiplexed accelerators to reconfigure an
individual accelerator. As such, OPTIMUS does not support partial reconfiguration.

Temporal Multiplexing Interface For flexible memory management, each guest application
allocates a buffer in host DRAM for storing accelerator state upon preemption.

Time Slice in Temporal Multiplexing The time slice used for temporal multiplexing is config-
urable; however the default value is 10 ms. A 10 ms time slice is possible because OPTIMUS does
not reconfigure the FPGA upon preemption, since the temporally-multiplexed accelerators on a
given physical accelerator share the same configuration. If partial reconfiguration support is added
in the future, the time slice would need to be increased to allow for sufficient time to reconfigure
individual tiles.

Temporal Multiplexing Scheduling OPTIMUS uses unweighted round-robin (i.e., equal time
slices) as the default scheduling algorithm. However, OPTIMUS also implements a scheduler with
weighted time slices and a priority-based scheduler.

21

2.6 Evaluation

In this section, we evaluate our prototype implementation of OPTIMUS and answer the following
questions:

Efficiency What is the overhead of the hardware monitor in terms of FPGA resource utilization?
To what extent does spatial multiplexing improve FPGA resource utilization (§2.6.2)? How much
virtualization overhead does OPTIMUS incur compared to pass-through (i.e., direct assignment)
(§2.6.3)? How does the use of huge pages influence memory throughput and latency? (§2.6.5)

Scalability How does OPTIMUS scale with respect to the number of acceleration jobs concurrently
executing on the FPGA (§2.6.4)? How does OPTIMUS scale with respect to the oversubscription
factor of each accelerator (i.e., the number of virtual accelerators per physical accelerator) (§2.6.6)?

Fairness How similar is the DMA bandwidth for each physical accelerator (§2.6.7)? Does
OPTIMUS enforce different scheduling policies among its virtual accelerators (§2.6.8)?

2.6.1 Experimental Setup

Hardware We evaluate OPTIMUS on Intel Skylake HARP [150]. The platform features a 2.8
GHz Xeon CPU and a 400 MHz Arria 10 FPGA [158] located in the same package. The CPU and
FPGA are connected via a single UPI [217] link as well as two PCIe 3.0 links. The server has 188
GB of DRAM.

Software OPTIMUS runs CentOS 7.5 with Linux kernel version 5.1.0-rc6 as the host OS, using
QEMU version 3.0.1. Each guest also runs CentOS 7.5 and is allocated 10 GB of the server’s 188
GB of DRAM.

Baseline We compare OPTIMUS’s performance with virtualization via pass-through (i.e., direct
assignment). To allow the FPGA to directly access the application’s virtual address space, we
enable vIOMMU [289] (virtual IOMMU) support in QEMU. To our knowledge, there are no
shared-memory FPGA hypervisors to which we can compare OPTIMUS.

Configuration Unless mentioned specifically, OPTIMUS uses 2MB huge pages with IOTLB
Conflict Mitigation enabled.

22

Accelerators Description LoC Frequency (MHz)
AES AES128 Encryption Algorithm 1,965 200
MD5 MD5 Hashing Algorithm 1,266 100
SHA SHA512 Hashing Algorithm 2,218 200
FIR Finite Impulse Response Filter 1,090 200

GRN Gaussian Random Number Generator 1,238 200
RSD Reed Solomon Decoder 5,324 200
SW Smith Waterman Algorithm 1,265 100

GAU Gaussian Image Filter 2,406 200
GRS Grayscale Image Filter 2,266 200
SBL Sobel Image Filter 2,451 200
SSSP Single Source Shortest Path 3,140 200
BTC Bitcoin Miner 1,009 100
MB Random Memory Accesses 1,020 400
LL Linked List Walker 695 400

Table 2.1: The benchmarks used to evaluate OPTIMUS, the number of lines of Verilog code used to
implement benchmarks, and the frequencies at which benchmarks are executed.

Benchmarks Table 2.1 shows the fourteen benchmarks with which we evaluate OPTIMUS. Ten
of these benchmarks are ported from HardCloud [102], an open-source framework that offloads
OpenMP [113] computation tasks to the FPGA. Our HardCloud benchmarks are all compute-
intensive; they include signal processing, cryptography, scientific computing, and image processing
applications. We port these benchmarks to our virtualization platform, and use their default
configuration during synthesis. Besides, we also port an FPGA based graph processing application
(single source shortest path or SSSP) [302], and a bitcoin miner [42] to our virtualization platform.
Unlike in §2.2.1, we only evaluate the shared-memory implementation of SSSP in this section,
while configuring the benchmark to use a graph with 800K vertices and 12.8M edges. HardCloud
benchmarks, SSSP, and Bitcoin are chosen to represent real-world applications.

Since no open-source benchmarks for HARP place sufficient strain on OPTIMUS’s bandwidth and
latency for a single acceleration job, and because no existing benchmarks conform to OPTIMUS’s
preemption interface, we provide two benchmarks ourselves. Both of these benchmarks implement
OPTIMUS’s preemption interface in order to evaluate OPTIMUS’s temporal multiplexing capabilities.

MemBench (MB) concurrently issues random DMA read and write requests in order to saturate
HARP’s bandwidth. The random reads and writes result in the worst-case effects of IOTLB misses,
and thus minimize throughput benefits from memory locality.

LinkedList (LL) sequentially fetches cache line sized nodes from a linked list distributed
randomly in DRAM, connecting the performance of LinkedList to worst-case DMA patterns and
thus creating a latency bottleneck. Because shared-memory FPGAs are an emerging technology,
there are currently few open-source benchmarks that leverage this model. However, LinkedList

23

represents the fundamental limitations for irregular parallel applications (i.e., with a lot of pointer
chasing), and prior work [276] has demonstrated that linked lists are sufficient to study the overhead
of latency-bound workloads on shared-memory FPGA platforms.

The latency sensitivity of LinkedList requires special treatment due to the intricacies of the
HARP platform. All HardCloud benchmarks allow the HARP shell to automatically select the
interconnect channel (PCIe or UPI) used for each IO packet; for throughput-bound workloads, this
configuration generally yields optimal performance [149]. However, for a highly latency-sensitive
benchmark such as LinkedList, automatic channel selection yields unstable performance. HARP’s
channel selector is optimized for throughput rather than latency. Thus, although UPI has lower
latency for reads [149], the channel selector places some reads on PCIe, leading to wide performance
variation for latency-sensitive benchmarks. As such, we measure the performance of LinkedList
under two configurations: PCIe-only and UPI-only.

Table 2.1 shows the frequency at which each benchmark is run. Ideally, each benchmark would
be run at the highest frequency that the FPGA board supports (400 MHz). However, a number
of the benchmarks are too complex for HARP’s current synthesizer to be able to ensure that
their circuits can correctly operate at this maximum frequency; the synthesizer cannot place the
FPGA logic elements sufficiently close in order to propagate signals quickly enough. We therefore
synthesize each benchmark at the highest frequency achievable with OPTIMUS’s maximum number
of physical accelerators (eight). As synthesis algorithms improve, we anticipate being able to run
the benchmarks at higher frequencies.

2.6.2 FPGA Resource Utilization

In this section, we evaluate the impact of OPTIMUS on FPGA resource utilization as reported by
Intel’s FPGA toolchain. We measure the percent of on-FPGA resources consumed by the hardware
monitor (indicating virtualization overhead), and we explore the extent to which spatial multiplexing
can improve FPGA resource utilization.

Table 2.2 displays the percentage of Adaptive Logic Modules (ALMs) and Block RAM (BRAM)
that each major FPGA component utilizes on (1) a single accelerator pass-through baseline versus
(2) eight accelerators under OPTIMUS. The FPGA shell is an inherent component in both OPTIMUS

and the pass-through baseline, and consumes 23.44% of ALMs and 6.57% of BRAM. The hardware
monitor is only present in OPTIMUS, but utilizes just 6.16% of the ALMs and 0.48% of the BRAM,
indicating low virtualization overhead in terms of resource utilization.

Without the spatial multiplexing of OPTIMUS, benchmarks in the pass-through accelerator
configuration utilize no more than 5% of available FPGA resources. OPTIMUS’s spatial multiplexing
increases aggregate accelerator resource utilization roughly linearly. With eight accelerators,

24

FPGA Component ALM Usage (%) BRAM Usage (%)
OPTIMUS PT OPTIMUS PT

Shell 23.44 23.44 6.57 6.57
Hardware Monitor 6.16 0.00 0.48 0.00

Accelerators

AES 27.80 3.62 23.01 2.82
MD5 34.27 4.35 23.01 2.82
SHA 18.16 2.16 22.46 2.82
FIR 15.77 1.92 22.46 2.82

GRN 12.53 1.76 7.98 1.02
RSD 17.93 2.21 22.87 2.87
SW 10.34 1.42 11.67 1.47
GRS 9.92 1.32 18.15 2.28
GAU 25.28 3.41 21.24 2.60
SBL 18.49 2.39 20.30 2.55
SSSP 15.73 1.96 22.47 2.82
BTC 8.99 1.32 4.16 0.48
MB 4.84 0.83 0.00 0.00
LL -0.24 0.15 0.00 0.00

Table 2.2: Breakdown of FPGA resource utilization by component (ALM and BRAM). Each
component’s utilization is reported as a percentage of the total amount of each resource type
available on the FPGA. The pass-through (PT) baseline features a single instance of the accelerator
benchmark, while OPTIMUS features eight instances in order to compare resource utilization in the
presence of spatial multiplexing.

OPTIMUS’s slight overhead beyond 8x stems from increased circuit complexity as the number of
accelerators increases. Specifically, the synthesizer must consume extra resources in order to route
signals to different locations on the FPGA chip under timing requirements.

MemBench and LinkedList are sufficiently simple that the synthesizer is able to optimize the
FPGA configuration, yielding a sublinear relationship. MemBench only uses 6x the number of
ALMs as the pass-through baseline. As for LinkedList, overall resource usage actually decreases,
and is thus listed as using a negative portion of resources in Table 2.2.

2.6.3 Performance Overhead

To measure the virtualization overhead introduced by OPTIMUS, we compare the performance of an
accelerator virtualized via pass-through (i.e., direct assignment) with an accelerator virtualized via
OPTIMUS, as shown in Figure 2.4.

Latency Figure 2.4a shows the latency overhead for LinkedList—a microbenchmark which
represents the worst-case for latency-bound applications—when running in PCIe-only mode and
UPI-only mode. The 24% latency overhead of LinkedList stems from a decision to favor scalability

25

UPI
PCIe

0

50

100

N
or

m
al

iz
ed

 L
at

en
cy

 (%
) 124.2

 111.1

(a) Latency

MB
MD5

SHA
AES

GRN FIR SW
RSD

GAU
GRS

SBL
SSSP

BTC
0

50

100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

%
)

 90.1
 99.6 99.8 99.8 95.9 99.9 99.9 99.9 94.4 93.9 92.7

 99.4 100.0

(b) Throughput

Figure 2.4: Performance overhead of different benchmarks compared to pass-through.

over latency in the arrangement of our hardware multiplexers. In order to pass timing requirements
when scaling to eight accelerators, we require a three-level binary tree (as opposed to a single multi-
plexer with eight child accelerators). Unfortunately, each added layer of the tree adds approximately
33 ns of latency; therefore, our design induces approximately 100 ns of latency on the path through
the multiplexer tree in order to provide scalability.

Throughput Figure 2.4b displays the throughput overhead for the remaining benchmarks. For
MemBench (a microbenchmark which represents the worst-case for bandwidth-intensive appli-
cations), the relative throughput overhead is 9.9%. MemBench is specifically designed to stress
the interconnection as much as possible, and therefore issues memory requests at every possible
FPGA cycle. However, given the routing complexity of the multiplexer tree, the accelerator can
only transmit a memory request packet every two cycles. Thus, the multiplexer tree is again the
primary source of overhead. Despite this worst-case scenario, our HardCloud benchmark results
indicate that the throughput overhead of OPTIMUS is less than 5% for realistic applications.

2.6.4 Scalability of Spatial Multiplexing

In this section, we assess OPTIMUS’s ability to scale with respect to the number of acceleration
jobs executing concurrently on the FPGA. For each benchmark, we place eight instances of the
accelerator on the FPGA (i.e., the maximum number of physical accelerators that can be synthesized
on our platform). We measure the performance of each benchmark as the number of concurrent
acceleration jobs increases.

Latency Because LinkedList is highly sensitive to memory access latency, we measure the
benchmark’s execution time as the number of acceleration jobs increases to determine the effects

26

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G
0

1000
1 Job 2 Jobs 4 Jobs 8 Jobs

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G
Total Working Set Size

0

1000

2000

A

ve
ra

ge
 L

at
en

cy
 (n

s) UPI Channel

PCIe Channel

(a) With 2M Pages

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
0

1000

1 Job 2 Jobs 4 Jobs 8 Jobs

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
Total Working Set Size

0

1000

2000

A

ve
ra

ge
 L

at
en

cy
 (n

s) UPI Channel (with 4K Pages)

PCIe Channel (with 4K Pages)

(b) With 4K Pages

Figure 2.5: Average memory access latency of LinkedList with different working set sizes and
number of virtual machines.

of scaling on latency. As shown in Figure 2.5a, increasing the number of acceleration jobs has
negligible effect on aggregate latency if the working set does not exceed IOTLB capacity. The slight
(< 6%) increase from 1 job to 8 jobs is due to IO queuing delays.

When the working set barely exceeds IOTLB capacity (2G), latency only suffers a slight increase,
since address translation is not overwhelmed. However, once the working set reaches 4G, the
queuing delay is exacerbated by frequent address translation, resulting in a rapid increase in average
latency as the number of jobs grows.

Throughput Since a single instance of MemBench saturates the platform’s bandwidth, Mem-
Bench indicates the worst-case measurement of throughput scalability. Figure 2.6a shows the
aggregate throughput of MemBench as the number of acceleration jobs and aggregate working set

27

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G
0

10

1 Job
2 Jobs
4 Jobs
8 Jobs

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G
Total Working Set Size

0

5

10

A

gg
re

ga
te

 M
em

or
y

Th
ro

ug
hp

ut
 (G

B
/s

)

Random Read

Random Write

(a) With 2M Pages

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
0

10

1 Job
2 Jobs
4 Jobs
8 Jobs

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
Total Working Set Size

0

5

10

A

gg
re

ga
te

 M
em

or
y

Th
ro

ug
hp

ut
 (G

B
/s

) Random Read (with 4K Pages)

Random Write (with 4K Pages)

(b) With 4K Pages

Figure 2.6: Aggregate throughput of MemBench with different working set sizes and number of
virtual machines.

size are increased. As demonstrated, increasing the number of acceleration jobs does not diminish
the aggregate throughput. Thus, OPTIMUS scales well in terms of memory access throughput.

The drop-off in throughput beyond 1 GB is not due to OPTIMUS, but rather due to the limitations
of the current HARP IOMMU. Since we believe that the IOTLB only contains 512 entries when
the page size is 2 MB, the IOTLB is limited to only caching the mappings of 1 GB virtual address
space. Thus, when the aggregate working set size exceeds 1 GB, throughput degrades as a result of
IOTLB misses.

In HARP, the IOMMU is not integrated into the CPU in order to minimize CPU modifications
needed to support the experimental platform. As a result, upon each IOTLB miss, the IOMMU must
go through the system interconnection to fetch the required IO page table from the CPU. We argue
that in future generations of shared-memory FPGA platforms, the manufacturer should increase

28

the number of IOTLB entries and integrate the IOMMU into the CPU in order to mitigate the
frequency and severity of IOTLB misses. Additionally, supplementing a CPU-integrated IOMMU
with hard-wired support for SR-IOV could potentially allow SR-IOV to scale on shared-memory
platforms. Further modifying the IOMMU to support SR-IOV on UPI links could even allow
SR-IOV to virtualize encapsulated PCIe and UPI transactions.

Figure 2.7 shows the aggregate throughput (normalized to a single acceleration job) of our
real-world applications as the number of acceleration jobs is increased. Unlike MemBench, none of
these applications fully utilize the bandwidth for a single acceleration job. As a result, the aggregate
throughput increases as the number of acceleration jobs increases. Except for Gaussian, Grayscale,
Sobel, and Bitcoin, whose working set sizes are relatively small, the total working set sizes of other
applications vary from 2GB to 32GB, which means the capacity of IOTLB is exceeded. However,
since all these applications are well-designed to have good memory locality, performance is not
impacted due to IOTLB thrashing.

2.6.5 Benefit of Using Huge Pages

To measure the performance benefit of “huge” (2M) pages, we compare the throughput and latency
when using 2M versus 4K pages. Figure 2.5 and Figure 2.6 compare the results of 2M versus 4K
paging in terms of latency and throughput, respectively.

OPTIMUS suffers from a performance drop when the aggregate working set exceeds the IOTLB
capacity (512 pages); a 2M TLB entry can serve 512 times more memory than a 4K entry. Using
2M pages can thus postpone the performance drop from a 4M aggregate working set to 2G, which
is beneficial for applications with a large working set.

As shown in Figure 2.6b, we discovered an unusually-high read throughput when (a) there is only
one accelerator, and (b) the working set does not exceed 2M. We noticed a similar phenomenon with
2M pages, which is not pictured due to spacing constraints. While we cannot definitively determine
the source of this behavior, we believe the phenomena arise due to a speculative optimization in
the IOTLB pipeline, which assumes that subsequent memory accesses will access the same 2 MB
region as previous accesses.

2.6.6 Scalability of Temporal Multiplexing

In this section, we evaluate how OPTIMUS scales with respect to the oversubscription factor (i.e.,
the number of virtual accelerators per physical accelerator). Since only MemBench and LinkedList
conform to OPTIMUS’s preemption interface, we are limited to directly evaluate these benchmarks.
However, preemption overhead is correlated to the amount of execution state that must be saved.
Therefore, because we know the total set of resources consumed by each accelerator configuration,

29

MD5
SHA AES

GRN FIR SW RSD
GAU GRS SBL

SSSP
BTC

0

2

4

6

8

A
gg

re
ga

te
 T

hr
ou

gh
pu

t
(N

or
m

al
iz

ed
 to

 1
 Jo

b)

1 Job
2 Jobs
4 Jobs
8 Jobs

Figure 2.7: The aggregate throughput of different real-world applications, normalized to the
throughput of a single VM. GAU, GRS, SBL, and SSSP fail to scale because the interconnection
bandwidth becomes saturated, creating a performance bottleneck beyond four accelerators.

Accelerators AES MD5 SHA FIR GRN RSD SW
Normalized Throughput Range (10−4) 21.9 11.9 4.40 30.1 108 1.77 3.79

Accelerators (Cont.) GAU GRS SBL SSSP BTC MB LL
Normalized Throughput Range (Cont.) (10−4) 63.1 1.60 147 595 0.468 1.83 3.25

Table 2.3: Normalized throughput range among eight homogeneous physical accelerators.

we can use this percentage as an upper bound on the amount of state that must be saved, thus
establishing an upper bound on context-switching overhead.

Figure 2.8 presents the aggregate throughput of running a varying number of virtual accelerators
on a physical accelerator, normalized against a single job on an accelerator. Theoretically, OPTIMUS

does not have a hard limitation on the scalability of temporal multiplexing. Our evaluation stops at
16 because we are able to show that the context-switching overhead does not increase as the number
of jobs increases.

As indicated by the drop-in throughput between 1 and 2 jobs, the overhead of preemption for
LinkedList is approximately 0.5%. For MemBench, this number is 0.7%. The overhead remains
constant beyond 2 jobs because preemption occurs at a fixed interval in the presence of temporal
multiplexing, regardless of the number of jobs being multiplexed.

We estimate the worst-case overhead of temporal multiplexing for real-world applications by

Co-located Accelerator AES MD5 SHA FIR GRN RSD SW
Normalized Throughput 0.86x 0.50x 0.77x 0.75x 1.00x 0.78x 0.78x

Co-located Accelerator (Cont.) GAU GRS SBL SSSP BTC MB LL
Normalized Throughput (Cont.) 0.80x 0.80x 0.79x 0.75x 1.00x 0.5x 1.00x

Table 2.4: MemBench’s throughput when co-located with a second active accelerator, normalized
against a standalone instance.

30

(a) LinkedList (b) MemBench (c) MD5 Worst Case
0.00

0.25

0.50

0.75

1.00

A
gg

re
ga

te
 T

hr
ou

gh
pu

t
(N

or
m

al
iz

ed
 to

 1
 Jo

b)

1 Job 2 Jobs 4 Jobs 8 Jobs 16 Jobs

Figure 2.8: Normalized aggregate throughput in the presence of preemptive temporal multiplexing.
All virtual accelerators are scheduled on a single physical accelerator.

simulation. Since MD5 occupies the most on-FPGA resources of any real-world application, we
use this benchmark to establish an upper bound. Our estimation yields 9% temporal multiplexing
overhead in the worst case (i.e., assuming all resources occupied by MD5 must be saved on a context
switch).

We stress that the amount of state that must be saved is application-dependent. If the amount
of state is large, the length of each time slice can be increased to reduce the number of context
switches, thereby mitigating the penalty.

2.6.7 Fairness of Spatial Multiplexing

In this section, we measure the fairness of the hardware scheduler in terms of its ability to guarantee
at least 1/N of the total real-time bandwidth to each of N physical accelerators, assuming those
accelerators are actively transmitting data. We assess the bandwidth fairness in both homogeneous
configurations (where the FPGA is configured with multiple instances of the same accelerator) and
heterogeneous configurations (where the FPGA is configured with various accelerators).

Homogeneous Configurations For each benchmark, we configure the FPGA with eight homoge-
neous accelerators and measure the per-accelerator throughput. Table 2.3 presents the normalized

throughput range (i.e., the difference between the maximum and minimum accelerator throughput
divided by the average throughput) for each benchmark. The maximum normalized throughput
range is approximately 1%, demonstrating that the difference in throughput between any two
accelerators is at most 1%. In other words, given eight homogeneous accelerators, each accelerator
achieves roughly 1/8 of the aggregate throughput. Thus, the hardware monitor fairly multiplexes
the FPGA among physical accelerators in homogeneous FPGA configurations.

31

Heterogeneous Configurations MemBench is designed to saturate HARP’s bandwidth for a
single job. Therefore, we use it as a baseline for full throughput, and measure the relative decrease
in MemBench’s throughput in the presence of a second active accelerator benchmark.

Table 2.4 shows the normalized throughput reported by the MemBench accelerator for each
configuration. In the presence of a second active accelerator, MemBench is guaranteed to receive at
least half of the original bandwidth.

Upon first glance, MemBench receiving more than half of the total bandwidth may appear to be
unfair. However, most accelerators do not transmit data as often as MemBench. For instance, in the
cases where data is rarely transmitted by the other accelerator (e.g., LinkedList), MemBench receives
a near-complete share of the bandwidth. When the second accelerator is also bandwidth-hungry
(e.g., MD5 and a second instance of MemBench), the bandwidth is evenly split.

2.6.8 Fairness of Temporal Multiplexing

Enforcing fairness in the context of a software scheduler means being able to enforce the cloud
provider’s custom time-sharing policy. OPTIMUS implements an unweighted round-robin scheduler
(i.e., equal time slices), a weighted scheduling policy (i.e., weighted time slices), and a priority
scheduler (i.e., the job with the greatest priority runs at each time slice). We verify that the software
scheduler successfully enforces each policy by measuring the execution time of each virtual
accelerator across varying oversubscription factors, time slice lengths, and job weights/priorities.
On average, the actual execution times are within 0.32% of the expected times, with the greatest
difference being 1.42%. Thus, OPTIMUS successfully enforces each of its software scheduling
policies.

2.7 Discussion

2.7.1 OPTIMUS vs. AMORPHOS

AMORPHOS [176] targets OS management of FPGAs. Like OPTIMUS, AMORPHOS enables both
spatial and temporal multiplexing of FPGAs. AMORPHOS overcomes the static limitations of partial
reconfiguration (i.e., forcing accelerator designs to fit into a fixed-size FPGA partition) through an
abstraction called morphlets. Specifically, AMORPHOS virtualizes an FPGA as a set of morphable
tasks, which can alter their resource requirements at runtime to dynamically accommodate a greater
or lesser number of accelerators on the same FPGA. OPTIMUS does not support dynamic scalability
on a single FPGA. However, since OPTIMUS supports acceleration preemption, OPTIMUS’s virtual
accelerators can theoretically be migrated in the event that a cloud provider wishes to alter an FPGA

32

configuration.
The fundamental difference between AMORPHOS and OPTIMUS is that they target different

FPGA platforms (host-centric vs shared-memory, respectively). The differences between these
platforms are substantial (e.g., different software/hardware programming interfaces, memory laten-
cies/capacities, hardware topologies, and so forth).

Most importantly, these platforms necessitate significantly different forms of memory man-
agement. Because AMORPHOS targets host-centric platforms—where accelerators cannot issue
their own DMAs—it focuses on virtualizing each accelerator’s view of on-FPGA DRAM. Thus,
AMORPHOS’s memory protection logic only needs to manage on-FPGA DRAM, and can do so
with segment-based translations.

On the other hand, OPTIMUS targets platforms in which the FPGA uses the system DRAM.
Thus, OPTIMUS must integrate accelerator memory protection with the host’s page-level memory
management, while maintaining consistent views of each address space for the CPU and FPGA.
Nonetheless, given that platforms such as Intel PAC [153] give FPGAs access to both system
and on-FPGA DRAM, our approaches to memory virtualization are complementary to those of
AMORPHOS.

2.7.2 Key Takeaways

We believe our work highlights two key areas for improvement in systems and architectural support
for heterogeneous computing. First, there is a need for new OS abstractions. Currently, each
FPGA vendor uses a different programming interface. Thus, standard OS abstractions (e.g., to send
messages to the CPU and access different memories) would immensely increase program portability.
FPGA manufacturers can hasten the arrival of such OS abstractions by providing a standardized
hardware interface.

Second, a hard-wired multiplexer tree is needed to provide more efficient and scalable packet
routing. Like AMORPHOS, OPTIMUS also confirms that a flat multiplexer becomes a bottleneck
for scalability. Furthermore, OPTIMUS shows that even a programmer-synthesized multiplexer tree
can be a bottleneck at higher frequencies. These bottlenecks arise due to the difficulty of placing
multiplexer resources sufficiently close to pass timing constraints, but could be mitigated via a
hard-wired multiplexer tree.

2.8 Related Work

Accelerator Libraries Amazon F1 [66] and Microsoft Brainwave [95, 214] offer accelerator
libraries to their customers. The customer chooses from among these accelerators, ultimately

33

running their acceleration job on an FPGA that has been configured accordingly. OPTIMUS is
targeted for this use case, and allows the cloud provider to spatially and temporally multiplex their
FPGAs among customers.

Sharing On-FPGA Memory Asiatici et al. propose a hypervisor featuring a high-level framework
to facilitate FPGA application development [76]. The hypervisor provides a framework to share
on-FPGA memory among multiple accelerators. CoRAM [109] and CoRAM++ [274] similarly
allow software to read and write on-FPGA BRAMs. Unlike OPTIMUS, none of these designs grant
the CPU and FPGA a unified view of memory.

Sharing System Memory FPGAs can share system memory with the CPU on platforms such as
Intel PAC [153] (PCIe-only), Intel HARP [150] (PCIe and UPI), and Enzian [77] (forthcoming).
GPUs from Intel [156, 262] and NVIDIA [200, 38, 239, 301] can transparently share memory
regions with the CPU, using both software-only and hardware-assisted techniques. OPTIMUS’s
page table slicing is inspired by such GPU page table partitioning techniques (as well as those of
Virtual WiFi [280]) in a hardware-software co-design that is independent of accelerator design and
behavior.

Overlays FPGA overlays [92, 186, 161, 162] provide an abstraction of FPGA hardware such
that configurations can be made architecture-agnostic. Unfortunately, the abstractions of overlays
sacrifice throughput and resource utilization compared to configurations built for specific FPGA
architectures. Given that the burden of developing accelerators is not placed on the customer in
OPTIMUS, we believe that cloud providers and customers would prefer the efficiency of native
builds over the ease of cross-platform porting.

Virtualizing FPGA Pools Xilinx SDAccel [285], Tarafdar et al. [259], and Microsoft Cata-
pult [229, 101] target the virtualization of FPGA pools, allowing jobs to be scheduled on available
accelerators within the pool. Unlike these systems, OPTIMUS targets the virtualization of individual
FPGAs.

Virtualizing Individual FPGAs Prior work explores spatial multiplexing [104, 273, 223, 225,
96, 267] and temporal multiplexing [272, 290, 104, 223, 225] of FPGAs. While most of these
works focus on host-centric FPGAs, OPTIMUS focuses on shared-memory FPGAs. An exception is
AvA [290], which uses API remoting to virtualize accelerators. Unlike OPTIMUS, AvA targets a
higher level of abstraction (e.g., OpenCL), and virtualizes the userspace library instead of low-level
hardware.

34

FPGA OSes BORPH [253, 254] supplements software processes with hardware processes,
which communicate with other processes via standard UNIX interfaces. ReconOS [205] and
Hthreads [224] extend the domain of multi-threaded programming to an FPGA, and provide support
for inter-thread communication and synchronization. LEAP [130] offers reliable and latency-
insensitive communication channels between different hardware modules. AMORPHOS [176]
provides support for sharing different on-FPGA resources. Unlike these works, OPTIMUS is a
hypervisor that focuses on virtualizing shared-memory FPGAs as a set of accelerators.

SR-IOV for FPGAs Intel [151] and Xilinx [282] both offer IP to support hardware-assisted FPGA
virtualization of PCIe transactions via SR-IOV [191]. However, state-of-the-art shared-memory
FPGA platforms that use SR-IOV do not support more than one VF [150, 153]. OPTIMUS supports
up to eight physical accelerators, which can each support both UPI and PCIe transactions as well as
an arbitrary number of virtual accelerators.

Partial Reconfiguration A number of FPGA virtualization solutions [176, 104, 96, 273] target
partial reconfiguration capabilities of FPGAs, where an individual accelerator can be reconfigured
without needing to reconfigure the entire FPGA. Because Intel HARP currently only provides a
single reconfigurable region on the FPGA, OPTIMUS does not support partial reconfiguration; doing
so would overwrite the hardware monitor.

2.9 Conclusion

In this project, we presented OPTIMUS, the first scalable hypervisor for shared-memory FPGA
platforms. OPTIMUS provides both spatial and preemptive temporal multiplexing of FPGAs, such
that individual accelerators on an FPGA can be fairly overprovisioned to guests. OPTIMUS offers
efficient virtual DMA isolation via page table slicing. Our experiments show that OPTIMUS can
support eight physical accelerators on a single FPGA, and improves the aggregate throughput of
twelve realistic benchmark workloads by 1.98x-7x.

35

CHAPTER 3

Debugging in the Brave New World of Reconfigurable
Hardware

3.1 Introduction

Field Programmable Gate Arrays (FPGAs) are increasingly prominent in modern heterogeneous
computer systems. Specialized hardware designs provide unprecedented efficiency in domains
such as machine learning [247, 248, 300, 293, 202, 299, 178], compression [232, 297], database
operations [222, 240, 250], graph processing [78, 303, 106, 270], networking [128, 269, 94], and
storage virtualization [192]. To realize the benefits of FPGAs, systems researchers have built
operating systems [131, 254, 176, 187], virtualization support [207, 96, 104, 272, 295, 196, 294,
291], just-in-time compilers [241], and high-level synthesis tools [100, 99, 285, 152, 286]. The
proliferation and benefits of FPGAs have even prompted major cloud vendors to provide FPGA
instances on their platforms [66, 64].

Compared to traditional hardware development, FPGA development has many similarities to
software development. Since post-fabrication bugs are extremely costly to fix, traditional hardware
development invests massive resources into simulation-based testing and formal verification to
eradicate bugs before silicon fabrication. In contrast, reconfigurability allows a developer to patch
hardware bugs in an FPGA, even those caught during on-FPGA testing or in production. As a
result, FPGA developers are moving towards an agile development approach that accelerates time to
market by relaxing cumbersome verification in favor of lightweight simulation and on-FPGA testing.
For example, Microsoft has adopted a software-like methodology for FPGA development, in which
they perform relatively small amounts of verification compared to traditional hardware [128].

Unfortunately, relaxed verification leads to more bugs in FPGA designs, with most FPGA projects
experiencing bugs that escape testing and end up in production [132]. Alas, while there are many
hardware tools that help developers find bugs using simulation-based testing and verification [252,
277, 57, 278, 195, 263, 298, 163, 199], very few hardware debugging tools help a developer localize

the root cause of a bug. Existing fault localization tools only apply to specific protocols and

36

algorithms [55, 211]. Other tools, such as checkpointing [249, 80, 37, 79, 180] and tracing [160,
288, 138, 137, 146, 241, 196], can be used to localize the cause of a hardware failure, but require
substantial manual effort to do so. Finally, existing software fault localization techniques, such
as data-race detectors [243] and undefined memory use detectors [242], cannot be immediately
applied to hardware programming models. Consequently, debugging an FPGA design today is a
highly manual process that either involves inspecting a massive waveform (i.e., a trace of the state
of the circuit over time) or iterative rounds of synthesis in which a developer selects and analyzes
key data signals. Unsurprisingly, a majority of FPGA developers in a recent study indicate a need
for better debugging tools [50].

Reaping the full benefits of rapid FPGA development will require constructing FPGA debugging
tools that help localize the root cause of a hardware fault—similar to the rich set of tools available
to software developers. Towards this goal, we first study bugs in open-source FPGA designs. We
then introduce a novel root-cause-based classification of the bugs we study inspired by a prior bug
taxonomy [201] and document the intrinsic properties and symptoms of these bugs. We augment
our study with a testbed in which each hardware bug is reliably reproducible. We demonstrate that
each class of hardware bugs mirrors a counterpart class of software bugs and would benefit from
similar techniques for bug diagnosis and repair.

Guided by the intrinsic properties and symptoms of bugs in FPGA designs, we build a collection
of hybrid static/dynamic program analysis and monitoring tools to help developers of reconfigurable
hardware systems follow a software-like development and debugging process. Because hardware
bugs may be detected during simulation or when executing on an FPGA, our tools are designed
to operate in either scenario. Thus, we consider the effects of our debugging logic on real circuit
synthesis and behavior, as opposed to only accounting for a simulator environment where resource
and timing constraints are far less stringent. At a high level, our tools allow selectively recording
and analyzing targeted execution information using limited on-FPGA storage, and consist of the
following:

1- SignalCat unifies hardware debugging during simulation and when deployed on an FPGA
by providing a single interface for tracing state in a hardware design. The tool converts “printf”-
like statements embedded in a hardware description into logic that records the arguments of
these statements in a hardware deployment or during simulation. After an execution, SignalCat
reconstructs a log containing the output of the printf statements.

2- FSM Monitor helps a developer identify and track finite state machines (FSMs), which are
a widespread component in a hardware design. It uses SignalCat to support both simulation and
on-FPGA scenarios.

3- Dependency Monitor enables a developer to trace the provenance of the value of a variable in
their hardware design. The tool identifies the dependency chain of each developer-specified variable

37

(i.e., the registers upon which the variable depends), and tracks all updates made to these variables
during a simulation or on-FPGA execution using SignalCat.

4- Statistics Monitor helps a developer identify anomalous behavior by recording statistics about
various execution events, such as the number of times that an interrupt is triggered or the number of
packets that arrive in a communication channel. Developers specify an event of interest; Statistics
Monitor instruments the hardware design with new logic that uses SignalCat to track statistics
during simulation or on-FPGA scenarios.

5- LossCheck helps a developer localize the root cause of data loss (e.g., an unintended packet
drop). A developer who suspects data loss in their design uses LossCheck to check for—and
potentially identify the source of—data loss between a specified source (e.g., an input to a hardware
module) and sink (e.g., an output). The tool instruments the hardware design with new logic that
monitors all data propagation paths between the source and sink by using SignalCat.

We show how a developer can use the aforementioned tools—either individually or in various
combinations—to debug the bugs in our study. In particular, we show that our tools help diagnose
the cause of each bug in our study by automatically generating and executing dozens to thousands
of lines of analysis code, which the developer would otherwise need to write. Additionally, we
evaluate the resource overhead of our debugging tools and demonstrate that they are feasible for
production use. Among the 20 bugs we evaluated, 18 cases maintain the design’s original target
frequency after debugging instrumentation; all cases incur at most linear resource overheads with
increased recording buffer sizes.

Overall, we make the following contributions:

• We provide the first study of bugs in open-source FPGA designs, a root-caused-based bug clas-
sification, and a description of typical bug symptoms to guide developers in their debugging
efforts.

• We design a collection of hybrid static/dynamic analyses that developers can use in simulation
and real hardware deployments to debug FPGA designs.

• We develop an open-source testbed [13] that includes reproducible hardware bugs and our
tools to facilitate future FPGA debugging research.

A version of this work was previously published in the proceedings of the 27th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS’22) [208].

38

3.2 Background

In this section, we discuss the FPGA development concepts that are necessary for understanding the
bugs and debugging tools presented in this paper.

3.2.1 Languages for Hardware Programming

Developers program FPGAs by implementing a digital circuit in a hardware description language
(HDL), such as Verilog [261], SystemVerilog [56], or VHDL [90]. HDLs enable developers to
describe the behavior of a circuit in a cycle-by-cycle manner. For instance, the simple statement
c <= a+ b subscribes to a broad programming paradigm: right hand expressions (a+ b) are
computed and propagate to left hand operands (c) via an appropriate assignment operator (<=) at
each clock cycle.

Emerging high level synthesis (HLS) tools enable hardware development using software pro-
gramming languages, but impose significant performance and resource penalties compared to HDLs.
For example, state-of-the-art HLS-implemented image processing is 6.6× slower and uses 5× more
resources than an HDL-implementation [216]. As such, HDLs continue to dominate hardware
development.

3.2.2 FPGA Debugging Stages

FPGA debugging contains two stages: simulation and on-FPGA testing. Simulation avoids lengthy
hardware synthesis and is thus faster to iterate, but executes orders of magnitudes slower than
on-FPGA testing [241]. In practice, developers simulate FPGA designs and iteratively fix any bugs
they find before employing on-FPGA methods to test their design against more complex workloads
(e.g., via stress testing).

3.2.3 FPGA Programming Techniques and Constructs

Hardware developers leverage a number of common techniques and constructs to implement FPGA
designs.

Buffers and Queues Hardware developers use buffers and queues to temporarily store values.
Hardware buffers and queues are similar to their software equivalents, except they must be constant-
sized, since all hardware components occupy a fixed area in a circuit.

39

IDLE

WORKFINISH

request_valid

work_done

Figure 3.1: An example FSM with states represented by nodes, and transition conditions represented
by edges. This FSM has three states: IDLE, WORK, and FINISH. A state transforms to another state
when a certain condition is satisfied.

1 reg [1:0] state;

2 always @(posedge clk) begin

3 case(state)

4 IDLE: if (request_valid) state <= WORK;

5 WORK: if (work_done) state <= FINISH;

6 FINISH: state <= IDLE;

7 endcase

8 end

Listing 1: Verilog code implementing of the state transition of the FSM in Figure 3.1.

Communication Control: Valid Interface Logically, hardware circuits continually process data,
with one or more input signals consumed every clock cycle. However, an input signal may not
always be meaningful. For instance, a module may only receive a “packet” every 5 cycles. Thus,
developers use valid interfaces that indicate whether a particular input is valid (i.e., a “valid bit”
variable associated with one or more inputs).

Communication Control: Backpressure In a communication channel where a source repeatedly
sends data to a destination, the destination may use a backpressure or “ready” signal to inform the
source that it needs time to process inputs. These signals indicate to the source that the destination
can only receive x new packets, where x is defined by the communication protocol (e.g., x = 1 for a
binary ready signal). In the event of backpressure, the source should stop sending packets or reduce
the sending rate to avoid bugs at the destination.

Finite State Machines Hardware developers frequently incorporate finite state machines (FSMs)
in their designs [287, 65]. Figure 3.1 demonstrates an example FSM; Listing 1 shows the Verilog
code that implements the FSM. In Verilog, an FSM is implemented using conditional assignments
(e.g., an assignment inside a switch case); once a condition is satisfied, the “state” transfers along
the arrows in the next clock cycle.

40

Bug Class Bug Subclass # Common Symptoms
App Stuck Data Loss Incorrect Output Ext.

Data Mis-Access

Buffer Overflow 5 ✓
Bit Truncation 12 ✓ ✓
Misindexing 5 ✓ ✓
Endianness Mismatch 1 ✓
Failure-to-Update 5 ✓ ✓ ✓

Communication

Deadlock 3 ✓
Producer-Consumer Mismatch 3 ✓ ✓ ✓
Signal Asynchrony 10 ✓
Use-Without-Valid 1 ✓

Sementic

Protocol Violation 3 ✓ ✓ ✓
API Misuse 3 ✓
Incomplete Implementation 7 ✓
Erroneous Expression 10 ✓

Table 3.1: The result of our bug classification, including 3 main classes, 13 different subclasses, the
number of bug instances observed in each subclass, and the common symptoms of each subclass.
“#” stands for the number of bugs, and “Ext.” indicates that the error is reported by an external
component.

Module A module is a sub-component of a Verilog circuit with a group of input and output
signals, akin to a software function.

Intellectual Property (IP) A hardware intellectual property (IP) block is a “blackbox” module
that implement commonly-used or platform-specific functionality, akin to a static software library.
Like a software function, an IP block accepts user-controlled inputs and produces a set of outputs.

3.3 Study of Bugs in FPGA Designs

To identify useful FPGA debugging tools, we study 68 hardware bugs across 19 FPGA designs and
build a testbed [13] that reliably reproduces 20 of these bugs1 in a push-button manner to enable
their detailed study (§3.6.1). The study explores functional bugs, i.e., bugs in the HDL code that
lead to functional issues rather than timing-related issues, since most production FPGA bugs are
functional bugs [132]. Our methodology for gathering bugs is as follows:

Target Systems First, we study bugs in four applications that we used in prior work. In particular,
these applications use the Intel HARP platform [150], which uses the FPGA as a reconfigurable
accelerator and provides an end-to-end acceleration stack. Specifically, we identify bugs in a
SHA512 accelerator [51], Reed-Solomon decoder [52], and grayscale image accelerator [53]

1We select these 20 bugs because they occur in an application/platform with which we have familiarity. The rest of
the bugs could be reproduced with additional effort.

41

applications from HardCloud [102] (a framework with applications using HARP-based FPGA
acceleration). Additionally, we find bugs in Optimus [207] (a HARP-based FPGA hypervisor).

Second, we examine bugs in hardware designs described in the ZipCPU website, a popular
hardware design blog [14]. We identify bugs in SDSPI [15] (a library that drives an SD card through
a Serial Peripheral Interface), Xilinx’s two example AXI endpoint implementations [16, 17], and an
FFT implementation [54].

Third, we study bugs found in hardware components from the most popular FPGA projects on
GitHub, including a WiFi controller [18], a GPGPU processor [19], two RISC-V CPUs [20, 21], a
Bitcoin Miner [22], a NIC [23, 24], and two hardware libraries [25, 26].

Finally, we examine a floating-point adder [27] that was provided to us by a hardware developer
upon consultation about their experiences debugging hardware.

Bug Collection Bugs in FPGA designs are difficult to collect, reproduce, and study due to the
relative dearth of open-source hardware. Exacerbating this problem, among the 50 most popular
FPGA projects on GitHub, 56% do not have a publicly-accessible bug tracker and 88% do not
include test cases to reproduce bugs.

Therefore, rather than analyzing hardware bugs from bug trackers, we resorted to searching
commit histories/issues of FPGA projects on GitHub to identify hardware bugs. In some cases, we
found bugs through direct communication with developers (Optimus and FADD) and the ZipCPU
website.

For each identified bug, we manually inspect related commit messages and discussions in GitHub
Issues to understand the bug’s root cause and symptoms. Sometimes, the commit messages and
issues do not provide sufficient information for a thorough understanding; in these cases, we inspect
the hardware design’s codebase as well as bug-related patches to understand the bug.

3.3.1 Bug Classification

We cluster bugs with similar root causes and symptoms into 3 main classes and 13 subclasses.
Table 3.1 shows the classification results, identifying each bug subclass, the bug class to which
each subclasses belongs, the number of bugs in the study that belong to each subclass, and the most
common symptoms of each bug subclass.

The three bug classes roughly correspond to the three classes of software bugs from Li et al.’s
software bug study [201] and are as follows: data mis-access bugs (§3.3.2), which arise when data
is accessed without proper consideration for properties of the data format and are similar to software
memory bugs; communication bugs (§3.3.3), which arise when a circuit violates inter-component
communication standards and are similar to software concurrency bugs; and semantic bugs (§3.3.4),

42

which arise from other remaining violations of a circuit’s intended functionality and correspond
to software semantic bugs. Some bugs could be classified into multiple classes/subclasses (e.g., a
buffer overflow may arise because of an erroneous expression); we assign such multi-class bugs to
the most related and specific subclass to which they could be assigned.

In the rest of this section, we provide a detailed description of each subclass of bug including
their intrinsic properties, root causes, and common symptoms. We identify similarities between
the hardware bugs and well-studied software bugs, which provide inspiration for the hardware
debugging tools that we propose.

3.3.2 Data Mis-Access Bugs

Data mis-access bugs occur when the developer accesses data without proper considerations for size,
endianness, and other properties of data. These bugs are similar to software memory bugs [201]
(e.g., buffer overflows, our first example).

3.3.2.1 Buffer Overflow

A buffer overflow in an FPGA design occurs when a buffer is accessed with an offset that is greater
than the size of the buffer. We identify 5 real-world examples of buffer overflow bugs in our bug
study. We present a basic code snippet for simplicity.

1 reg mybuf [N-1:0]; // a buffer with N 1-bit elements

2 always @(posedge clk)

3 mybuf[offset] <= value; // offset >= N

Line 1 defines a buffer named mybuf consisting of N single-bit elements; mybuf [N-1:0] can
be legally indexed from 0 to N −1 (inclusive). On Line 3, the snippet uses offset to assign a bit of
mybuf to a value; however, the value of offset is greater than N and therefore overflows mybuf.

Accordingly, a buffer overflow in an FPGA design is similar to a software buffer overflow.
However, unlike software buffer overflow bugs, which can corrupt memory by overwriting adjacent
addresses, there is no notion of address adjacency beyond a buffer in hardware logic. Instead,
hardware buffer overflows yield two possible outcomes: (1) the highest bits of offset are truncated,
so an incorrect position in buffer is assigned (when the buffer size is a power of two), or (2) the
assignment is ignored (when the buffer size is not a power of two). In select cases, hardware
developers rely on truncation of the high bits of offset in their circuits for correctness, but this
approach does not work for common data structures such as heaps and queues.

Symptoms Data loss from truncation or ignored assignment.

43

Fixes Hardware buffer overflows are fixed similarly to software buffer overflows: Developers
enlarge the buffer or change the behavior of the FPGA design to avoid the overflow.

3.3.2.2 Bit Truncation

Bit truncation bugs in FPGA designs occur when assigning a variable to another variable with fewer
bits. We identify 12 bit truncation bugs in 7 different FPGA designs.

The software equivalent of a bit truncation bug occurs when casting a variable to another variable
that is represented with fewer bits. As in software, bit truncation in hardware may be used to
intentionally discard part of a variable, which makes precise bug detection challenging.

In the following code snippet, left is a 42-bit variable and right is a 64-bit variable whose
42 bits from [47:6] contain meaningful data. On Line 4, right is cast into a 42-bit variable
via 42’(right) and then right-shifted by 6 bits before being assigned to left. As a result, bits
[47 : 42] are truncated unintentionally.

1 reg [41:0] left; // left is a 42-bit register

2 reg [63:0] right; // bits [47:6] are meaningful

3 always@(posedge clk)

4 left <= 42'(right) >> 6;

Symptoms An incorrect value or an error (e.g., a page fault) reported by an external monitor
(such as an FPGA shell).

Fixes Depending on the developer’s intentions, one technique for fixing truncation bugs is to per-
form shifts before bit-width casts. In our example, this means the developer would change Line 4 to:
left <= 42'(right >> 6);. Another potential fix is to grow the variables that can cause trunca-
tion. For instance, a developer can change the width of left to 48 bits, which prevents trucation of
meaningful bits in right. In this case, Line 4 would be updated to: left <= 48'(right) >> 6;.

3.3.2.3 Misindexing

A misindexing bug occurs when a developer uses an incorrect index to extract information from a
variable. We identify 5 misindexing bugs in our study. For example, the IEEE-754 [49] standard
defines the binary layout of 32-bit floating point, where the bits [22:0] are the fraction and the bits
[30:23] are the exponent. However, in an implementation of floating point adder, the developer
incorrectly extracted bits [23:0] as the fraction in a floating point adder, which lead to the wrong
output value.

44

Symptoms Incorrect output or data loss, if the misindexed data used for a control signal.

Fixes Misindexing bugs are fixed by correcting the index.

3.3.2.4 Endianness Mismatch

Endianness mismatches occur when an FPGA design assumes the wrong endianness for a particular
piece of data (e.g., register arrays, off-chip DRAM, and disks), similar to how kernel code may
assume the wrong endianness for device driver data. One instance of endianness mismatch bug is
identified in our study.

In the simplified code snippet below, the circuit stores the least significant bits of an input in
data[7:0] (on Line 2) and the most significant bits in data[15:8] (on Line 3). As a consequence,
the input is stored in data in the little endian format. On Line 5, data is passed to a function
expecting a big endian input, causing out to have the wrong result.

1 // Store data as little endian

2 data[7:0] <= least_significant_byte;

3 data[15:8] <= most_significant_byte;

4 // Pass data to function expecting big endian input

5 out <= big_endian_function(data);

Symptoms A wrong value following assignment.

Fixes Developers fix endianness mismatch bugs by manipulating bytes to account for the endian-
ness difference. For example, the bug in the above code snippet is fixed by replacing Lines 2-3 with
the following code:

1 data[7:0] <= most_significant_byte;

2 data[15:8] <= least_significant_byte;

3.3.2.5 Failure-to-Update

A failure-to-update bug occurs when a developer forgets to put (including reset and initialization) a
signal; we identify 5 failure-to-update bugs in our study.

Below, we provide a simple example code snippet of a failure-to-update bug. In this example,
input counter is incremented when the input valid signal is set, while output counter is
incremented when output ready is set. However, upon reset, only input counter is set to 0,
so output counter may contain incorrect data after reset.

45

1 if (input_valid) input_counter <= input_counter + 1;

2 if (output_ready) output_counter <= output_counter + 1;

3 if (reset) input_counter <= 0;

Symptoms Invalid output, data loss, or violation of communication interfaces if the failure-to-reset
occurs on ready/valid signals (§3.2.3).

Fixes The developer will reset each relevant signal in the system.

Takeaway #1. Data mis-access bugs can often be localized to a specific assignment, so stepping
through dependency chains/FSM transitions can help localize the bug.
Takeaway #2. Data mis-access often results in data loss, so data loss detection (e.g., counting
inputs received versus outputs sent) is crucial for finding bugs.

3.3.3 Communication Bugs

Communication bugs occur when the developer violates inter-component communication standards
(e.g., inter-module interfaces, different clock domains, pipeline stages, etc.). They are similar to
concurrency bugs in the software [201].

3.3.3.1 Deadlock

A deadlock in an FPGA design occurs when two (or more) variables have a circular control
dependency on each other. Hardware deadlocks are similar to software deadlocks, where a circular
dependency among resources (e.g., locks) causes the program to stall. In hardware, deadlocks are
triggered due to conditional assignments (e.g., assignments inside if-statements) that execute in
parallel. We identify 3 deadlock bugs in our study.

In the following code snippet, if a and b are both initialized to 0, the assignment to out on Line
3 will never execute.

1 if (a) b <= 1;

2 if (b) a <= 1;

3 if (a) out <= result;

Symptoms Infinite stall.

Fixes To fix the bug in the above code snippet, a developer could initialize either a or b to 1.
Fixing a deadlock bug in a complex circuit is often difficult because it is challenging to identify
circular dependencies.

46

3.3.3.2 Producer-Consumer Mismatch

When a collection of consumer registers cannot process the data values produced by a collection
of producer registers, a producer-consumer bug occurs. For example, if the producers yield more
valid data in a cycle than the consumers can process and store, data will be lost. Hence, a producer-
consumer mismatch bug is similar to the classic “bounded-buffer” [118] producer-consumer problem
in software, in which consumer threads can only process/store a limited quantity of output from
producer threads. We identify 3 real-world examples of producer-consumer mismatch bugs in our
study.

For a simple example, consider the following code snippet that uses a valid interface (§3.2.3),
where producers generate and overwrite x and y at every cycle. If both x valid and y valid are
true in the same cycle, then the value of y may be lost, since only the code on line 1 will execute.

1 if (x_valid) out <= x;

2 else if (y_valid) out <= y;

Symptoms Data loss, invalid output, or an infinite stall (if the consumer FSM logic waits for a
lost producer value).

Fixes In software, locks and condition variables are used to force producer threads to wait until
the consumer threads are ready to receive new values. In hardware, an analogous solution is to
pause a producer by adding a back-pressure signal throughout the circuit. However, pausing a
producer is invasive, since nearly all components of the circuit must be altered to accommodate the
pause. Instead, an easier solution is creating a larger buffer for produced values that have not been
consumed, assuming the maximum needed queue size is bounded.

3.3.3.3 Signal Asynchrony

A signal asynchrony bug occurs when two variables that are supposed to be used together—such
as a data variable and its valid/backpressure interface signals (§3.2.3) or the two operands of a
mathematical operation—are not updated synchronously. We identify 10 signal asynchrony bugs in
our study.

The following code snippet shows a simplified example of a signal asynchrony bug. The
code responds to requests from a module that requires a minimum 2 cycle difference between
requests and responses. Accordingly, upon receiving a request, the code buffers the response
(calculated in a single cycle) in buffered response for an extra cycle (Line 1), before outputting
final response (Line 2). Unfortunately, the final response valid signal (indicating the
validity of the response data) is set immediately following receipt of request (Line 3), meaning

47

final response and final response valid are out of sync. For simplicity, we omit the code
resetting final response valid to 0.

1 if (request) buffered_response <= input_data + 1;

2 final_response <= buffered_response;

3 if (request) final_response_valid <= 1;

Symptoms An incorrect output value.

Fixes The signal asynchrony bug in the snippet can be fixed by properly delaying the
final response valid signal to be synchronous with the final response signal. For instance,
the developer may replace Line 3 with the following lines to fix the bug.

1 if (request) delayed_response_valid <= 1;

2 final_response_valid <= delayed_response_valid;

3.3.3.4 Use-Without-Valid

A use-without-valid bug occurs when a data variable guarded by a valid signal (§3.2.3) is used when
the valid signal is in an invalid state. Use-without-valid bugs are similar to signal asynchrony bugs,
but occur when data is used erroneously, as opposed to signal asynchrony bugs which occur when
data is updated erroneously. We identify one instance of use-without-valid bug in our study.

In the following code snippet, if data is a variable using a valid interface (e.g., with data valid

as its valid signal), sum may not be calculated correctly because it can use an invalid data as input.

1 // data is associated with a valid variable (data_valid)

2 sum <= sum + data;

Symptoms An incorrect output value.

Fixes Developers fix use-without-valid bugs by updating their code to use the correct valid
interface. For example, the bug in the above code snippet is fixed by replacing Line 2 with the
following two lines:

1 if (data_valid) sum <= sum + data;

2 else sum <= sum;

48

Takeaway #3. Given the proliferation of FSMs, circular dependencies, and infinite stalls in
communication bugs, localizing the bugs would be easier with ability to record key states and
statistics at arbitrary points in the circuit.
Takeaway #4. Like data mis-access bugs, debugging communications bugs would benefit from
localized data loss detection.

3.3.4 Semantic Bugs

Semantic bugs occur due to remaining violations that cause the circuit to incorrectly perform its
intended functionality. Semantic bugs include bugs where a developer does not correctly implement
the entire high-level circuit specification (e.g., the protocol or FSM logic), misuses the API of a
pre-implemented module, or does not implement special cases in complex logic. They are similar
to semantic software bugs [201].

3.3.4.1 Protocol Violation

Components of an FPGA design (e.g., modules) communicate through industry-standard commu-
nication protocols such as AXI4 [74]. However, such protocols are complex and contain corner
cases that are difficult to cover in testing. If a developer fails to handle all cases correctly, a protocol
violation occurs and escapes from simulation-based testing. We identify 3 instances of protocol
violations.

Symptoms Invalid outputs, infinite stall, or a protocol violation error reported by an external
monitor (e.g., an FPGA shell).

Fixes Fixing protocol violations requires correcting a mismatch between the high-level specifica-
tion and implementation or adding logic for an unhandled corner case.

3.3.4.2 API Misuse

FPGA designers use a hierarchy of modules to organize code and simplify the FPGA design process.
An API misuse bug occurs when developers fail to use a pre-implemented module or IP block
correctly. A hardware design may have an API misuse bug even if it implements all the involved
communication protocols correctly, as it may pass wrong parameters to the module or configure it
improperly. We identify 3 API misuse bugs in our study.

The following code snippet shows an example of an API misuse bug. Suppose that a developer
wants to determine whether signal a is greater than signal b using a module, greater than, which
takes two parameters, x and y, and returns x>y. However, when instantiating the module, the

49

developer erroneously connects signal a to the module’s input port y and signal b to the module’s
input port x. Consequently, the module instance (i.e., a greater than b) computes b>a instead of
a>b, resulting in an incorrect output value.

1 // The greater_than module calculates whether x>y

2 greater_than a_greater_than_b(.x(b), .y(a), .result(out));

Symptoms An incorrect output value.

Fixes Fixing API misuse bugs involves correcting the mismatch between a module’s API definition
and how the module is used, usually by changing signal connections and the module’s configuration.

3.3.4.3 Incomplete Implementation

Hardware designs can be exceedingly complex, so hardware developers omit logic to handle corner
cases, either intentionally or unintentionally. Such omissions are incomplete implementation bugs
and often occur in corner cases that are difficult to trigger during testing. We identify 7 instances of
incomplete implementation bugs in our study.

Symptoms Incorrect and invalid output.

Fixes Developers fix incomplete implementation bugs by implementing the missing functionality,
which may involve a redesign of certain components of the hardware design. Developers may also
add additional test cases to cover the newly-added code.

3.3.4.4 Erroneous Expression

An erroneous expression bug occurs when hardware developers use a wrong expression in a control-
flow statement (e.g., an if-statement) or data-flow statement (e.g., an assign-statement). Erroneous
expression bugs are different from incomplete implementation bugs in that they involve an incorrect

expression rather than omitted expressions. A wrong expression in a control-flow statement steers
the hardware’s control-flow to a wrong direction; a wrong expression in a data-flow statement
generates an incorrect data value, which is used in other statements. In our study, we include 5
erroneous expression bugs in control-flow and 5 such bugs in data-flow.

Symptoms Incorrect and invalid output.

50

Fixes Developers fix erroneous expression bugs by correcting the erroneous expression in the
control-flow or the data-flow.

Takeaway #5. Corner cases that trigger semantic bugs are difficult to detect, especially in
simulation; runtime data recording enables debugging these scenarios.

3.4 Design of FPGA Debugging Tools

Our bug study in §3.3 demonstrates that FPGA debugging can benefit from debugging tools similar
to those used in software (e.g., flexible logging capabilities and program analysis). In contrast, past
hardware debugging tools have emphasized airtight verification, and do little to help a developer
diagnose the cause of a bug after its symptoms have been observed.

Therefore, we propose a set of hybrid static/dynamic analysis tools that simplify root cause
diagnosis in FPGA designs. In this section, we describe the tools; the evaluation demonstrates their
applicability to the bugs in our study (§3.6).

First, we unify simulation and on-FPGA debugging with SignalCat (§3.4.1). While “printf”-
like statements have traditionally only been available in HDL simulators or required platform-
specific IP to implement on FPGAs, SignalCat synthesizes these statements for actual FPGA
deployments across multiple platforms. The infrastructure provided by SignalCat serves as a
cornerstone upon which developers can build symptom-specific tools without needing to consider
the execution context of the circuit and applies directly to all 5 of the takeaways from our bug study.

Using SignalCat, we build three monitoring tools that gather targeted information based upon
insights from our bug study. First, FSM Monitor (§3.4.2) statically detects FSM variables and
records them at runtime, automatically reconstructing FSM state-transition traces to aid developers
in debugging. Second, Dependency Monitor (§3.4.3) statically analyzes the dependencies of user-
specified variables and dynamically records the updates to each dependency, allowing developers
to backtrace and localize the source of an incorrect output-of-interest. Third, Statistics Monitor
(§3.4.4) provides counters for user-specified events, helping users identify bugs reflected in statistical
metadata (e.g., data loss is often indicated by fewer outputs generated than inputs received).

Finally, given the commonality of data loss in our bug symptoms, we develop an additional
tool for the event that a developer suspects or detects data loss. In particular, LossCheck (§3.4.5)
pinpoints the location of data loss within a hardware design. LossCheck statically analyzes an FPGA
design and instruments it with logic that dynamically checks for data loss in suspected locations.

51

3.4.1 SignalCat for Unified Logging

Our bug study shows that hardware debugging would benefit from the ability to log arbitrary
runtime information, just as software debugging does [292]. Today, while developers can use debug
statements (e.g., $display) to log values during HDL simulation, similar tools are not pervasively
available on deployed FPGAs without specific FPGA virtualization or IO support [241, 196]. In lieu
of generic “printf”-like statements, developers typically use vendor-provided data recording IPs
(e.g., Intel SignalTap [160] and Xilinx ILA [288]) to record a subset of variables when debugging
a deployed FPGA design. Thus, developers must maintain two different versions of their FPGA
design when debugging, one that uses simulation-based deubgging primitives, and one that uses
on-FPGA primatives.

SignalCat bridges this gap by unifying simulation-based and on-FPGA debugging through
automatic generation of on-FPGA recording logic (e.g., using FPGA vendors’ IPs) from debugging
statements (e.g., $display). SignalCat incorporates a static and a dynamic component. The static
component analyzes the path constraints of debugging statements and generates an IP instance for
on-FPGA data collection, while the dynamic component records the trace via the IP instance in an
on-FPGA scenario.

SignalCat searches the abstract syntax tree (AST) of an FPGA design for debugging statements.
For each such statement, SignalCat determines the arguments (i.e., the variables that the developers
want to print) and the path constraint (i.e., the conditions under which the statement is reached) of
the statement. Then, SignalCat generates an instance of a vendor-provided data recording IP to
record the collected arguments and path constraints, encoding path constraints as a 1-bit bool per
debugging statement. At each cycle, The system stores all arguments and encoded path constraints
in the recording IP buffer if at least one path constraint is true. SignalCat reconstructs and prints
debugging logs after execution allowing the same format for on-FPGA debugging and simulation.

SignalCat requires that developers specify the size (i.e., the number of data entries) of the IP’s
recording buffer and events that start and stop data recording (e.g., when the first packet arrives or
an assertion is triggered). Developers can also configure the buffer to capture a fixed interval before
and/or after the user-provided event.

Since SignalCat provides a single interface for simulation and on-FPGA logging, developers
of debugging tools can instrument an HDL design with a “printf”-like statement and support
simulation and on-FPGA debugging with a single code-base. In fact, all of our subsequent debugging
tools (§3.4.2–§3.4.5) leverage SignalCat for runtime data recording.

52

3.4.2 FSM Monitor for State Machine Traces

Hardware circuits often use finite state machines (FSMs) in their design (§3.2.3). When this design
paradigm is used, an FSM (state-transition) trace provides a user-friendly abstraction for circuit
execution and debugging, especially in comparison to a low-level waveform (i.e., a graph of all
signals at every cycle). Therefore, we propose FSM Monitor to help developers automatically
generate FSM traces. FSM Monitor detects FSMs in a circuit and generates logic that monitors
state changes for each detected FSM.

Hardware FSMs employ fixed code patterns that are detectable with static analysis [65, 287],
unlike software FSMs, which are difficult to detect without complex online tracing tools [88]. In an
FSM, a state transforms to another state when certain condition(s) are satisfied. State transitions
usually conditionally assign (e.g., an assignment inside a switch case) to FSM variables and include
FSM variables as a part of the condition. Additionally, circuits rarely perform mathematical
operations (e.g., addition or subtraction) on FSM variables and rarely select individual bits of FSM
variables.

Accordingly, FSM Monitor traverses the abstract syntax tree (AST) of a circuit and searches
for FSM variables by using the aforementioned heuristics. For each identified FSM variable, FSM
Monitor generates Verilog code that displays a log message when the variable is updated.

FSM Monitor’s heuristics can incur both false positives and false negatives, but we find a high
degree of accuracy in our evaluation (of the 32 manually-identified FSMs in our benchmark suite,
FSM Monitor has 0 false positives and 5 false negatives). Furthermore, more sophisticated FSM
detection approaches, like those used by the Intel and Xilinx synthesizers, could further increase
accuracy. Finally, FSM Monitor allows developers to patch mistakes by adding undetected FSMs
and filtering out FSMs that are inaccurate or irrelevant for their current bug.

3.4.3 Dependency Monitor for Provenance Tracking

Our bug study indicates that the only symptom of many hardware bugs is one or more incorrect
output values (Table 3.2). Since the root cause of a bug can occur many cycles prior to output
generation, it is useful to build the dependency chains for a specific variable and trace updates to
variables in the dependency chain during execution.

We therefore build Dependency Monitor to statically analyze the dependencies of a variable and
generate the necessary logic to monitor their updates. Dependency Monitor first statically finds all
registers that may propagate to a variable v within the previous k cycles (where v and k are specified
by the developer). Dependency Monitor then generates logic that logs each update to variables in
the dependency chain at runtime.

Dependency Monitor handles partial assignments (i.e., assignment to a strict subset of a variable’s

53

bits) by logically splitting a partially assigned variable to multiple variables. Similarly, Dependency
Monitor splits constant-indexed arrays into individual variables. If an array is accessed with at least
one variable index, Dependency Monitor considers the whole array as an individual register and an
assignment to/from the array as a special assignment that only occurs when the index matches. To
track dependencies through a blackbox IP, Dependency Monitor requires the developer to provide
a model of data and control dependencies within the IP. An IP model describes the relationship
between the input signals and the output signals of the IP, which is included in the IP specification
and typically well-understood by developers before using an IP. Developers can reuse IP models
across projects that share the same IPs.

By default, Dependency Monitor analyzes both control and data dependencies; however, it can
be configured to only analyze one type of dependency.

3.4.4 Statistics Monitor for Counting Events-of-Interest

Collecting hardware statistics (i.e., event counters) provides insight into program execution without
requiring cycle-by-cycle recording of numerous variables. Furthermore, per-component (e.g., per
pipeline stage) counters help a developer localize a statistical anomaly (indicative of a bug) to a
small region of a complex circuit.

Accordingly, we propose Statistics Monitor, a tool to help developers collect statistics for events
of interest when debugging an FPGA design. Statistics Monitor generates Verilog code that counts
occurrences of single-bit signals specified by a developer and adds logging code that emits messages
when counts change.

Statistics Monitor is particularly useful when developers suspect that 1) it is too expensive (i.e.,
with regard to resource consumption) or unnecessary to record all variables of interest on an FPGA
deployment (especially cycle-by-cycle), and 2) the bug’s symptoms can be inferred via statistical
anomalies (e.g., unexpected differences between valid input and valid output counts, indicating
potential data loss).

3.4.5 LossCheck for Precise Data Loss Localization

While Statistics Monitor may indicate the presence of data loss (among other bug symptoms) and
may localize it to a portion of the circuit, the pervasiveness of bugs manifesting as data loss in our
bug study indicates that precise data loss localization would be helpful for hardware debugging.

We therefore design LossCheck, a tool that localizes the root cause of data loss symptoms. A
developer specifies a SOURCE register, a SINK register, and a valid signal for SOURCE (§3.2.3).
Then, LossCheck instruments the HDL code to monitor the propagation of valid data between
SOURCE and SINK. If a valid register is overwritten before its value is propagated from SOURCE to

54

SINK (i.e., overwritten before being used as a right-hand variable), LossCheck indicates potential
data loss.

We note that the tracking of data propagation logic in LossCheck shares similarities with that
of Dependency Monitor. However, unlike Dependency Monitor, LossCheck does not yield a trace
of updates to variables of interest in a dependency chain. Rather, LossCheck indicates the precise
location of a potential data loss. Ultimately, LossCheck’s dynamic analysis conveniently enables
automatic localization of data loss bugs without recording a large number of data propagation
events.

We now describe how LossCheck statically analyzes HDL code (§3.4.5.1), instruments the code
(§3.4.5.2), and dynamically detects data loss while mitigating false alerts (§3.4.5.3). We then discuss
the limitations of LossCheck (§3.4.5.4).

3.4.5.1 Static Analysis of Data Propagation

LossCheck statically analyzes data propagation in an FPGA design and builds a table of propagation

relations. It uses these relations to calculate metadata variables that indicate potential data loss
(§3.4.5.2).

A propagation relation X ⇝σ Y implies that the data value stored in register X will propagate to
register Y when the condition σ is satisfied. In other words, the value stored in Y at cycle k+1 (i.e.,
Yk+1) will be influenced by the value stored in X at cycle k (i.e., Xk), if σ is true at cycle k (i.e, σk).

At a high level, LossCheck uses logic similar to Dependency Monitor to detect propagation
relations and thereby build the propagation relation table. More specifically, LossCheck first
identifies a set of data propagation sequences through which a value stored in SOURCE can propagate
to SINK. LossCheck then analyzes the control and data dependencies for each register R in the
propagation sequences, and adds each identified propagation relation into the table.

We use the following code snippet as a running example of how LossCheck works, where in is
the SOURCE register, out is the SINK register, and in valid is the valid bit for in:

1 always @(posedge clk) begin

2 // buggy code (b's value can be lost)

3 if (cond_a) out <= a;

4 else if (cond_b) out <= b;

5 if (in_valid) b <= in;

6 end

To analyze the dependencies of b in this example, LossCheck first detects the propagation
sequence: in→ b→ out. LossCheck then analyzes the dependencies for b and out, building the
following table with 3 propagation relations.

55

Line Propagation Relations
3 a⇝cond a out

4 b⇝¬cond a∧cond b out

5 in⇝in valid b

Similar to Dependency Monitor, if the source code for an IP is unavailable, LossCheck inserts
propagation relations into the table based upon developer-provided IP models.

3.4.5.2 Instrumentation of HDL Code

LossCheck uses the propagation relations to guide circuit instrumentation that enables data loss
detection at runtime. The instrumentation process of LossCheck contains two phases: 1) inferring
various loss-related metadata for each register in each propagation sequence, and 2) inserting
corresponding logic to check for potential data loss via this metadata.

Assignment, Validity, and Propagation Statuses Intuitively, potential data loss occurs when
the assignment of a valid register occurs before its value is propagated to another register, thereby
overwriting (unused) valid data. So, to detect potential data loss for a register R, LossCheck
generates assignment A(R), valid-assignment V (R), and propagation P(R) shadow variables for the
register.

For some cycle k, a register’s assignment status A(R)k indicates whether R is assigned a value
during cycle k. The value of A(R)k is inferred at runtime from the propagation relation table.
Specifically, A(R)k evaluates to true if at least one register R′ propagates its value to R at cycle k.
More formally, the condition σ for some propagation relation R′⇝σ R must be satisfied at cycle k.

Similarly, V (R)k indicates whether R is specifically assigned a valid value during cycle k. V (R)k

is therefore determined by combining the logic for calculating A(R)k with runtime information about
data validity. In simple cases (such as our code example), data validity status is trivially available for
the variable of interest (e.g., via a corresponding valid signal); in more complex cases, LossCheck
calculates validity status for each variable of interest according to the initial input validity value and
propagation relations.

Finally, a register’s propagation status P(R)k indicates whether R is used to compute another
register’s value during cycle k. Similar to how A(R)k represents assignment to register R, P(R)k

represents assignment from register R. Thus, P(R)k evaluates to true if R can propagate its value to
at least one register R′ at cycle k (i.e., if the condition σ for some propagation relation R⇝σ R′ is
satisfied at cycle k).

After LossCheck determines the values of A(R), V (R), and P(R), it instruments the circuit with
the logic to compute the values of these variables at each cycle. Below, we apply these rules to

56

variable b from the original code snippet:

1 always @(posedge clk) begin

2 // update shadow vars for next cycle

3 A_b <= in_valid;

4 V_b <= in_valid;

5 P_b <= ~cond_a & cond_b;

6 end

Lines 3–5 calculate the values of A(b), V (b), and P(b) for the next cycle based on the propagation
relations. We note that, in this example, A(b) =V (b) because assignment to b is guarded by the
valid signal in valid.

Inserting Checking Logic Given a register’s shadow variables, data loss for register R at cycle k

occurs if the following 3 conditions hold: (1) R is assigned at cycle k—i.e., A(R)k = true, (2) R is
not simultaneously propagated at cycle k—i.e., P(R)k = false, and (3) R was assigned a valid value
in some previous cycle, which has not yet propagated.

The first two conditions are trivially calculated for R at the current cycle via aforementioned
logic. For the third condition, LossCheck keeps track of an additional “Needs-Propagation” variable
N(R), which is set to true when a valid value is assigned to R and reset to false when the value
propagates. In mathematical terms, N(R)0 = false (since no valid value has been assigned at cycle
0), and for k > 0,

N(R)k =V (R)k−1 ∨ [N(R)k−1 ∧¬P(R)k−1] . (3.1)

Potential data loss at cycle k is then calculated as:

Loss= A(R)k ∧¬P(R)k ∧N(R)k . (3.2)

Notably, while the shadow variables (i.e., A(R), P(R), and N(R)) have a unique value at each
cycle, k, LossCheck can detect loss in R at cycle k using only the most recent value of each shadow
variable, (i.e.,A(R)k, P(R)k, and N(R)k). Consequently, the amount of state that LossCheck tracks
is bounded, so LossCheck can be realized on hardware.

LossCheck generates code that calculates N(R) and checks Equation 3.2. The instrumented
circuit that checks for data loss on b is:

1 always @(posedge clk) begin

2 // calculate N_b for next cycle from shadow vars

3 if (reset) N_b <= 0;

4 else N_b <= V_b | (N_b & ~P_b);

57

5 // check for data loss at current cycle

6 if (A_b & ~P_b & N_b)

7 $display("LossCheck: potential data loss at b");

8 end

Lines 3–4 calculate N(b) for the next cycle according to Equation 1, and Lines 6–7 perform the
check for potential data loss at cycle k based on Equation 2.

3.4.5.3 Filtering False Positives and Final Analysis

Notably, LossCheck’s design can generate false positives due to an intentional data drop (as opposed
to an unintentional data loss). For example, an FPGA may intentionally drop a network packet input
that fails a checksum; LossCheck would flag the packet as data loss. Accordingly, LossCheck uses
an FPGA design’s test cases—presumably passed during simulation testing— as “ground-truth” test
programs; LossCheck suppresses warnings triggered by these test cases. We note that pre-existing
test programs for the open-source designs in our study filter 23/24 false positive registers (i.e., those
with intentional data drops).

Like the monitors, LossCheck leverages SignalCat to transform the filtered debugging statements
(indicating unintentional data loss) into log messages for either simulation or on-FPGA scenarios.
Thus, if potential data loss is detected for some register R, a log message indicates R as the source
of the loss, and the bug can be precisely localized.

3.4.5.4 Limitations of LossCheck

While LossCheck can accurately localize data losses to a specific register, it cannot distinguish
intentional data drops from unintentional data losses. As a consequence, if an unintentional data
loss and an intentional data drop occur at the same place, the data loss may be filtered by LossCheck,
resulting in a false negative. We identify a single such false negative (out of 7 data loss bugs) in our
testbed (§3.6.3).

3.5 Implementation

We build our static analyses using Pyverilog [258], a toolbox for Verilog analysis and instrumenta-
tion. We use Pyverilog’s dataflow analysis framework to analyze data dependencies and its Verilog
code generator to output the instrumented circuit. Furthermore, to analyze circuits developed in
SystemVerilog (i.e., an extension of Verilog with more language features), we augment Pyverilog to
use the more modern SystemVerilog parser of Verilator [252], a SystemVerilog simulator. Verilator

58

parses SystemVerilog files and performs optimizations such as inline expansion and module instan-
tiation, resulting in an analysis-friendly abstract syntax tree (AST) that Pyverilog can analyze. We
modify and add 269 lines of C++ code and 1,750 lines of Python code to integrate Verilator and
Pyverilog.

We implement the debugging tools (i.e., SignalCat, FSM Monitor, Dependency Monitor, Statis-
tics Monitor, and LossCheck) as a collection of analysis and instrumentation passes on Pyverilog
ASTs. These passes are implemented with 3,797 lines of Python code.

Dependency Monitor and LossCheck require developers to implement a model that describes the
relation between the inputs and outputs for each closed-source IP. In our testbed, three IPs are used:
altsyncram, a block RAM implementation; scfifo, a single clock queue implementation; and
dcfifo, a double clock queue implementation. We implement the models for these IPs in Python
and Verilog, resulting in 394 lines of code in total.

3.6 Evaluation

In this section, we first present our testbed (§3.6.1) and experimental setup (§3.6.2). Then, we
evaluate the effectiveness of our debugging tools at helping developers debug the bugs in our
study (§3.6.3). Finally, we present the resource usage and performance overhead when using the
debugging tools to diagnose the study bugs (§3.6.4).

3.6.1 Testbed of Reproducible FPGA Bugs

We built and released a testbed consisting of 20 bugs that we reproduced to facilitate further study
of FPGA bugs and FPGA debugging tools [13]. The bugs span the 3 major classes of bugs we
identified—data mis-access, communication, and semantic—and multiple development platforms
(e.g., Intel HARP and Xilinx). For each bug, we identify the subclass, application, symptom,
and the tools that are helpful when debugging each bug, as shown in Table 3.2. The artifact also
includes a simplified code snippet for each bug for explanation purposes and provides instructions
for reproducing the bug in a push-button manner with the open-source Verilator simulator [252] .
Using a simulator eliminates the need for testbed users to spend substantial time and effort acquiring
design-specific knowledge that would otherwise be necessary to reproduce each bug.

Although each bug in the testbed is reproducible on real hardware, but, we opt to reproduce the
bugs in Verilator for 3 reasons. First, a Verilator-compatible testbed demonstrates that both the fun-
damental properties of the bugs and the logic of our debugging tools are broadly-applicable in FPGA
development. Second, other developers can reason about these bugs and a range of development
platforms without purchasing expensive hardware. Third, Verilator simplifies the environmental

59

ID Subclass Application Platform Symptom
Stuck Loss Incor. Ext.

D1

Buffer Overflow

RSD HARP ✓ ✓
D2 Grayscale HARP ✓ ✓
D3 Optimus HARP ✓ ✓
D4 Frame FIFO Generic ✓ ✓
D5 Bit Truncation SHA512 HARP ✓ ✓
D6 FFT Generic ✓
D7 Misindexing FADD Generic ✓
D8 AXI-Stream Switch Generic ✓
D9 Endianness Mismatch SDSPI Generic ✓
D10

Failure-to-Update

SHA512 HARP ✓
D11 Frame FIFO Generic ✓
D12 Frame FIFO Generic ✓
D13 Frame Length Measurer Generic ✓
C1 Deadlock SDSPI Generic ✓ ✓
C2 Producer-Consumer Mismatch Optimus HARP ✓ ✓
C3 Signal Asynchrony SDSPI Generic ✓
C4 AXI-Stream FIFO Generic ✓
S1 Protocol Violation AXI-Lite Demo Xilinx ✓
S2 AXI-Stream Demo Xilinx ✓
S3 Incomplete Implementation AXI-Stream Adapter Generic ✓

Table 3.2: The testbed of reproducible bugs, including their classes, subclasses, application, plat-
forms, and symptoms. Bug D1–D13 are data mis-access bugs, Bug C1–C4 are communication
bugs, and Bug S1–S3 are semantic bugs. A “Generic” platform means that the application does
not target on a specific platform and can be synthesized to different FPGAs. For bug symptoms,
“Stuck” indicates a symptom of infinite waiting; “Loss’ indicates a data loss; “Incor.” means the
FPGA design gives an incorrect output; and “Ext.” means an external monitor (such as an FPGA
shell) reports an error.

conditions required to reproduce each bug—crucially, without changing the buggy programs them-
selves. For the key platform-specific recording IP primitives used by SignalCat (SignalTap [160]
and ILA [288]), we provide support for simulating their behavior. Unless specifically mentioned,
the buffer size for these data recording IPs is fixed at 8,192 entries.

3.6.2 Experimental Setup

Platform for Overhead Measurement We evaluate the resource and performance overhead
of our debugging tools using Quartus 17.0 [40] and Vivado 2020.2 [46], the official synthesizers
for Intel’s and Xilinx’s FPGAs, respectively. We synthesize all Intel HARP-specific designs to
the HARP platform [150] (using Quartus), with the remaining designs synthesized to the Xilinx
KC705 [48] platform (using Vivado).

60

ID Helpful Tools
SignalCat FSM Monitor Stats. Monitor Dep. Monitor LossCheck

D1 ✓ ✓ ✓ ✓
D2 ✓ ✓ ✓ ✓
D3 ✓ ✓ ✓ ✓ ✓
D4 ✓ ✓ ✓
D5 ✓ ✓ ✓
D6 ✓ ✓
D7 ✓
D8 ✓
D9 ✓
D10 ✓ ✓ ✓
D11 ✓ ✓
D12 ✓ ✓
D13 ✓ ✓ ✓
C1 ✓ ✓
C2 ✓ ✓ ✓ ✓ ✓
C3 ✓
C4 ✓ ✓
S1 ✓
S2 ✓
S3 ✓

Table 3.3: The tools used during the debugging process of each bug.

Use Cases We evaluate our tools in two use cases. In the first case, we use SignalCat and the
three monitors (FSM Monitor, Dependency Monitor, and Statistics Monitor) to debug all bugs in
our study; in the second one, we use LossCheck to localize the source of data loss symptoms for the
7 relevant bugs. Table 3.3 shows the tools used during the debugging process of each bug.

3.6.3 Effectiveness of Debugging Tools

We evaluate the effectiveness of our debugging tools by assessing how much they simplify root
cause diagnosis for the bugs in our study (§3.3). An experienced developer could diagnose, localize,
and fix the bugs in our study without extra tooling; this is what occurred when these bugs were first
reported. But, we find that the localization process is simpler when using our tools. We specifically
answer two questions (1) How often is each tool useful when debugging the bugs in our study?
and (2) How much work do the debugging tools automate? Additionally, we provide a case study
that demonstrates how a developer would use the tools to localize a data loss bug in an Intel HARP
application.

SignalCat and Monitors SignalCat is useful for debugging every bug in our study, serving as the
fundamental cross-platform logging infrastructure. Each of the 3 monitors assists with debugging at

61

1K 2K 4K 8K
0.2
0.4
0.8
1.6
2.4
4.3

Bl
oc

k
RA

M
 (M

bi
ts

)

1K 2K 4K 8K
0

2

4

6

Re
gi

st
er

s (
x1

00
0)

1K 2K 4K 8K
0

1

2

Lo
gi

c
(x

10
00

) D1
D2
D3
D5
D10
C2

1K 2K 4K 8K

0.1
0.2
0.4
0.8
1.4
2.4

Bl
oc

k
RA

M
 (M

bi
ts

)

1K 2K 4K 8K
0
2
4
6
8

Re
gi

st
er

s (
x1

00
0)

1K 2K 4K 8K

0

2

4

6

Lo
gi

c
(x

10
00

) D4
D6
D7
D8
D9
D11
D12

D13
C1
C3
C4
S1
S2
S3

Figure 3.2: The resource overhead of manual debugging using SignalCat, FSM Monitor, Statistics
Monitor, and Dependency Monitor on Intel HARP (top) and Xilinx KC705 (bottom) platforms.
Resource overheads (y-axes) are shown in terms of block RAM, registers, and logic (i.e., the three
types of resources on an FPGA) with an increasing recording buffer size (x-axes). The buffer size
and block RAM overhead are shown in log-scale.

least four bugs from the testbed. During debugging (with SignalCat and the 3 monitors), we often
find FSM Monitor to be the most helpful in an initial debugging iteration when one or more FSMs
were present in the design. Statistics Monitor is generally most usefully deployed in subsequent
iterations, where developers try to narrow down the search space of a bug’s root cause. Finally,
upon encountering a variable with an unexpected value, SignalCat is useful for directly recording
updates to the specific variable, while Dependency Monitor supplements this with an analysis of the
variable’s dependencies. On average, SignalCat and the monitors generate and insert 72 lines of
Verilog code to help with root cause localization.

LossCheck LossCheck precisely locates the root cause of data loss (i.e., a specific register) for
6 out of 7 bugs exhibiting data loss (i.e., Bugs D1, D2, D3, D4, C2, and C4) in our study. For
2 of these bugs (D4 and C4), LossCheck uniquely identifies the root cause of the bug without
using the false positive filtering technique in §3.4.5.3. For 3 of these bugs (D2, D3, and C2),
LossCheck uses the false positive filtering technique to localize the bug without reporting false
positives. For the Reed-Solomon decoder buffer overflow (D1), LossCheck reports 1 false positive
(i.e., it mistakenly identifies an intentionally dropped register as unintentional data loss), because
the developer-provided test case does not perform an intentional data drop at the mis-reported
register, so LossCheck does not silence the warning. LossCheck cannot localize the data loss in Bug
D11 because the unintentional data loss occurs in a register where the data value may be dropped
intentionally under certain conditions; as a result, the data loss is mis-filtered by the LossCheck’s
false positive filtering. LossCheck generates and inserts 522–19,462 lines of Verilog code to analyze
data propagation and detect data loss at runtime, which helps developers avoid the time-consuming

62

manual implementation of data loss checking logic.

Case Study: Debugging Grayscale’s Buffer Overflow We describe a case study in which a
developer uses the new tools to debug a buffer overflow in the Grayscale application [53]. Grayscale
is an end-to-end application written for Intel HARP [150] that includes an FPGA accelerator and a
software component. The CPU-side software component reads an image from the file system and
programs the FPGA accelerator to read the image from CPU-side memory, perform the grayscale
transformation, and write the result back to CPU-side memory. The software component identifies
that the acceleration task hangs when the bug occurs.

Grayscale consists of multiple FSMs, so the developer first uses FSM Monitor to identify the
state of each FSM when the hang occurs. The developer re-executes the application to trigger the
bug. FSM Monitor’s output identifies that the accelerator finished reading data from the CPU, since
the read FSM—which controls how the accelerator reads CPU memory—is in the RD FINISH

state. However, the circuit has not finished writing data to the CPU, since the write FSM—which
controls how the accelerator writes CPU memory—is in the WR DATA state. The developer concludes
that the hang occurs in write-related logic.

Next, the developer inspects the state transition logic of the write FSM. They find that the state
of the write FSM only transfers from WR DATA to WR FINISH after the accelerator writes the whole
transformed image to the CPU-side memory. Since the accelerator has already read all data from the
CPU (i.e., the read FSM is in the RD FINISH state), the hang indicates data loss in the accelerator
during the propagation between a memory read and its corresponding memory write.

Finally, the developer uses LossCheck to identify the source of the data loss. They re-execute the
application with LossCheck enabled. LossCheck identifies the source of the data loss as a specific
register in the accelerator.

3.6.4 Efficiency of Debugging Tools

In this section, we assess the efficiency of the debugging tools by measuring (1) the additional
resources consumed when circuits are instrumented using our tools—i.e., the resource overhead,
and (2) the necessary clock frequency slowdown stemming from the augmented logic that must
execute each cycle—i.e., the runtime performance overhead.

SignalCat and Monitors Figure 3.2 shows the resource overhead (in terms of block RAM,
registers, and logic) of SignalCat and the monitors, applied to each buggy design. The most
significant resource overhead lies in block RAM usage, which increases linearly as the developer-
specified recording buffer size increases. The register and logic overheads tend to be stable for each

63

D1 D2 D3 C2
0.0

0.5

1.0

1.5

No
rm

al
ize

d
Ov

er
he

ad
 (%

) Register
Logic

D4 C4
0.0

0.2

0.4

0.6

Figure 3.3: LossCheck’s overhead in terms of registers and logic, normalized to the total resources
available on Intel HARP (left) and Xilinx KC705 (right) platforms.

bug, regardless of the recording buffer size. Among our benchmarks, the two bugs on the Optimus
hypervisor and the Bit Truncation bug on the FFT accelerator incur the largest register and logic
overheads consuming approximately 0.23% and 0.3% of register and logic resources on the Intel
platform (3.08% and 1.99% on Xilinx).

Runtime performance overhead is only incurred for 1 design; namely, Optimus fails to achieve
its targeted clock frequency (400 MHz) after the debugging instrumentation. As a result, we reduce
its frequency to 200 MHz for debugging. While SHA512 also targets a 400 MHz frequency, it
still achieves this frequency after instrumentation. Other designs target a 200 MHz frequency and
likewise do not incur performance overhead to account for debugging logic.

LossCheck Figure 3.3 shows LossCheck’s resource overhead in terms of registers and logic for
the data loss bugs in our study. LossCheck’s instrumentation uses less than 1.7% of the total register
and logic resources for the four data loss bugs on the Intel platform, and uses less than 0.7% of total
resources for the two data loss bugs on Xilinx.

As with SignalCat and the monitors, LossCheck reduces the frequency of Optimus from 400
MHz to 200 MHz. The 200 MHz target frequency of other FPGA designs remain unchanged.

3.7 Related Work

Hardware Bug Studies HardFails [117] performs a bug study of security bugs in CPUs that
include real-world and synthetic bugs and creates a testbed by injecting bugs into an open-source
CPU design. HardFails only includes security bugs, which are representative of few bugs that
make it to production [132]. In contrast, our study examines real-world functionality bugs in FPGA
designs.

64

Simulation-Based FPGA Debugging Developers usually simulate an FPGA design before
deploying on-FPGA. Most simulators [252, 257, 277, 47, 43] can generate a waveform—a visual-
ization of signal values—during simulation to aid with debugging. Previous research accelerates
simulation-based debugging using language features [226, 108] and by offloading simulation to an
FPGA [241, 167, 168] or a GPU [230]. Our debugging tools are designed for both on-FPGA and
simulation-based debugging.

Trace-Based FPGA Debugging Trace-based FPGA debugging tools allow developers to collect
the value of a selected set of signals in an FPGA deployment. FPGA vendors provide IPs (e.g., Intel
SignalTap [160] and Xilinx ILA [288]) that export manual interfaces (e.g., GUIs). To use these tools,
developers manually specify the signals that they wish to trace and triggering conditions that should
enable tracing output. In contrast, SignalCat automates the selection of signals and corresponding
trigger conditions (by statically analyzing “printf”-like statements and their path constraints) and
provides a natural, vendor-agnostic debugging interface. Prior work reduces the runtime recording
overhead of platform-specific IPs by reducing buffer usage [204, 185, 148, 138, 137, 146, 249, 229];
SignalCat can benefit from these optimizations when applicable.

Checkpointing-Based FPGA Debugging Checkpointing-based FPGA tools [80, 79, 180, 241,
196] allow a developer to capture the state of an FPGA deployment for later analysis or debugging,
but do not help with localizing the root cause of bugs. Our debugging infrastructure could benefit
from similar checkpoint-based functionality.

Synthesizing Traditionally-Unsynthesizable HDL Cascade [241] and Synergy [196] enable
traditionally “unsynthesizable” Verilog, including “printf”-like statements, to execute on an
FPGA. Cascade and Synergy can store arbitrarily-long logs in off-FPGA storage (e.g., in CPU-side
memory or disk), but may slow down the circuit since they pause circuit execution when executing
“printf”-like statements. In contrast, SignalCat offers a different tradeoff: SignalCat imposes
lower overhead since it does not pause circuit execution, but can only store limited information
since it uses on-FPGA storage (e.g., block RAM).

Interactive FPGA Debugging Interactive FPGA debugging tools allow a developer to interac-
tively manipulate packets in their FPGA’s communication channels [211] and provide GDB-like
interfaces for FPGA debugging [72]. These tools are useful during simulation but are not applicable
for on-FPGA debugging and do not directly help a developer localize the root-cause of a hardware
bug.

65

Traditional Hardware Testing Traditionally, hardware developers implement test suites with
industry standard frameworks [57] to extensively test hardware designs in simulation. Hardware
fuzzing techniques [195, 263] and formal verification [278, 298, 163, 199, 147, 236, 235] help
developers find and eliminate bugs before fabrication, but do not help a developer identify the
root-cause of a bug and are resource-intensive. In contrast, our work explores bug localization tools
designed for both simulation and on-FPGA scenarios.

Hardware-Assisted Testing and Debugging A plethora of tools [305, 112, 169, 171, 172, 170]
have used efficient hardware tracing techniques (typically used in profiling and optimization of
hardware/software designs [175, 174, 173]) for testing and debugging. In this paper, we show
how reconfigurable hardware can be leveraged to instead design more targeted debugging support
by designing and implementing foundational debugging tools. We expect future work to use the
reconfigurable nature of FPGAs to design advanced debugging support.

Software Bug Detection at Runtime Our work on FPGA bug localization is inspired by software
debugging tools and techniques such as AddressSanitizer [242], ThreadSanitizer [243], Memcheck
[245], and dynamic slicing [238]. Particularly, LossCheck’s key building block–tracking data
propagation dynamically—is closely inspired by such work. Since our own work shows that
software techniques are useful for hardware debugging, we believe that the core data propagation
logic of LossCheck could be generalized and adapted to other sophisticated FPGA debugging tools.

3.8 Conclusion

The proliferation of reconfigurable hardware has enabled a software-like rapid development cycle
in which teams relax verification efforts. While the community has expended effort into bug finding
tools (e.g., simulation-based testing tools), very little work has focused on localizing the root cause
of hardware bugs. In this work, we performed a study of bugs in open-source FPGA designs and
showed that hardware bugs follow a similar taxonomy to software bugs. We argue that hardware
bugs are amenable to software-style hybrid static/dynamic program analysis and monitor tools
and provide a toolset that aids FPGA debugging and facilitates greater confidence in emerging
test-deploy-patch FPGA development cycles.

66

CHAPTER 4

Proactive Runtime Detection of Aging-Related Silent
Data Corruptions: A Bottom-Up Approach

4.1 Introduction

In recent decades, the semiconductor industry has made remarkable technological progress. Continu-
ous advancements in process nodes have ensured a consistent downsizing of transistors to nanoscale
dimensions, yielding improvements in performance and reductions in energy consumption. How-
ever, these advances have also bared circuits to reliability challenges [203, 36], notably evidenced
by the emergence of silent data corruptions in data centers [145, 121, 271, 122, 244, 84, 120].

Silent data corruptions, or SDCs, are a form of undetected failures that occur without generating
logs, exceptions, or causing immediate program crashes. Instead, they silently introduce incorrect
data into applications. As a result, the error can spread far from its point of origin, potentially
leading to failures that are difficult to predict, prevent, and troubleshoot. Recently, cloud providers
have identified CPUs with such SDCs in their data centers [145, 121, 271].

SDCs are risky, as they challenge the fundamental “fail-stop” assumption of hardware failures
that software developers have been accustomed to for decades. Most software applications in data
centers and personal computers assume that a circuit, having undergone correct design, fabrication,
and testing, will either function correctly or not work at all. Unfortunately, SDCs usually involve
hardware malfunctions like miscomputing instructions and broken cache coherency, which are
typically not considered by applications. Worse, these faults may be transient or persistent, which
increases the difficulty of monitoring and mitigating SDCs.

Transistor aging is believed to be one of the causes of SDCs [60, 73, 69, 71]. This gradual
performance degradation of transistors over time steadily increases signal propagation delays.
Eventually, this aging results in timing violations inside a circuit, thus causing certain components
to malfunction. Alibaba observed that a significant portion of SDCs in their CPUs appear only after
a period of usage [271], suggesting that these SDCs may be attributed to transistor aging.

67

A straightforward strategy for mitigating the risks associated with SDCs is to conduct frequent
and proactive testing using well-designed test cases, therefore enabling quick identification and
removal of malfunctioning hardware. Following this strategy, previous research has explored the
formulation of test cases specifically for the detection of SDCs, as well as the development of
frameworks for test management and scheduling. However, in order to stress individual components
inside the circuit, these works tend to create complex tests with a long execution time, preventing
them from being frequently scheduled. For example, in Alibaba, such tests are only scheduled once
every three months [271].

The detection of SDCs—especially these attributed to aging—would be markedly improved by
increasing testing frequency. Transistor aging occurs progressively and a circuit may exhibit SDCs
at any stage of its lifecycle, so more frequent testing helps ensure more timely detection. Ideally,
test cases should be selectively integrated within applications, guaranteeing routine execution and
enabling immediate error-handling for detected SDCs. However, such an integration is traditionally
impractical because of the long execution times associated with SDC tests developed by previous
work. For example, Google’s SiliFuzz [244] generates around 500,000 test cases, and a full
execution of DCDiag [41]—Intel’s official CPU diagnosis tool—takes 45 minutes.

Previous research tends to yield tests with a long execution time because of their adoption of
a “top-down” approach. These works treat the hardware as a black box and generate test cases
atop an abstract model of it. For example, Google’s SiliFuzz [244] generates test cases by fuzzing
the instruction set architecture (ISA) of a CPU, while Intel designed OpenDCDiag [28]—an open-
source variation of DCDiag [41]—on top of popular libraries such as zlib [29] and eigen [140]. Due
to the lack of implementation details in the abstract hardware model, these methods must generate a
set of complex tests to ensure that all components inside the hardware are stressed.

However, hardware is not a black box. Circuit design is detailed in hardware description lan-
guages (HDLs) and subsequently synthesized into a netlist, which comprises a complex placement
of gates and wires. This netlist serves as a blueprint during chip fabrication. Unsurprisingly, as a
dominant factor in circuit reliability, transistor aging has been extensively studied at the level of
gates and netlists [60, 219, 220, 83, 143]. Particularly, prior research has identified key electrical
effects that contribute to transistor aging and developed comprehensive models to estimate these
effects [63, 133].

In this paper, we present Vega, a novel “bottom-up” workflow designed to bridge the gap between
the gate-level understanding of transistor aging and the proactive detection of aging-related SDCs in
software. Vega empowers frequent and routine detection at application runtime, thereby improving
the effectiveness of transistor aging failure detection. Specifically, Vega is comprised of three
phases:

1– Aging Analysis identifies susceptible signal propagation paths that can potentially fail due

68

to transistor aging. This is achieved through the use of aging-aware static timing analysis, supple-
mented by the well-studied gate-level models for transistor aging [63, 133].

2– Error Lifting transforms aging-prone paths into short test cases that are executable in a
software environment and integrable into an application. This conversion leverages a combination
of formal methods, logical modeling for timing errors, and heuristics based on the hardware’s
microarchitecture to ensure precise test case generation. As a byproduct, this phase additionally
yields a number of failure models for the analyzed hardware, which can be valuable for future
research in circuit and software reliability.

3– Test Integration combines test cases with an application. We showcase two approaches for
such integration: a profile-guided method for automated test instrumentation, and a manual method
for a more controlled integration.

We demonstrate Vega on the arithmetic logic unit (ALU) and the floating-point unit (FPU)
of a RISC-V CPU, synthesized into a 28nm cell library. We show that Vega can identify aging-
susceptible signal paths and generate effective test cases to target faults arising from them: these
test cases incur negligible runtime performance overhead while ensuring routine aging detection.

Overall, we make the following contributions:

• We design Vega, a novel workflow that bridges the gap between the physical understanding of
transistor aging and the proactive detection of aging-related SDCs in software.

• We evaluate Vega with a circuit synthesized into a real-world cell library, demonstrating the
capability of frequent aging-related failure detection with negligible runtime overhead.

• We provide a set of circuit-level failure models for the analyzed hardware to facilitate future
research into silent data corruptions.

4.2 Background and Motivation

This section begins with context about recent observations of silent data corruptions (SDCs) on data
center-deployed hardware circuits (§4.2.1). Next, we summarize the development process of such
circuits (§4.2.2), and explore how transistor aging—a common cause of SDCs—can impact the
performance and reliability of hardware circuits (§4.2.3). After each subsection, we present key
takeaways that motivate Vega.

4.2.1 Silent Data Corruptions

Silent data corruptions (SDCs) are a form of undetected failure that silently introduces incorrect data
into applications. These occur without generating logs, triggering exceptions, or causing immediate

69

program crashes. Consequently, SDCs can propagate beyond their point of origin, leading to issues
that are challenging to prevent, predict, or troubleshoot.

Recently, major data center operators, including Meta, Google, and Alibaba, have reported
incidents of SDCs within their clusters [145, 121, 271]. Investigations into these SDCs uncovered
that they stem from faults within computational circuits (i.e., CPUs), rather than the more typical
suspect, memory devices. Occasionally, a CPU, despite having been correctly designed, fabricated,
and tested, may still consistently produce incorrect results during certain operations, leading to
various misbehaviors including miscomputing instructions and disruptions in cache coherency.

SDCs may manifest at any point during the lifecycle of a circuit, but only a limited subset of them
can be detected during factory testing. Alibaba’s data indicates that a significant 73.5% of the SDCs
they identified occur in CPUs that have already been in use, either during system re-installations
(63.9%) or while in production (9.6%) [271].

Currently, data center operators detect SDCs through extensive, long-running test cases that
proactively stress the underlying hardware. However, given the low probability of SDC occurrence,
it is impractical to run these tests frequently. For instance, in Alibaba’s data centers, these tests are
conducted only once every three months [271]. Consequently, there is a growing need for a more
efficient and practical mechanism to identify SDCs.

Takeaway #1. Increasing the frequency of SDC testing can lead to more timely detection of SDCs.
Shrinking the size of the test cases can make frequent testing more practical.

4.2.2 Hardware Development

Digital circuits such as CPUs and GPUs are initially developed in hardware description languages
(HDLs) like Verilog, SystemVerilog, and VHDL. HDLs empower developers to precisely describe
the functionality of each component in a hardware design. Functionalities can then be tested through
circuit simulations, allowing developers to verify and debug a design before it progresses to the
physical fabrication stage.

Subsequently, in a process akin to software compilation, a hardware synthesizer transforms the
circuit’s functional description from an HDL into a netlist. The netlist is structured as a directed
graph comprised of a large number of cells from a standard cell library, with wires that describe the
electrical connections between the cells. These libraries, provided by chip manufacturers, describe
the functionality and timing behavior of predefined circuit components such as logical gates and
flip-flops, allowing the synthesized design to be practically implemented in hardware.

Following circuit synthesis, the hardware design progresses to a stage known as place-and-route.
This stage involves strategically positioning cells into designated locations on a silicon die, and
creating the wires that interconnect these cells. Moreover, it also ensures the clock signal reaches all

70

parts of the chip in a timely and synchronized manner, which is crucial for the proper functioning
of synchronous logic. Additionally, static timing analysis (STA) is employed to evaluate the
compliance of digital signals with timing constraints, thereby determining the circuit’s maximum
operating frequency and ensuring its reliable operation.

Takeaway #2. Hardware is not a black box: its implementation details can provide insights that
guide SDC detection.

4.2.3 Transistor Aging

Transistor aging, which is believed to be a significant cause of SDCs [60, 73, 69, 71], refers to the
gradual degradation of the performance and reliability of transistors over time. This process leads
to an increase of a transistor’s threshold voltage, which in turn causes a higher switching delay. As
a result, signal propagation through an aged circuit may take longer than anticipated, potentially
violating the circuit’s timing constraints and resulting in malfunctions.

In modern circuits, this aging process predominantly stems from a physical phenomena called
bias temperature instability (BTI), occurring when a static voltage is applied to a transistor for a
long period of time [63, 190]. In other words, when a transistor remains in a constant state without
regular switching, it is more likely to experience aging.

4.2.3.1 The Nonuniform Nature of Transistor Aging

Transistor aging in a circuit is a nonuniform process [133], and several factors vary degradation rates.
A key factor is the different BTI stress each transistor experiences during operation. Rarely-used
circuit components tend to have more transistors idling in a fixed state, increasing their vulnerability
to BTI effects. This variation is heightened in CMOS-based technologies due to their inherent
design and operational characteristics. Specifically, as p-type transistors are more susceptible to
BTI effects than n-type transistors, logical gates that consistently idle in a “0” state tend to age
faster than those that idle in a “1” state or that switch regularly.

There are several additional causes of non-uniform transistor aging [134]. For example, clock
gating, a standard power-saving technique, has been identified as a primary cause of uneven
transistor aging. Clock gating inadvertently introduces varying levels of BTI stress across different
areas of the clock network. Therefore, it leads to different aging rates in different regions of the
network.

4.2.3.2 Timing Violations Caused by Transistor Aging

For a circuit to operate correctly, it is crucial that signals comply with their timing constraints, reach
their intended destinations, and remain stable within a critical time interval, as shown in Figure 4.1.

71

setup hold
1 2

Figure 4.1: The setup and hold windows of a clock edge. Signals should arrive at its destination
flip-flop before 1 and hold stable until 2 .

Unfortunately, an aged circuit may potentially breach these requirements, leading to two types of
timing violations: setup violations and hold violations.

A setup violation happens when a signal arrives at a flip-flop too late (i.e., after 1), failing to
meet the required setup time before the clock edge. In contrast, a hold violation happens when a
signal changes too soon (i.e., before 2), failing to hold stable for the required window after the
clock edge. Both setup violations and hold violations can result in incorrect data being captured
by the flip-flop, thereby causing circuit malfunctions. When this arises due to transistor aging in a
previously-working circuit, this can result in SDCs or other application-level misbehavior. While
setup violations can be addressed by lowering the clock frequency, this approach is ineffective for
hold violations, as the clock frequency does not affect the required hold time. Consequently, hold
violations are considered more severe than setup violations, as they necessitate chip repair.

4.2.3.3 The Physical Model for Transistor Aging

The reaction-diffusion model, widely accepted for transistor aging, effectively describes the increase
in a transistor’s threshold voltage under BTI stress [62, 61, 89, 97]. With this model, the threshold
voltage increase of a transistor, denoted as ∆Vth, can be determined via the following equation:

∆Vth ∝ e
Ea
kT (t − t0)1/6, (4.1)

where Ea is a constant related to process technology, T is the operating temperature, k is Boltzmann’s
constant, and t − t0 represents the duration for which the transistor undergoes stress due to BTI
effects.

Using this equation, we can calculate the changes in a transistor’s threshold voltage based on the
duration of its exposure to BTI stress. Once the stress is removed, some of the degradation can be
reversed, and a similar equation can be employed to quantify the recovery process.

4.2.3.4 Profiling BTI Stresses with Signal Probability

A common method for profiling the BTI stress of a logical element is to use signal probability (SP).
SP calculates the probability of a signal being in the logical “1” state, determined by the ratio of

72

Synthesis
Signal Probability

Simulation

Aging-Aware
Static Timing Analysis

Failure Model
Instrumentation

Formal Verification
(Trace Generation)

Profiling-Guided
Test Integration

Instruction
Construction

RTL Design
(*.v, *.sv)

Applications
(*.c, *.cpp)

Failing Netlists
(*.v)

Patched
Applications

Software
Aging Library

Netlist
Waveforms

Violated
Paths

Test Cases

SP Profile

Place-and-Route

Phase 1: Aging Analysis Phase 2: Error Lifting Phase 3: Test Integration

1

2

3

5 6

8

4 7

9

Figure 4.2: Overview of Vega’s workflow, comprising three key phases: Aging Analysis, Error
Lifting, and Test Integration. Each step in the workflow is outlined with a black box, with the inputs
enclosed in gray boxes and the outputs in red boxes.

the time spent in the “1” state to the total time. For example, an SP of 0.25 means the signal is
in the logical “1” state for 25% of the time (while in “0” state for the remaining portion of time).
Usually, an SP profile is gathered by conducting functional simulations for the circuit, using a set of
representative workloads that the circuit is expected to process.

With a given SP profile, we can calculate the ∆Vth for each transistor within a given cell (e.g.,
a NOT gate) using the reaction-diffusion model. Subsequently, analog simulation techniques, e.g.,
SPICE [218], can be employed to determine the change in the cell’s switching delay. This change
can then be considered in static timing analysis to identify timing violations that may occur after
the impact of transistor aging.

Takeaway #3. Signal probability profiles, along with aging-aware static timing analysis, can
help identify logical elements prone to timing violations and potential SDCs, thereby producing
effective targets for test cases.

4.3 Design of the Vega Workflow

Vega leverages the takeaways from the previous section to enable frequent and proactive detection of

aging-related SDCs at application runtime. It targets a CPU’s critical functional units, such as ALU
and FPU, and generates software-executable instructions to test them. Specifically, Vega adopts a
bottom-up approach, where precise test cases for likely aging-related faults are crafted by analyzing
the detailed implementation of the CPU. As a result, Vega yields a sufficiently compact set of test
cases that can be seamlessly integrated into an application’s runtime. This targeted approach makes
it practical to conduct frequent and timely detection of aging-related SDCs.

Figure 4.2 illustrates the workflow of Vega, which is composed of three distinct phases. In the
first phase, Aging Analysis, Vega identifies locations within a circuit that are most vulnerable to

73

transistor aging. These locations are potential origins of SDCs that Vega aims to detect. To precisely
identify the locations, Vega simulates the circuit with a set of representative workloads, and utilizes
the gate-level modeling of transistor aging to determine each components’ timing degradation.

In the second phase, Error Lifting, Vega transforms the potential timing violations identified
by the first phase into tiny test cases, consisting of several instructions that are executable in a
software environment. This transformation is achieved in two steps. First, Vega employs formal
verification techniques to create a cycle-accurate trace of module-level input that is capable of
triggering a specific timing violation inside the CPU. Then, it leverages heuristics based on the
CPU’s microarchitecture to transform this trace into a sequence of instructions, which is carefully
crafted to activate the same signals as outlined in the trace. As a byproduct, this phase also yields a
set of circuit-level failure models. These models, formatted as gate-level netlists, simulate failures
and describe the possible misbehavior of the CPU as it ages.

In the third and final phase, Test Integration, Vega performs application-level integration of the
previously-generated test cases. We implement two approaches for such integration, enabling differ-
ent degrees of control over test invocation and allowing test integration without code modification.
The first approach produces a software library supporting different strategies of transistor aging
detection and response, along with wrappers compatible with various programming languages. The
second method minimizes a developer’s integration effort by employing profile-guided techniques to
embed these test cases directly into an application, while incurring minimal performance overhead.

In the rest of this section, we explain the design details of these three phases using an example
circuit.

4.3.1 Preparation for the Workflow

Consider the hardware module presented in Listing 2, written in System Verilog, as a representative
example. This module implements a pipelined 2-bit adder that calculates the sum of two 2-bit
integers, denoted as a and b. The computation is segmented into two cycles. In the first cycle, a
and b are sampled in aq and bq, respectively (Line 5). In the second cycle, the sum of aq and bq is
calculated, with the result stored in o (Line 6).

As we described in Section 4.2.2, this module will proceed through a sequence of processes
during development, including circuit synthesis and place-and-route, which eventually transform
the circuit into the netlist illustrated in Figure 4.3. For simplicity, we exclude components used
solely for timing correction, such as clock buffers, and employ a minimal standard cell library. This
library consists of three cell types: AND and XOR cells, which respectively perform the “and” and
“xor” operations on their inputs, and the DFF cell, a D-type flip-flop that registers its input D for one
clock cycle. For our example, we also assume the maximum propagation delay of the AND, XOR and

74

1 module adder (clk, a, b, o);

2 input wire clk; input wire [1:0] a, b;

3 output reg [1:0] o; reg [1:0] aq, bq;

4 always @(posedge clk) begin

5 aq <= a; bq <= b;

6 o <= aq + bq;

7 end

8 endmodule

Listing 2: An example hardware module.

$1
DFF QD

C

$2
DFF QD

C

$3
DFF QD

C

$4
DFF QD

C

$5
XORYB

A

$6
ANDYB

A

$7
XORYB

A

$8
XORYB

A

$9
DFF QD

C

$10
DFF QD

C

clk

a[0]

b[0]

a[1]

b[1]

o[0]

o[1]

Figure 4.3: The netlist associated with Listing 2. Components used for timing correction (e.g., clock
buffers) are excluded.

DFF cells is 0.3ns, and the minimum delay is 0.1ns. The DFF cell requires a setup time of 0.06ns and
a hold time of 0.03ns. Additionally, the module targets an operation frequency of 1GHz; therefore,
each cycle spans 1ns.

Our example netlist satisfies the cells’ timing constraints: The longest path ($4→ $7→ $8→
$10) accumulates a maximum delay of 0.9ns, indicating signal arrival at $10 more than 0.06ns
(setup time) before the next clock edge. Conversely, the shortest path ($1→ $5→ $9) has a total
minimum delay of 0.2ns, ensuring $9’s input is stable for greater than 0.03ns (hold time) after the
clock edge. However, transistor aging may disrupt these constraints. To evaluate aging’s impact on
the circuit, the netlist is forwarded to the Aging Analysis phase for further examination.

4.3.2 Aging Analysis

In the Aging Analysis phase, Vega focuses on identifying where transistor aging is likely to impact
a hardware circuit, by identifying signal propagation paths that will potentially violate timing
constraints after experiencing realistic transistor aging. First, Vega instruments the circuit’s netlist
and simulates a set of representative workloads on it (1). For each cell in the design, we record
the signal probability, representing the likelihood of a signal being in a given logical state, which
may correlate with its susceptibility to BTI. This profile is then consumed by an Aging-Aware Static

75

Signal SP Signal SP Signal SP
DFF$1.Q 0.85 DFF$2.Q 0.54 DFF$3.Q 0.38
DFF$4.Q 0.27 XOR$5.Y 0.46 AND$6.Y 0.48
XOR$7.Y 0.13 XOR$8.Y 0.52 DFF$9.Q 0.44
DFF$10.Y 0.54

Table 4.1: An SP profile associated with the netlist in Figure 4.3.

Timing Analysis to determine the most likely locations of future timing violations (2).

4.3.2.1 Signal Probability Simulation

To determine which of a circuit’s cells will experience the largest effect from transistor aging, Vega
needs to estimate the likelihood that a cell will rest at different signals during its lifetime. Vega does
this through simulation of an instrumented circuit. It attaches a counter to the output port of each
cell in the circuit’s netlist, recording the incidence of logical “0” and “1” states from that cell. For
our example circuit, these counters attach to the Q port for DFF cells and the Y port for AND cells and
XOR cells. Notably, these counters are driven by a separate free running clock generated by Vega.
Vega assures this clock continues toggling even if the clock within the circuit is paused.

Vega then simulates the instrumented circuit, post-place and route, with an HDL simulator and a
set of representative workloads. After the simulation is completed, Vega aggregates the values of
each cell’s counters to determine what fraction of the time the cell remained at logical “1”: together,
this forms a signal probability (SP) profile for the circuit. Table 4.1 shows an example SP profile
corresponding to a simulation of the netlist in Figure 4.3. Notably, the XOR cell $7 has a particularly
extreme SP value; therefore, it is under the highest BTI pressure and more susceptible to transistor
aging. The clk signal is omitted from this example, because clock distribution in a placed and
routed design involves the use of numerous clock buffers. In a real-world SP profile, each of these
clock buffers is profiled individually.

4.3.2.2 Aging-Aware Static Timing Analysis

Vega can now identify timing violations that may emerge in the circuit due to transistor aging. By
harnessing the SP profile generated in the last step along with an aging-aware timing library, Vega
can quantify the performance degradation of each logical cell in the circuit. This timing library
characterizes how signal probability affects a cell’s timing characteristics, such as maximum and
minimum propagation delay, over a period of time. Vega generates this library by conducting
analog simulation with SPICE [218] for each cell in the standard cell library, determining how
changes in a cell’s physical property correspond to changes in its timing characteristics. Notably,
as multiple circuit designs may use the same standard cell library, this work is pre-computed to

76

0.2 0.4 0.6 0.8 1.0
Signal Probability

2
3
4
5
6

Sw
itc

hi
ng

 D
el

ay
D

eg
ra

da
tio

n
(%

)
Figure 4.4: The switching delay degradation of a 28nm XOR cell under different levels of SP over a
10-year period.

accelerate Aging-Aware Static Timing Analysis (STA). Figure 4.4 shows an example entry from a
pre-computed timing library, showcasing the speed degradation of a typical AND cell.

Once the aging-aware timing library is generated, Vega looks up cell data by their signal
probabilities and updates the timing characteristics of the netlist under test. Vega performs static
timing analysis to identify signal propagation paths that exhibit timing violations. These paths are
considered aging-prone, with a higher risk of experiencing timing violations due the impact of
transistor aging. The Aging-Aware STA is based on a 10-year assumed lifetime that is commonly
adopted by mission critical systems [111]. Notably, during the Aging-Aware STA, Vega also
analyzes the effect of aging on the clock distribution network. This analysis can reveal phase shifts
of the clock signals in different locations, which could potentially lead to hold violations.

Based on the SP profile in Table 4.1 and the timing library demonstrated in Figure 4.4, Vega
finds that the propagation delay of the path $4 → $7 → $8 → $10 accumulates to 0.946ns after
considering transistor aging. Therefore, it violates the required setup window (0.946ns ¿ 1ns -
0.06ns) and incurs a violation. For demonstration purpose, we also assume that a phase shift is
detected between the clock signals connected to DFF $1 and DFF $9, causing a hold violation in
path $1→ $5→ $9. These violating paths are provided for the next phase, Error Lifting, to help
test case formulation.

4.3.3 Error Lifting

In the Error Lifting phase, Vega formulates test cases for aging-related hardware faults, targeting
these tests to the aging-sensitive signal paths identified in the previous phase. Vega crafts test cases
in two steps. First, it instruments the hardware module’s netlist with a failure model propagating
the effect of a previously-identified timing violation (Figure 4.2, 3). Then Vega uses a formal
verification tool to produce a sequence of cycle-accurate, module-level inputs that provokes the
failure (5). These inputs, represented in a hardware waveform, are constrained to ensure an
incorrect value will be generated in the module’s output. Then, Vega processes and analyzes the

77

$4
DFF QD

C
$7
XORYB

A

$8
XORYB

A

YB
A

S
C

$12
DFF QD

C
$13
XORYB

A

$10S
DFF QD

C$11
MUX

Figure 4.5: Failure model for a setup violation in the path $4 → $7 → $8 → $10, with red
highlighting the failing path and green indicating the instrumented cells. Unrelated signals are
omitted for clarity.

QD
C

YB
A

QD
C

a[0]
YB

S

A

YB
A

C

$5
XOR

$1
DFF

$11
MUX

$9
DFF

$12
XOR

Figure 4.6: Failure model for hold violation path $1→ $5→ $9.

input sequence to generate a series of software-executable instructions that activates the exact
waveform inside the circuit (6).

We opt for formal verification in test case generation because it provides a systematic way to
explore infrequently used components inside the circuit. Formal verification enables us to create a
concise set of test cases that target specific potential failures inside the circuit, therefore avoiding
the long execution time associated with tests crafted from top-down approaches like fuzzing.

However, since formal verification only operates within the logical domain and does not consider
timing violations, we need to introduce a model that logically describes the misbehaviors associated
with these timing violations. Moreover, formal verification proves more practical at the scale of
individual hardware modules (e.g., an FPU), rather than an entire hardware design (e.g., a CPU)
with cache, memory, and software running on top of it. Consequently, we choose to only apply
formal verification on specific hardware modules, and then construct the instructions by leveraging
our understanding of the hardware design’s microarchitecture.

4.3.3.1 Logical Models for Timing Violations

As we described in Section 4.2.3, transistor aging may cause setup violations and hold timing
violations. During a setup violation, the signal reaches the flip-flop too late, failing to meet the setup
window. As a result, the flip-flop may sample an incorrect value during the clock tick. However,
it is important to note that even if a signal path fails to meet its required setup time, the flip-flop
may still sample the correct value in some cycles, provided the values previously held in the path

78

$1
DFF QD

C

$2
DFF QD

C

$3
DFF QD

C

$4
DFF QD

C

$5
XORYB

A

$6
ANDYB

A

$7
XORYB

A

$8
XORYB

A

$9
DFF QD

C

YB
A

S
C

$12
DFF QD

C
$13
XORYB

A

$10
DFF QD

C

$10S
DFF QD

C

o[1]

o_s[1]

o[0]

$11
MUX

Figure 4.7: The netlist instrumented with the shadow replica (in gray) and the failure model (in
green).

remain unchanged [228]. As a result, for a signal path between a pair of DFFs X ⇝ Y that violates
its required setup time, Y ’s output at cycle t +1 is logically modeled as:

Y (t +1) =

{
Yoriginal(t +1) if X(t) = X(t −1)
C otherwise

, (4.2)

where Yoriginal represents the value of Y assuming no violation occurs, and C denotes the wrong
value sampled by Y when the timing violation occurs. For formal verification, C is set to a constant
value—either 0 or 1—to limit the search space the formal verification tool is required to explore.
Nonetheless, the tool can conduct separate rounds of verification for each case of C, allowing Vega
to generate test cases for different scenarios that could occur in an actual circuit.

Similarly, in a hold violation, the flip-flop may still sample a correct value by chance, as long as
the values in the path are not changing for the next clock cycle. Therefore, for a signal path X ⇝ Y

that violates its required hold time, Y ’s output is modeled as:

Y (t +1) =

{
Yoriginal(t +1) if X(t) = X(t +1)
C otherwise

. (4.3)

In the special case where the path starts from and ends at the same flip-flop, we consider Y to always
produce the value C. This approach is adopted because, in these situations, the value captured by Y

relies on its own value in the same cycle. As a result, Y will consistently be in a meta-stable state.

4.3.3.2 Failure Model Instrumentation

To integrate this logical model of timing violations into the circuit’s netlist, we introduce a MUX cell.
MUX functions as a selector, outputting either of its inputs, A or B, depending on the value of a select
signal, S. Figure 4.5 shows the instrumented failure model for the setup violation occurring in path

79

$4 (X)⇝ $10 (Y). In this instrumentation, DFF $12 is used to retain the output value of $4 for a
cycle, thereby allowing X(t) = X(t −1) to be calculated. Similarly, Figure 4.6 shows the failure
model for the hold violation in path $1 (X)⇝ $9 (Y). In this instrumentation, X(t +1) is derived
from the input of $1, since $1 is a DFF and its input value will be output in the next cycle.

Failure Model Instrumentation can function in one of two modes. In one mode, the instrumen-
tation phase generates a failing netlist, which is a Verilog file that describes the behavior of the
circuit component after the impact of transistor aging (4). This Verilog file can be synthesized for a
range of targets, including simulation environments and FPGAs, rendering it useful as a circuit-level
failure model in future reliability research. Additionally, this circuit-level failure model enables us
to validate the effectiveness of test cases constructed by Vega, as detailed in Section 4.5.2.2.

Alternately, the instrumentation phase can prepare the netlist for trace generation to support the
crafting of targeted test cases for the modeled failure. Instead of directly integrating the failure
model into the netlist, Vega first generates a shadow replica for a portion of the netlist. Specifically,
for an aging-prone path X ⇝ Y , the instrumentation conducts a static analysis of the circuit and
identifies all cells that can potentially be influenced by Y —this includes Y itself. Based on this
analysis, it creates copies of these identified cells, with the same interconnections between copied
cells that the original cells have. The failure model is then integrated into this shadow replica, so
the module-wide effects of a targeted timing violation can be tracked.

Figure 4.7 shows the instrumentation for the setup violation path $4⇝ $10. As shown in the
figure, a shadow cell, $10S, is created, with its input linked to the failure model and its output to a
shadow wire named o s[1]. In the subsequent step, this shadow wire will be used by the formal
verification tool to hint the generation of module-level inputs.

A similar instrumentation will be generated for the hold violation path $1⇝ $9. In this case, a
shadow replica will be created for cell $9, with its output linked to a shadow wire.

4.3.3.3 Trace Generation using Formal Methods

After the shadow replica is created and connected to the failure model, Vega incorporates a formal
verification tool to produce a sequence of module-level inputs that provokes the instrumented failure.
Specifically, it formulates a cover property—a System Verilog primitive—that requires that the
value in the shadow replica differs from the values in its corresponding original copy. For example,
Vega generates the below property for the instrumented netlist in Figure 4.7:

1 cover property (@(posedge clk) o[1] != o_s[1]);

Formal verification tools are designed to interpret such properties and synthesize a sequence
of inputs that ensures the expression in the property evaluates to true for at least one cycle. In
the case where the constant C is set to 1, the formal verification tool finds the trace described in

80

Cycle 1 2 3
a[1:0] ’b01 ’b11 ’b11

b[1:0] ’b11 ’b00 ’b01

o[1] ’b0 ’b0 ’b0

o s[1] ’b0 ’b0 ’b1

Table 4.2: An example trace that provokes the instrumented failure in Figure 4.7. o[1] and o s[1]

mismatch at cycle 3.

Table 4.2. When the circuit’s input signals align with the trace, the expression in the cover property
will evaluate to true at cycle 3. The trace is then captured and saved as a waveform, which proceeds
to step 6 for instruction generation.

In some scenarios, it is necessary to apply extra restrictions on the module’s input to prevent
unrealistic traces from being generated. These restrictions are described using the assume property

primitive of System Verilog, and writing useful restrictions requires that developers have some
knowledge of the target microarchitecture’s behavior. For instance, when analyzing a hardware
module like an ALU, we may restrict the range of input to include only valid operations.

4.3.3.4 Mitigation for Initial Value Dependency

In some instances, the traces produced by the formal verification tool may not reliably trigger
failures in a real-world execution. This issue occurs because the tool assumes that the circuit’s initial
state has been perfectly reset. Specifically, the tool first simulates the circuit’s reset behavior to
obtain the initial values for each signal within the circuit, before beginning its symbolic exploration
of the design. Consequently, it may generate traces that are effective only under these specific initial
values. However, in a real-world execution, these initial values may be modified by a previous
instruction, potentially making the generated trace ineffective.

To mitigate this issue, Vega allows configuring the failure model to activate only when detecting
a rising or falling edge in the value of X (i.e., the starting point of the violated path). For example,
in Figure 4.7, it may replace cell $13 with logics that determines ¬$12.Q∧$4.Q (i.e., a rising edge)
or $12.Q∧¬$4.Q (i.e., a falling edge).

4.3.3.5 Instruction Construction

Reliable activation of aging-related failures is now brought up to the software level in this step,
which aims at generating a sequence of instructions that can activate the module’s input signals as
described in the trace. Vega leverages expert knowledge of the CPU’s microarchitecture to achieve
this generation. This step is the most labor-intensive part of Vega, but only has to be done once:

81

For each CPU microarchitecture and hardware component under analysis, developers must write a
dedicated script to facilitate instruction construction.

To create this script, developers use their understanding of how each instruction activates signals
in the analyzed hardware component; therefore, they can create a look-up table that reverse-maps
the activation of signals to an instruction. In some cases, additional steps like mapping constant
values to specific registers are necessary.

During instruction construction, Vega determines the values of the input registers and the
expected value of the output registers. However, the allocation of these registers is deferred to
the next phase (i.e., Test Integration), to allow a more seamless integration of test cases with
applications.

4.3.4 Test Integration

In this phase, Vega crafts the constructed instruction sequences into test cases that can be run
from applications. There are two methods of integration, allowing flexibility in how SDCs can be
monitored. First, Vega can create a software aging library for detecting aging-related SDCs (7).
Second, Vega provides a profile-guided method to automatically integrate the test cases into an
application (8).

4.3.4.1 Generation of Software Aging Library

In this approach, Vega combines the generated test cases together in a C file, using a set of pre-
defined templates. In this C file, each test case is specified with the standard inline assembly format,
while the registers are designated as variables for clarity. Furthermore, Vega generates support files
for the compilation, as well as a set of helper functions and language-specific wrappers. These helper
functions are designed to support different scheduling methods for the test cases, allowing them to
be executed either sequentially or in a random order. Additionally, for programming languages that
support exceptions, this library can be configured to trigger an exception when failing a test case.
This allows detected hardware faults to be handled by an exception handler (e.g., a catch block)
within the call stack.

4.3.4.2 Profile-Guided Test Integration

To enable test integration without the need to modify the application’s source code, Vega employs a
profile-guided approach for embedding test cases. Specifically, Vega first instruments the application
with a series of counters, which track and record the invocations of application code (i.e., at the
granularity of basic blocks) throughout the application runtime. Vega then executes the application
with representative inputs to collect a profile that reflects the characteristics of the application’s

82

execution. Using this profile, Vega identifies a location in the program that, while not frequently
invoked, is still routinely accessed. This location is chosen to be the point of test integration.

Subsequently, Vega integrates its generated SDC test cases into the chosen location. Vega
estimates their expected performance overhead by considering both the profile data and the size of
the test cases. During the estimation, it employs the number of executed Intermediate Representation
(IR) instructions as a proxy for performance impact. If the estimated performance overhead exceeds
a threshold, Vega restricts the invocation of test cases so that they trigger with a certain probability,
which reduces the overhead and enables controlling SDC testing frequency at a finer granularity.
Thus, Vega ensures that the overall performance overhead remains within manageable limits.

4.4 Implementation

We prototype and demonstrate Vega for the arithmetic logic unit (ALU) and floating-point unit
(FPU) of the CV32E40P [136, 114, 209]—an open-source, 32-bit, in-order RISC-V CPU—and a
real-world 28nm process technology. However, Vega’s design can be applied to other instruction
sets, microarchitectures, and process technologies.

During Aging Analysis, to construct the aging timing library, Vega uses SPICE [218] to conduct
the analog simulation which determines the gate delay degradation of cells with varying SP profiles.
Cadence Innovus [30] is then used to perform the timing analysis. Subsequently, we employ a
set of TCL scripts to post-process the timing report and update the cells’ timing characteristics
to those affected by aging. Error Lifting is primarily implemented atop of Yosys [279], adding
∼3,700 lines of C++ for Failure Model Instrumentation and ∼400 lines of Python for Instruction
Construction. JasperGold [31] is used to conduct the formal verification. Moreover, Profile-Guided
Test Integration is implemented as a set of LLVM [197] passes with ∼800 lines of C++.

4.5 Evaluation

We evaluate Vega along the following dimensions:

Effectiveness Can Vega identify signal propagation paths prone to transistor aging (§4.5.2.1)?
Can Vega generate test cases that are executable in a software environment (§4.5.2.2)? Can these
test cases detect aging-related SDCs (§4.5.2.3)?

Efficiency How much performance overhead do these test cases incur when integrated into an
application (§4.5.3)?

83

4.5.1 Experimental Setup

Hardware We evaluate Vega on the ALU and FPU of the CV32E40P. These components are
synthesized for a 28 nm process technology using Cadence Genus [32] and Synopsys Design
Compiler [33], and placed-and-routed using Cadence Innovus [30]. The ALU targets an operating
frequency of 167 MHz and the FPU targets a frequency of 250 MHz.

Software We evaluate Vega’s performance impact with EEMBC benchmarks [227, 34], a bench-
mark set for embedded CPUs like the CV32E40P. These benchmarks are compiled using OpenHW-
Group’s clang fork [35] with an -O2 flag. This set of benchmarks are also used as representative
workloads during Signal Probability Simulation (§4.3.2.1).

Failing Netlists To evaluate Vega’s effectiveness in identifying aging-related SDCs, we use the
failing netlists generated during failure model instrumentation (Section 4.3.3.2). We configure these
failing netlists to operate in three distinct modes: by setting C (i.e., the value sampled by the ending
point of the failing path as we discussed in §4.3.3.1) to 0, setting it to 1, or allowing it to take a
random value in each cycle.

Simulation Environment All experiments are carried out using the official simulation framework
of the CV32E40P with Verilator [252]. To speed up simulation and focus on the primary evaluation
targets, i.e., the ALU and FPU, only these components are replaced with the placed-and-routed
netlist. The remainder of the CPU is simulated in System Verilog.

4.5.2 Effectiveness of Vega

4.5.2.1 Potential Aging Identification

Despite the ALU and FPU being correctly placed-and-routed and meeting the required timing
constraints initially, Vega reveals that over an extended period of usage, transistor aging has the
potential to break these constraints. Table 4.3 summarizes the worst negative slack (WNS) and
the number of identified timing violations within the ALU and FPU after 10 years of aging. In
summary, Vega identifies 11 aging-prone paths in the ALU, and 1,366 such paths in the FPU.

However, many of these aging-prone paths share the same pairs of starting and ending points,
indicating that these paths would exhibit the same misbehavior under the failure model we employ
(§4.3.3.1). From the identified timing-violated paths, Vega recognizes 6 unique pairs of starting and
ending points for the ALU and 41 pairs for the FPU. Therefore, for the rest of our analysis and test
case generation, we only use one representative failing path for each unique pair of starting and
ending points.

84

Unit WNS / # of Violated Paths
Setup Hold

ALU -76ps / 11 — / 0
FPU -157ps / 1,363 -1ps / 3

Table 4.3: STA Result with Aging-Aware Timing Libraries.

4.5.2.2 Test Case Construction

For each unique pair of starting and ending points, Vega invokes formal verification to produce a
set of waveforms that activate this failing path in an observable manner, and then converts these
waveforms into a few test cases. Depending on configuration, different numbers of test cases may
be generated. When the mitigation for initial value dependency (Section 4.3.3.4) is disabled, Vega
produces a maximum of 2 test cases for each pair, attributable to the failure model’s constant, C,
which can be either 0 or 1. With the mitigation enabled, Vega generates a maximum of 4 test cases
per pair, in order to account for different signal transitions (i.e., rising or falling) in the starting
point.

Table 4.4 presents the effectiveness of this process. Without the mitigation, Vega can construct
the test cases for 66.7% and 51.2% of these unique pairs of endpoints identified in the ALU and
FPU respectively. Additionally, it formally proves that 33.3% of the pairs in the ALU and 43.9% of
the pairs in the FPU will not cause an actual error—no allowable set of inputs to the module can
trigger the timing violation for these paths. Enabling the mitigation reduces the proportion of test
cases that can be successfully generated. However, because it generates up to twice as many test
cases, it can produce a more robust test suite.

In some instances, we observed that Vega may produce a waveform that is not convertible into a
practical test case. These instances are indicated as “FC” in Table 4.4. All such instances occur
with the FPU. This situation happens because certain failures—characterized by a pair of endpoints
along with a particular failure model—require multiple instructions to propagate an error to the
output; moreover, the only detectable erroneous output is a status flag (e.g., a flag indicating an
overflow), which is already altered by a prior instruction. As a result, Vega cannot compare this
output against a correct value, making the conversion impossible.

Table 4.5 shows the total number of test cases generated by Vega and the corresponding CPU
cycles required for their execution, both in scenarios with and without the mitigation for initial
value dependency. Notably, a complete execution of these test cases consumes only a few hundred
to a couple thousand cycles, thereby making frequent testing practical.

85

Unit w/o Mitigation (%) w/ Mitigation (%)
S UR FF FC S UR FF FC

ALU 66.7 33.3 0 0 33.3 66.7 0 0
FPU 51.2 43.9 4.9 0 40.2 43.9 8.5 7.3

Table 4.4: Result of Test Case Construction. “S” denotes the successful construction of a test case;
“UR” indicates that the formal verification tool proves that the failing path cannot cause an actual
error; “FF” indicates a timeout occurred in the formal verification tool; “FC” indicates a waveform
is generated while Vega fails to convert it to a test case.

Unit w/o Mitigation w/ Mitigation
Test Cases Cycles Test Cases Cycles

ALU 8 124 8 134
FPU 60 685 96 1202

Table 4.5: The quantity of test cases generated and the number of CPU cycles required for their
execution.

4.5.2.3 Quality of Test Cases

We evaluate the quality of these test cases by simulating them against the failing netlists produced
by failure model instrumentation (Section 4.3.3.2). For each failing netlist associated with one of
the generated test cases, we run the entire set of test cases to see whether it can detect the failure.
As mentioned in the evaluation setup, we configure each failing netlist to fail in three modes: with
C setting to 0, 1, or taking a random value at each cycle.

Table 4.6 shows the result of this experiment. In summary, the test cases generated by Vega are
are generally effective in detecting their intended failures. Interestingly, in many cases, a failure
is identified by a test case designed for another failure, before its own corresponding test case is
scheduled to execute. In rare cases, a failure may be missed by its own test case; however, it is
very likely to be identified by a subsequent test case. In two instances, the failure caused the CPU
to become stuck, making it detectable. In one particular instance, a failure remained undetected
after the execution of the entire set of test cases. This occurs because the test cases generated for
this failure depends on certain initial signal values to be effective. Unfortunately, these values are
modified by a prior instruction, thereby preventing the failure from being detected. However, using
the mitigation technique described in Section 4.3.3.4, Vega can generate a set of test cases that
successfully detects this failure.

86

Unit FM w/o Mitigation (%) w/ Mitigation (%)
Det. B L S Det. B L S

ALU
0 100.0 50.0 0 0 100.0 50.0 0 0
1 100.0 75.0 0 0 100.0 50.0 0 0
R 100.0 50.0 0 0 100.0 50.0 0 0

FPU
0 95.4 72.7 4.5 9.1 100.0 72.7 0 9.1
1 95.4 81.8 9.1 0 100.0 81.8 4.5 0
R 95.4 72.7 4.5 9.1 100.0 72.7 0 9.1

Table 4.6: The quality of the generated test cases measured by their ability to detect failures. “FM”
refers to the failure mode used in the experiment; “Det.” indicates the failures that are detectable by
one of the test cases; “B” represents the failures detected by a test case that executed before the test
case designed to detect it; “L” represents the failures that are not detected by their corresponding
test case, but are identified by later test case; “S” indicates cases where the failure results in the
CPU becoming stuck.

ah
a-m

on
t64

crc
32

cu
bic ed

n

hu
ffb

en
ch

matm
ult

-in
t

minv
er

nb
od

y

ne
ttle

-ae
s

ne
ttle

-sh
a2

56

nsi
ch

ne
u

pic
ojp

eg

qrd
uin

o

sgl
ib-

co
mbin

edslr
e st

sta
tem

ate ud

wiki
sor

t−5

0

5

10

O
ve

rh
ea

d
(%

) ALU-N
ALU-M

FPU-N
FPU-M

ALU-ALL
FPU-ALL

ALL-N
ALL-M

ALL

Figure 4.8: Performance overhead of the EEMBC benchmark set with Vega’s Profile-Guided Test
Integration. The “-M” and “-N” labels indicate that only the test cases generated with and without
the mitigation technique are enabled, respectively.

4.5.3 Efficiency of Vega

We evaluate the performance overhead of Vega’s Profile-Guided Test Integration by comparing the
execution time of the benchmarks instrumented with the test cases against their baseline. We adopt
a variety of configurations, with different configuration enabling different sets of test cases.

Figure 4.8 presents the overhead. On average, Vega’s Profile-Guided Test Integration introduces
0.8% overhead to the application’s execution time. In many instances, this overhead is so negligible
that it becomes indistinguishable with environmental noise (e.g., the compiler optimizations that
are accidentally triggered as a side effect of the instrumentation), resulting in a negative overhead.
Therefore, we conclude that Vega’s Profile-Guided Test Integration can effectively manage and
minimize its performance overhead.

87

4.6 Related Work

Analyses of SDCs Previous work studied radiation-induced SDCs, including in storage sys-
tems [85], memory devices [206], FPGAs [233], HPC systems [213, 127, 123], and satellite proces-
sors [304]. Recently, hyperscalers have reported SDCs caused by malfunctioning CPUs in both case
studies and comprehensive analyses at the scale of data centers [145, 121, 271, 122, 244, 84, 120].
Vega is inspired by these studies, and focuses on the detection of aging-related SDCs inside CPUs.

Detection of SDCs Data center operators identify SDCs in their CPU populations by conducting
tests that are scheduled infrequently or with a low priority [271, 244]. In certain systems, SDCs are
detected through checksums or by verifying whether the computation result is reasonable [84, 142].
Additionally, SDCs can be detected by introducing redundancies in either software or hardware
designs [115, 75, 93, 268]. Vega focuses on generating compact test cases for frequent, at-scale
SDC testing in data centers.

Test Case Construction for SDCs OpenDCDiag [28] detects SDCs by using popular software
libraries. Google’s SiliFuzz [244] synthesizes test cases by fuzzing a functional model of the CPU.
Unlike these works, Vega adopts a bottom-up approach that constructs test cases by analyzing the
CPU’s low-level implementation.

Analyses of Transistor Aging Previous work has analyzed the effect of transistor aging on
various hardware designs, such as CPUs [133], GPUs [135], and FPGAs [68], as well as a variety
of hardware building blocks, such as standard cell libraries [179, 70] and SRAMs [119]. In this
paper, we focuses on transistor aging within CPUs; however, Vega’s design and insights can be
applied to other hardware designs.

Hardware Mitigations for Transistor Aging Prior work has explored transistor aging mitigation
techniques that operate across multiple phases of the hardware design process. Gabbay et al.
proposed an aging-aware microarchitecture aimed at mitigating the effects of nonuniform aging on
various components of microprocessors [133]. Calimera et al. introduced an aging-resistant SRAM
cache design [98]. Other studies have focused on designing EDA tools for simulating and analyzing
the impact of transistor aging [221, 105], and on refining the physical design of a circuit to enhance
aging resistance [266, 265, 188]. Unlike these works, Vega analyzes a hardware design for the sake
of building better application-level detection techniques for transistor aging.

Software Mitigations for Transistor Aging Firouzi et al. proposed the insertion of NOP
instructions in MIPS processors to reduce the impact of transistor aging [129]. Abbas et al.

88

proposed running anti-aging programs during processors’ idle periods for aging mitigation [58].
Vega is orthogonal to these works, and provides a systematic way to provoke specific aging-related
failures within a CPU design.

4.7 Conclusions

In this work, we presented Vega, a novel workflow that bridges the gap between the physical
understanding of transistor aging and the software detection of aging-related SDCs. Vega adopts a
bottom-up approach and targets the most aging-prone components within a CPU, thus yielding a
compact set of test cases that only take hundreds to thousands of cycles to execute. Therefore, Vega
enables frequent detection of aging-related SDCs at application runtime. Our experiments show
that Vega can effectively construct test cases for complex CPU elements, and that these test cases
can effectively identify aging-related failures.

89

CHAPTER 5

Conclusion and Future Work

In this dissertation, we propose, introduce, and examine software-like systems and debugging
supports tailored for different hardware designs. Specifically, this dissertation conducts preliminary
explorations into this field, and demonstrates the feasibility and benefits of such supports via three
projects, each focusing on a different aspect of hardware development and deployment.

The first project focuses on improving the deployment of reconfigurable hardware by introducing
software-like systems (Chapter 2). In this project, we build OPTIMUS, the first hypervisor for
shared-memory FPGA platforms. OPTIMUS implements both spatial multiplexing and temporal
multiplexing, thus allowing a shared-memory FPGA to be shared among different virtual machines
either by partitioning the FPGA’s area or by allocating time slots for its use. OPTIMUS demonstrates
that software-like systems can not only be applied to reconfigurable hardware, but also yield
comparable benefits to those observed in the software counterparts.

The second project focuses on studying bugs that occur on reconfigurable hardware (Chapter 3).
In this project, we first conduct a comprehensive study on FPGA bugs, in which we find that
hardware bugs and software bugs share a number of similarities. Furthermore, based on the findings
in the study, we designed a suite of debugging tools for bugs that occur on an FPGA. With the study
and tools, we demonstrate that software-like debugging tools can be beneficial to hardware bugs in
FPGA-based designs.

The third project focuses on the detection of aging-related silent data corruptions, an emerging
hardware reliability issue that is increasingly observed in data centers (Chapter 4). In this project,
we present Vega, a workflow that enables the detection of aging-related SDCs during application
runtime. Vega adopts a bottom-up approach that generates concise test cases targeting the most
aging-prone components within a CPU, thus yielding a compact enough test suite that can be
frequently invoked at application runtime. With Vega, we show that certain hardware reliability
issues can be detected using software-like techniques.

Collectively, these projects present a viable pathway toward simplifying the development and
deployment processes of hardware designs. By building software-like systems and tooling supports

90

for hardware designs, the development and deployment of hardware can be significantly enhanced
and more efficiently managed.

In the remainder of this chapter, we outline potential future research directions that are opened
up by the findings of this dissertation.

5.1 Extending Systems Supports for FPGAs

While OPTIMUS conducted preliminary investigations into systems support for FPGAs, there is
significant potential to expand these supports even further.

Resource Sharing among Accelerators Although OPTIMUS enables the deployment of multiple
shared-memory accelerators on a single FPGA, it is designed so that the on-FPGA resources (e.g.,
BRAM and ALM) occupied by each accelerator do not overlap. This design choice is primarily
driven by security considerations. However, in the software domain, it’s common for different
applications to share components like language runtimes, libraries, and even hardware elements
such as caches and registers, while still maintaining adequate isolation. This presents an intriguing
contrast and potential area for exploration.

Context-Switch for Accelerators OPTIMUS supports temporal multiplexing that allows different
virtual machines to take turns using the same accelerator. However, this functionality necessitates
the implementation of a preemption interface within the accelerator, which requires additional effort
from developers. While compiler-driven techniques such as Synergy [196] allow automatically
preempting the context of an accelerator, they often incur significant performance and area overheads.
How to co-design the FPGA and its systems support for more efficient preemption remains an
open research question. Addressing this challenge would involve finding a balance between the
programming flexibility, the granularity of temporal multiplexing, and the efficiency of hardware,
which can lead to more robust, elastic, and scalable FPGA-based systems.

Data Center Aware Accelerator Scheduling OPTIMUS allows multiple tenants in the public
cloud to share the same FPGA. However, effectively co-locating different tenants while taking into
account their specific FPGA usage is still an open area of research.

5.2 Exploring More Debugging Tools for Hardware Designs

In Chapter 3, we introduce a suite of debugging tools, which includes SignalCat, a collection of
monitors, and LossCheck. These tools instrument the hardware design with logic that actively

91

monitors specific events. They function by either generating human-readable logs for analysis or
pinpointing the location of a failure as soon as it is detected. Following this methodology, more
debugging tools can be designed to target different kinds of bugs.

Invasive Instrumentation All debugging tools proposed in Chapter 3 instruments hardware
designs in a non-invasive manner—i.e., they operate without altering the per-cycle behavior of
the hardware under analysis. However, it is worth considering that allowing modifications to
the cycle-level behavior could potentially lead to more powerful and general-purpose debugging
tools, as it may offer deeper insights into the hardware’s operation. How to safely conduct such
invasive instrumentation while ensuring the correct functionality of the hardware remains a research
challenge for future exploration.

Co-design FPGA and Debugging Tools Many software debugging techniques, such as
GDB [255] and REPT [112], rely on specific hardware supports for seamless operation. The
current lack of such built-in support in FPGA architectures highlights the need for a co-design
between the FPGA and external debugging tools.

Software-Hardware Co-debugging In certain scenarios, diagnosing the source of a bug can be
challenging when it is unclear whether the issue originates from the hardware itself or from the
software running on top of it. Future work may explore debugging techniques that allow software
and hardware to be instrumented and debugged together.

5.3 Enhancing the Detection of Unreliable Hardware

In Chapter 4, we designed Vega, which employs a bottom-up workflow and allows aging-related
silent data corruptions to be detected at application runtime with low overhead. Vega opens future
research in two directions. The first direction focuses on expanding the capability of detecting
a broader range of reliability issues, while the second direction concentrates on enhancing the
detection mechanism itself.

Electromigration Like transistor aging, electromigration is another important physical effect
that affects circuit reliability. Like transistor aging, previous research has explored the mechanism
and modeling for electromigration [144, 91, 110, 116]. Such understanding can be integrated into
Vega’s workflow to enable a more comprehensive circuit reliability testing at application runtime.

92

Testing-Aware Microarchitecture Vega leverages a compiler pass to instrument the test cases
into applications, employing a profile-guided approach for the selection of instrumentation points.
While this method enables the detection of aging-related SDCs with low overhead, it has the
limitation of only conducting tests when the specific code sections are invoked. On the other hand,
there are typically idle units present in each clock cycle within a CPU. These units, not engaged
in active computation, could potentially be leveraged for continuous or periodic testing that does
not depend on the execution of a user application. By designing a microarchitecture that harnesses
these idle units for reliability-related testing, we can further improve the testing frequency, therefore
enhancing the overall reliability of the system.

93

BIBLIOGRAPHY

[1] https://lldb.llvm.org/.

[2] https://logging.apache.org/log4j/2.x/.

[3] https://logback.qos.ch/.

[4] https://www.kernel.org/.

[5] https://en.wikipedia.org/wiki/Microsoft_Windows.

[6] https://en.wikipedia.org/wiki/MacOS.

[7] https://gcc.gnu.org/wiki/Libstdc++.

[8] https://www.python.org/.

[9] https://en.wikipedia.org/wiki/Java_(programming_language).

[10] https://sourceware.org/glibc/.

[11] https://www.tomshardware.com/news/alibaba-unveils-128-core-server-cpu.

[12] https://www.intel.com/content/www/us/en/products/details/fpga/

intellectual-property/interface-protocols/multichannel-dma-mcdma.html.

[13] https://github.com/efeslab/hardware-bugbase.

[14] https://zipcpu.com.

[15] https://github.com/ZipCPU/sdspi.

[16] https://zipcpu.com/formal/2018/12/28/axilite.html.

[17] https://zipcpu.com/dsp/2020/04/20/axil2axis.html.

[18] https://github.com/open-sdr/openwifi-hw.

[19] https://github.com/jbush001/NyuziProcessor.

[20] https://github.com/openhwgroup/cva6.

[21] https://github.com/SpinalHDL/VexRiscv.

94

https://lldb.llvm.org/
https://logging.apache.org/log4j/2.x/
https://logback.qos.ch/
https://www.kernel.org/
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
https://gcc.gnu.org/wiki/Libstdc++
https://www.python.org/
https://en.wikipedia.org/wiki/Java_(programming_language)
https://sourceware.org/glibc/
https://www.tomshardware.com/news/alibaba-unveils-128-core-server-cpu
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/multichannel-dma-mcdma.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/multichannel-dma-mcdma.html
https://github.com/efeslab/hardware-bugbase
https://zipcpu.com
https://github.com/ZipCPU/sdspi
https://zipcpu.com/formal/2018/12/28/axilite.html
https://zipcpu.com/dsp/2020/04/20/axil2axis.html
https://github.com/open-sdr/openwifi-hw
https://github.com/jbush001/NyuziProcessor
https://github.com/openhwgroup/cva6
https://github.com/SpinalHDL/VexRiscv

[22] https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner.

[23] https://github.com/corundum/corundum.

[24] https://github.com/alexforencich/verilog-ethernet.

[25] https://github.com/analogdevicesinc/hdl.

[26] https://github.com/alexforencich/verilog-axis.

[27] https://github.com/mjc0608/really-simple-fadd.

[28] https://github.com/opendcdiag/opendcdiag.

[29] https://www.zlib.net/.

[30] https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/

soc-implementation-and-floorplanning/innovus-implementation-system.

html.

[31] https://www.cadence.com/en_US/home/tools/system-design-and-verification/

formal-and-static-verification/jasper-gold-verification-platform.html.

[32] https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/

synthesis/genus-synthesis-solution.html.

[33] https://www.synopsys.com/implementation-and-signoff/

rtl-synthesis-test/dc-ultra.html.

[34] https://github.com/embench/embench-iot.

[35] https://github.com/openhwgroup/corev-llvm-project.

[36] Aging problems at 5nm and below. https://semiengineering.com/

aging-problems-at-5nm-and-below/.

[37] Axi hardware icap. https://www.xilinx.com/products/intellectual-property/

axi_hwicap.html.

[38] Gp100 pascal whitepaper. https://images.nvidia.com/content/pdf/tesla/

whitepaper/pascal-architecture-whitepaper.pdf.

[39] Hugetlbfs reservation. https://www.kernel.org/doc/html/v4.18/vm/hugetlbfs_

reserv.html.

[40] Intel quartus prime software suite. https://www.intel.com/content/www/us/en/

software/programmable/quartus-prime/overview.html.

[41] Intel® data center diagnostic tool for intel® xeon® processors. https://www.

intel.com/content/www/us/en/support/articles/000058107/processors/

intel-xeon-processors.html.

95

https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://github.com/corundum/corundum
https://github.com/alexforencich/verilog-ethernet
https://github.com/analogdevicesinc/hdl
https://github.com/alexforencich/verilog-axis
https://github.com/mjc0608/really-simple-fadd
https://github.com/opendcdiag/opendcdiag
https://www.zlib.net/
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://github.com/embench/embench-iot
https://github.com/openhwgroup/corev-llvm-project
https://semiengineering.com/aging-problems-at-5nm-and-below/
https://semiengineering.com/aging-problems-at-5nm-and-below/
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://www.kernel.org/doc/html/v4.18/vm/hugetlbfs_reserv.html
https://www.kernel.org/doc/html/v4.18/vm/hugetlbfs_reserv.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/support/articles/000058107/processors/intel-xeon-processors.html
https://www.intel.com/content/www/us/en/support/articles/000058107/processors/intel-xeon-processors.html
https://www.intel.com/content/www/us/en/support/articles/000058107/processors/intel-xeon-processors.html

[42] Open-source fpga bitcoin miner. https://github.com/progranism/

Open-Source-FPGA-Bitcoin-Miner.

[43] Questa verification & simulation. https://eda.sw.siemens.com/en-US/ic/questa/

simulation.

[44] Transparent huge pages in 2.6.38. https://lwn.net/Articles/423584/.

[45] Transparent hugepage support. https://www.kernel.org/doc/Documentation/vm/

transhuge.txt.

[46] Vivado design suite. https://www.xilinx.com/products/design-tools/vivado.

html.

[47] Xcelium logic simulation. https://www.cadence.com/en_US/home/tools/

system-design-and-verification/simulation-and-testbench-verification/

xcelium-simulator.html.

[48] Xilinx kintex-7 fpga kc705 evaluation kit. https://www.xilinx.com/products/

boards-and-kits/ek-k7-kc705-g.html.

[49] Ieee standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985, pages 1–20,
1985.

[50] https://www.exostivlabs.com/fpga-debug-flow-should-be-improved/, 2015.

[51] https://github.com/omphardcloud/hardcloud/tree/master/samples/sha512,
2018.

[52] https://github.com/omphardcloud/hardcloud/tree/master/samples/reed_

solomon_decoder, 2018.

[53] https://github.com/omphardcloud/hardcloud/tree/master/samples/

grayscale, 2018.

[54] https://zipcpu.com/dsp/2018/10/02/fft.html, 2018.

[55] Axi protocol checker v2.0. https://www.xilinx.com/support/documentation/ip_

documentation/axi_protocol_checker/v2_0/pg101-axi-protocol-checker.pdf,
2018.

[56] Ieee standard for systemverilog–unified hardware design, specification, and verification
language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pages 1–1315, 2018.

[57] Ieee standard for universal verification methodology language reference manual. IEEE Std
1800.2-2020 (Revision of IEEE Std 1800.2-2017), pages 1–458, 2020.

[58] Haider Muhi Abbas, Mark Zwolinski, and Basel Halak. Aging mitigation techniques for
microprocessors using anti-aging software. Ageing of Integrated Circuits: Causes, Effects
and Mitigation Techniques, pages 67–89, 2020.

96

https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://eda.sw.siemens.com/en-US/ic/questa/simulation
https://eda.sw.siemens.com/en-US/ic/questa/simulation
https://lwn.net/Articles/423584/
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.exostivlabs.com/fpga-debug-flow-should-be-improved/
https://github.com/omphardcloud/hardcloud/tree/master/samples/sha512
https://github.com/omphardcloud/hardcloud/tree/master/samples/reed_solomon_decoder
https://github.com/omphardcloud/hardcloud/tree/master/samples/reed_solomon_decoder
https://github.com/omphardcloud/hardcloud/tree/master/samples/grayscale
https://github.com/omphardcloud/hardcloud/tree/master/samples/grayscale
https://zipcpu.com/dsp/2018/10/02/fft.html
https://www.xilinx.com/support/documentation/ip_documentation/axi_protocol_checker/v2_0/pg101-axi-protocol-checker.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_protocol_checker/v2_0/pg101-axi-protocol-checker.pdf

[59] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. Agile software devel-
opment methods: Review and analysis. arXiv preprint arXiv:1709.08439, 2017.

[60] Mridul Agarwal, Bipul C Paul, Ming Zhang, and Subhasish Mitra. Circuit failure prediction
and its application to transistor aging. In 25th IEEE VLSI Test Symposium (VTS’07), pages
277–286. IEEE, 2007.

[61] M. A. Alam and C. Augustine K. Roy. Reliability- and process-variation aware design of inte-
grated circuits—a broader perspective. In 2011 International Reliability Physics Symposium,
Monterey, CA, USA, pages 4A.1.1–4A.1.11, 2011. doi: 10.1109/IRPS.2011.5784500.

[62] M. A. Alam and S. Mahapatra. A comprehensive model of pmos nbti degradation. Micro-
electronics Reliability, 45:71–81, 2005. https://doi.org/10.1016/j.microrel.2004.03.019.

[63] M.A. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra. A comprehensive model for
pmos nbti degradation: Recent progress. Microelectronics Reliability, 47(6):853–862, 2007.
Modelling the Negative Bias Temperature Instability.

[64] Alibaba. Deep dive into alibaba cloud f3 fpga as a ser-
vice instances. https://www.alibabacloud.com/blog/

deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057.

[65] Altera. Implementing state machines (verilog hdl). https://www.intel.com/content/
www/us/en/programmable/quartushelp/13.0/mergedProjects/hdl/vlog/vlog_

pro_state_machines.htm, 2013.

[66] Amazon. Amazon ec2 f1 instances - run customizable fpgas in the aws cloud. https:

//aws.amazon.com/ec2/instance-types/f1.

[67] Amazon. Official repository of the aws ec2 fpga hardware and software development kit.
https://github.com/aws/aws-fpga.

[68] Abdulazim Amouri, Florent Bruguier, Saman Kiamehr, Pascal Benoit, Lionel Torres, and
Mehdi Tahoori. Aging effects in fpgas: An experimental analysis. In 2014 24th international
conference on Field Programmable Logic and Applications (FPL), pages 1–4. IEEE, 2014.

[69] Hussam Amrouch. Techniques for aging, soft errors and temperature to increase the reliabil-
ity of embedded on-chip systems. PhD thesis, Karlsruhe, Karlsruher Institut für Technologie
(KIT), Diss., 2015, 2015.

[70] Hussam Amrouch, Behnam Khaleghi, Andreas Gerstlauer, and Jörg Henkel. Reliability-
aware design to suppress aging. In Proceedings of the 53rd Annual Design Automation
Conference, pages 1–6, 2016.

[71] Hussam Amrouch, Javier Martin-Martinez, Victor M van Santen, Miquel Moras, Rosana
Rodriguez, Montserrat Nafria, and Jörg Henkel. Connecting the physical and application level
towards grasping aging effects. In 2015 IEEE International Reliability Physics Symposium,
pages 3D–1. IEEE, 2015.

97

https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/hdl/vlog/vlog_pro_state_machines.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/hdl/vlog/vlog_pro_state_machines.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/hdl/vlog/vlog_pro_state_machines.htm
https://aws.amazon.com/ec2/instance-types/f1
https://aws.amazon.com/ec2/instance-types/f1
https://github.com/aws/aws-fpga

[72] Hari Angepat, Gage Eads, Christopher Craik, and Derek Chiou. Nifd: Non-intrusive
fpga debugger–debugging fpga’threads’ for rapid hw/sw systems prototyping. In 2010
International Conference on Field Programmable Logic and Applications, pages 356–359.
IEEE, 2010.

[73] Md Toufiq Hasan Anik, Sylvain Guilley, Jean-Luc Danger, and Naghmeh Karimi. On the
effect of aging on digital sensors. In 2020 33rd International Conference on VLSI Design
and 2020 19th International Conference on Embedded Systems (VLSID), pages 189–194.
IEEE, 2020.

[74] ARM. Amba axi and ace protocol specification, 2021.

[75] Sanem Arslan and Osman Unsal. Efficient selective replication of critical code regions
for sdc mitigation leveraging redundant multithreading. The Journal of Supercomputing,
77(12):14130–14160, 2021.

[76] Mikhail Asiatici, Nithin George, Kizheppatt Vipin, Suhaib A Fahmy, and Paolo Ienne.
Virtualized execution runtime for fpga accelerators in the cloud. Ieee Access, 5:1900–1910,
2017.

[77] Systems Group at ETH Zurich. Enzian is a research computer built by the systems group at
eth zurich. http://www.enzian.systems/.

[78] Osama G Attia, Tyler Johnson, Kevin Townsend, Philip Jones, and Joseph Zambreno. Cy-
graph: A reconfigurable architecture for parallel breadth-first search. In 2014 IEEE Inter-
national Parallel & Distributed Processing Symposium Workshops, pages 228–235. IEEE,
2014.

[79] Sameh Attia and Vaughn Betz. Feel free to interrupt: Safe task stopping to enable fpga
checkpointing and context switching. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 13(1):1–27, 2020.

[80] Sameh Attia and Vaughn Betz. StateMover: Combining Simulation and Hardware Execution
for Efficient FPGA Debugging. In Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’20, pages 175–185, New York, NY,
USA, February 2020. Association for Computing Machinery.

[81] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata Ghose, Jayneel Gandhi,
Christopher J. Rossbach, and Onur Mutlu. Mosaic: Enabling application-transparent support
for multiple page sizes in throughput processors. SIGOPS Oper. Syst. Rev., 52(1):27–44,
August 2018.

[82] Nathaniel Ayewah, William Pugh, David Hovemeyer, J David Morgenthaler, and John Penix.
Using static analysis to find bugs. IEEE software, 25(5):22–29, 2008.

[83] Altug Hakan Baba and Subhasish Mitra. Testing for transistor aging. In 2009 27th IEEE
VLSI Test Symposium, pages 215–220. IEEE, 2009.

98

http://www.enzian.systems/

[84] David F Bacon. Detection and prevention of silent data corruption in an exabyte-scale
database system. 2022.

[85] Lakshmi N Bairavasundaram, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, Garth R
Goodson, and Bianca Schroeder. An analysis of data corruption in the storage stack. ACM
Transactions on Storage (TOS), 4(3):1–28, 2008.

[86] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. ACM SIGOPS
operating systems review, 37(5):164–177, 2003.

[87] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, et al. Manifesto for
agile software development. 2001.

[88] Ivan Beschastnikh, Jenny Abrahamson, Yuriy Brun, and Michael D Ernst. Synoptic: Studying
logged behavior with inferred models. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering, pages 448–451,
2011.

[89] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula. Predictive modeling of the
nbti effect for reliable design. In Proceedings of the Custom Integrated Circuits Conference,
pages 189–192, 2006. https://doi.org/10.1109/CICC.2006.320885.

[90] Jayaram Bhasker. A Vhdl Primer. Prentice-Hall, 1999.

[91] James R Black. Electromigration—a brief survey and some recent results. IEEE Transactions
on Electron Devices, 16(4):338–347, 1969.

[92] Alexander Brant and Guy GF Lemieux. Zuma: An open fpga overlay architecture. In 2012
IEEE 20th international symposium on field-programmable custom computing machines,
pages 93–96. IEEE, 2012.

[93] Yuriy Brun, George Edwards, Jae Young Bang, and Nenad Medvidovic. Smart redundancy
for distributed computation. In 2011 31st International Conference on Distributed Computing
Systems, pages 665–676. IEEE, 2011.

[94] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli, Giuseppe
Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro Palumbo, Luca Petrucci,
and Roberto Bifulco. hxdp: Efficient software packet processing on {FPGA} nics. In 14th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20),
pages 973–990, 2020.

[95] Doug Burger. Microsoft unveils project brainwave for real-time ai. Microsoft Research,
Microsoft, 22, 2017.

[96] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon Garcia, and Paul Chow.
Fpgas in the cloud: Booting virtualized hardware accelerators with openstack. In Field-
Programmable Custom Computing Machines (FCCM), 2014 IEEE 22nd Annual International
Symposium on, pages 109–116. IEEE, 2014.

99

[97] A. Calimera, M. Loghi, E. MacIi, and M. Poncino. Aging effects of leakage optimizations
for caches. In Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI, pages
95–98, 2010. https://doi.org/10.1145/1785481.1785504.

[98] Andrea Calimera, Mirko Loghi, Enrico Macii, and Massimo Poncino. Dynamic indexing:
Leakage-aging co-optimization for caches. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 33(2):251–264, 2014.

[99] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H
Anderson, Stephen Brown, and Tomasz Czajkowski. Legup: high-level synthesis for fpga-
based processor/accelerator systems. In Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays, pages 33–36. ACM, 2011.

[100] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz
Czajkowski, Stephen D Brown, and Jason H Anderson. Legup: An open-source high-level
synthesis tool for fpga-based processor/accelerator systems. ACM Transactions on Embedded
Computing Systems (TECS), 13(2):1–27, 2013.

[101] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers, Michael
Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim, et al. A cloud-
scale acceleration architecture. In The 49th Annual IEEE/ACM International Symposium on
Microarchitecture, page 7. IEEE Press, 2016.

[102] Ciro Ceissler, Ramon Nepomuceno, Marcio Pereira, and Guido Araujo. Automatic offloading
of cluster accelerators. In 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 224–224. IEEE, 2018.

[103] Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo, Dongqi Liu, Yimin Lu,
Ziyi Hao, Jiahui Luo, Zhijian Chen, et al. Xuantie-910: A commercial multi-core 12-
stage pipeline out-of-order 64-bit high performance risc-v processor with vector extension:
Industrial product. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pages 52–64. IEEE, 2020.

[104] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and Kun Wang.
Enabling fpgas in the cloud. In Proceedings of the 11th ACM Conference on Computing
Frontiers, page 3. ACM, 2014.

[105] Kueing-Long Chen, Stephen A Saller, Imelda A Groves, and David B Scott. Reliability
effects on mos transistors due to hot-carrier injection. IEEE Transactions on Electron Devices,
32(2):386–393, 1985.

[106] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Deming Chen.
Thundergp: Hls-based graph processing framework on fpgas. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages 69–80, 2021.

[107] Brian Chess and Gary McGraw. Static analysis for security. IEEE security & privacy,
2(6):76–79, 2004.

100

[108] Young-Kyu Choi, Yuze Chi, Jie Wang, and Jason Cong. Flash: Fast, parallel, and accurate
simulator for hls. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39(12):4828–4841, 2020.

[109] Eric S Chung, James C Hoe, and Ken Mai. Coram: an in-fabric memory architecture for
fpga-based computing. In Proceedings of the 19th ACM/SIGDA international symposium on
Field programmable gate arrays, pages 97–106. ACM, 2011.

[110] J Joseph Clement. Electromigration modeling for integrated circuit interconnect reliability
analysis. IEEE Transactions on Device and Materials Reliability, 1(1):33–42, 2001.

[111] Automotive Electronics Council. LATEX: Failure mechanism based stress test qualification for
integrated circuit. AAEC – Q100 – REV-G standard.

[112] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu Wang, and
Insu Yun. {REPT}: Reverse debugging of failures in deployed software. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages 17–32,
2018.

[113] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming.
IEEE Computational Science and Engineering, 5(1):46–55, Jan 1998.

[114] Pasquale Davide Schiavone, Francesco Conti, Davide Rossi, Michael Gautschi, Antonio
Pullini, Eric Flamand, and Luca Benini. Slow and steady wins the race? a comparison of
ultra-low-power risc-v cores for internet-of-things applications. In 2017 27th International
Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), pages
1–8, 2017.

[115] Ádria Barros de Oliveira, Lucas Antunes Tambara, and Fernanda Lima Kastensmidt. Apply-
ing lockstep in dual-core arm cortex-a9 to mitigate radiation-induced soft errors. In 2017
IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS), pages 1–4, 2017.

[116] RL De Orio, Hajdin Ceric, and Siegfried Selberherr. Physically based models of electro-
migration: From black’s equation to modern tcad models. Microelectronics Reliability,
50(6):775–789, 2010.

[117] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanuparthi, Hareesh
Khattri, Jason M Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. Hardfails: Insights
into software-exploitable hardware bugs. In 28th {USENIX} Security Symposium ({USENIX}
Security 19), pages 213–230, 2019.

[118] Edsger W. Dijkstra and DIJKSTRA EW. Information streams sharing a finite buffer. 1972.

[119] Jie Ding, Dave Reid, Plamen Asenov, Campbell Millar, and Asen Asenov. Influence of
transistors with bti-induced aging on sram write performance. IEEE Transactions on Electron
Devices, 62(10):3133–3138, 2015.

101

[120] Harish Dattatraya Dixit, Laura Boyle, Gautham Vunnam, Sneha Pendharkar, Matt Beadon,
and Sriram Sankar. Detecting silent data corruptions in the wild. arXiv preprint
arXiv:2203.08989, 2022.

[121] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason, Tejasvi Chakravarthy,
Bharath Muthiah, and Sriram Sankar. Silent data corruptions at scale. arXiv preprint
arXiv:2102.11245, 2021.

[122] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. Evolution of development
priorities in key-value stores serving large-scale applications: The {rocksdb} experience. In
19th USENIX Conference on File and Storage Technologies (FAST 21), pages 33–49, 2021.

[123] Jack Dongarra, Thomas Herault, and Yves Robert. Fault tolerance techniques for high-
performance computing. Springer, 2015.

[124] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software development: A
systematic review. Information and software technology, 50(9-10):833–859, 2008.

[125] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static analysis tools.
Electronic notes in theoretical computer science, 217:5–21, 2008.

[126] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. Virtualized fpga accelerators for
efficient cloud computing. In Cloud Computing Technology and Science (CloudCom), 2015
IEEE 7th International Conference on, pages 430–435. IEEE, 2015.

[127] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron
Brightwell. Detection and correction of silent data corruption for large-scale high-
performance computing. In SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pages 1–12. IEEE, 2012.

[128] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh,
Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, et al. Azure
accelerated networking: Smartnics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). USENIX Association, 2018.

[129] Farshad Firouzi, Saman Kiamehr, and Mehdi B Tahoori. Nbti mitigation by optimized nop
assignment and insertion. In 2012 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 218–223. IEEE, 2012.

[130] K. Fleming, H. Yang, M. Adler, and J. Emer. The leap fpga operating system. In 2014 24th
International Conference on Field Programmable Logic and Applications (FPL), pages 1–8,
Sep. 2014.

[131] Kermin Fleming and Michael Adler. The leap fpga operating system. In FPGAs for Software
Programmers, pages 245–258. Springer, 2016.

[132] Harry Foster. 2020 wilson research group functional verification study: Fpga functional
verification trend report, 2020.

102

[133] Freddy Gabbay and Avi Mendelson. Asymmetric aging effect on modern microprocessors.
Microelectronics Reliability, 119:114090, 2021.

[134] Freddy Gabbay, Firas Ramadan, and Majd Ganaiem. Clock tree design considerations in the
prescence of asymmetric transistor aging. In 20203 10th Design and Verification Conference
- Europe (DVCON), 2023.

[135] Freddy Gabbay, Firas Ramadan, Majd Ganaiem, Ofrie Rosenthal, and Lior Bashari. Effect
of Asymmetric Transistor Aging on GPGPUs. In Proceedings of the 5th International
Conference on Microelectronic Devices and Technologies (MicDAT ’2023), pages 52–56,
2023.

[136] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi, Antonio Pullini,
Davide Rossi, Eric Flamand, Frank K. Gürkaynak, and Luca Benini. Near-threshold risc-v
core with dsp extensions for scalable iot endpoint devices. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(10):2700–2713, 2017.

[137] Jeffrey Goeders and Steve JE Wilton. Using dynamic signal-tracing to debug compiler-
optimized hls circuits on fpgas. In 2015 IEEE 23rd annual international symposium on
field-programmable custom computing machines, pages 127–134. IEEE, 2015.

[138] Jeffrey Goeders and Steven JE Wilton. Effective fpga debug for high-level synthesis gen-
erated circuits. In 2014 24th International Conference on Field Programmable Logic and
Applications (FPL), pages 1–8. IEEE, 2014.

[139] Gokul Govindu, Ronald Scrofano, and Viktor K Prasanna. A library of parameterizable
floating-point cores for fpgas and their application to scientific computing. In Proc Int’l Conf.
Eng. Reconfigurable Systems and Algorithms (ERSA’05). Citeseer, 2005.

[140] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[141] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September 2020.

[142] Yi He, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju, Nishant Patil, and
Yanjing Li. Understanding and mitigating hardware failures in deep learning training systems.
In Proceedings of the 50th Annual International Symposium on Computer Architecture, pages
1–16, 2023.

[143] Jeffrey Hicks, Daniel Bergstrom, Mike Hattendorf, Jason Jopling, Jose Maiz, Sangwoo Pae,
Chetan Prasad, and Jami Wiedemer. 45nm transistor reliability. Intel Technology Journal,
12(2), 2008.

[144] Paul S Ho and Thomas Kwok. Electromigration in metals. Reports on Progress in Physics,
52(3):301, 1989.

103

[145] Peter H Hochschild, Paul Turner, Jeffrey C Mogul, Rama Govindaraju, Parthasarathy Ran-
ganathan, David E Culler, and Amin Vahdat. Cores that don’t count. In Proceedings of the
Workshop on Hot Topics in Operating Systems, pages 9–16, 2021.

[146] Daniel Holanda Noronha, Ruizhe Zhao, Jeff Goeders, Wayne Luk, and Steven JE Wilton.
On-chip fpga debug instrumentation for machine learning applications. In Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages
110–115, 2019.

[147] Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta, and Sharad
Malik. Instruction-level abstraction (ila) a uniform specification for system-on-chip (soc)
verification. ACM Transactions on Design Automation of Electronic Systems (TODAES),
24(1):1–24, 2018.

[148] Eddie Hung and Steven JE Wilton. Scalable signal selection for post-silicon debug. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 21(6):1103–1115, 2012.

[149] Intel. Acceleration stack for intel xeon cpu with fpgas core cache interface (cci-p) reference
manual. https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/
literature/manual/mnl-ias-ccip.pdf.

[150] Intel. Hardware Accelerator Research Program. https://software.intel.com/en-us/
hardware-accelerator-research-program.

[151] Intel. Intel arria 10 avalon-st interface with sr-iov pcie solutions user guide. https://www.
altera.com/en_US/pdfs/literature/ug/ug_a10_pcie_sriov.pdf.

[152] Intel. Intel high level synthesis compiler. https://www.intel.com/content/www/us/

en/software/programmable/quartus-prime/hls-compiler.html.

[153] Intel. Intel programmable acceleration card with intel arria 10 gx fpga.
https://www.intel.com/content/www/us/en/programmable/products/boards_

and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html.

[154] Intel. Intel virtualization technology for directed i/o. https://software.intel.com/

sites/default/files/managed/c5/15/vt-directed-io-spec.pdf.

[155] Intel. Open programmable acceleration engine. https://opae.github.io/latest/

index.html.

[156] Intel. Intel open source hd graphics and intel iris plus graphics programmer’s reference
manual for the 2016 - 2017 intel core processors, celeron processors, and pentium pro-
cessors based on the “kaby lake” platform. https://01.org/sites/default/files/

documentation/intel-gfx-prm-osrc-kbl-vol05-memory_views.pdf, 2017.

[157] Intel. Embedded peripherals ip user guide. https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/ug/ug_embedded_ip.pdf, 2019.

104

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl-ias-ccip.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl-ias-ccip.pdf
https://software.intel.com/en-us/hardware-accelerator-research-program
https://software.intel.com/en-us/hardware-accelerator-research-program
https://www.altera.com/en_US/pdfs/literature/ug/ug_a10_pcie_sriov.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_a10_pcie_sriov.pdf
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf
https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf
https://opae.github.io/latest/index.html
https://opae.github.io/latest/index.html
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-kbl-vol05-memory_views.pdf
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-kbl-vol05-memory_views.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_embedded_ip.pdf

[158] Intel. Intel arria 10 fpgas. https://www.intel.com/content/www/us/en/products/

programmable/fpga/arria-10.html, 2019.

[159] Intel. Intel FPGA Basic Building Blocks (BBB). https://github.com/OPAE/

intel-fpga-bbb, 2019.

[160] Intel. Intel quartus prime pro edition user guide: Debug tools. https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-debug.pdf,
2020.

[161] Abhishek Kumar Jain, Suhaib A Fahmy, and Douglas L Maskell. Efficient overlay ar-
chitecture based on dsp blocks. In 2015 IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines, pages 25–28. IEEE, 2015.

[162] Abhishek Kumar Jain, Douglas L Maskell, and Suhaib A Fahmy. Throughput oriented fpga
overlays using dsp blocks. In 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1628–1633. IEEE, 2016.

[163] Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Edmund Clarke. Word level
predicate abstraction and refinement for verifying rtl verilog. In Proceedings of the 42nd
annual Design Automation Conference, pages 445–450, 2005.

[164] Neo Jia and Kirti Wankhede. Vfio mediated devices. https://www.kernel.org/doc/

Documentation/vfio-mediated-device.txt.

[165] Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant
Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Cliff Young, Xiang Zhou, Zongwei
Zhou, and David Patterson. Tpu v4: An optically reconfigurable supercomputer for machine
learning with hardware support for embeddings, 2023.

[166] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-
mance analysis of a tensor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture, pages 1–12, 2017.

[167] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee,
Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, et al. Firesim: Fpga-
accelerated cycle-exact scale-out system simulation in the public cloud. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA), pages 29–42. IEEE,
2018.

[168] Sagar Karandikar, Albert Ou, Alon Amid, Howard Mao, Randy Katz, Borivoje Nikolić, and
Krste Asanović. Fireperf: Fpga-accelerated full-system hardware/software performance
profiling and co-design. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 715–731,
2020.

[169] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. Lazy diagnosis of in-production
concurrency bugs. In SOSP, Shanghai, China, October 2017.

105

https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://github.com/OPAE/intel-fpga-bbb
https://github.com/OPAE/intel-fpga-bbb
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-debug.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-debug.pdf
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt

[170] Baris Kasikci, Cristiano Pereira, Gilles Pokam, Benjamin Schubert, Malandal Musuvathi, and
George Candea. Failure sketches: A better way to debug. In 15th Workshop on Hot Topics
in Operating Systems (HotOS XV), Kartause Ittingen, Switzerland, May 2015. USENIX
Association.

[171] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and George Candea.
Failure sketching: A technique for automated root cause diagnosis of in-production failures.
In SOSP, Monterey, CA, October 2015.

[172] Baris Kasikci, Cristian Zamfir, and George Candea. RaceMob: Crowdsourced data race
detection. In SOSP, Farmington, PA, November 2013.

[173] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K Soundararajan, Rakesh
Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A Pokam, Heiner Litz, and Baris
Kasikci. Twig: Profile-guided btb prefetching for data center applications. In 54th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2021.

[174] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner Litz, and
Baris Kasikci. I-spy: Context-driven conditional instruction prefetching with coalescing.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 146–159. IEEE, 2020.

[175] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti, Gilles Pokam,
Heiner Litz, and Baris Kasikci. Ripple: Profile-guided instruction cache replacement for
data center applications. In Proceedings of the 48th International Symposium on Computer
Architecture, 2021.

[176] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza, and
Christopher J Rossbach. Sharing, protection, and compatibility for reconfigurable fabric with
amorphos. In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 107–127. USENIX Association, 2018.

[177] Moein Khazraee, Lu Zhang, Luis Vega, and Michael Bedford Taylor. Moonwalk: Nre
optimization in asic clouds. SIGPLAN Not., 52(4):511–526, April 2017.

[178] Alireza Khodamoradi, Kristof Denolf, and Ryan Kastner. S2n2: A fpga accelerator for
streaming spiking neural networks. In The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 194–205, 2021.

[179] Saman Kiamehr, Farshad Firouzi, Mojtaba Ebrahimi, and Mehdi B Tahoori. Aging-aware
standard cell library design. In 2014 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1–4. IEEE, 2014.

[180] Donggyu Kim, Christopher Celio, Sagar Karandikar, David Biancolin, Jonathan Bachrach,
and Krste Asanović. Dessert: Debugging rtl effectively with state snapshotting for error
replays across trillions of cycles. In 2018 28th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 76–764. IEEE, 2018.

106

[181] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm: the linux virtual
machine monitor. In Proceedings of the Linux symposium, volume 1, pages 225–230, 2007.

[182] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. Kvm: the linux virtual
machine monitor. In In Proceedings of the 2007 Ottawa Linux Symposium (OLS), 2007.

[183] Oliver Knodel, Paul R Genssler, and Rainer G Spallek. Virtualizing reconfigurable hard-
ware to provide scalability in cloud architectures. Reconfigurable Architectures, Tools and
Applications, RECATA, 2017.

[184] Oliver Knodel and Rainer G Spallek. Rc3e: provision and management of reconfigurable
hardware accelerators in a cloud environment. arXiv preprint arXiv:1508.06843, 2015.

[185] Ho Fai Ko and Nicola Nicolici. Automated trace signals selection using the rtl descriptions.
In 2010 IEEE International Test Conference, pages 1–10. IEEE, 2010.

[186] Dirk Koch, Christian Beckhoff, and Guy GF Lemieux. An efficient fpga overlay for portable
custom instruction set extensions. In 2013 23rd international conference on field pro-
grammable logic and applications, pages 1–8. IEEE, 2013.

[187] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. Do {OS} abstractions make sense on
fpgas? In 14th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 20), pages 991–1010, 2020.

[188] Anand T Krishnan, Frank Cano, Cathy Chancellor, Vijay Reddy, Zhangfen Qi, Palkesh Jain,
John Carulli, Jonathan Masin, Steve Zuhoski, Srikanth Krishnan, et al. Product drift from
nbti: Guardbanding, circuit and statistical effects. In 2010 International Electron Devices
Meeting, pages 4–3. IEEE, 2010.

[189] Charles W Krueger. Software reuse. ACM Computing Surveys (CSUR), 24(2):131–183,
1992.

[190] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. An analytical model for negative bias
temperature instability. In 2006 IEEE/ACM International Conference on Computer Aided
Design, San Jose, CA, USA, pages 493–496, 2006. doi: 10.1109/ICCAD.2006.320163.

[191] Patrick Kutch. Pci-sig sr-iov primer: An introduction to sr-iov technology. Intel application
note, pages 321211–002, 2011.

[192] Dongup Kwon, Junehyuk Boo, Dongryeong Kim, and Jangwoo Kim. {FVM}: Fpga-
assisted virtual device emulation for fast, scalable, and flexible storage virtualization. In
14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20),
pages 955–971, 2020.

[193] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J Rossbach, and Emmett Witchel.
Coordinated and efficient huge page management with ingens. In 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16), pages 705–721, 2016.

107

[194] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J Rossbach, and Emmett Witchel.
Ingens: Huge page support for the os and hypervisor. ACM SIGOPS Operating Systems
Review, 51(1):83–93, 2017.

[195] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen. Rfuzz:
Coverage-directed fuzz testing of rtl on fpgas. In 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[196] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J Rossbach, and Eric Schkufza.
Compiler-driven fpga virtualization with synergy. In Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, pages 818–831, 2021.

[197] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis and transformation. In CGO, pages 75–88, San Jose, CA, USA, Mar 2004.

[198] Doug Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html.

[199] Suho Lee and Karem A Sakallah. Unbounded scalable verification based on approximate
property-directed reachability and datapath abstraction. In International Conference on
Computer Aided Verification, pages 849–865. Springer, 2014.

[200] W. Li, G. Jin, X. Cui, and S. See. An evaluation of unified memory technology on nvidia gpus.
In 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
pages 1092–1098, May 2015.

[201] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang Zhai.
Have things changed now? an empirical study of bug characteristics in modern open source
software. In Proceedings of the 1st workshop on Architectural and system support for
improving software dependability, pages 25–33, 2006.

[202] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. Fp-bnn: Binarized
neural network on fpga. Neurocomputing, 275:1072–1086, 2018.

[203] Changze Liu, Yongsheng Sun, Pengpeng Ren, Dan Gao, Weichun Luo, Zanfeng Chen, and
Yu Xia. New challenges of design for reliability in advanced technology node. In 2020 4th
IEEE Electron Devices Technology & Manufacturing Conference (EDTM), pages 1–4. IEEE,
2020.

[204] Xiao Liu and Qiang Xu. Trace signal selection for visibility enhancement in post-silicon
validation. In 2009 Design, Automation & Test in Europe Conference & Exhibition, pages
1338–1343. IEEE, 2009.

[205] Enno Lübbers and Marco Platzner. Reconos: Multithreaded programming for reconfigurable
computers. ACM Transactions on Embedded Computing Systems (TECS), 9(1):8, 2009.

[206] Lucas Matana Luza, Daniel Söderström, Helmut Puchner, Rubén Garcı́a Alı́a, Manon Letiche,
Alberto Bosio, and Luigi Dilillo. Effects of thermal neutron irradiation on a self-refresh
dram. In 2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS),
pages 1–6. IEEE, 2020.

108

http://gee.cs.oswego.edu/dl/html/malloc.html

[207] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mulugeta
Eneyew, Zhengwei Qi, and Baris Kasikci. A hypervisor for shared-memory fpga platforms.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 827–844, 2020.

[208] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and Baris Kasikci.
Debugging in the brave new world of reconfigurable hardware. In Proceedings of the 27th
ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 946–962, 2022.

[209] Stefan Mach, Fabian Schuiki, Florian Zaruba, and Luca Benini. Fpnew: An open-source
multiformat floating-point unit architecture for energy-proportional transprecision computing.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29(4):774–787, 2020.

[210] Raffael Marty. Cloud application logging for forensics. In proceedings of the 2011 ACM
Symposium on Applied Computing, pages 178–184, 2011.

[211] Marco Antonio Merlini, Isamu Poy, and Paul Chow. Interactive debugging at ip block inter-
faces in fpgas. In The 2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 138–144, 2021.

[212] Theodore Michailidis, Alex Delis, and Mema Roussopoulos. Mega: overcoming traditional
problems with os huge page management. In Proceedings of the 12th ACM International
Conference on Systems and Storage, pages 121–131. ACM, 2019.

[213] S.E. Michalak, K.W. Harris, N.W. Hengartner, B.E. Takala, and S.A. Wender. Predicting the
number of fatal soft errors in los alamos national laboratory’s asc q supercomputer. IEEE
Transactions on Device and Materials Reliability, 5(3):329–335, 2005.

[214] Microsoft. What are fpgas and project brainwave? https://docs.microsoft.com/

en-us/azure/machine-learning/service/concept-accelerate-with-fpgas,
2019.

[215] Ali Mili, Rym Mili, and Roland T Mittermeir. A survey of software reuse libraries. Annals
of software engineering, 5(1):349–414, 1998.

[216] Roberto Millón, Emmanuel Frati, and Enzo Rucci. A comparative study between hls and hdl
on soc for image processing applications. arXiv preprint arXiv:2012.08320, 2020.

[217] David Mulnix. Intel xeon processor scalable family technical overview, 2017.

[218] Laurence W. Nagel and D.O. Pederson. Spice (simulation program with integrated circuit
emphasis). Technical Report UCB/ERL M382, EECS Department, University of California,
Berkeley, Apr 1973.

[219] S Novak, C Parker, D Becher, M Liu, Marty Agostinelli, M Chahal, P Packan, P Nayak,
Stephen Ramey, and S Natarajan. Transistor aging and reliability in 14nm tri-gate technology.
In 2015 IEEE International Reliability Physics Symposium, pages 2F–2. IEEE, 2015.

109

https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-accelerate-with-fpgas
https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-accelerate-with-fpgas

[220] Fabian Oboril and Mehdi B Tahoori. Extratime: Modeling and analysis of wearout due
to transistor aging at microarchitecture-level. In IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2012), pages 1–12. IEEE, 2012.

[221] Shigeo Ogawa and Noboru Shiono. Generalized diffusion-reaction model for the low-field
charge-buildup instability at the si-sio2 interface. Phys. Rev. B, 51:4218–4230, Feb 1995.

[222] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. Centaur: A framework for
hybrid cpu-fpga databases. In Field-Programmable Custom Computing Machines (FCCM),
2017 IEEE 25th Annual International Symposium on, pages 211–218. IEEE, 2017.

[223] Michele Paolino, Sébastien Pinneterre, and Daniel Raho. Fpga virtualization with accelerators
overcommitment for network function virtualization. In 2017 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pages 1–6. IEEE, 2017.

[224] Wesley Peck, Erik Anderson, Jason Agron, Jim Stevens, Fabrice Baijot, and David An-
drews. Hthreads: A computational model for reconfigurable devices. In 2006 International
Conference on Field Programmable Logic and Applications, pages 1–4. IEEE, 2006.

[225] Sébastien Pinneterre, Spyros Chiotakis, Michele Paolino, and Daniel Raho. vfpgamanager: A
virtualization framework for orchestrated fpga accelerator sharing in 5g cloud environments.
In 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB), pages 1–5. IEEE, 2018.

[226] Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, and Adam Chlipala. Effective simulation
and debugging for a high-level hardware language using software compilers. In Proceedings
of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 789–803, 2021.

[227] Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay Gal-On. A benchmark charac-
terization of the eembc benchmark suite. IEEE Micro, 29(5):18–29, 2009.

[228] C. L. Portmann and T. H. Y. Meng. Metastability in cmos library elements in reduced
supply and technology scaled applications. IEEE J Solid-State Circuits, 30:39–46, 1995.
https://doi.org/10.1109/4.350196.

[229] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Constantinides,
John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, et al.
A reconfigurable fabric for accelerating large-scale datacenter services. ACM SIGARCH
Computer Architecture News, 42(3):13–24, 2014.

[230] Hao Qian and Yangdong Deng. Accelerating rtl simulation with gpus. In 2011 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 687–693. IEEE, 2011.

[231] W. Qiao, J. Du, Z. Fang, M. Lo, M. F. Chang, and J. Cong. High-Throughput Lossless Com-
pression on Tightly Coupled CPU-FPGA Platforms. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 37–44,
April 2018.

110

[232] Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael Lo, Mau-Chung Frank Chang, and
Jason Cong. High-throughput lossless compression on tightly coupled cpu-fpga platforms.
In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), pages 37–44. IEEE, 2018.

[233] H. Quinn and P. Graham. Terrestrial-based radiation upsets: a cautionary tale. In 13th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05), pages
193–202, 2005.

[234] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman, Marisabel
Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasubramanian, Sandeep Bhatia,
Prakash Chauhan, et al. Warehouse-scale video acceleration: co-design and deployment in
the wild. In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 600–615, 2021.

[235] Alastair Reid. Trustworthy specifications of arm® v8-a and v8-m system level architecture.
In 2016 Formal Methods in Computer-Aided Design (FMCAD), pages 161–168. IEEE, 2016.

[236] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes, Will Keen,
Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Zaidi. End-to-end verification of
processors with isa-formal. In International Conference on Computer Aided Verification,
pages 42–58. Springer, 2016.

[237] James A Rowson. Hardware/software co-simulation. In Proceedings of the 31st Annual
Design Automation Conference, pages 439–440, 1994.

[238] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve. Using likely invariants
for automated software fault localization. In Proceedings of the eighteenth international
conference on Architectural support for programming languages and operating systems,
pages 139–152, 2013.

[239] Nikolay Sakharnykh. Everything you need to know about unified mem-
ory. http://on-demand.gputechconf.com/gtc/2018/presentation/

s8430-everything-you-need-to-know-about-unified-memory.pdf, 2018.

[240] Sahand Salamat, Armin Haj Aboutalebi, Behnam Khaleghi, Joo Hwan Lee, Yang Seok Ki,
and Tajana Rosing. Nascent: Near-storage acceleration of database sort on smartssd. In The
2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages
262–272, 2021.

[241] Eric Schkufza, Michael Wei, and Christopher J Rossbach. Just-in-time compilation for
verilog: A new technique for improving the fpga programming experience. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 271–286. ACM, 2019.

[242] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. Address-
sanitizer: A fast address sanity checker. In Proceedings of the 2012 USENIX Conference on
Annual Technical Conference, USENIX ATC’12, page 28, USA, 2012. USENIX Association.

111

http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf

[243] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: Data race detection in
practice. In Proceedings of the workshop on binary instrumentation and applications, pages
62–71, 2009.

[244] Kostya Serebryany, Maxim Lifantsev, Konstantin Shtoyk, Doug Kwan, and Peter Hochschild.
Silifuzz: Fuzzing cpus by proxy. arXiv preprint arXiv:2110.11519, 2021.

[245] Julian Seward and Nicholas Nethercote. Using valgrind to detect undefined value errors
with bit-precision. In Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’05, page 2, USA, 2005. USENIX Association.

[246] Hardik Sharma, Jongse Park, Emmanuel Amaro, Bradley Thwaites, Praneetha Kotha, Anmol
Gupta, Joon Kyung Kim, Asit Mishra, and Hadi Esmaeilzadeh. Dnnweaver: From high-level
deep network models to fpga acceleration. In the Workshop on Cognitive Architectures, 2016.

[247] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim, Chenkai
Shao, Asit Mishra, and Hadi Esmaeilzadeh. From high-level deep neural models to fpgas.
In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on,
pages 1–12. IEEE, 2016.

[248] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim, Chenkai
Shao, Asit Mishra, and Hadi Esmaeilzadeh. From high-level deep neural models to fpgas.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1–12. IEEE, 2016.

[249] David Sidler and Ken Eguro. Debugging framework for fpga-based soft processors. In 2016
International Conference on Field-Programmable Technology (FPT), pages 165–168. IEEE,
2016.

[250] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. Accelerating pattern match-
ing queries in hybrid cpu-fpga architectures. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 403–415. ACM, 2017.

[251] Any Silicon. Fpga vs asic, what to choose? https://anysilicon.com/

fpga-vs-asic-choose/.

[252] Wilson Snyder. https://www.veripool.org/verilator/, 2021.

[253] Hayden Kwok-Hay So and Robert Brodersen. A unified hardware/software runtime environ-
ment for fpga-based reconfigurable computers using borph. ACM Transactions on Embedded
Computing Systems (TECS), 7(2):14, 2008.

[254] Hayden Kwok-Hay So and Robert W Brodersen. Borph: An operating system for fpga-based
reconfigurable computers. University of California, Berkeley, 2007.

[255] Richard Stallman, Roland Pesch, Stan Shebs, et al. Debugging with gdb. Free Software
Foundation, 675, 1988.

112

https://anysilicon.com/fpga-vs-asic-choose/
https://anysilicon.com/fpga-vs-asic-choose/
https://www.veripool.org/verilator/

[256] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel. Capi: A coherent accelerator processor
interface. IBM Journal of Research and Development, 59(1):7:1–7:7, Jan 2015.

[257] Synopsys. Vcs functional verification solution. https://www.synopsys.com/

verification/simulation/vcs.html, 2021.

[258] Shinya Takamaeda-Yamazaki. Pyverilog: A python-based hardware design processing toolkit
for verilog hdl. In Applied Reconfigurable Computing, volume 9040 of Lecture Notes in
Computer Science, pages 451–460. Springer International Publishing, Apr 2015.

[259] Naif Tarafdar, Thomas Lin, Eric Fukuda, Hadi Bannazadeh, Alberto Leon-Garcia, and Paul
Chow. Enabling flexible network fpga clusters in a heterogeneous cloud data center. In
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 237–246. ACM, 2017.

[260] Terasic and Altera. De5a-net fpga development kit user manual. https:

//www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/

doc-us-dsnbk-42-1804382103-de5a-net-user-manual.pdf.

[261] Donald Thomas and Philip Moorby. The Verilog® Hardware Description Language. Springer
Science & Business Media, 2008.

[262] Kun Tian, Yaozu Dong, and David Cowperthwaite. A full gpu virtualization solution with
mediated pass-through. In USENIX Annual Technical Conference, pages 121–132, 2014.

[263] Timothy Trippel, Kang G Shin, Alex Chernyakhovsky, Garret Kelly, Dominic Rizzo, and
Matthew Hicks. Fuzzing hardware like software. arXiv preprint arXiv:2102.02308, 2021.

[264] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. A survey on fpga virtualization. In 2018
28th International Conference on Field Programmable Logic and Applications (FPL), pages
131–1317. IEEE, 2018.

[265] Rakesh Vattikonda, Wenping Wang, and Yu Cao. Modeling and minimization of pmos nbti
effect for robust nanometer design. In Proceedings of the 43rd annual Design Automation
Conference, pages 1047–1052, 2006.

[266] Jyothi Bhaskarr Velamala. Compact modeling and simulation for digital circuit ag-
ing. PhD dissertation, 2012. https://repository.asu.edu/attachments/97628/

content//tmp/package-sAOTlT/Velamala_asu_0010E_12271.pdf.

[267] Duy Viet Vu, Oliver Sander, Timo Sandmann, Steffen Baehr, Jan Heidelberger, and Juergen
Becker. Enabling partial reconfiguration for coprocessors in mixed criticality multicore
systems using pci express single-root i/o virtualization. In 2014 International Conference on
ReConFigurable Computing and FPGAs (ReConFig14), pages 1–6. IEEE, 2014.

[268] Guosai Wang, Lifei Zhang, and Wei Xu. What can we learn from four years of data center
hardware failures? In 2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 25–36. IEEE, 2017.

113

https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-1804382103-de5a-net-user-manual.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-1804382103-de5a-net-user-manual.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-1804382103-de5a-net-user-manual.pdf
https://repository.asu.edu/attachments/97628/content//tmp/package-sAOTlT/Velamala_asu_0010E_12271.pdf
https://repository.asu.edu/attachments/97628/content//tmp/package-sAOTlT/Velamala_asu_0010E_12271.pdf

[269] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate Foster, and
Hakim Weatherspoon. P4fpga: A rapid prototyping framework for p4. In Proceedings of the
Symposium on SDN Research, pages 122–135. ACM, 2017.

[270] Qinggang Wang, Long Zheng, Yu Huang, Pengcheng Yao, Chuangyi Gui, Xiaofei Liao,
Hai Jin, Wenbin Jiang, and Fubing Mao. Grasu: A fast graph update library for fpga-
based dynamic graph processing. In The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 149–159, 2021.

[271] Shaobu Wang, Guangyan Zhang, Junyu Wei, Yang Wang, Jiesheng Wu, and Qingchao Luo.
Understanding silent data corruptions in a large production cpu population. In Proceedings
of the 29th Symposium on Operating Systems Principles, pages 216–230, 2023.

[272] Wei Wang, Miodrag Bolic, and Jonathan Parri. pvfpga: accessing an fpga-based hardware
accelerator in a paravirtualized environment. In Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), 2013 International Conference on, pages 1–9. IEEE, 2013.

[273] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas Herkersdorf. Enabling
fpgas in hyperscale data centers. In Ubiquitous Intelligence and Computing and 2015
IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf
on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-
ScalCom), 2015 IEEE 12th Intl Conf on, pages 1078–1086. IEEE, 2015.

[274] Gabriel Weisz and James C Hoe. Coram++: Supporting data-structure-specific memory
interfaces for fpga computing. In 2015 25th International Conference on Field Programmable
Logic and Applications (FPL), pages 1–8. IEEE, 2015.

[275] Gabriel Weisz, Joseph Melber, Yu Wang, Kermin Fleming, Eriko Nurvitadhi, and James C
Hoe. A study of pointer-chasing performance on shared-memory processor-fpga systems.
In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 264–273. ACM, 2016.

[276] Gabriel Weisz, Joseph Melber, Yu Wang, Kermin Fleming, Eriko Nurvitadhi, and James C.
Hoe. A Study of Pointer-Chasing Performance on Shared-Memory Processor-FPGA Systems.
In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’16, pages 264–273, New York, NY, USA, 2016. ACM.

[277] Stephen Williams. Icarus verilog. http://iverilog.icarus.com/.

[278] Clifford Wolf. Yosys open synthesis suite, 2016.

[279] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In
Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), 2013.

[280] Lei Xia, Sanjay Kumar, Xue Yang, Praveen Gopalakrishnan, York Liu, Sebastian Schoenberg,
and Xingang Guo. Virtual wifi: bring virtualization from wired to wireless. In Acm sigplan
notices, volume 46, pages 181–192. ACM, 2011.

114

http://iverilog.icarus.com/

[281] Xilinx. Axi interconnect. https://www.xilinx.com/products/

intellectual-property/axi_interconnect.html.

[282] Xilinx. Designing with sr-iov capability of xilinx virtex-7 pci express gen3 in-
tegrated block. https://www.xilinx.com/support/documentation/application_

notes/xapp1177-pcie-gen3-sriov.pdf.

[283] Xilinx. Dma for pci express (pcie) subsystem. https://www.xilinx.com/products/

intellectual-property/pcie-dma.html.

[284] Xilinx. Pcie solution portfolio. https://www.xilinx.com/products/technology/

pci-express.html.

[285] Xilinx. Sdaccel development environment. https://www.xilinx.com/products/

design-tools/software-zone/sdaccel.html.

[286] Xilinx. Vitis high-level synthesis. https://www.xilinx.com/products/design-tools/
vivado/integration/esl-design.html.

[287] Xilinx. Finite state machines. https://www.xilinx.com/support/documentation/

university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-pdf/lab10.pdf,
2015.

[288] Xilinx. Integrated logic analyzer v6.2. https://www.xilinx.com/support/

documentation/ip_documentation/ila/v6_2/pg172-ila.pdf, 2016.

[289] Peter Xu. Device assignment with nested guest and dpdk. https://www.linux-kvm.org/
images/a/a6/KVM_Forum_2018_viommu_vfio.pdf, 2018.

[290] Hangchen Yu, Arthur M. Peters, Amogh Akshintala, and Christopher J. Rossbach. Automatic
virtualization of accelerators. In 17th Workshop on Hot Topics in Operating Systems (HotOS
{XVII}), 2019.

[291] Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and Christopher J Rossbach. Ava:
Accelerated virtualization of accelerators. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 807–825, 2020.

[292] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging practices in open-
source software. In 2012 34th International Conference on Software Engineering (ICSE),
pages 102–112. IEEE, 2012.

[293] H. Zeng, C. Zhang, and V. Prasanna. Fast generation of high throughput customized deep
learning accelerators on FPGAs. In 2017 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pages 1–8, December 2017.

[294] Yue Zha and Jing Li. Virtualizing fpgas in the cloud. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 845–858, 2020.

115

https://www.xilinx.com/products/intellectual-property/axi_interconnect.html
https://www.xilinx.com/products/intellectual-property/axi_interconnect.html
https://www.xilinx.com/support/documentation/application_notes/xapp1177-pcie-gen3-sriov.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1177-pcie-gen3-sriov.pdf
https://www.xilinx.com/products/intellectual-property/pcie-dma.html
https://www.xilinx.com/products/intellectual-property/pcie-dma.html
https://www.xilinx.com/products/technology/pci-express.html
https://www.xilinx.com/products/technology/pci-express.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-pdf/lab10.pdf
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-pdf/lab10.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.linux-kvm.org/images/a/a6/KVM_Forum_2018_viommu_vfio.pdf
https://www.linux-kvm.org/images/a/a6/KVM_Forum_2018_viommu_vfio.pdf

[295] Yue Zha and Jing Li. When application-specific isa meets fpgas: a multi-layer virtualization
framework for heterogeneous cloud fpgas. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 123–134, 2021.

[296] Jiansong Zhang, Yongqiang Xiong, Ningyi Xu, Ran Shu, Bojie Li, Peng Cheng, Guo Chen,
and Thomas Moscibroda. The feniks fpga operating system for cloud computing. In
Proceedings of the 8th Asia-Pacific Workshop on Systems, page 22. ACM, 2017.

[297] Min Zhang, Linpeng Li, Hai Wang, Yan Liu, Hongbo Qin, and Wei Zhao. Optimized
compression for implementing convolutional neural networks on fpga. Electronics, 8(3):295,
2019.

[298] Rui Zhang, Calvin Deutschbein, Peng Huang, and Cynthia Sturton. End-to-end automated
exploit generation for validating the security of processor designs. In Proceedings of the
51st Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-51, page
815–827. IEEE Press, 2018.

[299] Yichi Zhang, Junhao Pan, Xinheng Liu, Hongzheng Chen, Deming Chen, and Zhiru Zhang.
Fracbnn: Accurate and fpga-efficient binary neural networks with fractional activations. In
The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages
171–182, 2021.

[300] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani Srivastava,
Rajesh Gupta, and Zhiru Zhang. Accelerating binarized convolutional neural networks
with software-programmable fpgas. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 15–24. ACM, 2017.

[301] Tianhao Zheng, David Nellans, Arslan Zulfiqar, Mark Stephenson, and Stephen W Keckler.
Towards high performance paged memory for gpus. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 345–357. IEEE, 2016.

[302] S. Zhou and V. K. Prasanna. Accelerating Graph Analytics on CPU-FPGA Heterogeneous
Platform. In 2017 29th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 137–144, October 2017.

[303] Shijie Zhou and Viktor K Prasanna. Accelerating graph analytics on cpu-fpga heterogeneous
platform. In 2017 29th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 137–144. IEEE, 2017.

[304] Kenneth M. Zick, Chien-Chih Yu, John Paul Walters, and Matthew French. Silent data
corruption and embedded processing with nasa’s spacecube. IEEE Embedded Systems
Letters, 4(2):33–36, 2012.

[305] Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci.
Execution reconstruction: Harnessing failure reoccurrences for failure reproduction. In ACM
SIGPLAN conference on Programming language design and implementation, 2021.

116

	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Software-like Hardware Development and Deployment
	Systems and Debugging Supports for Hardware Designs
	Building and Improving Systems for FPGAs
	Understanding and Finding Hardware Bugs

	Road-map

	A Hypervisor for Shared-Memory FPGA Platforms
	Introduction
	Background
	FPGA Programming Models
	FPGA Virtualization

	Goals and Challenges
	Design
	Hardware Monitor
	Preemption Interface
	Userspace API

	Implementation
	Evaluation
	Experimental Setup
	FPGA Resource Utilization
	Performance Overhead
	Scalability of Spatial Multiplexing
	Benefit of Using Huge Pages
	Scalability of Temporal Multiplexing
	Fairness of Spatial Multiplexing
	Fairness of Temporal Multiplexing

	Discussion
	Optimus vs. AmorphOS
	Key Takeaways

	Related Work
	Conclusion

	Debugging in the Brave New World of Reconfigurable Hardware
	Introduction
	Background
	Languages for Hardware Programming
	FPGA Debugging Stages
	FPGA Programming Techniques and Constructs

	Study of Bugs in FPGA Designs
	Bug Classification
	Data Mis-Access Bugs
	Buffer Overflow
	Bit Truncation
	Misindexing
	Endianness Mismatch
	Failure-to-Update

	Communication Bugs
	Deadlock
	Producer-Consumer Mismatch
	Signal Asynchrony
	Use-Without-Valid

	Semantic Bugs
	Protocol Violation
	API Misuse
	Incomplete Implementation
	Erroneous Expression

	Design of FPGA Debugging Tools
	SignalCat for Unified Logging
	FSM Monitor for State Machine Traces
	Dependency Monitor for Provenance Tracking
	Statistics Monitor for Counting Events-of-Interest
	LossCheck for Precise Data Loss Localization
	Static Analysis of Data Propagation
	Instrumentation of HDL Code
	Filtering False Positives and Final Analysis
	Limitations of LossCheck

	Implementation
	Evaluation
	Testbed of Reproducible FPGA Bugs
	Experimental Setup
	Effectiveness of Debugging Tools
	Efficiency of Debugging Tools

	Related Work
	Conclusion

	Proactive Runtime Detection of Aging-Related Silent Data Corruptions: A Bottom-Up Approach
	Introduction
	Background and Motivation
	Silent Data Corruptions
	Hardware Development
	Transistor Aging
	The Nonuniform Nature of Transistor Aging
	Timing Violations Caused by Transistor Aging
	The Physical Model for Transistor Aging
	Profiling BTI Stresses with Signal Probability

	Design of the Vega Workflow
	Preparation for the Workflow
	Aging Analysis
	Signal Probability Simulation
	Aging-Aware Static Timing Analysis

	Error Lifting
	Logical Models for Timing Violations
	Failure Model Instrumentation
	Trace Generation using Formal Methods
	Mitigation for Initial Value Dependency
	Instruction Construction

	Test Integration
	Generation of Software Aging Library
	Profile-Guided Test Integration

	Implementation
	Evaluation
	Experimental Setup
	Effectiveness of Vega
	Potential Aging Identification
	Test Case Construction
	Quality of Test Cases

	Efficiency of Vega

	Related Work
	Conclusions

	Conclusion and Future Work
	Extending Systems Supports for FPGAs
	Exploring More Debugging Tools for Hardware Designs
	Enhancing the Detection of Unreliable Hardware

	Bibliography

