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ABSTRACT

Financial markets are cornerstones of wealth planning. People turn to these markets to grow
their capital and achieve their financial goals. Many have retirement accounts for support at
the end of their careers. However, markets are complex, chaotic systems. The interconnected
economy means global events can, and do, impact local markets in complicated and surprising
fashions. This presents a challenge for long-term investors, for whom important lifestyle
tradeoffs must be made for their personal financial goals. To better assist investors in
navigating their financial decisions, this dissertation proposes models to not only help them
in decision-making for their unique objectives, but also in understanding the impact of
external influences on financial markets.

This dissertation contributes to the theory of decision-making in financial markets on
two levels: the investor with their unique objectives; and the behavior of the markets in
which said investor operates. The first part of this dissertation proposes a continuous-
time goals-based wealth management (GBWM) model to maximize the lifetime utility of an
investor with multiple competing goals. The model is flexible: the investor has a dedicated
retirement account, a market-correlated income, taxes, and consumption considerations.
The model consists of a sequence of partial differential equations relating the investor’s
financial situation at a given time to their optimal portfolio and income allocations. At
goal times, the amount contributed to the current goal is optimized, balancing the utility
from money withdrawn against expected future utility from money saved. We solve a series
of numerical experiments to demonstrate how the investor’s optimal decisions vary under
different financial circumstances.

The second part looks at GBWM from the perspective of risk management. We examine
decision-making in the presence of not only potential recessions, but also uncertainty in
an investor’s goal times. We present a deep reinforcement learning approach to solve the
portfolio and goal contribution problem for a client who invests in a recession-prone economy
and whose goals may be random in time. Comparing the recommended portfolio selection
and goal contributions reveals how these concerns can be managed practically.

While the first two dissertation components optimize decision-making, the final section ex-

amines market abnormalities, the other side of the equation. We develop sensors for external

X



forces on financial markets at the macroscopic scale. Expanding on the AlShelahi and Saigal
(2018) macroscopic model of equity markets, we propose a fluid-dynamical model to charac-
terize market forces, decomposing them into internal and external impacts. We address this
by solving a system of stochastic nonlinear partial differential equations, calibrating them
with minute-by-minute data from two notable market events: the 2021 GameStop short

squeeze and the 2010 flash crash. The results indicate external forces can be detected.



CHAPTER 1

Introduction

Long-term decision-making in financial markets is challenging. The task of matching indi-
vidual financial goals with sensible investment decisions is a difficult one: not only must
the investor’s unique financial goals be accounted for, but also the inherent complexities of
financial markets. No event better encapsulates the difficulty of long-term investment than
the 2007-2008 Global Financial Crisis (GFC), of which the consequences for investors were
manifold. Unemployment rose dramatically and household wealth fell [24]. Adjusting to
declining incomes, households reduced consumption, increased personal saving rates, and
allocated to more conservative portfolios [24, 40]. Retirement behavior also reacted. Surveys
indicated many planned on retiring later due to the crisis [40]. More preretirement-age fami-
lies expressed an unwillingness to take any financial risk, in line with findings that investors’
risk aversion increased substantially following the crisis [35, 45].

The GFC affected traditional investment firms’ reputations as investment advisors [80].
It prompted discussions on the value of active management [80]. Robo-advising, a class
of automated investment services, emerged from the crisis as an attractive new investment
vehicle for retail investors [41]. Alongside, there has been considerable development in theory
and practice of GBWM, an investment philosophy which tailors financial decisions to the
individual and integrates naturally with robo-advising frameworks [41]. Robo-advising is a
burgeoning industry. The market is experiencing considerable growth and is responsible for

more than one trillion US dollars of assets under management [2].



While GBWM and robo-advising have demonstrated economic viability and consumer de-
mand, the problem of truly personalized automated investment advice remains open. There
are, after all, as many investment scenarios as there are investors, but the literature does not
yet offer solutions that address the full range of relevant investment factors. In the first com-
ponent of this dissertation, we present a continuous dynamic programming GBWM model
of greater depth than previous models, covering a wider range of important decision-making
factors for any investor. Our approach is interpretable: the derivatives of the value functions
with respect to the investor’s financial situation and goal contributions elucidates the model’s
recommendations. In addition to a practical solution algorithm for this multidimensional
problem, we present a useful lower bound of the investor’s value-to-go to contextualize their
financial situation.

The second component of this dissertation uses deep reinforcement learning to solve a
GBWM problem that, although relatively simple, builds on the use of reinforcement learn-
ing in the GBWM literature and complements the features of the continuous dynamic pro-
gramming model. We examine potential concerns regarding recession risk and goal-time
uncertainty in a sequential goal context, optimizing goal contributions and portfolio allo-
cations. The efficacy of both models motivates a combination of their considerations and
recommendations within a broader reinforcement learning approach in future.

The bursting of the United States housing bubble during the GFC demonstrates the
inseparability of wealth planning and detecting market abnormalities. A similar story is seen
in the COVID-19 pandemic: the now-globalized economy is vulnerable to spillover effects in
times of crisis [67, 56]. Beyond macroeconomic catalysts of financial disaster, advancements
in financial technology have demonstrated the occasional exploitability of markets. The
2010 flash crash is one example: toxic order flow in the high-frequency domain is a plausible
explanation for the crash [37]. More recent is the 2021 GameStop short squeeze, in which
users of the social media site Reddit instigated a rally in the GameStop stock [61]. These

events highlight the effects of external impacts on financial markets and the value of detecting



them for understanding market mechanics.

As described in [4], physics has served an important role in the development of financial
and economic theory. Statistical mechanics, in its concern with complex systems of interact-
ing entities, has found utility in a range of financial models [91, 101]. In the third component
of this dissertation, our approach is to use statistical mechanics to model external forces on
financial markets. Developing on prior work analyzing markets under a macroscopic fluid
dynamics description, we develop a system of equations to detect external market forces on
the minute-by-minute scale. We validate the system using data from the flash crash and

GameStop short squeeze.

1.1 Summary of Contributions

The dissertation is comprised of three manuscripts. Chapter 2 solves the GBWM problem
for an investor with multiple goals, a retirement account, and stochastic income, maximizing
their expected lifetime utility. We demonstrate that the investor’s optimal decisions and
expected future utility may be obtained by solving a series of optimal control problems,
the solutions which may each be represented as a Hamilton-Jacobi-Bellman (HJB) partial
differential equation (PDE). We solve a series of discretized versions of the problem under
different parameterizations to demonstrate not only the flexibility of our approach, but also
how the optimal decisions are affected by the investor’s financial situation.

Chapter 3 solves a GBWM problem for an investor with multiple competing goals in
which the goal times are uncertain and the economy is prone to occasional recessions. We
demonstrate how the investor’s portfolio allocations and goal contributions are affected by
these considerations by parameterizing a deep reinforcement learning algorithm with a range
of investment scenarios.

In Chapter 4, we expand the model in [5] to include an additional variable, gravity, which

we connect to external forces on financial markets. We incorporate the associated stochastic



partial differential equation into the model. For both the 2021 GameStop short squeeze and
the 2010 flash crash, we solve the model on minute-by-minute stock data to demonstrate
the model’s efficacy. We use sentiment data from social media comments during the short
squeeze to further validate the model.

All three chapters are presented in a scientific format, each sectioned by the introduction,
methods, results, and conclusions. Chapter 5 concludes the dissertation, summarizing the

results and suggesting future research directions.



CHAPTER 2

Robo-Advising: Optimal (GGoals-Based Wealth

and Retirement Planning

2.1 Introduction

Robo-advising is a rapidly developing class of online services using algorithms to manage
customer investment portfolios and provide financial advice [41]. A client provides relevant
information, such as their wealth, investment goals, and risk tolerance. The advisor uses this
information, in addition to market analysis, to then synthesize investment recommendations
which they automatically implement and manage [39].

The genesis of retail robo-advising, with companies Betterment and Wealthfront, closely
followed the 2008 financial crisis [41]. The industry has since experienced rapid growth:
Figure 2.1 projects assets under management (AUM) of over US$2 trillion in 2025 [2]. The
concomitant growth in the number of robo-advising clients has resulted in approximately 31
million users of robo-advising services as of 2023, more than triple that from even four years
ago [2].

The potential benefits of robo-advising are manifold, with perhaps the most attractive
being the lower fees in comparison to human advisors. A typical fee for a human advisor
may be up to 2% of AUM, while robo-advisors commonly charge much less, at about 0%
to 0.5% [23, 41]. Furthermore, robo-advisors can benefit less well-off investors. Minimum

balances required to invest can be less of a barrier for robo-advising, as human advisors may
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Figure 2.1: Forecasted Assets Under Management of Robo-Advisors. Reproduced from [2].

require a much higher minimum investment for a new client [41].

It is worth noting that, while robo-advising may appear in opposition to human advisors
at first glance, various financial firms offer hybrid investment options in which only part of
the investment process is automated and the client maintains the ability to consult a financial
advisor [41]. Indeed, many benefits of human advisors, such as the ability to empathize with
a client’s circumstances and assist in improving the client’s financial literacy are (currently)
beyond robo-advising.

Goals-based wealth management (GBWM) is an investment framework that focuses on
helping a client achieve consumption goals. Under GBWM, a client provides their consump-
tion targets, investment horizon, and relative preferences, among other factors, which a
portfolio manager uses to construct a strategy to best achieve the client’s goals [17]. Funda-
mentally, GBWM is a behavioral finance undertaking that relies on Kahneman and Tversky’s

celebrated prospect theory which brings psychological considerations to finance [52]. Thaler



introduced the concept of mental accounting by which investors mentally partition their
portfolios, each with a distinct objective and risk tolerance [86]. Building on these insights,
Shefrin and Statman develop behavioral portfolio theory, which provides insight on how in-
vestors can have different risk-return preferences for different goals. Unifying behavioral
finance and modern portfolio theory into a mental accounting (i.e. goal-based portfolio)
framework, [26] catalyzed the use of GBWM in the wealth management industry [16, 66].

In this research, we consider a client whose portfolio is managed from the beginning of
their career. The client approaches the advisor with a set of consumption goals at particular
times, for which they receive some utility for contributing towards. The goals are such that
the investor receives utility even if the target consumption is only partially met. Natural
examples of such goals include a new car or home for which some, but not all, utility is
obtained if less expensive options are purchased. The client also receives utility for immediate
consumption of the salary they choose not to invest. In a similar fashion to the consumption
goals, the client also has a retirement goal, representing the amount the client would feel
comfortable retiring with at the end of their career. In service of this goal, the client has
a retirement account separate from their investment portfolio to which they may allocate
a proportion of their salary, matched by their employer to some degree. The investment
portfolio may be used to satisfy any goal, including the retirement goal. However, the
retirement account may be used only to satisfy the retirement goal. The client must, at
any time, make two decisions: how to allocate their portfolio funds, and how to allocate
their income between their investment portfolio, their retirement account, and immediate
consumption. At each of the client’s goal times, another decision is made of how much of
their portfolio to withdraw towards the current goal at, potentially, the expense of future
goals.

Our approach to maximize the investor’s expected discounted future lifetime utility in-
volves formulating continuous-time solutions to a series of stochastic dynamic programs. We

subsequently calculate solutions to discrete-time approximations of these programs. We use



correlated geometric Brownian motions to represent the risky assets to which the investment
portfolio may be allocated, the retirement account asset, and the client’s income. At the
time of each goal, a convex optimization problem is solved to balance the goal contribution
with future expected utility.

We conduct an array of experiments to examine how the optimal investment strategy
varies with the client’s preferences and circumstances, including the structure of their com-
pensation, their employer retirement contribution, or expected salary growth. In our setting,
the client has two intermediate consumption goals in addition to their retirement goal. Our
results demonstrate an intuitive set of investor behaviors. Portfolio withdrawals at goal
deadlines are affected by the investor’s retirement balance and income level, and are sensi-
tive to market-income correlation. Investors also have distinct income allocation decisions
leading up to, and directly after, goal deadlines. Risk-aversion close to the investor’s target
retirement value is reflected in the optimal portfolio and becomes more pronounced closer
to retirement.

In addition to introducing an expanded decision-making framework for sequential goals,
we contribute an effective, concavity-preserving discrete-time solution approach for our multi-
dimensional PDE. We also present a useful lower bound on the investor’s value, representing
the expected utility of a disengaged investor, to contextualize the value of optimal decision-

making.

2.2 Related Works

Our work adds to the GBWM literature by contributing to continuous-time stochastic dy-
namic programming methods for sequential goals. In comparison with previous studies, we
incorporate separate processes for a retirement account and the investor’s income, enabling
a richer analysis of decision-making pertinent to the investor’s lifetime utility. We provide

here a summary of relevant literature.



In some cases, particularly with a single consumption goal, explicit solutions for port-
folio allocations may be obtained from solving a continuous-time PDE. Examples include
Merton’s work on portfolio selection under uncertainty, Samuelson’s work on lifetime port-
folio selection, and Browne’s work including forced withdrawal of funds [68, 76, 15]. Other
approaches use martingale methods pioneered by Cox and Huang [25]. Wang et al., for ex-
ample, use a martingale approach to minimize the wealth required for an investor to achieve
their goals with a given probability of success [94].

Discrete-time methods for approximation can be used where continuous-time analytical
solutions to GBWM problems cannot be found. Das et al. uses a discrete-time dynamic
programming algorithm to maximize the probability of an investor attaining their desired
wealth level after a certain time [27]. This framework is extended in [28] to account for
multiple competing goals. Capponi and Zhang [21] proposes a continous-time method for
maximizing the weighted fundedness of a client’s goals, conducting a series of comparative
statics experiments using a discrete-time approximation.

The rest of the paper is as follows. Section 2.3 details the problem formulation, continuous-
and discrete-time solutions, and the parameterizations used for our numerical experiments.
The results from, and discussion of, these experiments follow in Section 2.4. Conclusions are

given in Section 2.5.

2.3 Methods

The methodology used in this research is structured into four sections. In Section 2.3.1, we
specify the problem formulation. We then describe continuous-time solutions to the problem
in Section 2.3.2 before detailing a numerical solution procedure for the discrete-time case in

Section 2.3.3. Section 2.3.4 presents a detailed description of our numerical experiments.



2.3.1 Formulation

2.3.1.1 The Market and Investor

The system consists of the following components. We have N risky assets with values at
time ¢t € [0,T] of S(t) = [Si(t), Sa(t), ..., Sn()]" € RY into which the portfolio funds,
Xp(t) € Rsg, may be allocated with weights 7(t) = [m1(t), ma(t), ..., mx (t)]" € [0,1]". Here,
we assume the investor adopts a long-only strategy, a natural condition for long-term wealth
planning. There also exists a risk-free asset which has the interest rate » € R> into which
the investor allocates a proportion of their portfolio value wg(t) € [0, 1]. Therefore, portfolio
allocations are constrained so that Zf\il mi(t) + mp(t) = 1. The investor has a retirement
account of value Xp(t) € Ry, allocated to a retirement fund Sg(t), and a yearly income of
X;(t) € Rsg. Collectively, denote by X (t) = [Xp(t), Xg(t), X;(t)]" the vector of financial
(or spatial) states at time ¢.

We now specify how the investor chooses to allocate incoming cash. The investor invests
a proportion of their income Ap(t) € [0, 1] into their portfolio. A proportion of their income
is contributed to their retirement account, which is assumed to be employer-matched at
a factor of kK > 0. We define this contribution to be Ag(t) € [0, min{l — Ap,~}], where
v € [0, 1] is the maximum permissible contribution proportion. The remainder of the income
is consumed immediately at a rate of A\c(t) = 1 — Ap(t) — Ag(t) € [0,1]. Collectively, we
denote the above decisions by A(t) = (Ap(t), Ar(t), Ac(1)).

We make the following tax assumptions. The investor’s income tax is constant at a rate
of vy € [0,1], which is exacted from portfolio contributions and consumption from income,
but not retirement contributions. Portfolio withdrawals are taxed at a rate of vp € [0, 1]
regardless of the portfolio gains or losses. Although the liquidation of a retirement account
is typically tax-free, we account for potential retirement taxes in our model, denoted by
v € [0, 1], which are deducted at the terminal time. We assume that the investor’s adjusted

gross income is equal to their gross income for simplicity.
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The dependence between the processes is specified by the following covariance matrix in

N+2,
SN+,

C =y (2.1)
Cpp | Cpr | Cpr

= | C%r| Cre | Cri (22)
ng CRI CH

with Cpp € SﬁXN, Cpr € RN, Cpr € RN, and CRR, C]], Crr € R.
The risky assets, retirement account asset, and income are assumed to follow correlated

geometric Brownian motions, with dynamics

where W(t) € RY*? is an independent multidimensional Brownian motion, u; > r, i =
1,2, ..., N are the drifts of the risky assets, ur > 0 and p; > 0 are the drifts of the retirement
and income processes, respectively, and o; is the corresponding row of X. We denote by u
the vector of drifts of the risky assets, i.e. pu= [u1, p2, ..., MN]T € RY, and denote by op the

first N rows of ¥. The value of the risk-free asset, denoted by B, follows the dynamics

dB(t) = rB(t) dt. (2.6)

11



We obtain the following portfolio and retirement account dynamics:

AXp(t) = [(1— v)Ap()X1(0) + (1 — 70 1x) +()70) Xp()] &t (27)
b Xp(O)r(t) o pdW (L) (2.8)
dXp(t) =[(1 4+ £)Ar(0) X1 () + prXR()] dt + Xp(t)ordW (2). (2.9)

where 1 is the vector of ones of length N. This yields the following system:

pr(t) 7“(1 — W(t)T]lN) + 7r(t)T,u 0 (1 — V[)/\p Xp(t)

dXp(t)| = 0 pr (1+r)Ag | | Xg(t)| dt
dXI(t) 0 0 195 X](t)
(2.10)
Xp(t)m(®)T 0 0
+ 0 Xg(t) 0 | ZdW(t).
0 0 Xi(t)

2.3.1.2 Goals

The investor has K goals, the last of which corresponds to their goal retirement wealth.
At each non-retirement goal time ¢, for k = 1,..., K — 1, the investor chooses to withdraw
Gr(X(tg)) € [0, Xp(t)] from their portfolio towards their goal, contributing G (X (t3)) =
(1 — vp)Gr(X (ty)) post-tax. They obtain some utility u,(Gr(X(t:))) € Rso from this
goal. Note that each goal may have a different utility function, enabling different goal
priorities and goal-specific utility profiles. For example, the investor may consider a home
purchase more important than a car purchase. For the retirement goal at time ¢t = T, the
investor liquidates their portfolio and retirement accounts, thus realizing (1 — vp)Xp(T') +
(1 — vg)Xg(T) in funding and obtaining uk((1 — vp)Xp(T) + (1 — vg)Xg(T)) in utility.
Although there is no goal at time 0, we let t; = 0 for notational convenience.

We require that each wuy, for £ = 1, ..., K, is a bounded concave function with g—gz — 0

as Gr — o0o. At time ¢, the investor receives an instantaneous consumption utility of

12



Ot ()
ox

Uy (1 — vr)Ae(t) X (t)) for some bounded concave utility functions with —0asx — 00
for each k£ =1, ..., K. We also assume that all utilities are discounted continously at rate r

and have u;(0) = 0 and @ (0) =0 for all k =1, ..., K.

2.3.1.3 Policy

We now formalize the client’s decision-making process. The goal is to obtain an optimal
policy, the best mapping from the investor’s financial situation to their feasible decisions. In
addition to the constraints specified in Section 2.3.1.1, we add a portfolio volatility maximum,
Omax, 10 limit the client’s risk exposure. We define the convex set of admissible policies across
the problem duration

A={(m,Ap, g, Ac) : 7" Ly < 1,7 >0,Xp € [0,1], 2.11)
2.11

AR € [O,’Y],/\p + A+ Ao = 1,7TTOPP7T < o }

max

C RNV+3 (2.12)

Denoting by X = [0,7) XR;O the domain of the investor’s financial situation throughout their
career, we define a policy to be an element of F(X, .A), i.e. the set of functions from X into
A, which is itself a subset of the vector space F(X, R¥*3) having the natural addition and
multiplication definitions. It is easy to see that F (X', A) is convex under these definitions.
For policy a € F(X,.A), denote the controls chosen under a by 7%(t, X (t)), A%(t, X (1)), etc.
For simplicity, we use 7%(t) to refer to (¢, X (t)), and likewise for A% (), A\%(t), and A& ().

The investor’s total expected lifetime utility, which we intend to maximize, can be ex-

pressed as
— * K tk *
U=k |3 / (1 — NS (OX ()t + e un(G) (2.13)
— e 1 N————
k=1 { ~ < discounted goal k utility

discounted consumption utility between t;_1 and tg

13



for the optimal policy, denoted by a*. Here, E* refers to expectation under the policy a.
The following subsection details how the optimal policy a* can be characterized via the

solution to an Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE).

2.3.2 Formulating Continuous-Time Solutions

We construct the value function as a representation of the total discounted expected future
utility for the investor in any given state under the optimal action. This value function plays
a key role in deriving the optimal policy a*. In the following subsections, we show the value

function can be represented as a HJB PDE.

2.3.2.1 The Value Function

We establish a terminal condition, Vx,; = 0, recognizing that the utility to gain post-
retirement is zero. To recursively define the value functions for goals £ = 1,2,..., K, we

proceed as follows:

Vit X (1) =E" [Up(t, X(1) | A], i St <ty (2.14)

Ui(t,X(t)) = /tk e 01— v ()X (s)) ds + e " TVDL(X () Vier)  (2.15)
where

O, (X(t,): _
e X (t); Vier) Crel0,(1mom) X (1)

_VP’

G T
ur(Gr) + Vi (tk, |:XP(tk) —1 : XR(tk),XI(tk)] >] :
(2.16)
and F; is the natural filtration generated by W at time t. Here, @, represents the optimal
value from balancing contribution to goal k£ and the remaining goals. Figure 2.2 below

demonstrates, for a problem with three goals, how the value functions are defined over

the time domain and how the ®; functions serve as terminal conditions for each dynamic

14
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Figure 2.2: Schematic Division of a 3-Goal Time Domain into Separate Value Functions

program.
We have that both V,, and &, k = 1,2, ..., K are concave in the financial states as per

the following theorem.
Theorem 1. Vi(t,z) and Pp(x; Vi), k= 1,2, ..., K are concave in .

Proof. We prove the result inductively. Trivially, Vx,; = 0 is concave. Proving that
(Vi41 concave = &Py concave) and (P concave = Vj, concave) yields the result.
Suppose Vj41 is concave, for some k = 1,2,..., K. For j = 1,2, let 2U) be arbitrary
feasible states at time ¢, with respective optimal goal selections G,(Cl) and G,(f) such that, for
n € [0,1], 23 £ nz® + (1 —n)z® > 0. We have that G,(f) £ nG,(:) +(1— n)G,(f) is a feasible

contribution for x® as

NG+ (1 =GP < (1 —vp)(nal) + (1 —n)a?) (2.17)
=(1—vp)al?. (2.18)

15



Therefore,

n®k(xW; Virr) + (1 — ) @p(2?; Viy)

_ T
_ _ G\
_ Gy 4] @ v g [0 Gk )

nur(Gy) + (1= nur(Gy7) +nViga |ty |7p 1—VP’xR Ty (2.19)

o G0 o ol

+(1_77)Vk+1 tka xP - 1 k 7:ER 7xI
.

~(3) e
Suk(Gk )+Vk+1 tk, Tp —ﬁ,l’R y X (220)
< Bp(2; Viyh), (2.21)

and thus @ is concave. We now look to the value function. For fixed time t € [ty_1, tx),
suppose we have two feasible financial states, () and z®. With a slight abuse of no-
tation, let the optimal policies over the duration [t,t;) for both states i € {1,2} be
a” = <W(i),Ag),Ag),Ag)>. Let, also, & = nzM + (1 — n)z® for some € [0,1]. De-

fine a new control a® = (7r(3), )\g’), )\g), )\(03)> such that

o _ XD+ (1= e

7r S = (2.22)
nXp' + (1 —n)Xp

A nkg))@g + (1= AP X (2.23)
nX; +(1- 77)X§2)

= P 1= P -
nX;’ +(1 77)X§2)

= P 1= a2 .
Xy +(1- 77)X§2)

where X, for i € {1,2,3}, is the solution to (2.10) when controlled by a from time ¢,
having started at (. It is easy to see that a®® is a convex combination of V) and a®

and is therefore an admissible control for X®). We also address the edge cases by requiring

X}f’)zo — 7 =0 and X}‘””:O = A§>:1—>\§§):1—A§”:1. We then have the

16



dynamics for i € {1,2} of

r(1—7O()TIy) + 7). 0 (1—v)AY

dX 0 (s) = 0 pr (L4 r)AY | XD (s)dt
0 0 [
XD ()x@(s)T 0 0
+ 0 XDy 0 | SdW(s)
0 0 X(s)

over t < s < t;. Taking the convex combination of these dynamics, we obtain

d(nXW(s) + (1= n) X (s))

r(1 = 73Ty + 73T 0 (1—v)AY

= 0 pr (1+r)AD | XO(s)dt
0 0 W1
Xp(s)BrB)(s)T 0 0
+ 0 XP(s) 0 | ZdW(s)
0 0 X

We therefore have

17
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By the concavity of @ and 4, we have:
tg
U(t, XP (1)) = / e ((1 = v)AE () X[V (5)) ds + €T (XD (8); Vi)
t

(2.30)
= / " 05 (1 — AP (5)XO() + (1 - (1 — A (5)XP(s)) ds

+ e 0D (X D () + (1= ) XD (t); Vierr)

(2.31)
173
> [ / e (1 — v (5) X1 (s)) ds + e B0, (XD (1y); vm]
t

173
+(1-mn) [ / e 0 a,((1 = ) AP (XD (5)) ds + e 7 E 0D (XD (1): V,M)}
t

(2.32)
= Ut X (1) + (1 = n)U(t, X(1)) (2.33)
As aM and a® are optimal, we have

Vi XO0) 2 V(e XO0) + (1 - Vi, X)) (2.34)

and thus the value function is concave.
m

As time t determines the upcoming goal k, we denote
Vt,X) = Vi (t, X) (2.35)
k(t) = argmin {t < 3} (2.36)
k

for notational simplicity.

The existence of a supremum of the value function is guaranteed as all utility functions

18



are bounded above. This may be expressed as

tg
sup V (¢, X) = sup ., (2) / e " ds e sup Ujp(2)
X z t z

K t; (237)
+ Z (sup i (2) / e "D ds 4 e sup uj(z)>
j=kt)+1 \ © :

ti—1
We may express the quality of each state relative to the best-case scenario with

V(t, X)

<t X) = supy, V(t, X")

c[0,1], tel0,T) (2.38)

This quantifies what proportion of the potential discounted future utility the investor is
expected to attain under optimal behavior.
The following subsection details how the HJB PDE is formulated from the value function

and subsequently solved.

2.3.2.2 Constructing the Hamilton-Jacobi-Bellman Partial Differential Equa-

tions

Our problem-solving approach is outlined as follows. Suppose, for problem k, we have solved
all problems from k+1 to K. In this case, we have knowledge of ®;(X (tx)) and can therefore

determine the optimal goal contribution, denoted by G7%.

Assumption 1. There exists a series of C? functions Fj, : R* = R, k = 1,2, ..., K such that

B, X)) = Vi(t, X (1)), ter ST <ty (2.39)

with terminal condition

Fk(tk,X(tk)) = (I)k(X(tk);Fk+1) (240)

We then have the following theorem.
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Theorem 2. F, k= 1,2,..., K as described satisfy the HJB equations

8Fk OF, 0F,

rFy(t, X(t)) = BT 8X @ )(MRXR( ) + X, (¢ )(NIXI( )
1 aQFk 1 asz 9 82Fk
T axz )XR( )*Crr + 58)(—]2@))(1(15) Crr + WXR@)XI(@CRI

Ht, X(t
* aer}l(%(XA) (8, X(t); )

(HJB-PDE)

where

H(t, X(t); a) = wx (1 = vi)A6(0) Xi (1))

" af(f’ét) ((r(1 = 7T (1) Ly) + 7T () Xp(t) + (1 = v)NB(D) X1 (1))

3y (1 RPROXI0) + 5 XEORT (0o ()

- aXp(aﬂgi(R(t) Xp(O)Xr(t)r" T (t)Cpr + %XP@XI@WGTC”
(2.41)

Proof. For k=1,2,..., K, applying Ito’s lemma to F} results in

dFy(t, X (t);a")

i f(f = 7L + 7 (O W) X(t) + (1= 2N (0X1(1)
s (X R(0) + (1 RXE (O1(0) + 35 E(urX1(8) + 57 s Xt (0! Copn” (1
+ %jX—%XRWoRR T %jX—%xﬂtmf b o 2>§§<R 7 X (O Xa(0) (1) Con

O%F, T O*Fy,
+WXP(t)XI(t)7T (t) Cpr+ WXR@)XI@)CRI dt

Xpt)m ()T 0 0
+ 0 Xp(t) 0 | ZdW()

0 0 X(t)
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The recursive formulation of the value function obtains

/ D (1 - )N ()X ()ds + e TR X(D)|  (242)

*

Fu(t, X (1)) = E*

for tp_1 <t <t<tyand k= K, ...,1. Multiplying the value function by e~ and taking its

stochastic-differential form, we obtain the HJB formulation:

B [e (1 — vn) NG ()X (8))dt + d (e Fy(t, X(£))] =0 (2.43)

= E* [a((1 — v)AE ()X ())dt + dE(t, X (t))] = rE(t, X (t))dt (2.44)

fort,_; <t <tpand k= K,...,1. Asthe value function under optimal action is a martingale,

we obtain (HJB-PDE) [30]. O

The following subsection details the methods used for solving this problem in discrete

time.

2.3.3 Solving the Discrete-Time Case

In the absence of closed-form solutions to (HJB-PDE), a discrete-time solution to the problem
is required. The discrete-time approximation to the continuous-time solution takes the form
of a series of dynamic programs, each corresponding to a specific goal, which are solved in
reverse order. This involves solving for the optimal action and value function at uniformly
spaced times, progressing backward from retirement.

Each problem is solved with policy iteration. Our approach uses a Chebyshev polynomial
approximation to the value function at each such time. This is motivated and described in the
following subsection. In attempting to solve the program, a finite difference approximation
of the value function is also tried, unsuccessfully. This approach fails to maintain numerical
concavity of the value function. For completeness, the details of this implementation are

provided in Appendix A.1.
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2.3.3.1 Expanded Chebyshev Polynomial Approximation of the Value Function

Motivation Issues maintaining value function concavity in finite difference approaches
motivate the use of methods that guarantee concavity throughout the computation. Shape-
preserving dynamic programming is a framework to approximate the value function via an
interpolation that simultaneously enforces monotonicity and concavity [20]. Chebyshev poly-
nomials may be used as the basis for one such interpolation, and have been applied to

economic and financial optimal control problems [44].

Chebyshev Polynomials A polynomial approximation of F, k = 1,2, ..., K, is motivated

by the Stone-Weierstrass Theorem, reproduced from [95]:

Theorem 3. (Stone-Weierstrass Theorem) If X is any compact space, let A be a subalgebra
of the algebra C(X) over the reals R with binary operations + and x. Then, if A contains
the constant functions and separates the points of X (i.e., for any two distinct points x and
y of X, there is some function f in A such that f(z) # f(y)), A is dense in C(X) equipped

with the uniform norm.

The set of Chebyshev polynomials defined over the problem’s spatial domain, expressed in
(2.56) below, provides such a subalgebra. The theorem thus motivates the use of Chebyshev
polynomial approximations of Fy, for k =1,2,..., K.

We now describe our approach to using Chebyshev polynomials for approximation (and
interpolation) of the value function over the spatial states. The Chebyshev polynomials for

z € [—1,1] are defined as follows:

To(2) =1 (2.45)
Ti(z) =2 (2.46)
Tia(z) =22T5(2) — Tj_1(2), j=1,2,.. (2.47)

Figure 2.3 below visualizes the first five Chebyshev polynomials.
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Figure 2.3: The First Five Chebyshev Polynomials

We use a set of Chebyshev nodes scaled over the spatial domain [0, Ppax] X [0, Rimax] ¥
[0, Imax], for some (Ppax, Rmax, Imax) sufficiently large to capture the range of investor
circumstance. For example, if ux admits a maximum, R,.. should be no less than
min{z : ug(r) = max, ux(x’)} to reveal how investor choices vary as their retirement
portfolio value approaches their target. The time domain is discretized uniformly with spac-
ing A; such that (¢ mod A;) = 0 for all £k = 1,2,..., K. This ensures a value function
estimation is guaranteed at each goal time, allowing for optimization of the goal contribu-
tions without interpolation in the time dimension. We partition the time steps into each

program with

T = {0, Ay, 2, ..., txc} (2.48)

Tkz{tET |tk_1 §t<tk}, k)zl,,K (249)

With a slight abuse of notation, denote by D = {P, R, I} the set of spatial dimensions

of the problem. For dimension D € D, let mp € N denote the number of Chebyshev nodes
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used for that dimension. Now, for D € D, let

T
2p — [zg>, ...,zgﬂ e [-1,1]", (2.50)
i 2% — 1 |
29 = _ cos (%) ,i=1,..,mp (2:51)

represent the Chebyshev nodes for each dimension. Scaling these to their respective domain

limits, we define, for D € D,

[ ] cg po mo 2.52

yD yD 7"'7yD S [ ) max] ( . )
()

; 1)(Dyax + 20 ,

i = (zp +1)( : +20p) 6p €10, Doy}, i=1,....,mp (2.53)

(1)
1
5D - D _‘(_1) Dmax (254)

thus ensuring that yg) = 0 and yg”D ) = Dyax. This construction yields the expanded

Chebyshev polynomial approximation, which has superior approximation qualities near
the end points [19]. Figure 2.4 below shows the positions of the Chebyshev nodes, i.e.
{(y1,92,93) | y1 € Yp, Y2 € Yp,y3 € y;}, for mp = mp = m; = 30, colored by the terminal
value function for the “baseline” investor described in Section 2.3.4.1.

For D € D, let

2(y +dp) .
D , -
Zj (y) =1 (D % 1) , 7=0,1,.. (2.55)

representing the Chebyshev polynomial evaluated after mapping state value y € [0, Dpax] to
its corresponding value in [—1,1].
Denote by dp € N the dimension of the polynomial for state D € D. A tensor product of

the univariate Chebyshev polynomials is taken to form a tensor product basis for functions

of the spatial dimensions, allowing the construction of the set of the Chebyshev polynomials
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Figure 2.4: Terminal Value Function at the Chebyshev Nodes for the Baseline Investor

over the spatial dimensions:

dp dp d;
= {Z SN Cininn Th (Xp) TR (XR) T} (X1) | Cipjnis € R,
=0 j=0 1=0 (2.56)

jp = 0, 1, ...,dp; jR = 0, 1, ...,dR; j] = O, 1, ...,d[}

Our value function approximation for goal £ = 1,2, ..., K and time ¢t € T} can therefore be

parameterized by a set of coefficients ¢! € R *4rxd1 a5 follows:

dp dp d
k(t, X C ZZZ JPJRJITJIZ XP)T (Xr) TJII (Xr) teTy (2.57)
i=0 j7=0 =0

(2.58)

_ t
¢ = {CJ'PJ'RJ'I}¢=0,1,..,,dp;j=0,1,...,dR;l:o,1,...,d1
where F}, is the value function approximation for goal k.

Policy Evaluation The policy evaluation step in the policy iteration involves optimizing

coefficients to solve (HJB-PDE). Given a policy a = (7%, Ap, AR, 5\0), the following least-
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squares approach is applied to minimize the norm of (HJB-PDE). This minimization is
enabled by the linearity of the value function and its derivatives in c. For brevity, we let
Fk(ct) denote the vectorized value function estimate at all spatial states in yp X yp X y;
and let the dpF}(c) notation represent partial derivatives.

F’j_TfW = rEi(e) + ik (1= v)Ac(®)X (1))

minimize
C

+ 9pEL(c) ((r(l — AT Ly) + 7T () Xp(t) + (1 — VI>XP(t>XI(t))

+ OpFi(e) (1nXn(t) + (1+ AR X1(1)) + O Frle) (X1 (1))

b 3000 Bu(€) Xp ()R (0Cr(1) + L0 B(€) Xinlt) O+ 500 Eule) X,(1)°Crs
+ OprFr(c) Xp(t) Xr(t)7" (£)Cpr + Opr Fi(c) Xp(t) X1 (t)7" (t)Cps

+aR]Fk(C)XR(t)X[(t)CR[

2
2

st Fp(c) >0
(?Dﬁk(c) >0 DeD

GDDF’k(c) <0 DeD

(2.59)

where F " represents the vectorized value function estimate at time ¢ + A,. Here, the first
set of conditions ensures nonnegativity of the value function estimate. The second set of
conditions ensures the value function estimate is nondecreasing. The third set of conditions
enforces concavity of the value function estimate in each spatial dimension. The final condi-
tion ensures the value-to-go is zero when the investor has no portfolio value, no retirement
value, and no income. We assume the constraints applied at the Chebyshev nodes are suf-
ficient to ensure nonnegativity, monotonicity, and concavity throughout the entire domain.

This problem has (dp+1)(dgr+1)(d;+1) decision variables and 7(mpmpgm;)+1 constraints.
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Policy Improvement Given an estimate of the value function, denoted by Fk(c), the
policy improvement step can be performed by maximizing H in (HJB-PDE). This is
achieved through the following convex programming formulation, applied pointwise for all
(yP, YR, Y1) € Yp X Yp X Yy
HllIilHl)\lze — ﬂ,k ((1 — V[)(l — )\p — )\R)yI) — apﬁk<c) ((,U, — T]lN)Tﬂ'yp + (1 - V[))\py])
T, AP, AR

- aRFk(C) ((1 + "<G>>\Ryl) - %aPPy?Dﬂ'TCPPTF - aPRyPyRWTCPR
— Opr B (c)ypyrm Cpy
st. Ap+Ag <1,
iy <1,

ARSF}/?

2

max’

7l Cppr < o
7.‘-7)\}37>\R Z 0

(2.60)

2.3.3.2 Computational Complexity

We may express the computational complexity of our approach as

379

A (n (bevar(dp, dg, dr, mp, mp, mp) + mpmpemi&imp: (N))) + (K — 1) mpmpmiécc  (2.61)
t

where n is the average number of policy iterations, ey (+) is the complexity of solving (2.59),
&mpr(+) 1s the complexity of solving (2.60), and {gc is the complexity of optimizing the goal
contribution at a single state.

In the following subsection, the parameters and utility functions used to solve the problem

are presented.
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2.3.4 Problem Parameterization

In this section, we present our numerical experiments. Our experiments begin with solving a
“baseline” case for a typical investor, followed by some comparative studies to measure the
sensitivity of the optimal decisions to the situations of both the investor and the market.
All of our experiments use mp = mg = m; = 30 and dp = dg = d; = 6 for the Chebyshev

polynomials.

2.3.4.1 The Baseline Investor

Our hypothetical client invests within the following context. Their income is taxed at a rate
of 15%. Half of their net pay is spent on necessities, resulting in v; = 0.575. We set a
portfolio tax of 15%, aligned with the Internal Revenue Service (IRS) capital gain tax rates
in 2023 [3]. The investor’s income is assumed to grow at 2% per year on average, in line with
historical inflation targeting [83]. We assume there are no taxes on retirement withdrawals.

The investor intends to retire in 40 years with $1,000,000 and has two goals before then: a
$250,000 expense in ten years and a $500,000 expense in twenty years. The investor considers
their second goal to be twice as important as the first goal, and retirement to be twice as
important as the second goal.

The investor’s retirement contribution is capped at 10%. For an investor with roughly
the median income of full-time workers in the USA in 2022, this is roughly equivalent to
the $6,000 limit for IRA contributions in 2022 at the initial time of the problem [1, 18].
A one-to-one match is made by the investor’s employer, IBM, who provides a third of the
investor’s compensation in the form of company stock. The investor’s chosen retirement
fund is the Vanguard Target Retirement 2050 Fund ($VFIFX).

In addition to a bank account that returns 3% a year, the investor allocates their portfolio
funds between stocks and bonds, represented by the SPDR S&P 500 ETF ($SPY) and the
iShares 20 Plus Year Treasury Bond ETF ($TLT). A maximum portfolio volatility of 15%

is chosen, with a rebalance period of one year.
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We parameterize the model using the above description as follows. We estimate the asset
drifts and covariances using their yearly log-returns of adjusted close prices from 2007 to

2022, inclusive:

0.0361| $TLT

_ 2.62

"= 10.0819] sspy (2:62)

fir = 0.0602 (2.63)
$TLT $SPY $VFIFX I

0.0335 —0.0050 —0.0053 —0.0037| $TLT
= |—0.0050 0.0371 0.0335  0.0058 | $sPY (2.64)
~0.0053  0.0335  0.0312  0.0058 | $VFIFX

| —0.0037  0.0058 0.0058 0.0120 | 1

2.3.4.2 Utility Functions

We assume the investor obtains linear utility for each goal contribution until their target
contribution is reached, after which they obtain zero marginal utility. Utilities are weighted

by their relative importances:

1 x
— = mj —,1} 2.65
() 4mm{250000 (2.65)
1
—m
2

X
i 1} 2.
m { 500000 (2.66)

(2.67)

Uug(z) =

xr
—mind —% 1} .
uz(x) = min { 1000000’

In Section 2.3.3.1, Figure 2.4 visualizes the terminal value at retirement for this investor,
having liquidated their assets and obtaining a utility of u3(0.85Xp(T") + Xg(T')).We likewise
assume that, for the entire horizon, the investor receives linear utility for consumption up to

a consumption target of $60,000 per year. Were the investor to satisfy this target throughout
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their career, we assume that the total discounted utility from consumption would equal their

discounted maximum retirement utility. This implies

r

~ . T
U/k(ﬂf) —T—lmln{m,l}, k'—172,...7K. (268)

67" —

Collectively, we denote the goal and consumption targets to be (¢1,v2, 93, pc) =
(50000, 300000, 1000000, 60000), and the goal priorities to be (ai, a2, a3, ac) =
(1/47 1/27 1, T/(erT - 1))

The value function has a maximum under this parameterization and thus (2.37) becomes

K

ti
m)?x\/k(t,X): Tr 1/ e*”KdtJFE e "ru(pr), tE [ter,tr), k=12 K
€T - t ~
k=k(t)

(2.69)

2.3.4.3 Safe Levels of Portfolio and Retirement Value

In prior work, the notion of a “safe level” of wealth is defined that guarantees all future
utility [21]. This concept is helpful for contextualizing model behavior. Finite safe levels for
full utility do not exist in our model because of the income process stochasticity. Instead, we
establish an analogous concept of safety by comparing the maximum of the value function
to the expected remaining utility if the investor were to disengage with the market as much
as possible. For the remainder of their career, the investor would allocate their portfolio
entirely to the risk-free asset and consume their entire income. We can determine the value-
to-go under this strategy as follows. Let a4 be the disengaged investor’s action (i.e. AZ = 1,
7% = 1). Let Gy € Rsg denote the withdrawal from (exclusively) the portfolio towards goal

ke {l;:(t), k(t)+1,...K } We then have the following convex set of feasible future portfolio
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withdrawals under a, as a function of ¢t and Xp(t):

L(t, Xp(t) = § (Gigys - Gi) > 0 ‘ Xp(t) = > "G >0,i = k(t),...K p (2.70)
)

k=k(t
where the condition ensures there is no overdraft on the portfolio. We then have the following

theorem.

Theorem 4. (Disengaged Investor’s Value-to-go) For the parameterization described above,

let V(t, X) denote the value-to-go of the disengaged investor. We then have

K-1 _ _
L (@)

Vd(t, X) = _ max €_r(tk_t)uk((1 — Vp)Gk> — Al(t, XR, GK)

25 ¢

(2.71)
. N In ex=0vp)Cic _ () Crr) (T —¢)
Al(t7XR7GK): (,DK_(l—VP)GK ) Xk 2
( > Crr(T —1t)
1 ox—(1-vp)Gx ( i %) (T B t) (272)
_ XRBHR(T—t)cI) . Xr KR 2
Crn(T —1)
g 1
AQ(t,X]) = 040/ e T(s=1) (1 — %Ag(t, S,X[)) ds (273>
t
In(—2¢_—) — (MI—@) (s —1)
1-v) X7 2
AS(tasaXI):SOC(D <( )
C[[(S — t)
(2.74)
neog (M (55) — o+ %) -0
— Xje
C]](S - t)

for Xp > 0, Xg > 0, and X; > 0, where ® is the cumulative distribution function of the
standard normal distribution. We cover the edge cases for when Xr = 0 or X; = 0 with:

A1<t,0,é[() = YK — (1 - I/P>éK \V/t, GK and Ag(t,S,O) = Qc YVt and s > t.
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Proof. We have, for all t € [0,T), X > 0,

T
Vet X) = max (Ead [/ e E0G((1 — vp) X (s)) ds
éfc(t) ..... G’KEF(t Xp) t

+ Z —r(te—t),, ((1— VP)ék) (2.75)

_|_e*”(T*t)uK((1 - VP)ék + XR(T»})

_ g l /t " e Na(( - ) Xa(s) ds}

K—-1
+  max > e (1 — vp)Gh) (2.76)
ch(t) ..... Grel'(t,Xp) k::];;(t)

Lo (T (1 - @LKEM [maX {07 ox = (1=vp)Gy = XR(T)}D)

via linearity of expectation. We may use the maximum instead of supremum due to the
compactness of I' and the continuity of the goal utility functions and A;. The expected

utility from the retirement goal follows from

E% [max {O, ox — (1 —vp)Gy — XR(T)}]

ex—(1-vp)Gk ~ (2.77)
:/ SOK_<1—VP>GK—SL‘(1FR<I)
0
wr—(1-vp)Gk —(1—vp)G&
= / o — (1 —vp)GrdFp(z / xdFR( ) (2.78)
0
= (@K—(l_VP)GK>FR<90K— 1—vp) C~¥ )

+ R [XR(T) | Xp(T) < g — (1 - up)ék] P (XR(T) <ox—(1- VP)GK>

(2.79)

where Fp(z) = P(Xg(T) <z | F). As A} = 0 and the expectation of retirement utility is

independent of Xp and X7, (2.9) simplifies to
dXR(t) = ,uRXR dt+XR \/ CRRdWR (280)
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where Wg represents the individual Brownian motion of the retirement asset process. We

therefore have that Xz(T) is log-normally distributed:
1
IHXR(T) ~ N (IHXR(t) + (,UR - §CRR) (T — t), CRR<T — t)) . (281)

It follows that

E* | Xa(T) | Xp(T) < ox = (1= vp)Gi| B (Xa(T) < oic — (1~ v¢)Cr)

e —(1-vp)Gy ) —<HR+ CE‘R)(T—t)

In X0
XR(t)eHR(Tt)cI)< ( R NG

) Xg(t) >0 (2.82)

0 Xg(t) =0.
We also have

(goK (1- VP)GK) Fr (ng (1- VP)GK>

~ n( ex=Uovp)Gre ) (), CRRY)(T_y)
(soK—(1—up)GK)<I>< (s )\/cR)R@(f) ) ) Xp(t) >0 (2.83)

For the consumption utility, we invoke the stochastic Fubini theorem to exchange the order
of integration. This requires the consumption utility function meets sufficient measurability
conditions [90]. Let ¢ : X; x [t,T] x Q; — R, in which §; is the sample space of paths of

X7, represent consumption utility. We then have

I rw<i,s>\2ds>; ari < [ ([ etas) ant o

=acVT — ¢ (2.85)

< 00 (2.86)
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where F7 is the distribution of paths of I. The finiteness of this integral then ensures

/ / W(i, s) dX;(s) dFy (i) / / W(i, s) dFr(i) dX;(s) (2.87)

which implies

E { /t e 01 — vp) X (s)) ds] (2.88)
_ /t e DE [((1 — vy) X1 (s))] ds (2.89)
= ac/t e T (1 — w—lcEad max {0, pc — (1 — v) X (s )}]) ds. (2.90)
Furthermore,
E% [max {0, oc — (1 — v1) X (s)}] (2.91)
- /0”’ vo — (1 —vp)x dFy(x) (2.92)
_ /0 T oo dFy(z) — /0 T = v)e dFy(2) (2.93)
= ook (1 SiCVI) (1 —vr)E™ |:XI ‘ Xi(s 1 cicy[] P (XI(S) < 1 fcy[)
(2.94)

for X;(t) > 0. Trivially, As(¢,0) = 0 Vt. We have independence of X; from Xp and Xg, and

may therefore express (2.5) as
dX[(t) = /L]X[ dt + CHX[ dW] (295)

where W/ represents the individual Brownian motion of the income process. Like the re-
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tirement process, the income is therefore log-normally distributed:

In X;(s) ~ N (m Xi(s) + (m - %CH) (s—t),Cri(s — t)) . s>t (2.96)

Therefore,

R lXI(s) | Xils) < 7 }P <XI(8) <15 )

—Vr —Ur

n(—%c____\_ Crr(g_
Xj(t)e'ul(St)®( ((1—,/1))(1(;)6?”(8”; 2 >( t)) X[(t) >0 (2.97)

0 Xi(t)=0
for s > t. We also have

sy ) o= 80

QOCCI) < ) X[(t) >0
Yo X[(t) = 0.

[]

The argument of the maximum in (2.71) is concave in Gy, k = k(t),k(t) +1,..., K.
This because it is a non-negative weighted sum of concave functions, which may be seen

from (2.76). The maximum argument can therefore be solved via the following convex

optimization formulation:

K-1
X —r(T—t)
_minimize — E e*’"(t’“*t)uk((l —vp)Gy) — ¢ A (t, Xr, Gk)
G, k=k(t),....K hE (1) PK

(2.99)

With V¢, we define levels of safety by comparing the disengaged investor’s value-to-go to
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the maximum of the value function over the spatial domain. The a-safe states for ¢t € [0,T')

are defined as

Yalt) = {X ery, VLX)

>1-— . .
20 e V(LX) = 1 a} , a€]|0,1] (2.100)

This measures the proportion of possible discounted future gain expected under the disen-
gaged strategy, and is most similar to the concept of safety in [21]. It is easy to see that
Va(t,z) is convex in z via a similar argument to Theorem 1. We then have that x,(t) is
a convex set for any o € [0,1] as, for 3, £ (1 — a)supy V (¢, X), we have that x(t) is the
Bt -superlevel set of V4(t, X) [14]. As V¢(t, X) is also nondecreasing in all components of X,

therefore, for any X" > 0, we have
XY ey (t) = X@ exo(t), vXP>XWU tec0,T),acl01] (2.101)

where “>” refers to the component-wise partial ordering. These characteristics reduce the
problem of identifying x.(¢) to finding its boundary, enabling faster calculation compared

to evaluating the safety at each node.

2.3.4.4 Comparative Studies
We repeat the experiment with different parameterizations to compare an investor’s decisions

under different circumstances and demonstrate the flexibility of the model.

Increased Income Growth Rate We increase p; to 0.04 to infer the change in consump-

tion behavior and risk-taking prior to goal realization.

No Employer Retirement Contribution We decrease s to 0 to compare how deci-
sions vary if an employer does not contribute anything to the employee’s retirement. This

experiment may also apply to self-employed investors.
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High correlation between market and income We modify C' to C, described below,
to increase the employee’s income dependence on the market. That is, the correlation be-
tween X; and the $SPY ETF is increased. As the determinant of the correlation matrix
must be positive, this yields 0.129 < corr($SPY, X;) < 0.456. For this experiment, we set
corr($SPY, X;) to 0.45.

The following section presents the numerical results from the above experiments and a

discussion on the optimal decisions of the investor.

2.4 Results and Discussion

We begin by presenting the results from the baseline investor, interpreting the model’s rec-
ommendations at, and around, salient decisions. Following this, we examine the comparative

studies to illuminate the sensitivity of the solutions to the model parameterization.

2.4.1 The Baseline Investor
2.4.1.1 Portfolio Near Retirement

Figure 2.5 below shows the allocations and volatility of the investor’s portfolio one year prior
to retirement for a trio of income values. For clarity, we exclude the 0.01-safe states from
this figure and relevant following figures. In this figure, the level at which the investor fully
satisfies their retirement goals is roughly the line from the top left corner of each heatmap to
the bottom right as the investor’s retirement target is met at a pre-tax portfolio withdrawal
of $1,180,000.

We see that the investor maintains a maximally volatile portfolio, consisting entirely of
$SPY and $TLT, at lower levels of portfolio and retirement portfolio values. However, as their
portfolio value and/or retirement portfolio values increase, the investor begins reallocating
from both $SPY and $TLT to the risk-free asset. This is intuitive: the investor wishes to

avoid potential losses, given the potential upside is limited.
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The behavior changes as the investor’s income increases. For combinations of high Xp and
low X, the investor tends to choose a lower-volatility portfolio. This can be viewed as pricing
in the coming year’s income: the investor can afford to take less risk in the portfolio when
more of the current shortfall can be effectively guaranteed by the income. Furthermore, the
range of Xp and Xy values at which the investor should have less risky portfolio allocations is
reduced for higher incomes, as evidenced by the low-Xp, high- X zone. For a lower income in
this region, the investor should reduce portfolio volatility slightly to reduce potential losses.
A higher-income investor, however, needn’t make such concessions as full fundedness of their
retirement goal is virtually guaranteed.

Figure 2.6 below shows how portfolio allocations change approaching retirement for in-
vestors with zero, moderate, and high incomes. Nearing retirement, for most Xp and Xp
combinations close to the goal target, the portfolio volatility decreases. With additional
time to retirement, the benefits of avoiding reduced utility are outweighed by the increased
expected utility growth under a riskier portfolio.

For states with high Xp and very low Xg, the portfolio allocations become more risk-on
approaching retirement. When relying almost entirely on the portfolio for retirement utility,
it is sensible to trade off expected growth for portfolio safety given the increased time buffer
over which portfolio gains may be made. We see this effect is more pronounced for higher
incomes as, again, less risk needs to be taken when the investor’s high income will likely

carry their portfolio to the target within a few years.

2.4.1.2 Income Allocation Ten Years Until Retirement

Figure 2.7 below shows the income allocation ten years prior to retirement for a range of
retirement account values. Having passed the second goal, the investor’s savings are exclu-
sively towards the retirement target. Examining the second row, we see that the investor will
contribute the maximum allowable amount towards the retirement portfolio in most cases,

aside for when either their retirement portfolio is well-funded (Figure 2.7(f)) or their port-
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folio value is so low compared with their retirement portfolio value that there are potential
diversification benefits of contributing maximally to the portfolio (bottom of Figure 2.7(e)).
In the former case, the investor opts to split their income entirely between the portfolio and
immediate consumption, aside from the high-Xp, high-X; region in which all future utility
is effectively guaranteed and the Ap-Ag tradeoff is immaterial given that o is consumed.
We also see a barrier partitioning the Xp-X; plane into areas of consumption and saving.
As both the investor’s income and their retirement account value increase, they require less
in their portfolio before they begin discretionary spending. This matches common advice to

spend within one’s means.

2.4.1.3 Income Allocation Leading up to the Second Goal

Figure 2.8 below shows the optimal income allocation leading up to, and immediately after,
the second goal for an investor with an income of approximately $160,000 per year. The pre-
tax contribution required to fully satisfy the goal is $588,235. Leading up to the goal deadline,
if the investor does not have sufficient portfolio value to completely fund their second goal,
they will contribute the large majority of their income towards the portfolio. With sufficient
portfolio value, however, they will instead consume s to maximize consumption utility,
with the remainder divided between the portfolio and retirement.

Interestingly, when the investor’s retirement portfolio is not well-funded, the investor opts
to put a proportion of their income towards their retirement account even if their portfolio
is insufficient to satisfy their second goal. The relative importance of retirement compared
to this second goal is therefore demonstrated by this tradeoff. We also see a significant
deviation in strategy following the goal contribution: the investor no longer places their
income into their portfolio unless it is not well-funded, opting to consume a significant
proportion immediately. With twenty years remaining until retirement, the investor can still

comfortably consume without fear of lost terminal utility.
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Figure 2.9: Baseline Investor Goal Contributions
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2.4.1.4 Goal Contributions

Figure 2.9 below shows the investor’s contributions towards each goal for a panel of retirement
portfolio values. The investor generally withdraws enough to satisfy each goal’s target, aside
from when either: their portfolio value is too low, opting instead to withdraw their entire
portfolio; or their income is low. For the latter case, the investor sometimes chooses to
withhold a proportion of the goal target to save for future goal(s) even if they can reach the

current goal’s target.
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2.4.2 Increased Market-Income Correlation

Intuitively, increasing the market-income correlation should lead to more risk-averse behav-
ior. Poor market performance is now more likely to accompany a decrease in income, so the
investor should expect a higher variance in outcomes. The following subsections confirm this

intuition and demonstrate the impact on the investor’s decision-making.

2.4.2.1 Change in Portfolio Near Retirement

Figure 2.10 below shows how the investor’s optimal portfolio changes with the increased
market-income correlation one year prior to retirement. For low-Xp, high- Xy states, as
well as states generally close to the safe states, the investor with the higher market-income
correlation has a lower optimal portfolio volatility. The increased likelihood of the investor’s
income and the S&P 500 moving in the same direction results in limited upside utility for
a favorable outcome, but increased downside for an adverse outcome. This justifies a risk
reduction.

However, some high-Xp, low-Xp states have an increased allocation to $SPY. With a
less correlated income to the market, the investor could reduce exposure to the market in
expectation that their income could satisfy much of the utility shortfall during a market
downturn. This is not the case with the increased correlation, as their income provides less

of a hedge against lost utility. The investor should therefore remain more risk-on.

2.4.2.2 Change in Goal Contributions

Figures 2.11 and 2.12 below show the optimal goal contributions and how they differ from
the baseline investor, respectively. For the second goal, we see a decrease in contributions for
states with low X; and moderate-to-low Xp, regardless of retirement portfolio value. This
may be seen as avoiding retirement risk given the investor’s situation is now less stable. At
first glance, it may seem counterintuitive that the investor then contributes more to their

first goal for some lower- X, low-Xp states. In this case, one can see the value of immediate
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utility when faced with increased future uncertainty.

2.4.2.3 Change in Income Allocation Leading up to the Second Goal

Figure 2.13 below shows the income allocation leading up to, and directly after, goal 2.
Compared with Figure 2.8, the investor takes a more risk-averse approach, with limited con-
sumption, bolstering the portfolio value and focusing more on retirement. For instance, the
investor must now have more in their retirement account before ceasing retirement contri-
bution. The additional impulse to contribute to retirement serves to hedge against adverse
moves in the portfolio and income. The investor also reduces consumption to support the

portfolio value both before and after the second goal time, even at higher portfolio values.
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2.4.3 Zero Employer Retirement Contribution

The absence of employer contribution to the retirement account should disincentivize con-
tributing to retirement and reduce the investor’s expected terminal utility. The quantitative

implications are shown in the following subsections.

2.4.3.1 Income Allocation Ten Years Until Retirement

Figure 2.14 below shows the investor’s income allocation ten years prior to retirement. Com-
pared with Figure 2.7(e), the investor now requires a generally higher portfolio value before
consuming. Consumption is even curtailed at high-Xpg values, demonstrated by the third
column of plots. Evidently, the decreased drift in the retirement process threatens retirement
utility enough to curtail consumption and encourage additional portfolio contributions.
Figure 2.14(e) reveals that, for a moderate retirement portfolio value, there are two Xp
and X; themes in which retirement contributions are recommended. The first, for moderate
Xp and low X, simultaneously indicates that (1) the present value of marginal retirement
contributions outweigh the immediate benefit of pure consumption, and (2) the diversification
and /or tax benefits of marginal retirement contribution complement the portfolio sufficiently.
In the other context, namely states with high X; and satisfactory Xp, the investor consumes

up to ¢c and hedges their portfolio with a maximal retirement contribution.

2.4.3.2 Change in Portfolio Near Retirement

Figure 2.15 below shows the change in portfolio allocation to the riskier asset and portfolio
volatility compared with the baseline investor. Near safe levels, the investor chooses a com-
paratively increased portfolio volatility, a justifiable decision based on the reduced inflow

from retirement contributions.
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2.4.4 Increased Income Growth Rate

It is expected that the increased income growth rate will have only positive implications for

the investor’s goals. This is demonstrated below.

2.4.4.1 Goal Contributions

We see that goal contributions are no less than those of the baseline investor, as per Figure
2.16. The investor still limits goal contributions for sufficiently low-Xp and low-X; states,
but to a lesser degree in general.

Figure 2.17 below shows the increase in ((0) for the investor with a higher income growth

rate. An investor beginning their career with zero net worth may be expected to obtain
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more than 10% extra utility than their counterpart with a lower income growth rate, for
some initial income values. The advantage diminishes, however, as any of the initial state

values increases.

2.4.4.2 Comparison of Safety Levels

Figure 2.18 below shows how changing « can affect the a-safe states. Figure 2.18(a), with a
relatively high « of 0.05, eliminates important portfolio suggestions made at smaller « levels,
as in Figure 2.18(b). However, too small an « can reveal the entirety of the state space, where
the plurality of optimal solutions and polynomial approximation artifacts render irrelevant

or unhelpful suggestions. A value of @ = 0.01 is therefore chosen for this analysis.

2.5 Conclusions and Future Work

In this research, we introduce a novel approach to GBWM for an investor with a retirement
account and stochastic income. Our approach optimally determines the portfolio selection,
income allocation, and goal contributions for an investor, taking into account their consump-
tion preferences and financial situation. We conduct a series of numerical experiments to

illustrate the flexibility and intuitiveness of our model. We show qualitative portfolio changes
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leading up to retirement with respect to a variety of factors. These include not only the in-
vestor’s portfolio, retirement balance, and income, but also income-related considerations
such as the employer’s retirement contribution and the income’s correlation to the market.
Additionally, we analyze how the investor should allocate their income during their career.

Within the robo-advising industry, our model can be applied within both semi-
autonomous and fully autonomous contexts. This stand-alone model facilitates automated
portfolio allocations and suggests income allocations without the need for costly interactions
with investment professionals. Within a financial advisor’s toolkit, the model can provide
interpretability of recommendations. Portfolio and income allocation suggestions can be
compared via the derivatives of the value function to contextualize potentially unintuitive
suggestions. Goal contributions, likewise, can be justified quantitatively with respect to
expected future utility. Should investors wish to override the model’s recommendations, a
financial advisor can help them choose a suitable level of deviation from optimality to satisfy
the investor’s desires. If an investor’s priorities have changed significantly at any point, the
model may be solved again with an updated parameterization.

Our approach can be enhanced through various improvements. Many nuances of real-

world investment are not accounted for under our simplified model. For tractability, our
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continuous-time approach uses a simplified representation of the market, including propor-
tional taxes, deterministic interest rates, simple asset and income dynamics, and a single
retirement asset to invest in. Future research can always chase increased realism by relaxing
or eliminating such assumptions. Beyond market-based assumptions, the client’s goal dead-
lines and targets may not be deterministic. They may also be vulnerable to layoff concerns,
particularly in poor market conditions, which our approach cannot capture fully. Employing
methods from reinforcement learning may be a natural continuation to handle such nuances
that, within a similar approach to this study, evade easy representation or computational
tractability.

Computational improvements may be made to balance the problem resolution and run-
time. Knowledge of the value function supremum and disengaged investor’s value may help
improve convergence if included as constraints in the Chebyshev polynomial fitting. Using
complete Chebyshev polynomials for fewer parameters in the polynomial fitting may also

provide sufficient precision with a reduction in solution time.
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CHAPTER 3

Deep Reinforcement Learning for
Goals-Based Wealth Management Under

Random Goal Times

3.1 Introduction

Reinforcement learning methods have proven invaluable for solving challenging sequential
decision-making problems. Difficulties that commonly hamper dynamic programming ap-
proaches, such as the curse of dimensionality and complicated environments, can be ame-
liorated with reinforcement learning. GBWM is a natural application area of reinforcement
learning given the complexity of not only the market dynamics but also the investor’s de-
sires. Indeed, while the model in Chapter 2 presents useful themes of asset allocation, income
distribution, and goal contributions, stochastic dynamic programming approaches may less
comfortably deal with evolving market conditions than reinforcement learning methods. Ap-
plying reinforcement learning methods may therefore be a natural continuation of GBWM
practice.

The effects of recessions are an important concern for investors. Involvement with financial
planners during the GFC has been shown to help investors follow disciplined strategies for
investment and portfolio rebalancing [59]. The value of robo-advising in helping clients

manage the difficulties of economic downturns is thus clear, motivating the development of
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GBWM algorithms that are recession-aware.

In addition to reductions in portfolio value and income, shocks can result in delayed
purchases of durable goods [58]. A sensible question, therefore, is how an investors’ decisions
may change if their goal times are uncertain. Many purchases can be reasonably described
as stochastic in time, such as the replacement of an aging vehicle, a relocation due to work
or family, or a medical expense.

We consider a client with multiple competing goals, the purchase times of which are
potentially uncertain. The client expects to make capital outlays around certain times,
but is unsure exactly when. We include an economic variable to compare decision-making
in recessions with normal times. Recommendations for goal contributions and portfolio
allocations are made. As in Chapter 2, we conduct comparative experiments to evaluate
how decision-making changes per the investor’s goals and economic situation.

Our approach is to use reinforcement learning to determine optimal portfolio alloca-
tions between goals, with a static optimization at revealed goal times to recommend goal
contributions and estimate value-to-go. Historical market data from recessionary and non-
recessionary periods are used to sample risky asset returns. Our results show a sensible
adaptation of investor behavior to their financial situation and environment. The potential
of earlier goal times forces more conservative portfolio allocations. Goal contributions are
greater for earlier goal times, and are intuitively balanced by the relative importance of the
competing goals. The insights derived from this model, complementary to those in Chapter

2, support the development of a broader GBWM reinforcement learning framework in future.

3.2 Related Works

We provide a brief description of applications of reinforcement learning approaches to
GBWM; broader context on GBWM is provided in Section 2.2. The viability of reinforce-

ment learning methods is demonstrated by Das and Varma’s work applying Q-learning to
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obtain the same results as a previous GBWM dynamic programming approach [29]. Dixon
and Halperin use G-learning, a probabilistic extension of Q-learning, to optimize a portfo-
lio for an investor who contributes to their portfolio during employment before periodically
withdrawing post-retirement [34]. Bauman et al. use a deep reinforcement learning approach
for a single all-or-nothing investment goal [10].

Multiple previous works examine portfolio allocation under an uncertain terminal time,
typically within the context of retirement or death. Yaari examines optimal consumption
under an uncertain death time [100]. Further work introduces risky assets and portfolio allo-
cation to similar problems [46, 47, 69]. Blanchet-Scalliet et al. solve the optimal investment
problem in which the time horizon is dependent on the returns of risky assets [13].

To our knowledge, this work is the first application of reinforcement learning to multiple
competing goals, stochastic goal times, and recessionary dynamics. The rest of this paper
is structured as follows. Section 3.3 describes the market and investor’s goals, formulating
the value function and optimal goal contribution equations. Section 3.4 describes the rein-
forcement learning approach used to solve these equations and the numerical experiments

conducted. Results are presented in Section 3.5, followed by conclusions in Section 3.6.

3.3 Problem Description

3.3.1 The Market and Investor

The investor has a portfolio value at time ¢ of X(¢), allocated between a risky asset, with
price S(t), and a risk-free asset, with price B(t). The risk-free asset earns interest at a rate

r > 0, yielding the dynamics
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The market is subject to infrequent recessions. The economic state is represented by a binary

variable,

0 market is not in a recession

E(t) = (3.2)

1 market is in a recession

which evolves according to a continuous-time Markov chain with (regular) rate matrix, @ :
{0, 1}2 — R. The corresponding transition probability matrices for durations ¢ > 0 are
denoted by P(t) = e'?.

The stock is assumed to evolve according to a Ito process characterized by the economic

state,

dS(t) = u(t, B)S(t) dt + o(t, B)S(£)dW (t) (3.3)

where W is a Brownian motion, u is the stock’s drift, and o is the volatility of the stock.

The stock drift and volatility are jointly distributed according to the economic state:

:u(tv E)v U(tv E) ~ f(,u,cr)|E(t) (34)

We denote by F}V and FF the filtrations generated by W and the Markov chain, respectively,
by time ¢. We assume these filtrations are independent, and denote by F;, £ FV V FF their
join.

The investor’s income is dependent on the economic regime. Normally, they earn Iy
dollars per year, but in a recession this decreases to aly for some « € [0,1]. In line with
Chapter 2, we assume the investor’s income tax rate is 15% and that they spend 50% of net

income on necessities, thus ultimately contributing 42.5% of gross income to the portfolio.
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The portfolio dynamics are therefore

X (1 B0, 7(8) = ()t EO) + (= w(O)) XO+ IO EON bt
Fr(t)o(t, B)X(t) dW (¢)

0.425I, E(t)=0
I(t,E(t)) = (3.6)

042500y E(t) =1

3.3.1.1 Goals

The formulation of goals is similar to that in Section 2.3.1.2, with the additional element
of goal-time uncertainty. The investor has K consumption goals, occurring at times 7,
k=1,2,..,K. At each goal, the investor withdraws Gy, (7, X (7%), E(7%)) from their port-
folio, earning some utility ug (G (7%, X (1), F(7%))) from this goal. The utility functions are
assumed to be bounded and concave, with SLG’Z — 0 as G — oo.

Goal times occur randomly, with each goal having a deterministic probability distribution
over the time domain of fi(¢), t € [0,7]. That is, (7)re(1,2,..x} is a sequence of stopping
times independent of the filtration F;. In the case of fi(t) = d(x — tg) for ¢, € [0,T],
this simplifies to a deterministic goal time. For convention, let 79 = 0. We assume prior
knowledge of the order of the coming goals and that no two goals will occur concurrently.
We therefore have (fi, fa, ..., fxx) such that P(r; < 7, < ... < 7x) = 1. We may therefore

isolate the boundaries of the goal times as 7, = infsuppf and 7,7 = supsuppf, thereby

obtaining

T <7< Thy1 < 7'];:1, k=1,..,.K—1 (3.7)

with ¢, = 0 for convention. We make the natural assumption that the distribution of each

goal time has bounded support, i.e. supsuppfr < oo Vk.
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Figure 3.1: Schematic Division of a 3-Goal Time Domain into Separate Value Functions
Under Uncertain Goal Times

3.3.2 Value Function

Using the above notation, we define the series of value functions for k£ =1, 2, ..., K as follows:

Vi(t, X (1), E(t)) = E™

/tTk Jrie(5)®r(s, X(s), E(s))ds ‘ ]-t] , T S<t<7f (3.8)

O(t, X (1), E(1)) = G X {u(Gi(t, X (1), E@))) 4 Vir (8, X (1) — Gi(t, X (1)), E(t))}

(3.9)

where E™ denotes expectation under the optimal action, and frj¢(s) is the conditional dis-
tribution of 7, = s given 7, > t. For convention, we have that Vx,; = 0. Figure 3.1
demonstrates how the value functions and terminal conditions are defined over an example
problem with two uncertain goals and one deterministic goal.

The concavity of the value function in X can easily be seen via a similar inductive argu-

ment to that in Theorem 1, as outlined in Theorem 5 below.

Theorem 5. Vi(t,z, E) and ®(t,x, E), for k=1,2,..,K, E € {0,1}, and t € [T,;l,T,ﬂ
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are concave in x.

Proof. Trivially, Vi1 = 0 is concave in x. Suppose V1 is concave, for some k =1,2,..., K
andallt € [r,, 7] and E € {0,1}. For j = 1,2, let 21) be arbitrary feasible portfolio values
at time t € [7,,7;7] with respective optimal goal selections G} (t) and G3(t) such that, for
n € [0,1], 28 £ na® + (1 — n)z®. We have that G;j’)(t) = nG,(Cl)(t) +(1- n)Gf)(t) is a

feasible contribution for 23 as

G () + (1 =GP () < (1= vp)(e® + (1= p)2®) (3.10)
= (1 —vp)z®. (3.11)
Therefore,
n®(t, 2V, E) 4+ (1 — n)®y(t, 2P, F)
= (G (1) + (1= n)up (G (1)) (3.12)
+ nd-i-l <t7 'r(l) - G](gl)(t)7 E> + (1 - U)Vkﬂ <t7 CE'(2) - Gl(f)(t% E)
< (G W) + Ve (129 - GP(0), B) (3.13)
< Byt 2% E), (3.14)

for £ € {0,1}, and thus @ is concave in x.
Now, for fixed t € [r,_,,7,/] and any E(t) € {0,1}, let 7@, i € {1,2}, be optimal portfolios

for XW(t) = 2 and XP(t) = 2| respectively, over [t, 7;7]. Trivially,

X4 (1) X0 (3.15)

™

is an admissible portfolio and z® £ 5z 4+ (1 — n)z® is a feasible state. Following a
similar argument to Theorem 1, it is easily seen that X®)(s) = nX M (s) + (1 — ) X@(s)

for t < s < 7, for any 7 € [maX {t, Tk_} ,Tﬂ. Because taking the expectation of ®; over
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potential goal times preserves concavity, the concavity of the value function is readily seen

[14]. O

3.4 Methods

This section details the reinforcement learning approach used to solve the problem. Rele-
vant reinforcement learning background is provided in Section 3.4.1 before the problem and

solution descriptions are given in Sections 3.4.2 through 3.4.4.

3.4.1 Reinforcement Learning Preliminaries

To contextualize the following approach, we must first cover relevant topics in reinforcement
learning and how they relate to the problem at hand. Reinforcement learning is the theory
and practice of learning an agent’s optimal policies for interacting with their environment
to maximize their reward. Unlike dynamic programming, reinforcement learning does not
compute the optimal policy and value function, instead learning the correct decisions from

trial and error.

3.4.1.1 Markov Decision Process

The Markov decision process (MDP) formalizes the agent-environment interaction and is
therefore key to reinforcement learning [84]. An MDP consists of the tuple (S, A, P,, R,),
where: S is the state space; A is the action space; P,(s, s’) is the probability of transitioning
into state s’ from s by taking action a; and R,(s,s’) is the immediate reward received after
the aforementioned transition. We model this GBWM problem as a series of reinforcement
learning subproblems, concatenated via solving continuous optimization problems for each
goal. Each subproblem is constructed as a MDP with which an episodic reinforcement

learning agent is trained.
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Figure 3.2: Artificial Neural Network Schematic [60]

3.4.1.2 Function Approximation and Neural Networks

In our GBWM context, the state is continuous with respect to both time and the portfolio
value but discrete with respect to the economic state. The action space, i.e. portfolio
allocation, is continuous. While tabular solution methods are effective for small state and
action spaces, the infinitely large spaces created by continuous states and actions render
these methods infeasible [84]. Instead, function approximation via artificial neural networks
is used to provide continuous mappings between states and values or policies. Artificial neural
networks are functions composed in a structure inspired by the human brain. An input layer
receives data which is subsequently propagated and transformed through hidden layer(s) and
delivered to the output layer. These transformations are determined by activation functions
parameterized by values which are trained to approximate a function of choice. Figure 3.2
shows an example artificial neural network architecture. An artificial neural network with

multiple hidden layers is said to be a deep neural network.
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Deep reinforcement learning is the application of deep neural networks to approximate
the value function, policy function, or both. Deep reinforcement learning methods that
approximate both the value and policy functions are known as actor-critic methods. We
apply one such algorithm, Proximal Policy Optimization (PPO), which has been previously
applied in an GBWM context [77, 10].

3.4.2 Problem and Solution Setup

We solve a series of problems to compare optimal portfolio allocation across multiple invest-
ment scenarios. Each problem consists of K reinforcement learning subproblems that are
linked via (3.9). At the beginning of each episode, the goal time is selected according to the
goal-time distribution. The episode terminates when the time step reaches the goal time.
At prior time steps, the investor decides their portfolio allocation not yet knowing whether
the economy will be in recession for the coming year. The economy and portfolio are then
sampled for the next year.

Similarly to Chapter 2, we explore the problem parameterization around a “baseline”
investor to assess the impact of economic and goal scenarios on their decision-making. The

following subsections detail these experiments.

3.4.2.1 The Baseline Investor

The baseline investor has two goals with targets of $250,000 and $500,000, respectively. The
first goal is stochastic, being equally likely to occur at the beginning of years 8 through 12.

The second goal is deterministic and will occur at year 20. As probability mass functions,
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these are expressed as

t € {8,9,10,11,12}
P(r =t) = (3.16)
0 otherwise

(S

P(r = 20) = 1 (3.17)

Each goal is considered equally important by the investor. Taking a similar utility function

to that used in Section 2.3.4.2, our utility functions here are specified as

wi(z) = min{%,l} (3.18)
us(z) = min{é,l} (3.19)

with (@1, ¢2) = (250000, 500000). These are shown in Figure 3.3 below.
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Figure 3.3: Utility Functions of the Baseline Investor
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The investor’s gross income in non-recessionary times is assumed to be $60,000 annually.
We take v = 1 — 0.042, in line with the 4.2% decrease in median decrease in US household

incomes in the 2007-2009 period [55]. The risk-free rate of return is set to 3%.

3.4.2.2 Deterministic Goal Times

We consider an investor certain of their goal times to assess the impact of goal-time uncer-
tainty on portfolio decisions. We set the goal time of the first goal to be the latest possible

time, i.e.
P(r =12) = 1. (3.20)

3.4.2.3 Different Goal Priorities

The relative weightings of the goals importantly influences goal contributions. We consider

the case where the second goal is more important than the first, decreasing the range of wuy:
1
ui(z) = gmin{i,l} (3.21)

3.4.3 The Markov Decision Process
3.4.3.1 State Space

The state for each reinforcement learning problem consists of components representing time,
the portfolio value, and the economic state. We choose to represent the portfolio value state
as the ratio of the portfolio value to the “safe level” of portfolio value for which all future
utility can be satisfied with probability 1. Unlike in Chapter 2, this formulation admits a
finite safe portfolio level. This approach clarifies how decision-making changes approaching
safe wealth levels.

The safe level in this problem refers to the minimum portfolio value at any time that,

by investing exclusively in the risk-free asset thereon, will fully satisfy all future goals even
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Figure 3.4: Safe Levels of Portfolio Value for the Baseline Investor

under the worst-case income scenario. We perform a change of variable similar to that of

Capponi and Zhang (2022) [21]. The safe level for goal k = 1,2, ..., K is defined as

- e~ D gy + Xy (15)) — Uovelo () g=r(ni=0) ¢ < T

r

Xi(t) = (3.22)
g+ Xppa(t) teln,m]

forr >0, t e [r,_,,74], and XK+1 = 0. In the case where r = 0, we have

Tt = Gk + X (1, ) — (L —vp)aly(r, —t) t<7, (3.23)

g + Xppa(t) teln, ]

Figure 3.4 shows the safe levels for the baseline investor.

The state for problem k at time ¢ € [r, ,,7;7) is therefore defined as sf =

+_ =
Tk " Tk—1

<i %(t)’E(ﬂ) € [0,1) x [0,00) x {0,1}. Although the gradient of the safe level
around 7, is roughly the same, an uncertain terminal goal time would have a noticeable

gradient discontinuity at 7, as the safe value becomes constant at gx. We leave to future
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work an assessment of the comparative strengths of using the safe level as the portfolio state

versus, say, a scaled portfolio value.

3.4.3.2 Action Space

The action space is equal across all goals and times, consisting solely of the portfolio, 7 (t) €

0, 1].

3.4.3.3 State Transitions

The economic state transition matrix and the risky asset dynamics parameters are informed
by historical returns of the SPDR S&P 500 ETF ($SPY) per U.S. recession dates inferred
by a GDP-based recession indicator between 2000 and 2022 [48]. We estimate the year-
to-year transition probability matrix using the frequency of quarterly transitions between
recessionary and non-recessionary economies.

For the risky asset dynamics, we use a similar sampling approach to Bauman et al. [10].
For each episode time step, in a (non-)recessionary economy, we sample twelve of the monthly
$SPY log-returns with replacement from the (non-)recessionary quarters within the dataset.
These are used to construct the drift and volatility terms in (3.3), from which a sample

yearly return is taken.

3.4.3.4 Reward Function

Rewards are nonzero only at the goal time. For the last goal, the entire portfolio is liquidated,
so R, (s,(1,X,E)) = ug(X) for all a and s. For in-between goals, the terminal reward is
determined by balancing the current goal’s utility with future goals via an estimate of (3.9).

The approach used is described in Section 3.4.4.2.
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3.4.4 Procedure

The problem is solved via recursion. One reinforcement learning problem is solved per goal
to estimate the value function and optimal policies, detailed in Section 3.4.4.1. The optimal
goal contributions in-between are estimated with a convex optimization approach, specified

in Section 3.4.4.2.

3.4.4.1 Algorithm

The PPO actor and critic neural networks each have 2 hidden layers with 10 neurons each.
This architecture is shown in Figure 3.2 above. The hyperbolic tangent activation function
is used. The batch size used is 32,768. The learning rate used is 0.001. Each subproblem is
trained for 80,000,000 total timesteps. Implementation was conducted with Stable Baselines3
and Pytorch [74, 72].

The initial state is sampled as follows. The initial time is sampled uniformly from the
prior goal’s possible goal times, to allow for exploration of states with low portfolio values at
later times. The initial safety value is sampled uniformly within [0, 1]. The economic state

is sampled from its stationary distribution.

3.4.4.2 Optimizing the Goal Contributions

Rewards are only nonzero at goal times. Except for the final goal, the reward is made by
balancing the current goal’s utility and expected future utility. As the argument of the
max function is concave, the utility-maximizing goal contribution is tractable in theory via
convex optimization as in Section 2.3.2.1. However, the value function estimate from the
reinforcement learning algorithm may not maintain concavity across the entire domain and,
in practice, are occasionally only quasiconcave. Another challenge posed is that, even if
the value function is concave, each rollout may involve solving a computationally expensive
convex optimization problem for the optimal goal contribution. We address both of these

problems by fitting a globally concave finite difference approximation of the value function
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with which we construct estimates of the optimal contributions.

Trivially, the optimal contribution for the last goal is the investor’s entire portfolio. For
problem k < K, let ¢t € [, ,7;7]. Denote by V2, (¢, X, E) the value function estimate at
this interval for portfolio value X and economic state E, where 8 represents the parameters
of the critic neural network. We fit a concave piecewise linear approximation of the value
function after the goal contribution for each economic state, j € {0,1}. A grid of 0 = Xy <
Xy < ... < Xy is used, where Xy is the safe portfolio level after the goal contribution. The

approximation is calculated with

2

mlnlmlze Z Z Vk+1 (t, X:,5) — Yig

Yi,0=12,...,N
i= 2

(3.24)
s.t. Yij —Yi1; >0, 1=2,..,N

Yij — 2Vic1j + Yieo; <0, i=3,..,N

where the first set of conditions ensures the value function is nondecreasing and the second
set ensures concavity. Here, P, ; represents the transition probability matrix between states
j and j. Denote by Vk+1(t, x,j) the concave piecewise linear interpolation of the y; ; values.
The continuity of the terminal value function is guaranteed by its concavity. For the grid

points 0 = by < by < ... < by = Xy + @i, we take

Qb(t j)_ max {uk(g)_F‘A/;c-ﬁ-l(tabl_gv;)}a 22177N7 jZO,l (325)

g€[0,b;]

to be the corresponding terminal values. A piecewise linear interpolation is then applied for
each economic state which we denote by Cka(t, X, 7). This interpolation serves as an efficient
way of estimating terminal value utility. We note that due to the piecewise linear form of
(3.25), the maximization can be performed via solving a linear program.

Denote by Gy, ;(z) the feasible set of contributions at goal k for portfolio value x € Rx( and
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economic state 7. Berge’s maximum theorem implies that the maximizers of (3.25), denoted
by the correspondences Gj ;(z), k = 1,..., K, j = 0,1, are each upper hemicontinuous and
have nonempty, compact values [71]. While (3.25) is not strictly concave, we find in practice
that it produces unique maximizers aside from when 39 € G} ;(z) with g > ;. We therefore
assume the functions ézj (z) = min Gf ;(z) are continuous, and take their piecewise linear

interpolations at b;, t = 1, ..., N, as our optimal goal contribution functions.

3.5 Results

We first present the baseline investor results, followed by the comparative studies. Common
across all experiments is near-total investment in the risk-free asset during recessionary times.
This is expected, given the negative expected return of the risky asset per the data used in

Section 3.4.3.3. We therefore choose to show only the portfolios for non-recessionary states.

3.5.1 The Baseline Investor

Figures 3.5 and 3.6 below show the allocation to the risky asset leading up to the first and
second goals, respectively, in terms of both portfolio value and portfolio safety. In both
subproblems, the investor transitions from full investment in the risky asset to none as their
portfolio value approaches the safe level.

Figure 3.7 below shows the contributions towards the first goal. For all goal times and
economic states, the investor funds the goal as much as possible. This is a sensible policy

given the high marginal utility of the first goal.

3.5.2 Different Goal Priorities

Figure 3.8 below shows the allocation prior to the first goal for the investor who weights the
second goal higher than the first. Again, the allocation to the risky asset approaches zero

as the portfolio value approaches safety. However, this investor maintains full investment
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Figure 3.5: Baseline Investor: Portfolio Allocations Before Goal 1 by Portfolio (a) Value and
(b) Safety
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Figure 3.7: Baseline Investor: Contributions to Goal 1

in the risky asset up to a higher portfolio safety, as exemplified by image (b). Figure 3.9
below further demonstrates the relative importance of the second goal. Unlike Figure 3.7,
we see that the investor never contributes the entirety of their portfolio balance to the first
goal, opting instead to conserve funds towards the second goal. We also see that the investor
contributes less to the goal for a later goal time. Intuitively, a later goal time leaves less
time to accrue funds for the second goal. There is a minor influence of the economic state
on the goal contributions: contributions are slightly decreased if the goal time occurs during

a recession.

3.5.3 Certain Goal Times

Figure 3.10 below shows the optimal risky asset allocation leading up to the first goal when
the goal occurs with certainty after twelve years. Near the goal time, the allocation is almost
the same as that in Figure 3.5. However, when the goal time is known, the investor takes
additional risk at higher safety levels and earlier times. Clearly, the possibility of an early
goal time impels the investor to reduce risk earlier for some portfolio safety levels, lest an

unfavorable market return and early goal time force a low contribution towards the goal.
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3.6 Conclusions

This work extends the reinforcement learning frontier of GBWM by optimizing decision-
making of an investor with multiple competing goals with uncertain times. Our procedure
estimates the optimal portfolio allocation and goal contributions based on an investor’s con-
sumption preferences and goal uncertainties. Our experiments demonstrate sensible portfo-
lio recommendations based on the investor and their economic environment. Suggested goal
contributions are intuitive.

There are a plurality of possible extensions to our approach. Many of the facets of the
model in Chapter 2 can be adapted to this model: a retirement account with income con-
tribution decisions, tax implications, and sophisticated income dynamics would be welcome
additions. While treatment of the market and recession dynamics here is relatively simple,
reinforcement learning is flexible to a wide description of market behavior. Future research
may include a more nuanced economic simulator, including interest rate dynamics, unem-
ployment considerations, and latent economic states. Furthermore, interaction between the
goal time distribution and market behavior would be a worthwhile improvement. Lastly, a

sensible extension would be to convert the sequential reinforcement learning problems into

7



a single problem, representing the goal contributions within the MDP state and action. Not
only would this avoid needing direct optimization of the goal contributions (and therefore
knowledge of the economic state transition probabilities), but also allow for nonconcave

utility functions, such as those for all-or-nothing goals.
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CHAPTER 4

External Forces on Financial Markets:

Evidence from the GameStop Short Squeeze
and Flash Crash

4.1 Introduction

Markets are highly complex and interdependent, influenced by a multitude of factors. Ex-
ogenous events and unique market phenomena can dramatically destabilize prices. Such
abnormalities are difficult to predict and often have unprecedented consequences. In addi-
tion, it can be challenging to decompose market price action into endogenous components
(e.g. changes in fundamental stock price valuations) and exogenous components (e.g. the
market crash due to COVID-19) [8].

The GameStop short squeeze of January 2021 is a clear example of an exogenous event
on market prices [88]. Retail investors on social news website Reddit instigated a rally of
GameStop’s stock price [61]. The stock saw a 1,500% increase in price over a two-week
period ending January 27 [61]. A subsequent -44% crash of the stock price occurred the
next day. A variety of other so-called meme stocks simultaneously experienced similar price
behavior, including those of AMC Entertainment Holdings, Inc., Bed Bath & Beyond Inc.,
and Eastman Kodak Company [82].

Another example is the flash crash of May 6, 2010, which resulted in steep drawdowns and
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recoveries of major stock indices within 36 minutes [54]. During, the Dow Jones Industrial
Average sustained its second largest intraday point decline, dropping approximately 9% [54].

The idiosyncrasies of each abnormality make risk management and portfolio allocation
difficult. The flash crash was a market-wide phenomenon, whereas the GameStop short
squeeze was isolated to a few stocks. While there are many models in the literature con-
necting market abnormalities, such as the COVID-19 pandemic, to markets, most do so on
the mesoscopic level at highest. That is, the behavior of a relevant, yet often small, subset
of traded assets are examined under econophysical or econometric methods. In contrast,
macroscopic models, which consider all traded assets in a market simultaneously, capture
interdependencies between assets invisible to smaller-scale models. There are conceptual
benefits for risk management in taking such a perspective.

This research addresses the aforementioned challenges by aiming to quantify external
influences on markets macroscopically. To do so, we extend the AlShelahi and Saigal macro-
scopic model of equity markets, a physics-inspired model that treats each stock as a particle
within an Eulerian fluid-flow system of stochastic partial differential equations [5]. Calibra-
tion of this model during the flash crash has indicated the model describes market abnormal-
ities. Our contribution is the decomposition of stock price acceleration into an endogenous
and exogenous component, the latter of which we term investor impatience. We compare
these external forces to an invisible gravitational field, applying the conservation of energy
principle to estimate these forces.

We validate that the investor impatience force effectively captures market abnormalities
by examining two notably exogenous events: the GameStop short squeeze and the flash
crash. In the former case, we use minute-by-minute US equity data and WallStreetBets
comment sentiment estimates to illustrate how the variable enhances out-of-sample fore-
casting of comment sentiment. In the latter case, we demonstrate that the key feature of
the flash crash, being a unified drawdown across the entire market, is also reflected in the

investor impatience variable. We therefore demonstrate the macroscopic model is not only
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capable of detecting market-wide events, but also adding context to events on smaller scales.
This enables a potentially broad application of the model to portfolio management under

unexpected events.

4.2 Related Work

Our research increments on a considerable body of literature examining the effects of world
events on financial markets. Methods from multiple disciplines have been applied, including
econometrics, signal processing, and physics, among others. We review approaches used for
this purpose. We also discuss the application of sentiment analysis methods in financial
contexts.

The versatility of econometric models in identifying relationships between time series
makes unsurprising their popularity for contextualizing financial market abnormalities. An
extensive body of literature applies vector autoregression (VAR) and its developments to
relate global events to financial time series. Umar et al. (2022) quantifies the return and
volatility connectedness between COVID-19 media coverage and segments of the non-fungible
tokens market [87]. They use the same TVP-VAR approach as Antonakakis et al. (2018),
which employs the Diebold and Yilmaz (2014) spillover index approach to identify volatility
transmission between oil prices and the stock prices of oil and gas companies [7, 33]. Diebold
and Yilmaz (2012) employs a generalized VAR approach to quantify the volatility spillover
across US stock and bond, foreign exchange, and commodities markets through the global
financial crisis [32]. Shahrestani and Rafei (2020) applies the Markov switching VAR model
to measure the impact of oil price shocks on the Tehran Stock Exchange [78].

The literature also presents many applications of generalized autoregressive conditional
heteroskedasticity (GARCH) models for detecting spillover and contextualizing market ab-
normalities. Dungey and Renault (2018) proposes a GARCH common features approach

which is used to identify contagion during major events in the Asian currency markets,
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global financial crisis, and European sovereign debt crisis [36]. The dynamic conditional cor-
relation MGARCH model presented in Engle (2002) has been used to detect contagion via
estimates of time-varying conditional correlations [38]. Among others, this method is applied
to the global financial crisis in Syllignakis and Kouretas (2011) and Kim et al. (2015) to de-
tect spillover during the global financial crisis from the US to European and emerging Asian
financial markets, respectively [85, 53]. Vasileiou (2021) applies asymmetry GARCH models
during the GameStop short squeeze to provide evidence of the presence of the anti-leverage
effect [89].

Many authors have developed physics-inspired models of financial markets under the um-
brella term econophysics. Such methods are frequently used in conjunction with econometric
models. For a review of econophysics methods and applications, we refer the reader to the
work of Chakraborti et al. (2011) [22]. The literature presents models for the detection and
analysis of abnormal market events. Wavelets allow analysis of co-movements of financial
data across different time scales. Ranta (2013) applies wavelets to detect contagion between
major markets across decades [75]. Evidence of contagion is found during the 1987 financial
crisis, the Gulf War, and the global financial crisis. Beccar et al. (2017) applies a wavelet
methodology designed for geophysical data to contrast the Lehman Brothers collapse and
the flash crash using minute-by-minute stock data from four companies [12]. The authors
compare the former event to a natural earthquake and the latter to a human-made explosion
and conclude that events of the former type are more predictable. Siddiqui et al. (2020)
identifies co-movement on short time scales between major stock indices during the onset of
the COVID-19 pandemic [79]. Xing et al. (2021) posits that crashes originate from changes
to the underlying structure of the financial system described by the nonlinear potential func-
tion [98]. They use a GARCH model to improve forecasting of returns during market crashes.
Wavelets have also been applied to cryptocurrency bubble analysis: Fruehwirt et al. (2021)
identifies a structural change in relationships between cryptocurrencies towards interdepen-

dence after the 2017 Bitcoin price peak [42]. Kumar and Anandarao (2019) uses wavelet
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coherence to identify volatility spillover in cryptocurrency markets [57]. Beyond only market
data, Umar et al. (2021) uses X (formerly Twitter) data, the put-call ratio, and short-sale
volume in a wavelet coherence approach to study the relationship between GameStop returns
and sentiment during the short squeeze [88]. Log-periodic power law (LPPL) models have
been used to describe market abnormalities, inspired by statistical physics and motivated by
distinct groups of rational and irrational traders. Geraskin and Fantazzini (2013) provides
a summary of the development and application of these approaches, beginning with the
original model description from Sornette et al. (1996) [43, 81]. Wosnitza and Denz (2013)
describes how LPPL structures follow the development of CDS spreads for forty banks dur-
ing the 2000 financial crash [97]. Applying a LPPL model to cryptocurrency, Wheatley et
al. (2019) diagnose bubbles and crashes in Bitcoin prices [96].

The phenomenon of social media, combined with advancements in natural language pro-
cessing capabilities, has enabled data-driven analysis of the relationship between market
action and the sentiment of market participants. This has produced a burgeoning literature
on sentiment analysis applied to markets. Yang et al. (2020) used posts from the Chinese
stock message board to examine the effect of investor panic on equity market crashes [102].
They used text-mining computing tools and a classification model to construct firm-level
sentiment and panic indices which could predict abnormal trading and stock market crashes.
Similarly, Xu et al. (2021) constructed three sentiment indices from Chinese social media,
newspapers, and internet news, which have proven capable of improving forecasting of stock
market returns [99]. As with forum posts, Google Search Volume Indices have been used as
an indicator of investor intent. Hsieh et al. (2020) uses this data as a proxy for information
demand of retail investors and to identify herding behavior of these investors [49]. Lydcsa et
al. (2020) also used Google search volume to forecast global stock price variation during the
COVID-19 pandemic [64]. Pedersen (2022) proposes a model of security prices in which a
social network of naive, fanatical, and rational investors communicate, using the GameStop

short squeeze as an example [73].
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The centrality of social media during the GameStop short squeeze has resulted in multiple
studies using social media data to analyze the role of sentiment in this event. Wang and
Luo (2021) applies the VADER sentiment analysis package and a BERT transformer model
to WallStreetBets comments in a range of classification models to predict price movements
of the GameStop during the short squeeze [93, 51, 31]. Long et al. (2022) also applies the
VADER package to WallStreetBets comments to quantify the relationship between sentiment
and GameStop returns [63]. Mancini et al. (2022) applies the VADER package to model
the dynamics of emerging consensus within WallStreetBets during the short squeeze, making
a comparison between GameStop’s stock price and the transition to homogeneous opinions
[65].

Despite a plethora of models for detecting and forecasting abnormalities in markets, the
literature lacks models approaching the problem with a macroscopic perspective. While
current models capture isolated phenomena due to unique events, broader implications may
be left unaddressed. The scope of recommendations along the lines of portfolio management,
policy, or risk management may therefore be limited. Our model addresses this research gap
by constructing a market-wide sensor for abnormalities. We conduct sentiment analysis on
WallStreetBets comments in a similar vein to the aforementioned studies to demonstrate
our model captures the sentiment-induced abnormality of the GameStop short squeeze. The
following section details the methods with which we construct said sensor and the data used

for model fitting and validation.

4.3 Methods

4.3.1 The Macroscopic Model of Equity Markets

In this research, we build upon the research of AlShelahi and Saigal, focusing on the macro-
scopic model of markets [5]. Our approach closely aligns with the setting outlined in their

paper; we offer a brief description of this setting for context. The model uses an Eulerian
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fluid-flow description of markets in which each stock’s position is represented by its price.
Taking © € R, to be a particular price, we construct p(z,t) to be the density of stocks at
price x and time ¢. Letting N(z,t) denote the number of stocks in price section [z, 25| (with

x1 <z < x9) at time ¢, we obtain the following definition for density:

N(z,t) = /I2 p(x,t) de. (4.1)

1

Density contextualizes the magnitude of shocks on markets: a shock to prices with greater
density implies a higher impact. We may contrast density in this model with its physical
interpretation. Whereas density classically refers to mass per unit volume, in this model
density becomes the stocks per unit price. The velocity vy (t) of stock k at time ¢, is defined

as

, (4.2)

where py(t) is the price of stock k at time ¢. This parameter is similar to drift in classical
stochastic differential equation models of stock prices. Indeed, the model may also be applied
to logarithmically transformed prices. We note that our results are similar with and without
such a transform and we are opting for the latter for simplicity.

The average velocity of stocks in price interval [z, z5] at time ¢ can be expressed as

v(a,t) = + > ), (4.3)

k:pr(t)€lz1,22]

as can the average squared velocity, denoted as

v (z,t) = vi(t). (4.4)
k:pk(t)€[z1,22]

We may assume that stocks are neither created nor destroyed, and thus the number of
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stocks can only change from flowing across endpoints of the interval [z, x5]. This is because
stock splits, delistings, and IPOs occur rarely. We may therefore define the flux (rate of

flow) of stocks at point (x,t) as Q(z,t) with

Q(z,t) = p(x, t)v(x,t). (4.5)

Flux intuitively measures the scale of an event on stock prices, increasing in both the number
of stocks impacted and the rate of price changes.
The conservation of mass principle can be applied to obtain an expression for pressure as

a function of flux and velocity:

P(z,t) = aQ(z, t)v(z, 1), (4.6)

where « is a fixed parameter. This pressure is a result of the momentum with which stocks
are moving in the price domain. The empirical value of o was found to be 0.3, which is
carried forward to this analysis [5].

Acceleration may be defined for a stock in a similar fashion to velocity:

ak(t) — lim Uk(t> — Uk(t — At)

At—0 At ’ (47)

resulting in the following expression of average acceleration:

alz,t) = > ). (4.8)

N(l.’ t) k:pr(t)Elz1,x2]

The following subsection extends this to derive the gravitational parameter and conser-

vation of energy equations to estimate external forces on financial markets.
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4.3.2 Formulating External Market Forces as Gravity

As detailed above, stock prices are influenced by a multitude of factors, endogenous and
exogenous. We assume that external forces on stock prices due to various events act similarly
to gravity in physics. Unlike gravitational force in physics, the external force on markets
can operate in either direction, whether to increase or decrease stock prices. We consider
two opposing masses representing positive and negative investor impatience, each with their
own gravitational field. The relative size of each determines the net investor impatience.
We define the net force on stocks as the sum of internal and external forces as per Newton’s

second law of motion:

F(z,t) =m(z,t) a(z,t) + m(z,t) g(z, 1), (4.9)

where F' represents the net force acting on the stocks at price x and time ¢, each with mass
m, internal acceleration a, and external acceleration g. The mass may be expressed as the

product of the stock fluid density, p, and volume, V:

m(z,t) = p(x, t)V(x,t). (4.10)

Similarly, the force term may be expressed as a product of pressure and area, A:

F(x,t) = P(z,t)A(z,t). (4.11)

Combining the above equations, we have

aQ(z, t)v(z, t)A(x,t) = p(x, t)V (z, t)a(z, t) + p(z, t)V(x,t)g(z, t). (4.12)

Taking both V and A to be unit values, and combining the formula above with the
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definition of flux, we obtain
av?(z,t) = a(z,t) + g(x,t). (4.13)

Defining gravity allows for an expression of the potential energy of the market, allowing
us to analyze the degree to which energy is conserved. As with momentum, the degree to
which conservation is obtained may provide utility in sensing abnormal market events. We

may define the potential energy of a particular stock as

E(t) = ppi(t), )g(pr(t), )pe(t) (4.14)

where py is the price of stock k. The average potential energy in a particular price interval

[x1, x9] can therefore be defined as

EP (). (4.15)

k :pk(t)€[$1,$2]

We likewise define the kinetic energy of the stock, assumed to have unit mass as

EF (1) = %vg(t). (4.16)

Consequently, we can quantify the kinetic energy of the price interval as

E(K)(x,t):N(i 5 > BP@). (4.17)

k:pg(t)Elx1,z2]

Total energy at this price interval may therefore be specified as
E(x,t) = B (2, t) + E®)(z,1). (4.18)

Applying the Euler energy conservation equation in one dimension, and assuming that
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energy, density, and velocity are all differentiable, we thus have

OE(x,t) 0 _
—a + g((E(x, t)+ P(x,t))v(z,t)) =0 Vz,t > 0. (4.19)

The complete model consists of three stochastic partial differential equations representing
the conservation of mass, momentum, and energy principles. The following subsection details

how we fit the model to data from the short squeeze and flash crash.

4.3.2.1 Data

The Data For analysis of the Gamestop short squeeze, we use minute-by-minute price
data collected from Yahoo! Finance for 4494 stocks listed on US exchanges. Each stock was
included only if data were available for at least 75% of the period from January 21 through
January 29, 2021, resulting in an effective sample size of 1690 stocks. When data for a
particular minute was unavailable, we imputed the price from the most recently available
price. Due to the sparsity of stocks with prices over $100, we analyze only those below this
threshold. We obtain similar data for the flash crash and are left with an effective sample
size of 2853 stocks following the same data-cleaning procedure.

We use the Pushshift Reddit dataset to obtain all available WallStreetBets comments
during market hours from January 21 through 29 [11]. We exclude comments that have been
deleted or removed, contain URLs, or were authored by the AutoModerator, an automated
moderation tool. We further pre-process the comments by substituting usernames with
‘@Quser’, cleaning the text of escape sequences, and converting HTML entities to their re-
spective characters. The dataset contains approximately 1.8 million comments made during

market hours.

Discretization and Fitting We apply the following discretizing and fitting approach for
parameter estimation. A resolution of $1 and 1 minute is applied. Consistent with [5], a

linear regression model is fitted relating observed acceleration to squared velocity, estimating
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gravity for a price/time combination of these variables. We have
a(z,t) = —g(z,£) + fav(z, 1) + o(z, Ve, (4.20)

where € ~ N(0, 1) is an error term. To estimate g(x,t), the regression uses calculated values
for a and v? in the 3 x 3 grid of prices {(z;,t;) 11 € {x — 2,2 — 1,z},j € {t —2,t — 1,t}}.

We define a series g(t) to be the external acceleration from the perspective of stock k:

gr(t) = g(z,t), pr(t) € S (4.21)

where S, is the discretized price section containing x. This highlights the applicability of
the macroscopic model to phenomena on lower scales. Individual stocks’ price changes can

be contextualized within the broader macroscopic environment.

Parameterizing the Energy Conservation Equation Although the conservation equa-
tion (4.19) right-hand side is zero at all points, a forcing term is required due to the discretiza-
tion error and uncertainty which disturb this equation. We therefore propose a stochastic

forcing term as follows:

OE(x,t) +ﬁ((E(:c,tHP(x,t))v(x,t)):z(:r,t) (4.22)

ot ox
de (fL’, t)

2(z,t) = Uz, t) + n(z, t)E(x,t) + o3(x, 1) Trdi (4.23)

Here, I(x,t) is a deterministic function representing the mean inflow or outflow of the
right-hand side of (4.22). The n(z,t) term is likewise a deterministic function for the
rate of reversion to the mean of the right-hand side. The Wj(z,t) term is a Brownian
sheet, a Gaussian stochastic process with mean 0 and covariance E (W3 (1, t1)W5(22,t2)) =
min(zy, x9) - min(ty, t2) [92]. The o3(x,t) term represents the volatility of the energy conser-

vation process.

90



4.3.2.2 Estimating Sentiment from Reddit Data

Introduction We apply two techniques to estimate the sentiment of WallStreetBets com-
ments. The first is VADER, a lexicon- and rule-based sentiment analysis tool designed
specifically for social media text [51]. We also apply a pre-tuned version of the RoOBERTa
transformer-based machine learning model [51, 62, 50]. We use the Twitter-RoBERTa-base-
sentiment model from CardiffNLP to estimate comment sentiment [50]. The RoBERTa-base
model is pre-trained on the English Wikipedia and BookCorpus datasets [62]. The Twitter-
RoBERTa-base model is then tuned on a set of approximately 58 million tweets [9]. Tasks
this model is trained for include sentiment analysis, irony detection, and hate speech detec-
tion, among others.

Although a RoBERTa model tuned on WallStreetBets comments would improve perfor-
mance, there were none available at the time of our analysis. We consider the RoBERTa-base
model tuned on X (formerly Twitter) data appropriate for this analysis as both Reddit and X
are social media websites and are thus likely to share commonalities. The similarity between
the X tuning data and our Reddit data is corroborated by our observation that, despite the
option of long-form comments on Reddit, approximately 89% of comments in our dataset
are within X’s original character limit of 140 characters. However, we acknowledge the lim-
itations of this approach. Despite both being social media websites, X and WallStreetBets
have unique cultures. WallStreetBets comments are often ironic, esoteric, and loaded with
forum-specific references and inside jokes. The model may therefore misclassify some com-
ments from WallStreetBets. Further analysis may be required to both evaluate the model’s
accuracy on WallStreetBets comments and, if required, tune a model for use on WallStreet-
Bets comments. The following subsections detail how comment sentiment is estimated and

the forecasting procedure.

Sentiment Estimation using VADER The VADER sentiment package returns a nor-

malized, weighted composite score for each comment’s sentiment between 1 (most positive)
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and -1 (most negative). We denote the sentiment score of comment ¢ as 5; and the time
the comment was posted by t;. We construct a minute-by-minute estimate of the overall
sentiment of the WallStreetBets forum by calculating the mean sentiment of all comments
posted in each minute. We denote the average sentiment at minute ¢, given by Syvapgr(t),

to be

1
. . A 5. 4.24
vADER (1) {i:t;et,t+1)} i:gi%_H) | |

Sentiment Estimation using the Twitter-RoBERTa-base Sentiment Model The
Twitter-RoBERTa-base model for sentiment analysis outputs values corresponding to the
labels negative, neutral, and positive. Denoting n; and p; to be the softmax transformations
of the negative and positive output values for comment i, respectively, we estimate the

average sentiment at minute ¢, denoted by SioprrTa(t), to be

1
SroBERTa(t) = T—— Pi — ). 4.25
Q |{z:ti€[t,t+1)}!.AZ ( ) (4.25)
iitielt,t+1)

Forecasting Comment Sentiment We use the Bayesian time series forecasting and in-
ference package Orbit to predict the WallStreetBets comment sentiment estimations [70]. To
construct a smaller set of regressors from the investor impatience field, we take the average
investor impatience across price subsets. We choose the price interval of $2 to $30, as these
price sections generally contain at least 10 to 15 stocks per dollar. We construct four average
investor impatience series, denoted by g;(t),7 € {1,2,3,4} and defined as
7

Y g@+T(—1)+4t), i€{1,234}. (4.26)

On each trading day from January 21 through 29, we apply Orbit’s BackTester method
on the Damped Local Trend (DLT) model using an expanding window with a linear global

trend, minimum training window length of 120 minutes, a forecast length of 30 minutes, and
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an increment length of 30 minutes. The number of samples for each model fit is 500. We use
the symmetric mean absolute percentage error (SMAPE) as the error metric, since Orbit’s
models outperform in terms of this metric compared to other candidate time series models
[70]. For each sentiment metric and each trading day, two models are fitted: one DLT model
for the sentiment metric, and one using the investor impatience series as regressors for the

sentiment metric.

4.4 Results and Discussion

4.4.1 Introduction

We first qualitatively analyze the investor impatience force across the GameStop short
squeeze and flash crash. A macroscopic perspective is applied to notable days during these
events to demonstrate the utility of the model’s scale and comment on the model’s poten-
tial use cases. This is followed by contextualizing individual stocks’ price action during the
short squeeze to show applicability of the model to smaller scales. We also demonstrate the
potential for the model to serve as a sensor of market abnormalities via the conservation of
energy equation parameters during the flash crash. Lastly, we present results from sentiment

forecasting to quantitatively confirm the model is capable of detecting market abnormalities.

4.4.2 Macroscopic Investor Impatience

Figure 4.1 below shows the investor impatience field for January 25 during the short squeeze.
Also plotted are the prices of three meme stocks of interest: AMC Entertainment Holdings
Inc. ($AMC), Bed Bath & Beyond ($BBBY), and Eastman Kodak Company ($KODK).
We note that the color scale limits have been adjusted for visual aid due to the presence
of outliers. Meme stocks saw large price increases before sustaining sharp declines begin-
ning around 10:45am. The investor impatience variable captures the sharp mid-morning

drawdown of the meme stocks. The vertical striations of color display unity of price action
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across multiple price sections, demonstrating the model’s ability to capture market-wide
phenomena.

The equivalent graph for during the flash crash is shown in Figure 4.2 below, with the crash
onset highlighted by the green dashed line. Similar color patterns are observed. Notably, a
presence of wave-like negative investor impatience striations are observed prior to the onset
of the crash. This corroborates the findings of [5], which indicates the model variables may
be used as sensors of abnormal market activity.

Figure 4.3 below shows the investor impatience force during January 28, as well as the
aforementioned stocks’ prices. Once again, we see the presence of negative investor impa-
tience values throughout the drawdown phases.

These figures indicate potential applications of this model to hedging and regulation. The
unification of investor impatience across price sections appears to occur more strongly during
drawdowns than rallies. This supports the empirical observation that correlations between
equities are much greater for downside moves than upside moves [6]. One may therefore use
historical estimates of investor impatience to inform portfolio construction. Furthermore, the
ability of the model to act as a sensor for market abnormalities may be used by regulators
within a broader crash detection framework to prophylactically restrict a crashing market.

However, it is yet to be seen whether broader and persistent external influences on markets
can be captured by investor impatience. Economic and political contexts patently influence
market prices on time scales beyond those analyzed here, warranting further investigation.
Attribution of external forces, too, should be studied to determine the efficacy of the model
in capturing varied market phenomena.

We explore the meme stocks’ positions within the investor impatience field in the following

subsection.
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Heatmap of Investor Impatience for Stock Price Intervals
January 25, 2021
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Figure 4.1: Investor Impatience Heatmap and Prices of $AMC, $BBBY, and $KODK for
January 25, 2021
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Figure 4.2: Investor Impatience for All Stocks during the Flash Crash
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Heatmap of Investor Impatience for Stock Price Intervals
January 28, 2021
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Figure 4.3: Investor Impatience Heatmap and Prices of $AMC, $BBBY, and $KODK for
January 28, 2021

4.4.3 Microscopic Investor Impatience

We now examine the application of the model to individual stocks. Figures 4.4 through 4.6
below show the price, traded volume, and investor impatience force (i.e. gx(t)) for Bed Bath
& Beyond, AMC Entertainment Holdings Inc., and Eastman Kodak Company on January
28. Also plotted is the 10-minute rolling average of investor impatience, for clarity. We note
that GameStop’s price was generally above $100 and is thus excluded. For all three stocks,
considerable negative investor impatience is observed during the morning drawdown.

Figure 4.7 below displays the investor impatience and conservation of energy equation
parameters during the flash crash. Again, the rolling 10-minute average of investor impa-
tience is plotted. There is not only negative investor impatience prior to the crash, but also
a noticeable increase in the energy conservation volatility term. These indicate this system
may be used for detecting abnormalities in markets.

These figures also reveal how one may contextualize the price action of individual stocks

within the investor impatience field to “decompose” a stock’s price action into components
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of market-wide external force and idiosyncratic action. Such an approach may be applicable
to hedging. A stock with positive acceleration during a negative investor impatience envi-
ronment (and vice versa) may have implications for portfolio diversification, particularly in

market phenomena that impact a particular subset of traded assets.

BBBY Price, Volumes, and Investor Impatience for January 28

Price ($)

1e6

E=S

Stock Volume
381

P PP S SN ARSI TR |

Investor Impatience
= 10-min Moving Average

Investor Impatience
(=]
(=]

10:00 11:00 12:00 13:00 14:00 15:00 16:00

Figure 4.4: Bed Bath & Beyond ($BBBY) Price, Volume, and Investor Impatience for
January 28, 2021
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AMC Price, Volumes, and Investor Impatience for January 28

B

Price ($)
&

=
(=

1e8
1.0

0.5

Stock Volume

0.025

0.000

Investor Impatience
= 10-min Moving Average

-0.025

Investar Impatience

10:00 11:00 12:00 13:00 14:00 15:00 16:00

Figure 4.5: AMC Entertainment Holdings, Inc. ($AMC) Price, Volume, and Investor
Impatience for January 28, 2021
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KODK Price, Volumes, and Investor Impatience for January 28
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Figure 4.6: Eastman Kodak Company (3KODK) Price, Volume, and Investor Impatience
for January 28, 2021
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Conservation of Energy Equation Fitted Parameters, $20 - $21 Stocks
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Figure 4.7: Investor Impatience and Conservation of Energy Parameters for $20 Stocks
during the Flash Crash

4.4.4 Sentiment Forecasting

Table 4.1 below shows the out-of-sample SMAPE metric percentage improvement using the
investor impatience regressors for each trading date using both sentiment models. Inclusion

of the investor impatience regressors decreases the prediction error in five of seven days for
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both estimates of sentiment, although performance is superior for the Twitter-RoBERTa-
base estimates. These results indicate the model parameters capture external phenomena

that may have market impact, such as the role of investor sentiment in the short squeeze.

Sentiment Estimation Method

Trading Day VADER | Twitter-RoBERTa-base

January 21, 2021 | -1.36% -1.45%

January 22, 2021 | -1.85% 2.38%

January 25, 2021 | -5.49% -4.18%

January 26, 2021 | -5.52% -0.37%

January 27, 2021 | 2.61% -1.60%

January 28, 2021 | 8.99% 1.42%

January 29, 2021 | -1.30% -6.06%

Average -0.56% | -1.41%

Table 4.1: SMAPE Prediction Error Change from Including Investor Impatience Regressors
during the GameStop Short Squeeze

4.5 Conclusions and Future Work

We have estimated external forces on equity markets under a physics-based macroscopic
model. We fitted the investor impatience force, which is conceptually similar to the gravita-
tional force, and the conservation of energy equation, analyzing them alongside a selection
of stocks that exhibited abnormal behavior during the GameStop short squeeze. Our results
indicate this model captures a degree of investor sentiment during this event and can be used
as a sensor of abnormal market activity. The latter point is supported by our qualitative
analysis of investor impatience and the energy conservation equation during the flash crash.
Furthermore, the comparable results across contrasting market events indicates the ability of

the model to respond to a potential multitude of external influences. Multiple future avenues
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of research are presented by these findings. Naturally, future work may evaluate the investor
impatience variable and energy equation as predictive tools of market crashes. Similar anal-
yses may be conducted on fixed income or cryptocurrency markets. Further analysis on the
potential hedging capabilities of various portfolios from an investor impatience perspective

is also warranted.
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CHAPTER 5

Conclusion

The challenge of making the right long-term investments in financial markets stems from the
complexity of not only the investor’s desires and financial situation, but also the markets
themselves. This dissertation reduces the complexity from both such sources. Other GBWM
models have lacked key elements of realistic lifetime goal-setting, including retirement con-
siderations and a connection between income and the market at large. The first part of
this dissertation introduces a model which addresses such considerations and beyond. We
solve this model for a hypothetical investor and demonstrate the quantitative and qualita-
tive difference in their optimal strategy as their situation changes. The second part of this
dissertation presents a reinforcement learning approach to GBWM that addresses recession
risk and uncertain goal times. The model demonstrates sensitivity to both of these factors,
providing intuitive recommendations for investment and goal contributions. The final part
of this dissertation works to measure external forces on financial markets by relating such
forces to the physical phenomenon of gravity. Within a fluid dynamics model, we measure
these forces using the conservation of energy principle, represented as a stochastic PDE.
We validate the model with minute-by-minute stock and forum comment data during the
GameStop short squeeze, as well as a separate study on the flash crash.

While this research has made progress towards the understanding of, and decision-making
within, financial markets, there are multiple natural extensions. Refinements to the GBWM

model in Chapter 2 can be made in a few areas. Nuances in tax codes and retirement
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account withdrawals are not yet addressed, nor the spending within the post-retirement
phase of life. In addition to these, incorporating market regimes such as recessions would be
useful model improvements. For additional realism, the assumption of geometric Brownian
motions underlying all processes could be relaxed in future research. The model presented
in Chapter 3 can be expanded to a more comprehensive framework, incorporating elements
from Chapter 2 and other complexities. For Chapter 4, extensions may include studies
of other markets, such as those of fixed-income or cryptocurrency. Synthesis of the ideas
presented in this dissertation may include exploring optimal decision-making in the presence
of external forces on financial markets. The nonlinearities expected under exogenous market

impacts may provide insights into investment strategy for risk-averse investors.
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APPENDIX A

Finite Difference Approximation of the Value

Function

A.1 Introduction

Prior to applying the shape-preserving Chebyshev polynomials, a finite difference approach
was tried, using an Euler scheme to approximate the value function. For completeness, this
appendix details the method used despite its application being unsuccessful.

Issues arose in maintaining concavity of the value function estimates in successive time
steps. We expect this is due to a combination of numerical error and the value function
shape. For many states in which maximal future utility is all but guaranteed, such as high

Xp and Xy values for moderate income levels, the portfolio-dependent derivatives approach

9*F
0xX?2,

zero. The derivative estimate becomes positive at multiple points, rendering the problem
nonconcave. This led to abnormal portfolio recommendations. Attempts to smooth the value
function or enforce concavity in the diagonals of the value function Hessian (either within
or after the policy iteration) did not result in sensible portfolios.

The following subsections detail the finite difference discretization and policy iteration

procedure.
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A.1.1 Discretization

The state space is discretized into a uniform mesh. The set of states in each program, X,

k=1,2,..., K can be defined with:

t = (0,2, 20, ..., N,A (A1)
P =[0,Ap,2Ap, ..., NpAp|" (A.2)
R = [0, AR, 2Ag, ..., NpAg]" (A.3)

I=1[0,A7,2A;, ..., N/ AfT (A.4)

Xy = {(t,Xp,XR,X[) g <t<tptet, Xpe P, XgpeR,X; GI}, k=1,2,..., K
(A.5)

(A.6)

where: N;, ¢ = t, Xp, Xg, X; represents the number of discretized points for process i;
A >0t etfork=1,2,...,K—1;and (N, + 1)A; = tk.
For notational clarity, we include each component of the financial state X as a sepa-

rate input to the value functions: F(t, Xp, Xg, X;). Derivatives of the value functions are

106



approximated using an Euler scheme as follows, for (t, Xp, Xg, X;) € X, k=1,2, ..., K.

OF(t, Xp, X, X1) _ Fp(t + Ay, Xp, Xg, X1) — Fi(t, Xp, Xg, X7)

A.
ot A, (A7)
aFk<t7 XPJXR7 XI) Fk<t7 XP + AP; XR7 XI) - Fk(t7XP7XR7XI)
. (A3)
8XP AP
aFk(ta XP7 XR7 X]) Fk(ta XP7 XR + AR7 XI) - Fk(ta XPa XR; XI)
~ (A.9)
8XR AR
OF(t, Xp, Xr, X1) _ Fi(t, Xp, Xp, X1 + Ap) — Fi(t, Xp, Xg, X;)
~ (A.10)
8X] AI
82Fk(t7XP7XR7XI> ~ Fk(t,XP—AP7XR,X])—2Fk(t,XP,XR,X[)+Fk(t,XP+AP,XR,X[)
0X? - A?
(A.11)
82Fk(taXP7XR7XI> —~ Fk(taXanR_AR7XI)_2Fk<t)XP7XR7XI)+Fk(taXP7XR+AR7XI)
X3 - AZ,
(A.12)
82Fk(taXP7XRaXI) —~ Fk(taXanRaXI_AI)_2Fk‘(t7XPaXR7XI)+Fk‘(taXP7XRaXI+AI)
X2 - A?
(A.13)
0*F 1

~ Fp(t, X Ap, X Arp, X;)— F(t, Xp — Ap, X Ar, X
aXPaXR 4APAR< k(7 Pt P R+ Ry I) k‘(7 P P, R+ R, I)

(A.14)
- Fk(t7XP + AP)XR - ARJXI) + Fk(taXP - A1:’7)(1% - ARJXI))
(A.15)

0*F 1
OXpOX;  4ApA;

(Fk:(taXP + APaXRaXI + AI) - Fk‘(t7XP - APaXRaXI + AI)
(A.16)

— Fp(t,Xp+ Ap, Xr, X1 — Ar) + Fie(t, Xp — Ap, Xg, X1 — A)))

(A7)

0*F 1 (
OXpOX;  4ARA;

Fk‘(tyvaXR + ARaXI + AI) - Fk‘(t7XPaXR - ARyXI + AI)
(A.18)

— Fp(t,Xp, Xp+ Ar, X1 — Ap) + Fi(t, Xp, Xr — Ag, X1 — A)))
(A.19)
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where we have the following boundary conditions to maintain nonpositive second derivative

approximations:

Fi(t,(Np + D)Ap, Xp, X7) = Fy(t, NpAp, X, X;)  tet,XpeR X;€1
Fu(t, Xp,(Ng+ 1)Ap, X7) = Fy(t, Xp, NpAr, X;)  tet,XpeP, X, €1
Fu(t, Xp, Xp, (N; + DA]) = Fo(t, Xp, Xp, NiA;)  tet, Xpe P, XpeR
Fi(t,—Ap, Xr, X1) = —Fu(t, Ap, Xp, X1) tet,XpeR, X €1
Fiu(t, Xp, —Ap, X1) = —Fu(t, Xp, Ag, X1) tet,XpeP, X, €l

Fk‘<t7XPaXRa_AI) = _Fk(taXanRaAI) le t7)(P € P7XR €eR

A.1.2 Policy Iteration

(A.20)
(A.21)
(A.22)
(A.23)
(A.24)

(A.25)

Algorithm 1 below details the policy iteration procedure applied to this finite difference

scheme.
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Algorithm 1 Policy Iteration

Require: €1,e5, N >0
k<+ K
while k£ > 1 do
Calculate G3(Xp, Xg, X;) for all Xp, Xg, X; via enumeration (taking G} =
maxg, ey Gr where G}, denotes the set of maximizers if non-unique)
Fiultys ) < e, )
t <t — At
while t > t;,_; do
01 < 00 > Norm of the HJB residual
Fk(t, o ) — Fk(t + Ay, )
(m(t), Ap(t), Ar(t), Aa(t)) <= (m(t + Ay), Ap(t + Ay), Ap(t + Ap), Ac(t + Ay))
while §; > ¢; do
09 ¢ 00 > Norm of value function change
n <+ 0
Fk@’ o ) — Fk(t + Ay, )
while n < N and §, > € do
Fnew(t, 'y %y ) — Eter(Fk(t+At; Xp, XR, X]), Fk(t, Xp, XR, X[), ftk; , )\p, /\R, )\0>

> per (A.26)
O < ||FneW(t7 R ) - F(t7 ) )HQ
Fk’(t7 ) ) A Fnew(ta KR )
n<n-+1
end while
A <+ Numerical derivatives of F(t,-,-,) > per (A.7) to (A.19)
Optimize 7, Ap, A, Ac > per (A.27)
0y < |[[HIBResidual(F(t,-, -, ), A, (7(t), Ap(t), Ar(t), Ac(t)), Uk)||2
end while
t—t— A\
end while
k+—k—1
end while
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We define the function Fi., as follows.

Fiter (F(t + A, Xp, Xg, X1), F(t, Xp, Xg, X1), Uk; T, Ap, AR, Ac)
a(F(t —+ At, Xp, XR, X[), F(t, Xp, XR, X[), ’Zj,k; T, )\p, /\R, >\0)
B(Xp, X, X157, Ap, AR, Ac)
B(Xp, Xr, X157, Ap, AR, Ac)
1 1

=r4+ —+ —((r(1 =77 1y) + 77w Xp + (1 — v1)ApX)
Ay Ap

1 1 1
+ A_R (,URXR -+ (1 + /’i))\RXI) + A—I(ILL[XI) + A_%DXJ%WTCPPW

1 1
+ —X2CRR + —XQC][
AZTH AT

a(F(t+At7XP7XR7XI)7F(t7XP7XR7XI)7ak;7T7>\P>)\Ra)\0)

F(t+ Ay Xp, Xp, Xp)
= ( bhar 2R I) + U ((1 — l/[))\cX[)

Ay
F(t,Xp+ Ap, Xg, X
+ (t, Xp A P Xn, Xi) ((r@—n"1y)+7"0) Xp+ (1 — v1)Ap X))
P
F(t,Xp. Xn+Ap, X F(t, Xp. Xp X; + A
+ X X + B Xo) (1rXR+ (1+ £)ArXr) + (X, X X I)/”XI
A A;
F(t, X Ap, Xp, X Ft,Xp—Ap, Xp, X
+ ( ) p+ Py ARy I) + ( y <X P P> AR, I)X%TTOPPTF
2A2
P
F(taXanR+AR7XI)+F(t7XP7XR_AR7XI> 2
* 2A2 XRCRR
R
1 F(t,XP,XR,X] +AI)2ZQF(t7XP7XR7XI — AI)XIQCII
1
XpXprlC
pXgrT Cpr (Fu(t,Xp+ Ap, Xp+ AR, X7) — Fi(t, Xp — Ap, Xp + AR, X7)
4ApAp
— Fi(t, Xp +Ap, Xgr — A, X1) + Fi(t, Xp — Ap, Xp — AR, X))
XpXmtC
M(Fk(t’XP + Ap, Xg, X1+ Ap) — Fp(t, Xp — Ap, X, X7 + A))
4ApA;
— Fp(t, Xp+ Ap, Xp, X; — Ap) + Fi(t, Xp — Ap, Xp, X1 — A)))
XprX1Crr

(Fy(t, Xp, Xp+ A, X1 + Ap) — Fi(t, Xp, Xp — Ar, X1 + Ap)
VYANYAN ;

— Fp(t, Xp, Xp+ Ar, X; — Ap) + Fi(t, Xp, X — Ap, X1 — A)))

(A.26)
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Policy improvement is performed pointwise for all (z1, z2, x3) € P x R x I using the following

convex programming formulation:

mnilm)\lze — ﬂ,k ((1 — I/[)(l — )\p — )\R>$3) — 8pﬁk(c) ((/J, — r]lN)Tmcl + (1 - V[))\}:ﬂ?g)
T, AP, AR
. 1
— 8RFk(C) ((1 + Ii))\Rl’g) - §8pp$%7TTCPP7T - 6pr1x27TTCpR
— ap[Fk(C)xll'g’iTTCp[

S.t. )\p+)\R§ 1,

iy <1,

(A.27)
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