
Enhancing Safety, Efficiency, and Resilience in Advanced Air Mobility Through
Geofencing, Contingency Landing Management, and Optimized Network

Strategies

by

Joseph Kim

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Robotics)

in the University of Michigan
2024

Doctoral Committee:

Professor Ella M. Atkins, Co-Chair
Assistant Professor Max Z. Li, Co-Chair
Associate Professor Dimitra Panagou
Professor Nadine B. Sarter

Taehyung Kim

jthkim@umich.edu

ORCID iD: 0000-0001-9292-5139

© Taehyung Kim 2024

DEDICATION

To my beloved family,

Without your unwavering love, support, and prayers, I would not have embarked on this

journey. To my parents, sister, and grandma, your encouragement and sacrifices have been

my strength and inspiration. Your belief in me has fueled my determination to pursue my

dreams.

To my dear pastor Yongbaek Shin,

Your spiritual guidance, love, support and prayers have been a guiding light in my life.

Your prayers and counsel have provided me with the courage and confidence to face challenges

and persevere. Your love in me has fueled my passion to pursue the visions.

And to my Lord,

I am eternally grateful for your blessings, wisdom, and guidance throughout the life

journey. You have shaped me, strengthened me, and chastised me, shaping me into the

person I am today. You have been my Shepherd, refreshing my soul and guiding me along

the right paths. Your protection, love, and grace have been my constant companions, and I

am humbled by your presence in my life. Soli Deo Gloria.

ii

ACKNOWLEDGEMENTS

I would like to begin by expressing my heartfelt gratitude to my advisor, Professor Ella

Atkins. From the moment I chose to study at University of Michigan and nervously stepped

into your office, I truly knew that studying under your guidance would be an extraordinary

journey. Your mentorship, unwavering support, and encouragement have been invaluable

to me throughout my time here. Whenever I faced challenges, you were there to support

me and to provide invaluable insights into tackling research obstacles. Every fond memory

I have of my time at Michigan is from the opportunities you provided me to pursue my

dreams. Thank you, Professor Atkins, for believing in me and for accepting me as your

Ph.D. student. I recall promising you years ago that I would one day make flying cars, now

known as Advanced Air Mobility (AAM), a reality and give you a ride. I am making one

more step now to make this vision a reality and fulfil my promise.

I am also deeply grateful to my co-advisor, Professor Max Li, for the privilege of being

your Ph.D. student. Working alongside you has been nothing short of inspiring, and I am

immensely appreciative of your guidance and support. It is also an honor to be the first

Ph.D. graduate of the LATTICE lab. Thank you for your guidance and support.

To my esteemed committee members, Professor Nadine Sarter and Professor Dimitra

Panagou, I extend my sincere thanks for your invaluable feedback and guidance throughout

my Ph.D. journey. Your insights have been instrumental in shaping my research endeavors.

Also, I want to express my heartfelt gratitude to the members of the A2SYS lab, whose

camaraderie and support made this Ph.D. journey all the more meaningful. I am grateful

to each of you, Akshay Marthur, Mark Nail, Brandon Apodaca, Paul Flanigen, Prashin

Sharma, Jeremy Castagno, Prince Kuevor, Matt Romano, Mia Stevens, Cosme Ochoa and

Chris Barkey, for your friendship and collaboration. I extend my gratitude to the members of

the LATTICE lab as well, Haochen Wu, Hejun Huang, Billy Mazotti, Minghao Chen, Yuxuan

Fang, Sihang Wei, Sinan Abdulhak, Armaan Kamat and more. It was great interacting with

you, and I am thrilled to hear about the exciting projects and great achievements you will

make.

I am indebted to my collaborators, particularly those at Collins Aerospace: Alex

Postnikov, Nick Liberko, Stefano Riverso, Giovanni Franzini, Khushboo Wadhwani, Dave

iii

Watkins and NASA: Natasha Neogi, Hanbong Lee, Terry Morris, for their unwavering sup-

port, encouragement and guidance. Your collaboration and mentorship have been instru-

mental in my progress both in research and career.

Lastly, I wish to express my profound gratitude to my friends, brothers, and sisters at

Korean New Life Church and Redeemer Church for their prayers and unwavering support.

Your encouragement and prayers have been a source of strength. I eagerly anticipate the day

when I can share with you the realization of connecting the world through the skies.

iv

PREFACE

Before my thesis begins, I want to shed light on my personal journey and the purpose driving

my pursuit of a Ph.D. in Advanced Air Mobility (AAM). Growing up in a small Nigerian

town in Africa, I witnessed firsthand the transformative power of engineering in improving

lives and communities. In a place where access to clean water and efficient transportation

were daily challenges, I saw the profound impact that innovative technologies could have

on addressing these fundamental needs; it was a groundbreaking portable water filtration

system that helped solve the struggles faced by family and friends. My early experiences

instilled in me a strong belief in the potential of engineering that can positively change the

villages, cities and the world.

From a young age, I have been captivated by the sky and the remarkable technology

about flying vehicles. Then, I found myself pondering the idea: “What if we could travel

in ways that enable engineers and innovators to reach those in need more easily?” This

fascination ignited my dreams to pioneer the development of flying cars capable of connecting

communities efficiently and seamlessly, thereby transforming the way people interact, travel

and help others. My dream is to connect the world through sky, from isolated and under-

developed regions to developed cities and countries, so that essential engineering technologies,

education, and healthcare systems can be distributed around the world by people. Advanced

Air Mobility will connect the world far beyond what conventional airliners can do to make

this happen.

This vision has been the guiding force behind my academic pursuits in aerospace engi-

neering, as well as my professional endeavors, including my service as a second lieutenant

in the Republic of Korean Air Force. It is the purpose and these dreams that have led me

to pursue a Ph.D. at the University of Michigan. This thesis represents the culmination

of years of dedication, passion, and perseverance in pursuit of this ambitious goal. I be-

lieve that through innovative research and collaborative efforts, we can harness the power of

engineering to shape a better future for our generation and for the generations to come.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

PREFACE . v

LIST OF FIGURES . ix

LIST OF TABLES . xvii

ABSTRACT . xix

CHAPTER

1 Introduction . 1

1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Approach and Dissertation Outline 2
1.4 Contributions and Innovations . 5

1.4.1 Contributions . 5
1.4.2 Innovations . 6

2 Airspace Geofencing and Flight Planning for Low-Altitude, Urban, and
Small UAS . 8

2.1 Introduction . 8
2.2 Literature Review . 12

2.2.1 Unmanned Aircraft System Traffic Management and Geofencing . . 12
2.2.2 Computational Geometry . 13
2.2.3 Path Planning . 14

2.3 Definitions and Algorithms . 14
2.3.1 Airspace Operational Volumization 15
2.3.2 Constructing a Geofence Volume from an Urban Map 17
2.3.3 UAS Flight Planning in a Geofenced UTM Airspace 18

2.4 Environment Modeling . 21
2.4.1 Map Data Processing . 21

2.5 Simulation Setup . 25
2.6 Simulation Results . 26

vi

2.7 Case Study with sUAS Route Deconfliction 34
2.8 Conclusions and Future Work . 35

3 Statistically-Guided Geofence Volume Sizing with AAM Vehicle Perfor-
mance Model . 39

3.1 Introduction . 39
3.2 Aircraft Dynamics, Guidance, Navigation, and Control Models 42

3.2.1 Kinematics and Dynamics . 42
3.2.2 Control . 44
3.2.3 Navigation and Guidance . 44
3.2.4 Flight Trajectory Geofence Buffer Dimensions 45

3.3 AAM Design . 47
3.4 Simulation Environment . 49

3.4.1 Environment Map and Wind Model 49
3.4.2 Flight Planning . 50

3.5 Case Studies . 51
3.6 Conclusion . 55

4 Geofencing for Three Dimensional Flight and Swarms 57

4.1 Introduction . 57
4.2 Literature Review . 58
4.3 Parallelepiped Geofence Definition . 59
4.4 Space-Efficient Climb/Descent Geofence . 60

4.4.1 Methodology and Algorithm . 60
4.4.2 Simulation Results . 61

4.5 Space-Efficient Containment Geofence for Swarm Formation 64
4.5.1 Methodology and Algorithms . 64
4.5.2 Simulation Results . 65

4.6 Discussion . 67
4.7 Conclusion . 68

5 Assured Contingency Landing Management for AAM 70

5.1 Introduction . 70
5.2 Literature Review . 73
5.3 Assured Contingency Landing Management 74

5.3.1 Offline Flight Planning . 74
5.3.2 Controllability and Reachability (C&R) Watchdog 76
5.3.3 Landing Strategy Selector (LSS) . 78
5.3.4 Continue/Hold Selector . 80
5.3.5 Online Flight Planner . 82
5.3.6 Flight Termination . 87
5.3.7 Assurance for individual ACLM sub-components 87

5.4 Simulation Setup . 89
5.4.1 Environment Modeling . 90
5.4.2 Vehicle and ACLM System Modeling 93

vii

5.4.3 Monte Carlo Parameter Setup . 95
5.5 Simulation Results . 96

5.5.1 Lightweight Package-carrying Hexacopter 98
5.5.2 Heavyweight Package-carrying Hexacopter 101

5.6 Discussion . 104
5.7 Conclusion . 110

6 Centralized and Distributed Optimization of AAM Strategic Traffic Man-
agement . 111

6.1 Introduction . 111
6.2 Literature Review . 114
6.3 Methodologies and Algorithmic Approaches 115

6.3.1 Airspace Sectorization for (distributed) PSU 115
6.3.2 Corridor-based Route Planning . 118
6.3.3 AAM Traffic Flow Management . 123

6.4 Simulation Setup . 133
6.5 Simulation Analysis . 135
6.6 Conclusions and Future Work . 141

7 Conclusion . 142

7.1 Conclusion . 142
7.2 Future Directions . 144

BIBLIOGRAPHY . 145

viii

LIST OF FIGURES

FIGURE

1.1 Prospective AAM operations in urban airspace. AAM vehicles are integrated
into urban airspace, where UAM, air ambulance, and package-delivering UAS
are also depicted. Figures are adapted from [1]. 1

1.2 Outline of the research approach. 3

2.1 UAS airspace geofencing examples. The left figure shows a keep-out geofence
(red) around One World Trade Center in New York City. A transiting UAS
keeps clear of this geofence with a path wrapped by a trajectory or keep-in
geofence (yellow). The right figure shows a wind turbine being inspected by a
small UAS. During inspection, the usual wind turbine keep-out geofence (red)
is expanded as depicted in green to also enclose the inspection UAS. Any other
nearby UAS will keep clear of this expanded keep-out geofence (green) during
inspection activities. This geofence design assures separation between the two
illustrated UAS. 9

2.2 Airspace and environment geofencing functionality and data flow. 10
2.3 Example application of Algorithm 1. A sample 3-D flight path is shown on the

left. A corresponding flight trajectory keep-in geofence is shown on the right. . 16
2.4 Example of reducing the number of vertices to simplify the associated visibility

graph. The left illustration shows three original polygons. The right illustration
shows the polygons after applying the vertex downsampling algorithm. nmaxV ert

and pdwnSmple are 15 and 60%, respectively. The time complexity of visibility
graph generation is O(n2log(n)), where n is the total number of vertices in all
polygons. The number of vertices in the lower polygon illustrated here is reduced
from 15 to 9. 19

2.5 Illustration of rectangular ROI generation. Start point, destination point, and
ROI initial buffer size δROI are used to initialize the rectangular ROI per Algo-
rithm 3. 19

2.6 Three candidate flight planning solutions respecting keep-out airspace geofence
and obstacle “no-fly” volumes. A turn solution uses a visibility graph to define
a constant-altitude path around no-fly zones (left). A cruise altitude solution
climbs to an altitude greater than the highest building enroute to the destination
(center). The terrain follower defines an altitude profile maintaining minimum
safe clearance or greater from no-fly zones (right). 20

ix

2.7 Flowchart of post-processing map data. OSM data were converted to a MATLAB
format, then processed using polygon set convex hull operators to reduce the
number of keep-out geofences in the region of interest (ROI), the area between
departure and destination points. If the number of vertices in a geofence is
greater than threshold nmaxV ert, it is downsampled to pdwnSmple. nmaxV ert and
pdwnSmple are user-defined parameters set to 15 and 60%, respectively, in this
work. Algorithms 2 and 3 are used in finding ROI and reducing number of map
vertices. Three-dimensional keep-out geofences around buildings are generated
with safety buffer δbuilding. 23

2.8 Post-processing map data for southern Manhattan. Buildings with heights
greater than 20 m are shown. The rightmost plot shows keep-out geofences en-
closing building clusters (black solid lines), individual building keep-out geofences
(black dashed lines), and building outlines (colored lines). Geofence maps for 60
m, 122 m, and 400 m altitude cross-sections are constructed in the same manner. 23

2.9 Post-processed georeferenced data for the One World Trade Center building in
Manhattan. The top left and right show raw OSM data side and top views,
respectively. The bottom left and right show post-processed keep-out geofence
data (shaded in green) side and top views, respectively. 24

2.10 Keep-out geofence polygon extraction for UAS flight planning. The initial ROI
(green dashed line) is a rectangular box per Figure 2.5. Keep-out geofences
(solid black lines) inside or intersecting the rectangular ROI box are found using
polygon intersection and point-in-polygon operations. The final ROI (red dashed
line) is the convex hull around these keep-out geofences. For our simulation,
δROI = 150 m. 24

2.11 Flow chart of pathfinding logic for different start and end locations. In the chart,
V.G. abbreviates visibility graph, and hbldg is the height of a geofence around
a cluster of buildings. If the departure/destination is not inside the keep-out
geofence ROI box, hbldg at start/end point is set to street/terrain altitude. . . . 26

2.12 Example horizontal and vertical airway corridors in Manhattan. 27
2.13 Top-down view of example flight paths for airspace volumization and fixed flight

corridor solutions. Distances traveled are 770 m (turn), 1051 m (constant cruise),
1139 m (terrain follower), 1528 (150 m flight corridor), and 1977m (500 m flight
corridor). 29

2.14 Flight altitude time histories for airspace volumization and flight corridor solu-
tions for Figure 2.13 example. 29

2.15 Example of a 3-D geofence wrapping a “turn” flight plan solution. Polyhedra in
green denote keep-out geofences around buildings near the trajectory’s keep-in
geofence. The remaining 2-D polygons denote keep-out geofences around build-
ings that are more distant from the sUAS flight path. 30

2.16 Example 3-D geofencing solution for a “constant cruise altitude” flight plan so-
lution. Polyhedra in green denotes keep-out geofences around buildings near
the trajectory’s keep-in geofence. The remaining 2-D polygons denote keep-out
geofences around buildings that are more distant from the sUAS flight path. . . 31

x

2.17 Example 3-D geofencing solution for a “terrain follower” flight plan solution.
Polyhedra in green denotes keep-out geofences around buildings near the trajec-
tory’s keep-in geofence. The remaining 2-D polygons denote keep-out geofences
around buildings that are more distant from the sUAS flight path. 32

2.18 Percent frequency distribution of minimum-cost solutions over Monte Carlo sim-
ulations. 32

2.19 Top-down view of sUAS2 sample solutions. Five flight trajectory solutions are
generated for sUAS2. Each solution provides route deconfliction from Manhattan
terrain and building geofences and from the sUAS1 flight trajectory geofence.
Distances traveled are 2008 m (turn), 1585 m (constant cruise), 1634 (terrain
follower), 1983 (150 m flight corridor), and 2395 (500 m flight corridor). The
minimum-cost solution for sUAS2 is the constant cruise altitude option. 35

2.20 Flight altitude time histories for airspace volumization and flight corridor solu-
tions for sUAS2 in Figure 2.19 example. 36

2.21 Example of a 3-D geofence wrapping a “turn” flight plan for sUAS2. The sUAS2

trajectory is shown in black, and the sUAS1 trajectory is shown in blue. Poly-
hedra (green) denotes keep-out geofences around buildings. The remaining 2-D
polygons denote keep-out geofences around buildings that are outside the com-
bined ROI. 36

2.22 Example of a 3-D geofence wrapping a “constant cruise altitude” flight plan for
sUAS2. The sUAS2 trajectory is shown in black, and the sUAS1 trajectory is
shown in blue. Polyhedra (green) denotes keep-out geofences around buildings.
The remaining 2-D polygons denote keep-out geofences around buildings that are
outside the combined ROI. 37

2.23 Example of a 3-D geofence wrapping a “terrain follower” flight plan for sUAS2.
The sUAS2 trajectory is shown in black, and the sUAS1 trajectory is shown
in blue. Polyhedra (green) denote keep-out geofences around buildings. The
remaining 2-D polygons denote keep-out geofences around buildings that are
outside the combined ROI. 37

3.1 The upcoming urban airspace with diverse AAM vehicle types and their associ-
ated trajectory geofence volumes. 40

3.2 Aircraft simulation block diagram used to assess navigation and trajectory track-
ing error in UAS and AAM case studies under urban wind field simulated with
computational fluid dynamics (CFD). 41

3.3 Geofencing buffer sizing parameters δsbx , δsby , δsbz in side and top views, respec-
tively. The boundary lines shown in blue represent the flight trajectory geofence,
the yellow dashed line is the flight trajectory, and green lines indicate geofence
buffer dimensions in the aircraft body frame. Vehicle start and and end way-
points are shown in blue and red circles, respectively. 41

3.4 Nonlinear lift coefficient as a function of angle of attack [2]. The lift coefficient
function is approximated by blending a linear function with the lift coefficient
for a flat plate. Stall performance reduction is captured. 44

xi

3.5 Lateral controller block diagrams [2] implemented in Simulink. Kp, Kd, Ki denote
proportional, derivative and integral gains, respectively. χ and ϕ stand for course
angle and roll angle, where the superscript c denotes commanded input. δa stands
for aileron input, and Vg is the ground speed. 45

3.6 Discrete-time extended Kalman filter used in case study simulations. An initial
state vector estimate is provided, states are propagated over the system dynamics
model, and estimates are corrected using a Kalman gain matrix with sensor
measurements. Figures are adopted and modified from [2]. 46

3.7 Optimal geofence buffer size calculation per vehicle. σy is the vehicle’s lateral
positional standard deviation. 3σy statistically guarantees that the vehicle’s po-
sition is in 99.7% confidence. b denotes aircraft wing span, and ϵguidancey denotes
the guidance error in lateral direction. The optimal lateral geofence buffer di-
mension is calculated using lateral navigational and guidance error as well as the
vehicle’s wingspan. 47

3.8 Aerosonde UAV (left) and AAM model top view (right). The dimensions of the
AAM vehicle are shown in Table 3.1. 48

3.9 Geofenced Manhattan map constructed using algorithms in [3]. The map shows
buildings with heights greater than 300m only. The Aerosonde UAS and AAM
vehicle cruise altitudes are set to 300m in the simulation. 49

3.10 CFD wind velocity contour plot for 300m MSL. 50
3.11 Wind vector field North component at 300m MSL. 51
3.12 Wind vector field East component at 300m MSL. 51
3.13 Wind vector field Down component at 300m MSL. 52
3.14 Visualization of a UAS flight plan with minimum geofence buffer sizing. Flight

path segments with keep-in geofence wrappers are shown in yellow, and build-
ing/obstacle keep-out geofences are shown in green. 52

3.15 Visualization of UAS flight in Manhattan with a 3m/s West wind. Flight path
wrapping keep-in geofences are shown in yellow, and building keep-out geofences
are shown in green. The wind vector field is shown with orange arrows. 54

3.16 State estimate time series for UAS and AAM simulations. 55
3.17 True state time series for UAS and AAM simulations. 56

4.1 Illustration of a Parallelepiped Geofence (PG). 59
4.2 Multiple staircase geofence (MSG) (left) and parallelepiped geofence (PG) (right)

for a steady climbing flight example. 60
4.3 Comparison of MSG and parallelepiped geofence volumes as a function of number

of geofence blocks and safety buffer distances for a 1000m climb with 45◦ flight
path angle. 61

4.4 Comparison of MSG and parallelepiped geofence volumes as a function of flight
path angle and safety buffer size for a 1000m climb distance with 10 geofence
blocks. 62

4.5 Runtime comparison of MSG and parallelepiped geofence as a function of the
number of blocks. 63

4.6 Runtime comparison of MSG and parallelepiped geofence as a function of safety
buffer size. 63

xii

4.7 Containment geofence Volume case study for a four UAS team. A bounding
box geofence volume is shown in red, and a convex hull containment geofence is
shown in green. Blue squares illustrate the UAS positions. 65

4.8 Volume Comparison of containment and bounding box cooperative UAS team
geofencing designs as a function of distances between UAS and safety buffer sizing. 66

4.9 Runtime Comparison of containment and bounding box cooperative UAS team
geofencing designs as a function of safety buffer distance. The distance between
UAS is fixed to 200m in the simulation. 66

4.10 Runtime Comparison of containment and bounding box cooperative UAS team
geofencing designs as a function of the distance between UAS. The safety buffer
is fixed to 10m in the simulation. 67

4.11 Volume Comparison of containment and bounding box cooperative UAS team in
”straight-line” swarm configuration. 68

4.12 Volume Comparison of containment and bounding box cooperative UAS team in
”inverted V” swarm configuration. 68

4.13 Volume Comparison of containment and bounding box cooperative UAS team in
”3-D prism” swarm configuration. 69

5.1 Assured contingency landing management (ACLM) with a multicopter application. 71
5.2 Offline flight planning logic flow. 75
5.3 Footprints utilized to define a contingency landing plan database during preflight

planning at each flight segment midpoint, represented graphically. Analogous
footprints are constructed for each segment endpoint. The blue dots represent
waypoints in Wnom, while the red dots indicate the midpoints of the flight
segments. The green circles represent approximate footprints with radii Ri =
2 ∗ di at each midpoint. 76

5.4 Controllability and Reachability (C&R) watchdog logic. 77
5.5 Controllability of configuration type “PNPNPNPN” (left) and “PPNNPPNN”

(right) octocopters with two propulsion unit failures. A blue circle indicates a
controllable system even though the indicated propulsion units have failed. A
red cross indicates an uncontrollable system due to the two failed propulsion units. 78

5.6 Landing strategy selector logic flow. 79
5.7 Visualization of LSS generating contingency flight plans to prepared landing sites.

The approximate footprint from the offline flight planning database is represented
by a green dotted circle. The reachable prepared landing sites are depicted as
blue asterisk circles. The midpoint and endpoint of each flight trajectory are
marked with cyan dots. The solid blue lines represent the generated contingency
flight paths. 80

5.8 Continue/Hold selector logic flow. 81
5.9 Online flight planner logic flow. 82
5.10 Multicopter in 1-D motion . 83
5.11 Reachable footprint of a multicopter based on level-flight forward/backward

range at constant cruise speed. 86

xiii

5.12 Reachable footprint for a multicopter, initially moving in the x-axis direction
with a velocity of 7m/s and a time until battery End of Discharge (TEOD) of 2
seconds. 86

5.13 Reachable footprint for a multicopter, initially moving in the x-axis direction
with a velocity of 7m/s and a time until battery End of Discharge (TEOD) of 10
seconds. 87

5.14 Flight termination logic flow. 88
5.15 Multicopter use case for urban package delivery. The top left image shows Mat-

ternet delivering a medical item. The top right image shows Amazon Prime Air,
and the bottom image depicts Geopost (formerly DPDgroup) for parcel delivery. 90

5.16 Pre-processing of data [4] to generate prepared/ unprepared landing site offline
and online flight planning database. 91

5.17 Locations of prepared landing sites and moderate-risk landing sites visualized
in a region of interest (ROI) in Manhattan, New York City. On the left side,
prepared landing sites are indicated by green circles, while on the right side,
moderate-risk landing sites are represented by red circles. To ensure clarity, only
buildings with a height greater than 60m are displayed as solid black polygons. 92

5.18 Hexacopter model configuration used in the simulation. 94
5.19 Hexacopter model and ACLM integration using Simulink and Stateflow. Icon

images are adapted and modified from [5]. 96
5.20 Monte Carlo simulation of in-flight battery anomalies for various degradation

cases. During each flight, one of the following scenarios was simulated: no battery
degradation, battery capacity degradation of 10%, 15%, or 50% in one of the two
battery packs. 97

5.21 Visualization of the nominal flight plan and simulated flight trajectory. The
yellow line indicates the nominal flight path, while geofenced buildings are con-
structed around the nominal flight trajectory (shown in green). 98

5.22 Visualization of the offline contingency flight path generated using Visibility
Graph with polygon decimation. The green dashed circles represent the ap-
proximate footprint, while the cyan asterisk indicates the mid and endpoint of
each flight segment. The blue lines depict the stored flight path to prepared
landing sites prior to the flight. For better visualization, only buildings with a
height exceeding 60m are displayed as solid black polygons. 99

5.23 Visualization of the online flight planner solution. The reachable moderate-risk
landing sites are indicated by green asterisks within the reachable footprint shown
in cyan circle. The right figure illustrates the visualization of the multi-goal
planner, where the online contingency flight path is generated using voxel A∗

algorithm. 100

xiv

5.24 Example simulation ACLM outputs . C t represents controllability and R t rep-
resents reachability in C&R watchdog. PIP indicates the ongoing plan being
executed by the LSS algorithm, which searches for a safe landing site from an
offline database. ACLM Tflag is a system termination flag that activates when
the hexacopter loses controllability. L cnt indicates the number of times ACLM
executed the LSS algorithm, and R LSS is a flag indicating the availability of
a reachable prepared landing site. CH flag is the continue/hold flag, contin-
gency plan index refers to the map data index for the prepared landing site, and
T EOD represents the end of discharge time of the battery. 101

5.25 Monte Carlo simulation of lighter-weight hexacopter with case 1 simulation:
a rotor failure during flight. A total of 3,466 flight simulations were performed,
and the frequency of occurrence for different ACLM statuses is presented. . . . 102

5.26 Execution time of main threads in ACLM for case 1 with lighter-weight hexa-
copter.. Median, quartiles, as well as outliers, are presented for C&R watchdog,
LSS, and online flight planner. 103

5.27 Monte Carlo simulation of lighter-weight hexacopter with case 2 simulation: a
single-time battery degradation during flight. A total of 3,466 flight simulations
were performed, and the frequency of occurrence for different ACLM status values
is presented. Each label corresponds to the labels in Fig. 5.25. 104

5.28 Execution time of the main threads in ACLM for case 2 with lighter-weight
hexacopter.. Median, quartiles, as well as outliers, are presented for C&R watch-
dog, LSS, and online flight planner. 105

5.29 Monte Carlo simulation of lighter-weight hexacopter with case 3 simulation:
the simultaneous occurrence of rotor failure and single-time battery degrada-
tion during flight. A total of 3,466 flight simulations were performed, and the
frequency of occurrence for different ACLM statuses is presented. Each label
corresponds to the labels in Fig. 5.25. 105

5.30 Execution time of main threads in ACLM for case 3 with lighter-weight hex-
acopter. Median, quartiles, as well as outliers, are presented for C&R watchdog,
LSS, and online flight planner. 106

5.31 Visualization of a heavier-weight hexacopter experiencing a loss of altitude
following a rotor failure. At the 30-second mark, one rotor loses thrust. On the
left side, the 3D representation displays the nominal flight trajectory (depicted
in green), and the actual vehicle path (shown as a black dashed line). The figure
on the right illustrates the positional error in altitude after the rotor failure.
The reachable footprint diminishes, resulting in a reduced number of reachable
prepared landing sites and moderate-risk landing sites. 106

5.32 Monte Carlo simulation of heavier-weight hexacopter with case 1: a rotor
failure during flight. A total of 3,466 flight simulations were performed, and the
frequency of occurrence for different ACLM statuses is presented. Each label
corresponds to the labels in Fig. 5.25. 107

5.33 Execution time of main threads in ACLM for case 1 with heavier-weight hex-
acopter. Median, quartiles, as well as outliers, are presented for C&R watchdog,
LSS, and online flight planner. 107

xv

5.34 Monte Carlo simulation of heavier-weight hexacopter with case 2: a single-
time battery degradation during flight. A total of 3,466 flight simulations were
performed, and the frequency of occurrence for different ACLM statuses is pre-
sented. 108

5.35 Execution time of main threads in ACLM for case 2 with heavier-weight hex-
acopter. Median, quartiles, as well as outliers are presented for C&R watchdog,
LSS and online flight planner. 108

5.36 Monte Carlo simulation of heavier-weight hexacopter with case 3: the simul-
taneous occurrence of rotor failure and single-time battery degradation during
flight. A total of 3,466 flight simulations were performed, and the frequency of
occurrence for different ACLM statuses is presented. 109

5.37 Execution time of main threads in ACLM for case 3 with heavier-weight hex-
acopter. Median, quartiles, as well as outliers, are presented for C&R watchdog,
LSS, and online flight planner. 109

6.1 Envisioned AAM architecture with a PSU network [6]. 112
6.2 AAM airspace design ConOps. 113
6.3 Illustration of PSU airspace sectorization. Each small circle represents a ver-

tiport. Solid grey edges represent the corridors, connecting pairs of vertiports.
Black dashed lines indicate the PSU boundaries. 118

6.4 Illustration of corridor-based route planning using distance-based and
weighted/optimized methods. 119

6.5 Visualization of multi-lane bi-directional corridor 120
6.6 Visualization of corridor spatial conflict types. 121
6.7 Visualizaton of spatial conflict regions between two flight paths (m,n) within

corridors (i, j). B and E denote locations before and after a flight enters/ exits
a spatial conflict region. 122

6.8 AAM traffic optimization constraints. Icons are adapted and modified from [7, 8, 9].123
6.9 Distributed AAM Traffic Management Flowchart 129
6.10 Construction of artificial map with airspace sectorization. [grid size: 5 km] . . . 135
6.11 Comparison of Delayed Flight Percentages: 150 vs. 300 Flights. 137
6.12 Comparison of Average Delays by Vehicle Type and Service Priority: 150 vs. 300

Flights. 137
6.13 Runtime and Objective Cost Comparisons: 150 vs. 300 Flights. 138
6.14 Average Ground and Airborne Delay Comparisons: 150 vs. 300 Flights. 139
6.15 Route Method Comparisons: Distance-based vs. Weighted/Optimized Paths. . 140
6.16 Runtime vs. Number of Flights. 140

xvi

LIST OF TABLES

TABLE

2.1 Control parameters for geofenced flight planning case studies. 25
2.2 Flight power consumption data from [10]. 25
2.3 Number of cases where airspace volumization vol has minimum cost (left) and

number of cases where the flight corridor at 150 m has lower cost than the corridor
at 500 m. 30

2.4 Average distance (d), power consumption (P), and minimum and maximum
distances of 2D straight-line paths between start and destination states for the
Monte Carlo simulations. 30

2.5 Mean µ and standard deviation σ of the minimum-cost airspace volumization
solution. 31

2.6 Mean µ and standard deviation σ of 150 m flight corridor solutions. 31
2.7 Mean µ and standard deviation σ of 500 m flight corridor solutions. 31
2.8 Normalized travel distance comparison between airspace geofencing and 150 m

flight corridor solutions. 33
2.9 Flight plan parameters for sUAS1 and sUAS2. 34

3.1 Aerosonde and AAM component dimensions [m] 48
3.2 Aerosonde and AAM inertia tensors [kg/m2] . 49
3.3 UAS sensor parameters . 53
3.4 Geofence buffer sizing parameters for each model [Unit: m]. 53
3.5 Geofence buffer size for each model. 54

5.1 Total number of available landing sites . 92
5.2 Weight factor parameters for landing sites . 93
5.3 Parameters for hexacopter models [SI unit] . 93
5.4 Mass of package-carrying hexacopter models [kg] 93
5.5 Sampling rate of controller and ACLM [Hz] . 94
5.6 The average current consumption and altitude deviation of the hexacopter models

under normal operating conditions and rotor failure scenarios. 95
5.7 Monte Carlo Simulation Parameters . 96
5.8 Flight Termination (FT) rate of hexacopter models 98

6.1 Airspace Sectorization Methodologies for conventional ATM 116
6.2 AAM traffic optimization objective cost and parameters. 123
6.3 MIP Input Data for Centralized AAM Traffic Management 125
6.4 Distributed AAM Traffic Management Variables 129

xvii

6.5 Additional MIP Input Data for Distributed AAM Traffic Management 130
6.6 Simulation Parameters. 133
6.7 AAM Operator Specifications. Minimum cruise speed∗ is arbitrarily chosen for

the simulation. 134

xviii

ABSTRACT

Advanced Air Mobility (AAM) is a rapidly emerging sector of the aerospace industry with

the potential to significantly improve the transportation system. Its benefits include re-

duced congestion and travel time, environmentally friendly low-emission operations, and the

stimulation of economic growth through new infrastructure. This dissertation offers novel

solutions for individual vehicle management, contingency planning, and optimal AAM traffic

network management.

The first contribution is a method to generate flight plans with geofencing for low-altitude

urban airspace. We create conflict-free geofence volumes that wrap flight routes using com-

putational geometry and polygon decimation. Visibility graph with constant altitude versus

terrain following paths are compared by a weighted cost summing distance and energy. By

generating conflict-free flight paths for a single vehicle and strategically deconflicting multiple

vehicles, the proposed algorithms offer route flexibility relative to fixed corridor solutions.

The second contribution is statistically-guided airspace geofence volume sizing. The opti-

mal geofence sizing is critical for the scalability of AAM operations. If too large, airspace will

be wasted; if too small, we risk AAM violating geofences due to uncertainties. We propose

a method to determine geofence buffer sizes based on vehicle dynamics, statistical sensor

errors, and urban wind models specified by computational fluid dynamics. This method

generates statistically-guided geofence sizes with a three-sigma safety level with a fixed-wing

Uncrewed Aircraft System (UAS) scaled up to an AAM vehicle. The findings provide in-

sights into optimizing geofence volumes for different environmental conditions and vehicle

types.

The third contribution is an extension of two-dimensional polygon geofences to polyhedron

geometries for climb, descent, and UAS swarms. We first define and analyze a parallelepiped

geofence with top and bottom surface slopes matching the flight path angle. Next, we define a

convex hull swarm containment geofencing algorithm and showed how much airspace volume

is saved compared to single vehicle geofencing solutions.

The fourth contribution is the development of assured contingency landing management

(ACLM) for AAM. The ACLM architecture enables distressed AAM flights to quickly de-

termine safe landing options, thereby enhancing overall safety in AAM operations. ACLM

xix

employs mathematically-provable controllability and reachability logic, and integrates pre-

analyzed prepared and unprepared landing sites and plan databases to maximize response

efficiency. A multicopter case study uses ACLM to safely land when motor and/or battery

failures occur. Multicopter landing options are analyzed as a function of vehicle weight, and

parallel threading enables ACLM to execute in milliseconds.

The fifth contribution is AAM traffic management optimization. By strategically sector-

izing urban airspace and modeling AAM routes, we formulate centralized management with

vehicle, infrastructure, and operation constraints. Then, distributed network management

is formulated as bi-level optimization using cooperative game theory and mixed integer pro-

gramming. The research offers valuable insights into scalable AAM network management

strategies by comparing centralized and distributed AAM network managements.

In summary, this thesis contributes to the safety, efficiency, and resilience of AAM. It

promotes safety with solutions for low-altitude flight planning through geofencing and as-

sured contingency landing management for distressed vehicles. It improves efficiency by

determining optimal geofence geometries and sizes for AAM flights. It enhances AAM op-

erational resilience with strategically optimal traffic management solutions that adapt to

time-dependent infrastructural and operational constraints, as well as shifting demands in

regional airspace congestion. Research insights pave the way for scalable and efficient AAM

and urban airspace management.

xx

CHAPTER 1

Introduction

1.1 Motivation

This dissertation contributes to ensuring safe, efficient, and resilient operation of au-

tonomous aerial systems in contemporary urban environments. This imperative is driven

by the proliferation of Uncrewed Aircraft Systems (UAS) for diverse applications [11, 12]

and the rapid growth of the Urban Air Mobility (UAM) sector [13], collectively referenced as

Advanced Air Mobility (AAM). AAM will offer more efficient urban and regional transporta-

tion by bypassing ground congestion. As of this writing, approximately 200 companies are

developing electric Vertical Takeoff and Landing (eVTOL) AAM aircraft [14]. Large-scale

AAM deployment will boost economic vitality and job opportunities [15]. Figure 1.1 shows

prospective AAM operations in urban airspace.

Figure 1.1: Prospective AAM operations in urban airspace. AAM vehicles are integrated into
urban airspace, where UAM, air ambulance, and package-delivering UAS are also depicted.
Figures are adapted from [1].

Efficient and safe transportation is vital for national well-being. For this reason, the

National Aeronautics and Space Administration (NASA) has identified three key areas for

1

advancing AAM: air vehicle technologies, airspace system design and operations manage-

ment, and community integration and acceptance [16]. To achieve this vision, five pillars

were further established: 1) vehicle development, 2) individual vehicle management and

operations, 3) airspace system design and implementation, 4) airspace/fleet management,

and 5) community integration [15]. Moreover, NASA and Federal Aviation Administration

(FAA) created an AAM Maturity Level scale to assess AAM ecosystems, each distinguished

by air traffic density, operational complexity, and reliance on automation [17, 16].

To address the challenges posed by the dynamic future of airspace operations, we have

conducted research in collaboration with Collins Aerospace (a subsidiary of RTX Corpo-

ration) and NASA. This dissertation contributes to safe and efficient AAM operation by

offering novel solutions for airspace management, contingency planning, and AAM traffic

network optimization.

1.2 Problem Statement

This dissertation addresses the following questions:

• How can we generate flight planning solutions in low-altitude urban airspace using

static and durational airspace geofence volumes [18] to ensure safety and efficiency?

• How should a geofence buffer be sized so that it safely and compactly maintains sepa-

ration among AAM vehicles operating within a limited airspace volume?

• How can we design spatially efficient climb/descent geofences and containment ge-

ofences for multi-agent UAS teams or swarms?

• How do we assure distressed AAM flights can rapidly select and proceed to a safe

landing site with minimal decision-making delays?

• How can we optimize AAM traffic flow in both centralized and distributed settings,

considering airspace constraints, diverse vehicle types, and service priorities, while also

ensuring equity among AAM vehicles?

1.3 Research Approach and Dissertation Outline

This dissertation explores methodologies and system architectures to address each problem

stated above. Particularly, this research employs a range of algorithms, including computa-

tional geometry, path planning, Guidance, Navigation and Control (GNC), computational

2

fluid dynamics (CFD) for urban wind analysis, graph theory, and network optimization to

address the stated problems. Figure 1.2 outlines the overall research approach offering both

vehicle-centric and network-centric perspectives.

Figure 1.2: Outline of the research approach.

A summary of each dissertation chapter is presented below:

• [Chapter 2] Airspace Geofencing and Flight Planning for Low-Altitude, Ur-

ban, and Small UAS: This chapter introduces three-dimensional flight volumization

algorithms to support airspace geofence management for AAM. Geofencing plays a

crucial role in managing low-altitude airspace by separating flyable and no-fly zones

[19, 20]. Our work considers low-altitude mapped obstacles and geofence volume re-

quirements in 3D multicopter sUAS flight planning. Airspace deconfliction occurs with

a FIFO (first-in, first-out) strategy. A static polygon geofence with limited duration

encloses each 3-D flight path that avoids pre-existing keep-out geofences surrounding

terrain, infrastructure, and other geofenced flight routes. Urban map data processing

algorithms are presented for computationally efficient map construction. Monte Carlo

simulations validate our algorithms. Simulation results illustrate geofencing pipeline

support for the single-vehicle solution and multiple-vehicle deconfliction scenarios in

an urban New York City environment.

• [Chapter 3] Statistically-Guided Geofence Volume Sizing with an Advanced

Air Mobility Vehicle Performance Model: The scalability of flight operations

poses a critical constraint for AAM [21]. As of the end of 2020, the US had around 1.7

3

million drones, a fleet size seven times larger than both airlines and general aviation

combined, according to FAA estimates [22]. Prior research suggested fixed separation

distances, but it remains uncertain whether these distances are optimal or excessive in

densely populated low-altitude airspace [23, 24]. This chapter introduces a methodol-

ogy to design geofence buffer sizing for each vehicle trajectory in restricted low-altitude

airspace. This method takes into account vehicle dynamics, sensor characteristics, and

wind conditions to generate statistically-guided geofence sizes with a three-sigma safety

level. Case studies, including a small UAS and a full-size AAM aircraft model, are used

to compare different geofence volume sizings that are statistically optimal for the spe-

cific AAM scale.

• [Chapter 4] Space Efficient Airspace Geofence Volume Sizing: This chapter

builds upon the previous chapters by researching more spatially efficient algorithms for

climbing and descending geofence volumes. As point-to-point UAS missions increase,

the efficiency of geofencing for these flight segments improves. AAM missions involve

climb, cruise, and descent flight segments. Efficient airspace allocation for climbing

and descending are crucial to support various AAM operations in low-altitude airspace.

Additionally, this chapter investigates the spatial and computational efficiency of wrap-

ping a single geofence around multi-agent UAS teams or swarms. Such a geofencing

design can improve airspace management efficiency for cooperatively controlled UAS

teams. We introduce a parallelepiped geofence geometry for climb/descent and contain-

ment geofences for multi-agent UAS teams. We present simulation results analyzing

geofence volume savings versus computation time.

• [Chapter 5] Assured Contingency Landing Management (ACLM): Contin-

gency management has traditionally relied on human pilots. This is because human

pilots can be innovative, and implementing fleet-wide certified software upgrades would

be prohibitively expensive. However, the growth of AAM is likely to surpass the avail-

ability of experienced pilots, and inexperienced pilots may not respond safely in emer-

gencies, particularly given the tight real-time response requirements associated with

regional flights at low altitude. Thus, autonomy in contingency management is crucial

for ensuring the safety of AAM operations. This chapter proposes an Assured Contin-

gency Landing Management (ACLM) architecture. ACLM maximizes urgent or emer-

gency landing success by minimizing the need for real-time perception and planning.

The ACLM architecture generates and caches contingency landing plans before flight,

monitors aircraft controllability and reachability during flight, and reacts with urgency

when needed. When no cached plan is suitable for the encountered situation, ACLM

4

generates an online plan potentially for an unprepared site. This chapter demonstrates

ACLM application with hexacopter UAS models, considering battery degradation and

propulsion system failures. Monte Carlo simulation results show ACLM’s effectiveness

with success rates and runtime statistics.

• [Chapter 6] Centralized and Distributed Optimization of Advanced Air Mo-

bility Strategic Traffic Management: The growth of AAM as an urban/ regional

transportation mode raises the need for efficient air traffic management [25, 26, 27].

Various concepts of operations (ConOps) and architectures have been proposed for

UAS/AAM Traffic Management [28, 29, 17]. However, to date, there has been

no research investigating systematic and efficient management of low-altitude urban

airspace, considering local traffic constraints in flight corridors and vertiport limits,

as well as vehicle types, service priorities, and equity. This research aims to address

this gap by strategically optimizing AAM traffic management in both centralized and

distributed Providers of Services for UAM (PSU) settings. We propose a method to

effectively sectorize low-altitude urban airspace and model centrally planned AAM

routes considering limited corridor and vertiport capacities. Distributed AAM traffic

management is then formulated as bi-level optimization using cooperative game the-

ory and Mixed Integer Programming (MIP). Monte Carlo simulations evaluate AAM

flight operations across different vehicle configurations and service priority types. Our

research provides insights into the performance of centralized versus distributed AAM

network management strategies, highlighting the potential of scalable distributed ap-

proaches in addressing urban airspace demands. By offering a comprehensive technical

framework, our research informs decision-making in AAM traffic management strategy

development and implementation.

1.4 Contributions and Innovations

1.4.1 Contributions

This thesis makes several contributions to AAM technologies. First, it introduces a 3D

path planning module integrated with airspace geofencing. Through case studies involving

both single UAS and multi-vehicle spatial deconfliction, this research offers insights into the

effectiveness of airspace geofencing for low altitude UAS operations compared to traditional

corridor methods.

5

Secondly, this thesis defines a method for geofence volume sizing using a scaled-up AAM

vehicle dynamics model and representative inertial state estimate noise. By employing as-

sociated guidance and control strategies, trajectory tracking error is statistically analyzed

across various scenarios, including those with no wind and low-altitude wind profiles.

The integration of flight planning with mathematically-provable controllability and reach-

ability logic into the Assured Contingency Landing Management (ACLM) architecture is

another contribution. This integration enhances the overall efficiency and reliability of the

ACLM, facilitating a robust decision-making process that minimizes real-time computations

with a contingency plan database and comprehensive suite of landing site options that need

not be sensed in real-time.

Case studies illustrate how ACLM incorporates a prepared and categorized landing site

database and conducts comprehensive simulations within a realistic environment model.

These simulations are essential for assessing system performance under various conditions

and refining algorithms for optimal outcomes.

Last, this thesis presents an approach to AAM network management that integrates

airspace sectorization, corridor-based route planning, and centralized and distributed AAM

network management. This integration aims to optimize airspace utilization and enhance

overall system scalability and efficiency.

1.4.2 Innovations

Novel solutions to AAM challenges are proposed. First, this dissertation specifies three-

dimensional durational flight trajectory geofence algorithms for vehicle operation, paral-

lelepiped geofence volume definition for climb/descent, and containment geofencing for

swarm flight. Unlike traditional geofences with fixed ceiling and floor altitudes, three-

dimensional volumes efficiently wrap climbing and descending flight paths with staircase

and parallelepiped geometries.

Additionally, the ability of an AAM vehicle to comply with geofence boundaries is vali-

dated by incorporating statistical navigation and tracking errors, as well as wind statistics,

into geofence volume sizing.

The ACLM architecture with integrated online/offline flight planning capability is novel

due to its use of prepared landing site and flight plan data to maximize response efficacy

and minimize online response time.

Last, the development of centralized and distributed AAM strategic traffic management

represents a novel approach in optimizing AAM traffic corridor flow. Through bi-level opti-

6

mization utilizing cooperative game theory and mixed-integer programming, our optimiza-

tions consider various constraints and priorities to simulate realistic traffic optimization

scenarios, ultimately improving system efficiency and safety.

7

CHAPTER 2

Airspace Geofencing and Flight Planning for

Low-Altitude, Urban, and Small UAS

2.1 Introduction

Small Uncrewed Aircraft System (UAS) operations are expected to proliferate [11, 12] for

applications such as small package delivery, surveillance, and the visual inspection of as-

sets including wind turbines, construction sites, bridges, and agricultural products. Several

challenges must be overcome to enable routine small UAS operations. The aviation com-

munity has proposed UAS Traffic Management (UTM) [25, 30, 31] to safely and efficiently

manage low-altitude airspace where small UAS are expected to operate. UTM services are

expected to be based on web apps and datalinks which facilitate the efficient definition and

coordination of UAS flight plans.

Airspace geofencing [19] is one of the key capabilities required for UTM [25]. The envi-

sioned geofencing system will enable safe flight operations by dividing airspace into available

fly-zone (keep-in geofence) and no-fly zone (keep-out geofence) volumes with statically and

dynamically adjusted virtual barriers or “fences” designed to assure UAS separation from

obstacles, sensitive areas, and each other. Geofencing will facilitate safety management (i.e.,

Situational Awareness (SA) for trajectory monitoring, trajectory deviation alerts/geofence

breaches, and contingency plans) and flight management (i.e., route-planning, the selection

of take-off/landing sites, and mission priority adjustment) for UTM. Figure 2.1 illustrates

airspace geofence examples for UAS flight operations near the One World Trade Center in

Manhattan (left) and for wind turbine inspection (right).

Researchers have previously investigated airspace geofencing systems for UTM. Two-

dimensional static, durational, and dynamic airspace geofence volumes are defined in [19]

with a geofence construction algorithm considering steady wind described in [18]. Real-

time geofence violation detection capabilities have been developed using Ray Casting [32]

and Triangle Weight Characterization with Adjacency (TWCA) [33] methods. Potential

8

Figure 2.1: UAS airspace geofencing examples. The left figure shows a keep-out geofence
(red) around One World Trade Center in New York City. A transiting UAS keeps clear of
this geofence with a path wrapped by a trajectory or keep-in geofence (yellow). The right
figure shows a wind turbine being inspected by a small UAS. During inspection, the usual
wind turbine keep-out geofence (red) is expanded as depicted in green to also enclose the
inspection UAS. Any other nearby UAS will keep clear of this expanded keep-out geofence
(green) during inspection activities. This geofence design assures separation between the
two illustrated UAS.

intersections of 2-D geofences can be rapidly detected using a convex hull approach [34].

A constrained control scheme was developed using an Explicit Reference Governor (ERG)

in [35]; this approach ensures a UAS does not violate geofence boundaries. This previous

research primarily focused on geofence definition, boundary violation detection, and UAS

avionics augmentation to support geofencing. Our work’s focus on 3D path planning with

geofence volumes in a realistically mapped urban environment is complementary.

Cooperative UAS flight tests were also evaluated using “separation by segregation” ge-

ofencing features in [36]. To define a local geofence volume for applications such as crop

inspection, the maximum flight distance a UAS can travel after flight termination was cal-

culated using vehicle dynamics and position sensors in [37] to define geofence geometry.

This research demonstrated that a UAS stays within its prescribed keep-in geofence in both

nominal and off-nominal (e.g., flight termination) conditions.

A three-dimensional dynamic geofencing volumization solution was proposed using “op-

erational” and “inverse” volumization functions in [38]. Per [38], airspace operational vo-

lumization is the process by which a requested flight plan is “wrapped” with a geofence

reserved over an approved flight time window. Inverse volumization is the opposite process

9

in which a flight is planned to always remain within a designated airspace geofence volume.

This chapter extends our work in [38] in several ways. First, we integrate the individual

airspace volumization algorithms into a geofencing pipeline described in Section 2.3. This

geofencing pipeline is shown in Figure 2.2. We also construct simplified keep-in/keep-out

3-D geofencing boundaries based on buildings and UAS flight plans, as illustrated in Fig-

ure 2.1. This algorithm uses parameters such as vehicle speed, geofence boundary safety

buffer size, and polygon simplification parameters to generate a flight plan that does not

violate keep-in/keep-out geofences in the surrounding region. We define a trajectory keep-in

geofence as the airspace volume surrounding the planned flight path with constant ceiling

and floor safety buffers. Pathfinding logic is developed for different start and desired end

locations of a vehicle in the flight plan. The algorithms are built on computational geome-

try, where obstacles, buildings, and flight path keep-in geofences are represented as sets of

3-D polygons. Path planning modules are computed efficiently based on a visibility graph

approach and set operations in a 3-D environment.

Figure 2.2: Airspace and environment geofencing functionality and data flow.

This work is unique in its joint consideration of low-altitude mapped obstacles and ge-

ofence volume requirements in 3D multicopter sUAS flight planning. Urban terrain and

building maps necessarily create more complex flight paths and safety constraints [39]. As

10

an example, consider package delivery UAS in an urban canyon environment. Safe opera-

tion requires obstacle-free path planning for all sUAS operating in this shared low-altitude

airspace. Planned sUAS paths must therefore treat both physical obstacles (e.g., buildings,

power lines, and terrain) and keep-out geofences as impenetrable obstacles that must be

circumvented in a safe flight plan. Our work bridges the gap in the existing geofencing liter-

ature by focusing on path planning solutions that assure the satisfaction of keep-in/keep-out

geofenced airspace volume constraints.

The contributions of this chapter are:

• The specification of formal algorithms to define keep-in/keep-out geofences for obstacles

to plan UAS paths with separation assurance;

• The integration of airspace and environmental geofencing processing pipelines with

user inputs to construct geofences and geofence-wrapped path plans in a real-world

urban environment;

• Map data processing to generate keep-out geofences around buildings and terrain and

a process to simplify a detailed map dataset to support a more compact representation

and improved path planning efficiency;

• A benchmark comparison of our geofenced path planning solutions with a fixed

sUAS airway flight corridor design, and a case study of sUAS route deconfliction in

shared airspace.

The remaining structure of this chapter is organized as follows. Section 2.2 summarizes

previous work in UAS Traffic Management (UTM), sUAS and robotic path planning, and

computational geometry methods used in geofencing algorithms. Section 2.3 defines an

airspace geofence, states assumptions made in this work, and introduces sUAS geofencing

pipeline algorithms used in the generation of flight trajectory solutions. Section 2.4 describes

OpenStreetMap (OSM) data processing steps to minimize computational time in generat-

ing solutions. Section 2.5 describes Monte Carlo simulation setups that integrate pipeline

algorithms with map data processing. Section 2.6 presents statistics comparing results from

our airspace volumization algorithm with a fixed airway flight corridor solution for a re-

gion of Manhattan in New York City. Section 2.7 describes a case study for sUAS route

deconfliction, while Section 2.8 concludes the chapter.

11

2.2 Literature Review

This section presents related work in UTM, computational geometry, and path planning, all

of which are relevant to our geofencing algorithms.

2.2.1 Unmanned Aircraft System Traffic Management and Ge-

ofencing

UTM has been identified as a critical capability for future small UAS operations due to their

unique operating profiles at low altitude, near complex infrastructure, and likely in mixed-

use airspace [25]. UTM-like concepts have been investigated by industry, government, and

academia across the globe. As an example, Single European Sky ATM Research (SESAR)

recommended UTM to the European Union (EU) to safely coordinate UAS [40]. Centralized

and distributed UTM with airspace volumes distinguished by altitude layer was investigated

to deconflict UAS traffic in Sweden [41]. UTM was modeled using a multiplayer network of

nodes and airways at low-altitude airspace in Luxembourg [31]. The National Aeronautics

and Space Administration (NASA) perhaps first coined the term UTM as a system architec-

ture necessary to accommodate UAS in a low-altitude National Airspace System (NAS) layer

not frequently occupied by legacy manned aircraft [25]. Representatives from industry have

worked to establish adequate security protocols for managing UTM datalinks [26]. NASA, in

cooperation with industry, has pursued a series of flight test events to evaluate cooperative

UAS operations in beyond visual line of sight (BVLOS) conditions with a “separation by

segregation” geofence design [36]. Airspace capacity estimation was analyzed using keep-in

and keep-out geofences in [42]. A roadmap for geofence implementation in urban areas with

5G networks and blockchain was introduced in [43].

Dynamic airspace geofencing algorithms are novel to UTM. Two different but equally

important perspectives (i.e., local/global) exist in geofencing designs. One perspective is

a classical guidance/navigation/control (GNC) approach, where geofence layering is only

generated for the individual UAS that has full knowledge of its control system. This vehicle-

centered geofence perspective focuses on controlling UAS to ensure that the vehicle does

not violate the geofence boundaries (given expected trajectory tracing errors) [35, 44]. In

this work, each UAS monitors its real-time state vector relative to geofence boundaries to

detect and react to potential breaches given uncertainties due to sensor errors and wind

disturbances.

Vehicle-centered geofencing research is important but does not consider properties of

the operating area airspace or the ground-based environment. Geofencing has also been

researched from an airspace system perspective. With this viewpoint, geofences are managed

12

by UTM to organize airspace structure and improve Situational Awareness (SA). UTM will

not model individual UAS capabilities and uncertainties in detail, but it can conservatively

monitor UAS travel through an approved geofence to offer impending breach warnings to

the UAS and actual boundary violations to all traffic per [45, 33].

SA is a fundamental requirement for all flight operations, autonomous or human-

piloted [46, 47]; while legacy air Traffic Management (ATM) will remain distinct from UTM

in the near term, advanced air mobility (AAM) supporting increasingly to fully autonomous

flight will motivate the integration of ATM and UTM over the long term. UTM calls for the

automation of airspace management tasks. Airspace organization and protection through

geofencing can improve SA and in turn safety. Our algorithms can be integrated into both

GNC (onboard) and airspace system (UTM) geofencing realizations.

AAM operations, including but not limited to Urban Air Mobility (UAM), are envisioned

to have higher altitudes than 400 AGL, where current UTM is designed to serve. Researchers

at NASA and Uber investigated the applicability of UTM to coordinate UAM routes safely

and efficiently [48]. In their case studies, “Transit-Based Operational Volumes (TBOVs)”

were used to wrap the UAM flight path, a notion analogous to the trajectory keep-in geofence

discussed in this chapter. Inspired by the static “UAM-authorized airspace” active over a

fixed duration [48] as an airspace management alternative to geofencing, in our case studies,

we designed fixed flight corridors and simulated sUAS flight missions operating in these flight

corridors. This alternative solution offers a benchmark with which our dynamic geofence

volumization and path planning solutions are compared (2.5).

2.2.2 Computational Geometry

Computational geometry has been used to construct and deconflict airspace geofence vol-

umes and to detect/prevent airspace boundary violations (onboard). Scaling algorithms

have been developed for two-dimensional keep-in/keep-out concave polygon geofences with

consideration of steady wind in [18] and with warning and override layers in [49]. This

chapter uses vehicle performance constraints and steady wind conditions to generate scaled

warning and override geofence boundaries. Once a UAS crosses one of these boundaries,

onboard guidance, navigation, and control (GNC) can trigger a corrective response [50] or

flight termination. In [51, 52, 53], algorithms for polygon set operations (i.e., polygon inter-

sections and unions), polygon clipping, convex hull, and point-in-polygon were developed.

We use these algorithms to detect and resolve geofence boundary conflicts and generate new

geofence volumes by merging conflicting boundaries. A UAS geofence violation detection

method was defined in [32] using Ray Casting [54]. A Triangle Weight Characterization

13

with Adjacency (TWCA) algorithm was developed as a faster real-time geofence violation

detection method in [33]. TWCA divides geofence into a finite number of triangles and then

finds UAS location in a pre-generated adjacency graph. In [34], a 3-D dynamic geofence

(“moving geofence”) was constructed using the maximum cruise time, speed, and range of

the UAS as a pre-departure flight planning algorithm. This chapter also proposes a convex

hull approach to find conflicts between current and newly submitted flight plans.

2.2.3 Path Planning

Determining a collision-free geofence-based flight trajectory is central to the design of our

geofencing volumization work. A variety of path planning algorithms were considered. Grid-

based path planning methods overlay a fixed-resolution grid on top of the configuration space

and find discretized line segment paths connecting start state to destination. This search is

fast in low-dimensional space but quickly becomes computationally intractable with high-

resolution maps and appreciable travel distance. The most notable grid-based path planning

algorithms areA∗ [55] andD∗ [56]. A family of roadmap-based path planning algorithms have

been developed to offer a more compact search space optimizing a specific cost metric. For

example, a visibility graph [57] minimizes travel distance, while a Voronoi diagram maximizes

obstacle clearance distance [58]. The application of cell decomposition [59] offers a compact

map for discrete search path planning in an obstacle field. Other path planning methods

include potential-field algorithms [60] that efficiently build plans with gradient descents but

are subject to local minima issues. Sampling-based path planning algorithms [61] have

also been developed and are particularly well suited to planning in uncertain environments.

Our work utilizes a visibility graph approach to path planning. This approach allows us

to directly translate geofence volumes generated with computational geometry into visibility

graph roadmaps. As is discussed below, we scale keep-out geofences to assure safe separation

is maintained. Note that a visibility graph does not require a rasterized map, enabling

geofences to be represented without distortion or approximation.

2.3 Definitions and Algorithms

The term airspace geofence was formally defined in [19] to support a common framework for

airspace volume reservation in UTM. Our work follows this definition:

Definition 1 A Geofence g = {n, v[], zf , zc,m, h[]} is a volume defined by a list of n

vertices in the horizontal plane v = [(x1, y1), (x2, y2), · · · , (xn, yn)], where n ≥ 3, and an

altitude floor zf and ceiling zc. The volume is defined relative to a set of home locations, hi =

14

(xi, yi, zi, ti), where h[] is a list of length m ≥ 2. Lateral home positions can be represented

as latitude/longitude pairs (ϕi, λi) or locally referenced Cartesian coordinates (xi, yi). zi is

the altitude of the home location above Mean Sea Level (MSL). ti is the activation time for

home location i where 1 ≤ i ≤ m. tm is the deactivation time for geofence g. For consistency,

Cartesian coordinates and altitudes are defined in meters and activation/deactivation times

are in seconds.

This data structure supports geofence types: static, durational, and dynamic. A static

geofence has a permanent fixed home location h[] and typically surrounds physical obstacles

such as buildings or sensitive areas (i.e., no-fly zones). A durational geofence is active over

a finite time interval with a fixed home location h[]. A dynamic geofence is active over a

specific time interval; its home location can move over time.

The following simplifying assumption is made in this chapter to facilitate path planning

and eliminate the need for traffic deconfliction.

Assumption 2 One aircraft (e.g., UAS) is allocated to each local geofence volume. No other

UAS is permitted to cross into this volume. UTM efficiency therefore relies on minimizing

each reserved geofence volume and its duration.

Dynamic airspace volumization for geofencing will enhance safety by wrapping a UAS

in an airspace volume that assures separation from other traffic. The below subsections

describe our geofencing algorithm pipeline for UTM, where flight plans are designed with

keep-in/keep-out geofencing volumes on a low-altitude airspace map. Three-dimensional

trajectory keep-in geofence volumes safely wrapping UAS flight paths are described in Sec-

tion 2.3.1, keep-out geofence construction for a low-altitude urban map is described in Sec-

tion 2.3.2, and geofence-based path planning solutions are illustrated in Section 2.3.3.

2.3.1 Airspace Operational Volumization

Operational volumization constructs a trajectory keep-in geofence overlaid on a user-defined

3-D flight trajectory. Climb and descent segments are first generated with vehicle dynamics

inputs such as velocity and desired time to climb/descend. Then, three-dimensional cruise

operational volumes are created between the climb and descent geofence pair. This assures a

geofence volume always encloses the flight trajectory with the prescribed safety buffer δvehicle.

This algorithm integrates 2-D flight trajectory operational volumization with the Multiple

Staircase Geofence (MSG) algorithm per [38]. Three-dimensional trajectory volumization is

shown in Algorithm 1. Figure 2.3 shows an example of a 3-D trajectory with its correspond-

ing three-dimensional geofence volume. A sequence of geofence volumes is constructed by

connecting climb, cruise, and descent geofences with user-specified safety buffers.

15

Algorithm 1: 3D Flight Trajectory Operational Volumization (3dOperVol)

Inputs: 2-D Trajectory waypoints W , Velocity V , Time to Climb tclimb, Time to
Descent tdesc, Number of Geofence Ngeo, UAS Safety Buffer δvehicle, Cruise Altitude
hcruise
Outputs: 3-D Flight Trajectory Ptraj, 3-D Geofence for 3-D Flight Trajectory G
Algorithm:
1: [Pclimb,Gclimb]←MSG(W [1 : 2],V , tclimb,Ngeo, δvehicle) ◁ generate climb geofence
2: [Pdesc,Gdesc]←MSG(W [end− 1 : end],V , tdesc,Ngeo, δvehicle) ◁ descent geofence
3:

4: Pcruise ← [Pclimb[end− 1 : end],W [3 : end− 2],Pdesc[1 : 2]] ◁ 3-D Cruise flight
5: [Gcruise]←MSG(2dOperV ol(Pcruise, δvehicle), hcruise) ◁ Generate cruise geofence
6: Ptraj ← [Pclimb;Pcruise;Pdesc]
7: G ← [Gclimb;Gcruise;Gdesc]
8: return [Ptraj,G]

Figure 2.3: Example application of Algorithm 1. A sample 3-D flight path is shown on the
left. A corresponding flight trajectory keep-in geofence is shown on the right.

To minimize airspace volume reservation duration, we utilize the shrinking durational

geofence (SDG) and multi-stage durational geofence (MDG) algorithms in [38] for the cruise

segment. A shrinking durational geofence (SDG) removes a previously occupied geofence

volume at each time update in UTM. A multi-stage durational geofence (MDG) has multiple

volumes generated over the flight trajectory with temporal or spatial overlap. For transitions

between MDG regions, either temporal or spatial overlap is used to guarantee the UAS is

always enclosed by at least one MDG. Overlap offers a buffer in case the UAS flies faster

or slower than expected. Note that climb and descent segments utilize multiple staircase

geofences so that previously occupied staircase geofences can be removed sequentially.

16

2.3.2 Constructing a Geofence Volume from an Urban Map

Keep-out geofences are constructed around obstacles (i.e., buildings) to assure separation

between UAS and obstacles or no-fly airspace zones. The construction of keep-out geofence

volumes from a building and terrain map must be efficiently carried out to constrain the

computation time needed to generate geofence-based path planning solutions. For this work,

we utilize a visibility graph approach to path planning, as illustrated in Section 2.3.3. The

time complexity of visibility graph generation is O(n2log(n)), where n is the total number

of vertices in all polygons. In a real-world environment, the number of keep-out geofences

in the urban environment can be significant (i.e., 14,000 building cluster geofence polygons

in the southern Manhattan map). We utilize two algorithms to achieve map simplification.

First, we downsample geofence vertices in the map as shown in Algorithm 2 per [62] with

user-defined parameters nmaxV ert and pdwnSmple. This updated set of keep-out geofences is

then used to construct a region of interest (ROI) visibility graph. The ROI in the map is

first constructed as a rectangular box surrounding departure and destination points. Then,

polygon intersection, point-in-polygon, and convex hull operations are used to define the

actual region of interest for which geofence-based path planning solutions are generated.

Generation of the flight planning visibility graph ROI is shown in Algorithm 3. Figure 2.4

shows an example of polygon vertex set downsampling. Figure 2.5 illustrates an initial

rectangular ROI PrecROI example.

Algorithm 2: Reduce Map Geofence Vertex Set

Inputs: Set of Keep-out Geofences Sgeo, Downsample Threshold nmaxV ert,
Downsample Tolerance In Percentage pdwnSmple

Outputs: Set of Downsampled Keep-out Geofences Sds
Algorithm:
1: Sds ← [] ◁ initialize the output set
2:

3: for S ∈ Sgeo do
4: if len(S)/2 > nmaxV ert then
5: Sout ← DecimatePoly(S, pdwnSmple) ◁ downsample polygon vertices
6: k ← 1
7: for j = 1 : len(Sout) do
8: G[k : k + 1]← Sout[j, 1 : 2] ◁ obtain geofence data structure
9: k = k + 2
10: end for
11: end if
12: Sds ← Sds.add(G)
13: end for
14: return Sds

17

Algorithm 3: Compute Visibility Graph ROI

Inputs: Departure Point Pstart, Destination Point Pend, ROI Inital Buffer δROI ,
Keep-out Geofence Set Sgeo
Outputs: Keep-out Geofences in ROI SROI

Algorithm:
1: PrecROI ← getRecROI(Pstart,Pend, δROI) ◁ get Rectangular ROI vertices
2:

3: //get convexhull ROI where geofencing solutions are generated
4: Sintersect ← [] ◁ initialize the intersecting geofence set
5: for S ∈ Sgeo do
6: if searchIntersect(S, PrecROI) ̸= ∅ then
7: Sintersect ← Sintsct.add(S) ◁ Append intersecting geofence
8: end if
9: end for
10:

11: //Search keep-out geofences inside the convex hull PROI

12: SROI ← [] ◁ initialize SROI

13: PROI ← convexHull(Sintersect) ◁ ROI where geofencing solutions are generated
14: for S ∈ Sgeo do
15: if searchIntersect(S, PROI) ̸= ∅ then
16: SROI ← Sintsct.add(S) ◁ Append intersecting geofence
17: end if
18: end for
19: return SROI

2.3.3 UAS Flight Planning in a Geofenced UTM Airspace

Flight plans are typically optimized over distance, energy usage, and flight time (delay)

cost metrics. A UAS configuration space is first obtained from user-defined safety buffers

δvehicle, δbuilding around the vehicle and obstacles, respectively. The UAS can then be treated

as a point mass in configuration space with obstacle boundaries expanded for safety by:

δsb = δvehicle + δbuilding. (2.1)

This safety buffer ensures the vehicle maintains sufficient clearance from any obstacles.

δvehicle and δbuilding are user-specified parameters in this work.

Our proposed geofencing pipeline applies three inverse volumization options per [38] based

on user-specified departure and destination locations. The first option is a “turn” solution

that calculates climb, cruise, and descent flight trajectories that turn away from nearby

obstacles, maintaining a minimum-distance path from start to end. For this module, a

low-dimensional visibility graph search with Dijkstra’s algorithm [63] plans paths around

18

Figure 2.4: Example of reducing the number of vertices to simplify the associated visibility
graph. The left illustration shows three original polygons. The right illustration shows the
polygons after applying the vertex downsampling algorithm. nmaxV ert and pdwnSmple are 15
and 60%, respectively. The time complexity of visibility graph generation is O(n2log(n)),
where n is the total number of vertices in all polygons. The number of vertices in the lower
polygon illustrated here is reduced from 15 to 9.

Figure 2.5: Illustration of rectangular ROI generation. Start point, destination point, and
ROI initial buffer size δROI are used to initialize the rectangular ROI per Algorithm 3.

obstacles (i.e., polygons) defined in a local Cartesian frame. We modeled keep-out geofences

on obstacles as open set 3-D polygons extruded from 2-D obstacles with fixed heights. Per

Section 2.2.3, an obstacle-free visibility graph or roadmap space can be constructed from

geofence and obstacle polygons without rasterization [64, 57].

The second path planning option is a “constant cruise altitude climb” module for which

the UAS climbs over no-fly and obstacle volumes until a direct-heading route to the des-

tination is obstacle-free. For this option, a vehicle first climbs to a pre-determined cruise

altitude greater than the highest building en route to the destination. Then, the vehicle

19

flies directly to the destination at cruise altitude. As the vehicle approaches the end of its

cruise segment, it descends to the destination free of obstacles along the path. The third

path planning option is a “vertical terrain follower” module, where a UAS follows the terrain

altitude profile en route to the destination, flying as low as possible. This solution minimizes

the time a UAS will spend at a high altitude potentially in conflict with other transiting

traffic, but it adds complexity to the altitude profile. Figure 2.6 shows examples of turn,

constant cruise altitude, and terrain follower climb solutions per [38].

Figure 2.6: Three candidate flight planning solutions respecting keep-out airspace geofence
and obstacle “no-fly” volumes. A turn solution uses a visibility graph to define a constant-
altitude path around no-fly zones (left). A cruise altitude solution climbs to an altitude
greater than the highest building enroute to the destination (center). The terrain follower
defines an altitude profile maintaining minimum safe clearance or greater from no-fly zones
(right).

To determine which of the three solutions is best, a weighted cost function over time,

distance, and energy is defined:

C = α ∗ dtravel + β ∗ Ptravel + γ ∗ twait. (2.2)

where dtravel, Ptravel, and twait are distance traveled, power consumption, and time delay

until durational geofences disappear, respectively. Weighting factors α, β, andγ are user-

defined. The path planning solution with minimum cost is then suggested to an operator

and/or automation. The flight planning process with geofencing is shown in Algorithm 4. In

this algorithm, the departure point, destination point, cruise altitude, and keep-out geofence

boundary coordinates are input along with cruise velocity and climb/descent times. For the

turn solution, a Rotational Plane Sweep (RPS) algorithm is used to find all straight-line

segments connecting line-of-sight vertices to form a visibility graph map. Then, Dijkstra’s

algorithm finds the minimum distance path from departure to destination point. For con-

20

stant altitude climb and terrain follower solutions, points of intersection between a straight

line solution path and obstacles are found using a polygon-line intersection operator. Then,

obstacle height at the intersection points are extracted from keep-out geofence data. Three-

dimensional flight trajectory “turn”, “constant cruise altitude”, and “terrain follower” so-

lutions are wrapped with geofences using Algorithm 1. The best solution is the minimum

cost module based on Equation (2.2). Note that geofence segment duration is not explic-

itly considered in this chapter. Instead, it is assumed the flight trajectory keep-in geofence

generated using Algorithm 4 remains active from UAS launch to landing.

2.4 Environment Modeling

2.4.1 Map Data Processing

To evaluate the proposed geofencing capability in a complex low-altitude environment, we

processed OpenStreetMap (OSM) data for the Manhattan Borough of New York City (USA).

OSM is a collaborative global mapping project that creates geographical data and informa-

tion [65]. OSM is frequently updated and provides map entities including airways, roads,

buildings, and more. To minimize map processing overhead for this work, we used pre-

processed georeferenced OSM Manhattan building data as described in Ref. [66]. This raw

data contain building coordinates represented as polygon vertices, building heights, and

street level in WGS 84/UTM zone 18N [67], where units are in meters with East, North, Up

(ENU) axes. We applied a combination of set and convex hull [57] operations to simplify

geofence geometry for flight planning. Figure 2.7 shows the flowchart for map data post-

processing. After post-processing, the dataset was partitioned into four categories: buildings

with heights greater than 20 m, 60 m, 122 m, and 400 m. Depending on sUAS start and end

altitude (i.e., roof of building, ground), flight planning utilizes one of these four datasets to

generate plans and associated geofence volumes.

Figure 2.8 shows a map of southern Manhattan with closely spaced building clusters each

enclosed by a single keep-out geofence to simplify the Manhattan urban canyon map. Fig-

ure 2.9 shows an example of post-processed georeferenced data and its 3-D keep-out geofence.

A southern Manhattan, New York City map was defined by 14,000 building cluster ge-

ofence polygons using the above procedure. To further simplify the map, we downsampled

geofence vertices and construct an updated set of keep-out geofences from the ROI visibility

graph per Algorithms 2 and 3 in Section 2.3.2. Figure 2.10 shows an example of the rectan-

gular ROI, ROI obstacle polygon, and visibility graph generation pipeline. The “turn” flight

planning visibility graph was constructed from keep-out geofences inside the ROI along with

21

Algorithm 4: Flight Planning With Geofencing

Inputs: Departure Point Rstart, Destination Point Rend, Cruise Altitude hcruise,
Keep-out Geofence Boundaries Sgeo, Aircraft Velocity V , Time to Climb tclimb,
Time to Descend tdesc, Number of Geofences Ngeo, UAS Safety Buffer δvehicle
Outputs: Planned Flight Trajectory Ptraj, Trajectory-wrapping 3-D Geofence
Volumes G
Algorithm:
1: //turn solution module
2: RV G ← [Rstart;Sgeo;Rend] ◁ Vertices of Visibility Graph
3: [edges, vert ID]← RPS(RV G) ◁ get visibility graph edges on the map using RPS
4: [Rturn]← dijkstraPath(Rstart,Rend, edges, vert ID) ◁ get min. distance path
5: [Pturn,Gturn]← 3dOperV ol(Rturn,V , [tclimb, tdesc],Ngeo, δvehicle, hcruise)
6: Dturn ← getDist(Pturn) ◁ get turn module flight distance
7:

8: //climb solution modules
9: Rintersect ← searchIntersect(RV G) ◁ get intersections from [Rstart;Rend] to Sgeo
10: if Rintersect ̸= ∅ then
11: hintersect ← extractHeight(Rintersect,Sgeo) ◁ get heights at intersections
12: hmax ← max(hintersect)
13:

14: //constant cruise altitude
15: [Pconst,Gconst]← 3dOperV ol(Rintersect,V , [tclimb, tdesc],Ngeo, δvehicle, hmax)
16: Dconst ← getDist(Pconst) ◁ get constant altitude cruise flight distance
17:

18: //terrain follower
19: [Pterr,Gterr]← 3dOperV ol(Rintersect,V , [tclimb, tdesc],Ngeo, δvehicle, hintersect)
20: Dterrain ← getDist(Pterr) ◁ get terrain follower flight distance
21: end if
22:

23: //cost comparison
24: [Cmin, opt]← costCompare(Dturn,Dconst,Dterrain)
25: if opt == 1 then
26: [Ptraj,Gtraj]← [pturn,Gturn] ◁ best sol: turn module
27: else if opt == 2 then
28: [Ptraj,Gtraj]← [pconst,Gconst] ◁ best sol: constant cruise altitude module
29: else
30: [Ptraj,Gtraj]← [pterr,Gterr] ◁ best sol: terrain follower module
31: end if
32: return [Ptraj,Gtraj]

departure and destination locations.

22

Figure 2.7: Flowchart of post-processing map data. OSM data were converted to a MAT-
LAB format, then processed using polygon set convex hull operators to reduce the number
of keep-out geofences in the region of interest (ROI), the area between departure and des-
tination points. If the number of vertices in a geofence is greater than threshold nmaxV ert,
it is downsampled to pdwnSmple. nmaxV ert and pdwnSmple are user-defined parameters set to
15 and 60%, respectively, in this work. Algorithms 2 and 3 are used in finding ROI and
reducing number of map vertices. Three-dimensional keep-out geofences around buildings
are generated with safety buffer δbuilding.

Figure 2.8: Post-processing map data for southern Manhattan. Buildings with heights
greater than 20 m are shown. The rightmost plot shows keep-out geofences enclosing build-
ing clusters (black solid lines), individual building keep-out geofences (black dashed lines),
and building outlines (colored lines). Geofence maps for 60 m, 122 m, and 400 m altitude
cross-sections are constructed in the same manner.

23

Figure 2.9: Post-processed georeferenced data for the One World Trade Center building in
Manhattan. The top left and right show raw OSM data side and top views, respectively.
The bottom left and right show post-processed keep-out geofence data (shaded in green) side
and top views, respectively.

Figure 2.10: Keep-out geofence polygon extraction for UAS flight planning. The initial ROI
(green dashed line) is a rectangular box per Figure 2.5. Keep-out geofences (solid black
lines) inside or intersecting the rectangular ROI box are found using polygon intersection
and point-in-polygon operations. The final ROI (red dashed line) is the convex hull around
these keep-out geofences. For our simulation, δROI = 150 m.

24

2.5 Simulation Setup

Monte Carlo simulations were used to evaluate proposed airspace volumization strategies on

the Manhattan map. Figure 2.11 shows the flowchart of pathfinding logic in our simulation

setup. Pathfinding logic comprises four solution modules for the airspace geofencing algo-

rithm. Once the start and end locations were defined, the keep-out geofence ROI polygons

(Figure 2.10) were extracted from post-processed map data. Constant cruise altitude and

terrain follower modules were generated by searching the intersection points between the

buildings’ keep-out geofences and the line that connects UAS start and end waypoints. A

pure turn solution was generated if both start and end locations were on the ground. If either

start or end location was on the roof of the building (i.e., inside of the keep-out geofence), a

constant cruise altitude algorithm was first used to find the flight path from the start/end

point to the outside of the keep-out geofence, and the turn module solution was used to

calculate the remaining flight path, creating a combined solution.

Control parameters are shown in Table 2.1. To offer an experimentally grounded dataset,

a prototype quadplane’s power consumption model [10] was used per Table 2.2 to compute

Ptravel in climb, cruise, and descent segments. A quadplane is a hybrid quadrotor/fixed-wing

UAS designed to vertically takeoff and land in an urban environment. For our simulations,

the quadrotor motors were active in all phases of flight; cruise power would otherwise be

lower. Cost function weighting factors α = 0.6, β = 0.2, γ = 0.0 were chosen to prioritize

minimum-distance solutions. Note that γ was set to zero because building obstacles have

static or permanent geofences.

Table 2.1: Control parameters for geofenced flight planning case studies.

Vvehicle δvehicle δbuilding Ngeofence zcruise

5 (m/s) 2 (m) 5 (m) 5 50 (m)

Table 2.2: Flight power consumption data from [10].

Climb Descent Forward Flight

312 (J/s) 300 (J/s) 328 (J/s)

25

Figure 2.11: Flow chart of pathfinding logic for different start and end locations. In the
chart, V.G. abbreviates visibility graph, and hbldg is the height of a geofence around a cluster
of buildings. If the departure/destination is not inside the keep-out geofence ROI box, hbldg
at start/end point is set to street/terrain altitude.

2.6 Simulation Results

A total of 1010 Monte Carlo simulations were run with our Manhattan maps. For each case,

start and destination points were randomly defined. Selected start/end altitudes ranged

from 20 m above ground level to the highest building roof. The 20 m value represents an

above-ground vertical climb to hover waypoint to ensure the multicopter is well clear of

people on the ground when it begins executing its lateral flight plan. If both start and end

points had altitudes less than 50 m, the cruise altitude for the turn solution was set at 50

m. Otherwise, cruise altitude was adjusted based on the following condition:

zcruise = max{hstart, hend} if hstart > 50m | hend > 50m. (2.3)

Our airspace volumization algorithm used this condition to choose one of the fixed-altitude

datasets described in Section 2.4. As zcruise becomes larger, fewer obstacles were present, so

fewer calculations were needed to generate and plan a flight through the visibility graph. For

each case, cost values of the four planning options (“turn”, “constant cruise alt.”, “terrain fol-

lower”, “combined (constant cruise altitude + turn)”) were calculated using Equation (2.2),

and the minimum cost solution was selected as the best solution. Note in the Manhattan

data the “wait” solution was never used because buildings are permanent, resulting in static

geofence obstacles only.

Monte Carlo results offer an opportunity to compare our airspace volumization solutions

26

against a manual fixed airway or “flight corridor” airspace design. A conventional fixed-

altitude airway is permanently designated on a map to enable traffic “queues” to organize

in a way that can be managed by human air traffic controllers. It is unclear whether UTM

will benefit from this legacy design practice, motivating our comparison of path costs for our

airspace volumization and fixed airway solutions. Unlike our airspace volumization, fixed

airway/flight corridor maps only require a local search for the closest airway to join. The

UAS then follows fixed airway routes until exiting over a short final segment to the end

state. We generated a pair of low-altitude horizontal and vertical airways through our Lower

Manhattan map to illustrate the airways concept and support our evaluation.

The designed vertical airway in Lower Manhattan follows Broadway, the north–south

main thoroughfare, from its origin at Bowling Green to Houston Street. The horizontal

airway follows Chambers Street from River Terrance in the west to Municipal Plaza in the

east, and then follows the Brooklyn Bridge until it reaches the East River. We provided

two sets of the same cross airways at 150 m and 500 m to offer each UAS an altitude choice

since more obstacles are present at 150 m but the climb will be more substantial to 500 m.

Figure 2.12 shows our manually defined airway corridors. To offer a practical comparison,

only randomly generated start and end points that do not lie in the same quadrants (i.e.,

712 out of 1010 simulation examples) were considered. If randomly-generated start and end

points were located in the same quadrant, the airways were unused, thus offering no benefit

to efficiency or airspace organization.

Figure 2.12: Example horizontal and vertical airway corridors in Manhattan.

There are many considerations when designing UAS/UAM airways in urban canyons. Due

to the operations in low-altitude airspace by its nature (i.e., package delivery, air taxi services,

27

etc.), the UAS/UAM airways must be designed to avoid the complex airspace integration

problem near flight restriction areas such as international airports. Such airways also need

to consider daytime/nighttime population density in the affected regions. Furthermore, the

security and human factor aspects must also be considered. Once the airway is designed to

serve the UAS operations, discordance in community acceptance can severely impinge on the

practical operations of such airways. As an example, conflicts of interest between uninvolved

bystanders (i.e., homeowners) and business sectors/regulators include concerns of privacy

violation, noise, visual disturbance, and daily safety vs. economic benefits. Furthermore,

systematic studies must be performed on traffic flow and queuing to estimate the demand

and capacity of such airways with varying mission types. Without the holistic analysis of air

traffic simulation, testing, and survey, the designed airways will cause severe safety problems

in urban canyons and economic loss. In this sense, our flight corridors in Figure 2.12 do

not reflect any kind of thorough studies on such factors. Instead, the purpose of our flight

corridor analysis is to compare the path costs between potential airways and our airspace

volumization, providing a foundation for establishing future dynamic airspace geofencing,

either in terms of our airspace volumization or fixed-altitude flight corridors.

Figure 2.13 shows a top-down route view comparing our airspace volumization and flight

corridor solutions. Cost weights α = 0.6, β = 0.2, γ = 0.0 were again used, so dtravel

was prioritized in minimizing overall cost. For the illustrated case, the “turn” solution is

best. Flight corridor solution cost was in fact typically higher than any of our airspace

volumization solutions. For the same example, altitude vs. time plots for each solution are

shown in Figure 2.14. Examples of geofencing solutions are shown in Figures 2.15–2.17,

where three alternative trajectory solutions are generated, ensuring the avoidance of no-fly

zones. Building keep-out geofences are shown in green.

For each Monte Carlo simulation, the minimum-cost C solution was compared to flight

corridor solution costs at 150 m and 500 m per Table 2.3. Since the flight corridor at 150

m was almost always better than the flight corridor at 500 m, benchmark data compare the

best solution obtained using dynamic airspace volumization with the flight corridor at 150

m. The results indicate our airspace geofencing volumization solutions generally have lower

cost than flight corridors at 150 m or 500 m do.

The average distance and power consumption of the two-dimensional straight-line path

between each start and destination location are shown in Table 2.4.

The mean and standard deviation for dtravel, ptravel for the minimum cost airspace volu-

mization solution are summarized in Table 2.5. The percent frequency distributions of the

four solution options are shown in Figure 2.18.

A similar analysis was performed to compute travel distance and power consumption

28

Figure 2.13: Top-down view of example flight paths for airspace volumization and fixed flight
corridor solutions. Distances traveled are 770 m (turn), 1051 m (constant cruise), 1139 m
(terrain follower), 1528 (150 m flight corridor), and 1977m (500 m flight corridor).

Figure 2.14: Flight altitude time histories for airspace volumization and flight corridor solu-
tions for Figure 2.13 example.

statistics for the flight corridor solutions at 150 m and 500 m, as shown in Tables 2.6 and

2.7.

Dynamic airspace volumization and flight corridor solutions at 150 m are normalized by

the two-dimensional straight-line path parameters, indicating the percent increase in average

29

Figure 2.15: Example of a 3-D geofence wrapping a “turn” flight plan solution. Polyhedra in
green denote keep-out geofences around buildings near the trajectory’s keep-in geofence. The
remaining 2-D polygons denote keep-out geofences around buildings that are more distant
from the sUAS flight path.

Table 2.3: Number of cases where airspace volumization vol has minimum cost (left) and
number of cases where the flight corridor at 150 m has lower cost than the corridor at 500
m.

{Cvol.method < C150m} # {C150m < C500m}

698 out of 712 cases 702 out of 712 cases

Table 2.4: Average distance (d), power consumption (P), and minimum and maximum
distances of 2D straight-line paths between start and destination states for the Monte Carlo
simulations.

µd2D path
µP2D path

min{d2D path} max{d2D path}
1391 (m) 91259 (J) 189 (m) 3003 (m)

travel distance and power consumption. A normalized benchmark comparison is shown in

Table 2.8. On average, our 3-D airspace geofencing solution increased travel distance by

30

Figure 2.16: Example 3-D geofencing solution for a “constant cruise altitude” flight plan so-
lution. Polyhedra in green denotes keep-out geofences around buildings near the trajectory’s
keep-in geofence. The remaining 2-D polygons denote keep-out geofences around buildings
that are more distant from the sUAS flight path.

Table 2.5: Mean µ and standard deviation σ of the minimum-cost airspace volumization
solution.

µdtravel σdtravel µPtravel σPtravel min{dtravel} max{dtravel}

1595 (m) 606 (m) 94,338 (J) 39,609 (J) 254 (m) 3349 (m)

Table 2.6: Mean µ and standard deviation σ of 150 m flight corridor solutions.

µd150m σd150m µP150m σP150m min{d150m} max{d150m}

2303 (m) 820 (m) 149,084 (J) 53,449 (J) 479 (m) 4464 (m)

Table 2.7: Mean µ and standard deviation σ of 500 m flight corridor solutions.

µd500m σd500m µP500m σP500m min{d500m} max{d500m}

2796 (m) 788 (m) 179,363 (J) 51,502 (J) 1142 (m) 4836 (m)

15% and power consumption by 3% compared to 2-D straight-line paths from start states

to destination states. On the other hand, the travel distance increased by 66 % and power

increases by 63% when comparing minimum-cost 3-D geofencing solutions with 150 m flight

corridor solutions. This analysis indicates our airspace geofencing algorithm generates routes

31

Figure 2.17: Example 3-D geofencing solution for a “terrain follower” flight plan solution.
Polyhedra in green denotes keep-out geofences around buildings near the trajectory’s keep-in
geofence. The remaining 2-D polygons denote keep-out geofences around buildings that are
more distant from the sUAS flight path.

Figure 2.18: Percent frequency distribution of minimum-cost solutions over Monte Carlo
simulations.

32

that offer nontrivial distance (time) and power (energy) reductions relative to flight corridor

paths, at least for Manhattan.

Table 2.8: Normalized travel distance comparison between airspace geofencing and 150 m
flight corridor solutions.

µdtravel/µd2D path µPtravel/µP2D path µd150m/µd2D path µP150m/µP2D path

115 (%) 103 (%) 166 (%) 163 (%)

All simulations were executed on a standard laptop PC using uncompiled MATLAB

code. The mean runtime and standard deviation over all 1010 Monte Carlo simulations

were computed. The average runtime was 10.98 s with σ = 12.68. The minimum runtime

was 0.13 s, and the maximum runtime was 90.66 s. As the number of obstacles inside the

fly-zone increase, runtime also increased, as might be expected. A more computationally

efficient visibility graph algorithm could be implemented in future work [68], particularly

with a large obstacle set. Migration from uncompiled MATLAB to a compiled code (e.g., in

C++) will also improve performance.

A Monte Carlo simulation generated a suite of random launch (start) and landing (end)

points for a single sUAS flying in Lower Manhattan. Start and end points were either

located on the ground or a flat building roof to simulate the diverse sUAS flight cases

that might be encountered in a densely populated urban environment. Keep-out geofences

were generated at each building or around blocks of clustered buildings, representing no-fly

zones for the sUAS. Our airspace geofencing pipeline successfully generated flight plans and

enclosing geofence volumes for four flight trajectory solution options for all 1010 Monte Carlo

simulations. The minimum distance and energy cost was chosen as the best solution. Our

geofence-based path planning solutions outperformed a more traditional fixed flight corridor

routing option.

Our Monte Carlo simulations did not limit the maximum altitude for UAS flight, so the

trajectories for some solutions had cruising altitudes greater than 400 ft AGL, beyond the

UTM and sUAS ceiling. Our Monte Carlo results showed the “combined” solution option

(i.e., constant cruise and turn) was preferred most often. A maximum altitude constraint

would eliminate all solutions that climbed above UTM-managed airspace, likely resulting

in the more frequent use of visibility graph “turning” solutions. The results in Table 2.8

showed that our algorithm generates solutions that are 51% and 60% more efficient than

flight corridor solutions at 150 m altitude in terms of normalized average flight distance and

power consumption, respectively. It is likely that for AAM airspace corridors accessible to

sUAS, above 400 ft AGL will be designated. For longer-distance flights, a flight plan might

33

use an efficient dynamically geofenced route to/from a high-altitude transit tube, potentially

requiring a hybrid combination of dynamic flight planning and geofencing at UTM-managed

altitudes and fixed corridor transit at altitudes managed by legacy ATM.

2.7 Case Study with sUAS Route Deconfliction

The above results describe single geofenced sUAS routes through a complex urban landscape.

In general, UTM will manage multiple sUAS in shared airspace. This section presents a case

study illustrating how the proposed geofencing pipeline supports multiple-sUAS deconflic-

tion. For this study, we assume airspace is allocated first-come-first-served. Suppose sUAS1

and sUAS2 request flight plans each defined by departure and destination coordinates (WGS

84/UTM zone 18N), cruise speed, and targeted cruise altitude as defined in Table 2.9. Fur-

ther, suppose sUAS1 receives approval for its flight plan and associated geofence volume

before sUAS2 contacts UTM. sUAS2 will then need to plan a flight that avoids the Man-

hattan terrain and building geofences as well as the flight trajectory geofence wrapping the

sUAS1 route. Figure 2.19 shows the resulting flight plans for sUAS2 as a top-down route

view comparing our airspace volumization and flight corridor solutions. For this example,

altitude vs. time plots for the sUAS2 solutions are shown in Figure 2.20.

Table 2.9: Flight plan parameters for sUAS1 and sUAS2.

PDeparture (m) PDestination (m) VUAS (m/s) htargetCruise (m)

sUAS1 [584,085; 4,508,093; 0] [584,248; 4,506,598; 0] 30 50

sUAS2 [583,600; 4,507,000; 0] [584,460; 4,507,660; 0] 20 50

Since sUAS1 and sUAS2 have the same target cruise altitude, a maneuver was required

for sUAS2 to deconflict its “turn” route from the sUAS1 flight trajectory, making this

the longest distance solution option. On the other hand, the “constant cruise altitude”

and “terrain follower” solutions were not influenced by the sUAS1 trajectory because the

minimum building height along the straight line path from departure to destination for

sUAS2 was greater than sUAS1’s target cruise altitude. If building height placed sUAS2 at

sUAS1’s cruise altitude, sUAS2 would also need to climb over the sUAS1 geofence. Note

that if sUAS1’s airspace volume reservation duration was minimized using SDG or MDG,

sUAS2’s path had a lower probability of being impacted. Example 3-D sUAS2 in “turn”,

“constant cruise altitude”, “terrain follower” solutions are shown in Figures 2.21–2.23.

34

Figure 2.19: Top-down view of sUAS2 sample solutions. Five flight trajectory solutions are
generated for sUAS2. Each solution provides route deconfliction from Manhattan terrain
and building geofences and from the sUAS1 flight trajectory geofence. Distances traveled
are 2008 m (turn), 1585 m (constant cruise), 1634 (terrain follower), 1983 (150 m flight
corridor), and 2395 (500 m flight corridor). The minimum-cost solution for sUAS2 is the
constant cruise altitude option.

2.8 Conclusions and Future Work

This chapter applied airspace geofencing volumization and path planning to support UTM

management of low-altitude airspace. Layered durational geofences wrapping flight trajecto-

ries ensure the UAS will fly without conflict in designated or reserved airspace volumes. Our

airspace volumization algorithms generated four conflict-free paths for any keep-in/keep-

out geofence volume set based on turn, constant cruise, terrain follower and combination

turn/cruise options. The algorithm ranked these paths using a weighted distance, energy,

and time cost function, then selected the minimum-cost solution. A city map data of Lower

Manhattan was used to construct keep-out geofences around buildings. Monte Carlo simu-

lation studies validate our geofence algorithms and support the statistical characterization

of performance including run time. A benchmark comparison of our dynamically geofenced

flight plans and conventional flight corridor solutions is provided, showing that our solutions

35

Figure 2.20: Flight altitude time histories for airspace volumization and flight corridor solu-
tions for sUAS2 in Figure 2.19 example.

Figure 2.21: Example of a 3-D geofence wrapping a “turn” flight plan for sUAS2. The
sUAS2 trajectory is shown in black, and the sUAS1 trajectory is shown in blue. Polyhedra
(green) denotes keep-out geofences around buildings. The remaining 2-D polygons denote
keep-out geofences around buildings that are outside the combined ROI.

36

Figure 2.22: Example of a 3-D geofence wrapping a “constant cruise altitude” flight plan
for sUAS2. The sUAS2 trajectory is shown in black, and the sUAS1 trajectory is shown in
blue. Polyhedra (green) denotes keep-out geofences around buildings. The remaining 2-D
polygons denote keep-out geofences around buildings that are outside the combined ROI.

Figure 2.23: Example of a 3-D geofence wrapping a “terrain follower” flight plan for sUAS2.
The sUAS2 trajectory is shown in black, and the sUAS1 trajectory is shown in blue. Polyhe-
dra (green) denote keep-out geofences around buildings. The remaining 2-D polygons denote
keep-out geofences around buildings that are outside the combined ROI.

37

reduce flight distance and power compared to fixed corridor solutions. A case study of two

sUAS flight planning demonstrated how the proposed geofencing pipeline supports multiple

sUAS deconfliction. Algorithms and definitions from this chapter can contribute to future

UTM dynamic airspace geofencing operational standards.

This work simplifies flight planning to geometric paths. Future work will incorporate

aircraft dynamics into flight plans and geofence layer sizing, and extend airspace volumization

to enclose cooperative groups of sUAS. Additionally, the altitude constraint and other factors

such as day/night local population density, GPS dependency, air traffic volume, and vehicle-

specific parameters should be incorporated in the geofenced path planning algorithm to

generate solutions that are more realistic for UTM-specific applications. We hope to apply

machine learning to large-scale flight track data and urban maps to generalize and optimize

geofencing volume designs based on area topology, day/night occupancy, infrastructure, and

existing air traffic patterns. We will also explore auto-code generation and Python/C++

implementations to improve path planning computational performance.

38

CHAPTER 3

Statistically-Guided Geofence Volume Sizing

with AAM Vehicle Performance Model

3.1 Introduction

The main goal of AAM is to revolutionize air transportation for passengers and cargo in

traditionally underserved areas. By the end of 2020, there were approximately 1.7 million

drones in the US, a fleet size seven times larger than that of both airlines and general

aviation combined, as estimated by the FAA [22]. Scalability in air traffic control is a

critical constraint for AAM [21]. Previous research proposed fixed separation distances for

AAM, but it’s unclear whether these distances are optimal or excessive [23, 24].

This chapter outlines the methodology for establishing statically guided geofence volume

sizing to ensure safety among AAM vehicles operating within limited airspace.

As explained in the previous chapter, geofencing is a key enabler for versatile and inclusive

UTM [25, 19]. Geofencing divides airspace into available fly (keep-in) and no-fly (keep-

out) zones with virtual boundaries to assure UAS separation assurance and obstacle/terrain

avoidance. We developed methodologies to construct three-dimensional geofence-based flight

path planning solutions for randomly generated maps in [38] based on the airspace geofencing

algorithm suite defined in [49, 33, 18]. Ref. [38] minimized airspace volume extent with time-

based diminishing geofence volumes wrapping planned flight trajectories.

This chapter extends the previous chapter by addressing how to size safety volume ge-

ofences wrapping individual aircraft. Our methodology models aircraft dynamics and guid-

ance, navigation and control (GNC) systems based on realistic sensor and wind uncertainties.

A traditional Proportional, Integral and Derivative (PID) controller is integrated with an

extended Kalman Filter (EKF) state estimator using sensor and model noise covariance es-

timates from [2, 69]. A fixed-wing flight kinematics model [2] is implemented for lateral and

longitudinal guidance. Visibility graph [57, 64] and Dubins path [70, 71] solvers are used to

39

generate reference aircraft flight paths. Map data are constructed using Open Street Map

(OSM) data, and map-based geofence algorithms in [3].

Wind is an important parameter for geofence buffer sizing, especially for aircraft operating

at low-altitude where wind can be impacted by nearby terrain and buildings. A computa-

tional fluid dynamics (CFD) model is used to generate a wind vector field around planned

flight trajectories in the simulated OSM environment. Figure 3.2 shows a schematic of the

simulation environment applied to UAS and larger-scale Advanced Air Mobility (AAM) air-

craft case studies. p denotes flight plan, r(t) is the reference state vector, x̂(t) is the estimated

state vector, and e(t) is the difference or error between reference and estimated state vec-

tors. u(t) denotes control input vector, w(t), v(t) are process and sensor noise, respectively,

and T (t) is the wind vector at time t. This simulation is used to statistically characterize

navigation and trajectory tracking error for UAS and AAM platforms as a function of sensor

noise, wind, and vehicle performance. The goal is to balance safety and efficiency in low-

altitude settings, especially in densely populated urban areas. These errors are translated to

UAS geofencing safety buffer sizes that statistically guarantee a UAS will stay inside a flight

trajectory keep-in geofence with minimal airspace reservation. We aim to determine the

minimum geofence buffer size needed to statistically ensure safety at 3-sigma level, aligning

with FAA priorities for safety in urban air mobility. Figure 3.1 shows the urban airspace

with diverse AAM vehicle types and their associated trajectory geofence volumes.

Figure 3.1: The upcoming urban airspace with diverse AAM vehicle types and their associ-
ated trajectory geofence volumes.

Figure 3.3 shows a visualization of the geofence safety buffer zone dimensions [δsbx , δsby ,

40

Figure 3.2: Aircraft simulation block diagram used to assess navigation and trajectory track-
ing error in UAS and AAM case studies under urban wind field simulated with computational
fluid dynamics (CFD).

δsbz] computed in this chapter. The EKF-based state estimator for navigation requires

sensor and aircraft models with covariance (noise) estimates. We present two case studies

for geofencing buffer sizing, one for a small fixed-wing UAS and another for an upscaled

Advanced Air Mobility (AAM) design of a similar configuration. UAS buffer sizing was

determined using a model of the Aerosonde, manufactured by Textron Systems. A model

of the Aerosonde is adapted from [2]. Since there is not yet an openly published AAM

reference model, we scaled the Aerosonde to 322 kg (710 lbs) to estimate AAM buffer sizing

dimensions as described further below.

Figure 3.3: Geofencing buffer sizing parameters δsbx , δsby , δsbz in side and top views, respec-
tively. The boundary lines shown in blue represent the flight trajectory geofence, the yellow
dashed line is the flight trajectory, and green lines indicate geofence buffer dimensions in the
aircraft body frame. Vehicle start and and end waypoints are shown in blue and red circles,
respectively.

The chapter is organized as follows. Section 3.2 presents UAS kinematics and dynamics,

41

PID control design, and EKF to estimate the mean and covariance of each vehicle state

along with guidance models for trajectory following. Section 3.3 describes an AAM design

obtained by upscaling the Aerosonde UAS model. Section 3.4 illustrates simulation setup in

Manhattan City, flight management, and CFD wind estimation using ANSYS Fluent. Sec-

tion 3.5 presents case studies with different vehicle and sensor noise and wind uncertainties.

Section 3.6 concludes the chapter.

3.2 Aircraft Dynamics, Guidance, Navigation, and

Control Models

3.2.1 Kinematics and Dynamics

This section presents fixed-wing aircraft kinematics and dynamics with reference to the

specific Aerosonde UAS dynamics model found in [2]. The kinematics equations describe

aircraft’s three-dimensional positions and velocities, while dynamics equations compute air-

craft accelerations from applied forces and moments assuming a rigid body. External forces

and moments arise from longitudinal and lateral aerodynamics including control surface de-

flections, propulsion modules, and Earth’s gravity. Each force/moment can be expressed in

an aircraft body or ground (inertial) coordinate frame with a rotation matrix or equivalent

converting results between the two reference frames. By convention, linear velocity is typi-

cally expressed in a body reference frame, and linear position is commonly expressed in an

inertial reference frame. Since a fixed-wing aircraft does not typically undergo large-scale

attitude changes, Euler angles as well as rotation matrices are utilized in the simulation

code. The aircraft equations of motion expressed in first-order ordinary differential equation

(ODE) form are shown below in Eqs. 3.1-3.6. Here, [pn, pe, pd] are inertial North, East,

Down Earth coordinates of UAS position, [u, v, w] is the ground velocity vector with respect

to the aircraft body frame, and [ϕ, θ, ψ] are roll, pitch, and yaw angles in the vehicle frame,

respectively. Vector [p, q, r] describes body frame angular rates, and [fx, fy, fz] is the body

frame applied force vector due to gravity, aerodynamics, and propulsive thrust. The vector

[l,m, n] defines body frame applied moments and J is the aircraft inertia matrix.ṗnṗe
ṗd

 = Rv
b

uv
w

 (3.1a)

42

Rv
b =

c(θ)c(ψ) s(ϕ)s(θ)c(ψ)− c(ϕ)s(ψ) c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)

c(θ)s(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ) c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ)
−s(θ) s(ϕ)c(θ) c(ϕ)c(θ)

 (3.1b)

 u̇v̇
ẇ

 =

rv − qwpw − ru
qu− pv

+
1

m

fxfy
fz

 (3.2)

ϕ̇θ̇
ψ̇

 =

1 s(ϕ)t(θ) c(ϕ)t(θ)

0 c(ϕ) −s(ϕ)
0 s(ϕ)

c(θ)
c(ϕ)
c(θ)


pq
r

 (3.3)

 u̇v̇
ẇ

 =

rv − qwpw − ru
qu− pv

+
1

m

fxfy
fz

 (3.4)

ṗq̇
ṙ

 =

 Γ1pq − Γ2qr

Γ5pr − Γ6(p
2 − r2)

Γ7pq − Γ1qr


Γ3l + Γ4n

1
Jy
m

Γ4l + Γ8n

 (3.5)

Γ1 =
Jxz(Jx − Jy + Jz)

Γ
, Γ2 =

Jz(Jz − Jy) + J2
xz

Γ
(3.6a)

Γ3 =
Jz
Γ
, Γ4 =

Jxz
Γ
, Γ5 =

Jz − Jx
Jy

(3.6b)

Γ6 =
Jxz
Jy
, Γ7 =

(Jx − Jy)Jx + J2
xz

Γ
(3.6c)

Γ8 =
Jx
Γ
, Γ = Jxz − J2

xz (3.6d)

Applied forces and moments require nonlinear aerodynamic models. In particular, wing

stall characteristics when computing lift are modeled as in [2]. Our Simulink model uses

the nonlinear lift and drag equations in [72] to accurately capture aerodynamic forces over a

wide range of wing angles of attack. Since we could not utilize a wind tunnel to determine

the nonlinear relationship between angle of attack and moments, a linear model was used

for longitudinal and lateral moments. Figure 3.4 shows an example of modeled nonlinear lift

coefficient values as a function of angle of attack.

43

Figure 3.4: Nonlinear lift coefficient as a function of angle of attack [2]. The lift coefficient
function is approximated by blending a linear function with the lift coefficient for a flat plate.
Stall performance reduction is captured.

3.2.2 Control

A traditional proportional-integral-derivative (PID) feedback controller was implemented to

minimize tracking error for attitude, airspeed, altitude, and course angle or heading. Servo

saturation limits were imposed. Decoupled longitudinal and lateral PID flight controllers

were designed and tuned for Aerosonde and AAM models distinctly. Particularly, we im-

plemented longitudinal and lateral controller based on the derivations in [2], where each

control gain was tuned from the desired response of closed-loop dynamics. Gains were first

tuned from inner loop (i.e., attitude angles), and then outer loop (i.e., altitude, course angle,

airspeed, etc.). Figure 3.5 shows block diagrams of the implemented lateral controller in our

Simulink model.

3.2.3 Navigation and Guidance

The navigation function computes current aircraft state vector mean and covariance values.

The guidance model outputs a reference trajectory at each time step. These values are differ-

enced to compute trajectory tracking error e(t) at each time t. We use an Extended Kalman

Filter (EKF) as an optimal linear estimator for a nonlinear system to calculate state and

associated covariances as described in [73]. Then, straight line and orbit reference guidance

paths [74, 75] are used to compute kinematic error bounds for longitudinal and lateral path

segments, respectively. By obtaining position standard deviations σ and maximum guidance

44

Figure 3.5: Lateral controller block diagrams [2] implemented in Simulink. Kp, Kd, Ki denote
proportional, derivative and integral gains, respectively. χ and ϕ stand for course angle and
roll angle, where the superscript c denotes commanded input. δa stands for aileron input,
and Vg is the ground speed.

errors for each simulated flight, navigational and guidance uncertainties are captured and

translated to geofencing safety buffer sizing requirements.

In our simulation, static pressure, differential pressure, angular rate (gyro), and Global

Positioning System (GPS) sensors are used to find navigational uncertainty. Particularly,

covariances of angular rate (gyro), static pressure, and differential pressure were taken from

[2], while GPS covariances (i.e., σn, σe, σd) were taken from [69] to capture realistic GPS

accuracy with respect to street level position and relative altitude in an urban environment.

Figure 3.6 below shows the discrete-time EKF used in our Simulink model.

3.2.4 Flight Trajectory Geofence Buffer Dimensions

Aircraft-specific geofence volume sizes assure airspace is appropriately reserved for safety

and without waste. Realistic simulations plus real flight data when available offer statistical

confidence in computed geofence sizing as a function of wind conditions. Position coordinate

uncertainties are a function of navigation error, control disturbances, and ambient wind

conditions. We use the EKF to find position covariances, and then square those values to

find the positional uncertainties as standard deviations. Vehicle performance parameters and

guidance strategy also impact tracking errors. We define the following equation for flight

trajectory keep-in geofence safety buffer sizing:

δsbx = 3σx +
1

2
fl (3.7a)

45

Figure 3.6: Discrete-time extended Kalman filter used in case study simulations. An initial
state vector estimate is provided, states are propagated over the system dynamics model,
and estimates are corrected using a Kalman gain matrix with sensor measurements. Figures
are adopted and modified from [2].

δsby = 3σz + ϵguidancey +
1

2
b (3.7b)

δsbz = 3σz + ϵguidancez +
1

2
h (3.7c)

δsb = max[δsby , δsbz] (3.7d)

Here, [σx, σy, σz] represent the vehicle’s maximum positional standard deviation in vehicle

body frame [x, y, z] throughout the flight path. The navigational position confidence was

then calculated by multiplying those σ values by 3, achieving 99.7% confidence in estimated

position at each body frame axis, given the vehicle and sensor properties as well as the wind

condition. ϵguidancey and ϵguidancez are the maximum guidance error (i.e., trajectory error

between estimated vehicle position and nominal flight path) in lateral direction and alti-

tude, respectively. The cross-sectional geofencing safety buffer size, δsb, was then calculated

as the maximum of [δsby , δsbz], denoting the maximum deviations in combined navigation

and guidance errors as well as the vehicle dimensions (i.e., wingspan and height) in the y

46

and z axis. This process models the flight trajectory keep-in geofence cross-section to be

square in the simulation. δsbx adds an additional longitudinal buffer. Equation 3.7 calculates

optimal safety buffer sizes given maximum positional uncertainties, maximum guidance er-

ror throughout the flight as well as vehicle dimensions. Figure 3.7 shows a visualization of

optimal buffer sizing in the lateral direction.

Figure 3.7: Optimal geofence buffer size calculation per vehicle. σy is the vehicle’s lateral
positional standard deviation. 3σy statistically guarantees that the vehicle’s position is in
99.7% confidence. b denotes aircraft wing span, and ϵguidancey denotes the guidance error in
lateral direction. The optimal lateral geofence buffer dimension is calculated using lateral
navigational and guidance error as well as the vehicle’s wingspan.

3.3 AAM Design

The AAM model was designed by upscaling the Aerosonde UAS with known and openly

published aerodynamic characteristics. The benefit of upscaling is that the non-dimensional

aerodynamic properties stay the same regardless of the size. Specifically, the AAM reference

vehicle wing span and chord were scaled to be three times the Aerosonde’s wing dimensions

to have a gross weight greater than 700 lbs. The AAM fuselage was upscaled approximately

three times to Aerosonde’s such that one passenger can fit inside the cockpit. To calculate the

inertia tensor, the geometry of the AAM reference vehicle was simply designed with fuselage

and tail booms represented as cylinders, while wing and tail were represented as flat plates.

An engine with a 70 kg weight was chosen for the AAM. Figure 3.8 shows the schematics

of Aerosonde UAS and our AAM model that weighs 333 kg (i.e., 734 lbs), where aircraft

structure was assumed to be mostly carbon fiber with density ρ = 250kg/m3. Tables 3.1 and

47

3.2 show Aerosonde’s and AAM’s component dimensions and inertia tensors, respectively.

Note that there are missing dimensions in the Aerosonde UAS model because we do not

know the Aerosonde’s fuselage and tail geometries and placements. The AAM was designed

with simple geometric shapes and scaled such that its gross weight is greater than 700 lbs.

Figure 3.8: Aerosonde UAV (left) and AAM model top view (right). The dimensions of the
AAM vehicle are shown in Table 3.1.

Table 3.1: Aerosonde and AAM component dimensions [m]

Label Aerosonde AAM

l 1.72 5.718
fw - 0.9
fi - 0.8
fl 0.72 2.538
cw - 0.8
cl - 0.8
c 0.189 0.57
b 2.896 8.7
j - 3.18
e1 - 0.399
ew - 0.162
i - 0.054
vl - 2.64
vw - 0.36

48

Table 3.2: Aerosonde and AAM inertia tensors [kg/m2]

Aerosonde AAM

Ixx 0.824 12.047
Iyy 1.135 258.48
Izz 1.759 246.44
Ixz 0.120 24.277

3.4 Simulation Environment

The simulation was configured for UAS and AAM platforms to fly at 300m mean sea level

(MSL) altitude in Manhattan, New York City, New York at a constant airspeed of 35 m/s.

The subsections below describe how the simulation modules were coded and integrated.

3.4.1 Environment Map and Wind Model

Manhattan geofenced map data were constructed using algorithms in [3] with Open-

StreetMap (OSM). Here, only buildings greater than 300m MSL altitude are extracted since

the cruise altitude of both Aerosonde UAS and AAM models is set to 300m in the simu-

lation. Keep-out geofences are constructed on all mapped buildings with a building safety

buffer size of 10m. Figure 3.9 shows the Manhattan map with mapped buildings and their

geofences.

Figure 3.9: Geofenced Manhattan map constructed using algorithms in [3]. The map shows
buildings with heights greater than 300m only. The Aerosonde UAS and AAM vehicle cruise
altitudes are set to 300m in the simulation.

49

In the simulation, a constant west wind of 3 m/s was injected in the environment. Due

to the urban terrain with high-rise buildings in Manhattan, the actual wind direction and

its magnitude are highly variable over the terrain as the wind disperses/collides in the city

[76]. To capture the complex interaction between airflow and buildings and to simulate

the atmospheric wind flow effect on geofence buffer sizing, a computational fluid dynamics

(CFD) analysis was performed on the region for which each flight plan is generated. For CFD

analysis, the turbulent kinetic energy (k-epsilon) method was chosen with 5% turbulence

intensity to capture the effect of the turbulence after wind impacts the buildings. The semi

implicit pressure linked equations (SIMPLE) method was used to solve the CFD with no-slip

conditions on buildings. Figure 3.10 shows wind velocity contour simulation results for the

region of interest. Figure 3.11-3.13 shows the component-wise wind vector in the region of

interest. These CFD results were imported into Simulink and interpolated to compute the

wind vector at each flight state as the vehicle travels along its path.

Figure 3.10: CFD wind velocity contour plot for 300m MSL.

3.4.2 Flight Planning

Each flight path was defined at a constant 300m MSL altitude. A visibility graph was used

to find a minimum travel distance waypoint sequence from an initial state to a destination.

A Dubins path was then defined to introduce smooth turning flight path segments to connect

visibility graph waypoints assuming a constant altitude and constant velocity per [71].

Figure 3.14 shows an example visualization of a flight path with minimum geofence buffer

sizing around arbitrary obstacles. Minimum geofence safety buffer size was calculated using

Equation 3.7, defined to assure the aircraft will stay inside the yellow shaded keep-in geofence

volume with three sigma (3σ) or 99.7% confidence.

50

Figure 3.11: Wind vector field North component at 300m MSL.

Figure 3.12: Wind vector field East component at 300m MSL.

3.5 Case Studies

The below case studies present geofence safety buffer sizing analyses for the Aerosonde UAS

and our reference AAM model. Sensor parameters for each model are shown in Table 3.3.

The sensor parameters of the Aerosonde UAS were taken from [2, 69], while the GPS and

pressure sensor parameters of AAM were adjusted to have slightly less covariance values

with an assumption that AAM has more accurate/costly sensor units. We assume sensor

51

Figure 3.13: Wind vector field Down component at 300m MSL.

Figure 3.14: Visualization of a UAS flight plan with minimum geofence buffer sizing. Flight
path segments with keep-in geofence wrappers are shown in yellow, and building/obstacle
keep-out geofences are shown in green.

bias terms are removed through calibration. In our simulations, the cruising altitude for

both Aerosonde UAS and AAM models was set to 300m MSL.

Figure 3.15 shows a visualization of UAS flight in Manhattan under a West wind of 3m/s

to match our CFD analysis. The reference flight trajectory was defined near high-rise build-

ings so that the wind magnitude and direction change along the flight trajectory. The wind

52

Table 3.3: UAS sensor parameters

Aerosonde AAM

σaccel [m/s
2] 0.024 0.024

σgyro [rad/s] 0.002 0.002
σstaticpress [Pa] 10 7
σdiffpress [Pa] 2 1.5
σGPSn [m] 7.2 6.5
σGPSe [m] 7.2 6.5
σGPSh

[m] 3.67 3
σGPSV g

[m/s] 0.2 0.2
σGPSχ [rad] 0.05 0.05

component in North changed the most near buildings per the CFD vector field diagrams

showing turbulence. Optimal geofence buffer sizings for urban terrain were therefore cal-

culated for this particular 3m/s West wind condition. Vehicle parameters, state estimation

uncertainties, and tracking errors for Aerosonde and AAM are shown in Table 3.4. The fuse-

lage length and height of the Aerosonde UAV were estimated from the schematics in Figure

3.8 as the true dimensions are not publicly available. Note that positional standard deviation

σx, σy, σz were calculated by taking square of variances [cov(x, x), cov(y, y), cov(z, z)] from

EKF. Using Eq. 3.7, geofencing safety buffer sizes for Aerosonde UAS and AAM models

are calculated and listed in Table 3.5. The result shows that the AAM geofence buffers are

4.47m and 0.76m larger than that of Aerosonde model in cross-sectional and longitudinal

buffer, respectively, even though GPS and pressure sensors of the AAM are slightly better

than for the Aerosonde due to the larger vehicle dimensions of the AAM model. Recall from

Figure 3.7 the width of the flight trajectory geofence is 2δsb. Therefore, the width of the

geofence for the for Aerosonde UAS is approximately 8m smaller than that for the AAM

aircraft.

Table 3.4: Geofence buffer sizing parameters for each model [Unit: m].

Aerosonde AAM

ϵguidancey 16.90 18.11
ϵguidancez 5.45 4.86

σ [1.08, 0.66, 0.28] [1.03, 0.78, 0.23]
b 2.89 8.7
fl 0.72 2.538
h 0.3 0.9

53

Figure 3.15: Visualization of UAS flight in Manhattan with a 3m/s West wind. Flight path
wrapping keep-in geofences are shown in yellow, and building keep-out geofences are shown
in green. The wind vector field is shown with orange arrows.

Table 3.5: Geofence buffer size for each model.

Model δsb [m] δsbx [m]

Aerosonde UAS 20.33 3.6
AAM 24.8 4.36

Wind is an important source of tracking error for both the UAS and AAM platforms.

The authors injected a much larger wind (10m/s magnitude) into the same map and found

that both vehicles have more difficulty following the flight path leading to significantly larger

trajectory tracking errors. This result confirms that optimal geofence buffer sizing particu-

larly with irregular urban or mountain terrain must take wind properties into account to find

geofence sizings that match a combination of vehicle, topographic environment, and wind

conditions. Note that in the limit, a flight vehicle will be grounded when wind conditions

are forecast to exceed safe operating constraints.

Figure 3.16 shows state estimates over time for Aerosonde UAS and AAM platforms.

Specifically, position vector [p̂n, p̂e, ĥ], airspeed V̂a, and attitude [ϕ̂, θ̂, ψ̂] are shown. Figure

3.17 shows a comparison of true vehicle states over time for the Aerosonde UAS and AAM

platforms, including angle of attack α and actuation commands aileron δa, elevator δe, and

normalized throttle δt]. The state estimation comparison shows position estimates for the

AAM platform follow the commands (i.e., desired altitude at 300 meters, and desired airspeed

54

at 35 m/s) better as the GPS sensor covariances are lower in the AAM. The true state

comparison shows that more thrust was required to fly the Aerosonde UAS under the same

wind condition, while north and east position, airspeed, roll, and pitch angles displayed

similar values in both the Aerosonde UAS and AAM platforms. At a time of 40 seconds,

the vehicle approaches close to the building on the right, and the magnitude of wind flow

in the North increased due to the turbulence created near the building. Wind influenced

the roll and pitch of the Aerosonde UAS more than the AAM platform since the UAS has a

comparatively low weight.

Figure 3.16: State estimate time series for UAS and AAM simulations.

3.6 Conclusion

This chapter has proposed a methodology to calculate flight trajectory geofence safety buffer

sizings using vehicle performance, GNC, and expected wind models. Uncertainties in state

estimates and trajectory tracking error were statistically modeled and translated along with

vehicle dimensions to geofence buffer size. A passenger-carrying AAM aircraft model was

defined by upscaling an Aerosonde UAS model. A CFD model was generated around a

group of buildings in Manhattan taller than 300m MSL to simulate the effect of wind flow

in an urban environment. Case studies show geofence buffer sizes computed for both the

Aerosonde and AAM models. In future work additional environments, wind speeds, and

vehicle models need to be analyzed to better understand how geofence buffer dimensions

vary as a function of each parameter. We hypothesize that small fixed-wing UAS geofence

buffers will have similar sizings to the Aerosonde in similar wind conditions but further

55

Figure 3.17: True state time series for UAS and AAM simulations.

analysis is required to confirm this hypothesis. For future analysis, we plan to generate a

database for varying wind conditions in different city models (i.e., buildings and terrains)

and investigate the effect of different wind conditions and vehicle types on geofence buffer

sizes.

56

CHAPTER 4

Geofencing for Three Dimensional Flight and

Swarms

4.1 Introduction

As the number of Uncrewed Aircraft Systems (UAS) increases, low-altitude airspace aircraft

density will also increase, especially in the urban environment [20]. The Unmanned Aircraft

System Traffic Management (UTM) system was proposed to efficiently organize the airspace

of a large number of UAS [77]. These UTM systems will need to utilize this airspace in the

most efficient way possible while still prioritizing the safety of buildings, people, and the UAS

themselves. With the deployment of UAS for delivery, inspection, and first response, these

UTM systems will also need to deconflict numerous flights with diverse mission profiles.

This chapter extends our previous work [38] by choosing a more space-efficient design for

climbing and descending geofence volumes. 1 The efficiency of geofencing for these parts

of the flight path increases as point-to-point UAS missions increase. Package delivery and

air taxi cast as urban air mobility (UAM) or more generally advanced air mobility (AAM)

rely on being able to ascend and descend through what will ultimately become a busy low-

altitude airspace. Airspace must be efficiently allocated and utilized to support all missions.

Our previous work utilized a constant ceiling and floor multiple-staircase geofence (MSG) in

order to maintain a constant safety buffer around a UAS in flight. The method outlined in

this chapter is to instead wrap a climbing or descending UAS with a parallelepiped geofence

(PG) volume, extending the definition in [19] to utilize full polyhedra rather than lateral

polygons in geofence definitions. The polyhedra in PGs require more data and processing

overhead to manage. This chapter compares the difference in MSG and PG computational

complexity as their relative efficiency with respect to reserved airspace volumes.

This chapter also explores the spatial and computational efficiency of two different meth-

1This chapter was also published as [78].

57

ods to create geofences for multi-agent UAS teams or swarms. The spatial and traffic man-

agement efficiency of such geofences becomes important as cooperatively controlled UAS

teams enter the airspace. These UAS groups must be able to use the same UTM systems as

individual UAS in order to ensure a safe environment without requiring individual geofences

for each UAS, a technique that is not scalable. As such, there must be geofence volumes

to handle these groups of UAS in an efficient way. The first swarm geofencing method we

consider builds on the geofence definition of [19] with a constant floor and ceiling. This

geofence volume is a bounding box that surrounds the UAS group. The second method

uses a 3D convex hull algorithm [79] to create a more geometrically complex but spatially

efficient geofence based on the group’s geometry. This chapter compares differences in the

computational complexity of these two methods as well as airspace volume utilization.

The chapter is organized as follows. A brief literature review is followed by an updated

geofence definition and specific definitions of climb and descent MSG and PG geometries.

Simulation results for MSG and PG benchmarking are followed by the definition of geofence

containment volumes for UAS swarm geofencing. Containment geofence simulation results

are followed by a brief conclusion.

4.2 Literature Review

UTM has been researched as a way to safely utilize low-altitude airspace. The Single Eu-

ropean Sky ATM Research 3 Joint Undertaking has recommended that the EU adopt a

UTM-type system for its UAS traffic management [80]. While most UTM research focuses

on geofencing and its optimization for path planning, there is research into an Internet of

things for uncrewed aerial vehicles [81]. This research proposes a system of interconnected

nodes to facilitate UAS traffic. In addition, NASA has conducted research into UTM sys-

tems including a five-day flight test to research a UTM system beyond visual line of sight

[82]. They concluded that a ”UTM system can provide support to enable the proliferation

of UAS operations.” NASA expanded on this research in a partnership with ride-share com-

pany Uber to test their UTM system in use with urban air mobility [83]. They found that

their UTM service could be used in this capacity, but there were significant concerns over

the timing of the system. An overload of their UTM system could mean that information

about deconfliction and flight planning could not be sent in a timely manner. This research

into urban air mobility also adds to other work that describes the infrastructure needed to

obtain pilotless urban air mobility [20]. In addition to research from NASA, there is research

by the telecommunications company ATT to develop a UTM system using 5G networks as

a basis for communication to the UAS [84].

58

Geofencing provides safe separation from buildings, people, and other UAS [19].NASA

has has evaluated their geofencing hardware and software solution named SAFEGUARD

in [85]. In addition, research has been done to classify and define the urban airspace

environment in order to better understand the problems a UTM system will face in the real

world[28].

4.3 Parallelepiped Geofence Definition

The parallelepiped geofence (PG) extends our previous fixed ceiling and floor definition with

polygon cross-section to a three dimensional polyhedron specification. Additionally, the PG

has a time element that describes which geofence in a sequence is active/inactive over time.

The space efficiency of the PG definition comes at the cost of additional computational

complexity for both generation and deconfliction of the geofences. Below is the formal PG

definition accompanied by its illustration in Figure 4.1.

Definition 3 (Parallelepiped Geofence (PG)) A parallelepiped geofence pg = {n, v[],

m, e[], h, t} is a volume defined by a list of eight three-dimensional Cartesian coordinate

vertices v = [v1, v2, · · · , v8] = [(x1, y1, z1), (x2, y2, z2), · · · , (x8, y8, z8)] and a list of

twelve corresponding edges defining a parallelepiped geometry. The (v, e) graph is positioned

relative to a home location h given by latitude, longitude, and altitude (ϕ, λ, z) Mean Sea

Level (MSL). The volume is active during time interval t = [ts, tf] where ts is start or

activation time and tf is final or deactivation time.

Figure 4.1: Illustration of a Parallelepiped Geofence (PG).

59

4.4 Space-Efficient Climb/Descent Geofence

Our previous work [38] constructed constant ceiling and floor multiple-staircase geofence

(MSG) volumes for UAS climb/descent flight phases. The MSG design creates multiple

stairs or “blocks” of geofences that progressively activate and deactivate to assure the UAS

will always stay inside at least one MSG volume during its climb/descent. MSG was shown

to reduce total airspace volume reserved compared to a single constant floor/ceiling ge-

ofence volume enclosing the entire climb/descent. We construct parallelepiped geofence

volumes to further reduce geofence airspace volumes reserved during climb/descent trajecto-

ries. Although geofence definition and usage complexities are increased with parallelepiped

construction per [19], our work shows significant airspace volume savings with the paral-

lelepiped. Figure 4.2 illustrates MSG and parallelepiped volume designs.

Figure 4.2: Multiple staircase geofence (MSG) (left) and parallelepiped geofence (PG) (right)
for a steady climbing flight example.

4.4.1 Methodology and Algorithm

The parallelepiped geofence is constructed to maintain a minimum safety buffer around the

UAS at every point of its climb. The safety buffer is treated as a constant distance in all

body frame directions. Initially, a box (i.e., cube) representing that safety buffer is drawn

around the UAS, and another box is constructed at the end of the UAS’ climb/descent.

These boxes are then connected by their outside edges to ensure the drone will always be

within the safety buffer. Figure 4.1 illustrates the completed parallelepiped geofence. The

parallelepiped geofence contains ”blocks” much like the MSG in order to reduce the total

amount of airspace used at any one time. These blocks activate and deactivate to ensure

that the UAS will always be inside the volume with its safety buffer.

60

Parallelepiped geofence (PG) construction takes as its inputs a UAS’ departure point

Rstart, velocity V , climb time T , number of geofence blocks Ngeo, and safety buffer δsb. The

endpoint of the PG is determined by the departure point Rstart, velocity V , and climb time

T . The time spent in each PG block is determined by dividing the climb time T by the

number of geofences blocks Ngeo. Each PG block is then created individually by determining

that block’s start and end points, start and end box vertices, and connecting the start and

end boxes. These blocks are then added to the overall data structure.

4.4.2 Simulation Results

Figure 4.3 shows the result of a geofence volume sizing comparison between PG and

MSG in climb/descent over a range of safety buffer sizes and the number of geofence

blocks. The number of geofence blocks or partitions, flight path angle, and geofence safety

buffer size were collectively used to generate geofence volumes. Percentages of volume saved

with PG designs are shown in the figure. Particularly, the safety buffer size varied from 10m

to 100m, and the number of blocks ranged from 5 to 50. As the number of blocks and safety

distance decrease, the PG becomes more spatially efficient compared to the MSG (shown in

yellow). As the number of blocks increases, the MSG approximates a smooth climb boundary

resulting in similar volume sizing to the PG. When safety buffer distance increases, however,

parallelepiped geofence efficiency is reduced due to the large amount of extra space created

to accommodate large safety buffer height and length.

Figure 4.3: Comparison of MSG and parallelepiped geofence volumes as a function of number
of geofence blocks and safety buffer distances for a 1000m climb with 45◦ flight path angle.

61

Figure 4.4 shows a volume sizing comparison of parallelepiped and multiple-staircase

geofences over a range of flight path angles γ and safety buffer sizes δ. For this

comparison, the flight path angle changes from 0◦ to 90◦, and the safety buffer size varies

from 10m to 40m. Results show that the parallelepiped geofence is most efficient relative to

the MSG at a flight path angle of 45◦ and at a small safety buffer distance. This occurs due

to MSG space inefficiency at 45◦. Small safety buffers make these spatial inefficiencies more

pronounced. At 0◦ and 90◦, MSG and parallelepiped volumes are identical as the geofences

became rectangular prisms to wrap horizontal and vertical flight paths.

Figure 4.4: Comparison of MSG and parallelepiped geofence volumes as a function of flight
path angle and safety buffer size for a 1000m climb distance with 10 geofence blocks.

Figure 4.5-4.6 show the runtime comparison of PG and MSG over a number of

blocks and safety buffer distance. In both cases, the PG resulted in a slower computation

time than the MSG. Particularly, with an increasing number of blocks, the PG runtime

displayed a more significant delay in computing the volumes. However, the magnitude of the

runtime was in the order of 10−3 second for a single climb/descent, still reliable for real-time

volume generation in the UTM.j

Overall, the PG is more spatially efficient than the MSG in terms of volume sizing, but

less efficient in terms of computation speed. Particularly, in its worst case, the PG results

in the same amount of volume required for the MSG at γ of 0◦ and 90◦. MSG spatial

efficiency is comparable to PG efficiency outside of these extremes only for cases in which

UAS safety buffer distances are large relative to climb/descent path length. However, the

MSG can utilize existing geofence definitions per [19] and is computationally more efficient

in generating the volume.

62

Figure 4.5: Runtime comparison of MSG and parallelepiped geofence as a function of the
number of blocks.

Figure 4.6: Runtime comparison of MSG and parallelepiped geofence as a function of safety
buffer size.

63

4.5 Space-Efficient Containment Geofence for Swarm

Formation

4.5.1 Methodology and Algorithms

A containment geofence for a cooperative UAS team can be generated by first creating

minimum separation boxes around each UAS in the swarm, and then generating a three-

dimensional convex hull containment geofence as shown in Figure 4.7. We used 3-D convex

hull algorithms to create these volumes in O(nlogn) complexity [79]. A bounding box geofence

is generated to compare the volume saved using a more complex but tight convex hull

containment geofence. The bounding box (shown in red) was constructed by taking the

largest value in the x, y, and z axes to generate a box. In addition, 3D kinematics can be used

to rotate and move volumes in space when needed. These 3D movements can be obtained by

using 4x4 rotation and translation matrices[86]. Analogous to the parallelepiped geofence,

the convex hull geofence volume has more in-plane geometric complexity and also may not

have a constant floor and ceiling. However, the volume saved from the containment geofence

can be significant. As seen in Figure 4.7, there is much space within the red bounding

box that is not needed to provide a safety buffer for the swarm due to the geometry of the

swarm itself. This amount of unused space in the bounding box compared to the convex

hull containment geofence changes with the geometry of the swarm as well as the size of the

safety buffer. The containment geofence generation algorithm is shown in Algorithm 5.

Algorithm 5: Convex Hull Geofence Construction

Inputs: Drone Positions Dpos, Safety Buffer δsb

Outputs: Vertices v[], Edges e[]

Algorithm:

1: vcubes ← empty N x 3 matrix

2: for i ∈ length(Dpos) do

3: vDpos ← createCubicGeofence(Dpos(i, :), δsb)

4: vcubes ← add(vDpos) ◁ all vertices in cube geofence added to the matrix vcubes

5: end for

6: [v, k]← ConvexHull3D(vcubes) ◁ 3D convex hull algorithm

7: [v, e]← RemoveEdges(v, k) ◁ removed unnecessary edges from convex hull volume

Once the containment geofence is generated using the Algorithm 5, homogeneous trans-

formation [86] was applied to rotate and translate the geofence along the trajectory that a

cooperative UAS team flies.

64

Figure 4.7: Containment geofence Volume case study for a four UAS team. A bounding box
geofence volume is shown in red, and a convex hull containment geofence is shown in green.
Blue squares illustrate the UAS positions.

4.5.2 Simulation Results

Figure 4.8 shows a volume sizing comparison between containment geofence and bounding

box geofence to support a coordinated flight of four UAS. The swarm flight formation in

this example case defines a regular tetrahedron shape. Results show that the containment

geofence volume is smaller compared to the bounding box given relatively small safety buffer

distances and relatively large separations between the four UAS. As the distances between

the UAS in a formation increase, the bounding box geofence generates a volume much greater

than the necessary volume to contain the coordinated UAS team.

Figure 4.9-4.10 show the runtime comparison between containment geofence and

bounding box geofence to support a coordinated flight of four UAS. In both cases, the

runtime of the containment geofence resulted in slower computation time than the single

bounding box geofence. The containment geofence relies on a three-dimensional convex hull

algorithm, which penalizes the runtime compared to the single bounding box. Particularly,

the result showed that as the distance between individual drones increased, the runtime in-

creased. However, note that the magnitude of the runtime is in the order of 10−3 seconds

for a single containment geofence, still reliable for real-time volume generation in the UTM.

Complementary swarm configurations and their containment geofence vs. single bounding

box volume comparisons are shown in Figures 4.11 - 4.13. Such tested configurations are

65

Figure 4.8: Volume Comparison of containment and bounding box cooperative UAS team
geofencing designs as a function of distances between UAS and safety buffer sizing.

Figure 4.9: Runtime Comparison of containment and bounding box cooperative UAS team
geofencing designs as a function of safety buffer distance. The distance between UAS is fixed
to 200m in the simulation.

”straight-line”, ”inverted V” and ”3-D Prism” swarm formations. The containment geofence

becomes a single bounding box in the case of straight-line swarm formation and therefore

showed no volume saving in containment geofence in this particular case. However, for

”inverted-v” and ”3-D prism” configurations, the simulation showed that as the distance

66

Figure 4.10: Runtime Comparison of containment and bounding box cooperative UAS team
geofencing designs as a function of the distance between UAS. The safety buffer is fixed to
10m in the simulation.

between individual drones increases while the safety buffer size is small, relative containment

geofence airspace volume reduction also increases. This reveals that containment geofence

can reduce the reserved airspace volume in arbitrary swarm formations, but the magnitude

of volume saving depends on the distance between individual drones and the safety buffer

size.

4.6 Discussion

The simulation results show that the parallelepiped geofence algorithm for climb and de-

scent flight paths, as well as convex hull swarm containment geofencing, provide more space-

efficient volumes compared to the MSG and single bounding box geofence. It is important

to note that while this is true, the computational cost of such geofences may make them

unfeasible in the real UTM system. Further research needs to be conducted to determine

the trade-off between spatial efficiency and computational cost in more general cases. Fur-

thermore, geofence volume deconfliction among different PG, MSG, and swarm containment

geofences using the above definition is needed.

67

Figure 4.11: Volume Comparison of containment and bounding box cooperative UAS team
in ”straight-line” swarm configuration.

Figure 4.12: Volume Comparison of containment and bounding box cooperative UAS team
in ”inverted V” swarm configuration.

4.7 Conclusion

Space-efficient UAS geofencing will minimize the airspace volume reserved in densely pop-

ulated airspace to maximize airspace availability for other UAS missions. This chapter has

presented parallelepiped climb/descent and convex hull swarm containment geofencing de-

signs along with a summary of results indicating space efficiency gains as a function of flight

68

Figure 4.13: Volume Comparison of containment and bounding box cooperative UAS team
in ”3-D prism” swarm configuration.

path angle, safety buffer, number of geofence blocks, and trajectory length. We also com-

pared the run times of these geofences to geofences created using a polygon cross-section

with constant altitude ceiling and floor. Our polyhedra geofence volumes did provide more

efficiency in airspace use, but, on average, polyhedra geofence processing time is greater than

polygon geofence (MSG) processing time.

Future work will extend this chapter’s geofence volume definitions to account for wind

and safety buffer requirements that may not be identical for all vehicles in a team or swarm.

69

CHAPTER 5

Assured Contingency Landing Management

for AAM

5.1 Introduction

Advanced Air Mobility (AAM) is expected to provide flexible on-demand passenger and

package regional air transportation [87]. To ensure safe and economically viable operations

particularly in urban mixed-use airspace, AAM scalability will require increasing levels of

autonomy for both crewed and uncrewed aircraft [20]. Certified flight management system

(FMS) and other fly-by-wire aircraft automation have improved safety of flight through reli-

able system management and flight plan following. Contingency management has typically

been left to the flight crew, however, because human pilots can be innovative and because

fleet-wide certified software upgrades would be costly. AAM growth will likely outstrip ex-

perienced pilot availability, and inexperienced pilots are less likely to react safely in case of

emergency, especially given the tight real-time response constraints associated with regional

flight at low altitude. Contingency management autonomy is therefore critical for safe AAM.

When a safety-critical problem is encountered in flight, the best course of action is typi-

cally to safely land as soon as possible. This chapter proposes an assured contingency landing

management (ACLM) autonomy framework suitable for both human-occupied aircraft and

uncrewed aircraft systems (UAS). By fusing a pre-analyzed landing site database that are

categorized into prepared and unprepared, ACLM enables distressed AAM flights to swiftly

define a safe landing plan, minimizing reaction time and preventing missed opportunities

due to decision delays.

Fig. 5.1 shows the ACLM architecture applied to a multicopter UAS. The vehicle system

includes guidance, navigation, and control (GNC) functions as well as prognostics functions

that include fault detection and identification (FDI). ACLM receives as input the current

state vector x⃗(t), time remaining until battery system End of Discharge (EOD) tEOD, ro-

tary propulsion unit health parameters ηr(t), and rotor thrust commands fr(t) attenuated

70

based on FDI analysis. ACLM returns a contingency flight plan WACLM based on six in-

terconnected modules: 1) A controllability and reachability (C&R) watchdog function that

rapidly identifies the need for contingency or emergency landing, 2) A pre-flight (offline)

flight planner that builds and indexes contingency plans that can be rapidly retrieved, 3)

An online flight planner that can build new flight plans in real-time when needed, 4) A

landing strategy selector to retrieve a cached plan when available or initiate real-time flight

planning to a minimum-risk landing site otherwise, 5) A continue/hold selector to hold (e.g.,

hover) or continue as well as possible along the original flight plan while contingency flight

planning and initiation actions are completed, and 6) A flight termination (e.g., parachute

deployment) function available as a last resort. The output WACLM is an ordered list of n

waypoints defining the contingency landing plan or ∅ indicating flight termination.

Figure 5.1: Assured contingency landing management (ACLM) with a multicopter applica-
tion.

This chapter proposes a single-aircraft ACLM solution applied to a multicopter with motor

and battery faults as potential failure modes. These two failure modes are prevalent in small

UAS [88] and have a substantial impact on aircraft controllability and reachability which

in turn trigger and influence contingency response. We present the logic and mathematical

derivation of the ACLM functions designed to achieve Assurance Efficacy (AE) in auto-

mitigation responses. ACLM ensures adequate control authority and contingency flight

planning in failure scenarios. Case study simulations illustrate the influence of motor and

battery degradation and failure cases on safe landing decisions. We apply ACLM to a

small hexacopter UAS with experimentally validated performance as well as motor and

battery degradation models [89, 90], and integrate Guidance, Navigation, and Control (GNC)

functions with experimentally validated performance, dual battery pack, and propulsion unit

71

models. Monte Carlo simulations are conducted using real-world Manhattan map data to

create random failure scenarios. Results demonstrate the functionality of ACLM in motor

and battery degradation case studies.

Contributions of this work include:

• Logic and data flow of the ACLM architecture: We integrate mathematically-

provable positive controllability and reachability logic to assure a contingency landing

is triggered whenever the current plan is no longer feasible. While controllability and

reachability principles are well established, their integration into the ACLM watchdog

based on prognostic feedback such as battery system tEOD is novel.

• Assured offline landing plan integration: Contingency landing plans prepared

before flight can be optimized and validated by both software and human experts.

ACLM therefore stores and indexes pre-flight contingency landing plans for each

filed flight plan segment and each anticipated degradation scenario. ACLM can in

turn ensure that each cached contingency plan has been validated and will be re-

trieved/initiated with minimal delay. While alternate landing plans have been pre-

pared by pilots and FMS long-term, ACLM’s plan database indexed by flight segment

and prognostics status is novel.

• Integration of categorized landing site database: While landing at a prepared

vertiport site is preferred, no such site may be reachable given motor failure and/or

battery degradation. ACLM therefore caches a map database of unprepared landing

sites to facilitate identifying a nearby risk-minimizing unprepared landing site when

real-time planning is required. Most previous work has assumed a combination of

real-time site mapping or strictly use of prepared vertiport/runway sites.

• Simulations in a realistic environment model: Simulation studies apply

ACLM to a suite of in-flight failure and degradation scenarios. Our combination of

real-world Manhattan building and landing site models plus experimentally validated

vehicle, motor, and battery performance and degradation models is novel, improving

the realism of our results compared to previous contingency management simulation

studies.

The structure of this chapter is as follows. Section 5.2 summarizes related work in emer-

gency flight planning and decision-making. Section 5.3 describes the underlying algorithms

in each ACLM function, illustrating how assurance is achieved for each. Section 5.4 out-

lines key assumptions and our procedure to construct environmental models and landing

72

site databases. Additionally, it summarizes Monte Carlo simulation studies designed to test

the ACLM pipeline in different failure cases. Section 5.5 presents Monte Carlo simulation

and ACLM solutions for lighter-weight and heavier-weight package-carrying hexacopters op-

erating in Manhattan, New York City, under different in-flight anomaly scenarios. Section

5.6 discusses strategies for minimizing the need for flight termination in future work, and

Section 5.7 concludes the chapter.

5.2 Literature Review

A fault-tolerant control scheme is crucial to ensure the safe completion of missions in AAM

flight operations. Such a scheme is proposed for multicopters in [91], using a reduced con-

trollability index to compute a constrained control allocation scheme. This work employs a

Nonlinear Dynamic Inversion (NDI) controller to land the faulty multicopter safely. Hamadi

et al. [92] present a data fusion architecture to increase tolerance to sensor and software

faults without modifying the flight plan or control law. This architecture focuses anomaly

detection and recovery services to multi-sensor perception systems.

Even degraded AAM platforms must be assured to safely reach emergency landing sites.

Assurance can be formulated with reachability analysis in physical space. The Hamilton-

Jacobi reachability method [93], [94] computes a set of states that drive the system to a

target set while satisfying time-varying state constraints. Hamilton Jacobi Bellman (HJB)

reachability analysis was employed to determine the feasible landing region in [95]. Reach-

ability can be defined in terms of feasible post-failure trim states and transitions between

them, utilizing a database of feasible trim states and transitions to construct landing plans

[96]. Ref. [97] proposes computation of an approximate footprint to rapidly define reachable

landing sites given fixed-wing aircraft experiencing loss of thrust. Ref. [98] extends this work

by maximizing range as a function gliding turn parameters.

A real-time contingency planning system is presented in [99] with metrics that assess mis-

sion safety and feasibility. Flight states are categorized as Nominal, Off-Nominal, Alternate

Land, and Land Now using a finite state machine with state transitions that can trigger re-

planning. In [100], the Safe2Ditch architecture integrates real-time landing site selection with

visual situation awareness to identify and assess potential landing sites within onboard sensor

field of view. In [101, 102], architectures to plan safe trajectories for autonomous helicopters

are proposed that combines deterministic and learning functions. Procedures for managing

lost link in remotely piloted aircraft are proposed in [103], leveraging historical traffic volume

data to minimize encounter risk. These procedures are evaluated through human-in-the-loop

simulations to assess operator workload. A Markov Decision Process (MDP) formulation was

73

used for contingency landing management based on motor and battery prognostics feedback

in [104, 105].

The contingency management solutions cited above require mission and flight planning.

Search-based planners typically cannot guarantee real-time execution given limited embed-

ded computing resources. Further, requiring each aircraft to identify landing sites with

onboard sensors can also be time-consuming and limits results to the field of view. Our

ACLM framework, initially presented in [106], integrates controllability and reachability

analysis to assure safety and utilizes a map including a landing site database to generate

and cache contingency landing plans along the planned route prior to flight. Simulations

show that ACLM retrieves or computes contingency responses in milliseconds when triggered

by ACLM’s controllability and reachability (C&R) watchdog.

5.3 Assured Contingency Landing Management

As described above in Fig. 5.1, ACLM integrates six functional modules: offline flight

planning, C&R watchdog, landing strategy selector (LSS), continue/hold selector (CHS),

online flight planner, and flight termination. The logic and algorithm for each is dis-

cussed below. The output of ACLM is a waypoint-based contingency flight plan WACLM =

{wi,1, · · · , wi,j, · · · , wi,n}, where each waypoint wi,j is given by {σj, λj, hj}. Here σj denotes
waypoint latitude, λj denotes waypoint longitude, and hj is waypoint flight altitude. i in-

dicates a database index for the selected landing flight plan, and j indicates the waypoint

index in that plan.

5.3.1 Offline Flight Planning

A nominal flight plan Wnom is created from start and destination locations, an aircraft

performance model, company preferred route information, and airspace/traffic constraints.

As shown in Fig. 5.2, ACLM’s offline flight planning module receives Wnom as input from

which it calculates and stores a database of contingency landing plans that begin at the

midpoint and endpoint of every nominal flight plan segment.

Flight plan Wnom = {wnom
1 , wnom

2 , · · · , wnom
n } is defined by a sequence of way-

points wnom
i = {σi, λi, hi}. A set of approximate reachable footprints denoted F =

{Fmid
1 , F end

1 , · · · , Fmid
n , F end

n }, defines midpoint and endpoint landing footprint geometries

for each flight segment. Each midpoint footprint Fmid
i = {Rmid

i , σmid
i , λmid

i } is defined by a

circle with radius Rmid
i and center (σmid

i , λmid
i) corresponding to the midpoint of waypoint

segment [wi, wi+1]. Endpoint footprint F
end
i is defined analogously.

74

Figure 5.2: Offline flight planning logic flow.

For each flight segment midpoint footprint Fmid
i , the set of prepared landing sites is

defined as Lmid
i = {Lmid

i,1 , · · · , Lmid
i,k , · · · , Lmid

i,m }, where each landing site Lmid
i,k is characterized

by latitude (σmid
i,k), longitude (λmid

i,k), altitude (hmid
i,k) coordinates and landing site risk (Rmid

i,k).

The set of prepared landing sites for the endpoint footprint F end
i is defined analogously. The

landing site risk model is adopted from [107], incorporating cost terms including landing site

area, terrain/landing site type. For this work, we define prepared landing sites as protected

vertiports and runways intended for aircraft use, and unprepared landing sites as terrain,

building rooftops, roads, et al that are not protected and not typically utilized by aircraft.

Section 5.4.1 provides more details. The flight plan database generated offline contains

landing solutions to prepared landing sites, all of which are considered low-risk. Additional

landing sites for small UAS, e.g., unoccupied flat building rooftops approved for emergency

landing, are also considered ”prepared” thus low-risk in this work. The remaining unprepared

landing sites that are mapped but higher risk serve as alternative options for the online flight

planner when no low-risk or prepared landing sites are reachable.

ACLM builds and caches a contingency landing plan database P = {P1, P2, · · · , Pn}
during preflight. Each nominal flight segment i has contingency landing plan set Pi =

{Pmid
i , P end

i } where each P ∗
i = {P ∗

i,1, P
∗
i,2, · · · , P ∗

i,m} for all reachable landing sites in L∗
i where

∗ ∈ {mid, end}. The cost of a contingency flight plan P ∗
i,j is calculated using Equation 5.1.

C∗i,j = β · dtravel + γ · R (5.1)

where β and γ are cost function weights, dtravel is landing path distance traveled, andR is the

risk of landing site j ∈ L∗
i . The landing site flight plans within each footprint are then ordered

by cost and indexed by {i, j, ∗} in a contingency landing plan lookup table. Computing and

storing contingency landing plans during preflight minimizes ACLM execution time since

real-time flight planning is the most computationally expensive ACLM function. Fig. 5.3

75

provides a visual depiction of the flight plan database.

Figure 5.3: Footprints utilized to define a contingency landing plan database during preflight
planning at each flight segment midpoint, represented graphically. Analogous footprints are
constructed for each segment endpoint. The blue dots represent waypoints in Wnom, while
the red dots indicate the midpoints of the flight segments. The green circles represent
approximate footprints with radii Ri = 2 ∗ di at each midpoint.

5.3.2 Controllability and Reachability (C&R) Watchdog

The C&R watchdog checks the controllability and reachability of the current landing site,

performed during each ACLM sampling rate. The logic flow of the C&R watchdog is il-

lustrated in Fig. 5.4. The first step is to test for positive controllability C(t). Condition

C(t) < 0 indicates that the controllability matrix is not full rank or the system lacks suffi-

cient control authority to follow the prescribed flight plan. In this case, the flight termination

thread is initiated. Reachability R(t) in this work is computed by projecting the executing

flight plan from the current state to the landing waypoint with consideration of an updated

estimate of the battery’s End of Discharge (EOD) time and the current vehicle performance

model. If R(t) == 1, no warning is issued, and the current flight plan continues as planned.

In the event that R(t) == 0, indicating that the current landing site is not reachable, the

C&R watchdog triggers the Landing Strategy Selector (LSS) parallel thread to find con-

tingency plans, and the ”Planning In Progress (PIP)” flag is set to true until a reachable

contingency plan is found. Meanwhile, the C&R watchdog counts the number of times the

watchdog executes with an unreachable status. If this count exceeds a preset threshold, the

watchdog triggers flight termination within the Landing Strategy Selection (LSS) process,

indicating an LSS failure.

76

Execution of flight termination in this version of ACLM is appropriate for a parachute-

equipped small UAS. A passenger-carrying AAM platform would be designed with more

redundancy and resilience to avoid flight termination to within [TBD] certification standards.

Figure 5.4: Controllability and Reachability (C&R) watchdog logic.

5.3.2.1 Controllability of a Small Multicopter UAS

A multicopter is a nonlinear dynamic system that relies on positive control inputs, specif-

ically the unidirectional thrust generated by its rotors. Classical controllability theory for

linear systems, as discussed in [108, 109], demonstrates that the Kalman rank test alone is

insufficient to assess the controllability of a multicopter with bounded control inputs. To

address this, positive controllability theory provides necessary and sufficient conditions for

analyzing the controllability of systems with constrained inputs [110]. Du et al. [111] in-

troduced the Available Control Authority Index (ACAI), and Saied et al. [112] proposed

Small-time Local Controllability (STLC) with a positive controllability theorem. A method

derived from [111] is utilized in our multicopter system and ACLM C&R thread, allowing

real-time assessment of the controllability conditions in rotor failure cases. This is done by

employing a proposed linearized state-space method.

The thread takes as input the fault/exception flag vector F⃗ (t), rotor health parameters

η⃗r(t), and rotor thrust commands f⃗r(t) to calculate controllability C(t) of the vehicle at

any time t. The rotor health parameters η⃗r(t) form a vector of length equal to the number

of motors. Each element of this vector ranges from 0 to 1, representing the health status

of the corresponding rotor. In cases where the multicopter remains controllable despite a

failure, the landing strategy selection (LSS) process is typically activated to define a safe

contingency landing solution because reachability may be compromised due to the excess

power required for the remaining functional motors to follow the original flight path to

completion. In cases where the multicopter becomes uncontrollable, flight termination is

77

activated with parachute assist. Fig. 5.5 shows example octocopter configurations and their

positive controllability results with up to two propulsion unit failures.

Figure 5.5: Controllability of configuration type “PNPNPNPN” (left) and “PPNNPPNN”
(right) octocopters with two propulsion unit failures. A blue circle indicates a controllable
system even though the indicated propulsion units have failed. A red cross indicates an
uncontrollable system due to the two failed propulsion units.

5.3.2.2 Reachability of a Small Multicopter UAS

Landing site reachability R(t) is assessed using an estimation of the Battery End of Discharge

(EOD) time, the current state vector x⃗(t), and the remaining distance to the destination.

Algorithm 6 outlines the procedure for computing the reachability of landing sites within

the ACLM solution. Battery EOD time is determined by considering the average current

draw during the mission profile at each ACLM sampling rate. To ensure a conservative

estimate, the average current draw is multiplied by a safety factor. Furthermore, the flight

plan duration is calculated by subtracting a safety margin from the EOD time, providing an

additional buffer period.

5.3.3 Landing Strategy Selector (LSS)

The landing strategy selector (LSS) thread is initiated when landing site reachability becomes

false (R(t) = 0) and the aircraft remains under control (C(t) = 1). Fig. 5.6 shows the

logic flow of LSS. The selection process takes as input the current state vector x⃗(t), time

78

Algorithm 6: EOD-based Reachability

Input: EOD,tsf , V , Lrem

Output: REOD Flag
// EOD = Battery End of Discharge (s)

// tsf = Safety Margin (s)

// V = vehicle speed (m/s)

// Lrem = Remaining flight time (s)

1 trem = Lrem/V
if (EOD ≥ trem + tsf) then

2 REOD = 1

else
3 REOD = 0

end

until battery system End of Discharge (EOD) tEOD, and segment number i. Utilizing the

flight plan database described in Section 5.3.1, LSS first searches for an existing contingency

flight plan in set P ∗
i that leads to a suitable prepared landing site. Note that the value of

∗ ∈ {mid, end} is determined by whether x⃗(t) is before or after the segment i midpoint,

respectively.

Figure 5.6: Landing strategy selector logic flow.

Each candidate landing plan in P ∗
i is evaluated for reachability under degraded perfor-

mance conditions, considering factors such as reduced battery EOD and reduced thrust due

to propulsion unit failures and a potentially degraded battery condition. If there is at least

one reachable flight plan serving as an emergency landing option, that plan can be executed.

In cases where multiple flight plans satisfy the reachability criteria, the landing plan with

79

minimum cost C∗
i,j is selected as defined in Equation 5.1.

Fig. 5.7 provides an example that demonstrates the process of generating contingency

flight plans to prepared landing sites.

Figure 5.7: Visualization of LSS generating contingency flight plans to prepared landing
sites. The approximate footprint from the offline flight planning database is represented by
a green dotted circle. The reachable prepared landing sites are depicted as blue asterisk
circles. The midpoint and endpoint of each flight trajectory are marked with cyan dots. The
solid blue lines represent the generated contingency flight paths.

Per Section 5.3.2, when the number of replanning instances in the Landing Strategy

Selection (LSS) process exceeds the threshold, flight termination is triggered. This occurs

when the vehicle is unable to reach consecutive landing sites.

5.3.4 Continue/Hold Selector

Typically, the ACLM operates within milliseconds, allowing for quick retrieval and execution

of pre-flight computed contingency landing plans. However, in the worst-case scenario where

no prepared landing site is available within the aircraft’s current footprint, real-time planning

becomes necessary. Although the execution time of ACLM in such cases can still be fast,

it may be nontrivial. To address this, a continue/hold selector thread runs in parallel to

determine whether it is safer to hold/loiter or continue following the current flight plan while

80

generating a safe landing solution. This thread is activated within the online flight planner

when the LSS thread triggers it. It calculates the anticipated future location where the

online flight planner constructs a real-time contingency plan for moderate-risk landing sites.

Typically, if the current overflight area has low population density and a minimal possibility

of traffic conflicts, holding/loitering may be preferred. Fig. 5.8 shows Continue/Hold selector

logic.

Figure 5.8: Continue/Hold selector logic flow.

In cases where the computation time for LSS exceeds the threshold, the costs of loitering

versus continuing the current flight path are evaluated within a near-term time horizon of

[t, t + δ]. The decision of whether to continue or hold is based on the cost function defined

as follows:

Ci(·) =
∑
{αk ∗ Cik}

= α1 ∗ CiP (·) + α2 ∗ Ciair(·) + α3 ∗ CiL∗
j
(·), where CiL∗

j
(·) = 1

|L∗
j |

(5.2)

The superscript i in the above equation represents the options of holding/loitering (i = 1)

or continuing (i = 2). The weights αi are the coefficients of the cost function, and they

are typically chosen such that their sum equals 1. The variables CiP and Ciair represent the

population density and air traffic risk (i.e., airspace density) respectively, at either hold/loiter

area or the current flight path within the near-term horizon. It is assumed that values for

CiP and Ciair are preloaded for the nominal flight region before the flight begins. The variable

CL∗
j
represents the proximity to prepared landing sites, which is defined as the inverse of the

total number of prepared landing sites |L∗
j | located on nominal flight plan segment j near or

further along the future flight plan.

81

5.3.5 Online Flight Planner

If the LSS does not contain prepared landing sites that are reachable based on current TEOD

and for which preflight plans are cached for retrieval, it is necessary to generate a landing

plan to a higher-risk unprepared landing site in real time. Despite the higher costs associated

with these higher-risk landing sites in terms of terrain and property, landing under control

by following a feasible collision-free path to a designated landing site is typically safer than

flight termination. The online flight planner is initiated with a reachable footprint defined by

the updated values of [tEOD, x⃗(t)]. Fig. 5.9 shows the logic flow of the online flight planner.

The process of rapidly computing a reachable approximate footprint is described below.

Figure 5.9: Online flight planner logic flow.

5.3.5.1 Reachable Footprint Computation for an Energy-constrained Multi-

copter

A real-time analytical approach for estimating the reachable footprint of a multicopter is

calculated based on battery tEOD at constant cruise speed. To achieve this, we adopted

a conservative approximation by considering longitudinal level flight for the multicopter as

depicted in Fig. 5.10.

In this approximation, the equations of motion are defined as follows, where u = −T sin θ

with T representing thrust (N) and θ denoting the pitch angle in radians:

mẍ = u− dxẋ

mg = T cos θ (5.3)

The state space representation of equation (5.3), incorporating the forward position (x1 =

82

Figure 5.10: Multicopter in 1-D motion

x) and velocity (x2 = ẋ1), is provided below. Additionally, the cost functional determining

the minimum control effort for projecting the footprint over a specified time interval (t0 = 0,

tf = TEOD), is expressed as follows:

ẋ1 = x2

ẋ2 =
1

m
u− dx

m
x2 (5.4)

J =
1

2

∫ tf

t0

u2 dt (5.5)

Pontryagin’s Minimum Principle (PMP) [113] determines the optimal control input u∗.

By considering simplified longitudinal, level multicopter flight dynamics, an analytical solu-

tion can be obtained using the PMP, with computations typically taking milliseconds and

requiring only modest computing resources. The Hamiltonian associated with this problem

is defined as follows:

H =
1

2
u2 + [λ1 λ2]

[
x2

1
m
u− dx

m
x2

]
(5.6)

The obtained solution for the optimal states (x∗1, x
∗
2), co-states (λ

∗
1, λ

∗
2), and controls (u∗)

can be expressed by the following set of equations:

83

x∗1(t) = −
C1

d2x
t+

C2

2d2x
exp

(
dx
m
t

)
− C3

dx
m exp

(
−dx
m

t

)
+ C4 (5.7)

x∗2(t) = −
C1

d2x
+

C2

2dxm
exp

(
dx
m
t

)
− C3 exp

(
−dx
m

t

)
(5.8)

u∗(t) = −C1

dx
+
C2

m
exp

(
dx
m
t

)
(5.9)

λ∗1(t) = C1 (5.10)

λ∗2(t) =
mC1

dx
− C2 exp

(
dx
m
t

)
(5.11)

To determine the maximum distance covered by the hexacopter in both the forward and

backward directions, a problem is formulated with a free final state and a fixed final time to

determine constants C1, C2, C3, C4. Then, the following boundary conditions are established

to define the maximum distance traveled in the forward direction, and the maximum distance

traveled backward given an initial forward velocity:

x1(t0) = x0, x2(t0) = vinit, x2(tf) = vinit, λ2(tf) = 0 (5.12)

x1(t0) = x0, x2(t0) = vinit, x2(tf) = −vinit, λ2(tf) = 0 (5.13)

By maintaining equal initial and final velocity magnitudes, a constant velocity profile

is represented in the forward direction, while a constant steady-state velocity is depicted

in the backward direction. This leads to a nearly constant current draw from the battery,

causing the battery tEOD to decrease consistently until it reaches the final position for level

flight. Solving the system of linear equations with the given boundary conditions allows us

to determine the values of Ci. In the implementation, the exponential function is replaced

by an nth-order MacLauren Series expansion, where for the current approach, we utilize an

order of n = 5. Once the optimal control input u∗(t) is calculated for steady-level flight, the

values of T and θ are derived using following equations:

θopt(t) = atan−1

(
−u(t)
mg

)
(5.14)

Topt(t) =
mg

cos(θopt(t))
(5.15)

An estimation of the online reachable footprint is then computed based on the updated

84

real-time prediction of tEOD as shown in Algorithm 7. The real-time reachable moderate-risk

landing sites are found using point-in-polygon operation [54] under the footprint boundary.

Fig. 5.11-5.13 illustrate the online reachable footprint concept with example footprints given

a multicopter cruise speed of 7m/s at different tEOD. The figure illustrates that as the EOD

values increase, the multicopter possesses enough duration to decelerate and move in the

backward direction. Conversely, lower tEOD values limit the distance that can be traveled

backward.

Algorithm 7: Online Footprint Approximation

Input: vinit,EOD,TMax

Output: Footprint Limits
// vinit = Current Velocity (x,y)

// EOD = Battery End of Discharge (s)

// TMax = Maximum Total Thrust (N)

1 Assign the boundary conditions as per Eq. (5.12)-(5.13)
2 Calculate Ci values for forward and backward motion
3 Determine u∗fwd,u

∗
bkwd using eq. (5.9)

4 Determine [θopt−fwd, Topt−fwd] and [θopt−bkwd, Topt−bkwd] using eq. (5.15)-(5.14)
5 Bound the [θopt , Topt] with θmin/max obtained from available TMax for level flight
6 Determine ubound using eq. (5.3) and bounded values of θbound,Tbound
7 Simulate system given by eq. (5.4) until tEOD using ubound
8 Determine footprint limits based on the position at end of simulation

5.3.5.2 Real-time Multi-Goal Flight Planning

The online flight planner in ACLM incorporates a multi-goal planning algorithm [107]

to calculate plans to reachable unprepared (higher-risk) landing sites in real-time when no

prepared landing sites are accessible through LSS. This algorithm utilizes a three-dimensional

rasterized map, created from airborne point cloud data known as Digital Surface Maps. Each

voxel cell in the map contains occupancy and risk information, allowing for the construction

of a comprehensive 3D environment representation. This occupancy map is then utilized

to determine an optimal collision-free trajectory towards the minimum-cost moderate-risk

landing site within the online reachable footprint. The A* path planning algorithm was

employed to generating the online contingency flight planning solution. The cost of a flight

plan to a reachable unprepared landing site i is defined using Equation 5.16 with terms

analogous to those used in preflight planning (Eq. 5.1):

Ci = β · dtravel + γ · R (5.16)

85

Figure 5.11: Reachable footprint of a multicopter based on level-flight forward/backward
range at constant cruise speed.

Figure 5.12: Reachable footprint for a multicopter, initially moving in the x-axis direction
with a velocity of 7m/s and a time until battery End of Discharge (TEOD) of 2 seconds.

86

Figure 5.13: Reachable footprint for a multicopter, initially moving in the x-axis direction
with a velocity of 7m/s and a time until battery End of Discharge (TEOD) of 10 seconds.

5.3.6 Flight Termination

The activation of the flight termination thread can occur within various components such as

the C&R watchdog, LSS, or online flight planner, as illustrated in each respective thread. Fig.

5.14 shows the flow chart of the flight termination thread. Within this thread, the attitude

angles (pitch and roll) and their angular rates (pitch rate and roll rate) are continuously

provided to the ACLM at its designated sampling rate. The thread’s purpose is to identify

instances where the vehicle system is not tumbling or when the tumbling rate is sufficiently

slow to initiate parachute ejection and system shutdown as shown in the Algorithm 8.

5.3.7 Assurance for individual ACLM sub-components

We ensure the reliability and safety of the entire ACLM system by establishing assurance for

each of its sub-components. For offline flight planning, assurance is established through

offline validation of the prepared landing site database and by validation of each contingency

landing plan with respect to constraints on tEOD and flight performance/controllability con-

straints. Because preflight contingency plans need not be generated or checked quickly, they

can be validated mathematically and in simulation.

For the C&R watchdog, assurance is derived from control theory. We apply positive

controllability theory (i.e., for multicopter unidirectional thrust configurations). Reachability

87

Figure 5.14: Flight termination logic flow.

is assessed based on energy constraints, and optimal control solutions are obtained through

the application of Pontryagin’s minimum principle. For the landing strategy selector,

assurance is made through the retrieval and execution of landing site plans computed from

validated map and landing site data and with plans whose flight performance and obstacle

clearance constraints can be validated in simulation before flight. In the continue/hold se-

lector, the decision of whether to proceed with the current flight plan or initiate a hold/loiter

pattern while an online ACLM solution is established is determined by evaluating the solu-

tion generation time against a predefined threshold. This is an ”informed judgement call”

that neither guarantees nor compromises safety of flight. Finally, for the online flight

planner, assurance is achieved as follows First, the online flight planner uses an unprepared

landing site database that is validated but higher risk in that the site is not protected from

occupancy by people, objects, etc. Second, because contingency landing plans are short in

distance and time, search-based planning time can be bounded in depth thus time. These

layers of assurance collectively form a foundation upon which ACLM operates, ensuring the

safety and reliability of its contingency management processes.

While it is impossible to provide an absolute guarantee of flight termination (FT) avoid-

ance, ACLM has been designed to make FT the final resort. This is achieved by systemati-

cally minimizing the likelihood of executing FT through a series of ACLM execution stages:

• ACLM Required: For most flights, ACLM will not be needed. In this case, thenom-

inal flight will proceed to the original destination.

• Assured Offline Solution: If contingency response is needed, the first step is to

employ an assured offline solution. This solution isgenerated in advance, ensuring

its reliability and feasibility. Further, collective use of the C&R watchdog and plan

88

Algorithm 8: Flight Termination Condition

Input: ϕ, θ, ϕ̇, θ̇
Output: RFT

// ϕ = roll angle (rad)

// θ = pitch angle (rad)

// ϕ̇ = roll rate (rad/s)

// θ̇ = pitch rate (rad/s)

// RFT = Flight Termination Flag

if (ϕ ∈ [−0.7854, 0.7854] & θ ∈ [−0.7854, 0.7854]) then

if (ϕ̇ ∈ [−0.2, 0.2] & θ̇ ∈ [−0.2, 0.2]) then
1 RFT = 1

end

else
2 RFT = 0

end

database minimizes the delay between the triggering event and contingency landing

plan execution.

• Assured Online Solution: In cases where no viable offline solution is available,

ACLM generates an online solution that is assured to meet current controllability and

reachability constraints. While landing at a mapped but unprepared site carries higher

risk than landing at a prepared site, this procedure carries lower risk than trying to

discover a landing site in real-time or continuing to a prepared site outside the reachable

footprint, which would exceed tEOD thus result in FT due to motor shutdown.

• Flight Termination (FT) as a Last Resort: Only when all previous steps fail to

provide a feasible contingency plan and no other safe alternatives exist, flight termi-

nation (FT) is executed as a last resort. Because the C&R Watchdog initiates FT as

soon as controllability is lost, the UAS is unlikely to have tumbled into an adverse

attitude state, so probability of safe parachute deployment is maximized.

5.4 Simulation Setup

Package delivery will require UAS to operate in a low-altitude urban airspace as shown in

Fig. 5.15.

In this, work, ACLM was implemented into the hexacopter modeled in [89], and missions

were simulated in the urban environment of Manhattan, New York City. Each simulated

package delivery flight involved rotor failure, battery degradation, or a combination of both,

89

Figure 5.15: Multicopter use case for urban package delivery. The top left image shows
Matternet delivering a medical item. The top right image shows Amazon Prime Air, and
the bottom image depicts Geopost (formerly DPDgroup) for parcel delivery.

requiring the ACLM algorithm to ensure the safety of the distressed vehicle using its decision-

making algorithms. To test more realistic scenarios, simulations were conducted using both

lighter-weight and heavier-weight package-delivering hexacopters, where the limited maxi-

mum thrust of the vehicles resulted in different outcomes for the ACLM decision-making

process.

During the simulation of ACLM, several key assumptions are assumed: First, it is as-

sumed that contingency management plans need not be deconflicted with other air traffic.

This condition is reasonable as emergency landings receive priority handling. Second, we as-

sume an accurate and precise map marking prepared and unprepared landing sites is available

for use. This map forms the basis for all navigation-related calculations and decision-making.

Finally, the simulation assumes the presence of accurate and effective Fault Detection and

Identification (FDI) mechanisms. These play a critical role in the activation and execution

of ACLM solutions, effectively identifying and responding to vehicle system anomalies.

The below subsections describe environment modeling and setup for our Monte Carlo

simulations.

5.4.1 Environment Modeling

A 3-D map of Manhattan City, New York City was created using OpenStreetMap (OSM)

data. OSM is a collaborative global mapping project that creates geographical data [65].

90

It provides regularly updated map entities such as roads, buildings, airways, and more,

along with specific details like centroid and area data. The raw OSM data includes building

coordinates represented as polygon vertices, and height using the WGS 84 / UTM zone 18N

coordinate system [67]. To convert the unit of measurement to meters in the local coordinate

system, we applied a projected coordinate system (EPSG: 26918). Subsequently, geofence

map processing algorithms in [3] were applied within the region of interest (ROI) to generate

static keep-out geofence layers around each building. This ensures a collision-free path for

the UAS during both nominal flight planning and contingency flight planning.

Because OSM does not map UAS landing sites, we generated a database of potential

landing site from multiple data sources. We utilized a feature-rich database from [4] to create

two distinct categories of landing sites: prepared landing sites for offline flight planning

and moderate-risk or unprepared landing sites for online flight planning. The landing

site database was constructed by combining data from multiple sources, including Open

Street Map (OSM), LIDAR data, and terrain height data. This comprehensive approach

ensures that the landing site database incorporates diverse and relevant data for accurate

and effective contingency flight planning. Fig. 5.16 shows the data processing of landing

sites for offline and online flight planning.

Figure 5.16: Pre-processing of data [4] to generate prepared/ unprepared landing site offline
and online flight planning database.

The risk level of each landing site is assigned a normalized value between 0 and 1 to categorize

the associated risk. The equation used to calculate the landing site risk is presented below,

where wt, wp, ws are weight factors, and Ct, Cp and Cs are terrain cost, population cost, and

property cost, respectively, as defined in [4]:

91

R = wt · Ct + wp · Cp + ws · Cs (5.17)

For our work, the prepared (i.e., low-risk) landing sites (Llow) and unprepared (i.e.,

moderate-risk) landing sites (Lmoderate) are further categorized as follows, where hLi
is

the height of the landing site:

Llow = {Li | R ≥ 0.6 & hls < 50m} (5.18)

Lmoderate = {Li | R < 0.6 & hls < 50m} (5.19)

Fig. 5.17 shows the ROI where the Monte Carlo simulation was conducted. The map shows

the prepared landing sites and unprepared moderate-risk landing sites in the ROI. The total

number of available landing sites in the ROI is shown in Table 5.1.

Figure 5.17: Locations of prepared landing sites and moderate-risk landing sites visualized in
a region of interest (ROI) in Manhattan, New York City. On the left side, prepared landing
sites are indicated by green circles, while on the right side, moderate-risk landing sites are
represented by red circles. To ensure clarity, only buildings with a height greater than 60m
are displayed as solid black polygons.

Table 5.1: Total number of available landing sites

Prepared landing sites Unprepared landing sites
50 1581

92

After categorizing the landing sites based on their normalized risk, the offline flight plan-

ning database for each prepared landing site was generated. This was achieved by applying

the Visibility Graph algorithm [57] to determine the minimal travel distance from the mid and

endpoint of each flight segment to each landing site on the vectorized map. This approach

ensures a collision-free path to the destination without any distortion or approximation.

Subsequently, a prepared landing site database was created and ranked for the mid and

endpoint of each flight segment using Equation 5.1 in Section 5.3.1. In a similar manner, a

moderate-risk unprepared landing site database was created and ranked in real-time using

Equation 5.16. Table 5.2 below summarizes the weight factor parameters used in the Monte

Carlo simulation.

Table 5.2: Weight factor parameters for landing sites

wt wp ws βl γl βm γm
0.5 0.25 0.25 0.6 0.4 0.5 0.5

5.4.2 Vehicle and ACLM System Modeling

The hexacopter model for vehicle simulation was constructed using the physical parameters

provided in [90]. Fig. 5.18 shows the hexacopter configuration, and Table 5.3 provides a

summary of the key parameters used in designing the simulation model. The parameter

L represents the arm length of the hexacopter, and Cq and Ct correspond to the moment

coefficient and thrust coefficient of the motor, respectively. The inertia matrix elements are

denoted as Ixx, Iyy, and Izz. Additionally, Table 5.4 presents the mass of the hexacopter,

which carries lighter-weight and heavier-weight packages.

Table 5.3: Parameters for hexacopter models [SI unit]

L Cq Ct Tmax Ixx Iyy Izz
0.225 2.08e−10 1.57e−8 27 0.0169 0.0132 0.0327

Table 5.4: Mass of package-carrying hexacopter models [kg]

lighter-weight hexacopter heavier-weight hexacopter
1.2 1.837

The feedback controller employed a Linear Quadratic Regulator (LQR) design tuned for both

no-rotor failure and single-rotor failure cases. In the event of a single-rotor failure, the system

93

Figure 5.18: Hexacopter model configuration used in the simulation.

was reconfigured into a quadcopter configuration by deactivating the opposite rotor, relying

on the remaining four rotors to control the vehicle. A quadcopter degraded configuration

made the heavier-weight hexacopterdescend at a constant rate because it cannot generate

sufficient thrust to balance weight. Thisled to a significantly contracted reachable footprint.

Vehicle controller execution rate was faster than ACLM watchdog execution rate to assure

good controller performance as shown in Table 5.5.

Table 5.5: Sampling rate of controller and ACLM [Hz]

LQR controller ACLM
200 1

To determine the reachable footprint, tEOD was calculated using the corresponding motor

angular speeds, average current draws, and initial battery capacity (amp-hours). Our simu-

lations used the experimentally determined curve-fitted equation from [90] that relates the

current draw and varying motor speed (rad/s) for this specific hexacopter model to calculate

the current draw. Then, the average current draws of both the lighter-weight and heavier-

weight hexacopter models were determined by considering the constant vehicle speed across

multiple simulations. Subsequently, the time until the battery end of discharge was then

calculated using the following equation based on [114]:

Iavg = mean(
6∑

i=1

3.0282e−9 · ω3
i) per flight (5.20)

TEOD = Cbattery/Iavg ∗ 3600 (5.21)

94

where ω is the individual motor speed, and Cbattery is the battery capacity.

Table 5.6 provides a summary of the average current draw under nominal operating con-

ditions, with a safety factor of 10% applied, as well as the average current draw under rotor

failure conditions, with a safety factor of 20% applied. Throughout the simulation, hexa-

copter models carried two battery packs that have just enough combined battery capacity to

complete each nominal flight trajectory. This design ensures that in the event of rotor failure

or battery degradation, it is likely that the vehicle will be unable to reach its original desti-

nation, consequently resulting in ACLM’s C&R watchdog triggering LSS for a contingency

response.

Table 5.6: The average current consumption and altitude deviation of the hexacopter models
under normal operating conditions and rotor failure scenarios.

Hexacopter
lighter-weight heavier-weight

Avg. current draw [A]
(normal operating)

32 60.9

Avg. current draw [A]
(with rotor-failure)

36 81.4

Altitude lost [m/s]
(after rotor-failure)

- 0.5

The hexacopter model and ACLM were integrated with each other seamlessly using

Simulink and Stateflow. Fig. 5.19 shows the Simulink and Stateflow models with inputs

and outputs to each other. Particularly, designing ACLM using Stateflow allowed for the

implementation of parallel threads enabling synchronization between states. This synchro-

nization ensured that events in one thread triggered actions in another thread as illustrated

in the ACLM logic flows in Section 5.3.

5.4.3 Monte Carlo Parameter Setup

Monte Carlo simulation parameters were configured to analyze the ACLM outputs with a

package-carrying hexacopter designed in Section 5.4.2. The parameters used in the simula-

tion are shown in Table 5.7.

In the simulation, the hexacopter initiates the mission by performing vertical takeoff and

landing maneuvers. Furthermore, it is assumed that there is no wind and there are no state

estimation errors or uncertainties.

95

Figure 5.19: Hexacopter model and ACLM integration using Simulink and Stateflow. Icon
images are adapted and modified from [5].

Table 5.7: Monte Carlo Simulation Parameters

Parameter Description/Constraints

Start and Destination Points Random; Flight distance: 300 - 1200 m AGL

Rotor Failure Time Random

Battery Degradation Time Random

Single Battery Degradation Percentage No degradation, 10%, 15%, 50%

Failed Rotor Index Random (1-6)

5.5 Simulation Results

The Monte Carlo simulations were conducted using MATLAB 2022b on a computer equipped

with an AMD Ryzen 9 5900HX mobile processor (8-core) and an NVIDIA GeForce RTX 3060

graphics card, running 64-bit Windows 10. Simulink codes were executed in parallel, utilizing

all 8 cores, and the runtime of each thread was recorded for each simulation. A total of 10,398

Monte Carlo simulations were run for lighter-weight and heavier-weight package-delivering

hexacopter, respectively. During the simulation, a random selection of four different battery

degradation states, as described in Section 5.4.3, was incorporated as part of the Monte

Carlo parameters. The frequency of occurrence for each degradation percentage is presented

in Fig. 5.20.

Three scenarios were considered for both hexacopter models: 1) a single-rotor failure, 2)

a single-battery degradation, and 3) simultaneous single-rotor failure and battery degrada-

tion. These scenarios occurred randomly at different starting points, destinations, and times

throughout the Monte Carlo simulation. A total of 3,466 simulations were conducted for

each scenario case, resulting in a cumulative total of 10,398 simulations for each hexacopter

96

Figure 5.20: Monte Carlo simulation of in-flight battery anomalies for various degradation
cases. During each flight, one of the following scenarios was simulated: no battery degrada-
tion, battery capacity degradation of 10%, 15%, or 50% in one of the two battery packs.

model. The visualization of the package-delivering AAM flying in Manhattan, New York

City during the simulation is shown in Fig. 5.21. Additionally, Fig. 5.22-5.23 display the

visualization of the offline contingency flight path generated using LSS and the online flight

planner solution, respectively.

The output results of the simulation were analyzed to derive statistics on key features

for both the lighter-weight and heavier-weight hexacopter models, as well as to monitor the

time-varying system states in the ACLM. An example of ACLM outputs in a specific scenario

is presented in Fig. 5.24. In this scenario, the lighter-weight package-delivering hexacopter

experiences a 15% battery degradation in one of its batteries at 142 seconds. As a result,

the original destination cannot be reached due to the reduced end of battery discharge time.

ACLM then searches for and identifies a prepared landing site with the minimum cost to reach

and modifies the flight path at the nearest flight segment. Subsequently, at 413 seconds, the

vehicle encounters two adjacent rotor failures, leading to a loss of control. This ultimately

triggers the flight termination of the vehicle system and the ACLM, with the deployment of

a parachute.

Flight termination can also occur when there are no reachable prepared landing sites or

unprepared landing sites identified through the LSS and online flight planner after the vehicle

experiences an in-flight anomaly. Table 5.8 presents the flight termination rates for both the

lighter-weight and heavier-weight hexacopter models when they are unable to find reachable

97

Figure 5.21: Visualization of the nominal flight plan and simulated flight trajectory. The yel-
low line indicates the nominal flight path, while geofenced buildings are constructed around
the nominal flight trajectory (shown in green).

landing sites in the database. In either case of flight termination, when such termination

becomes necessary, ACLM ensures the safety of the vehicle by verifying its position and

triggering the proper deployment of the parachute as shown in Fig. 5.14. Despite the

relatively low occurrence of flight termination events, successful parachute deployment for a

small UAS minimizes kinetic energy on impact.

Table 5.8: Flight Termination (FT) rate of hexacopter models

Hexacopter lighter-weight heavier-weight
FT rate (%) 2.95 4.56

5.5.1 Lightweight Package-carrying Hexacopter

A lighter-weight package-delivering hexacopter is equipped with a maximum thrust capa-

bility of 27 N, as indicated in Table 5.3. This level of thrust is more than sufficient to

effectively guide, control, and navigate the hexacopter according to the mission plan, even in

the event of a single rotor failure that results in a quadcopter configuration. Specifically, for

the lighter-weight hexacopter with a mass of 1.2 kg, the four remaining rotors can generate

18 N of force, providing an additional available thrust of approximately 6 N beyond what

is required for maintaining a hover position. Consequently, when encountering rotor failure

98

Figure 5.22: Visualization of the offline contingency flight path generated using Visibility
Graph with polygon decimation. The green dashed circles represent the approximate foot-
print, while the cyan asterisk indicates the mid and endpoint of each flight segment. The
blue lines depict the stored flight path to prepared landing sites prior to the flight. For
better visualization, only buildings with a height exceeding 60m are displayed as solid black
polygons.

or a combination of rotor failure and battery degradation, the primary influencing factor for

identifying reachable landing sites through LSS or the online flight planner is the TEOD.

In each scenario case, a total of 3,466 simulations were conducted, and the frequency of

different ACLM states/outputs was collected throughout the simulation. Fig. 5.25 illustrates

the frequency of ACLM states/outputs specifically for scenario case 1. Here, “Rt == 0”

indicates cases where the vehicle cannot reach the final destination, necessitating the use

of ACLM to search for offline or online flight plans. “RLSS == 1” represents cases where

ACLM finds a reachable offline flight plan. “Ronline FP == 1” represents cases where ACLM

finds a reachable online flight plan when LSS cannot find solutions. “FT == 1” indicates

cases where ACLM determines that there are no reachable offline/ online flight plans for the

distressed AAM to safely land, resulting in the deployment of a parachute.

The execution runtime statistics for Scenario case 1 is in Fig. 5.26, where the runtime of

main threads are recorded: 1) C&R watchdog, 2) LSS, 3) Online flight planner. Each statistic

shows the information of runtime medians, quartiles, and outliers from the simulation. Note

that the multi-goal planning algorithm in the online flight planner may need to search for

multiple landing sites to determine real-time reachability to the moderate-risk unprepared

99

Figure 5.23: Visualization of the online flight planner solution. The reachable moderate-risk
landing sites are indicated by green asterisks within the reachable footprint shown in cyan
circle. The right figure illustrates the visualization of the multi-goal planner, where the
online contingency flight path is generated using voxel A∗ algorithm.

landing site. This can lead to a higher number of outliers with extent influenced by the

topology of the available unprepared landing sites within the reachable footprint.

Similarly, the Monte Carlo simulation was used to collect the frequency of various ACLM

states/outputs for Scenario case 2. The results are displayed in Fig. 5.27. As the battery

degradation reduces the tEOD to a greater extent than a single rotor failure does, the result

indicates that the ACLM tends to rely slightly more on the online flight planner to identify

reachable landing sites for scenario case 2. The runtime statistics for scenario case 2 are

presented in Fig. 5.28, using the same labels as shown in Fig. 5.26.

Finally, the Monte Carlo simulation was used to collect the frequency of various ACLM

states/outputs for Scenario 3. The results are displayed in Fig. 5.29. In this scenario, the

hexacopter experiences simultaneous rotor failure and battery degradation, resulting huge

decrease in TEOD. This resulted in ACLM finding fewer reachable prepared landing sites,

and therefore relying more on online flight planner to find paths to unprepared landing sites

in real-time. Note that this trend is reflected in the number of available prepared landing

sites and unprepared landing sites in Table 5.1. The runtime statistics for scenario case 3

are presented in Fig. 5.30, using the same labels as shown in Fig. 5.26.

100

Figure 5.24: Example simulation ACLM outputs . C t represents controllability and R t rep-
resents reachability in C&R watchdog. PIP indicates the ongoing plan being executed by the
LSS algorithm, which searches for a safe landing site from an offline database. ACLM Tflag
is a system termination flag that activates when the hexacopter loses controllability. L cnt
indicates the number of times ACLM executed the LSS algorithm, and R LSS is a flag in-
dicating the availability of a reachable prepared landing site. CH flag is the continue/hold
flag, contingency plan index refers to the map data index for the prepared landing site, and
T EOD represents the end of discharge time of the battery.

5.5.2 Heavyweight Package-carrying Hexacopter

A heavier-weight package-delivering hexacopter is equipped with the same maximum thrust

capability of 27 N as in the lighter-weight hexacopter model. This level of thrust is sufficient

to effectively guide, control, and navigate the hexacopter in nominal conditions. However,

in the event of a single rotor failure that results in a quadcopter configuration, the heavier-

weight hexacopter with a mass of 1.837 kg cannot generate sufficient thrust to simulta-

neously guide, control, navigate, and maintain its desired cruise altitude. Consequently,

when encountering rotor failure or a combination of rotor failure and battery degradation,

the heavier-weight package-delivering hexacopter consistently experiences a loss of altitude

while attempting to reach contingency landing sites. A visualization of a heavier-weight

hexacopter model performing trajectory after experiencing a single rotor failure is shown in

Fig. 5.31.

101

Figure 5.25: Monte Carlo simulation of lighter-weight hexacopter with case 1 simulation:
a rotor failure during flight. A total of 3,466 flight simulations were performed, and the
frequency of occurrence for different ACLM statuses is presented.

As in thelighter-weight hexacopter model, a total of 3,466 simulations were performed for

each scenario. The frequency of different ACLM states/outputs for Scenario 1 is shown

in Fig. 5.32. With the heavier-weight hexacopter, the average current draw following a

rotor failure is considerably higher compared to the lighter-weight hexacopter, as indicated

in Table 5.6. Furthermore, following a rotor failure, the heavier-weight hexacopter model

experiences a descent in altitude, leading to a decrease in the number of reachable prepared

landing sites. This occurs because some of the prepared landing sites in the original footprint

become inaccessible due to the loss of altitude over time. As a result, the ACLM placed

greater reliance on online flight planners to determine accessible landing sites.

The execution runtime statistics for Scenario 1 is presented in Fig. 5.33, where the

runtime of main threads are recorded: 1) C&R watchdog, 2) LSS, 3) Online flight planner.

Each statistic shows the information of runtime medians, quartiles, and outliers from the

simulation.

Similarly, the Monte Carlo simulation was used to collect the frequency of ACLM

states/outputs for scenario case 2. The results are displayed in Fig. 5.34. Just as the

lighter-weight package-delivering hexacopter, as the battery degradation reduces the TEOD

102

Figure 5.26: Execution time of main threads in ACLM for case 1 with lighter-weight
hexacopter.. Median, quartiles, as well as outliers, are presented for C&R watchdog, LSS,
and online flight planner.

to a greater extent than a single rotor failure does, the result indicates that the ACLM

tends to rely slightly more on the online flight planner to identify reachable landing sites for

Scenario 2.

The runtime statistics for Scenario 2 are presented in Fig. 5.35, using the same labels as

shown in Fig. 5.26.

Finally, the Monte Carlo simulation was used to collect the frequency of various ACLM

states/outputs for scenario case 3. The results are displayed in Fig. 5.36. In this scenario,

the hexacopter experiences simultaneous rotor failure and battery degradation, resulting huge

decrease in TEOD as well as a decrease in the number of available prepared landing sites. This

resulted in ACLM identifying fewer reachable prepared landing sites, and therefore relying

more on online flight planning with unprepared landing sites.

The runtime statistics for Scenario 3 are presented in Fig. 5.37, using the same labels as

shown in Fig. 5.26.

103

Figure 5.27: Monte Carlo simulation of lighter-weight hexacopter with case 2 simulation:
a single-time battery degradation during flight. A total of 3,466 flight simulations were
performed, and the frequency of occurrence for different ACLM status values is presented.
Each label corresponds to the labels in Fig. 5.25.

5.6 Discussion

While the Monte Carlo simulation results indicated a relatively low occurrence of Flight

Termination (FT), there remain strategies to further reduce the probability of FT in emer-

gency scenarios. One approach is generating flight plans that avoid potential dead zones

(i.e., overflown areas with no reachable prepared landing sites) to offer ACLM more options

in the event of a failure. By planning routes that are in close proximity to prepared landing

sites, ACLM can reduce the chances of FT in emergency scenarios.

ACLM assurance can be only achieved when diagnostics and prognostics systems are

present and function properly. These systems play a critical role in providing real-time

information about component health (i.e., rotor) and predicting future performance (i.e.,

estimating the remaining useful life of battery) as in [105]. Such systems are crucial in

determining the controllability and reachability of landing sites.

ACLM plans developed in preflight and real-time will need to consider urban wind and

visibility conditions to calculate footprint and efficacy of each potential landing site. Al-

though computationally expensive and sensitive to prevailing winds, CFD can be used to

accurately predict wind near landing sites as in [115]. Also, incorporating navigational un-

104

Figure 5.28: Execution time of the main threads in ACLM for case 2 with lighter-weight
hexacopter.. Median, quartiles, as well as outliers, are presented for C&R watchdog, LSS,
and online flight planner.

Figure 5.29: Monte Carlo simulation of lighter-weight hexacopter with case 3 simulation:
the simultaneous occurrence of rotor failure and single-time battery degradation during flight.
A total of 3,466 flight simulations were performed, and the frequency of occurrence for
different ACLM statuses is presented. Each label corresponds to the labels in Fig. 5.25.

105

Figure 5.30: Execution time of main threads in ACLM for case 3 with lighter-weight
hexacopter. Median, quartiles, as well as outliers, are presented for C&R watchdog, LSS,
and online flight planner.

Figure 5.31: Visualization of a heavier-weight hexacopter experiencing a loss of altitude
following a rotor failure. At the 30-second mark, one rotor loses thrust. On the left side, the
3D representation displays the nominal flight trajectory (depicted in green), and the actual
vehicle path (shown as a black dashed line). The figure on the right illustrates the positional
error in altitude after the rotor failure. The reachable footprint diminishes, resulting in a
reduced number of reachable prepared landing sites and moderate-risk landing sites.

106

Figure 5.32: Monte Carlo simulation of heavier-weight hexacopter with case 1: a rotor
failure during flight. A total of 3,466 flight simulations were performed, and the frequency
of occurrence for different ACLM statuses is presented. Each label corresponds to the labels
in Fig. 5.25.

Figure 5.33: Execution time of main threads in ACLM for case 1 with heavier-weight
hexacopter. Median, quartiles, as well as outliers, are presented for C&R watchdog, LSS,
and online flight planner.

107

Figure 5.34: Monte Carlo simulation of heavier-weight hexacopter with case 2: a single-
time battery degradation during flight. A total of 3,466 flight simulations were performed,
and the frequency of occurrence for different ACLM statuses is presented.

Figure 5.35: Execution time of main threads in ACLM for case 2 with heavier-weight
hexacopter. Median, quartiles, as well as outliers are presented for C&R watchdog, LSS and
online flight planner.

108

Figure 5.36: Monte Carlo simulation of heavier-weight hexacopter with case 3: the si-
multaneous occurrence of rotor failure and single-time battery degradation during flight. A
total of 3,466 flight simulations were performed, and the frequency of occurrence for different
ACLM statuses is presented.

Figure 5.37: Execution time of main threads in ACLM for case 3 with heavier-weight
hexacopter. Median, quartiles, as well as outliers, are presented for C&R watchdog, LSS,
and online flight planner.

109

certainty from GPS and sensor errors in urban terrain [116] will add an additional buffer

layer to the reachable footprint calculation.

This work has assumed prepared and unprepared landing site data is complete and correct.

While prepared landing sites are have a high probability of being clear and ready to support

an emergency landing, unprepared landing site conditions are uncertain. In reality, a UAS

would need to survey the targeted unprepared landing site once it entered onboard sensor

field of view and divert or execute FT as necessary. Incorporation of onboard sensor data

and real-time observations from other data sources, e.g., air or ground-based, can improve

estimates of risk and availability in future work.

5.7 Conclusion

This chapter introduces an Assured Contingency Landing Management (ACLM) solution

for Advanced Air Mobility (AAM) operations. By utilizing a combination of prepared and

unprepared landing site data, ACLM enables distressed AAM flights to quickly determine

the safest landing option, minimizing reaction time and improving overall safety.

Our work includes the development of the algorithms based on mathematical theory and

database. The proposed ACLM solution is specifically designed for multicopter systems

with more than four rotors. However, ACLM can be seamlessly adopted in other vehicle

configurations, including fixed-wing and hybrid vehicles. Degradation models for battery

modules and rotor failures are incorporated into the Monte Carlo simulations to evaluate

the impact of different failure modes on safe landing decisions.

The statistical performances showed that ACLM can successfully find contingency landing

solutions in the presence of various in-flight anomaly scenarios. By addressing the challenges

posed by AAM operations in low-altitude airspace, our research contributes to the ongoing

efforts to achieve safe and efficient future autonomous transportation solutions. Further

advancements in ACLM will play a crucial role in the full realization of AAM and its safe

operation.

In future work, we plan to enhance our ACLM system by integrating urban wind condi-

tions, which will enable a more accurate calculation of the reachable footprint. Additionally,

we aim to incorporate navigational uncertainty resulting from GPS and sensor errors, specif-

ically considering the influence of urban terrain. This inclusion will add an additional buffer

layer to the reachable footprint calculation.

110

CHAPTER 6

Centralized and Distributed Optimization of

AAM Strategic Traffic Management

6.1 Introduction

The growth of AAM as an urban/ regional transportation mode raises the need for efficient air

traffic management [25, 26, 27, 117]. Therefore, various concept of operations (ConOps) and

architectures have been proposed for UAS/ AAM Traffic Management [28, 117, 29, 118, 17].

Figure 6.1 illustrates FAA’s envisioned AAM transportation system [6] and the roles of

each stakeholder. However, to our knowledge, no research has investigated systematic and

efficient low-altitude urban airspace management, considering local traffic constraints in

flight corridor and vertiport limits, as well as vehicle types, their service priorities and equity.

This research aims to fill this gap by strategically optimizing AAM traffic management in

both centralized and distributed Providers of Services for UAM (PSU) settings. Our research

addresses three key questions:

1. Airspace Sectorization: How should urban airspace be divided so that local traffic

managers (PSUs) can handle AAM effectively?

2. AAM Route Planning: How can we efficiently plan AAM routes when both airspace

and vertiports have limited capacities in each PSU? This involves strategies such as

modifying departure times and adjusting AAM flight speeds while traveling through

corridors.

3. Distributed Management: When multiple PSUs oversee neighboring airspace sec-

tors, how can we coordinate airspace management for smoother AAM operations while

ensuring each PSU’s traffic flow capacity is met? We employ a cooperative game

theoretic approach to coordinate AAM traffic management among PSUs.

111

Figure 6.1: Envisioned AAM architecture with a PSU network [6].

This research takes into account the roles of various stakeholders, including traffic manage-

ment (PSUs), AAM operators, and communities. The proposed traffic management systems

for both centralized and distributed PSU environments are evaluated by their runtimes, ob-

jective costs, and average departure and airborne delays. This aims to compare different

models and design safe, efficient, and scalable AAM traffic management for the growing

AAM industry. In our work, we adopt flight corridors for AAM route planning. This aligns

with the ConOps proposed by government entities, research laboratories, and AAM compa-

nies [28, 119, 120, 121, 122, 123, 124, 125]. The summarized ConOps are shown in Figure

6.2.

In this problem set, we consider the PSU’s role as providing critical data (i.e., terrain,

obstacle, and weather services), segmenting airspace, setting geofences, and strategically

planning AAM flight routes [28] with the following criteria/ goals:

1. Each PSU manages multiple vertiports and computes distinct air traffic flow manage-

ment (ATFM) capacity limits based on factors like vertiport size and public concerns.

2. PSU must ensure conflict-free operations, spatially or temporally, for all AAM flights.

3. To ensure safe AAM operations, especially during the early stages of low-autonomy

AAM deployment [126, 127, 128], PSUs aim to allocate optimized flight corridor routes,

112

Figure 6.2: AAM airspace design ConOps.

minimizing travel time while considering airspace, vertiport capacities as well as vehicle

service priorities.

4. PSUs aim to ensure equitable allocation of departure time for each AAM vehicle,

considering factors such as operational service priorities and vehicle characteristics

(i.e., min & cruise speeds and range).

In the simulation, we categorize AAM vehicles into three configurations: multicopter, vec-

tored thrust, and lift + cruise, representing the most common designs [129, 130, 131]. Then,

each vehicle’s design-specific flight speeds and range are considered when solving AAM traffic

solutions. Additionally, service priorities are classified into regular, express, and medical cat-

egories to accommodate various customer needs. For instance, medical centers and biotech

companies aim to expedite organ transfers using AAM vehicles [132]. Simulations cover

both centralized and distributed PSU systems in an artificially created map, testing scenar-

ios with 150 and 300 vehicles in a Monte Carlo simulation. Objective costs, flight delays,

113

and scalability (i.e., runtime) between centralized and distributed systems are compared.

The structure of the chapter is as follows. Section 6.2 summarizes related work in AAM

traffic management. Section 6.3 describes the methodologies and algorithms for airspace

sectorization, corridor route planning and AAM traffic optimization. Section 6.4 outlines key

assumptions and a procedure for the simulation setup. Section 6.5 presents the simulation

results. Section 6.6 concludes the chapter.

6.2 Literature Review

The technical maturity of aviation technology is creating a new era of transportation. AAM

services include various operations such as passenger transportation, package/ medical de-

livery, humanitarian / rescue missions, surveillance, and ground data gathering, all within

low-altitude airspace. However, ensuring the safe and efficient operation of AAM requires

collaborative efforts among governments, industries and academia to overcome many chal-

lenges [20, 27, 28]. In this literature review, our focus centers on the challenges of AAM

traffic management, addressing the complexities of high-tempo, low-altitude, high-density

AAM operations within the national airspace system (NAS) to ensure safe and efficient

operations.

To start off, NASA has been conducting collaborative research to integrate AAM opera-

tions into the NAS. This involves investigating procedures and algorithmic tools to address

the integration challenges of AAM air traffic operations. NASA’s high-level initial airspace

integration concept, as well as its envisioned strategic and tactical management components,

are outlined in [27]. The main challenges in AAM traffic management include AAM con-

gestion management, separation management and vertiport take-off/landing capacity sizing

[27, 28, 133].

Governments, research laboratories, and AAM companies released their ConOps, envi-

sioning AAM operation through corridors [28, 119, 120, 121, 122, 123, 124, 125]. The FAA

formally defines a corridor as ”an airspace volume defining a three-dimensional route, poten-

tially divided into multiple segments, with associated performance requirements” [117]. FAA

and NASA envision that AAM vehicles are cooperatively managed within these corridors,

governed by set rules, to support increasing operational tempo and new service demands

[117]. Furthermore, AAM maturity levels are categorized from 0 to 5 based on density and

operation scheduling within a federated service network and PSUs [17].

AAM traffic management comprises strategic and tactical components aimed at reducing

congestion and ensuring collision-free routing, similar to traditional ATFM [134, 135, 136].

Recent research explores various algorithmic approaches. For example, in [137], dynamic

114

geofencing (i.e., trajectile geofence that moves along the trajectory) and linear programming

were used to develop a pre-departure first-come, first-serve (FCFS) sequential conflict-free

trajectory planning for AAM vehicles. Similarly, a FCFS vertiport scheduling algorithm

was developed in [138], considering the throughput and capacity of different vertiport con-

figurations. In [139], a graph reinforcement learning method for online schedule planning

was introduced, addressing dynamic demand and uncertainties such as take-off delays and

weather-induced route closures. In [140], a message-based decentralized computational guid-

ance algorithm is developed for providing tactical guidance commands, ensuring safe arrivals

of AAM vehicles, and avoiding line-of-sight events. The paper formulated a multi-agent

Markov decision process for cooperative AAM vehicles in free-flight scenarios and solved

using Monte Carlo tree search.

In our work, we adopt the corridor architecture for AAM flight operations and develop

safe, efficient and scalable AAM traffic strategic traffic management. Particularly, we formu-

late vehicle-type-aware and service-priority-aware traffic management systems that achieve

optimal solutions while considering vertiport take-off/ landing capacities, corridor through-

put capacities, and equity. We explore both centralized and distributed PSU architectures

(i.e., bi-level optimization incorporating cooperative game theory) to evaluate their scalabil-

ity. Additionally, we compare distance-based route planning with weighted/optimized route

planning in both centralized and distributed PSU settings.

6.3 Methodologies and Algorithmic Approaches

6.3.1 Airspace Sectorization for (distributed) PSU

The Airspace Sectorization Problem (ASP) aims to divide airspace into manageable sectors,

originally for controller workload balance and coordination reduction [141]. In the context

of AAM traffic management, PSU takes over these tasks, yet sectorization remains vital.

Effective airspace sectorization prevents overburdening individual PSUs, ensuring efficient

traffic handling within each sector [142]. Furthermore, it reduces the coordination efforts

needed between neighboring sectors and PSUs. Also, areas with higher population den-

sity will require more detailed sectorization due to increased traffic and potential conflicts.

Lastly, the vertiport topology may vary, having different numbers of touchdown and liftoff

(TLOF) pads, gates, and parking spaces [133, 143]. Airspace sectorization should reflect

these parameters to prevent congestion in individual PSU.

It is important to note that some AAM companies may operate and manage their own

vehicles, but the overall air traffic management in the region is overseen by the PSU. For

115

instance, vertiports may be shared among different AAM companies, each with its own

capacity limits. Integrating the number of vehicles that can take off and land at each

vertiport seamlessly into the overall air traffic management is governed by the PSU. By

grouping the region based on common features such as vertiport capacity and population

density (i.e., airspace sectorization), PSU can effectively manage the regional airspace and

provide optimal AAM traffic management solutions.

While traditional airspace design may not directly apply to PSU airspace sectorization

due to differing operational complexities and infrastructure, studying airspace sectorization

methods enhances our understanding of designing sectorization for PSUs. The below Table

6.1 summarizes general airspace sectorization methods for conventional Air Traffic Manage-

ment (ATM) [142, 144, 145, 146] and their advantages and drawbacks.

Table 6.1: Airspace Sectorization Methodologies for conventional ATM

Method/Algorithm Pros Cons

Grid-Based Divide into regular grid layouts Can’t adapt to dynamic traffic
pattern

Voronoi Diagram Geometric method for parti-
tioning. No optimization in-
volved

Computationally intensive for
large-scale

Graph Partitioning Useful for identifying natural
traffic flow

Complex computations

Machine Learning Adapts to real-world evolving
traffic patterns (i.e., dynamic
airspace sectorization)

Requires substantial training
data. May result in inter-
pretability problems

Genetic Algorithm Good for complex, multi-
objective problems

Requires fine-tuning parameters.
Does not guarantee solution sta-
bility

Our PSU airspace sectorization is achieved by assessing similarities between pairs of verti-

port areas. The airspace is then sectorized by identifying communities with shared conditions

among vertiport pairs. The steps for achieving PSU airspace sectorization are as follows:

1. Create initial connections between vertiport pairs, forming flight corridors that adhere

to a minimum and maximum flight range threshold of corridor.

2. Create an undirected, weighted graph. The weight is determined based on the nor-

malized distance, connectivity (number of associated flight corridors per vertiport),

likeness in population density, and likeness in vertiport capacity.

3. Utilize the Louvain method of community detection algorithm [147] to identify non-

overlapping communities (i.e., groups of nodes) within the spatially conflicted network

116

4. Implement Voronoi diagrams [148] to generate the union of Voronoi cells associated

with individual vertiports within the same community, constructing airspace sectors

for each PSU

The Louvain method for community detection is a heuristic algorithm that optimizes

modularity score to find non-overlapping communities from large networks [147]. Modularity

measures how well a network is divided into communities, with a higher score indicating a

better division. A score between 0.3 and 0.7 is generally considered optimal [149]. A Voronoi

diagram [148] is a geometric method that divides a space into regions based on the distance

to a given set of points. Each region consists of all the points closer to a particular input

point than to any other point in the set.

The weight equation for flight corridor network is shown in Eq. 6.1-6.3. The weight

factor of each parameter is represented as α1, α2, α3, α4 respectively, where the sum of the

weight factors equal 1. Gi is the normalized distance between vertiports u and v (i.e., edge i).

max(dcorridor) is the maximum corridor distance, and du,v is the distance between vertiport

u and v. Ni denotes the average connectivity between vertiport u and v. max(mvertiport)

denotes the maximum connectivity that occurs among the vertiports. Hi stands for the

population similarity score in edge i, and Qi represents the vertiport capacity similarity

score in edge i. pu and pv are population densities of the cities, where vertiport u and

vertiport v are located. Similarly, cu and cv are vertiport u’s and v’s capacities. Figure 6.3

visualizes PSU airspace sectorization.

wi = α1 · Gi + α2 · Ni + α3 · Hi + α4 · Qi (6.1)

Gi =
max(dcorridor)− du,v

max(dcorridor)
(6.2a)

Ni =
mu +mv

2max(mvertiport)
(6.2b)

Hi = exp

(
− |pu − pv|
max(pu, pv)

)
(6.2c)

Qi = exp

(
− |cu − cv|
max(cu, cv)

)
(6.2d)

4∑
i=1

αi = 1, 0 < αi < 1 (6.3)

117

Figure 6.3: Illustration of PSU airspace sectorization. Each small circle represents a verti-
port. Solid grey edges represent the corridors, connecting pairs of vertiports. Black dashed
lines indicate the PSU boundaries.

6.3.2 Corridor-based Route Planning

6.3.2.1 Distance-based vs. Weighted/Optimized Path Construction

Through the designed PSU, AAM traverses flight corridors connecting departure and des-

tination vertiports, possibly passing through intermediate vertiports on its way. The best

corridor routes are determined using Dijkstra’s algorithm [150], which finds the shortest

corridor routes between departure and destination vertiports. In our work, we explore two

different approaches to corridor-based route planning. The first method employs the typical

distance-based Dijkstra algorithm to find the shortest route between each pair of departure

and destination vertiports. The second approach utilizes corridor weights in Eq. 6.1-6.3 to

find the path that minimizes the total weights. The weighted path allows PSU to consider

multiple factors to determine the optimal route while avoiding potentially congested regions

in low-altitude urban airspace. By exploring an alternative route planning approach, we in-

vestigate whether distributed AAM traffic management can be further optimized, reducing

overall flight delays in congested airspace. In Section 6.5, the Monte Carlo simulation results

are analyzed from the randomly generated AAM flight operations (i.e., 150 vehicles, 300 vehi-

cles) in sectorized PSU regions. The drawbacks and advantages of using weighted/optimized

path approach are also discussed.

Figure 6.4 illustrates the two corridor route planning methods. Blue circles represent

vertiports, each labeled with a vertiport ID. Gray lines depict corridors connecting pairs

of vertiports. Gray boxes highlight potential congestion regions where vertiport connec-

118

tivity (i.e., number of corridors connected at the vertiport), population density, and verti-

port take-off/landing capacities are high. The distance-based (shortest distance) path and

the weighted/optimized path are shown as red and black dashed lines, respectively. The

weighted/optimized path finds the minimum-cost solution, avoiding potentially congested

regions (i.e., high-weighted routes).

Figure 6.4: Illustration of corridor-based route planning using distance-based and
weighted/optimized methods.

6.3.2.2 Corridor Design and Spatial Conflict Detection & Resolution Strategy

AAM vehicles traverse through corridors that connect vertiports. Two types of spatial

conflicts can occur while AAM vehicles fly through corridors. The first type occurs within

each corridor itself, which we model as a three-dimensional geofence with finite dimensions at

a fixed altitude. Because corridors have finite volumes, the maximum number of vehicles that

can traverse the corridor simultaneously is limited, leading to spatial conflicts if the capacity

is exceeded. Our optimization model in Section 6.3.3 considers each corridor’s maximum

throughput capacity as a constraint and adjusts vehicle speeds to maintain safe separation

119

distances between AAM vehicles.

The maximum throughput capacity
−→
ki of the directional corridor i is defined in Eq. 6.4.

ds is the minimum inter-vehicle separation distance (MIVSD) inside the corridor. dist(i) is

the length of the corridor i. hi is the number of vertical lanes that construct the directional

corridor. For example, a corridor of length 50 km with MIVSD of 2 km and 3 vertical

lanes has a maximum throughput capacity of 75 vehicles. In our work, we construct a

three-vertical lane bi-directional corridor to connect each pair of vertiports, and MIVSD

is set to 2 km. Figure 6.5 illustrates the constructed corridor shape. This design offers

the benefit of segregating AAM vehicles by their speeds, particularly advantageous as it

facilitates a smooth transition of speed and altitude for AAM flights approaching to land

at a destination vertiport or departing from a departure vertiport. However, it’s important

to note that our optimization method for solving AAM traffic management is not tied to

a specific corridor structure. For instance, whether it’s a three-vertical lane bi-directional

corridor or a three-horizontal lane bi-directional corridor, the results remain the same.

−→
ki =

dist(i)

ds
· hi (6.4)

Figure 6.5: Visualization of multi-lane bi-directional corridor

The second type of conflict arises when directional corridors spatially overlap. Such

conflicts can occur in multiple scenarios. For example, when multiple corridors converge at a

common vertiport or when corridors connecting different pairs of vertiports intersect, spatial

conflict occurs. Note that we define a corridor to connect a pair of vertiports. If an AAM

flight traverses through multiple vertiports, the flight path consists of multiple corridors in

sequence. Figure 6.6 illustrates seven types of spatial conflicts that can occur, with circled

numbers indicating the locations of such conflicts in directional corridors. 1 and 2 cases

120

denote conflicts when an AAM vehicle is taking off/landing (i.e., yellow flight path) while

another AAM vehicle is passing through the corridor (i.e., green flight path) shared through

a common vertiport. Case 3 occurs when AAM flights with different corridor paths cross

each other at a shared vertiport (i.e., purple and green flight paths). Case 4 occurs when

AAM flights with different corridor paths cross each other in mid-air (i.e., purple and yellow

flight paths). 5 and 6 cases denote conflicts where AAM flights with different corridor

paths share departure/destination vertiports and the connecting corridors (i.e., purple and

yellow flight paths in the center figure). Lastly, case 7 is when an AAM corridor path

is spatially conflicted with another AAM flight’s corridor path by sharing more than one

vertiport inside (i.e., purple flight path in the rightmost figure).

Figure 6.6: Visualization of corridor spatial conflict types.

Each pair of spatially conflicted AAM flight paths can be characterized by a tuple of two

conflict types, one for each AAM flight path, from the seven types mentioned above. Once

categorized, the next step involves deconflicting the AAM flights temporarily to ensure only

one AAM flight passes through the spatially conflicted region at a time, avoiding simulta-

neous passage. This guarantees that AAM vehicles will not collide in the spatially shared

corridor region. Three strategies are available for temporal conflict resolution: 1. delaying

the departure time of the AAM flight, 2. adjusting the vehicle speed in the conflicted corridor

region, and 3. implementing both options 1 and 2 simultaneously. In strategic AAM traffic

management, it is generally preferable to delay the departure time rather than adjust the

vehicle speed, considering the energy cost. However, since each vertiport has limited take-off

and landing pads, gates, and parking spaces, a system-wide AAM traffic management ap-

proach may require implementing all three options to resolve spatially conflicted flight pairs

while maintaining scheduled departure and arrival times.

Next step towards temporal conflict resolution involves calculating the time at which

121

each conflicted AAM flight enters and exits the conflicted region in corridors. This involves

finding the boundary coordinates of the shared region and identifying the closest boundary

coordinates to each AAM flight path. Orthogonal projection is then used to determine

the point of entry and exit, and time at which each flight path enters/ exits the shared

region. This method is similar to the spatial conflict detection method employed in [151].

Our method extends it by incorporating various spatial conflict types and comprehensive

temporal conflict resolution strategies that adjust vehicle-specific speeds (and even based on

the service priority of AAM vehicles).

Figure 6.7 visualizes how spatially conflicted corridor region is detected and temporally

deconflicted in each conflicted flight pair. On the left side of the figure, three flight paths with

their trajectory geofences (i.e., purple, green, and yellow) are depicted. Spatially conflicted

corridor regions are highlighted in red polygons. On the right side, a closer view of spatially

conflicted corridors i and j for two conflicted flight paths m and n is shown. The purple

plus sign indicates the location before a flight enters a conflicted region (i.e., Bm,i and Bn,j),

The purple X sign indicates the location where a flight exits a conflicted region (i.e., Em,i

and En,j). Conflicted AAM vehicles are temporally deconflicted if one vehicle enters the

conflicted region after the other vehicle exits, as follows (i.e., eq. 6.5):

Bm,i > En,j + ts or Bn,j > Em,i + ts (6.5)

Here, ts is an additional safety separation time buffer. Section 6.3.3.1 outlines the formulation

of the temporal conflict resolution as optimization constraints and explains the objective cost

design for solving AAM traffic management.

Figure 6.7: Visualizaton of spatial conflict regions between two flight paths (m,n) within
corridors (i, j). B and E denote locations before and after a flight enters/ exits a spatial
conflict region.

122

6.3.3 AAM Traffic Flow Management

AAM traffic flow management aims to minimize the total delay time of all flights within

centralized/ distributed PSU airspaces. Mixed-integer programming (MIP) [152] is used to

solve the optimal solution, adjusting individual vehicle speed along its flight corridors and

assigning departure times (which may differ from scheduled departure times). The solution

also resolves temporal conflicts in spatially conflicted flight paths. The key parameters and

constraints for optimizing AAM traffic are outlined in Table 6.2 and Figure 6.8.

Table 6.2: AAM traffic optimization objective cost and parameters.

Figure 6.8: AAM traffic optimization constraints. Icons are adapted and modified from
[7, 8, 9].

123

6.3.3.1 Centralized AAM Traffic Flow Management

MIP equations and constraints are formulated to solve a large number of AAM flight op-

erations within a centralized system. The constraints include take-off/landing vertiport

capacities and AAM maximum throughput capacities in multilane bi-directional corridors.

Additionally, our model accommodates AAM vehicle types (i.g., multicopter, vectored thrust,

lift+cruise configurations) with their speeds and ranges. Each vehicle’s speed is bounded

between minimum cruise to ideal cruise speed, which is specific to the vehicle type. Service

priorities are also factored into the formulation, categorized as regular, express, and medical

in order of higher priority. Decision variables and parameters for centralized AAM traffic

management are given in Table 6.3.

The formulation of the MIP problem for centralized AAM traffic flow management is

shown in Eq. 6.6-6.15. The decision variable, wk
f,t, is based on the well-established ATFM

model [153], but modified for solving AAM traffic management in the PSU airspace envi-

ronment. We define wk
f,t equals 1 if flight f arrives at corridor k by time t, and 0 otherwise.

The objective function minimizes the total delay cost, which is the sum of airborne delay

and departure delay of all AAM vehicles. The objective function is expressed 2 · total delay
(i.e., airborne delay + departure delay) - departure delay, following the expression in [154].

By expressing this way, we can include the ϵ term (i.e., the delay equity weight) as a super-

linearity function in MIP objective cost. This ensures the optimization finds a solution that

allows equitable allocation of departure time for each AAM vehicle. For our simulation, we

assign ϵ to be 0.05. Lastly, the service priority sf and the cost ratio (γ) of airborne delay to

departure delay of each AAM flight are multiplied to each delay term. The expressed objec-

tive function is formulated to fairly assign each vehicle’s departure time while considering

vehicle-specific parameters and their service priorities.

Minimize
∑
f∈F

{∑
t∈O

(
γ · sf · (t− af)1+ϵ · (warrival

f,t − warrival
f,t−1)

)
−
∑
t∈O

(
(γ − 1) · sf · (t− df)1+ϵ · (wdeparture

f,t − wdeparture
f,t−1)

)} (6.6)

subject to

∑
t∈O

(wdeparture
f,t − wdeparture

f,t−1) ≤ Tv,t ∀f ∈ F , ∀v ∈ V (6.7a)∑
t∈O

(warrival
f,t − warrival

f,t−1) ≤ Lv,t (6.7b)

124

Table 6.3: MIP Input Data for Centralized AAM Traffic Management

Set

F Set of flights
V Set of vertiports
D Set of departure vertiports
A Set of arrival vertiports
C Set of corridors
O Set of flight operation time
S Set of spatially conflicted flight corridors

Decision Variables

wdeparture
f,t 1: if AAM flight f leaves at departure vertiport by time t. 0: otherwise.

warrival
f,t 1: if AAM flight f arrives at destination vertiport by time t. 0: otherwise.

wk
f,t 1: if AAM flight f arrives at corridor k by time t. 0: otherwise.
Xc Binary variable, where c = (m,n,i,j) ∈ S. Xc = 1 if AAM flight m exits conflicted

corridor i before AAM flight n enters conflicted corridor j. Otherwise, 0.
xc Binary variable, where c = (m,n,i,j) ∈ S. xc = 1 if AAM flight n exits conflicted

corridor j before AAM flight m enters conflicted corridor i. Otherwise, 0.

Parameters

af scheduled arrival time of AAM flight f
df scheduled departure time of AAM flight f
lf,k minimum time that AAM flight f takes to travel through corridor k
uf,k maximum time that AAM flight f takes to travel through corridor k
af scheduled arrival time of AAM flight f
sf service priority of AAM flight f
ts safety separation time of spatially conflicted flight pairs
ϵ delay equity weight
γ cost ratio of airborne delay to departure delay
Tv,t take-off capacity at vertiport v at time t
Lv,t landing capacity at vertiport v at time t
Mk throughput capacity at corridor k
Bf,i ratio of the conflict region’s start point within corridor i relative to its full length,

for flight f
Ef,i ratio of the conflict region’s end point within corridor i relative to its full length,

for flight f

∑
t∈O

(wk
f,t − wk+1

f,t) ≤Mk ∀f ∈ F , ∀k ∈ C ∪ D ∪A (6.8)

125

∑
t∈O

t · (wk′

f,t − wk′

f,t−1)−
∑
t∈O

t · (wk
f,t − wk

f,t−1) ≥ lf,k

∀f ∈ F , ∀k, k′ ∈ C ∪ D ∪A
(6.9a)

∑
t∈O

t · (wk′

f,t − wk′

f,t−1)−
∑
t∈O

t · (wk
f,t − wk

f,t−1) ≤ uf,k (6.9b)

wk
f,t−1 − wk

f,t ≤ 0 ∀f ∈ F , ∀k ∈ C ∪ D ∪A, ∀t ∈ O (6.10)

∑
t∈O

wk
f,t ≥ 1 ∀f ∈ F , ∀k ∈ C ∪ D ∪A (6.11)

t · wdeparture
f,t ≥ df ∀f ∈ F , departure ∈ D, ∀t ∈ O (6.12)

∑
t∈O

t · (wi
m,t − wi

m,t−1) +

(∑
t∈O

t · (wi+1
m,t − wi+1

m,t−1)−
∑
t∈O

t · (wi
m,t − wi

m,t−1)

)
· Em,i + ts

≤M · (1−Xc) +
∑
t∈O

t · (wj
n,t − w

j
n,t−1)

+

(∑
t∈O

t · (wj+1
n,t − w

j+1
n,t−1)−

∑
t∈O

t · (wj
n,t − w

j
n,t−1)

)
·Bn,j

∀(m,n, i, j) = ci ∈ C
(6.13)

∑
t∈O

t · (wj
n,t − w

j
n,t−1) +

(∑
t∈O

t · (wj+1
n,t − w

j+1
n,t−1)−

∑
t∈O

t · (wj
n,t − w

j
n,t−1)

)
· En,j + ts

≤M · (1− xc) +
∑
t∈O

t · (wi
m,t − wi

m,t−1)

+

(∑
t∈O

t · (wi+1
m,t − wi+1

m,t−1)−
∑
t∈O

t · (wi
m,t − wi

m,t−1)

)
·Bm,i

∀(m,n, i, j) = ci ∈ C

(6.14)

Xc + xc = 1 (6.15)

Constraints are as follows. Eq. 6.7a-6.7b are time-dependent take-off and landing capacity

constraints at each vertiport v. Eq. 6.8 is the corridor throughput capacity constraint,

126

ensuring that the total number of flights traversing any flight corridor k does not exceed

its capacity. Eq. 6.9a-6.9b define the minimum and maximum traversal times for AAM

vehicles through each flight corridor. This essentially adjusts the speed at which each vehicle

flies through a specific corridor based on its vehicle type (i.e., multicopter, vectored thrust,

lift+cruise). Eq. 6.10-6.11 collectively enforce the constraint that an AAM vehicle must be

confined to a single flight corridor at any given time during its flight, ensuring its position

remains unique. Eq. 6.12 ensures that the assigned departure time for any flight must

be greater than or equal to its scheduled departure time to avoid early departures. Note

that this constraint is relaxed in distributed AAM traffic management, and the objective

function is adjusted. In distributed management, an AAM vehicle may depart earlier than

the scheduled time, if no feasible solution exists to coordinate flights passing through multiple

PSUs.

Eq.6.13-6.14 are temporal conflict resolution constraints that delay either one of two flights

in spatially shared corridor regions. They are formulated using a big M term (i.e., a large

positive constant) to express logical conditions in Eq. 6.5. Bm,i is the ratio of the conflict

region’s start point within corridor i relative to its full length, for flight m. Em,i is the ratio

of the conflict region’s end point within corridor i relative to its full length, for flight m. Bn,j

and En,j follow the same definition, with n and j replacing m and i respectively. Additional

safety separation time (ts) is added to deconflict spatially conflicted flight pairs. Eq. 6.15

ensures that conflicted flights exit the spatially shared corridor region in order. The binary

decision variables, Xc and xc, follow the definition by Li, et al [151]. Xc and xc cannot be 1

simultaneously. Essentially, Eq. 6.13-6.15 enforce the condition expressed in Eq. 6.5.

In a distributed AAM traffic flow management below (i.e., Section 6.3.3.2), each PSU

applies slightly modified optimization with additional constraints, and cooperative game

theory is used to facilitate fair and coordinated negotiation of AAM traffic among conflicting

PSUs. The formulation shows how PSU connectivity and PSU’s negotiable bargain power

influence overall AAM traffic management.

6.3.3.2 Distributed AAM Traffic Flow Management

As AAM operation grows both in terms of the number of vehicles and the operational regions,

the AAM traffic management system requires a distributed model. This is similar to the

evolution of conventional air traffic management from centralized to distributed networks.

The present aviation traffic management operates within a complex network, incorporating

various entities such as the FAA, ICAO, flight operations centers, and traffic management

units at en route centers [155]. The traffic management is distributed across manageable

units, with redundancies to enhance safety. Whether human operators play an active role

127

in AAM traffic management or not, distributed PSU traffic management will be crucial for

efficiently handling low-altitude, densely populated local air traffic. A significant advantage

of distributed PSU traffic management lies in its scalability. It enables the safe and efficient

operation of a large number of AAM vehicles by locally optimizing traffic solutions and

coordinating/resolving conflicts only for vehicles transitioning through multiple PSUs. The

results presented in Section 6.5 shows that the coordinated AAM traffic management solution

within individual PSUs can be generated between 1.4 to 30 times faster compared to the time

required for centralized management to generate a global solution. With an increase in the

number of AAM flight operations, the complexity of the AAM network also rises. Therefore,

significantly enhanced scalability of AAM traffic management can be obtained through the

distributed system. Refer to Figure 6.1 for the FAA’s envisioned AAM architecture involving

multiple stakeholders and complexity of the network.

Initially, our centralized AAM traffic management model appears to be scaled for indi-

vidual PSUs. However, within this framework, each PSU independently manages local air

traffic within its designated region. Without coordinated communication and agreements

among neighboring PSUs, optimal AAM operation schedules of one PSU may negatively

affect adjacent PSUs. This occurs because each PSU independently optimizes its airspace

management, potentially leading to one PSU expediting the outflow of many AAM vehicles

through other PSU regions to minimize its airspace traffic density. Consequently, adjacent

PSUs may experience traffic congestion due to the large inflow of AAM vehicles into their

regions. To minimize such congestion and ensure fairness across neighboring PSUs, a coor-

dinated system is crucial with optimized corridor usage and airspace efficiency. Ultimately,

PSUs will need to collaborate and coordinate their traffic management solutions to achieve

a harmonized and efficient global AAM traffic management system.

To address this challenge, we introduce a collaborative decision-making model among

PSUs, leveraging a bi-level optimization approach. The lower-level optimization involves each

PSU independently optimizing its AAM traffic management using MIP. Then, the upper-level

optimization employs cooperative Nash bargaining game theory [156, 157] to resolve conflicts

among the game players (i.e., conflicting PSUs). This cooperative bargaining phase allows

negotiation and agreement among conflicted pairs of PSUs to achieve a fair and cooperative

agreement on vehicles transitioning between PSU regions. This is done by comparing each

PSU’s negotiable bargaining power at each operation to reach stability (i.e., Nash bargaining

solution). Table 6.4 and Figure 6.9 show the key parameters, objective function, and flow

diagram of bi-level optimization for distributed AAM traffic management.

In addition to the variables listed in Table 6.3, we define additional decision variables

and parameters for distributed AAM traffic management, outlined in Table 6.5. The PSU

128

Table 6.4: Distributed AAM Traffic Management Variables

Figure 6.9: Distributed AAM Traffic Management Flowchart

cooperative Nash bargain equations are shown in Eq. 6.16-6.17b below. U1 and U2 are

transition time equity functions (i.e., utility functions) that show how much each PSU feels

about individual AAM’s negotiated time of entry/ exit in its airspace region. The decision

variable yfi,j represents the payoff of AAM flight f traveling through conflicted PSUs i and

j, with its value ranging between 0 and 1. The decision variable pfi is a payoff of AAM

flight f entering/ exiting PSU i, and its value ranges between 0 and 1. The equation below

129

essentially determines the payoff yfi,j.

Table 6.5: Additional MIP Input Data for Distributed AAM Traffic Management

Decision Variables

bf,i bargained entry/ exit transition time of AAM flight f in PSU i

yfi,j payoff ∈ [0, 1] of AAM flight f traveling through conflicted PSUs i and j

pfi payoff ∈ [0, 1] of AAM flight f entering/ exiting PSU i

Parameters

ni negotiable bargain power of PSU i during flight operation time window O
tf,i optimal entry/ exit time of AAM flight f in PSU i from low-level MIP

δfi,j time difference between an AAM flight f ’s optimal departure from PSU i and its
optimal arrival at adjacent PSU j, where PSUs i and j are in conflict

Pf transition pseudo-vertiport(s) for flight f
Cf,i total number of corridors AAM flight f travels through inside PSU i
Ti total number of transition corridors in PSU i
Si total number of spatially conflicted flight paths inside PSU i
β1−3 bargain parameter weight factors for Cf,i, Ti, Si

Maximize Ui · Uj

subject to nj ≥ ni ∀f ∈ F , ∀ [conflicted PSU pair (i,j)]
(6.16)

Ui(y
f
i,j) = 1− yfi,j (6.17a)

Uj(y
f
i,j) =

(
yfi,j

) ni
nj (6.17b)

Here ni is the negotiable bargain power of PSU i during flight operation time window O,
expressed as Eq. 6.18a-6.18b. The equation comprises three parameters, each multiplied

with weight factors (i.e., β1, β2, β3). These weight factors collectively sum up to 1. Each

parameter represents AAM density in PSU i, the total number of transition corridors (i.e.,

corridors connecting to adjacent PSUs), and the total number of spatially conflicted flight

paths inside the PSU i.

ni = β1 ·
N∑

f=1

1

Cf,i

+ β2 ·Ti + β3 ·Si (6.18a)

130

3∑
i=1

βi = 1, 0 < βi < 1 (6.18b)

It is crucial to recognize that the negotiable bargaining power of PSUs varies with each

operational time window O. For instance, during morning hours when AAM is heavily

utilized for commuting from residential to commercial PSU areas, there’s significant inbound

traffic from residential to commercial PSU sectors. Conversely, during the evening rush

when people return home from work, there’s a surge in outbound traffic from commercial to

residential areas. This fluctuation in PSU bargaining power mirrors the demand dynamics

within each PSU’s operational time window. This establishes a cooperative negotiation

framework among PSUs, ensuring that no single PSU maintains a permanent advantage

over others. Instead, bargaining power equitably reflects demand, conflict complexity, and

the strength of connectivity between adjacent PSUs.

Now, the process of calculating the actual bargained entry/exit transition time bf,i for

each AAM flight f in PSU i is shown in Algorithm 9. Note that δfi,j represents the time

difference between an AAM flight f ’s optimal departure from PSU i and its optimal arrival

at adjacent PSU j, where PSUs i and j are in conflict.

Algorithm 9: Cooperative Bargained Entry/Exit Time of AAM Flight f Transi-
tioning PSUs i and j

Data: δfi,j, y
f
i,j, [tf,i, tf,j], PSU ID: i, j s.t. nj ≥ ni

Result: [bf,i, bf,j]

pfi ← 1− yfi,j;
pfj ← yfi,j;

if tf,i ¿ tf,j then

bf,i ← tf,i − round(δfi,j · p
f
i);

bf,j ← tf,j + round(δfi,j · p
f
j) ; /* round(): rounds floating

point number to integer

*/

else

bf,i ← tf,i + round(δfi,j · p
f
i);

bf,j ← tf,j − round(δfi,j · p
f
j);

A new constraint is introduced after cooperative negotiations among conflicting PSU pairs.

This constraint pertains to each flight’s coordinated entry/exit time in shared corridors

between conflicted PSU pairs. Furthermore, to make bi-level optimization feasible, the

objective function is modified in distributed AAM traffic management, and the constraint

from Eq. 6.12 is relaxed. If a feasible solution cannot be found, the modified optimization

and relaxed constraint may choose to depart the AAM flight earlier than the scheduled

131

departure time. This occurs when the vehicle cannot accelerate beyond its ideal cruise

speed to meet the coordinated entry/exit time. The objective function penalizes these early

departures more heavily to minimize their occurrence. The modified objective function and

new constraint are shown in Eq. 6.19-6.20. Algorithm 10 shows bi-level optimization for

distributed AAM traffic management.

Minimize
∑
f∈F

{∑
t∈O

(
γ · sf · (t− af)1+ϵ · (warrival

f,t − warrival
f,t−1)

)
−
∑
t∈O

(
(γ − 1) · sf · (t− df) · (wdeparture

f,t − wdeparture
f,t−1)

)} (6.19)

subject to additional constraint:

w
Pf

f,bf,i
+ w

Pf

f,bf,i−1 == 1 (6.20)

The bi-level optimization yields sub-optimal solutions compared to the centralized MIP

approach, as each conflicted PSU pair coordinates its solutions to resolve conflicts. Nonethe-

less, the objective cost for each PSU will be lower than that of centralized AAM traffic

management, as each PSU manages fewer vehicles than the centralized system. Addition-

ally, the computation time for finding solutions will also be reduced in each PSU. Section

6.5 provides a more detailed examination of objective costs and runtime.

Algorithm 10: Bi-level Optimization for Distributed AAM Traffic Management

Data: ∀ AAM Flight Paths, Vertiports and Corridors ∈ Each PSU
Result: Sub-optimal Coordinated Entry/Exit Time of Flights in Each PSU
PSU airspace partition(∀ Flight Paths);
for each PSU do

flights each PSU ← solve MIP eq.(6.6);

mismatched PSUs ← find mismatching entry/exit times(∀ flights each PSU);
for mismatched PSU pairs do

for flight do
solve eq.(6.16);
negotiated flight entry/exit time ← solve alg.(9);

save(coordinated flights)

if any[violate speedConstraints(coordinated flights)] then
adjust entry/exit time(constraint violated flight) ← relax eq.(6.12)

for each PSU do
coordinated flights each PSU ← solve MIP eq.(6.19);

132

6.4 Simulation Setup

The simulation is tested using an artificially created map. Population density is randomly

assigned to each town/ city, and vertiports are constructed to reflect AAM demand [158].

No-fly zone with keep-out geofence is constructed. The maximum distance of a single flight

corridor is limited to 60 km, matching the minimum AAM operational range (i.e., multi-

copter range). The parameters for constructing the artificial map and AAM flight operations

are summarized in Table 6.6. Here, vehicle types 1, 2, 3 correspond to Volocity (i.e., mul-

ticopter), Joby Aviation (i.e., vectored thrust), and Beta Technologies (i.e., lift + cruise)

respectively [159, 160, 161], as shown in Table 6.7. Service priority types 1, 2, 3 refer to

regular, express, and medical AAM flight operation, respectively. The geofence width of

directional corridor is determined based on [3]. Their study calculates statistically optimal

trajectory geofence buffer sizes using guidance, navigation, and control (GNC) and computa-

tional fluid dynamics (CFD) wind simulations in an urban environment. The operation time

window is set to 4 hours (i.e., from 7 am to 11 am to simulate the morning commute). Dur-

ing the operation time, individual AAM scheduled departure times are randomly generated.

The actual simultaneous take-off and landing are constrained by the concurrent take-off and

landing (TLOF) capacity at each vertiport. Otherwise, there are 5-minute intervals between

scheduled departure times for AAM flights. Finally, we set the number of AAM flights in

each vehicle type and corresponding service priority percentage distribution the same. This

allows us to analyze how optimization solutions affect each vehicle type and service priority

type in both centralized and distributed AAM traffic management settings.

Table 6.6: Simulation Parameters.

133

Table 6.7: AAM Operator Specifications. Minimum cruise speed∗ is arbitrarily chosen for
the simulation.

Figure 6.10 visualizes the simulation map environment with PSU airspace sectorization.

In this figure, vertiports are indicated by numbering with blue circles. Flight corridors are

shown in gray lines, forming the AAM corridor network. Corridor transition points between

PSUs are indicated by numbering with orange circles. Distributed PSU airspace regions are

indicated with purple, blue, yellow and green tints. In the simulation, the weight ratio (γ) of

airborne delay to departure delay is set to 2 for all vehicle types. This helps analyze how the

distributed AAM traffic management algorithm generates the optimal solution incorporating

different ranges and speeds of vehicles. However, in reality, the delay weight ratio will vary

by vehicle type. Below are the assumptions for the Monte Carlo simulation:

• Hovering is excluded from AAM traffic management due to its energy inefficiency.

Only departure delay (ground delay) and airborne delay (adjusting cruise speed) are

considered.

• Each AAM flight operates as a one-way trip; multiple trips for each flight are not taken

into account.

• Concurrent TLOF capacity at each vertiport and maximum throughput capacity at

each corridor remain constant throughout the operation time window.

• The cruise altitude for all AAM vehicle types is set to 1 km.

134

• AAM flight information is shared knowledge (i.e., scheduled departure/arrival time,

departure/destination vertiports), meaning it is accessible to adjacent PSUs for dis-

tributed traffic management.

Figure 6.10: Construction of artificial map with airspace sectorization. [grid size: 5 km]

6.5 Simulation Analysis

To evaluate AAM traffic flow management, 150 and 300 AAM flight operations are generated

in the artificially created map with the above assumptions and parameters. A total of 150

Monte Carlo simulations are conducted for each scenario: 1. 150 AAM flight operations

with distance-based corridor routes, 2. 150 AAM flight operations with weighted/optimized

corridor routes, 3. 300 AAM flight operations with distance-based corridor routes, and 4. 300

AAM flight operations with weighted/optimized corridor routes. The performance of both

centralized and distributed PSU environments are examined and analyzed for comparison in

terms of runtime, objective costs, and departure and airborne delay.

135

Figure 6.11 compares the percentages of delayed flights for 150 and 300 flights. Mean and

standard deviation values were calculated for both centralized and distributed settings based

on 150 simulations of optimized/weighted corridor routes each. The error bars represent the

average plus or minus one standard deviation. In the distributed AAM traffic management

scenario, there was an average increase of less than 1.05% in the number of delayed flights for

both 150 and 300 flights compared to the centralized system. As anticipated, the percentages

of delayed flights were higher for 300 flights compared to 150 flights in both centralized and

distributed systems. Figure 6.12 presents the comparison of average delays by vehicle type

and service priority type for both 150 and 300 flights in both centralized and distributed PSU

systems. Across all vehicle types, 300 flights experienced more delays than 150 flights in both

centralized and distributed systems. In the distributed system, vectored thrust and lift +

cruise vehicle configurations exhibited greater average delays compared to multicopter. This

is attributed to their extended ranges, increasing the likelihood of flight routes traversing

multiple PSUs and resulting in increased average delays in departure and airborne delay

to negotiate entry/exit times at transitioning PSUs. Regarding service priority types, 150

flights in the centralized system indicated that express service (i.e., second highest priority)

experienced the least average delay, followed by medical and regular, respectively. For 300

flights, medical service (i.e., highest priority) experienced the least average delay, followed

by express and regular services, respectively. However, the trend was consistent in the

distributed system. For both 150 and 300 flights, regular service experienced the highest

average delay, followed by express and medical services. In our simulation, we assigned

weights of 1, 2, 3 to regular, express, and medical service priority types, respectively. The

results suggest that the weight of medical service should be significantly increased relative

to the other two types in both centralized and distributed systems. That will ensure that

medical service consistently has the least departure and airborne delay

The runtime and objective cost comparisons are shown in Figure 6.13 for both 150 and

300 flights across centralized and distributed systems. The average runtime shows that

centralized system has the longest duration for both 150 and 300 flights. This is because the

distributed nature of individual PSUs allows them to manage a fraction of the total AAM

flights handled by the centralized system. Notably, in the case of 300 AAM flight operations,

individual PSUs generated coordinated AAM traffic solutions between 1.4 to 30 times faster

compared to the time required for centralized management to generate a global solution.

A similar trend was observed in objective costs, with individual PSUs having significantly

lower costs compared to the centralized system. Furthermore, among the distributed PSUs,

PSU 3 had the highest runtime and objective cost. This outcome can be attributed to

the substantial number of vehicles operated within PSU 3, along with its extensive corridor

136

Figure 6.11: Comparison of Delayed Flight Percentages: 150 vs. 300 Flights.

Figure 6.12: Comparison of Average Delays by Vehicle Type and Service Priority: 150 vs.
300 Flights.

137

network and a higher frequency of spatial corridor conflicts. Refer to Figure 6.10 that shows

the PSU 3 corridor network. These findings show the critical influence of factors such as

the volume of AAM vehicle operations, corridor network size, and the occurrence of spatial

corridor conflicts on both runtime and objective costs. The comparison of average ground and

airborne delays for 150 and 300 flights is illustrated in Figure 6.14. Across both centralized

and distributed systems, increasing ground and airborne delays are observed with a higher

volume of vehicles. Furthermore, the distributed system resulted sub-optimal solutions, but

the total delays incurred by each PSU are not significantly higher compared to the centralized

system.

Figure 6.13: Runtime and Objective Cost Comparisons: 150 vs. 300 Flights.

138

Figure 6.14: Average Ground and Airborne Delay Comparisons: 150 vs. 300 Flights.

Figure 6.15 illustrates the comparison between distance-based and weighted/optimized

corridor routes for both 150 and 300 flights. The comparison is based on the average count

of total delay duration for delayed AAM flights. In both scenarios, the weighted/optimized

route method resulted in slightly fewer spatial conflicts in PSU 0, PSU 1, and PSU 2. How-

ever, PSU 3 showed significantly higher spatial conflicts in the weighted/optimized corridor

route method for both 150 and 300 flights. This may be attributed to the fact that as

more AAM flights seek to avoid congested areas due to highly connected vertiports and

high TLOF vertiports, the number of spatial conflicts inadvertently increases as vehicles are

routed to detour around these areas, leading to more conflicts among themselves. Conse-

quently, our weighted/optimized corridor route did not outperform the distance-based route

method. However, we found that the weighted/optimized corridor route method minimizes

the number of PSU transitions, thereby reducing the amount of coordination required be-

tween PSUs compared to the distance-based method. This finding underscores the potential

of the weighted/optimized corridor route method. This highlights the need to explore the

selection between the two route planning methods in congested areas to further reduce flight

delays beyond solely relying on the distance-based route method. Lastly, Figure 6.16 presents

the runtime comparison for varying numbers of flights in the centralized system. The com-

putation time demonstrates a cubic increase, as indicated by the curve-fitted dash line. This

provides insights into the algorithm’s scalability. For instance, the equation predicts that

coordinating 1,000 flights in the centralized system would require approximately 11 hours to

compute the solution. This underscores the minimum lead time required for AAM operators

to submit their scheduled AAM flights in advance, facilitating efficient coordination within

each PSU.

139

Figure 6.15: Route Method Comparisons: Distance-based vs. Weighted/Optimized Paths.

Figure 6.16: Runtime vs. Number of Flights.

140

6.6 Conclusions and Future Work

Our research offers solutions for both centralized and distributed AAM traffic management,

taking into account the diverse stakeholders involved in AAM architecture. The contributions

of this chapter are as follows: 1. a method to effectively sectorize low-altitude urban airspace

is developed. 2. centrally planning AAM routes is modeled considering the limited capacities

of corridors and vertiports. We compare two different corridor route planning methods and

discuss how those methods can be combined for re-routing method. 3. A bi-level optimization

architecture is formulated, solving distributed AAM traffic management. This involves MIP

and cooperative game theoretic approach. We use an artificially created map to conduct

Monte Carlo simulations, evaluating 150 and 300 AAM flight operations across three vehicle

configurations and three service priority types.

Our research provides valuable insights into the performance of centralized versus dis-

tributed AAM network management strategies. We found that the centralized system con-

sistently exhibits longer runtime for both 150 and 300 flights compared to individual PSUs

within the distributed system (i.e. 1.4 to 30 times longer). Our analysis indicates that

the distributed system may lead to sub-optimal solutions, but the total delays incurred by

each PSU are not significantly higher compared to the centralized system. These findings

underscore the importance and potential of scalable distributed AAM traffic management

strategies in addressing the evolving demands of urban airspace. By providing a comprehen-

sive technical framework, our research informs decision-making processes in the development

and implementation of AAM traffic management strategies.

In future work, the stochastic optimization approach will be explored to address uncertain-

ties in estimated times of arrivals, as well as robust optimization concerning the worst-case

scenarios. Additionally, we plan to incorporate real map data with demand forecasts based

on geography, population, and general aviation traffic to enhance the accuracy of AAM traf-

fic management systems. By introducing auction mechanisms, we plan to incorporate the

payment systems of each AAM vehicle operator within each PSU. Simulation analysis can

be further expanded to investigate the impact of different weight ratios (γ) for airborne and

departure delays across various AAM vehicle types, as well as the impact of time-dependent

TLOF vertiport capacities. Lastly, we will explore rerouting strategies and implement dy-

namic airspace sectorization for PSUs to further optimize AAM traffic management.

141

CHAPTER 7

Conclusion

7.1 Conclusion

In the history of aviation and transportation, significant milestones have transformed how

people travel. The advent of AAM heralds another such milestone, promising to revolutionize

our daily commute and provide unprecedented convenience and flexibility in airborne package

delivery and data collection. This dissertation is dedicated to addressing future challenges

in AAM to contribute to the realization of safe, efficient, and robust AAM operations.

The operational landscape of AAM differs significantly from both commercial/general

aviation and ground transportation. AAM vehicles will navigate low-altitude airspace with

vertical take-off and landing capabilities, operating at speeds faster than ground vehicles

and with a higher frequency of take-offs and landings than commercial/ general aviation.

With vertiports located within cities, safety, efficiency, and resilience must be paramount

considerations in the early stages of AAM architecture. To this end, our focus has been

on developing geofencing algorithms, contingency landing management systems, and AAM

traffic management architectures.

Geofencing algorithms play a crucial role in managing low-altitude airspace by separating

flyable and no-fly zones. Our algorithms construct static and durational geofences for both

obstacles and flight trajectories, providing solutions for vehicle path planning and first-come,

first-served strategic deconfliction. Five flight planning solutions are generated for each vehi-

cle (i.e., constant cruise, terrain follower, go-around obstacles, wait until durational obstacle

disappears, and a combination of go-around and constant cruise). Then, computational

geometry and polygon decimation processes are employed to rapidly generate conflict-free

geofence map data. Our algorithms find flight planning solutions with minimum energy and

distance costs for each vehicle flying in low-altitude urban airspace. Our research addresses

the optimization of vehicle-specific flight trajectory geofence sizing and the development

of spatially efficient geofencing algorithms for climb and descent maneuvers, as well as for

142

multi-agent UAS teams or swarms. We use vehicle dynamics, sensor characteristics, and

wind models to generate statistically-guided geofence sizes with a three-sigma safety level

on a full-size AAM aircraft model. A parallelepiped geofence for climb/descent and con-

tainment geofences for multi-agent UAS teams further minimize geofence volumes. Based

on our Monte Carlo simulation results, we conclude that direct geofenced flight routes have

shorter lengths than fixed corridor routes. Geofencing can safely protect aircraft in both

direct routing and corridor based airspace designs.

Safety is paramount in AAM operations, necessitating robust contingency management

systems. Despite the multiple layers of redundancy and safety features in AAM vehicles,

unforeseen off-nominal conditions can arise unexpectedly. Therefore, the development of a

contingency landing management system, such as our Assured Contingency Landing Man-

agement (ACLM) system, is imperative. ACLM integrates mathematically-provable con-

trollability and reachability logic to rapidly identify when a new landing solution is needed.

Contingency landing plans generated along the planned flight route during preflight prepa-

ration minimize the response time. ACLM references a landing site database with prepared

and unprepared landing site options. A hexacopter simulation case study with rotor and/or

battery degradation scenarios illustrates ACLM functionality for low-altitude flight in Man-

hattan, New York City. Assurance is based on use of mathematically sound algorithms plus

trusted map and model information. ACLM executes in milliseconds for our case studies

thanks to the use of pre-planned data and parallel threading.

From a network perspective, efficient management of AAM operations is critical due to

the projected increase in flight volume, surpassing traditional air traffic control capacities

globally. Without a dedicated AAM traffic management architecture in place, significant

departure and airborne delays are inevitable. Vertiport limitations in handling lift-offs,

touch-downs coupled with corridor throughput constraints exacerbate the challenge. Safety

concerns arise from spatial conflicts among AAM flights within designated corridors. Our

research addresses these challenges comprehensively by offering solutions for both centralized

and distributed AAM traffic management. We optimize low-altitude urban airspace by sec-

torizing it and designing vehicle-type and service-priority-aware traffic management systems,

accounting infrastructure constraint and equity. Additionally, a distributed AAM traffic

management framework is formulated, incorporating cooperative game theory and MIP. Our

findings provide insight into the performance disparities between centralized and distributed

AAM network management strategies. We believe our research can inform decision-making

processes in the development of effective AAM traffic management strategies.

143

7.2 Future Directions

For future work, there are several directions for further analysis and development based on

our research findings. First, geofence algorithms can be extended to generate databases for

varying wind conditions across different city models, considering factors such as building

layouts and terrains. Investigating the influence of different wind conditions and vehicle

types on geofence buffer sizes would provide valuable insights into optimizing low-altitude

airspace.

Our proposed ACLM architecture is tailored for multicopter systems with more than four

rotors. ACLM can be further adapted for other vehicle configurations, such as a lift + cruise

configuration, which may have distinct operational constraints. Integrating ACLM with

visual sensor data could enhance the robustness of ACLM. Furthermore, sampling-based

path planning methods can be explored for alternative real-time contingency path planning,

as such methods are known for effectiveness in dynamic environments.

In the domain of AAM traffic management, exploring stochastic optimization approaches

can address uncertainties in estimated arrival times. Also, facilitating robust optimization

will mitigate worst-case scenarios. Furthermore, integrating real map data with demand

forecasts based on geographical, demographic, and general aviation traffic factors would

enhance the accuracy of AAM traffic management systems. Finally, incorporating payment

systems for individual AAM vehicle operators into AAM traffic management research could

introduce economic factors into the design of AAM traffic management strategies such as

pricing mechanisms to optimize airspace utilization and incentivize efficient flight behaviors.

These directions of future research hold the potential to further advance the safety, effi-

ciency, and scalability of AAM operations in urban environments.

144

BIBLIOGRAPHY

[1] NASA. NASA UAM Concept of Operations. https://www.nasa.gov/directorates/
armd/aosp/amp/, 2023.

[2] Randal W Beard and Timothy W McLain. Small unmanned aircraft: Theory and
practice. Princeton university press, 2012.

[3] Joseph Kim and Ella Atkins. Airspace geofencing and flight planning for low-altitude,
urban, small unmanned aircraft systems. Applied Sciences, 12(2):576, 2022.

[4] Jeremy Castagno, Cosme Ochoa, and Ella Atkins. Comprehensive risk-based planning
for small unmanned aircraft system rooftop landing. In 2018 International Conference
on Unmanned Aircraft Systems (ICUAS), pages 1031–1040. IEEE, 2018.

[5] Yuneec. Yuneec Typhoon Hexacopter. https://yuneec.online/typhoon-h-plus/,
2023.

[6] FAA-NextGen. A New U.S. DOT Volpe Center-FAA Thought Leadership Series.
Transformation: Urban Air Mobility Concept of Operations. https://www.volpe.

dot.gov/events/transformation-urban-air-mobility-concept-operations,
2023.

[7] Varon. Varon Vehicles: UAM Concept. https://varon.aero/concept/, 2023.

[8] SMG-Consulting. AAM Reality Index: Vehicle Types. https://aamrealityindex.

com/aam-reality-index, 2023.

[9] Mckinsey and company. AAM Reality Index: Vehicle Types. https:

//www.mckinsey.com/~/media/mckinsey/industries/aerospace%20and%

20defense/our%20insights/perspectives%20on%20advanced%20air%20mobility/

airmobilitypdf.pdf, 2022.

[10] Akshay Mathur and Ella M Atkins. Design, modeling and hybrid control of a quad-
plane. In AIAA Scitech 2021 Forum, page 0374, 2021.

[11] DIVYA Joshi. Drone technology uses and applications for commercial, industrial and
military drones in 2020 and the future. Dec, 18(2019):7, 2019.

[12] Malik Doole, Joost Ellerbroek, and Jacco Hoekstra. Estimation of traffic density
from drone-based delivery in very low level urban airspace. Journal of Air Transport
Management, 88:101862, 2020.

145

https://www.nasa.gov/directorates/armd/aosp/amp/
https://www.nasa.gov/directorates/armd/aosp/amp/
https://yuneec.online/typhoon-h-plus/
https://www.volpe.dot.gov/events/transformation-urban-air-mobility-concept-operations
https://www.volpe.dot.gov/events/transformation-urban-air-mobility-concept-operations
https://varon.aero/concept/
https://aamrealityindex.com/aam-reality-index
https://aamrealityindex.com/aam-reality-index
https://www.mckinsey.com/~/media/mckinsey/industries/aerospace%20and%20defense/our%20insights/perspectives%20on%20advanced%20air%20mobility/airmobilitypdf.pdf
https://www.mckinsey.com/~/media/mckinsey/industries/aerospace%20and%20defense/our%20insights/perspectives%20on%20advanced%20air%20mobility/airmobilitypdf.pdf
https://www.mckinsey.com/~/media/mckinsey/industries/aerospace%20and%20defense/our%20insights/perspectives%20on%20advanced%20air%20mobility/airmobilitypdf.pdf
https://www.mckinsey.com/~/media/mckinsey/industries/aerospace%20and%20defense/our%20insights/perspectives%20on%20advanced%20air%20mobility/airmobilitypdf.pdf

[13] Madhukar Mayakonda, Cedric Y Justin, Akshay Anand, Colby J Weit, Jiajie Wen,
Turab Zaidi, and Dimitri Mavris. A top-down methodology for global urban air mo-
bility demand estimation. In AIAA AVIATION 2020 FORUM, page 3255, 2020.

[14] Jonathan Gomez. 7 Urban Air Mobility Companies to Watch. https://www.

greenbiz.com/article/7-urban-air-mobility-companies-watch#:~:text=

With%20about%20200%20companies%20involved,as%20the%20end%20of%202022.,
2021.

[15] George Price, Douglas Helton, Kyle Jenkins, Mike Kvicala, Steve Parker, Russell
Wolfe, Felix A Miranda, Kenneth H Goodrich, Min Xue, Karen Tung Cate, et al.
Urban air mobility operational concept (opscon) passenger-carrying operations. 2020.

[16] Kenneth H Goodrich and Colin R Theodore. Description of the nasa urban air mobility
maturity level (uml) scale. In AIAA Scitech 2021 forum, page 1627, 2021.

[17] Federal Aviation Administration. Advanced Air Mobility Implementation Plan.
https://www.faa.gov/sites/faa.gov/files/AAM-I28-Implementation-Plan.

pdf, 2023.

[18] Mia N Stevens and Ella M Atkins. Generating airspace geofence boundary layers in
wind. Journal of Aerospace Information Systems, 17(2):113–124, 2020.

[19] Mia Stevens and Ella Atkins. Geofence definition and deconfliction for uas traffic
management. IEEE Transactions on Intelligent Transportation Systems, 22(9):5880–
5889, 2021.

[20] Akshay Mathur, Karanvir Panesar, Joseph Kim, Ella M Atkins, and Nadine Sarter.
Paths to autonomous vehicle operations for urban air mobility. In AIAA Aviation 2019
Forum, page 3255, 2019.

[21] FAA D. Press release—us department of transportation issues two much-anticipated
drone rules to advance safety and innovation in the united states.

[22] Parker D Vascik and R John Hansman. Constraint identification in on-demand mobility
for aviation through an exploratory case study of los angeles. In 17th AIAA Aviation
Technology, Integration, and Operations Conference, page 3083, 2017.

[23] Christabelle Bosson and Todd A Lauderdale. Simulation evaluations of an autonomous
urban air mobility network management and separation service. In 2018 Aviation
Technology, Integration, and Operations Conference, page 3365, 2018.

[24] Minghong G Wu, Andrew C Cone, Seungman Lee, Christine Chen, Matthew W Ed-
wards, and Devin P Jack. Well clear trade study for unmanned aircraft system detect
and avoid with non-cooperative aircraft. In 2018 Aviation Technology, Integration,
and Operations Conference, page 2876, 2018.

146

https://www.greenbiz.com/article/7-urban-air-mobility-companies-watch#:~:text=With%20about%20200%20companies%20involved,as%20the%20end%20of%202022.
https://www.greenbiz.com/article/7-urban-air-mobility-companies-watch#:~:text=With%20about%20200%20companies%20involved,as%20the%20end%20of%202022.
https://www.greenbiz.com/article/7-urban-air-mobility-companies-watch#:~:text=With%20about%20200%20companies%20involved,as%20the%20end%20of%202022.
https://www.faa.gov/sites/faa.gov/files/AAM-I28-Implementation-Plan.pdf
https://www.faa.gov/sites/faa.gov/files/AAM-I28-Implementation-Plan.pdf

[25] Parimal Kopardekar, Joseph Rios, Thomas Prevot, Marcus Johnson, Jaewoo Jung,
and John E Robinson. Unmanned aircraft system traffic management (utm) concept
of operations. In AIAA Aviation and Aeronautics Forum (Aviation 2016), number
ARC-E-DAA-TN32838, 2016.

[26] Tao Jiang, Jared Geller, Daiheng Ni, and John Collura. Unmanned aircraft system
traffic management: Concept of operation and system architecture. International jour-
nal of transportation science and technology, 5(3):123–135, 2016.

[27] David P Thipphavong, Rafael Apaza, Bryan Barmore, Vernol Battiste, Barbara
Burian, Quang Dao, Michael Feary, Susie Go, Kenneth H Goodrich, Jeffrey Homola,
et al. Urban air mobility airspace integration concepts and considerations. In 2018
Aviation Technology, Integration, and Operations Conference, page 3676, 2018.

[28] Aleksandar Bauranov and Jasenka Rakas. Designing airspace for urban air mobility: A
review of concepts and approaches. Progress in Aerospace Sciences, 125:100726, 2021.

[29] SESAR. U-space Concept of Operations. https://www.sesarju.eu/sites/default/
files/documents/u-space/CORUS%20ConOps%20vol2.pdf, 2019.

[30] Cristina Barrado, Mario Boyero, Luigi Brucculeri, Giancarlo Ferrara, Andrew Hately,
Peter Hullah, David Martin-Marrero, Enric Pastor, Anthony Peter Rushton, and An-
dreas Volkert. U-space concept of operations: A key enabler for opening airspace to
emerging low-altitude operations. Aerospace, 7(3):24, 2020.

[31] Nader Samir Labib, Grégoire Danoy, Jedrzej Musial, Matthias R Brust, and Pascal
Bouvry. Internet of unmanned aerial vehicles—a multilayer low-altitude airspace model
for distributed uav traffic management. Sensors, 19(21):4779, 2019.

[32] Qixi Fu, Xiaolong Liang, Jiaqiang Zhang, Duo Qi, and Xiujun Zhang. A geofence algo-
rithm for autonomous flight unmanned aircraft system. In 2019 International Confer-
ence on Communications, Information System and Computer Engineering (CISCE),
pages 65–69. IEEE, 2019.

[33] Mia N Stevens, Hossein Rastgoftar, and Ella M Atkins. Geofence boundary viola-
tion detection in 3d using triangle weight characterization with adjacency. Journal of
Intelligent & Robotic Systems, 95(1):239–250, 2019.

[34] Guodong Zhu and Peng Wei. Low-altitude uas traffic coordination with dynamic
geofencing. In 16th AIAA aviation technology, integration, and operations conference,
page 3453, 2016.

[35] Elie Hermand, Tam W Nguyen, Mehdi Hosseinzadeh, and Emanuele Garone. Con-
strained control of uavs in geofencing applications. In 2018 26th Mediterranean Con-
ference on Control and Automation (MED), pages 217–222. IEEE, 2018.

147

https://www.sesarju.eu/sites/default/files/documents/u-space/CORUS%20ConOps%20vol2.pdf
https://www.sesarju.eu/sites/default/files/documents/u-space/CORUS%20ConOps%20vol2.pdf

[36] Marcus Johnson, Jaewoo Jung, Joseph Rios, Joey Mercer, Jeffrey Homola, Thomas
Prevot, Daniel Mulfinger, and Parimal Kopardekar. Flight test evaluation of an un-
manned aircraft system traffic management (utm) concept for multiple beyond-visual-
line-of-sight operations. In 12th USA/Europe Air Traffic Management Research and
Development Seminar (ATM2017), 2017.

[37] Evan T Dill, Steven D Young, and Kelly J Hayhurst. Safeguard: An assured safety
net technology for uas. In 2016 IEEE/AIAA 35th digital avionics systems conference
(DASC), pages 1–10. IEEE, 2016.

[38] Joseph T Kim, Akshay Mathur, Nicholas Liberko, and Ella Atkins. Volumization and
inverse volumization for low-altitude airspace geofencing. In AIAA AVIATION 2021
FORUM, page 2383, 2021.

[39] Thomas Prevot, Joseph Rios, Parimal Kopardekar, John E Robinson III, Marcus John-
son, and Jaewoo Jung. Uas traffic management (utm) concept of operations to safely
enable low altitude flight operations. In 16th AIAA Aviation Technology, Integration,
and Operations Conference, 2016.

[40] JU SESAR. European drones outlook study unlocking the value for europe. Siebert,
JU, Nov, 2016.

[41] Leonid Sedov and Valentin Polishchuk. Centralized and distributed utm in layered
airspace. In 8th International Conference on Research in Air Transportation, pages
1–8, 2018.

[42] Jungwoo Cho and Yoonjin Yoon. How to assess the capacity of urban airspace: A
topological approach using keep-in and keep-out geofence. Transportation Research
Part C: Emerging Technologies, 92:137–149, 2018.

[43] Tamraparni Dasu, Yaron Kanza, and Divesh Srivastava. Geofences in the sky: herding
drones with blockchains and 5g. In Proceedings of the 26th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems, pages 73–76,
2018.

[44] Hansol Yoon, Yi Chou, Xin Chen, Eric Frew, and Sriram Sankaranarayanan. Predictive
runtime monitoring for linear stochastic systems and applications to geofence enforce-
ment for uavs. In International Conference on Runtime Verification, pages 349–367.
Springer, 2019.

[45] Mia N Stevens, Hossein Rastgoftar, and Ella M Atkins. Specification and evaluation
of geofence boundary violation detection algorithms. In 2017 International Conference
on Unmanned Aircraft Systems (ICUAS), pages 1588–1596. IEEE, 2017.

[46] Mica R Endsley. Design and evaluation for situation awareness enhancement. In
Proceedings of the Human Factors Society annual meeting, volume 32, pages 97–101.
Sage Publications Sage CA: Los Angeles, CA, 1988.

148

[47] Mica R Endsley and Mark D Rodgers. Situation awareness information requirements
analysis for en route air traffic control. In Proceedings of the human factors and er-
gonomics society annual meeting, volume 38, pages 71–75. SAGE Publications Sage
CA: Los Angeles, CA, 1994.

[48] Savita A Verma, Spencer C Monheim, Kushal A Moolchandani, Priyank Pradeep, An-
nie W Cheng, David P Thipphavong, Victoria L Dulchinos, Heather Arneson, Todd A
Lauderdale, Christabelle S Bosson, et al. Lessons learned: using utm paradigm for
urban air mobility operations. In 2020 AIAA/IEEE 39th Digital Avionics Systems
Conference (DASC), pages 1–10. IEEE, 2020.

[49] Mia N Stevens and Ella M Atkins. Layered geofences in complex airspace environments.
In 2018 Aviation Technology, Integration, and Operations Conference, page 3348, 2018.

[50] Mia N Stevens and Ella M Atkins. Multi-mode guidance for an independent multicopter
geofencing system. In 16th AIAA Aviation Technology, Integration, and Operations
Conference, page 3150, 2016.

[51] Kevin Weiler. Polygon comparison using a graph representation. In Proceedings of
the 7th Annual Conference on Computer Graphics and interactive Techniques, pages
10–18, 1980.

[52] Jack Sklansky. Finding the convex hull of a simple polygon. Pattern Recognition
Letters, 1(2):79–83, 1982.

[53] Eric Haines. Point in polygon strategies. Graphics Gems, 4:24–46, 1994.

[54] Kai Hormann and Alexander Agathos. The point in polygon problem for arbitrary
polygons. Computational geometry, 20(3):131–144, 2001.

[55] Frantǐsek Duchoň, Andrej Babinec, Martin Kajan, Peter Beňo, Martin Florek, Tomáš
Fico, and Ladislav Jurǐsica. Path planning with modified a star algorithm for a mobile
robot. Procedia Engineering, 96:59–69, 2014.

[56] Anthony Stentz. Optimal and efficient path planning for partially known environments.
In Intelligent unmanned ground vehicles, pages 203–220. Springer, 1997.

[57] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Com-
putational geometry. In Computational geometry, pages 1–17. Springer, 1997.

[58] Jean-Claude Latombe. Robot motion planning, volume 124. Springer Science & Busi-
ness Media, 2012.

[59] Frank Lingelbach. Path planning using probabilistic cell decomposition. In IEEE
International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, volume 1, pages 467–472. IEEE, 2004.

[60] Yong Koo Hwang, Narendra Ahuja, et al. A potential field approach to path planning.
IEEE Transactions on Robotics and Automation, 8(1):23–32, 1992.

149

[61] Brendan Burns and Oliver Brock. Sampling-based motion planning using predictive
models. In Proceedings of the 2005 IEEE international conference on robotics and
automation, pages 3120–3125. IEEE, 2005.

[62] Anton Semechko. Decimate 2d contours/polygons, 2018. Available online:
https://github.com/AntonSemechko/DecimatePoly (accessed on 3 Jan 2021).

[63] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph theory with
applications, volume 290. Macmillan London, 1976.

[64] Han-Pang Huang and Shu-Yun Chung. Dynamic visibility graph for path plan-
ning. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2813–2818. IEEE, 2004.

[65] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps.
IEEE Pervasive computing, 7(4):12–18, 2008.

[66] Cosme A Ochoa and Ella M Atkins. Urban metric maps for small unmanned aircraft
systems motion planning. arXiv preprint arXiv:2102.07218, 2021.

[67] Muneendra Kumar. World geodetic system 1984: A modern and accurate global
reference frame. Marine Geodesy, 12(2):117–126, 1988.

[68] John Hershberger and Subhash Suri. An optimal algorithm for euclidean shortest paths
in the plane. SIAM Journal on Computing, 28(6):2215–2256, 1999.

[69] Justin R Rufa. Location-Based Sensor Fusion for UAS Urban Navigation. PhD thesis,
University of Michigan, 2014.

[70] Lester E Dubins. On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal of
mathematics, 79(3):497–516, 1957.

[71] Israel Lugo-Cárdenas, Gerardo Flores, Sergio Salazar, and Rogelio Lozano. Dubins
path generation for a fixed wing uav. In 2014 International conference on unmanned
aircraft systems (ICUAS), pages 339–346. IEEE, 2014.

[72] Thomas R Yechout. Introduction to aircraft flight mechanics. AIAA, 2003.

[73] Frank L Lewis and FL Lewis. Optimal estimation: with an introduction to stochastic
control theory. Wiley New York, 1986.

[74] Derek R Nelson, D Blake Barber, Timothy W McLain, and Randal W Beard. Vec-
tor field path following for small unmanned air vehicles. In 2006 American Control
Conference, pages 7–14. IEEE, 2006.

[75] Randal W Beard. Embedded uas autopilot and sensor systems. In Unmanned Aircraft
Systems, pages 231–248. Wiley, 2017.

150

[76] Steven R Hanna, Michael J Brown, Fernando E Camelli, Stevens T Chan, William J
Coirier, Olav R Hansen, Alan H Huber, Sura Kim, and R Michael Reynolds. De-
tailed simulations of atmospheric flow and dispersion in downtown manhattan: An
application of five computational fluid dynamics models. Bulletin of the American
Meteorological Society, 87(12):1713–1726, 2006.

[77] Thomas Prevot, Joseph Rios, Parimal Kopardekar, John Robinson III, Marcus John-
son, and Jaewoo Jung. Uas traffic management (utm) concept of operations to safely
enable low altitude flight operations. 06 2016.

[78] Christopher D Barkey, Joseph T Kim, and Ella M Atkins. Space efficient airspace
geofence volume sizing. In AIAA AVIATION 2023 Forum, page 3859, 2023.

[79] Franco P. Preparata and Se June Hong. Convex hulls of finite sets of points in two
and three dimensions. Communications of the ACM, 20(2):87–93, 1977.

[80] Sesar Joint Undertaking. European drones outlook study - unlocking the value for
europe. 2016.

[81] Nader Samir Labib, Grégoire Danoy, Jedrzej Musial, Matthias R. Brust, and Pascal
Bouvry. Internet of unmanned aerial vehicles—a multilayer low-altitude airspace model
for distributed uav traffic management. Sensors, 19(21), 2019.

[82] Marcus Johnson, Jaewoo Jung, Joseph Rios, Joey Mercer, Jeffrey Homola, Thomas
Prevot, Daniel Mulfinger, and Parimal Kopardekar. Flight test evaluation of an un-
manned aircraft system traffic management (utm) concept for multiple beyond-visual-
line-of-sight operations. 06 2017.

[83] Savita Verma, Spencer Monheim, Kushal Moolchandani, Priyank Pradeep, Annie
Cheng, David Thipphavong, Victoria Dulchinos, Heather Arneson, Todd Lauderdale,
Christabelle Bosson, Eric Mueller, and Bogu Wei. Lessons learned: Using utm
paradigm for urban air mobility operations. pages 1–10, 10 2020.

[84] Tamraparni Dasu, Yaron Kanza, and Divesh Srivastava. Geofences in the sky: Herding
drones with blockchains and 5g. 11 2018.

[85] Evan T. Dill, Russell V. Gilabert, and Seth S. Young. Safeguard. In 2018 IEEE/AIAA
37th Digital Avionics Systems Conference (DASC), pages 1–8, 2018.

[86] Giovanni Legnani, Federico Casolo, Paolo Righettini, and Bruno Zappa. A homoge-
neous matrix approach to 3d kinematics and dynamics—i. theory. Mechanism and
machine theory, 31(5):573–587, 1996.

[87] Jeff Holden and Nikhil Goel. Fast-forwarding to a future of on-demand urban air trans-
portation [white paper], 2016. Available online: https://www.uber.com/elevate.pdf/
(accessed on 17 June 2021).

151

[88] Matthew Osborne, Jennifer Lantair, Zain Shafiq, Xingyu Zhao, Valentin Robu, David
Flynn, and John Perry. Uas operators safety and reliability survey: Emerging technolo-
gies towards the certification of autonomous uas. In 2019 4th International Conference
on System Reliability and Safety (ICSRS), pages 203–212. IEEE, 2019.

[89] Prashin Sharma and Ella Atkins. Experimental investigation of tractor and pusher
hexacopter performance. Journal of Aircraft, 56(5):1920–1934, 2019.

[90] Prashin Sharma and Ella Atkins. Prognostics-informed battery reconfiguration in a
multi-battery small uas energy system. In 2021 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 423–432. IEEE, 2021.

[91] Hafiz Zeeshan Iqbal Khan, Jahanzeb Rajput, and Jamshed Riaz. Reconfigurable con-
trol of a class of multicopters. In 2020 European Control Conference (ECC), pages
1632–1637. IEEE, 2020.

[92] Hussein Hamadi. Fault-tolerant control of a multirotor unmanned aerial vehicle under
hardware and software failures. PhD thesis, Compiègne, 2020.

[93] Mo Chen and Claire J Tomlin. Hamilton–jacobi reachability: Some recent theoreti-
cal advances and applications in unmanned airspace management. Annual Review of
Control, Robotics, and Autonomous Systems, 1:333–358, 2018.

[94] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reach-
ability: A brief overview and recent advances. In 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), pages 2242–2253. IEEE, 2017.

[95] Anayo K Akametalu, Claire J Tomlin, and Mo Chen. Reachability-based forced landing
system. Journal of Guidance, Control, and Dynamics, 41(12):2529–2542, 2018.

[96] Pedro F. A. Di Donato, Sweewarman Balachandran, Kevin McDonough, Ella Atkins,
and Ilya Kolmanovsky. Envelope-aware flight management for loss of control prevention
given rudder jam. Journal of Guidance, Control, and Dynamics, 40(4):1027–1041,
2017.

[97] Ella M Atkins, Igor Alonso Portillo, and Matthew J Strube. Emergency flight planning
applied to total loss of thrust. Journal of aircraft, 43(4):1205–1216, 2006.

[98] Pedro FA Di Donato and Ella M Atkins. Optimizing steady turns for gliding trajec-
tories. Journal of Guidance, Control, and Dynamics, 39(12):2627–2637, 2016.

[99] Joshua E. Baculi and Corey A. Ippolito. Onboard Decision-Making for Nominal and
Contingency sUAS Flight. AIAA, 2019.

[100] Parker C Lusk, Patricia C Glaab, Louis J Glaab, and Randal W Beard. Safe2ditch:
Emergency landing for small unmanned aircraft systems. Journal of Aerospace Infor-
mation Systems, 16(8):327–339, 2019.

152

[101] Sanjiban Choudhury, Vishal Dugar, Silvio Maeta, Brian MacAllister, Sankalp Arora,
Daniel Althoff, and Sebastian Scherer. High performance and safe flight of full-scale
helicopters from takeoff to landing with an ensemble of planners. Journal of Field
Robotics, 36(8):1275–1332, 2019.

[102] Irene M Gregory, Newton H Campbell, Natasha A Neogi, Jon B Holbrook, Jared A
Grauer, Barton J Bacon, Patrick C Murphy, Daniel D Moerder, Benjamin M Simmons,
Michael J Acheson, et al. Intelligent contingency management for urban air mobility. In
Dynamic Data Driven Applications Systems: Third International Conference, DDDAS
2020, Boston, MA, USA, October 2-4, 2020, Proceedings 3, pages 22–26. Springer,
2020.

[103] Hyeonwoong Lee, Seung-Hyun Park, Hak-Tae Lee, Bomi Park, and Jae-Hyun Han.
Lost c2 link contingency procedures for seoul tma and assessment on safety and con-
troller workload. In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference
(DASC), pages 1–6. IEEE, 2020.

[104] Prashin Sharma, Benjamin Kraske, Joseph Kim, Zakariya Laouar, Zachary Sunberg,
and Ella Atkins. Investigation of risk-aware mdp and pomdp contingency management
autonomy for uas. arXiv preprint arXiv:2304.01052, 2023.

[105] Prashin Sharma, Benjamin Kraske, Joseph Kim, Zakariya Laouar, Zachary Sunberg,
and Ella Atkins. Risk-aware markov decision process contingency management auton-
omy for uncrewed aircraft systems. Journal of Aerospace Information Systems, pages
1–15, 2024.

[106] Joseph Kim, Prashin Sharma, Ella Atkins, Natasha Neogi, Evan Dill, and Steven
Young. Assured contingency landing management for advanced air mobility. In 2021
IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), pages 1–12. IEEE,
2021.

[107] J Castagno and E Atkins. Map-based planning for small unmanned aircraft rooftop
landing. In Handbook of Reinforcement Learning and Control, pages 613–646. Springer,
2021.

[108] Eduardo D Sontag. Kalman’s controllability rank condition: from linear to nonlinear.
In Mathematical system theory, pages 453–462. Springer, 1991.

[109] Quan Quan. Introduction to multicopter design and control. Springer, 2017.

[110] Robert F Brammer. Controllability in linear autonomous systems with positive con-
trollers. SIAM Journal on Control, 10(2):339–353, 1972.

[111] Guang-Xun Du, Quan Quan, Binxian Yang, and Kai-Yuan Cai. Controllability analysis
for multirotor helicopter rotor degradation and failure. Journal of Guidance, Control,
and Dynamics, 38(5):978–985, 2015.

153

[112] Majd Saied, Hassan Shraim, Benjamin Lussier, Isabelle Fantoni, and Clovis Francis.
Local controllability and attitude stabilization of multirotor uavs: Validation on a
coaxial octorotor. Robotics and Autonomous Systems, 91:128–138, 2017.

[113] D Subbaram Naidu. Optimal control systems. CRC press, 2002.

[114] Angel Kirchev. Battery management and battery diagnostics. In Electrochemical
energy storage for renewable sources and grid balancing, pages 411–435. Elsevier, 2015.

[115] Joseph Kim, Nicholas Liberko, and Ella Atkins. Airspace geofencing volume sizing
with an advanced air mobility vehicle performance model. In 2022 IEEE/AIAA 41st
Digital Avionics Systems Conference (DASC), pages 1–8. IEEE, 2022.

[116] Justin R Rufa and Ella M Atkins. Unmanned aircraft system navigation in the ur-
ban environment: A systems analysis. Journal of Aerospace Information Systems,
13(4):143–160, 2016.

[117] Federal Aviation Administration. Urban Air Mobility (UAM), Concept
of Operations. v2.0, US Department of Transportation. Office of Nextgen,
2023. https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%
28UAM%29%20Concept%20of%20Operations%202.0_0.pdf/, 2023.

[118] Wisk. Concept of Operations for Uncrewed Urban Air Mo-
bility. https://wisk.aero/wp-content/uploads/2022/09/

Concept-of-Operations-for-Uncrewed-Urban-Air-Mobility.pdf, 2022.

[119] SESAR-Joint-Undertaking. European atm master plan: Roadmap for the safe inte-
gration of drones into all classes of airspace. SESAR Joint Undertaking: Brussels,
Belgium, 2018.

[120] NASA. Air traffic management for low-altitude drones. NASA: Washington, DC, USA,
2018.

[121] D Geister and B Korn. Concept for urban airspace integration dlr u-space blueprint.
German Aerospace Center-Institut of Flight Guidance, 2017.

[122] Claude Le Tallec, Patrick Le Blaye, and Moustafa Kasbari. Low level rpas traffic man-
agement (llrtm) concept of operation. In 17th AIAA Aviation Technology, Integration,
and Operations Conference, page 3938, 2017.

[123] Karthik Balakrishnan, Joe Polastre, Jessie Mooberry, Richard Golding, and Peter
Sachs. Blueprint for the sky: The roadmap for the safe integration of autonomous
aircraft. Airbus UTM, San Francisco, CA, 2018.

[124] Amazon. Revising the airspace model for the safe integration of small unmanned
aircraft systems. Amazon Prime Air, 2015.

154

https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%20of%20Operations%202.0_0.pdf/
https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%20of%20Operations%202.0_0.pdf/
https://wisk.aero/wp-content/uploads/2022/09/Concept-of-Operations-for-Uncrewed-Urban-Air-Mobility.pdf
https://wisk.aero/wp-content/uploads/2022/09/Concept-of-Operations-for-Uncrewed-Urban-Air-Mobility.pdf

[125] EmbraerX. FLIGHT PLAN 2030: AN AIR TRAFFIC MANAGE-
MENT CONCEPT FOR URBAN AIR MOBILITY, author=EmbraerX.
https://daflwcl3bnxyt.cloudfront.net/m/f58fb8ea648aeb9/original/

EmbraerX-White-Paper-Flight-Plan2030.pdf, 2019.

[126] Hui-Min Huang, Kerry Pavek, Brian Novak, James Albus, and E Messin. A frame-
work for autonomy levels for unmanned systems (alfus). Proceedings of the AUVSI’s
unmanned systems North America, pages 849–863, 2005.

[127] Bruce T Clough. Metrics, schmetrics! how the heck do you determine a uav’s autonomy
anyway? NIST Special Publication, 990:313–319, 2002.

[128] Brian P Hill, Dwight DeCarme, Matt Metcalfe, Christine Griffin, Sterling Wiggins,
Chris Metts, Bill Bastedo, Michael D Patterson, and Nancy L Mendonca. Uam vision
concept of operations (conops) uam maturity level (uml) 4. 2020.

[129] Arthur Brown and Wesley L Harris. Vehicle design and optimization model for urban
air mobility. Journal of Aircraft, 57(6):1003–1013, 2020.

[130] W Johnson and C Silva. Nasa concept vehicles and the engineering of advanced air
mobility aircraft. The Aeronautical Journal, 126(1295):59–91, 2022.

[131] Laurie A Garrow, Brian J German, and Caroline E Leonard. Urban air mobility: A
comprehensive review and comparative analysis with autonomous and electric ground
transportation for informing future research. Transportation Research Part C: Emerg-
ing Technologies, 132:103377, 2021.

[132] Aerospace-America. Electric drones and air taxis target the logistical frustra-
tion of transporting organs for transplants. https://aerospaceamerica.aiaa.org/

electric-drones-and-air-taxis-target-the-logistical-frustration-of-transporting-organs-for-transplants/

?utm_campaign=AerospaceAmericaAMB&utm_medium=email&_hsmi=294472799&

_hsenc=p2ANqtz--0lJ0ysk-_CBUuwJSRI-GgoRMowEQit2CZnMpGirz0FWdJJK11eIEYEJNkQGjFI5ioXbnr9bn5nS3nKj-Pms-JdtT08A&

utm_content=294472799&utm_source=hs_email, 2023.

[133] Parker D Vascik and R John Hansman. Development of vertiport capacity envelopes
and analysis of their sensitivity to topological and operational factors. In AIAA Scitech
2019 Forum, page 0526, 2019.

[134] Alba Agust́ın, Antonio Alonso-Ayuso, Laureano F Escudero, Celeste Pizarro, et al.
Mathematical optimization models for air traffic flow management: A review. 2010.

[135] Cheng-Lung Wu and Robert E Caves. Research review of air traffic management.
Transport Reviews, 22(1):115–132, 2002.

[136] Amedeo R Odoni. The flow management problem in air traffic control. In Flow control
of congested networks, pages 269–288. Springer, 1987.

[137] Guodong Zhu and Peng Wei. Pre-departure planning for urban air mobility flights
with dynamic airspace reservation. In AIAA Aviation 2019 Forum, page 3519, 2019.

155

https://daflwcl3bnxyt.cloudfront.net/m/f58fb8ea648aeb9/original/EmbraerX-White-Paper-Flight-Plan2030.pdf
https://daflwcl3bnxyt.cloudfront.net/m/f58fb8ea648aeb9/original/EmbraerX-White-Paper-Flight-Plan2030.pdf
https://aerospaceamerica.aiaa.org/electric-drones-and-air-taxis-target-the-logistical-frustration-of-transporting-organs-for-transplants/?utm_campaign=AerospaceAmericaAMB&utm_medium=email&_hsmi=294472799&_hsenc=p2ANqtz--0lJ0ysk-_CBUuwJSRI-GgoRMowEQit2CZnMpGirz0FWdJJK11eIEYEJNkQGjFI5ioXbnr9bn5nS3nKj-Pms-JdtT08A&utm_content=294472799&utm_source=hs_email
https://aerospaceamerica.aiaa.org/electric-drones-and-air-taxis-target-the-logistical-frustration-of-transporting-organs-for-transplants/?utm_campaign=AerospaceAmericaAMB&utm_medium=email&_hsmi=294472799&_hsenc=p2ANqtz--0lJ0ysk-_CBUuwJSRI-GgoRMowEQit2CZnMpGirz0FWdJJK11eIEYEJNkQGjFI5ioXbnr9bn5nS3nKj-Pms-JdtT08A&utm_content=294472799&utm_source=hs_email
https://aerospaceamerica.aiaa.org/electric-drones-and-air-taxis-target-the-logistical-frustration-of-transporting-organs-for-transplants/?utm_campaign=AerospaceAmericaAMB&utm_medium=email&_hsmi=294472799&_hsenc=p2ANqtz--0lJ0ysk-_CBUuwJSRI-GgoRMowEQit2CZnMpGirz0FWdJJK11eIEYEJNkQGjFI5ioXbnr9bn5nS3nKj-Pms-JdtT08A&utm_content=294472799&utm_source=hs_email
https://aerospaceamerica.aiaa.org/electric-drones-and-air-taxis-target-the-logistical-frustration-of-transporting-organs-for-transplants/?utm_campaign=AerospaceAmericaAMB&utm_medium=email&_hsmi=294472799&_hsenc=p2ANqtz--0lJ0ysk-_CBUuwJSRI-GgoRMowEQit2CZnMpGirz0FWdJJK11eIEYEJNkQGjFI5ioXbnr9bn5nS3nKj-Pms-JdtT08A&utm_content=294472799&utm_source=hs_email
https://aerospaceamerica.aiaa.org/electric-drones-and-air-taxis-target-the-logistical-frustration-of-transporting-organs-for-transplants/?utm_campaign=AerospaceAmericaAMB&utm_medium=email&_hsmi=294472799&_hsenc=p2ANqtz--0lJ0ysk-_CBUuwJSRI-GgoRMowEQit2CZnMpGirz0FWdJJK11eIEYEJNkQGjFI5ioXbnr9bn5nS3nKj-Pms-JdtT08A&utm_content=294472799&utm_source=hs_email

[138] Nelson M Guerreiro, George E Hagen, Jeffrey M Maddalon, and Ricky W Butler.
Capacity and throughput of urban air mobility vertiports with a first-come, first-served
vertiport scheduling algorithm. In AIAA Aviation 2020 Forum, page 2903, 2020.

[139] Steve Paul, Jhoel Witter, and Souma Chowdhury. Graph learning-based fleet schedul-
ing for urban air mobility under operational constraints, varying demand & uncertain-
ties. arXiv preprint arXiv:2401.04851, 2024.

[140] Xuxi Yang and Peng Wei. Scalable multi-agent computational guidance with separa-
tion assurance for autonomous urban air mobility. Journal of Guidance, Control, and
Dynamics, 43(8):1473–1486, 2020.

[141] Huy Trandac, Philippe Baptiste, and Vu Duong. Airspace sectorization with con-
straints. RAIRO-Operations Research-Recherche Opérationnelle, 39(2):105–122, 2005.

[142] Nichakorn Pongsakornsathien, Suraj Bijjahalli, Alessandro Gardi, Angus Symons, Yut-
ing Xi, Roberto Sabatini, and Trevor Kistan. A performance-based airspace model for
unmanned aircraft systems traffic management. Aerospace, 7(11):154, 2020.

[143] Lukas Preis and Mirko Hornung. Vertiport operations modeling, agent-based simula-
tion and parameter value specification. Electronics, 11(7):1071, 2022.

[144] Min Xue. Airspace sector redesign based on voronoi diagrams. Journal of Aerospace
Computing, Information, and Communication, 6(12):624–634, 2009.

[145] Sameer Kulkarni, Rajesh Ganesan, and Lance Sherry. Static sectorization approach to
dynamic airspace configuration using approximate dynamic programming. In 2011 In-
tegrated Communications, Navigation, and Surveillance Conference Proceedings, pages
J2–1. IEEE, 2011.

[146] Marina Sergeeva, Daniel Delahaye, and Catherine Mancel. 3d airspace sector design
by genetic algorithm. In 2015 International Conference on Models and Technologies
for Intelligent Transportation Systems (MT-ITS), pages 499–506. IEEE, 2015.

[147] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of statistical mechanics:
theory and experiment, 2008(10):P10008, 2008.

[148] Franz Aurenhammer and Rolf Klein. Voronoi diagrams. Handbook of computational
geometry, 5(10):201–290, 2000.

[149] Chuantao Yin, Shuaibing Zhu, Hui Chen, Bingxue Zhang, and Bertrand David. A
method for community detection of complex networks based on hierarchical clustering.
International Journal of Distributed Sensor Networks, 11(6):849140, 2015.

[150] Robert Clay Prim. Shortest connection networks and some generalizations. The Bell
System Technical Journal, 36(6):1389–1401, 1957.

156

[151] Ang Li, Mark Hansen, and Bo Zou. Traffic management and resource allocation for
uav-based parcel delivery in low-altitude urban space. Transportation Research Part
C: Emerging Technologies, 143:103808, 2022.

[152] Maria Joao Alves and João Cĺımaco. A review of interactive methods for multiobjective
integer and mixed-integer programming. European Journal of Operational Research,
180(1):99–115, 2007.

[153] Dimitris Bertsimas and Sarah Stock Patterson. The air traffic flow management prob-
lem with enroute capacities. Operations research, 46(3):406–422, 1998.

[154] Dimitris Bertsimas, Guglielmo Lulli, and Amedeo Odoni. The air traffic flow man-
agement problem: An integer optimization approach. In Integer Programming and
Combinatorial Optimization: 13th International Conference, IPCO 2008 Bertinoro,
Italy, May 26-28, 2008 Proceedings 13, pages 34–46. Springer, 2008.

[155] Philip J Smith, Amy L Spencer, and Charles E Billings. Strategies for designing
distributed systems: case studies in the design of an air traffic management system.
Cognition, Technology & Work, 9:39–49, 2007.

[156] John Nash. Two-person cooperative games. Econometrica: Journal of the Econometric
Society, pages 128–140, 1953.

[157] Roger B Myerson. Game theory. Harvard university press, 2013.

[158] Cat Hofacker and Alyssa Tomlinson. Building vertiport cities. https://

aerospaceamerica.aiaa.org/features/building-vertiport-cities/, 2021.

[159] Electric-VTOL-News. Volocopter VoloCity (prototype). https://evtol.news/

volocopter-volocity/, 2023.

[160] Aviation-Week. Joby Aviation S4. https://aerospaceamerica.aiaa.org/

features/building-vertiport-cities/, 2023.

[161] Electric-VTOL-News. Beta Technologies ALIA-250. https://evtol.news/

beta-technologies-alia/, 2023.

157

https://aerospaceamerica.aiaa.org/features/building-vertiport-cities/
https://aerospaceamerica.aiaa.org/features/building-vertiport-cities/
https://evtol.news/volocopter-volocity/
https://evtol.news/volocopter-volocity/
https://aerospaceamerica.aiaa.org/features/building-vertiport-cities/
https://aerospaceamerica.aiaa.org/features/building-vertiport-cities/
https://evtol.news/beta-technologies-alia/
https://evtol.news/beta-technologies-alia/

	Dedication
	Acknowledgements
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Motivation
	Problem Statement
	Research Approach and Dissertation Outline
	Contributions and Innovations
	Contributions
	Innovations

	Airspace Geofencing and Flight Planning for Low-Altitude, Urban, and Small UAS
	Introduction
	Literature Review
	Unmanned Aircraft System Traffic Management and Geofencing
	Computational Geometry
	Path Planning

	Definitions and Algorithms
	Airspace Operational Volumization
	Constructing a Geofence Volume from an Urban Map
	UAS Flight Planning in a Geofenced UTM Airspace

	Environment Modeling
	Map Data Processing

	Simulation Setup
	Simulation Results
	Case Study with sUAS Route Deconfliction
	Conclusions and Future Work

	Statistically-Guided Geofence Volume Sizing with AAM Vehicle Performance Model
	Introduction
	Aircraft Dynamics, Guidance, Navigation, and Control Models
	Kinematics and Dynamics
	Control
	Navigation and Guidance
	Flight Trajectory Geofence Buffer Dimensions

	AAM Design
	Simulation Environment
	Environment Map and Wind Model
	Flight Planning

	Case Studies
	Conclusion

	Geofencing for Three Dimensional Flight and Swarms
	Introduction
	Literature Review
	Parallelepiped Geofence Definition
	Space-Efficient Climb/Descent Geofence
	Methodology and Algorithm
	Simulation Results

	Space-Efficient Containment Geofence for Swarm Formation
	Methodology and Algorithms
	Simulation Results

	Discussion
	Conclusion

	Assured Contingency Landing Management for AAM
	Introduction
	Literature Review
	Assured Contingency Landing Management
	Offline Flight Planning
	Controllability and Reachability (C&R) Watchdog
	Controllability of a Small Multicopter UAS
	Reachability of a Small Multicopter UAS

	Landing Strategy Selector (LSS)
	Continue/Hold Selector
	Online Flight Planner
	Reachable Footprint Computation for an Energy-constrained Multicopter
	Real-time Multi-Goal Flight Planning

	Flight Termination
	Assurance for individual ACLM sub-components

	Simulation Setup
	Environment Modeling
	Vehicle and ACLM System Modeling
	Monte Carlo Parameter Setup

	Simulation Results
	Lightweight Package-carrying Hexacopter
	Heavyweight Package-carrying Hexacopter

	Discussion
	Conclusion

	Centralized and Distributed Optimization of AAM Strategic Traffic Management
	Introduction
	Literature Review
	Methodologies and Algorithmic Approaches
	Airspace Sectorization for (distributed) PSU
	Corridor-based Route Planning
	Distance-based vs. Weighted/Optimized Path Construction
	Corridor Design and Spatial Conflict Detection & Resolution Strategy

	AAM Traffic Flow Management
	Centralized AAM Traffic Flow Management
	Distributed AAM Traffic Flow Management

	Simulation Setup
	Simulation Analysis
	Conclusions and Future Work

	Conclusion
	Conclusion
	Future Directions

	Bibliography

