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Abstract

Representation learning lies at the core of modern Artificial Intelligence. In computer vi-

sion, labeled image datasets like ImageNet have been the standard choice for representa-

tion learning. Despite being empirically successful, this approach is expensive to scale due

to labeling costs. Moreover, the representation quality is limited by the size and diversity

of datasets and their associated label ontologies.

My research explores using natural language supervision for computer vision. Using

natural language allows us to go beyond fixed label ontologies and scale up to more

general sources such as internet data. Toward this goal, my dissertation explores four

problems – (1) Learning representations: I propose one of the first methods for language-

supervised visual learning that uses image captioning as the training objective, showing its

efficacy compared to ImageNet-trained methods on downstream tasks like object detection

and segmentation. (2) Scaling data: I explore social media as a rich source of high-quality

image descriptions and curate a dataset of 12 million image-text pairs while ensuring re-

sponsible curation practices. (3) Understanding data: It is difficult to comprehend the

diversity of visual concepts present in millions of image-text pairs. I posit that images and

text naturally organize into a tree-like hierarchy and propose an approach for learning rep-

resentations that capture this hierarchy using tools from hyperbolic geometry. (4) Transfer

to downstream tasks: Large vision-language models show impressive zero-shot transfer

capabilities on image-level tasks like classification and retrieval. However, their transfer-

ability to pixel-level tasks like object detection and segmentation has relied on expensive

labeled mask annotations. I propose an object detector to efficiently transfer pre-trained

vision models to segment and classify visual objects without any fine-tuning, unlike ex-

isting detectors that train using orders of magnitude more labeled masks to achieve high

performance.

In summary, my research affirms that using language supervision can drive the next

leap of progress in computer vision and has immense utility in practical applications.

xvii



Chapter 1

Introduction

Computer vision is the pursuit of developing machine systems that can see and under-

stand the world as humans do. Progress in computer vision is critical to the overarching

goal of Artificial Intelligence (AI), as human-like perception and reasoning are essential

components for general AI systems. Besides this broader goal, computer vision has count-

less practical applications assisting laypeople and domain experts alike, e.g.,, autonomous

vehicles, optical character recognition, image-based search engines, satellite imaging, and

medical image segmentation, to name a few.

This dissertation work proposes general methods designed to adapt to such practi-

cal applications with minimal requirements of task-specific data and modeling solutions.

Moreover, systems deployed to user-facing products must be robust, steerable, and inter-

pretable. To this end, the central theme of this dissertation is to approach computer vision

tasks by utilizing natural language supervision for visual inputs.

We begin by discussing the state of computer vision research before the undertaking

of this dissertation to contextualize the presented work. Modern computer vision has

its roots dating back to the early 1960s. The pioneering work of Roberts [205] paved the

way for object recognition, illustrating the ability to extract three-dimensional shapes from

images. The computational framework for visual information processing by Marr [169] is

influential to the current theories of human perception. It is difficult to summarize the

research progress of the last six decades for the scope of this chapter, thus we highlight the

canonical developments of the previous decade.

Background

In the 2010s, the ImageNet dataset [47] has been paramount in shaping the landscape

of computer vision. A popular subset of ImageNet containing 1.28 million images la-

beled with 1000 object categories has been the standard benchmark for visual recogni-

tion [208]. In 2012, a convolutional model named AlexNet [131] won the ImageNet com-

petition, significantly outperforming prior methods using hand-crafted feature descriptors
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like SIFT [163] and HOG [44]. This event propelled the mainstream adoption of deep

learning techniques in computer vision, promoting the idea of data-driven representation
learning. Stronger convolutional models followed gradually, e.g., VGG [217], Inception-

Net [229, 230], ResNet [91, 261], Squeeze-Excitation [107], as well as general model

families like EfficientNets [232] and RegNets [199]. The rapid growth of hardware com-

puting power (GPUs) was a major catalyst for these architectural improvements.

Soon after the success of AlexNet, transfer learning became the de-facto approach

to computer vision tasks – pre-train a deep convolutional network using the ImageNet

dataset, then fine-tune it using a task-specific dataset. This recipe not only made ad-

vances on a myriad of downstream vision tasks like object detection [81], image seg-

mentation [92, 160, 284], and monocular depth estimation [61], but also enabled new

multi-modal tasks that would have otherwise required vast amounts of task-specific data,

e.g., image captioning [249] and paragraph generation [127], visual question answer-

ing [6, 291], and vision-language navigation [5].

Aside from the architectural innovations for pre-training and downstream transfer, the

community paid relatively little attention to the unreasonable effectiveness of data [227].

The ImageNet dataset remained the consistent pre-training data source, its size and diver-

sity limit the quality of learned representations. Obtaining ImageNet-like data at scale is

expensive due to the substantial cost of crowdsourcing high-quality image labels.

In subsequent years, there has been a growing interest in the search for scalable so-

lutions for learning general visual representations, beyond the use of ImageNet. One ap-

proach is that of weakly supervised learning that uses internet images with low-quality noisy

labels for representation learning. Examples include the JFT-300M dataset [102] (propri-

etary to Google) and its follow-up studies [40, 124, 227], and the Instagram dataset with

billions of images labeled with hashtags [166, 265]. These studies observed that while

low-quality image labels can facilitate representation learning, it is very data-inefficient –

performance improvements on downstream transfer tasks are logarithmic upon increasing

data by orders of magnitude.

Another approach is that of self-supervised learning (SSL), which tackles representation

learning purely from unlabeled images. The core motivation of this strategy stems partly

from cognitive science, noting that infants learn to identify and distinguish visual concepts

long before knowing what they are called (labels). Besides, SSL offers an appealing benefit

– being able to entirely side-step the labeling cost and leverage vast amounts of internet

images. Representation learning without labels is done by performing auxiliary image-

based tasks like context prediction [56], image colorization [282, 283], solving jigsaw

puzzles [182], predicting image rotation [79], inpainting image patches [188], and so on.
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A family of SSL methods is based on the contrastive learning framework [87] identifying

two augmented views of an image, e.g., [32, 95, 257]. SSL methods yield strong transfer

results when trained using unlabeled ImageNet images. However, right until the under-

taking of this dissertation, these studies have been in an early phase and their scalability

to billions of unlabeled images remains unexplored.

In summary, there has been an explosion of innovative methods for computer vision

in the previous decade. Moving forward, the community grapples with open challenges –

what is the right choice of data and learning methodology to break the transfer learning

bottleneck and push the frontiers of computer vision? The time is ripe to explore scalable

alternatives to the deeply entrenched ImageNet-based visual representation learning.

Motivation

This dissertation proposes using language supervision for computer vision as a promis-

ing path forward. Compared to self-supervised and weakly-supervised learning strategies

discussed above, using natural language as a supervisory signal has appealing benefits.

– Semantic density: Natural language can convey rich semantic information carried by

image pixels, with more descriptiveness than discrete label sets. We aim to enrich the

supervisory signal for visual representation learning using language. Moreover, devel-

oping methods that can directly process vision-language data would let us side-step the

necessity of crowdsourcing or curating image labels adhering to pre-defined ontology as

required by ImageNet-supervised and wealy-supervised methods.

– Data scalability: Images are abundant on the internet 1 and are often accompanied

by some textual metadata. With language-supervised methods, we can leverage vast

amounts of such internet data, instead of defining heuristics to convert the unstructured

text into fixed label sets, or entirely discarding text and using only images like SSL.

– Easy usage and adaptability: Natural language is the standard mode of communication

used by humans to describe and reason about the visual world. Models that can process

vision-language inputs and produce outputs based on natural language instructions, can

be easily promptable and steerable by users. Thus, such models can provide an intuitive

user experience when deployed in real-world products.

We believe that language supervision for computer vision will unlock new and exciting

applications that were nearly impossible with their predecessors, e.g. generating realistic

images and videos based on text description.

1It is important to note that internet data can have variable licensing and copyright terms which must be
followed to curate data responsibly.
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Thesis Statement and Contributions

Language supervision enables visual representation learning

from scalable data sources, while yielding practical benefits such as

interpretability and efficient adaptability to vision applications.

We support this statement by studying four essential problems in the overarching theme

of this dissertation, which we discuss in the next four chapters.

Learning representations. In Chapter 2, we propose an approach for learning visual

representations using language supervision, named VirTex. We trained VirTex models com-

posed of convolutional networks (ResNets [91]) and Transformers [244] to perform the

generative task of image captioning [249]. Under controlled comparisons, VirTex matched

or exceeded equivalent ImageNet-trained models on six downstream vision tasks spanning

image classification, object detection, and instance segmentation. This chapter is based on

Desai and Johnson [50], published at CVPR 2021.

Scaling data. In Chapter 3, we aim to expand the scale and diversity of the training data

for language-supervised visual learning, based on the empirical success of VirTex. Web

data is abundant, albeit noisy and unstructured. Standard data curation practices involve

using web crawlers, followed by extracting image URLs and HTML alt-text captions, e.g.,
Conceptual Captions (CC [30, 215]). Complex filtering was crucial for quality control,

which resulted in low-recall collection – CC filtered 5 billion images down to 3.3 million!

We explore social media as a data source for high-recall curation without complex filter-

ing. Our key intuition is that text on social media is of higher quality than HTML alt-text

it is written with the intent of human interaction. We collected the RedCaps dataset com-

prising 12 million image-text pairs from Reddit, making it the largest dataset of its type

at the time of release. We used RedCaps to train models for learning transferable visual

representations and for image captioning (VirTex [50]). This chapter is based on Desai

et al. [51] (published at NeurIPS 2021).

The growing scale of image datasets has prompted concerns pertaining to unwanted

presence of gender stereotypes [24], NSFW imagery [18], and lack of geographic diver-

sity [46]. With the development of RedCaps, we aim to propagate responsible collection

practices for large image datasets – we filter images containing identifiable faces and NSFW

content, and include an opt-out form on the dataset website to respect user privacy.
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Understanding data. In Chapter 4, we aim to learn interpretable representations us-

ing image-text data. Large vision-language models have continued to scale to ever larger

datasets soon after the undertaking of Chapter 3 – for example, the largest public image-

text dataset in 2023 is LAION [210, 211] with more than 2 billion (English) image-text

pairs, and used commonly to develop vision-language models like CLIP [198]. As data

and models grow, they become increasingly opaque – the data diversity and complex re-

lationships underlying billions of image-text pairs are difficult to comprehend. We posit

that images and text naturally organize themselves in a hierarchy, where a textual con-

cept (e.g., ‘dog’) entails all images that depict a visual concept in different configurations

(e.g., dogs of various breeds, in various poses and scenes). Vision-language representa-

tions that capture such a hierarchy would let us infer higher-order relationships present

in such datasets beyond their simple organization as independent image-text pairs. We

introduce MERU [52], a contrastive image-text model that uses tools from hyperbolic ge-

ometry. We train MERU using RedCaps and obtain strong empirical results for zero-shot
image classification and retrieval, spanning 18 datasets. For a given image, MERU can

retrieve textual descriptions with varying levels of detail, showcasing the emergence of a

data-driven hierarchy of concepts in the representation space.

Transfer to downstream tasks. Chapter 5 explores a new transfer learning recipe for

the fundamental computer vision task of object detection. We have demonstrated the effi-

cacy and scaling potential of language-supervised visual learning in the previous chapters

– moving forward, we revisit the downstream modeling design for object detection which

was largely based on the success of ImageNet-supervised pre-training. We propose revamp-

ing this recipe with the recent success in scaling two types of vision models: (a) Contrastive

image-text models (e.g., CLIP) that perform zero-shot image classification based on user-

specified text prompts, and (b) Interactive segmentation models (e.g., SAM [123]) that

perform zero-shot segmentation based on user-specified points or box prompts. We com-

pose these large vision models into a modular object detector that we name SCAM, short

for Segment and Classify Anything Model. Our experiments compare SCAM with previous

object detector designs like region-based models based on R-CNN [92, 151] and query-

based models based on DETR [25] and Mask2Former [38]. Moreover, SCAM strongly

retains the pre-training functionality of its constituent modules which allows its use for

object detection in a training-free as well as low-data regime.
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Chapter 2

Learning Visual Representations using Language

Downstream Transfer

Language Supervised Pretraining

Example: Object Detection

Task: Image Captioning

Transformers

ConvNet

A brown and white puppy lying on 
green lawn looking at apples.

Faster

R-CNN

cat

cake

Figure 2.1: Using language supervision for visual representation learning: We jointly
train a ConvNet and Transformers using image-caption pairs, for the task of image caption-
ing. Then, we transfer the learned ConvNet to vision tasks, for example, object detection.

2.1 Introduction

The prevailing paradigm for learning visual representations is first to pre-train a convo-

lutional network [91, 131] to perform image classification on ImageNet [47, 208], then

transfer the learned features to downstream tasks [58, 214]. This approach has been wildly

successful, and has led to significant advances in a wide variety of computer vision prob-

lems such as object detection [81], semantic [160] and instance [92] segmentation, image

captioning [59, 117, 249], and visual question answering [6, 291]. Despite its practical

success, this approach is expensive to scale since the pre-training step relies on images

annotated by human workers.

For this reason, there has been increasing interest in unsupervised pre-training methods

that use unlabeled images to learn visual representations which are then transferred to
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Figure 2.2: Comparison of pre-training tasks for learning visual representations: Con-
trastive learning methods use a semantically sparse learning signal, encouraging different
views of an image to have similar features. Image classification pairs an image with a
single semantic concept, providing moderate semantic density. Multi-label classification,
object detection, and instance segmentation increase semantic density by labeling and lo-
calizing multiple objects. Captions describe multiple objects, their attributes, relationships,
and actions, giving a semantically dense learning signal. With VirTex, we aim to draw rich
supervision from these semantically dense captions.

downstream tasks [56, 79, 183, 188, 237, 282, 283]. Some recent approaches have begun

to match or exceed supervised pre-training on ImageNet [32, 83, 94, 98, 175], and have

been scaled to hundreds of millions [26, 27, 83, 175] or billions [94] of images.

Continuing to scale unsupervised pre-training to ever-larger sets of unlabeled images

is an important scientific goal. But we may also ask whether there are alternate ways

of pre-training that learn high-quality visual representations with fewer images. To do

so, we revisit supervised pre-training and seek an alternative to traditional classification

pre-training that uses each image more efficiently.

In this chapter, we present an approach for learning Visual representations from Textual

annotations (VirTex). Our approach is straightforward: first, we jointly train a ConvNet

and Transformer [244] from scratch to generate natural language captions for images.

Then, we transfer the learned features to downstream visual recognition tasks (Figure 2.1).

We believe that using language supervision is appealing due to its semantic density.

Figure 2.2 compares different pre-training tasks for learning visual representations. Cap-

tions provide a semantically denser learning signal than unsupervised contrastive methods

and supervised classification. Hence, we expect that using textual features to learn visual

features may require fewer images than other approaches.

Another benefit of textual annotations is simplified data collection. To collect clas-

sification labels, typically human experts first build an ontology of categories [47, 86,

153, 208], then complex crowdsourcing pipelines are used to elicit labels from non-expert
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users [48, 129]. In contrast, natural language descriptions do not require an explicit ontol-

ogy and can easily be written by non-expert workers, leading to a simplified data collection

pipeline [34, 104, 271]. Large quantities of weakly aligned images and text can also be

obtained from internet images [168, 185, 215].

Our main contribution is to show that natural language can provide supervision for

learning transferable visual representations with better data efficiency than other ap-

proaches. We train models from scratch on the COCO Captions dataset [34], and evaluate

the learned features on downstream tasks including image classification, object detection,

instance segmentation, and low-shot recognition. On all tasks, VirTex matches or exceeds

the performance of existing methods for supervised or unsupervised pre-training on Ima-

geNet, despite using up to 10× fewer images. Our code and models are publicly available

at github.com/kdexd/virtex.

2.2 Approach

Given a dataset of image-caption pairs, our goal is to learn visual representations that can

be transferred to downstream visual recognition tasks. As shown in Figure 2.2, captions

carry rich semantic information about images, including the presence of objects (cat, plate,

cake); attributes of objects (orange and white cat); spatial arrangement of objects (cat near
a plate); and their actions (looking at apples). Learned visual representations that capture

such rich semantics should be useful for many downstream vision tasks.

To this end, we train image captioning models to predict captions from images. As

shown in Figure 2.3, our model has two components: a visual backbone and a textual head.

The visual backbone extracts visual features from an input image I. The textual head

accepts these features and predicts a caption C = (c0, c1, . . . , cT , cT+1) token by token,

where c0 = [SOS] and cT+1 = [EOS] are fixed special tokens indicating the start and

end of the sentence. The textual head performs bidirectional captioning (bicaptioning):

it comprises a forward model that predicts tokens left-to-right, and a backward model that

predicts right-to-left. All model components are randomly initialized, and jointly trained

to maximize the log-likelihood of the correct caption tokens

L(θ, φ) =
T+1∑
t=1

log
(
p(ct | c0:t−1, I;φf , θ)

)
+

T∑
t=0

log
(
p(ct | ct+1:T+1, I;φb, θ)

) (2.1)

where θ, φf , and φb are the parameters of the visual backbone, forward, and backward
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Figure 2.3: VirTex setup: Our model consists of a visual backbone (ResNet-50), and a tex-
tual head (two unidirectional Transformers). The visual backbone extracts image features,
and textual head predicts captions via bidirectional language modeling (bicaptioning). The
Transformers perform masked multiheaded self-attention over caption features, and multi-
headed attention over image features. Our model is trained end-to-end from scratch. After
pre-training, the visual backbone is transferred to downstream visual recognition tasks.

models respectively. After training, we discard the textual head and transfer the visual

backbone to downstream visual recognition tasks.

Language Modeling: We choose image captioning [59, 117, 249], as our pre-training

task, so far kept downstream from vision-based pre-training. We draw inspiration from

recent work in NLP using language modeling as a pre-training task to learn transferable

text representations. This involves training massive language models – either unidirec-

tional [192] or bidirectional [22, 196, 197, 267], for predicting tokens one by one. How-

ever, following BERT [53], many large-scale models [158, 216] instead use masked lan-
guage models (MLMs): some tokens are randomly masked and are predicted by the model.

We performed preliminary experiments with MLMs, but like [42, 53] we observed that

MLMs converge more slowly than directional models. We note that MLMs have poor sam-

ple efficiency, as they only predict a subset of tokens for each caption, while directional

models predict all tokens.

Visual Backbone: The visual backbone is a convolutional network that inputs raw image

pixels and outputs a grid of image features. During pre-training, these features are used to

predict captions. In downstream tasks, we either train linear models on features extracted

from the visual backbone or fine-tune the visual backbone end-to-end.

In principle, we could use any convolutional network architecture for the visual back-

bone. In our experiments, we use a standard ResNet-50 [91] as the visual backbone to

facilitate comparison with our baseline methods (Section 2.3). It accepts a 224 × 224 im-

age and produces a 7 × 7 grid of 2048-dimensional features after the final convolutional
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layer. During pre-training, we apply a linear projection layer to the visual features before

passing them to the textual head to facilitate decoder attention over visual features. This

projection layer is not used in downstream tasks.

Textual Head: The textual head receives features from the visual backbone and pre-

dicts captions for images. It provides a learning signal to the visual backbone during

pre-training. Our overall goal is not to predict high-quality captions, but instead to learn

transferable visual features.

The textual head comprises two identical language models that predict captions in for-

ward and backward directions respectively. Following recent advances in language mod-

eling, we use Transformers [244], which use multiheaded self-attention both to propagate

information along the sequence of caption tokens, as well as to fuse visual and textual

features. We closely follow the transformer decoder architecture from [244], but use

GELU [101] rather than ReLU, following [53, 196]. We briefly review the architecture

here; refer to [244] for a more complete description.

During training, the forward model receives two inputs: image features from the visual

backbone, and a caption describing the image. Image features are a matrix of shapeNI×DI

giving a DI-dimensional vector for each of the NI = 7× 7 positions in the final layer of the

visual backbone. As described earlier, the caption C = (c0, c1, . . . , cT , cT+1) is a sequence

of T + 2 tokens, with c0 = [SOS] and cT+1 = [EOS]. It is trained to predict C1:T+1 token-

by-token, starting with c0. The prediction ct is causal – it only depends on past predictions

c0:t−1 and visual features. The backward model is similar; it operates right-to-left – trained

to predict CT :0, given cT+1.

First, we convert the tokens of C to vectors via learned token and positional embed-

dings, followed by elementwise sum, layer normalization [8] and dropout [224]. Next, we

process these vectors through a sequence of Transformer layers. As shown in Figure 2.3,

each layer performs masked multiheaded self-attention over token vectors, multiheaded at-

tention between token vectors and image vectors, and applies a two-layer fully-connected

network to each vector. These three operations are each followed by dropout, wrapped in

a residual connection, and followed by layer normalization. Token vectors interact only

through self-attention; the masking in this operation maintains the causal structure of the

final predictions. After the last Transformer layer, we apply a linear layer to each vector to

predict unnormalized log-probabilities over the token vocabulary.

The forward and backward models consist of independent Transformer layers. How-

ever, they share the same token embedding matrix (similar to [192]) which is also reused

at the output layers of each model (similar to [111, 194]).
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Model Size: Several architectural hyperparameters control the size of our textual head.

We can control the width of each Transformer layer by varying its hidden sizeH, the number

of attention heads A used in multiheaded attention, and the feedforward size F of the fully-

connected network. We follow [53] and always set A = H/64 and F = 4H; this allows us

to control the width of our textual head by varying H. We can also control the depth of

our textual head by varying the number of transformer layers L.

Tokenization: We lowercase all captions and strip accents from characters, and then

tokenize them with SentencePiece [132] using the byte-pair encoding algorithm [213].

The resulting vocabulary comprises 10K tokens, including boundary ([SOS], [EOS]) and

out-of-vocab ([UNK]) tokens. Following [196, 197] we restrict subword merges between

letters and punctuation to prevent redundant tokens such as ‘dog?’ and ‘dog!’. Com-

pared to basic tokenization schemes often used for image captioning that split on whites-

pace [117, 249], BPE makes fewer linguistic assumptions, exploits subword information,

and results in fewer out-of-vocab tokens.

Training Details: All models are trained using the train2017 split of the COCO Captions

dataset [34], which contains 118K images with five captions each. We apply simple data

augmentation during training: randomly crop to 20–100% of the original image size, and

apply color jitter (brightness, contrast, saturation, hue). We also apply random horizontal

flips, also interchanging the words ‘left’ and ‘right’ in the caption. All images are normal-

ized using the ImageNet color (RGB mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])

before passing as input to the visual backbone.

We train using SGD with momentum 0.9 [193, 228] wrapped in LookAhead [281]

with α = 0.5 and 5 steps. The weight decay is 10−4 applied to all parameters except

gains and biases in Transformers. We perform distributed training across 8 GPUs with

batch normalization [112] per GPU, following [83]. We train with a batch size of 256

images (32 per GPU) for 500K iterations (≈1080 epochs). We use linear learning rate

warmup [83] for the first 10K iterations followed by cosine decay [161] to zero. We found

that the visual backbone required a higher LR than the textual head for faster convergence.

The visual backbone uses a max LR of 2× 10−1; the textual head uses 10−3. We implement

our models using PyTorch [187] with native automatic mixed-precision [172].
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2.3 Experiments

In our experiments, we aim to demonstrate the effectiveness of learning visual represen-

tations using language supervision. We train VirTex from scratch on COCO Captions [34]

as described in Section 2.2, and evaluate the learned representations on six downstream

vision tasks. These evaluations mimic two common styles of transfer learning: linear

probe (Section 2.3.1) wherein the visual backbone is kept frozen, and fine-tuning tasks

(Section 2.3.2) that allow updating backbone parameters using the downstream dataset.

2.3.1 Linear probe evaluation

We compare VirTex with various pre-training methods to test our two hypotheses: (a)

Learning visual features via captions is cheaper than using other types of annotations,

like labels and masks. (b) Using semantically dense captions helps with learning effective

visual features using fewer training images. We use two standard datasets for linear probe

evaluation: PASCAL VOC [67] and ImageNet-1k [208].

PASCAL VOC: We train on VOC07 trainval split (9K images, 20 classes) and report

mean average precision (mAP) on test split. Image pre-processing is kept minimal during

training and evaluation – we resize the shorter edge to 256 pixels and take a 224 × 224

center crop. We train per-class SVMs on 2048-dimensional global average pooled fea-

tures extracted from the last layer of the visual backbone. For training SVMs, we use

scikit-learn [190] with LIBLINEAR [68] backend, default parameters are:

LinearSVC(

cost=C, penalty='l2', dual=True, max_iter=2000, tol=1e-4,

class_weight={1: 2, -1: 1}, loss='squared_hinge'

)

We search for the best cost value from C ∈ {0.01, 0.1, 1.0, 10.0} using 2-fold cross-validation

on the trainval split. Our evaluation setup is very similar to several works in the self-

supervised visual learning literature [28, 83, 175].

ImageNet-1k: Our evaluation protocol resembles MoCo [94], SwAV [28], and many

other self-supervised learning works. We train a linear classifier using the ILSVRC 2012

train split and report top-1 accuracy on val split. The classifier is a fully connected layer

with softmax, on 2048-dimensional global average pooled features from the visual back-

bone. The weights are initialized from N(0.0, 0.01), and bias values are initialized to 0.
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Method Annotations Cost (hours) PASCAL VOC ImageNet

MoCo-COCO self-sup. – 63.3 41.1
Multi-label Clf. labels 11.1K [153] 86.2 46.2
Instance Segmentation masks 30.0K [153] 82.3 51.0

VirTex (1 caption) captions 1.3K [1] 84.2 50.2
VirTex (5 caption) captions 6.5K [1] 88.7 53.8

Table 2.1: Annotation cost efficiency of VirTex: We compare the downstream perfor-
mance of various pre-training methods on COCO. Cost estimates are reported in terms of
annotation worker hours for COCO train2017 split. VirTex outperforms all other methods
trained on the same set of images with the best performance vs. cost tradeoff.

We use batch size 256 distributed across 8 GPUs for 100 epochs. We use SGD with

momentum 0.9 and weight decay 0, the initial LR to 0.3 and decayed to zero by cosine

schedule [161]. For data augmentation during training, we randomly crop 20–100% of

the original image size, with a random aspect ratio in (4/3, 3/4), resize to 224 × 224, and

apply random horizontal flip. During evaluation, we resize the shorter edge to 256 pixels

and take a 224× 224 center crop.

Evaluation I: Annotation cost efficiency. We compare various pre-training methods us-

ing supervision from different types of annotations (Figure 2.2). This allows us to compare

the cost efficiency of annotations while using the same set of training images (COCO).

– MoCo-COCO (self-supervised): This is a MoCo-v1 model [94] trained on COCO images

using the official codebase 1 and default hyperparameters. Since this model learns only

from images, its annotation cost is zero.

– Multi-label Classification (labels): We use COCO object detection annotations (80

classes), and train a ResNet-50 backbone to predict a K-hot vector with values 1/K

with a KL-divergence loss, similar to [166]. We estimate the annotation cost of COCO

labels from Lin et al. [153] – the Category Labeling and Instance Spotting steps take≈30K

hours (328K images). We scale this for 118K images of COCO train2017 split.

– Instance Segmentation (masks): We use a pre-trained Mask R-CNN trained from

scratch using the COCO dataset [93] from Detectron2 model zoo [256] and extract

its ResNet-50 backbone for downstream tasks. Lin et al. [153] mention that collecting

1000 segmentation masks takes 22 worker hours. We scale this estimate for ≈860K

masks in COCO train2017 split, along with label collection cost.

– VirTex (captions): We train a VirTex model on COCO Captions, with ResNet-50 visual

1https://github.com/facebookresearch/moco
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Figure 2.4: Data efficiency of VirTex: We compare VirTex and IN-sup models trained
using varying amounts of images. VirTex closely matches or significantly outperforms IN-
sup on downstream tasks despite using 10× fewer images. ImageNet-supervised models
using ≤ 105 images are the mean of 5 trials, std dev. ≤ 1.0.

backbone and L = 1, H = 2048 textual head. Note that COCO Captions provides five

captions per image, which effectively increases image-caption pairs by five-fold. Hence

for a fair comparison, we also train an additional VirTex model using only one randomly

selected caption per image. Cost estimates for COCO Captions are not available in

existing literature, to the best of our knowledge. Agrawal et al. [1] report the median

time required to write a single caption according to COCO collection protocol as 39.2

seconds. We use this to estimate the cost of collecting 118K ×5 COCO captions.

Results and annotation costs are shown in Section 2.3.1. We observe that VirTex outper-

forms all methods, and has the best performance vs. cost tradeoff, indicating that learning

visual features using captions is more cost-efficient than labels or masks.

Evaluation II: Data efficiency. We believe that the semantic density of captions should

allow VirTex to learn effective visual features from fewer images than other methods. To

test our hypothesis, we compare VirTex and ImageNet-supervised models (IN-sup) trained

using varying amounts of images from COCO Captions and ImageNet-1k respectively.

We train 4 VirTex models using random (10%, 20%, 50%, 100%) subsets of COCO (118K

images). We also train 4 VirTex models using one randomly selected caption per image. All

VirTex models use L = 1, H = 2048 textual heads. Training details are the same as before,

except that we scale training iterations according to the size of the sampled training set.

As baselines, we train ImageNet-supervised models using randomly sampled subsets of

ImageNet (1%, 2%, 5%, 10%, 20%, 50%). Subsets are carefully sampled to mimic the class

distribution of full ImageNet. These models are trained following the exact training setup

used by torchvision models. We use SGD with momentum 0.9 and weight decay 10−4.
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Method Pre-train Images Annotations PASCAL VOC ImageNet

MoCo-IN v1 [94] 1.28M self-sup. 79.4 60.8
PCL v1 [145] 1.28M self-sup. 83.1 61.5
SwAV (200 ep.) [28] 1.28M self-sup. 87.9 72.7

ICMLM (att-fc) [23] 118K captions 87.5 47.9
VirTex 118K captions 88.7 53.8

Table 2.2: System-level comparisons with VirTex: VirTex is competitive with recent SSL
methods and concurrent work while using fewer images with language supervision.

We use a total batch size of 256, and distributed across 8 GPUs. We train for 90 epochs,

with an initial learning rate 0.1, which is divided by 10 at epochs 30 and 60.

Results are shown in Figure 2.4. On VOC07, VirTex-100% outperforms IN-sup-100%

(mAP 88.7 vs 87.6), despite using 10× fewer images (118K vs. 1.28M). When using a sim-

ilar amount of images, VirTex consistently outperforms IN-sup (blue, orange vs green),

indicating superior data efficiency of VirTex. We also observe that given the same num-

ber of captions for training, it is better to spread them over more images – VirTex-50% (1

caption) significantly outperforms VirTex-10% (5 captions) (mAP 79.4 vs 69.3). Compari-

son with IN-sup on ImageNet-1k classification is unfair for VirTex since IN-sup models are

trained for the downstream task, using the downstream dataset. Even so, VirTex-100% out-

performs IN-sup-10% (53.8 vs. 53.6, 118K vs. 128K images), and consistently outperforms

it when both methods use fewer than 100K images.

Evaluation III: ImageNet vs. Cropped COCO. The ImageNet dataset mostly contains

centered images with a single object, commonly called iconic images. On the other hand,

the COCO dataset contains ∼2.9 object classes and ∼5.7 instances per image. It may seem

that VirTex requires fewer images than ImageNet-supervised models as they contain mul-

tiple objects per image. We perform a simple comparison to control the varying image

statistics between datasets. We crop objects from COCO images and create a dataset of

860K iconic images. To closely mimic ImageNet-like images, we randomly expand bound-

ing boxes on all sides by 0–30 pixels before cropping. We train a ResNet-50 with the same

hyperparameters as ImageNet-supervised models. It achieves 79.1 VOC07 mAP (vs. 88.7

VirTex). This shows that the data efficiency of VirTex does not entirely stem from using

images containing multiple objects.

Evaluation IV: System-level comparisons. We compare VirTex directly with different

pre-training methods that were developed during the undertaking of this chapter.
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– Self-supervised pre-training: We choose three methods based on their availability and

compatibility with our evaluation setup – MoCo [94], PCL [145], and SwAV [28]. We

select officially released model checkpoints that were trained with a similar compute

budget as ours and evaluate them with our implemented protocol.

– ICMLM (Concurrent Work): We show numbers from Sariyildiz et al. [23]; evaluation

may slightly differ. This model uses pre-trained BERT [53] for textual features.

– Vision-language pre-training works: Since we use captions, we also consider methods

that learn multimodal representations for downstream vision-language tasks [36, 143,

147, 149, 164, 225, 231, 288]. As described in Section 2.4, all these methods use an

object detector with ImageNet pre-trained backbone. These features are kept frozen,

and do not learn from any language supervision at all. Our comparison with ImageNet-

supervised models subsumes this family of models.

Results are shown in Table 2.2. VirTex outperforms all methods on VOC07, despite be-

ing trained with much fewer images. On ImageNet-1k, the comparison between self-

supervised models and VirTex is unfair on both ends, as the former observes downstream

images during pre-training, while the latter uses annotated images.

2.3.2 Fine-tuning based evaluation

In this section, we evaluate the visual representations learned by VirTex on tasks that

involve fine-tuning the pre-trained model on the downstream task dataset. We consider

four tasks with different datasets: (a) Instance Segmentation on COCO [153]; (b) Instance

Segmentation on LVIS [86]; (c) Object Detection on PASCAL VOC [67]; and (d) Fine-

grained Classification on iNaturalist 2018 [243]. In all these experiments, we use the

VirTex model with ResNet-50 visual backbone and a textual head with L = 1, H = 2048.

Baselines: Our main baseline in ImageNet-supervised models (IN-sup) similar to linear

probe evaluation. We consider three variants of IN-sup pre-trained with {10, 50, 100}%
of ImageNet images (Figure 2.4). We also add another baseline – MoCo [95] – a self-

supervised visual learning method that, for the first time, showed strong empirical perfor-

mance over ImageNet-supervised models on fine-tuning based transfer tasks. We include

both MoCo-IN (Table 2.2) and MoCo-COCO (Section 2.3.1). Finally, we include a Random
Init baseline, where the backbone is trained from scratch using the downstream dataset.

We follow the evaluation protocol of MoCo [94] for all four tasks. We use Detec-

tron2 [256] for tasks (a,b,c). Our IN-sup-100% results are slightly better than those re-

ported by He et al. [94] – we use pre-trained ResNet-50 model from torchvision, whereas
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Method
Pre-train
Images

COCO Instance Segmentation LVIS Inst Segm VOC Detection iNat 18
APbox APbox

50 APmask APmask
50 APmask APmask

50 APbox APbox
50 Top-1

Random Init 36.7 56.7 33.7 53.8 17.4 27.8 33.8 60.2 61.4
IN-sup 1.28M 41.1 62.0 37.2 59.1 22.6 35.1 54.3 81.6 65.2
IN-sup-50% 640K 40.3–0.8 61.0–1.0 36.6–0.6 58.0–1.1 21.2–1.4 33.3–1.8 52.1–2.2 80.4–1.2 63.2–2.0

IN-sup-10% 128K 37.9–3.2 58.2–3.8 34.7–2.5 55.2–3.9 17.5–5.1 28.0–7.1 42.6–11.7 72.0–9.6 60.2–4.7

MoCo-IN 1.28M 40.8–0.3 61.6–0.4 36.9–0.3 58.4–0.7 22.8+0.2 35.4+0.3 56.1+1.8 81.5–0.1 63.2–1.7

MoCo-COCO 118K 38.5–0.6 58.5–3.5 35.0–2.2 55.6–3.5 20.7–1.9 32.3–2.8 47.6–6.7 75.4–6.2 60.5–4.4

VirTex 118K 40.9–0.2 61.7–0.3 36.9–0.3 58.4–0.7 23.0+0.4 35.4+0.4 55.3+1.0 81.3–0.3 63.4–1.4

Table 2.3: Fine-tuning based evaluation of VirTex: We compare VirTex with different
pre-training methods across four downstream tasks. For each task, all methods use the
same architecture. We initialize the ResNet-50 backbone weights from pre-training (ex-
cept Random Init), which are then fine-tuned end-to-end. Performance gaps with IN-sup
are shown on the side. On all tasks, VirTex significantly outperforms all methods that
use similar amount of pre-training images. VirTex closely matches or exceeds ImageNet
supervised and self-supervised methods, despite using 10× fewer pre-training images.

they used the MSRA ResNet-50 model from Detectron [82]. We briefly describe implemen-

tation details that differ from default Detectron2 settings.

COCO Instance Segmentation: We train Mask R-CNN [92] models with ResNet-50-FPN

backbones [154]. We initialize the backbone with pre-trained weights, train on train2017

split, and evaluate on val2017 split. We fine-tune all layers end-to-end with BN layers

synchronized across GPUs [191] (SyncBN). We also use SyncBN in FPN layers. We train

with batch size 16 distributed across 8 GPUs, following 2× schedule (180K iterations with

initial LR 0.02, multiplied by 0.1 at iterations 120K and 160K).

LVIS Instance Segmentation: The LVIS dataset provides instance segmentation labels

for a long tail of 1203 entry-level object categories and stresses the ability to recognize

many object types from few training samples. We train Mask R-CNN models with ResNet-

50-FPN backbones on train v1.0 and evaluate on val v1.0 split. Following MoCo settings,

we keep BN parameters frozen for all IN-sup baselines. We train with 2× schedule as

COCO, use class resampling and test-time hyperparameters (0.0 score threshold and 300

detections per image) same as [86].

PASCAL VOC Detection: We train Faster R-CNN [204] models with ResNet-50-C4 back-

bones on trainval07+12 split and evaluate on test2007 split. Like COCO, we fine-tune all

models with SyncBN. We train for 24K iterations, including linear LR warmup for the first
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100 iterations. We set the maximum LR as 0.02, which is divided by 10 at iterations 18K

and 22K. We distribute training across 8 GPUs, with batch size 2 per GPU. We use gradient

checkpointing [31, 170] to reduce the heavy memory footprint of these models and train

them with the desired batch size on our 12 GB GPUs.

iNaturalist 2018 Fine-grained Classification: The iNaturalist 2018 dataset provides la-

beled images for 8142 fine-grained categories, with a long-tailed distribution. We fine-tune

the pre-trained ResNet-50 with a linear layer end-to-end. Data augmentation and weight

initialization are the same as ImageNet-1k linear classification. We train on train2018 split

and evaluate on val2018 split, following training setup from torchvision – we train for

100 epochs using SGD with momentum 0.9 and weight decay 10−4, and batch size 256

distributed across 8 GPUs. Fine-tuning uses LR 0.025 (and Random Init uses 0.1), which

is multiplied by 0.1 at epochs 70 and 90.

Results: We show results in Table 2.3. VirTex matches or exceeds ImageNet-supervised

pre-training and MoCo-IN on all tasks (row 2,5 vs. 7) despite using 10× fewer pre-training

images. Moreover, VirTex significantly outperforms methods that use similar, or more pre-

training images (row 3,4,6 vs. 7), indicating its superior data efficiency. Among all tasks,

VirTex shows significant improvements on LVIS, which shows the effectiveness of natural

language annotations in capturing the long tail of visual concepts in the real world.

2.3.3 Ablations

In this section, we conduct ablation studies to isolate the effects of our pre-training setup

and modeling decisions and uncover performance trends to seed intuition for future work.

We use linear probe evaluation (Section 2.3.1) for all ablation studies.

Ablation I: Pre-training task. We choose bicaptioning task as it gives a dense supervisory

signal per caption. To justify this choice, we form three pre-training tasks with sparser
supervisory signal and compare them with bicaptioning. All variants use ResNet-50 visual

backbone and textual heads with transformers having L = 1, H = 2048:

– Forward captioning: We remove the backward transformer decoder and only perform

forward captioning, i.e., predicting caption only in left-to-right direction.

– Token classification: We replace the textual head with a linear layer and perform multi-

label classification (Section 2.3.1, row 2). We use the set of caption tokens as targets,

completely ignoring the linguistic structure of captions.
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Ablation I: Pre-training task. Ablation II: Visual backbone.

Ablation III: Transformer size
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Figure 2.5: Ablations: (i) Pre-training task. Bicaptioning improves over weaker pre-
training tasks – forward captioning, token classification and masked language modeling.
(ii) Visual backbone. Bigger visual backbones improve downstream performance – both,
wider (R-50 w2×) and deeper (R-101). (iii) Transformer size. Larger transformers
(wider and deeper) improve downstream performance.

– Masked language modeling (MLM): We use a single bidirectional transformer in the

textual head and perform BERT-like masked language modeling. We randomly mask

15% of input tokens, and train the model to predict them.

Results are shown in Figure 2.5(a). Bicaptioning outperforms forward captioning, indicat-

ing that denser supervisory signal from bidirectional modeling is beneficial. Bicaptioning

and forward captioning both outperform token classification, demonstrating that learning

to model the sequential structure of language improves visual features. MLM underper-

forms all three methods, possibly due to poor sample efficiency, as discussed in Section 2.2.

Ablation II: Visual backbone. Bigger visual backbones tend to show improvements on

many vision tasks [91, 92, 261]. We investigate whether they can also benefit VirTex

models. We train three VirTex models with visual backbones of varying capacity: (a)

ResNet-50 (default), (b) ResNet-50 w2× [275] (2× channel width), and (c) ResNet-101
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(2× depth). All use L = 1, H = 1024 textual heads. Results in Figure 2.5(b) show that

bigger backbones improve on VOC07 but underperform on ImageNet-1k. We believe it to

be an optimization issue – as an additional check, we evaluated on PASCAL VOC object

detection (Section 2.3.2) and found that bigger backbones consistently perform better

(AP50: ResNet-50 = 81.2, ResNet-50 w2× = 82.0, and ResNet-101 = 82.1).

Ablation III: Transformer size. Prior work in language modeling has shown that larger

Transformers tend to learn better textual features [22, 158, 197, 216]. We investigate

whether this holds for VirTex: do larger transformers in the textual head cause the vi-

sual backbone to learn better visual features? As discussed in Section 2.2, we may scale

our textual head by increasing its width (hidden size H) or its depth (number of lay-

ers L). We investigate both, training VirTex models with: (a) Fixed L = 1, increasing

H ∈ {512, 768, 1024, 2048}, and (b) Fixed H = 1024, increasing L ∈ {1, 2, 3, 4}.
Results are shown in Figure 2.5(c) – increasing transformer size, both width and depth,

generally improves downstream performance. Performance degrades slightly with very

deep transformers (L = 4), indicating overfitting. We hope that massive transformers with

billions of parameters will help when scaling VirTex to large-scale, more noisy image-text

paired datasets [168, 185, 215] that are larger than COCO Captions.

2.3.4 Image captioning

Our goal is to learn transferable visual features via textual supervision. To do so, we use

image captioning as a pre-training task. Although our goal is not to advance the state-

of-the-art in image captioning, in Figure 2.6 we show quantitative and qualitative results

of VirTex models trained from scratch on COCO. All models show modest performance,

far from current state-of-the-art methods, that commonly involve some pre-training. How-

ever, captioning metrics (CIDEr [245] and SPICE [3]) are known to correlate weakly with

human judgment – we surpass human performance on COCO.

We show some predicted captions by VirTex (R-50, L = 1, H = 512) model. We apply

beam search on the forward transformer decoder (5 beams) to decode the most likely cap-

tions. The decoder attention module in this transformer attends over a 7 × 7 grid of image

features through A = 8 heads at each time-step for predicting a token. We average these

7 × 7 attention weights over all the heads, and overlay them on 224 × 224 input image

(via bicubic upsampling). Figure 2.6 shows attention visualizations for some tokens. We

observe that our model attends to relevant image regions for making predictions, indi-

cating that VirTex learns meaningful visual features with good semantic understanding.
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Backbone Depth Width CIDEr SPICE

R-50 1 512 103.2 19.3

R-50 1 768 103.7 19.6

R-50 1 1024 103.5 19.8

R-50 1 2048 104.2 19.9

R-50 1 1024 103.5 19.8

R-50 2 1024 106.9 20.0

R-50 3 1024 104.3 19.5

R-50 4 1024 103.8 19.2

R-50 w2× 1 1024 102.7 19.6

R-101 1 1024 106.6 20.1

VirTex predicted captions (ResNet-50)
(L = 1, H = 512) forward transformer decoder

a cat laying on a pair of
blue shoes

a laptop computer
sitting on top of a desk

an orange is sitting on
the side of a road

a dog riding on a
surfboard in the ocean

Figure 2.6: Image captioning with VirTex: We report the image captioning performance
of VirTex models on COCO val2017 split, and some model-predicted captions. For the
highlighted words, we visualize decoder attention weights from the textual head on the
input image. Our model focuses on relevant image regions to predict objects (shoes, desk),
background (road) as well as actions (riding).

Figures 2.7 and 2.8 contain more examples showing decoder attention weights overlaid

on input images.

2.4 Related Work

This chapter relates to several efforts toward moving beyond supervised pre-training on

ImageNet, using alternate data sources or pre-training tasks.

Weakly Supervised Learning scales beyond supervised pre-training with a quantity over
quality approach, and learns on large numbers of images with noisy labels from web ser-

vices. Li et al. [142] trains visual N-gram models on the YFCC-100M dataset [236], that

provides 100M Flickr images with user-provided tags. Recent works [124, 227, 260] also

use JFT-300M [227] dataset, curated by automatic labeling of images from web signals

using Google’s internal tooling. Weakly-supervised learning has also been studied on up

to 3.5B Instagram images, using hashtags as labels [166, 265]. These approaches learn

visual representations with large quantities of images with low-quality labels; in contrast
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a red truck driving down
a snow covered road

a laptop computer sitting
on top of a desk

a group of kites being
flown in the park

two zebras are grazing in
a fenced in area

a cat laying on a pair of
blue shoes

a bus parked at the side of
the road

a horse drawn carriage
being pulled by two horses

a woman on a wave board
in the ocean

a pizza on a cutting board
on a pizza

a person riding a
motorcycle on a dirt road

an orange and white cat
laying on a desk

a bowl of broccoli and
cauliflower in a lot

a dog in the back of a red
truck

a clock hanging from the
ceiling in the ceiling

a bird perched on top of a
tree branch

a group of people playing
tennis on a tennis court

a group of people riding
motorcycles down the

road

a white refrigerator
freezer sitting in a kitchen

next to a table

a living room filled with
furniture and a fireplace

a person on a surfboard
riding a wave in the ocean

a bird sitting on a branch
of a tree

a clock on a building
with a clock on it

a woman on skis in the
side of a snow

a street sign on it’s edge
of the road

a bathroom with a sink
and toilet, toilet

Figure 2.7: We decode captions from the forward transformer of L = 1, H = 512 VirTex
model using beam search. For the highlighted word, we visualize the decoder attention
weights overlaid on the input image.
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a woman is riding a horse over an obstacle

a bird flying over the air near the ocean

a cat laying on a bed in a bookshelf

an airplane flying over a body of a river

a teddy bear sitting in front of orange juice

a laptop computer sitting on top of a desk

a plate with a sandwich and cup of coffee

Figure 2.8: Attention visualizations per time step for predicted caption. We decode cap-
tions from the forward transformer of L = 1, H = 512 VirTex model using beam search.
We normalize the attention masks to [0, 1] to improve their contrast for better visibility.

we focus on using fewer images with high-quality annotations.

Self-Supervised Learning focuses on learning visual representations by solving pretext
tasks defined on unlabeled images. Early works on self-supervised learning proposed hand-

crafted pretext tasks, such as context prediction [56], colorization [282, 283], solving jig-
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saw puzzles [182], predicting rotation [79], inpainting [188], clustering [26], and genera-

tive modeling [57]. Recent works are based on contrastive learning [87, 88], encouraging

similarity between image features under different random transformations on single input

image [32, 94, 175, 257, 269]. Other approaches use contrastive losses based on context

prediction [98, 183], mutual information maximization [9, 103, 237], predicting masked

regions [241], and clustering [28, 145, 292].

These methods lack semantic understanding as they rely on low-level visual cues (color,

texture), whereas we leverage textual annotations for semantic understanding. Unlike

these methods, our approach can leverage additional metadata such as text, when scaled

to internet images [168, 185, 215].

Vision-language Pre-training attempts to learn joint representations of image-text

paired data that can be transferred to multimodal downstream tasks such as visual ques-

tion answering [6, 84, 109, 291], visual reasoning [226, 277], referring expressions [119],

and language-based image retrieval [271]. Inspired by the success of BERT [53] in NLP,

several recent methods use Transformers [244] to learn transferable joint representations

of images and text [36, 143, 147, 149, 164, 225, 231, 288].

These methods employ complex pre-training pipelines: they typically (1) start from

an ImageNet-pre-trained CNN; (2) extract region features using an object detector fine-

tuned on Visual Genome [128], following [4]; (3) optionally start from a pre-trained

language model, such as BERT [53]; (4) combine the models from (2) and (3), and train a

multimodal transformer on Conceptual Captions [215]; (5) fine-tune the model from (4)

on the downstream task. In this pipeline, all vision-language tasks are downstream from

the initial visual representations learned on ImageNet. In contrast, we pre-train via image

captioning and put vision tasks downstream from vision-language pre-training.

2.5 Conclusion

In this chapter, we have shown that language-supervised visual learning can be competitive

with methods based on supervised classification and self-supervised learning on ImageNet.

Training with image-caption pairs opens a clear pathway to scaling our method to orders

of magnitude more data from the internet, which we shall discuss in the next chapter.
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Chapter 3

Web-curated Image-Text Data from Reddit

r/birdpics: male
northern cardinal

r/crafts: my mom
tied this mouse

r/itookapicture:
itap of the taj mahal

r/perfectfit: this
lemon in my drink

r/shiba: mlem!

Figure 3.1: RedCaps dataset comprises 12 million image-text pairs from 350 subreddits.
RedCaps data contains everyday things that users like to share on social media, e.g., hob-
bies (r/crafts) and pets (r/shiba). Captions often contain specific and fine-grained de-
scriptions (northern cardinal, taj mahal). Subreddit names provide image labels (r/shiba)
even when captions may not (mlem!), and sometimes group many visually unrelated im-
ages through a common semantic meaning (r/perfectfit).

3.1 Introduction

Large datasets of image-text pairs from the web have enabled successful transfer learn-

ing applications in computer vision. Two such prominent datasets – SBU [185] and

Conceptual Captions [215] – are widely used for pre-training vision-and-language rep-

resentations [36, 108, 143, 147, 149, 164, 225, 231, 288] that transfer to a variety of

downstream vision-language tasks like visual question answering [6, 109, 291], visual

reasoning [226, 277], and image captioning [1, 34]. Chapter 2 and concurrent work of

Bulent Sariyildiz et al. [23] also shows that image-text data from COCO [34] can be used

to learn visual features that are competitive with supervised pre-training [91] on Ima-

geNet [47, 208] when transfered to downstream tasks [67, 86, 153, 243, 287]. More
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recently, CLIP [198] and ALIGN [114] unlock zero-shot image classification ability by scal-

ing up to 400 million and more than a billion image-text pairs respectively.

These datasets have an appealing advantage – they are free from expensive annota-

tions. However, they apply complex filtering steps to deal with noisy web data. For exam-

ple, Conceptual Captions (CC-3M [215], CC-12M [30]) discard captions without nouns, or

whose nouns do not match with image labels predicted by in-house image taggers. They

also perform text pre-processing like replacing proper nouns with common nouns. These

pipelines are data-inefficient – for example, CC-3M collected 5 billion image-text pairs

and filtered them down to 3.3 million. CLIP and ALIGN scale primarily by relaxing such

filtering, resulting in gargantuan datasets which could be extremely noisy.

How can we obtain high-quality image-text data from the web without complex data

filtering? We argue that the quality of data depends on its source and the intent behind its

creation. Revisiting data sources, SBU query Flickr with predefined keywords while CC-

3M and CC-12M extract images and HTML alt-text from an unspecified set of web pages;

CLIP and ALIGN give only vague descriptions of their data sources, and their datasets are

non-public. In these sources, text is secondary to images: Flickr focuses on photos, and alt-

text is an oft-overlooked fallback when images cannot be viewed that frequently contains

metadata or generic text (e.g. “alt img” [114]). To obtain higher-quality data, we look for

sources where humans use both images and text equally for interaction on the web.

In this chapter, we explore the Reddit [201] social media platform for collecting image-

text pairs. Textual data from Reddit is already used for pre-training massive language

models [22, 196, 197, 250] in NLP. We collect images and their captions from various

topic-specific subreddits. Our dataset of image captions from Reddit (RedCaps in short)

consists of 12 million image-text pairs submitted in 350 subreddits between 2008–2020.

Figure 3.1 shows some examples from RedCaps – the captions are more conversational,

humorous, emotional, and generally more diverse than HTML alt-text.

Apart from linguistic diversity, Reddit offers many other advantages. Subreddits pro-

vide additional image labels and group related content – manually selecting subreddits

allows us to steer dataset contents without labeling individual instances. Reddit’s vot-
ing system gives free and organic quality control: unappealing or spam content is actively

downvoted by users or removed by moderators. RedCaps is one of the largest public image-

text datasets, but it is not static: we plan to release regular updates with newly uploaded

Reddit content, allowing RedCaps to grow over time.

We claim that captions written with the intent of human interaction on Reddit are a

better source of data than used in other image-text datasets. To this end, we use Vir-

Tex (Chapter 2) to learn visual representations by training image captioning models from
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ITAP of three ducks chilling near a stream.
r/itookapicture • Posted by u/johndoe 2 hours ago

7

1 Comment •••Share

u/janedoe 4 hours ago
Ducks be following social distancing too

Subreddit

Score

Image

Caption

Comments

Author Timestamp

Figure 3.2: Preview of a Reddit image post: We collect the RedCaps dataset by down-
loading images and associated metadata (highlighted in orange) from Reddit image posts.

scratch. We find that human evaluators prefer captioning outputs from models trained on

RedCaps vs CC-3M. We also transfer the learned features to eleven different downstream

datasets for tasks including image classification, object detection, instance segmentation,

and fine-grained recognition using both fine-tuning and language-based zero-shot classi-

fication [198]. We show that features learned on RedCaps outperform those learned on

SBU or CC-3M, demonstrating the utility of our data collection strategy.

3.2 RedCaps: Collecting image-text pairs from Reddit

Reddit is the singular data source for RedCaps. This leads to a very different data collection

pipeline than datasets based on HTML alt-text or search engine results.

Overview of Reddit: Reddit is a social media platform for content sharing and discus-

sion. It comprises user-run communities called subreddits that cover diverse topics like

animals (r/cats, r/foxes), food (r/pizza, r/sushi), leisure (r/hiking, r/crafts), and utility

(r/ceramics, r/tools). Users submit new posts or share existing posts from other subreddits

(cross-posting), comment and upvote (or downvote) posts to express their interest. We are

specifically interested in posts containing images. Figure 3.2 shows an image post submit-

ted by user u/johndoe in subreddit r/itookapicture. It comprises an image, caption, score

(upvotes minus downvotes), and information about the author and time of post creation.
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We extract this metadata from millions of image posts to build RedCaps.

Reddit posts also have associated comment threads. These are usually casual conversa-

tions loosely based on the image. In Figure 3.2, the comment describes ducks as following

social distancing – it includes context beyond the image (COVID-19 pandemic) and con-

veys it with a witty remark. Prior works in dialog modeling and text summarization have

trained on Reddit comments [2, 55, 99, 171, 250]. For RedCaps, we only use captions as

textual data and leave comments for future work.

3.2.1 Data collection pipeline

The uniform structure of subreddits in Reddit allows us to parallelize data collection as in-

dependent tasks. Each atomic task involves collecting posts submitted to a single subreddit

in one year. Our collection pipeline has three steps: (1) subreddit selection, (2) image post

filtering, and (3) caption cleaning.

Step 1. Subreddit selection: We collect images and associated metadata from a man-

ually curated set of subreddits. Subreddits have their own rules, community norms, and

moderators so curating subreddits allows us to steer the dataset’s composition without

annotating individual instances. We select subreddits with a high volume of image posts,

where images tend to be photographs (rather than memes, drawings, screenshots, etc)

and post titles tend to describe image content (rather than making jokes, political com-

mentary, etc). We do not select any NSFW, banned, or quarantined subreddits. We want

to minimize the number of people that appear in RedCaps, so we omit subreddits whose

primary purpose is to share or comment on images of people (such as celebrity pics or user

selfies). We choose subreddits focused on general photography (r/pics, r/itookapicture),

animals (r/axolotls, r/birdsofprey, r/dachshund), plants (r/roses, r/succulents), objects

(r/classiccars, r/trains, r/sneakers), food (r/steak, r/macarons), scenery (r/cityporn1,

r/desertporn), or activities (r/carpentry, r/kayaking). In total we collect data from 350

subreddits; the full list can be found in Appendix A.1.

Step 2. Image post filtering: We use Pushshift [14] and Reddit [202, 203] APIs to

download all image posts submitted to our selected subreddits from 2008–2020. Posts are

collected at least six months after their creation to let upvotes stabilize. We only collect

posts with images hosted on three domains: Reddit (i.redd.it), Imgur (i.imgur.com), and

Flickr (staticflickr.com). Some image posts contain multiple images (gallery posts) – in

1Many subreddits are jokingly include ‘porn’ in their name to indicate beautiful non-pornographic images.
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this case, we only collect the first image and associate it with the caption. We discard posts

with < 2 upvotes to avoid unappealing content, and we discard posts marked NSFW (by

their authors or subreddit moderators) to avoid pornographic or disturbing content.

Step 3. Caption cleaning: We expect Reddit post titles to be less noisy than other large-

scale sources of image captions such as alt-text [30, 215], so we apply minimal text clean-

ing. We lowercase captions and use ftfy [222] to remove character accents, emojis, and

non-latin characters, following [22, 197, 198]. Then we apply simple pattern matching

to discard all sub-strings enclosed in brackets (‘(.*)’, ‘[.*]’). These sub-strings usually

have non-semantic information: original content tags ‘[oc]’, image resolutions ‘(800x600

px)’, camera specs ‘(shot with iPhone)’, self-promotion ‘[Instagram: @user]’, and

other references ‘(link in comments)’. Finally, like CC-12M [30] we replace social me-

dia handles (words starting with ‘@’) with a ‘[USR]’ token to protect user privacy and

reduce redundancy. Due to such filtering, ≈12K (0.1%) captions in our dataset are empty

strings. We do not discard them, as subreddit names alone provide meaningful supervi-

sion. Unlike CC-3M or CC-12M that discard captions without nouns or that don’t overlap

image tags, we do not discard any instances in this step.

Through this pipeline, we collect 13.4M instances from 350 subreddits. Our collec-

tion pipeline is less resource-intensive than existing datasets – we do not require webpage

crawlers, search engines, or large databases of indexed webpages. RedCaps is easily ex-

tensible in the future by selecting more subreddits and collecting posts from future years.

Next, we perform additional filtering to mitigate user privacy risks and harmful stereotypes

in RedCaps, resulting in final size of 12M instances.

3.2.2 Ethical considerations

There has been growing awareness about potential biases and harms that can arise from

internet-scale image and text datasets [15, 18, 46, 76, 115, 189, 266]. There is a fun-

damental tension in such datasets: the use of internet data is motivated by the desire to

use datasets larger than can be manually annotated or verified, but this also means that

such datasets cannot be fully controlled or curated by their creators. We identify two po-

tential risks with RedCaps – privacy of people appearing in RedCaps images, and harmful

stereotypes – and attempt to minimize them by automatic data filtering. We also discuss

the impact of data curation from Reddit on user consent and data distribution in RedCaps.
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Detected Precision Missed detections
(Filtered) 5K (%) 50K Full dataset

Images with Faces 1.2M 1615 32% 79 ≈19K
Images with NSFW 87K 65 1% 1 ≈240
Captions with derogatory phrases 24K – – – –

Table 3.1: Automatic filtering: We use detectors to remove nearly 1.4M instances from
RedCaps. We estimate the precision of these detectors by reviewing 5K random detected
images. After filtering, we review 50K random images (out of 12M) to estimate missed de-
tections, which we find to be very low. Caption filtering is deterministic (string matching).

Privacy: The individual who posts a given photo on Reddit may not be the person ap-
pearing in said photo; this can pose privacy risks for people who did not expect to appear

in images online [18, 266]. Our first method of mitigation is the manual curation of

subreddits which are not focused on describing people (Section 3.2.1). As an additional

measure, we use RetinaFace [49] to filter images having any face detection with confi-

dence ≥ 0.9. Results of this filtering are shown in Table 3.1. The number of detections

is high (1.2M), however the precision is low (32%) – most detections are masked faces,

statues, and animals. Nevertheless, we remove all of these images to reduce privacy risks

while minimizing impact on downstream vision tasks. Estimated number of images with

faces in filtered RedCaps is extremely low (≈79K out of 12M, or 0.6%).

Harmful Stereotypes: Another concern with Reddit data is that images or language

may represent harmful stereotypes about gender, race, or other characteristics of peo-

ple [15, 18, 189]. We select only non-NSFW subreddits with active moderation for collect-

ing data. This stands in contrast to less curated uses of Reddit data, such as for training

large language models. A notable example is GPT-2 [197], whose training data includes

at least 63K documents from banned or quarantined subreddits which may contain toxic

language [77]. We attempt to further reduce harmful stereotypes in two ways:

– NSFW images: We use the InceptionV3 [230] model from [135] to filter images de-

tected as porn or hentai with confidence ≥ 0.9. Similar to face filtering, we estimated

precision of our filtering and estimated amount of missed detections, shown in Table 3.1.

The model detects 87K images with low precision (∼1%) – most detections are non-

NSFW images with pink and beige hues.

– Potentially derogatory language: We filter instances whose captions contain words or

phrases from a common blocklist [138]. It is important to note that such coarse filtering

might suppress language from marginalized groups reclaiming slurs [15]; however, as
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RedCaps is not intended to describe people, we believe this is a pragmatic tradeoff to

avoid propagating harmful labels.

Consent: When submitting to Reddit, users expect their posts to be publicly visible and

accessible via the Reddit API we use to download data. However, they did not explicitly

consent for their data to be used for training large-scale neural networks [18]. We mitigate

this concern in two ways. First, we distribute URLs instead of images; posts deleted from

Reddit will thus be automatically removed from RedCaps. Second, we provide a public

form allowing anyone to request that specific instances be removed from RedCaps on our

website. These decisions mean that over time some images will disappear from RedCaps,

making it difficult to exactly reproduce experiments in the future. However, we believe

this to be less important than allowing users to opt out from RedCaps. Even if images are

removed, we expect RedCaps to grow over time as we include newer posts (Figure 3.3).

Reddit demographics: Reddit’s user demographics are not representative of the popula-

tion at large. Compared to US adults, Reddit users skew male (69% vs 49%), young (58%

18-29 years old vs 22%), college educated (36% vs 28%), and politically liberal (41% vs

25%) [13]. Reddit users are predominantly white (63%) [13], and 49% of desktop traffic

to Reddit comes from the United States [233]. All of the subreddits in RedCaps use En-

glish as their primary language. Taken together, these demographic biases likely also bias

the types of objects and places that appear in images on Reddit, and the language used to

describe these images. We do not offer explicit countermeasures to these biases, but users

of RedCaps should keep in mind that size doesn’t guarantee diversity [15].

There may be more subtle issues in our dataset, such as an imbalanced representa-

tion of demographic groups [24] or gender bias in object co-occurrence [285] or lan-

guage [100]. These are hard to control in internet data, so we release RedCaps with

explicit instructions on suitable use-cases; specifically requesting models not be trained to

identify people, or make decisions that impact people. We document these instructions

and other terms-of-use in a datasheet [76], provided in Appendix A.2.

3.3 RedCaps data analysis

Dataset size: Figure 3.3 (top) shows the growth of RedCaps between 2011–2020 based

on creation timestamps of image posts (see Figure 3.2). We observe that both SBU and CC-

3M have shrunk in size since their release. Since these datasets have released images as

URLs (similar to us), an instance would become invalid if the underlying image is removed
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Figure 3.3: RedCaps was one of the largest
public image-text datasets at the time of its
creation. Unlike other datasets, it is ex-
pected to grow over time.
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Figure 3.5: RedCaps has a long-tailed dis-
tribution of caption lengths.

from the URL 2. Likewise, some instances in RedCaps can also disappear in the future if

Reddit users delete their posts. However, new image posts on Reddit outnumber deleted

posts – we expect RedCaps size to increase in future versions.

Figure 3.3 (bottom), compares RedCaps with recent image-text datasets released in

2021. RedCaps is 2× larger than the English subset of multilingual Wikipedia image-text

dataset [223], and nearly as large as CC-12M [30]. Based on current trends, we expect

RedCaps to outsize CC-12M by the end of 2021. While CLIP [198] and ALIGN [114] used

orders of magnitude larger training datasets, they are not released for public use – RedCaps

remains one of the largest public image-text datasets.

Subreddit distribution: RedCaps instances are distributed across 350 subreddits in a

long-tail distribution. In Figure 3.4, we show top 20 subreddits with most instances in

RedCaps. Subreddit sizes highly correlate with their popularity on Reddit, which depends

on what users find interesting to view and share on social media. Large subreddits are

based on general photography (r/pics, r/mildlyinteresting, r/itookapicture), while spe-

cific subreddits show that Reddit users enjoy sharing images of food (r/food, r/foodporn),

cute pets (r/cats, r/dogpictures, r/rabbits), and show off their hobbies (r/gardening,

2We use full SBU and CC-3M annotations for analysis instead of discarding captions with invalid URLs.
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Dataset Unigrams Bigrams Trigrams

SBU 28,989 107,847 99,687
CC-3M 21,223 230,077 287,017
RedCaps 95,777 770,100 866,243

Top-5 frequent Trigrams

SBU in front of, black and white, in the sky
in the background, in the water

a white background, on a white,
CC-3M image may contain, illustration of a

may contain person
RedCaps itap of a, i don’t, one of my

itap of the, this is my

Table 3.2: Number of {1, 2, 3}-grams occur-
ring at least 10 times (top) and top-5 tri-
grams in each dataset (bottom).

Dataset C. Nouns P. Nouns Adjectives Verbs
SBU 12,985 8,748 2,929 2,497
CC-3M 8,116 654 4,676 3,467
RedCaps 26,060 38,405 11,029 6,019
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Figure 3.6: Number of unique words by
POS, occurring at least 10 times (top), and
frequent nouns in RedCaps (bottom).

r/crochet, r/baking) and accesories (r/sneakers, r/mechanicalkeyboards, r/carporn). This

gives a distribution of visual concepts encountered by humans in daily life without having

to predefine an ontology of object classes.

Distribution of caption lengths: Figure 3.5 compares caption lengths between RedCaps

and other datasets. We see that RedCaps has the highest mode length at 5 words (vs 3

for CC-3M, SBU) and a heavier tail of long captions ≥ 25 words. SBU has a fairly flat

distribution of captions between 3 and 17 words, likely since they only retain captions

with at least one preposition and two words in a manually curated term list; RedCaps and

CC-3M captions are not filtered in this way and have more peaked distributions reflecting

natural language usage.

Word count statistics: Table 3.2 (top) compares linguistic diversity between datasets by

computing the number of unique unigrams (words), bigrams, and trigrams occurring at

least 10 times. This reveals that CC-3M has surprisingly little linguistic diversity, having

fewer unique unigrams than SBU despite having ≈3× more captions. RedCaps has the

most unique terms, with more than 4× unigrams and more than 3× bigrams and trigrams

than CC-3M. Greater linguistic diversity means that models trained on RedCaps should

recognize a larger variety of visual concepts.

Table 3.2 (bottom) shows the most frequent trigrams per dataset. SBU has many prepo-

sitional phrases, likely since they require all captions to contain a preposition. Common
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CC-3M trigrams image may contain, may contain person suggest that the alt-text from which

CC-3M takes captions may sometimes be automatically generated. RedCaps trigrams I
don’t, one of my, this is my are more conversational and draw a personal connection be-

tween the author and the image, whereas other trigrams itap of a and itap of the reflect

community conventions on r/itookapicture.

Linguistic statistics: We use part-of-speech (POS) tagging to dig deeper into the linguis-

tic diversity of RedCaps. We use the en core web trf model from SpaCy [106] to tag POS

in all captions. Figure 3.6 (top) shows the number of unique words per POS appearing

at least 10 times. RedCaps has >2× more common nouns and >4× more proper nouns

than SBU, and >2× more adjectives and >1.5× more verbs than CC-3M. Nouns in CC-3M

are artificially deflated, since their pipeline replaces proper nouns and named entities with

hypernyms (which may explain their low unigram counts in Table 3.2).

Figure 3.6 (bottom) shows the most frequent nouns in RedCaps. We see a variety of

common nouns including abstract concepts (day, time). We find that nouns like guy, baby,

and boy are frequent with RedCaps images with pet animals. Moreover, most frequent

proper nouns comprise many cities (chicago, london), states (california, texas), and coun-

tries (japan, germany, india), indicating the geographical diversity of RedCaps.

3.4 Experiments

We aim to show that RedCaps offers a unique style of data for both vision and vision-

language applications. We demonstrate both applications by adapting VirTex (Chapter 2,

[50]), a recent method for pre-training visual representations by performing image cap-

tioning as a proxy task. In this section, we measure the effect of data quality on down-

stream vision tasks by training VirTex models with the same architecture but different

datasets – SBU, CC-3M, and RedCaps. To control for RedCaps’s size, we also train on a

subset of RedCaps instances from 2020, having comparable size as CC-3M (3.2M vs 2.9M).

Extending VirTex to VirTex-v2: VirTex comprises an image encoder (visual backbone)

and a pair of text decoders (textual head) that predict the caption token-by-token in for-

ward and backward directions. The base model from [50] used a ResNet-50 [91] visual

backbone, and Transformers [244] in textual head that are L = 1 layers deep andH = 2048

dimensions wide, and was trained on COCO Captions [34] (118K images). We modify this

model from [50] to VirTex-v2 to scale to larger noisy datasets, making a few changes

described next.
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Pre-train
Dataset

Pets Food Flowers Cars Country SUN Birdsnap Average
AccuracyN = 37 N = 101 N = 102 N = 196 N = 211 N = 397 N = 500

SBU 8.7 3.0 13.7 0.6 0.6 14.7 1.3 6.1
CC-3M 15.5 10.9 10.1 0.5 0.5 33.3 1.6 10.3
RedCaps-20 41.8 54.6 33.5 3.2 2.3 23.9 11.8 24.4
RedCaps 42.4 53.8 26.2 3.1 3.6 26.8 8.3 23.5

Table 3.3: Zero-shot image classification with VirTex-v2. We train models of exactly
the same capacity using four different image-text datasets, then transfer them zero-shot to
seven image classification datasets (N = #classes).

– Model architecture: We use deeper Transformers with L = 6 layers. To balance the

memory requirements, we reduce the width to H = 512. We use the recent Pre-LN
Transformer variant [10, 197, 252] that is more stable to train large transformers [262]

– LayerNorm [8] is moved inside the residual connection, and we add LayerNorm before

the prediction layer.

– Tokenization: Similar to VirTex, we use SentencePiece tokenizer [132] with BPE [213].

We build a vocabulary of 30K tokens from the combined caption corpus of SBU, CC-3M

and RedCaps. For fair comparison, we use the same vocabulary for all models trained

on different datasets. When training with RedCaps, we prefix the caption with subreddit

tokens: e.g. for Figure 3.1 (r/birdpics), the caption becomes ‘[SOS] bird pics [SEP]

northern male cardinal [EOS]’. We use wordsegment [113] to break subreddit names

to words (e.g. itookapicture→ i took a picture).

– Training details: We use AdamW [122, 162] with weight decay 10−2 and max learning

rate 5 × 10−4 with a linear warmup for the first 10K iterations, followed by cosine de-

cay [161] to zero. We also use label smoothing (εls = 0.1) [230] which has improved

language generation for machine translation [244]. We train for 1.5M iterations with a

total batch size 256 across 8× 2080Ti GPUs.

We average the last five checkpoints (saved every 2000 iterations) to use for down-

stream tasks and image captioning. All other details remain unchanged from Chapter 2.

3.4.1 Transfer learning on downstream vision tasks

We evaluate the quality of visual representations learned from SBU, CC-3M, and RedCaps

by training VirTex-v2 models on each, then transferring the visual backbone to image

classification and instance segmentation on eleven different downstream datasets. Our

evaluation setup closely follows recent works on self-supervised learning [28, 32, 94] and

language-supervised [50, 198] learning.
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Zero-shot image classification: Training with language supervision enables zero-shot
transfer to downstream tasks without any additional task-specific training [142, 198]. We

evaluate the utility of different datasets for representation learning by comparing zero-

shot performance on seven classification datasets: Oxford-IIIT Pets [186], Food-101 [21],

Flowers-102 [181], Stanford Cars [126], Country-211 [198], and SUN-397 [258], and

Birdsnap [17]. Inspired by CLIP [198], we perform zero-shot classification by designing

one prompt per category in the target dataset and ranking the log-probabilities predicted

for each prompt, averaging predictions from the forward and backward Transformers. For

SBU and CC-3M we follow CLIP and use the prompt ‘[SOS] a photo of a/an [label]

[EOS]’; for RedCaps we adjust to the training setup and use a prompt with prefixed sub-

reddit – ‘[SOS] i took a picture [SEP] itap of a/an [label] [EOS]’.

Results are in Table 3.3. VirTex-v2 models trained on RedCaps outperform those trained

on SBU and CC-3M on six out of seven datasets. This is not due to RedCaps’s larger size:

models trained on RedCaps-20 also outperform those trained on CC-3M.

Linear probe evaluation: We also evaluate models for image classification on these

datasets using linear models trained over frozen visual features. Our evaluation details ex-

actly follow CLIP – we use scikit-learn [190] logistic regression with L-BFGS and train

for a maximum of 1000 iterations. For each dataset, we hold out a randomly sampled

10% subset of the training data and use it for validation. Similar to CLIP, we start with

sweeping L2 regularization parameter λ ∈ {10−6, 10−4, 10−2, 1, 102, 104, 106} and select two

λ values with the highest top-1 accuracy on held-out split (these were always consecutive

in our experiments). We zoom in the range with eight equally spaced λ per decade in loga-

rithmic space to find the best value. Finally, we use this λ to train on the combined training

data (including held-out 10%) and report top-1 accuracy on the test split. The number of

instances in training and test splits used is the same as used for evaluating CLIP. Results

are shown in Table 3.4 with similar trends as zero-shot transfer.

Comparison with CLIP: Despite improvements over SBU and CC-3M, our absolute zero-

shot performance falls behind CLIP (e.g Food-101 top-1 with ResNet-50 – 81.1 vs. 54.6).

Their results are not comparable, as CLIP uses a different architecture (contrastive vs au-

toregressive), deeper transformer (12 vs 6 layers), larger dataset (400M vs 12M instances),

longer training (12.8B image updates vs 384M), and prompt ensembling. Our goal is not

to achieve state-of-the-art performance, but instead to compare the impact of different

data sources on the quality of learned visual features.
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Pre-train
Dataset

Pets Food Flowers Cars Country SUN Birdsnap Average
AccuracyN = 37 N = 101 N = 102 N = 196 N = 211 N = 397 N = 500

SBU 61.8 48.5 80.3 22.2 12.0 61.3 18.6 43.5
CC-3M 69.9 57.3 76.6 25.2 12.8 70.0 16.1 46.8
RedCaps-20 87.0 79.1 85.9 39.1 11.6 63.6 30.6 56.7
RedCaps 85.0 80.8 86.3 43.9 13.6 67.3 28.1 57.9

Table 3.4: Linear probe evaluation with VirTex-v2. We train logistic regression classifiers
for seven image classification datasets, using frozen visual features extracted from models
trained using four different image-text datasets.

Pre-train
Dataset

ImageNet Top-1 VOC COCO LVIS
Zero
shot

Linear
Cls.

k-NN
(k=20)

Cls.
mAP

Segm.
AP

Segm.
AP

SBU 5.2 45.5 38.7 85.0 36.5 22.0
CC-3M 20.7 53.9 45.4 87.0 37.2 22.9
RedCaps 22.7 53.4 52.0 87.5 37.0 23.0

Table 3.5: Additional tasks: RedCaps trained model matches or exceeds models trained
on SBU/CC-3M.

Other tasks: We evaluate on standard transfer tasks with four other datasets: PASCAL

VOC and ImageNet-1k linear classification with frozen features and instance segmenta-

tion [92] on COCO [153] and LVIS [86] with end-to-end fine-tuning of Mask R-CNN. These

tasks follow the same setup as [50]. On ImageNet, we also perform k nearest neighbor

classification (k=20), following [29, 257], and zero-shot classification as described above.

Results are shown in Section 3.4.1. All models perform similarly on fine-tuning tasks

(COCO and LVIS), while RedCaps trained model gains on tasks involving minimal or no

fine-tuning – k-NN (52.0 vs 45.4) and zero-shot (22.7 vs 20.7) on ImageNet, and linear

classification on VOC (87.5 vs 87.0).

3.4.2 Image captioning

We hope that the unique conversational flavor of RedCaps can enable more human-like and

conversational image captioning models. We use VirTex-v2 pre-trained models for image

captioning – we use nucleus sampling [105] with nucleus size 0.9 to decode a caption from

the forward Transformer. In this section, we demonstrate all results on an additional held-
out test set of 1K instances sampled randomly from image posts submitted to our selected

subreddits in the first week of 2021.
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Evaluating caption predictions: Standard metrics for automatic image caption evalua-

tion correlate poorly with human judgment [3, 245]. We thus evaluate caption predictions

via user studies. We sample captions from models trained on RedCaps and CC-3M, then

present crowd workers with the image and both captions. Workers are told that one cap-

tion is written by a human and the other machine-generated, and asked to guess which

is human-written. We take a majority vote among three workers for each of our 1K test

images. Workers preferred captions from the RedCaps-trained model for 633 out of 1000

images. We run a similar study to compare against ground-truth captions, and workers still

prefer generated captions for 416 out of 1000 images. See Figure 3.7 for some examples.

Subreddit-conditioned captioning: Captions from different subreddits have distinct

styles, focusing on different image aspects or using community-specific jargon. For ex-

ample, captions in r/itookapicture usually start with itap of .... We use this observation to

generate captions with distinct styles by prompting a RedCaps-trained model with different
subreddits. Figure 3.8 shows examples of such diverse captions for images.

3.5 Related work

RedCaps is directly related to recent efforts on building large image-text datasets from

the internet without expensive human annotation. Two notable datasets are SBU [185]

and Conceptual Captions [215]. Originally intended for image-text retrieval and image

captioning, they are now widely used for training generic vision-language representa-

tions [36, 108, 121, 143, 147, 149, 164, 225, 231, 288] that transfer to downstream tasks

like visual question answering [6, 109, 291], referring expressions [119], and visual rea-

soning [226, 277]. More recent works build larger datasets specifically for vision-language

pre-training, e.g. LAIT [195], Conceptual-12M [30], and Wikipedia-ImageText [223].

Similar to these datasets, RedCaps offers rich semantic data for pre-training applications.

However, our choice of data source and hence the data quality is unique.

Image-text datasets are used for visual representation learning. Li et al. [142] trained

visual N-gram models on YFCC-100M [236]; VirTex (Chapter 2, [50]) and ICMLM [23]

learn features from COCO Captions [34] that are competitive with supervised ImageNet

training [91, 131] on many downstream tasks [67, 86, 153, 208, 243], and [114, 198]

scale up to very larger non-public datasets that are larger than RedCaps.

A core motivation for collecting image-text data is scaling to larger datasets without

bearing annotation costs. Related to this goal are efforts that learn from large quantities
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of noisy non-text labels for web images such as WebVision [148], YFCC-100M [236], JFT-

300M [40, 102], and Instagram-3.5B [166].

3.6 Conclusion

This chapter has introduced RedCaps, a large-scale dataset of images and captions col-

lected from Reddit. As a source of data, Reddit is appealing: text and images are both

created and shared by people, for the explicit purpose of starting a discussion with other

people, leading to natural and varied content. Its subreddit structure allows us to man-

ually curate our dataset’s content without labeling individual instances. We utilize this

structure to collect a dataset focused on animals, objects, scenery, and activities. We have

shown that RedCaps is useful for learning visual representations that transfer to many

downstream tasks, including zero-shot settings that use no task-specific training data. We

have also shown that RedCaps can be used to learn image captioning models that generate

high-quality text of multiple styles.

RedCaps is not without flaws. We have tried to minimize problematic content through

subreddit curation and automated filtering, but the unfathomable nature of large data

means that RedCaps may contain a small number of instances with NSFW images or harm-

ful language. Reddit’s demographic biases mean that RedCaps may not equally represent

all groups. Users should carefully consider these limitations for any new tasks developed

on RedCaps. Moreover, users should be especially wary of applications that make predic-

tions about people. Despite these limitations, we hope that RedCaps will help enable a

wide variety of new applications and advances in vision and language.
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CC-3M animal lying on the ground a car is completely covered in
snow.

the building is a-story polished
concrete floor.

how to cook a rack of ribs

RedCaps r/lookatmydog: my little guy r/mildlyinteresting: this
snow sculpture

r/pics: a building in
singapore

r/foodporn: homemade pizza

CC-3M the road leading to the
mountains

hibiscus flower in the dark person , the dog , at the office biological variety uncertain
future produce slalom

RedCaps r/mildlyinteresting: this
bridge in japan

r/pics: i took this picture of a
hibiscus flower at night

r/mechanicalkeyboards: my
dog is helping me work from

home

r/tea: my first time making
matcha green tea!

CC-3M person - a gray bird sitting on a
branch

alternative images of this
product

the wires are now mounted on
the wall.

a beautiful white water
fountain in the mist

RedCaps r/itookapicture: itap of
some pigeons

r/sneakers: thoughts on
these?

r/diy: diy tool bag r/pics: my first time seeing
snow

CC-3M this ticket is not only for sale. this is what cats look like. the tallest building complex , is
currently under construction .

this is a beautiful green cactus
plant.

RedCaps r/mechanicalkeyboards: i’m
not sure if i’m doing this left

r/cats: my cat is helping me
study

r/pics: golden gate bridge r/succulents: what is this?

Figure 3.7: Image captioning with VirTex-v2 trained on CC-3M vs RedCaps. Three
crowd workers have observed these captions (without subreddit names) and voted the cap-
tion which seems more likely to be written by a human. The captions voted by majority of
workers are underlined. Most of the voted captions are predicted by the RedCaps-trained
model. These captions mention (top row): organic references (little guy vs animal), witty
remarks (snow sculpture), and specific mentions (singapore).
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r/itookapicture: itap of my
dog.

r/itookapicture: itap of my
coffee

r/earthporn: sunset in venice,
italy

r/earthporn: saturn’s north
pole.

r/absoluteunits: this absolute
unit of a pug

r/absoluteunits: this absolute
unit of a coffee.

r/food: a cold beer on the beach. r/food: the clearest image of
saturn

r/somethingimade: i made a bed
for my pug.

r/somethingimade: i made a
heart latte.

r/pics: shot from a beach house! r/pics: the clearest image of
saturn ever taken

r/food: english breakfast r/food: i’m not sure if these two
are getting ready for dinner

tonight.

r/food: i made a plant stand for
my wife’s birthday present

r/food: christmas cat

r/thriftstorehauls: i found
this plate at goodwill for $5

r/thriftstorehauls: found
these two pugs in my local thrift

store. they are both lonesome and
they are so cute.

r/thriftstorehauls: found this
beauty for $20

r/thriftstorehauls: i found a
little elf hat for my cat!

r/dogpictures: my dog ate his
breakfast today

r/dogpictures: my two pugs
snuggling under the couch

r/dogpictures: my dog thinks
he’s a human

r/dogpictures: merry christmas
from my cat

r/amateurphotography: i was
told you guys would appreciate

this.

r/amateurphotography: i took
this picture of a highway

interchange in china

r/amateurphotography:
lighthouse

r/amateurphotography: a
waterfall in the rockies

r/vintage: found this guy in my
parents garage. he’s been sitting

in there for years.

r/vintage: i’ve been looking for
a few years now. i finally found a

bridge in taiwan.

r/vintage: vintage 2! r/vintage: my favorite waterfall

r/pics: my owl has been in the
same spot since i’ve been working

on my phone.

r/pics: highway interchange
between shelbyville and la

r/pics: lighthouse in the fog r/pics: a waterfall in the rockies

Figure 3.8: Subreddit-controlled caption style. We prompt the VirTex-v2 model
trained on RedCaps with subreddit names while decoding captions. We observe that
such conditioning captures subtle linguistic structures (r/itookapicture: itap of ...,
r/somethingimade: i made...). or changes the main subject of caption (r/earthporn:
venice, r/food: cold beer). However, for completely unrelated images (saturn), the model
tends to ignore the conditioning while generating captions.
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Chapter 4

Hyperbolic Image-Text Representations

pic of my labrador
in the snow

a cat and a dog 
playing in the street

my cat is photogenic 
look at those eyes!

exhausted doggo

curious kitty

so cute <3

MERU: embed images and 
text in a hyperbolic space

CLIP: embed images and 
text in a Euclidean space

Figure 4.1: Hyperbolic image-text representations. Left: Images and text depict concepts
and can be jointly viewed in a visual-semantic hierarchy, wherein text ‘exhausted doggo’ is
more generic than an image (which might have more details like a cat or snow). Our
method MERU embeds images and text in a hyperbolic space that is well-suited to embed
tree-like data. Right: Representation manifolds of CLIP (hypersphere) and MERU (hyper-
boloid) illustrated in 3D. MERU assumes the origin to represent the most generic concept,
and embeds text closer to the origin than images.

4.1 Introduction

It is commonly said that ‘an image is worth a thousand words’ – consequently, images

contain a lot more information than the sentences which typically describe them. For

example, given the middle image in Figure 4.1 one might describe it as ‘a cat and a dog
playing in the street’ or with a less specific sentence like ‘exhausted doggo’ or ‘so cute <3’.
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These are not merely diverse descriptions but contain varying levels of detail about the

underlying semantic contents of the image.

As humans, we can reason about the relative detail in each caption, and can organize

such concepts into a meaningful visual-semantic hierarchy [247], namely, ‘exhausted doggo’
→ ‘a cat and a dog playing in the street’→ (Figure 4.1 middle image). Providing multimodal

models access to this inductive bias about vision and language has the potential to improve

generalization [198], interpretability [212] and enable better exploratory data analysis of

large-scale datasets [198, 211].

Vision-language representation learning has catalyzed a lot of recent progress in com-

puter vision. Methods like CLIP [198] and ALIGN [114] have shown that Transformer-

based [244] models trained using large amounts of image-text data from the internet can

yield transferable representations, and such models can perform zero-shot recognition and

retrieval using natural language queries. All these models represent images and text as

vectors in a high-dimensional Euclidean, affine space and normalize the embeddings to

unit L2 norm. Such a geometry can find it hard to capture the visual-semantic hierarchy.

An affine Euclidean space treats all embedded points in the same manner, with the

same distance metric being applied to all points [177]. Conceptually, this can cause issues

when modeling hierarchies – a generic concept (closer to the root node of the hierarchy)

is close to many other concepts compared to a specific concept (which is only close to its

immediate neighbors). Thus, a Euclidean space can find it hard to pack all the images that

say a generic concept ‘curious kitty’ should be close to while also respecting the embedding

structure for ‘a cat and a dog playing on the street’. Such issues are handled naturally

by hyperbolic spaces – the volume increases exponentially as we move away from the

origin [141], making them a continuous relaxation of trees. This allows a generic concept

(‘cat’) to have many neighbors by placing it close to the origin [179], and more specific

concepts further away. Thus, distinct specific concepts like images in Figure 4.1 can be far

away from each other while being close to some generic concept (‘animal’).

In this chapter, we introduce the first large-scale contrastive image-text models that

yield hyperbolic representations [179] – MERU 1 that captures the visual-semantic hi-

erarchy. Our method conceptually resembles current state-of-the-art contrastive meth-

ods [114, 198]. Importantly the hierarchy emerges in the representation space, given

access only to image-text pairs during training.

Practically, MERU confers multiple benefits such as (a) better performance on image

1Meru is a mountain that symbolizes the center of all physical, metaphysical, and spiritual universes in
Eastern religions like Hinduism and Buddhism. Our method is named MERU because the origin of the
hyperboloid entails everything and plays a more vital role than in Euclidean (or generally, affine) spaces.
See also: Mount Semeru, Indonesia (wikipedia.org/wiki/Mount Meru and wikipedia.org/wiki/Semeru)
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retrieval and classification tasks, (b) more efficient usage of the embedding space, making

it suited for resource-constrained, on-device scenarios, (c) an interpretable representation

space that allows one to infer the relative semantic specificity of images and text. In

summary, this chapter comprises a series of contributions as follows:

– We introduce MERU, the first implementation of deep hyperbolic representations we are

aware of, training ViTs [60] with 12M image-text pairs.

– We provide a strong CLIP baseline that outperforms previous re-implementations [176]

at comparable data scale, and systematically demonstrate the benefits of hyperbolic rep-

resentations over this baseline on zero-shot retrieval and classification, and effectiveness

for small embedding dimensions [134].

– We perform thorough qualitative analysis with MERU to demonstrate its potential for

exploratory data analysis of large-scale multimodal datasets.

Our code and models are publicly available at github.com/facebookresearch/meru.

4.2 Preliminaries

We briefly review Riemannian manifolds (Section 4.2.1) and essential concepts of hyper-

bolic geometry (Section 4.2.2). For a more thorough treatment of the topic, we refer the

reader to textbooks by Ratcliffe [200] and Lee [141].

4.2.1 Riemannian manifolds

A smooth surface is a two-dimensional sheet which is locally Euclidean – every point on

the surface has a local neighborhood which can be mapped to R2 via a differentiable

and invertible function. Smooth manifolds extend the notion of smooth surfaces to higher

dimensions. A Riemannian manifold (M, g) is a smooth manifold M equipped with a

Riemannian metric g. The metric g is a collection of inner product functions gx for all

points x ∈ M, and varies smoothly over the manifold. At any point x, the inner product

gx is defined in the tangent space TxM, which is a Euclidean space that gives a linear

approximation ofM at x. Euclidean space Rn is also a Riemannian manifold, where g is

the standard Euclidean inner product.

Our main topic of interest is hyperbolic spaces, which are Riemannian manifolds with

constant negative curvature. They are fundamentally different from Euclidean spaces that

are flat (zero curvature). A hyperbolic manifold of n dimensions cannot be represented

with Rn in a way that preserves both distances and angles. There are five popular models

of hyperbolic geometry that either represent n-dimensional hyperbolic spaces either in Rn
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while distorting distances and/or angles (e.g. Poincaré ball model), or as a sub-manifold

of Rn+1 (e.g. the Lorentz model).

4.2.2 Lorentz model of hyperbolic geometry

We use the Lorentz model of hyperbolic geometry for developing MERU. This model rep-

resents a hyperbolic space of n dimensions on the upper half of a two-sheeted hyperboloid

in Rn+1. See Figure 4.1 for an illustration of L2 in R3. Hyperbolic geometry has a di-

rect connection to the study of special relativity theory [62, 63]. We borrow some of its

terminology in our discussion – we refer to the hyperboloid’s axis of symmetry as time
dimension and all other axes as space dimensions [174]. Every vector x ∈ Rn+1 can be

written as [xspace, xtime], where xspace ∈ Rn and xtime ∈ R.

Definition. Let 〈·, ·〉 is Euclidean inner product and 〈·, ·〉L denote the Lorentzian inner
product that is induced by the Riemannian metric of the Lorentz model. For two vectors

x,y ∈ Rn+1, it is computed as follows:

〈x,y〉L = 〈xspace,yspace〉 − xtime ytime (4.1)

The induced Lorentzian norm is ‖x‖L =
√
|〈x,x〉L|. The Lorentz model possessing a con-

stant curvature −c is defined as a following set of vectors:

Ln = {x ∈ Rn+1 : 〈x,x〉L = − 1/c} , c > 0 (4.2)

All vectors in this set satisfy the following constraint:

xtime =
√

1/c+ ‖xspace‖2 (4.3)

Geodesics. A geodesic is the shortest path between two points on the manifold. Geodesics

in the Lorentz model are curves traced by the intersection of the hyperboloid with hyper-

planes passing through the origin of Rn+1. The Lorentzian distance between two points

x,y ∈ Ln is defined as follows:

dL(x,y) =
√

1/c · cosh−1(−c 〈x,y〉L) (4.4)
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Tangent space. The tangent space at some point z ∈ Ln is a Euclidean space of vectors

that are orthogonal to z according to the Lorentzian inner product:

TzLn = {v ∈ Rn+1 : 〈z,v〉L = 0} (4.5)

Any vector in ambient space u ∈ Rn+1 can be projected to the tangent space TzLn via an

orthogonal projection:

v = projz(u) = u+ c z 〈z,u〉L (4.6)

Exponential and logarithmic maps. The exponential map provides a way to map vectors

from tangent spaces onto the manifold. For a point z on the hyperboloid, it is defined as

expmz : TzLn → Ln with the expression:

x = expmz(v) = cosh(
√
c ‖v‖L) z+

sinh(
√
c ‖v‖L)√

c ‖v‖L
v (4.7)

Intuitively the exponential map shows how TxLn folds on the manifold. Its inverse is the

logarithmic map (logmz : Ln → TzLn), that maps x from the hyperboloid back to v in the

tangent space:

v = logmz(x) =
cosh−1(−c 〈z,x〉L)√

(c 〈z,x〉L)2 − 1
projz(x) (4.8)

For our approach, we will only consider exponential and logarithmic maps for the origin

of the hyperboloid, z = O = [0,
√

1/c].

4.3 Approach

In this section, we discuss the modeling pipeline and learning objectives of MERU to learn

hyperbolic representations of images and text. We use the tools of hyperbolic geometry

introduced in Section 4.2 throughout our discussion.

Our model design is inspired by a family of contrastive vision-language models like

CLIP [198] due to their simplicity and scalability. As shown in Figure 4.2, we process

images and text using two separate encoders, and obtain embedding vectors of a fixed

dimension n. Beyond this, there are two crucial design choices: (1) transferring embed-

dings from Euclidean space to the Lorentz hyperboloid, and (2) designing suitable training

objectives that induce semantics and structure in the representation space.
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Image
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Linear 
Projection

L2 normalize L2 normalize expmO expmO

Contrastive Loss
(cosine similarity)

Contrastive Loss
(neg. Lorentzian distance)

+ Entailment Loss

αimg αtxt

Images Text Images Text

CLIP MERU

Figure 4.2: MERU model design: MERU comprises similar architectural components as
standard image-text contrastive models like CLIP. While CLIP projects the embeddings to
a unit hypersphere, MERU lifts them onto the Lorentz hyperboloid using the exponential
map. The contrastive loss uses the negative of Lorentzian distance as a similarity metric,
and an entailment loss enforces ‘text entails image’ partial order in the representation space.

Lifting embeddings onto the hyperboloid. Let the embedding vector from the image

encoder or text encoder, after linear projection be venc ∈ Rn. We need to apply a trans-

formation such that the resulting vector x lies on the Lorentz hyperboloid Ln in Rn+1. Let

the vector v = [venc, 0] ∈ Rn+1. We observe that v belongs to the tangent space at the

hyperboloid origin O, as Eqn. 4.5 is satisfied: 〈O,v〉L = 0. Thus, we parameterize only the

space components of the Lorentz model. Due to such parameterization, we can simplify

the exponential map from Eqn. 4.7 by writing only space components:

xspace = cosh(
√
c ‖v‖L)0+

sinh(
√
c ‖v‖L)√

c ‖v‖L
vspace

The first term reduces to 0. Moreover, the Lorentzian norm of v simplifies to the

Euclidean norm of space components: ‖v‖2L = 〈v,v〉L = 〈vspace,vspace〉 − 0 = ‖vspace‖2.
This substitution simplifies the above equation as follows:

xspace =
sinh(

√
c ‖vspace‖)√

c ‖vspace‖
vspace (4.9)

The corresponding time component xtime can be computed from xspace using Eqn. 4.3,

the resulting x always lies on the hyperboloid. This eliminates the need for an orthogonal

projection (Eqn. 4.6) and simplifies the exponential map. Our parameterization is simpler

than previous work which parameterizes in full ambient space Rn+1 [137, 139, 180].
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Preventing numerical overflow. The exponential map scales vspace using an exponential

operator. According to CLIP-style weight initialization, vspace ∈ Rn would have an expected

norm =
√
n. After exponential map, it becomes e

√
n, which can be numerically large (e.g.,

n = 512 and c = 1 gives ||xspace|| ≈ 6.7× 1010).

To fix this issue, we scale all vectors vspace in a batch before applying expmO using two

learnable scalars αimg and αtxt. These are initialized to
√

1/n so that the Euclidean embed-

dings have an expected unit norm at initialization. We learn these scalars in logarithmic

space to avoid collapsing all embeddings to zero. After training, they can be absorbed into

the preceding projection layers.

Learning structured embeddings. Having lifted standard Euclidean embeddings onto

the hyperboloid, we next discuss the losses used to enforce structure and semantics in rep-

resentations learned by MERU. Recall that our motivation is to capture the visual-semantic

hierarchy (Figure 4.1) to better inform the generalization capabilities of vision-language

models. For this, an important desideratum is a meaningful notion of distance between

semantically similar text and image pairs. We also want to induce a partial order between

text and images as per the visual-semantic hierarchy to have better interpretability. We do

this with a modified version of an entailment loss proposed by Le et al. [139], that works

for arbitrary hyperboloid curvatures −c.

4.3.1 Contrastive learning formulation

Given a batch of size B of image-text pairs and any jth instance in batch, its image em-

bedding yj and text embedding xj form a positive pair, whereas the remaining B − 1 text

embeddings in the batch xi(i 6= j) form negative pairs.

In contrastive learning, we compute the negative Lorentzian distance as a similarity

measure (Eqn. 4.4) for all B pairs in the batch. These logits are divided by a temperature

τ and apply a softmax operator. Similarly, we also consider a contrastive loss for text, that

treats images as negatives. The total loss Lcont is the average of these two losses computed

for every image-text pair in the batch. Our implementation of the contrastive loss is the

same as the multi-class N-pair loss [220] used in CLIP [198] with the crucial difference

being that we compute distances on the hyperboloid instead of cosine similarity.

4.3.2 Entailment loss

In addition to the contrastive loss, we adapt an entailment loss [74, 139] to enforce partial

order relationships between paired text and images. Ganea et al. [74] is more different
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x

y

loss = 0

ext(x, y) aper(x)loss = –

(text)

(image)

Top-down view ⇓

Figure 4.3: Entailment loss (illustrated for L2): This loss pushes image embedding y
inside an imaginary cone projected by the paired text embedding x, and is implemented
as the difference of exterior angle ∠Oxy and half aperture of the cone. Loss is zero if the
image embedding is already inside the cone (left quadrant).

from ours since they parameterize their representations according to the Poincaré ball

model. Le et al. [139] use this loss with a fixed c = 1, which we extend to handle arbitrary,

learned curvatures.

Refer Figure 4.3 for an illustration in two dimensions. Let x and y denote the text

and image embeddings of a single image-text pair. Note that the encoders only give xspace

and yspace according to our parameterization. Corresponding xtime and ytime are calculated

using Eqn. 4.3. We define an entailment cone for each x, which narrows as we go farther

from the origin. This cone is defined by the half-aperture:

aper(x) = sin−1
(

2K√
c ‖xspace‖

)
(4.10)

where a constant K = 0.1 is used for setting boundary conditions near the origin. We

now aim to identify and penalize when the paired image embedding y lies outside the

entailment cone. For this, we measure the exterior angle ext(x,y) = π − ∠Oxy as shown

in Figure 4.3. This angle is computed as follows:

ext(x,y) = cos−1

 ytime + xtime c 〈x,y〉L

‖xspace‖
√

(c 〈x,y〉L)2 − 1

 (4.11)
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If the exterior angle is smaller than the aperture, then the partial order relation between

x and y is already satisfied and we need not penalize anything. However, if the angle is

greater, we need to reduce it to enforce the partial order relation. This is captured by the

following loss function (written below for a single x, y pair):

Lentail(x,y) = max(0, ext(x,y)− aper(x)) (4.12)

We provide exact derivations of the above equations for half-aperture and exterior angle

in Appendix B.1. Overall, our total loss is Lcont + λLentail averaged over each minibatch.

4.4 Experiments

Our main objective in the experiments is to establish the competitiveness of hyperbolic

representations of MERU as compared to Euclidean representations obtained from CLIP-

style models. To this end, we train models using large amounts of image-text pairs and

transfer them to a variety of image classification and retrieval tasks.

4.4.1 Training details

Baselines. We primarily compare with CLIP [198], that embeds images and text on a unit

hypersphere in a Euclidean space. CLIP was trained using a private dataset of 400M image-

text pairs. Several follow-up works re-implement CLIP and use publicly accessible datasets

like YFCC [236], Conceptual Captions [30, 215], and LAION [210, 211]; notable examples

are OpenCLIP [110], SLIP [176], DeCLIP [150], and FILIP [268]. We develop our CLIP

baseline and train it using a single public dataset – RedCaps [51] – for easier reproducibil-

ity. Our smallest model trains using 8× V100 GPUs in less than one day and significantly

outperforms recent CLIP re-implementations that use YFCC [176]. Refer Appendix B.3

for details about our CLIP baseline. Our implementation is based on PyTorch [187] and

timm [255] libraries.

Models. We use the Vision Transformer [60] as image encoder, considering three models

of varying capacity – ViT-S [35, 240], ViT-B, and ViT-L. All use a patch size of 16. The text

encoder is same as CLIP – a 12-layer, 512 dimensions wide Transformer [244] language

model. We use the same byte-pair encoding tokenizer [213] as CLIP, and truncate input

text at maximum 77 tokens.
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Data augmentation. We randomly crop 50–100% area of images and resize them to

224 × 224, following [176]. For text augmentation, we randomly prefix the subreddit

names to captions as ‘{subreddit} : {caption}’.

Initialization. We initialize image/text encoders in the same style as CLIP, except for

one change: we use a sine-cosine position embedding in ViT, like [35, 96], and keep it

frozen while training. We initialize the softmax temperature as τ = 0.07 and clamp it to a

minimum value of 0.01. For MERU, we initialize the learnable scalars αimg = αtxt = 1/
√
512,

the curvature parameter c = 1.0 and clamp it in [0.1, 10.0] to prevent training instability.

All scalars are learned in logarithmic space as log(1/τ), log(c), and log(α).

Optimization. We use AdamW [162] with weight decay 0.2 and (β1, β2) = (0.9, 0.98). We

disable weight decay for all gains, biases, and learnable scalars. All models are trained for

120K iterations with batch size 2048 (≈ 20 epochs). The maximum learning rate is 5×10−4,
increased linearly for the first 4K iterations, followed by cosine decay to zero [161]. We

use mixed precision [172] to accelerate training, except computing exponential map and

losses for MERU in FP32 precision for numerical stability.

Loss multiplier (λ) for MERU. We set λ = 0.2 by running a hyperparameter sweep with

ViT-B/16 models for one epoch. Some λ > 0 is necessary to induce partial order structure,

however, quantitative performance is less sensitive to the choice of λ ∈ [0.01, 0.3]; Higher

values of λ strongly regularize against the contrastive loss and hurt performance.

4.4.2 Image and text retrieval

CLIP-style contrastive models perform image and text retrieval within batch during train-

ing, making them ideal for retrieval-related downstream applications. We evaluate the re-

trieval capabilities of MERU as compared to CLIP on two established benchmarks: COCO

and Flickr30K [34, 270], that comprise 5000 and 1000 images respectively and five cap-

tions per image. COCO evaluation uses the val2017 split while Flickr30K uses the test

split defined by Karpathy and Fei-Fei [118]. We perform zero-shot transfer, without any

additional training using these datasets. We squeeze images to 224×224 pixels before

processing them through the image encoder.

Inference with MERU. We rank a pool of candidate image/text embeddings for retrieval

in decreasing order of their Lorentzian inner product (Eqn. 4.1) with a text/image query
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text→ image image→ text
COCO Flickr COCO Flickr

R5 R10 R5 R10 R5 R10 R5 R10

CLIP 29.9 40.1 35.3 46.1 37.5 48.1 42.1 54.7ViT
S/16 MERU 30.5 40.9 37.1 47.4 39.0 50.5 43.5 55.2

CLIP 32.9 43.3 40.3 51.0 41.4 52.7 50.2 60.2ViT
B/16 MERU 33.2 44.0 41.1 51.6 41.8 52.9 48.1 58.9

CLIP 31.7 42.2 39.0 49.3 40.6 51.3 47.8 58.5ViT
L/16 MERU 32.6 43.0 39.6 50.3 41.9 53.3 50.3 60.6

Table 4.1: Zero-shot image and text retrieval. Best performance in every column is
highlighted in green. MERU performs better than CLIP for both datasets and across all
model sizes.

embedding. Some transfer tasks like open-vocabulary detection [85, 276] may require cali-

brated scores, for them we recommend using the training procedure – compute the nega-

tive of distance (Eqn. 4.4), divide by temperature and apply a softmax classifier.

Results. In Table 4.1, we report recall@{5,10} of MERU and the reproduced CLIP base-

lines on COCO and Flickr benchmarks. Hyperbolic representations of MERU perform best

for all tasks and models, except Flickr30K text retrieval with ViT-B/16. This is encour-

aging evidence that hyperbolic spaces have suitable geometric properties to learn strong

representations for retrieval applications. Surprisingly, increasing model size (ViT-B/16

→ ViT-L/16) does not improve image retrieval for both, MERU and CLIP. We believe that

image retrieval can be improved by using text embeddings (queries) of better quality –

increasing the size of text encoder can alleviate this issue.

4.4.3 Image classification

Learning from language supervision allows CLIP to perform zero-shot image classification,

wherein one may specify label sets as text queries [65] instead of using pre-defined on-

tologies [47, 173]. Classifier weights are obtained by embedding label-based queries (also

called prompts) using the text encoder.

In this section, we evaluate MERU on 20 image classification benchmarks covering a

wide variety of visual concepts. These are used by Radford et al. [198] and several follow-

up works [150, 176, 268]. We use two open-source libraries to access these datasets –
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CLIP 68.5 50.9 92.2 25.6 31.0 5.8 10.4 14.3 54.1 51.5ViT
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L/16 MERU 67.5 52.1 93.7 28.1 36.5 6.2 11.8 13.1 52.7 49.3

Table 4.2: Zero-shot image classification. We train MERU and CLIP models with varying
parameter counts and transfer them zero-shot to 20 image classification datasets. Best
performance in every column is highlighted in green. Hyperbolic representations from
MERU match or outperform CLIP on 13 out of the first 16 datasets. On the last four
datasets (gray columns), both MERU and CLIP have near-random performance, as concepts
in these datasets are not adequately covered in the training data.

tensorflow-datasets and torchvision 2. We report top-1 mean per-class accuracy for all

datasets to account for any label imbalance. We use multiple prompts per dataset, most

of which follow Radford et al. [198]. We ensemble these multiple prompts by averaging

their embeddings before lifting them onto the hyperboloid (Eqn. 4.9). See Appendix B.2

for details about datasets and prompts.

Results. Table 4.2 shows strong transfer performance of MERU, matching or outper-

forming CLIP on 13 out of 16 standard datasets. While MERU is effective on recall-based

measures (Table 4.1), it does not come at the expense of precision [177]. Overall, hyper-

bolic representations from MERU are competitive with their Euclidean counterparts across

varying model architectures (ViT-S/B/L).

All models have near-random performance on four benchmarks. Concepts in these

2tensorflow.org/datasets and pytorch.org/vision
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Embedding width
512 256 128 96 64

CLIP 31.7 31.8 31.4 29.6 25.7COCO
text→image MERU 32.6 32.7 32.7 31.0 26.5

CLIP 40.6 41.0 40.4 37.9 33.3COCO
image→text MERU 41.9 42.5 42.6 40.5 34.2

CLIP 38.4 38.3 37.9 35.2 30.2
ImageNet

MERU 38.8 38.8 38.8 37.3 32.3

Table 4.3: MERU for resource-constrained deployment. We compare MERU and CLIP at
different embedding widths on zero-shot classification and retrieval tasks (COCO recall@5
and ImageNet top-1 accuracy). MERU outperforms CLIP at lower embedding widths.

datasets have low coverage in RedCaps, like PCAM [246] containing medical scans, or

SST2 [218] containing movie reviews rendered as images. Performance on these bench-

marks does not indicate the efficacy of our RedCaps-trained models; using larger training

datasets like LAION [211] may yield meaningful trends.

4.4.4 Resource-constrained deployment

We hypothesize that embeddings that capture a rich visual-semantic hierarchy can use

the volume in the representation space more efficiently. This is useful for on-device de-

ployments with runtime or memory constraints that necessitate low-dimensional embed-

dings [134]. To verify this hypothesis, we train MERU and CLIP models that output 64–512

dimensions wide embeddings. We initialize the encoders from ViT-L/16 models (Table 4.2,

last two rows) to reduce compute requirements, keep them frozen, and re-initialize pro-

jection layers and learnable scalars. We train for 30K iterations and evaluate on zero-shot
COCO retrieval and ImageNet [207] classification. Results in Table 4.3 show that MERU

consistently performs better at low embedding widths. This indicates that hyperbolic em-

beddings may be an appealing solution for resource-constrained on-device applications.

4.4.5 Ablations

In this section, we ablate our MERU models to observe the impact of our design choices.

We experiment with two image encoders, ViT-B/16 and ViT-L/16, and evaluate for zero-

shot COCO retrieval and ImageNet classification. Specifically, we train three ablations with

the default hyperparameters (Section 4.4.1), except having one difference each. Results

are shown in Table 4.4 above.
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COCO
text→image

COCO
image→text ImageNet

MERU ViT-B/16 33.2 41.8 37.5
1. no entailment loss 33.7 43.5 36.2
2. fixed curvature (c = 1) 33.2 42.1 37.9
3. 〈·, ·〉L in contrastive loss 32.6 42.3 37.3

MERU ViT-L/16 32.6 41.9 38.8
1. no entailment loss 32.7 42.2 33.8
2. fixed curvature (c = 1) 0.9 0.9 0.7
3. 〈·, ·〉L in contrastive loss – did not converge –

Table 4.4: MERU ablations. We ablate three design choices of MERU and report zero-shot
COCO recall@5 and ImageNet top-1 accuracy. Our design choices are crucial for training
stability when using a larger model (ViT-L/16) with MERU.

No entailment loss: We only use the contrastive loss for training this ablation. This

effectively means setting λ = 0. Note that this ablation is mathematically impossible for

CLIP-style models as there is no obvious notion of entailment that can be defined when all

the embeddings have a unit norm. Disabling the entailment loss is mostly inconsequen-

tial to MERU’s performance. This shows that choosing a hyperbolic space is sufficient to

improve quantitative performance over CLIP. Entailment loss is crucial for better structure

and interpretability, as will be discussed in Section 4.5.

Fixed curvature parameter: Recall that we learn the hyperboloid curvature during train-

ing. Here we train an ablation using a fixed curvature c = 1. This has negligible impact

on MERU ViT-B/16, but learning curvature is crucial when scaling model size – MERU ViT-

L/16 model with fixed c = 1 is difficult to optimize and performs poorly on convergence.

As far as we are aware, no prior work learns the curvature [7, 120, 180].

Lorentzian inner product in contrastive loss: CLIP-style contrastive loss uses the in-

ner product defined on the hypersphere (cosine similarity). Similarly, we consider the

Lorentzian inner product (Eqn. 4.1) in the contrastive loss instead of negative Lorentzian

distance. With this, MERU ViT-L/16 is difficult to train. Loss diverges due to numerical

overflow, as Lorentzian inner product is numerically large and unbounded in (−∞, − 1/c],

unlike cosine similarity ∈ [−1, 1]. Lorentzian distance applies a logarithmic operator

(cosh−1) on the Lorentzian inner product, slowing down its numerical growth and hence

improving numerical stability.
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Figure 4.4: Distribution of embedding distances from [ROOT]: We embed all 12M train-
ing images and text using trained MERU and CLIP. Note that precise distance is not neces-
sary for this analysis, so we compute simple monotonic transformations of distances, d(z).
MERU embeds text closer to [ROOT] than images.

4.5 Qualitative analysis

In this section, we probe our trained models to infer the visual-semantic hierarchy captured

by MERU and CLIP. Apriori we hypothesize that MERU is better equipped to capture this

hierarchy due to the geometric properties of hyperbolic spaces and an entailment loss that

enforces the partial-order relationship ‘text entails image’. All our analysis in this section

uses MERU and CLIP models with the largest image encoders (ViT-L/16).

4.5.1 Preliminary: Root node embedding

Recall Figure 4.1 – if we think of the visual-semantic hierarchy as a tree, then its leaf
nodes are images and the intermediate nodes are text descriptions with varying semantic
specificity. Naturally, the root node should represent the most generic concept. We denote

its embedding in the representation space as [ROOT].

For MERU, [ROOT] is the origin of the Lorentz hyperboloid as it entails the entire rep-

resentation space. The location of [ROOT] for CLIP is not as intuitive – the notion of

entailment is mathematically not defined, and the origin does not lie on the hypersphere.

We empirically estimate CLIP’s [ROOT] as an embedding vector that has the least distance

from all embeddings of the training dataset. Hence, we average all 2×12M embeddings

of images and text in RedCaps, followed by L2 normalization. [ROOT] will be different for

different CLIP models, whereas it is fixed for MERU.
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4.5.2 Embedding distances from the root node

In a representation space that effectively captures the visual-semantic hierarchy, text em-

beddings should lie closer to [ROOT] than image embeddings, since text is more generic
than images (Figure 4.1). Figure 4.4 shows the distribution of embedding distances from

[ROOT] – these distributions overlap for CLIP but are separated for MERU. The range of dis-

tributions in Figure 4.4 (left) hints that MERU embeds text and images in two concentric,
high-dimensional rings around [ROOT]. The ring of text is more spread out, whereas the ring

of images is relatively thin. This resembles the structure of the visual-semantic hierarchy –

images only occupy leaf nodes whereas text occupies many intermediate nodes.

4.5.3 Image traversals

In a discrete tree, one can discover the ancestors of any node by performing shortest-

path traversal to the root node [54]. We perform such traversals for images with MERU

and CLIP. If the representation space has captured the visual-semantic hierarchy, then a

shortest-path traversal from an image to [ROOT] should let us infer textual concepts that

describe the image with varying levels of abstraction.

We traverse from an image to [ROOT] by interpolating N = 50 equally spaced steps

along the geodesic connecting their embedding vectors. The embedding vector of every

interpolated step is used as a query to retrieve the nearest neighbor from a set of text

embeddings X (also including [ROOT]).

Collecting image-text pairs for qualitative results: For this analysis, we require a set

of images and text descriptions that describe images with varying levels of specificity. We

collect images from pexels.com, a website that offers high-quality stock photographs with

free and permissible usage terms. Images on this website are accompanied with rich tex-

tual metadata. We manually collect 60 random images along with their textual metadata;

an example webpage is shown in Figure 4.5. We perform parts-of-speech tagging of all

keywords using the RoBERTa [158] model (en-core-web-trf) from SpaCy [106] library,

and only retain nouns and adjectives. These keywords are converted to captions by filling

prompts – ‘a photo of {}.’ for nouns, and ‘this photo is {}.’ for adjectives. Overall,

we get a total of 750 captions to create the set of their embeddings, X .

Interpolating steps: MERU and CLIP have different methods for interpolation due to the

difference in geometric properties of Euclidean and hyperbolic spaces. For CLIP, we per-

form linear interpolation between the L2 normalized image embedding y and [ROOT]. This
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Figure 4.5: pexels.com webpage. We collect images and associated textual metadata
(closed caption, CC and related keywords, ‘More like this’) from this website to create
retrieval sets for the image traversal analysis.

operation can be performed using torch.lerp in PyTorch [187]. For MERU, we perform

linear interpolation between encoder output yspace (before lifting it onto the hyperboloid)

and 0. We then lift all the embeddings of interpolated steps onto the hyperboloid.

Nearest-neighbor text retrieval: This procedure is similar to our image retrieval eval-

uations. For CLIP, we select x ∈ X having the highest cosine similarity with the step
embedding. For MERU, we find a subset Xe ⊂ X of text embeddings that entail the given

step embedding, i.e., Eqn. 4.12 evaluates to 0 (note that [ROOT] entails everything). Then

we select x ∈ Xe having the highest Lorentzian inner product with the step embedding.

Results: Figure 4.6 shows results with 8 selected images and captions from pexels.com.

At any given step, the caption associated with the retrieved texct embedding x (or [ROOT])

is the retrieved nearest neighbor. We observed that multiple consecutive steps retrieve the

same caption, so our results only display unique captions encountered during the traversal.

CLIP seems to capture hierarchy to some extent, often retrieving very few (or zero) cap-

tions between image and [ROOT]. MERU captures it with much finer granularity, retrieving

concepts that gradually become more generic as we move closer to [ROOT]. Figures 4.7

to 4.11 show results with the remaining 52 images. Appendix B.5 includes results using

captions from the YFCC dataset [236] as a retrieval pool.
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MERU CLIP
a bengal cat
sitting beside

wheatgrass on
a white surface

a bengal cat
sitting beside

wheatgrass on
a white surface

bengal ↓
cat ↓

domestic ↓
[ROOT] [ROOT]

MERU CLIP
white horse white horse

equine ↓
equestrian ↓

beauty ↓
female ↓
fluffy ↓
[ROOT] [ROOT]

MERU CLIP
photography of
rainbow during

cloudy sky

phenomenon

rainbow ↓
phenomenon ↓

rural ↓
[ROOT] [ROOT]

MERU CLIP
retro photo

camera on table
↓

fujinomiya ↓
vintage ↓

style ↓
[ROOT] [ROOT]

MERU CLIP
avocado toast avocado toast

healthy
breakfast

delicious

delicious ↓
homemade ↓

fresh ↓
[ROOT] [ROOT]

MERU CLIP
brooklyn bridge photo of

brooklyn
bridge, new

york
new york city new york city

city new york
outdoors ↓

day ↓
[ROOT] [ROOT]

MERU CLIP
taj mahal taj mahal

through an
arch

monument travel
architecture inspiration

travel ↓
day ↓

[ROOT] [ROOT]

MERU CLIP
sydney opera

house
sydney opera

house
opera house opera house

holiday gift
day beauty

[ROOT] [ROOT]

Figure 4.6: Image traversals with MERU and CLIP. CLIP retrieves overall fewer textual
concepts (top row), but in some cases it reveals a coarse hierarchy (bottom row). MERU
captures hierarchy with significantly greater detail, we observe that: (1) Text becomes
more generic we move towards [ROOT], e.g., white horse → equestrian. (2) MERU has
higher recall of concepts than CLIP, e.g., homemade, city, monument. (3) MERU shows
systematic text→image entailment, e.g., day entails many images captured in daylight.
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MERU CLIP
golden gate golden gate

bridge, san
francisco,
california

san francisco famous
landmark

tourist spot ↓
photo ↓
power ↓
[ROOT] [ROOT]

MERU CLIP
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coast ↓
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[ROOT] [ROOT]

MERU CLIP
the famous
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yellowstone
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yellowstone beauty
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[ROOT] [ROOT]

MERU CLIP
the parthenon
temple ruins in
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the parthenon
temple ruins in
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historical site famous
landmark

architecture low angle shot
domestic ↓
[ROOT] [ROOT]

MERU CLIP
big ben big ben
holiday ↓

day ↓
[ROOT] [ROOT]

MERU CLIP
karlskirche karlskirche

church
architecture church

style ↓
[ROOT] [ROOT]

MERU CLIP
fuji fuji

japan cozy
holiday ↓
[ROOT] [ROOT]

MERU CLIP
horseshoe bend horseshoe bend

outdoors national park
↓ credit

[ROOT] [ROOT]

MERU CLIP
milky way ↓

rural ↓
[ROOT] [ROOT]

MERU CLIP
volcano

erupting at
night under
starry sky

volcano
erupting at
night under
starry sky

active volcano volcanic
outdoors ↓
[ROOT] [ROOT]

MERU CLIP
northern lights

norway
northern lights

norway
aurora aurora
scenic outdoors

outdoor ↓
[ROOT] [ROOT]

MERU CLIP
california welcome to

fabulous las
vegas nevada

signage
↓ famous

landmark
[ROOT] [ROOT]

Figure 4.7: Image traversals with MERU and CLIP (locations and landmarks). Re-
trieved captions are sourced from pexels.com metadata. MERU captures a more systematic
and fine-grained visual-semantic hierarchy than CLIP.
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MERU CLIP
squirrel up on
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fluffy ↓
[ROOT] [ROOT]
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bird bird
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domestic ↓
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[ROOT] [ROOT]

MERU CLIP
three zebras three zebras
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animal
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↓

wild ↓
[ROOT] [ROOT]

MERU CLIP
monarch
butterfly
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butterfly
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butterfly

↓

butterfly ↓
beauty ↓

day ↓
[ROOT] [ROOT]

MERU CLIP
red hibiscus in
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bloom blooming

flowers
style ↓

[ROOT] [ROOT]

MERU CLIP
white chicken
on green grass

field

white chicken
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field
cockerel ↓
chicken ↓
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[ROOT] [ROOT]
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parrot parrot
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female ↓
[ROOT] [ROOT]

MERU CLIP
edible agaric edible agaric
mushroom mushroom
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little ↓

[ROOT] [ROOT]

MERU CLIP
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sea life sea life
style calamity

[ROOT] [ROOT]

MERU CLIP
financial adorable

cute ↓
[ROOT] [ROOT]

MERU CLIP
an orca whale
jumping out of

the water

an orca whale
jumping out of

the water
whale whale
[ROOT] [ROOT]

Figure 4.8: Image traversals with MERU and CLIP (flora and fauna). Retrieved cap-
tions are sourced from pexels.com metadata. MERU captures a more systematic and fine-
grained visual-semantic hierarchy than CLIP.
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MERU CLIP
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grilled cheese grilled cheese

lunch ↓
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[ROOT] [ROOT]

MERU CLIP
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local food ↓
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[ROOT] [ROOT]
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[ROOT] [ROOT]

MERU CLIP
spinach caprese

salad
spinach caprese

salad
lunch lunch

homemade ↓
style ↓

[ROOT] [ROOT]

MERU CLIP
cupcakes cupcakes
chocolate
cupcakes

↓

delicious ↓
homemade ↓

clean ↓
day ↓

[ROOT] [ROOT]

MERU CLIP
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MERU CLIP
espresso
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↓
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[ROOT] [ROOT]

Figure 4.9: Image traversals with MERU and CLIP (food and drinks). Retrieved cap-
tions are sourced from pexels.com metadata. MERU captures a more systematic and fine-
grained visual-semantic hierarchy than CLIP.
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MERU CLIP
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fluffy ↓
[ROOT] [ROOT]

MERU CLIP
raining in the

city
raining in the

city
weather downtown
simple ↓

day ↓
[ROOT] [ROOT]

MERU CLIP
road aerial view of

road in the
middle of trees

travel aerial shot
style rural
↓ clean
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analog bicycle
retro ↓
style ↓
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[ROOT] [ROOT]
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comfort ↓
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Figure 4.10: Image traversals with MERU and CLIP (objects and scenes). Retrieved
captions are sourced from pexels.com metadata. MERU captures a more systematic and
fine-grained visual-semantic hierarchy than CLIP.
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MERU CLIP
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[ROOT] [ROOT]

MERU CLIP
currency euro
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Figure 4.11: Image traversals (objects and scenes). Retrieved captions are sourced from
pexels.com metadata. MERU captures a more systematic and fine-grained visual-semantic
hierarchy than CLIP.

4.6 Related work

Visual-language representation learning. Soon after the initial success of deep learn-

ing on ImageNet [131], deep metric learning [220, 221] was used to learn vision-language

representations in a shared semantic space [70, 118]. The motivations at the time included

the possibility of improving vision models [70], enabling zero-shot learning by expressing

novel categories as sentences [65, 70], and better image-text retrieval [118, 270]. Another

line of work proposed learning visual models from language supervision via objectives like

textual n-gram prediction [142], or generative objectives like masked language model-

ing [23] or image captioning [50].

More recent approaches like CLIP [198] and ALIGN [114] use contrastive metric learn-

ing to pre-train Vision Transformers [60] and have helped to better realize the motiva-

tions of the earlier works in practice. While all prior works learn Euclidean embeddings,

MERU explicitly works in the hyperbolic space that is conceptually better for embedding

the visual-semantic hierarchy (Figure 4.1) underlying images and text. Our results (Sec-

tion 4.4) demonstrate that MERU yields strong performance as prior works, and also offers

better interpretability to the representation space.

Entailment embeddings. In a vision and language context, Order Embeddings [247]

propose capturing the partial order between language and vision by enforcing that text
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embeddings x and image embeddings y, should satisfy y ≤ x for all dimensions i. While

enforcing order is useful for retrieval, in our initial experiments, we found that incorpo-

rating distance-based contrastive learning is crucial to obtain better performance on both,

image classification and retrieval. Thus, we opt for adapting the currently successful CLIP-

style contrastive learning recipe and add our entailment objective in conjunction. This

design choice helps us obtain the desired structure in the representation space.

For NLP and knowledge graph embedding applications, several approaches embed par-

tially ordered data [11, 45, 74, 178, 248] or discover ordering from pairwise similari-

ties [139, 179, 239]. This chapter builds upon both of these lines of work, since we

impose structure across modalities, but order also emerges within modality (Figure 4.6).

Hyperbolic representations in computer vision. Khrulkov et al. [120] learn hyperbolic

image embeddings using image-label pairs, while Atigh et al. [7] study image segmen-

tation by utilizing hyperbolic geometry. More recently, Ermolov et al. [66] and Ge et al.

[75] extend standard contrastive self-supervised learning framework [95, 257] in vision to

learn hyperbolic representations. In contrast to all these works, MERU learns multimodal

representations with an order of magnitude more data and shows strong zero-shot transfer

abilities across generic artificial intelligence tasks [198].

4.7 Conclusion

In this chapter, we focused on a practical aspect of learning language-supervised represen-

tations – understanding and interpreting the distribution of concepts underlying millions

of images and text. We proposed learning hyperbolic representation with MERU to cap-

ture the visual-semantic hierarchy underlying image-text datasets. MERU is competitive or

more performant than approaches that learn Euclidean representations (like CLIP). It does

so along with capturing hierarchical knowledge which allows one to make powerful infer-

ences such as reasoning about images at different levels of abstraction. Beyond this, our

model also provides clear performance gains for small embedding dimensions (which are

useful in resource-constrained settings). We hope that our contributions catalyze progress

in learning useful representations from large amounts of unstructured data.

Future work. In this scaling era, we are seeing rapid progress with large multi-modal

models trained using millions (or even billions) of image-text pairs. The quality and con-

cept distribution of training data play a vital role in the efficacy of these models. Such

training data is becoming increasingly opaque and black-box due to its unprecedented
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scale. We believe that the time is ripe to revisit the unreasonable effectiveness of data

in deep learning [89, 227]. Modeling hierarchies can help uncover higher-order relation-

ships beyond basic data statistics. As a concrete example, Figure 4.1 “so cute <3” is an

extremely generic caption and does not the precise details in images. Such captions add

noisy supervision in contrastive loss by making false negative pairs with many images in

the batch. Image traversals with MERU Figure 4.6 can discover such noisy captions. ML

practitioners can filter or re-caption such training images to improve dataset quality and

train subsequent models for improved performance.

Limitations. Our work is not without limitations. MERU yields hyperbolic representa-

tions that excel at zero-shot retrieval and image classification tasks, the linear probe evalu-

ations in the Table B.4 show that the underlying Euclidean representations from the image

encoder of MERU underperform CLIP. Future work could explore MERU’s transferability to

other tasks that involve few-shot learning or full-model fine-tuning, which is also beyond

the scope of this chapter. Finally, while we provide ample qualitative analysis of image

traversals, future work should explore more systematic ways to evaluate the hierarchical

knowledge captured by vision-language models.
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Chapter 5

How to Segment and Classify Anything?

Figure 5.1: Zero-shot transfer with Segment and Classify Anything Model (SCAM). We
introduce a general detector design composed of pre-trained vision models that specialize
in segmentation (SAM) and classification (CLIP). Our careful design retains the capabilities
of underlying models to enable fast and data-efficient transfer to object detection and
instance segmentation. Figure shows high-scoring masks predicted by SCAM with CLIP
ConvNeXt-XXL for random images from OpenImages [16] and LVIS [86] dataset. SCAM
can segment novel objects without downstream fine-tuning up to the limit of pre-training
knowledge in the constituent SAM and CLIP models.

5.1 Introduction

Vision is often described as the task of finding what is where [169]. One concrete instan-

tiation of this definition is the canonical image description task of object detection. This

task encapsulates two sub-tasks – for an input image, an object detector must localize all
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objects of interest, e.g., through bounding boxes or segmentation masks, and classify each

object using a specified label set. There has been a lot of progress in trying to solve these

problems independently. Recently, works in interactive segmentation [123] have pushed

the limits to localize objects in novel images with unseen classes but do not predict object

semantics. On the other hand, we have also seen works like CLIP [198] can learn large

vision-language models from image-text paired data. These models are good at under-

standing semantics in case of unseen classes directly from text supervision. Jointly solving

semantics and locations still requires using two-stage architectures with ConvNet back-

bones [92] or transformer backbones [60] but is limited to datasets like COCO [153] and

LVIS [86] and training such detectors is very data-inefficient.

In this chapter, we will revisit the object detector designs and aim to incorporate large

vision models like SAM and CLIP for efficient transfer learning. With the advent of models

on web-scale data, it is natural to train bigger and stronger models as it is easy to collect

data such as image-text pairs, video-text pairs etc compared to collecting data such as

extensive masks, bounding boxes and class labels. On the other hand, it is much easier to

collect loose mask annotations without explicit ontology allowing the scaling of interactive

segmentation models. As these models continue to scale, we must reconcile the efforts in

two directions to approach the task of object detection without re-inventing the wheel.

We propose a simple object detector named SCAM, short for Segment and Classify

Anything Model. SCAM is composed of two promptable models for segmentation and

classification respectively – SAM and CLIP. Our key insight is that models could be used

to prompt each other for instance segmentation with minimal human guidance: only the

classes of interest. We use CLIP’s embeddings to both prompt SAM and classify SAM’s

predicted masks. Our setup keeps large parts of CLIP and SAM frozen and retains the full

functionality of these models at initialization. This deliberate design choice allows using

SCAM out-of-the-box for segmentation in challenging low-data regimes like training-free

segmentation, and training with unlabeled masks.

In our experiments, we will train SCAM using popular object detection benchmarks –

COCO and LVIS, along with reporting its zero-shot transfer performance on these bench-

marks without any additional training. Under fair comparisons holding the image back-

bone and training data constant, we find that SCAM outperforms prior object detector

designs on all considered image segmentation benchmarks.
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5.2 Related Work

We build on a long line of work that develops simple and scalable models for object detec-

tion and segmentation.

Object detectors. Object detection is a fundamental vision task that involves localizing

and classifying a candidate set of objects in an image. Modern object detectors follow

a general design based on the pioneering R-CNN [81] and its faster variants [80, 204].

These models follow a two-stage, anchor-based and region-based design. Follow-up works

introduce different type of variants like one-stage [155, 238, 289], anchor-free [238, 253,

254], and more recently query-based universal segmentation models [25, 37, 38].

While different in their design, all these models can be characterized as a combination

of: (i) generic image backbone like ConvNet [91, 131, 159, 261] or ViT [60], and (ii)

detection-tailored modules like FPN [154], and RoI heads [92]. With an exception of

few studies that train the entire detector from scratch [78, 93], nearly every work uses

an image backbone pre-trained using ImageNet [47] and fine-tunes other components.

In all these designs, the task-specific components are attached in a way that breaks the

alignment of backbone features with their label space, or have backbones that are not

aligned with a semantic label space (e.g., self-supervised MAE [96]). Moreover, before the

advent of SAM [123], all these models learn segmentation-specific modules from scratch.

With SCAM, we de-facto use CLIP and SAM and deliberating opt for a simple design for

efficient downstream transfer.

Open-vocabulary object detection and segmentation. This task [276] is a successor

to the challenging zero-shot detection [12], and requires models to detect (and segment)

object classes for which masks are not available in the training data. With the advent of

vision-language models like CLIP [198] and ALIGN [114], open-vocabulary object detec-

tion has broadened to rigorous empirical study. From a scaling perspective, this task is

appealing as the data requirements are lighter than traditional, closed-set detection.

CLIP’s promptable classification allows building detectors with text classifier weights

from pre-trained text encoder of CLIP, facilitating seamless transfer. Several works utilize

CLIP-style models in their design for knowledge distillation [85] or to generate pseudo

region-label pairs for detection pre-training [286]. Recent works further simplify this by

using CLIP image encoders to classify image crops [152, 274] or as detector backbones [90,

133, 144, 264, 273].

Unlike SCAM, these approaches still require a large amount of labeled detection data
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as they do not preserve the alignment between the pre-trained image-text representations.

Many of these works only tackle bounding box-based detection. We design SCAM for data-

efficiency, and our experiments study downstream transfer in both, zero-shot as predicting

pixel-precise masks for novel classes is challenging [20]. We demonstrate how SCAM can

be adapted to low-data regime by training lightweight modules requiring fewer masks and

lower compute budgets than prior work.

5.3 Approach

This work proposes a simple framework for object detection and instance segmentation by

merging two disparate research efforts on building promptable vision foundation models

for zero-shot image segmentation (SAM [123]) and classification (CLIP [198]). Object

detection involves two sub-tasks: (1) localize all object instances of interest in an image

and (2) classify each instance into a set of object classes of interest. We decouple these

sub-tasks and offload them to the underlying components (SAM and CLIP) respectively to

build our SCAM.

Desiderata. Our design philosophy is to preserve the existing capabilities of pre-trained

models to enable fast downstream transfer. This would allow SCAM to either be used out-

of-the-box without additional training or to be rapidly steered toward a target task with

minimal data and compute requirements. This departs from existing detectors [25, 92]

that initialize, and train, new modules on top of image backbones and break the align-

ment with learned label space from pre-training, or opt for pre-trained backbones whose

representations are not aligned with a textual representation space [151]. While we op-

erationalize this with the currently available SAM and CLIP models, our design applies to

any promptable segmenter and classifier.

5.3.1 Model architecture

As shown in Figure 5.2, SCAM’s design is simple and modular, can be broken down into

four sub-modules: (i) the backbone extracts dense embeddings from input images, (ii)

the prompter proposes a set of points for the segmenter, (iii) the segmenter predicts class-

agnostic masks based on point prompts, and (iv) the classifier assigns a class label to masks

from the segmenter. Now we introduce each of the components in detail while making

minimal assumptions about the underlying structure of these modules, which makes our

design accommodating to a variety of architectures.
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Figure 5.2: SCAM Design: Image backbone extracts embeddings from an input image.
The prompter uses backbone embeddings to propose a set of pixel locations for our visual
concepts of interest. The segmenter uses the image and pixel prompts to predict a set of
binary masks. Finally, the classifier performs mask classification using backbone embed-
dings and masks from the segmenter to predict class labels. Our backbone and segmenter
are frozen throughout while we optionally train the light weight prompter and classifier
for various data regimes.

Backbone. The backbone is a deep network that encodes an image as a dense grid of

image embeddings. According to prevailing practices [78, 151], we provide 1024 × 1024

image inputs and obtain spatial embeddings of size 64× 64 (stride = 16). This amounts to

using a backbone that downsamples the image with an overall scale of 1/16, e.g., ViTs [60]

with patch size of 16, or the initial few stages of convolutional (hierarchical) models until

they obtain embeddings of 1/16 scale 1.

In our design, we partition the convolutional CLIP image encoder and include the ini-

tial layers in the backbone. As per the requirement stated above, we remove all layers

including and after the downsampling layer in the last convolutional stage. We briefly

experiment with ViT-based CLIP models, which we found to underperform their ConvNet-

based counterparts – see Appendix C for discussion.

Prompter. The prompter is a lightweight, fully convolutional module that inputs the

image embeddings from the backbone and predicts a heatmap with values in [0, 1], High

values indicate the presence of an object of interest. Pixel locations with high objectness
are prompted to the segmenter. Intuitively, the prompter ensures high recall over object

regions of interest while improving over the worst-case runtime of selecting all possible

points as prompts to the segmenter. Functionally, this prompter is equivalent to the Region

Proposal Networks, however, it uses points as the fundamental substrate for detection

instead of anchor boxes.
1A typical convolutional model downsamples the image by 1/32
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Segmenter. The segmenter is a promptable segmentation model, responsible for predict-

ing label-agnostic masks based on the prompter outputs. We use SAM [123], specifically

the largest model with ViT-H image encoder for the highest quality masks. While SAM

can predict masks conditioned on a combination of points and boxes, we only use the

points obtained from the prompter as single-point prompts and obtain three masks (multi-
mask mode). We experimented with bounding box prompts and found the point prompts

to lead to better results. Our modular design is compatible with any other promptable

segmentation models [33, 157, 219] beyond SAM.

Classifier. The classifier inputs the dense image embeddings from the backbone, crops

region embeddings using masks from the segmenter, and classifies each mask (region em-

bedding) as one of the labels provided as prompts by the user. This module contains two

sub-components: (1) the last few layers of the CLIP image encoder which were excluded

from the backbone, and (2) a single weight matrix comprising embedding vectors obtained

by encoding label prompts using the CLIP text encoder.

The backbone and classifier collectively consume the entire pre-trained CLIP model,

and introduce no additional trainable parameters. Since we preserve the forward pass of

CLIP, we obtain zero-shot classification out of the box.

5.3.2 Modeling Decisions

Now, we discuss how current prevalent model architectures such as [92] do not lend them-

selves well in data-starved settings due to their task-specific modules, and how our modi-

fication help solve these limitations

Data starved settings. Transfer learning for object detection has always been heavily

data-demanding – obtaining domain-specific labeled masks is not always cheap or feasi-

ble. We designed SCAM with a specific focus to reduce the need for large amounts of

labeled masks to bootstrap a reasonable performing detector for any specific detection do-

main. Existing object detectors, e.g., those based on the popular Mask R-CNN architecture,

are composed of modules that are task-agnostic and task-specific. Commonly, the image

backbone is the main task-agnostic component, which represents the bulk of the detector

and is pre-trained using other types of data and supervision that are usually more scalable

than detection data. Until now, the task-specific components were initialized from scratch

and designed in a manner that made it impossible to use the detector without being trained

with a detection dataset.
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Task-specific modules. Our choice using SAM as a segmenter in our model departs from

the current object detector design [37, 92] that couples segmentation and classification

tasks and tackles them with task-specific modules attached on backbones. With SCAM,

we eliminate these task-specific components and replace them with a promptable seg-

mentation model like SAM, that can scale with arbitrarily large amounts of unlabeled,

class/task-agnostic masks.

Different from existing detectors, our backbone omits any mechanism to obtain multi-

scale image embeddings e.g.,, a feature pyramid network (FPN). This deliberate choice al-

lows us to further eliminate many task-specific modules and hyperparameters (e.g., RPN,

localization-specific ROI heads). In fact, in our preliminary experiments, these compo-

nents bring very few empirical benefits for SCAM. We hypothesize that multi-scale feature

pyramids are beneficial when learning pixel-wise segmentation from scratch, but they are

less important with SCAM as segmentation is completely handled by SAM. Moreover, the

ambiguity-aware design of SAM naturally provides masks of different scales.

In summary, we opt to omit most of the task-specific components from prior detector

designs in favor of simplicity – using stronger backbones and segmenters can easily recover

the benefits brought by task-specific modules.

5.3.3 Training and Inference

SCAM is readily usable without additional training, owing to our careful design. How-

ever, its capabilities are sub-par due to the train-test domain mismatch for CLIP. Here, we

prescribe a training recipe for the prompter and optionally, to fine-tune the classifier.

Training the prompter. One may use a few unlabeled masks depicting objects of interest

to steer the prompter towards selecting a subset of points from the dense 128 × 128 point

grid – higher precision in selecting foreground points would improve runtime (less forward
passes through segmenter).

We train the prompter to predict a score ∈ [0, 1] for each feature in the dense image

level feature grid. We require our model to only generate candidates for pixels that belong

inside a mask. SAM tends to predict better masks for point prompts that lie closer to object

centers, so we use a mask-based centerness [238] as ground-truth regression targets.

Specifically, we implement this as the nearest distance to the mask boundary – by

computing Euclidean distance transform (EDT) [206] over image masks. We use a pixel-

wise mean-squared error loss, Lprompt = ||fφ(I) − EDT (M)||2. M [p] is the mask value at

pixel p, for any pixel location p in the image of size H ×W the EDT function computes the
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distance to the nearest background pixel.

At inference, we find peaks in the predicted heatmap of logits using a 3×3 max-pooling

kernel to sample points closer to object centers. In Figure 5.3 (a), we show the predicted

logits by our prompter for a single input image. Regions with high intensity indicate a

higher likelihood of good candidate point prompts. These sampled points serve as the

input for the interactive segmentation module. Further details on training this module are

in Appendix C.1.3.

Training Classifier. Note that training the classifier is optional, however, using a few la-

beled masks of downstream tasks allows the classifier to model the background class and

discard proposals in the background regions. We train the classifier similar to training

an ROI head in Mask R-CNN [92]. Specifically, we consider masks generated from the

segmenter with an IoU ≥ 0.5 with the ground-truth mask. We assign this mask the cor-

responding label from the dataset otherwise treat it as background. During training, we

randomly sample up to 64 proposal masks per image and train the classifier with standard

cross-entropy loss. We weigh the background class by 25% to account for class imbalance.

Mask-based post-processing. The strategy to use different models to generate masks

and labels generates a different type of redundancy in mask predictions that requires

post-processing as we do not have access to bounding boxes like in RPN style de-

signs [80, 92, 204]. During post-processing, firstly, we apply non-maximum suppression

(NMS) using masks instead of bounding boxes. Using Mask NMS is equivalent in most

cases, but it helps in case of occlusions (e.g., giraffes standing behind each other), or when

SAM predicts masks with spurious islands (yielding vastly different boxes). Secondly, SAM

often segments object-subparts such as the eyes and nose of a bear (Figure 5.3) which are

often so small that NMS cannot remove them. For such scenarios, we suppress a model’s

mask prediction if at least 80% of its area is occluded by a larger mask of the same class,

that is predicted with higher confidence.

5.4 Experiments

We evaluate SCAM on object detection and instance segmentation. Our experiments eval-

uate the transfer efficiency and downstream performance of our model. We are primarily

interested in understanding how well our model performs when provided with different

types of data describing the target class. This can differ from just knowing the names of
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Figure 5.3: Mask-based post-processing for SCAM. Left: We show predicted logits for
the image from our prompter. Bright colors indicate pixels deep inside a mask, while
darker regions are near or outside the object boundary. This allows us to sample a few
high-quality point prompts for the segmenter. Right: SAM generates subpart masks that
get classified as the full object. Since those masks wholly overlap with the full-object
mask, they can be easily detected. We propose a sub-mask suppression (SMS) technique
to efficiently find and suppress these masks.

the classes to detect to being provided with labeled masks of those classes. Specifically,

our experiments study the following questions:

1. How well does SCAM perform when it is just prompted with class names?

2. How well does SCAM perform when provided with unlabeled masks?

3. How well does SCAM perform when provided with a small number of labeled masks?

5.4.1 Zero-Shot Transfer

We first study the performance of SCAM in the zero-shot setting where we only know the

names of the classes of interest. Since our design preserves the forward pass logic of the

underlying components, we can directly apply it to a variety of segmentation tasks. Note

that existing object detectors like Mask R-CNN [92], DETR [25], and Mask2Former [37]

do not allow seamless zero-shot image segmentation as they rely on several segmentation-

tailored, randomly initialized components on top of pre-trained backbones.

Model design: We use a modified version of SCAM for zero-shot experiments by remov-

ing all trainable components. We replace the FPN from the classifier and instead only use

single-scale image embeddings from the backbone. Instead of a learnable prompter, we use

SAM’s segment everything setup. This prompts the models with a fixed, image-independent
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Runtime
(sec/img)

COCO [153] OID [16] LVIS [86]
Backbone Model AP AP50 AP50 AP APr APc APf

Baseline 4.79 15.3 22.4 22.9 12.8 17.6 14.0 9.4ConvNeXt
Base SCAM 4.35 21.9 32.7 36.4 15.9 19.4 16.9 13.3

Baseline 5.00 16.8 24.6 26.9 16.4 24.0 17.9 11.3ConvNeXt
Large SCAM 4.58 24.8 37.9 41.8 18.9 22.5 20.5 15.5

Baseline 5.66 18.3 26.6 27.0 18.7 26.2 20.4 13.4ConvNeXt
XXLarge SCAM 5.52 25.8 39.1 41.1 21.2 25.6 23.0 17.2

Table 5.1: Zero-shot transfer with SCAM. We test experiment with our SCAM model three
different datasets COCO [153], OpenImages [16] and LVIS [86]. The baseline method suf-
fers from consistent errors due to background, and sub-parts. SCAM achieves substantial
performance gains due to Mask NMS and subpart suppression across three different back-
bones all AP metrics. We show that with bigger backbones the performance improves.
Running inference on SCAM and baselines in zero-shot mode requires ≈5s per image.

point grid containing 64 × 64 points arranged uniformly on a (padded) input image of

1024 × 1024 pixels. We obtain three masks per point from SAM, resulting in up to 12.3K

masks per image. Since the masks are not unique, we apply lightweight filtering follow-

ing Kirillov et al. [123] by only retaining masks with a predicted IoU score greater than

0.7 and stability score greater than 0.9. Finally, we remove near-duplicates by performing

non-maximum suppression with IoU threshold = 0.95. The filtering removes 78% of the

masks, on average.

Baseline: Inspired by the R-CNN family of detectors [80, 81, 204], we design a baseline

where SAM is used to propose potential regions and CLIP is used to classify them. Liang

et al. [152] used a similar strategy where a MaskFormer trained on unlabeled COCO masks

is used to generate masks and CLIP is used to classify the masked images. This strategy

is very slow as it requires a forward pass of the model for each considered mask. We

take inspiration from Fast R-CNN [80] and amortize the classification cost by applying

region-of-interest (RoI) pooling on CLIP’s intermediate features. In this case, only the final

layer of CLIP is applied for each segment, resulting in a drastic improvement in speed with

minimal impact on performance.

Results and discussion. We observe that the baseline suffers from consistent errors in-

volving backgrounds and object sub-parts as shown in Figure 5.4. Standard segmentation

methods rely on a region proposal network that matches the granularity of the target

class; e.g.,, objects in COCO or Pascal, backgrounds in COCO-Stuff, or parts in COCO-

Parts. Hence, while the region proposals may be agnostic to object classes, they are tuned
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Figure 5.4: Zero-shot results (qualitative). We observe that the baseline approach suffers
from over-segmentation. Our test-time improvements with SCAM are effective in reducing
these over-segmentations and producing reasonable outputs. Note: Models receive RGB
images, grayed here for better viewing.

to a specific granularity. In contrast, SAM generates masks at different granularity levels

by design. Such masks will also have a high IoU confidence since they are valid masks that

match SAM’s training data; this makes it difficult to filter them out without human guid-

ance. We also find that CLIP does not allow us to filter such masks easily as the features

pooled for different mask granularity are often similar; e.g.,, a bear’s face vs. its whole

body as shown in Figure 5.3.

SCAM achieves much better segmentation performance even without fine-tuning. We

attribute this gain to two specific design choices: (1) moving from boxes to masks and

(2) sub-mask suppression. While feature pooling and non-maximal suppression are often

computed using bounding boxes, we assert that pixel-precise masks are more accurate

representatives of objects (especially thin objects), as compared to bounding boxes. Hence,

we use masks for both feature pooling and non-maximal suppression (NMS).

While mask-based operations are more computationally expensive, efficient implemen-

tations make this increase negligible. Furthermore, mask NMS allows us to suppress more

masks which helps offset the increased computational cost. As a result, moving to masks

results in a net speedup of 0.66 sec/image as well as an improvement of 4.6 AP. Our

second improvement comes from suppressing the sub-masks shown in Figure 5.3. This
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Model Configuration
(ConvNeXt-XXLarge)

Runtime
(sec/img)

COCO
AP AP50

Baseline 5.66 18.3 26.6
+ Masked Average Pooling 5.69+0.03 22.6+4.3 32.8+6.2

+ Mask NMS 5.00−0.66 22.9+4.6 33.9+7.3

+ Sub-Mask Suppression 5.01−0.65 24.7+6.4 36.8+10.2

+ 24×24 RoI Align (SCAM) 5.52−0.14 25.8+7.5 39.1+12.5

Oracle (uses GT boxes) 0.93 47.3 70.3

Table 5.2: Zero-shot transfer ablations. We ablate our design choices for SCAM on
the COCO dataset [153]. Using our well-designed changes our method shows a perform
improvement of 7.5 points over a naive standard baseline. We also show the upper bound
segmentation performance of our design where we assume access to a perfect detector and
prompt our model with GT bounding boxes.

minimally affects run-time while resulting in a further improvement of 1.8 AP. Finally, to

further leverage our use of masks for pooling, we increase the RoI align size to sample

more feature points around the mask. Taken together, our inference techniques result in a

7.5 improvement in AP and a speedup of 0.14 sec/image. While our zero-shot inference is

too slow to be of practical use, it showcases the strong performance that could be achieved

by intelligently combining existing models.

5.4.2 Transfer with Unlabeled Masks

While SCAM demonstrates strong zero-shot performance, it suffers from slow inference

runtime, as the classifier encounters hundreds (or thousands) of masks from SAM.

We observe that most of these point prompts result in irrelevant masks, resulting in

most of the compute being wasted. Ideally, we would only prompt SAM with relevant

point prompts instead of the full point grid allowing us to significantly reduce the number

of considered masks. In this section, we train the prompter module using unlabeled object

masks, as described in Section 5.3.3.

and in Section 5.4.2 comparing performance to zero-shot exps from Section 5.4.1. We

observe that when we train our lightweight prompter on all COCO masks, our performance

improves slightly as compared to the zero-shot results as our points are steered toward

COCO objects and ignore distractors, resulting in better accuracy and much faster runtime.

Across all image backbones, training the prompter with unlabeled masks improves our AP

while providing significant boosts in inference speed. Training the largest of the models,

ConvNeXt-XXL [159], takes 17 hours on 2 × NVIDIA A40 GPUs.
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Runtime
(sec/img)

COCO [153]
Backbone Model AP AP50

SCAM (zero-shot) 4.35 21.9 32.7ConvNeXt
Base SCAM 0.79 22.2 32.9

SCAM (zero-shot) 4.58 24.8 37.9ConvNeXt
Large SCAM 1.07 25.7 38.8

SCAM (zero-shot) 5.52 25.8 39.1ConvNeXt
XXLarge SCAM 1.18 26.0 39.6

Table 5.3: Training with unlabeled masks. Transferring SCAM with unlabeled masks
is beneficial for inference runtime (5× speedup). Training the prompter with unlabeled
masks from the COCO dataset results in point prompts that are specific to the domain, and
hence improves performance.
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Figure 5.5: Transferring SCAM using unlabeled masks (low data regime). We observe
the impact of training our prompter using subsets of COCO. We show that the prompter
model is robust to the amount of data due to its lightweight design. The performance drop
from 100% to 5% data is ≤ 1 AP.

Transfer in low data regime. In Figure 5.5, we report SCAM performance on COCO after

training only the prompter, using different random subsets of COCO. We now experiment

with training the prompter using unlabeled masks covering random subsets of images

from COCO [153]. Similar to the previous setup, we freeze the backbone, segmenter, and

classifier. We conduct experiments by randomly sampling 1%, 5%, 10%, and 50% of COCO

masks with 5 different random seeds per sample. Our results, shown in Figure 5.5, show

that even with as little as 5% data, our prompter is competitive with a model trained with

the entire COCO dataset.

79



0 10 20 30 40 50
0

10

20

30

40

50

31.1
35.737.7 39.1 40.7

5.9

23.4

29.6
34.1

36.7
24.8

COCO Mask AP (frozen ConvNeXt-L backbone)

SCAM (ours)
Mask R-CNN
SCAM (0-shot)

COCO images (%)

Figure 5.6: Transferring SCAM using labeled masks. When trained with the same back-
bone, SCAM outperforms Mask R-CNN, with more prominent gains in a low-data regime.

5.4.3 Transfer with Labeled Masks

Having shown results with unlabeled masks, we now aim to train SCAM with labeled

masks. We train using the train2017 split and report Average Precision (APmask) on the

val2017 split. To evaluate the data efficiency of SCAM, we also train using randomly

sampled subsets of {1, 5, 10, 20, 50}% COCO train2017 split.

In the spirit of using minimal computational resources, we keep the backbone and

segmenter completely frozen and adopt a lightweight training schedule. We train for ≈16

COCO epochs 2. We only training the lightweight prompter and fine-tuning the classifier.

These design choices make our setup accessible to a broad (academic) community – our

models can be trained in 24 hours or less using only 2× A40 GPUs.

Baseline. We compare SCAM against Mask R-CNN [92], the standard region-based ob-

ject detector in the existing literature. We train a Mask R-CNN with the same backbone

as SAM and follow the same data restrictions. We ensure fair comparisons with our base-

line by using the CLIP ConvNeXt-L as a frozen backbone, like in SCAM. We train Mask

R-CNN for 2× longer as it is not equipped with pre-trained segmentation components,

although we find that even longer schedules tend to overfit. We tune the optimization

hyper-parameters for the Mask R-CNN baseline and use them for SCAM; see Appendix C

for details.
215K iterations, batch size = 64 for full COCO, iterations are scaled according to data subset size
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Results. We present the performance of all methods at different amounts of data in Fig-

ure 5.6. We find that using CLIP with SAM in SCAM shows substantial gains as compared

to using CLIP as a backbone in Mask R-CNN, especially when the training data is scarce.

We also find that reverting to our zero-shot setup is sometimes beneficial if the amount of

data is too scarce or there is no compute budget to train models on domain-specific data.

5.5 Conclusion

We show that SCAM can effectively consolidate the independent research efforts that build

large-scale models for general image classification and image segmentation (but not both).

Our extensive experiments on zero-shot transfer, followed by the adaptation of SCAM to

unlabeled mask data show the flexibility of our design. Furthermore, in settings with

scarce labeled mask data, we show that our architecture can outperform the current state-

of-the-art architectures under tight resource constraints.
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Chapter 6

Conclusion

In this dissertation, we explored the possibilities and potential advantages of using natural

language supervision for computer vision. The research presented in the previous four

chapters has offered compelling solutions for the four problems we initially laid out:

1. Learning representations: Using language supervision, VirTex (Chapter 2) provides a

strong alternative to the deeply entrenched approach of learning visual representations

using labeled image datasets like ImageNet.

2. Scaling data: We scale up VirTex models using RedCaps (Chapter 3), our web-curated

dataset comprising 12 million image-text pairs, and show strong transfer results on

downstream tasks involving image classification and image captioning.

3. Understanding data: Our representation learning method, MERU (Chapter 4), learns

a visual-semantic hierarchy from image-text datasets like RedCaps, offering greater in-

sight into the diversity of concepts underlying millions of images and text.

4. Transfer to downstream tasks: Our modular design of SCAM (Chapter 5) allows

transferring pre-trained vision models for object detection and segmentation with min-

imal or no fine-tuning, offering practical benefits in data-starved settings.

Concurrent and follow-up studies

The idea of language-supervised visual representation learning has flourished in the past

years, concurrent with this dissertation. ICMLM [23] was published concurrent to Vir-

Tex, which utilized language supervision for vision pre-training based on the masked lan-

guage modeling objective [53]. These works were soon followed up by CLIP [198] and

ALIGN [114], that scaled up learning to millions of image-text pairs and showed remark-

able zero-shot transfer capabilities to image classification and retrieval tasks. An appealing

property of these models was their ability to perform classification and retrieval based on

user-provided text prompts, unlike prior ImageNet-supervised models that were restricted

to the pre-defined label ontologies.
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These methods use a contrastive learning objective, different from the generative objec-

tive of VirTex (image captioning), showcasing easier scalability with noisy image-text data.

Subsequent studies like BLIP [146] and CoCa [272] combine generative and contrastive

learning objectives to train vision-language models. Surprisingly, CapPa [242] shows that

VirTex-style image captioning models also scale effectively at billion-scale data while using

modern Vision Transformers [60] as image encoders.

Since its release, the research community has used our RedCaps dataset for a myriad of

applications like text-to-image generation (Make-a-Scene [73], StyleGAN-T [209]), text-

guided semantic segmentation (GroupViT [263]), self-supervised learning (LG-SSL [64]),

and building general-purpose multimodal models (Unified-IO [165]). Follow-up works

after RedCaps have developed orders of magnitude larger datasets, notably the LAION

datasets (400 million and 2 billion sets [210, 211]) and DataComp [72]. Apart from

having image-text pairs, datasets like MMC4 [290] and OBELISC [136] are structured as

long-form documents with interleaved images and text.

While image-text data is abundant on the internet, ensuring high quality remains an

uphill climb given the noisy and unstructured nature of the internet data. Also, the cura-

tion of internet data would always involve navigating the tricky waters of copyright and

potential ethical risks regarding consent, the occurrence of personally identifiable infor-

mation, and undesirable biases like imbalance representation of demographic groups [19].

For example, the LAION datasets have disabled public access as of January 2024 after the

discovery of child abuse images [235].

Looking forward: Opportunities and challenges

In future research, the exploration into multimodal representation learning and model de-

velopment will only continue to expand, to other modalities beyond language, e.g., audio

and haptics (that allow actions). This dissertation is one step in this overarching direction,

underscoring the transformative potential of vision-language learning for computer vision.

The field is witnessing rapid adoption into real-world applications. Industry products

for multimodal Generative AI such as GPT-4V [184] and Gemini [234] are reaching millions

of daily users worldwide. These technologies offer tantalizing previews of what is possi-

ble and the remarkable advancements that seemed almost utopian before 2021. While

these systems have room for improvements in terms of robustness, alignment, and inter-

pretability, the strides made so far are inspiring. They signal that we are on the cusp of

unprecedented advancements. Indeed, the best is yet to come.
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Appendix A

Web-curated Image-Text Data from Reddit

A.1 List of subreddits in RedCaps

RedCaps comprises data from 350 subreddits (see Section 3.2.1). All subreddits are listed

below alphabetically with the number of instances in each subreddit.

r/abandoned 7.0K r/abandonedporn 56.2K r/absoluteunits 33.9K
r/airplants 8.6K r/alltheanimals 1.3K r/amateurphotography 14.0K
r/amateurroomporn 11.6K r/animalporn 15.8K r/antiques 17.0K
r/antkeeping 3.0K r/ants 1.2K r/aquariums 139K
r/architectureporn 14.1K r/artefactporn 9.6K r/astronomy 2.1K
r/astrophotography 24.6K r/australiancattledog 21.4K r/australianshepherd 12.5K
r/autumnporn 2.7K r/averagebattlestations 5.6K r/awwducational 5.9K
r/awwnverts 7.6K r/axolotls 9.7K r/backpacking 8.9K
r/backyardchickens 17.3K r/baking 119K r/ballpython 19.2K
r/barista 6.6K r/bassfishing 6.5K r/battlestations 58.4K
r/bbq 22.3K r/beagle 21.4K r/beardeddragons 55.1K
r/beekeeping 1.2K r/beerandpizza 1.2K r/beerporn 95.7K
r/beerwithaview 8.9K r/beginnerwoodworking 8.7K r/bengalcats 7.0K
r/bento 4.8K r/bernesemountaindogs 6.4K r/berries 805
r/bettafish 64.7K r/bicycling 80.8K r/bikecommuting 9.8K
r/birding 21.1K r/birdphotography 1.3K r/birdpics 29.1K
r/birds 1.2K r/birdsofprey 2.2K r/blackcats 84.1K
r/blacksmith 13.3K r/bladesmith 9.1K r/boatporn 2.8K
r/bonsai 18.1K r/bookporn 4.5K r/bookshelf 6.2K
r/bordercollie 21.9K r/bostonterrier 28.2K r/botanicalporn 13.4K
r/breadit 71.6K r/breakfast 2.2K r/breakfastfood 3.8K
r/bridgeporn 2.4K r/brochet 3.2K r/budgetfood 1.6K
r/budgies 1.3K r/bulldogs 24.1K r/burgers 10.7K
r/butterflies 4.5K r/cabinporn 2.7K r/cactus 36.5K
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r/cakedecorating 14.0K r/cakewin 4.8K r/cameras 3.3K
r/camping 21.4K r/campingandhiking 25.5K r/carnivorousplants 1.3K
r/carpentry 4.1K r/carporn 102K r/cassetteculture 12.2K
r/castiron 33.6K r/castles 7.0K r/casualknitting 3.1K
r/catpictures 51.9K r/cats 643K r/ceramics 4.8K
r/chameleons 7.9K r/charcuterie 3.0K r/cheese 5.0K
r/cheesemaking 1.7K r/chefit 1.6K r/chefknives 8.7K
r/chickens 9.6K r/chihuahua 36.2K r/chinchilla 5.6K
r/chinesefood 1.8K r/churchporn 2.1K r/cider 2.4K
r/cityporn 56.9K r/classiccars 14.4K r/cockatiel 12.1K
r/cocktails 25.0K r/coffeestations 1.5K r/coins 45.0K
r/cookiedecorating 3.7K r/corgi 64.7K r/cornsnakes 3.4K
r/cozyplaces 44.9K r/crafts 44.0K r/crestedgecko 5.2K
r/crochet 125K r/crossstitch 63.6K r/crows 1.1K
r/crystals 24.0K r/cupcakes 2.3K r/dachshund 47.0K
r/damnthatsinteresting 28.4K r/desertporn 1.2K r/designmyroom 6.3K
r/desksetup 1.1K r/dessert 3.2K r/dessertporn 9.5K
r/diy 19.4K r/dobermanpinscher 8.1K r/doggos 18.6K
r/dogpictures 120K r/drunkencookery 5.9K r/duck 4.7K
r/dumpsterdiving 4.4K r/earthporn 262K r/eatsandwiches 20.5K
r/embroidery 38.5K r/entomology 6.9K r/equestrian 5.2K
r/espresso 8.5K r/exposureporn 10.2K r/eyebleach 80.9K
r/f1porn 12.9K r/farming 4.7K r/femalelivingspace 947
r/fermentation 10.6K r/ferrets 26.2K r/fireporn 1.7K
r/fish 2.9K r/fishing 51.0K r/flowers 20.8K
r/flyfishing 19.1K r/food 393K r/foodporn 202K
r/foraging 9.5K r/fossilporn 1.7K r/fountainpens 52.8K
r/foxes 7.7K r/frenchbulldogs 12.2K r/frogs 14.8K
r/gardening 208K r/gardenwild 1.0K r/geckos 5.9K
r/gemstones 1.5K r/geologyporn 1.9K r/germanshepherds 46.0K
r/glutenfree 2.9K r/gold 1.3K r/goldenretrievers 42.4K
r/goldfish 3.9K r/greatpyrenees 8.8K r/grilledcheese 13.4K
r/grilling 12.6K r/guineapigs 56.8K r/gunporn 17.5K
r/guns 99.1K r/hamsters 26.9K r/handtools 3.2K
r/healthyfood 8.2K r/hedgehog 1.7K r/helicopters 3.2K
r/herpetology 9.7K r/hiking 41.6K r/homestead 9.3K
r/horses 16.3K r/hotpeppers 27.8K r/houseplants 182K
r/houseporn 2.8K r/husky 35.9K r/icecreamery 1.1K
r/indoorgarden 29.0K r/infrastructureporn 7.0K r/insects 20.4K
r/instantpot 2.8K r/interestingasfuck 73.7K r/interiordesign 6.7K
r/itookapicture 327K r/jellyfish 713 r/jewelry 3.5K
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r/kayakfishing 4.8K r/kayaking 9.9K r/ketorecipes 22.3K
r/knifeporn 2.5K r/knives 63.9K r/labrador 25.1K
r/leathercraft 16.0K r/leopardgeckos 9.0K r/lizards 2.4K
r/lookatmydog 43.2K r/macarons 5.3K r/machineporn 6.2K
r/macroporn 14.8K r/malelivingspace 17.1K r/mead 12.4K
r/mealprepsunday 33.1K r/mechanicalkeyboards 156K r/mechanicalpencils 5.3K
r/melts 1.2K r/metalworking 3.8K r/microgreens 1.1K
r/microporn 1.8K r/mildlyinteresting 731K r/mineralporn 10.4K
r/monitors 2.2K r/monstera 6.9K r/mostbeautiful 25.5K
r/motorcycleporn 6.4K r/muglife 4.1K r/mushroomgrowers 13.4K
r/mushroomporn 4.7K r/mushrooms 5.6K r/mycology 83.6K
r/natureisfuckinglit 61.3K r/natureporn 10.1K r/nebelung 4.6K
r/orchids 26.4K r/otters 2.6K r/outdoors 30.2K
r/owls 3.6K r/parrots 38.0K r/pelletgrills 4.5K
r/pens 5.0K r/perfectfit 19.7K r/permaculture 1.3K
r/photocritique 51.5K r/photographs 11.5K r/pics 1.9M
r/pitbulls 88.5K r/pizza 46.5K r/plantbaseddiet 3.7K
r/plantedtank 44.4K r/plants 42.9K r/plantsandpots 3.0K
r/pomeranians 7.4K r/pottery 9.6K r/pourpainting 15.3K
r/proplifting 17.8K r/pug 5.1K r/pugs 40.2K
r/quilting 24.1K r/rabbits 105K r/ramen 10.9K
r/rarepuppers 150K r/reeftank 29.5K r/reptiles 33.1K
r/resincasting 3.7K r/roomporn 13.9K r/roses 3.2K
r/rottweiler 11.5K r/ruralporn 9.0K r/sailing 10.5K
r/salsasnobs 2.9K r/samoyeds 6.8K r/savagegarden 14.9K
r/scotch 32.1K r/seaporn 2.2K r/seriouseats 8.8K
r/sewing 29.7K r/sharks 3.0K r/shiba 27.8K
r/shihtzu 8.9K r/shrimptank 14.7K r/siamesecats 9.6K
r/siberiancats 2.7K r/silverbugs 26.1K r/skyporn 36.1K
r/sloths 5.9K r/smoking 38.3K r/snails 6.9K
r/snakes 45.4K r/sneakers 314K r/sneks 17.4K
r/somethingimade 50.4K r/soup 1.5K r/sourdough 32.2K
r/sousvide 13.6K r/spaceporn 16.3K r/spicy 12.4K
r/spiderbro 16.1K r/spiders 41.9K r/squirrels 8.1K
r/steak 19.8K r/streetphotography 10.1K r/succulents 201K
r/superbowl 7.5K r/supermodelcats 33.6K r/sushi 13.4K
r/tacos 2.7K r/tarantulas 15.0K r/tastyfood 2.3K
r/tea 20.5K r/teaporn 1.2K r/tequila 2.9K
r/terrariums 7.3K r/thedepthsbelow 2.5K r/thriftstorehauls 91.4K
r/tinyanimalsonfingers 3.1K r/tonightsdinner 25.7K r/toolporn 2.1K
r/tools 21.7K r/torties 11.0K r/tortoise 5.6K
r/tractors 2.3K r/trailrunning 7.3K r/trains 14.2K
r/trucks 30.4K r/turtle 9.1K r/underwaterphotography 1.2K
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https://www.reddit.com/r/tinyanimalsonfingers
https://www.reddit.com/r/tonightsdinner
https://www.reddit.com/r/toolporn
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https://www.reddit.com/r/torties
https://www.reddit.com/r/tortoise
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https://www.reddit.com/r/trains
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r/upcycling 1.9K r/urbanexploration 18.8K r/urbanhell 8.1K
r/veganfoodporn 18.7K r/veganrecipes 9.9K r/vegetablegardening 12.1K
r/vegetarian 9.8K r/villageporn 6.4K r/vintage 4.4K
r/vintageaudio 12.7K r/vinyl 41.7K r/volumeeating 2.1K
r/watches 64.2K r/waterporn 9.6K r/weatherporn 1.8K
r/wewantplates 17.0K r/wildernessbackpacking 3.1K r/wildlifephotography 16.3K
r/wine 12.7K r/winterporn 7.0K r/woodcarving 6.3K
r/woodworking 112K r/workbenches 2.8K r/workspaces 1.5K
r/yarnaddicts 2.6K r/zerowaste 7.7K

A.2 Datasheet for RedCaps dataset

Datasheets for datasets introduced by Gebru et al. [76] serve as a medium of communica-

tion between the creators and consumers (users) of a dataset. They effectively consolidate

the motivation, creation process, composition, and intended uses of a dataset as a series

of questions and answers. This appendix chapter provides a datasheet for the RedCaps

dataset. It accompanies version v1.0 released in October 2021 with our accepted paper at

the NeurIPS 2021 Track on Datasets and Benchmarks [51]. In this section:

– All mentions of RedCaps and all reported data statistics refer to RedCaps v1.0

– All mentions of dataset website refer to redcaps.xyz

– All mentions of data collection code refer to the redcaps-downloader repository available

at github.com/redcaps-dataset/redcaps-downloader

Motivation

Q1. For what purpose was the dataset created? Was there a specific task in mind? Was
there a specific gap that needed to be filled? Please provide a description.

– Large datasets of image-text pairs are widely used for pre-training generic rep-

resentations that transfer to a variety of downstream vision and vision-language

tasks. Existing public datasets of this kind were curated from search engine results

(SBU Captions [185]) or HTML alt-text from arbitrary web pages (Conceptual Cap-

tions [30, 215]). They performed complex data filtering to deal with noisy web data.

Due to aggressive filtering, their data collection is inefficient and diversity is artifi-

cially supressed. We argue that the quality of data depends on its source, and the

human intent behind its creation. To this end, we explore Reddit as a potential source

for curating high-quality data. We introduce RedCaps – a large dataset of 12M image-

text pairs from Reddit. While we expect the use-cases of RedCaps to be similar to
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existing datasets, we discuss how Reddit as a data source leads to fast and lightweight

collection, better data quality, lets us easily steer the data distribution, and facilitates

ethically responsible data curation.

Q2. Who created this dataset (e.g., which team, research group) and on behalf of

which entity (e.g., company, institution, organization)?

– Four researchers at the University of Michigan (affiliated as of 2021) have created

RedCaps: Karan Desai, Gaurav Kaul, Zubin Aysola, and Justin Johnson.

Q3. Who funded the creation of the dataset? If there is an associated grant, please provide
the name of the grantor and the grant name and number.

– We collected RedCaps without any monetary costs since no part of our dataset

requires annotations from crowd workers or contractors. This research work was

partially supported by the Toyota Research Institute (TRI). However, note that this

article solely reflects the opinions and conclusions of its authors and not TRI or any

other Toyota entity.

Q4. Any other comments?

– No.

Composition

Q5. What do the instances that comprise the dataset represent (e.g., documents,

photos, people, countries)? Are there multiple types of instances (e.g., movies, users,
and ratings; people and interactions between them; nodes and edges)?

– Each instance in RedCaps represents a single Reddit image post.

Q6. How many instances are there in total (of each type, if appropriate)?

– There are nearly 12M (12,011,111) instances in RedCaps.

Q7. Does the dataset contain all possible instances or is it a sample (not necessarily

random) of instances from a larger set? If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If
so, please describe how this representativeness was validated/verified. If it is not repre-
sentative of the larger set, please describe why not (e.g., to cover a more diverse range of
instances, because instances were withheld or unavailable).

– RedCaps is a small sample drawn from all the data uploaded to Reddit. Millions

of Reddit users submit image posts across thousands of subreddits on a daily basis.

We hand-picked 350 subreddits containing high-quality photographs with descriptive
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captions, while leaving out lots of subreddits focused on many other topics like pol-

itics, religion, science, and memes. Even within the selected subreddits, we filtered

instances to improve data quality and mitigate privacy risks for people appearing in

images. Hence, RedCaps data does not fully represent Reddit.

Q8. What data does each instance consist of? “Raw” data (e.g., unprocessed text or

images) or features? In either case, please provide a description.

– Each instance in RedCaps consists of nine metadata fields:

• "image id": Unique alphanumeric ID of the image post (assigned by Reddit).

• "author": Reddit username of the image post author.

• "url": Static URL for downloading the image associated with the post.

• "raw caption": Textual description of the image, written by the post author.

• "caption": Cleaned version of "raw caption" by us (see Q35).

• "subreddit": Name of subreddit where the post was submitted.

• "score": Net upvotes (discounting downvotes) received by the image post.

• "created utc": Integer time epoch (in UTC) when the post was submitted to

Reddit.

• "permalink": Partial URL of the Reddit post (reddit.com/<permalink>).

Q9. Is there a label or target associated with each instance?

– No, we do not define any label or target for the instances. Targets are task-

dependent. RedCaps can be used for a variety of tasks such as image captioning

(inputs = images, targets = captions), image classification (inputs = images, targets
= subreddits), text-to-image generation (inputs = captions, targets = images), or self-

supervised visual learning (inputs = images, no targets).

Q10. Is any information missing from individual instances? If so, please provide a de-
scription, explaining why this information is missing. This does not include intentionally
removed information but might include, e.g., redacted text.

– No, and yes. No, because all the metadata fields for every instance are filled

with valid values. Yes, because the "url" for some instances may not retrieve the

underlying image. This may happen if the Reddit user (author) removes the post from

Reddit. Such deletions reduce our dataset size over time, however, post deletions are

very rare after six months of creation.

Q11. Are relationships between individual instances made explicit (e.g., users’ movie

ratings, social network links)? If so, please describe how they are made explicit.

– Some implicit relationships do exist in our data. All instances belonging to the

same subreddit are likely to have highly related visual and textual content. Moreover,
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multiple images posted by a single Reddit user may be highly related (photos of their

pets, cars, etc.).

Q12. Are there recommended data splits (e.g., training, development/validation,

testing)? If so, please provide a description of these splits, explaining the rationale
behind them.

– We intend our dataset to be primarily used for pre-training with one or more specific

downstream task(s) in mind. Hence, all instances in our dataset would be used for

training while the validation split is derived from the downstream task(s). If users

require a validation split, we recommend sampling it such that it follows the same

subreddit distribution as entire dataset.

Q13. Are there any errors, sources of noise, or redundancies in the dataset?

– RedCaps is noisy by design since image-text pairs on the internet are noisy and

unstructured. Some instances may also have duplicate images and captions – Reddit

users may have shared the same image post in multiple subreddits. Such redundancies

constitute a very small fraction of the dataset and should have almost no effect in

training large-scale models.

Q14. Is the dataset self-contained, or does it link to or otherwise rely on external

resources (e.g., websites, tweets, other datasets)? If it links to or relies on external
resources, then –
(a) Are there guarantees that they will exist, and remain constant, over time?
(b) Are there official archival versions of the complete dataset (i.e., including the external

resources as they existed at the time the dataset was created)?
(c) Are there any restrictions (e.g., licenses, fees) associated with any of the external re-

sources that might apply to a future user? Please provide descriptions of all external
resources and any restrictions associated with them, as well as links or other access
points, as appropriate.

– We do not distribute images of our dataset to respect Reddit user privacy and to

limit our storage budget. Instead, we provide image URLs (‘‘url’’, Q8) that point

to images hosted on either Reddit, Imgur, or Flickr image servers. In response to

sub-questions:

(a) These image servers ensure stable access unless the Reddit user deletes their

image post.

(b) Yes, Reddit archives all the metadata of submitted posts. For images, Reddit only

archives the URL and not the media content, giving full control of accessibility to

the users.
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(c) All image URLs are freely accessible. It is unlikely for the image servers to restrict

access in the future, given their free accessibility over the past decade.

Q15. Does the dataset contain data that might be considered confidential (e.g., data

that is protected by legal privilege or by doctor-patient confidentiality, data that

includes the content of individuals non-public communications)?

– No, the subreddits included in RedCaps do not cover topics that may be considered

confidential. All posts were publicly shared on Reddit prior to inclusion in RedCaps.

Q16. Does the dataset contain data that, if viewed directly, might be offensive, in-

sulting, threatening, or might otherwise cause anxiety?

– The scale of RedCaps means that we are unable to verify the contents of all im-

ages and captions. However, we have tried to minimize the possibility that RedCaps

contains data that might be offensive, insulting, threatening, or might cause anxiety.

Refer Section 3.2.2 for details, our mitigations are are follows:

(a) We manually curate the set of subreddits from which to collect data; we only

chose subreddits that are not marked NSFW and which generally contain non-

offensive content.

(b) Within our curated subreddits, we did not include any posts marked NSFW.

(c) We removed all instances whose captions contained any of the 400 potentially

offensive words or phrases1.

(d) We remove all instances whose images were flagged NSFW by an off-the-shelf

detector. We manually checked 50K random images in RedCaps and found one

image containing nudity (exposed buttocks; no identifiable face).

Q17. Does the dataset relate to people?

– The dataset pertains to people in that people wrote the captions and posted images

to Reddit that we curate in RedCaps. We made specific design choices while curating

RedCaps to avoid large quantities of images containing people (refer Section 3.2.2):

(a) We collect data from manually curated subreddits in which most contain pri-

marily pertains to animals, objects, places, or activities. We exclude all subred-

dits whose primary purpose is to share and describe images of people (such as

celebrity photos or user selfies).

(b) We use an off-the-shelf face detector to find and remove images with potential

presence of human faces. We manually checked 50K random images in RedCaps

(Q16) and found 79 images with identifiable human faces – the entire dataset

may have ≈19K (0.15%) images with identifiable people.
1github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
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Q18. Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please
describe how these subpopulations are identified and provide a description of their re-
spective distributions within the dataset.

– RedCaps does not explicitly identify any subpopulations. Since some images con-

tain people and captions are free-form natural language written by Reddit users, it

is possible that some captions may identify people appearing in individual images as

part of a subpopulation.

Q19. Is it possible to identify one or more natural persons, either directly or indi-

rectly (i.e., in combination with other data) from the dataset?

– Yes, all instances in RedCaps include Reddit usernames of their post authors. This

could be used to look up the Reddit user profile, and some Reddit users may have iden-

tifying information in their profiles. Some images may contain human faces (Q17)

which could be identified by appearance. However, note that all this information is

already public on Reddit, and searching it in RedCaps is no easier than searching

directly on Reddit.

Q20. Does the dataset contain data that might be considered sensitive in any way

(e.g., data that reveals racial or ethnic origins, sexual orientations, religious

beliefs, political opinions or union memberships, or locations; financial or health

data; biometric or genetic data; forms of government identification, such as

social security numbers; criminal history)?

– Highly unlikely, data from our manually selected subreddits does not contain sen-

sitive information of the above forms. In case some instances have such information,

then note that all this information is already publicly available on Reddit.

Q21. Any other comments?

– No.

Collection Process

Q22. How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.

– We collected instance IDs using Pushshift API (pushshift.io) and the remaining

metadata fields (Q8) using the Reddit API (reddit.com/wiki/api). All fields except
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"caption" are available in API responses; "caption" is derived by applying text pre-

processing to "raw caption" field (Q35).

Q23. What mechanisms or procedures were used to collect the data (e.g., hardware

apparatus or sensor, manual human curation, software program, software API)?

How were these mechanisms or procedures validated?

– We collected all data using resources at the University of Michigan. The code

for querying APIs and filtering data is implemented in Python. We validated our

implementation by manually checking a few RedCaps instances with their posts on

reddit.com.

Q24. If the dataset is a sample from a larger set, what was the sampling strategy?

– RedCaps is a small sample containing data from 350 subreddits out of thousands

of subreddits on Reddit. We hand-picked each subreddit for our dataset based on its

content. See Q7, Q16, and Q17 for details on how we selected each subreddit.

Q25. Who was involved in data collection process (e.g., students, crowd-workers,

contractors) and how were they compensated (e.g., how much were crowd-

workers paid)?

– Our data collection pipeline is fully automatic and does not require any human

annotators. Reddit users have uploaded image posts whose metadata is a part of

RedCaps – we did not directly interact with these users.

Q26. Over what timeframe was the data collected? Does this timeframe match the

creation timeframe of the data associated with the instances (e.g., recent crawl

of old news articles)? If not, please provide a description of the timeframe.

– RedCaps contains image posts that were uploaded to Reddit between 2008–2020.

We collected all data in early 2021, which we used to conduct experiments for our

NeurIPS 2021 submission. Since Reddit posts may get deleted over time, we exactly

re-collected a fresh version in August 2021 after acceptance (and re-trained all our

experiments). Reddit posts observe the most user activity (upvotes, comments, mod-

eration) for six months after their creation – posts from 2008–2020 are less likely to

be updated after August 2021.

Q27. Were any ethical review processes conducted (e.g., by an institutional review

board)? If so, please provide a description of these review processes, including the out-
comes, as well as a link or other access point to any supporting documentation.

– We did not conduct a formal ethical review process via institutional review boards.

However, as described in Section 3.2.2 and Q16 we employed several filtering mech-
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anisms to try and remove instances that could be problematic.

Q28. Does the dataset relate to people?

– Some images of RedCaps may contain images of people (see Q17).

Q29. Did you collect the data from the individuals in question directly, or obtain it

via third parties or other sources (e.g., websites)?

– We collected data submitted by Reddit users indirectly through the Reddit API.

However, users agree with Reddit’s User Agreement regarding redistribution of their

data by Reddit.

Q30. Were the individuals in question notified about the data collection? If so, please
describe (or show with screenshots or other information) how notice was provided, and
provide a link or other access point to, or otherwise reproduce, the exact language of the
notification itself.

– No. Reddit users are anonymous by default and are not required to share their

personal contact information (email, phone numbers, etc.). Hence, the only way to

notify the authors of RedCaps image posts is by sending them private messages on

Reddit. This is practically difficult to do manually and will be classified as spam and

blocked by Reddit if attempted to programmatically send a templated message to

millions of users.

Q31. Did the individuals in question consent to the collection and use of their data?

If so, please describe (or show with screenshots or other information) how consent was re-
quested and provided, and provide a link or other access point to, or otherwise reproduce,
the exact language to which the individuals consented.

– Users did not explicitly consent to the use of their data in our dataset. However,

by uploading their data on Reddit, they consent that it would appear on the Reddit

platform and will be accessible via the official Reddit API (which we use to collect

RedCaps).

Q32. If consent was obtained, were the consenting individuals provided with a mech-

anism to revoke their consent in the future or for certain uses? If so, please provide
a description, as well as a link or other access point to the mechanism (if appropriate).

– Users have full control over the presence of their data in our dataset. If users

wish to revoke their consent, they can delete the underlying Reddit post – it will be

automatically removed from RedCaps since we distributed images as URLs. Moreover,

we provide an opt-out request form on our dataset website for anybody to request

removal of an individual instance if it is potentially harmful (e.g. NSFW, violates
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privacy, harmful stereotypes, etc.).

Q33. Has an analysis of the potential impact of the dataset and its use on data sub-

jects (e.g., a data protection impact analysis) been conducted? If so, please provide
a description of this analysis, including the outcomes, as well as a link or other access
point to any supporting documentation.

– No.

Q34. Any other comments?

– No.

Preprocessing, Cleaning, and/or Labeling

Q35. Was any preprocessing/cleaning/labeling of the data done (e.g., discretization

or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, re-

moval of instances, processing of missing values)? If so, please provide a descrip-
tion. If not, you may skip the remainder of the questions in this section.

– We filtered all image posts with< 2 net upvotes, and those marked NSFW on Reddit.

We remove character accents, emojis, non-latin characters, sub-strings enclosed in

brackets ((.*), [.*]), and replace social media handles (words starting with ‘@’) with

a special [USR] token. Refer Section 3.2.1 for main details. We also remove additional

instances with focus on ethical considerations, see Q16, Q17 for more details.

Q36. Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data

(e.g., to support unanticipated future uses)? If so, please provide a link or other
access point to the “raw” data.

– We provide the unprocessed captions obtained as-is from Reddit as part of our

annotations (see "raw caption" in Q8). However, we entirely discard all instances

that were filtered with ethical considerations – based on the presence of faces, NSFW

content, or harmful language.

Q37. Is the software used to preprocess/clean/label the instances available? If so,
please provide a link or other access point.

– Yes, the data collection code is open-sourced; accessible from the dataset website.

Q38. Any other comments?

– No.
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Uses

Q39. Has the dataset been used for any tasks already?

– We have used our dataset to train neural networks that perform image captioning,

and that learn transferable visual representations for a variety of downstream visual

recognition tasks (image classification, object detection, instance segmentation).

Q40. Is there a repository that links to any or all papers or systems that use the

dataset? If so, please provide a link or other access point.

– We do not maintain such a repository. However, citation trackers like Google Scholar

and Semantic Scholar would list all future works that cite our dataset.

Q41. What (other) tasks could the dataset be used for?

– We anticipate that the dataset could be used for a variety of vision-language tasks,

such as image or text retrieval or text-to-image synthesis.

Q42. Is there anything about the composition of the dataset or the way it was col-

lected and preprocessed/cleaned/labeled that might impact future uses? For ex-
ample, is there anything that a future user might need to know to avoid uses that could
result in unfair treatment of individuals or groups (e.g., stereotyping, quality of service
issues) or other undesirable harms (e.g., financial harms, legal risks) Is there anything a
future user could do to mitigate these undesirable harms?

– This is very difficult to anticipate. Future users of our dataset should be aware

of Reddit’s user demographics which might subtly influence the types of images, lan-

guages, and ideas that are present in the dataset (refer Section 3.2.2). Moreover,

users should be aware that our dataset intentionally excludes data from subreddits

whose primary purpose is to share images that depict or describe people.

Q43. Are there any tasks for which the dataset should not be used?

– Broadly speaking, our dataset should only be used for non-commercial academic

research. Our dataset should not be used for any tasks that involve identifying features

related to people (facial recognition, gender, age, ethnicity identification, etc.) or

make decisions that impact people (mortgages, job applications, criminal sentences;

or moderation decisions about user-uploaded data that could result in bans from a

website). Any commercial and for-profit uses of our dataset are restricted – it should

not be used to train models that will be deployed in production systems as part of a

product offered by businesses or government agencies.

Q44. Any other comments?
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– No.

Distribution

Q45. Will the dataset be distributed to third parties outside of the entity (e.g., com-

pany, institution) on behalf of which the dataset was created?

– Yes, our dataset will be publicly available.

Q46. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)

Does the dataset have a digital object identifier (DOI)?

– We distribute our dataset as a ZIP file containing all the annotations (JSON files).

Users will have to download the images by themselves by using our data collection

code. All uses of RedCaps should cite the NeurIPS 2021 paper as the reference.

Q47. When will the dataset be distributed?

– The dataset will be publicly available starting from October 2021.

Q48. Will the dataset be distributed under a copyright or other intellectual property

(IP) license, and/or under applicable terms of use (ToU)? If so, please describe this
license/ToU, and provide a link or other access point to, or otherwise reproduce, any
relevant licensing terms or ToU, as well as any fees associated with these restrictions.

– Uses of our dataset are subject to Reddit API terms (reddit.com/wiki/api-terms).

Additionally users must comply with Reddit User Agreement, Content Policy, and Pri-

vacy Policy – all accessible at redditinc.com/policies. The data collection code is

released with an MIT license.

Q49. Have any third parties imposed IP-based or other restrictions on the data asso-

ciated with the instances? If so, please describe these restrictions, and provide a link
or other access point to, or otherwise reproduce, any relevant licensing terms, as well as
any fees associated with these restrictions.

– The images corresponding to our instances are legally owned by Reddit users. Our

dataset users can download them from the URLs we provide in annotation files, but

redistributing images for commercial use is prohibited.

Q50. Do any export controls or other regulatory restrictions apply to the dataset or

to individual instances? If so, please describe these restrictions, and provide a link or
other access point to, or otherwise reproduce, any supporting documentation.

– No.
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Q51. Any other comments?

– No.

Maintenance

Q52. Who will be supporting/hosting/maintaining the dataset?

– The dataset is hosted using Dropbox service provided by the University of Michigan.

All the information about the dataset, including links to the paper, code, and future

announcements will be accessible at the dataset website (redcaps.xyz).

Q53. How can the owner/curator/manager of the dataset be contacted?

– The contact emails of authors is available on the dataset website.

Q54. Is there an erratum? If so, please provide a link or other access point.

– There is no erratum for our initial release. We will version all errata as future

releases (Q55) and document them on the dataset website.

Q55. Will the dataset be updated (e.g., to correct labeling errors, add new instances,

delete instances)? If so, please describe how often, by whom, and how updates will be
communicated to users (e.g., mailing list, GitHub)?

– We will update our dataset once every year and announce it on the dataset web-

site. These future versions would include new instances corresponding to image posts

made in 2021 and beyond, would remove instances that were requested to be re-

moved via the opt out form (Q32).

Q56. If the dataset relates to people, are there applicable limits on the retention of

the data associated with the instances (e.g., were individuals in question told

that their data would be retained for a fixed period of time and then deleted)? If
so, please describe these limits and explain how they will be enforced.

– Some images in RedCaps may depict people (Q17). Rather than directly distributing

images, we distribute URLs that point to the original images uploaded by Reddit users.

This means that users retain full control of their data – any post deleted from Reddit

will be automatically removed from RedCaps (see also Q10, Q14, Q31).

Q57. Will older versions of the dataset continue to be supported/hosted/maintained?

If so, please describe how. If not, please describe how its obsolescence will be communi-
cated to users.

– A new version release of RedCaps will automatically deprecate its previous version.

We will only support and maintain the latest version at all times. Deprecated versions

98

https://www.redcaps.xyz


will remain accessible on the dataset website for a few weeks, after which they will

be removed. We decided to deprecate old versions to ensure that any data that is

requested to be removed (Q32) will be no longer accessible in future versions.

Q58. If others want to extend/augment/build on/contribute to the dataset, is there

a mechanism for them to do so? Will these contributions be verified? If so, please
describe how. If not, why not? Is there a process for communicating/distributing these
contributions to other users?

– Anyone can extend RedCaps by using our data collection code (linked on the web-

site). We are open to accepting extensions via personal communication with contribu-

tors. Otherwise, our code and data licenses allow others to create independent deriva-

tive works (with proper attribution) as long as they are used for non-commercial aca-

demic research.
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Appendix B

Hyperbolic Image-Text Representations

B.1 Entailment loss derivations

We derive the entailment loss components (Eqn. 4.12) used in our approach. Note that for

c > 0, the curvature of the hyperboloid is −c.

Half-aperture. To derive the entailment loss for arbitrary curvatures c > 0, we start with

the expression of half-aperture for the Poincaré ball, introduced by Ganea et al. [74]. Let

xb be a point on the Poincaré ball, the cone half-aperture is defined as follows:

aperb(xb) = sin−1
(
K

1− c ‖xb‖2√
c ‖xb‖

)
(B.1)

The Poincaré ball model and Lorentz hyperboloid model are isometric to each other – one

can map any point xb from the Poincaré ball to another point xh on the hyperboloid using

the following differentiable transformation:

xh =
2xb

1− c ‖xb‖2
(B.2)

The half-aperture of a cone should be invariant to the exact hyperbolic model we use,

hence aperh(xh) = aperb(xb). Substituting Eqn. B.2 in Eqn. B.1, we get the expression:

aperh(xh) = sin−1
(

2K√
c ‖xh‖

)

Exterior angle. Consider three points O (the origin), x (text embedding) and y (image

embedding). Then, a hyperbolic triangle is a closed shape formed by the geodesics con-

necting each pair of points. Similar to the Euclidean plane, the hyperbolic plane also has

its law of cosines that allows us to talk about the angles in the triangle [141]. Let the
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Lorentzian distances (Eqn. 4.4) be x = d(O,y), y = d(O,x), and z = d(x,y). We can write

the expression of exterior angle as follows:

ext(x,y) = π − ∠Oxy

= π − cos−1
[
cosh(z

√
c) cosh(y

√
c)− cosh(x

√
c)

sinh(z
√
c) sinh(y

√
c)

]
We use the relation π − cos−1(t) = cos−1(−t) in the above equation. Then, let us define

a function g(t) = cosh(t
√
c) for brevity, and substitute in the above equation. We also

substitute sinh(t) =
√

cosh2(t)− 1 as per the hyperbolic trigonometric identity. Making

both substitutions in the above equation, we get:

ext(x,y) = cos−1

[
g(x)− g(z)g(y)√
g(z)2 − 1

√
g(y)2 − 1

]
(B.3)

Now all we need is to compute g(x), g(y), and g(z). Starting with g(z), we substitute the

z = d(x,y) in below:

g(z) = cosh
(
d(x,y)

√
c
)

= cosh

(
1√
c
cosh−1(−c 〈x,y〉L) ·

√
c

)
= −c 〈x,y〉L

We have g(x) = −c〈O,y〉L and g(y) = −c〈O,x〉L. The Lorentzian inner product (Eqn. 4.1)

involving origin O = [0,
√

1/c] as one of the operands has a simplified form:

〈O,x〉L = −xtime√
c

and 〈O,y〉L = −ytime√
c

We obtain g(x) = xtime
√
c and g(y) = ytime

√
c. Finally, we can substitute g(x), g(y), and

g(z) in Eqn. B.3, along with the relation between xtime and xspace (Eqn. 4.3), to give the

final expression of the exterior angle as follows:

ext(x,y) = cos−1

 ytime + xtime c 〈x,y〉L

‖xspace‖
√

(c 〈x,y〉L)2 − 1
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B.2 MERU evaluation datasets

In Section 4.4, we evaluated our trained MERU and CLIP models using twenty image clas-

sification datasets. Their details are listed in Table B.1. We use two open-source libraries to

access these datasets – tensorflow-datasets and torchvision 1. We require every dataset

to have a train, validation, and test split. We closely follow prior works of Radford et al.

[198] and Mu et al. [176] to define these splits for every dataset:

– If all three splits are defined officially, we use them without modification.

– If an official test split does not exist, we use the official validation split as test split.

– If an official validation split does not exist or it is used as a test split, then we hold out a

random subset of train split as the validation split.

Two datasets (EuroSAT and RESISC) do not define any splits, for these, we randomly

sample three non-overlapping splits. Note that CLEVR Counts is derived from CLEVR [116]

and SST2 was introduced as an NLP dataset by Socher et al. [218].

Dataset Classes Train Val Test
ImageNet [47]? 1000 – – 50000
Food-101 [21] 101 68175 7575 25250
CIFAR-10 [130] 10 45000 5000 10000
CIFAR-100 [130] 100 45000 5000 10000
CUB-2011 [251] 200 4795 1199 5794
SUN397 [259] 397 15880 3970 19849
Stanford Cars [126] 196 6515 1629 8041
FGVC Aircraft [167] 100 3334 3333 3333
DTD [41] 47 1880 1880 1880
Oxf-IIIT Pets [186] 37 2944 736 3669

Dataset Classes Train Val Test
Caltech-101 [69] 102 2448 612 6084
Flowers [181] 102 1020 1020 6149
STL-10 [43] 10 4000 1000 8000
EuroSAT [97] 10 5000 5000 5000
RESISC [39] 45 3150 3150 25200
Country211 [198] 211 31650 10550 21100
MNIST [140] 10 48000 12000 10000
CLEVR Counts [278] 8 4500 500 5000
PCAM [246] 2 262144 32768 32768
SST2 [198] 2 6920 872 1821

Table B.1: Evaluation datasets for MERU and CLIP. Datasets in highlighted rows do not
have an official validation split – we use a random held-out subset of the training split.
Underlined datasets do not define any splits; we randomly sample non-overlapping splits.
?: ImageNet is not used for linear probe evaluation so other splits are not necessary.

Zero-shot evaluation (Section 4.4.3). We report top-1 mena per-class accuracy on the

test split of every dataset. Since this evaluation does not require any additional training on

downstream data, it does not require train and validation splits. Table B.2 contains prompt

templates we used to create classifier weights for every dataset.

Linear probe evaluation (Appendix B.4). We train using train split and search for the

best hyperparameters using the validation split. Finally, we train a classifier using com-

bined train + validation splits and report top-1 mean per-class accuracy on the test split.
1tensorflow.org/datasets and pytorch.org/vision
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ImageNet (our prompts)
i took a picture : itap of a {}. pics : a bad photo of the {}. pics : a origami {}.
pics : a photo of the large {}. pics : a {} in a video game. pics : art of the {}.
pics : a photo of the small {}.

Food-101 (our prompts)
food : {}.
food porn : {}.
CIFAR-10 and CIFAR-100
a photo of a {}.
a blurry photo of a {}.
a black and white photo of a {}.
a low contrast photo of a {}.
a high contrast photo of a {}.
a bad photo of a {}.
a good photo of a {}.
a photo of a small {}.
a photo of a big {}.
a photo of the {}.
a blurry photo of the {}.
a black and white photo of the {}.
a low contrast photo of the {}.
a high contrast photo of the {}.
a bad photo of the {}.
a good photo of the {}.
a photo of the small {}.
a photo of the big {}.
CUB-2011 (our prompts)
bird pics : {}.
birding : {}.
birds : {}.
bird photography : {}.
SUN397
a photo of a {}.
a photo of the {}.
Stanford Cars
a photo of a {}.
a photo of the {}.
a photo of my {}.
i love my {}!
a photo of my dirty {}.
a photo of my clean {}.
a photo of my new {}.
a photo of my old {}.
FGVC Aircraft
a photo of a {}, a type of aircraft.

a photo of the {}, a type of
aircraft.

DTD (our prompts)
pics : {} texture.

pics : {} pattern.

pics : {} thing.

pics : this {} texture.

pics : this {} pattern.

pics : this {} thing.

Oxford-IIIT Pets
a photo of a {}, a type of pet.

Caltech-101
a photo of a {}.
a painting of a {}.
a plastic {}.
a sculpture of a {}.
a sketch of a {}.
a tattoo of a {}.
a toy {}.
a rendition of a {}.
a embroidered {}.
a cartoon {}.
a {} in a video game.

a plushie {}.
a origami {}.
art of a {}.
graffiti of a {}.
a drawing of a {}.
a doodle of a {}.
a photo of the {}.
a painting of the {}.
the plastic {}.
a sculpture of the {}.
a sketch of the {}.
a tattoo of the {}.
the toy {}.
a rendition of the {}.
the embroidered {}.
the cartoon {}.
the {} in a video game.

the plushie {}.
the origami {}.
art of the {}.
graffiti of the {}.
a drawing of the {}.
a doodle of the {}.

Oxford Flowers (our prompts)
flowers : {}.
STL10
a photo of a {}.
a photo of the {}.
EuroSAT
a centered satellite photo of {}.
a centered satellite photo of a {}.
a centered satellite photo of the
{}.
RESISC
satellite imagery of {}.
aerial imagery of {}.
satellite photo of {}.
aerial photo of {}.
satellite view of {}.
aerial view of {}.
satellite imagery of a {}.
aerial imagery of a {}.
satellite photo of a {}.
aerial photo of a {}.
satellite view of a {}.
aerial view of a {}.
satellite imagery of the {}.
aerial imagery of the {}.
satellite photo of the {}.
aerial photo of the {}.
satellite view of the {}.
aerial view of the {}.
Country211
a photo i took in {}.
a photo i took while visiting {}.
a photo from my home country of {}.
a photo from my visit to {}.
a photo showing the country of {}.
MNIST
a photo of the number: "{}".
CLEVR
a photo of {} objects.

Patch Camelyon
this is a photo of {}.
Rendered SST2
a {} review of a movie.

Table B.2: Prompts used for zero-shot image classification. Most prompts are similar to
Radford et al. [198] except for a few datasets on which we observed significant improve-
ments for both MERU and CLIP using our custom prompts. Some prompts use the word
‘porn’ as it is included in the subreddit name. It does not indicate pornographic content
but simply high-quality photographs.
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B.3 Developing a strong CLIP baseline

One of our contributions is to establish a lightweight, yet strong CLIP baseline. The original

CLIP models [198] are trained using a private dataset of 400M image-text pairs across 128

GPUs for more than 10 days. We aim to maximize accessibility for future works, hence

we decide our hyperparameters such that our smallest model can train on a single 8-GPU

machine in less than one day.

We start with a reference CLIP ViT-S/16 baseline from SLIP [176] and carefully in-

troduce one modification at a time. We benchmark improvements on zero-shot image

classification across 16 datasets used in our main experiments, using text prompts used by

Radford et al. [198]. Results are shown in Table B.3.

CLIP baseline by SLIP. This re-implemented baseline was trained using a 15M subset of

the YFCC dataset [236]. We re-evaluate the publicly released ViT-S/16 checkpoint 2 using

our evaluation code; it obtains 32.6% average accuracy across all datasets.

Our re-implementation. We attempt a faithful replication of CLIP by following hyperpa-

rameters in SLIP. Our implementation obtains slightly higher average performance (34.1%)

with three minor changes:

– We use an undetached gather operation to collect all image/text features across all GPUs

for contrastive loss. This ensures proper gradient flow across devices.

– The above change allows using weight decay = 0.2 like OpenAI’s CLIP, unlike 0.5 used

by the CLIP re-implementation of Mu et al. [176].

– We resize input images using bicubic interpolation like original CLIP instead of bilinear
interpolation used in the CLIP re-implementation of Mu et al. [176].

Fitting the model on 8-GPUs. This CLIP model requires 16× V100 32GB GPUs with a

batch size of 4096 and automatic mixed precision [172]. Techniques like gradient check-

pointing [31] can reduce memory requirements, but it comes at the cost of reduced train-

ing speed. Hence we avoid making it a requirement and simply reduce the batch size to

2048. This incurs a performance drop as the effective images seen by the model are halved.

We offset the effective shortening of the training schedule by using fixed sine-cosine posi-

tion embeddings in ViT, so learning position-related inductive biases is not required. This

change slightly improves average accuracy (30.0%→ 31.1% average accuracy).

2github.com/facebookresearch/slip
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YFCC15M-trained models
Mu et al. [176] CLIP 368M 32.0 43.7 61.9 30.2 30.9 41.3 3.5 3.9 18.1 26.1 51.4 48.7 87.3 17.5 16.8 8.7 32.6
Our implementation 368M 33.1 42.3 64.9 34.4 33.7 43.8 2.9 5.1 19.1 25.0 49.8 47.2 87.4 26.8 21.6 9.0 34.1

+ BS 4096→2048 184M 28.2 34.2 58.7 29.4 27.4 39.4 2.9 4.3 16.5 20.1 43.8 42.2 85.4 20.2 19.0 8.5 30.0
+ sin-cos pos embed 184M 28.7 34.2 67.3 33.6 25.4 41.1 3.1 4.2 17.8 21.0 44.3 43.6 86.4 18.6 19.6 8.3 31.1

RedCaps-trained models
+ YFCC→RedCaps 184M 32.6 71.5 61.4 25.6 29.9 27.5 10.1 1.5 14.3 72.7 62.8 42.2 88.0 18.1 30.5 4.9 37.1
+ 90K→120K iters. 246M 33.9 72.5 60.1 24.4 30.0 27.5 11.3 1.4 13.1 73.7 63.9 44.4 88.2 18.6 31.4 5.2 37.5
+ our zero-shot prompts 246M 34.3 74.5 60.1 24.4 33.8 27.5 11.3 1.4 15.0 73.7 63.9 47.0 88.2 18.6 31.4 5.2 38.1

Table B.3: CLIP baseline. We develop a strong CLIP baseline that trains on an 8-GPU
machine in less than one day (ViT-S image encoder), starting with SLIP [176] as a refer-
ence. We benchmark improvements on zero-shot image classification across 16 datasets.
Our RedCaps-trained CLIP baseline (last row) is a significantly stronger baseline than its
YFCC-trained counterparts.

Training with RedCaps dataset. RedCaps dataset [51] comprises 12M image-text pairs

from Reddit, sourced from Pushshift [14]. Training with RedCaps significantly improves

performance over YFCC-trained models (31.1% → 37.1% average accuracy), especially

on datasets whose concepts have high coverage in RedCaps, e.g., Food-101 [21] and

Pets [186]. Since RedCaps is smaller, we increase the training iterations from 90K up

to 120K. Finally, we modify zero-shot prompts for some datasets to match the linguistic

style of RedCaps (refer Table B.2). For example, many captions in r/food simply mention

the name of the dish in the corresponding image, hence we use the prompt ‘food : {}’.
We did not extensively tune these prompts, but we checked performance on the held-out

validation sets to avoid cheating on the test splits.

Finally, our CLIP ViT-S/16 baseline trains on 8× V100 32 GB GPUs within ≈14 hours

and achieves 38.1% average performance across 16 datasets. We use these hyperparame-

ters for all MERU and CLIP models in our experiments.

B.4 Linear probe evaluation

Our goal is to learn hyperbolic representations with MERU that capture a visual-semantic

hierarchy underlying image-text datasets. Our experimental evaluations focus on zero-shot
transfer [65, 198]. Another established protocol to evaluate visual representations is linear
probe evaluation, which involves training linear models on frozen image embeddings. This

protocol is popular in self-supervised representation learning literature, with Doersch et al.

[56], Zhang et al. [282], and Noroozi and Favaro [182] being notable early works. We
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CLIP 85.3 89.6 72.3 68.8 61.1 60.5 42.2 71.2 87.9 88.4 96.2 95.5 95.7 88.1 15.0 98.5 57.5 84.6 54.9ViT
S/16 MERU 85.2 89.7 70.9 69.2 59.6 58.0 43.1 70.2 87.5 85.6 95.5 95.5 95.8 87.0 14.8 98.2 56.8 84.1 54.5

CLIP 88.4 92.2 76.5 73.2 64.7 71.1 50.4 72.6 90.2 89.6 97.3 97.1 96.9 90.0 16.7 98.9 52.7 84.4 57.6ViT
B/16 MERU 88.2 92.3 74.6 70.9 63.4 68.4 48.2 70.7 90.3 88.6 96.6 96.7 96.5 89.0 16.5 98.7 56.0 85.5 56.2

CLIP 89.6 95.3 80.5 75.7 66.0 75.7 54.5 75.7 92.0 92.0 97.4 97.6 96.9 90.5 17.8 99.2 55.6 87.5 56.1ViT
L/16 MERU 89.0 94.1 77.3 74.2 63.7 71.9 51.2 70.9 90.1 87.5 96.7 97.3 96.8 89.1 17.0 98.9 55.4 86.0 55.8

Table B.4: Linear probe evaluation. We train a logistic regression classifier on embed-
dings extracted from the image encoders of CLIP and MERU (before projection layers).
Note that embeddings from MERU are not lifted onto the hyperboloid.

follow the implementation of Kornblith et al. [125] as it is simple and less sensitive to the

choice of evaluation hyperparameters. This setup is also followed by CLIP [198] and many

recent works on representation learning [64, 71, 150].

We evaluate using datasets listed in Table B.1. We train a logistic regression classifier

on embeddings extracted from the image encoder (before the projection layer) of MERU

and CLIP. For MERU, these underlying representations belong to a Euclidean space. We

use the implementation from scikit-learn [190] library, with L-BFGS [156] optimizer

and search the regularization cost per dataset, C ∈ [10−6, 106], performing two-step search

on validation split. Using the best hyperparameters, we train a final classifier on combined

train + validation splits for a maximum of 1000 iterations, then report top-1 mean per-

class accuracy on the test split.

Results in Table B.4 show that MERU mostly matches or underperforms CLIP. Our main

focus is not on improving the underlying Euclidean representations from the encoders, but

on showing the zero-shot transfer and interpretability benefits of MERU. Future work can

focus on improving MERU’s capabilities on other transfer applications.

B.5 Image traversals with YFCC captions

Our image traversals (Section 4.5.3) involve inferring the learned visual-semantic hierar-

chy in the representation space. Here we include additional qualitative results using cap-

tions from the YFCC dataset [236] to create the retrieval pool. We use text descriptions of a

popular subset of this dataset – YFCC-15M [198]. We minimally process the text according

to the RedCaps dataset to match the training data distribution. This involves converting

to lowercase, using ftfy [222] to strips accents and non-latin characters, removing all

sub-strings enclosed in brackets ((.*), [.*]), and replacing social media handles (words

106



starting with ‘@’) with a <usr>. We also remove captions having more than 20 tokens

(for ease of visualization). Finally, we obtain ≈8.7M captions.

Image credits. Images displayed in Section 4.5.3 are collected from pexels.com, a

photography website that offers images with permissible usage licenses. Below is the list

of the image source URLs listed in order of their appearance in Chapter 4. We thank all

the photographers for generously sharing these images.

Illustration of the visual-semantic hierarchy (Figure 4.1).
– pexels.com/photo/adult-yellow-labrador-retriever-standing-on-snow-field-1696589

– pexels.com/photo/homeless-cat-fighting-with-dog-on-street-6601811

– pexels.com/photo/short-coated-gray-cat-20787

Image traversals – selected results (Figure 4.6).
(1) pexels.com/photo/a-bengal-cat-sitting-beside-wheatgrass-on-a-white-surface-7123957

(2) pexels.com/photo/white-horse-running-on-green-field-1996337

(3) pexels.com/photo/photography-of-rainbow-during-cloudy-sky-757239

(4) pexels.com/photo/retro-photo-camera-on-table-7162551

(5) pexels.com/photo/avocado-toast-served-on-white-plate-10464867

(6) pexels.com/photo/photo-of-brooklyn-bridge-new-york-2260783

(7) pexels.com/photo/taj-mahal-through-an-arch-2413613

(8) pexels.com/photo/sydney-opera-house-7088958

Image traversals – locations and landmarks (Figure 4.7).
(9) pexels.com/photo/golden-gate-bridge-san-francisco-california-1141853

(10) pexels.com/photo/white-cliffs-of-dover-in-england-9692909

(11) pexels.com/photo/the-famous-fountain-paint-pots-in-yellowstone-national-park-12767016

(12) pexels.com/photo/the-parthenon-temple-ruins-in-athens-greece-14446783

(13) pexels.com/photo/famous-big-ben-under-cloudy-sky-14434677

(14) pexels.com/photo/karlskirche-church-7018621

(15) pexels.com/photo/mt-fuji-3408353

(16) pexels.com/photo/horseshoe-bend-arizona-2563733

(17) pexels.com/photo/stars-at-night-1906667

(18) pexels.com/photo/volcano-erupting-at-night-under-starry-sky-4220967

(19) pexels.com/photo/northern-lights-1933319

(20) pexels.com/photo/attraction-building-city-hotel-415999

Image traversals – flora and fauna (Figure 4.8).
(21) pexels.com/photo/squirrel-up-on-the-snow-covered-tree-15306429

(22) pexels.com/photo/a-seagull-flying-under-blue-sky-12509256

(23) pexels.com/photo/cute-pug-sitting-on-floor-in-white-kitchen-11199295

(24) pexels.com/photo/three-zebras-2118645

(25) pexels.com/photo/monarch-butterfly-perching-on-red-flower-1557208

(26) pexels.com/photo/red-hibiscus-in-bloom-5801054

(27) pexels.com/photo/white-chicken-on-green-grass-field-58902
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(28) pexels.com/photo/yellow-blue-and-white-macaw-perched-on-brown-tree-branch-12715261

(29) pexels.com/photo/closeup-photo-of-red-and-white-mushroom-757292

(30) pexels.com/photo/photo-of-jellyfish-lot-underwater-3616240

(31) pexels.com/photo/yellow-labrador-retriever-wearing-red-cap-4588002

(32) pexels.com/photo/an-orca-whale-jumping-out-of-the-water-7767974

Image traversals – food and drinks (Figure 4.9).
(33) pexels.com/photo/bread-and-coffee-for-breakfast-15891938

(34) pexels.com/photo/grilled-cheese-on-a-plate-14941252

(35) pexels.com/photo/bowl-of-ramen-12984979

(36) pexels.com/photo/green-chili-peppers-and-a-knife-5792428

(37) pexels.com/photo/spinach-caprese-salad-on-white-ceramic-plate-4768996

(38) pexels.com/photo/chocolate-cupcakes-635409

(39) pexels.com/photo/pav-bhaji-dish-on-a-bowl-5410400

(40) pexels.com/photo/clear-glass-bottle-filled-with-broccoli-shake-1346347

(41) pexels.com/photo/vada-pav-15017417

(42) pexels.com/photo/old-fashioned-cocktail-drink-4762719

(43) pexels.com/photo/coffee-in-white-ceramic-teacup-on-white-ceramic-suacer-894696

(44) pexels.com/photo/espresso-martini-in-close-up-photography-15082368

Image traversals – objects and scenes (Figure 4.10).
(45) pexels.com/photo/photograph-of-a-burning-fire-672636

(46) pexels.com/photo/white-clouds-in-blue-sky-8354530

(47) pexels.com/photo/raining-in-the-city-2448749

(48) pexels.com/photo/aerial-view-of-road-in-the-middle-of-trees-1173777

(49) pexels.com/photo/mountain-bike-on-the-beach-10542237

(50) pexels.com/photo/wax-candles-burning-on-ground-14184952

(51) pexels.com/photo/white-wooden-shelf-beside-bed-2062431

(52) pexels.com/photo/stainless-steel-faucet-on-white-ceramic-sink-3761560

(53) pexels.com/photo/jack-o-lantern-with-light-5659699

(54) pexels.com/photo/black-and-white-piano-keys-4077310

(55) pexels.com/photo/assorted-gift-boxes-on-floor-near-christmas-tree-3394779

(56) pexels.com/photo/garden-table-and-chair-14831985

Image traversals – objects and scenes (Figure 4.11).
(57) pexels.com/photo/turned-on-floor-lamp-near-sofa-on-a-library-room-1907784

(58) pexels.com/photo/ripe-pineapple-on-gray-rock-beside-body-of-water-29555

(59) pexels.com/photo/close-up-shot-of-a-cockatiel-13511241

(60) pexels.com/photo/antique-bills-business-cash-210600
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(1)

MERU CLIP

leopard and stig have a beautiful piano at
their home.

loki is a 1 year old bengal cat.

merlin wasn’t impressed to leave the last
house and his precious cat grass

↓

my parents cat ’barry’ loves being
photographed!

↓

house cat posing ↓
mr . bo-majed ↓

our cat, our love our third member of our
family. :)

↓

why are you taking pictures? it’s dilo don’t
fill it up. :)

↓

[ROOT] [ROOT]

(2)

MERU CLIP
caught my attention by the beautiful light
cascading on a grass behind this fellow.

pity about the camera shake in the evening
light

the focus is all wrong , but the white on the
tail and the tongue are pretty cool.

↓

just a goofy white guy. ↓
he was an active one, running to and fro. ↓
but then, she was happy to pose for me ↓

if she were a race horse her name would be
poopbiscuit.

↓

dorky photo is dorky ↓
she looks so leery of the camera in this

photo.
↓

this is only luky. ↓
[ROOT] [ROOT]

(3)

MERU CLIP
going across brooklyn bridge on the way to

brooklyn 3 likes on instagram
shot from the manhattan end of the

brooklyn bridge
manhattan depuis le brooklyn bridge park,

a brooklyn.
much more scenic to walk on than the

brooklyn bridge
bridge, manhattan skyline new york new york!

shot from near the middle of the brooklyn
bridge.

↓

this city goes on forever ↓
the city that never sleeps ↓

the city that never sleeps...it can’t. ↓
it can be seen from most places in the city ↓

[ROOT] [ROOT]

Figure B.1: Image traversals (1/20) using a set of captions from the YFCC dataset.
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(4)

MERU CLIP

avocado, roasted garlic and sriracha on
light rye & raisins sourdough.

la tartine

with avocado slices - yum! a toast to the new place
vaguely-healthy ↓

on bread, probably not what you should do
with it, but it was a good meal

↓

nice if you like this sort of thing. ↓
[ROOT] [ROOT]

(5)

MERU CLIP

avenida paulista. fisheye 2 kodak elite
chrome 100

leica m7 with voigtlander zoom finder and
dsptch camera strap

rolleiflex kodak portra 160 epson v500
scanner

rollei minidigi

...of my brand new shiny 7.1mp camera. zeiss ikon icarex, 02/2010
camera de 5mp faux lomo from www.dumpr.net - photo fun

i’m a lumix camera fan now. zeiss-ikon
[ROOT] [ROOT]

(6)

MERU CLIP

double rainbows in our field were too good
to pass up photographing

double rainbows in our field were too good
to pass up photographing

whoa... double rainbow is that... a double rainbow? ;-)
is that... a double rainbow? ;-) what does it mean!

what does it mean of this picture? ↓
only god could create something so

beautiful.
↓

this is a good one to end with. reminds me
of the woman in this picture.

↓

look out for that right one. ↓
[ROOT] [ROOT]

Figure B.2: Image traversals (2/20) using a set of captions from the YFCC dataset.
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(7)

MERU CLIP

sydney opera house, october 2012. gros plan sur l’opera de sydney
sydney opera house see where this picture

was taken.
you can just make out the opera house in

the far left.
from the new opera house my sydney

i think this is the last one i have of the
opera house.

↓

oh, and some opera house, too. ↓
just next to the famous opera house ↓

from horseshoe bay. ↓
taken from the donau. ↓

[ROOT] [ROOT]

(8)

MERU CLIP

captured this during my visit to taj mahal,
seems like it still inspires young

hearts..........

a weekend adventure to agra to see the taj
mahal, see also afternoon and night.

luxury.
the royal mausoleum on the grounds of

‘iolani palace
this pre-dates the taj mahal

<usr> taj you couldn’t photograph inside the tombs,
so this is all i can show

rotunda at nmai the beauty of age, the mark of wisdom
outside of yet another palace don’t remember where.

taken from city palace. ↓
photography ii ↓

it can be seen from most places in the city ↓
kla photography ↓

[ROOT] [ROOT]

(9)

MERU CLIP
a high dynamic range shot of the golden

gate bridge on a foggy afternoon
golden gate bridge thru photoshop

lightroom
working on the perfect golden gate shot. golden gates

golden gate iii no...it’s not the golden gate ;)
everyone who’s been to sf has to take this
photo at least once in their lives, right?

by gusf bit.ly/17hga6r

just got back from sf. will post more on my
photoblog: ohad.me

the independent sf

¡3 sf thinking about painting this makes my
shoulder hurt.

come out and play sf still searching for the shot around here.
back from golden bay ↓

without fog ↓
[ROOT] [ROOT]

Figure B.3: Image traversals (3/20) using a set of captions from the YFCC dataset.
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(10)

MERU CLIP

white cliffs of dover. august, maybe 2004? coloured sand cliffs of alum bay, isle of
wight, 1 may 2012.

calcite cumbria england the cliffs are made of limestone.
poland rocks. falkenberg from the south

white point natural area at juta village
balderstone close it’s pretty rocky there.
nepomuk rocks... ↓
l’eglise de giverny ↓

one point if you can tell me where this was
taken.

↓

also some kind of guenon, methinks. ↓
[ROOT] [ROOT]

(11)

MERU CLIP
at yellowstone national park there are

geyser pools called painted pots because of
the colors they exude.

yellowstone - noth entrance

yellowstone - noth entrance ...like i was, how yellowstone got its name
no trip to yellowstone is complete without it i don’t remember where this one was. it

was striking.
there are hot springs around here

somewhere...
↓

wy’east ↓
many places that were stunning to look at. ↓
there are some special places in the earth.

this is one !
↓

with this photo... it’s almost like taking a
vacation just looking at this.

↓

[ROOT] [ROOT]

(12)

MERU CLIP

the new parthenon museum, next to the
acropolis.

athens archaeological site of the acropolis
the parthenon

this is the magnificent temple of zeus,
located in the center of athens

temple of jupiter and ruins - selinunte

lil-bit bigger than the athens arch ruins from roman time
roman building , later used as royal

residence .
can’t remember where this was

roman fort/settlement. ↓
built in roman times ↓

we will miss our old place. ↓
at quimbledon. ↓

[ROOT] [ROOT]

Figure B.4: Image traversals (4/20) using a set of captions from the YFCC dataset.
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(13)

MERU CLIP

obligatory big ben shot big ben i el parlament
it’s what they call a ’big clock’ could be

thought of as ’big ben’
or big ben, to his friends

yeah, i know: big ben is the bell, not the
clock tower...

↓

the famous tower ↓
i pretty much only took a photo of this

because it was in english
↓

guess what time i took this picture . ↓
[ROOT] [ROOT]

(14)

MERU CLIP
karlskirche, just on the outer ring in vienna

.
kazan, kremin, annunciation cathedral

02/25/2007
vienna, austria - st. charles church bulgaria, sofia, st. nikolai russian church

wawel cathedral almost like a cathedral. a cathedral to
transit.

near st. george’s cathedral as beautiful as any cathedral
from my old pda. not far from the cathedral

[ROOT] [ROOT]

(15)

MERU CLIP

who needs mt.fuji fuji provia 100
fuji fuji-q highlands

mt haba fuji f30
mount. fuji-san in the background...

at quimbledon. fairmount, in
[ROOT] [ROOT]

Figure B.5: Image traversals (5/20) using a set of captions from the YFCC dataset.
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(16)

MERU CLIP

a single exposure of horseshoe bend at
sunrise. certainly one of my favorites from

the trip.

yes, there is that backdrop of horseshoe
bend :)

horseshoe bend searching for the one ring
bend over <usr>,usa

looking back at horseshoe canyon ↓
horseshoe bay... this is as close to paradise

as you can get!!!!
↓

canyon country, specifically ↓
if you use my photo please post a link and

let me know.
↓

[ROOT] [ROOT]

(17)

MERU CLIP
the milk way over bleriot ferry provincial

park near drumheller, alberta.
the milky way as it appeared above the

farmhouse in grey county - 30 sec exposure
the south-western part of the milky way outside a house from the austmarka region
we were in quite a rural place, although

there were still lights on the horizon.
this was just a couple of miles from the

farmhouse we stayed in.
keeping the peace while bush was in town ↓

[ROOT] [ROOT]

(18)

MERU CLIP

lava as seen through night shot of volcan
arenal

lava as seen through night shot of volcan
arenal

the majestic villarica volcano volcan osorno
nice photo of us in front of an active

volcano.
volcanic origin

still an active volcano the volcano!
around the khorgo volcano. with volcan lanin in the background

mt stromlo ↓
i’m not sure where we were for this shot. ↓

for some reason, i think this photo is great! ↓
[ROOT] [ROOT]

Figure B.6: Image traversals (6/20) using a set of captions from the YFCC dataset.
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(19)

MERU CLIP

arcs of the northen lights over the
mountains neat troms, norway,

northern lights on the otherside of
patreksfjorur

northern lights, norway aurora boreale a kangerlussuaq
in the night see where this picture was

taken.
to a cinema the aurora

from the north. see where this picture was
taken.

the village at the end of the world

sometimes something just looks out of place
!

over a year’s worth of photos here.

[ROOT] [ROOT]

(20)

MERU CLIP

cozy cone motel sign with tower of terror in
background. california’s adventure park at

disneyland resort.

adam taylor ollie over sign kodak: iso 200

my favorite tourist attraction in la. enjoying jason scott’s talk.
if this place didn’t scream la, i don’t know

what does.
lost in las vegas- max ruckman

funny, this place was empty. hollywood rip, ride, rockit
photo : l.g. ↓
[ROOT] [ROOT]

(21)

MERU CLIP

a squirrel enjoying the snow on a not-very
cold day.

a squirrel enjoying the snow on a not-very
cold day.

winter male still coming to food after the
snow.

winter male still coming to food after the
snow.

i don’t usually see these type of squirrels
down here. loved this little guy. :)

↓

the last nut, my dear! ↓
it’s kinda fuzzy. but i love this picture for

some reason.
↓

i had to take one picture, okay? ↓
[ROOT] [ROOT]

Figure B.7: Image traversals (7/20) using a set of captions from the YFCC dataset.
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(22)

MERU CLIP

a gull in flight in stratford a common or arctic tern flying above the
scottish peninsula of kintyre.

gull on the wing more bird shots at dyrholaey.
we also saw gull-billed but never close

enough to photo.
wouldn’t be a trip without at least one

picture of a seagull
taken at little gull islands - b, little gull

islands
seagull!

taken with the seagull some bird thing.
i was running after the seagull as i took

this photo.
it took patience to get this shot since the

stupid bird kept looking away
not a very nice bird, but still interesting to

take pictures of...
↓

i took one westward shot, just to see it ↓
i keep taking this photograph ↓

[ROOT] [ROOT]

(23)

MERU CLIP
margaret willie sanborn-sebo harvey henry

sanborn pug dog framed
sacha my friend and companion patiently
waiting for dad to finish taking photos !!!

everyday bear takes up this position as he
waits for his mom to make his food.

eli begged mommy to take some photos

patiently waiting for the photographer to
get his ”shot”.

↓

”this picture isn’t going to work, and i’m
going to show you why...”

↓

thinking to himself, ”what’s missing?” ↓
this is us... trying to be sultry. ↓

to do nothing or to do something. ↓
[ROOT] [ROOT]

(24)

MERU CLIP

zebras, ruaha national park zebras at kidepo national park, uganda.
zebra fouls with their mohicans, south

africa
zebra fouls with their mohicans, south

africa
the zebras zebras at the watering hole

photographer: simone kuipers three zebras
photographer: mark antos good things come in threes. apparently, so

do zebras.
from photo safari, take 2 . the group comes around the bend.

at oudja wild animals
at quimbledon. more straglers

↓ of the group
↓ just a little to the left of the middle

[ROOT] [ROOT]

Figure B.8: Image traversals (8/20) using a set of captions from the YFCC dataset.
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(25)

MERU CLIP
monarch, danaus plexippus . shot in

waimanalo, hawaii.
a monarch pauses for a drink at a butterfly

bush.
taken at the desert botanical garden in
phoenix, arizona, during its seasonal

monarch butterfly exhibit.

monarch in a standard profile

i’m exercising to capture butterflies. the monarch
visitor to the butterfly tree, ↓

monarch ↓
butterflies are always free, so enjoy as

many of them as you want.
↓

butterfly photography ↓
i tried to get more shots but it flew away. ↓

insect porn ↓
[ROOT] [ROOT]

(26)

MERU CLIP

i love the big blooms of the hibiscus with
their bold colour.

some hibiscus-like blossoms beside the
visitor center at moody gardens in

galveston, tx
these looked like hibiscus, but i think they

are something else.
after many years nurturing this back to life,
the recent heat and rainfall have produced

more spectacular blooms.
only a few blooms this time of year.... this beautiful species may be the hibiscus

according to my wife but i am not so sure,
much better bloom this time... these looked like hibiscus, but i think they

are something else.
i usually dispise flower photos, but i

actually like this one.
looked like they had a lot of nice camera’s

and video gear. :-)
this is one is good. flourishing.

[ROOT] [ROOT]

(27)

MERU CLIP
crele old english game bantam cockerel ”the beautiful yellow bird - a cautionary

tale for new mps” only at acid rabbi.
sabrina is running and twirling to the

bachanalia song.
flaunt your assets!

really interesting gadgetar! posted by
second life resident ina centaur. visit

kaneohe.

most of the girls had gone to college with
mary, whose husband was competing.

harvey henry marie elizabeth campbell ↓
sam is showing good form and follow

through here.
↓

this is only luky. ↓
[ROOT] [ROOT]

Figure B.9: Image traversals (9/20) using a set of captions from the YFCC dataset.
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(28)

MERU CLIP

blue-and-yellow macaw at the zooparque
itatiba.

i like this portrait of this blue and yellow
macaw, because of the black background...

one of my fav birds to shoot at the zoo from parrot island
i like these birds, especially when you can

see the yellow of their eyes!
<usr> bird sanctuary.

there are more colorful birds, but there are
few birds with as much character.

zero post processing

a beautiful bird, and was quite happy to
pose for me.

one of a bunch

never had a bird pose for well before! ↓
hi!some more photos...ana ↓

[ROOT] [ROOT]

(29)

MERU CLIP
fly agaric in the forest with a little spider. freshly popped amanita muscaria in the

forest.
all alone on the forest floor a fly agaric on the rise.

from a recent new forest trip or ”fly agaric”. ”if your viking gets to
choose.”

i like this photo, so here it is too. reminded me a bit of alice in wonderland
↓ reminded me of alice in wonderland
↓ this one goes out to forest love.

[ROOT] [ROOT]

(30)

MERU CLIP
taken at mystic aquarium, ct taken by michael i love watching jellyfish.

wish these pics had turned out better.
i don’t really like jellyfish, but they are

beautiful.
jelly.

something about this reminds me of every
photo i’ve ever taken of jellyfish

↓

it is really very cool to be able to see them... ↓
it did not feel like an aquarium when i took

the picture
↓

really not much they let you see here. ↓
that i met. ↓
[ROOT] [ROOT]

Figure B.10: Image traversals (10/20) using a set of captions from the YFCC dataset.
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(31)

MERU CLIP

in new hat from adji includes my twit hat- wink
oui, girl friend. in new hat from adji

the hat actually belongs to honey :) :) he’s still in japan right now... i miss him.
fashion photo session ↓

with new hat ↓
a very fit lady. ↓

the boy has style! ↓
[ROOT] [ROOT]

(32)

MERU CLIP

humpback coming up for air near juneau,
alaska

orca, craig, alaska, tongass nf. usfs
francisco sanchez

here, this orca swims about before the show
starts.

named for its shape. not for the occasional
whales found in its waters.

an orca during the show ”believe” in sea
world .

a bit shakey!

humpback takin’ off.
a shamu in action ↓

pretend you see a whale and i’ll take your
photo.

↓

cropitornot shot this one ↓
[ROOT] [ROOT]

(33)

MERU CLIP

a pastry & a coffee for breakfast yummy today’s breakfast: toast with honey, egg
and black coffee

a right and proper afternoon tea #1 afternoon cream tea
made to perfection. much needed morning

tea!
have a nice cup of tea and a sandwich.

some photos from me when i working at
home

↓

sobrepeso en la proa ↓
[ROOT] [ROOT]

Figure B.11: Image traversals (11/20) using a set of captions from the YFCC dataset.
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(34)

MERU CLIP

’tooey’s delight’ gc16aga dominic samonte & stephanie estabillo
30 seconds into gina’s five-minute toast. chicken and cheese sandwich.

the plain toast was, um, plain. ↓
with grilled cheese sandwich. ↓

i don’t normally like toasted sandwiches,
but this one was delicious!

↓

on bread, probably not what you should do
with it, but it was a good meal

↓

call center del club cantv ↓
so. good. ↓
[ROOT] [ROOT]

(35)

MERU CLIP
at momofuku where the magic happens at momofuku

noodle bar
the ramen got pwned. @ terakawa ramen 4sq.com/ekseer

siawase ramen ramen exploration - still looking
this i ate, and it was great! with michael cotta

i ate some of this. ↓
[ROOT] [ROOT]

(36)

MERU CLIP

tiny hot peppers from the freezer poblanos to be roasted
the ones with jalapenos are the ones that

are ruling
they’re best as peppers from the garden!

add the chillies and cook for another
minute.

do nothing gardening in action!

getting ready for some chili-dippin’ ↓
yo tengo el poder! ↓

toying around with a f/1.8 ↓
you canno tmake this stuff up ↓

[ROOT] [ROOT]

Figure B.12: Image traversals (12/20) using a set of captions from the YFCC dataset.
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(37)

MERU CLIP

last nights’ salad, cropped the first of many caprese salads while we
traveled.

nice salad, summery, fresh. for a homegrown salad
contemp salad another salad :)

i made the salad ↓
it’s a verso/kveton thing. ↓

[ROOT] [ROOT]

(38)

MERU CLIP

awesome guinness & chocolate cupcakes by
kari stewart our wonderful studio manager

i made cupcakes and took a million
photos...

peanut butter cupcakes with whipped
chocolate ganache.

from the chocolate lady

vegan cupcakes. chocolate, coffee and
cinnamon.

↓

coffee and chocolate: a ”can’t miss”
cupcake...

↓

including a flourless chocolate cupcake! ↓
chocolate makes everything better. thanks

<usr>
↓

chocolate-y goodness! ↓
this week’s take, brought over by a friend. ↓

[ROOT] [ROOT]

(39)

MERU CLIP

new delhi’s best cholle bhature pav bhaji appetizer, $5 dinner time only
tirupathi bhimas, milpitas

en tlaquepaque, jal. dal monte la motta .
west indian food. you can’t help but smile

when you eat it .
the famous curry mile, taken on saturday

5th march
<usr> buse dal lof sloppy everything

paraje guer aike the midas, great food
manoush ↓

with sambuca ↓
[ROOT] [ROOT]

Figure B.13: Image traversals (13/20) using a set of captions from the YFCC dataset.
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(40)

MERU CLIP

matcha green tea ice blended chimichurri sauce recipe
yes i had a pesto drink trust me, i tried to make this less green.

hot/fermented make some good ones!
that’s right, i’ve been experimenting. trying

to keep things fresh.
↓

ondel-ondel ↓
one love hi pawa ↓

[ROOT] [ROOT]

(41)

MERU CLIP
bread with rosemary and garlic infused

olive oil at jaleo, a tapas restaurant in my
neighborhood.

sliders served at lee roy selmon’s restaurant.

with rosemary and parmigiano... our
mellow new year’s menu

biergarten

bread with olive oil and vinegar sliders & greens
my welcome brunch to vienna..a cheese

party
↓

they serve it with some sort of sauce . this is
their version of ”bread”.

↓

a good shot of how the bread should look. ↓
the bread is real, i think. at least, not glass. ↓

trying out some bread ↓
[ROOT] [ROOT]

(42)

MERU CLIP

adam johnston sparkling apple juice my blog:
mikaeladanvers.com

smoked salmon vodka. nombre sells the accesories
it’s so cold in here! look at the frosty vodka taste like it’s fermenting into alcohol.

warm vodka. i’m still cringing. ↓
tasty, tasty cocktails ↓

made with hugin ↓
off for cocktails ↓

[ROOT] [ROOT]

Figure B.14: Image traversals (14/20) using a set of captions from the YFCC dataset.
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(43)

MERU CLIP

it feels like winter again #coffeemornings a latte from blue bottle coffee in oakland,
ca.

by phil o’kane aka icedcoffee sweet cold coffee of destiny especially for
<usr> :-) 1 likes on instagram

1 comments on instagram: sorelle de latte:
you looked great!

↓

heh, maybe my latte art chops aren’t so bad
after all :-)

↓

cheers <usr> ;) ↓
i likes this one more, i think. ↓

[ROOT] [ROOT]

(44)

MERU CLIP
ceu do mapia caffe ladro at 5 corners in edmonds.

americanvirus.com
with a leaf, at the caffe espresso. chocolate catalan donkey with dinosaur

egs, at eastern time
bourbon & branch ↓

the braan ↓
enjoying the riff raff ↓

b b: the braes ↓
[ROOT] [ROOT]

(45)

MERU CLIP

i was well pleased that i managed to
capture the flambe moment ;o)

usfws photo/heather webb

everyone was taking pictures of the fire ↓
note to self: need to make more photos of

fire again.
↓

this was one of the other interesting things.
fire is always fun ;)

↓

i so wanted to photograph this. ↓
[ROOT] [ROOT]

Figure B.15: Image traversals (15/20) using a set of captions from the YFCC dataset.
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(46)

MERU CLIP

i caught a cloud! i caught a cloud! *grin* textures courtesty of
shadowhousecreations.blogspot.com/

it’s the cloud, baby! my first cloud photo ever. :)
i liked this cloud. blowing cloud!

i took this one because of that cloud.
seriously.

↓

i like this. i think it liked me. ↓
[ROOT] [ROOT]

(47)

MERU CLIP
a drizzly february day in vancouver. taken with a disposable camera on a rainy

seattle day.
weather gloomy all the way to chicago a cold rainy day in chicago

summer rain in the city. junechicago
street<usr> ↓
<usr> street ↓

urban as usual ↓
street pics ↓
[ROOT] [ROOT]

(48)

MERU CLIP
this beautiful track goes through deep
gorges of nilgiris towards mangalore.

sepang international circuit malaysia

cipularang highway very well finished road for indonesia!! ...
looking down the road

<usr> road nature highway..
kinokuniya just down the road if you don’t know where you are going, any

road will take you there.
crookhaven look, there’s a road and everything.
[ROOT] [ROOT]

Figure B.16: Image traversals (16/20) using a set of captions from the YFCC dataset.
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(49)

MERU CLIP

lebei is driving the quadricycle we rented on
the toronto islands.

my cruiser on 80 mile beach. messing with
my 15mm zeiss

this moto is still the best anything i’ve ever
owned.

biked to the nearest beach and took some
pictures.

you have no idea how much i love this
thing.

i was traveling alone, so i instead of me i
had to take pictures of my bike

↓ ...and she rides like a dream. initial
impressions ride report

[ROOT] [ROOT]

(50)

MERU CLIP

in a few of the branches of some trees were
little tea-light lanterns

in a few of the branches of some trees were
little tea-light lanterns

earth hour candle light they’re only lanterns
my first try making this photo with a mini

lantern
2nd shoot coming out too

quant little light. not lit
little lights. ↓

i actually detest gold, but i liked the
material contrast here.

↓

i just really liked the light, alright? ↓
a pain to get photos of these. ↓

if you use my photo please post a link and
let me know.

↓

[ROOT] [ROOT]

(51)

MERU CLIP

simple scandinavian style decor. clifton,
bristol

ikea/helsinki design week party

rental apartment in berlin with jeff from simple plan in denmark
my flat getting more and more comfortable
with more furniture coming in - and notice

i now have fans!

↓

our first apartment ↓
ready made living space ↓

[ROOT] [ROOT]

Figure B.17: Image traversals (17/20) using a set of captions from the YFCC dataset.
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(52)

MERU CLIP
studio di personaggio. character design. model: yasemin snoek stylist: melanie vink
decorated with silver and nickle plated we bought one of these for a friend’s

wedding. no, not you julee.
new faucet set. ↓

elegant bath items, though ↓
oh to have that kind of luxury ↓

a little luxury ↓
rich sigfrit kicks things off. ↓
the things i’ll do for a shot ↓

can you guess what club this is for?! ↓
[ROOT] [ROOT]

(53)

MERU CLIP

pentax *ist ds/ iso 1600 —— happy
halloween!

jack-o-lantern with other light up
decorations. jack-o-lantern.

we wish you a happy all hallows night! i am so spoooooky
happy hallowe’en, everyone! ↓

happy halloween, yo. ↓
no be long now jack ↓

can you feel the spirit of e-xtrategy? ↓
[ROOT] [ROOT]

(54)

MERU CLIP
piano keyboard vintage typewriter photo by rusty

blazenhoff
musical ben the typewriter is the best dead thing i ever

found
she was really good, great voice, excellent
guitar playing, and really nice to chat to.

musical harmony

the highly-touted prospect, not the guitar
player

where some parts of me came of age

l.a.r.g.e ↓
[ROOT] [ROOT]

Figure B.18: Image traversals (18/20) using a set of captions from the YFCC dataset.
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(55)

MERU CLIP

my christmas shopping is done, and what’s
more, my presents are all wrapped!

my homemade christmas book - dec. 5th
and 6th.

this year’s wrapping job. gift-wrapped for any occasion.
and gift wrapped! a wrapped xmas present

21 presents for my 21st for msh may our christmas present put to good use.
christmas is coming. won’t someone think

of my needs?
↓

the only good thing the guys did was
dropped off the gifts.

↓

[ROOT] [ROOT]

(56)

MERU CLIP

table in the backyard of the summer house
in melby, denmark.

chair detail

kitch at airbnb at corte del correggio - note
window behind chairs

↓

photo by laura nawrocik some patio
furniture that needs a little cleaning.

↓

from a bench on the north side. ↓
the backyard of the b and b we stayed at ↓

another from this shoot in a more
traditional style.

↓

traditional place to take a picture. ↓
a nice place to take pictures! ↓

[ROOT] [ROOT]

(57)

MERU CLIP
found at city lights book store, sf

www.citylights.com
ikea catalog waiting for pickup, fairborn,

ohio.
in powells rare book room special collections - amsterdam, netherlands

in the rare book reading room one needs to get there to read the it full.
book heaven. ↓

not a book in sight ↓
even more books ↓

sorry... i really like this space. ↓
with something like this, you would have to

get a few
↓

[ROOT] [ROOT]

Figure B.19: Image traversals (19/20) using a set of captions from the YFCC dataset.
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(58)

MERU CLIP

a pineapple grows in the wild between goa
gajah and yeh pulu, bali.

so much organic burden on its way to the
sea.

the pineapple, dunmore park. n everything is so organic on lamu island.
it started with more fruits but i didn’t take

this picture till late
it’s been that long since i took this that the

next lot is already growing.
shot <usr> beach the one that didn’t get picked yet

a regular sight from our coast ↓
la nature au carre. ↓

i would be happy if all my photos turned
out like this one.

↓

this is one is good. ↓
[ROOT] [ROOT]

(59)

MERU CLIP

sulphur crested cockatoos are great
characters

soleil when she was a baby with her green
feathers

au pied du ciel lenny white
pale male’s mate #5 white tee’s - photos for everyone

i think this is a nice photo of sean, though i
doubt he will think so.

↓

photo: george struikelblok ↓
this is birdy. ↓
q’s and a’s ↓
[ROOT] [ROOT]

(60)

MERU CLIP

uzi usb drive by dan helmick. brass, wood,
riveted.

i swear, this is how the coins landed. so i
had to take a photo.

the coin toss money was a fun picture to take.
inset a coin...it moves... i really should have pictures of all the

money, but after awhile one loses interest.
ver. 2 ↓

made in a post secret kinda a way to tell
something.

↓

no-one will ever guess ↓
[ROOT] [ROOT]

Figure B.20: Image traversals (20/20) using a set of captions from the YFCC dataset.
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Appendix C

How to Segment and Classify Anything?

C.1 SCAM Implementation Details

In this section, we provide additional details for SCAM, building on our discussion in

Section 5.3. Recall that SCAM is composed of four modules: backbone, prompter, seg-
menter, and classifier. We initialize the backbone and classifier using a pre-trained CLIP

model [198], whereas we use SAM [123] (ViT-H [60] checkpoint) as the default segmenter
in all our experiments.

Pre-trained CLIP models. The versatility of SCAM’s design allows using a variety of CLIP

models. Therefore, we experiment with twelve publicly available checkpoints:

1. ResNet-based OpenAI CLIP models [198]: Four models with ResNet image encoders of

different sizes [91, 275] – RN50, RN101, RN50-4x, and RN50-16x. These models were

trained using 400 million image-text pairs.

2. ViT-based SigLIP models [280]: Five models trained at 224 × 224 image resolution and

subsequently fine-tuned at higher resolutions: ViT-B-(224px, 256px, 384px), and

ViT-L-(256px, 384px) [60]. These models are trained using 10 billion image-text

pairs with a sigmoid loss instead of the softmax contrastive loss [88].

3. ConvNeXt-based CLIP models [110]: Three models with ConvNeXt [159] image en-

coders of different sizes – ConvNeXt-B, ConvNeXt-L, ConvNeXt-XXL. These models are

trained using the LAION-2B [211] dataset.

We obtain these checkpoints from the OpenCLIP [110] Model Zoo1. Next, we elaborate on

how we use these models in the backbone and classifier (Appendices C.1.1 and C.1.2) and

further discuss how we train the prompter (Appendix C.1.3).

1Source: https://github.com/mlfoundations/open clip
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C.1.1 Initializing the Backbone with CLIP

Recall that the backbone is required to extract dense image embeddings from input images,

which are then cropped to create region-level embeddings for the classifier. Following the

prevailing design, we input 1024×1024 images and obtain 64×64 image embeddings from

the backbone.

Primarily, the backbone is used to process the image once to amortize the inference cost

when classifying image regions which can potentially range between 10–100 or more. This

implies a domain shift from the usage of the CLIP image encoder during training, which

classifies whole images. In our preliminary experiments, we observed that the ConvNeXt-

based CLIP models demonstrate superior empirical performance under this domain shift.

Therefore, we conduct all experiments in the Section 5.4 using these models. However,

we consider all CLIP models in this discussion and report results with ResNet-based and

ViT-based CLIP models in Appendix C.2.

ResNet and ConvNeXt have a hierarchical design – an input image is initially downsam-

pled to embeddings of 1
4

scale, then passed through four convolutional stages. Each stage

progressively reduces the image embedding scale by half until it reaches the final 1
32

scale

compared to the input image. Hence, to obtain image embeddings with the desired 1
16

scale, we initialize the backbone with all stages but the last one. We resize the input im-

ages to a maximum size of 1024 pixels (maintaining the aspect ratio), then convert them

into a square using zero-padding.

ViT , on the other hand, has an isotropic design – they downsample the input images

to 1
16

scale in the first layer, and this scale remains constant throughout all layers. As

such, we use the full image encoder in the backbone for SigLIP models, excluding the final

attention pooling layer. To use the ViT with higher-resolution input images, we upsample

the positional embeddings via bilinear interpolation. Unlike convolutional CLIP models,

we do not zero-pad the input images – CLIP image encoder does not observe zero-padded

patches during pre-training. Zero-padded patches interfere with self-attention in ViT and

yield empirically lower results when adapted without fine-tuning.

Note on other ViT-based CLIP models: Besides the CLIP models that we considered

above, OpenCLIP contains several publicly available checkpoints using the ViT image en-

coder. These encoders contain a learnable [class] token that aggregates spatial (patch)

embeddings at each layer. After the final layer, this token is matched with text embeddings
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during image-text pre-training. Such a design does not guarantee that the region-level em-

beddings align well with text embeddings. Zero-shot adaptation of such models is beyond

the scope of this study. We encourage further works to develop ViT-based CLIP models

without the [class] token. This consideration would enhance the models’ adaptability

to region-level tasks and reduce computational overhead on modern hardware like TPU

pods [279].

C.1.2 Initializing the Classifier with CLIP

The classifier includes the remaining parameters of the CLIP image encoder that are ex-

cluded from the backbone. For convolutional models, this consists of the final convolutional
stage, whereas for ViT-based models, the last attention pooling layer. These modules pro-

cess cropped image embeddings, which are obtained using the masks from the segmenter.
Notably, we crop region embeddings of size S

16
× S

16
, where S represents the image reso-

lution used during CLIP pre-training. However, we use larger region crops (24 × 24) for

ConvNeXt-L and ConvNeXt-XL models, since they give slightly better empirical results. Uti-

lizing masks from the segmenter, we perform masked pooling to obtain foreground-specific

embeddings.

The classifier’s second part is a weight matrix representing text embeddings. We utilize

the six most effective ImageNet templates as prescribed by Radford et al. [198], and we

fill them with object class names to extract text embeddings from the matching CLIP-text

encoder. In summary, we measure the pairwise similarity between pairs of region-text

embeddings, scale it with the learned CLIP temperature (also adding bias term for SigLIP),

and apply softmax to produce a probability distribution across object classes.

C.1.3 Training the Prompter

The prompter is a lightweight convolutional module that predicts a real-valued score ∈
[0, 1] for each location in the grid of image embeddings from the backbone. The purpose of

this module is to propose a subset of points from a dense 128 × 128 point grid to prompt

the segmenter (SAM).

Trivial method: binary classification. A trivial method to train the prompter is to pre-

dict a binary score – a feature location is assigned 1 (foreground) if the underlying image

pixel belongs to any ground-truth segmentation mask, and 0 (background) otherwise. This

strategy resembles the objectness objective of the region proposal networks [204].
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While effective, this strategy leads to wasted computation and slower runtime due to

the inability to choose a subset of points for a particular object. SAM can predict the

desired object mask for most points inside the corresponding object of interest. Hence,

prompting multiple points for an object may yield near-duplicate masks from SAM and

hence hurts runtime. Therefore, it becomes imperative to leverage this effectiveness of

SAM to improve runtime – not only should the prompter generate point prompts with high
recall (covering all objects of interest), but also with high precision (very few points for

each object).

Training with mask-based centerness: To obtain point prompts with higher precision,

we train the prompter to predict real-valued scores ∈ [0, 1] denoting the centerness of a

feature location. With a well-trained prompter, one can sample more point prompts closer

to object centers than boundaries. The centerness objective is used in existing detectors,

e.g., CenterNet [289] and FCOS [238], however, they define this measure using bounding

boxes instead of masks.

We use the mean-squared error (MSE) to train the prompter. During training, every

feature location is assigned a ground-truth regression target computed using unlabeled

masks. For every instance mask of a given image, we compute the Euclidean distance

transform (EDT) [206] at 128 × 128 resolution. Then we scale the target values to [0, 1]

and subsequently combine the distance transforms of all instances by computing element-

wise maximum. Note that we ignore the padding locations from loss computation for non-

square images. Finally, we avoid points close to object boundaries by assigning targets

∈ [0, 0.25] to background (0), then re-scaling targets back to ∈ [0, 1]. At test-time, we find

peaks in the heatmap of logits using a 3× 3 max-pooling kernel.

C.2 Zero-shot Transfer with SCAM

Table C.1 shows zero-shot transfer results for SCAM using different types of CLIP models.

When transferred for object detection, CLIP image encoders face a domain mismatch as

they operate on high-resolution images (1024 pixels) as compared to much lower reso-

lution during pre-training (typically 224–384 pixels). In this scenario, we observe that

convolutional CLIP models fare better than ViT-based counterparts. Moreover, ConvNeXt-

based models show stronger empirical performance than ResNet-based models, likely due

to higher parameter count and training data size. Among SigLIP models, we observe that

ViT models fine-tuned with higher resolution inputs perform better, as the domain gap

characterized by image resolution is reduced by high-resolution fine-tuning. Based on
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COCO
CLIP Image Encoder Params AP AP50

ResNet-based OpenAI CLIP Models

RN50 38M 11.4 17.1
RN101 56M 11.0 16.3
RN50-4x 87M 12.4 18.5
RN50-16x 167M 13.6 19.8

ViT-based SigLIP Models

ViT-B-224px 92M 10.0 15.1
ViT-B-256px 92M 11.7 17.5
ViT-B-384px 92M 15.9 24.1
ViT-L-256px 316M 13.8 20.5
ViT-L-384px 316M 16.9 25.1

ConvNeXt-based OpenCLIP Models

ConvNeXt-B 88M 21.9 32.7
ConvNeXt-L 200M 24.8 37.9
ConvNeXt-XXL 846M 25.8 39.1

Table C.1: Zero-shot transfer to COCO, using different backbones with SCAM. All mod-
els use our test-time improvements (Mask-based NMS, Sub-mask Suppression, and masked
pooling). ConvNeXt-based models perform the best, which we use throughout our remain-
ing experiments.

these results, we use the ConvNeXt-based models by default in our experiments.

Figures C.1 and C.2 show more zero-shot transfer results of SCAM with the ConvNeXt-

XXL backbone. We obtain reasonable mask predictions without any additional fine-tuning.

While the detector performance is far from current state-of-the-art models (that train on

these datasets), our results suggest that SCAM can aid in object discovery and can boot-

strap learning via iterative self-training.
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Figure C.1: Zero-shot transfer with SCAM: Qualitative results. High-scoring masks
predicted by SCAM with CLIP ConvNeXt-XXL for random images from OpenImages [16].
SCAM can segment novel objects without any downstream fine-tuning.
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Figure C.2: Zero-shot transfer with SCAM: Qualitative results. High-scoring masks
predicted by SCAM with CLIP ConvNeXt-XXL for random images from LVIS [86]. SCAM
can segment novel objects without any downstream fine-tuning.
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