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Abstract 

Quantitative magnetic resonance imaging (qMRI) measures physical, physiological or 

biological properties of tissues and thus provides reproducible imaging biomarkers for disease 

diagnosis and therapy response monitoring. However, long scanning and reconstruction time, 

low reproducibility, spatial resolution, and volume of coverage limit the clinical translation of 

qMRI.  

The overall goal of this dissertation is to improve qMRI by exploiting its sparsity by data-

driven deep learning methods. Such methods can provide more accurate and precise tissue 

parameters from highly undersampled or accelerated scans using a fraction of reconstruction 

time of conventional methods. Sampling patterns, image reconstruction and parameter estimation 

could be jointly optimized to directly minimize parameter quantification error under the same 

scan time. 

Temporal sparsity in dynamic contrast enhanced magnetic resonance imaging (DCE 

MRI) was exploited by a long short-term memory (LSTM) neural network-based approach to 

provide more robust tissue parameter estimation. The network was trained on simulated DCE 

signals and tested on both simulated and real data. Compared to a conventional linear least 

squares (LLSQ) fitting method, the LSTM-based approach had higher accuracy for the data with 

temporally subsampling, total acquisition time truncation, or high noise level. Also, the LSTM-

based method reduced the inference time by ~14 times compared to the LLSQ fitting. Validation 

of the method on real data demonstrated its clinical feasibility to provide high-quality tissue 

parameter maps. 



 xvii 

Beyond temporal sparsity, the spatiotemporal sparsity of DCE MRI was further exploited 

by convolutional recurrent neural network. 2D Cartesian phase encoding k-space subsampling 

patterns were jointly optimized with image reconstruction to identify the most informative k-

space data to acquire beyond the learned population prior knowledge. Both reconstruction image 

quality and parameter estimation accuracy were used to guide network training. The proposed 

method was trained and tested by multi-coil complex digital reference objects of DCE images. 

The proposed method achieved lower parameter estimation error at four temporal resolutions (2s, 

3s, 4s, and 5s) compared with two benchmark methods and reduced parameter estimation bias 

and uncertainty in tumor regions at temporal resolution of 2s. The proposed method also showed 

robustness to contrast arrival timing variations across patients.  

Compared with Cartesian sampling, non-Cartesian sampling provides more flexibility in 

trajectory design. This work also develops a deep learning framework that is able to 

synergistically optimize rotation angles of 3D spiral trajectories, image reconstruction, and 

parameter estimation of magnetic resonance fingerprinting. To counter the large problem size, an 

efficient model-based deep learning (MBDL) image reconstruction framework was developed. 

The MBDL image reconstruction provided more accurate parameter estimation than a state-of-

the-art reconstruction method on both simulated and in vivo data. On simulated data, joint 

optimization of image-parameter reconstruction or sampling trajectory-image reconstruction 

were incorporated into the baseline MBDL framework and further improved tissue parameter 

estimation. 

 

 



 1 

Chapter 1 Introduction 

1.1 Motivation 

Magnetic resonance imaging (MRI) is a non-invasive imaging modality with excellent 

soft-tissue contrast and no ionizing radiation. More importantly, MRI has flexibility of providing 

contrasts associated with various anatomic and physiological information for both disease 

diagnosis and therapy response monitoring. Conventional contrast-weighted MR images are 

routinely used in clinics. For example, with contrast agent, T1- and T2-weighted images are used 

respectively for identification of high-grade brain tumors and pathological tissues in liver and 

spleen [1]. However, conventional contrast-weighted MR images are sensitive to various 

confounding factors and lead to inter-scanner and across-center variations of images, which have 

an impact on diagnosis accuracy.  

Quantitative MRI (qMRI) measures underlying physical, physiological or biological 

properties of tissues directly and thus could provide reproducible imaging biomarkers. Various 

qMRI techniques have been developed with a wide range of clinical applications and 

demonstrate high diagnostic power [2]–[4]. However, in general, qMRI requires longer scanning 

and reconstruction time, limiting its clinical translation. In practice, one must balance high 

spatiotemporal resolution, volume coverage, signal-to-noise ratio and quantitative parameter 

accuracy and precision against limited scanning times.  

qMRI usually requires long scanning time to acquire images of the same anatomical 

structures with varying parameters for multiple contrasts or with the same parameters for 

dynamic courses of a contrast uptake. However, these acquired images contain a high degree of 
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redundant information due to spatial, temporal and/or contrast sparsity. This sparsity can be 

learned by statistical methods and utilized as prior knowledge complimentary to acquired data 

that can then be undersampled. The extraction of robust and accurate sparse representations of 

qMRI and the efficient incorporation of such prior knowledge into image reconstruction are thus 

promising research areas to reduce scan time. 

Compressed sensing [5] is one of the ways to exploit such sparsity. It incorporates prior 

knowledge of the spatiotemporal sparsity of the underlying MR image-time series into the 

reconstruction from highly accelerated scans by using hand-crafted regularizations, for example, 

spatiotemporal total variation (TV) [6], low rank [7], and locally low rank [8], [9]. Combining 

with parallel imaging [10], [11] that exploits additional spatial information provided by multiple 

coils, compressed sensing has achieved promising results in accelerating MR scans. However, 

these regularizations are empirically designed and may not fully capture the sparsity in anatomy 

of interest and dynamics of the data. More recently, deep learning has shown state-of-the-art 

image reconstruction performance from shortened scans by learning regularizations tailored to 

the anatomy and dynamics in MRI signals [12]–[16]. Direct mapping from k-space data to MR 

images by fully connected and convolutional neural networks are explored [17], followed by 

methods working in image space using a fully convolutional network with one data consistency 

step at the end [18]. However, due to the high-dimensional nature of MRI reconstruction, large 

training dataset is required which is not readily available in MRI. More recently, methods based 

on interleaves of neural networks and data consistency steps better leverage learned priors by 

mimicking conventional optimization algorithm of model-based reconstruction and have 

achieved the state-of-the-art robustness and image quality [15] even with small training dataset. 
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K-space sampling patterns determining where to acquire the data in the Fourier domain 

have critical impacts on the quality of reconstructed MR images. While previous methods have 

optimized sampling patterns independent of reconstruction methods [19], [20], deep learning has 

recently emerged as a data-driven approach to optimize the two (sampling and reconstruction) 

together in a large space with high degrees of freedom and achieves state-of-the-art image 

reconstruction performance for static MRI [21], [22]. Deep learning-based joint optimization of 

sampling and reconstruction for qMRI, although holding great promise, has not been explored 

due to several reasons. 1) The data acquired for qMRI not only contains anatomical sparsity but 

also temporal and contrast sparsity, which can be explored to reduce required samplings 

dramatically; 2) error propagation from image reconstruction to parameter quantification can be 

directly minimized to improve accuracy in the final parameter estiamtion; 3) parameter 

estimation algorithms can be jointly optimized along with sampling and image reconstruction, 

which further enlarges the optimization space. 

In this dissertation, we explore the concept of optimizing the entire pipeline of qMRI 

from k-space sampling patterns to image reconstruction to parameter estimation for reducing 

scanning time and increasing reproducibility and accuracy of the final estimated quantitative 

parameters. We utilize dynamic contrast enhanced (DCE) MRI that contains spatial and temporal 

sparsity and 3D magnetic resonance fingerprinting (MRF) that consists of spatial, temporal and 

contrast sparsity as platforms to test the proposed concept. Brief introductions of DCE MRI and 

MRF are provided in the following subsections. 

1.2 Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE MRI) 

DCE MRI is an imaging technique that acquires a time-series of T1 weighted images 

before, during and after a bolus administration of a contrast agent (CA) to enable quantitative 
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physiological parameter extraction from a pharmacokinetic (PK) model. The extracted 

parameters, e.g., blood volume and blood flow, could help assess the histological grade of 

tumors [23], differentiate tumors from normal tissue [24], and monitor as well as predict cancer 

response to therapy [25]. For example, a previous work shows that the tumor subvolume with 

low blood volume derived from DCE MRI has been used as a radiation boost target in a clinical 

trial of head and neck cancers, which shows improved tumor local control [26]. 

The extended Tofts (eTofts) model [27] was used in this dissertation to quantify 

physiological parameters, including the transfer constant Ktrans of the CA that diffuses from 

blood vessels to the interstitial space, the rate constant kep of the CA efflux from the interstitial 

space to blood plasma and the fractional volume of blood plasma vp. Also, a voxel-wise contrast 

bolus arrival time (BAT), τBAT(𝐫𝐫) is warranted for accuracy of PK parameter estimation [28]. 

The implemented eTofts model is written as: 

Ct(𝐫𝐫, t) = Ktrans(𝐫𝐫)� Cp�τ − τBAT(𝐫𝐫)�e−Kep(𝐫𝐫)(t−τ)dτ + vp(𝐫𝐫)Cp�t − τBAT(𝐫𝐫)�
t

0
,   (1.1) 

where Ct(𝐫𝐫, t)  is the CA concentration in the tissue voxel, Cp is the CA concentration in the 

blood plasma, kep equals to Ktrans/ve, where ve is the fractional interstitial volume.  

 Although a time-series of images is acquired in DCE MRI, the image frames contain 

similar anatomical structures, and the contrast changes are relatively smooth in time domain and 

happen only in part of the anatomy. The spatial and temporal sparsity can be explored jointly to 

improve DCE MRI reconstruction. 

1.3 Magnetic Resonance Fingerprinting (MRF) 

MR fingerprinting [29] is a qMRI technique that enables fast simultaneous quantification 

of multiple tissue parameters for potential disease diagnosis and treatment monitoring. The MRF 



 5 

sequence design sensitizes MR signals to physiological parameters of interest by using 

preparation pulses and pseudo-random schedule of flip angles and TRs. Temporal incoherence of 

MR signals is enhanced by using different spiral readout trajectories across time. While MRF is 

initially demonstrated for mapping relaxometry parameters, extension works have shown its 

feasibility for quantitative diffusion [30], chemical exchange saturation transfer (CEST) [31], 

[32], and microvascular structure [33] imaging. The potential clinical applications of MRF have 

been investigated for different body sites, including brain [34]–[38], heart [39], liver [40], and 

abdomen [41]. For example, MRF can improve accuracy of identifying lesions suspicious for 

hippocampal sclerosis in patients with mesial temporal lobe epilepsy [35]. T1 and T2 values 

derived from MRF can be used to distinguish tumor from normal-appearing white matter, 

differentiate tumor grade, and identify abnormalities in peritumoral regions [42]. The 

repeatability and reproducibility of MRF have also been demonstrated [43].  

Full 3D non-Cartesian sampling of k-space is highly flexible in trajectory design and can 

potentially be optimized for MRF to improve efficiency. However, full 3D non-Cartesian 

sampling based MRF requires extremely high computation power to reconstruct image series and 

estimate quantitative parameters. Spatiotemporal sparsity of MRF can be exploited to reduce the 

complexity of the problem. 

1.4 Organization of the Dissertation 

Chapter 2 introduces a novel neural network approach to estimate the PK parameters by 

extracting long and short time-dependent features in DCE MRI. A Long Short-Term Memory 

(LSTM) network, widely used for processing sequence data, was employed to map DCE MRI 

time-series accompanied with an arterial input function to parameters of the eTofts model. Our 

study suggests that the LSTM model can achieve improved robustness and computation speed 
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for PK parameter estimation compared to a conventional parameter fitting method and a 

convolutional neural network (CNN)-based network, particularly for suboptimal data. The results 

are published in a paper [44]. 

Chapter 3 develops and evaluates a deep learning framework that jointly optimizes k-t 

sampling patterns and image reconstruction for head and neck DCE MRI. The k-space 

subsampling patterns were jointly optimized in a deep learning-based dynamic MRI 

reconstruction network. Comparing with conventional iterative reconstruction methods, the 

proposed method achieved low PK parameter quantification errors at various temporal 

resolutions and reduced PK parameter estimation bias and uncertainty in tumor regions. The 

results are published in a paper [45]. 

Chapter 4 investigates the idea of jointly optimizing the k-space sampling patterns of two 

highly distinct contrasts to accelerate multi-contrast MRI. The sampling patterns of T1 and T2 

weighted images were optimized with an image reconstruction framework with decoupled 

single- and multi-contrast learning modules. The jointly learned sampling patterns outperformed 

empirical patterns at various undersampling rates in both 1D and 2D imaging. The related results 

are described in a conference proceeding [46]. 

Chapter 5 describes an end-to-end framework to jointly optimize image reconstruction, 

parameter reconstruction and trajectory of full 3D spiral MRF with minimal computation 

demand. By evaluating the framework on both simulated and in vivo datasets, the proposed 

method improved parameter quantification accuracy and reduced reconstruction time compared 

with a state-of-the-art reconstruction method. The results are summarized in a manuscript to be 

submitted as a journal paper. 

Chapter 6 summarizes the dissertation and outlines future research directions. 
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Chapter 2 Estimation of Pharmacokinetic Parameters from DCE-MRI by Extracting Long 

and Short Time-Dependent Features Using an LSTM Network 

2.1 Introduction 

The purpose of this chapter is to develop a more time-efficient and more robust method 

for pharmacokinetic parameter estimation from DCE-MRI compared with a convolutional neural 

network-based method and a conventional pharmacokinetic model fitting by linear least squares. 

Quantification of PK parameter maps is often done in two steps: 1) reconstruction of time 

series of DCE images, and 2) fitting DCE time series to a PK model, so refereed as an indirect 

method. The PK model fitting is often done by nonlinear least-squares (NLLSQ) fitting, which is 

sensitive to DCE data sampling interval, total acquisition time, and noise [47], and requires 

intensive computation. However, a LLSQ fitting can be used [48] after re-formulating the 

optimization problem, which is more efficient in computation time and improves accuracy in the 

estimates, particularly for DCE MRI signals with low signal-to-noise ratio. More recently, an 

efficient derivative based LLSQ method with a low-pass filter in time domain [49] is introduced. 

However, these developed methods show degraded performance for noisy and low temporal 

resolution DCE data.1  

Recently, machine learning methods have been investigated to learn mapping from fully 

sampled or subsampled image time-series to the parameter maps utilizing 2D or 3D CNN [50], 

 
1This chapter is based on our paper published in Medical Physics [44]. 
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[51]. Although having a short inference time, CNN is not designed to learn long and short-term 

temporal relationships in the hemodynamics of the CA from the image time-series. Recurrent 

neural networks (RNNs), especially LSTM [52], have been successfully applied to learn 

temporal relationships in sequence data, such as video description and image captioning [53]. 

The LSTM has been applied to explore applications in biomedical images. A modified U-net was 

combined with an LSTM variant for 3D biomedical volume segmentation [54], where the LSTM 

explored the correlation of slices in the cranial-caudal direction. A pre-trained fine-tuned Visual 

Geometry Group (VGG) network was used to extract feature maps from DCE MRI slices, and 

then the sequence of feature maps was processed by an LSTM to determine whether a breast 

lesion was benign or malignant [55]. 

It remains as a challenge of how to input an arterial input function (AIF) during training 

and inferencing a machine learning model for mapping time series of DCE images to PK 

parameter maps. In general, AIFs vary in shape, peak amplitude, and time delay from subject to 

subject.  The machine learning model could produce biased estimations in PK parameters if a 

model is trained with insufficient amounts of subject AIFs [51].  

Inspired by the recent successes of LSTM and the challenges faced by CNN-based 

approaches for PK parameter estimation, we proposed a LSTM-based approach to learn the 

mapping of temporal dynamics in single-voxel signals accompanied, with their corresponding 

AIFs, to the PK parameters in the extended Tofts model [27]. Our approach is motivated by four 

factors. First, the signal intensity-time curves of DCE-MRI describe temporal hemodynamics of 

a CA passing through microvasculature in tissue. The LSTM architecture is able to learn long-

term (temporal) dependence of signals [53], [56] and thus could improve performance of PK 

parameter estimation compared to the CNN-based approaches. Second, in practice, the AIF 
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varies from patient to patient [57]. Inclusion of a subject-specific AIF in the estimation process 

could significantly improve estimation performance. AIFs can be readily incorporated into the 

input of LSTM as another input dimension, removing the bias observed in the reported CNN-

based approaches [50], [51]. Third, by capturing a low-dimensional manifold where the tissue 

concentration-time curve and AIF reside using LSTM, more robust parameter estimation can be 

achieved. Fourth, the inference time can be reduced because of the small computational burden 

of the LSTM as compared to direct model fitting (DMF). We compared the results of LSTM 

with conventional direct model fitting [58] as well as a state-of-the-art CNN-based method [51], 

including performances on the DCE MRI at low contrast-to-noise ratio, low temporal sampling 

and short total acquisition time. 

2.2 Materials and Methods 

Our proposed LSTM-based method treats the PK parameter estimation problem as a 

mapping from a CA concentration-time curve accompanying an AIF to the underlying PK 

parameters. Here, we investigated our method in the most commonly used extended Tofts model.  

2.2.1 Extended Tofts model 

The eTofts model (equation 1.1) was used in this chapter. While equation 1.1 has been 

fitted using NLLSQ methods [48], [49] previously, we selected a LLSQ method [48] that has a 

better tolerance to low signal-to-noise ratio (SNR) in the DCE data and a more efficient 

computation speed than NLLSQ fitting, as a benchmark to compare with our proposed LSTM 

method. In this LLSQ method, equation 1.1 can be re-written as: 

𝐶𝐶𝑡𝑡(𝒓𝒓, 𝑡𝑡) = (𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓) + 𝐾𝐾𝑒𝑒𝑒𝑒(𝒓𝒓)𝑣𝑣𝑝𝑝(𝒓𝒓))� 𝐶𝐶𝑝𝑝�𝜏𝜏 − 𝜏𝜏𝐵𝐵𝐵𝐵𝐵𝐵(𝒓𝒓)�𝑑𝑑𝑑𝑑 − 𝐾𝐾𝑒𝑒𝑒𝑒(𝒓𝒓)� 𝐶𝐶𝑡𝑡(𝒓𝒓, 𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

0
+ 𝑣𝑣𝑝𝑝(𝒓𝒓)𝐶𝐶𝑝𝑝�𝑡𝑡 − 𝜏𝜏𝐵𝐵𝐵𝐵𝐵𝐵(𝒓𝒓)�

𝑡𝑡

0
,        (2.2) 
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where 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝐾𝐾𝑒𝑒𝑒𝑒, and 𝑣𝑣𝑝𝑝 are linearly related to integrals of 𝐶𝐶𝑡𝑡(𝒓𝒓, 𝑡𝑡) and 𝐶𝐶𝑝𝑝(𝑡𝑡), and 𝐶𝐶𝑝𝑝(𝑡𝑡).  For 

given 𝜏𝜏𝐵𝐵𝐵𝐵𝐵𝐵(𝒓𝒓), 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝐾𝐾𝑒𝑒𝑒𝑒, and 𝑣𝑣𝑝𝑝 can been rapidly estimated by LLSQ fitting. 𝜏𝜏𝐵𝐵𝐵𝐵𝐵𝐵(𝒓𝒓) can be 

estimated iteratively with 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝐾𝐾𝑒𝑒𝑒𝑒, and 𝑣𝑣𝑝𝑝.  The 𝜏𝜏𝐵𝐵𝐵𝐵𝐵𝐵(𝒓𝒓) range can be determined using 

priori knowledge, e.g., 0-10 seconds for the tissue in head and neck regions.  In our 

implementation, we tested the 𝜏𝜏𝐵𝐵𝐵𝐵𝐵𝐵(𝒓𝒓) values between 0 and 10 sec with an incremental step 1 

sec [47]. Hereafter, we refer this implementation of the LLSQ fitting as DMF. 

2.2.2  PK parameter inference via LSTM. 

2.2.2.1 Formulation 

We estimate the PK parameters by mapping (𝐶𝐶𝑡𝑡(𝒓𝒓, 𝑡𝑡),𝐶𝐶𝑝𝑝(𝑡𝑡)) to the underlying 

physiological parameters 𝜃𝜃 = (𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓),𝑣𝑣𝑒𝑒(𝒓𝒓),𝑣𝑣𝑝𝑝(𝒓𝒓)) using LSTM, which we denote as 𝜃𝜃 =

 𝑓𝑓�(𝐶𝐶𝑡𝑡(𝒓𝒓, 𝑡𝑡),𝐶𝐶𝑝𝑝(𝑡𝑡)))�Θ�, where 𝑓𝑓(∙ |Θ) represents the forward mapping of the LSTM network 

parameterized by Θ.  

2.2.2.2 Loss function 

Our loss function seeks to reduce the mean squared error (MSE) between the estimated 

parameters 𝜃𝜃𝑒𝑒 and the ground truth parameters 𝜃𝜃𝑔𝑔 corresponding to the training signal series. 

Given a set of N training samples (𝑐𝑐𝑡𝑡𝑖𝑖(𝑡𝑡), 𝑐𝑐𝑝𝑝𝑖𝑖(𝑡𝑡),𝜃𝜃𝑔𝑔𝑖𝑖), i = 1, 2, …, N, we train the LSTM network 

to minimize the following loss function: 

ℒ(Θ) =
1
𝑁𝑁
��𝜃𝜃𝑔𝑔𝑖𝑖 − 𝑓𝑓 ��𝑐𝑐𝑡𝑡𝑖𝑖(𝑡𝑡), 𝑐𝑐𝑝𝑝𝑖𝑖(𝑡𝑡)� �Θ��

2

2𝑁𝑁

𝑖𝑖=1

                                    (2.3) 
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2.2.2.3 LSTM network architecture 

The proposed network (Figure 2.1) consists of m LSTM layers with n sequentially 

connected cells in each layer. The network takes an input sequence [𝐶𝐶𝑡𝑡,𝐶𝐶𝑝𝑝]𝑇𝑇, where the AIF is 

incorporated as another input dimension. The first LSTM layer extracts lower-level temporal 

relationships. The output feature sequence is then passed through the remaining m-1 LSTM 

layers each to extract higher-order level temporal relationships from the signal and AIF.  

 

Figure 2.1: Illustration of the network architecture used for PK parameter estimation from an input of a CA 
concentration time-series and an AIF as two separate channels. Each layer has n sequentially connected cells. 

Each LSTM layer captures changes in the input sequence by maintaining a hidden state 

ℎ(𝑡𝑡) and a memory cell 𝑐𝑐(𝑡𝑡) by updating them using gating mechanisms when stepping through 

the input sequence. Specifically, the 𝑙𝑙th LSTM layer takes a sequence of hidden states ℎ𝑙𝑙−1
(0) , 

ℎ𝑙𝑙−1
(1) ,…, ℎ𝑙𝑙−1

(𝑛𝑛−1), 𝑙𝑙 ∈ {1,2, … ,𝑚𝑚}, where the superscript and subscript stand for timestep and layer, 

respectively, and ℎ0
(0), ℎ0

(1),…, ℎ0
(𝑛𝑛−1) are defined as 𝑥𝑥(0), 𝑥𝑥(1),…, 𝑥𝑥(𝑛𝑛−1). The new hidden states 

ℎ𝑙𝑙
(0), ℎ𝑙𝑙

(1),…, ℎ𝑙𝑙
(𝑛𝑛−1) are then defined by the equations shown in (2.4) below 
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𝑖𝑖𝑙𝑙
(𝑡𝑡) = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑖𝑖,𝑥𝑥𝑙𝑙ℎ𝑙𝑙−1

(𝑡𝑡) + 𝑊𝑊𝑖𝑖𝑖𝑖,ℎ𝑙𝑙ℎ𝑙𝑙
(𝑡𝑡−1) + 𝑏𝑏𝑖𝑖𝑙𝑙) 

𝑓𝑓𝑙𝑙
(𝑡𝑡) = 𝜎𝜎(𝑊𝑊𝑓𝑓,𝑥𝑥𝑙𝑙ℎ𝑙𝑙−1

(𝑡𝑡) + 𝑊𝑊𝑓𝑓,ℎ𝑙𝑙ℎ𝑙𝑙
(𝑡𝑡−1) + 𝑏𝑏𝑓𝑓𝑙𝑙) 

𝑜𝑜𝑙𝑙
(𝑡𝑡) = 𝜎𝜎(𝑊𝑊𝑜𝑜,𝑥𝑥𝑙𝑙ℎ𝑙𝑙−1

(𝑡𝑡) + 𝑊𝑊𝑜𝑜,ℎ𝑙𝑙ℎ𝑙𝑙
(𝑡𝑡−1) + 𝑏𝑏𝑜𝑜𝑙𝑙)                                       (2.4) 

𝑐̃𝑐𝑙𝑙
(𝑡𝑡) = tanh (𝑊𝑊𝑐𝑐,𝑥𝑥𝑙𝑙ℎ𝑙𝑙−1

(𝑡𝑡) + 𝑊𝑊𝑐𝑐,ℎ𝑙𝑙ℎ𝑙𝑙
(𝑡𝑡−1) + 𝑏𝑏𝑐𝑐𝑙𝑙) 

𝑐𝑐𝑙𝑙
(𝑡𝑡) = 𝜎𝜎(𝑓𝑓𝑙𝑙

(𝑡𝑡) ∘ 𝑐𝑐𝑙𝑙
(𝑡𝑡−1) + 𝑖𝑖𝑙𝑙

(𝑡𝑡) ∘ 𝑐̃𝑐𝑙𝑙
(𝑡𝑡)) 

ℎ𝑙𝑙
(𝑡𝑡) = 𝑜𝑜𝑙𝑙

(𝑡𝑡)tanh (𝑐𝑐𝑙𝑙
(𝑡𝑡)) 

for 𝑡𝑡 ∈ {0,1, … , 𝑛𝑛 − 1} and 𝑙𝑙 ∈ {1,2, … ,𝑚𝑚}, where 𝜎𝜎(⋅) is the sigmoid function and “∘” denotes 

the Hadamard product. 𝑖𝑖𝑙𝑙
(𝑡𝑡) and 𝑓𝑓𝑙𝑙

(𝑡𝑡) control which information to “input” to and “forget” from 

the memory cell, respectively. The new memory state 𝑐𝑐𝑙𝑙
(𝑡𝑡)is then obtained based on the candidate 

values 𝑐̃𝑐𝑙𝑙
(𝑡𝑡) and the gate values 𝑖𝑖𝑙𝑙

(𝑡𝑡) and 𝑓𝑓𝑙𝑙
(𝑡𝑡). Finally, the new hidden state ℎ𝑙𝑙

(𝑡𝑡) is generated by the 

candidate values 𝑜𝑜𝑙𝑙
(𝑡𝑡) and memory state 𝑐𝑐𝑙𝑙

(𝑡𝑡).  

Batch normalization is applied after each LSTM layer except for the last one. A fully 

connected layer with three features is then applied to find the best combination of features to 

generate an estimation of the PK parameters. The parameters are clipped to our targeted range, 

𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ [0, 3](𝑚𝑚𝑚𝑚𝑚𝑚−1), 𝑣𝑣𝑒𝑒 ∈ [0, 0.4], and 𝑣𝑣𝑝𝑝 ∈ [0, 0.55], thus confining the parameters to fall 

within a physiologically realistic range [47], to produce the final estimation of the PK 

parameters.   

2.2.3  Data preparation 

DCE MRI time series for training and testing were synthesized using AIFs from 103 

patients with head and neck cancers. DCE MRI images were acquired using a dynamic scanning 

sequence (TWIST) with an injection of 0.149 cc/kg of gadobenate dimeglumine on a 3 Tesla 

MRI scanner (Skyra, Siemens Healthineers, Erlangen Germany). The protocol was approved by 

the Institutional Review Board of the University of Michigan. The scanning parameters were: 

flip angle = 10º, echo time (TE) = 0.97ms, repetition time (TR) = 2.73ms, 60 time frames, voxel 
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size = 1.5625×1.5625×2.5mm3, matrix = 192×192. There were small variations in time step of 

temporal sampling of the dynamic series (median of 3.34 s) and in the numbers of the slices in z-

direction between the patients (median of 72). For all cases, the subject-specific AIFs were 

extracted manually by averaging the signal intensity-time curves of 20 voxels from the carotid 

artery, which had maximum intensities at the time frame before the enhancement peak [59], and 

then subtracting and dividing by the average pre-contrast signal intensities of the voxels. The 

targeted parameter maps were estimated using DMF [47].   

Of 103 patients, 78 cases were randomly selected for training, and 25 for testing. To 

overcome the limited size of the in vivo DCE MRI dataset, synthetic data were created for 

network training and testing. The synthesized data allow us to obtain a reliable and accurate 

assessment of the performance of the proposed methods by comparing the estimates to the 

ground truth (the parameters that created the synthetic data).  Data augmentation was also 

applied during training data synthesis. Using equation 2.1 of the extended Tofts model, the 

training signal intensity time-curves were created from different combinations of the AIF, time 

step (∆t), bolus arrival time (𝜏𝜏𝐵𝐵𝐵𝐵𝐵𝐵), and the parameters ( 𝜃𝜃 = (𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓),𝑣𝑣𝑒𝑒(𝒓𝒓),𝑣𝑣𝑝𝑝(𝒓𝒓))). 

Particularly, AIFs and time steps of 78 training cases formed a set of 78 60-dimensional vectors 

and a set of 78 scalars respectively, defined as 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. This yielded a set of 75,678,643 

3-dimensional parameter vectors (Ktrans, ve, and vp), which was denoted as 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. For testing, we 

used the DCE time-series synthesized using the AIFs from the 25 cases in the testing data pool as 

well as acquired empirical data. The synthesized testing data were generated in the same manner 

as the training data. Testing with real data can assure that the model is ‘realistic’ enough. 

2.2.4 Experimental setup 
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Performances of the LSTM networks on DCE MRI acquired with different total 

acquisition times and temporal sampling rates as well as different contrast-to-noise ratios (CNRs) 

were compared with the DMF method and a CNN model [51].  The LSTM networks were 

trained with input of fully temporal-sampled signal time-series as well as temporally subsampled 

time-series. 

2.2.4.1 Training with synthetic data using acquired temporal sampling 

The training data synthesis was executed on-the-fly during the network training and used 

the data from the training data generation pool consisting of the  𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.  

Figure 2.2 shows the data generating process during network training. Specifically, at each 

iteration, 1000 combinations of  �𝜃𝜃𝑔𝑔𝑖𝑖�𝑖𝑖=1
1000

, AIFs, and time steps {∆𝑡𝑡}𝑖𝑖=11000, were selected 

randomly from the aforementioned training data generation pool. For each combination, the AIF 

was first randomly scaled between 70% and 130% (AIF augmentation) [60]. The concentration 

time-curve was then generated by randomly time-shifting the AIF (between 0 and 10 seconds to 

simulate the delay of CA arrival) using the extended Tofts model, and random Gaussian noise 

was added to the signal time-series to have contrast-to-noise ratios between 20 and 30. The 

resultant signal time-series and the corresponding scaled AIF (without time shifting) were 

concatenated as an input. As a result, this batch data consisted of a vector of dimension 

1000×n×2 (where n was the number of time points in the series), and was passed to the network.  

Each epoch consisted of 1000 batches of training data and 200 batches of validation data. The 

network was trained with Adam optimizer [61] with an initial learning rate of 10−4. The learning 

rate was reduced by a factor of 0.9 when the validation error was not improved in 30 consecutive 

epochs. The training was terminated when the validation error was not improved in 75 

consecutive epochs.  
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Figure 2.2: Training data generating scheme with BAT simulation and AIF augmentation by random scaling. 

To evaluate sufficiency of the size of the training data generation pool on performance of 

the LSTM model, two other models with the same architecture as that for the initial model 

(LSTM3) were trained with the same scheme using 60% (LSTM1) and 80% (LSTM2) of the 

training data generation pool.  

2.2.4.2 Training with temporally subsampled synthetic data 

The proposed LSTM network was also trained and tested on temporally subsampled 

synthetic signal time-curves, where signal time-curves were generated with sampling time steps 

of Δt: 3, 4, 5 and 6 seconds. Lengths of the time-series were truncated at an integer number of 

time steps that was close to 168 seconds. The AIF and the PK parameters were drawn from the 

same data generating pool. The LSTM input size was modified accordingly to match the number 

of time points of the subsampled signal time-series, while the other processes and parameters 

were kept the same, including the targeted PK parameters. 
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2.2.4.3 Training with truncated data and data with different CNR levels 

To examine robustness of the proposed network to signal noise and total acquisition time, 

the proposed LSTM network was further trained and tested on: (1) truncated synthetic data with 

the total acquisition times 168s, 141s, 114s, and 87s when keeping the same sampling time step 3 

s, and (2) fully temporally sampled synthetic data but with CNR variations at 20-30, 10 and 5.  

2.2.4.4 Performance evaluation and comparison 

First, our proposed LSTM network was optimized for the numbers of LSTM layers and 

hidden state features using fully temporal sampled synthetic data. Particularly, 2, 4, 6 and 8 

layers, and 16, 32 and 64 features were trained and tested. Then, the optimal numbers of layers 

and features were used to train and test the LSTM model, whose performance was compared to 

both the conventional DMF approach and a CNN model.  In testing, both synthetic and actual 

patient data were used. The synthetic testing data allows us to quantitatively assess the 

performance of PK parameters estimation by calculating the structural similarity (SSIM) index 

and normalized root mean squared error (NRMSE) of the estimated parameter maps with respect 

to the ground truth parameter maps. The NRMSE is defined by 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = �∑ �𝜃𝜃�𝑖𝑖𝑖𝑖−𝜃𝜃𝑖𝑖𝑖𝑖�
2𝑁𝑁

𝑗𝑗=1

𝑁𝑁−1
/

(max𝑗𝑗�𝜃𝜃𝑖𝑖𝑖𝑖� − min𝑗𝑗�𝜃𝜃𝑖𝑖𝑖𝑖�) × 100(%) for a slice, where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖, 𝜃𝜃�𝑖𝑖𝑖𝑖, 𝜃𝜃𝑖𝑖𝑖𝑖, and N are the NRMSE 

of the ith parameter, the estimated and ground truth ith parameter for jth voxel, and the number 

of voxels in the slice. To synthesize the testing signal time-curves, the AIF and the PK parameter 

maps were from the same patients, for which no cross-combination of the AIF and the PK 

parameters nor AIF augmentation were used for the training data synthesis. The SSIM and 

NRMSE were calculated from each of the 2D PK parameter slice maps first, and then averaged 



 17 

over multiple slices and across 25 cases. The proposed LSTM model was further evaluated using 

the empirical data from the same 25 cases. 

The CNN model proposed by Ulas and colleagues [51] was implemented for comparison 

with the LSTM model. The input of the CNN is 2D+time DCE image-series concatenated along 

time dimension across different channels. The CNN was trained on 1500 2D+time image-series 

with ℓ2 loss and validated on 300 image-series generated using the same data generation pool as 

for LSTM training. The model loss term in the original model was dropped since BAT was not 

considered in the original paper, and enforcing model consistency without BAT correction 

produced worse results in our experiment. The size effect of the training data generation pool on 

the performance of the CNN-based method was also investigated by training with 60% (CNN1), 

80% (CNN2), and 100% (CNN3) of the training data generation pool. 

All codes were implemented using Keras library with Tensorflow backend, and the 

experiments were performed on an NVIDIA Tesla K40c GPU with 12 GB RAM. 

2.3 Results 

2.3.1 Optimization of the LSTM networks 

We investigated the distributions of the PK parameters 𝜃𝜃 = (𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓),𝑣𝑣𝑒𝑒(𝒓𝒓),𝑣𝑣𝑝𝑝(𝒓𝒓)) of 

the 78 patients, which were used as the training data generation pool. The parameter values in the 

pool covered the whole desired ranges of the parameters (Figure 2.3).  
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Figure 2.3: The distribution of (a) Ktrans, (b) ve, and (c) vp in the training data generation pool. 

 

Figure 2.4: SSIM and NRMSE of the parameter map estimation by LSTM networks with (a, c) 2, 4, 6, and 8 LSTM 
layers with 32 features, and (b, d) 16, 32, and 64 features with 6 layers. Error bar: standard deviation. 

We trained the LSTM networks with 2, 4, 6 and 8 layers and 32 features, and with 16, 32 

and 64 features and 6 layers. Figure 2.4 shows the impact of varying the layers and features on 

NRMSE% and SSIM. The LSTM network with 6 layers and 32 features had average maximal 
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SSIM, presenting a balance of overfitting and underfitting of the training data and thus this 

network configuration was used for training under various test conditions. 

2.3.2 Performance of the LSTM networks trained with original temporal-sampling data 

The performance of the LSTM networks trained with synthetic data with original 

temporal-sampling, as well as results using the CNN and DMF models are shown in Table 2.1. 

The proposed LSTM network achieved high SSIM and low NRMSE% in the whole field of view 

as well as in the gross tumor volume (Table 2.1), comparable to the DMF approach. LSTM3 had 

< 1% lower SSIMs for Ktrans and vp, higher SSIM for ve, and 13.4%, 19.1%, and 25.4% better 

NRMSEs for Ktrans, ve and vp, respectively, than the DMF approach. LSTM3 outperformed the 

CNN-based approach by reducing the NRMSE up to 55.2%. When evaluating the size effect of 

the data generation pool, the performance of LSTM1, LSTM2 and LSTM3 were similar, and the 

size effect was insignificant, indicating the training data augmentation is effective. The CNN-

based method shows inferior performance compared to the LSTM3 (Table 2.1). A visual 

illustration of estimated PK parameters and residuals of the testing data by different methods is 

given in Figure 2.5. 

Table 2.1: Quantitative performance of different methods on test DCE-MRI volumes. The LSTM models were 
trained and tested using synthetic data with original temporal-sampling. The SSIM and NRMSE% (mean + std) with 
respect to the ground truth parameter maps were obtained in the whole field of view. The bold numbers indicate 
significant differences (p<0.05) between LSTM and DMF. GTV: gross tumor volume. 
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Figure 2.5: An exemplary slice of the ground truth parameter maps (column 1), the estimated maps (column 2-4), 
and the residual maps (last 3 columns) of estimated Ktrans (top row) ve (middle row) and vp (bottom row) by the 
LSTM3, CNN, and DMF models from a testing case. The white contour depicts the gross tumor volume. GT: 
ground truth. 

 

Figure 2.6: The performance of the LSTM and CNN-based methods under different amounts of training data (60%, 
80%, and 100% of the data generation pool). 
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Figure 2.6 shows the performance of the LSTM and CNN-based methods with different 

amounts of training data. The performance of CNN-based method changed little with an increase 

in the size of the training data generation pool, indicating the sufficiency of training data. 

Figure 2.7 shows examples of the parameter maps generated by the DMF and LSTM methods on 

the acquired DCE MRI data from the testing datasets, where the estimations of DMF and LSTM 

approaches were highly consistent. In most cases, DMF and LSTM approaches fit the signal 

intensity-time curves similarly well. Examples of fitted signal intensity-time curves are shown in 

Figure 2.8. To quantitatively compare the fitting results by LSTM and DMF, the voxel-wise 

MSE was calculated for both methods. The LSTM approach yielded a lower voxel-wise MSE 

(0.743 ± 0.130) than the DMF (0.808 ± 0.127). The parameter inference time of LSTM for fully 

temporal sampled DCE MRI volumes was ⁓250s on CPU (⁓40s on GPU), while DMF approach 

required ⁓3600s to generate the PK parameter maps for the same data on the same CPU, 

representing approximately 14.4 times improvement in computation speed.   
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Figure 2.7: Two exemplary slices (left 2 columns for first slice, right 2 columns for second slice) of PK parameter 
estimation by DMF and LSTM3 on an in vivo test dataset. The results obtained from DMF and LSTM3 show high 
similarity in both the tumor volume (depicted by the white contour) and the full FOV. 

 

Figure 2.8: Three exemplary in vivo CA concentration-time curve fitting results by DMF and LSTM3 in the tumor 
region indicated by the white contour shown in the left Ktrans parameter map estimation by DMF. Results from both 
methods are in reasonable alignment with observed data. (SE = squared error) 

2.3.3 Performance of the LSTM networks with temporally subsampled data 
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Figure 2.9 and Table 2.2 show that the LSTM had significantly better performances for 

estimating parameters than the DMF method (p<3.2×10-6) when increasing temporal sampling 

intervals from 3s to 4s, 5s and 6s (Figure 2.10).  

 

Figure 2.9: Quantitative results of the estimated parameters from the 25 synthesized testing datasets with different 
temporal sampling time intervals (3, 4, 5, and 6s) by the LSTM and DMF approaches. The proposed LSTM shows a 
more stable performance than the DMF when increasing the sampling interval. Error bar: standard deviation. *: 
p<0.05; **p<0.005.   

Table 2.2: Quantitative performance of different methods on temporally subsampled DCE data. The SSIM and 
NRMSE% (mean + std) with respect to the ground truth parameter maps were obtained in the whole field of view. 
The bold numbers indicate significant differences (p<0.005) between the two methods. 
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Figure 2.10: An exemplary slice of ground truth of parameter maps (column 1), estimated maps (column 2 and 3), 
and the residual maps (last 2 columns) by LSTM and DMF using temporal sampling interval Δt = 6s. The tumor 
volume is depicted by a white contour. GT: ground truth.   

2.3.4 Performance of the LSTM networks with low CNR and reduced total acquisition length 

The performance of LSTM on DCE MRI signals with lower CNRs and reduced total 

acquisition times is presented in Figure 2.11 and Table 2.3. As can be seen, LSTM consistently 

improved the accuracy for lower CNR levels and reduced total acquisition times from 168s to 

87s. ve estimation had the largest improvement when total acquisition time was reduced. 
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Figure 2.11: The performance (NRMSE) of the LSTM and DMF estimations under lower CNRs (first row) with full 
temporal sampling and reduced total acquisition times t (second row) with Δt=3s and CNR=20-30. Error bar: 
standard deviation. *: p<0.05; **p<0.005. 

Table 2.3: NRMSE (%) of testing signals with lower CNR levels and reduced total acquisition time (t). The bold 
numbers are the better results of the proposed method than those of DMF. 

 

2.4 Discussion 

We investigated a novel and potentially powerful LSTM-based network for learning a 

mapping from a CA concentration-time curve including the corresponding AIF to the underlying 
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PK parameters. The LSTM network is capable of learning long- and short-term dependency of 

sequence data such as DCE MRI. We found that the performance of the LSTM on mapping DCE 

MRI time-curves to their corresponding PK parameters was superior to a state-of-the-art CNN-

based approach [51], and better than the direct model fitting method in terms of NRMSE.  The 

LSTM was much more robust to temporally subsampled DCE data than the direct PK model 

fitting, which can be utilized to increase spatial resolution of DCE images. Higher robustness of 

LSTM to noise and reduced acquisition time was also demonstrated compared with DMF. Our 

data augmentation strategies, including AIF augmentation and creation of synthetic signal time-

curves from the data generation pool, overcame the limited size of the in vivo DCE MRI training 

data pool. The LSTM network trained by the synthesized data was also able to perform well on 

empirical DCE data. This indicates that the synthetic data simulates real signal intensity-time 

series well and the LSTM network is effectively trained. In addition, our proposed network 

enables approximately 90 times of computation time acceleration compared with the direct PK 

model fitting approach. The LSTM network has the potential to accelerate DCE MRI acquisition 

and parameter estimation.   

We attribute the superior performance of the LSTM to its capability to learn long- and 

short-term dependency in sequence data, and to extract dynamic features and temporal 

correlation in the signal intensity-time series of DCE MRI. In contrast, the CNN extracts 

“spatial” features from the DCE MRI volumes but has a limited capability to exploit the 

temporal relationships in the DCE data. For example, a 2D CNN model treats the x-y-t data as a 

3D volume, in which time-dependent features in the dynamic data could not be effectively 

extracted [62], [63]. A 3D CNN model [50] attempts to address some of the issues of the 2D 

CNN by leveraging more temporal correlation. Without incorporating an AIF as input in the 
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CNN, the PK parameters could have degeneracy and correspond to multiple signal time-curves, 

which can lead to a mis-mapping between the PK parameters and DCE curves. The small 

training and testing patch sizes limited by the high GPU memory demand of the 3D CNN 

training may further degrade its performance. Our proposed LSTM network structure is 

straightforward, and there is no PK model information required for LSTM training. Also, the 

AIF is incorporated into input as a second channel, which allows use of a patient-specific AIF 

when processing empirical patient DCE data. The proposed network can be easily trained and 

extended to other PK models, or even other sequence-related medical imaging data, e.g., a high-

order diffusion model, with a minimum modification of the network architecture.  

We used several strategies to overcome the limited size of the in vivo DCE MRI data.  

First, we did not use a fixed triad of the AIF, the PK parameters, and the signal time-curves from 

the in vivo DCE MRI dataset, which limits us to a total of 103 patient datasets. We used 

synthesized signal time-curves that were created by randomly selected and combined PK 

parameters, AIF (and augmented AIF), and time step from a data pool.  In addition, we added 

random variations of the delay of CA bolus arrival into the signal time-curves. Our evaluation 

shows that the PK parameters from 78 patients sufficiently cover the parameter ranges of 

interest.  The performance of LSTM2, and LSTM3 indicates that the PK parameters from 60% of 

the training data could sufficiently cover the ranges of parameter of interest.  Our overall strategy 

of the training data synthesis seems to yield effective training of the LSTM networks, and 

overcomes the limited size of in vivo datasets.  These strategies seem to reasonably mitigate 

small amount of variation in sampling interval in the in vivo data.  

For extraction of PK parameters from signal time curves with different time steps (3-6s), 

the LSTM models show robust performance compared to the direct PK model fitting, with the 
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latter showing performance degradation with an increase in the time step size. This advantage of 

the LSTM approach can be utilized to improve the spatial resolution of DCE MRI when 

decreasing the temporal resolution of DCE MRI.  For example, a modest increase in the spatial 

resolution from the currently used 1.6x1.6x2.5 mm3 to 1.4x1.4x1.4 mm3 would prolong the 

acquisition time of an image volume by a factor of 2. This increase in the temporal resolution 

from 3s to 6s would result in an increase in NRMSE% of the estimates by 1.7-2.1 times by the 

DMF but a very small increase by the LSTM model (Figure 2.9). 

This work has several limitations. As we can see from Figure 2.6 and Table 2.1, the 

LSTM performs better than DMF in terms of NRMSE but not as good in terms of SSIM across 

the whole parameter range.  Further analysis of the error distribution reveals that this is mainly 

due to the minor estimation errors in parameter combinations of zero Ktrans and ve but non-zero vp 

(mainly in the brain region), which caused by the small portion of these parameter value 

combinations in the training datasets. Another concern is the accuracy of parameter estimation in 

the gross tumor volume, which has a different range of the parameters from normal tissue and 

has a small amount of the data weighting in the training dataset. We note similar SSIM values of 

DMF and LSTM in the gross tumor volume (Table 2.1). Further manipulation of the training 

dataset distribution and/or a modification of the loss function or a weighting training data in 

different parameter ranges could improve performance of the algorithm. Another path to 

improvement generalizability is to incorporate temporal sampling intervals into the network 

input as another channel [64].  The performance of the current vanilla LSTM architecture could 

be further improved by using a bidirectional LSTM with attention at the expense of longer 

training and inference time. A further improved model could use more realistic synthetic data 
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that takes motion artifacts and other factors into account to improve the robustness of 

performance of the LSTM on in vivo DCE MRI datasets. 

2.5 Conclusion 

In conclusion, our proposed LSTM is a promising approach to estimate PK parameters 

from DCE-MRI time-series. We demonstrate that the proposed approach provides more accurate 

PK parameter maps compared to the CNN-based approach, and is comparable to the DMF 

method with approximately 90 times of computation time reduction. The LSTM networks are 

more robust to low temporal resolution, lower CNR levels, and reduced total acquisition time 

than direct PK model fitting. In the future, a LSTM network with convolutional layers can be 

applied to image-series to leverage both temporal and spatial sparsity, and thus further improve 

accuracy and precision of DCE MRI. 
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Chapter 3 Joint Optimization of k-t Sampling Pattern and Reconstruction of DCE MRI for 

Pharmacokinetic Parameter Estimation 

3.1 Introduction 

The purpose of this chapter is to improve accuracy and precision of estimated 

pharmacokinetic parameters while keeping similar spatial resolution and the same scan time by 

jointly optimizing k-t sampling pattern and image reconstruction. 

To yield accurate PK parameter estimation from DCE MRI, different k-t space sampling 

trajectory patterns [65]–[69] have been empirically designed to achieve relatively high temporal 

and spatial resolution and signal-to-noise ratio. However, the k-t sampling pattern (SP) can be 

systematically optimized for DCE MRI by taking advantage of the spatiotemporal sparsity of 

dynamic signals as well as characteristics of anatomy being imaged. A few attempts have been 

made to optimize the k-space SP to leverage similarity of the same body site assisted by prior 

knowledge for image reconstruction algorithms [19], [70]–[73]. However, these works mostly 

rely on pattern search algorithms that lack computational efficiency. Most importantly, currently 

no strategy considers the influence of underlying quantitative PK parameter estimation on the 

sampling optimization, even though the k-t SP influence on the variance of estimated PK 

parameters has been demonstrated [74]. We hypothesize that joint optimization of DCE MRI k-t 

SPs and PK parameter estimation has the potential to improve accuracy and reproducibility of 

the estimated parameters and efficiency of the raw data acquisition.1 

 
1This chapter is based on our paper published in IEEE Transactions on Medical Imaging [45]. 
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Nonlinear algorithms are needed to reconstruct high quality MR images from highly 

undersampled k-t space DCE data. Compressed sensing-based methods have been applied with 

hand-crafted constraints exploiting the spatial and temporal sparsity in DCE MRI [75]–[78]. 

Recently, deep learning has shown promising in MR image reconstruction by exploring data-

driven constraints [12]–[16]. In deep learning-based frameworks, RNNs that processes temporal 

information in the dynamic data have shown superior performance in DCE MRI reconstruction 

[79], [80]. More recently, deep learning-based joint optimization of k-space SPs and 

reconstruction networks has been proposed for non-dynamic images [22], [81], [82], and shown 

improved quality of reconstructed MR images from optimized undersampled k-space data 

compared to compressed sensing-based methods with non-optimized sampling. However, these 

investigations of joint optimization have primarily focused on the static MR image 

reconstruction.  

In this chapter, we extend the use of RNNs to jointly optimize k-t space SPs of DCE MRI 

acquisition and image reconstruction with an objective that combines image quality and 

parameter estimation accuracy. The dynamic MRI reconstruction network exploits the 

spatiotemporal sparsity of DCE MRI to optimize where in k-space to acquire the MR data across 

the dynamic time course. The PK parameter estimation l2 loss was integrated into the objective 

of the image reconstruction network to account for PK modeling information during network 

training. Realistic multi-coil digital reference objects (mcDROs) were created from PK 

parameter maps estimated from patient scans with head and neck cancers and used for network 

training and testing, which provided ground truth for quantitative evaluation. The proposed 

method was tested in a wide range of temporal resolutions of mcDROs and showed reductions in 

PK parameter bias and uncertainty compared to two previous published works [78], [83].  
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Figure 3.1: The training and evaluation workflows of the proposed method. The k-t sampling probability map, k-t 
data sharing, and image reconstruction network are jointly optimized with respect to both image and parameter 
reconstruction quality using fully sampled DCE MRI data in the training phase. In the evaluation phase, the learned 
sampling mask and reconstruction 

3.2 Materials and Methods 

Our proposed method consists of four major components: 1) k-t SP optimization, 2) k-t 

space data sharing optimization, 3) a dynamic MR image reconstruction network, and 4) a PK 

parameter estimation layer. The first three have learnable parameters and are jointly optimized 

during training. The last component, the PK parameter estimation layer, has no trainable 

parameters, but its gradient is passed on to the other components to provide feedback for network 

learning. The overall workflow of the proposed approach is shown in Figure 3.1. The details of 

each component and how they are combined to allow an end-to-end training are described in the 

following sub-sections. 
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3.2.1 k-t sampling pattern 

The k-t space SP that represents 2D phase encoding locations along the time course of a 

DCE acquisition using a 3D T1 weighted spoiled gradient echo sequence is learned jointly with 

the reconstruction network. Frequency encodings are fully sampled due to their rapid sampling 

speed.  We extended LOUPE [84] to the time domain by adding a temporal degree of freedom 

(TDoF) to learn dynamic SPs in the k-t space. Let 𝒙𝒙 ∈ ℂ𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑡𝑡  denote a sequence of fully 

sampled images of a slice with width 𝑛𝑛𝑥𝑥, height 𝑛𝑛𝑦𝑦 and 𝑛𝑛𝑡𝑡 time frames. The 2D Cartesian k-

space SP in a kx-ky plane at time 𝑛𝑛𝑡𝑡 is denoted as 𝒎𝒎𝑢𝑢 ∈ {0,1}𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑡𝑡 where superscript u 

represents “undersampling”, which is formulated as a realization of random vector 𝑴𝑴𝑢𝑢 

containing independent Bernoulli random variables, i.e. 𝑴𝑴𝑢𝑢~∏ ℬ(𝒑𝒑𝑖𝑖𝑢𝑢)𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑡𝑡
𝑖𝑖=1 , where 𝒑𝒑𝑢𝑢 ∈

[0,1]𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑡𝑡  denotes the subsampling probability to be learned. Therefore, the undersampled k-

space data of the cth coil can be written as 𝑭𝑭𝑢𝑢𝑪𝑪𝑐𝑐𝒙𝒙 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒎𝒎𝑢𝑢)𝑭𝑭𝑪𝑪𝑐𝑐𝒙𝒙, where 𝑪𝑪𝑐𝑐 is a diagonal 

matrix with the coil sensitivity values of the cth coil as the diagonal elements, 𝑭𝑭 is the forward 

discrete Fourier transform matrix and 𝑭𝑭𝑢𝑢 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒎𝒎𝑢𝑢)𝑭𝑭 is the undersampling matrix. The first 

timeframe of the image slice is fully sampled to provide the anatomic baseline prior to the arrival 

of the injected contrast. 

To implement LOUPE with a TDoF, a set of neural network weight parameters 𝒘𝒘𝑢𝑢 ∈

ℝ𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑡𝑡  to be learned is regularized by an element-wise sigmoid function to produce a set of 

sampling probability maps 𝒑𝒑𝑢𝑢 ∈ [0,1]𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑡𝑡 . To create SPs from the sampling probability maps 

𝒑𝒑𝑢𝑢, a sigmoid function is used to approximate the operation so that 𝒎𝒎𝑢𝑢 = 𝜎𝜎𝑣𝑣(𝒖𝒖 − 𝒑𝒑𝑢𝑢), where 

𝒖𝒖 ∈ [0,1]𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑡𝑡 is a realization of ∏ 𝒰𝒰(0,1)𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑡𝑡
𝑖𝑖=1  and 𝜎𝜎𝑣𝑣(𝑥𝑥) = 1

1+𝑒𝑒−𝑣𝑣𝑣𝑣
 is an element-wise 

sigmoid function with slope v. The sigmoid function ensures nonzero gradient when 

backpropagating through the sampling of Bernoulli random variables.   
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3.2.2 k-t space data sharing 

In DCE MRI, adjacent temporal frames share similar contrast enhancements among the 

same anatomy, and especially, dynamic changes are limited before starting contrast uptake and 

after reaching the uptake plateau. Sharing the k-space data among temporal frames within the 

same anatomy would reduce undersampling-caused aliasing in an initial image for reconstruction 

network training. Inspired by previous data sharing approaches [15], we propose a novel 

machine learning-based k-space data sharing scheme. A subset of frames is determined during 

training to share their k-space data with frame j, and represented by a data sharing mask 𝒎𝒎𝑗𝑗
𝑠𝑠 ∈

{0,1}𝑛𝑛𝑡𝑡 where superscript s represents “sharing” and value 1 or 0 indicates sharing or not. The k-

space data from other frames shared with frame j at coil c, 𝒌𝒌𝑗𝑗,𝑐𝑐
𝑠𝑠 ∈ ℂ𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦, is described as follows: 

𝒌𝒌𝑗𝑗,𝑐𝑐
𝑠𝑠 = ∑ �𝒎𝒎𝑗𝑗

𝑠𝑠�
𝑗𝑗′

diag�𝒎𝒎𝑗𝑗′
𝑢𝑢 �𝑭𝑭𝑪𝑪𝑐𝑐𝒙𝒙𝑗𝑗′

𝑛𝑛𝑡𝑡
𝑗𝑗′=1 ,    (3.1) 

where 𝒙𝒙𝑗𝑗′ ∈ ℂ𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦 denotes the 𝑗𝑗′th frame of a MR slice and 𝒎𝒎𝑗𝑗
𝑢𝑢 ∈ {0,1}𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦 is the subsampling 

mask for frame j. If a k-space location in frame j has more than one frame for data sharing, an 

average of shared data is taken at the location. Then, the initial guess 𝒙𝒙𝑗𝑗,𝑐𝑐
(0) of the image of frame j 

at coil c is obtained by taking an inverse discrete Fourier transform of the combined acquired and 

shared k-space  

data as: 

𝒙𝒙𝑗𝑗,𝑐𝑐
(0) =  𝑭𝑭𝐻𝐻�diag(𝒎𝒎𝑗𝑗

𝑢𝑢)𝑭𝑭𝑪𝑪𝑐𝑐𝒙𝒙𝑗𝑗 + diag(1 −𝒎𝒎𝑗𝑗
𝑢𝑢)𝒌𝒌𝑗𝑗,𝑐𝑐

𝑠𝑠 �,                 (3.2) 

where 𝑭𝑭𝐻𝐻 denotes the inverse discrete Fourier transform matrix. Finally, the coil-combined 

initial guess of the image is 𝒙𝒙𝑗𝑗
(0) = ∑ 𝑪𝑪𝑐𝑐𝐻𝐻𝒙𝒙𝑗𝑗,𝑐𝑐

(0)𝑛𝑛𝑐𝑐
𝑐𝑐=1 . Note that if at a k-space location the data of the 

current frame is not acquired and no sharing data from other frames is available, zero is filled at 

the current frame. 
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Similar to the approach that generates the SP, the data sharing mask 𝒎𝒎𝑗𝑗
𝑠𝑠 is a realization of 

random vector 𝑴𝑴𝑗𝑗
𝑠𝑠 containing independent Bernoulli random variables of which the probability 

𝒑𝒑𝑗𝑗𝑠𝑠 ∈ [0,1]𝑛𝑛𝑡𝑡  is parameterized by network weights that are learned during training. The same 

𝜎𝜎𝑣𝑣(∙) is used to approximate the sampling of Bernoulli random variables.  

3.2.3 Image reconstruction 

To take full advantage of temporal sparsity of DCE MRI, we adopted and modified the 

CRNN framework [85] to utilize RNN capability of extracting temporal correlations in dynamic 

data and to improve computation efficiency. In the modified CRNN, connections are over both 

temporal and iteration dimensions, which is not used in deep-learning methods for static image 

reconstruction. 

In the typical compressed sensing (CS) framework, the MR image reconstruction 

problem is usually posed as a nonlinear optimization problem in a form: 

𝒙𝒙� = argmin 
𝒙𝒙

‖𝑨𝑨𝑨𝑨 − 𝒚𝒚‖22 + 𝜆𝜆ℛ(𝒙𝒙),     (3.3) 

where 𝒙𝒙 ∈ ℂ𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑡𝑡  is the set of fully sampled images, 𝑨𝑨 is the MRI system matrix including 

effects of coil sensitivity, Fourier encoding and undersampling, 𝒚𝒚 is the measured k-space data 

and ℛ(∙) denotes a regularization term that represents our prior knowledge of 𝒙𝒙. The first l2 norm 

enforces the data-consistency (DC) between the reconstructed image and the acquired k-space 

data. For dynamic MR reconstruction, ℛ(∙) is often employed as spatiotemporal TV [6] or low 

rank [86] constraints. By applying variable splitting and alternating minimization techniques, 𝒙𝒙� 

can be solved iteratively by: 

𝒛𝒛(𝑖𝑖+1) = argmin
𝒛𝒛

 𝜇𝜇�𝒙𝒙(𝑖𝑖) − 𝒛𝒛�
2
2

+ 𝜆𝜆ℛ(𝒛𝒛),    (3.4) 
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𝒙𝒙(𝑖𝑖+1) = argmin
𝒙𝒙

 ‖𝑨𝑨𝑨𝑨 − 𝒚𝒚‖22 + 𝜇𝜇�𝒙𝒙 − 𝒛𝒛(𝑖𝑖+1)�
2
2

.   (3.5) 

where 𝜇𝜇 is a penalty parameter and 𝒛𝒛 is an auxiliary variable. The x update is often called the DC 

term. We follow D-POCSENSE [87] to implement this step as 

𝒙𝒙(𝑖𝑖+1) = ∑ 𝑪𝑪𝑐𝑐𝐻𝐻𝑭𝑭𝐻𝐻�diag(1 −𝒎𝒎𝑢𝑢)𝑭𝑭𝑪𝑪𝑐𝑐𝒛𝒛(𝑖𝑖+1) + 𝒚𝒚𝑐𝑐�
𝑛𝑛𝑐𝑐
𝑐𝑐=1 ,   (3.6) 

assuming 𝜇𝜇 → 0. The 𝒛𝒛 update is a proximal operator, which we follow previous works [15], 

[85] to solve with a CNN-based de-aliasing network 𝓓𝓓Θ(∙) parameterized by Θ so that 𝒛𝒛(𝑖𝑖+1) =

𝓓𝓓Θ(𝒙𝒙(𝑖𝑖)). We used a modified version of the CRNN framework as the de-aliasing network.  

Our CRNN framework (Figure 3.2) contains 5 components: 1) one bidirectional CRNN 

layer over both time and iterations (BCRNN-t-i), 2) one recurrent U-net (R-U-net-i), 3) one 2D 

CNN layer, 4) residual connection, and 5) multi-coil DC layers. Inspired by a previous work on 

multi-scale image deblurring [88], we replaced the second component, a CRNN layer over 

iterations (CRNN-i) of the original CRNN framework, with a compact U-net structure where a 

recurrent connection over iterations is placed on the bottleneck of the U-net, dubbed recurrent U-

net (R-U-net-i). This modification largely reduces the GPU memory and training time, allowing 

other components being incorporated to the framework, e.g., the PK parameter estimation layer. 

The CRNN was also extended to multicoil settings by using a multicoil DC layer (Equation 3.6).  
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Figure 3.2: The overall structure of the image reconstruction network. The new R-U-net-i structure has 5 layers with 
2 down sampling and up sampling paths. The bottleneck layer has a recurrent connection across iterations. 
 

3.2.4 PK parameter estimation 

eTofts model (equation 1.1) was implemented in this chapter. LLSQ method as described in 

section 2.2.1 was used for PK parameter estimation and was wrapped as a layer denoted as 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(∙ ;𝐶𝐶𝑝𝑝) with the layer input as the reconstructed images 𝒙𝒙 ∈ ℂ𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑡𝑡 .  

3.2.5 Loss function 

The learning objective is formulated to include both l2 errors of reconstructed images and 

estimated PK parameters as the following: 

argmin
𝒑𝒑𝑢𝑢,Θ,𝒑𝒑𝑠𝑠

𝔼𝔼𝒙𝒙 �(1 − 𝛽𝛽)�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝓓𝓓Θ�𝒙𝒙(0)�;𝐶𝐶𝑝𝑝� − 𝜃𝜃�
2
2

+ 𝛽𝛽�𝓓𝓓Θ�𝒙𝒙(0)� − 𝒙𝒙�
2
2
�,  (3.7) 

where 𝒙𝒙(0) ∈ ℂ𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑡𝑡  is the initial guess of an image as described by (2). 𝜃𝜃 ∈ ℝ3𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣 represents 

ground truth values of 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑘𝑘𝑒𝑒𝑒𝑒  and 𝑣𝑣𝑝𝑝. 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣 is the number of voxels in the anatomic region, 

and 𝐶𝐶𝑝𝑝 is the ground truth CA concentration in plasma. The first term in the expectation 

represents the l2 norm between reconstructed PK parameter maps and corresponding ground truth 
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values, called the parameter loss. The second term is the l2 norm between reconstructed and 

ground truth images, called the image loss. 𝛽𝛽 controls weighting between the parameter loss and 

the image loss. 

3.3 Experiments 

3.3.1 Multi-coil digital reference objects 

The mcDROs of DCE MRI data used for training and testing were synthesized using 

patient specific AIFs and PK parameter maps estimated from real DCE MRI data of 17 patients 

with head and neck cancers enrolled on a protocol approved by the Institutional Review Board.  

The DCE MR images of the patients were acquired using a 3D dynamic scanning 

sequence (TWIST) with an injection of 0.149 cc/kg of gadobenate dimeglumine on a 3 Tesla 

MRI scanner (Skyra, Siemens Healthineers, Erlangen Germany). The scanning parameters were: 

flip angle = 10º, echo time (TE) = 0.97ms, repetition time (TR) = 2.73ms, 60 time frames, voxel 

size = 1.56mm×1.56mm×2.5mm, and matrix = 192×192. The dynamic images were interpolated 

to have spatial resolution of 1.56mm×1.56mm×1.56mm. Axial slices were used due to their 

small dimensions and relative anatomical symmetry compared to the anatomy along the cranial-

caudal direction, which might allow more aggressive k-space undersampling. For all cases, the 

patient specific AIFs were extracted manually by averaging the signal intensity-time curves of 20 

voxels from the carotid artery, which had maximum intensities at the time frame before the 

enhancement peak [89], and then subtracted and divided by the average pre-contrast signal 

intensities of the voxels. The PK parameter maps were estimated using LLSQ with joint 

estimation of 𝜏𝜏𝐵𝐵𝐵𝐵𝐵𝐵(𝒓𝒓) in {0, 1, …, 6}s. The voxels that had estimated parameters out of the 

physiologically reasonable range (𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ (0, 3)𝑚𝑚𝑚𝑚𝑚𝑚−1, 𝑘𝑘𝑒𝑒𝑒𝑒 ∈ (0, 6)𝑚𝑚𝑚𝑚𝑚𝑚−1, 𝑣𝑣𝑝𝑝 ∈ (0, 0.55)) 
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were considered incompatible with eTofts model and excluded from the final estimated maps. 

These parameter maps were regarded as ground truth values for mcDRO creation, and network 

training and testing.  

The mcDROs with temporal resolutions of {2, 3, 4, 5}s and spatial resolution of 

1.56mm×1.56mm×1.56mm were simulated. Using a TR of 2.73ms that can be achieved on this 3 

T scanner yields undersampling rates (R) of {50, 34, 25, 20} for temporal resolutions of {2, 3, 4, 

5}s, respectively. The undersampling rate is a reduction factor in the k-space subsampling 

relative to fully sampling of each frame. The mcDRO creation steps were: 1) simulate tissue 

concentration-time curves 𝐶𝐶𝑡𝑡(𝒓𝒓, 𝑡𝑡) from ground truth PK maps of 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓), 𝑘𝑘𝑒𝑒𝑒𝑒(𝒓𝒓), 𝑣𝑣𝑝𝑝(𝒓𝒓) 

using the eTofts model and patient specific AIF 𝐶𝐶𝑝𝑝(𝑡𝑡), and  𝜏𝜏𝐵𝐵𝐵𝐵𝐵𝐵(𝒓𝒓) in the voxels where the 

eTofts model is applicable; 2) add Gaussian noise to the simulated tissue concentration-time 

curves to have CNRs of 20 in each voxel to mimic the noise level present in real DCE data; 3) 

convert the tissue concentration-time curves to signal intensity images using baseline signal 

intensities 𝑠𝑠0(𝒓𝒓, 0) from the actual scan as: 𝑠𝑠(𝒓𝒓, 𝑡𝑡) = [1 + 𝐶𝐶𝑡𝑡(𝒓𝒓, 𝑡𝑡)]𝑠𝑠0(𝒓𝒓, 0); 4) use the signal 

intensities from the real scan for the voxels where eTofts model is not applicable (e.g., vessels); 

5) estimate coil sensitivity maps from fully sampled high resolution 

(0.875mm×0.875mm×3.3mm) post Gd T1-weighted images acquired immediately following the 

DCE scans by using ESPIRiT [90] and compressing  coils from 30 to 8 coils [91];  6) create 

complex DCE images by using the real phase variation estimated from post Gd T1-weighted 

images of the same patient ϕ(𝒓𝒓) as 𝑠𝑠(𝒓𝒓, 𝑡𝑡) = [1 + 𝐶𝐶𝑡𝑡(𝒓𝒓, 𝑡𝑡)]eiϕ(𝒓𝒓)𝑠𝑠0(𝒓𝒓, 0); and 7) create multi-

coil DCE image series as well as multi-coil time-series of k-space data (see Figure 3.1). Note that 

the simulated mcDROs used realistic PK parameter ranges, AIFs and anatomy provided from 

patients. 
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Of the 17 patients, 8 were randomly selected for training, 3 for validation and 6 for 

testing. Note that during training, the ground truth patient specific AIF 𝐶𝐶𝑝𝑝(𝑡𝑡) was used for PK 

parameter estimation, while during testing, a patient specific AIF 𝐶𝐶𝑝𝑝�(𝑡𝑡) was extracted from 

reconstructed MR images by a fully automated process that mimicked how an expert delineated 

an AIF [89]. As a brief, the anatomy surface was extracted by thresholding followed by closing 

operation. The contrast enhancement peak within the anatomy surface was detected after 

subtracting and dividing enhanced signals by baseline signals. The 20 voxels with the maximum 

enhancement in the dynamic frame of 3-10s prior to the peak of tissue enhancement was 

considered as an AIF. A 3×3 Gaussian filter was applied to the real scan for creation of the 

mcDROs used for training and validation, but not for the mcDROs set aside for testing in order 

to provide for better AIF characterization during testing.  

3.3.2 Network training 

The R-U-net-i unit of the reconstruction network used in the experiment contains 3 

convolutions and 3 deconvolutions with stride 2, where the number of filters (nf) are doubled or 

halved after each convolution or deconvolution. We used kernel size k=3. The number of filters 

of the BCRNN-t-i unit and the number of iterations were optimized and set to 𝑛𝑛𝑓𝑓 = 32 and N=5, 

respectively. The estimated PK parameters were clipped to the physiologically reasonable range 

to stabilize the network training. Adam optimizer [61] was used with learning rate 1e-3. We used 

batch size = 1 and terminated training when the validation error was not improved in 3 

consecutive epochs. All codes were implemented in PyTorch, and the experiments were 

performed on an NVIDIA RTX A6000 GPU with 48GB memory. 

3.3.3 Evaluation and comparison 
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3.3.3.1 CRNN network architecture hyperparameter optimization 

First, we optimized nf and N across the combinations of 𝑛𝑛𝑓𝑓 ∈ {8,16,32,64} and 𝑁𝑁 ∈

{3,5,10} using the mcDRO with spatial resolution 1.56mm×1.56mm×1.56mm and temporal 

resolution 3s. The fixed Poisson disk SP and image loss were used. The best nf and N were 

selected according to the average NRMSE across the three PK parameters and were used in 

experiments thereafter. The Poisson disk SP was generated using SigPy package 

(https://github.com/mikgroup/sigpy). 

3.3.3.2 Ablation study of CRNN 

To demonstrate effectiveness of CRNN for DCE MRI reconstruction, we performed an 

ablation study to evaluate effects of recurrent connections in temporal and iteration dimensions 

in CRNN by removing each or both connections. The same training data, loss function, SP, and 

evaluation metrics were used as in Section 3.3.3.1. 

3.3.3.3 Ablation study of learnable k-t sharing 

The learnable k-t sharing was compared with fixed neighbor-frame sharing strategies [15] 

in which {0,2,4,6,8,10,12} neighbor-frames of a center frame were shared. The same training 

data, loss function, SP, and evaluation metrics were used as in Section 3.3.3.1. 

3.3.3.4 Ablation study of k-t sampling pattern learning module 

To demonstrate the benefit of k-t SP learning module, we removed it from the proposed 

framework, and used the fixed Poisson disk and uniform random samplings to train the network. 

The same training data, loss function, and evaluation metrics were used as in Section 3.3.3.1. 
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3.3.3.5 Weighting parameter optimization 

We optimized weighting parameter 𝛽𝛽 in terms of the NRMSE of estimated PK 

parameters using the mcDRO with spatial resolution 1.56mm×1.56mm×1.56mm and temporal 

resolution 3s to search 𝛽𝛽 within {0,0.01,0.1,0.3,0.7,1}. The optimized weighting parameter 𝛽̂𝛽 

was used in the following experiments. 

3.3.3.6 The effect of contrast arrival time variation across subjects 

One variation in the DCE signals across patients is the contrast arrival time (𝑡𝑡𝐶𝐶𝐶𝐶), which 

needs to be tested for its effect on the network performance. Here, 𝑡𝑡𝐶𝐶𝐶𝐶 was defined as the time 

when the DCE signal started rising from the baseline and calculated by the second time-

derivative of the spatially averaged DCE signals, 𝑡𝑡𝐶𝐶𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡

𝑑𝑑(∫ 𝑠𝑠(𝒓𝒓, 𝑡𝑡)𝑑𝑑𝒓𝒓)2 𝑑𝑑2𝑡𝑡⁄ . We first 

analyzed the 𝑡𝑡𝐶𝐶𝐶𝐶 distribution in the training and testing datasets. Then, we aligned 𝑡𝑡𝐶𝐶𝐶𝐶 to 35s for 

all data by shifting the DCE series along the time dimension. We compared performance of the 

model trained by the time shifted data but tested using the data with and without time shifting. 

This experiment was done under spatial resolution 1.56mm×1.56mm×1.56mm and temporal 

resolution 3s. The performance results were used to determine how to deal with the variation of 

contrast arrival time variation across subjects. 

3.3.3.7 Comparison with prior works  

To demonstrate the advantages of joint optimization of k-t subsampling and 

reconstruction, we compared our method with two iterative dynamic MRI reconstruction 

methods. These two methods both explored spatiotemporal sparsity of dynamic MRI but did not 

optimize SPs, and instead used heuristic Poisson disk [92] and uniform random SPs. The first 

one is a dictionary learning-based indirect PK parameter estimation method [83] (DL) which was 
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implemented based on open-source code 

(https://github.com/sajanglingala/DCE_dictionary_recon). The ranges of PK parameters used for 

library learning were adjusted according to our data. As in the original paper, a population-based 

AIF was used in the test. The second method is a low-rank plus sparse model [78] (L+S) for 

which the open source code (https://github.com/JeffFessler/reproduce-l-s-dynamic-mri) is 

available. Proximal optimized gradient method (POGM) was used for optimization. We 

compared performances of the two methods with ours under different temporal resolutions of {2, 

3, 4, 5}s and spatial resolution 1.56mm×1.56mm×1.56mm of the mcDROs of DCE MRI.  

3.3.3.8  Evaluation metrics 

The image reconstruction quality was measured using the SSIM and peak signal to noise 

ratio (PSNR) for different aspects of image similarity and quality. The PSNR is calculated for 

each reconstructed slice 𝒙𝒙� ∈ ℂ𝑛𝑛𝑥𝑥×𝑛𝑛𝑦𝑦×𝑛𝑛𝑡𝑡 as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 20 𝑙𝑙𝑙𝑙𝑙𝑙10�𝑚𝑚𝑚𝑚𝑚𝑚(|𝒙𝒙|) /𝑀𝑀𝑀𝑀𝑀𝑀(|𝒙𝒙|, |𝒙𝒙�|)�, where 

𝒙𝒙 ∈ ℂ𝑛𝑛𝑥𝑥×𝑛𝑛𝑦𝑦×𝑛𝑛𝑡𝑡 is the ground truth image time series. The PK parameter estimation accuracy was 

evaluated by NRMSE, defined as �𝑀𝑀𝑀𝑀𝑀𝑀�𝜃𝜃𝑖𝑖 ,𝜃𝜃𝚤𝚤�� (𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃𝑖𝑖) −𝑚𝑚𝑚𝑚𝑚𝑚 (𝜃𝜃𝑖𝑖))� , where 𝜃𝜃𝑖𝑖 and 𝜃𝜃𝚤𝚤�  stand 

for the ground truth and estimation of the ith parameter, respectively, and 𝑀𝑀𝑀𝑀𝑀𝑀(∙, ∙) represents 

mean squared error. The mean and standard deviation of the parameters were calculated across 

testing mcDROs. Bland-Altman analysis was performed to assess bias and uncertainty in 

reconstructed PK maps compared with ground truth.  

 

3.4 Results 

3.4.1 CRNN network architecture hyperparameter optimization 

https://github.com/JeffFessler/reproduce-l-s-dynamic-mri


 44 

The grid search of nf and N of the CRNN architecture showed nf =32 the best overall 

NRSMEs across three parameters, and N=5 better than 3 (Figure 3.3). 

 

Figure 3.3: Grid search results of nf and N of the CRNN architecture. Blank blocks are due to the combinations of nf 
and N beyond the available GPU memory. 

3.4.2 Ablation study of CRNN 

The ablation study showed that the recurrent connections of the temporal and iteration 

dimensions in the CRNN reduced errors in the parameters, see NRMSEs in Table 3.1.  

Table 3.1: Mean NRMSEs of estimated PK parameters with (Y) or without (N) recurrent connections in temporal 
and iteration dimensions. 

 

3.4.3 Ablation study of learnable k-t sharing 

The learned k-t sharing strategy was superior to fixed neighbor-frame sharing strategies 

in terms of NRMSEs of PK parameters (Figure 3.4). Figure 3.5 shows the learned k-t space data 

sharing probability map. The data sharing is limited to fewer neighboring frames during rapid 

contrast uptake (wash-in) where the image contrast largely differs from the rest of the course. 

The k-space data across the frames before contrast uptake are shared among them with a high 
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probability where signal intensities change little. Similarly, it is true for frames after rapid 

contrast uptake. 

 

Figure 3.4: NRMSEs of PK parameter using fixed k-t sharing patterns (blue curve) over the number of shared 
neighboring frames. For comparison, NRMSE of learned k-t sharing is plotted as a red dashed line. 
 

 

Figure 3.5: Learned k-t space data sharing probability map. For each point (i, j), the value represents the probability 
of sharing the k-space data of frame i with frame j. 

3.4.4 Ablation study of k-t sampling pattern learning module 

The learned k-t SP outperformed the fixed Poisson disk and uniform random samplings 

under the same CRNN reconstruction architecture in terms of NRMSEs of PK parameters (Table 

3.2). Note that the CRNN was retrained for Poisson disk and uniform random sampling, 

respectively. 
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Table 3.2: Mean NRMSEs of estimated PK parameters using the Poisson disk, uniform random, and learning-based 
samplings. 

 

Table 3.3: PSNR and SSIM (Mean ± σ) of reconstructed images and NRMSE of estimated PK parameters with 
different β values. 

 

Table 3.4: The PK parameter estimation NRMSEs (Mean ± σ) of the proposed model trained on time shifted DCE 
data and tested on the data with and without time shifting. 

 

3.4.5 Weighting parameter optimization 

Searching the optimal weighting parameter 𝛽𝛽 in {0,0.01,0.1,0.3,0.7,1} using the mcDRO 

yielded that 𝛽𝛽=0.1 had minimal NRMSEs of PK parameters and a near best PSNR of 

reconstructed images. The PSNR and SSIM of the reconstructed images and NRMSE of the 

estimated PK parameters of tested 𝛽𝛽 values are shown in Table 3.3. Note that when 𝛽𝛽 = 1, 

where the loss function is reduced to include the image loss l2 only and is used commonly in 

deep learning-based reconstruction of MRI in the literature, the PSNR of reconstructed images 

was similar to one when 𝛽𝛽 = 0.1 but averaged accuracy of estimated PK parameters was worse 

than one when 𝛽𝛽 = 0.1.  However, when 𝛽𝛽 = 0, where the image loss was not included, both 
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image quality and PK parameter estimation accuracy were worse than ones with any 𝛽𝛽 > 0. In 

the subsequent experiments, the optimal weighting parameter 𝛽̂𝛽 = 0.1 was used. 

3.4.6 The effect of contrast arrival time variation across subjects 

Variations in 𝑡𝑡𝐶𝐶𝐶𝐶 were observed in both training and testing datasets, with 𝑡𝑡𝐶𝐶𝐶𝐶 = 38.5𝑠𝑠 ±

3.6𝑠𝑠 in the training set and 𝑡𝑡𝐶𝐶𝐶𝐶 = 40.5𝑠𝑠 ± 4.5𝑠𝑠 in the testing set. The NRMSEs of PK 

parameters estimated from the proposed network trained using DCE data with the same 𝑡𝑡𝐶𝐶𝐶𝐶 were 

similarly well on testing data using a single 𝑡𝑡𝐶𝐶𝐶𝐶 value across all cases and using different subject-

varied 𝑡𝑡𝐶𝐶𝐶𝐶 values (Table 3.4), indicating that the subject contrast arrival time variation within the 

range that we observed did not have a substantial effect on the PK parameter estimation accuracy 

for the proposed method. 

3.4.7 Comparison with prior works under different temporal resolutions 

Based upon the results in Table 3.4, we trained the model using the data without time-

shifting of individual subject DCE time-series. The NRMSEs of the PK parameters estimated 

from the DCE data with different temporal resolutions and SPs by the proposed method 

compared to L+S and DL are summarized in Table 3.5.  

The proposed method consistently outperformed L+S and DL that used either Poisson 

disk random sampling or uniform random sampling at all tested temporal resolutions or 

acceleration rates by approximately 2 to 20 times in NRMSE (%). The best performance 

achieved by the proposed method was at Δt=3s (R=34) for Ktrans and at Δt=4s (R=25) for kep and 

vp.  

Examples of reconstructed PK images at temporal resolution of 2s of the proposed 

method, L+S with Poisson disk sampling, and DL with Poisson disk sampling as well as the 
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ground truth PK maps are shown in Figure 3.6. The proposed method generated the most 

perceptually similar PK maps to the ground truth maps, which supports the quantitative results. 

Note that the L+S method overestimated Ktrans and vp values and resulted in larger errors in kep 

estimation in this example slice. Also, the DL method showed overestimations in all three 

parameters.  

The bias and uncertainty of the three PK parameters estimated from the DCE data at 2 s 

temporal resolution by the proposed method, L+S with Poisson disk sampling, and DL with 

Poisson disk sampling in gross tumor volumes of all 6 testing DROs are shown in the Bland-

Altman plots in Figure 3.7. For comparison, plots of PK parameters estimated from fully 

sampled DCE data at the same temporal resolution were also included. The bias observed in the 

fully sampled data might be due to the added Gaussian noise [47], [48]. The proposed method 

showed comparable estimation bias and uncertainty to those from fully sampled DCE data, but 

reduced bias and uncertainty compared to DL and L+S methods. The proposed method reduced 

standard deviations of the PK parameter estimates by 0.10 (41%) and 0.19 (56%) compared to 

DL and L+S with Poisson disk sampling, respectively. A systematic bias on all three parameters 

was present in the L+S and DL methods.  

The kx-ky plots of the learned sampling probability maps and sampling masks at frame 20 

and the ky-t plots at the central kx for the DCE temporal resolution Δt=2s compared to the 

Poisson disk and uniform random sampling masks are shown in Figure 3.8. Note that the 

sampling probabilities near the k-space center learned by the proposed method varied over the 

contrast uptake time course. The learned sampling mask had a lower sampling density in the k-

space center than Poisson disk sampling.  
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Table 3.5: PK parameter estimation NRMSEs (Mean ± σ) using the proposed method with learned sampling patterns 
(SP), L+S with Poisson disk and uniform random sampling, and DL with Poisson disk random sampling at ∆t∈
{2,3,4,5}s and corresponding R∈{50,34,25,20}. 
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Figure 3.6: Example reconstructed PK parameter maps from one slice at temporal resolution of 2s (R =50) using the 
proposed method (second column), L+S with Poisson disk sampling (third column) and DL with Poisson disk 
sampling (forth column). The ground truth maps (first column) are also included for comparison. 
 

 

Figure 3.7: Bland-Altman plots of the difference between estimated 𝑲𝑲�𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, 𝒌𝒌�𝒆𝒆𝒆𝒆,  and 𝒗𝒗�𝒑𝒑 and reference values Ktrans, 
kep, and vp of fully sampled DCE data, the proposed method, L+S with Poisson disk sampling, and DL with Poisson 
disk sampling at temporal resolution of 2s (R=50). Each dot represents one tumor voxel in 6 mcDROs. The mean 
and 1.96×standard deviation were marked in each plot and represented by solid and dotted red lines, respectively. 
 

 

Figure 3.8: Illustration of learned phase encodings of kx vs ky at the 20th time frame and ky vs t at the central kx 
(respective left and right subpanels in each plot): (a) learned sampling probability maps by our method; (b) 
realization sampling masks by our method, (c) Poisson disk sampling masks, and (d) uniform random sampling 
masks. All maps were obtained at temporal resolution of 2s and R=50. White dots indicate locations of phase-
encodings acquired in the kx-ky plane.  Note that the first frame is fully sampled to provide baseline anatomy. 

3.4.8 Examples of reconstructed DCE images and time courses 

Examples of reconstructed images and time courses obtained by different methods are 

shown in Figure 3.9. Our proposed method included the optimization of the PK parameter 

estimates in the loss function, and resulted in more faithful reconstructed images and time 

courses of dynamic signals than DL and L+S methods.  

3.4.9 Adaptation of the learnable SPs to specific anatomies 
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The learned sampling probability maps depend upon trained DCE signals and anatomies, 

see Figure 3.10. Note that different patterns were yielded from training on DCE time-series from 

different anatomic regions ((a) brain+neck, and (b) brain).  Also, full width half maximums 

(FWHMs) of the probability density projections were different in kx and ky dimensions between 

anatomic regions. In contrast, empirical sampling patterns are pre-determined and one for all, 

which cannot present spatial sparsity in specific anatomy.

 

Figure 3.9: (a) Example reconstructed images at the 30th frame by different methods (first row) and their 
corresponding error maps (second row). (b) Time courses of dynamic signals at two example voxels within the 
tumor region reconstructed by different methods. The two voxels are marked by red and blue crosses in the Ground 
truth (GT) image in (a). In these examples, we used spatial resolution of 1.56×1.56×1.5mm and temporal resolution 
of 3s in mcDROs. Note large deviations and fluctuations in the DCE signals generated by DL and L+S methods, 
respectively. 
 

 



 52 

Figure 3.10: Learned sampling probability maps at the 30th frame trained by (a) a full field of view of the mcDROs 
including brain and neck slices and (b) brain-related slices only. Projections of the probability densities on the kx and 
ky dimensions are shown in the top and right plots of each probability map. The full width half maximum (FWHM) 
of each projection is shown in the top left corner of the plot. The mcDROs with spatial resolution of 
1.56×1.56×1.56mm and temporal resolution of 3s were used. GT=Ground truth; P=Probability; FOV=Field of view. 

3.5 Discussion 

In this chapter, we presented a deep learning-based framework to jointly optimize k-t SPs 

and image reconstruction of PK parameters from DCE MRI by minimizing a loss function 

including l2 errors of both image reconstruction and PK parameter estimation. Time series of 

sampling probability maps in the k-t space were optimally learned by the network to achieve 

rapid acquisition and accurate estimation of PK parameters. A PK parameter loss was optimally 

weighted into the objective function of image reconstruction, improved accuracy in the PK 

parameter estimation as well as quality of reconstructed images compared to using the image loss 

only. Overall, our proposed method performed superiorly and had reduced bias and uncertainty 

in the estimated PK parameters compared to two iterative dynamic MRI reconstruction methods. 

In addition, the proposed method was robust to patient-wise contrast arrival time variations. This 

method has the potential to increase spatial resolution of DCE MRI using a higher acceleration 

factor while providing accurate and precise PK parameter estimates. A further extension of the 

current approach by replacing the LLSQ layer with a neural network could simultaneously 

produce PK parameter estimations and corresponding uncertainties [93]. This may allow direct 

minimization of the uncertainty in PK parameters. 

It is important to learn the optimal subsampling patten in the k-t space for dynamic image 

acquisition, instead of using a random SP following an assumed distribution, e.g., a Poisson 

distribution or uniform distribution.  Similarly, temporal data sharing, although widely used in 

dynamic acquisitions, lacks optimization, and is often manually crafted [94], [95]. In this work, 

we extended LOUPE [84] to the time domain and added a TDoF to learn dynamic subsampling 
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and data sharing in the k-t space. In the learned sampling probability maps, the sampling density 

near the k-space center was high during initial contrast uptake, but decreased over time, and then 

increased at the end of the temporal acquisition.  This could be explained as the data near the k-

space center are important to capture fast contrast dynamics for accurate estimation of PK 

parameters, and then became less important over the time course. Also, the spread of sampling 

probabilities in the k-space at the frames near the time course center could be due to that the 

spatiotemporal sparsity is well captured by the CRNN network. The increased density near the k-

space center at the end of the acquisition could be because of the zero initializations of the 

hidden features of the BCRNN layer which may be removed by using learnable initializations. 

We included the PK parameter loss in the objective for image reconstruction.  The 

weighting of the PK parameter loss in the objective had a nonlinear effect on NRMSEs of 

estimated PK parameters [50]. We found that an optimal weighting between the image loss and 

parameter loss improved both image and PK parameter reconstruction qualities. While the image 

loss provided direct guidance on image reconstruction, the parameter loss distilled PK modeling 

knowledge that the image l2 loss might not be sensitive to in the model during training and in SP 

optimization. We observed that the sampling density was more concentrated in the k-space 

center when the model was trained with image loss only compared with that trained with 

combined image and parameter losses. This is possibly because the inclusion of the parameter 

loss enabled the network to directly learn hemodynamics in the signal time courses that influence 

the parameter estiamtion, thereby sampling the k-space center less frequently.  

In our comparison with two other methods under different temporal resolutions, we 

observed a nonlinear dependence of NRMSE on temporal resolutions, which could be due to the 

interplay of temporal resolution, SNR and SPs. While both high temporal resolution and SNR are 
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beneficial for PK parameter estimation [47], [48], [96], the two are usually tradeoff in practice. 

Temporal resolutions of 3s and 4s represented a balance of these factors for the proposed 

method, resulting in the best NRMSEs. The AIF is another factor affecting the accuracy of PK 

parameter estimation [28]. Note that the proposed and L+S methods extracted patient-specific 

AIFs from the reconstructed images for PK parameter estimation, while the DL method used a 

population-based AIF that might contribute to, at least in part, the high bias observed in the 

Bland-Altman plot [97]. We also observed a generally higher instability in kep compared with 

Ktrans and vp as demonstrated in the corresponding NRMSEs (Table 3.4), which is consistent with 

prior reports [47]. 

In this chapter, the proposed method was validated using realistic multi-coil complex 

DROs to demonstrate its ability to reduce PK parameter estimation bias and uncertainty 

compared with iterative reconstruction methods using non-data driven SPs. One limitation of the 

current mcDROs simulation is that the real data was acquired using a view sharing technique at 

∆t=3s, which might reduce the high frequency temporal information in the subsequently derived 

AIFs used in the simulation of higher temporal resolution mcDROs (∆t<3s). High temporal 

resolution DCE MRI sequences [98], [99] could be utilized to create mcDROs at higher temporal 

resolutions in future works. Validating the proposed method in prospective studies in future 

investigations is also warranted. To facilitate these studies, realistic factors such as motion and 

native T1 can be easily incorporated into training data to make the network robust to these factors 

present in real scans. In future prospective studies, the learned SPs can be implemented as 2D 

phase encoding locations in a 3D T1 weighted spoiled gradient echo sequence without changing 

other sequence parameters. One of the challenges in applying the proposed method to 

prospective studies is that the timing of the contrast arrival may vary from patient to patient even 
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with the same contrast injection timing due to patient-specific factors such as cardiac output 

[100]. This may cause the SPs trained with a specific contrast arrival timing to fail in fully 

capturing the contrast dynamics information, which may result in uncertainty in PK parameter 

estimation. Our simulation of clinically measured variations in mcDROs demonstrated that small 

variations normally encountered in clinical scans had almost no impact on the PK parameter 

NRMSEs. This demonstrates the apparent robustness of the network to the normal variations in 

contrast arrival times expected in clinical DCE MRI scans of the neck region. Direct estimation 

of PK parameters from k-t space data has shown promise for parameter reconstruction in DCE 

MRI [74], [77]. An interesting direction of future works will be to incorporate data-driven priors 

into these approaches by extending the proposed framework to direct PK parameter 

reconstruction.  

3.6 Conclusion 

We have presented a jointly optimization framework for head and neck DCE MRI k-t SP 

and image reconstruction with an objective combining image reconstruction quality and PK 

parameter estimation accuracy. Optimization of k-t SP by learning the sparsity in the dynamic 

contrast enhanced images enables a dramatic reduction in the k-space sampling to achieve 

accurate and precise PK parameter estimations including in tumor regions while keeping similar 

spatial resolution. The proposed framework is general and can be applied to other quantitative 

MRI applications, such as T1, T2, and apparent diffusion coefficient quantification, to improve 

the scan efficiency. Future study is warranted to validate the proposed method in in vivo 

experiments.  
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Chapter 4 Sampling Pattern Optimization for Multi-Contrast MRI with A Fully Unrolled 

Reconstruction Network  

4.1 Introduction 

The purpose of this chapter is to accelerate conventional T1- and T2- weighted MR scans 

by jointly optimizing sampling patterns of the two scans. 

MR images of different contrasts of the same anatomy, e.g., T1 weighted and T2 weighted 

images, are commonly acquired to provide complementary information and increase diagnostic 

power. However, the different contrasts are normally acquired and reconstructed independently, 

which ignores mutual information across multiple contrasts and prolong the total scanning time. 

Correlated features and contrast sparsity in multi-contrast MR images can be exploited to 

accelerate k-space acquisition. Neural networks have been used to exploit the contrast sparsity by 

joint multi-contrast reconstruction and outperform conventional sequential reconstruction under 

high undersampling rates [101]–[104]. However, sampling patterns of multi-contrast MR images 

can be jointly optimized with the reconstruction to further accelerate the scan. In addition, most 

of the previous works perform single- and multi-contrast learnings in a single network module, 

which may not be optimal if learning tasks of multiple contrasts are different. 

In this chapter, we performed preliminary experiments to explore the idea of jointly 

learning k-space SPs of T1 and T2 weighted images with image reconstruction to improve quality 

of reconstructed images with undersampled acquisition.1 In addition, we explored deep learning 

 
1This chapter is based on our abstract for the 2022 AAPM annual meeting [46]. 



 57 

network structures that separately extract single-contrast features and cross-link the features for 

image reconstruction and compared it with extracting multi-contrast mutual information in a 

single module.  

4.2 Materials and Methods 

4.2.1 Problem formulation 

Following a variable splitting formulation, the two-contrast image reconstruction problem 

can be formulated as the following optimization problem: 

argmin
𝑥𝑥1,𝑥𝑥2

‖𝐴𝐴1𝑥𝑥1 − 𝑦𝑦1‖22 + ‖𝐴𝐴2𝑥𝑥2 − 𝑦𝑦2‖22 + 𝜆𝜆1𝑅𝑅1(𝑥𝑥1) + 𝜆𝜆2𝑅𝑅2(𝑥𝑥2) + 𝜆𝜆3𝑅𝑅3(𝑥𝑥1, 𝑥𝑥2),         (4.1) 

where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝐴𝐴𝑖𝑖, and 𝑅𝑅𝑖𝑖(∙) for 𝑖𝑖 ∈ {1, 2} are the image, k-space data, sampling operator, and 

regularization for 𝑇𝑇𝑖𝑖 contrast, and 𝑅𝑅3(∙) is the joint regularization term representing sparsity in 

the contrast dimension. This problem can be solved with a variable splitting formulation that 

decouples single-contrast and multi-contrast learnings: 

argmin
𝑥𝑥1,𝑥𝑥2,𝑧𝑧1,𝑧𝑧2,𝑧𝑧3,𝑧𝑧4 

∑ (‖𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖‖22 + 𝜆𝜆𝑖𝑖𝑅𝑅𝑖𝑖(𝑥𝑥𝑖𝑖) + 𝜇𝜇𝑖𝑖‖𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖‖22)2
𝑖𝑖=1 + 𝜆𝜆3𝑅𝑅3(𝑧𝑧3, 𝑧𝑧4) + 𝜇𝜇3‖𝑥𝑥1 − 𝑧𝑧3‖22 +

𝜇𝜇4‖𝑥𝑥2 − 𝑧𝑧4‖22,      (4.2) 

which can be solved iteratively as:  

𝑧̂𝑧1 = argmin
𝑧𝑧1

 𝜆𝜆1𝑅𝑅1(𝑧𝑧1) + 𝜇𝜇1‖𝑥𝑥1 − 𝑧𝑧1‖22,    (4.3) 

𝑧̂𝑧3 = argmin
𝑧𝑧3

 𝜆𝜆3𝑅𝑅3(𝑧𝑧3, 𝑧𝑧4) + 𝜇𝜇3‖𝑥𝑥1 − 𝑧𝑧3‖22,    (4.4) 

𝑥𝑥�1 = argmin
𝑥𝑥1

‖𝐴𝐴1𝑥𝑥1 − 𝑦𝑦1‖22 + 𝜇𝜇1‖𝑥𝑥1 − 𝑧̂𝑧1‖22 + 𝜇𝜇3‖𝑥𝑥1 − 𝑧̂𝑧3‖22,  (4.5) 

𝑧̂𝑧2 = argmin
𝑧𝑧2

 𝜆𝜆2𝑅𝑅2(𝑧𝑧2) + 𝜇𝜇2‖𝑥𝑥2 − 𝑧𝑧2‖22,    (4.6) 

𝑧̂𝑧4 = argmin
𝑧𝑧4

 𝜆𝜆3𝑅𝑅3(𝑧̂𝑧3, 𝑧𝑧4) + 𝜇𝜇4‖𝑥𝑥2 − 𝑧𝑧4‖22,    (4.7) 
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𝑥𝑥�2 = argmin
𝑥𝑥2

‖𝐴𝐴2𝑥𝑥2 − 𝑦𝑦2‖22 + 𝜇𝜇2‖𝑥𝑥2 − 𝑧̂𝑧2‖22 + 𝜇𝜇4‖𝑥𝑥2 − 𝑧̂𝑧4‖22,  (4.8) 

where 𝑧̂𝑧1 and 𝑧̂𝑧2 represent the single contrast reconstruction results for T1 and T2 weighted 

images, respectively. 𝑧̂𝑧3 and 𝑧̂𝑧4 represent the refined T1 and T2 weighted images resulting from 

multi-contrast representation learning, respectively. Each 𝑧𝑧𝑖𝑖 update for 𝑖𝑖 ∈ {1, 2,3,4} was 

implemented by a U-Net in a fully unrolled neural network (FU-net) consists of four unrolled U-

Nets, two for single-contrast learning and another two for multi-contrast learning. Each 𝑥𝑥𝑖𝑖 update 

for 𝑖𝑖 ∈ {1, 2} was implemented with a weighted average of 𝑧̂𝑧𝑖𝑖 and 𝑧̂𝑧𝑖𝑖+2 followed by a DC layer.  

 For comparison, two other network structures, one without multi-contrast mutual 

information learning and another with a different learning strategy, were studied. The first 

network structure contains two separate unrolled U-Nets (S-net) with DC that independently 

reconstruct T1 and T2 weighted images.  The second one consists of a single multi-channel 

unrolled U-Net (MC-net) with DC with input data of the two contrasts concatenated along the 

channel dimension to simultaneously reconstruct them. The network structures investigated are 

shown in Figure 4.1. All networks have 5 unrolls. 
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Figure 4.1: Network structures of S-net, MC-net, and FU-net. 

4.2.2 Experiments 

Magnitude images of fully sampled multi-slice head and neck T1 and T2 weighted images 

acquired in 16 patients who participated in an institutional review board approved protocol were 

used in the experiments. For both contrasts, the matrix size is 320×320, the median in-plane 

resolution is 0.80mm (0.78mm-0.94mm), the median number of slices is 75 (70-85), and the 

slice thickness is 3.3mm. The two contrast images were well aligned upon visual inspection. No 

image registration was performed. The k-space data was simulated from the magnitude images 

by inverse Fourier transform. Zero-padding in the k-space was removed to avoid subtle data 

crime [105], which reduced the matrix size from 320×320 to 192×192. In the first experiment, 

nine networks were trained for FU-net, S-net, and MC-net using retrospectively undersampled k-

space data with a SP of 1D Gaussian, 2D variable density (VD), or 2D uniform random and an 

acceleration rate (R) of 4, 8 or 12. 615/230/360 2D slices of T1 and T2 weighted images from 

8/3/5 patients were used for training/validation/testing. Reconstructed T1 and T2 weighted images 

from FU-net were compared with ones from S-net and MC-net. In the second experiment, 1D 

and 2D SPs were optimized for both contrasts jointly with FU-net by modeling them as i.i.d. 

samples from a learnable multivariate Bernoulli distribution [22]. R=4, 8, and 12 were tested. An 

image l2 loss was used as the training loss function. The image quality was evaluated by PSNR 

and SSIM. To ensure fairness, the number of parameters of all networks were kept 

approximately the same. All training was terminated when the validation loss was not improved 

in 10 consecutive epochs. The code was implemented in PyTorch. The experiments were 

performed on an NVIDIA RTX A6000 with 48GB memory.  
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4.3 Results 

The reconstruction performances of different methods using the three empirical SPs at the 

three Rs are compared in Table 4.1. The FU-net consistently outperformed MC-net and S-net in 

terms of PSNR and SSIM for both T1 and T2 contrasts. S-net and MC-net showed comparable 

performance, indicating inefficiency in exploiting multi-contrast sparsity by MC-net. 

The reconstruction performances of FU-net jointly trained with learnable SPs are 

summarized in Table 4.2. Both 1D and 2D learned SPs outperformed their empirically designed 

counterparts under all acceleration factors. Example reconstruction results are shown in Figure 

4.2, which are consistent with quantitative results. FU-net with the 2D learned SP had the best 

visual performance. Figure 4.3 shows the 1D and 2D learned SPs together with 1D Gaussian, 2D 

uniform random and VD SPs. Samplings for both 1D and 2D learned patterns were mostly 

concentrated near the center of k-space compared with other empirical SPs. 

Table 4.1: Multi-contrast image reconstruction PSNRs and SSIMs (mean (standard deviation)) of different methods 
under 1D Gaussian, 2D uniform random, and 2D VD sampling and R=4, 8, and 12. SP=sampling pattern. 
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Table 4.2: Multi-contrast image reconstruction PSNRs and SSIMs (mean (standard deviation)) using learned SPs 
and FU-net. 

 

 

Figure 4.2: Example reconstructed T1 (first row) and T2 (third row) weighted images and corresponding error maps 
(second row and forth row, respectively.) under R=8. The error maps are shown as percentage absolute errors 
relative to the mean intensity of the anatomic regions of each corresponding contrast. GT=ground truth. 
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Figure 4.3: Learned SP for T1 and T2 weighted scans compared with 1D Gaussian and 2D uniform random and 2D 
variable density (VD) SPs. 

4.4 Discussion 

This work shows effectiveness of FU-net in multi-contrast image reconstruction and 

advantages of data-driven SPs over empirical ones, which may further accelerate multi-contrast 

imaging. Under 8-fold undersampling, FU-net reconstruction with jointly learned sampling 

patterns provides high fidelity images and recovers fine structures of anatomy. The FU-net 

decouples single- and multi-contrast learnings by using dedicated modules for each task. We 

compared FU-net with a S-net that processes each contrast individually and a MC-net that 

exploited sparsity in multi-contrast images with a single network. The performance improvement 

of FU-net is greater using 1D Gaussian and 2D uniform sampling strategies than 2D VD 

sampling. The 2D learned sampling patterns in the k-space have a sharper sampling density 

transition from the center to the peripheral regions than the VD sampling distribution and have a 

larger densely sampled k-space center than the random uniform sampling pattern. This pattern 

could be related to the k-space energy distribution of anatomy of interest, and is hard to guess 

empirically, which requires further investigation. The 1D learning sampling patterns of T1 and T2 

contrasts complement each other by sampling opposite halves of the k-space, which could be a 

result of the learned correlation between the two contrasts and Hermitian symmetry of the 

magnitude images. The relationship between 2D learned sampling patterns of T1 and T2 contrasts 

will be investigated in the future. 

Beyond this preliminary experiment, further investigation on the feature maps of different 

network structures may give more insights on the cause of the performance differences and the 

connection between single- and multi-contrast learning. Validation of the framework on real k-

space data and prospectively undersampled acquisitions are also warranted. The extension of the 
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decoupling framework to MRI scans with more contrasts (e.g., MR fingerprinting [29]) and more 

advanced multi-contrast representation learning such as deep dictionary learning [106] may be 

investigated in the future.  
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Chapter 5 Improved 3D MR Fingerprinting via Memory-Efficient Synergic Optimization 

of 3D Spiral Trajectory, Image Reconstruction and Parameter Estimation (SOTIP) 

5.1 Introduction 

MRF acquisition and reconstruction involve multiple components, including k-space 

sampling, image reconstruction and parameter estimation, which all have critical impact on 

efficiency of MRF. While a number of works improve each component separately, joint 

optimization of these components could further improve MRF efficiency, which has not been 

explored.1 The purpose of this chapter is to improve accuracy and precision of quantified MRF 

tissue parameters and shorten reconstruction time while keeping the same scan time and similar 

spatial resolution by using deep learning reconstruction to synergically optimize k-space 

sampling, image reconstruction and parameter estimation. 

Several dynamic 3D acquisition patterns have been proposed to boost MRF scan 

efficiency [8], [107]–[110]. Stack-of-spirals trajectory is an efficient approach for rapid sampling 

and has been demonstrated to achieve whole-brain imaging with spatial resolution of 

1.2×1.2×3.0 mm3 within 4.6 min [110]. Full 3D non-Cartesian sampling schemes have high 

flexibility in trajectory design and great sampling efficiency [8], [107]–[109]. Cao et. al. 

proposed a tiny-golden-angle shuffling (TGAS) sampling scheme of full 3D spiral MRF and 

achieved 1mm-isotropic resolution whole-brain T1, T2, and proton density mapping in less than 2 

min [8]. However, it may be possible to optimize the sampling scheme systematically for 

 
1This chapter is based on a manuscript to be submitted to IEEE Transactions on Medical Imaging. 
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specific anatomy and jointly with image reconstruction. Recently, data-driven design of k-space 

sampling patterns by deep learning has shown promise for accelerating MRI by exploiting spatial 

sparsity in anatomy of interest, for example, optimizing 2D and 3D Cartesian [19], [22], [81], 

[111] and non-Cartesian [21], [82], [112], [113] k-space trajectories for static MR applications. 

Also, benefits of optimized dynamic samplings in 3D Cartesian have been demonstrated in DCE 

[45] and quantitative susceptibility (QSM) MRI [114] by exploiting spatiotemporal sparsity. 

However, to the best of our knowledge, no extension of data-driven optimization of 3D non-

Cartesian sampling to MRF has been investigated, which could improve the scan efficiency 

further. This is in part due to requirements of prohibitively large GPU memory footprint and long 

optimization time. 

MRF reconstruction is done commonly by reconstructing time-series of images first and 

then followed by estimation of quantitative tissue parameter maps. Accuracy of parameter 

quantification thus depends on quality of reconstructed images. MRF data are highly redundant 

in the image-time domain, which is leveraged to compensate for the high degrees of 

undersampling in k-space. Generic spatiotemporal sparsity by low rank (LR) [7] or locally low 

rank (LLR) modeling [8], [9] and sequence-specific temporal sparsity by temporal subspace 

modeling have been utilized in iterative image reconstructions. However, when applied to full 

3D non-Cartesian MRF, these methods require long reconstruction time and huge demand of 

random-access memory (RAM). For example, the LLR reconstruction took 4-5 hours on a Linux 

server and required approximately 400GB of RAM and 1 TB of swap to achieve whole-brain 

MRF reconstruction at 1mm-isotropic resolution [8]. A work utilized stochastic gradient descent 

and 9.5 GB RAM to reduce the reconstruction time to 0.4 hours on phantom data [115], which is 

still insufficient in clinical practice. Furthermore, generic spatiotemporal sparsity assumed by LR 
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or LLR does not fully capture redundancy in MRF associated with specific anatomy, which is 

worthwhile to exploit further. Deep learning-based MR image reconstruction methods have 

recently shown promising performance in various MR applications [18]. MBDL reconstruction 

methods [34]–[37] achieve state-of-the-art MR image reconstruction performance and increase 

generalizability even with a small amount of training data. MBDL that incorporates MR physics 

as a DC layer into deep learning-based reconstruction benefits from both learning-based and 

model-based image reconstruction advantages. However, to date MBDL has been applied only to 

2D/3D static or 2D dynamic scans with non-Cartesian samplings [116]–[120] due to huge 

demands of GPU memory and training time. For example, naïve implementation of MBDL for 

static MRI with full 3D non-Cartesian trajectories requires over 250 GB of GPU memory [117]. 

For 3D MRF, spatiotemporal images of a single subject can take approximately 50 GB, which 

needs to be stored in RAM for the DC step. Even with several memory-efficient network training 

strategies [117], [119]–[122], an extension of MBDL to full 3D non-Cartesian MRF is hindered 

by high computation cost and GPU memory requirement. As a result, there is no MBDL 

framework proposed for full 3D non-Cartesian MRF. 

As discussed, conventional MRF reconstruction methods construct image and 

quantitative parameter maps sequentially and independently. Previous works on DCE MRI [45], 

[123] suggest that joint image-parameter reconstruction could improve accuracy of quantitative 

parameters. The joint image-parameter reconstruction of MRF has been implemented in a direct 

iterative parameter estimation framework using maximum likelihood [124], in which solving a 

highly nonconvex problem was a challenge and sensitive to initialization. In a supervised deep 

learning framework [125], a fully connected network and a CNN were jointly trained to exploit 

respective temporal and spatial sparsity of 2D MRF without DC. Hamilton et. al. [126] proposed 
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to use an unsupervised learning approach with DC incorporation for jointly optimizing image 

and parameter reconstructions for 2D cardiac MRF. However, this method led to a relatively 

long reconstruction time, approximately 1.1h for a single subject because the network was 

trained de novo for every subject. Supervised joint training of image and parameter 

reconstructions of MRF could provide better estimation of parameters with shorter 

reconstruction time. 

In this work, we aim to accelerate both acquisition and reconstruction of 3D MR 

Fingerprinting via Synergic Optimization of 3D Spiral Trajectories, Image Reconstruction, and 

Parameter Estimation (SOTIP). To achieve this objective, we make novel contributions in three 

major aspects: 1) we enable MBDL for full 3D spiral MRF on a single GPU by utilizing several 

techniques to reduce computation and GPU memory demand; 2) we jointly optimize image and 

parameter reconstructions in an end-to-end fashion and reduce error propagation from image 

reconstruction to final parameter quantification; and 3) we synergically optimize rotation angles 

of full 3D spiral trajectories of MRF using MBDL to further improve acquisition efficiency. We 

validated our methods using both simulated and in vivo MRF scans with different undersampling 

rates and observed consistent improvement in parameter quantification accuracy and reduction in 

reconstruction time compared with the state-of-the-art LLR reconstruction [8], [109]. 

5.2 Materials and Methods 

5.2.1 Problem formulation 

The k-t-space data 𝒀𝒀 acquired by a MRF experiment can be formulated as follows: 

𝒀𝒀 = 𝓐𝓐(𝓜𝓜(𝑿𝑿);𝛀𝛀) + 𝑵𝑵,                                                   (5.1) 
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where 𝑿𝑿 ∈ ℝ𝑁𝑁𝑣𝑣×𝑁𝑁𝑝𝑝 denotes a discrete approximation of an underlying continuous parameter 

map, 𝓜𝓜(∙):ℝ𝑁𝑁𝑣𝑣×𝑁𝑁𝑝𝑝 → ℂ𝑁𝑁𝑣𝑣×𝑇𝑇 represents a MRF signal model, 𝓐𝓐( ∙ ;𝛀𝛀):ℂ𝑁𝑁𝑣𝑣×𝑇𝑇 → ℂ𝑁𝑁𝑐𝑐𝑁𝑁𝑘𝑘×𝑇𝑇 is a 

MR system operator, 𝑵𝑵 ∈ ℂ𝑁𝑁𝑐𝑐𝑁𝑁𝑘𝑘×𝑇𝑇 is i.i.d. complex Gaussian noise usually assumed in MRI, and 

𝛀𝛀 ∈ ℝ𝑁𝑁𝑘𝑘𝑇𝑇×𝑁𝑁𝑑𝑑 depicts k-t trajectories of 𝑁𝑁𝑑𝑑-dimensional images.  𝑁𝑁𝑣𝑣 is the total number of 

voxels in a parameter map, 𝑁𝑁𝑝𝑝 is the number of parameters of interest, 𝑁𝑁𝑘𝑘 is the number of k-

space samples acquired per TR, 𝑇𝑇 is the total number of TRs, and 𝑁𝑁𝑐𝑐 is the number of receive 

coils. The parameter map 𝑿𝑿� is estimated by a reconstruction algorithm from acquired data 𝒀𝒀. 

We propose a SOTIP framework to solve Equation 5.1, which is illustrated in Figure 5.1. 

The first step of the pipeline process is to reconstruct a low-rank representation of MRF image-

time series from the acquired data.  Learnable parameters 𝚯𝚯𝐼𝐼 of a MBDL image reconstruction 

network, 𝓘𝓘𝚯𝚯𝐼𝐼( ∙ ;𝛀𝛀):ℂ𝑁𝑁𝑘𝑘×𝑇𝑇 → ℂ𝑁𝑁𝑣𝑣×𝐾𝐾, are optimized to map acquired k-t-space data 𝒀𝒀 ∈ ℂ𝑁𝑁𝑘𝑘×𝑇𝑇 to 

temporal subspace coefficient (TSC) images 𝑪𝑪 ∈ ℂ𝑁𝑁𝑣𝑣×𝐾𝐾 of temporal subspace bases (TSB) or 

principal components of a set of signal-time curves in a representative MRF dictionary, where 

𝑪𝑪 = 𝓜𝓜(𝑿𝑿)𝚽𝚽′, 𝚽𝚽 ∈ ℂ𝐾𝐾×𝑇𝑇 is a truncated set of 𝐾𝐾 (𝐾𝐾 ≪ 𝑇𝑇) TSB, and 𝚽𝚽′ denotes the complex 

conjugate transpose of 𝚽𝚽.  The sparsity in the temporal or contrast domain of MRF data allows 

us to reconstruct TSC images with negligible truncation errors compared with whole image-time 

series and substantially reduces memory footprint. The training objective of 𝓘𝓘𝚯𝚯𝐼𝐼is a 

reconstruction error of coefficient images that is a weighted l2 distance between estimated 

coefficient 𝑪𝑪� = 𝓘𝓘𝚯𝚯𝐼𝐼(𝒀𝒀;𝛀𝛀) and ground truth 𝑪𝑪 and written as: 

𝚯𝚯�𝐼𝐼 , �𝛀𝛀�� = argmin
𝚯𝚯𝐼𝐼,(𝛀𝛀)

𝔼𝔼𝑿𝑿 ��𝑾𝑾𝑪𝑪�𝓘𝓘𝚯𝚯𝐼𝐼(𝒀𝒀;𝛀𝛀) −𝓜𝓜(𝑿𝑿)𝚽𝚽′��
𝐹𝐹
2
�,                       (5.2) 

where 𝑾𝑾𝑪𝑪 ∈ ℝ𝐾𝐾×𝐾𝐾 is a diagonal weighting matrix on different bases and is empirically chosen 

for better parameter reconstruction quality. 𝑪𝑪� is then fed into a pre-trained parameter estimation 
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network 𝓟𝓟𝚯𝚯𝑃𝑃
∗ (∙):ℂ𝐾𝐾 → ℝ𝑁𝑁𝑝𝑝 parameterized by 𝚯𝚯𝑃𝑃

∗  to estimate the parameter maps voxel-by-

voxel, see Figure 5.1(a). 

Given the parameters as the final estimates, an absolute percentage loss directly on T1 

and T2 is considered as a training objective of 𝓘𝓘𝚯𝚯𝐼𝐼 in Variant 2 (Figure 5.1(b)): 

𝚯𝚯�𝐼𝐼 ,𝚯𝚯�𝑃𝑃 = argmin
𝚯𝚯𝐼𝐼,𝚯𝚯𝑃𝑃

𝔼𝔼𝑿𝑿 �� �𝑿𝑿�𝑛𝑛𝑣𝑣,𝑛𝑛𝑝𝑝 − 𝑿𝑿𝑛𝑛𝑣𝑣,𝑛𝑛𝑝𝑝� 𝑿𝑿𝑛𝑛𝑣𝑣,𝑛𝑛𝑝𝑝�
𝑛𝑛𝑣𝑣,𝑛𝑛𝑝𝑝

�                                            

s. t.  𝑿𝑿�𝑛𝑛𝑣𝑣,𝑛𝑛𝑝𝑝 = 𝓟𝓟𝚯𝚯𝑃𝑃�𝓘𝓘𝚯𝚯𝐼𝐼(𝒀𝒀;𝛀𝛀)𝑛𝑛𝑣𝑣,:�𝑛𝑛𝑝𝑝,                                        (5.3) 

where 𝑛𝑛𝑣𝑣 and 𝑛𝑛𝑝𝑝 denote the voxel and tissue parameter index, respectively. The weighting 

matrix 𝑾𝑾𝑪𝑪 is not needed to be finetuned.  This parameter loss replaces the image loss in 

Equation 5.2 for jointly training of TSC image reconstruction and parameter estimation in an 

end-to-end fashion, which may potentially improve quality of overall reconstruction.  

In Variant 3, sampling trajectories 𝛀𝛀 of 3D MRF are jointly optimized with TSC image 

reconstruction, which has the potential to produce optimal sampling patterns and further improve 

acquisition efficiency (Figure 5.1(c)). 
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Figure 5.1: Flowcharts of three variants of a SOTIP framework. (a) SOTIP-U{Nunroll}-DC consists of Nunroll 
iterations of a unroll denoising network incorporated with data consistency of full 3D spiral k-space samples for 
temporal subspace coefficient (TSC) image reconstruction and a pretrained parameter estimation network for voxel-
by-voxel parameter estimation. A l2 image loss between reference/ground truth and reconstructed coefficient images 
was used to update the networks. (b) SOTIP-U{Nunroll}-DC-p_loss used a parameter loss that replaced the image loss 
for joint optimization of parameter quantification and image reconstruction. (c) SOTIP-U{Nunroll}-DC-traj 
simultaneously updated 3D sampling trajectories and coefficient image reconstruction networks using the image 
loss. In the training phase, the k-space data was simulated on-the-fly. The input reference TSC images were first 
undersampled in k-t space and then were added with complex Gaussian noise. Adjoint NUFFT was applied to the k-t 
space data to generate an initial guess of TSC images that input to the denoising networks. 

 

5.2.2 MRF sequence selection and acquisition parameters 

The MRF sequence was based on fast imaging with steady state precession (FISP) [127]. 

The sequence started with an adiabatic inversion pulse and was followed by 500 TRs 

(TI/TE/TR=21/0.63/9.2) with varying flip angles from 0 to 67.4 degrees, which was termed as 

one acquisition group. The k-space sampling trajectories were varied from TR to TR and across 

multiple acquisition groups. A rest time of 3s was applied between acquisition groups to allow 

spins to relax to equilibrium before the next acquisition group. Forty-eight acquisition groups 

were regarded as full sampling. An undersampling rate (R) was defined by 48 divided by the 
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number of acquisition groups, which followed the definition in [8]. For example, R=6 and R=3 

refer to acquisition groups of 8=48/6 and 16=48/3, respectively, which led to respective total 

scan time of 1 min and 2 min.  

5.2.3 3D spiral trajectory optimization 

In Variant 3, we optimized orientations of 2D spiral readout planes in the 3D k-space 

during the training of the image reconstruction network to fully exploit the spatiotemporal 

sparsity of MRF. The 2D base trajectory is a variable density spiral trajectory [128] with 

FOV=230×230×230mm3, 1mm-isotropic resolution, 29-fold in-plane undersampling rate, and 

variable density factor of 1.3. The maximum gradient amplitude was set as 0.04T/m and 

maximum slew rate as 150T/m/s. To obtain a better initialization, the trajectory was initialized 

using a TGAS scheme implemented in [8]. The trajectories were optimized by rotating the initial 

spiral planes around kx, ky, and kz axes with learnable rotation angles 𝜹𝜹(𝑖𝑖, 𝑗𝑗) =

�𝛿𝛿𝑥𝑥(𝑖𝑖, 𝑗𝑗),𝛿𝛿𝑦𝑦(𝑖𝑖, 𝑗𝑗), 𝛿𝛿𝑧𝑧(𝑖𝑖, 𝑗𝑗)�
𝑇𝑇
, where i is the index of acquisition groups and j is the TR index.  

5.2.4 MBDL TSC image reconstruction 

The TSC image reconstruction can be posed as an optimization problem in a form: 

𝑪𝑪� = argmin 
𝑪𝑪

�𝑫𝑫1/2(𝓐𝓐𝚽𝚽(𝑪𝑪;𝛀𝛀) − 𝒀𝒀)�
𝐹𝐹
2

+ 𝜆𝜆ℛ(𝑪𝑪),                             (5.4) 

where 𝓐𝓐𝚽𝚽( ∙ ;𝛀𝛀) = 𝑭𝑭𝑁𝑁𝑁𝑁𝛀𝛀 𝑺𝑺 ∙ 𝚽𝚽, 𝑺𝑺 ∈ ℂ𝑁𝑁𝑐𝑐𝑁𝑁𝑣𝑣×𝑁𝑁𝑣𝑣 denotes coil sensitivity maps, 𝑭𝑭𝑁𝑁𝑁𝑁𝛀𝛀 ∈ ℂ𝑁𝑁𝑐𝑐𝑁𝑁𝑘𝑘𝑇𝑇×𝑁𝑁𝑐𝑐𝑁𝑁𝑣𝑣 

represents nonuniform discrete Fourier transform (NUDFT) operator with sampling pattern 𝛀𝛀 , 

which is approximated by nonuniform fast Fourier transform (NUFFT), 𝑫𝑫 ∈ ℝ𝑁𝑁𝑐𝑐𝑁𝑁𝑘𝑘𝑇𝑇×𝑁𝑁𝑐𝑐𝑁𝑁𝑘𝑘𝑇𝑇 is a 

diagonal matrix containing the density compensation weights [129] for 𝛀𝛀, and ℛ(∙) is the 

regularization with a weighting parameter of 𝜆𝜆. The first term encourages DC between the 
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reconstructed TSC images and the acquired k-t-space data. The second term incorporates prior 

knowledge of the TSC images. deep learning-based data-driven regularization can be used to 

iteratively solve the optimization problem by: 

𝒁𝒁(𝑖𝑖+1) = 𝒇𝒇𝚯𝚯𝐼𝐼(𝑖𝑖+1)�𝑪𝑪(𝑖𝑖)�,                                                     (5.5) 

𝑪𝑪(𝑖𝑖+1) = argmin 
𝑪𝑪

�𝑫𝑫1/2(𝓐𝓐𝚽𝚽(𝑪𝑪;𝛀𝛀) − 𝒀𝒀)�
𝐹𝐹
2

+ 𝜆𝜆�𝑪𝑪 − 𝒁𝒁(𝑖𝑖+1)�
𝐹𝐹
2
,                    (5.6) 

where 𝒇𝒇𝚯𝚯𝐼𝐼(𝑖𝑖+1) :ℂ𝑁𝑁𝑣𝑣×𝐾𝐾 → ℂ𝑁𝑁𝑣𝑣×𝐾𝐾 is a denoising/de-aliasing network for the (i+1)th iteration 

parameterized by 𝚯𝚯𝐼𝐼
(𝑖𝑖+1). The second step is often called a DC step, encouraging consistency of 

acquired k-t-space data and the reconstruction. We use one gradient decent step to approximate 

this step as 

𝑪𝑪(𝑖𝑖+1) = 𝒁𝒁(𝑖𝑖+1) − 𝛼𝛼𝓐𝓐𝚽𝚽
′ �𝑫𝑫�𝓐𝓐𝚽𝚽�𝒁𝒁(𝑖𝑖+1);𝛀𝛀� − 𝒀𝒀�;𝛀𝛀�,                        (5.7) 

where 𝛼𝛼 is a learnable step size of the DC update. 

5.2.5 CNN network structure 

We used a 3-level 2D U-Net structure for a denoising/de-aliasing network 𝓓𝓓𝚯𝚯 to process 

batched 2D axial slices of the 3D TSC images. The 2D networks could be trained by a large 

number of 2D slices to alleviate the need for a large dataset of high-quality 3D MRF image 

volumes. To account for intensity scale differences across TSC images corresponding to 

different TSBs, each TSC image input to the network was standardized by subtracting its mean 

and divided by its standard deviation. Then, the mean and standard deviation were saved to 

restore the intensities of each image output for the subsequent DC step. No residual connection 

was used, and weights were not shared across unrolls. Group norm [130] with 64 groups was 

added before each rectified linear unit (ReLU) non-linearity was applied after all except for the 

last layer.  
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5.2.6 Parameter estimation network structure 

A three-layer fully connected neural network 𝓟𝓟𝚯𝚯𝑃𝑃( ∙ ) is used to estimate the parameters 

voxel-by-voxel from the TSC images 𝑪𝑪�, K=5 and 𝑁𝑁𝑝𝑝 = 2 for T1 and T2. 𝑪𝑪� is first normalized by 

its l2 norm in the TSB dimension to eliminate the effect of proton density and other 

proportionality factors in the MR signals. This normalization was not used when the fully 

connected network was jointly trained with the TSC image reconstruction network to increase 

training stability. The real and imagery parts of the TSC images were concatenated so the input 

of the network has 10 channels. The three layers have 512, 512, and 2 nodes, respectively, where 

the last layer provides T1 and T2 estimates. ReLU nonlinearity was applied to the first two layers. 

The target T1 and T2 values were normalized by their maximum physiological values in the 

brain, which in this work, we used 4000ms and 1500ms, respectively. This normalization keeps 

the output range in [0, 1] which facilitates network training. 

5.2.7 Memory- and time-efficient strategies for network training 

Additional reductions of memory footprint and training time were achieved by leveraging 

automatic mixed precision training (AMP) [131], gradient checkpointing (GC) [132], spatial-

temporal commutativity of the MR system operator and different oversampling factors and 

kernel sizes of NUFFT. We utilized different combinations of these techniques to allow training 

the network on a single GPU while maximizing the memory usage for time efficient training.  

The AMP training automatically assigns appropriate data type to different operations to reduce 

computation cost including time and memory. For example, convolution computation is much 

faster for data in half-precision than in default single-precision but without sacrifice of accuracy. 

Operations such as exponentials and summations still use data in single precision to prevent 

numeric overflow or underflow.  
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GC is a method to tradeoff memory footprint with a small increase in computation cost. 

GC keeps a subset of intermediate activations of an operator on memory, instead of saving all in 

traditional backpropagation, and recalculates others during gradient calculation. To do so, in the 

forward pass, 3D image volumes were decomposed into batches of 10 2D slices. Each batch was 

fed into the CNN denoiser 𝓓𝓓𝚯𝚯 without saving the intermediate activations, and then the output 

2D slices were re-combined into 3D image volumes. In the backward pass, the intermediate 

activations were recalculated for each batch for gradient calculation (Figure 5.2). For more GPU 

memory intensive training, depending on specific dataset and reconstruction network, GC was 

applied to the NUFFT operator, in which the image data were decomposed in the TSB dimension 

and/or in the coil dimension (Figure 5.3). Note that GC only increases the computation cost 

during network training but not in the inference. 

By using the spatial-temporal commutativity of the MR system operator [133], [134], the 

adjoint operator 𝓐𝓐𝚽𝚽
′ ( ∙ ;𝛀𝛀) can be implemented by first projecting the k-t space data onto a low 

dimensional temporal subspace by multiplying 𝚽𝚽′ and then applying adjoint NUFFT operator. 

This keeps the operations in K dimensions of the number of the significant temporal bases 

instead of T dimensions in the time domain, greatly reducing computation time and memory 

consumption.  

To further reduce memory footprint, we investigated effects of the oversampling factor 

and kernel size of the NUFTT operator on MBDL. These two parameters control accuracy of the 

NUFFT operator but also affect memory footprint and computation time.  
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Figure 5.2: A schematic of decomposition of 3D TSC image volumes to batches of 2D axial slices for memory-
efficient gradient calculation using gradient checkpointing. Outputs of the 2D slice batches are recombined into 3D 
volumes. 
 

 

Figure 5.3: A schematic of decompositions of TSC and multi-coil image data along TSB and/or coil dimensions for 
memory-efficient gradient calculation required by the DC layer using gradient checkpointing. 
 

5.2.8 Dataset 

5.2.8.1 Simulation dataset 

Brain T1 and T2 maps of 12 subjects were generated from Kirby21 public dataset [135]. 

T1 mapping was conducted using a variable flip-angle spoiled 3D gradient echo sequence with 

TR/TE/α1/α2=100ms/15ms/15°/60°, FOV=212×212×143mm, and acquired 
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resolution=1.5×1.5×1.5mm. T2 mapping was simulated using a 2D multi-slice spin-echo 

sequence to acquire dual echoes with TR/TE1/TE2=6653ms/30ms/80ms, FOV=212×212×143 

mm3 and resolution=1.5×1.5×1.5 mm3. Both T1 and T2 maps were reformatted to 1mm-isotropic 

resolution with a field of view of 230×230×230mm3. The MRF signals were simulated voxel-by-

voxel using the extended phase graph (EPG) formalism [136] with the FISP-based MRF 

sequence as described in section 2.2. Coil sensitivity maps from eight virtual coils estimated 

from one subject in a public 3D MRF raw dataset [109], which will be described in detail in 

section 2.8.2, were used for simulation. The multi-coil image-time series were then 

retrospectively undersampled in the k-t-space using the TGAS trajectory with 48 acquisition 

groups. To obtain k-t-space data with high accuracy, NUFFT with oversampling factor = 2 and 

kernel size = 6 was used. Complex Gaussian noise was added to the simulated k-t-space data so 

that the SNR in the image space was 50 with respect to the mean MRF signal across time and 

whole brain.  

5.2.8.2 In vivo dataset 

Public in vivo brain 3D MRF raw data of 14 healthy volunteers and three patients [109] 

were used for training and testing of the reconstruction framework. The healthy volunteer data 

were acquired on a 3T Premier MRI scanner (GE Healthcare, Waukesha, WI) with 48 head 

receiver-coils. The patient data were acquired on two different 3T Signa Premier scanners. The 

MRF sequence consists of an adiabatic inversion pulse followed by a 500 TRs (TI/TE/TR = 

20/0.7/12 ms) with variable flip angle from 10 to 75 degrees. Forty-eight acquisition groups with 

the TGAS trajectory were acquired from healthy volunteers with 6 min acquisition time. Patient 

data were prospectively undersampled to obtain 16 acquisition groups within 2 min and with 

R=3 (which was 50% TGAS undersampling of the first 32 groups and omitted the latter 16 
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groups, rather than 33% TGAS undersampling of 48 groups [8]). The fully acquired resolution 

was 1mm-isotropic and the FOV was 220×220×220 mm3.  

5.2.9 Evaluation and comparison 

5.2.9.1 Simulation study 

We tested SOTIP on simulation data with ground truth parameters for error calculation. A 

MRF dictionary containing 23538 time curves with 500 TRs in each was generated using 𝑇𝑇1 ∈

[20: 20: 3000] ∪ [3200: 200: 5000] 𝑚𝑚𝑚𝑚 and 𝑇𝑇2 ∈ [10: 2: 200] ∪ [220: 20: 1000] ∪

[1050: 50: 2000] ∪ [2100: 100: 4000] 𝑚𝑚𝑚𝑚. The dictionary was compressed to the first five 

principal components, 𝚽𝚽 ∈ ℂ5×500, by principal component analysis (PCA) to pretrain the 

parameter estimation network. 50%/20%/30% of the entries of the compressed dictionary were 

used for training/validation/testing the parameter quantification network. For all experiments 

involving the TSC image reconstruction networks, 1150/460/1150 2D axial slices from 5/2/5 

subject heads were for training/validation/testing, respectively. 

Ablation Study We conducted series of investigations of effects of 1) memory efficient 

training and reconstruction techniques including AMP, slice-/TSC-/coil-wise GC, 2) NUFFT 

with different oversampling factors and kernel sizes, 3) DC layer, and 4) number of unrolls. 

First, we compared different memory efficient techniques regarding training time and GPU 

memory by training SOTIP with 1 unroll (SOTIP-U1) and SOTIP with 1 unroll plus DC 

(SOTIP-U1-DC) using TGAS simulation data with 𝑅𝑅 = 6 and using the NUFFT with 

oversampling factor of 1.25 and kernel size of 2. Secondly, we trained SOTIP-U1-DC on the 

same data using the NUFFT with {oversampling factor}×{kernel size}={1.125, 1.25, 1.5}×{2} 

and {1.25}×{2, 3, 4} and without TSC- or coil-wise GC. Finally, SOTIP networks with {1, 2, 3} 

unrolls without DC layer (SOTIP-U{1, 2, 3}) and with {2, 3, 4} unrolls with DC layers (SOTIP-
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U{2, 3, 4}-DC) were trained by the TGAS simulation data (𝑅𝑅 ∈ {3, 6}). In all these experiments, 

no joint optimization was used, and the parameter quantification network was pre-trained 

(Variant 1 in Figure 5.1(a)). 

Joint optimization with parameter quantification TSC Image reconstruction and 

parameter quantification were jointly optimized using the parameter loss (SOTIP-U3-DC-p_loss) 

on the TGAS simulation data (𝑅𝑅 ∈ {3, 6}) (Variant 2 in Figure 5.1(b)). 

k-t trajectory optimization SOTIP networks were jointly trained for the learnable spiral 

trajectory rotation (SOTIP-U3-DC-traj) on the TSC simulation data (𝑅𝑅 ∈ {3, 6}), in which the 

parameter quantification network was pre-trained and fixed (Variant 3 in Figure 5.1(c)). 

Comparison with LLR reconstruction We compared performances of SOTIP networks 

trained in previously described experiments with LLR reconstruction [8] on the TGAS 

simulation data (𝑅𝑅 ∈ {3, 6}). The parameter estimation accuracy and computation time were 

evaluated. We also utilized the spatiotemporal commutativity of 𝚽𝚽 and 𝑭𝑭𝑁𝑁𝑁𝑁 to improve 

efficiency of the LLR reconstruction. The LLR algorithm required the block size to be a factor of 

the image matrix size and found a block size of 8 optimal for the TGAS MRF reconstruction [8].  

In our work, a different matrix size was used so that block sizes of 5 and 10 were tested since 

they were close to the optimal value of 8 reported previously. The weighting parameter of the 

LLR regularization was finetuned within {1 × 10−6, 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4} 

for 𝑅𝑅 ∈ {3, 6}, respectively. The LLR reconstruction was solved by Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) for 100 iterations and implemented by SigPy package [137] 

with GPU acceleration. 
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5.2.9.2 in vivo study 

We validated the proposed reconstruction framework on in vivo data. SOTIP was re-

trained on the in vivo data with different sequence parameters than the simulation data. We 

trained two SOTIP-U3-DC networks on retrospectively undersampled healthy volunteer scans 

with 𝑅𝑅 ∈ {3, 6} following the TGAS scheme [8]. Coil sensitivity maps for 10 compressed coils 

were estimated using JSENSE [138]. Training targets of the SOTIP networks were the LLR 

reconstructed TSC images with matrix size = 256 × 256 × 256 and TSB=5 from the 6 min scan. 

The T1 and T2 maps were estimated using pattern matching. We used 1536/512/1536 2D axial 

slices from 6/2/6 healthy subjects for training/validation/testing, respectively. The SOTIP 

reconstructions from the 2 min (R=3) and 1 min (R=6) scans were compared with the LLR 

reconstructions from the 6 min (R=1), 2 min (R=3) and 1 min (R=6) scans. Prospectively 

undersampled 2 min scans of the 3 patients were also used to compare between SOTIP and LLR 

reconstructions. To ensure fairness, the public available source code and MRF dictionary 

provided by Iyer et. al. [109] were used for the LLR reconstruction and the pattern matching. 

5.2.9.3 Evaluation Metrics 

We evaluated the parameter quantification accuracy by NRMSE that is defined as 

�𝑀𝑀𝑀𝑀𝑀𝑀�𝑿𝑿𝑖𝑖 ,𝑿𝑿�𝑖𝑖� �max(𝑿𝑿𝑖𝑖) − min (𝑿𝑿�𝑖𝑖)�� × 100%, where 𝑿𝑿𝑖𝑖 and 𝑿𝑿�𝑖𝑖 stand for the ground truth 

and estimate of the ith parameter, respectively, and 𝑀𝑀𝑀𝑀𝑀𝑀(∙, ∙) represents the mean squared error.  

5.2.10 Implementation details 

The weighting matrix 𝑾𝑾𝑪𝑪 on different bases in the TSC image loss was empirically 

chosen to be the reciprocal of the Frobenius norm of each reference TSC image so that different 

TSC images were on a similar scale to facilitate network training. SOTIP was implemented in 
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PyTorch with MIRTorch [139] and TorchKbNufft [140] packages on an NVIDIA A100 GPU 

with 40GB memory. Adam optimizer [61] was used with 1 × 10−4 learning rate which was 

reduced by a half when the validation error was not improved in 20 consecutive epochs. We used 

batch size = 1 and terminated training when the validation error was not improved in 40 

consecutive epochs. GPU memory footprint was measured by peak reserved GPU memory. 

Paired t-test was used for all statistical comparisons between the reconstructions. A difference 

was considered as significant when p<0.05. 

5.3 Results  

5.3.1 Simulation study 

5.3.1.1 Ablation Study 

The effects of different efficient training techniques on GPU memory footprint and 

computation time in training SOTIP-U1 and SOTIP-U1-DC on the TGAS simulation data with 

R=6 were investigated (Table 5.1). The network even without the DC layer was unable to fit onto 

the GPU without efficient training techniques. Using GC in the slice dimension enabled the 

network to fit on the GPU, and adding AMP further cut down the GPU memory usage. However, 

incorporating a DC layer in the network increased the GPU memory by nearly 11 GB. To further 

reduce the GPU memory usage, GC was applied to the TSC and coil dimensions but with a cost 

of training time.  

Table 5.1: Effects of efficient training techniques on GPU memory and training time per epoch 

 w/o DC w/ DC 

Technique None Slice-wise 
GC 

Slice-wise 
GC 

+AMP 

Slice-wise 
GC 

+AMP 

Slice-wise 
GC 

+AMP  
+TSC-wise 

GC 

Slice-wise 
GC 

+AMP  
+coil-wise 

GC 

Slice-wise GC 
+AMP 

+coil-wise GC 
+TSC-wise 

GC 
GPU memory 

(GB) >40 (O.O.M.) 10.7  8.4  19.7  18.7 17.5  12.9 
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Training time per 
epoch (min) - 0.4 0.4 1.6 1.9 2.5 1.7 

            O.O.M., out of memory. 

The effects of over-sampling and interpolation kernel size of NUFFT on validation 

NRMSEs of T1 and T2, memory footprint and computation time of SOTIP-U1-DC using the 

TGAS simulated data with R=6 are summarized in Table 5.2. All hyperparameters of NUFFT 

showed comparable NRMSEs, but a large kernel size increased training and inference times 

while a high oversampling factor increased GPU memory footprint. We selected oversampling 

factor of 1.25 and kernel size of 2 for small memory usage and short computation time in the 

following experiments. 

Table 5.2: Effects of NUFFT oversampling factor and kernel size on NRMSEs of validation T1 and T2, training and 
testing memory and time. 

Over-
sampling 

factor 

Kernel 
size 

T1 
NRMSE 

(%) 

T2 
NRMSE 

(%) 

Training 
memory 

(GB) 

Testing 
memory 

(GB) 

Training 
time per 

epoch (min) 

Testing 
time per 

subject (s) 
1.25 2 8.2  3.8  19.7 10.9 1.5 7.6 
1.25 3 7.8  3.8  19.7 10.9 1.6 8.2 
1.25 4 7.9  3.7  19.7 10.9 2.4 11.8 

1.125 2 8.3  3.9  18.9 10.9 1.5 7.4 
1.5 2 8.5  4.0  21.0 11.1 1.5 7.2 

 

NRMSEs of T1 and T2 values quantified by SOTIP with different numbers of unrolls and 

with or without DC layers are shown in Figure 5.4. DC significantly improved both T1 and T2 

NRMSEs (p<0.005) when the number of unrolls was greater than 1 for the reconstructions using 

either 1-min or 2-min scans. Increasing the number of unrolls from one to two improved the 

NRMSEs regardless of using a DC layer, but the improvement was greater with DC. However, 

the improvement was diminished after three unrolls for both 2 min (R=3) and 1 min (R=6) scans. 

Considering increases in training time and memory with the number of unrolls (Figure 5.5), 3 

unrolls were used in the following experiments. 
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Figure 5.4: NRMSEs of T1 (left column) and T2 (right column) vs. the number of unrolls of SOTIP with or without 
DC for the 2 min (first row) and 1 min (second row) scans. 
 

 

Figure 5.5: (a) Training time per epoch, (b) inference time per subject, (c) training and (d) testing GPU memory of 
SOTIP with respect to different numbers of unrolls and with or without DC. The training and inference times 
increased with the number of unrolls but more rapidly for SOTIP with DC than without DC. Although the training 
memory increased with the number of unrolls, the testing memory remained almost the same. 
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5.3.1.2 Performance of T1 and T2 mapping 

T1 and T2 maps reconstructed using SOTIP-U3, SOTIP-U3-DC, SOTIP-U3-DC-p_loss, 

and SOTIP-U3-DC-traj were compared to the LLR reconstruction using the 2 min (R=3) and 1 

min (R=6) simulated data. Examples of the reconstructed maps are shown in Figure 5.6 and 

Figure 5.7. Compared to the LLR reconstructions, SOTIP-U3 (without DC) did not improve the 

quality of T1 and T2 maps by qualitive review and quantitative assessment (Figure 5.8). 

However, adding DC layers in SOTIP-U3-DC sharply reduced percentage errors of T1 and T2 

maps. Using the parameter loss (SOTIP-U3-DC-p_loss) improved accuracy of T1 quantifications 

further, and jointly optimizing the k-t space sampling trajectory in SOTIP yielded the lowest 

percentage errors in the reconstructed maps. Quantitative analysis of the NRMSEs of T1 and T2 

showed that SOTIP-U3-DC was significantly better than LLR (p<0.005) but SOTIP-U3 was not 

(Figure 5.8). Similar analyses showed that SOTIP-U3-DC-p_loss and SOTIP-U3-DC-traj 

significantly reduced the NRMSEs of T1 and T2 compared with SOTIP-U3-DC (p<0.05), except 

for T2 quantification from the 2 min scan, suggesting effectiveness of direct minimization of 

parameter loss and joint optimization of k-t sampling trajectory in SOTIP. Inspection of input 

and output TSC image slices from LLR and SOTIP-U3-DC indicates that SOTIP-U3-DC 

reduced noise and errors in the output TSC images more effectively than LLR, see examples of 

the TSC images of the 2-min scan in Figure 5.9.  
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Figure 5.6: Example reconstruction slices of T1 (first row) and T2 (third row) and their corresponding percentage 
error maps (second and fourth rows) from the testing simulated data of 2-min scan by (b) the locally low rank 
method (LLR), (c) SOTIP with 3 unrolls (SOTIP-U3), (d) SOTIP with 3 unrolls and DC layers, (e) SOTIP-U3-DC 
with the parameter loss (SOTIP-U3-DC-p_loss), and (f) SOTIP-U3-DC with joint optimization of k-t space 
trajectory (SOTIP-U3-DC-traj). Ground truth (GT) T1 and T2 maps are shown in (a). Zoom-in plots of a cortical 
region show details of image sharpness and noise.  
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Figure 5.7: Example reconstruction slices of T1 (first row) and T2 (third row) and their corresponding percentage 
error maps (second and fourth rows) from the testing simulated data of 1-min scan by (b) the locally low rank 
method (LLR), (c) SOTIP with 3 unrolls (SOTIP-U3), (d) SOTIP with 3 unrolls and DC layers, (e) SOTIP-U3-DC 
with the parameter loss (SOTIP-U3-DC-p_loss), and (f) SOTIP-U3-DC with joint optimization of k-t space 
trajectory (SOTIP-U3-DC-traj). Ground truth (GT) T1 and T2 maps are shown in (a). Zoom-in plots of a cortical 
region show details of image sharpness and noise.   
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Figure 5.8: NRMSEs of quantified T1 and T2 by different reconstruction methods on all testing simulated data from 
2-min (first row) and 1-min (second row) scans. n.s.: not significant. *: p<0.05. **: p<0.005. 
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Figure 5.9: Example (a) ground truth, (b) input and output TSC image slices for (c) LLR and (d) SOTIP-U3-DC 
reconstructions for simulation data at 2-min scan time. The absolute error maps with respect to the ground truth for 
the input and output are included below each TSC image. The TSC images and their corresponding absolute error 
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are scaled differently across TSC 1-5 for better visualization. The TSC images are normalized across TSB 
dimension. 
 

5.3.1.3 Reconstruction time comparison 

T1 and T2 NRMSEs against wall time by different reconstruction methods of one testing 

case are plotted in Figure 5.10. While LLR reconstruction took ~103 s to converge, SOTIP-U3-

DC-p_loss and SOTIP-U3-DC-traj only required ~20s to reconstruct 3D TSC image volumes of 

one subject, which indicates 50-fold reduction of reconstruction time by SOTIP. 

 

Figure 5.10: (a) T1 and (b) T2 NRMSEs of the reconstruction for the 2-min (first row) and 1-min (second row) scans 
from one testing case vs. wall time. The LLR wall time was plotted for every 5 iterations. 
 

5.3.1.4 Optimized k-t trajectory 

Point spread functions (PSFs) and line profiles of the SOTIP optimized trajectory were 

compared to the ones of the TGAS sampling scheme (Figure 5.11). The SOTIP optimized 

trajectory had less streaking artifact in the PSF and a narrower central lobe and lower side lobes 

in the line profile than those in TGAS sampling. The streaking artifact in PSF of TGAS 
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trajectory is likely caused by the limited number and distributions of different through-plane 

rotation angles of the trajectory that forms radial lines in certain projections of 3D k-space. 

 

Figure 5.11: (a) TGAS samplings and (c) SOTIP optimized trajectories of the first 5 TRs, (b) and (d) their respective 
point spread functions (PSFs) averaged across kx-ky, kx-kz, and ky-kz planes, and (e) line profiles (log scale) of the 
PSFs averaged across x-, y-, and z-axes. Results from the 2-min and 1-min scans are shown in top and bottom two 
panels, respectively. 
 

5.3.2 In vivo study 

The SOTIP-U3-DC was trained and tested to reconstruct T1 and T2 maps using the data 

acquired in 2 min and 1 min in healthy subjects and patients, which were compared to the LLR 

constructions from the data acquired in 6 min (as reference), 2 min and 1 min. Compared to the 

LLR reconstructions from the 2- and 1-min scans of the healthy subjects, SOTIP reduced noise 

in the T1 and T2 maps (Figure 5.12), which is consistent with the results on the simulation data. 

The quantitative results showed that SOTIP-U3-DC significantly improved T1 and T2 NRMSEs 

for both 2-min (p<0.05) and 1-min (p<0.005) scans (Table 5.3). SOTIP-U3-DC also achieved 

53- and 65-fold reductions in reconstruction time for the 2-min and 1-min scan, respectively. 

Finally, SOTIP-U3-DC was applied to reconstruct T1 and T2 maps from prospectively 

undersampled data of three patients, which again showed less noisy parameter maps and finer 
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structures than ones by LLR (Figure 5.13). Note that white matter abnormality of a patient was 

reconstructed successfully by both methods. 

 

Figure 5.12: Comparison of LLR and SOTIP-U3-DC reconstructions of T1 and T2 of in vivo acquired 2-min and 1-
min scans of one testing healthy subject. (a) LLR reconstruction of the 6-min scan as reference, (b) and (d) LLR 
reconstructions of respective 2-min and 1-min scans, (c) and (e) SOTIP-U3-DC reconstructions of respective 2-min 
and 1-min scans. 
 

Table 5.3: NRMSEs and reconstruction times of in vivo data from 6 testing healthy subjects by LLR and SOTIP-U3-
DC. 

Scan time 
of data 
(min) 

Method T1 NRMSE 
(%) 

T2 NRMSE 
(%) 

Recon. time 
(s) 

2 LLR 2.9 ± 0.1 5.9 ± 0.7 1600 
SOTIP-U3-DC 2.7 ± 0.1* 5.4 ± 0.4* 30 

1 LLR 3.7 ± 0.2 7.2 ± 0.8 1300 
SOTIP-U3-DC 3.3 ± 0.1** 6.5 ± 0.5** 20 

                                               *: p<0.05. **: p<0.005 
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Figure 5.13: Comparison of example reconstruction slices by LLR and SOTIP-U3-DC for (a), (b) patient 1, (c), (d) 
patient 2, and (e), (f) patient 3. Red arrows indicate white matter abnormality of patient 1, which was recovered by 
both methods. Patient 1 (75 y/o male) had chronic small vessel disease while there was no significant finding in the 
other two patients (Patient 2, 28 y/o male and Patient 3, 49 y/o male). 
 

5.4 Discussion 

In this work, we developed a MBDL framework for quantification of T1 and T2 from full 

3D spiral MRF to improve parameter quantification accuracy and shorten reconstruction time, 

evaluated it using both simulation and in vivo data and compared with the state-of-the-art LLR 

reconstruction. In this framework, we showed the benefits of synergetic optimization of the TSC 

image reconstruction with the parameter quantification and data-driven joint optimization of the 

k-t space sampling trajectory with the image reconstruction on realistic digital phantoms. The 

data-driven optimization of the k-t space samplings could further increase the acquisition 

efficiency of 3D spiral MRF. Our framework could be extended for other high-dimensional 

quantitative MRI acquisition and reconstruction.  

One of the challenges of clinical adaptation of highly undersampled full 3D non-

Cartesian scans is heavy computation burden and long reconstruction time caused by NUFFT 

and iterative reconstruction. MBDL holds the promise of reducing the number of iterations of 
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reconstruction by capturing a non-linear representation specific to MRI images in a data-driven 

fashion. However, the MBDL application to high-dimensional MRI reconstruction is hindered by 

large GPU memory requirement and/or long training time. Although future hardware 

development may address these issues, we demonstrated that the size and complexity of the 

problem can be largely reduced by utilizing the sparsity of the data and the memory footprint can 

be decreased by time- and memory- efficient training techniques to fit the network training onto 

a single modern GPU with a reasonable training time. We showed that the downgraded NUFFT 

operator, which reduces computation time and memory requirement, achieved a similar 

performance in the parameter estimation to a default optimal operator. We conjecture that the 

nonlinear representation learned by the neural network may compensate for the error in the data 

consistency step caused by the downgraded NUFFT operator. We also utilized the sequence-

specific sparsity in the MRF data by temporal subspace modeling, and spatial-temporal 

commutativity to solve the reconstruction problem entirely in a low dimensional subspace. 

Mixed data precision training and GC further contained time and memory requirements. Other 

efficient network structures (e.g., deep equilibrium model [141], [142]) can be combined with 

efficient training techniques to allow further improvement in performance and computation 

efficiency. More efficient operators approximating NUDFT can also be combined with GC, for 

example, pre-calculating Toeplitz kernels of a downgraded NUFFT operator [112], [143], 

GRAPPA Operator Gridding (GROG) [126], [144], and FINUFFT [145] in future works.  

The full 3D non-Cartesian k-t trajectory has large degrees of freedom for optimization, 

which presents as a challenge as well. In this work, we optimized the rotation angles of 2D spiral 

planes in the 3D k-space. Our optimized 3D spiral trajectories provided more focused PSFs with 

lower side lobes, and improved parameter quantification accuracy compared with the empirically 
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designed TGAS trajectory. Further validation of the optimized trajectory needs to be carried out 

in in vivo experiments. Also, future work may consider parameterizing the density of each spiral 

or each readout by B-spline kernels [21], [112]. With a differentiable Bloch simulator [146], the 

sequence parameters may also be jointly optimized with the sampling trajectory and image 

reconstruction. 

One common challenge for developing data-driven reconstruction methods for high-

dimensional quantitative MRI is the data limitation including limited availability of high-quality 

data for training and lack of in vivo ground truth for performance validation. In this work, we 

generated realistic 3D+time digital phantoms with ground truth tissue parameters to test the 

proposed framework. Effects of B0 and B1 inhomogeneity and eddy current will be incorporated 

and investigated in future works. In our in vivo study, since there was no ground truth available, 

we used the LLR reconstruction of 6 min scans as a reference even though the reference itself 

could be subject to artifacts imposed by the regularization. We showed that T1 and T2 parameters 

produced by SOTIP were not inferior to those by LLR. The profiles of average NRMSEs from 

the simulation data were slightly different from the in vivo study, which may be partly attributed 

to the different biases in the ground truth/reference tissue parameters introduced by different 

sequences and hardware, and to different subject demography [147]. Considering lack of ground 

truth in the in vivo evaluation, SOTIP could be tested using task-specific metrics such as 

diagnostic accuracy or precision in the future.  

Another concern is the generalizability of SOTIP trained on a small number of subjects. 

In this work, we did not observe overfitting during training and demonstrated excellent 

parameter quantification results on testing subjects. In addition, we showed that SOTIP could 

also generalize well on in vivo patient data acquired on different scanners and trajectories. This 
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generalization capability may result from the fact that 2D U-Nets were trained on 2D slices 

containing different anatomies along the axial dimension, which increases robustness of the 

network. In addition, there is clear spatial-sparsity or similarity across the five TSC images 

(Figure 5.9). The first two TSC images with the high-quality initial guess could behave like an 

individual prior to facilitate reconstructions of the third, fourth and fifth TSC images, which 

could reduce the requirement on the training data. Validations on scanners of different vendors, 

with different system imperfections, are warranted. Future works may also address the issue of 

limited dataset by learning anatomical population prior from static MRI images with different 

contrasts or resolutions which are more widely available and then combining it with 

unsupervised learning for robust patient-specific reconstruction. In addition, training objectives 

other than l2 norm will be investigated to reduce possible spatial resolution degradation. 

5.5 Conclusion 

In conclusion, this chapter enabled model-based deep learning for full 3D spiral MRF on 

a single GPU by exploiting spatiotemporal redundancy and time and memory saving techniques. 

We demonstrated improvement in T1 and T2 quantification with shortened reconstruction time 

while keeping the same scan time and similar spatial resolution compared with a state-of-the-art 

LLR method on both simulation and in vivo data. Also, we demonstrated advantages of 

synergetic optimization of image reconstruction, parameter reconstruction and k-t space 

trajectory by improved NRMSEs of T1 and T2. In vivo implementation of the optimized 

trajectory and more comprehensive clinical validation on a larger patient cohort of the proposed 

framework will be carried out in the future. 
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Chapter 6 Discussion and Conclusion 

This dissertation introduces several techniques for improving the efficiency of acquisition 

and computation of qMRI by data-driven optimization of k-space sampling patterns, image 

reconstruction, and tissue parameter estimation.  

The high representation power of deep neural networks and large-scale optimization 

algorithms enable robust learning of sparsity in existing qMRI datasets which improves the 

accuracy and precision of quantified parameters from new data. In addition, neural networks are 

highly flexible and can be tailored to a variety of applications. Firstly, different forms of sparsity 

can be exploited by specific network architectures with dedicated modules and connections 

(Chapter 2, 3, and 4). Secondly, by parameterizing different parts of image processing (optimal 

acquisition, image reconstruction and parameter quantification), the whole pipeline can be jointly 

optimized (Chapter 3, 4, and 5). Thirdly, the final objective of a specific application can be 

directly optimized, reducing error propagation along the processing pipeline (Chapter 3 and 5). 

Since a more accurate representation is learned by deep learning, image reconstruction often 

requires fewer numbers of iterations than conventional iterative reconstruction, thereby reducing 

reconstruction time. Owing to the high flexibility of neural networks, the pursuit of the optimal 

robust representations of MR images and the best method to incorporate this knowledge into 

reconstruction continues to be a vibrant research area. 

The generalizability of deep learning-based image reconstruction is a major concern in its 

clinical translation. Given the high degrees of freedom in the network optimization, the deep 
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learning reconstruction algorithm is sensitive to training and testing domain changes [148]. The 

problem is more challenging in qMRI with limited availability in high-quality data for training 

and validation. It is thus crucial to incorporate other prior knowledge to constrain the 

reconstruction. The incorporation of high-quality individual information, as fully sampled 

baseline images of DCE series in Chapter 3 and linear subspace modelling of MRF time signals 

in Chapter 5, alleviate the generalization problem. However, in the absence of such high-quality 

prior knowledge, it is possible to learn an individual representation from the acquired data using 

self-supervised learning and then find a balance in reconstruction among data fidelity, population 

prior knowledge and individual representation. It is also desirable to develop a fast and robust 

framework to quantify the bias and uncertainty of image reconstruction or parameter estimation. 

We have developed a such framework based on a generative model that provides tractable 

distributions for MRF [115]. The framework can then be used to detect domain changes and 

adapt image reconstruction. Online prediction of such bias and uncertainty may also inform 

active sampling of k-space during dynamic scans with guidance from both population prior and 

continuously acquired individual data. 

One limitation of this dissertation is its retrospective nature. Prospective studies will be 

conducted in the future to further validate the proposed frameworks. The sampling trajectories or 

patterns developed in Chapter 3, 4, and 5 do not involve changes in sequence parameters (e.g., 

TR/TE) but only require changes in phase encoding steps and thus can be readily implemented 

by modifying the sampling schemes of existing MR sequences. The experiments will first be 

conducted on phantoms to identify possible domain shift between training dataset and real data 

based on the reconstruction results. The source of domain shift will be characterized, and several 

iterations of network finetuning may be required to achieve the best outcome. For example, MR 



 97 

system imperfections including B0 and B1 inhomogeneities may be characterized and 

incorporated into the training dataset for network finetuning. After phantom studies, the MR 

sequences with modified sampling schemes will be incorporated into scan protocols for cancer 

patients to validate the proposed methods on in vivo data and assess any potential improvement 

in clinical utility.  

Direct extensions of this dissertation include optimization of sequence parameters 

together with sampling patterns, image reconstruction, and parameter estimation to allow higher 

degrees of freedom for optimization. The proposed methods can also be applied to other qMRI 

applications including diffusion, susceptibility, and chemical exchange saturation transfer 

quantification.  

Several open questions remain to be addressed before qMRI can achieve broader clinical 

application. How to reduce scan time while providing better or the same accuracy and precision 

of parameter quantification is one of them and is the focus of this dissertation. The lack of 

realistic, specialized phantoms designed for diverse qMRI techniques poses challenges for 

validation of these techniques not only on a single scanner but more importantly across scanners 

and centers. The performances of qMRI sequences and reconstruction algorithms need to be 

validated on dedicated qMRI phantoms with ground truth parameters available and system 

imperfections measured. The development of such phantoms will facilitate clinical translation of 

qMRI. Biophysical models linking MR signals with underlying biophysical processes determine 

the accuracy and precision of the quantified parameters and their interpretations. In some qMRI 

applications, absence of consensus on model selection hinders its broader adoption. While a 

more accurate and complex model can provide more accurate parameters than a simplified 

model, it requires a longer scan time to achieve comparable reproducibility. The model selection 
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may require comprehensive evaluation of reproducibility and clinical values of the parameters. 

The prediction of the bias and uncertainty of the parameters under different models may be also 

informative for model selection. Given the versatility of modern MRI pulse sequences, exploring 

new MRI biomarkers for tumor hypoxia, microscopic tumor spread, and immune response 

presents a promising research avenue. This direction of research necessitates new insights of 

biology and physics and development of new biophysical models. This could significantly 

enhance radiotherapy adaptation and advance cancer research as a whole. 
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