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ABSTRACT

Financial markets are cornerstones of wealth planning. People turn to these markets to grow

their capital and achieve their financial goals. Many have retirement accounts for support at

the end of their careers. However, markets are complex, chaotic systems. The interconnected

economy means global events can, and do, impact local markets in complicated and surprising

fashions. This presents a challenge for long-term investors, for whom important lifestyle

tradeoffs must be made for their personal financial goals. To better assist investors in

navigating their financial decisions, this dissertation proposes models to not only help them

in decision-making for their unique objectives, but also in understanding the impact of

external influences on financial markets.

This dissertation contributes to the theory of decision-making in financial markets on

two levels: the investor with their unique objectives; and the behavior of the markets in

which said investor operates. The first part of this dissertation proposes a continuous-

time goals-based wealth management (GBWM) model to maximize the lifetime utility of an

investor with multiple competing goals. The model is flexible: the investor has a dedicated

retirement account, a market-correlated income, taxes, and consumption considerations.

The model consists of a sequence of partial differential equations relating the investor’s

financial situation at a given time to their optimal portfolio and income allocations. At

goal times, the amount contributed to the current goal is optimized, balancing the utility

from money withdrawn against expected future utility from money saved. We solve a series

of numerical experiments to demonstrate how the investor’s optimal decisions vary under

different financial circumstances.

The second part looks at GBWM from the perspective of risk management. We examine

decision-making in the presence of not only potential recessions, but also uncertainty in

an investor’s goal times. We present a deep reinforcement learning approach to solve the

portfolio and goal contribution problem for a client who invests in a recession-prone economy

and whose goals may be random in time. Comparing the recommended portfolio selection

and goal contributions reveals how these concerns can be managed practically.

While the first two dissertation components optimize decision-making, the final section ex-

amines market abnormalities, the other side of the equation. We develop sensors for external

ix



forces on financial markets at the macroscopic scale. Expanding on the AlShelahi and Saigal

(2018) macroscopic model of equity markets, we propose a fluid-dynamical model to charac-

terize market forces, decomposing them into internal and external impacts. We address this

by solving a system of stochastic nonlinear partial differential equations, calibrating them

with minute-by-minute data from two notable market events: the 2021 GameStop short

squeeze and the 2010 flash crash. The results indicate external forces can be detected.

x



CHAPTER 1

Introduction

Long-term decision-making in financial markets is challenging. The task of matching indi-

vidual financial goals with sensible investment decisions is a difficult one: not only must

the investor’s unique financial goals be accounted for, but also the inherent complexities of

financial markets. No event better encapsulates the difficulty of long-term investment than

the 2007-2008 Global Financial Crisis (GFC), of which the consequences for investors were

manifold. Unemployment rose dramatically and household wealth fell [24]. Adjusting to

declining incomes, households reduced consumption, increased personal saving rates, and

allocated to more conservative portfolios [24, 40]. Retirement behavior also reacted. Surveys

indicated many planned on retiring later due to the crisis [40]. More preretirement-age fami-

lies expressed an unwillingness to take any financial risk, in line with findings that investors’

risk aversion increased substantially following the crisis [35, 45].

The GFC affected traditional investment firms’ reputations as investment advisors [80].

It prompted discussions on the value of active management [80]. Robo-advising, a class

of automated investment services, emerged from the crisis as an attractive new investment

vehicle for retail investors [41]. Alongside, there has been considerable development in theory

and practice of GBWM, an investment philosophy which tailors financial decisions to the

individual and integrates naturally with robo-advising frameworks [41]. Robo-advising is a

burgeoning industry. The market is experiencing considerable growth and is responsible for

more than one trillion US dollars of assets under management [2].
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While GBWM and robo-advising have demonstrated economic viability and consumer de-

mand, the problem of truly personalized automated investment advice remains open. There

are, after all, as many investment scenarios as there are investors, but the literature does not

yet offer solutions that address the full range of relevant investment factors. In the first com-

ponent of this dissertation, we present a continuous dynamic programming GBWM model

of greater depth than previous models, covering a wider range of important decision-making

factors for any investor. Our approach is interpretable: the derivatives of the value functions

with respect to the investor’s financial situation and goal contributions elucidates the model’s

recommendations. In addition to a practical solution algorithm for this multidimensional

problem, we present a useful lower bound of the investor’s value-to-go to contextualize their

financial situation.

The second component of this dissertation uses deep reinforcement learning to solve a

GBWM problem that, although relatively simple, builds on the use of reinforcement learn-

ing in the GBWM literature and complements the features of the continuous dynamic pro-

gramming model. We examine potential concerns regarding recession risk and goal-time

uncertainty in a sequential goal context, optimizing goal contributions and portfolio allo-

cations. The efficacy of both models motivates a combination of their considerations and

recommendations within a broader reinforcement learning approach in future.

The bursting of the United States housing bubble during the GFC demonstrates the

inseparability of wealth planning and detecting market abnormalities. A similar story is seen

in the COVID-19 pandemic: the now-globalized economy is vulnerable to spillover effects in

times of crisis [67, 56]. Beyond macroeconomic catalysts of financial disaster, advancements

in financial technology have demonstrated the occasional exploitability of markets. The

2010 flash crash is one example: toxic order flow in the high-frequency domain is a plausible

explanation for the crash [37]. More recent is the 2021 GameStop short squeeze, in which

users of the social media site Reddit instigated a rally in the GameStop stock [61]. These

events highlight the effects of external impacts on financial markets and the value of detecting

2



them for understanding market mechanics.

As described in [4], physics has served an important role in the development of financial

and economic theory. Statistical mechanics, in its concern with complex systems of interact-

ing entities, has found utility in a range of financial models [91, 101]. In the third component

of this dissertation, our approach is to use statistical mechanics to model external forces on

financial markets. Developing on prior work analyzing markets under a macroscopic fluid

dynamics description, we develop a system of equations to detect external market forces on

the minute-by-minute scale. We validate the system using data from the flash crash and

GameStop short squeeze.

1.1 Summary of Contributions

The dissertation is comprised of three manuscripts. Chapter 2 solves the GBWM problem

for an investor with multiple goals, a retirement account, and stochastic income, maximizing

their expected lifetime utility. We demonstrate that the investor’s optimal decisions and

expected future utility may be obtained by solving a series of optimal control problems,

the solutions which may each be represented as a Hamilton-Jacobi-Bellman (HJB) partial

differential equation (PDE). We solve a series of discretized versions of the problem under

different parameterizations to demonstrate not only the flexibility of our approach, but also

how the optimal decisions are affected by the investor’s financial situation.

Chapter 3 solves a GBWM problem for an investor with multiple competing goals in

which the goal times are uncertain and the economy is prone to occasional recessions. We

demonstrate how the investor’s portfolio allocations and goal contributions are affected by

these considerations by parameterizing a deep reinforcement learning algorithm with a range

of investment scenarios.

In Chapter 4, we expand the model in [5] to include an additional variable, gravity, which

we connect to external forces on financial markets. We incorporate the associated stochastic

3



partial differential equation into the model. For both the 2021 GameStop short squeeze and

the 2010 flash crash, we solve the model on minute-by-minute stock data to demonstrate

the model’s efficacy. We use sentiment data from social media comments during the short

squeeze to further validate the model.

All three chapters are presented in a scientific format, each sectioned by the introduction,

methods, results, and conclusions. Chapter 5 concludes the dissertation, summarizing the

results and suggesting future research directions.

4



CHAPTER 2

Robo-Advising: Optimal Goals-Based Wealth

and Retirement Planning

2.1 Introduction

Robo-advising is a rapidly developing class of online services using algorithms to manage

customer investment portfolios and provide financial advice [41]. A client provides relevant

information, such as their wealth, investment goals, and risk tolerance. The advisor uses this

information, in addition to market analysis, to then synthesize investment recommendations

which they automatically implement and manage [39].

The genesis of retail robo-advising, with companies Betterment and Wealthfront, closely

followed the 2008 financial crisis [41]. The industry has since experienced rapid growth:

Figure 2.1 projects assets under management (AUM) of over US$2 trillion in 2025 [2]. The

concomitant growth in the number of robo-advising clients has resulted in approximately 31

million users of robo-advising services as of 2023, more than triple that from even four years

ago [2].

The potential benefits of robo-advising are manifold, with perhaps the most attractive

being the lower fees in comparison to human advisors. A typical fee for a human advisor

may be up to 2% of AUM, while robo-advisors commonly charge much less, at about 0%

to 0.5% [23, 41]. Furthermore, robo-advisors can benefit less well-off investors. Minimum

balances required to invest can be less of a barrier for robo-advising, as human advisors may

5



Figure 2.1: Forecasted Assets Under Management of Robo-Advisors. Reproduced from [2].

require a much higher minimum investment for a new client [41].

It is worth noting that, while robo-advising may appear in opposition to human advisors

at first glance, various financial firms offer hybrid investment options in which only part of

the investment process is automated and the client maintains the ability to consult a financial

advisor [41]. Indeed, many benefits of human advisors, such as the ability to empathize with

a client’s circumstances and assist in improving the client’s financial literacy are (currently)

beyond robo-advising.

Goals-based wealth management (GBWM) is an investment framework that focuses on

helping a client achieve consumption goals. Under GBWM, a client provides their consump-

tion targets, investment horizon, and relative preferences, among other factors, which a

portfolio manager uses to construct a strategy to best achieve the client’s goals [17]. Funda-

mentally, GBWM is a behavioral finance undertaking that relies on Kahneman and Tversky’s

celebrated prospect theory which brings psychological considerations to finance [52]. Thaler

6



introduced the concept of mental accounting by which investors mentally partition their

portfolios, each with a distinct objective and risk tolerance [86]. Building on these insights,

Shefrin and Statman develop behavioral portfolio theory, which provides insight on how in-

vestors can have different risk-return preferences for different goals. Unifying behavioral

finance and modern portfolio theory into a mental accounting (i.e. goal-based portfolio)

framework, [26] catalyzed the use of GBWM in the wealth management industry [16, 66].

In this research, we consider a client whose portfolio is managed from the beginning of

their career. The client approaches the advisor with a set of consumption goals at particular

times, for which they receive some utility for contributing towards. The goals are such that

the investor receives utility even if the target consumption is only partially met. Natural

examples of such goals include a new car or home for which some, but not all, utility is

obtained if less expensive options are purchased. The client also receives utility for immediate

consumption of the salary they choose not to invest. In a similar fashion to the consumption

goals, the client also has a retirement goal, representing the amount the client would feel

comfortable retiring with at the end of their career. In service of this goal, the client has

a retirement account separate from their investment portfolio to which they may allocate

a proportion of their salary, matched by their employer to some degree. The investment

portfolio may be used to satisfy any goal, including the retirement goal. However, the

retirement account may be used only to satisfy the retirement goal. The client must, at

any time, make two decisions: how to allocate their portfolio funds, and how to allocate

their income between their investment portfolio, their retirement account, and immediate

consumption. At each of the client’s goal times, another decision is made of how much of

their portfolio to withdraw towards the current goal at, potentially, the expense of future

goals.

Our approach to maximize the investor’s expected discounted future lifetime utility in-

volves formulating continuous-time solutions to a series of stochastic dynamic programs. We

subsequently calculate solutions to discrete-time approximations of these programs. We use

7



correlated geometric Brownian motions to represent the risky assets to which the investment

portfolio may be allocated, the retirement account asset, and the client’s income. At the

time of each goal, a convex optimization problem is solved to balance the goal contribution

with future expected utility.

We conduct an array of experiments to examine how the optimal investment strategy

varies with the client’s preferences and circumstances, including the structure of their com-

pensation, their employer retirement contribution, or expected salary growth. In our setting,

the client has two intermediate consumption goals in addition to their retirement goal. Our

results demonstrate an intuitive set of investor behaviors. Portfolio withdrawals at goal

deadlines are affected by the investor’s retirement balance and income level, and are sensi-

tive to market-income correlation. Investors also have distinct income allocation decisions

leading up to, and directly after, goal deadlines. Risk-aversion close to the investor’s target

retirement value is reflected in the optimal portfolio and becomes more pronounced closer

to retirement.

In addition to introducing an expanded decision-making framework for sequential goals,

we contribute an effective, concavity-preserving discrete-time solution approach for our multi-

dimensional PDE. We also present a useful lower bound on the investor’s value, representing

the expected utility of a disengaged investor, to contextualize the value of optimal decision-

making.

2.2 Related Works

Our work adds to the GBWM literature by contributing to continuous-time stochastic dy-

namic programming methods for sequential goals. In comparison with previous studies, we

incorporate separate processes for a retirement account and the investor’s income, enabling

a richer analysis of decision-making pertinent to the investor’s lifetime utility. We provide

here a summary of relevant literature.
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In some cases, particularly with a single consumption goal, explicit solutions for port-

folio allocations may be obtained from solving a continuous-time PDE. Examples include

Merton’s work on portfolio selection under uncertainty, Samuelson’s work on lifetime port-

folio selection, and Browne’s work including forced withdrawal of funds [68, 76, 15]. Other

approaches use martingale methods pioneered by Cox and Huang [25]. Wang et al., for ex-

ample, use a martingale approach to minimize the wealth required for an investor to achieve

their goals with a given probability of success [94].

Discrete-time methods for approximation can be used where continuous-time analytical

solutions to GBWM problems cannot be found. Das et al. uses a discrete-time dynamic

programming algorithm to maximize the probability of an investor attaining their desired

wealth level after a certain time [27]. This framework is extended in [28] to account for

multiple competing goals. Capponi and Zhang [21] proposes a continous-time method for

maximizing the weighted fundedness of a client’s goals, conducting a series of comparative

statics experiments using a discrete-time approximation.

The rest of the paper is as follows. Section 2.3 details the problem formulation, continuous-

and discrete-time solutions, and the parameterizations used for our numerical experiments.

The results from, and discussion of, these experiments follow in Section 2.4. Conclusions are

given in Section 2.5.

2.3 Methods

The methodology used in this research is structured into four sections. In Section 2.3.1, we

specify the problem formulation. We then describe continuous-time solutions to the problem

in Section 2.3.2 before detailing a numerical solution procedure for the discrete-time case in

Section 2.3.3. Section 2.3.4 presents a detailed description of our numerical experiments.
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2.3.1 Formulation

2.3.1.1 The Market and Investor

The system consists of the following components. We have N risky assets with values at

time t ∈ [0, T ] of S(t) = [S1(t), S2(t), ..., SN(t)]
T ∈ RN

+ into which the portfolio funds,

XP (t) ∈ R≥0, may be allocated with weights π(t) = [π1(t), π2(t), ..., πN(t)]
T ∈ [0, 1]N . Here,

we assume the investor adopts a long-only strategy, a natural condition for long-term wealth

planning. There also exists a risk-free asset which has the interest rate r ∈ R≥0 into which

the investor allocates a proportion of their portfolio value πB(t) ∈ [0, 1]. Therefore, portfolio

allocations are constrained so that
∑N

i=1 πi(t) + πB(t) = 1. The investor has a retirement

account of value XR(t) ∈ R≥0, allocated to a retirement fund SR(t), and a yearly income of

XI(t) ∈ R≥0. Collectively, denote by X(t) = [XP (t), XR(t), XI(t)]
T the vector of financial

(or spatial) states at time t.

We now specify how the investor chooses to allocate incoming cash. The investor invests

a proportion of their income λP (t) ∈ [0, 1] into their portfolio. A proportion of their income

is contributed to their retirement account, which is assumed to be employer-matched at

a factor of κ ≥ 0. We define this contribution to be λR(t) ∈ [0,min{1 − λP , γ}], where

γ ∈ [0, 1] is the maximum permissible contribution proportion. The remainder of the income

is consumed immediately at a rate of λC(t) = 1 − λP (t) − λR(t) ∈ [0, 1]. Collectively, we

denote the above decisions by λ(t) = (λP (t), λR(t), λC(t)).

We make the following tax assumptions. The investor’s income tax is constant at a rate

of νI ∈ [0, 1], which is exacted from portfolio contributions and consumption from income,

but not retirement contributions. Portfolio withdrawals are taxed at a rate of νP ∈ [0, 1]

regardless of the portfolio gains or losses. Although the liquidation of a retirement account

is typically tax-free, we account for potential retirement taxes in our model, denoted by

νR ∈ [0, 1], which are deducted at the terminal time. We assume that the investor’s adjusted

gross income is equal to their gross income for simplicity.
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The dependence between the processes is specified by the following covariance matrix in

SN+2
+ :

C = ΣΣT (2.1)

=


CPP CPR CPI

CT
PR CRR CRI

CT
PI CRI CII

 (2.2)

with CPP ∈ SN×N
+ , CPR ∈ RN , CPI ∈ RN , and CRR, CII , CRI ∈ R.

The risky assets, retirement account asset, and income are assumed to follow correlated

geometric Brownian motions, with dynamics

dSi(t) = µiSi(t)dt+ Si(t)σidW(t), i ∈ {1, 2, ..., N} (2.3)

dSR(t) = µRSR(t)dt+ SR(t)σRdW(t) (2.4)

dXI(t) = µIXI(t)dt+XI(t)σIdW(t) (2.5)

where W(t) ∈ RN+2 is an independent multidimensional Brownian motion, µi > r, i =

1, 2, ..., N are the drifts of the risky assets, µR > 0 and µI > 0 are the drifts of the retirement

and income processes, respectively, and σi is the corresponding row of Σ. We denote by µ

the vector of drifts of the risky assets, i.e. µ = [µ1, µ2, ..., µN ]
T ∈ RN , and denote by σP the

first N rows of Σ. The value of the risk-free asset, denoted by B, follows the dynamics

dB(t) = rB(t) dt. (2.6)
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We obtain the following portfolio and retirement account dynamics:

dXP (t) =
[
(1− νI)λP (t)XI(t) +

(
r(1− π(t)T1N) + π(t)Tµ

)
XP (t)

]
dt (2.7)

+XP (t)π(t)
TσPdW(t) (2.8)

dXR(t) = [(1 + κ)λR(t)XI(t) + µRXR(t)] dt+XR(t)σRdW(t). (2.9)

where 1N is the vector of ones of length N . This yields the following system:


dXP (t)

dXR(t)

dXI(t)

 =


r(1− π(t)T1N) + π(t)Tµ 0 (1− νI)λP

0 µR (1 + κ)λR

0 0 µI



XP (t)

XR(t)

XI(t)

 dt

+


XP (t)π(t)

T 0 0

0 XR(t) 0

0 0 XI(t)

ΣdW(t).

(2.10)

2.3.1.2 Goals

The investor has K goals, the last of which corresponds to their goal retirement wealth.

At each non-retirement goal time tk, for k = 1, ..., K − 1, the investor chooses to withdraw

Ḡk(X(tk)) ∈ [0, XP (tk)] from their portfolio towards their goal, contributing Gk(X(tk)) =

(1 − νP )Ḡk(X(tk)) post-tax. They obtain some utility uk(Gk(X(tk))) ∈ R≥0 from this

goal. Note that each goal may have a different utility function, enabling different goal

priorities and goal-specific utility profiles. For example, the investor may consider a home

purchase more important than a car purchase. For the retirement goal at time tK = T , the

investor liquidates their portfolio and retirement accounts, thus realizing (1 − νP )XP (T ) +

(1 − νR)XR(T ) in funding and obtaining uK((1 − νP )XP (T ) + (1 − νR)XR(T )) in utility.

Although there is no goal at time 0, we let t0 = 0 for notational convenience.

We require that each uk, for k = 1, ..., K, is a bounded concave function with ∂uk

∂Gk
→ 0

as Gk → ∞. At time t, the investor receives an instantaneous consumption utility of
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ũk ((1− νI)λC(t)XI(t)) for some bounded concave utility functions with ∂ũk(x)
∂x
→ 0 as x→∞

for each k = 1, ..., K. We also assume that all utilities are discounted continously at rate r

and have uk(0) = 0 and ũk(0) = 0 for all k = 1, ..., K.

2.3.1.3 Policy

We now formalize the client’s decision-making process. The goal is to obtain an optimal

policy, the best mapping from the investor’s financial situation to their feasible decisions. In

addition to the constraints specified in Section 2.3.1.1, we add a portfolio volatility maximum,

σmax, to limit the client’s risk exposure. We define the convex set of admissible policies across

the problem duration

A =
{
(π, λP , λR, λC) : π

T
1N ≤ 1, π ≥ 0, λP ∈ [0, 1],

λR ∈ [0, γ], λP + λR + λC = 1, πTCPPπ ≤ σ2
max

} (2.11)

⊂ RN+3 (2.12)

Denoting by X = [0, T )×R3
≥0 the domain of the investor’s financial situation throughout their

career, we define a policy to be an element of F(X ,A), i.e. the set of functions from X into

A, which is itself a subset of the vector space F(X ,RN+3), having the natural addition and

multiplication definitions. It is easy to see that F(X ,A) is convex under these definitions.

For policy a ∈ F(X ,A), denote the controls chosen under a by πa(t,X(t)), λaP (t,X(t)), etc.

For simplicity, we use πa(t) to refer to πa(t,X(t)), and likewise for λaP (t), λ
a
R(t), and λ

a
C(t).

The investor’s total expected lifetime utility, which we intend to maximize, can be ex-

pressed as

Ū = Ea⋆


K∑
k=1

∫ tk

tk−1

e−rtũk((1− νI)λa
⋆

C (t)XI(t))dt︸ ︷︷ ︸
discounted consumption utility between tk−1 and tk

+ e−rtkuk(Gk)︸ ︷︷ ︸
discounted goal k utility

 (2.13)

13



for the optimal policy, denoted by a⋆. Here, Ea refers to expectation under the policy a.

The following subsection details how the optimal policy a⋆ can be characterized via the

solution to an Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE).

2.3.2 Formulating Continuous-Time Solutions

We construct the value function as a representation of the total discounted expected future

utility for the investor in any given state under the optimal action. This value function plays

a key role in deriving the optimal policy a⋆. In the following subsections, we show the value

function can be represented as a HJB PDE.

2.3.2.1 The Value Function

We establish a terminal condition, VK+1 = 0, recognizing that the utility to gain post-

retirement is zero. To recursively define the value functions for goals k = 1, 2, ..., K, we

proceed as follows:

Vk(t,X(t)) = Ea⋆ [Uk(t,X(t)) | Ft] , tk−1 ≤ t < tk (2.14)

Uk(t,X(t)) =

∫ tk

t

e−r(s−t)ũk((1− νI)λa
⋆

C (s)XI(s)) ds+ e−r(tk−t)Φk(X(tk);Vk+1) (2.15)

where

Φk(X(tk);Vk+1) = max
Gk∈[0,(1−νP )XP (tk)]

[
uk(Gk) + Vk+1

(
tk,

[
XP (tk)−

Gk

1− νP
, XR(tk), XI(tk)

]T)]
.

(2.16)

and Ft is the natural filtration generated by W at time t. Here, Φk represents the optimal

value from balancing contribution to goal k and the remaining goals. Figure 2.2 below

demonstrates, for a problem with three goals, how the value functions are defined over

the time domain and how the Φk functions serve as terminal conditions for each dynamic
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Figure 2.2: Schematic Division of a 3-Goal Time Domain into Separate Value Functions

program.

We have that both Vk and Φk, k = 1, 2, ..., K are concave in the financial states as per

the following theorem.

Theorem 1. Vk(t, x) and Φk(x;Vk+1), k = 1, 2, ..., K are concave in x.

Proof. We prove the result inductively. Trivially, VK+1 = 0 is concave. Proving that

(Vk+1 concave =⇒ Φk concave) and (Φk concave =⇒ Vk concave) yields the result.

Suppose Vk+1 is concave, for some k = 1, 2, ..., K. For j = 1, 2, let x(j) be arbitrary

feasible states at time tk with respective optimal goal selections G
(1)
k and G

(2)
k such that, for

η ∈ [0, 1], x(3) ≜ ηx(1)+(1− η)x(2) ≥ 0. We have that G
(3)
k ≜ ηG

(1)
k +(1− η)G(2)

k is a feasible

contribution for x(3) as

ηG
(1)
k + (1− η)G(2)

k ≤ (1− νP )(ηx(1)P + (1− η)x(2)P ) (2.17)

= (1− νP )x(3)P . (2.18)
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Therefore,

ηΦk(x
(1);Vk+1) + (1− η)Φk(x

(2);Vk+1)

= ηuk(Ḡ
(1)
k ) + (1− η)uk(Ḡ(2)

k ) + ηVk+1

tk,[x(1)P −
Ḡ

(1)
k

1− νP
, x

(1)
R , x

(1)
I

]T
+ (1− η)Vk+1

tk,[x(2)P −
Ḡ

(2)
k

1− νP
, x

(2)
R , x

(2)
I

]T
(2.19)

≤ uk(Ḡ
(3)
k ) + Vk+1

tk,[x(3)P −
Ḡ

(3)
k

1− νP
, x

(3)
R , x

(3)
I

]T (2.20)

≤ Φk(x
(3);Vk+1), (2.21)

and thus Φk is concave. We now look to the value function. For fixed time t ∈ [tk−1, tk),

suppose we have two feasible financial states, x(1) and x(2). With a slight abuse of no-

tation, let the optimal policies over the duration [t, tk) for both states i ∈ {1, 2} be

a(i) =
(
π(i), λ

(i)
P , λ

(i)
R , λ

(i)
C

)
. Let, also, x(3) = ηx(1) + (1 − η)x(2) for some η ∈ [0, 1]. De-

fine a new control a(3) =
(
π(3), λ

(3)
P , λ

(3)
R , λ

(3)
C

)
such that

π(3) =
ηπ(1)X

(1)
P + (1− η)π(2)X

(2)
P

ηX
(1)
P + (1− η)X(2)

P

(2.22)

λ
(3)
P =

ηλ
(1)
P X

(1)
I + (1− η)λ(2)P X

(2)
I

ηX
(1)
I + (1− η)X(2)

I

(2.23)

λ
(3)
R =

ηλ
(1)
R X

(1)
I + (1− η)λ(2)R X

(2)
I

ηX
(1)
I + (1− η)X(2)

I

(2.24)

λ
(3)
C =

ηλ
(1)
C X

(1)
I + (1− η)λ(2)C X

(2)
I

ηX
(1)
I + (1− η)X(2)

I

(2.25)

where X(i), for i ∈ {1, 2, 3}, is the solution to (2.10) when controlled by a(i) from time t,

having started at x(i). It is easy to see that a(3) is a convex combination of a(1) and a(2)

and is therefore an admissible control for X(3). We also address the edge cases by requiring

X
(3)
P = 0 =⇒ π(3) = 0 and X

(3)
I = 0 =⇒ λ

(3)
P = 1− λ(3)R = 1− λ(3)C = 1. We then have the
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dynamics for i ∈ {1, 2} of

dX(i)(s) =


r(1− π(i)(s)T1N) + π(i)(s)Tµ 0 (1− νI)λ(i)P

0 µR (1 + κ)λ
(i)
R

0 0 µI

X(i)(s)dt (2.26)

+


X

(i)
P (s)π(i)(s)T 0 0

0 X
(i)
R (s) 0

0 0 X
(i)
I (s)

ΣdW(s) (2.27)

over t ≤ s < tk. Taking the convex combination of these dynamics, we obtain

d(ηX(1)(s) + (1− η)X(2)(s))

=


r(1− π(3)(s)T1N) + π(3)(s)Tµ 0 (1− νI)λ(3)P

0 µR (1 + κ)λ
(3)
R

0 0 µI

X(3)(s)dt

+


XP (s)

(3)π(3)(s)T 0 0

0 X
(3)
R (s) 0

0 0 X
(3)
I (s)

ΣdW(s)

= dX(3)(s)

(2.28)

We therefore have

X(3)(s) = ηX(1)(s) + (1− η)X(2)(s), t ≤ s < tk. (2.29)
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By the concavity of ũk and Φk, we have:

Uk(t,X
(3)(t)) =

∫ tk

t

e−r(s−t)ũk((1− νI)λ(3)C (s)X
(3)
I (s)) ds+ e−r(tk−t)Φk(X

(3)(tk);Vk+1)

(2.30)

=

∫ tk

t

e−r(s−t)ũk(η(1− νI)λ(1)C (s)X
(1)
I (s) + (1− η)(1− νI)λ(2)C (s)X

(2)
I (s)) ds

+ e−r(tk−t)Φk(ηX
(1)(tk) + (1− η)X(2)(tk);Vk+1)

(2.31)

≥ η

[∫ tk

t

e−r(s−t)ũk((1− νI)λ(1)C (s)X
(1)
I (s)) ds+ e−r(tk−t)Φk(X

(1)(tk);Vk+1)

]
+ (1− η)

[∫ tk

t

e−r(s−t)ũk((1− νI)λ(2)C (s)X
(2)
I (s)) ds+ e−r(tk−t)Φk(X

(2)(tk);Vk+1)

]
(2.32)

= ηU(t,X(1)(t)) + (1− η)U(t,X(2)(t)) (2.33)

As a(1) and a(2) are optimal, we have

V (t,X(3)(t)) ≥ ηV (t,X(1)(t)) + (1− η)V (t,X(2)(t)) (2.34)

and thus the value function is concave.

As time t determines the upcoming goal k, we denote

V (t,X) ≜ Vk̃(t)(t,X) (2.35)

k̃(t) = argmin
k
{t < tk} (2.36)

for notational simplicity.

The existence of a supremum of the value function is guaranteed as all utility functions
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are bounded above. This may be expressed as

sup
X
V (t,X) = sup

z
ũk̃(t)(z)

∫ tk

t

e−r(s−t) ds+ e−r(tk−t) sup
z
uk̃(t)(z)

+
K∑

j=k̃(t)+1

(
sup
z
ũj(z)

∫ tj

tj−1

e−r(s−t) ds+ e−r(tj−t) sup
z
uj(z)

) (2.37)

We may express the quality of each state relative to the best-case scenario with

ζ(t,X) =
V (t,X)

supX′ V (t,X ′)
∈ [0, 1], t ∈ [0, T ) (2.38)

This quantifies what proportion of the potential discounted future utility the investor is

expected to attain under optimal behavior.

The following subsection details how the HJB PDE is formulated from the value function

and subsequently solved.

2.3.2.2 Constructing the Hamilton-Jacobi-Bellman Partial Differential Equa-

tions

Our problem-solving approach is outlined as follows. Suppose, for problem k, we have solved

all problems from k+1 to K. In this case, we have knowledge of Φk(X(tk)) and can therefore

determine the optimal goal contribution, denoted by G⋆
k.

Assumption 1. There exists a series of C2 functions Fk : R4 → R, k = 1, 2, ..., K such that

Fk(t,X(t)) = Vk(t,X(t)), tk−1 ≤ t < tk (2.39)

with terminal condition

Fk(tk, X(tk)) = Φk(X(tk);Fk+1) (2.40)

We then have the following theorem.
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Theorem 2. Fk, k = 1, 2, ..., K as described satisfy the HJB equations

rFk(t,X(t)) =
∂Fk

∂t
+

∂Fk

∂XR(t)
(µRXR(t)) +

∂Fk

∂XI(t)
(µIXI(t))

+
1

2

∂2Fk

∂X2
R(t)

XR(t)
2CRR +

1

2

∂2Fk

∂X2
I (t)

XI(t)
2CII +

∂2Fk

∂XR(t)∂XI(t)
XR(t)XI(t)CRI

+ max
a∈F(X ,A)

H(t,X(t); a)

(HJB-PDE)

where

H(t,X(t); a) = ũk((1− νI)λaC(t)XI(t))

+
∂Fk

∂XP (t)
((r(1− πaT (t)1N) + πaT (t)µ)XP (t) + (1− νI)λaP (t)XI(t))

+
∂Fk

∂XR(t)
((1 + κ)λaR(t)XI(t)) +

1

2

∂2Fk

∂X2
P (t)

X2
P (t)π

aT (t)CPPπ
a(t)

+
∂2Fk

∂XP (t)∂XR(t)
XP (t)XR(t)π

aT (t)CPR +
∂2Fk

∂XP (t)∂XI(t)
XP (t)XI(t)π

aTCPI

(2.41)

Proof. For k = 1, 2, ..., K, applying Ito’s lemma to Fk results in

dFk(t,X(t); a⋆)

=

[
∂Fk

∂t
+

∂Fk

∂XP (t)
((r(1− πa⋆(t)T1N) + πa⋆(t)Tµ)XP (t) + (1− νI)λa

⋆

P (t)XI(t))

+
∂Fk

∂XR(t)
(µRXR(t) + (1 + κ)λa

⋆

R (t)XI(t)) +
∂Fk

∂XI(t)
(µIXI(t)) +

1

2

∂2Fk

∂X2
P (t)

XP (t)
2πa⋆(t)TCPPπ

a⋆(t)

+
1

2

∂2Fk

∂X2
R(t)

XR(t)
2CRR +

1

2

∂2Fk

∂X2
I (t)

XI(t)
2CII +

∂2Fk

∂XP (t)∂XR(t)
XP (t)XR(t)π

a⋆(t)TCPR

+
∂2Fk

∂XP (t)∂XI(t)
XP (t)XI(t)π

a⋆(t)TCPI +
∂2Fk

∂XR(t)∂XI(t)
XR(t)XI(t)CRI

]
dt

+


XP (t)π

a⋆(t)T 0 0

0 XR(t) 0

0 0 XI(t)

ΣdW(t)
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The recursive formulation of the value function obtains

Fk(t,X(t)) = Ea⋆

[∫ t̄

t

e−r(s−t)ũk((1− νI)λa
⋆

C (s)XI(s))ds+ e−r(t̄−t)Fk(t̄, X(t̄))

]
(2.42)

for tk−1 ≤ t < t̄ < tk and k = K, ..., 1. Multiplying the value function by e−rt and taking its

stochastic-differential form, we obtain the HJB formulation:

Ea⋆
[
e−rtũk((1− νI)λa

⋆

C (t)XI(t))dt+ d
(
e−rtFk(t,X(t))

)]
= 0 (2.43)

=⇒ Ea⋆
[
ũk((1− νI)λa

⋆

C (t)XI(t))dt+ dFk(t,X(t))
]
= rFk(t,X(t))dt (2.44)

for tk−1 ≤ t < tk and k = K, ..., 1. As the value function under optimal action is a martingale,

we obtain (HJB-PDE) [30].

The following subsection details the methods used for solving this problem in discrete

time.

2.3.3 Solving the Discrete-Time Case

In the absence of closed-form solutions to (HJB-PDE), a discrete-time solution to the problem

is required. The discrete-time approximation to the continuous-time solution takes the form

of a series of dynamic programs, each corresponding to a specific goal, which are solved in

reverse order. This involves solving for the optimal action and value function at uniformly

spaced times, progressing backward from retirement.

Each problem is solved with policy iteration. Our approach uses a Chebyshev polynomial

approximation to the value function at each such time. This is motivated and described in the

following subsection. In attempting to solve the program, a finite difference approximation

of the value function is also tried, unsuccessfully. This approach fails to maintain numerical

concavity of the value function. For completeness, the details of this implementation are

provided in Appendix A.1.
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2.3.3.1 Expanded Chebyshev Polynomial Approximation of the Value Function

Motivation Issues maintaining value function concavity in finite difference approaches

motivate the use of methods that guarantee concavity throughout the computation. Shape-

preserving dynamic programming is a framework to approximate the value function via an

interpolation that simultaneously enforces monotonicity and concavity [20]. Chebyshev poly-

nomials may be used as the basis for one such interpolation, and have been applied to

economic and financial optimal control problems [44].

Chebyshev Polynomials A polynomial approximation of Fk, k = 1, 2, ..., K, is motivated

by the Stone-Weierstrass Theorem, reproduced from [95]:

Theorem 3. (Stone-Weierstrass Theorem) If X is any compact space, let A be a subalgebra

of the algebra C(X) over the reals R with binary operations + and ×. Then, if A contains

the constant functions and separates the points of X (i.e., for any two distinct points x and

y of X, there is some function f in A such that f(x) ̸= f(y)), A is dense in C(X) equipped

with the uniform norm.

The set of Chebyshev polynomials defined over the problem’s spatial domain, expressed in

(2.56) below, provides such a subalgebra. The theorem thus motivates the use of Chebyshev

polynomial approximations of Fk, for k = 1, 2, ..., K.

We now describe our approach to using Chebyshev polynomials for approximation (and

interpolation) of the value function over the spatial states. The Chebyshev polynomials for

z ∈ [−1, 1] are defined as follows:

T0(z) = 1 (2.45)

T1(z) = z (2.46)

Tj+1(z) = 2xTj(z)− Tj−1(z), j = 1, 2, ... (2.47)

Figure 2.3 below visualizes the first five Chebyshev polynomials.
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Figure 2.3: The First Five Chebyshev Polynomials

We use a set of Chebyshev nodes scaled over the spatial domain [0, Pmax] × [0, Rmax] ×

[0, Imax], for some (Pmax, Rmax, Imax) sufficiently large to capture the range of investor

circumstance. For example, if uK admits a maximum, Rmax should be no less than

min{x : uK(x) = maxx′ uK(x
′)} to reveal how investor choices vary as their retirement

portfolio value approaches their target. The time domain is discretized uniformly with spac-

ing ∆t such that (tk mod ∆t) = 0 for all k = 1, 2, ..., K. This ensures a value function

estimation is guaranteed at each goal time, allowing for optimization of the goal contribu-

tions without interpolation in the time dimension. We partition the time steps into each

program with

T = {0,∆t, 2∆t, ..., tK} (2.48)

Tk = {t ∈ T | tk−1 ≤ t < tk} , k = 1, ..., K (2.49)

With a slight abuse of notation, denote by D = {P,R, I} the set of spatial dimensions

of the problem. For dimension D ∈ D, let mD ∈ N denote the number of Chebyshev nodes
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used for that dimension. Now, for D ∈ D, let

zD =
[
z
(1)
D , ..., z

(mD)
D

]T
∈ [−1, 1]mD , (2.50)

z
(i)
D = − cos

(
(2i− 1)π

2mD

)
, i = 1, ...,mD (2.51)

represent the Chebyshev nodes for each dimension. Scaling these to their respective domain

limits, we define, for D ∈ D,

yD =
[
y
(1)
D , ..., y

(mD)
D

]T
∈ [0, Dmax]

mD (2.52)

y
(i)
D =

(z
(i)
D + 1)(Dmax + 2δD)

2
− δD ∈ [0, Dmax], i = 1, ...,mD (2.53)

δD =
z
(1)
D + 1

−2z(1)D

Dmax (2.54)

thus ensuring that y
(1)
D = 0 and y

(mD)
D = Dmax. This construction yields the expanded

Chebyshev polynomial approximation, which has superior approximation qualities near

the end points [19]. Figure 2.4 below shows the positions of the Chebyshev nodes, i.e.

{(y1, y2, y3) | y1 ∈ yP , y2 ∈ yR, y3 ∈ yI}, for mP = mR = mI = 30, colored by the terminal

value function for the “baseline” investor described in Section 2.3.4.1.

For D ∈ D, let

TD
j (y) = Tj

(
2(y + δD)

Dmax + 2δD
− 1

)
, j = 0, 1, ... (2.55)

representing the Chebyshev polynomial evaluated after mapping state value y ∈ [0, Dmax] to

its corresponding value in [−1, 1].

Denote by dD ∈ N the dimension of the polynomial for state D ∈ D. A tensor product of

the univariate Chebyshev polynomials is taken to form a tensor product basis for functions

of the spatial dimensions, allowing the construction of the set of the Chebyshev polynomials
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Figure 2.4: Terminal Value Function at the Chebyshev Nodes for the Baseline Investor

over the spatial dimensions:

A =

{
dP∑
i=0

dR∑
j=0

dI∑
l=0

cjP jRjIT
P
jP

(XP )T
R
jR
(XR)T

I
jI
(XI)

∣∣ cjP jRjI ∈ R,

jP = 0, 1, ..., dP ; jR = 0, 1, ..., dR; jI = 0, 1, ..., dI}

(2.56)

Our value function approximation for goal k = 1, 2, ..., K and time t ∈ Tk can therefore be

parameterized by a set of coefficients ct ∈ RdP×dR×dI as follows:

F̂k(t,X; ct) =

dP∑
i=0

dR∑
j=0

dI∑
l=0

ctjP jRjI
T P
jP

(XP )T
R
jR
(XR)T

I
jI
(XI) t ∈ Tk (2.57)

ct =
{
ctjP jRjI

}
i=0,1,...,dP ; j=0,1,...,dR; l=0,1,...,dI

(2.58)

where F̂k is the value function approximation for goal k.

Policy Evaluation The policy evaluation step in the policy iteration involves optimizing

coefficients to solve (HJB-PDE). Given a policy â =
(
π̂, λ̂P , λ̂R, λ̂C

)
, the following least-
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squares approach is applied to minimize the norm of (HJB-PDE). This minimization is

enabled by the linearity of the value function and its derivatives in c. For brevity, we let

F̂k(c
t) denote the vectorized value function estimate at all spatial states in yP × yR × yI

and let the ∂DF̂k(c) notation represent partial derivatives.

minimize
c

∥∥∥∥∥ F̂+
k − F̂k(c)

∆t

− rF̂k(c) + ũk

(
(1− νI)λ̂C(t)XI(t)

)
+ ∂P F̂k(c)

(
(r(1− π̂T (t)1N) + π̂T (t)µ)XP (t) + (1− νI)λ̂P (t)XI(t)

)
+ ∂RF̂k(c)

(
µRXR(t) + (1 + κ)λ̂R(t)XI(t)

)
+ ∂IF̂k(c) (µIXI(t))

+
1

2
∂PP F̂k(c)XP (t)

2π̂T (t)CPP π̂(t) +
1

2
∂RRF̂k(c)XR(t)

2CRR +
1

2
∂IIF̂k(c)XI(t)

2CII

+ ∂PRF̂k(c)XP (t)XR(t)π̂
T (t)CPR + ∂PIF̂k(c)XP (t)XI(t)π̂

T (t)CPI

+∂RIF̂k(c)XR(t)XI(t)CRI

∥∥∥2
2

s.t. F̂k(c) ≥ 0

∂DF̂k(c) ≥ 0 D ∈ D

∂DDF̂k(c) ≤ 0 D ∈ D

F̂k(c)
∣∣∣
XP=XR=XI=0

= 0

(2.59)

where F̂+
k represents the vectorized value function estimate at time t + ∆t. Here, the first

set of conditions ensures nonnegativity of the value function estimate. The second set of

conditions ensures the value function estimate is nondecreasing. The third set of conditions

enforces concavity of the value function estimate in each spatial dimension. The final condi-

tion ensures the value-to-go is zero when the investor has no portfolio value, no retirement

value, and no income. We assume the constraints applied at the Chebyshev nodes are suf-

ficient to ensure nonnegativity, monotonicity, and concavity throughout the entire domain.

This problem has (dP +1)(dR+1)(dI+1) decision variables and 7(mPmRmI)+1 constraints.
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Policy Improvement Given an estimate of the value function, denoted by F̂k(c), the

policy improvement step can be performed by maximizing H in (HJB-PDE). This is

achieved through the following convex programming formulation, applied pointwise for all

(yP , yR, yI) ∈ yP × yR × yI :

minimize
π, λP , λR

− ũk ((1− νI)(1− λP − λR)yI)− ∂P F̂k(c)
(
(µ− r1N)

TπyP + (1− νI)λPyI
)

− ∂RF̂k(c) ((1 + κ)λRyI)−
1

2
∂PPy

2
Pπ

TCPPπ − ∂PRyPyRπ
TCPR

− ∂PIF̂k(c)yPyIπ
TCPI

s.t. λP + λR ≤ 1,

πT
1N ≤ 1,

λR ≤ γ,

πTCPPπ ≤ σ2
max,

π, λP , λR ≥ 0

(2.60)

2.3.3.2 Computational Complexity

We may express the computational complexity of our approach as

tK
∆t

(n (ξeval(dP , dR, dI ,mP ,mR,mI) +mPmRmIξimpr(N))) + (K − 1)mPmRmIξGC (2.61)

where n is the average number of policy iterations, ξeval(·) is the complexity of solving (2.59),

ξimpr(·) is the complexity of solving (2.60), and ξGC is the complexity of optimizing the goal

contribution at a single state.

In the following subsection, the parameters and utility functions used to solve the problem

are presented.
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2.3.4 Problem Parameterization

In this section, we present our numerical experiments. Our experiments begin with solving a

“baseline” case for a typical investor, followed by some comparative studies to measure the

sensitivity of the optimal decisions to the situations of both the investor and the market.

All of our experiments use mP = mR = mI = 30 and dP = dR = dI = 6 for the Chebyshev

polynomials.

2.3.4.1 The Baseline Investor

Our hypothetical client invests within the following context. Their income is taxed at a rate

of 15%. Half of their net pay is spent on necessities, resulting in νI = 0.575. We set a

portfolio tax of 15%, aligned with the Internal Revenue Service (IRS) capital gain tax rates

in 2023 [3]. The investor’s income is assumed to grow at 2% per year on average, in line with

historical inflation targeting [83]. We assume there are no taxes on retirement withdrawals.

The investor intends to retire in 40 years with $1,000,000 and has two goals before then: a

$250,000 expense in ten years and a $500,000 expense in twenty years. The investor considers

their second goal to be twice as important as the first goal, and retirement to be twice as

important as the second goal.

The investor’s retirement contribution is capped at 10%. For an investor with roughly

the median income of full-time workers in the USA in 2022, this is roughly equivalent to

the $6,000 limit for IRA contributions in 2022 at the initial time of the problem [1, 18].

A one-to-one match is made by the investor’s employer, IBM, who provides a third of the

investor’s compensation in the form of company stock. The investor’s chosen retirement

fund is the Vanguard Target Retirement 2050 Fund ($VFIFX).

In addition to a bank account that returns 3% a year, the investor allocates their portfolio

funds between stocks and bonds, represented by the SPDR S&P 500 ETF ($SPY) and the

iShares 20 Plus Year Treasury Bond ETF ($TLT). A maximum portfolio volatility of 15%

is chosen, with a rebalance period of one year.
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We parameterize the model using the above description as follows. We estimate the asset

drifts and covariances using their yearly log-returns of adjusted close prices from 2007 to

2022, inclusive:

µ =

 0.0361 $TLT

0.0819 $SPY
(2.62)

µR = 0.0602 (2.63)

C =

$TLT $SPY $VFIFX I


0.0335 −0.0050 −0.0053 −0.0037 $TLT

−0.0050 0.0371 0.0335 0.0058 $SPY

−0.0053 0.0335 0.0312 0.0058 $VFIFX

−0.0037 0.0058 0.0058 0.0120 I

(2.64)

2.3.4.2 Utility Functions

We assume the investor obtains linear utility for each goal contribution until their target

contribution is reached, after which they obtain zero marginal utility. Utilities are weighted

by their relative importances:

u1(x) =
1

4
min

{ x

250000
, 1
}

(2.65)

u2(x) =
1

2
min

{ x

500000
, 1
}

(2.66)

u3(x) = min
{ x

1000000
, 1
}
. (2.67)

In Section 2.3.3.1, Figure 2.4 visualizes the terminal value at retirement for this investor,

having liquidated their assets and obtaining a utility of u3(0.85XP (T )+XR(T )).We likewise

assume that, for the entire horizon, the investor receives linear utility for consumption up to

a consumption target of $60,000 per year. Were the investor to satisfy this target throughout
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their career, we assume that the total discounted utility from consumption would equal their

discounted maximum retirement utility. This implies

ũk(x) =
r

erT − 1
min

{ x

60000
, 1
}
, k = 1, 2, ..., K. (2.68)

Collectively, we denote the goal and consumption targets to be (φ1, φ2, φ3, φC) =

(50000, 300000, 1000000, 60000), and the goal priorities to be (α1, α2, α3, αC) =

(1/4, 1/2, 1, r/(erT − 1)).

The value function has a maximum under this parameterization and thus (2.37) becomes

max
X

Vk(t,X) =
r

erT − 1

∫ tK

t

e−rtKdt+
K∑

k=k̃(t)

e−rtkuk(φk), t ∈ [tk−1, tk), k = 1, 2, ..., K

(2.69)

2.3.4.3 Safe Levels of Portfolio and Retirement Value

In prior work, the notion of a “safe level” of wealth is defined that guarantees all future

utility [21]. This concept is helpful for contextualizing model behavior. Finite safe levels for

full utility do not exist in our model because of the income process stochasticity. Instead, we

establish an analogous concept of safety by comparing the maximum of the value function

to the expected remaining utility if the investor were to disengage with the market as much

as possible. For the remainder of their career, the investor would allocate their portfolio

entirely to the risk-free asset and consume their entire income. We can determine the value-

to-go under this strategy as follows. Let ad be the disengaged investor’s action (i.e. λadC = 1,

πad
B = 1). Let G̃k ∈ R≥0 denote the withdrawal from (exclusively) the portfolio towards goal

k ∈
{
k̃(t), k̃(t) + 1, ..., K

}
. We then have the following convex set of feasible future portfolio

30



withdrawals under ad as a function of t and XP (t):

Γ(t,XP (t)) =

(G̃k̃(t), ..., G̃K) > 0
∣∣∣ XP (t)−

i∑
k=k̃(t)

e−r(tk−t)G̃k ≥ 0, i = k̃(t), ..., K

 (2.70)

where the condition ensures there is no overdraft on the portfolio. We then have the following

theorem.

Theorem 4. (Disengaged Investor’s Value-to-go) For the parameterization described above,

let V d(t,X) denote the value-to-go of the disengaged investor. We then have

V d(t,X) = max
G̃k̃(t),...,G̃K∈Γ(t,XP )

 K−1∑
k=k̃(t)

e−r(tk−t)uk((1− νP )G̃k)−
e−r(T−t)

φK

A1(t,XR, G̃K)


+ A2(t,XI) + e−r(T−t)

(2.71)

A1(t,XR, G̃K) =
(
φK − (1− νP )G̃K

)
Φ

 ln φK−(1−νP )G̃K

XR
−
(
µR − CRR

2

)
(T − t)√

CRR(T − t)


−XRe

µR(T−t)Φ

 ln φK−(1−νP )G̃K

XR
−
(
µR + CRR

2

)
(T − t)√

CRR(T − t)

 (2.72)

A2(t,XI) = αC

∫ T

t

e−r(s−t)

(
1− 1

φC

A3(t, s,XI)

)
ds (2.73)

A3(t, s,XI) = φCΦ

 ln
(

φC

(1−νI)XI

)
−
(
µI − CII

2

)
(s− t)√

CII(s− t)


−XIe

µI(s−t)Φ

 ln
(

φC

(1−νI)XI

)
−
(
µI +

CII

2

)
(s− t)√

CII(s− t)


(2.74)

for XP ≥ 0, XR > 0, and XI > 0, where Φ is the cumulative distribution function of the

standard normal distribution. We cover the edge cases for when XR = 0 or XI = 0 with:

A1(t, 0, G̃K) = φK − (1− νP )G̃K ∀t, G̃K and A3(t, s, 0) = φC ∀t and s > t.
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Proof. We have, for all t ∈ [0, T ), X ≥ 0,

V d(t,X) = max
G̃k̃(t),...,G̃K∈Γ(t,XP )

(
Ead

[∫ T

t

e−r(s−t)ũ((1− νI)XI(s)) ds

+
K−1∑
k=k̃(t)

e−r(tk−t)uk((1− νP )G̃k)

+e−r(T−t)uK((1− νP )G̃k +XR(T ))
])

(2.75)

= Ead

[∫ T

t

e−r(s−t)ũ((1− νI)XI(s)) ds

]

+ max
G̃k̃(t),...,G̃K∈Γ(t,XP )

 K−1∑
k=k̃(t)

e−r(tk−t)uk((1− νP )G̃k)

+e−r(T−t)

(
1− 1

φK

Ead
[
max

{
0, φK − (1− νP )G̃k −XR(T )

}]))
(2.76)

via linearity of expectation. We may use the maximum instead of supremum due to the

compactness of Γ and the continuity of the goal utility functions and A1. The expected

utility from the retirement goal follows from

Ead
[
max

{
0, φK − (1− νP )G̃k −XR(T )

}]
=

∫ φK−(1−νP )G̃K

0

φK − (1− νP )G̃K − x dFR(x)

(2.77)

=

∫ φK−(1−νP )G̃K

0

φK − (1− νP )G̃KdFR(x)−
∫ φK−(1−νP )G̃K

0

xdFR(x) (2.78)

=
(
φK − (1− νP )G̃K

)
FR

(
φK − (1− νP )G̃K

)
+ Ead

[
XR(T )

∣∣ XR(T ) < φK − (1− νP )G̃k

]
P
(
XR(T ) < φK − (1− νP )G̃K

)
(2.79)

where FR(x) = P (XR(T ) ≤ x | Ft). As λadR = 0 and the expectation of retirement utility is

independent of XP and XI , (2.9) simplifies to

dXR(t) = µRXR(t) dt+XR(t)
√
CRRdWR(t) (2.80)
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where WR represents the individual Brownian motion of the retirement asset process. We

therefore have that XR(T ) is log-normally distributed:

lnXR(T ) ∼ N
(
lnXR(t) +

(
µR −

1

2
CRR

)
(T − t), CRR(T − t)

)
. (2.81)

It follows that

Ead
[
XR(T )

∣∣ XR(T ) < φK − (1− νP )G̃k

]
P
(
XR(T ) < φK − (1− νP )G̃K

)

=


XR(t)e

µR(T−t)Φ

(
ln

(
φK−(1−νP )G̃k

XR(t)

)
−
(
µR+

CRR
2

)
(T−t)

√
CRR(T−t)

)
XR(t) > 0

0 XR(t) = 0.

(2.82)

We also have

(
φK − (1− νP )G̃K

)
FR

(
φK − (1− νP )G̃K

)

=


(
φK − (1− νP )G̃K

)
Φ

(
ln

(
φK−(1−νP )G̃K

XR(t)

)
−
(
µR−CRR

2

)
(T−t)

√
CRR(T−t)

)
XR(t) > 0

φK − (1− νP )G̃K XR(t) = 0.

(2.83)

For the consumption utility, we invoke the stochastic Fubini theorem to exchange the order

of integration. This requires the consumption utility function meets sufficient measurability

conditions [90]. Let ψ : XI × [t, T ] × ΩI → R, in which ΩI is the sample space of paths of

XI , represent consumption utility. We then have

∫ ∞

0

(∫ T

t

|ψ(i, s)|2 ds
) 1

2

dFI(i) ≤
∫ ∞

0

(∫ T

t

α2
C ds

) 1
2

dFI(i) (2.84)

= αC

√
T − t (2.85)

<∞ (2.86)

33



where FI is the distribution of paths of I. The finiteness of this integral then ensures

∫ ∞

0

∫ T

t

ψ(i, s) dXI(s) dFI(i) =

∫ T

t

∫ ∞

0

ψ(i, s) dFI(i) dXI(s) (2.87)

which implies

Ead

[∫ T

t

e−r(s−t)ũ((1− νI)XI(s)) ds

]
(2.88)

=

∫ T

t

e−r(s−t)Ead [ũ((1− νI)XI(s))] ds (2.89)

= αC

∫ T

t

e−r(s−t)

(
1− 1

φC

Ead [max {0, φC − (1− νI)XI(s)}]
)
ds. (2.90)

Furthermore,

Ead [max {0, φC − (1− νI)XI(s)}] (2.91)

=

∫ φC
1−νI

0

φC − (1− νI)x dFI(x) (2.92)

=

∫ φC
1−νI

0

φC dFI(x)−
∫ φC

1−νI

0

(1− νI)x dFI(x) (2.93)

= φCFI

(
φC

1− νI

)
− (1− νI)Ead

[
XI(s)

∣∣ XI(s) <
φC

1− νI

]
P
(
XI(s) <

φC

1− νI

)
(2.94)

for XI(t) > 0. Trivially, A2(t, 0) = 0 ∀t. We have independence of XI from XP and XR, and

may therefore express (2.5) as

dXI(t) = µIXI(t) dt+
√
CIIXI(t)dWI(t) (2.95)

where WI represents the individual Brownian motion of the income process. Like the re-
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tirement process, the income is therefore log-normally distributed:

lnXI(s) ∼ N
(
lnXI(s) +

(
µI −

1

2
CII

)
(s− t), CII(s− t)

)
, s > t. (2.96)

Therefore,

Ead

[
XI(s)

∣∣ XI(s) <
φC

1− νI

]
P
(
XI(s) <

φC

1− νI

)

=


XI(t)e

µI(s−t)Φ

(
ln
(

φC
(1−νI )XI (t)

)
−
(
µI+

CII
2

)
(s−t)√

CII(s−t)

)
XI(t) > 0

0 XI(t) = 0

(2.97)

for s > t. We also have

φCFI

(
φC

1− νI

)
=


φCΦ

(
ln
(

φC
(1−νI )XI (t)

)
−
(
µI−

CII
2

)
(s−t)√

CII(s−t)

)
XI(t) > 0

φC XI(t) = 0.

(2.98)

The argument of the maximum in (2.71) is concave in G̃k, k = k̃(t), k̃(t) + 1, ..., K.

This because it is a non-negative weighted sum of concave functions, which may be seen

from (2.76). The maximum argument can therefore be solved via the following convex

optimization formulation:

minimize
G̃k, k=k̃(t),...,K

−

 K−1∑
k=k̃(t)

e−r(tk−t)uk((1− νP )G̃k)−
e−r(T−t)

φK

A1(t,XR, G̃K)


s.t. XP −

i∑
k=k̃(t)

e−r(tk−t)G̃k ≥ 0, i = k̃(t), ..., K

G̃k ≥ 0, k = k̃(t), ..., K.

(2.99)

With V d, we define levels of safety by comparing the disengaged investor’s value-to-go to
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the maximum of the value function over the spatial domain. The α-safe states for t ∈ [0, T )

are defined as

χα(t) =

{
X ∈ R3

≥0 :
V d(t,X)

maxX′ V (t,X ′)
≥ 1− α

}
, α ∈ [0, 1]. (2.100)

This measures the proportion of possible discounted future gain expected under the disen-

gaged strategy, and is most similar to the concept of safety in [21]. It is easy to see that

V d(t, x) is convex in x via a similar argument to Theorem 1. We then have that χα(t) is

a convex set for any α ∈ [0, 1] as, for βt
α ≜ (1 − α) supX V (t,X), we have that χα(t) is the

βt
α-superlevel set of V

d(t,X) [14]. As V d(t,X) is also nondecreasing in all components of X,

therefore, for any X(1) ≥ 0, we have

X(1) ∈ χα(t) =⇒ X(2) ∈ χα(t), ∀X(2) ≥ X(1), t ∈ [0, T ), α ∈ [0, 1] (2.101)

where “≥” refers to the component-wise partial ordering. These characteristics reduce the

problem of identifying χα(t) to finding its boundary, enabling faster calculation compared

to evaluating the safety at each node.

2.3.4.4 Comparative Studies

We repeat the experiment with different parameterizations to compare an investor’s decisions

under different circumstances and demonstrate the flexibility of the model.

Increased Income Growth Rate We increase µI to 0.04 to infer the change in consump-

tion behavior and risk-taking prior to goal realization.

No Employer Retirement Contribution We decrease κ to 0 to compare how deci-

sions vary if an employer does not contribute anything to the employee’s retirement. This

experiment may also apply to self-employed investors.
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High correlation between market and income We modify C to C̄, described below,

to increase the employee’s income dependence on the market. That is, the correlation be-

tween XI and the $SPY ETF is increased. As the determinant of the correlation matrix

must be positive, this yields 0.129 ≤ corr($SPY, XI) ≤ 0.456. For this experiment, we set

corr($SPY, XI) to 0.45.

The following section presents the numerical results from the above experiments and a

discussion on the optimal decisions of the investor.

2.4 Results and Discussion

We begin by presenting the results from the baseline investor, interpreting the model’s rec-

ommendations at, and around, salient decisions. Following this, we examine the comparative

studies to illuminate the sensitivity of the solutions to the model parameterization.

2.4.1 The Baseline Investor

2.4.1.1 Portfolio Near Retirement

Figure 2.5 below shows the allocations and volatility of the investor’s portfolio one year prior

to retirement for a trio of income values. For clarity, we exclude the 0.01-safe states from

this figure and relevant following figures. In this figure, the level at which the investor fully

satisfies their retirement goals is roughly the line from the top left corner of each heatmap to

the bottom right as the investor’s retirement target is met at a pre-tax portfolio withdrawal

of $1,180,000.

We see that the investor maintains a maximally volatile portfolio, consisting entirely of

$SPY and $TLT, at lower levels of portfolio and retirement portfolio values. However, as their

portfolio value and/or retirement portfolio values increase, the investor begins reallocating

from both $SPY and $TLT to the risk-free asset. This is intuitive: the investor wishes to

avoid potential losses, given the potential upside is limited.

37



The behavior changes as the investor’s income increases. For combinations of highXP and

lowXR, the investor tends to choose a lower-volatility portfolio. This can be viewed as pricing

in the coming year’s income: the investor can afford to take less risk in the portfolio when

more of the current shortfall can be effectively guaranteed by the income. Furthermore, the

range ofXP andXR values at which the investor should have less risky portfolio allocations is

reduced for higher incomes, as evidenced by the low-XP , high-XR zone. For a lower income in

this region, the investor should reduce portfolio volatility slightly to reduce potential losses.

A higher-income investor, however, needn’t make such concessions as full fundedness of their

retirement goal is virtually guaranteed.

Figure 2.6 below shows how portfolio allocations change approaching retirement for in-

vestors with zero, moderate, and high incomes. Nearing retirement, for most XP and XR

combinations close to the goal target, the portfolio volatility decreases. With additional

time to retirement, the benefits of avoiding reduced utility are outweighed by the increased

expected utility growth under a riskier portfolio.

For states with high XP and very low XR, the portfolio allocations become more risk-on

approaching retirement. When relying almost entirely on the portfolio for retirement utility,

it is sensible to trade off expected growth for portfolio safety given the increased time buffer

over which portfolio gains may be made. We see this effect is more pronounced for higher

incomes as, again, less risk needs to be taken when the investor’s high income will likely

carry their portfolio to the target within a few years.

2.4.1.2 Income Allocation Ten Years Until Retirement

Figure 2.7 below shows the income allocation ten years prior to retirement for a range of

retirement account values. Having passed the second goal, the investor’s savings are exclu-

sively towards the retirement target. Examining the second row, we see that the investor will

contribute the maximum allowable amount towards the retirement portfolio in most cases,

aside for when either their retirement portfolio is well-funded (Figure 2.7(f)) or their port-
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Figure 2.5: Baseline Investor Portfolio Volatility One Year Before Retirement per Income
Level

Rows: π$SPY; π$TLT; πB;
√
πTCPPπ

Columns: XI ≈ $55,000; XI ≈ $110,000; XI ≈ $200,000
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Figure 2.6: Baseline Investor Portfolio Volatility Approaching Retirement
Rows: XI = 0; XI ≈ $55,000; XI ≈ $200,000

Columns: 3 years to retirement; 2 years to retirement; 1 year to retirement
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folio value is so low compared with their retirement portfolio value that there are potential

diversification benefits of contributing maximally to the portfolio (bottom of Figure 2.7(e)).

In the former case, the investor opts to split their income entirely between the portfolio and

immediate consumption, aside from the high-XP , high-XI region in which all future utility

is effectively guaranteed and the λP -λR tradeoff is immaterial given that φC is consumed.

We also see a barrier partitioning the XP -XI plane into areas of consumption and saving.

As both the investor’s income and their retirement account value increase, they require less

in their portfolio before they begin discretionary spending. This matches common advice to

spend within one’s means.

2.4.1.3 Income Allocation Leading up to the Second Goal

Figure 2.8 below shows the optimal income allocation leading up to, and immediately after,

the second goal for an investor with an income of approximately $160,000 per year. The pre-

tax contribution required to fully satisfy the goal is $588,235. Leading up to the goal deadline,

if the investor does not have sufficient portfolio value to completely fund their second goal,

they will contribute the large majority of their income towards the portfolio. With sufficient

portfolio value, however, they will instead consume φC to maximize consumption utility,

with the remainder divided between the portfolio and retirement.

Interestingly, when the investor’s retirement portfolio is not well-funded, the investor opts

to put a proportion of their income towards their retirement account even if their portfolio

is insufficient to satisfy their second goal. The relative importance of retirement compared

to this second goal is therefore demonstrated by this tradeoff. We also see a significant

deviation in strategy following the goal contribution: the investor no longer places their

income into their portfolio unless it is not well-funded, opting to consume a significant

proportion immediately. With twenty years remaining until retirement, the investor can still

comfortably consume without fear of lost terminal utility.
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Figure 2.7: Baseline Investor Income Allocation 10 Years Before Retirement
Rows: λP ; λR; λC

Columns: XR = 0; XR ≈ $320,000; XR ≈ $950,000
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Figure 2.8: Baseline Investor Portfolio Contributions Before and After Goal 2 (XI ≈
$160,000)

Rows: λP ; λR; λC
Columns: 2 years before goal 2; 1 year before goal 2; immediately after goal 2
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Figure 2.9: Baseline Investor Goal Contributions
Rows: Ḡ1; Ḡ2

Columns: XR ≈ $180,000; XR ≈ $580,000; XR = $1,000,000

2.4.1.4 Goal Contributions

Figure 2.9 below shows the investor’s contributions towards each goal for a panel of retirement

portfolio values. The investor generally withdraws enough to satisfy each goal’s target, aside

from when either: their portfolio value is too low, opting instead to withdraw their entire

portfolio; or their income is low. For the latter case, the investor sometimes chooses to

withhold a proportion of the goal target to save for future goal(s) even if they can reach the

current goal’s target.
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2.4.2 Increased Market-Income Correlation

Intuitively, increasing the market-income correlation should lead to more risk-averse behav-

ior. Poor market performance is now more likely to accompany a decrease in income, so the

investor should expect a higher variance in outcomes. The following subsections confirm this

intuition and demonstrate the impact on the investor’s decision-making.

2.4.2.1 Change in Portfolio Near Retirement

Figure 2.10 below shows how the investor’s optimal portfolio changes with the increased

market-income correlation one year prior to retirement. For low-XP , high-XR states, as

well as states generally close to the safe states, the investor with the higher market-income

correlation has a lower optimal portfolio volatility. The increased likelihood of the investor’s

income and the S&P 500 moving in the same direction results in limited upside utility for

a favorable outcome, but increased downside for an adverse outcome. This justifies a risk

reduction.

However, some high-XP , low-XR states have an increased allocation to $SPY. With a

less correlated income to the market, the investor could reduce exposure to the market in

expectation that their income could satisfy much of the utility shortfall during a market

downturn. This is not the case with the increased correlation, as their income provides less

of a hedge against lost utility. The investor should therefore remain more risk-on.

2.4.2.2 Change in Goal Contributions

Figures 2.11 and 2.12 below show the optimal goal contributions and how they differ from

the baseline investor, respectively. For the second goal, we see a decrease in contributions for

states with low XI and moderate-to-low XP , regardless of retirement portfolio value. This

may be seen as avoiding retirement risk given the investor’s situation is now less stable. At

first glance, it may seem counterintuitive that the investor then contributes more to their

first goal for some lower-XI , low-XP states. In this case, one can see the value of immediate
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Figure 2.10: Change in Optimal Portfolio per Income Level when $SPY-Income
Correlation Increased, One Year Before Retirement

Rows: Change in π$SPY; Change in
√
πTCPPπ

Columns: XI ≈ $55,000; XI ≈ $110,000; XI ≈ $200,000
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Figure 2.11: Increased Market-Income Correlation Investor Goal Contributions
Rows: Ḡ1; Ḡ2

Columns: XR ≈ $180,000; XR ≈ $580,000; XR = $1,000,000

utility when faced with increased future uncertainty.

2.4.2.3 Change in Income Allocation Leading up to the Second Goal

Figure 2.13 below shows the income allocation leading up to, and directly after, goal 2.

Compared with Figure 2.8, the investor takes a more risk-averse approach, with limited con-

sumption, bolstering the portfolio value and focusing more on retirement. For instance, the

investor must now have more in their retirement account before ceasing retirement contri-

bution. The additional impulse to contribute to retirement serves to hedge against adverse

moves in the portfolio and income. The investor also reduces consumption to support the

portfolio value both before and after the second goal time, even at higher portfolio values.
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Figure 2.12: Difference Between Goal Contributions: Increased Market-Income Correlation
Minus Baseline

Rows: Change in Ḡ1; Change in Ḡ2

Columns: XR ≈ $180,000; XR ≈ $580,000; XR = $1,000,000
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Figure 2.13: Increased Market-Income Correlation Investor Portfolio Contributions Before
and After Goal 2 (XI ≈ $160,000)

Rows: λP ; λR; λC
Columns: 2 years before goal 2; 1 year before goal 2; immediately after goal 2
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2.4.3 Zero Employer Retirement Contribution

The absence of employer contribution to the retirement account should disincentivize con-

tributing to retirement and reduce the investor’s expected terminal utility. The quantitative

implications are shown in the following subsections.

2.4.3.1 Income Allocation Ten Years Until Retirement

Figure 2.14 below shows the investor’s income allocation ten years prior to retirement. Com-

pared with Figure 2.7(e), the investor now requires a generally higher portfolio value before

consuming. Consumption is even curtailed at high-XR values, demonstrated by the third

column of plots. Evidently, the decreased drift in the retirement process threatens retirement

utility enough to curtail consumption and encourage additional portfolio contributions.

Figure 2.14(e) reveals that, for a moderate retirement portfolio value, there are two XP

and XI themes in which retirement contributions are recommended. The first, for moderate

XP and low XI , simultaneously indicates that (1) the present value of marginal retirement

contributions outweigh the immediate benefit of pure consumption, and (2) the diversification

and/or tax benefits of marginal retirement contribution complement the portfolio sufficiently.

In the other context, namely states with high XI and satisfactory XP , the investor consumes

up to φC and hedges their portfolio with a maximal retirement contribution.

2.4.3.2 Change in Portfolio Near Retirement

Figure 2.15 below shows the change in portfolio allocation to the riskier asset and portfolio

volatility compared with the baseline investor. Near safe levels, the investor chooses a com-

paratively increased portfolio volatility, a justifiable decision based on the reduced inflow

from retirement contributions.
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Figure 2.14: Zero Employer Contribution Investor Income Allocation 10 Years Before
Retirement

Rows: λP ; λR; λC
Columns: XR = 0; XR ≈ $320,000; XR ≈ $950,000
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Figure 2.15: Change in Optimal Portfolio with Zero Employer Contribution, One Year
Before Retirement per Income Level

Rows: Change in π$SPY; Change in
√
πTCPPπ

Columns: XI ≈ $55,000; XI ≈ $110,000; XI ≈ $200,000
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Figure 2.16: Difference Between Goal Contributions: Increased Income Growth Minus
Baseline

Rows: Change in Ḡ1; Change in Ḡ2

Columns: XR ≈ $180,000; XR ≈ $580,000; XR = $1,000,000

2.4.4 Increased Income Growth Rate

It is expected that the increased income growth rate will have only positive implications for

the investor’s goals. This is demonstrated below.

2.4.4.1 Goal Contributions

We see that goal contributions are no less than those of the baseline investor, as per Figure

2.16. The investor still limits goal contributions for sufficiently low-XP and low-XI states,

but to a lesser degree in general.

Figure 2.17 below shows the increase in ζ(0) for the investor with a higher income growth

rate. An investor beginning their career with zero net worth may be expected to obtain
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Figure 2.17: Difference in Initial Value Function: Increased Income Growth Minus Baseline
(a): XI ≈ $55,000; (b): XI ≈ $110,000; (c) XI ≈ $200,000

more than 10% extra utility than their counterpart with a lower income growth rate, for

some initial income values. The advantage diminishes, however, as any of the initial state

values increases.

2.4.4.2 Comparison of Safety Levels

Figure 2.18 below shows how changing α can affect the α-safe states. Figure 2.18(a), with a

relatively high α of 0.05, eliminates important portfolio suggestions made at smaller α levels,

as in Figure 2.18(b). However, too small an α can reveal the entirety of the state space, where

the plurality of optimal solutions and polynomial approximation artifacts render irrelevant

or unhelpful suggestions. A value of α = 0.01 is therefore chosen for this analysis.

2.5 Conclusions and Future Work

In this research, we introduce a novel approach to GBWM for an investor with a retirement

account and stochastic income. Our approach optimally determines the portfolio selection,

income allocation, and goal contributions for an investor, taking into account their consump-

tion preferences and financial situation. We conduct a series of numerical experiments to

illustrate the flexibility and intuitiveness of our model. We show qualitative portfolio changes
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Figure 2.18: Baseline Investor Portfolio Volatility One Year Before Retirement per α
XI ≈ $55,000

Columns: α = 0.05; α = 0.01; α = 0.001

leading up to retirement with respect to a variety of factors. These include not only the in-

vestor’s portfolio, retirement balance, and income, but also income-related considerations

such as the employer’s retirement contribution and the income’s correlation to the market.

Additionally, we analyze how the investor should allocate their income during their career.

Within the robo-advising industry, our model can be applied within both semi-

autonomous and fully autonomous contexts. This stand-alone model facilitates automated

portfolio allocations and suggests income allocations without the need for costly interactions

with investment professionals. Within a financial advisor’s toolkit, the model can provide

interpretability of recommendations. Portfolio and income allocation suggestions can be

compared via the derivatives of the value function to contextualize potentially unintuitive

suggestions. Goal contributions, likewise, can be justified quantitatively with respect to

expected future utility. Should investors wish to override the model’s recommendations, a

financial advisor can help them choose a suitable level of deviation from optimality to satisfy

the investor’s desires. If an investor’s priorities have changed significantly at any point, the

model may be solved again with an updated parameterization.

Our approach can be enhanced through various improvements. Many nuances of real-

world investment are not accounted for under our simplified model. For tractability, our
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continuous-time approach uses a simplified representation of the market, including propor-

tional taxes, deterministic interest rates, simple asset and income dynamics, and a single

retirement asset to invest in. Future research can always chase increased realism by relaxing

or eliminating such assumptions. Beyond market-based assumptions, the client’s goal dead-

lines and targets may not be deterministic. They may also be vulnerable to layoff concerns,

particularly in poor market conditions, which our approach cannot capture fully. Employing

methods from reinforcement learning may be a natural continuation to handle such nuances

that, within a similar approach to this study, evade easy representation or computational

tractability.

Computational improvements may be made to balance the problem resolution and run-

time. Knowledge of the value function supremum and disengaged investor’s value may help

improve convergence if included as constraints in the Chebyshev polynomial fitting. Using

complete Chebyshev polynomials for fewer parameters in the polynomial fitting may also

provide sufficient precision with a reduction in solution time.
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CHAPTER 3

Deep Reinforcement Learning for

Goals-Based Wealth Management Under

Random Goal Times

3.1 Introduction

Reinforcement learning methods have proven invaluable for solving challenging sequential

decision-making problems. Difficulties that commonly hamper dynamic programming ap-

proaches, such as the curse of dimensionality and complicated environments, can be ame-

liorated with reinforcement learning. GBWM is a natural application area of reinforcement

learning given the complexity of not only the market dynamics but also the investor’s de-

sires. Indeed, while the model in Chapter 2 presents useful themes of asset allocation, income

distribution, and goal contributions, stochastic dynamic programming approaches may less

comfortably deal with evolving market conditions than reinforcement learning methods. Ap-

plying reinforcement learning methods may therefore be a natural continuation of GBWM

practice.

The effects of recessions are an important concern for investors. Involvement with financial

planners during the GFC has been shown to help investors follow disciplined strategies for

investment and portfolio rebalancing [59]. The value of robo-advising in helping clients

manage the difficulties of economic downturns is thus clear, motivating the development of
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GBWM algorithms that are recession-aware.

In addition to reductions in portfolio value and income, shocks can result in delayed

purchases of durable goods [58]. A sensible question, therefore, is how an investors’ decisions

may change if their goal times are uncertain. Many purchases can be reasonably described

as stochastic in time, such as the replacement of an aging vehicle, a relocation due to work

or family, or a medical expense.

We consider a client with multiple competing goals, the purchase times of which are

potentially uncertain. The client expects to make capital outlays around certain times,

but is unsure exactly when. We include an economic variable to compare decision-making

in recessions with normal times. Recommendations for goal contributions and portfolio

allocations are made. As in Chapter 2, we conduct comparative experiments to evaluate

how decision-making changes per the investor’s goals and economic situation.

Our approach is to use reinforcement learning to determine optimal portfolio alloca-

tions between goals, with a static optimization at revealed goal times to recommend goal

contributions and estimate value-to-go. Historical market data from recessionary and non-

recessionary periods are used to sample risky asset returns. Our results show a sensible

adaptation of investor behavior to their financial situation and environment. The potential

of earlier goal times forces more conservative portfolio allocations. Goal contributions are

greater for earlier goal times, and are intuitively balanced by the relative importance of the

competing goals. The insights derived from this model, complementary to those in Chapter

2, support the development of a broader GBWM reinforcement learning framework in future.

3.2 Related Works

We provide a brief description of applications of reinforcement learning approaches to

GBWM; broader context on GBWM is provided in Section 2.2. The viability of reinforce-

ment learning methods is demonstrated by Das and Varma’s work applying Q-learning to
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obtain the same results as a previous GBWM dynamic programming approach [29]. Dixon

and Halperin use G-learning, a probabilistic extension of Q-learning, to optimize a portfo-

lio for an investor who contributes to their portfolio during employment before periodically

withdrawing post-retirement [34]. Bauman et al. use a deep reinforcement learning approach

for a single all-or-nothing investment goal [10].

Multiple previous works examine portfolio allocation under an uncertain terminal time,

typically within the context of retirement or death. Yaari examines optimal consumption

under an uncertain death time [100]. Further work introduces risky assets and portfolio allo-

cation to similar problems [46, 47, 69]. Blanchet-Scalliet et al. solve the optimal investment

problem in which the time horizon is dependent on the returns of risky assets [13].

To our knowledge, this work is the first application of reinforcement learning to multiple

competing goals, stochastic goal times, and recessionary dynamics. The rest of this paper

is structured as follows. Section 3.3 describes the market and investor’s goals, formulating

the value function and optimal goal contribution equations. Section 3.4 describes the rein-

forcement learning approach used to solve these equations and the numerical experiments

conducted. Results are presented in Section 3.5, followed by conclusions in Section 3.6.

3.3 Problem Description

3.3.1 The Market and Investor

The investor has a portfolio value at time t of X(t), allocated between a risky asset, with

price S(t), and a risk-free asset, with price B(t). The risk-free asset earns interest at a rate

r ≥ 0, yielding the dynamics

dB(t) = rB(t) dt. (3.1)
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The market is subject to infrequent recessions. The economic state is represented by a binary

variable,

E(t) =


0 market is not in a recession

1 market is in a recession

(3.2)

which evolves according to a continuous-time Markov chain with (regular) rate matrix, Q :

{0, 1}2 → R. The corresponding transition probability matrices for durations t > 0 are

denoted by P (t) = etQ.

The stock is assumed to evolve according to a Itô process characterized by the economic

state,

dS(t) = µ(t, E)S(t) dt+ σ(t, E)S(t)dW (t) (3.3)

where W is a Brownian motion, µ is the stock’s drift, and σ is the volatility of the stock.

The stock drift and volatility are jointly distributed according to the economic state:

µ(t, E), σ(t, E) ∼ f(µ,σ)|E(t) (3.4)

We denote by FW
t and FE

t the filtrations generated byW and the Markov chain, respectively,

by time t. We assume these filtrations are independent, and denote by Ft ≜ FW
t ∨FE

t their

join.

The investor’s income is dependent on the economic regime. Normally, they earn I0

dollars per year, but in a recession this decreases to αI0 for some α ∈ [0, 1]. In line with

Chapter 2, we assume the investor’s income tax rate is 15% and that they spend 50% of net

income on necessities, thus ultimately contributing 42.5% of gross income to the portfolio.
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The portfolio dynamics are therefore

dX(t, E(t), π(t)) = [(π(t)µ(t, E(t)) + (1− π(t))r)X(t) + I(t, E(t))] dt

+ π(t)σ(t, E(t))X(t) dW (t)

(3.5)

I(t, E(t)) =


0.425I0 E(t) = 0

0.425αI0 E(t) = 1

(3.6)

3.3.1.1 Goals

The formulation of goals is similar to that in Section 2.3.1.2, with the additional element

of goal-time uncertainty. The investor has K consumption goals, occurring at times τk,

k = 1, 2, ..., K. At each goal, the investor withdraws Gk(τk, X(τk), E(τk)) from their port-

folio, earning some utility uk(Gk(τk, X(τk), E(τk))) from this goal. The utility functions are

assumed to be bounded and concave, with ∂uk

∂Gk
→ 0 as Gk →∞.

Goal times occur randomly, with each goal having a deterministic probability distribution

over the time domain of fk(t), t ∈ [0, T ]. That is, (τk)k∈{1,2,...,K} is a sequence of stopping

times independent of the filtration Ft. In the case of fk(t) = δ(x − tk) for tk ∈ [0, T ],

this simplifies to a deterministic goal time. For convention, let τ0 = 0. We assume prior

knowledge of the order of the coming goals and that no two goals will occur concurrently.

We therefore have (f1, f2, ..., fK) such that P(τ1 < τ2 < ... < τK) = 1. We may therefore

isolate the boundaries of the goal times as τ−k = inf suppfk and τ+k = sup suppfk, thereby

obtaining

τ−k ≤ τ+k < τ−k+1 ≤ τ+k+1, k = 1, ..., K − 1 (3.7)

with t−0 = 0 for convention. We make the natural assumption that the distribution of each

goal time has bounded support, i.e. sup suppfk <∞ ∀k.
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Figure 3.1: Schematic Division of a 3-Goal Time Domain into Separate Value Functions
Under Uncertain Goal Times

3.3.2 Value Function

Using the above notation, we define the series of value functions for k = 1, 2, ..., K as follows:

Vk(t,X(t), E(t)) = Eπ⋆

[∫ τ+k

t

fk|t(s)Φk(s,X(s), E(s)) ds
∣∣∣ Ft

]
, τ−k−1 ≤ t ≤ τ+k (3.8)

Φk(t,X(t), E(t)) = max
Gk∈[0,X(t)]

{uk(Gk(t,X(t), E(t))) + Vk+1(t,X(t)−Gk(t,X(t)), E(t))}

τ−k−1 ≤ t ≤ τ+k

(3.9)

where Eπ⋆
denotes expectation under the optimal action, and fk|t(s) is the conditional dis-

tribution of τk = s given τk > t. For convention, we have that VK+1 = 0. Figure 3.1

demonstrates how the value functions and terminal conditions are defined over an example

problem with two uncertain goals and one deterministic goal.

The concavity of the value function in X can easily be seen via a similar inductive argu-

ment to that in Theorem 1, as outlined in Theorem 5 below.

Theorem 5. Vk(t, x, E) and Φk(t, x, E), for k = 1, 2, ..., K, E ∈ {0, 1}, and t ∈
[
τ−k−1, τ

+
k

]
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are concave in x.

Proof. Trivially, VK+1 = 0 is concave in x. Suppose Vk+1 is concave, for some k = 1, 2, ..., K

and all t ∈
[
τ−k , τ

+
k

]
and E ∈ {0, 1}. For j = 1, 2, let x(j) be arbitrary feasible portfolio values

at time t ∈
[
τ−k , τ

+
k

]
with respective optimal goal selections G1

k(t) and G
2
k(t) such that, for

η ∈ [0, 1], x(3) ≜ ηx(1) + (1 − η)x(2). We have that G
(3)
k (t) ≜ ηG

(1)
k (t) + (1 − η)G(2)

k (t) is a

feasible contribution for x(3) as

ηG
(1)
k (t) + (1− η)G(2)

k (t) ≤ (1− νP )(ηx(1) + (1− η)x(2)) (3.10)

= (1− νP )x(3). (3.11)

Therefore,

ηΦk(t, x
(1), E) + (1− η)Φk(t, x

(2), E)

= ηuk(G
(1)
k (t)) + (1− η)uk(G(2)

k (t))

+ ηVk+1

(
t, x(1) −G(1)

k (t), E
)
+ (1− η)Vk+1

(
t, x(2) −G(2)

k (t), E
) (3.12)

≤ uk(G
(3)
k (t)) + Vk+1

(
t, x(3) −G(3)

k (t), E
)

(3.13)

≤ Φk(t, x
(3), E), (3.14)

for E ∈ {0, 1}, and thus Φk is concave in x.

Now, for fixed t ∈ [τ−k−1, τ
+
k ] and any E(t) ∈ {0, 1}, let π(i), i ∈ {1, 2}, be optimal portfolios

for X(1)(t) = x(1) and X(2)(t) = x(2), respectively, over [t, τ+k ]. Trivially,

π(3) ≜
ηπ(1)X(1) + (1− η)π(2)X(2)

ηX(1) + (1− η)X(2)
(3.15)

is an admissible portfolio and x(3) ≜ ηx(1) + (1 − η)x(2) is a feasible state. Following a

similar argument to Theorem 1, it is easily seen that X(3)(s) = ηX(1)(s) + (1 − η)X(2)(s)

for t ≤ s ≤ τk for any τk ∈
[
max

{
t, τ−k

}
, τ+k
]
. Because taking the expectation of Φk over
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potential goal times preserves concavity, the concavity of the value function is readily seen

[14].

3.4 Methods

This section details the reinforcement learning approach used to solve the problem. Rele-

vant reinforcement learning background is provided in Section 3.4.1 before the problem and

solution descriptions are given in Sections 3.4.2 through 3.4.4.

3.4.1 Reinforcement Learning Preliminaries

To contextualize the following approach, we must first cover relevant topics in reinforcement

learning and how they relate to the problem at hand. Reinforcement learning is the theory

and practice of learning an agent’s optimal policies for interacting with their environment

to maximize their reward. Unlike dynamic programming, reinforcement learning does not

compute the optimal policy and value function, instead learning the correct decisions from

trial and error.

3.4.1.1 Markov Decision Process

The Markov decision process (MDP) formalizes the agent-environment interaction and is

therefore key to reinforcement learning [84]. An MDP consists of the tuple (S,A, Pa, Ra),

where: S is the state space; A is the action space; Pa(s, s
′) is the probability of transitioning

into state s′ from s by taking action a; and Ra(s, s
′) is the immediate reward received after

the aforementioned transition. We model this GBWM problem as a series of reinforcement

learning subproblems, concatenated via solving continuous optimization problems for each

goal. Each subproblem is constructed as a MDP with which an episodic reinforcement

learning agent is trained.
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Figure 3.2: Artificial Neural Network Schematic [60]

3.4.1.2 Function Approximation and Neural Networks

In our GBWM context, the state is continuous with respect to both time and the portfolio

value but discrete with respect to the economic state. The action space, i.e. portfolio

allocation, is continuous. While tabular solution methods are effective for small state and

action spaces, the infinitely large spaces created by continuous states and actions render

these methods infeasible [84]. Instead, function approximation via artificial neural networks

is used to provide continuous mappings between states and values or policies. Artificial neural

networks are functions composed in a structure inspired by the human brain. An input layer

receives data which is subsequently propagated and transformed through hidden layer(s) and

delivered to the output layer. These transformations are determined by activation functions

parameterized by values which are trained to approximate a function of choice. Figure 3.2

shows an example artificial neural network architecture. An artificial neural network with

multiple hidden layers is said to be a deep neural network.

65



Deep reinforcement learning is the application of deep neural networks to approximate

the value function, policy function, or both. Deep reinforcement learning methods that

approximate both the value and policy functions are known as actor-critic methods. We

apply one such algorithm, Proximal Policy Optimization (PPO), which has been previously

applied in an GBWM context [77, 10].

3.4.2 Problem and Solution Setup

We solve a series of problems to compare optimal portfolio allocation across multiple invest-

ment scenarios. Each problem consists of K reinforcement learning subproblems that are

linked via (3.9). At the beginning of each episode, the goal time is selected according to the

goal-time distribution. The episode terminates when the time step reaches the goal time.

At prior time steps, the investor decides their portfolio allocation not yet knowing whether

the economy will be in recession for the coming year. The economy and portfolio are then

sampled for the next year.

Similarly to Chapter 2, we explore the problem parameterization around a “baseline”

investor to assess the impact of economic and goal scenarios on their decision-making. The

following subsections detail these experiments.

3.4.2.1 The Baseline Investor

The baseline investor has two goals with targets of $250,000 and $500,000, respectively. The

first goal is stochastic, being equally likely to occur at the beginning of years 8 through 12.

The second goal is deterministic and will occur at year 20. As probability mass functions,
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these are expressed as

P(τ1 = t) =


1
5

t ∈ {8, 9, 10, 11, 12}

0 otherwise

(3.16)

P(τ2 = 20) = 1 (3.17)

Each goal is considered equally important by the investor. Taking a similar utility function

to that used in Section 2.3.4.2, our utility functions here are specified as

u1(x) = min

{
x

φ1

, 1

}
(3.18)

u2(x) = min

{
x

φ2

, 1

}
(3.19)

with (φ1, φ2) = (250000, 500000). These are shown in Figure 3.3 below.

Figure 3.3: Utility Functions of the Baseline Investor
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The investor’s gross income in non-recessionary times is assumed to be $60,000 annually.

We take α = 1− 0.042, in line with the 4.2% decrease in median decrease in US household

incomes in the 2007-2009 period [55]. The risk-free rate of return is set to 3%.

3.4.2.2 Deterministic Goal Times

We consider an investor certain of their goal times to assess the impact of goal-time uncer-

tainty on portfolio decisions. We set the goal time of the first goal to be the latest possible

time, i.e.

P(τ1 = 12) = 1. (3.20)

3.4.2.3 Different Goal Priorities

The relative weightings of the goals importantly influences goal contributions. We consider

the case where the second goal is more important than the first, decreasing the range of u1:

u1(x) =
1

3
min

{
x

φ1

, 1

}
(3.21)

3.4.3 The Markov Decision Process

3.4.3.1 State Space

The state for each reinforcement learning problem consists of components representing time,

the portfolio value, and the economic state. We choose to represent the portfolio value state

as the ratio of the portfolio value to the “safe level” of portfolio value for which all future

utility can be satisfied with probability 1. Unlike in Chapter 2, this formulation admits a

finite safe portfolio level. This approach clarifies how decision-making changes approaching

safe wealth levels.

The safe level in this problem refers to the minimum portfolio value at any time that,

by investing exclusively in the risk-free asset thereon, will fully satisfy all future goals even
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Figure 3.4: Safe Levels of Portfolio Value for the Baseline Investor

under the worst-case income scenario. We perform a change of variable similar to that of

Capponi and Zhang (2022) [21]. The safe level for goal k = 1, 2, ..., K is defined as

X̃k(t) =


e−r(τ−k −t)(gk + X̃k+1(τ

−
k ))−

(1−νI)αI0
r

(1− e−r(τ−k −t)) t < τ−k

gk + X̃k+1(t) t ∈ [τ−k , τ
+
k ]

(3.22)

for r > 0, t ∈ [τ−k−1, τ
−
k+1], and X̃K+1 = 0. In the case where r = 0, we have

X̃k(t) =


gk + X̃k+1(τ

−
k )− (1− νI)αI0(τ−k − t) t < τ−k

gk + X̃k+1(t) t ∈ [τ−k , τ
+
k ]

(3.23)

Figure 3.4 shows the safe levels for the baseline investor.

The state for problem k at time t ∈ [τ−k−1, τ
+
k ) is therefore defined as skt =(

t−τ−k−1

τ+k −τ−k−1

, X
X̄k(t)

, E(t)
)
∈ [0, 1) × [0,∞) × {0, 1}. Although the gradient of the safe level

around τ−1 is roughly the same, an uncertain terminal goal time would have a noticeable

gradient discontinuity at τ−K as the safe value becomes constant at gK . We leave to future
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work an assessment of the comparative strengths of using the safe level as the portfolio state

versus, say, a scaled portfolio value.

3.4.3.2 Action Space

The action space is equal across all goals and times, consisting solely of the portfolio, π(t) ∈

[0, 1].

3.4.3.3 State Transitions

The economic state transition matrix and the risky asset dynamics parameters are informed

by historical returns of the SPDR S&P 500 ETF ($SPY) per U.S. recession dates inferred

by a GDP-based recession indicator between 2000 and 2022 [48]. We estimate the year-

to-year transition probability matrix using the frequency of quarterly transitions between

recessionary and non-recessionary economies.

For the risky asset dynamics, we use a similar sampling approach to Bauman et al. [10].

For each episode time step, in a (non-)recessionary economy, we sample twelve of the monthly

$SPY log-returns with replacement from the (non-)recessionary quarters within the dataset.

These are used to construct the drift and volatility terms in (3.3), from which a sample

yearly return is taken.

3.4.3.4 Reward Function

Rewards are nonzero only at the goal time. For the last goal, the entire portfolio is liquidated,

so Ra (s, (1, X,E)) = uk(X) for all a and s. For in-between goals, the terminal reward is

determined by balancing the current goal’s utility with future goals via an estimate of (3.9).

The approach used is described in Section 3.4.4.2.
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3.4.4 Procedure

The problem is solved via recursion. One reinforcement learning problem is solved per goal

to estimate the value function and optimal policies, detailed in Section 3.4.4.1. The optimal

goal contributions in-between are estimated with a convex optimization approach, specified

in Section 3.4.4.2.

3.4.4.1 Algorithm

The PPO actor and critic neural networks each have 2 hidden layers with 10 neurons each.

This architecture is shown in Figure 3.2 above. The hyperbolic tangent activation function

is used. The batch size used is 32,768. The learning rate used is 0.001. Each subproblem is

trained for 80,000,000 total timesteps. Implementation was conducted with Stable Baselines3

and Pytorch [74, 72].

The initial state is sampled as follows. The initial time is sampled uniformly from the

prior goal’s possible goal times, to allow for exploration of states with low portfolio values at

later times. The initial safety value is sampled uniformly within [0, 1]. The economic state

is sampled from its stationary distribution.

3.4.4.2 Optimizing the Goal Contributions

Rewards are only nonzero at goal times. Except for the final goal, the reward is made by

balancing the current goal’s utility and expected future utility. As the argument of the

max function is concave, the utility-maximizing goal contribution is tractable in theory via

convex optimization as in Section 2.3.2.1. However, the value function estimate from the

reinforcement learning algorithm may not maintain concavity across the entire domain and,

in practice, are occasionally only quasiconcave. Another challenge posed is that, even if

the value function is concave, each rollout may involve solving a computationally expensive

convex optimization problem for the optimal goal contribution. We address both of these

problems by fitting a globally concave finite difference approximation of the value function
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with which we construct estimates of the optimal contributions.

Trivially, the optimal contribution for the last goal is the investor’s entire portfolio. For

problem k < K, let t ∈ [τ−k , τ
+
k ]. Denote by V θ

k+1(t,X,E) the value function estimate at

this interval for portfolio value X and economic state E, where θ represents the parameters

of the critic neural network. We fit a concave piecewise linear approximation of the value

function after the goal contribution for each economic state, j ∈ {0, 1}. A grid of 0 = X0 <

X1 < ... < XN is used, where XN is the safe portfolio level after the goal contribution. The

approximation is calculated with

minimize
yi,i=1,2,...,N

N∑
i=0

∥∥∥∥∥∥
1∑

j̃=0

Pj,j̃V
θ
k+1(t,Xi, j̃)− yi,j

∥∥∥∥∥∥
2

2

s.t. yi,j − yi−1,j ≥ 0, i = 2, ..., N

yi,j − 2yi−1,j + yi−2,j ≤ 0, i = 3, ..., N

(3.24)

where the first set of conditions ensures the value function is nondecreasing and the second

set ensures concavity. Here, Pj,j̃ represents the transition probability matrix between states

j and j̃. Denote by V̂k+1(t, x, j) the concave piecewise linear interpolation of the yi,j values.

The continuity of the terminal value function is guaranteed by its concavity. For the grid

points 0 = b0 < b1 < ... < bN = XN + φk, we take

ϕi(t, j) = max
g∈[0,bi]

{
uk(g) + V̂k+1(t, bi − g, j̃)

}
, i = 1, ..., N, j = 0, 1 (3.25)

to be the corresponding terminal values. A piecewise linear interpolation is then applied for

each economic state which we denote by Φ̂k(t,X, j). This interpolation serves as an efficient

way of estimating terminal value utility. We note that due to the piecewise linear form of

(3.25), the maximization can be performed via solving a linear program.

Denote byGk,j(x) the feasible set of contributions at goal k for portfolio value x ∈ R≥0 and
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economic state j. Berge’s maximum theorem implies that the maximizers of (3.25), denoted

by the correspondences G⋆
k,j(x), k = 1, ..., K, j = 0, 1, are each upper hemicontinuous and

have nonempty, compact values [71]. While (3.25) is not strictly concave, we find in practice

that it produces unique maximizers aside from when ∃g ∈ G⋆
k,j(x) with g > φk. We therefore

assume the functions Ĝ⋆
k,j(x) ≜ minG⋆

k,j(x) are continuous, and take their piecewise linear

interpolations at bi, i = 1, ..., N , as our optimal goal contribution functions.

3.5 Results

We first present the baseline investor results, followed by the comparative studies. Common

across all experiments is near-total investment in the risk-free asset during recessionary times.

This is expected, given the negative expected return of the risky asset per the data used in

Section 3.4.3.3. We therefore choose to show only the portfolios for non-recessionary states.

3.5.1 The Baseline Investor

Figures 3.5 and 3.6 below show the allocation to the risky asset leading up to the first and

second goals, respectively, in terms of both portfolio value and portfolio safety. In both

subproblems, the investor transitions from full investment in the risky asset to none as their

portfolio value approaches the safe level.

Figure 3.7 below shows the contributions towards the first goal. For all goal times and

economic states, the investor funds the goal as much as possible. This is a sensible policy

given the high marginal utility of the first goal.

3.5.2 Different Goal Priorities

Figure 3.8 below shows the allocation prior to the first goal for the investor who weights the

second goal higher than the first. Again, the allocation to the risky asset approaches zero

as the portfolio value approaches safety. However, this investor maintains full investment
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Figure 3.5: Baseline Investor: Portfolio Allocations Before Goal 1 by Portfolio (a) Value and
(b) Safety

Figure 3.6: Baseline Investor: Portfolio Allocations Before Goal 2 by Portfolio (a) Value and
(b) Safety
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Figure 3.7: Baseline Investor: Contributions to Goal 1

in the risky asset up to a higher portfolio safety, as exemplified by image (b). Figure 3.9

below further demonstrates the relative importance of the second goal. Unlike Figure 3.7,

we see that the investor never contributes the entirety of their portfolio balance to the first

goal, opting instead to conserve funds towards the second goal. We also see that the investor

contributes less to the goal for a later goal time. Intuitively, a later goal time leaves less

time to accrue funds for the second goal. There is a minor influence of the economic state

on the goal contributions: contributions are slightly decreased if the goal time occurs during

a recession.

3.5.3 Certain Goal Times

Figure 3.10 below shows the optimal risky asset allocation leading up to the first goal when

the goal occurs with certainty after twelve years. Near the goal time, the allocation is almost

the same as that in Figure 3.5. However, when the goal time is known, the investor takes

additional risk at higher safety levels and earlier times. Clearly, the possibility of an early

goal time impels the investor to reduce risk earlier for some portfolio safety levels, lest an

unfavorable market return and early goal time force a low contribution towards the goal.
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Figure 3.8: Different Goal Priorities Investor: Portfolio Allocations Before Goal 1 by Portfolio
(a) Value and (b) Safety

Figure 3.9: Different Goal Priorities Investor: Contributions to Goal 1
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Figure 3.10: Certain Goal Times Investor: Portfolio Allocations Before Goal 1 by Portfolio
(a) Value and (b) Safety

3.6 Conclusions

This work extends the reinforcement learning frontier of GBWM by optimizing decision-

making of an investor with multiple competing goals with uncertain times. Our procedure

estimates the optimal portfolio allocation and goal contributions based on an investor’s con-

sumption preferences and goal uncertainties. Our experiments demonstrate sensible portfo-

lio recommendations based on the investor and their economic environment. Suggested goal

contributions are intuitive.

There are a plurality of possible extensions to our approach. Many of the facets of the

model in Chapter 2 can be adapted to this model: a retirement account with income con-

tribution decisions, tax implications, and sophisticated income dynamics would be welcome

additions. While treatment of the market and recession dynamics here is relatively simple,

reinforcement learning is flexible to a wide description of market behavior. Future research

may include a more nuanced economic simulator, including interest rate dynamics, unem-

ployment considerations, and latent economic states. Furthermore, interaction between the

goal time distribution and market behavior would be a worthwhile improvement. Lastly, a

sensible extension would be to convert the sequential reinforcement learning problems into
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a single problem, representing the goal contributions within the MDP state and action. Not

only would this avoid needing direct optimization of the goal contributions (and therefore

knowledge of the economic state transition probabilities), but also allow for nonconcave

utility functions, such as those for all-or-nothing goals.
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CHAPTER 4

External Forces on Financial Markets:

Evidence from the GameStop Short Squeeze

and Flash Crash

4.1 Introduction

Markets are highly complex and interdependent, influenced by a multitude of factors. Ex-

ogenous events and unique market phenomena can dramatically destabilize prices. Such

abnormalities are difficult to predict and often have unprecedented consequences. In addi-

tion, it can be challenging to decompose market price action into endogenous components

(e.g. changes in fundamental stock price valuations) and exogenous components (e.g. the

market crash due to COVID-19) [8].

The GameStop short squeeze of January 2021 is a clear example of an exogenous event

on market prices [88]. Retail investors on social news website Reddit instigated a rally of

GameStop’s stock price [61]. The stock saw a 1,500% increase in price over a two-week

period ending January 27 [61]. A subsequent -44% crash of the stock price occurred the

next day. A variety of other so-called meme stocks simultaneously experienced similar price

behavior, including those of AMC Entertainment Holdings, Inc., Bed Bath & Beyond Inc.,

and Eastman Kodak Company [82].

Another example is the flash crash of May 6, 2010, which resulted in steep drawdowns and
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recoveries of major stock indices within 36 minutes [54]. During, the Dow Jones Industrial

Average sustained its second largest intraday point decline, dropping approximately 9% [54].

The idiosyncrasies of each abnormality make risk management and portfolio allocation

difficult. The flash crash was a market-wide phenomenon, whereas the GameStop short

squeeze was isolated to a few stocks. While there are many models in the literature con-

necting market abnormalities, such as the COVID-19 pandemic, to markets, most do so on

the mesoscopic level at highest. That is, the behavior of a relevant, yet often small, subset

of traded assets are examined under econophysical or econometric methods. In contrast,

macroscopic models, which consider all traded assets in a market simultaneously, capture

interdependencies between assets invisible to smaller-scale models. There are conceptual

benefits for risk management in taking such a perspective.

This research addresses the aforementioned challenges by aiming to quantify external

influences on markets macroscopically. To do so, we extend the AlShelahi and Saigal macro-

scopic model of equity markets, a physics-inspired model that treats each stock as a particle

within an Eulerian fluid-flow system of stochastic partial differential equations [5]. Calibra-

tion of this model during the flash crash has indicated the model describes market abnormal-

ities. Our contribution is the decomposition of stock price acceleration into an endogenous

and exogenous component, the latter of which we term investor impatience. We compare

these external forces to an invisible gravitational field, applying the conservation of energy

principle to estimate these forces.

We validate that the investor impatience force effectively captures market abnormalities

by examining two notably exogenous events: the GameStop short squeeze and the flash

crash. In the former case, we use minute-by-minute US equity data and WallStreetBets

comment sentiment estimates to illustrate how the variable enhances out-of-sample fore-

casting of comment sentiment. In the latter case, we demonstrate that the key feature of

the flash crash, being a unified drawdown across the entire market, is also reflected in the

investor impatience variable. We therefore demonstrate the macroscopic model is not only
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capable of detecting market-wide events, but also adding context to events on smaller scales.

This enables a potentially broad application of the model to portfolio management under

unexpected events.

4.2 Related Work

Our research increments on a considerable body of literature examining the effects of world

events on financial markets. Methods from multiple disciplines have been applied, including

econometrics, signal processing, and physics, among others. We review approaches used for

this purpose. We also discuss the application of sentiment analysis methods in financial

contexts.

The versatility of econometric models in identifying relationships between time series

makes unsurprising their popularity for contextualizing financial market abnormalities. An

extensive body of literature applies vector autoregression (VAR) and its developments to

relate global events to financial time series. Umar et al. (2022) quantifies the return and

volatility connectedness between COVID-19 media coverage and segments of the non-fungible

tokens market [87]. They use the same TVP-VAR approach as Antonakakis et al. (2018),

which employs the Diebold and Yılmaz (2014) spillover index approach to identify volatility

transmission between oil prices and the stock prices of oil and gas companies [7, 33]. Diebold

and Yılmaz (2012) employs a generalized VAR approach to quantify the volatility spillover

across US stock and bond, foreign exchange, and commodities markets through the global

financial crisis [32]. Shahrestani and Rafei (2020) applies the Markov switching VAR model

to measure the impact of oil price shocks on the Tehran Stock Exchange [78].

The literature also presents many applications of generalized autoregressive conditional

heteroskedasticity (GARCH) models for detecting spillover and contextualizing market ab-

normalities. Dungey and Renault (2018) proposes a GARCH common features approach

which is used to identify contagion during major events in the Asian currency markets,
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global financial crisis, and European sovereign debt crisis [36]. The dynamic conditional cor-

relation MGARCH model presented in Engle (2002) has been used to detect contagion via

estimates of time-varying conditional correlations [38]. Among others, this method is applied

to the global financial crisis in Syllignakis and Kouretas (2011) and Kim et al. (2015) to de-

tect spillover during the global financial crisis from the US to European and emerging Asian

financial markets, respectively [85, 53]. Vasileiou (2021) applies asymmetry GARCH models

during the GameStop short squeeze to provide evidence of the presence of the anti-leverage

effect [89].

Many authors have developed physics-inspired models of financial markets under the um-

brella term econophysics. Such methods are frequently used in conjunction with econometric

models. For a review of econophysics methods and applications, we refer the reader to the

work of Chakraborti et al. (2011) [22]. The literature presents models for the detection and

analysis of abnormal market events. Wavelets allow analysis of co-movements of financial

data across different time scales. Ranta (2013) applies wavelets to detect contagion between

major markets across decades [75]. Evidence of contagion is found during the 1987 financial

crisis, the Gulf War, and the global financial crisis. Beccar et al. (2017) applies a wavelet

methodology designed for geophysical data to contrast the Lehman Brothers collapse and

the flash crash using minute-by-minute stock data from four companies [12]. The authors

compare the former event to a natural earthquake and the latter to a human-made explosion

and conclude that events of the former type are more predictable. Siddiqui et al. (2020)

identifies co-movement on short time scales between major stock indices during the onset of

the COVID-19 pandemic [79]. Xing et al. (2021) posits that crashes originate from changes

to the underlying structure of the financial system described by the nonlinear potential func-

tion [98]. They use a GARCH model to improve forecasting of returns during market crashes.

Wavelets have also been applied to cryptocurrency bubble analysis: Fruehwirt et al. (2021)

identifies a structural change in relationships between cryptocurrencies towards interdepen-

dence after the 2017 Bitcoin price peak [42]. Kumar and Anandarao (2019) uses wavelet
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coherence to identify volatility spillover in cryptocurrency markets [57]. Beyond only market

data, Umar et al. (2021) uses X (formerly Twitter) data, the put-call ratio, and short-sale

volume in a wavelet coherence approach to study the relationship between GameStop returns

and sentiment during the short squeeze [88]. Log-periodic power law (LPPL) models have

been used to describe market abnormalities, inspired by statistical physics and motivated by

distinct groups of rational and irrational traders. Geraskin and Fantazzini (2013) provides

a summary of the development and application of these approaches, beginning with the

original model description from Sornette et al. (1996) [43, 81]. Wosnitza and Denz (2013)

describes how LPPL structures follow the development of CDS spreads for forty banks dur-

ing the 2000 financial crash [97]. Applying a LPPL model to cryptocurrency, Wheatley et

al. (2019) diagnose bubbles and crashes in Bitcoin prices [96].

The phenomenon of social media, combined with advancements in natural language pro-

cessing capabilities, has enabled data-driven analysis of the relationship between market

action and the sentiment of market participants. This has produced a burgeoning literature

on sentiment analysis applied to markets. Yang et al. (2020) used posts from the Chinese

stock message board to examine the effect of investor panic on equity market crashes [102].

They used text-mining computing tools and a classification model to construct firm-level

sentiment and panic indices which could predict abnormal trading and stock market crashes.

Similarly, Xu et al. (2021) constructed three sentiment indices from Chinese social media,

newspapers, and internet news, which have proven capable of improving forecasting of stock

market returns [99]. As with forum posts, Google Search Volume Indices have been used as

an indicator of investor intent. Hsieh et al. (2020) uses this data as a proxy for information

demand of retail investors and to identify herding behavior of these investors [49]. Lyócsa et

al. (2020) also used Google search volume to forecast global stock price variation during the

COVID-19 pandemic [64]. Pedersen (2022) proposes a model of security prices in which a

social network of naive, fanatical, and rational investors communicate, using the GameStop

short squeeze as an example [73].
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The centrality of social media during the GameStop short squeeze has resulted in multiple

studies using social media data to analyze the role of sentiment in this event. Wang and

Luo (2021) applies the VADER sentiment analysis package and a BERT transformer model

to WallStreetBets comments in a range of classification models to predict price movements

of the GameStop during the short squeeze [93, 51, 31]. Long et al. (2022) also applies the

VADER package to WallStreetBets comments to quantify the relationship between sentiment

and GameStop returns [63]. Mancini et al. (2022) applies the VADER package to model

the dynamics of emerging consensus within WallStreetBets during the short squeeze, making

a comparison between GameStop’s stock price and the transition to homogeneous opinions

[65].

Despite a plethora of models for detecting and forecasting abnormalities in markets, the

literature lacks models approaching the problem with a macroscopic perspective. While

current models capture isolated phenomena due to unique events, broader implications may

be left unaddressed. The scope of recommendations along the lines of portfolio management,

policy, or risk management may therefore be limited. Our model addresses this research gap

by constructing a market-wide sensor for abnormalities. We conduct sentiment analysis on

WallStreetBets comments in a similar vein to the aforementioned studies to demonstrate

our model captures the sentiment-induced abnormality of the GameStop short squeeze. The

following section details the methods with which we construct said sensor and the data used

for model fitting and validation.

4.3 Methods

4.3.1 The Macroscopic Model of Equity Markets

In this research, we build upon the research of AlShelahi and Saigal, focusing on the macro-

scopic model of markets [5]. Our approach closely aligns with the setting outlined in their

paper; we offer a brief description of this setting for context. The model uses an Eulerian
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fluid-flow description of markets in which each stock’s position is represented by its price.

Taking x ∈ R+ to be a particular price, we construct ρ(x, t) to be the density of stocks at

price x and time t. Letting N(x, t) denote the number of stocks in price section [x1, x2] (with

x1 ≤ x ≤ x2) at time t, we obtain the following definition for density:

N(x, t) =

∫ x2

x1

ρ(x, t) dx. (4.1)

Density contextualizes the magnitude of shocks on markets: a shock to prices with greater

density implies a higher impact. We may contrast density in this model with its physical

interpretation. Whereas density classically refers to mass per unit volume, in this model

density becomes the stocks per unit price. The velocity vk(t) of stock k at time t, is defined

as

vk(t) = lim
∆t→0

pk(t)− pk(t−∆t)

∆t
, (4.2)

where pk(t) is the price of stock k at time t. This parameter is similar to drift in classical

stochastic differential equation models of stock prices. Indeed, the model may also be applied

to logarithmically transformed prices. We note that our results are similar with and without

such a transform and we are opting for the latter for simplicity.

The average velocity of stocks in price interval [x1, x2] at time t can be expressed as

v(x, t) =
1

N(x, t)

∑
k : pk(t)∈[x1,x2]

vk(t), (4.3)

as can the average squared velocity, denoted as

v2(x, t) =
1

N(x, t)

∑
k : pk(t)∈[x1,x2]

v2k(t). (4.4)

We may assume that stocks are neither created nor destroyed, and thus the number of
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stocks can only change from flowing across endpoints of the interval [x1, x2]. This is because

stock splits, delistings, and IPOs occur rarely. We may therefore define the flux (rate of

flow) of stocks at point (x, t) as Q(x, t) with

Q(x, t) = ρ(x, t)v(x, t). (4.5)

Flux intuitively measures the scale of an event on stock prices, increasing in both the number

of stocks impacted and the rate of price changes.

The conservation of mass principle can be applied to obtain an expression for pressure as

a function of flux and velocity:

P (x, t) = αQ(x, t)v(x, t), (4.6)

where α is a fixed parameter. This pressure is a result of the momentum with which stocks

are moving in the price domain. The empirical value of α was found to be 0.3, which is

carried forward to this analysis [5].

Acceleration may be defined for a stock in a similar fashion to velocity:

ak(t) = lim
∆t→0

vk(t)− vk(t−∆t)

∆t
, (4.7)

resulting in the following expression of average acceleration:

a(x, t) =
1

N(x, t)

∑
k : pk(t)∈[x1,x2]

ak(t). (4.8)

The following subsection extends this to derive the gravitational parameter and conser-

vation of energy equations to estimate external forces on financial markets.
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4.3.2 Formulating External Market Forces as Gravity

As detailed above, stock prices are influenced by a multitude of factors, endogenous and

exogenous. We assume that external forces on stock prices due to various events act similarly

to gravity in physics. Unlike gravitational force in physics, the external force on markets

can operate in either direction, whether to increase or decrease stock prices. We consider

two opposing masses representing positive and negative investor impatience, each with their

own gravitational field. The relative size of each determines the net investor impatience.

We define the net force on stocks as the sum of internal and external forces as per Newton’s

second law of motion:

F (x, t) = m(x, t) a(x, t) +m(x, t) g(x, t), (4.9)

where F represents the net force acting on the stocks at price x and time t, each with mass

m, internal acceleration a, and external acceleration g. The mass may be expressed as the

product of the stock fluid density, ρ, and volume, V :

m(x, t) = ρ(x, t)V (x, t). (4.10)

Similarly, the force term may be expressed as a product of pressure and area, A:

F (x, t) = P (x, t)A(x, t). (4.11)

Combining the above equations, we have

αQ(x, t)v(x, t)A(x, t) = ρ(x, t)V (x, t)a(x, t) + ρ(x, t)V (x, t)g(x, t). (4.12)

Taking both V and A to be unit values, and combining the formula above with the
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definition of flux, we obtain

αv2(x, t) = a(x, t) + g(x, t). (4.13)

Defining gravity allows for an expression of the potential energy of the market, allowing

us to analyze the degree to which energy is conserved. As with momentum, the degree to

which conservation is obtained may provide utility in sensing abnormal market events. We

may define the potential energy of a particular stock as

E
(P )
k (t) = ρ(pk(t), t)g(pk(t), t)pk(t) (4.14)

where pk is the price of stock k. The average potential energy in a particular price interval

[x1, x2] can therefore be defined as

E(P )(x, t) =
1

N(x, t)

∑
k : pk(t)∈[x1,x2]

E
(P )
k (t). (4.15)

We likewise define the kinetic energy of the stock, assumed to have unit mass as

E
(K)
k (t) =

1

2
v2k(t). (4.16)

Consequently, we can quantify the kinetic energy of the price interval as

E(K)(x, t) =
1

N(x, t)

∑
k : pk(t)∈[x1,x2]

E
(K)
k (t). (4.17)

Total energy at this price interval may therefore be specified as

E(x, t) = E(K)(x, t) + E(P )(x, t). (4.18)

Applying the Euler energy conservation equation in one dimension, and assuming that
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energy, density, and velocity are all differentiable, we thus have

∂E(x, t)

∂t
+

∂

∂x
((E(x, t) + P (x, t))v(x, t)) = 0 ∀x, t > 0. (4.19)

The complete model consists of three stochastic partial differential equations representing

the conservation of mass, momentum, and energy principles. The following subsection details

how we fit the model to data from the short squeeze and flash crash.

4.3.2.1 Data

The Data For analysis of the Gamestop short squeeze, we use minute-by-minute price

data collected from Yahoo! Finance for 4494 stocks listed on US exchanges. Each stock was

included only if data were available for at least 75% of the period from January 21 through

January 29, 2021, resulting in an effective sample size of 1690 stocks. When data for a

particular minute was unavailable, we imputed the price from the most recently available

price. Due to the sparsity of stocks with prices over $100, we analyze only those below this

threshold. We obtain similar data for the flash crash and are left with an effective sample

size of 2853 stocks following the same data-cleaning procedure.

We use the Pushshift Reddit dataset to obtain all available WallStreetBets comments

during market hours from January 21 through 29 [11]. We exclude comments that have been

deleted or removed, contain URLs, or were authored by the AutoModerator, an automated

moderation tool. We further pre-process the comments by substituting usernames with

‘@user’, cleaning the text of escape sequences, and converting HTML entities to their re-

spective characters. The dataset contains approximately 1.8 million comments made during

market hours.

Discretization and Fitting We apply the following discretizing and fitting approach for

parameter estimation. A resolution of $1 and 1 minute is applied. Consistent with [5], a

linear regression model is fitted relating observed acceleration to squared velocity, estimating
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gravity for a price/time combination of these variables. We have

a(x, t) = −g(x, t) + βαv2(x, t) + σ(x, t)ϵ, (4.20)

where ϵ ∼ N (0, 1) is an error term. To estimate g(x, t), the regression uses calculated values

for a and v2 in the 3× 3 grid of prices {(xi, tj) : i ∈ {x− 2, x− 1, x} , j ∈ {t− 2, t− 1, t}}.

We define a series gk(t) to be the external acceleration from the perspective of stock k:

gk(t) = g(x, t), pk(t) ∈ Sx. (4.21)

where Sx is the discretized price section containing x. This highlights the applicability of

the macroscopic model to phenomena on lower scales. Individual stocks’ price changes can

be contextualized within the broader macroscopic environment.

Parameterizing the Energy Conservation Equation Although the conservation equa-

tion (4.19) right-hand side is zero at all points, a forcing term is required due to the discretiza-

tion error and uncertainty which disturb this equation. We therefore propose a stochastic

forcing term as follows:

∂E(x, t)

∂t
+

∂

∂x
((E(x, t) + P (x, t))v(x, t)) = z(x, t) (4.22)

z(x, t) = l(x, t) + η(x, t)E(x, t) + σ3(x, t)
dW3(x, t)

dxdt
(4.23)

Here, l(x, t) is a deterministic function representing the mean inflow or outflow of the

right-hand side of (4.22). The η(x, t) term is likewise a deterministic function for the

rate of reversion to the mean of the right-hand side. The W3(x, t) term is a Brownian

sheet, a Gaussian stochastic process with mean 0 and covariance E (W3(x1, t1)W3(x2, t2)) =

min(x1, x2) ·min(t1, t2) [92]. The σ3(x, t) term represents the volatility of the energy conser-

vation process.
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4.3.2.2 Estimating Sentiment from Reddit Data

Introduction We apply two techniques to estimate the sentiment of WallStreetBets com-

ments. The first is VADER, a lexicon- and rule-based sentiment analysis tool designed

specifically for social media text [51]. We also apply a pre-tuned version of the RoBERTa

transformer-based machine learning model [51, 62, 50]. We use the Twitter-RoBERTa-base-

sentiment model from CardiffNLP to estimate comment sentiment [50]. The RoBERTa-base

model is pre-trained on the English Wikipedia and BookCorpus datasets [62]. The Twitter-

RoBERTa-base model is then tuned on a set of approximately 58 million tweets [9]. Tasks

this model is trained for include sentiment analysis, irony detection, and hate speech detec-

tion, among others.

Although a RoBERTa model tuned on WallStreetBets comments would improve perfor-

mance, there were none available at the time of our analysis. We consider the RoBERTa-base

model tuned on X (formerly Twitter) data appropriate for this analysis as both Reddit and X

are social media websites and are thus likely to share commonalities. The similarity between

the X tuning data and our Reddit data is corroborated by our observation that, despite the

option of long-form comments on Reddit, approximately 89% of comments in our dataset

are within X’s original character limit of 140 characters. However, we acknowledge the lim-

itations of this approach. Despite both being social media websites, X and WallStreetBets

have unique cultures. WallStreetBets comments are often ironic, esoteric, and loaded with

forum-specific references and inside jokes. The model may therefore misclassify some com-

ments from WallStreetBets. Further analysis may be required to both evaluate the model’s

accuracy on WallStreetBets comments and, if required, tune a model for use on WallStreet-

Bets comments. The following subsections detail how comment sentiment is estimated and

the forecasting procedure.

Sentiment Estimation using VADER The VADER sentiment package returns a nor-

malized, weighted composite score for each comment’s sentiment between 1 (most positive)
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and -1 (most negative). We denote the sentiment score of comment i as s̄i and the time

the comment was posted by t̂i. We construct a minute-by-minute estimate of the overall

sentiment of the WallStreetBets forum by calculating the mean sentiment of all comments

posted in each minute. We denote the average sentiment at minute t, given by SVADER(t),

to be

SVADER(t) =
1

|{i : t̂i ∈ [t, t+ 1)}|

∑
i:t̂i∈[t,t+1)

s̄i. (4.24)

Sentiment Estimation using the Twitter-RoBERTa-base Sentiment Model The

Twitter-RoBERTa-base model for sentiment analysis outputs values corresponding to the

labels negative, neutral, and positive. Denoting n̄i and p̄i to be the softmax transformations

of the negative and positive output values for comment i, respectively, we estimate the

average sentiment at minute t, denoted by SroBERTa(t), to be

SroBERTa(t) =
1

|{i : t̂i ∈ [t, t+ 1)}|

∑
i:t̂i∈[t,t+1)

(p̄i − n̄i). (4.25)

Forecasting Comment Sentiment We use the Bayesian time series forecasting and in-

ference package Orbit to predict the WallStreetBets comment sentiment estimations [70]. To

construct a smaller set of regressors from the investor impatience field, we take the average

investor impatience across price subsets. We choose the price interval of $2 to $30, as these

price sections generally contain at least 10 to 15 stocks per dollar. We construct four average

investor impatience series, denoted by ḡi(t), i ∈ {1, 2, 3, 4} and defined as

ḡi(t) =
1

7

7∑
j=1

g(2 + 7(i− 1) + j, t), i ∈ {1, 2, 3, 4}. (4.26)

On each trading day from January 21 through 29, we apply Orbit’s BackTester method

on the Damped Local Trend (DLT) model using an expanding window with a linear global

trend, minimum training window length of 120 minutes, a forecast length of 30 minutes, and
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an increment length of 30 minutes. The number of samples for each model fit is 500. We use

the symmetric mean absolute percentage error (SMAPE) as the error metric, since Orbit’s

models outperform in terms of this metric compared to other candidate time series models

[70]. For each sentiment metric and each trading day, two models are fitted: one DLT model

for the sentiment metric, and one using the investor impatience series as regressors for the

sentiment metric.

4.4 Results and Discussion

4.4.1 Introduction

We first qualitatively analyze the investor impatience force across the GameStop short

squeeze and flash crash. A macroscopic perspective is applied to notable days during these

events to demonstrate the utility of the model’s scale and comment on the model’s poten-

tial use cases. This is followed by contextualizing individual stocks’ price action during the

short squeeze to show applicability of the model to smaller scales. We also demonstrate the

potential for the model to serve as a sensor of market abnormalities via the conservation of

energy equation parameters during the flash crash. Lastly, we present results from sentiment

forecasting to quantitatively confirm the model is capable of detecting market abnormalities.

4.4.2 Macroscopic Investor Impatience

Figure 4.1 below shows the investor impatience field for January 25 during the short squeeze.

Also plotted are the prices of three meme stocks of interest: AMC Entertainment Holdings

Inc. ($AMC), Bed Bath & Beyond ($BBBY), and Eastman Kodak Company ($KODK).

We note that the color scale limits have been adjusted for visual aid due to the presence

of outliers. Meme stocks saw large price increases before sustaining sharp declines begin-

ning around 10:45am. The investor impatience variable captures the sharp mid-morning

drawdown of the meme stocks. The vertical striations of color display unity of price action
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across multiple price sections, demonstrating the model’s ability to capture market-wide

phenomena.

The equivalent graph for during the flash crash is shown in Figure 4.2 below, with the crash

onset highlighted by the green dashed line. Similar color patterns are observed. Notably, a

presence of wave-like negative investor impatience striations are observed prior to the onset

of the crash. This corroborates the findings of [5], which indicates the model variables may

be used as sensors of abnormal market activity.

Figure 4.3 below shows the investor impatience force during January 28, as well as the

aforementioned stocks’ prices. Once again, we see the presence of negative investor impa-

tience values throughout the drawdown phases.

These figures indicate potential applications of this model to hedging and regulation. The

unification of investor impatience across price sections appears to occur more strongly during

drawdowns than rallies. This supports the empirical observation that correlations between

equities are much greater for downside moves than upside moves [6]. One may therefore use

historical estimates of investor impatience to inform portfolio construction. Furthermore, the

ability of the model to act as a sensor for market abnormalities may be used by regulators

within a broader crash detection framework to prophylactically restrict a crashing market.

However, it is yet to be seen whether broader and persistent external influences on markets

can be captured by investor impatience. Economic and political contexts patently influence

market prices on time scales beyond those analyzed here, warranting further investigation.

Attribution of external forces, too, should be studied to determine the efficacy of the model

in capturing varied market phenomena.

We explore the meme stocks’ positions within the investor impatience field in the following

subsection.
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Figure 4.1: Investor Impatience Heatmap and Prices of $AMC, $BBBY, and $KODK for
January 25, 2021

Figure 4.2: Investor Impatience for All Stocks during the Flash Crash
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Figure 4.3: Investor Impatience Heatmap and Prices of $AMC, $BBBY, and $KODK for
January 28, 2021

4.4.3 Microscopic Investor Impatience

We now examine the application of the model to individual stocks. Figures 4.4 through 4.6

below show the price, traded volume, and investor impatience force (i.e. gk(t)) for Bed Bath

& Beyond, AMC Entertainment Holdings Inc., and Eastman Kodak Company on January

28. Also plotted is the 10-minute rolling average of investor impatience, for clarity. We note

that GameStop’s price was generally above $100 and is thus excluded. For all three stocks,

considerable negative investor impatience is observed during the morning drawdown.

Figure 4.7 below displays the investor impatience and conservation of energy equation

parameters during the flash crash. Again, the rolling 10-minute average of investor impa-

tience is plotted. There is not only negative investor impatience prior to the crash, but also

a noticeable increase in the energy conservation volatility term. These indicate this system

may be used for detecting abnormalities in markets.

These figures also reveal how one may contextualize the price action of individual stocks

within the investor impatience field to “decompose” a stock’s price action into components
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of market-wide external force and idiosyncratic action. Such an approach may be applicable

to hedging. A stock with positive acceleration during a negative investor impatience envi-

ronment (and vice versa) may have implications for portfolio diversification, particularly in

market phenomena that impact a particular subset of traded assets.

Figure 4.4: Bed Bath & Beyond ($BBBY) Price, Volume, and Investor Impatience for
January 28, 2021
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Figure 4.5: AMC Entertainment Holdings, Inc. ($AMC) Price, Volume, and Investor
Impatience for January 28, 2021
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Figure 4.6: Eastman Kodak Company ($KODK) Price, Volume, and Investor Impatience
for January 28, 2021
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Figure 4.7: Investor Impatience and Conservation of Energy Parameters for $20 Stocks
during the Flash Crash

4.4.4 Sentiment Forecasting

Table 4.1 below shows the out-of-sample SMAPE metric percentage improvement using the

investor impatience regressors for each trading date using both sentiment models. Inclusion

of the investor impatience regressors decreases the prediction error in five of seven days for
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both estimates of sentiment, although performance is superior for the Twitter-RoBERTa-

base estimates. These results indicate the model parameters capture external phenomena

that may have market impact, such as the role of investor sentiment in the short squeeze.

Sentiment Estimation Method

Trading Day VADER Twitter-RoBERTa-base

January 21, 2021 -1.36% -1.45%

January 22, 2021 -1.85% 2.38%

January 25, 2021 -5.49% -4.18%

January 26, 2021 -5.52% -0.37%

January 27, 2021 2.61% -1.60%

January 28, 2021 8.99% 1.42%

January 29, 2021 -1.30% -6.06%

Average -0.56% -1.41%

Table 4.1: SMAPE Prediction Error Change from Including Investor Impatience Regressors
during the GameStop Short Squeeze

4.5 Conclusions and Future Work

We have estimated external forces on equity markets under a physics-based macroscopic

model. We fitted the investor impatience force, which is conceptually similar to the gravita-

tional force, and the conservation of energy equation, analyzing them alongside a selection

of stocks that exhibited abnormal behavior during the GameStop short squeeze. Our results

indicate this model captures a degree of investor sentiment during this event and can be used

as a sensor of abnormal market activity. The latter point is supported by our qualitative

analysis of investor impatience and the energy conservation equation during the flash crash.

Furthermore, the comparable results across contrasting market events indicates the ability of

the model to respond to a potential multitude of external influences. Multiple future avenues
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of research are presented by these findings. Naturally, future work may evaluate the investor

impatience variable and energy equation as predictive tools of market crashes. Similar anal-

yses may be conducted on fixed income or cryptocurrency markets. Further analysis on the

potential hedging capabilities of various portfolios from an investor impatience perspective

is also warranted.
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CHAPTER 5

Conclusion

The challenge of making the right long-term investments in financial markets stems from the

complexity of not only the investor’s desires and financial situation, but also the markets

themselves. This dissertation reduces the complexity from both such sources. Other GBWM

models have lacked key elements of realistic lifetime goal-setting, including retirement con-

siderations and a connection between income and the market at large. The first part of

this dissertation introduces a model which addresses such considerations and beyond. We

solve this model for a hypothetical investor and demonstrate the quantitative and qualita-

tive difference in their optimal strategy as their situation changes. The second part of this

dissertation presents a reinforcement learning approach to GBWM that addresses recession

risk and uncertain goal times. The model demonstrates sensitivity to both of these factors,

providing intuitive recommendations for investment and goal contributions. The final part

of this dissertation works to measure external forces on financial markets by relating such

forces to the physical phenomenon of gravity. Within a fluid dynamics model, we measure

these forces using the conservation of energy principle, represented as a stochastic PDE.

We validate the model with minute-by-minute stock and forum comment data during the

GameStop short squeeze, as well as a separate study on the flash crash.

While this research has made progress towards the understanding of, and decision-making

within, financial markets, there are multiple natural extensions. Refinements to the GBWM

model in Chapter 2 can be made in a few areas. Nuances in tax codes and retirement
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account withdrawals are not yet addressed, nor the spending within the post-retirement

phase of life. In addition to these, incorporating market regimes such as recessions would be

useful model improvements. For additional realism, the assumption of geometric Brownian

motions underlying all processes could be relaxed in future research. The model presented

in Chapter 3 can be expanded to a more comprehensive framework, incorporating elements

from Chapter 2 and other complexities. For Chapter 4, extensions may include studies

of other markets, such as those of fixed-income or cryptocurrency. Synthesis of the ideas

presented in this dissertation may include exploring optimal decision-making in the presence

of external forces on financial markets. The nonlinearities expected under exogenous market

impacts may provide insights into investment strategy for risk-averse investors.
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APPENDIX A

Finite Difference Approximation of the Value

Function

A.1 Introduction

Prior to applying the shape-preserving Chebyshev polynomials, a finite difference approach

was tried, using an Euler scheme to approximate the value function. For completeness, this

appendix details the method used despite its application being unsuccessful.

Issues arose in maintaining concavity of the value function estimates in successive time

steps. We expect this is due to a combination of numerical error and the value function

shape. For many states in which maximal future utility is all but guaranteed, such as high

XP and XR values for moderate income levels, the portfolio-dependent derivatives approach

zero. The ∂2F
∂X2

P
derivative estimate becomes positive at multiple points, rendering the problem

nonconcave. This led to abnormal portfolio recommendations. Attempts to smooth the value

function or enforce concavity in the diagonals of the value function Hessian (either within

or after the policy iteration) did not result in sensible portfolios.

The following subsections detail the finite difference discretization and policy iteration

procedure.

105



A.1.1 Discretization

The state space is discretized into a uniform mesh. The set of states in each program, Xk,

k = 1, 2, ..., K can be defined with:

t = [0,∆t, 2∆t, ..., Nt∆t] (A.1)

P = [0,∆P , 2∆P , ..., NP∆P ]
T (A.2)

R = [0,∆R, 2∆R, ..., NR∆R]
T (A.3)

I = [0,∆I , 2∆I , ..., NI∆I ]
T (A.4)

Xk = {(t,XP , XR, XI) : tk−1 ≤ t < tk, t ∈ t, XP ∈ P, XR ∈ R, XI ∈ I}, k = 1, 2, ..., K

(A.5)

(A.6)

where: Ni, i = t,XP , XR, XI represents the number of discretized points for process i;

∆i > 0; tk ∈ t for k = 1, 2, ..., K − 1; and (Nt + 1)∆t = tK .

For notational clarity, we include each component of the financial state X as a sepa-

rate input to the value functions: Fk(t,XP , XR, XI). Derivatives of the value functions are
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approximated using an Euler scheme as follows, for (t,XP , XR, XI) ∈ Xk, k = 1, 2, ..., K.

∂Fk(t,XP , XR, XI)

∂t
≈ Fk(t+∆t, XP , XR, XI)− Fk(t,XP , XR, XI)

∆t

(A.7)

∂Fk(t,XP , XR, XI)

∂XP

≈ Fk(t,XP +∆P , XR, XI)− Fk(t,XP , XR, XI)

∆P

(A.8)

∂Fk(t,XP , XR, XI)

∂XR

≈ Fk(t,XP , XR +∆R, XI)− Fk(t,XP , XR, XI)

∆R

(A.9)

∂Fk(t,XP , XR, XI)

∂XI

≈ Fk(t,XP , XR, XI +∆I)− Fk(t,XP , XR, XI)

∆I

(A.10)

∂2Fk(t,XP , XR, XI)

∂X2
P

≈ Fk(t,XP −∆P , XR, XI)− 2Fk(t,XP , XR, XI) + Fk(t,XP +∆P , XR, XI)

∆2
P

(A.11)

∂2Fk(t,XP , XR, XI)

∂X2
R

≈ Fk(t,XP , XR −∆R, XI)− 2Fk(t,XP , XR, XI) + Fk(t,XP , XR +∆R, XI)

∆2
R

(A.12)

∂2Fk(t,XP , XR, XI)

∂X2
I

≈ Fk(t,XP , XR, XI −∆I)− 2Fk(t,XP , XR, XI) + Fk(t,XP , XR, XI +∆I)

∆2
I

(A.13)

∂2F

∂XP∂XR

≈ 1

4∆P∆R

(Fk(t,XP +∆P , XR +∆R, XI)− Fk(t,XP −∆P , XR +∆R, XI)

(A.14)

− Fk(t,XP +∆P , XR −∆R, XI) + Fk(t,XP −∆P , XR −∆R, XI))

(A.15)

∂2F

∂XP∂XI

≈ 1

4∆P∆I

(Fk(t,XP +∆P , XR, XI +∆I)− Fk(t,XP −∆P , XR, XI +∆I)

(A.16)

− Fk(t,XP +∆P , XR, XI −∆I) + Fk(t,XP −∆P , XR, XI −∆I))

(A.17)

∂2F

∂XR∂XI

≈ 1

4∆R∆I

(Fk(t,XP , XR +∆R, XI +∆I)− Fk(t,XP , XR −∆R, XI +∆I)

(A.18)

− Fk(t,XP , XR +∆R, XI −∆I) + Fk(t,XP , XR −∆R, XI −∆I))

(A.19)
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where we have the following boundary conditions to maintain nonpositive second derivative

approximations:

Fk(t, (NP + 1)∆P , XR, XI) = Fk(t, NP∆P , XR, XI) t ∈ t, XR ∈ R, XI ∈ I (A.20)

Fk(t,XP , (NR + 1)∆R, XI) = Fk(t,XP , NR∆R, XI) t ∈ t, XP ∈ P, XI ∈ I (A.21)

Fk(t,XP , XR, (NI + 1)∆I) = Fk(t,XP , XR, NI∆I) t ∈ t, XP ∈ P, XR ∈ R (A.22)

Fk(t,−∆P , XR, XI) = −Fk(t,∆P , XR, XI) t ∈ t, XR ∈ R, XI ∈ I (A.23)

Fk(t,XP ,−∆R, XI) = −Fk(t,XP ,∆R, XI) t ∈ t, XP ∈ P, XI ∈ I (A.24)

Fk(t,XP , XR,−∆I) = −Fk(t,XP , XR,∆I) t ∈ t, XP ∈ P, XR ∈ R (A.25)

A.1.2 Policy Iteration

Algorithm 1 below details the policy iteration procedure applied to this finite difference
scheme.
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Algorithm 1 Policy Iteration

Require: ϵ1, ϵ2, N > 0
k ← K
while k ≥ 1 do

Calculate G⋆
k(XP , XR, XI) for all XP , XR, XI via enumeration (taking G⋆

k =
maxGk∈G⋆

k
Gk where G⋆

k denotes the set of maximizers if non-unique)
Fk(tk, ·, ·, ·)← Φk(·, ·, ·)
t← tk −∆t

while t ≥ tk−1 do
δ1 ←∞ ▷ Norm of the HJB residual
Fk(t, ·, ·, ·)← Fk(t+∆t, ·, ·, ·)
(π(t), λP (t), λR(t), λC(t))← (π(t+∆t), λP (t+∆t), λR(t+∆t), λC(t+∆t))
while δ1 > ϵ1 do

δ2 ←∞ ▷ Norm of value function change
n← 0
Fk(t, ·, ·, ·)← Fk(t+∆t, ·, ·, ·)
while n < N and δ2 > ϵ2 do

Fnew(t, ·, ·, ·)← Fiter(Fk(t+∆t, XP , XR, XI), Fk(t,XP , XR, XI), ũk; π, λP , λR, λC)
▷ per (A.26)

δ2 ← ∥Fnew(t, ·, ·, ·)− F (t, ·, ·, ·)∥2
Fk(t, ·, ·, ·)← Fnew(t, ·, ·, ·)
n← n+ 1

end while
∆← Numerical derivatives of F (t, ·, ·, ·) ▷ per (A.7) to (A.19)
Optimize π, λP , λR, λC ▷ per (A.27)
δ1 ← ∥HJBResidual(F (t, ·, ·, ·),∆, (π(t), λP (t), λR(t), λC(t)), ũk)∥2

end while
t← t−∆t

end while
k ← k − 1

end while
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We define the function Fiter as follows.

Fiter(F (t+∆t, XP , XR, XI), F (t,XP , XR, XI), ũk; π, λP , λR, λC)

=
α(F (t+∆t, XP , XR, XI), F (t,XP , XR, XI), ũk; π, λP , λR, λC)

β(XP , XR, XI ; π, λP , λR, λC)

β(XP , XR, XI ; π, λP , λR, λC)

= r +
1

∆t

+
1

∆P

((r(1− πT
1N) + πTµ)XP + (1− νI)λPXI)

+
1

∆R

(µRXR + (1 + κ)λRXI) +
1

∆I

(µIXI) +
1

∆2
P

X2
Pπ

TCPPπ

+
1

∆2
R

X2
RCRR +

1

∆2
I

X2
ICII

α(F (t+∆t, XP , XR, XI), F (t,XP , XR, XI), ũk; π, λP , λR, λC)

=
F (t+∆t, XP , XR, XI)

∆t

+ ũk ((1− νI)λCXI)

+
F (t,XP +∆P , XR, XI)

∆P

((
r(1− πT

1N) + πTµ
)
XP + (1− νI)λPXI

)
+
F (t,XP , XR +∆R, XI)

∆R

(µRXR + (1 + κ)λRXI) +
F (t,XP , XR, XI +∆I)

∆I

µIXI

+
F (t,XP +∆P , XR, XI) + F (t,XP −∆P , XR, XI)

2∆2
P

X2
Pπ

TCPPπ

+
F (t,XP , XR +∆R, XI) + F (t,XP , XR −∆R, XI)

2∆2
R

X2
RCRR

+
F (t,XP , XR, XI +∆I) + F (t,XP , XR, XI −∆I)

2∆2
I

X2
ICII

+
XPXRπ

TCPR

4∆P∆R

(Fk(t,XP +∆P , XR +∆R, XI)− Fk(t,XP −∆P , XR +∆R, XI)

− Fk(t,XP +∆P , XR −∆R, XI) + Fk(t,XP −∆P , XR −∆R, XI))

+
XPXIπ

TCPI

4∆P∆I

(Fk(t,XP +∆P , XR, XI +∆I)− Fk(t,XP −∆P , XR, XI +∆I)

− Fk(t,XP +∆P , XR, XI −∆I) + Fk(t,XP −∆P , XR, XI −∆I))

+
XRXICRI

4∆R∆I

(Fk(t,XP , XR +∆R, XI +∆I)− Fk(t,XP , XR −∆R, XI +∆I)

− Fk(t,XP , XR +∆R, XI −∆I) + Fk(t,XP , XR −∆R, XI −∆I))

(A.26)
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Policy improvement is performed pointwise for all (x1, x2, x3) ∈ P×R×I using the following

convex programming formulation:

minimize
π, λP , λR

− ũk ((1− νI)(1− λP − λR)x3)− ∂P F̂k(c)
(
(µ− r1N)

Tπx1 + (1− νI)λPx3
)

− ∂RF̂k(c) ((1 + κ)λRx3)−
1

2
∂PPx

2
1π

TCPPπ − ∂PRx1x2π
TCPR

− ∂PIF̂k(c)x1x3π
TCPI

s.t. λP + λR ≤ 1,

πT
1N ≤ 1,

λR ≤ γ,

πTCPPπ ≤ σ2
max,

π, λP , λR ≥ 0

(A.27)
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can Option Pricing: The Dynamic Chebyshev Method. SIAM Journal on Scientific
Computing, 41(1):B153–B180, January 2019.

[45] Luigi Guiso, Paola Sapienza, and Luigi Zingales. Time varying risk aversion. Journal
of Financial Economics, 128(3):403–421, June 2018.

[46] Nils H. Hakansson. Optimal Investment and Consumption Strategies Under Risk, an
Uncertain Lifetime, and Insurance. International Economic Review, 10(3):443–466,
1969.

[47] Nils H. Hakansson. Optimal Entrepreneurial Decisions in a Completely Stochastic
Environment. Management Science, 17(7):427–449, March 1971.

[48] Hamilton, James. Dates of U.S. recessions as inferred by GDP-based recession indica-
tor. https://fred.stlouisfed.org/series/JHDUSRGDPBR, October 1967.

[49] Shu-Fan Hsieh, Chia-Ying Chan, and Ming-Chun Wang. Retail investor attention and
herding behavior. J. Empir. Financ., 59:109–132, 2020.

[50] Hugging Face. CardiffNLP/twitter-roberta-base-sentiment, 2022.

[51] C. Hutto and Eric Gilbert. VADER: A Parsimonious Rule-Based Model for Senti-
ment Analysis of Social Media Text. Proc. Int. AAAI Conf. on Web and Soc. Media,
8(1):216–225, May 2014.

[52] Daniel Kahneman and Amos Tversky. Prospect Theory: An Analysis of Decision under
Risk. Econometrica, 47(2):263–291, 1979.

[53] Bong-Han Kim, Hyeongwoo Kim, and Bong-Soo Lee. Spillover effects of the U.S.
financial crisis on financial markets in emerging Asian countries. International Review
of Economics & Finance, 39:192–210, September 2015.

[54] Andrei Kirilenko, Albert S Kyle, Mehrdad Samadi, and Tugkan Tuzun. The flash crash:
High-frequency trading in an electronic market. J. Financ., 72(3):967–998, 2017.

115



[55] Rakesh Kochhar. A Recovery No Better than the Recession.
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